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Abstract

Despite the increasing interest in novel materials for the next generation of micro-
electronic devices, such as graphene and topological insulators, Si(100) surface is still
the most important substrate for nano-device applications. Its high stability and the
possibility of manipulating and functionalizing the surface properties at an atomic
level are opening up new perspectives for a wide range of applications ranging from

transistor downscaling, dictated by Moore’s law, to quantum computing.

The adsorption of single atoms and small inorganic molecules plays a fundamen-
tal role in controlling the passivation, oxidation and epitaxial growth of the surface.
Hydrogen passivated Si(100) surfaces, for example, can be patterned by desorbing H
atoms through the tip of a scanning tunneling microscope (STM) and a variety of ar-
rangements of coupled dangling bonds (quantum dots) can be created. Furthermore,
the morphology and electronic properties of the reconstructed Si(100) surface provide
a template for exploring systems with low dimensionality and quantum confinement
effects on a real system. The quasi one dimensional dispersion of the Si(100) surface
states can be exploited to study the fundamental physics related to real quantum

wells.



The dimer rows of the p(2 x 2) and ¢(4 x 2) reconstructed Si(100) surfaces exhibit
interesting surface electronic properties originating from the dangling bonds: the
empty dangling bond state (7*) is situated within the silicon bulk band gap and
reveals energy dispersion only along the dimer row. The standing wave pattern in
the local density of states, affected by surface adspecies, is very sensitive to the
precise nature and configuration of the adspecie and it inspired us to develope a non
intrusive, non local approach to characterize them. The adsorption of the simplest
adspecie, a single H atom, which has a fundamental role related to the passivation of
the surface and nano-patterning procedures will be presented. The adsorbed H atom,
on the otherwise bare Si(100) surface with ¢(4 x 2) reconstruction, passivates one of
the Si dangling bonds, breaking the Si-Si 7-bond and leaving an isolated dangling
bond (named the single dangling bond, SDB) on the other site of the dimer. An
exhaustive description of the bonding configuration of the single H atom on the
surface is presented as a function of the doping of the sample. Two approaches have
been adopted.

The first one, called local approach, consists of analyzing local data such as the
topography and the LDOS in the proximity of the reacted site to extract information

about the bonding configuration of the adspecie.

The second approach, called non-local approach, makes use of nonlocal informa-
tion, such as the standing wave pattern in the nonlocal density of states far away from
the reacted site, to determine the adsorption configuration of the H. The properties

of the single dangling bond are also evaluated.

Data are obtained by performing ab initio computer simulations and compared
with scanning tunneling microscopy and spectroscopy (STM/STS) experiments.

With these tools, we were able to characterize the geometry and the charging state
of the SDB for different doping conditions. For n-doped systems, the H-produced

SDB is doubly occupied with the Hg configuration being the lowest in energy. This
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configuration coincides with the majority specie found in low temperature STM
experiments. The Hp configuration is the lowest in energy for p-doped samples,
with the SDB state being empty. Finally, according to our calculations, the Hp
configuration is predicted to be the lowest in energy for the neutral intrinsic case,

and the SDB state is partially occupied and spin-polarized.

The nonlocal approach enabled us to map the phase-shift ©(k) and it proved to
be a very precise fingerprint for discriminating different H adsorption configurations.
It has the potential to become a very general tool to determine the configuration of
molecules and adspecies deposited on surfaces where the topographic signatures of
different configurations are indistinguishable.

We also found that the configuration and charging state of the SDB are responsi-
ble for a gating between the reacted row and a bare adjacent one. The charge present
at the reacted site originates a depletion of charge in the adjacent row, due to the
Coulomb interaction, which results in a gating effect. The magnitude of the gating is

proportional to the charging of the SDB and to the directionality of the SDB orbital.

All the results presented in this thesis can provide an interesting perspective for
exploring fundamental properties of coupled systems (e.g. quantum wells) as well
as applicative aspects aimed at the fabrication of nano-devices. The gating effect,
together with the ability to create quantum wells by nanopatterning the Si(100) with

an STM tip, may offer the opportunity to study coupled real quantum wells.

The interplay between charging and geometry can be taken as the basic mecha-
nism for fabricating an atomic-scale switch device. In fact, by tuning the surface dop-
ing from p-type to n-type, one may switch between the two H configurations. These
have distinct scattering and transport properties, so that the switch can be detected

electrically or by mapping the phase-shift using the nonlocal approach method.

At the end of my PhD I was involved in another project with the aim of mod-

elling a heterostructure based on graphene and topological insulators, by means of
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first-principles calculations. In the last part of this thesis, the preliminary results
concerning the electronic properites of a graphene-BisSe; heterostructure are pre-
sented. The main idea is to model a material which combines the roboustness of the
topological protected surface states of a topological insulator (TT) with the promis-
ing transport properties of pristine graphene. For different graphene-T1 separations,
the evolution of the band gap and the of the band structure is studied. At a close
distance between the two subsystems, a conical band in the proximity of the Fermi
level originates at the graphene-BisSes interface region. Our preliminary results pre-
dict this band to be topologically protected even though further investigations are
required. A topological protected state in graphene, once supported by experimental
verification, would candidate this versatile material as a very promising replacement

for silicon aimed at nanoelectronics applications.
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CHAPTER 1

Introduction

The invention of the transistor in 1947 by John Bardeen, Walter H. Brattain, and
William B. Shockley from Bell Labs started the semiconductor revolution, thus giving
birth to a series of new devices with remarkable potential for expanding the appli-
cability of electronic equipment. Transistors, with their subsequent developments
as integrated circuits, are made of crystalline solid materials called semiconductors,
whose electrical properties can be tuned over an extremely wide range through the
addition of small amounts of other chemical species (doping). The electric current
in semiconductors is carried by electrons, which have a negative charge, and/or by
holes, analogous entities carrying a positive charge. The availability of two kinds
of charge carriers in semiconductors is a valuable property exploited in many elec-
tronic devices made of such materials. The electrical properties of semiconductors
are extremely sensitive to the slightest trace of other elements, and high purity is
usually required so that they can be used for making semiconductor devices. During

World War II, methods of purifying germanium were developed and this explains



Introduction

why early transistors were produced using such material. A few years later, research
on the purification of silicon succeeded in producing samples suitable for semicon-
ductor devices, and new devices made of silicon were manufactured from about 1960.
Since then silicon, due to its abundance and consequent low price, quickly became

the preferred raw material for electronic device applications.

There are a few more reasons why silicon overtook germanium as the basic mate-
rial for the semiconductor industry. Firstly, silicon retains its semiconducting prop-
erties at higher temperatures than germanium does. Silicon diodes can be operated
at temperatures up to 200 °C, whereas germanium diodes cannot be operated above
85 °C. Secondly, silicon, unlike germanium, forms a tenaciously adhering oxide film
(silicon dioxide) with excellent electrical insulating properties when it is heated to
high temperatures in an oxygen rich atmosphere. This film is utilized as a mask to
permit the desired impurities that modify the electrical properties of silicon to be
introduced into it during the manufacturing of semiconductor devices. The mask
pattern, formed by a photolithographic process, permits the creation of tiny transis-
tors and other electronic components in silicon. The optimization in the fabrication
process followed by the transistors miniaturization brought the integration of a large
number of transistors into a single integrated circuit called a microprocessor. This de-
vice contained all the arithmetic, logic, and control circuitry required to perform the
functions of computers central processing unit (CPU). The first large scale produc-
tion microprocessor, the 4004, was introduced by Intel Corporation in 1971, together
with the memory integrated circuit. It included 2300 transistors built with a 10um
process. The stage was now set for the computerization of small electronic equip-
ment [1]. The silicon-processing lengh scale has shrunk tenfold every 15 years since
1971, following Moore’s low [2], and nowadays it stands at 22 nm, which translates
into microprocessors incorporating a few billions of transistors. At such dimensions

quantum effects, such as the onset of quantum tunneling of electrons through po-
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tential barriers, limit the ability to confine charges to a densely packed array. The
physical limit for the transistor size is estimated to be around 5 nm, a distance
where direct tunneling of electrons between source and drain will occur. The race to
miniaturization has recently presented ample research and development opportuni-
ties in the growth and characterization of novel materials for the next generation of
electronic devices such as graphene, topological insulators, hybrid organomolecular

silicon, multiferroics ete. [3-13]

Despite this important and sustained effort, to date the Si(100) surface still re-
mains the most important substrate for nano-device applications [3,14-18]. Its high
stability and the possibility of manipulating and functionalizing the surface proper-
ties at an atomic level are opening up new perspectives for a wide range of applica-
tions ranging from transistor downscaling, dictated by Moore’s law, to quantum com-
puting [19-22]. The adsorption of single atoms and small inorganic molecules plays
a fundamental role in controlling the passivation, oxidation and epitaxial growth of
the surface [23,24]. Hydrogen passivated Si(100) surfaces, for example, can be pat-
terned by desorbing H atoms through the tip of a scanning tunneling microscope
(STM) [25] and a variety of arrangements of coupled dangling bonds (quantum dots)
can be created [26,27]. Furthermore, the morphology and electronic properties of
the reconstructed Si(100) surface provide a template for exploring systems with low

dimensionality and quantum confinements effects on a real system.

The quasi one dimensional dispersion of the Si(100) surface states (see next sec-
tion for details) can be exploited to study the fundamental physics related to real
quantum wells. Yokoyama et al. were able to confine surface electrons and create one
dimensional quantum wells on a Si(100)-¢(4x2) surface by depositing Al atoms on
the surface through the tip of a scanning tunneling microscope [28]. 3D topographic
images, acquired at T=63 K, exhibit a standing wave pattern with two, three and

four peaks between the Al ad-dimer chains for sample biases of 0.9 V, 1.1 V and
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1.2 V, respectively [see Fig. 1.1(a)]. A similar experiment was performed by Sag-
isaka et al.. Quantum confinement of surface electrons was achieved by depositing
W atoms on a Si dimer row of the Si(100) surface from the tip of a scanning tun-
neling microscope [29,30]. The differential conductance (dI/dV) images for different
sample biases show a standing wave pattern with an increasing number of bright
spots (peaks) as a function of the bias. The bright protrusions at the borders of
the images are the confining W atoms [see Fig. 1.1(b)]. Boland et al. created a one
dimensional quantum well on the Si(100) surface by depositing small Pt clusters [31].
The standing wave pattern in the differential conductance (dI/dV) image, acquired

at 77 K, resambles the “particle in a box” picture [see Fig.1.1(c)].
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Figure 1.1: Standing wave pattern in the scanning tunneling microscope images obtained
by 1D confinement of surface electrons in real quantum wells. (a) Yokoyama
et al. were able to create quantum wells by depositing Al atoms on the Si(100)
surface from the tip of a scanning tunneling microscope [28]. (b) Sagisaka
et al. used W atoms to confine electrons along the dimer row of the Si(100)
surface [29,30]. (c) Boland et al. created a one dimensional quantum well by
depositing small Pt clusters on the dimer row of the Si(100) surface [31].

—~

Besides the attention to the fundamental physics related to real quantum wells,
there is an increasing interest in Si-based platforms for quantum computing ap-

plications. The race to miniaturization has driven the length scale of the silicon
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Introduction 1.1 Si(100) surface

lithographic process used for transistors production down to the nanoscale (22nm,
nowadays). A further shrinking in the dimensions will see the onset of quantum
effects, such as quantum tunneling of electrons through potential barriers, limiting
the ability to confine charges to a densely packed array. In addition, the number of
donors in the transistor channel are discrete and countable and the device starts to
be very sensitive to the precise location of individual dopants whose electrical char-
acteristics can be observed at low temperatures [32]. These quantum limit issues can
be turned into advantages by building a device which relies on coherent quantum
behaviour to store and recover information. Morton et al. showed that the nuclear
spin and the electron spin can be used to store the quantum information. Silicon is
particularly attractive for hosting spin quantum bits (qubits) because it possesses a
low spin-orbit coupling which determines a long spin coherence time. Spin qubits
can be realized in silicon using confined donor-bound spins or lithographically defined
silicon-based quantum dots [33,34].

Despite new materials are promising candidates for future applications in elec-
tronics, the interest around the Si-based technology is far from fading away. The
advanced state of Si electronics and its capability to integrate novel applications,
such as spin qubits, with the existing technology, requires an accurate study of the
electronic properties of low dimensional structures and the one depending on the

precise position of the dopants.

1.1 Si(100) surface

Surface reconstruction refers to the process by which atoms at the surface of a crystal
assume a different structure than that of the bulk. This process is due to the abrupt
change in the external potential felt from electrons, which goes from the bulk value,
inside the crystal, to vanishing above the surface. The system reacts to the potential

change by minimizing the energy, thus leading to interesting effects both in the
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1.1 Si(100) surface Introduction

atomic and electronic structure near the surface. The changes in the atomic positions
of surface atoms can be such that the periodicity of the surface differs from that of
the atoms on a bulk-terminated plane with the same orientation. The standard way
to describe the new periodicity of the surface is by multiples of the lattice vectors
of the corresponding bulk-terminated plane. For instance, a n; X ny reconstruction
on the (klm) plane is such that the lattice vectors on the plane are n; and n times
the primitive lattice vectors of the ideal, unreconstructed, bulk-terminated (klm)
plane [35]. The Si(100) bulk-terminated plane consists of atoms that have two bonds
covalent to the rest of the crystal, while the other two bonds on the surface have been
severed. The severed bonds are called dangling bonds and each of them is half-filled,
i.e. it contains only one electron. If we consider a tight-binding approximation of
the Si electronic structure, with a four sp® orbital basis associated to each atom,
it follows that the dangling bond states have an energy in the middle of the band
gap. This energy is also the Fermi level, since the Si dangling bond occupied states
are the highest occupied states. The surface Si atoms come together in pairs, giving
rise to a 2 x 1 periodicity. New bonds are formed, called dimer bonds, with each
bonded pair of atoms called a dimer. The formation of a dimer bond eliminates two
of the dangling bonds in the unit cell, one per dimer atom. This leaves two dangling
bonds, one per dimer atom, which, for symmetric dimers, are degenerate and half-
filled. The energy of these states determines the position of the Fermi level, since
they are the highest occupied states. The dimers, in the lowest energy configuration
of the system, are tilted: one of the atoms is a little higher than the other when
considered relatively to the average height of surface atoms, which is taken as the

macroscopic definition of the surface plane.

This tilting has an important effect on the electronic levels, as illustrated schemat-
ically in Fig. 1.2. The up-atom of the dimer has three bonds at an angle close to

90°. Such an atom is in a bonding configuration close to sp*: it forms covalent bonds
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Introduction 1.1 Si(100) surface

Unreconstructed Symmetric dimers Tilted dimers
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Figure 1.2: Effects of dimerization and tilting on the states around the Fermi level, Ey, for
the reconstructed Si(100) surface.

through three of its sp orbitals, while one of them does not participate to the bond-
ing. At the same time, the down-atom of the dimer has three bonds which are almost
planar. These are in a bonding configuration close to sp? and form three bonding
orbitals containing one s and two p states, while the third p orbital, the one perpen-
dicular to the plane, does not participate to the bonding. When considering the two
orbitals that do not participate to the bonding, it can be seen that the sp orbital of
the up-atom has lower energy than the p orbital of the down-atom. Consequently,
the two remaining dangling bond electrons are accommodated by the up-atom sp
orbital, which becomes filled, while the down-atom p orbital remains empty. The
net effect is that the surface has semiconducting character, with a small band gap
between the occupied up-atom sp state and the unoccupied down-atom p state. The
Fermi level is now situated in the middle of the surface band gap (Fig. 1.2), which
is smaller than the band gap of the bulk [35]. The semiconducting nature of the
surface was established more that 30 years ago by photoemission spectroscopy ex-
periments (PES) [36,37] and confirmed by inverse-photoemission, photoelectron and

STM spectroscopies [38-40].

Beside the dimerization and tilting processes within the 2 x 1 surface unit cell,
there is a long range reconstruction process which consists of dimers with alternating

buckling. The p(2 x 2) reconstruction shows alternating buckling along the dimer

21



1.1 Si(100) surface Introduction

rows while alternating buckling occurring also along the direction perpendicular to
the dimer rows leads to the ¢(2x4) reconstruction. The distance between the Si atoms
forming the second surface layer (connected to the backbonds of the topmost layer)
is different depending on the position of the surface Si atoms along the direction
perpendicular to the surface. The distance between the Si atoms attached to the
backbonds of the top Si atom of the dimer is shorter with respect to the one between
the Si atoms attached to the backbonds of the bottom atom of the dimer. This results
in an alternation of the dimers as a more efficient way to accomodate the surface
stress in the underlying layer of Si atoms. The apparent p(2 x 1) surface symmetry
observed at room temperature can be attributed to the thermally activated flip-flop
motion of dimers, while ¢(4 x 2) and p(2 x 2) surface reconstructions are detected at
low temperature (Fig. 1.3). STM experiments [41-44], low-energy electron diffraction
(LEED) [45] and angle-resolved photoemission spectroscopy (ARPES) [44] confirm
the coexistence of p(2 x 2) and ¢(4 x 2) reconstructions at low temperature (below
200K), thus revealing a prevalence for the ¢(4 x 2) reconstruction pattern. Ab initio
total energy calculations, in a very good agreement with experiments, indicate an
energy difference between the p(2 x 2) and p(2 x 1) reconstructions of ~0.5 eV /dimer
while the difference between the ¢(4 x 2) and the p(2 x 2) is ~0.005 eV /dimer,
the ¢(4 x 2) being lower in energy. The small energy difference between p(2 x 2)

and ¢(4 x 2) reconstructions explains the coexistence of both periodicities at low
temperature [46-48].

g ghoge YOO pal S0 o

Figure 1.3: Perspective view of the Si(100) surface with, respectively, p(2 x 1), p(2 x 2)
and ¢(4 x 2) reconstruction (from left to right). The yellow and green silicon
atoms are respectively the top and bottom atom of the surface dimers.

-]

The morphology of the structure is reflected on the electronic properties of the

surface. The dimer rows of the p(2x2) and ¢(4 x 2) reconstructed Si(100) surfaces ex-
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Figure 1.4: From left to right: top view of a balls-and-sticks model of the Si(100) surface

with, respectively, p(2 x 1), p(2 x 2) and ¢(4 x 2) reconstruction.

hibit interesting surface electronic properties originating from the 7 dangling bonds:
the empty dangling bond state (7) is situated within the silicon bulk band gap and
reveals energy dispersion only along the dimer row [Fig. 1.5(a)] [46,47,49]. Hence the
7* band exhibits a quasi-one-dimensional (1D) character, which has been confirmed
by scanning tunneling microscopy observations of surface standing waves [28-30,50)].

These surface states in the conduction band are almost decoupled from the bulk and

‘[siTop
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(a) Band structure (b) Density of states

Figure 1.5: Band structure (a) and density of states (b) of the Si(100) surface with (4 x 2)
reconstruction for a 2 x 4 supercell. (a): the filled circles bands are the 7*
bands, one for each dimer row. These bands show a pronounced dispersion
along the direction of the dimer rows (I' — J and K — J’) while they are almost
flat in the direction perpendicular to the dimer row, exhibiting a quasi-one-
dimensional character. (b): the 7* bands are mainly due to states coming from
the bottom atom of the dimers.

they are mainly due to states coming from the bottom atoms of the surface dimers,
as shown by the density of states plots in Fig. 1.5(b). The standing wave pattern
in the local density of states, induced by surface adspecies, is very sensitive to the

precise nature and configuration of the adspecie and it inspired us to develope a
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1.1 Si(100) surface Introduction

non intrusive, non local approach to characterize them. The thesis will focus on the
adsorption of the simplest adspecie, a single H atom, which has a fundamental role
related to the passivation of the surface and nano-patterning procedures. The aim of
this work is to study the effects of a single hydrogen atom adsorbed on an otherwise
bare Si(100) surface with ¢(4 x 2) reconstruction. The adsorbed H atom on the sur-
face passivates one of the Si dangling bonds, breaking the Si-Si 7-bond thus leaving
an isolated dangling bond on the other site of the dimer [51]. The dimer containing
the adsorbed H atom will be referred throughout the text as the reacted dimer and
the dangling bond on the opposite site of the same dimer as the single dangling bond
(SDB). The aim of this thesis will be to provide an exhaustive description of the
bonding configuration of a single H atom on a bare Si(100)-¢(4 x 2) surface as a

function of the doping of the sample. Two approaches have been adopted.

The first one, called local approach, consists of analyzing local data such as the
topography and the LDOS in the proximity of the reacted site to extract informa-
tions about the bonding configuation of the adspecie. These data are obtained by
performing ab initio computer simulations and compared with scanning tunneling
microscopy and spectroscopy experiments at a spatial position corresponding to the

reacted site.

The second approach, called non-local approach, makes use of nonlocal informa-
tions, such as the standing wave pattern in the nonlocal density of states far away

from the reacted site, in order to determine the adsorption configuration of the H.

The properties of the single dangling bond are also evaluated. In particular, a
complete spectroscopic analysis of the charging state of the SDB is carried out as a
function of the H bonding configuration and the doping of the sample by means of
ab initio calculations and STM/STM measurements. The reacted dimer acts as a
potential barrier for the electrons travelling on the same dimer row and, depending

on the H configuration and the SDB charging state, on the adjacent row. The aspects
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Introduction 1.2 Quantum well

related to the details of the gating effect between adjacent rows will be addressed in

this thesis.

1.2 Quantum well

AEnergy
b Vix)
Sz
~-a 0 a X

Figure 1.6: Schematic representation of a potential well formed by two barriers located at

| = a.

In quantum mechanics, the one dimensional space lying between two potential
barriers at a distance of the same order of magnitude as the de Broglie wave length,
is called a quantum well. The main characteristic of a quantum well is that is only
allows states with discrete energy values. I will discuss a few examples of the quantum
well states in the chapters of this thesis discussing our results (Chaps. 4, 5), therefore
it is worthwhile to present a brief overview of the basic physics describing a quantum
well. A more comprehensive discussion about quantum wells can be found in any

quantum mechanics book, for example in Ref. [52].

1.2.1 Infinite potential barriers

Let us consider the case of two infinitely high barriers (V;, — o0) located at the
positions |z| = a, as shown in Fig. 1.6. Due to the infinite barrier height, the wave
function v of a particle moving inside the well does not penetrate inside the barrier.
This leads to a boundary condition requiring the wave function to vanish at the

barrier interfaces so that ¢» = 0 at |z| = a. Inside the central region, the potential
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1.2 Quantum well Introduction

vanishes and the Schrodinger equation becomes the one described by a free particle

with energy £ and mass m

0%y 3

where the wave vector k is defined as

22712
i and = i . (1.2)

- A il
h? 2m

m

The solutions at the right-hand and left-hand side boundary are, respectively

Y1(a) = Ae'*® + Be ™ =0 and Ya(a) = Ae ™ + Be'*® = 0. (1.3)

These two conditions describe the wave function of a free particle approaching and
being reflected by each barrier. Since the two equations concern to the same particle,
they cannot give independent solutions and they must be degenerate so that the

determinant of the coefficients must vanish

Cika e—ika
=0 (1.4)
e—ika Pika
This leads to the requirement that
sin(2ka) = 0, (1.5)
which imposes discrete values for k& and &
2 2p2
nm n°mw°h
k, = — iy — : with =1, 2.3, e 1.6
n 2a n 87na2 ( )
Hence, the spacing between the allowed energy values increases quadratically with

the index n. By substituting the value for k& back into one of the equation for the
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boundary conditions, for example Eq. 1.3, it leads to
m
B Jinm -1 n,+1' R

By considering increasing values of the index n, the wave functions alternates between

cos and sin

A cos (gﬁ) n odd
Yn(T) = . : (1.8)
A sin (—) n even
2a

This can be recast into a single equation by offsetting the position so that

. (xz) = Asin lﬁ(r s a)] (1.9)
2a
By normalizing the wave function, the constant A can be determined,
, 5 {* . o [OW
(Vn(2)|thn(z)) = A sin [——(7 + a)] de =1, (1.10)
J 2a
leading to
1
A=—. (1.11)

The particle is said to be in a pure state if it occupies a single energy level (eigenvalue
of the Hamiltonian). Usually, the particle occupies a linear superposition of energy
levels, its total wave function, on the average, will receive contributions from many of
them. Then the wave function is a sum over the Fourier series, where the coeflicients

are related to the probability for each level to be occupied. This can be written as

alz) = Z % sin [%(r + (1)] : (1.12)

where the probability of the state n to be occupied is given by |c,|* and the co-

efficients ¢, are subject to the limitation on the total probability (particle number
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1.2 Quantum well Introduction

conservation) that

Y mf=1 (1.13)

n

1.2.2 Finite potential barriers

In a situation where the potential barrier is not infinite, the wave function penetrates
into the region under the barriers. If the energy ¢ of the particle is lower than the
height of the barrier Vi, then the particle can propagate freely in the region |z| < a,
for which the Schrodinger equation has the form aforementioned in Eq. 1.1, and k is
given by

o 2me

=7 (1.14)

In the range |z| > a, the wave function decays inside the barrier and the Schrodinger

equation becomes

0%y 5, , o 2m(Vy —¢)
] +y2Y(z) =0 with 2 = h+ (1.15)
The solution of Eq. 1.15 has the form
p(z) = Ce Ml for |z| > a, (1.16)

7 being the damping coefficient. Due to the symmetry of the potential, the Schrodinger
equation would have either even or odd symmetry solutions like the ones given in
Eq. 1.8. The basic properties discussed for the infinite barriers case will carry over
to the present one and the solutions in the well region are expected to be either sin
or cos [52]. According to the usual boundary conditions, both the wave function
and its derivative must match at each boundary. This leads to four equations with
two unknowns: the amplitude of C' for the sin and cos wave functions and the wave

vector k (and hence 7) for the bound state energy levels. The problem can be solved
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Introduction 1.2 Quantum well

by requiring the logarithmic derivative ¢’/ to be continuous. This enables us to
eliminate immediately the constants, rather then apply the boundary conditions to
the wave function and its derivative separately [53]. The even- and odd-symmetry

(cos and sin) wave functions will be treated separately.

For the even-symmetry wave function given by Eq. 1.8, the logarithmic derivative

is
—ksin(kx)

cos(kx) = —ktan(kz). (1.17)

& nfu(a)) =

The logarithmic derivative of the wave function inside the barrier is vsign(z). By
matching the wave function at the boundary z = a (by symmetry reasons this equals
r = —a) gives

ktan(ka) = 7, (1.18)

which determines the allowed values for the bound states energies. By introducing

the reduced variables & and /3, the Eq. 1.18 becomes

|82 ,  2mVpa?
tan(§) = /f_z -1, with £E=ka and B = % (1.19)

The right-hand side of Eq. 1.19 is a monotonically decreasing function and only the
energy values in the range (0, V;) constitute bound states. In general, graphical
solutions are required to solve the Eq. 1.19. The left-hand side and the right-hand
side of Eq. 1.19 are plotted separately in Fig. 1.7, and the circled crossings are the
allowed solutions. Bearing in mind the graphical representation, if the potential
amplitude Vj is reduced, 3 and & decrease and the available range for the two curves
to intersect becomes smaller. However, the right-hand side of Eq. 1.19 varies from
infinity (for £ = 0) to zero (for £ = 3), while the tangent function goes to zero for
¢ = 0 or nm and diverges for £ = odd or /2. Therefore there is at least one crossing.
The graphical solutions are marked with circled crossings in Fig. 1.7. Larger values

of the potential amplitude V} allow more bound states energies.
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Figure 1.7: Left-hand side and right-hand side of Eq. 1.19 are plotted separately and the
graphical solutions are indicated by the circled crossings.

The boundary condition on the odd-symmetry wave functions of Eq. 1.8 is cal-
culated in the same fashion. The logarithmic derivative for the propagating waves
in the region |r| < a must match the one of the decaying wave functions inside the

barrier for |z| > a. In formulas

im{w(ﬂ] == M = kcot(kx) for |z| <a
ox sin(kx) (1.20)
%l"[w(r)] = —ysgn(x) for [z] > a.

By matching them in one of the boundaries, the following expression is obtained

kcot(kx) = —v or cot(é) = —/ = — 1, (1.21)

where 8 and £ are defined by Eq. 1.19. The graphical solution is shown in Fig. 1.8
The left-hand side of Eq. 1.21 starts on the opposite side of the & axis, with respect
to the even symmetry case and no crossing is guaranteed.

By comparing the even and odd solutions (Figs. 1.7 and 1.8), the alternation

between them can be noticed. For small amplitude of the potential V4, or for small
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Introduction 1.3 Scanning Tunneling Microscope

Figure 1.8: Left-hand side and right-hand side of Eq. 1.21 are plotted separately and the
graphical solutions are indicated by the circled crossings.

widths of the well, there is at least one bound state lying just below the top of the
well. An increase of the potential (or width) allows more possible bound states. The
first bound state has an even symmetry wave function. The following states alternate
between odd and even symmetry [52].

The case with € > V{ is not treated in this thesis and it can be found in a standard

quantum mechanics book (e. g. in Ref. [52]).

1.3 Scanning Tunneling Microscope

1.3.1 Introduction

Most of the simulated data presented in this thesis is compared with experiments
performed with a scanning tunneling microscope. For this reason it is worthwhile
introducing the basic concepts behind this very successful and well established tech-
nique.

Scanning tunneling microscope (STM) is a very powerful microscope developed

to study the electronic and structural properties of surfaces with atomic precision.
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1.3 Scanning Tunneling Microscope Introduction

It was invented by Binnig and Rohrer [54-57] (who were awarded the Nobel Prize in
Physics in 1986) and implemented by Binnig, Rohrer, Gerber and Weibel [58,59]. A

schematic of the STM is shown in Fig. 1.9. It consists of a probe tip, usually made
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Figure 1.9: Schematic diagram of the scanning tunneling microscope (figure from Michael
Schmid, TU Wien). A probe tip is operated by applying a voltage to the
piezotube, consisting of piezoelectric transducers along the x, y and z axes.
As the tip scans over the sample surface, a contour plot of tunneling current
isosurfaces is traced. The tip-sample distance is tuned through a feedback loop
where the tunneling current I(V') is constantly compared to a reference value.

of W or Pt, attached to a piezotube which includes three mutually perpendicular

piezoelectric transducers along the z, y and z axis. By applying a voltage, the
piezoelectric transducers expand or contracts, allowing the tip to scan the xy plane.

The transducer along the z axis is used to position the tip a few angstroms away from

the sample such that the electron wave function of the tip overlaps with the one of

the sample surface. When a bias voltage is applied between the tip and the sample a

tunneling current flows. The tunneling current is amplified by the current amplifier

to become a voltage, which is compared to a reference value according to a feedback

loop. If the tunneling current is larger than the reference value, then the voltage

applied to the transducer acting on the z axis tends to withdraw the tip from the
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Introduction 1.3 Scanning Tunneling Microscope

sample surface and vice versa. An equilibrium position is then established through
the feedback loop. As the tip scans over the xy plane of the sample surface, it traces
a contour plot of tunneling current isosurfaces, corresponding to a two dimensional
array of equilibrium z positions. The line-scan image is a sequence of curves, each

of which representing a contour along the z direction with constant y [60].

The tunneling current I(V') is then the basic quantity measured in a STM ex-
periment. The STM operates mainly according two different modes. The constant
current mode consists of a scan of the tip position over the sample surface to obtain a
two-dimensional map of the tunneling current. In practice this is realized by keeping
the current fixed and by varying the tip-sample distance accordingly. The experi-
mental quantity measured in the constant current mode is the corrugation of the tip,
defined as the difference between the largest and smallest tip-sample distance. This
experimental setup allows a high resolution perpendicular to the surface, due to the
exponential dependence of the tunneling current on the width of the barrier (tip-
sample distance). This configuration is able to reach atomic resolution and single

adatoms and single defects can be resolved.

The spectroscopic mode consists in varying the applied bias voltage and in mea-
suring the consequent change in the tunneling current. This mode allows a local
investigation of the electronic structure of the sample. The fundamental quantity
acquired in a STS (scanning tunneling spectroscopy) experiment is the differential
conductivity dI/dV as a function of the applied bias V. Hence, from the differential

conductivity the LDOS of the sample can be estimated [61 67].
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Figure 1.10: Schematic plot of an electron in a potential barrier V(Z2).

1.3.2 One dimensional model for tunneling

In quantum mechanics an electron with energy F, moving in a potential V(z) is

described by the Schrodinger equation

e &
2m dz*

where m is the electron mass. In the case of a square potential barrier, like the one

shown in Fig. 1.10, the Eq. 1.22 has solutions

¥(z) = P(0)ett=, (1.23)

L L el (1.24)

These solutions describe an electron moving towards the potential barrier or away

from it (incident and reflected waves), respectively. Within the potential barrier
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Eq. 1.22 has the solution

Y(z) = P(0)e =, (1.25)
where
2 M (1.26)

is the decay constant. The wave function of the electron penetrating the barrier
has an exponential decay. Thus the probability density of finding an electron inside
the barrier is finite and nonzero and it is proportional to [1(0)|°e~2**. This simple
model may be used to explain the basic features of metal-vacuum-metal tunneling,
i.e. the basic mechanism behind the STM microscope. The work function ¢ of a
metal surface is defined as the minimum energy required to remove an electron from
the bulk to the vacuum level and it depends, in general, on the material and on the
crystallographic orientation of the surface. In metals, when neglecting the thermal
excitation, the Fermi level E is the upper limit of the occupied states. If considering
the vacuum level as a reference point of energy, Er = —¢. In this simple model the
work function of the tip is assumed to be equal to the one of the sample. When
a bias V' is applied, the electron can tunnel from the sample to the tip and wice
versa. An electron belonging to the sample, occupying a state v, with energy F,
lying between Ep — eV and Ep, has a chance to tunnel into the tip. By assuming
that the applied bias eV is much smaller than the work function ¢, then the energy
window explored by the bias is very close to the Fermi level Fr. The energy states
of interest in the sample fall into this window so that FE, =~ —¢. The probability w

of an electron belonging to the n-th of these states to be at the tip surface 2 = W is

w o [, (0)[Pe=2 W, (1.27)



1.3 Scanning Tunneling Microscope Introduction

F r S VACUUM LEVEL

SAMPLE

¢ TIP

Z=0 Z=S

Figure 1.11: Schematic representation of a metal-vacuum-metal tunneling junction. Figure
from Chen, see ref. [60].

where 1,(0) is the value of the n-th sample state at the sample surface and

_V/2m¢

: (1.28)

K

is the decay constant of a sample state near the Fermi level in the barrier region [60)].

Ordinarily, in a typical STM experiment, the DOS of the tip does not vary (in
first approximation) while scanning over the sample surface. The tunneling current
is proportional to the number of state belonging to the sample surface within the
energy window defined by eV'. These states are responsible for the tunneling current.
The number of these states depends on the nature of the sample surface: it is finite
for metals and very small or zero for semiconductors and insulators. By including
all the sample states in the energy interval eV, the tunneling current becomes

Ep

Toc Y [ga(0)e™". (1.29)

En=Ep—eV

It V' is small enough for the density of states not to change significantly, the Eq. 1.29

can be written in terms of local density of states (LDOS) at the Fermi level. The
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LDOS ps(z, E) of the sample at location z and energy ¢ is defined as

E

psE) =< 3 [P, (1.30)

E,=FE—¢

for a sufficiently small e. The tunneling current can then be recast in terms of the
LDOS of the sample
I x Vps(0, Ep)e W, (1.31)

The dependence of the logarithm of the tunneling current with respect to the tip-
sample distance is a measure of the work function ¢, or of the (apparent) tunneling

barrier height [68,69]. From Eq. 1.31

h? (dInl\’
_ , 1.32
Y7 8m ( dW ) Wy

By combining Eq. 1.25 and Eq. 1.30 at the postion z = W corresponding to the tip

surface, the following expression can be derived

Ep

3 (0P W = pg(W, Er)eV. (1.33)

Ep—eV

This let us write the tunneling current as
I x ps(W, Ep)V. (1.34)

A topographic STM image is obtained by scanning the STM tip over the surface,
keeping constant the tunneling current. According to this one-dimensional model it
corresponds to a constant LDOS contour of the sample surface at the Fermi level [60].
This model has been proven to be valid at low bias, at least in first approximation,
whenever the length scale of the surface features of interest is much larger than a

characteristic length defined as 7/k ~ 3A [70].
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1.3.3 Bardeen model
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Figure 1.12: In the Bardeen approach the two subsystems are calculated separately. The
tunneling current is obtained through the overlap of the wavefunctions of the
free systems (b), using the Fermi golden rule. (a): schematic representation
of the density of states of the tip and the sample.

A further advancement in the development of the theory of STM has been taken
with the time-dependent perturbation approach to the metal-insulator-metal tun-
neling junction due to Bardeen [71]. The Bardeen approach considers the electronic
states of two separate sub-systems, obtained by solving the stationary Schrodinger
equation, instead of considering the combined system [Fig. 1.12(a)]. Time-dependent
perturbation theory is used to determine the probability of an electron to be trans-
ferred from one electrode to the other. The tunneling matrix element M, accounting
for the electron transfer, is determined by the overlap of the surface wave function of
the two subsystems at a separation surface [Fig. 1.12(b)]. It is then determined by
a surface integral on an arbitrary surface placed between the two electrodes, z = 2

h? o ox*
M=— —— — = 1S, 1.35
2000 J g <X 0z 9. )" n20)

where ¢ and y are the wave functions of the two electrodes. The rate of electron
transfer is then determined by the Fermi golden rule [72]. The probability w of an

electron in the state ¢ with energy £, to tunnel to a state y with energy E, is given
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by

2 i
w = %|M|2<)(E,/, — E)). (1.36)

The é-function indicates that the tunneling between the electrodes can happen only
between states with the same energy. At any finite temperature, the occupation of
the energy levels is given by the Fermi distribution. The tunneling current, at a bias

voltage V', can thus be obtained by summing over all the relevant states

drre [ :
L= % [f(Ep—eV+e)— f(Ep+e)] x ps(Ep — eV +€)pr(Ep+¢€)|M|*de, (1.37)
where
1 «
1—{—(}[ kpT ]

is the Fermi distribution function, and ps and py are the density of states of the
two electrodes (the sample and the tip). If kg7 is smaller than the required energy
resolution, then the Fermi distribution can be approximated by a step function and

the tunneling current can be written as

dme [V g )
] = N ps(Ep — eV + €)pr(Er + €)| M| de. (1.39)
g

By assuming that the magnitude of the tunneling matrix element |AM| does not
change appreciably in the energy interval of interest, then the tunneling current is

determined by the convolution of the DOS of the two electrodes [71, 73]

eV
I cx/ ps(Ep —eV +€)pr(Er + €)de. (1.40)

0

According to the Bardeen formula, the electronic structure of the electrodes enters
the Eq. 1.40, through the DOS pg and pr in a symmetric way. Both electrodes equally

contribute to the tunneling current, as verified in the classic junction experiment by
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Giaever et al. [74,75].
By requiring the tip to have a constant DOS, the DOS of the sample can be
recovered by performing a STS experiment, where the differential conductance df /dV

1s measured. In this case it is proportional to the DOS of the sample

dl
v X ps(Ep —eV). (1.41)

1.3.4 Tersoff-Hamann model

4555

Figure 1.13: S-wave tip model in the Tersoff-Hamann description (figure from ref. [70]).
The tip is modeled as a spherical potential well of radius R at distance d from
the sample. Only the s-wave solution of the spherical potential well problem
is considered as tip wave function.

Another step forward in the theoretical description of the unprecedented atomic
resolution achieved by STM experiments was achieved with the work of Tersoff and
Hamann [70,76]. They introduced the spherical tip model, or s-wave-tip model,
where the tip is modeled with a spherical shape and the tip wave function is taken
as the solution of the Schrodinger equation for a spherical potential well of radius R.
Under the assumption that only the s-wave solution is important for this particular

problem, the tunneling current at low bias is proportional to the Fermi level DOS at
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the center of curvature ry of the tip

Ep

Toc Y [ulro)l* = eVps(ro, Er): (1.42)

HI,:E[.‘—P‘

In the s-wave model, the constant current STM image is a Fermi level LDOS contour
of the bare surface, taken at the center of curvature ry of the tip. The advantage of
this model is that the tip properties can be taken out of the problem and the STM
images reflect the properties of the sample only (rather than those of the combined
tip/sample system). For free-electron metals, the Fermi level LDOS and the surface
charge density contours at a distance from the surface in first approximation coincide,
so that the STM images are simply the surface charge density contours [60, 70, 76].
An alternative approach based on the free-electron tip was developed by Stoll

[-m

77,78]. In this the tunneling current is calculated using a scattering method.

1.3.5 Chen extension to the Tersoff-Hamann model

L:ave tip l 22 -wave tip

SAMPLE SAMPLE

Figure 1.14: Schematic picture of the increased corrugation amplitude obtained by taking
in account a d,2 tip state, compared to the s-wave model.

An extension to the Tersoff-Hamann model was proposed by Chen [60,79,80] by
taking into account more directional tip-states like the d.2 or the p, states pointing

towards the sample. Chen’s formalism gives a simple dependence of the matrix
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tip state M,

s ¥ (ro)
Pi, i:l"y»i’ %"/)S(TO)a i:"[’yvz
toe | (&0

T,
= 3

Table 1.1: Matrix elements M), within the Chen model. The prefactors depend on the tip
state.

element M, from the tip orbital. The sample wave functions have the form
Py ox e, (1.43)

where z is the coordinate perpendicular to the sample surface and &, is the vacuum
decay constant. The matrix element M, is still proportional to the sample wave
function at the position of the tip, through a prefactor that depends on the type

of orbital used for the tip state (see table 1.1). The inclusion of the tip states into

the model explains the high corrugation amplitude observed experimentally. This

quantity is underestimated in the Tersoff-Hamann model.

1.3.6 Soler model

The models described so far are independent of the geometrical shape and the com-
position of the tip. This is not a major issue when the experiments are highly
reproducible. However, the information conveyed by the experimental data is much
more rich and complex than the picture of this approximation and they involve the
convolution of both sample and tip states. In fact, depending on the system and
the conditions under investigation, the tip cannot be considered in equilibrium, due
to uncontrolled tip-sample interactions or eventual contacts with the surface that
could entirely modify its structure. These uncertainties are crucial in the case of
STS measurements, where slight changes in the tip can produce a completely dif-

ferent spectra. As a final consequence, it is common that experiments have a low
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experimental reproducibility, and that conclusions from a direct observation of the
experimental information could not be soundly extracted in all circumstances. A
careful comparison with first-principles simulations, in which multiple configurations
of the tip are employed, can provide a strategy to gain insight in the interpretation
of measurements. The method developed by Soler et al. [81] consists in performing
first-principles simulations for a given sample and several tip compositions or struc-
tures by incorporating the band structure of tip and sample at the same level of
theory, using density-functional theory (DFT). The scheme is based on the Bardeen
model described in section 1.3.3. The tunneling current, on the basis of the Fermi’s

golden rule, can be expressed as

. 2me
h

1 ST IF(E) — (B [Myyl?8(Ey, — Ey +eV), (1.44)

X,V

where f(FE;) is the Fermi-Dirac function, the energies E;, (j = x,), are referred
to the Fermi levels of the tip and the sample, respectively and V' is the applied
bias voltage between the electrodes. The Bardeen matrix element M,,, couples the
states x (with energy F,) and 1) (with energy Ey) of tip and sample, respectively,

considered as isolated systems. It takes the form

My == [ (Vo) - 9V @) (0) (1.45)

where the integral can be calculated over any surface lying in the vacuum region
between the two electrodes. Hence the total tunnel current will be a sum over all
states in the energy window delimited by the voltage, and under the condition of
elastic tunneling, stated by the delta function in Eq. 1.44 [81]. The evaluation of the
matrix M, can be very demanding because the whole system (tip + sample) has to
be included in the simulation cell and M,,, has to be computed for every tip position

R. In order to simplify the problem, the Tersoff-Hamann model [70,76] can applied
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and the tip and the sample can be treated as separate sub-systems. Within this
model, the potential between the tip and the sample is considered to be constant. It

leads to

; ; f 2m
2 S . 2

\Y% Gx(r—R)—/‘ciG'X(r—R): —i(r—R), with K0 = ﬁ(d)x_Ex)v (1.46)

which describes a pointed tip located at R with a continuous energy spectrum formed

by spherically symmetric states. ¢, is the work function of the tip and G, is the

Green’s function of the tip. The solution of Eq. 1.46, satisfying the contour condi-

tions, is of the form
6)~h'\|r—RL

Gx(r— R) = m

(1.47)

The tunneling matrix elements can now be evaluated by using the Green’s function

of Eq. 1.46 as the tip state, and by applying the Green’s theorem afterwards

: .
M, (R) = —%\/zmx /L [G*(r — R)Vu(r) — ¥(r)VG*(r — R)] - d*(r) =

h?
= ——/2mk, Y(R).
m

(1.48)

The tunneling current reduces to the LDOS of the sample near the Fermi energy and

located at the tip position [81]

Ep+eV
I e / py(R, €)de. (1.49)
E

\ b

Alternatively to Eq. 1.48, the value of ¥ in the vacuum region can be estimated
by propagating the wave functions from the position r of a surface ¥, close to the
sample, up to the points r’ of another surface X, close to the tip (Fig. 1.15). These
wave functions are then substituted back in Eq. 1.45 to find more precise values for

the matrix elements. A more exhaustive discussion on the method can be found in
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(b) true
constant }
potential potential

vacuum
region

sample Zy Zy tip

Figure 1.15: (a) A schematic representation of the propagation of 1)(r) values at the math-
ematical surface 3, (close to the sample) across the vacuum region up to the
points r’ in X, (close to the tip). (b) The approximation of a flat effective
potential in the vacuum region between the tip and the sample (figure from
ref. [81]).

Ref. [81].

Further extensions explain the remaining discrepancy between experiments and
theory by taking in account, for example, the details of the composition and the
geometry of the tip [82-87], the elastic deformation of tip and sample surface in

the case of metal surfaces [88,89], or where a nonperturbative expressions for the

tunneling current is adopted [90-104].

1.4 Outline of dissertation

The aim of this work is to investigate several aspects related to the adsorption of hy-
drogen atoms on an otherwise bare Si(100) surface with ¢(4 x 2) reconstruction. The
H atom passivates one of the surface dangling bonds leaving a single dangling bond
(SDB) on the opposite site of the same dimer. We determine the most favourable
bonding configurations of the hydrogen on the surface for the neutral system and for
n- and p-doped conditions. We study the charging state of the single dangling bond
originating at the site facing the H for different adsorption configurations and as a
function of the doping. Afterwards we focus on the confinement effects arising from
the potential barriers created by the reacted dimer on the surface and the effect of

the aforementioned barriers on the electronic structure of the surface, such as the
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formation of standing waves in the conduction band. We analyze the effect that
such a barrier has on the adjacent dimer rows of the surface and the possibility of
gating effects between rows. The results are obtained by means of ab initio computer
simulations performed within the density functional theory (DFT) framework and
the non-equilibrium Green’s function (NEGF) formalism. The calculated results are
compared with scanning tunneling microscopy and spectroscopy (STM/STS) data.

The computer simulations done with the SMEAGOL code have been performed
by Dr. Ivan Rungger, belonging to the Computational Spintronics Group', Trinity
College Dublin.

All the experimental measurements have been performed by Dr. Borislav Nay-
denov, who belongs to the chemistry group lead by Prof. John J. Boland of the
Chemistry Department at the Center for Research on Adaptive Nanostructures and
Nanodevices? (CRANN) in Trinity College Dublin.

The theoretical methods behind the computational work presented in this thesis
are described in chapter 2. 1 will give a brief overview of the approximations that
drive us from the unsolvable many-body Schrodinger equation to a set of decoupled,
single-particle equations. The Born-Oppenheimer approximation for solids, the clas-
sical nuclei approximation and the mean-field approximation are described. The
main concepts behind the density functional theory (DFT) follow with a brief review
of the most popular implementations of the exchange-correlation functionals which
made this method a very practical and powerful tool for predicting the electronic
properties of materials. I will introduce the basic concepts of the modern transport
theory by starting from a simple toy model for transport and extending the main
ideas to more complex systems by making use of the Green’s function formalism. A
short description of the SMEAGOL code is given at the end of the chapter.

The computational methods involved in the practical solution of the Kohn-Sham

'website: www.spincomp.eu
2website: www.crann.ted.ie
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equations are presented in chapter 3. The main idea behind the pseudopotential
approach is described. This enables us to treat the electron-nucleus interaction in a
simplified way. The Bloch’s theorem is reported along with the definitions of direct
lattice and reciprocal lattice. The plane wave and atom centered basis sets are also
dscribed. Some sampling scheme of the Brillouin zone to a finite number of k-points
is presented in this chapter along with the supercell approach. Some details about

the numerical framework of the ab initio DFT-code VASP will be given.

Chapter 4 focuses on the local approach technique used to characterize the bond-
ing configuration of a hydrogen atom on a bare Si(100)-c(4 x 2) surface and the
charging state of the single dangling bond originating from it. The aim of the lo-
cal approach consists in the description of the electronic and structural properties
of the reacted site (dimer) by elaborating the information obtained from ab initio
calculations and STM/STS experiments around the reacted area. In particular, the
charging state of the single dangling bond is studied as a function of the H adsorption

configuration and the doping of the sample.

The non-local approach is described in chapter 5. This is a non intrusive method
of studying the electronic structure and the geometrical configuration of adsorbates
on surfaces. The simulated and measured non-local DOS are used to map the stand-
ing waves originated by the presence of adspecies. This technique is used to char-
acterize the adsorption configurations of the H atom and the charging state of the
single dangling bond discussed in the previous chapter. Gating effects between ad-
jacent dimer rows, originating from the reacted dimer, are the object of the second

part of the chapter.

A very general description of the properties of topological insulators is given in
this chapter 6. It is followed by the preliminary results obtained by DFT-based ab
initio calculations on a heterostructure formed by the topological insulator BirSes

epitaxially grown on a graphene substrate. Properties such as the band gap, the band
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structure and the spin texturing of the combined system are studied as a function of

the distance between the two sub-systems.
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CHAPTER 2

Theoretical Framework

2.1 Introduction

In this chapter I describe the theoretical framework behind the methods used in this
thesis. The systems of interest in condensed matter physics consist of an ensemble
of electrons and nuclei interacting through Coulombic and exchange forces. The
exact quantum many-body problem has no analytic solution for systems involving
more than two particles and approximations are required. Section 2.2 presents the
adiabatic approximation that allows us to decouple the electron motion from the
motion of the nuclei and to split the total many-body wavefunction into a product
of a wavefunction accounting for the electrons and one accounting for the nuclei.
In most of the cases of our interest the exchange effects related to the nuclei are
negligible and their wave packets are very localized due to their large masses therefore
the nuclei can be treated classically. This is the aim of section 2.3. Due to the two-

body nature of the electron-electron interaction, the many-electron wave function,
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is still very difficult to treat and this problem can be tackled by introducing the
mean-field approximation, described in section 2.4. The basic assumption behind
this method is that the electrostatic field felt by an electron in an atom is due to
the central potential of the nucleus together with a field (namely, the mean field)
created by all the other electrons. As a consequence, the many-electron wave function
can be factorized into a product of one-electron orbitals. The main ideas of the
density functional theory [105-108], according to the Hohenberg, Kohn and Sham
formulation are described in section 2.5. The key concept is that the energy can be
written as a functional of the electronic charge density, instead of the many-electrons
wave function. In addition, the real system can be mapped into an auxiliary system
of non-interacting fermions that can be solved readily and exactly.

Section 2.6 presents a theoretical description of electronic quantum transport
starting from a simple molecular toy model, according to the bottom-up approach
followed by Datta [109]. The theory will be expanded to more general systems by
introducing the Green’s function formalism.

Section 2.7 gives a brief description of SMEAGOL, an ab initio transport code

[110,111].

2.2 Adiabatic approximation

The physical and chemical properties of a microscopic system of interacting particles,
nuclei and electrons, can be described exactly by solving the time-independent many-

body Schrodinger equation [112] of the form
H|U) = E|V), (2.1)

where (r, R|¥) = ¥(r;R) is the many-body wave function depending on the set of

nuclear (R) and electronic (r) coordinates. For a system with N; nuclei with mass
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M; and atomic number Z;, and N, electrons with mass m the Hamiltonian operator

is given by

H =T,(r) + Tn(R) + Vie(r) + Vyn(R) + Ve (r, R), (2.2)
with
Ne
T, Y g 2.3
((r) 2 5 (23)
i=1 §
. L A ,
Tv(R) = —Z2NIV, (2.4)
I=1 K
N,
" 1 e?
Ve(r) = = , 2.5
(r) 2;“_”' (25)
i#£]
N; .
~ 1 Z[Z,](}‘2
Vwn(R) = = . 2.6
v (R) 2,2,:‘|R1—RJ| (2.6)
I£J
N Nj
~ 1 Zre?
Vve(r,R) = — ' _’R|. (2.7)
im1 I=1 17 I

Here T,(r) is the electronic kinetic energy, T (R) is the nuclear kinetic energy, V..(r),
Vun(R) and V. (r, R) are the potential energies due, respectively, to the coulombic
interaction between the electrons, between the nuclei and between the nuclei and the
electrons. V? (V?) is the Laplacian with respect to the three cartesian coordinates of
the i electron (I'™ nucleus). Since electrons are fermions, the total electronic wave
function must be antisymmetric and it should change sign whenever the coordinates
of any two electrons are exchanged. The symmetry properties of the nuclei wave
function depend on the nuclear spin: they are fermions for half-integer nuclear spin
(e.g. H,*He) and bosons for integer spin (e.g. “He, Hy). In principle all the properties
of the system can be derived by solving the time-independent Schrodinger equation
but, in practice, this problem is almost impossible to treat within a full quantum
mechanical framework. A complete analytic solution is only available for hydrogenic

atoms or the Hy molecule. Exact numerical solutions are also limited to a few cases,
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mostly atoms and small molecules. The most important feature contributing to this
difficulty is the two-body nature of the Coulomb interaction that makes the afore-
mentioned Schrodinger equation not separable. Let us consider the case of a single
atom with Z electrons. The electron wave function can be, in principle, written as an
antisymmetrized product of one-electron wave functions (Slater determinant, [113]).
This assumes, however, some kind of separability of the Schrodinger equation, imply-
ing that the probability of finding an electron at some point in space is independent
of the positions of the other electrons. The electron-electron interaction is quite at
odds with this picture, because an electron located at point r in space precludes other
electrons from approaching this location. Hence the probability of finding an electron
at point r depends on the location of the other Z — 1 electrons. This phenomenon is
known as correlation and implies that the many-body wave function should depend
on two electronic coordinates. This means that the full Schrodinger equation can-
not be easily decoupled into a set of single-particle equations. Approximations are

required in order to solve the problem [114].

One powerful approximation, called the Born-Oppenheimer [115] approximation,
allows the many-body wavefunction of the system to be broken into its electronic
and nuclear (vibrational, rotational) components. It relies on the fact that the nu-
clear mass is ~ 1800 times bigger than the electron mass. Within a classical picture,
the velocity of the electrons can be considered much bigger than the one of the nu-
clei and the motion of electrons and nuclei can be separated. The electrons can be
thought of as instantaneously following the motion of the nuclei, while remaining
always in the same stationary state of the electronic Hamiltonian. According to this
approximation, also called adiabatic approximation, the electrons do not undergo
transitions between stationary states. In other words, as the nuclei follow their dy-
namics, the electrons instantaneously adjust their wave function according to the

nuclear wave function. Let us consider the case of a molecule, where the electronic
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spectrum is discrete. Three basic types of motion can be related to a molecule: elec-
tronic, nuclear vibrations and nuclear rotations, each one corresponding to a typical
energy scale. The energy scale of the electronic motion is given by the separation
between successive electronic eigenstates and it has the same order of magnitutde
of the ground state energy. It is approximately given by E. ~ h?/(ma?) where a
is the typical interatomic distance in the molecule and it is of the order of few eV.
The energy scale of nuclear vibrations is given, in the harmonic approximation, by
FE, = hw where w is the frequency of the vibrational motion. In first approximation
E, = hw =~ (m/M)"?E, with M being the mass of the molecule and m the electron
mass. The rotational energy is related to the angular momentum of the molecule
and it is quantized in levels separated by ~ h and it is given by E, = L?/I where
[ is the moment of inertia of the molecule. This energy can be approximated as
E, = h*/(Ma?*) = (m/M)E,. Therefore, for the Ny molecule, for example, the first
electronic excitation energy is 7.5 eV, the vibrational excitation energy is around
300 meV and the rotation level separation is around 0.5 meV. It can be noticed that
the rotational energy is two order of magnitude smaller than the vibrational energy
which is almost two order of magnitude smaller than the elctronic one. This makes
reasonable the assumption that no transition between electronic states can be in-
duced by nuclear motion and the error associated to the separation between nuclear

and electronic motion is negligible.

In the case of extended systems like crystals, the electronic spectrum is continuous
and so is the excitation spectrum. For insulators and semiconductors the smallest
electronic excitation is given by the energy band gap which is in the order of few
eV. For metallic systems the electronic excitations form a continuum and, strictly
speaking, the adiabatic approximation should not be applicable. However, the range
between room temperature and a few thousands Kelvin is usually much lower than

the electronic Fermi temperature, excitations are confined to a narrow region around
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the Fermi surface and most properties are little affected by neglecting non-adiabatic
contributions coming from these few electrons. The limits of the adiabatic approxi-
mations are reached when the electronic energy scale becomes comparable with the
one of the nuclear vibrational motion and nuclei and electrons need to be treated in a
unified framework. This can happen when the electronic gap closes due to some ex-
ternal factor like pressure or temperature and whenever electron-phonon interactions

are not negligible [114].

The adiabatic separation between electrons and nuclei can be cast in a formal
mathematical framework by decomposing the original wave function ¥ into a product
between an electronic wave function ¥,/(r; R) which depends parametrically from the

nuclear coordinates, and a nuclear wave function ®,,,.(R)
\P(r; R) = \Ilf'l(r; R)(Dnu('(R)' (28)

The electronic part of the Schrodinger equation becomes

Ne Nr Ne

416)2 /| i ()2
E ‘ 5 e | W = Eg(R)¥. (2.9
2777 l ZZ Rll QijZ:l |ri“rj| l ,I( ) l ( )
i#]

i=

The nuclear motion is governed by the nuclear Schrodinger equation, where the

ground state electronic energy F,; enters the potential energy expression

.- S Byt
a Z _vz Z [RII —JRJI + E (R) (I)nuc — E(bnu(-- (210)
T=1

When separating the nuclear from the electronic contribution, the (non-adiabatic)
dynamical term deriving from the action of the nuclear kinetic operator on the elec-

tronic wave funcstion has been neglected. The related error should be of the same
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order of magnitude of the rate m./M; between the effective mass of the electron and
the mass of the nucleus and it is negligible everytime there is no strong electron-

phonon coupling.

2.3 Classical nuclei approximation

According to the adiabatic approximation the total wave function can be written in
the form given in Eq. (2.8) where ®,,,.(R) is the nuclear wavefunction. Atomic nuclei
exhibit exchange effects only at very low temperature and nuclear wave packets are
quite localized due to the large nuclear masses. These two observations enable us
to conclude that, in most of the cases, a classical treatment of the atomic nuclei is
justified. The dynamics of the mean values of the position R and momentum P

operators can be then obtained from Ehrenfest’s theorem [116]

CdR) _(P) d(R)
ih = = ((H,R]) = 1hW = M_dt— = [P}, (2.11)
mdf}:) = ([H,P]) = —ih(VE,(R)), (2.12)

where the brackets () indicate the expectation values (mean values) of the operators
(e.g. (R) = (V|R|¥)). The Newtonian equation of motion is obtained by combining
the two equations

d*(R)

