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Abstract

Despite the increasing interest in novel materials for the next generation of micro­

electronic devices, such as graphene and topological insulators, Si(10()) surface is still 

the most important substrate for nano-device applications. Its high stability and the 

possibility of manipnlating and functionalizing the surface properties at an atomic 

level are opening iij) new perspectives for a wide range of applications ranging from 

transistor downscaling, dictated by Moore’s law', to (piantnm computing.

The adsorption of single atoms and small inorganic molecules plays a fundamen­

tal role in controlling the i)assivation, oxidation and epitaxial growth of the surface. 

Hydrogen passivated Si(10()) surfaces, for example, can be patterned by desorbing H 

atoms through the tij) of a scanning tunneling microsco[)e (STM) and a variety of ar­

rangements of coupled dangling bonds (quantum dots) can be created. Furthermore, 

the morphology and electronic properties of the reconstructed Si(lOO) surface provide 

a template for exploring systems with low dimensionality and ciuantum confinement 

effects on a real system. The quasi one dimensional dispersion of the Si(lOO) surface 

states can be exploited to study the fundamental physics related to real qxiantum 

wells.



The dimer rows of the p{2 x 2) and c(4 x 2) reconstructed Si(l()0) surfaces exhibit 

interesting surface electronic properties originating from tlie dangling bonds; the 

empty dangling bond state (tt*) is situated within the silicon bulk band gap and 

reveals energy dispersion only along the dimer row. The standing wave pattern in 

the local density of states, affected by surface adspecies, is very sensitive to the 

precise nature and configuration of the adsi)ecie and it inspired us to develope a non 

intrusive, non local approach to characterize them. The adsorption of the simplest 

adspecie, a single H atom, which has a fundamental role related to the passivation of 

the surface and nano-patterning procedures will be presented. The adsorbed H atom, 

on the otherwise bare Si(10()) surface with c(4 x 2) reconstruction, passivates one of 

the Si dangling bonds, breaking the Si-Si 7r-bond and leaving an isolated dangling 

bond (named the single dangling bond, SDB) on the other site of the dimer. An 

exhaustive description of the bonding configuration of the single fl atom on the 

surface is {jresented as a function of the doping of the sample. Two approaches have 

been adopted.

The first one, called local approach, consists of analyzing local data such as the 

topography and the LDOS in the proximity of the reacted site to extract information 

about the bonding configuration of the adspecie.

The second approach, called non-local approach, makes use of nonlocal informa­

tion, such as the standing wave pattern in the nonlocal density of states far away from 

the reacted site, to determine the adsorption configuration of the H. The properties 

of the single dangling bond are also evaluated.

Data are obtained by performing ab initio computer simulations and compared 

with scanning tunneling microscopy and spectroscopy (STM/STS) experiments.

With these tools, we were able to characterize the geometry and the charging state 

of the SDB for different doping conditions. For n-doped systems, the H-produced 

SDB is doubly occupied with the Hb configuration being the lowest in energy. This
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configuration coincides with tlie majority specie found in low temperature STM 

experiments. The H j' configuration is the lowest, in energy for p-doped samples, 

with the SDB state being empty. Finally, according to our calculations, the Hb 

configuration is predicted to be the lowest in energy for the neutral intrinsic case, 

and the SDB state is partially occupied and spin-polarized.

The nonlocal approach enabled us to map the phase-shift 0(A’) and it proved to 

be a very precise fingerprint for discriminating different H adsorption configurations. 

It has the potential to become a very general tool to determine the configuration of 

molecules and adspecies deposited on surfaces where tlie topographic signatures of 

different configurations are indistinguishable.

We also found that the configuration and charging state of the SDB are responsi­

ble for a gating between the reacted row and a bare adjacent one. The charge present 

at the react('d site originates a depletion of charge in the adjacent row, due to the 

Coulomb interaction, which results in a gating effect. The magnitude of the gating is 

proi)ortional to the charging of the SDB and to the directionality of the SDB orbital.

All the results presented in this thesis can provide an interesting perspective for 

exploring fundamental properties of coupled systems (e.g. (luantum wells) as well 

as ap[)licative aspects aimed at the fabrication of nano-devices. The gating effect, 

together with the ability to create quantum wells by nanopatterning the Si(lOO) with 

an STM tip, may offer the opportunity to study coupled real quantum wells.

The interplay between charging and geometry can be taken as the basic mecha­

nism for fabricating an atomic-scale switch device. In fact, by tuning the surface dop­

ing from 7;-fy{)e to n-tyj)e, one may switch between the two H configurations. These 

have distinct scattering and transport properties, so that the switch can be detected 

electrically or by niapi)ing the phase-shift using the nonlocal a{)i)roach method.

At the end of my PhD I was involved in another project with the aim of mod­

elling a heterostrncture based on graphene and topological insulators, by means of
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first-principles calculations. In the last part of this thesis, the preliminary results 

concerning the electronic properites of a graphene-Bi2Se3 heterostructure are i)re- 

sented. The main idea is to model a material which combines the roboustness of the 

topological protected surface states of a topological insulator (TI) with the promis­

ing transport properties of pristine graphene. For different graphene-TI separations, 

the evolution of the band gap and the of the band structure is studied. At a close 

distance between the two subsystems, a conical band in the proximity of the Fermi 

level originates at the gTaphene-Bi2Se3 interface region. Our preliminary results pre­

dict this band to be toi)ologically protected even though further investigations are 

required. A toj)ological protected state in graphene, once supported by experimental 

verification, would candidate this versatile material as a very promising replacement 

for silicon aimed at iianoelectronics applications.
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CHAPTER 1

Introduction

The invention of the transistor in 1947 by John Bardeen, Walter H. Brattain, and 

William B. Shockley from Bell Labs started the seniicondnctor revolution, thus giving 

birth to a series of new devices with remarkable j)otential for expanding the api)li- 

cability of electronic eqnii)nient. Transistors, with their subseciuent developments 

as integrated circuits, are made of crystalline solid materials called semiconductors, 

whose electrical properties can be tuned over an extremely wide range through the 

addition of small amounts of other chemical species (doping). The electric current 

in semiconductors is carried by electrons, which have a negative charge, and/or by 

holes, analogous entities carrying a positive charge. The availability of two kinds 

of charge carriers in semiconductors is a valuable property exploited in many elec­

tronic devices made of such materials. The electrical properties of semiconductors 

are extremely sensitive to the slightest trace of other elements, and high purity is 

usually required so that they can be used for making semiconductor devices. During 

World War II, methods of purifying germanium were develo[)ed and this explains

15



Introduction

why early transistors were produced using such material. A few years later, research 

on the purification of silicon succeeded in producing samples suitable for semicon­

ductor devices, and new devices made of silicon were manufactured from about 1960. 

Since then silicon, due to its abundance and consequent low price, quickly became 

the preferred raw material for electronic device applications.

There are a few more reasons why silicon overtook germanium as the basic mate­

rial for the semiconductor industry. Firstly, silicon retains its semiconducting jrrop- 

erties at higher temperatures than germanium does. Silicon diodes can be operated 

at temperatures up to 200 °C, whereas germanium diodes cannot be operated above 

85 °C. Secondly, silicon, unlike germanium, forms a tenaciously adhering oxide film 

(silicon dioxide) with excellent electrical insulating proj)erties when it is heated to 

high temperatures in an oxygen rich atmosphere. This film is utilized as a mask to 

permit the desired impurities that modify the electrical prop(‘rties of .silicon to be 

introduced into it during the manufacturing of semiconductor devices. The mask 

[)attern, formed by a photolithographic [process, permits the creation of tiny transis­

tors and other electronic components in silicon. The optimization in the fabrication 

process followed by the transistors miniaturization brought the integration of a large 

number of transistors into a single integrated circuit called a microprocessor. This de­

vice contained all the arithmetic, logic, and control circuitry rerjuired to perform the 

functions of computers central processing unit (CPU). The first large scale produc­

tion microprocessor, the 4004, was introduced by Intel Corporation in 1971, together 

with the memory integrated circuit. It included 2300 transistors built with a 10/tm 

process. The stage was now set for the computerization of small electronic eciuip- 

ment [1]. The silicon-processing leiigli scale has shrunk tenfold every 15 years since 

1971, following Moore’s low [2], and nowadays it stands at 22 nrn, which translates 

into microprocessors incorporating a few billions of transistors. At such dimensions 

quantum effects, such as the onset of quantum tunneling of electrons through po-
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Introduction

tential barriers, limit the ability to confine charges to a densely packed array. The 

physical limit for the transistor size is estimated to be around 5 nrn, a distance 

where direct tunneling of electrons between source and drain will occur. The race to 

miniaturization has recently i)resented ample research and development opportuni­

ties in the growth and characterization of novel materials for the next generation of 

electronic devices such as graphene, topological insulators, hybrid organomolecular 

silicon, multiferroics etc. [3 13]

Desi)ite this important and sustained effort, to date the Si(l()0) surface still re­

mains the most im{)ortant substrate for nano-device applications [3,14-18]. Its high 

stability and the possibility of manii)nlating and functionalizing the surface i)roper- 

ties at an atomic level are o[)ening up new perspectives for a wide range of applica­

tions ranging from transistor downscaling, dictated by Moore’s law, to quantum com­

puting [19 22]. The adsorption of single atoms and small inorganic molecules plays 

a fundamental role in controlling the passivation, oxidation and epitaxial growth of 

the surface [23,24]. Hydrogen passivated Si(l()()) surfaces, for example, can be pat­

terned by desorbing H atoms through the tip of a scanning tnnnehng microscope 

(STM) [25] and a variety of arrangements of coupled dangling bonds ((juantum dots) 

can be created [26,27]. Furthermore, the morphology and electronic properties of 

the reconstructed Si(l()()) surface [)rovide a template for exploring systems with low 

dimensionality and (luantum confinements effects on a real system.

The (juasi one dimensional dispersion of the Si(lOO) surface states (see next sec­

tion for details) can be exi)loited to study the fundamental physics related to real 

quantum wells. Yokoyama et al. were able to confine surface electrons and create one 

dimensional (juantum wells on a Si(l()0)-c(4x2) surface by depositing Al atoms on 

the surface through the tip of a scanning tunneling niicroscoj)e [28]. 3D topographic 

images, accjuired at T=63 K, exhibit a standing wave pattern with two, three and 

four peaks between the Al ad-dimer chains for sample biases of 0.9 V, 1.1 V and
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Introduction

1.2 V, respectively [see Fig. 1.1(a)]. A similar experiment was performed by Sag- 

isaka et al. Quantum confinement of surface electrons was achieved by depositing 

W atoms on a Si dimer row of the Si(lOO) surface from the tip of a scanning tun­

neling microscope [29,30]. The differential conductance (dl/dV) images for different 

sample biases show a standing wave pattern with an increasing number of bright 

spots (peaks) as a function of the bias. The bright protrusions at the borders of 

the images are the confining W atoms [see Fig. 1.1(b)]. Boland et al. created a one 

dimensional ciuantum well on the Si(lOO) surface by depositing small Pt clusters [31]. 

The standing wave pattern in the differential conductance (dl/dV) image, acquired 

at 77 K, resambles the “particle in a box” picture [see Fig. 1.1(c)].

X[Al

(a) Yokoyama et al. (b) Sagisaka et al. (c) Boland et al.

Figure 1.1: Standing wave pattern in the scanning tunneling microscope images obtained 
by ID confinement of surface electrons in real quantum wells, (a) Yokoyama 
et al. were able to create quantum wells by depositing Al atoms on the Si(lOO) 
surface from the tip of a scanning tunneling microscope [28]. (b) Sagisaka
et al. used W atoms to confine electrons along the dimer row of the Si(lOO) 
surface [29,30]. (c) Boland et al. created a one dimensional quantum well by 
depositing small Pt clusters on the dimer row of the Si(lOO) surface [31].

Besides the attention to the fundamental physics related to real (piantum wells, 

there is an increasing interest in Si-based platforms for ciuantum computing ap­

plications. The race to miniaturization has driven the length scale of the silicon

18



Introduction 1.1 Si(lOO) surface

lithographic [)rocess used for transistors production down to the nanoscale (22nm, 

nowadays). A further shrinking in the dimensions will see the onset of quantum 

effects, such as (luaiitum tunneling of electrons through potential barriers, limiting 

the ability to conhne charges to a densely packed array. In addition, the number of 

donors in the transistor channel are discrete and countable and the device starts to 

be very sensitive to the i)recise location of individual dopants whose electrical char­

acteristics can be observed at low temperatures [32]. These quantum limit issues can 

be turned into advantages by building a device which relies on coherent quantum 

behaviour to store and recover information. Morton et al. shov/ed that the nuclear 

spin and the electron spin can be used to store the quantum information. Silicon is 

particularly attractive for hosting spin quantum bits ((pibits) because it possesses a 

low sj)in-orbit coupling which determines a long spin coherence time. Spin (pibits 

can be realized in silicon using conhned donor-bound spins or lithographically dehned 

silicon-basc’d (piantum dots [33,34].

Despite new materials are promising candidates for future applications in elec­

tronics, the interest around the Si-based technology is far from fading away. The 

advanced state of Si electronics and its capability to integrate novel applications, 

such as sj)iii (pibits, with the existing technology, re(phres an accurate study of the 

electronic properties of low dimensional structures and the one depending on the 

precise position of the dopants.

1.1 Si(lOO) surface

Surface reconstruction refers to the process by which atoms at the surface of a crystal 

assume a different structure than that of the bulk. This jirocess is due to the abrupt 

change in the external potential felt from electrons, which goes from the bulk value, 

inside the crystal, to vanishing above the surface. The system reacts to the potential 

change by minimizing the energy, thus leading to interesting effects both in the
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1.1 Si(100) surface Introduction

atomic and electronic structure near the surface. The changes in the atomic positions 

of surface atoms can be such that the periodicity of the surface differs from that of 

the atoms on a bulk-terminated plane with the same orientation. The standard way 

to describe the new periodicity of the surface is by multiples of the lattice vectors 

of the corresponding bulk-terminated plane. For instance, a tii x n2 reconstruction 

on the (klni) plane is such that the lattice vectors on the plane are /p and 712 times 

the primitive lattice vectors of the ideal, unreconstructed, bulk-terminated (kirn) 

plane [35]. The Si(lOO) bulk-terminated plane consists of atoms that have two bonds 

covalent to the rest of the crystal, while the other two bonds on the surface have been 

severed. The severed bonds are called dangling bonds and each of them is half-filled, 

i.e. it contains only one electron. If we consider a tight-binding approximation of 

the Si electronic structure, with a four sp^ orbital basis associated to each atom, 

it follows that the dangling bond states have an energy in the middle of the band 

gap. This energy is also the Fermi level, since the Si dangling bond occupied states 

are the highest occupied states. The surface Si atoms come together in pairs, giving 

rise to a 2 x 1 periodicity. New bonds are formed, called dimer bonds, with each 

bonded [)air of atoms called a dimer. The formation of a dimer bond eliminates two 

of the dangling bonds in the unit cell, one per dimer atom. This leaves two dangling 

bonds, one per dimer atom, which, for symmetric dimers, are degenerate and half- 

filled. The energy of these states determines the position of the Fermi level, since 

they are the highest occupied states. The dimers, in the lowest energy configuration 

of the system, are tilted: one of the atoms is a little higher than the other when 

considered relatively to the average height of surface atoms, which is taken as the 

macroscopic definition of the surface plane.

This tilting has an inii)ortant effect on the electronic levels, as illustrated schemat­

ically in Fig. 1.2. The up-atom of the dimer has three bonds at an angle close to 

90”. Such an atom is in a bonding configuration close to it forms covalent bontls
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Introduction 1.1 Si(100) surface

Unreconstructed Symmetric dimers Tilted dimers

CoiuUtcfiou

.....+-+-

Vtilcucc

Figure 1.2: Effects of dimerization and tilting on the states around the Fermi level, Ep, for 
the reconstructed Si(l()0) surface.

through three of its sp orbitals, while one of them does not participate to the bond­

ing. At the same time, the down-atom of the dimer ha.s t hree bonds whicli are almost 

planar. These are in a bonding configuration close to sp^ and form three bonding 

orbitals containing one ,s and two p states, while the third p orbit al, the one perpen­

dicular to the plane, does not participate to the bonding. When considering the two 

orbitals that do not participate to the bonding, it can be seen that the sp orbital of 

the up-atom has lower energy than the p orbital of the down-atom. Consecpiently, 

the two remaining dangling bond electrons are accommodated by the np-atom sp 

orbital, which becomes filled, while the down-atom p orbital remains empty. The 

net effect is that the surface has semiconducting character, with a small band gap 

between the occupied up-atom sp state and the unoccuiued down-atom p state. The 

Fermi level is now situated in the middle of the surface band gap {Fig. 1.2), which 

is smaller than the band gap of the bulk [35]. The semiconducting nature of the 

surface was established more that 30 years ago by photoemission sj)ectroscopy ex­

periments (PES) [36,37] and confirmed by inverse-photoemission, photoelectron and 

STM spectroscopies [38 40].

Beside the dimerization and tilting processes within the 2x1 surface unit cell, 

there is a long range reconstruction process which consists of dimers with alternating 

buckling. The p(2 x 2) reconstruction shows alternating buckling along the dimer
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1.1 Si(100) surface Introduction

rows while alternating buckling occurring also along the direction perpendicular to 

the dimer rows leads to the c(2x4) reconstruction. The distance between the Si atoms 

forming the second surface layer (connected to the backbonds of the topmost layer) 

is different depending on the position of the surface Si atoms along the direction 

[)eri)endicular to the surface. The distance between the Si atoms attached to the 

backbonds of the top Si atom of the dimer is shorter with respect to the one between 

the Si atoms attached to the backbonds of the bottom atom of the dimer. This results 

in an alternation of the dimers as a more efficient way to accomodate the surface 

stress in the underlying layer of Si atoms. The apparent p{2 x 1) surface symmetry 

observed at room temperature can be attributed to the thermally activated flip-flop 

motion of dimers, while c(4 x 2) and p{2 x 2) surface reconstructions art; detected at 

low temperature (Fig. 1.3). STM experiments [41 44], low-energy electron diffraction 

(LEED) [45] and angle-resolved photoemission spectroscopy (ARPES) [44] confirm 

the coexistence of p(2 x 2) and c(4 x 2) reconstructions at low temperature (below 

200K), thus revealing a prevalence for the c(4 x 2) reconstruction pattern. Ah imtio 

total energy calculations, in a very good agreement with experiments, indicate an 

energy difference between the p{2 x 2) and p{2 x 1) reconstructions of ~0.5 eV/dinier 

while the difference between the c(4 x 2) and the p(2 x 2) is ~0.()()5 eV/dimer, 

the c(4 x 2) being lower in energy. The small energy difference between p{2 x 2) 

and c(4 x 2) reconstructions explains the coexistence of both periodicities at low 

temperature [46 48].

V. ^ W
Figure 1.3: Perspective view of the Si(lOO) surface with, respectively, p{2 x 1), p(2 x 2) 

and c(4 x 2) reconstruction (from left to right). The yellow and green silicon 
atoms are respectively the top and bottom atom of the surface dimers.

The morphology of the structure is reflected on the electronic properties of the 

surface. The dimer rows of the p{2 x 2) and c(4 x 2) reconstructed Si(l()()) surfaces ex-
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Introduction 1.1 Si(100) surface

c® c® ®c c®
c® r® c® c® c-®

Figure 1.4: From left to right: top view of a balls-and-sticks model of the Si(10()) surface 
with, respectively. p{2 x 1), p(2 x 2) and c(4 x 2) reconstruction.

hibit interesting surface electronic properties originating from the tt dangling bonds: 

the empty dangling bond state (tt*) is situated within the silicon bulk band gap and 

reveals energy dispersion only along the dimer row [Fig. 1.5(a)] [46,47,49]. Hence the 

TT* band exhibits a cpiasi-one-dimensional (ID) character, wdiich has been confirmed 

by scanning tunneling microscopy observations of surface standing waves [28 30,50]. 

These surface states in the conduction band are almost decoupled from the bulk and

(a) Band structure (b) Density of states

Figure 1.5: Band structure (a) and density of states (b) of the Si(lOO) surface with c(4 x 2) 
reconstruction for a 2 x 4 supercell, (a): the filled circles bands are the tt* 
bands, one for each dimer row. These bands show a pronounced dispersion 
along the direction of the dimer rows (F — J and K — J') while they are almost 
flat in the direction perpendicnlar to the dimer row, exhibiting a quasi-one- 
dimensional character, (b): the tt* bands are mainly due to states coming from 
the bottom atom of the dimers.

they are mainly due to states coming from the bottom atoms of the surface dimers, 

as shown by the density of states plots in Fig. 1.5(b). The standing wave pattern 

in the local density of states, induced by surface adspecies, is very sensitive to the 

precise nature and configuration of the adspecie and it inspired us to develope a
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1.1 Si(lOO) surface Introduction

non intrusive, non local approach to characterize them. The thesis will focus on the 

adsorption of the simplest adspecie, a single H atom, which has a fnndaniental role 

related to the passivation of the surface and nano-patterning procedures. The aim of 

this work is to study the effects of a single hydrogen atom adsorbed on an otherwise 

bare Si(lOO) surface with c(4 x 2) reconstruction. The adsorbed H atom on the sur­

face passivates one of the Si dangling bonds, breaking the Si-Si 7r-bond thus leaving 

an isolated dangling bond on the other site of the dimer [51]. The dimer containing 

the adsorbed H atom will be referred throughout the text as the reacted dimer and 

the dangling bond on the opposite site of the same dimer as the single dangling boiul 

(SDB). The aim of this thesis will be to provide an exhaustive description of the 

bonding configuration of a single H atom on a bare Si(10())-c(4 x 2) surface as a 

function of the doi)ing of the sample. Two aj)proaches have been adopted.

The brst one, called local approach, consists of analyzing local data such as the 

toi)ography and the LDOS in the proximity of the reacted site to extract informa­

tions about the bonding configuation of the adsi)ecie. These data are obtained by 

performing ab initio computer simulations and compared with scanning tunneling 

microscopy and spectroscopy experiments at a si)atial position corresponding to the 

reacted site.

The second approach, called non-local approach, makes use of nonlocal informa­

tions, such as the standing wave pattern in the nonlocal density of states far away 

from the reacted site, in order to determine the adsorption configuration of the H.

The properties of the single dangling bond are also evaluated. In particular, a 

complete spectroscopic analysis of the charging state of the SDB is carried out as a 

function of the H bonding configuration and the doping of the sample by means of 

ab initio calculations and STM/STM measurements. The reacted dimer acts as a 

potential barrier for the electrons travelling on the same dimer row and, depending 

on the H configuration and the SDB charging state, on the adjacent row. The aspects
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Introduction 1.2 Qimntmn well

related to the details of the gating effect between adjacent rows will be addressed in 

this thesis.

1.2 Quantum well

Figure 1.6: Schematic representation of a potential well formed by two barriers located at 
|x| == a.

In cjuantuin mechanics, the one dimensional space lying between two potential 

barriers at a distance of the same order of magnitude as the de Broglie wave length, 

is called a quantum well. The main characteristic of a quantum well is that is only 

allows states with discrete energy values. I will discuss a few examples of the quantum 

well states in the chapters of this thesis discussing our results (Chaps. 4, 5), therefore 

it is worthwhile to present a brief overview of the basic physics describing a quantum 

well. A more comprehensive discussion about quantum wells can be found in any 

quantum mechanics book, for example in Ref. [52].

1.2.1 Infinite potential barriers

Let us consider the case of two infinitely high barriers (Vo ^ oo) located at the 

{)ositions \x\ = a, as shown in Fig. 1.6. Due to the infinite barrier height, the wave 

function x]j of a particle moving inside the well does not penetrate inside the barrier. 

This leads to a boundary condition requiring the wave function to vanish at the 

barrier interfaces so that '0 = 0 at |x| = a. Inside the central region, the potential
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1.2 Quantum well Introduction

vanishes and the Schrddinger equation becomes the one described i)y a free particle 

with energy e and mass m
, ,..2

dxd-
+ = 0,

where the wave vector k is defined as

k = 2me and e =
2 m

(1.2)

The solutions at the right-hand and left-hand side boundary are, respectively

(a) = = 0 and ■02(a) = = 0. (1.3)~ika ika I ry,,ika

These two conditions describe the wave function of a free particle approaching and 

being reflected by each barrier. Since the two equations concern to the same i^article, 

they cannot give independent solutions and they must be degenerate so that the 

determinant of the coefficients must vanish

^xka g xka

^—ika ^ika
= 0.

This leads to the requirement that

:i.4)

sin(2A:a) = 0,

which imposes discrete values for k and e

kn
rni
2a 8md^£n = with n= 1,2,3,....

:i.5)

(1.6)

Hence, the spacing between the allowed energy values increases quadratically with 

the index n. By substituting the value for k back into one of the equation for the

26



Introduction 1.2 Quantum well

boundary conditions, for example Eq. 1.3, it leads to

B
A = = (-1) n+l (1.7)

By considering increasing values of the index n, the wave functions alternates between 

cos and sin

A(^) =
. /n7rx\ , ,

A cos ( —:— 1 n odd

A sin
V 2a 
( mrx'
V 2a

n even

This can be recast into a single equation by offsetting the position so that

(1.8)

= .4 sin
rnr . /

(1.9)

By normalizing the w'ave function, the constant A can be determined.

(■0„(x)|Vy,(j-)) = A'^ f sin^
J —a

riTT . .
dx = 1, T.IO)

leading to
A = ^.

(1.11)

The particle is said to be in a i)nre state if it occupies a single energy level (eigenvalue 

of the Hamiltonian). Usually, the particle occui)ies a linear superposition of energy 

levels, its total wave function, on the average, will receive contributions from many of 

them. Then the wave function is a sum over the Fourier series, where the coefficients 

are related to the probability for each level to be occupied. This can be written as

t/'r, ■'i^) = > ^ sm —(.x +
yja L 2a

(1.12)

where the probability of the state n to be occupied is given by |c„p and the co- 

('fficients c„ are subject to the limitation on the total probability (particle number
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1.2 Quantinn well Introduction

conservation) tliat

(1.13)

1.2.2 Finite potential barriers

In a situation where the potential barrier is not infinite, the wave function penetrates 

into the region under the barriers. If the energy e of the particle is lower than the 

height of the barrier V^, then the particle can proi)agate freely in the region |j;'| < a, 

for which the Schrodinger eciuation has the form aforementioned in Ecp 1.1, and k is 

given by
2m£
'W' :i.i4)

In the rang(' |:r| > a, the wave function decays inside the barrier and the Schrbdinger 

ecpiation becomes

dx^ + = d with
^ _ 2m{V^i - e)

^ ~ id ;i.i5)

The solution of Eq. 1.15 has the form

for X > a, :i.i6)

7 being the damping coefficient. Due to the symmetry of the potential, the Schrbdinger 

ecination would have either even or odd symmetry solutions like the ones given in 

Ecj. 1.8. The basic properties discussed for the inhnite barriers case will carry over 

to the present one and the solutions in the well region are expected to be either sin 

or cos [52]. According to the usual boundary conditions, both the wave function 

and its derivative must match at each boundary. This leads to four equations with 

two unknowns; the amplitude of C for the sin and cos wave functions and the wave 

vector k (and hence 7) for the bound state energy levels. The problem can be solved
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Introduction 1.2 Qumituin well

by requiring tiie logarithmic derivative t/i’7'*/’ continuous. This enables us to

eliminate immediately the constants, rather then apply the boundary conditions to 

the wave function and its derivative separately [53]. The even- and odd-syrnmetry 

(cos and sin) wave functions will be treated separately.

For the even-symmetry wave function given by Ecp 1.8, the logarithmic derivative

is
d , . , , ,, —ksm(kx) , ,, ,

—/n -0 x =------- = -k tm\{kx).
ox cos[kx)

(1.17)

The logarithmic derivative of the wave function inside the barrier is 7sign(x). By 

matching the wave function at the boundary x = a (by symmetry reasons this equals 

x = —a) gives

A’tan(A'a) = 7, (1-18)

which determines the allowed values for the bound states energies. By introducing 

the reduced variables ^ and (3, the Eq. 1.18 becomes

tan(0 = 1/^ - li with ^ = ko and 0' =
2mVoa^

(1.19)

The right-hand side of Eip 1.19 is a monotonically decreasing function and only the 

energy values in the range (0, Eq) constitute bound states. In general, graphical 

solutions are recpiired to solve the Eq. 1.19. The left-hand side and the right-hand 

side of Ecj. 1.19 are plotted separately in Fig. 1.7, and the circled crossings are the 

allowed solutions. Bearing in mind the graphical representation, if the potential 

amplitude E) is reduced, /3 and ^ decrease and the available range for the two curves 

to intersect becomes smaller. However, the right-hand side of Ecp 1.19 varies from 

infinity (for ^ = 0) to zero (for ^ = /3), while the tangent function goes to zero for 

^ = 0 or nn and diverges for ^ = odd or 7r/2. Therefore there is at least one crossing. 

The grai)hical solutions are marked with circled crossings in Fig. 1.7. Larger values 

of the j)otential amplitude Vq allow more bound states energies.
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1.2 Quantum well Introduction

Figure 1.7: Left-hand side and right-hand side of Eq. 1.19 are plotted separately and the 
graphical solutions are indicated by the circled crossings.

The boundary condition on the odd-syinrnetry wave functions of Erp 1.8 is cal­

culated in the same fashion. The logarithmic derivative for the propagating waves 

in the region |3;| < a must match the one of the decaying wave fnnctions inside the 

barrier for \x\ > a. In formulas

d kcos{kx) , w, . p II— lnm(x)\ = -----------  = kcot(kx) for x < a
ox sin(A:x)
d
—ln['d{x)] = —'ysgri{x) for |x| > a.

(1.20)

By matching them in one of the boundaries, the following exj)ression is obtained

kcot{kx) — —7 or cot(i^) = —
l/3‘̂

-1, (1.21)

where ^ and ^ are defined by Eq. 1.19. The graphical solution is shown in Fig. 1.8 

The left-hand side of Ecp 1.21 starts on the opposite side of the ^ axis, with respect 

to the even symmetry case and no crossing is guaranteed.

By comparing the even and odd solutions (Figs. 1.7 and 1.8), the alternation 

between them can be noticed. For small amplitude of the potential Vq, or for small
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Introdjiction 1.3 Scanning Tunneling Microscope

Figiiro ] .8: Left-hand side and right-hand side of Eq. f.2f are plotted separately and the 
graphical solutions are indicated by the circled crossings.

widths of the well, there is at least one bound state lying just below the top of the 

well. An increase of the potential (or width) allows more possible bound states. The 

first bound state has an even symmetry wave function. The following states alternate 

between odd and even symmetry [52].

The case with e > Vq is not treated in this thesis and it can be found in a standard 

ciuantum mechanics book (e. g. in Ref. [52]).

1.3 Scanning Tunneling Microscope

1.3.1 Introduction

Most of the simulated data {)resented in this thesis is compared with experiments 

performed with a scanning tunneling microscope. For this reason it is worthwhile 

introducing the basic concepts behind this very successful and well established tech- 

nicine.

Scanning tunneling microscope (STM) is a very powerful microscope developed 

to study the electronic and structural proi)erties of surfaces with atomic precision.
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1.3 Scanning Tunneling Microscope Introduction

It was invented by Binnig and Rohrer [54 57] (who were awarded the Nobel Prize in 

Physics in 1986) and implemented by Binnig, Rohrer, Gerber and Weibel [58,59]. A 

schematic of the STM is shown in Fig. 1.9. It consists of a probe tip, usually made

X' Tunneling 
voltage

Data processing 
and display

Figure 1.9: Schematic diagram of the scaimiiig tunneling microscope (figure from Michael 
Schmid, TU Wien). A probe tip is operated by applying a voltage to the 
piezotube, consisting of piezoelectric transducers along the x, y and z axes. 
As the tip scans over the sample surface, a contour plot of tunneling current 
isosurfaces is traced. The tip-sample distance is tuned through a feedback loop 
where the tunneling current I{V) is constantly comparc'd to a reference value.

of W or Pt, attached to a piezotube which includes three mutually perirendicular 

I)iezoelectric transducers along the x, y and 2 axis. By applying a voltage, the 

[)iezoelectric transducers expand or contracts, allowing the tip to scan the xy plane. 

The transducer along the 2 axis is used to position the tip a few angstroms away from 

the sample such that the electron wave function of the tip overlaps with the one of 

the sample surface. When a bias voltage is applied between the tip and the sample a 

tunneling current Hows. The tunneling current is aniphhed by the current amplifier 

to become a voltage, which is compared to a reference value according to a feedl)ack 

loop. If the tunneling current is larger than the reference value, then the voltage 

applied to the transducer acting on the 2 axis tends to withdraw the tip from the
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Introduction 1.3 Scanning Tunneling Microscope

sample surface and vice versa. An equilibrium position is then established through 

t he feedback loop. As the tip scans over the xy plane of the sample surface, it traces 

a contour plot of tunneling current isosurfaces, corresponding to a two dimensional 

array of eciuilibrium 2 positions. The line-scan image is a sequence of curves, each 

of which representing a contour along the x direction with constant y [60].

The tunneling current I{V) is then the basic quantity measured in a STM ex­

periment. The STM operates mainly according two different modes. The constant 

current mode consists of a scan of the tip position over the sample surface' t o obtain a 

two-dimensional map of the tunneling current. In practice this is realized by keeping 

the current hxed and by varying the tip-sam{)le distance accordingly. The experi­

mental (luantity measured in the constant current mode is the corrugation of the tip, 

defined as the difference between the largest and smallest tip-sample distance. This 

experimental setiq) allows a high resolution perpendicular to the surface, due to the 

exponential dei)endence of the tunneling current on the width of the barrier (tip- 

sample distance). This configuration is able to reach atomic resolution and single 

adatoms and single defects can be resolved.

The spectroscopic mode consists in varying the applied bias voltage and in mea­

suring the consecpient change in the tunneling current. This mode allows a local 

investigation of the electronic structure of the sample. The fundamental (luantity 

ac(iuired in a STS (scanning tunneling spectroscopy) ex{)eriment is the differential 

conductivity dl/dV as a function of the applied bias V. Hence, from the differential 

conductivity the LDOS of the sample can be estimated [61 67].
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iEnergy

V(z)
Jkz

-ikz

-KZ

0 z
Figure 1.10: Schematic plot of an electron in a potential barrier V{Z).

1.3.2 One dimensional model for tunneling

In quantum mechanics an electron with energy E, moving in a potential V{z) is 

described by the Schrodinger equation

2m dz^
+ V{z) i){z) = EiJ){z), :i.22)

where m is the electron mass. In the case of a square potential barrier, like the one 

shown in Idg. I.IU, the Eq. 1.22 has solutions

il){z) = 'ip{0)e±ikz (1.23)

where k is the wave vector given by

k =
y/2m{E - V)

:i.24)

These solutions describe an electron moving towards the potential barrier or away 

from it (incident and reflected waves), respectively. Within the potential barrier
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E(i. 1.22 has the solution

i’{z) = 'tp{0)e~ (1.25)

where

K =
yj2m{V - E) (1.26)

is the decay constant. The wave function of the electron penetrating the barrier 

has an exponential decay. Thus the probability density of finding an electron inside 

the barrier is finite and nonzero and it is proportional to |^(0)|^e“^'''^. This simple 

model may be used to explain the basic features of metal-vacuum-metal tunneling, 

i.e. the basic mechanism behind the STM microscope. The work function 0 of a 

metal surface is defined as the minimum energy required to remove an electron from 

the bulk to the vacuum level and it depends, in general, on the material and on the 

crystallographic orientation of the surface. In metals, when neglecting the thermal 

excitation, the Fermi level Ey is the upper limit of the occupied states. If considering 

the vacuum level as a reference point of energy, Ef = —cp. In this simple model the 

work function of the tip is assumed to be equal to the one of the sample. When 

a bias V is applied, the electron can tunnel from the sam{)le to the tip and xnce 

versa. An electron belonging to the sample, occupying a state with energy 

lying between Ef — eV and Ep, has a chance to tunnel into the tij). By assuming 

that the aj)i)lied bias eV is much smaller than the work function 0, then the energy 

window explored by the bias is very close to the Fermi level Ep. The energy states 

of interest in the sample fall into this window so that En ~ —0. The probability w 

of an electron belonging to the n-th of these states to be at the tip surface 2 = W is

w (X |0„(O)| e2-2kW (1.27)
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Figure 1.11: Schematic representation of a metal-vacuum-metal tuuneling junction. Figure 

from Chen, see ref. [60].

where '0ri(h) is the value of the n-th sauii)le state at the sample surface and

K = (1.28)

is the decay constant of a sample state near the Fermi level in the barrier region [60].

Ordinarily, in a typical STM experiment, the DOS of the tip does not vary (in 

first approximation) while scanning over the sample surface. The tunneling current 

is proportional to the number of state belonging to the sample surface within the 

energy window defined by eV. These states are responsible for the tunneling current. 

The number of these states depends on the nature of the sample surface: it is finite 

for metals and very small or zero for semiconductors and insulators. By including 

all the sample states in the energy interval eV, the tunneling current becomes

Ef

I (X |^/'n(0)|
En — EF~^V^

2^-2.W (1.29)

If V is small enough for the density of states not to change significantly, the E(p 1.29 

can be written in terms of local density of states (LDOS) at the Fermi level. The
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LDOS ps{z, E) of the sample at location 2: and energy c is defined as

1 ^
Ps{z,E) = - ^ (1.30)

E„ = E-t

for a sufficiently small e. The tunneling current can then be recast in terms of the 

LDOS of the sample

I ocVps{0,Ejp)e-^^^’. (1.31)

The dependence of the logarithm of the tunneling current with respect to the tip- 

sami>le distance is a measure of the work function (j), or of the (api)arent) tunneling 

barrier height [68,69]. From Eq. 1.31

0
d Inl 

8m V dW
:i.32)

By combining Eq. 1.25 and E(j. 1.30 at the postiou 2 = IT corresponding to the tip 

surface, the following expression can be derived

2-2kW _= Psi\TE,^)eV.
Ep-eV

This let us write the tunneling current as

(1.33)

I o^ps{\\dEF)V. (1.34)

A topographic STM image is obtained by scanning the STM tip over the surface, 

keeping constant the tunneling current. According to this one-dimensional model it 

corresponds to a constant LDOS contour of the sam{)le surface at the Fermi level [60]. 

This model has been i)roven to be valid at low bias, at least in hrst approximation, 

whenever the length scale of the surface features of interest is much larger than a 

characteristic length defined as tt/ hi' 3A [70].
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1.3.3 Bardeen model

Figure 1.12: In the Bardeen approach the two subsystems are calculated separately. The 
tunneling enrrent is obtained through the overlap of the wavefunctions of the 
free systems (b), using the Fermi golden rule, (a): schematic reijresentatioii 
of the density of states of the tip and the sample.

A further advanceiiieut in the developinent of the theory of STM has been taken 

with the time-dependent perturbation approach to the metal-insulator-metal tun­

neling junction due to Bardeen [71]. The Bardeen apjrroach considers the electronic 

states of two separate sub-systems, obtained by solving the stationary Schrodinger 

equation, instead of considering the combined system [Fig. 1.12(a)]. Time-dependent 

perturbation theory is used to determine the probability of an electron to be trans­

ferred from one electrode to the other. The tunneling matrix element A/, accounting 

for the electron transfer, is determined by the overlap of the surface wave function of 

the two subsystems at a separation surface [Fig. 1.12(b)]. It is then determined by 

a surface integral on an arbitrary surface placed between the two electrodes, z = Zq

M = 2rn L_LM - I ;i.35)

where i/) and x ^re the wave functions of the two electrodes. The rate of electron 

transfer is then determined by the Fermi golden rule [72]. The probability w of an 

electron in the state 0 with energy E^p to tnnnel to a state y with energy is given
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by
277 ,

w = —|A/7i(£i, - E,). (1.36)

The h-fiinction indicates that the tunneling between the electrodes can hap{)en only 

between states with the same energy. At any finite temperature, the occupation of 

the energy levels is given by the Fermi distribution. The tunneling current, at a bias 

voltage f/, can thus be obtained by summing over all the relevant states

/ =
47re

IT
lf(Er~eV + c)-f(E,^-he)]xps(E,--eVTe)pT(ErTe)lMl^de, (1.37)

where

.f(E) =
1 (1.38)r(B-fe>)] ’

1 + eL 1
is the Fermi distribution function, and ps and pr are the density of states of the 

two electrodes (the sanij)le and the tip). If ksT is smaller than the recphred energy 

resolution, then the Fermi distribution can be aj)proximated by a step function and 

the tunneling current can be written as

I = / psiEf - eV + e)pT(Er 
■Jo

+ e)\Mfde. :i.39)

By assuming that the magnitude of the tunneling matrix element |il/| does not 

change appreciably in the energy interval of interest, then the tunneling current is 

determined by the convolution of the DOS of the two electrodes [71,73]

/ oc / Ps{Ef - eV T- t)pT{EF + f)de. 
Jo

:i.40)

According to the Bardeen formula, the electronic structure of the electrodes enters 

the Ec]. 1.40, through the DOS ps and pr in a symmetric way. Both electrodes equally 

contribute to the tunneling current, as verified in the classic junction experiment by
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Giaever et al. [74,75].

By requiring the tip to have a constant DOS, the DOS of the sample can be 

recovered by performing a STS experiment, where the differential conductance dl/dV 

is measured. In this case it is proportional to the DOS of the sample

^ oc ps{Ef - eV). (1.41)

1.3.4 TersofF-Hamann model

Figure 1.13: S-wave tip model in the Tersoff-Hamaim description (figure from ref. [70]).
The tip is modeled as a spherical potential well of radius R at distance d from 
the sample. Only the s-wave solution of the spherical potential well problem 
is considered as tip wave function.

Another step forward in the theoretical description of the unprecedented atomic 

resolution achieved by STM experiments was achieved with the work of Tersoff and 

Haniann [70, 76]. They introduced the spherical tip model, or s-wave-tip model, 

where the tip is modeled with a spherical shape and the tip wave function is taken 

as the solution of the Schrodinger equation for a spherical potential well of radius R. 

Under the assumption that only the s-wave solution is important for this particular 

problem, the tunneling current at low bias is proportional to the Fermi level DOS at
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the center of curvature Tq of the tip

/ oc = eVpsiro, £.>)•
E,,=EF-eV

(1.42)

In the 6’-wave model, the constant current STM image is a Fermi level LDOS contour 

of the bare surface, taken at the center of curvature tq of the tip. The advantage of 

this model is that the tip properties can be taken out of the problem and the STM 

images reflect the proi)erties of the sample only (rat her than those of the combined 

tip/sample system). For free-electron metals, the Fermi level LDOS and the surface 

charge density contours at a distance from the surface in first approximation coincide, 

so that the STM images are simply the surface charge density contours [60,70,76].

An alternative approach based on the free-electron tip was developed by Stoll 

[77,78]. In this the tunneling current is calculated using a scattering method.

1.3.5 Chen extension to the Tersoff-Hamann model

TIP

-wave tip 2 -wave tip

SAMPLE SAMPLE

Figure 1.14: Schematic picture of the increased corrugation amplitude obtained by taking 
in account a tip state, compared to the s-wave model.

An extension to the Tersoff-Hamann model was proposed by Chen [60,79,80] by 

taking into account more directional tip-states like the 3^2 or the Pz states i)ointing 

towards the sample. Chen’s formalism gives a sim[)le dc[)endence of the matrix
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tip state Mf,y OC

s
Pi, i = x, y,z i = x, y,z

____ ^ 3____
Table 1.1: Matrix elements Alfiu within the Chen model. The prefactors depend on the tifr 

state.

element from the tip orbital. The sample wave functions have the form

t/;* oc (1.43)

where 2 is the coordinate perpendicular to the sample surface and is the vacuum 

decay constant. The matrix element M^y is still proportional to the sample wave 

function at the position of the tip, through a prefactor that depends on the type 

of orbital used for the tip state (see table 1.1). The inclusion of the tip states into 

the model explains the high corrugation amplitude observed experimentally. This 

(piantity is underestimated in the Tersoff-Hamann model.

1.3.6 Soler model

The models described so far are independent of the geometrical shape and the com­

position of the tip. This is not a major issue when the experiments are highly 

reproducible. However, the information conveyed by the experimental data is much 

more rich and complex than the picture of this approximation and they involve the 

convolution of both sample and tip states. In fact, de{)ending on the system and 

the conditions under investigation, the tip cannot be considered in ecjuilibrium, due 

to uncontrolled tip-sample interactions or eventual contacts with the surface that 

could entirely modify its structure. These uncertainties are crucial in the case of 

STS measurements, where slight changes in the tip can produce a completely dif­

ferent spectra. As a final conseciuence, it is common that experiments have a low
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exi)crinieiital reproducibility, and that conclusions from a direct observation of the 

ex]>eriniental information could not be soundly extracted in all circumstances. A 

careful com[)arison with first-principles simulations, in which multiple configurations 

of the tip are employed, can provide a strategy to gain insight in the interpretation 

of measurements. The method developed by Soler et al. [81] consists in performing 

first-principles simulations for a given sample and several tip compositions or struc­

tures by incorporating the band structure of tip and sample at the same level of 

theory, using density-functional theory (DFT). The scheme is based on the Bardeen 

model described in section 1.3.3. The tunneling current, on the basis of the Fermi’s 

golden rule, can be expre.ssed as

x.t
:i.44)

where f{Ej) is the Fernii-Dirac function, the energies Ej, {j = are referred

to the Fermi levels of the tip and the sample, respectively and V is the applied 

bias voltage between the electrodes. The Bardeen matrix element M^tp couples the 

states y (with energy E^) and (with energy E^) of tij) and sample, respectively, 

considered as i.solated systems. It takes the form

II
2m.■ I |)i:‘(r)VV’(r) - '(/'(r)Vj;'(r)l ■ iP (1,45)

where the integral can be calculated over any surface lying in the vacuum region 

between the two electrodes. Hence the total tunnel current will be a sum over all 

states in the energy window delimited by the voltage, and under the condition of 

elastic tunneling, stated by the delta function in Eq. 1.44 [81]. The evaluation of the 

matrix can be very demanding because the whole system (tip -i- sample) has to 

be included in the simulation cell and has to be computed for every tip position 

R. In order to sini[)lify the problem, the Tersoff-Hamann model [70,76] can applied

43



1.3 Scanning Tunneling Microscope Introduction

and the tij) and the sample can be treated as separate snb-systems. Within this 

model, the potential between the tip and the sample is considered to be constant. It 

leads to

V'^G^{r-R)-KlG^{r-R) = -()'(r-R), 2 m
with = ^(0;,-^;,), (1.46)

which describes a pointed tip located at R with a continuous energy spectrum formed 

by spherically symmetric states. 0^ is the work function of the tip and Gy, is the 

Green’s function of the tip. The solution of Eq. 1.46, satisfying the contour condi­

tions, is of the form

G\(r-R) =
g—|r— R,1

(1.47)47r|r — Rj

The tnnneling matrix elements can now be evaluated by using the Green’s function 

of Eq. 1.46 as the tip state, and by applying the Green’s theorem afterwards

44^(R) = - > - R)V0(r) - •0(r)VG*(r - R)] • (f{r) =

If­
ni

= - —\/2^0(R).

(1.48)

The tunneling current reduces to the LDOS of the sample near the Fermi energy and 

located at the tip position [81]

rEp'\-eV
I (X p^{R,()de.

JEp
(1.49)

Alternatively to Eq. 1.48, the value of 0 in the vacuum region can be estimated 

by propagating the wave functions from the position r of a surface E^, close to the 

sample, up to the points r' of another surface S^, close to the tip (Fig. 1.15). These 

wave functions are then substituted back in Eq. 1.45 to find more precise values for 

the matrix elements. A more exhaustive discussion on the method can be found in
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(b)
constant
potential

true 
potential

AAt .
sample

/-----------\/' vacuum |\
/ ' region » \

f i_ _i \i\f\
tip

Figure 1.15: (a) A schematic representation of the propagation of ip{r) values at the math­
ematical surface (close to the sample) across the vacuum region up to the 
points r' in (close to the tip), (b) The approximation of a flat effective 
potential in the vaentnn region between the tip and the sample (figure from 
ref. [81]).

Ref. [81].

F’urther extensions explain the remaining discrepancy between experiments and 

theory by taking in account, for example, the details of the composition and the 

geometry of the tip [82 87], the elastic deformation of tip and sample surface in 

the ease of metal surfaces [88,89], or where a nonperturbative expressions for the 

tunneling current is adopted [90 104].

1.4 Outline of dissertation

The aim of this work is to investigate several aspects related to the adsori)tion of hy­

drogen atoms on an otherwise bare Si(lOO) surface with c(4 x 2) reconstruction. The 

H atom passivates one of the surface dangling bonds leaving a single dangling bond 

(SDB) on the opposite site of the same dimer. We determine the most favourable 

bonding configurations of the hydrogen on the surface for the neutral system and for 

n- and /^-doped conditions. We study the charging state of the single dangling bond 

originating at the site facing the H for different adsorption configurations and as a 

function of the doping. Afterwards we focus on the confinement effects arising from 

the potential barriers created by the reacted dimer on the surface and the effect of 

the aforementioned barriers on the electronic structure of the surface, such as the
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torniation of standing waves in the conduction band. We analyze the effect that 

such a barrier has on the adjacent dirner rows of the surface and the possibility of 

gating effects between rows. The results are obtained by means of ab initio computer 

simulations performed within the density functional theory (DFT) framework and 

the non-equilibrium Green’s function (NEGF) formalism. The calculated results are 

compared with scanning tnnneling microscopy and spectroscopy (STM/STS) data.

The computer simulations done with the SMEAGOL code have been performed 

by Dr. Ivan Rnngger, belonging to the Gomputational Spintronics Groui)\ Trinity 

College Dublin.

All the exirerimental measurements have been performed by Dr. Borislav Nay- 

denov, who belongs to the chemistry group lead by Prof. John J. Boland of the 

Chemistry Department at the Center for Research on Adaptive Nanostructures and 

Nanodevices^ (CRANN) in Trinity College Dublin.

The theoretical methods behind the computational work presented in this thesis 

are descrilred in chapter 2. I will give a brief overview of the approximations that 

drive; ns from the unsolvable many-body Schrddinger eepiation to a set of decoupk'd, 

single-particle equations. The Born-Oppenheimeu- approximation for solids, the clas­

sical nuclei approximation and the mean-held api)roximation are describe'd. The 

main concepts behind the density functional theory (DFT) follow with a brief review 

of the most popular implementations of the exchangmcorrelation functionals which 

made this method a very practical and powerful tool for predicting the electronic 

properties of materials. I will introduce the basic concepts of the modern transport 

theory by starting from a simple toy model for transport and extending the main 

ideas to more complex systems by making use of the Green’s function formalism. A 

short description of the SMEAGOL code is given at the end of the chapter.

The computational methods involved in the practical solution of the Kohn-Sham

'website: www.spiiiconip.eu 
^website: www.cranii.tcd.ie
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ociuations are presented in chapter 3. The main idea behind the psendopotential 

approach is described. This enables ns to treat the electron-nnclens interaction in a 

simphhed way. The Bloch’s theorem is reported along with the definitions of direct 

lattice and reciprocal lattice. The plane wave and atom centered basis sets are also 

dscribed. Some sampling scheme of the Brillouin zone to a finite number of A:-points 

is [)resented in this chapter along with the supercell approach. Some details about 

the numerical framework of the ab iniUo DFT-code VASP will be given.

Chapter 4 focuses on the local approach technicpie used to characterize the bond­

ing configuration of a hydrogen atom on a bare Si(100)-c(4 x 2) surface and the 

charging state of the single dangling bond originating from it. The aim of the lo­

cal approach consists in the description of the electronic and structural jiroperties 

of the reacted site (dimer) by elaborating the information obtained from ah initio 

calculations and STM/STS experiments around the reacted area. In particular, the 

charging state of the single dangling bond is studied as a function of the H adsorption 

configuration and the dojiing of the sample.

The non-local approach is described in chapter 5. This is a non intrusive method 

of studying the electronic structure and the geometrical configuration of adsorbates 

on surfaces. The simulated and measured non-local DOS are used to mai) the stand­

ing waves originated by the presence of adspecies. This teehniciue is used to char­

acterize the adsorption configurations of the H atom and the charging state of the 

single dangling bond discussed in the previous chajiter. Gating effects between ad­

jacent dimer rows, originating from the reacted dimer, are the object of the second 

part of the chapter.

A very general description of the properties of topological insulators is given in 

this chapter 6. It is followed by the preliminary results obtained by DFT-based ah 

initio calculations on a heterostructure formed by the topological insulator Bi2Se3 

epitaxially grown on a graphene substrate. Properties such as the band gap, the band
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structure and the spin texturing of the combined system are studied as a function of 

the distance between the two sub-systems.
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CHAPTER 2

Theoretical Framework

2.1 Introduction

In this chapter I describe the theoretical framework l)ehind the methods used in this 

thesis. The systems of interest in condensed matter physics consist of an ensemble 

of electrons and nuclei interacting through Coulombic and exchange forces. The 

exact quantum many-body problem has no analytic solution for systems involving 

more than two particles and approximations are required. Section 2.2 presents the 

adiabatic approximation that allows us to decouple the electron motion from the 

motion of the nuclei and to split the total many-body wavefunction into a product 

of a wavefunction accounting for the electrons and one accounting for the nuclei. 

In most of the cases of our interest the exchange effects related to the nuclei are 

negligible and their wave i)ackets are very localized due to their large masses therefore 

the nuclei can be treated classically. This is the aim of section 2.3. Due to the two- 

body nature of the electron-electron interaction, the many-electron wave function,
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2.2 Adiabatic approximation Theoretical Framework

is still very difficult to treat and this problem can be tackled by introducing the 

mean-field approximation, described in section 2.4. The basic assumption behind 

this method is that the electrostatic field felt by an electron in an atom is due to 

the central potential of the nucleus together with a held (namely, the mean held) 

created by all the other electrons. As a consequence, the many-elecl ron wave function 

can be factorized into a product of one-electron orbitals. The main ideas of the 

density functional theory [105 108], according to the Hohenberg, Kohn and Sham 

formulation are described in section 2.5. The key concept is that the energy can be 

written as a functional of the electronic charge density, instead of the many-electrons 

wave function. In addition, the real system can be mapped into an auxiliary system 

of non-interacting fermions that can be solved readily and exactly.

Section 2.6 presents a theoretical description of electronic (luantum trans|)ort 

starting from a simple molecular toy model, according to the bottom-up aj)proach 

followed by Datta [109]. The fheory will be expanded to more general systems by 

introducing the Green’s function formalism.

Section 2.7 gives a brief description of SMEAGOL, an ah imtio transport code

[110,111].

2.2 Adiabatic approximation

The physical and chemical properties of a microscopic system of interacting particles, 

nuclei and electrons, can be described exactly by solving the time-independent niany- 

body Schrodinger equation [112] of the form

(2.1)

where (r, R]T) = 'I'(r;R) is the many-body wave function depending on the set of 

nuclear (R) and electronic (r) coordinates. For a system with Ni nuclei with mass
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Theoretical hTamework 2.2 Adiabatic approximation

Ml and atomic number Z/, and electrons with mass m. the Hamiltonian operator 

is given Ijy

H = tiv) + f^{R) + Ke(r) + l/;viv(R) + l>;ve(r, R), (2.2)

with

feir) =
Ne ,

^ 2 m ' (2.3)

T’yv(R) =
Ni .

(2.4)
7=1 ^

Veeir) =
1 Ne 2
y M r

2^ \v,- r,| (2.5)

V(vAf(R) =
1 ^ ZiZje^
2 ^ |R/ - R./T (2.6)

j^j

I/7Ve(r, R) =
1 ^ ^ Z/e^

(2.7)

Here T’e(r) is the electronic kinetic energy, TjsiiR) is the nuclear kinetic energy, Hee(r), 

V)w(R) and V/vp(r, R) are the j)otential energies due, respectively, to the coulombic 

interaction between the electrons, between the nuclei and between the nuclei and the 

electrons. Vf (V/) is the Laplacian with respect to the three cartesian coordinates of 

the electron nucleus). Since electrons are fermions, the total electronic wave 

function must be antisymmetric and it should change sign whenever the coordinates 

of any two electrons are exchanged. The symmetry i)roperties of the nuclei wave 

function depend on the nuclear spin: they are fermions for half-integer nuclear spin 

(e.g. H, ^He) and bosons for integer spin (e.g. ^He, H2). In principle all the properties 

of the system can be derived by solving the time-indej)endent Schrodingcr equation 

but, in practice, this problem is almost impossible to treat within a full quantum 

mechanical framework. A conq^lcte analytic solution is only available for hydrogenic 

atoms or the Hj molecule. Exact numerical solutions are also limited to a few cases,
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2.2 Adiabatic approximation Theoretical Framework

mostly atoms and small molecules. The most important feature contributing to this 

difficulty is the two-body nature of the Coulomb iiiteractioii that makes the afore­

mentioned Schrddinger equation not separable. Let us consider the case of a single 

atom with Z electrons. The electron wave function can be, in principle, written as an 

antisymmetrized product of one-electron wave functions (Slater determinant, [113]). 

This assumes, however, some kind of separability of the Schrodinger equation, imply­

ing that the probability of finding an electron at some point in space is independent 

of the i)ositions of the other electrons. The electron-electron interaction is ciuite at 

odds with this picture, because an electron located at i)oint r in space precludes other 

electrons from approaching this location. Hence the probability of hnding an electron 

at point r depends on the location of the other Z —1 electrons. This phenonienon is 

known as correlatioji and implies that the many-body wave function should depend 

on two electronic coordinates. This means that the full Schrodinger ecjuation can­

not be easily decoupled into a set of single-particle equations. Approximations are 

recpiired in order to solve the problem [114].

One powerful approximation, called the Born-Oppenheinier [115] approximation, 

allows the many-body wavefunction of the system to be broken into its electronic 

and nuclear (vibrational, rotational) conii)onents. It relies on the fact that the nu­

clear mass is ~ 1800 times bigger than the electron mass. Within a classical picture, 

the velocity of the electrons can be considered much bigger than the one of the nu­

clei and the motion of electrons and nuclei can be separated. The electrons can be 

thought of as instantaneously following the motion of the nuclei, while remaining 

always in the same stationary state of the electronic Hamiltonian. According to this 

approximation, also called adiabatic approximation, the electrons do not undergo 

transitions between stationary states. In other words, as the nuclei follow their dy­

namics, the electrons instantaneously adjust their wave function according to the 

nuclear wave function. Let us consider the case of a molecule, where the electronic
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Theoretical Framework 2.2 Adiabatic approximation

spectniin is discrete. Three basic types of motion can be related to a molecule: elec­

tronic, nuclear vibrations and nuclear rotations, each one corresponding to a typical 

energy scale. The energy scale of the electronic motion is given by the separation 

between successive electronic eigenstates and it has the same order of magnitutde 

of the ground state energy. It is approximately given by Eg ~ where a

is the ty{)ical interatomic distance in the molecule and it is of the order of few eV. 

The energy scale of nuclear vibrations is given, in the harmonic approximation, by 

E\, — hu) where u) is the frequency of the vibrational motion. In first approximation 

Eg = huj Ri {mjMy/'^Eg with M being the mass of the molecule and m the electron 

mass. The rotational energy is related to the angular momentum of the molecule 

and it is (luantized in levels separated by ~ h and it is given by Eg = L?' jI where 

I is the moment of inertia of the molecule. This energy can be approximated as 

Eg Rj lFl{M(F) = {m/M)Eg. Therefore, for the N2 molecule, for example, the hrst 

electronic excitation energy is 7.5 eV, the vibrational excitation energy is around 

300 meV and the rotation level se[)aration is around 0.5 meV. It can be noticed that 

the rotational energy is two order of magnitude smaller than the vibrational energy 

which is almost two order of magnitude smaller than the elctronic one. This makes 

reasonable the assumption that no transition between electronic states can be in­

duced by nuclear motion and the error associated to the separation between nuclear 

and electronic motion is negligible.

In the case of extended systems like crystals, the electronic spectrum is continuous 

and so is the excitation sj)ectruni. For insulators and semiconductors the smallest 

electronic excitation is given by the energy band gap which is in the order of few 

eV. For metallic systems the electronic excitations form a continuum and, strictly 

speaking, the adiabatic approximation should not be api)licable. However, the range 

between room tenii)erature and a few thousands Kelvin is usually much lower than 

the electronic Fermi tem{)erature, excitations are confined to a narrow region around
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the Fermi surface and most properties are little affected by neglecting non-adiabatic 

contributions coming from these few electrons. The limits of the adiabatic approxi­

mations are reached when the electronic energy scale becomes comparable with the 

one of the nuclear vibrational motion and nuclei and electrons need to be treated in a 

unified framework. This can happen when the electronic gap closes due to some ex­

ternal factor like pressure or temperature and whenever electron-phonon interactions 

are not negligible [114].

The adiabatic sei)aration between electrons and nuclei can be cast in a formal 

mathematical framework by decomposing the original wave function T into a product 

between an electronic wave function Te;{r; R) which depends parametrically from the 

nuclear coordinates, and a nuclear wave function T„uf(R)

T(r;R) = T,((r; R)T„^,(R; [2.8)

The electronic part of the Schrddinger eciuation becomes

Ne f N, Ne

V — - -V V
1=1 /=1 i=l

Zje^
2
1
E
2J=1

(2.9)

The nuclear motion is governed by the nuclear Schrodinger equation, where the 

ground state electronic energy E^i enters the potential energy expression

fr 1 '7 '7 '1

V —V" + - V +^ ^ 2 ^ |R/ - Ry| ^ ^e/(R)
l=\

(2.10)

When separating the nuclear from the electronic contribution, the (non-adiabatic) 

dynamical term deriving from the action of the nuclear kinetic operator on the elec­

tronic wave funcstion has been neglected. The related error should be of the same
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Theoretical Fi'aiuework 2.3 Classical nuclei approximation

order of magnitude of tiie rate m.e/Mi between the effective mass of the electron and 

the mass of the nucleus and it is negligible everytime there is no strong electron- 

phonon coupling.

2.3 Classical nuclei approximation

According to the adiabatic approximation the total wave function can be written in 

the form given in Eq. (2.8) where is the nuclear wavefunction. Atomic nuclei

exhibit exchange effects only at very low temperature and nuclear wave packets are 

ejuite localized due to the large nuclear masses. These two olrservations enable us 

to conclude that, in most of the cases, a classical treatment of the atomic nuclei is 

justified. The dynamics of the mean values of the [)osition R and momentum P 

operators can be then obtained from Ehrenfest’s theorem [116]

7h

(it
d{P)

(It

M M
(i{K)

(it (P),

= ([H,P]) = -z/;.(V£;„(R)),

(2.11)

(2.12)

where the brackets () indicate the ex{)ectation values (mean values) of the operators 

(e.g. (R) = (T!R|T)). The Newtonian equation of motion is obtained by combining 

the two equations

(2.13)m^^ = -(V£;„(r)).
(iT^

The classical nuclei approximation consists in identifying the mean value of the po­

sition operator with the cartesian coordinates of the classical particle. This can 

be understood if the nuclear wave function is rei)resented as a product of Dirac’s 

(f-functions centered at the classical positions. Therefore, the e(iuations of motion 

become

(2.14)
,j2r

= -V^„(R),
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where i5'„(R) is the ii-th adiabatic potential energy surfaced Tlie hnal expression 

for the ecpiation of motion is obtained by using the Helhnann-Feynman theorem 

[117,118], which states that the variation of the electronic energy with respect to 

an external parameter (R in this case) coupled to the electronic variables can be 

calculated as the expectation value of the variation of the Hamiltonian

dH{R)
5R 'Jn(R-)), (2.15)

and hence
A/^ = -(^,„(R)

aR d/„(R)) - ^V/v/v(R)
clR

(2.16)

where R represents the classical nuclear conhguration with

Hei — Tf,{r) + T)v(R) + Vee(r) + Vyvp(r, R) (2.17)

and V)vyv is given by the equation (2.6). The solution of the stationary [moblem, 

i.e. VEn(R) - 0 is known as geometry optimization and it is as important as the 

determination of the dynamical evolution of the system. In order to obtain /?„(R) = 

0 and its gradient it is necessary to solve the time-independent Schrddinger equation. 

This is called an electronic structure calculation [114]. For a deeper understanding 

of the topic see Ref. [119,120].

2.4 The many-body problem and the mean-field 

approximation

The electronic Schrddinger equation for a system of Ne interacting electrons under 

the effect of an external Coulomb potential generated by a collection of tV/ atomic

'The total energy of an atom arrangement can be represented as a curve or (multidimensional) 
surface, with atomic j)ositions as variables.
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nuclei can be written as:

//d|'fri(r;R)) = £d{R)l>I'd(r;R)) (2J8)

where 'I'e/(r;R-) is the many-electron wave function and iSe/lR-) are the eigenvalues. 

Both 'he/ and Efi depend pararnetrically on the nuclear coordinates R. The electronic 

liainiltonian is given by

Hel =
N, t .% ^ 1 ry 2A v2 _ i A A -Ml_+ - V

Z_y 9rn ' 9 Ir — R rl 9

1 2 1

j=l 2^^ r,-R,/ 2/=! i=l ' ' '' j;j=]
if 3

\F - rj\
Vhe; = Ee/fR.j'he/.

(2.19)

The main difficulty in solving this ecpiation arises from the two-body term describing 

the electron-electron Conlomb interaction

v;e(r)
1 N,

2 ^ |r, - r^-i
!.J = 1
if 3

(2.20)

which prevents the many-electron wave function to be written as a j)roduct of single- 

particle wave functions. This problem is known as the many-hody problem and is 

intrinsically related to the two-body nature of the electron-electron interaction. The 

presence of an electron in a region of si)ace influences the behaviour of all the other 

electrons of the system so that they cannot be considered as individual entities. 

Developing approximate schemes to solve this problem is worthwhile because the 

knowledge of the electronic structure of a system gives access to all its physical and 

chemical {)roperties. The electronic ground state determines the atomic structure of 

the system, the relative stability of different structures, polarizabilities and dielectric 

j)ro])erties etc. In order to be able to factorize the many-electron wave function, the 

rncan-field ai)i)roxiniation is introduced. This takes from an original work by Hartee 

and Slater, who gave a mathematical groundwork to the method [121, 122]. The
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2.4 Mean-tield approximation Theoretical Framework

basic assumption is that the electrostatic held felt by an electron in an atom is due 

to the central potential of the nucleus together with a held (mean held) created by 

all the other electrons. As a consequence, the many-electron wave function can be 

written as a product of one-electron orbitals. The electron-electron interaction term 

can be written as:

Ne Ne
V'„(r) = ^V(r,) with V(r,) = ^ (2.21)

i=l j=l

By replacing F(ri) with an appropriate effective value

We
r(r,) = •t - rJ (2.22)

i j=i ‘ji

it is possible to factorize the many-body electron wave function Te/ iu a product of 

single-particle wave fiuK'tions (Hartree airirroxiniation)

d'e/(ri,r2,...,rn) = ?/^(ri)'0(r2),...,'0(rn)- (2.23)

Thus a set of decoupled single-particle ecpiations are obtained. Each single-particle 

wave function depends on 3 indeirendent spatial coordinates, hence the determination 

of the properties of the system imply the solution of a set of SNg unknowns, Ng being 

the total mnnber of electrons. In order to take in account the antisynnnetry postulate 

of the wave function, the simple product of wave functions is replaced by a Slater 

determinant and the Hartree-Fock equations are obtained [123]. These equations 

involve a quantistic non-local term in the Hamiltonian, called exchange energy. The 

contribution to the total energy given by the exchange energy can be written as

■'exchange —

/ *drV;(r)d'*(r')-
(7 iCT j (2.24)

j,j=i
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The Hartree-Fock cfiuatioiis account for tfie quantistic interaction between electrons 

with the same spin, through the exchange term, but a term accounting for the 

correlation between electrons with opposite spin is missing. For this reason, the 

Hartree-Fock approximation works very well when the correlations effects are small or 

negligible while it fails in predicting j)roperties where many-body effects are present.

2.5 Density Functional Theory

Density functional theory, known as DFT [105 108], which was developed by Ho- 

henbcrg, Kohn and Sham in 1964, is based on the concept that the total energy of 

an electronic system can be written as a functional of the electronic charge density, 

instead of the rnany-electron wave function. The main theorem at the base of the 

theory states that the ground state charge density determines all the properties that 

can be extracted from the Hamiltonian by solving the Schrodinger equation. This 

confers a great advantage, as it enable us to describe the system with only 3 co­

ordinates needed to describe the charge density p, instead of the ‘SN^ coordinates, 

needed to describe the many-body wave function 'k. In the case of a non-degenerate, 

non-spin polarized system of Ng electrons

'k(ri, r2,..., r„,) ^ p(r) ^ 3A^e coordinates —t 3 coordinates (2.25) 

p{r) = N y'k*(r,r2,...,r„)4'(r, r2,...,r„)dr2rir3...dr„,. (2.26)

2.5.1 Hohenberg and Kohn theory

Within the Born-Oppenheimer approximation [115], the time-independent Schrodinger 

eciuation for a system of interacting fermions is given by

//|T) = E\^), 
59
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where the Hamiltonian iIS

D — Tg T Vgxt + Vgg with (2.28)
!=1

and Vpxt is the external potential that can be written as a sum of single-particle 

potentials nea:((ri) (e.g. of the form given in Ecp 2.7). The Hohenberg and Kohn 

theorem [105,108] states that:

“the external potemtial is univocally eleternhned by the electronic density, up to 

a trivial additive constant”.

As a corollary, since the ground state charge density, pGs(r), univocally deter­

mines Vg^t, it also determines the ground state wavefunction 'Fes, which should be 

otherwise obtained by solving the full many-body Schrodinger equation. The proof 

of the theorem shows the existence of a one-to-one invertible correspondence be­

tween the ground state many-body wavefunction Fqs and the external potential 

Vgxt- Moreover, it shows a one-to-one correspondence between and the ground 

state charge density pcs

^ext Fes, Fes Pgs Pgs I'l'idGsl) ^ext [pgs]- (2.29)

The most important consequence of the Hohenberg and Kohn theorem is that, at 

least in princii)le, the expectation value on the ground state of each operator O is an 

unique functional of the exact ground state density pos

('I'[pg5]K^|'I'[Pgs]) = 0[pes\- (2.30)

In addition to the hrst theorem proving the existence of the functional, Hohenberg
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e Kohn showed its variational nature

Ev.M = ('I'Mir. + + K.dJ-M), (2.31)

where is ilic external i)otential of a system with ground state density pr;s(r) and 

energy Fas- The wave functions '^qs and Pgs[^) <^an be obtained by minimizing the 

energy functional through a trial density p, according to the Hohcnberg and Kohn 

minimum principle

Fas ■■= Ev,,,[pc,s\ = peA
(2.32)

where A is the totality of all the n-particles integrable charge densities. The mini­

mization [H'ocednre of the charge density is performed over 3 coordinates instead of 

the 3Np needed for minimizing the wave function. By considering the independent 

contributions
Eve„[p] = EukIp] + [ <lrp{r)Vext{r), (2.33)

the functional

(2.34)

is a universal functional of the charge density p and it does not depend on Vext- Given 

the differentiability of Fy^^tip), the variational principle can be written as a station- 

arity principle of the energy functional with respect to charge density variations that 

keep constant the total number of electrons Ng

Yp - P. j drp{r)^ = 0. (2.35)

From Eci.(2.35) the Euler-Lagrange equation can be obtained

dEv.Jp] SFfnclp]
Sp{r) Sp{r) + Vextir-) = P- (2.36)
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The Lagrange multiplier //, which is relative to the constraint on the number of 

electrons Ng, expresses the chemical potential (thermodynamical extension of DFT) 

[124], The explicit form of the kinetic and the electron-electron functionals entering 

the expression of Fmk[p{^)] given by Eq.(2.34) is not known. If good approxima­

tions to these functionals could be found, than a direct minimization of the energy 

functional would be possible. Kohn and Sham [106,107] proposed a scheme to ap­

proximate the kinetic and electron-electron functionals. It consists of an auxiliary 

system ol non-interacting particles to be described by a single determinant function, 

whose charge density ecpials the one of the “real” interacting system. The universal 

functional T///^'[p(r)] of the fictitious system can then be calculated from the orbitals 

because it corresponds to the kinetic energy of the system of non-interacting particles

^//A-[d(r)] = rA-s[p(r)]- (2.37)

2.5.2 Kohn and Sham equations

Figure 2.1: A cartoon representing the relationship between the “real” niany-body system 
(left-hand side) and the non-interacting system of Kohn-Sham density func­
tional theory (right-hand side).

Kohn and Sham equations [106 108] provide a practical scheme to solve the 

Hohenberg and Kohn theory and became a very powerful tool for investigating the 

physics related to atoms, molecules and solids. The main idea originates from the 

observation that a system of non-interacting electrons can be exactly described by 

an antisymmetric wave function of the Slater determinant type, made of one-electron
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orbitals. According to the Hartree-Fock theory, the kinetic energy for such a system 

can be easily cxi:)ressed in terms of one-electron orbitals

12 °°
2m

(2.38)
Z = 1

where are the one-electron orbitals and fi the corresponding occupation numbers 

(/, = 0,1). The strategy proposed by Kohn and Sham consists in finding a system of 

non-interacting electrons that produces the same electronic density of the interacting 

system and use the equation (2.38) to caleulate exactly the kinetic energy. This is 

not, of eonrse, the kinetic energy of the interacting system: the missing fraction is due 

to the fact that the true many-body wave function is not a single Slater determinant. 

As sueh there is a kinetic correlation contribution, which needs to be included in the 

correlation energy term. The energy fnnctional for a system of non-interacting 

fermions, described by the Hamiltonian //as == Tas + VTsi written as

Eks\p] — TkKS
[p\ + I dv Va-s »p(r), (2.39)

aecording to the Hohenberg and Kohn theory. T^sIp] is fbe kinetic energy functional 

of the ground state of non-interacting particles with charge density p, and external 

potential Has- The exact ground state density linked to the Hamiltonian //asi 

is obtained by applying the Hohenberg and Kohn variational principle

^Eks[p] ^Tks[p]

dp{r) Sp{r) + VKsir) -s = 0. (2.40)

The Kohn and Sham scheme is l)ased on the assumi)tion that, for each system of 

interacting particles, a local potential VAs(r) can be determined in sneh a way that 

the ground state charge density Pks{t‘') of fbo non-interacting system under the 

influence of the potential VA's(r), equals the charge density of the interacting system
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p{r). If Hks is not degenerate, the charge density expression for the non-interacting 

system is unique
n

PA-5(r) = p(r) = ^ |(/.j(r)|l (2.41)
i=l

The eigenfunctions 0j(r) and the eigenvalues Si can be obtained from a Sclirddinger- 

like equation

-f- I4-s(r) ) 0z(r) = Ei ^i(r), £1 < £2 < ••• < £«• (2.42)

Once the potential I4:s(r) is known for p(r), the Hohenberg and Kohn theorem 

guarantees its uniqueness. Vft^-5(r) univocally determines tlie single-i)article orbitals 

which are unique functionals of the charge density: (pi{r) = (pi{p,r). The kinetic 

energy of the non-interacting system is itself a uniciue functional of the charge density

Pi^)

tkM = E/
The universal functional F///^'[p] for the interacting system can be written as

Fhk[p] — Th's[p] + d(r)/y(r') , , ^ rp I .—dr dr + E^^dp),r — r
(2.44)

where Exc[p] is the exchange-correlation energy given by

Exc[p] = Fhk[p] - Tks[p] - ■ P(r)d(r')
r — r

dr dr'. (2.45)

The exchange-correlation energy E^dp] inclndes the cpiantistic (non Coulombic) con­

tribution of the electron-electron interaction and the difference between the kinetic 

energies of the interacting and the non-interacting systems. The energy functional
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for the interacting system then becomes

EVexl
[p] = T„-s[p]+ I dvVe:,tir)pir) Pir)p{r^^j^dF + E,,{p)>Eo. (2.46)

r — r

From tlie Hohenberg and Kohn minimization principle, the Enler-Lagrange equations 

can be obtained {Np fixed)

^Evpjp] = / drSp{r) Vejfir) + STksIp]
dp

e ^ = 0, (2.47)
Po

where the effective potential Vpffiv) is given by

v;//(r) = Vo(r) J + VxdPo, r) (2.48)

and
1/ / N _ dExc[p]

dXr)
(2.49)

PO

The Enler-Lagrange ecinations of the interacting system are formally identical to 

the ones of the non-interacting system, where Ee//(r) replaces E/^'5(r). The charge 

density p{r) minimizing the energy functional can be obtained from the solution of 

the single-particle Kohn and Sham equations

+VeJf{r))(j)^{r) = e^(|)i{r). (2.50)

The final flamiltonian is that of a non-interacting electrons gas feeling the effective 

potential Vpff{r) and where all the many-body effects of the real system are included. 

The ground state total energy for the system of interacting particles can be written

as:

Eks —
n

'^e^ + E^c[p(r)] - / f4c(r)d(r)
i=l

dv-
f p(r)p(r')

r — r
jEdrdr+Eion. (2.51)
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Such an energy functional is expressed in terms of the n orbitals that, minimize the 

non-interacting electronic kinetic energy under the hxed density constraint. The 

one-electron orbitals are known as Kohn-Sham orbitals and, in [jrinciple, they do 

not have any obvious [)hysical meaning by themselves except for the highest occu­

pied molecular orbital (HOMO). They are the result of a mathematical construction 

devised to simplify the problem. In practice, it is customary to consider them as 

single-particle physical eigenstates. The Kohn and Sham scheme allows, in principle, 

the determination of the exact ground state charge density and the total energy. In 

practice, the exact expression of the functional Ej-dp] [with its derivative I4c(r)] is 

not known, and approximations are reciuired. Due to their non-linearity, the Kohn 

and Sham eciuations have to be solved through a self-consistent iterative approach.

2.5.3 Spin-polarized systems

The extension of Kohn and Sham equations to spin-polarized systems allows us to in­

vestigate systems with open shells and spontaneous ferromagnetic or anti-ferromagnetic 

ground states [125 128]. The electronic density can be deconi[)osed into two inde­

pendent spin densities p = Pt + Pi the Kohn-Sham equations can be written 

independently for each spin component (cr |)

(2.52)
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where

VksM

Kcir)

P^(r)

= Vext(r) + e

6E:^c[p^,p^]

2 /" Plr)
r — r-rfr' + V.»(r),

(5p"(r)
p(r) = 5]p"(r),

F. ’ "t+"* = "■

(2.53)

(2.54)

(2.55)

(2.56)
i= 1

Here /f is tiie oeeupat ion number and is assumed to be: 0 for ef > fF; 1 for ef < ^F; 

in the range [0,1] for e'^ = fF. In the ease of non-spin-polarized systems = pi spin- 

polarized OFT (SDFT) reduces to the simpler ease of DFT with double occupancies 

of the single-particle orbitals. In SDFT the total energy is written as

Fks[pIp^] = T^-s.s’[d^p^]+ I pir)V,xtir)dr+^ j j

+ Exc[p\p^] - j p{r)pxc[p\ P^]i^)dr,

(2.57)

with

T^s\p'.p^ (2-58)
(T=t,4, i=l

Si)in-density functional theory assumes that the projection of the total spin of the 

system is a good quantum number. There are cases, like disordered or low-symmetry 

structures, when this does not happen and non-collinear magnetism can appear 

[114,129]. A non-eollinear extension to the Kohn-Sham equations has been intro­

duced via the incorporation of the two-component spinor wavefunetions [129 133]. 

However, the materials under consideration in this thesis do not exhibit non-collinear 

magnetism and so this will not be further discussed.
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2.5.4 Approximations to the exchange-correlation functional

The total energy as a functional of the density can be broken clown into a number 

of different contributions

^[p] ~ + Vext + Ell + Ex + Ec^ (2.59)

where T^s is the kinetic energy of the non-interacting system, En is the classical 

electron-electron Hartree energy, Vext is the external potential due to the nuclei and 

Ex and Ec are, respectively, the exchange and correlation energies. V^xt and En 

are known as explicit functional of the density. T^s and hJx arc^ only known as a 

functional of the non-interacting Kohn-Sham orbitals while Ec is unknown. From the 

computational [)oint of view, calculating the exchange energy Ex is cpiite demanding. 

It it is treated exactly as a functional of the orbitals, it will not be able to compensate 

for any error introduced when approximating the correlation energy Ec- The key 

issue is to deal with the sum of the two terms Ex + Ec taken at the same level of 

apj)roximation.

LDA

The local density approximation (LDA) [134] is the most popular and widely used 

approximation for the exchange-correlation energy. The main idea is to consider a 

general inhomogeneous electron system as locally homogeneous and then to use at 

any point in space the exchange-correlation functional corresponding to the homoge­

neous electron gas evaluated at the local density. This latter is known to an excellent 

accuracy from montecarlo simulations. Thus Exc depends only on the local density 

of the system
= j exr[d(r)]p(r) (E, (2.60)
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wliere is the exchange-correlation energy density for the honiogeneons elec­

tron gas. The exchange-correlation potential \4c is then obtained from the exchange- 

correlation functional by the functional derivative

K/f ^(r) =
Spir)

(2.61)

The LDA apirroximation is suitable to describe systems with smooth density 

variations like metals, where the electrons can be treated whthin the free electron 

picture, or intrinsic semiconductors. LDA is appro{)riate for calculating structural 

and vibrational [rroperties of solids, while binding energies are overestimated and 

bond lengths underestimated. The limitations of LDA are related to the fact that 

the inhomogeneities in the density are not taken in account. Moreover, the electron 

self-interaction present in the Hartree energy term is not completely cancelefl by the 

LDA exchange-correlation term [135] (see 2.5.4). The way the correlation term is 

treated precludes strong local correlation effects to be rei)roduced.

LSDA

The extension of the LDA to s[)in-polarized systems is the local spin density ap­

proximation (LSDA) which is used to describe magnetic and open-shell materials. 

The exchange and correlation functional for the two spin components is expressed 

separately because the exchange contribution is diagonal with respect to spin and it 

is obtained as an extension of the non-polarized case

= E / * = E ) / f;'-“|2p''(r)] dr, (2.62)

where is the non-spin-polarized functional. The correlation functional can

be obtained by interpolating the homogeneous electron gas case with different spin 

polarizations and it deirends on the charge density of both spins and on the magne-
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tizatioii m(r)

m(r) = ^nlpHr) - p^(r)]. (2.63)

The inagiiotic j:)olarizatiou is defined as

ar) = PBp{r)
(2.64)

ill such a way that 0 < ^ < 1. The correlation contribution is given by

Ec^‘^^[p,^] = / {e^(p(r))+ /(^(r))[ff(p(r))-e^^(p(r))]}p(r)dr, (2.65)

where /(^) is an interpolation function with /(O) = 0 and /(I) = 1, and the function­

als and are the correlation energy densities for the polarized and non-polarized 

system, respectively. The contribution of the exchange and correlation functionals to 

the Kohn-Shain potential corresponds to an effective inagnetie held. By calculating 

the derivative of the functional with respect to the s})in-polarization densities, two 

terms are obtained: the hrst is equal for both the polarization states while the sec­

ond, which depends on the magnetization, has the same absolute value but a ditterent 

sign according to the spin it is applied to. This last term introduecs some differences 

into the effective helds, producing an imbalance between opposite spin states, and 

generating the magnetic jiroperties of the system [136].

GGA

The generalized gradient approximation (GGA) [f37] can be considered as the nat­

ural evolution of the LDA where the exchange-correlation energy is a fnnctional of 

the local charge density and its own gradient

= y ex?^b(r),|Vp(r)|]p(r) dr. (2.66)

70



Theoretical Framework 2.5 Densitv Functional Theory

The GGA approxiiiiatioii has been develoi)ed in many different flavours [137 142] re­

taining the correct features of the LDA and combining them with the leading contri­

bution originating from the inhomogeneity of the system. The general improvements 

dne to the GGA (with its si)in-polarized extension, a — GGA) are mainly related to 

strnetnral j)roperties, binding energies and atomic energies. It also improves bond 

lengths and angles. Some transition metals, like bulk iron, are correctly described 

only within the GGA: GGA predicts the correct hcc ferromagnetic ground state while 

it is fee antiferromagnetic within the LDA.

LSDA+U

The LSDA-I-U scheme [143 145] has been devised to overcome some of the limita­

tions of the LDA/GGA, like the underestimation of the energy band gap and the 

inade(inate description of st rongly correlated materials. Transition-metal oxides and 

rare-earth componnds are characterized by well-localized d and / orbitals which lead 

to strong correlations effects; placing an electron where another electron is already 

localized will cost an additional energy U (Hubbard U) [146]. The correlation con­

tribution to the energy is subtracted from the LSDA functional and added again as 

a Hubbard-like on-site repulsion term

E,. srM+f/[p(r)] — A’LS'oa[p(r)] T Ejjubifmm'] ~ Edc[f^'^], (2.67)

where p(r) is the electronic density, is the occn[)ation number of the atomic

orbitals for the 7'^' “Hubbard” atom site I (the one with strongly correlated orbitals), 

= Y.m flL- £'L5/j/i[p(r)] is the LSDA energy functional, E,iub[.fmm'] i^he 

Hubbard corrected on-site correlation term while Eddf’^] is the LSDA correlation.
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The energy functional, according to Anisimov [143 145], can be written as

E — Eisda + E fla ria' 
I m J m'

u
-1) (2.68)

where and f’ — '^ma fm- Eq. (2.68) U is the Hubbard parameter

describing the on-site correlation. The last two terms within the scinare brackets are, 

respectively, £'//„{, and Edc. The orbital energy is obtained by taking the derivative 

of the above equation with respect to the occupation number

= -------
O fladfj^ *’”‘ 2 m } (2.69)

The LSDA orbital energy is shifted by —U/2 for the occupied orbitals and by U/2 

for the empty ones ^ 0). The energy difference between occupied and empty 

orbitals is given by the Hubbard parameter U which provides a correct description of 

the band gap of Mott-Hubbard insulators. By dehning the atomic orbital occupation 

as the projection of the occupied valence manifold over the corresponding atomic 

state

(2 70)
k.fi

the potential to be included within the Kohn-Sham equations reads

SDA+U
= v,^sda + Y.^(\- f!:)p‘:. (2.71)

1,711

where are generalized projection operators on the localized electron manifold 

[136]. If the occupation of an atomic orbital is larger than 1/2 then the Hubbard 

contribution to the potential is attractive and the electron becomes localized. In con­

trast if the occupation is smaller than 1/2, the electron tends to be delocalized. In 

practice the results are not substantially affected by the initial conditions because the
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occupation miinbers are recalculated during the self-consistent cycles. Fractional oc­

cupations are often related to energy levels around the Fermi surface for metallic 

systems. Fractional occupations can also be obtained for localized electronic states, 

originating from hybridization of d orbitals with neighbouring atoms.

This simple scheme has been {jroven successful in capturing the main mechanism 

that could lead to gap opening in strongly correlated materials. On the other side 

it neglects the exchange coupling and the possible dependence of U on the magnetic 

fpiantinn number m entering the model. Besides, the expression given in Eq.(2.68) 

is not invariant under rotation of the atomic orbital basis set used to define the 

occui)ancies f'". An improved scheme, proposed by Anisimov and coworkers, intro­

duced a basis set independent formulation of LSD A + U [147 149]. A plane-wave 

pscudopotential formulation of the LSDA -t- U is given in Ref. [150].

SIC

The self-interaction correction approximation (SIC) [135,151 154] is aimed at cor­

recting the spurious self-interaction between the charge of an electron and th(’ poten­

tial (Hartree and exchange-correlation) that itself generates. While in the Hartree- 

Fock method the self-interaction of occupied orbitals is exactly cancelled by the ex­

change energy, this does not happen in the LDA/GGA formalism where the exchange- 

correlation term is ai)proximated and an exact cancellation does not take place. 

Errors due to the self-interaction are usually small for materials with delocalized 

electrons while they can become quite significant for strongly correlated materials 

where electrons are localized. Several methods to remove the self-interaction have 

been proposed so far, starting from the work of Perdew and Zunger [135].

The psendo-SIG [151 154] approximation introduces the occui)ation numbers for 

the Koliii and Sham orbitals and it incorporates the self-interaction correction within 

the pseudopotential formalism. The amount of the correction is rescaled through the
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occupation numbers which are calculated self-consistently along with the evolution 

of the crystal structure relaxation procedure. In this manner localized orbitals, hy­

bridized orbitals and delocalized orbitals can be discriminated and the occupation 

numbers can provide information about valence band and conduction band states 

so that only the first ones are corrected. Electrons in the conduction band are usu­

ally delocalized and the related self-interaction is negligible or absent. Furthermore 

they are empty so that no correction should apply. The SIC potential, ap[)lied to 

norm-conserving pseudopotentials, is a non-local projection operator replacing the 

non-local part of the pseudopotential

^//.Yc[p. M ^HXC |p,m|-XilU)r^xc|Pn(T. (2.72)

where p and rn are the charge density and the magnetization of the crystal respec­

tively. The SIC term is expressed as a function of atomic (luantities, i = [(/;, n?;), /?,] 

is a cumulative index incorporating the angular momentum quantum numbers and 

the atomic coordinates. Tj are projection functions (e.g. si)herical harnionic(s), is 

the charge density of the (pseudo) atomic orbital 0;

(2.73)

pf are the orbital occupation numbers. The Bloch wave functions are i)roji 

on the density basis of the atomic orbitals pf through the potential Vijxcifh ^^A- 

For each i)rojection, the Bloch state is corrected by a (piantity corresj)onding to 

atomic SIC potential C/^Yclpf]- This way enables us to apply the self-interaction 

correction without introducing any dependence of the Kohn-Sham Hamiltonian on 

the Bloch wave functions, i.e. the theory remains representation independent. The 

occupation numbers p" can be fractional because of hybridization, degeneracy or 

spin-polarization effects and are self-consistently calculated. Unlike LSDA-I-U, the
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SIC method, does not reejuire a choice of which orbitals to correct, nor the value 

of the J and U parameters. The SIC approach has been used successfully for a 

large variety of systems. It improves the band gap and band alignment of wide- 

gap semiconductors, Mott-Hubbard insulators and of transition metal oxides (e.g. 

cuprates) [155 161]. Furthermore it correctly describes the dissociative behaviour of 

symmetric radicals such as the H2 molecule where LDA/GGA fail [162].

2.6 Electronic transport at the nanoscale

Nanoscale devices reejuire a theoretical description of electronic transport which goes 

beyond Ohm’s Law and accounts for quantum mechanical effects. Therefore, study­

ing the electron transport when the length scale of a device is comparable with the 

electron's mean free path is a very challenging problem, and it needs a fully (luan- 

tum mechanical description in terms of wave function scattering and transmission 

probabilities. Furthermore it has to account for the fact that the system is no longer 

in eciuilibrium. One of the most popular tools to investigate (luantum transport 

is the non-ecphlibrium Green’s function (NEGF) formalism [110,163 167] combined 

with Dh'T. The electronic transport calculations presented in this work are per­

formed within the NEGF framework implemented in the SMEAGOL code^ [110,111]. 

SMEAGOL uses the SIESTA code'^ [168] to generate the density matrix. In this the­

sis we will use the plane-wave VASP code"^ [169 173] for structural relaxation.

2.6.1 Toy model for transport

The key concei)ts of the ab initio electronic transport are described through a toy 

model, following the guidelines given by Datta [109]. A bottom-up approach is used

^weh.sito
'*wel)sito
'*w(>l)sito

www..smeagol. tr.d. ie
WWW. icmah. e.s/dmmis/leem/siesta/
www.vasp.at
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to explain the main princii)les related to ciuantuni transport, starting from a simple 

system such as a molecule. The first step is to define the conductance for such a 

small object by attaching it to two electrodes or leads across which a voltage can 

be api)lied. In order to model the current flow it is useful to draw an energy level 

diagram, where an electrochemical potential is defined for the left {/y/J and right 

lead (pr). The difference between the two electrochemical i)otentials can be kept 

constant by connecting the leads to an external battery. The molecule is meant to 

have only one energy level, e, in the region of interest. The maximum conductance 

Go for a one-level device is a fundamental quantity

Go = — = 12.9 Air' (2.74)
h

where e is the electron charge and h is the Planck’s constant. Let us consider a

Hr

system made of a molecule described by a single energy level, e, and connected 

to two metallic leads with electrochemical potentials respectively and fiR, with 

pn > pr as in Fig.2.2. The assumption that the leads are metallic implies that they 

have a continuous distribution of states. When there is no voltage applied between 

the left (source) and right (drain) lead, it is possible to draw an equilibrium energy 

level diagram. If the source and drain are coupled to the molecule, electrons will
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flow ill and out of the molecule bringing them all into eciiiilibriiim with a common 

electrochemical potential //,, in the same way as two material in eciuilibrium acejuire a 

common temperature T. At equilibrium, the average number of electrons occupying 

the energy level is given by the Fermi function

k{E-p) =
1

1 +e[(E-/P/A:BT]’
(2.75)

where /o = 1 for energies far below //, and /o = 0 for energies far above //,. If a voltage 

Vo is applied, it maintains the leads to their relative chemical potentials, separated 

by qVo

P'L - fiR = gVo, (2.76)

giving rise to two different Fermi distributions

1
1 + (A^E-io.)/kBT] ’ .fR{E-p) =

1
1 + (2.77)

The system cannot reach the equilibrium if Vo ^ 0 because the source keeps pumping 

electrons into the molecule, while the drain is pulling them out of it. The molecule 

is then forced into a non-equilibrium state resulting in a current flux. The average 

number of electrons at the steady state will be intermediate between fi{s) and 

fnie). The net fluxes 7/^ from the left lead into the molecule and In from the molecule 

to the right lead are proportional, respectively, to /l(£^) ~ A^e a-nti /r(^) ^^e

given by

In = ey [/a^) - ^e], Ir = e^lUe) - TV,],
iR I (2.78)

where 'yijh and 'yn/h can be interi)reted as the rates at which an electron, initially 

placed in the molecular level e, escapes to the left-hand side or right-hand side lead. 

At the steady state one has the condition 7/^ + 7/^ = 0 and the nnniber of electrons
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can be written as

N. = (2.79)
IL + IR

meaning tiiat the occupation of the molecular energy level £ is a weighted average 

of /l and fn. The steady-state current (per spin) is given by

h IL + IR
(2.80)

A current flowing from the left lead to the right lead requires the presence of states 

around E = //, and, of course, that fti^) 7^ /«(-)• Energy levels far away from the 

chemical potentials and do not contribute to the conduction process. If they 

are well below the chemical potentials of both the leads, then //,(e) ~ Ir{^) 1 ,

while if they are well above /l(^) /«(£) ~ 11-

The coupling of the molecular energy level with the leads causes the energy level 

to broaden b(!cause it acciuires a finite lifetime. The broadening can be taken into 

account by introducing a Lorentzian function centered around E = e, and whose 

integral over all energy is equal to one (the level has to contain one electron)

D.(E) =
(E - sy + (7/2)'

(2.81)

The broadening 7 is proportional to the strength of the coupling and it is given by 

7 = 'yr + lR- From a quantum mechanical point of view, the broadening can be seen 

as due to the uncertainty principle that requires the product of the lifetime of a state 

and its spread in energy to be equal to h [174]. The occupation of the broadened 

level can be written as

/
+00

dED,{E)
■00

N IlIl + IrJr

7
(2.82)

where we note that this simply generalizes Eq.(2.79). It is worthwhile to notice that
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the electron charge density n{E) can be written as

n.{E) = D,{E) life + IrJr 
7

(2.83)

The expression for the current now becomes

I = j [ _/„(£)! = £ [ °° dBT{E){h(E)-fR(E)],
h .1-00 iL + 7/f k J_^

(2.84)

where T{E) is defined as the transmission coefficient and it is given by

f{E) = 2TTD,iE) iLlRiLlR ^ __________________
IL + IR [E - ef + {-i/2f'

At low temperatures we can assnine that

(2.85)

f,{E)-ME) =
1 if pi> E > ph 

0 otherwise
(2.86)

so that the expression for the current is simplified and the integration is restricted 

to the energy window between the chemical potentials of the leads

/ = -/ dET{E). 
’ f rr

(2.87)

ff the density of states and hence the transmission is constant over the energy window 

[/bo/'/.] (small bias a[)proximation) then the current is given by

. e 7/,7k
(2.88)

fts maximnm valne is obtained when the rnolecnlar energy level coincides with the 

average of pi and //«, e = //.
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The previous equations can be recasted in terms of the single particle Green’s 

function G
1G{E) =

E — e + 27/2

The density of states and the electron charge density become

(2.89)

D,{E) = ^G{Eh{E)GHE) = z[G(E) - G^E)], 

n{E) = :i-G{E)r^{E)GHE),
(2.90)

where 7"' = 7”' + 7)^ and 7}"/^ = Similarly the current can be written as

j / dEG{E)-ii^{E)GHEhp[fiXE) - fRm- (2-91)
'* J —oc

2.6.2 Green’s function formalism

The one level model is important to explain the main concepts underlying the flow of 

current through a conductor, such as the position of the equilibrium electrochemical 

potential // relative to the density of states D{E), the broadening of the level 7 due 

to the coupling with the leads and the occupation N of the single energy level e. In 

a more general model the electronic structure of the leads has to be taken in account 

and the molecular single energy level is replaced with a scattering region whose details 

are described by a Hamiltonian matrix. The typical model of a naiioscale device 

consists two semi-infinite leads and a scattering region sandwiched between them as 

shown in Fig. 2.3. The Hamiltonian describing the leads and the scattering region 

is infinite. The presence of the scattering region breaks the translation symmetry 

and Bloch’s theorem cannot be applied (see section 3.3). The aim of using the 

non-equilibrium Green’s function formalism (NEGF) is that of mapping the infinite 

system onto a finite one so that it can be solved numerically. As shown in Fig.2.3, the 

entire device is partitioned into three distinct regions: the left lead, the scattering
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l^ft Ipad xSrattoring Region Right I^ad

h/l

1
//ks R

Downfold Leads 
into

Self-Energies

II
Figure 2.3: A schematic representation of an infinite nanodevice and its mapping onto an 

effective finite system. The left and right semi-infinite leads are described by the 
Hamiltonians Hi and Hk while Hg describes the scattering region identified 
with a dashed square. The Hamiltonian Hi and H^. as the system contains 
an infinite number of degrees of freedom, are replaced by the self-energies E/, 
and E/f interacting with the finite Hamiltonian Hg of the scattering region.

n'gion and the right lead. A certain ninnber of layers of the leads, called “principle 

layers”, are included in the scattering region in order to allow the charge density to 

relax to its bulk value. The scattering region described by the Hamiltonian matrix 

Hg and by the infinite Hamiltonian matrices Hi and Hg accounting for the leads 

can then be calculated independently. Hj^g and Hgg are matrices describing the 

interaction between the leads and the scattering region so that the full Hamiltonian,
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TL, tor the infinite system can be written as

/

n =

0 //_1 Ho Hi 0 . ...

0 H.i Ho Hj^s 0 . . .

0 Hsl Hs Hsr 0

0 Hrs Ho Hi {] .

0 H_i Ho Hi 0

V

(2.92)

where //_i i is the interaction between principle layers. Reformulating it in a compact 

way
^ Hl H,,s 0 ^

n Hsl Hs Hsr 

b Hrs Hr 

The overlap matrix S can be written in the same fashion
v

(2.93)

/

^ Sr Srs 0 ^

5 SsL Ss SsR 

0 S RS S R

(2.94)

The NEGF method enables us to generalize the equations written for the toy model 

to the more complicated electronic structure of real devices and to solve them with a 

self-consistent method. The electronic structure of the leads far from the interface is 

not influenced by that of the scattering region and then the semi-inhnite Hamiltonian 

matrices Hj and Hr can be replaced by self-energies [175].

The Green’s function G{E) introduced with E{i.(2.89) can be generalized to a 

more detailed Hamiltonian Hr, that takes in account all tlie degrees of freedom of
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the scattering region

G{E) = Hrnr,^o[{E + ip) - Hg- Sl - 1-1 (2.95)

where E/. and S/; are called self-energies and they are energy dependent matrices 

describing the electronic structure of the leads and their coupling to the scattering 

region. G{E) is the Green’s function associated to an effective Hamiltonian = 

Hs + E/^ + E/{, where the self-energies can be considered as external potentials. 

The self-energies are, in general, complex quantities with the result that the total 

number of electrons in the scattering region is not conserved. They also possess a 

non-vanishing real part accounting for a shift of the energy level of the scattering 

region. The pure complex parts Vi f( of the self-energies are a natural extension of 

the idea of transmission rate 7 and they are usually called broadening matrices

(2.96)

Idle two terminal current can then be defined as

/■+00

/ = - / dETr[G{E)VdE)G\E)Tn{E)][fiXE) - fniE)]. (2.97)
'' J—oc

This is an expression similar to the one derived for the toy model, where the total 

transmission coefficient is now defined as T{E) = Tr[Gr/^G^rH] [176].

The current can be calculated once the Hamiltonian for the scattering region and 

the self-energies are known. The exact form of the scattering region Hamiltonian Hs 

is usually not known. However, because of its functional dependence on the eh'ctronic 

structure, it can be calculated self-consistently. By assuming that Hs dep(Uids on 

the single particle density matrix p associated to the scattering region, then Hs{p) 

can be constructed by means of a single particle electronic structure method, such as
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DFT. The density matrix p can be obtained from the Green’s function G{E) of the 

scattering region by integrating over energy. The energy dependent density matrix 

n{E) is given by

n{E) = ~G{E)r^{E)G\E) - ^G{E)[Tt^{E)h{E)+rn{E)fH{E)]G^{E), (2.98)

and the density matrix is obtained by integration [177]

P=^ I dEG(E)lraE)f,rE) + rg{E)fK{E)]a*{E). (2.99)

Tile self-energies can be evaluated by considering the scattering region attached to 

only one lead. The Hamiltonian H for the system comprising the scattering region 

and the left-hand side lead is a semi-infinite matrix of the form

/
Hl

(2.100)

His Hs

The corresponding retarded Green’s function G = \E + ir} — H] * can be partitioned 

in blocks and it can be obtained by formal inversion of the Hamiltonian:

G =
(

\

Gl Gi^s 

Gsl Gs

\ (

\ HLS EI + Hs /

-1

(2.101)

The expression for Gs, the Green’s function for the scattering region attached to the 

left lead, can be extracted from the previous equation

[{E + trj)I-Hi^]Gi^s + HLsGs^O (2.102)

and

[El - Hs]Gs + hIsGls = 0 (2.103)
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Gi^s if’ then given by

where'

Gi,s —

gr. = \{E + iv)I-Hi 1-1

(2.104)

(2.105)

is the retarded Green’s fiinction for the semi-infinite left lead. The expression for the 

Green’s function of the scattering region can then be written as

Gs = [El - Hs - HlsgiMIS (2.106)

By comparing this equation with the eepiation (2.95) enables us to identify H]ggiMrs 

as the self-energy E/^ of the left lead. H[^s is in principle a N x N matrix where 

N is the number of the degrees of freedom in the scattering region, but in practice 

it accounts for the coupling of a limited number of atoms (surface atoms). The 

Green’s function gi^ can be identihed with the surface Green’s function of the left 

electrode because only surface atoms of the leads are relevant to calculate the product 

f^isgi^LS [177].

Finite Bias

The exjiression for the current given in equation (2.97) involves the integration of 

the transmission coefficient T{E) = rrlGT/^GlF/j'] over the bias window. A self- 

consistent evaluation of the potential drop can be obtained by considering the fact 

that the information about the charge density in the scattering region is now avail­

able. The bias can be introduced and the transmission coefficient T{E) ('an be 

rei)laced by the bias-dependent counterpart T{E, V). The potential droj) is ex{)ected 

to affect only the scattering region (which includes few layers of the leads) because 

the leads are metallic and, due to the strong electron screening, the electrical po­

tential relaxes ra|)idly to its bulk value away from the surface. The api)hcation of a
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finite bias over tlie leads causes a shifting of their chemical potentials resulting in a 

relative displacement of the entire bands structure of the leads. When the bias V is 

applied, the Hamiltonian of the left lead is shifted rigidly by +V/2 and the one of 

the right lead by —Vj2, so that

VHi, Hi, + 1/
Hn ^ Hu - (2.107)

In terms of self-energies this translates into the following expression

EiiE) ^ Ei,{E - ^); Eh{E) ^ Eu{E + ^). (2.108)

The rigid shift of the leads potential sets the boundary conditions, while a convenient 

choice of the scattering region ensures that those boundary conditions can be matched 

by an appropriate electrostatic calculation. These two ingredients are enough to 

determine the potential drop by solving the Poisson ecpiation for the scattering region. 

A conventional way to tackle the problem is to add a linear potential drop to the 

Hamiltonian of the scattering region

Hs{V) = Hs + fiVI (2.109)

and solve the eciuation with an iterative self-consistent procedure.

2.7 The SMEAGOL code

SMEAGOL (Spin and Molecular Electronics on Atomically Generated Orbital Land­

scape) [110, 111] is a fully spin-polarized code which combines the NEGF method 

with the DFT code SIESTA [168]. Since SIESTA is based on a non-orthogonal lo­

calized atomic orbital basis set [178] in conjunction with scalar relativistic Troullier- 

Martins pesudopotentials [179, 180] with non linear core corrections [181], it can
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haiiclle syKtems with a large number of degrees of freedom and it can be interfaced 

with SMEAGOL. SMEAGOL is an ideal tool for studying magneto-transport prob­

lem, inchiding non-collinear spin magnetism and it has been used very successfully 

to describe transport [)roperties of heterostructures [182], tunnel junctions [183,184], 

molecules [185, 186], DNA [157], point contacts [187], nanowires [188] and nan­

otubes [189] amongst others. SMEAGOL uses the Kohn-Sham Hamiltonian ob­

tained by SIESTA and the leads self-energies determined by a j)re-calculated bulk 

system. Then it constructs the effective NEGF Hamiltonian and generates the re­

tarded Green’s function for the scattering region.

2.8 Summary

This cha[)ter has reviewed the basic theoretical framework necessary for finding an 

a[)proxiniate solution to the quantum many-body problem of N interacting particles. 

The adiabatic approximation enabled us to separate the motion of nuclei, that can be 

treated in a classical way, from the motion of electrons, treated (luantistically. The 

two-body nature of the electron-electron interaction has been approximated with a 

single particle [)icture by making use of the mean-field approximation. Finally, the 

density fnnctional theory was applied to map the system of interacting fermions into 

a system of non-interacting particles that can be solved selfconsistently through the 

use of a computer.

A theoretical description of the main ideas behind the electronic quantum trans­

port has been given.

The application of this framework in the context of periodic systems is the subject 

of the next chapter.
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CHAPTER 3

Periodic Systems

3.1 Introduction

This chapter i)resents the general aspects involved in the practical, numerical problem 

of solving self-consistently the Kohii-Sham equations for an electronic system. The 

pseudoi)otential scheme which aims to simplify the description of the electron-nucleus 

interaction will be introduced in section 3.2. In section 3.3 the Bloch’s theorem 

is presented. It provides a very powerful tool for describing periodic systems. It 

allows to map the calculation of the wave functions for all the electrons in an infinite 

solid onto the calculation of the wave functions within the unit cell, called first 

Brillonin zone. The plane waves and atom centered basis sets are also described. The 

Brillouin zone needs to be sanii)led over a finite number of A>points. Schemers have 

been develope'd to reduce the number of the A:-points and find a convenient balance 

between computational demand and calculation accuracy. This is the subject of 

section 3.5. When dealing with surfaces or systems containing defects, the periodic

89



3.2 Pseudopotential Periodic Systems

supercell approach is very useful. It is described in section 3.6.

Most of the calculations performed in this thesis have been done with the i)lane- 

wave code VASP. The main algorithms implemented in VASP are presented in section 

3.7 together with the PAW pseudopotentials implemented in it.

The Kohn-Sham formulation of the density functional theory is an approximate 

scheme aimed to simplify the 3n-dimensional many-body problem into a tractable 

one. Within the DFT scheme the following eigenvalue problem need to be solved

p(r')
r - r'

(/)j(r) = ei(p^ir), (3.1)

where tlu' one-electron density is given by

P(r) = (3.2)
!=1

Here n is the number of electrons and /,; arc the occupation numbers corresponding to 

the one-electron eigenstates. The external potential V^xt accounts for the interaction 

between electrons and nuclei and is given by

N Zi (3.3)
/=i

and one of the approximations discussed in section 2.5.4 are taken for the exchange- 

correlation potential.

3.2 Pseudopotential

The electron-nucleus interaction can be further simplified by considering different 

“classes” of electrons to be treated in a different way. Valence electrons actively 

participate in the chemical bond and require an accurate description, while core
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electrons are tighly bonnd to the nuclei, do not participate in bonding and can be 

treated as frozen orbitals. There is, in principle, a third class of electrons, called semi- 

core electrons, which do not participate actively in bonding but feel the {jresence of 

the environment because their energy is close to the one of the valence electrons. 

Their wave functions polarize and they cannot be treated as frozen orbitals. The 

I)sendopotential is an effective potential constructed to replace the atomic all-electron 

potential such that core states are eliminated and the valence electrons are described 

by nodeless pseudo-wavefimctions. Only the chemically active valence electrons are 

dealt with explicitly, while the core electrons are “frozen”, i.e. they are considered 

together with the nuclei as rigid non-polarizable ion cores. The i)scndoi)otential 

approximation [190 197] is based on the consideration that the quantities of interest 

for studying physical systems are mainly related to valence properties, where the 

effects of the core electrons are negligible. The potential due to the nuclens can then 

be replaced with an effective nuclear potential of charge Zy = Z — Z^ore wlnn'c Zcore f'’ 

the c'harge associated to the core electrons. Core states are localized in the proximity 

of the nuclens where valence states oscillate in order to maintain orthogonality with 

th(^ core functions. The valence electrons experience a large kinetic energy in the 

core region, which roughly cancels the large potential energy from the Coulomb 

interaction. Hellmaim in 1935 replaced these effects by a pseudopotential, which 

is repulsive in the core region and therefore keeps the electrons out of the core 

(Panli rei)nlsion) [190,198,199]. The “real” wave functions are replaced by pseudo- 

wave functions (Fig.3.1) which are constructed in such a way to be nodeless in the 

core region, where the real wave functions have nodes induced by the orthogonality 

with core states, and to coincide with the all-electron wave functions in the valence 

region. The separation between these two regions is defined by a proper cutoff 

radius Cc (Fig.3.1). An important requirement for ])sendopotentiafs is to be norm- 

conserving: by construction the pseudopotential has to preserve tlie norm of the
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Figure 3.1: Schematic representation of the pseuciopotential aj)proxiniation. The wave 
function in the Coulomb potential of the nucleus (blue) is compared with the 
one in the pseudopotential (red). The real and the pseudo wave function and 
potentials match above a certain cutoff radius Vc-

wave function. This means that the pseudo-wave function conserves the electronic 

charge within the core region and let the pseudo-atom maintain the original scattering 

properties [200-202]. In order to correctly reproduce the wave function scattering 

properties of the all-electron system, the pseudopotential can be split into a local 

part T^"(r), describing the potential far away from the core, and a non-local part 

l/^^(r, r'), inside the core region, which depends on the angular momentum

V ^^(r)V^(r) = T^(r)^/>(r) + J dP (3.4)

The transferability is another requirements to keep into consideration when con­

structing pseudopotentials. This is the ability of the pseudopotential to repro-
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(luce the physical charateristics of the real systems in different chemical environ­

ments [181,203]. A complete treatment of the psendopotential formalism can be 

found here [190,194].

3.3 Bloch’s theorem

The investigation of the properties of crystalline solids by means of ab initio methods 

is based on the assumption that atoms belonging to a lattice are fixed in their equi­

librium j)ositions arranged in a periodic structure. This structure can be described 

by a small number of atoms (called t he basis), periodically replicated along one, two 

or three directions in space. Desi)ite the fact that the choice of the basis atoms is 

arbitrary, i.e. there are infinite ways of characterizing a crystalline -solid, there is a 

minimal choice, corresponding to what is called the Wigner-Seitz cell. The repetition 

of this cell along the crystallographic directions reproduces the entire symiiK'try of 

the crystal. This cell, also called the unit cell, together with the lattice vectors and 

the directions of replication, contains all the information needed to reproduce the 

periodic crystalline structure. The vectors used to generate the periodic lattice from 

the unit cell are called primitive vectors. The set of i)oints in space corresponding 

to integer combinations of the {)rimitive vectors leads to 32 possible lattices in three 

dimensions, called Bravais lattices. The combination of the translational symmetry 

embodied in the Bravais lattice with the point group symmetry of the basis gives 

rise to 230 space groups, which classify all known crystalline solids with translational 

symmetry. If we call the primitive vectors a\, 0,2, (I3, then the volume of the unit 

cell is given by il = a,] ■ (0,2 x a^) and the Wigner-Seitz cell is the one enclosing 

the smallest possible volume. The external potential V'(r), due to the interaction 

b('tween the ionic lattice and the electrons belonging to the crystal, has the same 

])eriodicity of the lattice

B(r + R) = V(r), (3.5)
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where R is a vector of the lattice and can be expressed as a linear conibination of 

primitive vectors. The electronic Hainiltonian, likewise the physical properties of the 

periodic system, share the same translation invariance of the lattice.

Bloch theorem [204] is a powerful tool for the study of periodic structures and 

connects the properties of the electrons in a periodic infinite system to those of the 

electrons in the unit cell, ft states that

the wave function of an electron in a periodic potential can be written as the prod­

uct of a function with the same periodicity of the potential, and a purely imaginary 

phase factor arising from the translational syinmctry.

The solutions of the Schrbdinger ecjuatioii for the crystalline lattice are called 

Bloch functions and represent the single particle eigenstates for electrons in a periodic 

potential V'"(r)

'0n.k(r) = (3.6)

where k is the crystal momentum of the electron, n is the band index for states 

corresponding to the same k and is a periodic function on the lattice so that

^ri,k(r T R) ^n,k(r). (3.7)

From Bloch’s theorem it also follows that

0„,k(r + R) = P^^'ihn.kir) (3.8)

This means that the Bloch wave functions gain a phase factor ecjual to when 

it is translated in real space by a vector R. There is a particular class of vectors k 

such that = 1, meaning that the wave function is in phase in all the periodic 

replicas of the unit cell. The set of three smallest independent vectors belonging to 

this class dehne the reciprocal lattice vectors, similarly to the primitive vectors in
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the real si^ace. The {)riiiiitive vectors in the reciprocal space, bj, are defined by tlie 

relation a; • bj = '2ndij. They are given by

bi = 2%
a2 X a:i

b^ = 27r
ag X ai

n
b.-? = 27r

ai X a-i

ii ■ (39)

'Idle primitive reciprocal lattice vectors define a cell in the reciprocal space of volume 

ilft = bi-(b2xb3) = (27r)^/f2 which is called the first Brillonin zone. Larger Brillonin 

zone (second, third...) can be constructed by considering the second or third shell of 

reciprocal lattice vectors. It is customary to fold all the wave vectors back to the first 

Brillonin zone by subtracting a reciprocal lattice vector. This scheme is called the 

reduced zone diagram. The ex[)rcssions of the periodic potential and the periodic 

function for the reciprocal lattice is obtained by a Fourier expansion (plane-wave 

expansion)

V"(r) = ^y(G)6-'^L
G

uu{r) = Y.P^^C{k + G),

(3.10)

(3.11)
G

where G is the vector that defines the periodicity of the reciprocal lattice and is 

related to R by

R • G = 27r?77. with rn E M. (3-12)

The single-electron orbital within the crystal can be then written as

Vh,,k(r) = ^e'("+^)'^a.k(G). (3.13)

The calcnlation of the wave functions for all the electrons in an infinite solid is 

mapped, through Bloch’s theorem, onto the calcnlation of the wave functions within 

the nnit cell at an inhnite nnniber of k points within the hrst Brillonin zone. From 

the practical point of view a finite nnniber of k vectors in the first Brillonin zone
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has to be considered, and the luunber is rednced in order to find a balance between 

numerical accuracy and coniputatioiial effort.

3.4 Basis set

Solving the electronic structure problem within DFT recjuires the choice of a math­

ematical representation for the one-electron orbitals. This rei)resentation is called 

basis set. A possibility is to represent the orbitals on a three-dimensional grid in real 

space, and to solve the partial differential equations using hnite differences methods, 

ffowever, more efficient alternatives are possible by making use of the si)ecific char­

acteristics of the system. Amongst the most popular basis set are the plane waves 

and the atom centered linear combination of atomic orbitals (LCAO). We limit our 

description to these two cases because they are the ones implemented in the simu­

lation codes we utilized for the calculations. In particular VWSP uses a plane waves 

basis set while a LCAO basis set is adopted by SIESTA and SMEAGOL.

3.4.1 Plane waves

Bloch’s theorem prescribes that the wave functions must be composed of a phase 

factor and a periodic part that verifies Uf;(r) = Ukir -H ai), with ai any lattice vector. 

This property can be used to introduce naturally the basis set of plane waves (PW) 

which are solutions of the Schrodinger equation in the presence of a constant exter­

nal potential. In general, any function in real space can be written as the Fourier 

transform of a function in reciprocal space

Uk (r) = J e*s GxA,.(g)dg, (3.14)

but due to the periodicity of Uk{r), the only allowed values of g are those that verify 

gig aj _ This implies that the g vectors are restricted precisely to the reciprocal

96



Periodic Systems 3.4 Basis set

lattice vectors G defined by Ecj. 3.12. The general expression of the wave fnnetion 

for the different eigenstates j becomes

<V) 1

^ ^ ^ G=0

i(k+G)r (3.15)

where the plane waves are suitably normalized in the snpercell so that PWs corre- 

spoiuling to different wave vectors, G 7^ G', are orthogonal.

In princii)lc, an infinite number of G vectors is required to represent the wave 

functions with infinite accuracy. In practice, however, the Fourier coefficients C'k(G) 

of the wave functions decrease with increasing |k + G|, so that the PW expansion can 

be effectively truncated at a finite number of terms. The expansion can be limited 

to all waves with kinetie energy lower than some energy cutoff Ecut so that

/p 2
-— k + G < Ecut • 2m

(3.16)

The value of Ecut lifis to be chosen case by case as the best compromise between 

numerical accuracy and comi)utational cost.

3.4.2 LCAO

In the (luantnm chemistry and molecular physics communities the most common 

apj)roach is to exj^and the one-electron wave functions in terms of atomic orbitals. 

Atomic orbitals are centered on the atomic nuclei, and can be represented in terms of 

basis functions with different functional forms. A suitable basis should be designed 

in order to provide a reasonable accuracy when a small number of basis functions 

are used and to allow a systematic improvement of its ciuality when the number of 

basis functions is incremented. Analytic functions such as Slater type orbitals or 

numerical atomic basis functions can be employed for the purpose. Tipically, the
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eigenstates are expanded over a finite number of atom centered basis functions

(3.17)

where ^^(r) is a generic basis function centered on atom I and a labels the tyj^e of 

basis functions, a usually corresponds to a set of indices a = {n,l, m.) that indi­

cate angular momentum {l,m) and radial orbital ri. Since the molecular electronic 

distribution is largely dominated by atomic distributions, a natural choice is to opti­

mize the basis functions to reproduce the atomic orbitals, and then export them to 

molecular systems or condensed phases. This scheme is called linear combination of 

atomic orbitals (LCAO). These atomic orbitals are the product of a radial function 

and a spherical armonic. For an atom / located at R/

‘/■'Ln(r) = (/>/„(r/)yh„(r/), (3.18)

where r/ = r — R/ and rj = |r/|.

The angular inomentum (labelled by l,m) may be arbitrarily large and, in general, 

there will be several orbitals (labelled by index n) with the same angular dependence, 

but different radial dependence, forming what is conventionally called a multiple-C 

basis. The first-C orbital is constructed as an eigenfunction of the i)seudo-atoni

within a hard wall spherical potential of radius Vc- Higher C-functions are constructed 

in the spirit of the “split valence” scheme. For instance the second-d function 

has the same tail as the but it changes to a simple polynomial behaviour inside

a “split radius” rf

r < rf

>pl'-(r) if r > rf,
(3.19)

where u; and hi are determined by imposing the continuity of value and slope at
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r-j. Polarization orbitals can also be included. They are constructed from a per­

turbed atomic Haniiltonian in order to account for the deformation induced by bond 

formation.

3.5 Brillouin zone sampling

For an infinite crystal the set of k points needed to describe the entire electronic 

structure forms a continimrn; for a real lattice the number of k points depends on 

the bomidary conditions and it is itroportional to the number of atoms in the lattice 

N^). For each k i)oint the number of occupied electronic states is finite so that, 

by using the Bloch’s theorem, the practical problem of evaluating the charge density 

is reduced to calculate a reasonably small number of Bloch wave function for a large 

number of k i)oints. Some i)hysical (|nantities, such as the density of states (DOS), are 

cakmlated by integration over the k points in the Brillouin zone (and over the band 

index n). PYoni a computational point of view, it would not be feasible to calculate 

these ejuantities over afl the k points and several methods have been developed to 

reduce this nnniber by taking in account the symmetry of the system [205 207]. 

Moreover, the wave function is not exjjected to change considerably between close 

k points. The k points sampling scheme is a very efficient one for the description 

of semiconductors and insulators. Metals have to be treated carefully due to the 

dispersion of bands around the Fermi surface and they require an accurate k point 

sampling. In order to overcome this problem, a very dense k-point mesh can be 

used and a fictitious electronic temperature can l)e introduced in order to smear the 

weight of the states around the Fermi surface thus avoiding fluctuations [208]. From 

a practical point of view, the k-i)oint mesh is taken by studying the convergence 

of (luantities of interest such as the total energy, for successively denser meshes till 

the recpiired accuracy is achieved. One of the most common scheme for k-mesh 

generation is the Monkhorst-Pack scheme [206]. The sauii)ling point are defined in
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the following manner

k(n, m, /) = nbi + 'mb2 + n, rn, I =
2r -q-1

2q r = 1,2,3, ...,g (3.20)

where bi are the reciprocal lattice vectors of the supercell and n, rn and I are the 

mesh sizes for each recii)rocal lattice vector direction. Therefore the total number 

of sampled k-points is n x m x 1. If, under the symmetries of the supercell, some 

of the points are found to be eciuivalent, then only the nonecpiivalent k-points are 

considered to save computational time.

3.6 Periodic supercell

The periodicity of the system may break due to the presence of defects or if the system 

is a molecule or a cluster. Then Bloch’s theorem cannot be applied. In the supercell 

aj)proach, an artificial periodicity is imposed on the simulation cell to better model 

the continuum properties of the system and the Bloch theorem may then be applied 

to the wave functions. This enable us to reproduce the correct physical and chemical 

properties of such a class of systems. In the case of a point defect the supercell 

consists of a portion of bulk material big enough to avoid interaction between the 

defect and its periodic images. The supercell approach applied to surfaces consists of 

adding a large enough vacuum region to simulate the potential drop into the vacuum 

and to avoid interaction between adjacent periodic images. In the case of molecules, 

the supercell approach is mostly related to the use of plane-waves formalism. The 

plane waves fill the entire space occuj)ied by the molecule and a surrounding vacuum 

region has to be accounted for in order to avoid interaction betwt;en neighbouring 

periodic images. In i)rinciple, a molecule can be described with a localized basis 

set where the periodic boundary conditions have been switched off, without making 

use of the supercell approach. The case of charged systems is generally treated by
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including a nnifornily sjjread compensating background charge with opposite sign.

3.7 VASP code

All the DFT calculations presented in this thesis were performed by using the Vienna 

Ab-Initio Simulation Package' (VASP) [169-173]. VASP is a complex package for ah 

imtio quantum-mechanical simulations using the pseudopotential formalism and a 

j)lane wave basis set. The interaction between ions and electrons is described by ultra- 

soft Vanderbilt pseudopotentials (US-PP) [209,210] or by the projector-augmented 

wave (PAW) method [211]. The combination of this scheme with efficient numeri­

cal methods leads to an efficient, robust and fast algorithm for evaluating the self- 

consistent solution of the Kohn-Sham problem. The implemented iterative matrix 

diagonalisation schemes (RMM-DISS, and blocked Davidson) are jirobably among 

the fastest schemes currently available for solving an eigenvalue problem and they 

are both implemented in VASP [212-214]. VASP includes a full featured symmetry 

algorithm, which automatically determines the symmetry of the system under study. 

The symmetry code is also used to set up a special grid of k-points, according to the 

Monkhorst Pack [206] scheme, which allows an efficient calculation of bulk materi­

als and symmetric clusters. The integration of the band-structure energy over the 

Brillouin zone is performed with the smearing or the tetrahedron methods [215,216]. 

For the tetrahedron method, Blbchl’s corrections, which remove the quadratic error 

of the linear tetrahedron method, can be used resulting in a fast convergence with 

respect to the number of special k-points [217]. In any plane wave program, the 

execution time scales as N'^ for some parts of the code, where N is the number of 

valence electrons in the system.

'website: Jtmnn.vasp.af,
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3.7.1 PAW pseudopotentials

The PAW scheme [211] combines the versatility of the linear augmented plane wave 

(LAPW) methods [218] with the formal simplicity of the {)lane-wave pseudojrotential 

approach. The typical strategy of any augmented plane waves methods is to split 

the wave function into two parts: a partial-wave expansion within a sphere cen­

tered on the atom and an enveloire function, expanded in plane waves, outside the 

sphere. The envelope function and the partial-wave expansions are matched with 

value and derivative at the si)here radius. The physically relevant wave functions 

in the Hilbert space of all the wave functions orthogonal to the core states, exhibit 

strong oscillations and are numerically difficult to treat. The main idea behind the 

PAW approach is to transform the wave functions of this Hilbert si)ace into a pseudo 

Hilbert space. A linear transformation maps the physical valence wave functions 

onto the fictitious ones in the pseudo space, drastically reducing the computational 

effort. The pseudo-space wave functions will be idcntihed with the envelope func­

tions of the linear method or the wave functions of the pseudopotential ajjproach. 

The physical quantities of interest can be obtained, knowing the transformation T, 

as the expectation value of some operator A from the pseudo-space wave functions 

directly after the transformation to the true all-electron wave functions ]'0)

(A) = {^p\A\^p) with (3.21)

or as the expectation value of a pseudo-space operator A in the Hilbert space of the 

pseudo-space wave functions

{A) = ('0]A|'0), with A = AT- (3.22)
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Tlio total energy ean be evaluated as a functional of the pseudo-space wave functions 

where the ground state of the pseudo-space wave functions can be obtained from

dE[Tm
di^Pl = e'Pr\^). (3.23)

The transformation T can be chosen in a way that it differs from the identity by a 

sum of local, atom-centered contributions, Tr, such that

r= 1 + (3.24)

where each local contribution Tr acts only over some augmentation region Ur en­

closing the atom. The all-cleetron and pseudo-space wave functions coincide outside 

the augmentation regions. The local terms Tr are defined for each augmentation 

region by specifying the target functions |0i) = (1 -I- T/v)|0j) orthogonal to the core 

states within Ur. The initial states |0j) are called pseudo-space partial waves, cor­

responding to the all-electron partial waves |(/)j). The partial waves |(/),) can be the 

solutions of the Schrodinger equation for the isolated atom which are orthogonalized 

to the core states. The index i refers to the atomic sites 7?,, the angular rnomen- 

tuni quantum numbers L = (/,m), and an index n to label different partial waves 

with the same angular momentum. The functions |0j) and \(f)i) have to be identical 

outside the augmentation region and have to form a complete set within it. Every 

pseudo-s[)ace wave function can be exi)anded into pseudo-space partial waves within 

Ur

(3.25)VP =

Since |0j) = T|0j) then

l'0) = 'Eli’i) = Y^Ci\(t)^), (3.26)
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with identical coefficients c,. The all-electron wave function can be then written as

\^) = \'^) - + 5^^102), (3.27)

where Cj have to be determined. Since the transformation T is linear, the coefficients 

Q must be linear functionals of the pseudo-space wave functions

Cl = {pilip), (3.28)

where {pj| are one for each pseudo-space partial wave and they are called {)rojector 

functions. Each projector must fulfill the condition

= l within iln ^ ^ 10^) (pj|0) = l^) ^ {pi \4^j) — ^ij ■

(3.29)

The linear transformation between the valence wave functions and the fictitious 

pseudo-space wave functions is hnally given by

T=l+ J^(|0z) - \^i)){Pi (3.30)

The all-electron wave functions can be obtained from the i)sendo-space wave function

by

1^) = 1^) + ~ |0^))(Jh|'0)• (3-31)

This transformation requires the knowledge of three quantities: (i) the all-electrons 

jjartial waves |0j), obtained from the Schrbdinger equation; (ii) one pseudo-si)ace 

partial wave |0j) for each |0j), where the two must coincide outside some augmen­

tation region; (iii) one \pi) for each |0j) within the augmentation region, satisfying 

The partial waves are functions defined on a radial grid, multiplied 

with spherical harmonics, while the pseudo-space wave functions are expanded into
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plane waves. The projectors are calculated as radial functions times spherical har­

monics and then expanded in plane waves. The number of plane waves used in the 

expansion is set by the so called cut-off energy. A cut-off energy of 400 eV is enough, 

in most cases, to gnarantee the convergence of the energy functional.

3.8 Summary

This chai)ter has reviewed some practical schemes aimed to simplify the numerical 

self-consistent solution of the Kolm-Sham equations for an electronic system. The 

concept of psendoi)otential has been introduced to reduce the com[)utational demand 

when calculating the electron-nucleus interaction. The Bloch’s theorem {)rovides a 

I)owerful tool for describing periodic systems. The sui)ercell approach enabled us to 

treat systems with a reduced periodicity, e.g. due to the i)resence of defects. A brief 

overview of the VAST code has also been given. These tools are normaly included 

in the most popular ah-initio simulation codes and have been usexl to perform the 

calculations presented in the subsequent chapters.
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CHAPTER 4

Single Hydrogen atom on Si(lOO) surface; local approach

4.1 Introduction

The bonding eonfignration and the charge state of a single Hydrogen atom de- 

I)osited on a bare Si(10())-r(4 x 2) surface are investigated by means of density 

functional theory simnlations and compared to cryogenic scanning tunneling mi­

croscopy/spectroscopy (STM/STS) experiments. In this chapter I will describe the 

local approach meaning that I will consider only the informations that can be ob­

tained when the STM tip is at a spatial position corresponding to the reacted dimer 

and its surroundings. In the following chapter the non-local api)roach will be de­

scribed, where the ex-sitn informations are used to characterize the bonding and 

charging state of the adsorbed Hydrogen.

Two ad.sorption configurations for the H atom on the Si surface are considered. 

These are shown in fig. 4.1. The H-bottom configuration (Hb) consists of the H 

atom sitting on the bottom atom of the Si surface dimer, while in the H-top one
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(a) H BOTTOM (b) H TOP

Figure 4.1: Schematic top view representation (XY plane) of the Hb (a) and Ht (b) sn- 
percell configurations. The snpercell is 10 dimers long along the X direction. 
Yellow and green atoms are, respectively the top and the bottom atom of the 
surface Si dimers while the red color is used for the H atom.

9
p

(a) Hb coiihguiation (b) H r configuiiition

Figure 4.2: Perspective view of a balls-aiid-sticks model of the reacted surface Si dimer 
in the Hb (a) and Hr (b) configurations. The yellow and green atoms are, 
respectively, the Si top and bottom atom of the surface dimer. The red atom 
is the deposited H.

(H'l') the H atom is sitting on the top atom of the dimer. These two configurations 

are studied for the mido])ed case (Section 4.2) and for heavily p- and n-doped systems 

(Section 4.3). First principles calculations are performed with the density functional 

theory VASP package [169 T73], using projected augmented wave (PAW) pseudopo­

tentials [211] together with the generalized gradient approximation (GGA-PBE) to 

the exchange and correlation functional [137,139]. The electronic properties of the 

c(4x2) reconstimcted surface are calculated with a supercell apporach and periodic 

boundary conditions. The supercell contains 441 atoms arranged over 9 Si layers, one 

H passivating layer at the bottom of the cell and a 12 A vacuum region at the top in 

order to avoid interaction between periodic images. The supercell is 15.132 A wide 

in the direction perpendicular to the dimer rows and it extends 37.83 A along the
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(iirection of the dimer rows. This corresi)onds to five repeated {)rimitive unit cells of 

the r(4x2) reconstructed surface (each of which has a length of 7.566 A and contains 

88 atoms) along the dimer rows resulting in two rows of 10 alternating dimers h)rming 

the topmost surface layer (see Fig. 4.1). The buckling angle jd is defined as the angle 

formed between the dimer bond direction and the plane parallel to the surface [or­

thogonal to the (100) direction]. For the bare surface /d=19.7 degrees (see table 4.1). 

The geometry optimization of the supercell was performed with a force tolerance of 

0.02 eV/A. The number of Si layers in the supercell was chosen by considering the 

displacement of the atoms from their original bulk positions after a full geometry 

optimization. We performed some test by using two supercells containing 9 and 11 

Si layers, respectively. In both cases the displacement of the atoms belonging to the 

bottom Si layer with respect to the bnlk was negligible and the band structure and 

DOS of the two systems almost indistinguishable. This justifies the choice of using 

the 9 layers supercell which reduces the computational effort. All the calculations 

were carried out by keeping fixed the positions of the bottom Si layer and the H 

passivating layer. The cutoff radius for the plane-waves expansion of the basis set is 

fixed to 500 eV. This value was determined by testing the convergence of the total 

energy with res])ect to the cutoff radius to be lower than 10 rneV. A further increase 

in the cutoff radius does not improve significantly the precision of the calculations. 

The same method was used to estimate the optimal k-niesh. A 3 x 3 x 1 k-point mesh 

was used to span the Brillouin zone. It provides the required accuracy in the total 

energy and it enables us to calculate the DOS with the tetrahedron method [217], 

one of the most accurate schemes available.

Doping is introduced by adding (or subtracting) one unit charge to the supercell 

and by compensating the extra charge with a neutralizing uniform positive (or nega­

tive) background. This is a standard procedure in charged periodic systems studied 

with the supercell approach. The total energy of a charged supercell replicated by
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periodic boundary coiititions will diverge if no neutralizing background is applied. 

Another j)roblein that needs to be addressed is the Coulomb interaction between the 

defect and its periodic replicas. In general, for bulk systems, this spurious Coulomb 

interaction can be corrected by adding a term given by {e‘^q^a)/{Le), where q is the 

net charge of the system, a is the Madelung constant of a point charge q placed in 

a homogenous background charge —q and e is the dielectric constant of the system. 

In the case of periodic charged slabs, however, the total energy cannot be corrected 

since a charged slab results in a growing electrostatic potential with the distance 

from the .slab. As a result of the interaction between the charged slab and the com­

pensating background, the total energy depends linearly on the width of the vacuum 

region. In order to be sure that the amount of vacuum does not affect the results, 

we performed total energy calculations for the two H configurations with a different 

amount of vacuum in the direction perpendicular to the surface. The calculations, 

executed with an amount of vacuum ranging from 10 A to 15 A, show very small 

variations in the total energy differcence (within 10%), confirming the reliability of 

the result.s.

The topographic images were obtained by simulating a constant-current (variable 

height) scanning mode within the Tersoff-Haniann approximation [70,70] following a 

similar procedure to the one described in Ref. [104]. In practice the local DOS (from 

which the current is obtained), calculated by integration over an energy range around 

the Fermi level Ep, is evaluated at a variable distance from the surface in order to take 

in account the surface corrugation due to the adsorbed species. The average distance 

between the tip and the surface can be determined by choosing a convenient DOS 

isosurface. The isosurface can be selected by setting an isovalue that, in our case, 

corresponds to a distance of about 4 A between the tij) and the surface, a reasonable 

value considering the general DFT trend of overestimating the wavefunction decay in 

vacuum. The procedure we follow to calculate the STM topographies and STS maps.
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i.e. tlie constant enrrent mode, enables ns to compare directly onr results with the 

experiments. The DOS values are mapi)ed on a greyscale (where the black and white 

colors correspond to no DOS and high DOS, respectively) and the final sinmlated 

topographic image is then elaborated with an image manipulation software to apply 

a ganssian blur filter.

The simulated color DOS plots (LDOS) are obtained by assigning a coloured 

pixel to each atom position and for each energy value. The colour scale is set by the 

maximum (dark red) and minimum (bine) value of the DOS. The pixel is represented 

by a ganssian along the energy axis with a broadening of 0.01 cV. The broadening 

along the X axis is antomatically apjdied by the image visualization software and it 

is a common interpolating procedure. These parameters do not affect the features 

of the plots from a qualitative point of view.

I will refer to the first row of the surface as the one containing the reacted dimer 

while the second row is the bare one. In all the figures of this chapter I will use a 

color code for the balls-and-sticks supercell models where the yellow and green balls 

re[)resent, respectively, the top and the bottom atoms of the surface Si dimers. The 

red color is used for the H atom on the surface. When a H atom is placed over 

the dimer, it passivates one of the dangling bonds of the surface Si dimer, breaking 

the Si-Si dimer yr-bond and leaving an isolated dangling bond on the other side of 

the dimer. I will refer to the isolated dangling bond as the single dangling bond 

(SDB) [51]. The SDB is depicted in the balls-and-sticks models as a bine protrusion 

[e.g. in Fig. 4.3(a)] where the small black balls are the electrons occupying it. The 

adsorption of the H atom can be i)erfornied by using the tip of a STM microscope: 

the STM probe can be operated to pick up the H atom from some region of the 

sani[)le and then release it at the desired specific {yosition with atomic precision. The 

details of the electronic states originating from the SDB depend on the configuration 

of the H, namely Hb and H p, the doping of the sample and the surface strain due to
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a change in tlie bond configuration of neighbouring dimers.

Ratfny et al. studied the chemisorption of a single H atom on the n-type Si(100) 

surface by means of first principles DFT calculations and STM microscopy [219]. 

They used the term “hemihydride” to refer to the reacted dimer containing the 

adsorbed H. Their results were obtained in different experimental conditions and 

calculations setup with respect to our settings. The measurements shown in Ref. [219] 

were taken at room temperature and refer to 'u-doped sam{)les with a resistivity of 1 

fkni. Our measurements were taken at 77 K and the n-doped samples we used have a 

resistivity which is three order of magnitude smaller. Radny et al. solely made use of 

STM topographic images, corroborated by first-principles DFT calculations while we 

utilized also STS spectroscopic images to address the position of the dangling bond 

state with respect to the Fermi level and its charging state. The comi)utational 

setting they employed for the DFT simulations included a 4x4 su{)ercell which is 

much smaller than the 10x4 suj)ercell we used. By taking in account the periodic 

boundary conditions, it implies a much higher H coverage of the surface, resembling 

an array of H atoms more than an isolated ff. They performed additional cakmlations 

on 2x4, 2x6 and 6x6 supercells but these supercell are not all commensurate to 

reproduce the c(4x2) reconstruction we focused on. In the work of Radny et ai, 4 

to 6 layers of Si atoms, in the direction perpendicular to the surface, were used to 

simulate the slab. We used 9 layers to better take in account the relaxation of the 

surface. They investigated two H configurations. The HH2 that corresponds to the 

one we called H p [see Fig. 4.1(b)], and the HHl, corresponding to the one we called 

H3DIM [see Fig. 4.15(b)] that was never observed experimentally. Surprisingly, the 

configuration we named ffe [see Fig. 4.1(a)] was not taken in consideration in their 

study.

Reusch et al. presented a STM study of the occupation of a single dangling bond 

on a Si(l()0) surface under n- and p-doping conditions [220]. While the resistivity
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of the /xiopod samples was very similar to tlie one of our samples 12cm),

the resistivity of their n-doped samples was three order of magnitude bigger. STM 

toi)ographic images (some are the same as in Ref. [219]!), were compared with DFT 

cluster calculations. No STS spectroscopic images were used. The cluster used for the 

simulation is equivalent to a 5x2 supercell where H atoms passivate all the dangling 

bonds, except for the surface ones. For size and symmetry reason this supercell 

cannot rejmoduce the c(4x2) reconstruction of the Si(l()()) surface. A comparison 

between our results ami the ones obtained from Radny et al. and Reusch et al. will 

be pointed out throughout the text.

4.2 Undoped system

V,v’
(a) Hb configuration

a DELOCALIZED
ELECTRON

(b) Ht configuration

Figure 4.3: Schematic representation of the reacted dimer for the nndoped Hb and H r 
configurations. The electron coming from the SDB site is localizr'd at the 
reacted dimer site in the case of the Hb configuration (a), while it is delocalized 
on the surface for the Ht one (b).

Total energy calculations show the Hb configuration to be lower in energy by 26 

meV with respect to the Hr one (see table 4.1). Reusch et al. found a comjtarable 

total energy for a similar configuration [220] and a similar trend was also found 

for Ge(()()l) [221]. The band structure plots show two different scenarios: the Hb 

configuration has a spin-polarized ground state with a localized spin split state at 

the SDB site. The si)in up state is partially filled with one electron and it lies around 

0.4 eV under the Fermi level Ey as shown in Fig. 4.4(a) (black filled circles). The
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spin down state is empty and it lies around 0.1 eV above the Fermi level (blue filled 

circles in Fig. 4.4(a)). The spin polarized bands coming from the SDB are almost 

dispersionless and this gives a clear indication that such a state is mostly localized 

at the SDB site and contains only one electron.

In contrast, the ground state of the Ht configuration is not spin [polarized and 

the band structure shows a band crossing the Fermi level (black filled circles in 

Fig. 4.4(b)). This band is dispersed along the F — J (and K — J') direction, which is 

the direction along the dimer rows, meaning that the electron originating from the 

SDB state is delocalized over the neighbouring dimers while the dispersion is negligi­

ble along the direction perpendicular to the dimers row. This result is iu agreement 

with the band .structure calculated by Radny et al. for the HH2 conhguration (see 

Ref. [219]).

K-poinl K-poini

(a) Hb configuration (b) Ht configuration

Figure 4.4: Band structure of the Hb (a) and H'r (b) configurations, (a): the filled circles 
bands are the majority (black) and minority (blue) spin polarized states related 
to the single dangling bond, which is partially occupied by one electron, (b): 
the filled circles band is due to the electron coming from the dangling bond 
state which is delocalized on the surface.

The simulated local density of states (LDOS) of the first row of the Hb configu­

ration, for the majority and minority sj)in states, are shown in Fig. 4.5. The DOS 

is plotted as a function of position and energy (in eV), where the position has to 

be considered along the dimers row direction. The plots use a color scale with blue
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nieaniiig low DOS and red corresponding to the niaxinnnn DOS. The nnd('rlying 

balls-and-stieks model indicates the j)osition of the H atom and, conseqnently, of the 

SDB. Due to the periodic boundary conditions used here, the system is equivalent 

to a ~40 A long (luantum well with the reacted dimers acting as potential barriers. 

The local DOS shows a partially filled spin up level lying 0.4 eV below Ep and an 

empty spin down level at around 0.1 eV above Ey. Both these levels are mostly 

localized at the site facing the H atom, as it can be seen from the DOS i)rojected on 

the atomic sites (PDOS)(see Fig. 4.6). No evident band bending is present at the 

SDB site, suggesting that this keeps its neutral charging (one electron). The peak m 

the LDOS located at around 0.15 eV and present for both the spin channels, is the 

first (juantnm well standing wave state which originates from our periodic boundary 

conditions. In the minority si)in channel this is partially hybridized with the state 

localized at the SDB site. The buckling angle P of the reacted dimer is around 0 de­

grees suggesting a bonding configuration of mixed symmetry, intermediate between 

sp^ and .s’/P, in agreement with the partial occupation of the SDB site [222].

5 ... S , 8 . »V.-«

(a) Majority sj)in LDOS (b) Minority spin LDOS

Figure 4.5; Local density of states (LDOS) for the majority (a) and minority (b) spin states 
of the Hb configuration (first row). According to the color scale, the blue color 
corresponds to zero DOS and the red color to a value of the DOS higher than 
2 states/eV per snpercell. a) The red spot located at around 0.4 eV under the 
Fermi level at a spatial position corresponding to the H site is associated to 
the SDB spin up state, which is singly occupied, b) The minority (spin down) 
state is empty and it lies around 0.1 eV above Ep.

The local DOS for the Hi’ configuration is shown in Fig. 4.7(a). The state as-

115



4.2 Undoped system Single Hydrogen atom on Si(lOO) surface: local approach
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Figure 4.6: Projected density of states (PDOS) for the majority (a) and minority (b) spin 
states of the SDB in the Hr configuration. Botli states are mainly localized at 
the SDB site and they correspond to the filled circle bands shown in Fig. 4.4(a). 
(a): Partially filled spin np state; (b): empty spin down state.
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(a) Ht configuration (c) Top view PDOS

Figure 4.7; (a): LDOS of the first row of the Hi’ configuration. The extended feature 
across the Fermi level indicates that the electron coming from the SDB state 
is delocalized on the surface resulting in a positive charging at the SDB site 
and a consequent downward band bending in the valence band. According to 
the color scale, the blue color corresponds to zero DOS and the red color to a 
valne of the DOS higher than 2 states/eV per supercell. The side view (b) and 
top view (c) of the PDOS shows the SDB state to be mostly delocalized over 
the dimers row so that the SDB state can be considered as empty.

sociated to the SDB is now' located across the Fermi energy and it appears more 

delocalized than the Hp case, as can also be seen from the PDOS [Figs. 4.7(b) 

and 4.7(c)]. A downward band bending is noticeable around the SDB site, suggest­

ing that the dangling bond site may be positively charged. This confirms the idea 

that the electron coming from the SDB site is delocalized on the surface resulting 

in a locally positive charging of the SDB site (less than one electron). The buckling 

angle /? of the reacted dimer is around 10 degrees (see table 4.1) suggesting that the 

bonding configuration of the Si atom hosting the dangling bond is sp^-like and the
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Config Energy (meV) H Dimer (deg) Mag. Mom.
bare surface - 19.7 0

Hb 0 -0.106 0.95
Hr +26 10.167 0

H/i -l-le 0 7.896 0
Hy Tie + 136 2.279 0.79
H/i -le 0 -10.612 0
Hr -le -111 11.198 0

Table 4.1: Total energy differences, buckling angles and magnetic moments for different 
configurations. The total energies are always taken with respect to the energy 
of the Hb configuration.

dangling bond is empty [222]. These results are in good agreement with the “HH2” 

antiparallel configuration described by Radny et al., who found a buckling angle of 

9.() degrees [219].

4.3 Effect of doping

The doped systems are obtained by adding or subtracting an extra electron to the 

sni)ercell used in the calculations. The snpercell has the same size of the one described 

in the introduction. It consists of 441 atoms where the topmost Si layer forms 10 

dimers along the dimer row direction. This translates to a nominal doping of the 

order of 10^” cm“'^. A full relaxation was performed after adding the extra charge 

while the position of the bottom Si layer and the passivating H layer were kej)! fixed.

The results will be compared to experimental STM/STS data, performed using 

a Createc cryogenic system described elsewhere [66]. Both n-type (As, 0.001-0.005 

ficni) and p-type (B, 0.001-0.005 flcni) Si(lOO) samples used are mounted on a triple 

sample holder containing also a Pt surface for tip j)reparation and recovery. In-situ 

Pt-inked tungsten probe [223] is used in the STM. Snb-monolayer atomic hydrogen 

coverage is dej^osited on the clean surface at 200 K via a heated tungsten cai)illary. 

The H atoms are manipulated by transferring them on and from the STM probe
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applying high biases (5-6V) with different polarities. The spectroscopic results are 

obtained through variable-height scanning tunneling spectroscopy (VH-STS) [66] at 

77 K.

4.3.1 n-doping

+ DELOCALIZED 
ELECTRON ^

sit
(a) ;t-doped He (b) 7i-dopcd H p

Figure 4.8; Schematic re{uesentation of the reacted dimer for the ri-doped Hp and H i’ 
configurations. The SDB site is localized at the reacted dimer site and doubly 
occupied in the case of the Up configuration (a). The Hr one (b) shows a 
complex scenario: one electron is delocalized on the surface as in the neutral 
case while the electron coming from the doping is localized at the SDB site.

The experimental STM topographs of both hlled-state and empty-state for the Hp 

and H'l’ conhgurations are now compared with the simulated one. The experimental 

images are recorded at a constant current of 20 pA and sample bias of +0.5 V and 

-1.0 V for the empty and hlled states, resi)ectively. The corresponding simulated 

topographies are calculated with sample biases of +0.5 V and -0.5 V. By observing 

the experimental topographs, the reacted site can be identihed as a bright spot 

assosciatc'd with the SDB in the filled-states images and its exact position within the 

dimer can be determined by comparing it with the unreacted region of the surface. 

In an unreacted region of the surface, bottom atoms of the dimers appear as bright 

spots in the empty-states images, while top atoms appear as bright spots in the 

filled-states images [224,225]. This let us map the location of lower and upper atoms 

of the tilt ed Si dimers.

The filled-state panel in Fig. 4.9(a) depicts the uirper unreacted dimer atoms
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FILLED STATES (VB) EMPTY STATES (CB)

(a) n-doped EXP (-1.0 V) (b) n-doped EXP (-1-0.5 V)

(c) n-doped He (-0.5 V) (d) ?i-doped Hb (-(-0.5 V)

(c) n-doped Ht (-0.5 V) (f) n-dopcd Ht (-I-O.S V)

Figure 4.9: Top panels (a) and (b) are the experimental topographic images for filled and 
empty states aecjnired for a sample bias of -1.0 V and +0.5 V respectively. 
Panels (c) and (d) are the corresponding simulated topographs for the n-doptxl 
Hb configuration. Panels (e) and (f) are the simulated topographs for the 77- 
doped H'p configuration. The simnlated data are referred to the reacted row 
(T^^ row) of the 10x4 snpercell and are obtained by considering a bias of -0.5 V 
and 0.5 V for filled and empy states, respectively. Bright areas correspond to 
a high DOS, while dark areas to low or null DOS. Only the Hp images match 
the experimental data.

aiicl shows that the maximum associated with the SDB at the reacted dimer site is 

in j)hase with the dimer tilting either side of the reacted dimer. The image differs 

from that of the bare surface only by the increased brightness of the reacted dimer. 

The empty-states panel in Fig. 4.9(b) depicts the bottom atom of the unreacted 

dimers and the reacted site appears as an M-shaped dark feature in which the SDB 

maximum is out of phase with the tilting pattern of the lower dimer atoms. A 

comparison between Fig. 4.9(a) and 4.9(b) reveals the same pattern of dimer lilting 

so that a change in the tunneling polarity does not induce this i)atteru to flip. From
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the previous consideration, it can be deduced that the SDB sits on the top atom of 

the dimer while the H atom is on the bottom atom of the dimer. This configuration 

was experimentally found to be the most abundant on the surface by at least one 

order of magnitude, and it is named as the majority species.

The experimental images are compared with the simulated ones for the Hb and 

H'l' configurations, shown in Fig. 4.9. Only Hb matches experiments as it can be 

noticed by comparing Fig. 4.9(c) with Fig. 4.9(a) for the hlled-states and Fig. 4.9(d) 

with 4.9(b) for the empty ones. This let us establish that the majority species iden­

tified in the experiments is the Hb configuration [226]. The ground state of the Hb

w • w • ^ ' V

w - * • V e

* w *
e V #

i 4^

(b) HOMO PDOS

• V a V 0 W
* W * i, ** ^ A

w Q V 8 w a m

K-poini

(a) 7i-dopc'd Hb configuration (c) LUMO PDOS

Figure 4.10: Calculated band structure (a) for the n-doped Hb coiihguratioii. The flat 
baud at around 0.25 eV below Ey (filled dots) is localized at the SDB site and 
it is doubly occupied, as confinued by the PDOS in (b). Panel (c) shows the 
first iiodeless quantum well state, due to the periodic boundary conditions. 
The maximum amplitude of the PDOS is located at the farthest site (within 
the unit cell) from the reacted dimer which acts as confining barrier.

configuration is not spin polarized and the calculated band structure [Fig. 4.10(a)], 

shows a single flat band at around 0.25 eV below Ey. The PDOS relative to the 

same band indicates that such a state is mainly localized at the SDB site, suggesting 

it is doubly occupied [Fig. 4.10(b)]. The simulated LDOS [see Fig. 4.11(a)] is in a 

good agreement with the experimental one [Fig. 4.11(b)]. The experimental peak 

corning from the SDB is located at around 0.3 eV below Ey. Both the images show
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a ui)warcl hand handing cine to the extra charge present at the SDB site, which is 

negligihle for the nndoped case [conij)are Fig. 4.11(a) with Fig. 4.5]. Note that the 

calculated hand curvature is more marked then expected dne to periodic homidary 

conditions. Another effect of the boundary conditions is the fact that the simulated 

cell is equivalent to a quantum well, with the reacted dimers acting as {)otential 

harriers. The state at around 0.1 eV above Ep in Fig. 4.11(a) is the first ciuantum 

well state and the corresponding PDOS has the shape of a nodeless standing wave 

[Fig. 4.10(c)]. This explains why such a state is not present in the experimental 

LDOS of Fig. 4.11(b).

The effect of the electrostatic repulsion due to the extra charge located at the 

SDB site and the change in the hybridization configuration of the dimer are reflected 

in the structural properties of the system. The dimer bond length increases from 

2.397 A to 2.453 A and the buckling angle P goes from almost 0 to around 8 degrees 

(see Tab. 4.1 for structural data). When going from single to double occupation the 

Si atom hosting the dangling bond changes his bonding configuration from a mixed 

s]P-.sp'^ hybridization to a prevalent sp'^ character [222],

Experimental topographs for the minority species (appearing with a frequency 

smaller then 1%) are shown in Fig. 4.12. The filled-states data for the minority 

species [Fig. 4.12(a)] looks identical to that of the majority species of Fig. 4.9(c). 

However, the empty-states image [Fig. 4.12(b)] shows that the SDB is in phase with 

the pattern of adjac^ent tilted dimers. The bright spot at the reacted dimer in the 

empty-states is sitting on the bottom atom of the dimer, meaning that H is on the 

top atom of the dimer. A com{)arison of the unreacted dimers on either side of the 

minority site reveals a change in the pattern of dimer tilting, so that a change in 

the tunneling bias polarity causes the entire dimer row to flip. As a consecpience, 

the experimental rlata for the minority species match the simulated Hb configuration 

for the hlled-states and the Hp one for the empty-states [226]. The same dimer-row
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(a) n-doped He configuration (b) EXP n-type majority specie

Figure 4.11: Simulated (a) and experimental (b) LDOS for the n-doped He configuration.
4'he state located at around 0.25 eV below the Fermi level is due to the SDB 
and it is doubly occupied. The extra charge at the SDB site causes the upward 
band banding at top of the valence band. The state lying at aronnd 0.1 eV 
above itp, not present in the experimental data, is the first quantum well state 
and it is introduced in the calculation by the periodic boundary conditions. 
According to the color scale, the blue color corresponds to zero DOS (10“^ 
states/eV in the experiment) and the red color to a value of the DOS higher 
than 20 states/eV per snpercell (0.1 states/eV in the experiment).

Hipping event was previously reported in the works of Reusch et al. [220] and Radny 

et al. [219]. In contrast to the results shown here, their ineasurenients were performed 

under RT STM imaging conditions and referred to low-doped Si(()()l) samples.

FILLED STATES (VB) EMPTY STATES (CB)

(a) EXP /i-doped minority specie (-1.0 V) (b) EXP 'u-doped minority specie (-1-0.5 V)

Figure 4.12: Experimental topographic images for hlled (a) and empty (b) states of the 
minority species. The filled-states image matches the Hp configuration while 
the empty-states one matches the Ht one (compare with Fig. 4.9). The change 
of the bias polarity is causing the entire dimer row to Hip.

The n-doped H j' conHguration shows a more complex scenario compared to the 

previous cases. The extra electron introduced by the doping gives rise to a spin 

polarized state located at the SDB site. The spin up and spin down levels are visible 

in the calculated band structure plot in Fig. 4.13, respectively as black filled and blue
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filled circles. The s])in up band is located at around 0.35 eV below the Fermi energy 

while the spin down one is at around 0.35 eV above it. The LDOS plot in Fig. 4.i4

K-point

Figure 4.13: Calculated band structure for the u-doped H r configuration. The filled circles 
bands are the spin polarized states coining from the extra electron introduced 
with the doping, and are mostly localized at the SDB site. The band crossing 
the Fermi level is the same found for the intrinsic case and it is dm' to an 
electron delocalized on the surface [see Fig. 4.4(b)].

shows the spin split states localized around the reacted dimer and a delocalized state 

around the Fermi energy. No band bending is visible, meaning that the SDB state 

is occupied with one electron [222]. The band across the Fermi energy has a very 

small spin splitting, that can be explained with the Stoner criterion [227].

DFT total energy calculations for n-doping conditions reveal that the Hb configu­

ration is lower in energy by 136 meV with respect to the H ]’ one. This demonstrates 

that the majority configuration is indeed the lower-energy state, and that the mi­

nority one is rnetastable and stabilized by the pinning effect of neighboring defects. 

The stability of the ma jority species is not expected to vary for lower dopant concen­

trations, since calculations on the intrinsic neutral system still show the Hb lower in 

energy by 26 meV (see Tab. 4.1) [226]. These results are consistent with the results 

obtained by Reusch et al. [220] where, based on cluster calculations, the Hb ('ontig- 

nration was found lower in energy by 260 meV and 30 meV for n-tyi)e and intrinsic 

conditions, respectively. Thus, while DFT topography and total-energy simulations 

provide a unique interpretation of the STM data for the H/Si(100) system, in the
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(b) n-dopcd Ht, spin-down LDOS

Figure 4.14: Spin up (a) and spin down (b) LDOS for the first row of the /r-doped H i’ 
configuration. No band bending is visible in the valence band, suggesting the 
SDB to be singly occupied. The spin split states, mostly localized at the SDB 
site, appear as a red spots at around 0.35 meV below Ey for the majority spin 
in (a), and around 0.35 meV above Ep for the minority spin in (b). According 
to the color scale, the blue color corresponds to zero DOS and the red color 
to a value of the DOS higher than 2 states/eV per supercell.

more geiu'ral case, different adsorbate configurations may not show significantly dif­

ferent STM toi)ographic signatures. Hence these necessitate a more detailed investi­

gation of the electronic structure [226].

4.3.2 p-doping
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(b) H3DIM configuration

Figure 4.15: Schematic representation of the reacted dimer for the p-doped Ht configura­
tion (a). The dangling bond is empty. The p-doped Hp configuration relaxes 
into the H3DIM one (b), with the reacted dimer tilted in phase with its nearest 
neighbours.

STM experiments of Si-Si-H hemihydrides on the Si(lOO) surface show the dan­

gling bond appearing as a bright protrusion, while a depression is present on the
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FILLED STATES (VB) EMPTY STATES (CB)

(a) EXP p-doped sample (-1.0 V) (b) EXP p-doped sample (-1-0.5 V)

(c) p-dopod Hb (-0.5 V) (d) p-doped Hb (-1-0.5 V)

(e) /)-doped Hx (-0.5 V) (f) J^doped Hx (-1-0.5 V)

Figure 4.16: Top panels (a) and (b) are the experimental topographs for filled and empty 
states of the p-doped samples acquired for a sample bias of -1.0 V and 4-0.5 V 
respectively. Panels (c) and (d) are the corresponding simnlated topographs 
for the Hb configuration. Panels (e) and (f) are the simulated topographs for 
the H'x configuration. The simulated data are referred to the reacted row (1®* 
row) of the 10x4 supcrcell and are obtained by considering a bias of -0.5 V 
and 0.5 V for filled and empy states, respectively. Bright areas correspond to 
a high DOS. while dark areas to low or null DOS. Only the H p configuration 
reproduces the experimental empty states topography.

opposite side of the dimer, for both filled and empty states [224,225]. A comi^arison 

between the experimental and the com[)nted topographic images for p-doped systems 

shows the Hr configuration to best match the data (Fig. 4.16). In fact, although 

the simulated images for the filled states reveal that both Hr and Hb may agree 

with the experiments [compare Figs. 4.16(c) and 4.16(e) with Fig. 4.16(a)], only H'r 

reproduces the measured empty states topography as it can be seen by comi)aring 

Fig. 4.16(f) with Fig. 4.16(b). Our calculations show that, after a full relaxation, 

Hb undergoes an inversion in the dimer buckling, as rei)orted in Tab. 4.1. Such a
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new relaxed structure, called hereafter H301M [see Fig. 4.15(b)], presents the reacted 

dimer tilled in phase relatively to its nearest neighbours. Total energy calculations 

predict to be 111 meV lower than H301M in good agreement with an energy dif­

ference of 140 me\' previously reported [220]. This energy difference is mostly due to 

the structural distortion induced by the Hsdim configuration, which is less efficient 

in accommodating the surface strain. This conhguration has never been observed 

experimentally. The calculated local DOS and the STS image are in a good agree­

ment and establish that the single dangling bond state is empty (Fig. 4.17). This is

t ^ ^ '■

(a) p-dopcd Ht configuration (h) EXP />doped sample

Figure 4.17: Calculated (a) and experinieutal LDOS (b) for the p-doped Ht configuration.
The downward band bending of the valence band at the reacted dimer site is 
induced by a local positive cliarge, suggesting the SDB state to be empty. The 
SBD state is indeed located in the conduction band at around 0.2 eV above Ey 
for the calculated LDOS (a) and around 0.5 eV above Ey for the experimental 
one. According to the color scale, the blue color corresponds to zero DOS 
(10~^ states/eV in the experiment) and the red color to a value of the DOS 
higher than 1 states/eV per supercell (0.1 states/eV in the experiment).

confirmed by a pronounced downward band bending which is expected due to the 

positive charge around the SDB site (Fig. 4.17). The SDB state appears as a bright 

red spot around 0.2 eV above Ey for the calculated LDOS and around 0.5 eV in 

experiments at a spatial position corresponding to the H site (0 of the X axis in 

Fig. 4.17). The buckling angle of 11° suggests that the bonding configuration of 

Si atoms at the SDB site is sp^-like, due to the absence of electrons at the SDB 

state [222].
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4.4 Conclusion

In conclusion, DFT calculations together with ST.VI/STS experiments allowed ns to 

une(juivocally characterize the geometry and the charging state of SDB on the Si(lOO) 

surface in different doping conditions. For n-doped conditions the H-produced SDB 

is doubly occupied with the He conhguration being the lowest in energy. This con- 

hguration coincides with the majority species found in low temperature STM ex- 

I)eriments. For 7>doped samples the Hx configuration is the lowest in energy and 

the SDB state is empty. Finally, according to our calculations, the Ho conhgura- 

tion is still the lowest in energy for the neutral intrinsic case and the SDB state 

is partially occupied and spin-polarized. The buckling angle of the reacted dimer 

and, corresi)ondingly, the bonding character of the Si atoms at SDB site reflects 

the occupation of the SDB state: i) an sp'^-like symmetry is found when tin' SDB 

is doubly occupied; 2) an .s;;^-like symmetry corresponds to an empty SDB state; 

3) a hybrid configuration in between the two is found for a partial occui)atiou (one 

electron in the SDB state). Such an interi)lay between charging and geometry might 

oi)cn the interesting prospective of fal)ricating an atomic-scale switching device. In 

fact by tuning the surface doping from 7>type to n-type one may switch between the 

two H configurations. These have distinct scattering and transport properties [226], 

thus the switch can be detected electrically. The surface doi)ing can be tuned by a 

local gating of the SDB, for example by using the STM tip as an electrode. Another 

possibility is to create a depletion region in the surroundings of the SDB by applying 

an electric field through an electrode positioned at the bottom of the slab. It would 

work in the same fashion as the gate electrode of a FET transistor.

The scattering properties of the two configurations are discussed in tlu* next 

chapter.
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CHAPTER 5

Non-local approach and gating effects

5.1 Introduction

In this chapter the bonding configurations of a single H atom deposited on a bare 

Si( l()0)-c(4x2) surface will be described using the non-local approach (sec. 5.2), a 

general non intrusive method for studying the electronic structure and configuration 

of adsorlrates on surfaces. The method makes use of the simulated and measured 

non-local DOS to map the scattered standing waves originating from the presence 

of adspecies. The simulated data are computed either with and without periodic 

boundary conditions along the dimer rows direction, by means of the VAST [169 173] 

and the SMEAGOL [110,111,168,228] code, respectively.

The details of the calculations performed with VAST with periodic boundary 

conditions are the same as stated in Chapter 4.

The calculations with open boundary conditions were performed with a newly im- 

j)lemented order-N version of SMEAGOL which combines DFT with a recursive non-
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equilibrium Green’s function scheme built in the spirit of the embedding-potential 

method [229]. In this work we use the code only at ecjuilibrium (0 bias) with the aim 

to avoid periodic boundary conditions along the dimer row direction, and therefore 

to simulate single impurities. The unit cell is constructed from the VASP-relaxed 

coordinates and it is 204.28 A long along the dimer row direction (2377 atoms). 

The basis set includes a double ( for the Si-s, Si-p, and H-s orbitals, and single ( for 

the Si-d and H-p orbitals. No explicit doping is performed within the SMEAGOL 

code. Charge localization effects related to the doping are mainly determined by 

the details of the relaxed structure (e.g. dimer tilting angle), obtained by VAST. 

The system mantains its neutrality and a compensating neutralizing charge (with 

the opposite sign) can be found in a spread region in the proximity of the localized 

charge. This can be seen by comparing the total charge density for the undoped and 

doped relaxed structures.

In all the figures of this chapter I will use a color code for the balls-and-sticks 

supercell models where the yellow and green balls represent, respectively, the top 

and the bottom atoms of the surface Si dimers. The red color is used for the H atom 

on the surl'ace. The simulated color DOS plots (LDOS) are obtained by assigning a 

coloured pixel to each atom position and for each energy value. The colour scale is 

set by the maximum (dark red) and minimum (blue) value of the DOS. The pixel 

is represcmted by a gaussian along the energy axis with a broadening of 0.01 eV. 

The broadcming along the X axis is automatically applied by the image visualization 

software and it is a common procedure to all this kind of software. These parameters 

do not affect the features of the plots from a qualiltative point of view.

When a H atom is placed over the dimer, it passivates one of the dangling bonds of 

the surface Si dimer, breaking the Si-Si dimer 7r-bond and leaving an isolated dangling 

bond on the other side of the dimer. I will refer to the isolated dangling bond as 

the single tlangling bond (SDB) [51]. The reacted dimer acts as a single scattering
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center on the Si(lOO) surface when no i)eriodic boundary conditions are applied. In 

contrast, the potential barrier originating from it gives rise to a quantum w('ll when 

the system is treated with j)eriodic boundary conditions. The reacted dimer induces 

gating effects on the adjacent rows of the reconstructed surface and the magnitude 

of the gating actions depends on the particular adsorption configuration. The results 

concerning the gating are discussed in section 5.3.

The results presented in Sec. 5.2 are calculated solely with the SMEAGOL code, 

by making use of the open boundary conditions. All the other results obtained from 

ah initio calculations, for each of the considered configurations, will be presented 

through this chapter according to the following order: firstly, the LDOS calculated 

with the V^ASP code, taking in account the periodic boundary conditions, will be pre­

sented, together with the PDOS bubble plots. Secondly, the LDOS caleulated with 

the SMEAGOL code, without jieriodic boundary conditions, will then be presented.

5.2 Non-local approach

Many materials exhibit surface states that are effectively electronically decoupled 

from the bulk. The presence of surface adspecies induces scattering and the formation 

of standing-wave patterns in the local density of states (LDOS). This phenomenon 

was first demonstrated on the Cu(lll) surface through the pioneering work of Eigler 

et al. [230] and Avonris et al. [231]. In this ehapter I will consider a non-local ap­

proach to the general problem of identifying the bonding conhguration of adspecies 

on surfaces. It consists of i)crforming a spatial mapping of the amplitude and phase 

of the standing waves, a scheme which is extremely sensitive to the precise nature 

of the adsorption configuration. This method is based on measuring and computing 

the nonlocal DOS around the reacted site, and it is useful to build up a comprehen­

sive picture of the adsorbate electronic structure and conhguration. I will apply the 

method to the case of a single H atom on the n-doped Si(100)-c(4x2) surface, for

131



5.2 Non-local approach Non-local apjnoach and gating effects

which, in principle, there exist two different adsorjjtion conhgurations, Hb and 

described in the previous chapter and shown in Fig. 4.1. Both the species are also dis­

tinguishable using a combination of nonlocal, s[)atially resolved, scanning tunneling 

spectroscopy (STS) and density functional theory (DFT) sininlations. This provides 

a new nonlocal approach for investigating surface structure and reactivity. Notably, 

a nonlocal measurement is less intrusive than a local one as the interaction between 

the scattering center and the STM tip is significantly reduced. As such, scattering 

centers, which switch at high freciuency between different geometries under the in­

fluence of the STM tip, can be observed as stable in a nonlocal measurement [226]. 

Recent theoretical advances in the acciuisition of the local electron density of states

0 4-40
X (nm)

Figure 5.1: Spatial LDOS maps of the tt* standing waves along the Si dimer row with 
single-hydrogen occupied dimer at x = 0. The map of the majority species (c) 
was constructed from LDOS spectra recovered [66] from experimental dl/dV 
measurements taken on each point of the topographic image along the dimer 
row (x coordinate). The map of the minority species (b) was constructed as 
in (c). The same intensity (color) scale as in (b) and (c) was applied for the 
corresponding simulated LDOS maps for the n-doped H i' (a) and n-doped Hb 
(d) configurations [226].

(LDOS) from the STS data enable the direct comparison of spectra recorded at dif-
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fcrent lateral locations and tip-sample distances [66,67]. This approach consists in 

constructing spatial LDOS maps, shown in Figs. 5.1(b) and 5.1(c), along the dimer 

rows that contain the reacted sites and over an energy range associated with the 

surface tt* band [66]. The band is split off from the bulk DOS and disperses strongly 

along the dimer row direction [see first LUMO band in Fig. 4.10(a)]. Hence it is 

sensitive to the presence of reacted scattering sites.

Experimental STM/STS measurements were performed using a Createc cryogenic 

system described elsewhere [66]. Both n-type (As, 0.001-0.005 Qcm) and p-tvpe (B, 

0.001-0.005 Ocm) Si(lOO) samples used are mounted on a triple sample holder con­

taining also a Pt surface for tip preparation and recovery. In-situ Pt-inked tungsten 

I)robe [223] is used in the STM. Snb-monolayer atomic hydrogen coverage is de­

posited on the clean surface at 200 K via a heated tungsten capillary. The H atoms 

are manipulated by transferring them on and from the STM probe applying high bi­

ases (5-6 V) with different polarities. The spectroscopic results are obtained through 

variable-height scanning tunneling spectroscopy (VH-STS) [66] at 77 K. The LDOS 

maps were recovered from dl/dV measurements [64,66], where the scans were made 

along the middle of the dimer row.

The experimental LDOS maps in Fig. 5.1 [panels (b) and (c)] show that the tt* 

band is strongly scattered by both types of H-atoni species where Fig. 5.1(b) corre­

sponds to the H'l’ and Fig. 5.1(c) to the Hb configuration. We simulate the LDOS of 

bot h b>' plotting the SMEAGOL density of states as a function of the atomic posi­

tion, and present them in Figs. 5.1(a) and 5.1(d), for the Ht and Hb configurations, 

respectively. In the calculations, the DOS of the top and bottom Si dimer atoms 

are combined to reflect the experimental conditions, in which the measurements are 

made along the middle of the dimer row. Additionally, the theoretical bands in 

Fig. 5.1 have been shifted downwards by 0.125 eV in order to align the bottom of the 

calculated conduction band with the exi)erimental one. For the Hb site, a coinpar-
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ison betwoeii experiments and simiilations[(Figs. 5.1(c) and 5.1(d)] reveals identical 

standing-vave patterns, produced by a potential barrier, and the presence of an in­

tense doubly occupied single dangling bond (SDB) signature. This is consistent with 

the n-dopnig condition of the Si substrate [26].
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Figure 5.2: Fitting parameters for the standing waves. The energy dispersion E{k) and 

the phase-shift dependence 0(/c) obtained by fitting the results in Fig. 5.1 are 
shown in (a) and (b), respectively. In (a), the simulated band dispersion for 
the bare surface is also presented (dashed line). The theoretical spectra have 
been shifted to align the bottom of the conduction band at 0 eV. Black, red, 
green, and blue lines are used for the results obtained from the LDOS maps in 
Figs. 5.1(c), 5.1(b), 5.1(d) and 5.1(a), respectively [226].

In the case of the H-j' site, however, the SDB is singly occupied, as evidenced by
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Non-local approach and gating effects 5.2 Non-local approach

the filled and empty DB features in Figs. 5.1(a) and 5.1(b). The associated sturiding- 

wave pattern is significantly altered, revealing a nonmonotonic phase variation of the 

scattered waves that suggests the presence of a resonance in the potential barrier at 

the energy close to the half-empty SDB state. Again, the shape and position of the 

exi)eriniental Hp pattern in Fig. 5.1(b) matches the simulated one in Fig. 5.1 (a). The 

excellent agreement between theory and experiments for the nonlocal characteristics 

of the surface further strongly supports the assignment of the majority sites to the 

Hj5 configuration [comi)are Figs. 5.1(c) and 5.1(d)] and the minority sites to the Hf 

configuration [compare Figs. 5.1(b) and 5.1(a)]. The absence of detected structural 

changes (dimer flipping) in the negative bias region in the spectra of the iTr con­

figuration [see Fig. 5.1(b)] is due to the fact that the threshold for dimer flipping 

observed in the topographs [Figs. 4.9(e) and 4.9(f)] occurs at negative biases greater 

than -0.3 V sample bias [26].

In order to definitively establish the identity of the majority and minority species, 

it is possible to extract quantitative information from the LDOS scattering maps. 

By measuring the wavelength of the oscillations in the LDOS for different energies, 

E, in Fig. 5.1, we can obtain the band dispersion E{k) and phase shift 0(A:).

To give an examjrle of the procedure that our experimental collaborators followed 

to extrapolate such informations, let us consider the simulated LDOS image of the n- 

doped Hb configuration shown in Fig. 5.3(a). The LDOS prohle can be extracted for 

a given energy (the black dashed line) and it is plotted in Fig. 5.3(b). By rei)eating 

the same procedure in the energy window where the standing waves are, it is possible 

to obtain the phase shift by fitting the LDOS profiles to the following expression

LDOS oc oc 2A^ [1 -H 2cos{2kx -f 0)] + e , (5.1)

where is the surface state wave function with ami)htude A and x = 0 is set at the 

position of the ff atom. The exponential term accounts for the decay of the wave
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function far away from the scattering center (L is the length of the saniple/supercell). 

The equation used for the htting can be easily derived by considering the standing 

wave pattern obtained by solving the Schrodinger equation for a potential steph

0.6 IP / A

-0.2

(b) DOS profile

Figure 5.3: Siimilated color DOS of the first row of the n-doped Hfj coiihguration, cal­
culated without periodic troundary conditions (a). The DOS prohlc can be 
extracted for each value of the energy (b). By fitting the DOS prohle with a 
cosine function, it is possible to extract information about the band dispersion 
and the phase shift of the standing waves.

The dispersion E(k} is plotted in Fig. 5.2(a) for the data obtained from the maps 

of Figs. 5.1(a)-5.1(d). The theoretical n* band dispersion along the dimer row for the 

bare surface is also plotted (dashed line) in Fig. 5.2(a). The dispersions obtained for 

the majority and minority sites agrees well with each other and the simulation for 

the Hb and H-p configurations, demonstrating that the scattering phenomena is an 

intrinsic property of the tt* band. However, the phase shifts 0(A:) of the wave function 

scattered from the majority and minority sites are dramatically different and provide 

a unique signature, which allows us to distinguish between the two H conhgurations. 

The majority-site phase shift [black spectrum in Fig. 5.2(b)] decays monotonically 

with A:, whereas the minority species [red curve in Fig. 5.2(b)] show a different slope 

and a prononneed minimum associated with a resonance in the scattering barrier. A

'A detailed derivation is given in appendix A
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comparison with tlie simulated phase shifts associated with scattering from the He 

(green) and ff p (blue) sites establishes once again that these configurations can be 

assigned to the majority and minority species, respectively. The observed differences 

Iretwecn the experiment and simulated phase shift for the minority site likely reflect 

the need for a stabilizing defect in the adjacent area, which was not accounted for in 

these simulations. The experimental (black) and the simulated (green) results for the 

majority species show a <c){k) dependence that is approximately linear with negative 

slo[)e, suggesting a triangular-shaped barrier, in agreement with the disi)lacenient 

of the conduction-band edge around the scattering site [Figs. 5.1(c) and 5.1(d)]. 

For th(' minority conhguration, the strong resonance in the barrier [see Fhgs. 5.1(a) 

and 5.1(1))] is clearly detected in the phase-shift spectrum [red and blue curves in 

Fig. 5.2(b)] and underlines the increased transmission coefficient at the resonance 

position, leading to significant reduction of the phase shift. Clearly, the latter reflects 

the fact that in the case of H p configuration, the dangling bond is half filled, causing 

it to interact with the scattered charge density [226].

5.3 Gating Effects

Gating is usually referred to the ability of changing, in a controlled manner, the 

electronic properties of a device. By applying a voltage to the gate electrode of a 

MOSFET transistor, for exami)le, it is jrossible to switch it on and off. In this case 

the gating effect is due to an electric field, originated by the applied bias, that allows 

or impedes the flow of carriers along the channel connecting source and drain. This 

type of gating allows a direct and full control of the device. Our definition of gating 

assumes a more general meaning. We define the gating effect as a way of modifying 

the electronic porperties of a system in a measurable way even if the exact details 

related to the magnitude of the effect are not known.

Different charging configurations of the SDB modify the electronic properties of
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5.3 Gating Effects Non-iocal approach and gating effects

the adjacent (bare) row giving rise to gating effects of different magnitude. Tliese 

variations in tlie electronic properties of the system can be measured and assigned 

to different configurations. One should be able, in principle, to control the charging 

state of the SDB and hence to control, in an indirect way, the electronic properties 

of the bare dimer row by switching it between different configurations.

The reacted dimer induces gating on the bare dimer rows adjacent to that con­

taining the scattering center. This depends on the H adsorption configuration and 

hence the nature of the SDB. The gating effect is remarkable in the case of the 

n-doped He configuration, while it is less effective in the case of the n-doped H r 

configuration and it is negligible in the case of the p-doped Hr. When considering 

the supercell used for the simulations, 1 will refer to the first row as the one con­

taining the reacted dimer, while the second row is the bare one just adjacent to it 

as in Fig. 4.1. The LDOS plots, shown in Fig. 5.4, let us compare the LDOS mea­

sured on the hrst and the second row of the n-doped Hb configuration, respectively. 

The pronounced upward band bending [Fig. 5.4(a)] present in the first row at the
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(a) Reacted row (b) Bare row

Figure 5.4: LDOS of the first (a) and second (b) row of the n-dopeci Hb coiifiguratioii, 
calculated by taking into account the periodic boundary conditions. A notice­
able band bending is induced in the second row, due to the extra charge at the 
SDB site in the first row. A modulation of the DOS intensity is visible also 
for the first LUMO state in the second row, suggesting the effectiveness of the 
gating effect in this configuration. According to the color scale, the blue color 
corresponds to zero DOS and the red color to a value of the DOS higher than 
80 states/eV per supercell.
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site i)Ositioii corresponding to the reacted dimer, extends to the second row, mean­

ing that the effect of the extra ciiarge of the SDB inflnences the adjacent row [see 

Fig. 5.4(b)]. The LDOS relative to both the dimer rows exhibit a modulation of the 

hrsf LUMO states in the conduction band (Fig. 5.4) suggesting that the effects of 

the conhning potential due to the reacted dimer are affecting the adjacent row. This 

is confirmed by the PDOS standing wave pattern for the reacted and bare dimer 

row shown in Fig. 5.5. Due to periodic boundary conditions the potential barrier
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Figure 5.5: PDOS of the n-doped Hb configuration calculated by taking into account the 
pc'riodic boundary conditions. The potential barrier originating from the re­
acted dimer, together with its periodic image, gives rise to qtiantnm well states 
in the condnction band associated to the first dimer row. The first and the 
second cpiantum well states are shown in panel (a) and (b). respectively. The 
similar standing wave pattern in the second row [panel (c) and (d)] originates 
from a remarkable gating effect induced by the tail of the confining potential 
created by the reacted dimer in the first row.

gives rise to cpiantum well states: the PDOS of the hrst LUMO states corresponds, 

resi)ectively, to the first nodeless quantum well state [Figs. 5.5(a) and 5.5(c)] and the 

one-node standing wave [Figs. 5.5(b) and 5.5(d)]. These results are confirmed by the 

simulations performed without bovmdary conditions along the dimer rows, where the 

reacted dimer acts as a single scatterer.

The simulated LDOS for the first and second row are shown in Figs. 5.6(a)
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and 5.6(b), respectively. The supercell used for the calculations comprises two dimer 

rows likewise the one shown in Fig. 4.1, and it is 12 mn long. Several orders of stand­

ing waves can be observed. The band bending due to the extra charge at the reacted 

site and the gating effects are visible and in good agreement with the calculations 

previously shown [222].

(a) Reacted row (b) Bare row

Figure 5.6; LDOS of the first (a) and second (b) row of the n-doped Hb configuration.
calculated w'ithout periodic boundary conditions. The reacted dimer acts as 
a single potential barrier for the conduction band states. The upward band 
bending and the standing wave pattern present in both the dimer rows witness 
a remarkable gating effect. According to the color scale, the blue color (;orre- 
sponds to zero DOS and the red color to a value of the DOS higher than 1 
state/eV per supercell.

The gating effect is less pronounced in the case of the n-doped H r configura­

tion. The LDOS plots for the first and second dimer rows are shown in Figs. 5.7(a) 

and 5.7(c) for the majority spin and in Figs. 5.7(b) and 5.7(d) for the minority spin 

states. No band banding is present, in agreement with the single occupation of the 

SDB state. A modulation of the LDOS is visible in the first LUMO states of the first 

dimer row, while it is much less pronounced in the adjacent row. The PDOS pattern 

shows the tinger{)rint of the first quantum well state (nodeless standing wave) in the 

LUMO states localized in the first row [see Fig. 5.8(a)]. The HOMO and LUMO 

levels around the Fermi energy on the second row, show a slightly modulated pat­

tern of the PDOS, which cannot be addressed to quantum well states [Figs. 5.8(c) 

and 5.8(d)].
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Figure 5.7: LDOS of the rr-doped H i’ configuration, calculated with periodic boundary 
conditions. The spin-up LDOS is shown for the first (a) and second (c) row. 
The spin-down LDOS for the first and second row is shown in (h) and (d) 
respectively. No band bending is visible in the plots and the modulation of 
the LDOS in the first LLIMO states of the conduction band is much less pro­
nounced with respect to that observed for the He configuration. This stiggests 
a negligible gating between the reacted dimer row and a bare adjacent one. 
According to the color scale, the blue color corresponds to zero DOS and the 
red color to a value of the DOS higher than 5 states/eV per supercell.

The LDOS plots for the first [Fig. 5.9(a)] and second [Fig. 5.9(b)] dimer rows, 

calculated without periodic boundary conditions, show standing wave patterns at 

the reacted row while the same pattern is mueh less pronouneed in the bare adjacent 

row. This confirms the reduced gating activity of this configuration with respect to 

r?-do[)ed Hp-

The gating effect is absent in the case of the /^-doped Hr configuration. The 

LDOS for the first row, shown in Fig. 5.10(a), exhibits a downward band bending in 

agreement with the positively charged SDB. A downward band bending of reduced
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Figure 5.8: HOMO and LUMO states around the Fermi energy for the n-doped H r config­
uration, calculated with periodic boundary conditions. A pattern modulation, 
corresponding to the first quantum well state, can be seen in the first row 
LUMO state (a). The magnitude of the pattern modnlation is quite reduced 
in the HOMO (d) and IjUMO (c) states on the second row and no standing 
wave pattern can be identified.

(a) Reacted row (b) Bare row

Figure 5.9: LDOS of the first (a) and the second (b) row of the n-doped Ht configuration 
calculated without periodic boundary conditions. The standing wave pattern 
in the first row is not clearly identifiable in the second row, meaning that the 
gating effect is much less pronoimced in this configuration with respect to the 
n-doped He one. According to the color scale, the blue color corresponds to 
zero DOS and the red color to a value of the DOS higher than 1 state/eV [jer 
supercell.

magnitude is also visible in the second row [see Fig. 5.10(a)] meaning that the poten­

tial due to the positively charged SBD is somehow affecting the adjacent row. Apart 

from the band bending, the second row does not show any sign of intensity niodula-
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(a) Reacted row
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Figure 5.10: LDOS of the first (a) and second row (b) of tlie ;>doped Hx configuration, 
calculated by making use of the periodic boundary conditions. The second 
row shows an induced band bending dne to the potential originating from the 
positively charged SDB at the first row. The modulation of the intensity of 
the LDOS for the first LLIMO states cannot be addressed to any standing 
wave feature. According to the color scale, the blue color corresponds to zero 
DOS and the red color to a value of the DOS higher than 2 states/eV per 
supercell.
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Figure 5.11: PDOS of the first LUMO states of the />-doped Hx configuration, calculated 
with periodic boundary conditions. The first LUMO state (a) is mostly local­
ized at the SDB site. The second LUMO state (b), in the second row, shows 
its maximnm intensity at a position corresponding to the SDB. excluding the 
possibility of any gating effect.

tioii of the DOS that can be attributed to standing wave states. This is confirmed by 

the PDOS, calcnlated for the first LUMO states and shown in Figs. 5.11. The first 

LUMO state is mostly localized at the SDB site [see Fig. 5.11(a)] while the second 

one, on the second row, shows a maximum at the position corresponding to the SDB. 

At this position an effective gating, originating from the reacted dimer at the first 

row, would produce a dei)letion zone in the LDOS which is absent in Fig. 5.11(b). 

This is a clear indication that there is no confining potential affecting the second
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row, and thus, no gating effect is detected.
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Figure 5.12: LDOS of the first (a) and second (b) row of the p-doped Hx confignration 
calculated without periodic boundary conditions. The standing wave pattern 
on the first row is not identifiable in the second row. suggesting a nearly absent 
gating effect. According to the color scale, the blue color corresponds to zero 
DOS and the red color to a value of the DOS higher than 1 state/eV per 
supercell.

The calculated LDOS without periodic boundary conditions for the first and 

second row are shown in Figs. 5.12(a) and 5.i2(b), respectively. In agreement with 

the results previously shown, no gating effect is seen.
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(a) 2H configuration
K-point

(b) Band structure

Figure 5.13: Balls-and-sticks model (a) and band structure (b) of the 2H configuration. A 
surface dimer is completely passivated with two H atoms.

It is worth to compare the previous configurations with what it is named the 

2H configuration, where both the Si atoms of the same dimer are passivated with H 

[see Fig. 5.13(a)]. This configuration has no SDB associated to the reacted dimer
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(a) Reacted row
^ ?. •», >

(b) Bare row

Figure 5.14: LDOS of the first (a) and the second row (b) of the 2H configuration, calcu­
lated with periodic boundary conditions. The DOS of the first LUMO states is 
modulated by the confining potential of the reacted dimer in the first row (a). 
No gating effect, and consequently, no modulation of the DOS is detectable in 
the second row (b). According to the color scale, the blue color corresponds 
to zero DOS and the red color to a value of the DOS higher than 2 states/eV 
jrer supercell.

and the LDOS for the first and the second row, shown resjrectively in Figs. 5.14(a) 

and 5.14(1)), exhibit a modulation of the first LUMO states only in the first row' 

w'hile it is negligible in the second one. This is confirmed from the PDOS plots of 

the first LUMO states (Fig. 5.15).

The first and the second quantum well states are clearly identifiable on the first 

row [Figs. 5.15(a) and 5.15(b)], indicating that the reacted dimer is acting as a 

potential barrier. The modulation of the PDOS on the second row [plots 5.15(c) 

and 5.15(d)], does not j)ossess any standing wave feature, indicating that the tail of 

the confining j)otential on the first row is not affecting the second one. The LDOS 

calculated with the SMEAGOL code, without periodic boundary conditions along 

the dimer rows, shows a clear standing wave pattern in the first row [Fig. 5.16(a)], 

confirming the fact that the reax'ted dimer is acting as a potential barrier for the 

TT* surface electrons. Such a pattern is not clearly identifiable in the second row 

or its magnitude is much lower than the one found for the single ff configurations, 

suggesting that the gating effect on the adjacent row is neglibible [Fig. 5.16(b)].

While the passivating H ions at the reacted dimer, together with the charge
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Figure 5.15: PDOS for the first LUMO states of the 2H configuration. The first (a) and 
the second (b) quantum well states are clearly identifiable on the first row. 
The modulation of the PDOS on the second row (plots (c) and (d)), does not 
possess any standing wave feature, indicating that there is no gating between 
adjacent rows.

(a) Reacted row (b) Bare row

Figure 5.16: LDOS of the first (a) and the second row (b) of the 2H configuration, calcn- 
lated without boundary conditions. A clear standing wave pattern is visible 
in the first row (a), due to the reacted dimer acting as a potential barrier. 
This potential barrier is not gating the second row (b), where the amplitude 
of the standing wave pattern is negligible. According to the color scale, the 
blue color corresponds to zero DOS and the red color to a value of the DOS 
higher than 1 state/eV per snpercell.

present at the SDB, are responsible for creating a potential barrier that scatters the 

TT* surface electrons in the reacted row, the gating effect can only be attributed to 

the SDB state. The single dangling bond is then responsible for the gating effect on 

the adjacent row and the magnitude of the gating is related to the symmetry and
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the charging of the dangling bond orbital.

In the case of the n-doped Hb confignration, the SDB orbital has a /^-character, 

it is donbly occupied and its lobe shape is pointing towards the adjacent row. The 

effect of the Couloinbic repulsion due to the extra charge extends to the adjacent 

row, generating a potential barrier for the electrons travelling along that row. In 

contrast, the SDB orbital has a s character in the n-doped Hx configuration and it is 

singly occupied. Due to the less directional nature of the s orbital and the reduced 

Couloinbic re[)ulsion coining from the only electron occupying the SDB state, the 

gating effect on the bare adjacent row is less pronounced if compared to the Hb 

case. The SDB orbital is empty for p-type system and it has no preferable direction 

(spheric symmetry). This, together with the lack of Couloinbic repulsion due to 

the absence of negative charge at the SDB site, results in a negligible gating on the 

adjacent dimers row [232]. The 2H configuration has no SDB associated and, indeed, 

no gating effect is detectable.

5.4 Conclusions

In this chapter I have described the nonlocal approach to the investigation of the 

electronic and structural properites of surface adspecies and its ability to charac­

terize adsorbates by means of the nonlocal spatial LDOS mapping. This nonlocal 

technique has been applied to study the majority and minority H-atoin species ad­

sorbed on the n-type Si(100)-r(4 x 2) surface. The combined results obtained from 

experimental STS and DFT simulated data are supported by the local approach 

(adspecies electronic structure) and STM data described in chapter 4. This novel 

nonlocal spatial LDOS maj)[)ing technicjue is a powerful addition to the standard 

STM tools, with the significant advantage of being able to characterize systems in 

their nonpertnrbed states, i.e. when the tip little affects the measurements. As such, 

it is exjiected to be useful for the investigation of molecule and complex-surface
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configurations, wliere the topogTai)hic signatures of different configurations are in­

distinguishable or in instances where there are no STM-accessible states within the 

tunneling energy window. Furthermore, as the nonlocal approach barely perturbs 

the scattering center, it can be used to characterize adsorbate geometries that are 

mechanically unstable under the STM tip.

The configuration and charging state of the SDB is responsible for gating the 

bare adjacent row. The magnitude of the gating is proportional to the charging of 

the SDB and to the directionality of the SDB orbital. The n-doped Hb configuration 

is doubly occupied and the p character of the SDB orbital results in a pronounced 

gating effect on the adjacent dimer row. This effect is less pronounced in the n- 

doped Ht case, where the SDB is singly occupied and the orbital has an s symmetry. 

Finally, the gating effect is almost absent in the p-doped Ht case due to the lack of 

negative charge at the SDB site. The fact that the gating effect is due to the single 

dangling bond is confirmed by comparison with the 2H conhguration.
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CHAPTER 6

Topological Insulators

6.1 Introduction

Conductance 
channel with 
down-spin 
charge carriers

Figure 6.1: Schematic representation of the spin-polarized edge channels in a quantum spin 
Hall insulator [233].

Topological insulators (TI) arc a new class of materials that have been attracting 

the interest of condensed matter physicists in the past years due to their peculiar 

proj)erties and very promising variety of api)lications [233 246].
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In the last part of this thesis I will discuss preliminary results on the electronic 

properties of a Bi2Se3-based systems, classified as a second generation topological 

insulator [247]. The work is still in progress and consists in determining the electronic 

{)roperties of a thin film of Bi2Se3, epitaxially grown on a single layer Graphene 

substrate. I will present some preliminary result aimed to study the evolution of 

the band structure in such a system as a function of the separation distance of 

the interface, without entering into the details related to the determination of the 

topological invariants. The graphene-Bi2Se3 heterostructure has been investigated 

by means of ah mitio DFT-based calculation, performed with the VASP code. First 

of all, I will present a very general overview of the properties of this new class of 

materials.

Topological insulators (TIs) are a new class of materials that show a bulk band 

gap like an ordinary insulator but have {)rotectetl conducting states at their edges or 

surfaces. The surface (or edge in 2D) of a TI has gapless states, protected by time- 

reversal symmetry leading to a conducting state that has no ecpial in any other known 

ID or 2D electronic system. In addition to their fundamental interest, these states 

are [)redicted to have special properties that could open interesting perspectives in a 

wide range of applications, ranging from spintronic to quantum computation [248].

Until 1980 the spontaneous breaking of symmetry (translational, rotational, etc) 

has been used as a criterion to classify all the different known states of matter such 

as crystalline solids, magnets and superconductors. In 1980, the quantum Hall (QII) 

state was discovered and it provided the first example of a quantum state without 

a spontaneous symmetry break [249]. Subsequently a new class of topological states 

emerged, called quantum spin Hall (QSH) or topological insulators [250,251]. These 

have been theoretically predicted and experimentally observed in a number of systems 

such as HgTe quantum wells [233,241], Bii-^Sb^ alloys [236,242] and both BfiScs 

and Bi2Te3 bulk crystals [244 246,252]. QSH systems are insulating in the bulk with
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an energy gap l)etween the highest occupied state and the lower unoccni)ied state but 

they have gapless edges or surface states at the boundary. These are topologically 

protected by time-reversal (TR) symmetry and immnne to impurities or geometric 

perturbations [234, 237, 238, 240, 251, 253 255]. While in the case of QH states an 

external magnetic field is required to break the time-reversal symmetry, the QSH 

states are time-reversal invariant and do not require an external field [256].

6.2 From quantum Hall to quantum spin Hall

a) Spinless ID chain b) Spinful lD chain

- , ,» f.,

t
-------------------* ' ■ M-----------------

Quantum Hall Quantum spin Hall

------------- 1-------
■ t ..............

Figure 6.2: Carriers spatial separation is at the basis of both the quantum hall and quan­
tum spin hall effects, (a) A spinless ID system has two basic degrees of freedom 
corresponding to electrons moving forward and backward. They are spatially 
separated with the forward mover at the upper edge of the sample and the 
backward mover at the lower edge. These states are robust against scattering 
and the mover is able to go around an impurity without scattering, (b) A 
spinfnl ID system has four basic channels, corresponding to forward and back­
ward movers with up and down spin. These channels are spatially separated 
in a QSH bar. the upper edge containing a forward mover with spin up and a 
backward mover with sj)in down at the upper edge. The opposite happens at 
the lower edge [256]. Image from Ref. [256].

The QH effect occurs when a strong magnetic field is applied to a 2D gas of 

electrons in a semicondnetor [249,257,258]. At low temperature and high magnetic 

field, electrons traveling along the edge of the semicondnetor, are spatially separated 

in two counterflows located at the top and bottom edge of the sample. Conijrared
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6.2 From quantum Hall to quantum spin Hall Topological Insulators

with a ID system with electrons propagating in both directions, each edge of a QH 

bar contains half the degrees of freedom, as shown in Fig. 6.2(a). This sei)aration 

of “lanes” is the key reason for the robustness of the QH state. Let us consider an 

electron belonging to an edge state and moving from left to right like in Fig. 6.2(a). 

When the electron encounters an impurity, it takes a detour around it and still keeps 

going in the same direction. The back scattering is indeed impeded by the ap{)lied 

magnetic field [259] (see the bottom panel of Fig. 6.2). The applicability of this 

dissipationless transport mechanism, extremely useful for semiconductor devices, is 

limited b}^ the requirements of a large magnetic field.

In a real ID system, forward and backward moving electrons for both si)in up 

and spin down give rise to four channels as shown in Fig. 6.2(b). In a QSH state 

the lanes for the electrons can be split in a TR-invariant fashion due to the spin- 

orbit interaction, which plays the role of the external magnetic field in the QH 

state [234,251,253]. In the QSH state the spin up forward mover and the spin 

down backward mover are located at the top edge of the sample while the other two 

electrons corresponding to the remaining channels move at the bottom edge. QSH 

states are protected against backscattering from nonmagnetic impurities. By analogy 

with a photon, that can be reflected by a surface, an electron can be reflected by 

an impurity and different reflection paths can interfere with each other. In the case 

of an antireflection coating, the light beams reflected from the top and the bottom 

surfaces interfere with each other destructively, leading to zero net reflection and 

perfect transmission [Fig. 6.3(b)]. An electron in a QSH state can detour the non 

magnetic impurity by taking a clockwise or anticlockwise turn. Along the turn its 

spin rotates by an angle of tt or —vr depending on the direction of rotation, as shown 

in Fig. 6.3(a). Consequently the two paths, related by TR-symmetry, differ by a 27r 

rotation of the electron spin in such a way that they interfere destructively according
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Figure 6.3: A quantum spin Hall edge state can be scattered in two directions by a nonmag­
netic impurity (a). Going clockwise along the blue curve, the spin rotates by 
tt; counterclockwise along the red curve, by — tt. A quantum mechanical phase 
factor of -1 associated with a difference of 27r leads to destructive interference 
of the two paths. In this way the backscattering of electrons is suppressed 
similarly to what happens to photons off an antirefiection coating (b) [256]. 
Image from Ref. [256].

to a principle of quantum mechanics^ leading to a perfect transmission. In the case 

of magnetic impurities, the TR symmetry is broken and the two reflected waves 

no longer interfere destructively. In that sense the robustness in the QSll state is 

protected by the TR symmetry [256]. There is another requirement for the QSll state 

to conserve its robustness: the edge states must consist of an odd number of forward 

movers and an odd number of backward movers. If there are two forward movers 

and two backward movers, like in the ID system of Fig. 6.2(a), the electron can be 

scattered from a forward to a backward moving channel without reversing its spin so 

fhat the interference is no longer destructive. The odd-even effect is characterized 

by a so called Z2 topological quantum number and this is the reason why the QSH 

insulators are referred as topological insulators [234,253,256,260-262].

A strong spin-orbit, coupling is a key ingredient to obtain a topological insulator 

but it is not a sufficent one. A criterion to identify topological insulators was proposed 

by Bernevig et al. [241]. This is based on the idea of band inversion in which the

*A princii)le of quantum mechanics states that the wave function of a spin-1/2 particle obtains 
a negative sign upon a full 27r rotation.
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usual ordering of the conduction band and tlie valence band is inverted by spin- 

orbit coupling [236,241]. In the most common semiconductor the valence and the 

conduction bands are formed from electrons in p and s orbitals, respectively. In 

certain heavy elements the spin-orbit coupling is strong enough to invert the bands, 

so that the p-orbital band is pushed over the s-orbital one. This mechanism was 

predicted theoretically [241] for HgTe quantum wells (sandwiched between CdTe 

layers) and experimentally demonstrated [233] (Fig 6.4).

The edges states provide a direct way to discern a QSH insulator from a trivial 

insulator from an experimental i)oint of view. The two edge states of a 2D toi)ological 

insulator act as two conducting ID channels, each contributing one (iuantum of 

conductance, e^/h. In contrast a trivial insulator is characterized by a vanishing 

conductance. Tins different in the conductance can be measured experimentally 

and it is one fingerprint to distinguish a topological insulator. In a 2D topological 

insulator the two ID edge states cross at k = 0 in the Brillouin zone, showing a 

linear dispersion around this point. The linear dispersion can be describc'd by the 

Dirac eciuation for a massless relativistic fermion in ID and hence it can be used to 

describe the QSH edge state. The same concept can be generalized to 3D topological 

insulators, where the surface state consists of a single 2D massless Dirac fermion and 

the dispersion forms what is known as a Dirac cone, as shown in (Fig. 6.5).

The crossing point (the tip of the cone) is located at a TR-invariant point of 

the Brillouin zone such as k = 0, and the degeneracy is i)rotected by TR symmetry. 

The alloy Bii-aiSb^, was first predicted [236] and then experimentally proven with 

angle-resolved photoemission spectroscopy [242] to be a 3D toj)ological insulator in 

a special range of x. The layered compounds Bi2Se3, Bi2Te3 and Sb2Te3 were also 

predicted [245] to be 3D topological insulators and they have been dehned as the 

second generation of TIs [247]. The non trivial topology in this family of materials is 

due to band inversion between two orbitals with opposite parity, driven by the strong
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Figure G.4: HgTe 2D ciuantum wells are topological insulators. At a critical value of the 
thickness dc = 6.5nm there is a baud inversion. If the thickness d of the quan- 
tnin well is lower than dc then the energy of the lowest energy conduction band 
(El) is higher than the one of the highest energy valence band (HI). The sit­
uation is inverted for d, > dc- The band structure of the HgTe quantum well 
in the two cases are shown in (b). The thin quantum well has an insulating 
band gap, while the thick one has conducting edge states (blue and red lines). 
Experimental measurements of the resistance, shown in (c), are able to dis­
criminate the two cases. The thin quantum well has nearly infinite resistance 
in the band gap while the thick one exhibit a quantized resistance plateau at 
7? = h/2e^. This plateau is unchanged for different widths [blue and red lines 
in Eig. (c)] [256]. Image from Ref. [256].

spin-orbit coupling of Bi and Te. First principle calculations show that a surface state 

forms a single Dirac cone and that the spin of such state is always perpendicular 

to the momentum, as shown in Fig. 6.5 [245]. These results were confirmed by 

angle-resolved photoemission spectroscopy (ARPES) experiments [256]. The single 

Dirac cone surface state with linear dispersion around the F point {k = 0) has been 

observed in Bi2Se3 and Bi2Te3. In addition, spin-resolved measurements showed that
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Figure 6.5: The second generation family of topological insulators has a layered structure 
like the one of Bi2Te3. shown in Fig. (a). The linearly dispersing edge states 
of Fig. 6.4b become surface states described by a Dirac cone. Spin-dependent 
ARPES measurements reveals that the spins [red arrows in Fig. (b)] of the 
surface states lie in the surface plane and they are perpendicular to the mo­
mentum [244,252]. Moreover, the linear dispersion around the F point experi­
mentally revealed.as shown in Fig. (c) [246,256].

the electron spin lies in the plane of the surface and it is always perpendicular to the 

momentum [244,246,252]. It was also shown that the single Dirac cone is impossible 

to be constructed in a pure 2D system (like graphene or 2D HgTe ciuantum wells) 

and it is always related to novel topological properties [237 239,254,255].

6.3 Topological classification of insulators

Topological materials in general, and topological insulators in particular, can be 

defined by physically measurable topological invariants in topological field theories. 

Kane and Mele first introduced the topological band theory of TR-invariant QSH
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insulators in 2D and they showed that they fall into two distinct topological classes, 

referred to as the Z2 classification [234,253]. The theory also was extended to the 3D 

TIs [237 239] but its main limit lies in the fact that it is formnlated in terms of non 

interacting electrons filling a certain nnmber of bands of an approximate insulator 

model. The topological field theory was developed to extend the classification to the 

most general class of insulators, the interacting (real) insulators, and to introduce 

some cjuantity ex[)erimentally measurable [254,255]. Inside an insulator, the electric 

field E and the magnetic field B are well defined quantities. In the Lagrangian- 

based field theory, the electromagnetic response of an insulator can be described by 

an effective action
■50 = ^ I’ (^-1)

where e is the electric [)ermittivity and // is the magnetic permeability, from which 

Maxwell’s ecpiations can be derived. The integrand depends on the geometry, so it 

is not topological. The action So can be recast in term of the 4D electromagnetic

field tensor F,//i/

50 =
1

IGtt
(FxdtF^,^ F^^r (6.2)

The implied snmmation over // and u depends on the metric tensor, i. e. the geom­

etry. There is, however, another possible term in the action of the electromagnetic 

field

(6.3)

where a = e^/hc ~ 1/137 is the fine-strncture constant, 0 is a parameter, and

is the fully asymmetric 4D Levi-Civita tensor. Unlike the Maxwell action.

So is a topological term, i.e. it does not depend on the geometry (independent 

of the metric) [245]. Since E is invariant under TR whereas B changes sign. So 

breaks TR symmetry. By considering a i)eriodic system, there are two values of
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6, namely 0 and tt, that jn’eserve the TR symmetry [254,255]. By integrating all 

the microscopic fermionic degrees of freedom, the effective action Se is obtained. 

It allows us to classify all the nonmagnetic insulators into two distinct topological 

classes, described by effective topological held theories with 0 = 0 or 0 = n. The 9 

parameter is physically measurable and the two possible values, 0 and tt, dehne the 

topologically trivial and nontrivial nature of the insulators, resjjectively (in analogy 

to the Z2 classification). The coefficient 0 — tc translates into a Hall conductance 

of l/2e‘^/h, half the conductance of the first QH plateau. That value is uniciuely 

associated with the single Dirac cone on the surface of topological insulators. The 

Hall conductance of the system can change, due to random disorder, only by an 

integer nmltiple of the quantum of conductance e^/h. This means that the half- 

QH couductance (l/2)(e'^///) can never be reduced to zero by disorder, leading to 

topologically robust surface states.

6.4 Preliminary results: Bi2Se3 on graphene

6.4.1 Bi2Se3

The topological insulator Bi2Se3 [244,245,252] has a rhombohedral crystal structure 

with the space group {R3rn) with five atoms in one unit cell. The material 

consists of hve-atoms layers arranged along the z-direction, known as (luintuple layers 

(QLs). Each cpiintuple layer consists of five atoms per cell with two ecjuivalent Se 

atoms [Sel and Sel’ in Fig. 6.6(c)], two equivalent Bi atoms [Bi and Bi’ in Fig. 6.6(c)] 

and a third Se atom [Se2 in Fig. 6.6(c)]. The atomic layers interact strongly within 

a QL while the interaction between QLs is much weaker, predominantly of the van 

der Waals type.

The GGA calculated baud structure of a slab of Bi2Se3 with a variable munber of 

QLs (one to five) is shown in Fig. 6.7(a) [263]. The band gap is suppressed for 3QLs
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Figure 6.6: (a) Crystal structure of the layered compound Bi2Se3 with three primitive 
lattice vectors denoted as 11,2,3. A quintuple layer is indicated by a red scpiare. 
(b) Top view along the z direction, (c) Side view of the quintuple layer (QL) 
structure, (d) Brillouin zone for Bi2Se3. The blue hexagon shows the 2D 
Brillouin zone of the pro,)ectexl [1 1 1] surface in which the high-.symmetry 
k-points are labelled [245].
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Figure 6.7: (a) Band structure of a slab of Bi2Se3 as a function of the number of QLs. It 
can be noticed that for three QLs the band gap is suppressed and the Dirac 
cone is visible at the F point. The plot is rescaled in energy to the position of 
the Dirac cone [263]. (b) Energy and momentum dependence of the LDOS for 
Bi2Se3 on the [111] surface, obtained with ARPES measurements [245].

and beyond and the Dirac cone, originating from the toi)ologically jrrotected .surface 

states, is visible at the F i)oint. The zero of the energy is not referred to the Fermi
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level, but it has been aligned to the position of the Dirac cone [263]. By compari­

son, the experimental bands dispersion obtained with angle resolved photoeniission 

spectroscopy (ARPES) is shown in Fig. 6.7(b) [245].

6.4.2 Graphene

Figure 6.8: The honeycomb lattice of graphene is shown on the left-hand side with the 
corresponding Brilloinn zone (right-hand side). The Dirac cones are located 
the K and K' points of the Brillonin zone [264].

Graphene, a flat monolayer of .sp'^-bonded carbon atoms arranged on a hexago­

nal lattice, is a very promising material for the next generation of nanoclectronics. 

Theoretically predicted around sixty years ago [265 268], graphene was discovered 

in 2004 with the experiments {ierformed by Geim and Novoselov who were awarded 

the 2010 Nobel Prize in Physics [14,269]. The popularity of graphene rapidly in­

creased after several experiments confirmed that its charge carriers indeed behave as 

massless Dirac fermions [270,271]. The structural flexibility of graphene is reflected 

in its electronic properties. The sp^ hybridization between one s orbital and two p 

orbitals leads to a trigonal planar structure (honeycomb lattice) with a formation 

of a bond between carbon atoms separated by 1.42 A (see Fig.6.8). Such a band 

(known as cr band) is responsible for the robustness of the lattice structure in all 

allotropes (fullerenes, nanotubes, graphite). Due to the Pauli {)rinciple, these bands 

have a filled shell and, hence, they are deep in the valence band. The remaining p 

orbital, which is perpendicular to the planar structure, can bind with neighboring 

carbon atoms, leading to the formation of an additional band. Since each p orbital
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has one extra electron, the band is half filled. The electronic properties of graphene

Figure 6.9: 3D rei)resentation of the electronic structure of graphene with the 6 Dirac 
cones. Only two of tlieni are non-ecpiivalent [264].

differ from most conventional three-dimensional materials. Intrinsic graphene is a 

semi-metal or zero-gap semiconductor with a linear dispersion relation near the six 

corners of the two-dimensional hexagonal Brillonin zone (see Fig. 6.9), leading to 

zero effective mass for electrons and holes. Due to this linear dispersion relation 

at low energies, electrons and holes near these six points, two of which are non- 

('(luivalent, behave like relativistic i)articles described by the Dirac ecpiation for spin 

1/2 particles (although the group velocity is significantly smaller than the speed of 

light) [272,273]. Hence, the electrons and holes are called Dirac fermions, and the 

six corners of the Brillonin zone are called the Dirac points.

Graphene exhibits a remarkably high electron mobility of 15,000 cnFV“'s“^ at 

room temperature, confirmed by transport measurements [274]. In addition, the sym­

metry of the experimentally measured conductance indicates that the mobility for 

holes and electrons should be nearly the same. It is almost independent of tempera­

tures between 10 K and 100 K [270,275,276], which implies that the dominant scatter­

ing mechanism is defect scattering. Scattering by the acoustic phonons of graphene 

places intrinsic limits on the room temperature mobility to 200,000 cm^V~^s“^ at a 

carrier density of 10^^ cm“^ [276,277]. The corresponding resistivity of the graphene 

sheet would be 10“^ Dcni. This is less than the resistivity of silver, the lowest resis­

tivity substance known at room temperature [276].
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However, several experiments show that these properties can very significantly 

clue to the presence of defects and impurities and to the interaction with the sub­

strate [278-285]. When graphene is deposited on Si02 substrates, for instance, the 

scattering of electrons by optical phonons originating from the substrate is a larger 

effect at room temperature than scattering by graphenes own phonons. This limits 

the mobility to 40000 cm^V“^s“^ [276]. Due to its very flexible nature, graphene lay­

ers tend to exhibit ripples after deposition on substrates, which affect the electronic 

properties [286,287].

The high sensitivity to impurities and disorder is an intrinsic limit of graphene, 

due to its [)ure two-dimensional nature. Hence, the criterion of reproducibility of 

material i)roperties in electronic devices can not be easily met when considering 

graphene as a material for electronic devices. This limits the applicability of such 

promising material and is the main reason that lead us to model an interface be­

tween graphene and the topological insulator Bi2Se3. Topological insulators have 

TR protected surface states and our aim is to model a heterostructure showing how 

the topological nature of this states is transferred to the interface states of graphene.

6.4.3 Graphene-Bi2Se3 heterostructure

The model structure investigated consists of 3QLs thin film of 812803 epitaxially 

grown on a graphene monolayer, as shown in Fig. 6.10. The unit cell of Bi2Se3, in 

its hexagonal setting, is commensurate with 3 unit cells of graphene in such a way 

that the elementary unit cell of the composite structure contains a full graphene 

carbon ring (see Fig. 6.10). The tensile stress on the 812803 corresponds to a lattice 

mismach of about 2.3%. The choice of 3QLs is justified by the fact that this is the 

minimal thickness for which the 812803 films shows topologically protected surface 

states [245,263]. The 8e atom at the interface with graphene sits in the hollow site of 

graphene (i.e. the center of the ring) [see Fig. 6.10(b)]. The lattice parameter along
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Figure 6.10: Balls-and-sticks model of the graphene-Bi2Se3 supercell. It consists of 3 quin­
tuple layers of Bi2Se3 and 6 carbon atoms (a), (b) Side (top panel) and
toj) view (bottom panel) of a 2 x 2 supercell enable us to evaluate the two 
commensurate sublattices.

the hexagonal i)lane parallel to the interface is 4.26 A, which is by only 2.3% larger 

than the lattice parameter of bulk Bi2Se3 [288]. The lattice {)araineter perpendicular 

to the interface amounts to 40 A, where more than 10 A simulate the vacuum region 

between the unit cell and its periodic images.

Similar epitaxial heterostructnres have been obtained ex[)erimentally by molecu­

lar beam ei)itaxy techniques [289,290].

The calculations were performed with the VAST code. The cutoff radius for the 

plane-waves exi)ansion of the basis set is fixed to 400 eV. This value was determined 

by testing the convergence of the total energy with respect to the cutoff radius 

to l)e lower than 10 ineV. A further increase in the cutoff radius does not improve 

significantly the i)recision of the calculations. The same method was used to estimate 

the optimal k-mesh. A 11 x 11 x 1 k-{)oint mesh was used to span the Brillouin zone. 

It provides the required accuracy in the total energy and it enables us to calculate the
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DOS with the tetrahedron method [217], one of the most accurate schemes available. 

The positions of the atoms were kept at the values given from experiments and no 

relaxation of the atomic coordinates was performed. The reason for this relies on 

the fact that QLs interact between each other (and with the graphene layer) through 

Van Der Waals forces, which are due to charge fluctuations that can be described as 

non-local correlation effects. The exchange-correlation potential used in DFT is local 

(LDA) or semi-local (GGA) and not capable of captnring this effect. We overtook 

this limitation by calculating the evolution of the band structure for a wide range of 

separation between the TI and the graphene layer going from 2.0 A to 3.2 A.

The spin-orbit interaction is a relativistic effect whose magnitude increases with 

the atomic number. Conseciuently it provides negligible contributions to the elec­

tronic structure of individual atoms and bulk materials made of light elements while 

it has a significant imijact on the physics of heavier elements such as Bi. The si)in- 

orbit interaction is, indeed, one of the key ingredient to correctly describe the physics 

of Tfs because it is responsible of generating the local magnetic held that originates 

the band inversion. The spin-orbit coupling effect was included in our calculations 

as implemented in the VAST code by Kresse and Lebacq'^. Following the work of 

Kleinman et al. [291] and MacDonald et al. [292], the relativistic Hamiltonian is 

given in a basis of total angular-momentnm eigenstates \j, mj) with j = / ± | is re­

cast in the form of 2x2 matrices in spin space by re-expressing the eigenstates of the 

total angular-momentum in terms of a tensor product of regular angular-momentum 

eigenstates |/,m) and the eigenstates of the 2 component of the Pauli-spin matri­

ces. The relativistic effective potential consists of a term which is diagonal in s[)in 

space and contains the mass velocity and the Darwin corrections, and the spin-orbit 

operator

V = + Vi^^L ■ S] (6.4)
Ijn

^VASP manual: http://cms.mpi.univie.ac.at/vasp/vasp/vasp.htmi

164



Topological Ins i ilators 6.4 Preliminary results: Di^Sc:^ on graphene

where is the unit operator in spin space and

L S = -
9

L. L.

V L, -L.
(6.5)

/

The I components of the scalar V) and spin-orbit potentials are weighted averages 

over the I ± ^ components. The Hamiltonian is therefore a 2x2 matrix in spin 

space. The nondiagonal elements arise from the spin-orbit coupling but also from 

the exchange-correlation potential when the system under consideration exhibits a 

noncollinear magnetization [293]. Calculations including spin-orbit coupling were, 

hence, performed in the noncollinear mode implemented in VAST by Hobbs et al. 

[294] and Marsman et al. [295].

Our calculated evolution of electronic gap of graphene as a function of the graphene- 

Bi2Se3 distance is presented in Fig. 6.11(a) [296]. In order to determine the bands 

belonging to graphene, the local density of states (LDOS), projected onto spherical 

harmonics centered over the atoms, have been evaluated for a given energy band and 

momentum parallel to the interface. The graphene band gap can be extrapolated as 

an energy difference between the top of the highest occupied (or [)artially occupied) 

and the bottom of the lowest unoccupied graphene bands. Four distinct regions can 

be observed in Fig. 6.11(a).

For a graphene-Bi2Se3 separation larger than d = 3.2 A, graphene has a zero 

gap [region D in Fig. 6.11(a)]. This is expected since at such a large distance the 

graphene states do not overlap with the surface states of Bi2Se3 and both systems 

act independently, i.e. there is no interaction between the two materials (graphene is 

a zero-gap semiconductor [270,271]). Due to the particular supercell setting used for 

the calculations, the high symmetry points {K and K') of the graphene’s Brillouin 

zone (BZ) are folded onto the F point of the Bi2Se3 BZ [see Fig. 6.11(b)]. As a result, 

the two distinct cones of the bare graphene band structure give rise to 4 degenerate
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Figure 6.11: (a) Evolution of the band gap of graphene as a function of the distance d 
with respect to Bi2Se3. Four main regions can be identihed: A: d < 2.1 A; B: 
2.1 A< d < 2.6 A; C: 2.6 A< d < 3.2 A and D: d > 3.2 A. (b) Folding of the 
graphene Brillouin zone within the supercell setting used in the calculations. 
I’he two ineqnivalent cones at A'j and K2 are folded to the F point in the BZ 
of the composite system [296].

cones (2 cones plus 2 spin degeneracy per cone) in the band structure of the composed 

system [this can be noticed in Fig. 6.12(a)]. The region C of Fig. 6.11(a), for 2.62 A < 

d < 3.2 A, is characterized by a very small gap in the graphene band structure. By 

comparing the band structure for d = 3.0 A and d = 2.6 A, [compare Fig. 6.12(a) 

with Fig. 6.12(b)] it can be noticed that the degeneracy of the upper part of the 

graphene’s 4-folded cones is removed. Two bands belonging to the original cone are 

located at around 0.11 eV above Ep while the other two are shifted up by 0.2 eV. The 

reason for this splitting might be due to the symmetry of the electrostatic potential 

of Bi2Se3 but its nature is still under investigation. By reducing the distance d [see 

region B in Fig. 6.11(a)], a gap opens in graphene, which monotonically increases 

till its maximum value of 0.26 eV, corresponding to a separation d = 2.3 A. Then it 

disappears again for d = 2.1 A. While the upper cone of graphene is further pushed 

up toward higher energies, the lower cone remains pinned around the Fermi level Ap.

The two topologically protected states of Bi2Se3 (one for each surface) are located
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(b)

(c) (b)

(e) (f)

Figure 6.12: Evolution of the band structure of graphene as a function of the distance d.
The orange bands are mostly due to graphene. The blue bands are interface 
bands of the composite systems. The green bands are Bi2Se3 surface bands. 
The magenta bands have independent contributions from both systems. The 
grey bands are Bi2Se3 bands which do not belong to the surfaces.
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ill the proximity of the Fermi level Ey and are degenerate in the isolated system. 

The interaction with graphene, for distances lower than 2.4 A breaks the inversion 

symmetry of these states, removing the degeneracy [see Figs. 6.12(c), 6.12(d) and 

6.12(e)]. At a separation d — 2.2 A, the graphene states pinned around the Fermi 

level start to couple with the surface state of Bi2Se3 causing the 4-fold cone of 

graphene to split. Two out of the four bands initially belonging to the cone are 

pushed towards lower energies [see Fig. 6.12(e)]. The mixed band originating from 

graiihene and the surface state of 0^803 is marked with the bine color in Fig. 6.12(e). 

The remaining grajihene double degenerate band and the other ni2Se3 surface state 

are colored respectively in orange and green and are located at around 0.65 eV and 

0.15 eV below the Fermi level E-p. The electron density integrated in the energy 

range around Fermi level and projected on the mixed state is shown in Fig. 6.13(b). 

This state is mostly localized on the graphene atoms and the interface Se atoms. The 

mixed state is dominated by C-pz and Se-Pz atomic orbitals contributions and it is 

delocalized at the interface between the two subsystems due to the pprr interaction. 

In order to gain a more quantitative insight, we plot the charge density corresponding 

to Bi2Se3 surface state opposite to the interface [see Fig. 6.13(a)]. The plot shown 

Fig. 6.13(c) is obtained by summing the contribution of the two LOOS and averaging 

the data in planes perpendicular to the interface. While the contribution of the bulk 

region to the LDOS is small, the surface states dominate on both sides of the slab. 

As expected, at the opposite side of the interface, the state is localized dominantly 

at the surface Se layer. A striking feature of the interface region is the migration of 

the surface LDOS of Bi2Se3 from the Se atoms to the graphene sheet. This behavior 

resembles closely to the one reported the Sb2Se3-Bi2Se3 interface (a normal metal 

with a TI) [297].

The region A of Fig. 6.11(a), corresponding to d < 2.1 A, witnesses the closing 

of the graphene gap which remains constant until a separation d = 2 A (we did
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not investigate shorter distances). The other two bands, originally belonging to the 

4-fold degenerate cone pinned at the Fermi level, are pushed further towards lower 

energy. The energy window around the Fermi level features, at the F point, the 

graphene-Bi2Se3 interface cone, located 0.1 eV above Ep and the remaining Bi2Se3 

surface cone at 0.15 eV below Ep.

30

20

10

■o
oo

Figure (i.l.'l; LDOS for the graphene-Bi2Se3 mixed state (b) and the Bi2Se3 surface states 
on the opposite side (a), calculated at the F point for d = 2.2 A. (c) The graphs 
shows the sum of the LDOS in (a) and (b) avaraged on a plane parallel to the 
interface. z=() corresponds to the position of the C atoms.

A fnndamental property of 3D TIs is the existence of an odd number of surface 

bands around Fermi level. Bi2Se3, for instance, has one conical band that crosses the 

Fermi level. In addition, the topology of the surface states is such that the states 

connect bulk valence and conduction bands. As a toirological property cannot be 

changed by smooth transformation of the materiars geometry, such states must cross 

the Fermi level, i.e. the states remain metallic even in presence of defects (or non­

magnetic impurities) [17]. The grairhene-Bi2Se3 heterostructure exhibits one conical 

band at the Fermi level for a sefiaration d — 2.0 A at which the C-Se bond length 

is close to the sum of their covalent radii. Although a full structural optimization of 

the interface was not performed (mostly because it requires an accurate description 

of the van der Waals interaction), the topological properties are not expected to
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depend on the geometry details. The single conical band has a signihcant contribu­

tion from graphene, whereas the contribution of the interfacing Se surface becomes 

proportionally smaller [296]. A similar situation was found for the Sb2Se3-Bi2Se3 

interface, where the topological protected state is transferred to the normal metal 

Sb2Se3 [297]. Moreover, the graphene band at Fermi level exhibits a helical spin 

texture (a preliminary result, not shown here), which is a requirement for topolog­

ically protected surface states in TIs. The verification of the topological protection 

of graphene band by means of the parity of wave function is not possible in the case 

of graphene-Bi2Se3 heterostructure due to the lack of inversion symmetry. Hence, a 

direct calculation of the Chern numbers is necessary and it is under investigation.

6.5 Conclusions

The preliminary results concerning the electronic properties of a graphene-Bi2Se3 

heterostructure were loresented in this chapter. For different graphene-TI separations, 

four phases were identified. In the first [)hase {d > 3.2 A), the electronic structures of 

graphene and Bi2Se3 remain identical to those of the corresponding isolated systems. 

In the second phase (2.6A < d < 3.0A), the upper part of the 4-fold degenerate 

grai)hene cone splits into two. Two of the bands participating in the original cone 

are pushed towards higher energies, while the remaing two remain located around the 

Fermi level. The third phase (2.1 A < d < 2.6A) is characterized by the formation of 

a chemical bond between the two subsystems. The degeneracy is removed from the 

lower 4-folded cone originating from graphene and from the double degenerate surface 

state of Bi2Se3. A new conical band (at the F point) originates from the mixing of 

graphene and Bi2Se3 bands. The fourth phase {d < 2.1 A) clearly indicates a conical 

band in the proximity of the Fermi level which is spatially located at the graphene- 

Bi2Se3 interface and originates from the mixed system. The topological nature of 

such a band is still under investigation.
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CHAPTER 7

Conclusions

In tliis tliesis we studied the electronic and structural properties of a single H atom 

adsorbed on a hare Si(l()()) surface with c(4 x 2) reconstruction. The H atom pas­

sivates one of the Si dangling bonds, breaks the Si-Si yr-bond and leaves an isolated 

dangling bond, named the single dangling bond (SDB), on the other site of the dimer. 

We were able to characterize the geometry and the charging state of the SDB for 

different doping conditions by means of DFT caleulations together with STM/STS 

exi)erinients. For r?-doped systems the H-{)roduced SDB is doubly occnjjied with the 

Hb configuration being the lowest in energy. This configuration eoineides with the 

majority species found in low tem{)erature STM experiments. The Hi' configuration 

is the lowest in energy for /y-doped samples, with the SDB state being empty. Finally, 

according to our calculations, the Hb configuration is predicted to be the lowest in 

energy for the neutral intrinsic case and the SDB state is partially occuiried and 

spin-i)olarized. The buckling angle of the reacted dimer and, correspondingly, the 

bonding character of the Si atoms at SDB site reflect the occni)ation of the SDB
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state: sjo^-like and sp^-like orbital symmetries are found when the SDB is, respec­

tively, doubly occupied and enij)ty. A hybrid configuration in between the two is 

found for a partial occupation (one electron in the SDB state).

Beside the “classical” local approach, we made use of a nonlocal airproach which 

enabled us to characterize the different configurations of the system in their un­

perturbed state. This approach combines the calculated nonlocal DOS with STS 

measurements to extract information about the phase-shift 0(A). The phase-shift 

mapping proved to be a very precise fingerprint for discerning between different H 

adsorption configurations and if has the [)otential of becoming a very general tool 

to determine the configuration of molecules and adspecies deposited on surfaces. 

Furthermore, it can be very useful where the topograidiic signatures of different con­

figurations are indistinguishable or, for instance, where there are no STM-accessible 

states within the tunneling energy window. As the nonlocal approach barely per­

turbs the scattering center, it can be used to characterize adsorbate geometries that 

are mechanically unstable under the STM tip.

The configuration and charging state of the SDB are responsible for a gating 

between the reacted row and a bare adjacent one. The magnitude of the gating is 

proportional to the charging of the SDB and to the directionality of the SDB orbital. 

The extra negative charge and the directionality of the p orbital of the SDB result 

in a pronounced gating effect on the adjacent row in the case of the n-doped He 

configuration. This effect is less irronounced in the n-doped H p case, where the SDB 

is singly occupied and the orbital has a s symmetry. Finally the gating effect is 

almost absent in the p-doped Hx case, due to the lack of negative charge at the SDB 

site.

All the results presented in this thesis can provide an interesting perspective for 

exploring fundamental properties of coupled systems (e.g. cpiantum wells) as well 

as applicative aspects aimed at the fabrication of nano-devices. The gating effect.
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together with the ability of creating (luantum wells by nanopattering the Si(lOO) with 

an STM tip, may offer the oi)portunity to study coupled real quantum wells. Two 

hydrogen atoms, for instance, may be deposited on one dimer row of the Si(lOO)- 

r(4 X 2) surface to create a quantum well, while a third H is deposited on an adjacent 

row. This latter ff will induce a gating (depending on the adsorption configuration) 

on the row containing the quantum well, causing it to split into two coupled wells. 

Such a system is currently under investigation.

The interplay between charging and geometry can be taken as the basic mech­

anism for fabricating an atomic-scale switch device. In fact, by tuning the surface 

doj)ing from 7;-ty[)e to /(-type, one may switch between the two H configurations. 

These have distinct scattering and transport properties [226], so that the switch can 

be detected electrically or by mapping the [/hase-shift using the nonlocal approach 

method. The surface do{)ing can be tuned by a local gating of the SDB, for example 

using the STM tip as a gating electrode. Another possibility is to create a depletion 

region in the surroundings of t he SDB by applying an electric field through an elec­

trode positioned at the l/ottom of the slab. It would work in the same fashion as the 

gate electrode of a FET transistor.

Due to the gating dependenee on charging and geometry of the SDB, a two rows 

device can also be modeled on the Si(l()())-c(4x2) reconstructed surface. The flipping 

between the two conhgurations is operated at the reacted row (the one containing the 

adsorbed H) and the signal discriminating the two states (phase-shift, for example) 

is detected at the bare adjacent row.

The modelling and the experimental implementation of the aforementioned flip­

ping mechanism into a switch device will be part of our future plans. We per­

formed some preliminary calculations on {/hosphorous-doped systems. The position- 

cei)endent features related to the presence of the dopant and confirmed by STM 

experiments will be the object of further investigations.
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The preliminary results concerning the electronic properties of a graphene-Bi2Se3 

heterostructure were presented. For different graphene-TI separations, four phases 

were identified. In the first phase {d > 3.2 A), the electronic structures of graphene 

and Bi2Se3 remain the one of the isolated systems. In the second phase (2.6A < d < 

3.0A), the upper part of the 4-fold degenerate grairhene cone splits in two. Two of the 

bands participating in the original cone are pushed towards higher energies, while the 

remaining two are still located around the Fermi level. The third phase (2.1 A < d < 

2.6A) is characterized by the chemical bonding between the two subsystems. The 

degeneracy is removed from the lower 4-fold cone originating from graphene and 

from the double degenerate surface state of Bi2Sc3. A new conical band (at the F 

j)oint) originates from the mixing of graj)hene and Bi2Se3 bands. The fourth phase 

(d <2.1 A) clearly indicates a conical band in the proximity of the Fermi level which 

is spatially located at the graphene-B12803 interface and originates from the mixed 

system. Some preliminary results (not shown in this thesis) indicate a helical spin 

texture characterizing the Fermi surface of the interface conical band in the proximity 

of the F point of the Brillouin zone. This is one of the peculiar properties necessary 

for topological insulators but it requires further investigations.

A topological protected state in graphene, once supported by experimental veri­

fication, would promote this versatile material as a very promising replacement for 

silicon aimed at narioelectronics applications.
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APPENDIX A

Schrodinger equation for a potential step

iEnergy

V^O
incident wave ^ transmitted

^ reflected

0 X

Figure A.l: Sciieinatic representation of a potential step V{x) at the position x = 0.

The solution of the Schrodinger ecjuation for a potential step has been used as 

a model to mai) the standing wave pattern present in the LDOS and originating 

from the i)otential barrier created by the reacted dimer. In this simple model the 

potential step is supposed to be finite and positive so that V = Vo(x) with Vq > 0 

for X > 0 and VJ) = 0 elsewhere, as shown in fig. A.l. The potential creates a 

barrier to the wave function and an incident wave coming from the left (x < 0) can
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be partially (or totally) reflected from the barrier. If the energy of the wave e is less 

than Vo, then it cannot propagate in the positive region (x > 0) and the wave-vector 

k — \/2m[e — Vo{x)]/h^ is imaginary. In the negative half-space the wave function 

can be considered under the general form

-ikx (A.l)

It is composed by an incident and a reflected wave (positive and negative exponent 

term, respectively), where the wave vector is now given by

k =
2rne

(A.2)

In the positive half-space, the solution of the Schrbdinger equation is 

-02 (^) = where 7 =
2-??i[Vo — £

(A.3)

The two wave function have to be smoothly joined at x = 0. I'he constants A, B 

and C can be determined by the normalization of the wave function and by applying 

the boundary conditions. The normalization condition can be considered by setting 

A = \ without losing generality. The boundary conditions are applied by imposing 

the continuity of the wave function and its derivative at the interface [x = 0):

0l(O)= 0^2(0)
d'lpi
dx

fi'02

x=0 dx

A + B = C 

ik{A -B) = --fC,
(A.4)

from which it follows

x=0

C 2ik
A ik—'y

B ik+-y
A ik—'y

(A.5)

The amplitude of the reflected wave is unity as there is no probability ami)htude for
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transiiiission across the interface and the only effect due to the interface is a phase 

shift in the reflected wave. The wave function in the negative region is given by

(A.6)

where

(-) = 2 tan

The probability amplitude is then given by

(A.7)

|•0l(x)|" = 2A''[1 + 2cos{2kx + 0)] for X < 0. (A.8)

This is a standing wave pattern with the probability oscillating from 0 to 2A^. The 

first peak occurs at x = —0/2A’ and it is dei)endent on the phase shift at the interface. 

For Vo —t oo the dami)ing coefficient 7 —)• oo and the j)hase shift approaches tt. The 

first peak occurs for kx = n/2, which implies the wave function to become zero at 

.X = 0 [52].
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