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Abstract

Equal-sized bubbles of average diameter less than one millimetre are found to
spontaneously crystallise upon formation. While previously employed by Sir
Laurence Bragg as an ideal system with which to study crystalline systems,
this work has been so far limited to two-dimensions due to the problems
associated with imaging foams in three-dimensions. Here we demonstrate
that advances in pC'T" X-ray tomography have now produced a technique
which will allow for the successful three-dimensional imaging of these foams.

Using this technique, we investigated the structure of monodisperse mi-
crofoams of different system sizes. The crystal nature of the samples was
determined through a visual inspection of the stacking of the individual bub-
bles, the calculation of the coordination number and radial distribution func-
tion (RDF) of the bubble center positions. It was found that small samples
(=5000 bubbles), spontaneously order into fce crystals. Larger samples (&
20,000 bubbles), which form foams approximately 20 layers deep, are seen
to have a different internal structure . Near the boundaries of such sample,
hexagonal ordering is still observed. Within the foam bulk, however, the
coordination number and RDF indicate that no crystalline order is present.
Instead. the wide distribution of the coordination number and the split sec-
ond peak of the RDF indicate that the sample has formed a Bernal packing

- a disordered packing of spheres.

We also investigate the temporal evolution of a sample composed of ap-

proximately 15,000 bubbles which was imaged every day over seven days.



The sample was stabilised against coarsening such that the sample remained
monodisperse throughout its lifetime. During the experiment, the internal
structure of the sample was seen to evolve from a disordered state on the
first day of the experiment, to a more ordered state on the seventh day of the
experiment. We characterised the order of this sample through the use of the
coordination number and RDF function as well as the the bond orientational
order parameter (BOOP) and the Voronoi tessellation. The Voronoi tessel-
lation was also used to calculate the local packing fraction ¢ of the sample.
It was found that as the sample ordered, no corresponding change in the
packing fraction ¢ occurred. Packing fraction is therefore not a useful metric

of order within these foam samples.

Following this characterisation of the morphology of these monodisperse
foam samples, we investigated several methods by which their structure may
be controlled and directed. Firstly, through the use of a cubic container the
internal surface of which was templated with the geometry of the Weaire-
Phelan (WP) structure, several experimental examples of the WP structure
were produced. Following this, we developed a method by which foam struc-
ture may be directed through the use of planar boundary conditions. In this
endeavour, we developed several pyramids the faces of which were parallel
to the closed-packed directions of the simple cubic (sc), body centred cubic
(bee) and face centred cubic (fee) crystals. Using this method, we success-
fully generated perfect fce crystals of bubble diameter between 0.5 and 4.7
mm. Bee foams could be produced successfully for bubbles between 1 and 5
mm. We also examined the formation of the unstable sc lattice. To demon-
strate the flexibility of this method, we produced a coherent grain boundary
between two regions of distinct fee crystallisation, as well as several examples
of a sheared fcc lattice.  Finally, the ordering of bubbles within cylindrical
confinements was also studied. The resulting structures were compared to
simulations focusing on the optimum packing of hard spheres within simi-

lar confinement. It was found that the morphology of the cylindrical foam



structures closely resembled their hard-sphere counterparts. Packing fraction
measurements of our foam samples were seen to correspond well to compu-

tational results of hard spheres.
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Chapter 1

Introduction

Figure 1.1: A photograph demonstrating the beauty and complexity inherent

within foams.



2 Chapter 1. Introduction

An aqueous foam (see Fig.1.1) may be defined as a a two phase system
composed of a continuous liquid phase and a dispersed gas phase [1]. How-
ever, there also exist foams in which the continuous phase is a solid, such as
for a metallic foam, or a biofoam in which the continuous phase is ceramic in
nature[2, 3]. A dispersion of liquid within a continuous liquid phase, known
as an emulsion, may also be considered. All these exhibit many similar char-

acteristics associated with foams [4].

1.1 Some foam characteristics

Figure 1.2: An image of a single bubble floating in free space. Minimisation
of surface area results in a spherical shape.

A single isolated bubble will take on a familiar spherical shape (see
Fig.1.2) as a result of foam’s tendency to minimise its total energy, resulting
in a shape of minimum surface area [1]. Bringing many bubbles together pro-

duces a bubble cluster. If the number of bubbles is increased again, a foam is
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formed. The structure of a foam is far more complex that that of the humble
isolated bubble. While many factors determine foam morphology, there exist
three main qualities, in the form of the dispersity, the liquid fraction and the
average bubble size, which broadly determine foam structure.

The dispersity of a sample is the ratio of the standard-deviation to the
mean of the bubble diameter distribution. A sample whose dispersity is
less than 5 % is generally described as monodisperse whilst a sample whose
dispersity is larger than 5 % is described as polydisperse [5].

Once produced, it is found that a foam evolves in time. This is a result
of the internal pressure associated with each bubble. The pressure difference

between the interior and the exterior of a bubble is given as

AP="" (1.1)

where 7 is the surface tension of the liquid phase and r is the bubble
diameter [1]. This equation implies that smaller bubbles have a higher inter-
nal pressure than larger bubbles. The resulting gradient in pressure between
small and large bubbles causes a diffusion of gas, through the films and liquid
phase of the foam, from small bubbles to large bubbles. This coarsening of
a foam leads to the dispersity of the foam increasing with time, as well an
increase in the average bubble diameter as r oc t'/2 [6].

The liquid fraction ¢; of a foam is the ratio of the volume of the continuous
liquid phase of the foam V; to the total foam volume V/[1]. Liquid fraction
may be used as method of broadly classifying foams into two groups: for
low liquid fractions, with ¢; < 0.2 a foam is described as being dry while,
conversely, for ¢ > 0.2 a foam is described as being wet [1]. The liquid
fraction may be expressed in terms of the fraction of the disperse gas phase
¢4 of the foam as ¢ = 1 — ¢,. If we consider a foam as a granular packing
of bubbles, ¢, is equivalent to the packing fraction ¢ of granular media.

For many purposes, controlling the liquid fraction of a foam is a desirable,

but difficult, process. The difficulty arises from the tendenacy of most foams



4 Chapter 1. Introduction

to dry out due to gravitational drainage [7]. This may be counteracted, re-
sulting in a stable wet foam, in several ways. Most simply, a continuous
supply of liquid may be added to the topmost section of the foam, replacing
the liquid lost through drainage. This process, known as forced drainage, will
result in a wet foam, however the throughflow of liquid is not suitable for
many static experiments. A static wet foam may be produced in micrograv-
ity, where gravitational drainage is essentially turned off. Such micrograv-
ity experiments are generally conducted using a drop-tower, sounding-rocket
or during parabolic flights. This results in microgravity experiments being
both expensive and time-limited due to the short intervals of microgravity
produced in these experiments [8, 9].

The alternative to the above methods is through exploitation of the cap-
illary effect associated with liquids. The capillary effect, which draws liquid
along objects placed into the surface of a liquid, will also result in liquid
rising into a foam in contact with a liquid surface. This counteracts gravita-
tional drainage, resulting in a section of wet foam adjacent to the foam-liquid
interface. It may be shown that the height of this wet section H,, is given by

1‘2
Hu' =2
d

where [ is the capillary length of the liquid phase and d is the average bubble

(1.2)

diameter [1]. Iy = \/% where 7 is the surface tension of the liquid phase of
the foam, p is the liquid density and g is acceleration due to gravity. For
typical surfactant solution, ly &~ 1.6mm. For bubbles of 1 ¢m in diameter,
the wet region is 0.0001 m in height above the foam-liquid interface, thus
extending less than one layer into the foam structure. However, if the average
bubble diameter is significantly reduced, say into the regime of 100 pm, the
corresponding wet region extends 1 ¢m into the foam, resulting in several
wet foam layers. This effect can be used to produce a static, stable wet foam
suitable for experimental investigation.

We may now investigate the structure of foam in the two extremes of
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liquid fraction. We will also investigate how this structure depends on the

dispersity of the sample.

1.1.1 Dry foam

Figure 1.3: A dry foam demonstrating the various rules of Plateau.

A dry foam is composed of a series of interconnected polyhedral cells (as
seen in Fig.1.3), the underlying geometry of which is dictated by Plateau’s
rules [10]. Joseph Plateau, a 19th Century Belgian physicist, conducted the
first experimental study of dry aqueous foams, leading to four empirical rules

regarding their local structure [1]. These rules are :
1. Foams are composed of smooth interfaces.
2. Each soap film has constant mean curvature across its surface.

3. Three soap films meet at %" = 120° to form a Plateau border.
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4. Four Plateau borders meet at cos™!(—1/3) ~ 109° to form a vertex.

These rules are a result of foam’s tendency to minimise surface area [1].
While Plateau’s rules accurately describe the local geometry of a dry foam,
the foam’s global properties may not be deduced from them. The analysis
of these global properties was first performed by Matzke, a biologist, in 1939
when he determined the distribution of the number of faces and edges of a
dry monodisperse foam composed of 5000 bubbles [11]. This analysis showed
a wide distribution of edges and faces for the foam, indicating that a bulk
dry foam is disordered in nature, with the average number of faces (f) ~ 14.
This random nature of dry monodisperse foam was concisely demonstrated
by Kraynik et. al. who recovered the same distribution of edges and faces
in computer simulations of monodisperse foams [12]. To produce the foam
structure, a disordered packing of spheres was first generated. The Voronoi
tessellation of this packing was then calculated, and used to produce a real-
istic foam structure through its energy minimisation using Surface Evolver.

While this random structure of foams is seen to dominate in experiment,
the question may be asked what is the most efficient foam structure? The
most efficient dry monodisperse foam structure is the one which partitions
space into equal-units while minimising its surface area. In two dimensions,
it is found that such a condition is fulfilled by the honeycomb lattice [1].
In three dimensions, however, this is a non-trivial question, first addressed
by Lord Kelvin in 1887 in his pursuit of the ideal structure of the ether -
the medium which was believed to permeate all space. Now known as the
Kelvin conjecture, he stated that the ideal structure was that of the truncated
octahedron (see Fig.1.4) which fulfilled this minimum partition problem of
space [13].

In 1993, however, Weaire et al. discovered a new structure - the Weaire-
Phelan (WP) structure - which was found to be a more efficient partition
of space by 0.18% when compared with the Kelvin structure [14]. The WP

structure is based on the energy-minimised Voronoi tesselation of the A15
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Figure 1.4: A simulation of two Kelvin cells produced using Surface Evolver.
The Kelvin cells are a space-filling polyhedron based upon a bece lattice [6].

crystal structure constrained such that each cell of the resulting structure
has the same volume (see Fig.1.5).The resulting structure is composed of
two distinct types of polyhedra - one is the irregular dodecahedron com-
posed of pentagonal faces while the second is a regular tetrakaidecahedron
composed of two hexagonal and twelve pentagonal faces. The unit cell of
the WP structures is composed of an arrangement of 2 dodecahedrons and 6
tetrakaidecahedra.

From its discovery in 1993, however, an unresolved question has troubled
the WP solution to the Kelvin problem. After the theoretical discovery of the
WP structure, several examples of Kelvin cells within monodisperse foams
were found [16, 5]. In these experiments, monodisperse bubbles of average
diameter approximately 1 mm were introduced into a Hele-Shaw cell. As the

bubbles filled up the cell, the liquid fraction of the top most layer of bubbles
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Figure 1.5: A simulation image of the WP structure. The tetrakaidecahedra
are shown in blue while the dodecahedrons are shown in brown. Image
reproduced with permission from Ruggero Gabrelli using 3dt [15].

was reduced by gravitational drainage. Once the foam had become dry, the
resulting configuration of bubbles was identified as a series of Kelvin cells by
visual inspection. During all such experiments, however, no example of the

WP structure was found.

It was believed that experimental verification of WP structure might not
be possible due to the small difference in surface energy of the two structures
and the complexity of the WP structure. In Chapter 4 we will examine a

method by which the WP structure may be formed in experiment.
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1.1.2 The structure of wet foam

As the liquid fraction of a dry foam is increased, through one of the vari-
ous methods described in section 1.1, the foam structure begins to change.
The vertices and Plateau borders of the foam swell, diminishing the angular
nature of the original dry foam. Eventually, for high liquid fractions, the
foam may be considered as a packing of spheres rather than a partition of
space, as demonstrated in Fig. 1.6 for two-dimensional foams. As the liquid
fraction of the foam is increased, the question of the foam’s ideal structure
changes from one concerned with the minimum partitioning of space to a

related question; which is the ideal packing of spheres?
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Figure 1.6: Experimental packing of bubbles into the honeycomb configura-
tion for the case of a dry foam, an intermediate foam and the wet case (the
dry foam is confined between two glass plates, while the intermediate and
wet cases are free-floating Bragg rafts). Note that in the wet (c¢) case the
bubble appear separated due to an optical effect.

In two dimensions, the same efficient hexagonal partitioning of space pro-
duces the most efficient packing of discs (as seen in Fig.1.6). In three dimen-
sions, however, this simple relationship between the two problems is no longer
valid. Both the A15 lattice and the BCC structure which form the basis of

the WP and Kelvin structure for dry foams are found to be unstable for wet
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foams [7, 17, 18]. Instead, it is the well-known fec structure, first envisaged
by Kepler in his pursuit of the structure of snowflakes, which is the most
efficient packing in three-dimensions, although such a statement has only

recently been proven [19, 20)].

While ordered foams are difficult to produce in dry foam, it is found
that wet monodisperse foams spontaneously order into their minimum en-
ergy configuration of the fcc lattice. Such spontaneous ordering is shown in
Fig.1.8 in which a photograph shows the surface ordering of a monodisperse
foam sample of average diameter 800 gm. The regular hexagonal arrange-
ment of the topmost layer of this foam indicates the ordered nature of the
underlying foam. The crystalline nature of these systems was first studied
by Bragg and Nye in 1947 [21]. They found that a two dimensional raft
of monodisperse microbubbles formed an ideal model system with which to
study crystalline structure [22, 23]. This was due to the ability to form grain
boundaries, interstices and vacancies through the removal and addition of
bubbles, and control of the boundary conditions of the sample [24]. In ad-
dition, it has been found that the inter-bubble potential in such a 2D raft
closely resembles the Lennard-Jones potential[25]. In fact, for bubbles of
the right diameter, the resulting potential may be scaled with bubble diam-
eter accurately to the inter-atomic potential of copper atoms [23]. Indeed,
the accuracy and efficiency of this bubble model for the study of crystalline
structure has continued to the present day, with the Bragg bubble raft form-
ing the basis for many experiments investigating the nanoindentation process
[26, 27].

Although primarily interested in the two dimensional ordering of such
samples, Bragg et al. demonstrated that when three dimensional samples
of monodisperse microbubbles were formed, surface details indicated the
presence of crystalline ordering [21]. Within such samples, they also found
surface evidence for the formation of grain boundaries (see Fig.1.7). More

recently, van der Net et. al. investigated the ordering nature of these three-
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Figure 1.7: Photograph of the top layer of a 3D monodispese aqueous foam
of average bubble diameter 400 pm . The bubbles are seen to spontaneously
form distinct crystal domains which are separated by disordered grain bound-
aries.

dimensional bubble crystals using ray tracing techniques [28]. By comparing
computer simulations of crystalline arrangements of glass spheres with exper-
imental photographs of monodisperse microfoams, the ordering nature of the
surface of such bubble crystals may be determined (see Fig.1.8). They found
that regions of fcec and hep ordering existed at the surface of these samples.
They also found evidence for interstices, vacancies and grain boundaries di-
rectly underneath the surface layers of these three-dimensional foams (see
Fig.1.7) [29]. Optical limitations, however, prohibited the study of these
foams beyond the first three foam-layers adjacent to the sample surface.
The spontaneous crystallisation of these foam systems has produced par-

ticular interest due to the lack of such analogous behaviour in similar systems
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Figure 1.8: Photograph of the surface of a monodisperse microfoam (average
diameter 800 gm). The fce (111) nature of the crystallisation can be deter-
mined through examination of the refracted image of the second (red) and
third (yellow) layers in the first (blue) layer of the foam.

of spherical particles. For example, in D.G. Scott’s first investigation of large
packing of hard spheres [30] in 1960, it was found that the packing fraction
¢ - the total volume of spheres divided by the total volume of the system -
of large quantities of spheres did not exceed 0.64, far below the packing frac-
tion of 0.74 associated with hexagonally closed-packed structures [13]. Such
a random packing state is known as a random packing or mazrimally random
jammed (MRJ) state [31].

The internal structure of these random packings of spheres was first stud-

ied by the Irish physicist Bernal in his investigation of liquids [32]. He showed
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that in disordered packings of spheres, in which no long-range order is ob-
served, there still exists local, short-range translational order [33]. Due to his
influence on the study of these disordered packings, such packings are now

referred to as Bernal packings.

In spite of the many applications of these monodisperse microfoams, full
three-dimensional study of monodisperse foam crystals has been somewhat
limited. This has been due to the problems associated with an optical charac-
terisation of the ordering behaviour of these foam samples due to the multiple
scatterings of light which occur within these samples. Such scattering, which
produces the characteristic white hue of foams, also limits detailed optical
analysis of their internal structure. In 1992 Durian et al., however, devel-
oped a method of using these multiple scatterings of light to determine the
average bubble diameter of wet foams by modeling this light propagation by
scattering as a diffusion process [34]. However, this methodology is limited
to samples of small average bubble diameter (= 100 pm) and provides no

information about internal foam structure.

Full three dimensional characterisation of these foam structures requires
advanced imaging techniques. Using MRI technology, Gonatas et al. success-
fully studied the coarsening dynamics of a three dimensional foam [35]. How-
ever, due to limited computational power at the time of the experiment, bub-
ble radii were determined from the apparent radii seen on two-dimensional
sections taken through the foam sample. This results in a systematic shift
in the bubble size distribution. In addition, the relative high cost of MRI
machines (= $1 million) excludes these machines from standard foam labo-

ratories.

A more low-cost alternative to this imaging technique is offered by optical
tomography, which has been successfully used to image a dry foam [36]. Due
to the relative simplicity of the experimental components required (optical
camera, rotation stage, planar backlight), optical tomography is a quick and

cost-effective method of characterising the three-dimensional qualities of a
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foam. However, as with most optical techniques, three-dimensional charac-
terisation is limited to dry foams of a thickness such that all parts of the foam
are at one-time visible. The possibility of observing truly “bulk” qualities of
a foam is therefore lost.

X-ray tomography has proven to be a useful tool for studying the internal
structure of both wet and dry foam. In Chapter 2 we will investigate how
X-ray tomography has been applied to aqueous foams, and demonstrate that
advances in uC'T" now provide us with a cheap and convenient method by
which the internal structure of wet foams may be investigated. Such analysis
will produce fully-resolved three-dimensional positional data of our foams,
allowing, to date, the most compete characterisation of these useful foam

systems.

1.2 Order parameters

When investigating three dimensional positional data, it is desirable to em-
ploy quantifiable measures of structure to distinguish between disordered and
ordered systems. There exists several metrics of order which are positively
correlated [31]. Each order metric investigates a different aspect of the or-
dering of the sample. For our purposes, we will use the coordination number,
the radial distribution function, the bond orientational order parameter and
the Voronoi tessellation to quantify the ordering of our foam samples. These
metrics are calculated using the bubble center positions produced using the

commercially available software MAVI [37].

1.2.1 Coordination number

The coordination number n is the number of nearest neighbours for a given
particle within a packing [31]. It is found that the coordination number may
be used as a crude measure of order for granular packings. Experimentally,

it has been used to characterise ordering within sphere packings [32]. Hexag-
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onally closed packed structures will generally have a coordination number
of n = 12, excluding boundary cells. For random packings of hard spheres,
while locally n may vary significantly, globally n will average to 6, as is given
by the isostatic argument [38].

There exists several methods by which the neighbourhood of a particle
may be defined, e.g. through the use of the Voronoi tessellation to define
a local neighbourhood for each particle within the packing. The average
contact number is then defined by the number of faces of the corresponding
Voronoi cell. However, such definitions have associated with them compli-
cations which make their physical interpretation difficult e.g. a Voronoi tes-
sellation for an fce lattice produces a coordination number of n = 14 when,
physically, a sphere within an fcc lattice has n = 12.For present purposes, it
was found that a simple definition of contact based on the distance between
particles was the most efficient to implement, analyse and interpret. We

define two particles, 7 and j, as neighbours if

|’f‘,—f]|SR,+R7 (15)

where 7; and 7 are the positions of the i’ and j™ particles within the

packing, and R; and R; are the corresponding particle radii. The probability
distribution P(n) of particles with n neighbours can give valuable information
about the local structure of a particular packing. A wide distribution of
P(n) indicates disorder within the sample, while sharp maxima indicate the
presence of local ordering. However, detailed information about the structure

being examined is not provided by this order measure.

1.2.2 Radial distribution function

The Radial Distribution Function (RDF), also known as the pair correlation
function, ¢g(r) is a mathematical representation of translational order within

a sample [39]. It is a correlation function of particle center positions which
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examines the distribution of nearest neighbours within a sample. The RDF

may be given as:

vV N N

i=0 j#i

where 7 is the radial distance from a given particle, N is the number of
particles and V' is the enclosing volume of the particles being examined. For
the case of completely periodic systems - such as a perfect crystal lattice
- the corresponding RDF function will be composed of a series of d-peaks.
The location of these peaks corresponds to the radial positions of neighbours
within the crystalline lattice. For the case of a finite packing, however, care
must be taken that the border of the sample does not influence the resulting
RDF. So as to avoid this complication, when computed, only those points
which are a distance r,,,, from the boundary of the sample are considered.
Increasing r,,., increases the range investigated by the RDF, but reduces the
number of experimental points being averaged, resulting in in an increase in
data noise. Typically, the radial distances r of the RDF are normalised by
the position of the first peak of the radial distribution function ry. This,

generally, corresponds to the diameter of the particles being examined.

Due to the uniqueness of the lattice positions associated with each crystal
structure, the RDF acts as a signature by which the exact structure of a
crystal lattice may be examined. In this respect, it is related in function
to the structure factor S(l?) of X-ray scattering data. In fact, g(r) may be

-

related to spatial Fourier transformation of the structure factor S(k) [40].

The radial distribution function may also be used to calculate an addi-
tional order metric, the translational order parameter G, for the packing.
This single. scalar number, is a convenient measure which may be used to di-
rectly compare differences in translational symmetry between two structures

[39]. The translational order parameter G is defined as
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G _ 9(7'7711'71) (15)
g(T?n(II)

where g(7,,:,) is the value of the sample’s RDF at the first minimum while
G(Tmax) 1s the value at the first maximum (see Fig. 1.9) [39]. As the RDF of a
perfectly crystalline sample is composed of a series of discrete delta functions,
g(Tmin) = 0, resulting in G = 0. As the sample becomes more disordered,
the discrete delta functions widen into a continuous distribution of points,
resulting in an increase in g(r,,;,). This leads to a non-zero value of G for
disordered systems, the value of GG increasing as the translational disorder of
the system increases. The values of ¢(7,,in) and g(7r,42) are calculated from

fourth order polynomial fits to the experimental data.
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Figure 1.9: Plot showing the first maximum and minimum of the RDF func-
tion used to calculate the translational order parameter. The ratio between
these two values is used as a metric of translational order GG within the sam-
ple. 4" order polynomials are fitted to the data to find the accurate values

of the maximum and minimum values of the RDF.
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1.3 Thesis outline

Using pCT X-ray tomography, which is described in Chapter 2, we will in-
vestigate the structure of monodisperse microfoams. In Chapter 3, we will
investigate the variation of the ordering of such foams with sample size, as
well as with sample age. Following this characterisation, we will investigate
methods by which their structure may be controlled. Chapter 4 will look at
the use of templates to control these samples, while Chapter 5 will investigate
the use of carefully selected planar boundary conditions of the sample. Fi-
nally, in Chapter 6, the study of the ordered structures produced when such

monodisperse microfoams are confined within cylinders will be described.



Chapter 2

X-ray tomography of liquid

foams

2.1 Introduction

X-ray tomography is a non-destructive method of obtaining full, three di-
mensional data about the structure of an object [41]. First developed by
Godfrey N. Hounsfield in the 1970s [42], tomography has had most success-
ful applications in the medical area where Computer Tomography or C'T has
been used for the diagnosis of disease and the imaging of complex injuries.
In the area of physics, it has had many applications. In particular, over the
last twenty years, X-ray tomography has been applied to the area of granular
media with much success [43, 44].

Before the development of X-ray tomography, the methods employed in
determining statistics from granular media, such as object location, size and
neighbourhood distribution was a difficult, and time consuming, process.
This is best illustrated in the pioneering work of J.D. Bernal on the random
packing of hard spheres which aimed to describe the structure of liquids
using a hard sphere model [32]. Although such a description of liquid failed

to fulfil the early promise of the work, Bernal successfully pioneered the study

19
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of the structure of hard sphere packings. In particular, Bernal and Finney
conducted the first study of the coordination number and radial distributions
associated with these packings [33]. To conduct these measurements, up to
4000 spheres were placed into a burlap sack and annealed by hand. Ink was
then introduced into the sack, and allowed to dry. Individual ink-coated
spheres were then broken from the conglomerate. From the ink pattern on
each sphere, the number of nearest neighbours ( those neighbours in contact
with an individual sphere) and close neighbours (spheres directly beside but
not in contact with a particular sphere) could be determined. To calculate
the radial distribution function, a packing of 5000 spheres was sintered to
produce a solid conglomeration. The resulting conglomeration of spheres
was mounted on a free-standing milling machine. Successive 1 mm thick
sections were removed along the z axis of the structure. The centre position
of each sphere, identified as the centre of the disk of maximal area associated
with the milling of each sphere, could be measured in three dimensional space
through the use of a plum-line attached to an xy grid mounted above the
conglomeration. The resulting data set of sphere center positions was then
used to calculate the radial distribution function for the packing. Obviously,
this was an incredibly time-consuming and hardly reproducible experimental

process.

The development of X-ray tomography has allowed this same experiment
to be repeated, with greater ease, on a larger scale, to a higher precision.
For example, in 2005, Aste et al. conducted a tomographic investigation of
the packing of 150,000 monodisperse beads of 1 mm in diameter [45]. Their
increased accuracy allowed them to completely characterise the structure
through the use of many order parameters, including the RDF(see section
1.2).

X-ray tomography has also been successfully applied to image the internal
structure of aqueous foams of various liquid fractions. Lambert et al. have

used this high-energy X-ray tomography to examine the coarsening dynamics
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associated with three-dimensional foams [46, 47]. Using the high-resolution
data provided by these images (resolution ~ 10 pm), and advanced segmen-
tation techniques, Lamber et. al. were able to determine the average bubble
diameter for each bubble within the sample. The evolution of the average
bubble radius 7 with time, the coordination number of each bubble, and the

characteristics of the growth-rate constant G could be determined.!

Stocco et. al. used phase-contrast X-ray tomography to study the evolu-
tion of particle stabilised foams. Image resolution of 1 pm was available at
the BAMline (Bessy, HZB, Germany). This permitted the bubble-size distri-
bution of the foam sample to be accurately measured over time, allowing the
coarsening dynamics of such a foam to be investigated which showed that the
addition of the silica nanospheres to the liquid phase halted the coarsening
of small bubbles (diameter < 30 pm).

To date, however, X-ray tomography of aqueous foams has been confined
to high energy X-ray facilities e.g. European Synchrotron Radiation Facility
(ESRF). These facilities provide the high sensitivity and rapid acquisition
rate required to produce usable reconstruction of aqueous foams. However,
due to the large expense and limited time available for individual studies at
such facilities, the range of experiments that may be conducted is limited.

We believe that we may image monodisperse wet foams, however, using
convenient low-energy pC'I" X-ray tomography. Due to the relatively high X-
ray absorption from the thick Plateau borders and vertices of such a wet foam,
successful X-ray imaging is possible. Such pCT imaging, however, is a slow
process, requiring acquisition times of several hours rather than seconds when
using high-energy X-ray tomography. This long acquisition time is therefore
not suitable for imaging a typical dry aqueous foam due to its relatively
rapid coarsening rate. The coarsening rate of monodispese microbubbles,

however, is significantly reduced when compared to these foams. Firstly,

Tt may be shown that the growth rate of a bubble of volume, V, in a three dimensional

foam is of the form % = V3@ (48]
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due to the low initial dispersity of our samples, the differences in pressures
between neighboring bubbles is reduced when compared to a polydisperse
foam, resulting in a slower initial coarsening rate. In addition, the high
liquid fractions of these monodisperse microfoams result in thick Plateau
borders, vertices and soap films. As the coarsening rate of a foam is inversely
proportional to the film thickness of the foam, this results in the coarsening
rate of our monodisperse microfoam decreasing significantly when compared
to a dry foam [6]. The coarsening rate of our monodisperse microfoams may
be further reduced through the use of the concept of a frustrated froth [49].
Weaire et. al. showed that the evolution of a foam composed of two gasses
is determined by the gas of the lowest permeability. It was found that the
addition of even a small quantity of slow-diffusing gas produces a dramatic
reduction in the coarsening rate of the foam, producing foams stable against

coarsening for several hours [6].

2.2 Basic X-ray tomography theory

Tomography is based upon Lambert-Beer law; namely there exists a loga-
rithmic relationship between the intensity of light transmitted through an

object and the absorption coefficient of the object itself, or, stated concisely

A =log <£> (2.1)
Iy

where A is the absorption coefficient of the body, I is the initial intensity
of the radiation and I, is the transmitted radiation [50]. This coefficient can
be expressed in terms of the linear attenuation coefficient p, a local mea-
sure of the absorption characteristics of the body. as A = [p(x,y)dady, for
absorption in the xy plane of radiation travelling in the z direction. This
linear attenuation coefficient is the product of the object density and the

mass-absorption coefficient of the material in question. It contains all the
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structural information required to obtain a complete three-dimensional re-
construction of the objects in question.

For the purposes of illustrating the principle of tomography, however, we
will examine the case of a two-dimensional object O, illuminated by a planar
X-ray source, the radiation from which is measured at a planar detector D
(see Fig. 2.1).

Figure 2.1: Ilustration showing the experimental setup used in X-ray to-
mography experiments, composed of an X-ray source S, the test object O,
and the planar detector D. During the experiment the object O is rotated
through an angle ¢ and a two-dimensional intensity profile p(r, ¢) is recorded

at the detector D.

During tomography the object is rotated around its central axis. For
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each rotation angle ¢, a one-dimensional intensity profile p(r, ¢) dependent
on the distance from the centre of the object r is recorded. The Radon
transformation states that each of these profiles, p(r, ¢), is simply a one-

dimensional projection of the two-dimensional object being imaged:

p(r, @) = /;L(.’l‘. y)o(xcosp + ysing — r) dedy. (2:2)

The Cental Slice Theorem provides a method by which the form of ;1 may
be calculated when p is known [50]. It states that the 1 dimensional Fourier
transformation of the measured profiles is equal to the two-dimensional Fourier

transformation of the linear attenuation coefficient:

/P("~ p)e ™ dr = ///1 , y)e 2rE@eosttysing) gy, (2.3)

Once p has been measured, its Fast Fourrier Transform (FFT) may be
calculated, which is then related to the 2D FFT of p. By then calculating

the inverse FF'T, the original g may be calculated.

2.3 Experimental procedure

Our X-ray tomographic experiments were broken down into 4 stages. These

stages were:

—_

. Sample preparation

o

Image acquisition

3. Image reconstruction

=

Image processing

Following the image processing step, the analysis of the experimental data

was conducted.
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2.3. Experimental procedure

2.3.1 Sample preparation

The foam samples were produced using a microfluidic flow-focusing device
which allows for the production of monodisperse foams of average bubble size
between 100 pm and 1500 pm. The rapid production rate of foam from such
a device means that large foam samples (consisting of about 1000 bubbles)
can be generated before the sample has coarsened significantly [51]. A flow
focuser consists of a closed chamber into which there are two input channels
and one outlet channel. Through the inlets is supplied a constant flow of
surfactant solution, as well as gas at constant pressure. At the confluence of
surfactant and gas supply at the outlet nozzle, it is found that an instability
between the two supplies arises. This instability produces a foam of small
bubble diameter [52]. For particular combinations of flow rates of surfactant
solution, pressure of gas and nozzle size, the foam produced is monodisperse.
The size of the resulting bubbles is a function of both flow-rate of the surfac-
tant solution and the output nozzle size. By increasing the surfactant flow
rate and decreasing the output nozzle size, the average bubble diameter may
be decreased.

For our X-ray tomographic experiments, the surfactant solution used to
produce our foams was composed of 5% by volume aqueous solution of the
commercially available detergent Fairy Liquid. This is found to produce sta-
ble foams suitable for a wide variety of experiments. The gas-phase of our
foams was composed of a mixture of Oxygen-Free Nitrogen gas and Per-
fuorohexane (PFH). PFH, with a very low solubility, results in a significant
reduction of the coarsening rate of a foam when added to a sample (see section
1.1). This was particularly important during our X-ray tomography exper-
iments as any movement produced by coarsening during image acquisition
will result in a blurring of the reconstructed images.

It was found that foams containing PFH exhibit a rapid expansion of the
average bubble size when directly exposed to air. This is due to the diffusion

of Nitrogen gas into the foam from the atmosphere in an attempt to equalise
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the partial pressure gradient produced by the presence of the PFH. This
results in a increase in the average bubble size, as well as an increase in the
polydispersity of the sample. Even once the sample has been sealed from the
atmosphere, the resulting bubble size gradient will continue to increase the
coarsening rate of the foam, again causing rearrangements within the sample,

and thus image blurring during the tomographic process.

To Nitrogen gas supply To surfactant solution

e

Surfactant solution

Sample Container o

O

Bubble O
Flow focusing device

Figure 2.2: TIllustration of the surfactant-bath used to generate foams for
X-ray tomographic experiments. The flow focusing device, attached to the
bottom of the surfactant bath, produces monodisperse bubbles which are
then captured in a surfactant-filled sample container. In this way. the bubbles
are never exposed to atmosphere, resulting in a stable foam.

To avoid this effect, we fixed our flow-focusing device to the bottom of
a surfactant bath, as shown in Fig.2.2. The sample containers were placed
into the same bath, rotated and shaken so that all trapped air within the
container was released. The flow focusing device was then engaged. Once
a stable stream of bubbles, of the desired bubble diameter, was produced
the surfactant-filled container was positioned above the opening of the flow-
focusing device. This allowed the monodisperse bubbles to be produced
and captured without exposing the foam to the atmosphere. Once filled,

the container was sealed by sliding a glass plate over the open face of the
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2.3. Experimental procedure

container, which was then removed from the solution.

It was found that a slight expansion of the foam with time still occurred.
This, we believe, was due to evolution of dissolved nitrogen gas from the
solution into the bubbles. To combat this effect, a rest-time of two hours was
established between foam production and foam imaging. This was found to
produce a foam sufficiently stable for imaging purposes. Following the rest
time, each sample was affixed onto a polyurethane mounting stage through
the use of a hot glue resin. The stage was then fixed within the X-ray

tomographic device.

2.3.2 Image Acquisition

Figure 2.3: A photograph of the X-ray tomographic apparatus used to image
our foam samples. Showing X-ray source, rotation stage upon which the
samples are mounted, and the X-ray detector. The entire device is enclosed

in a blue steel box to contain the X-ray radiation during sample imaging.
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X-ray tomography was conducted in the Metallic foams group at the
Helmholtz-Zentrum Berlin institute. The X-ray tomographic device that
was used is shown in Fig.2.3. The device is composed of three main parts;
the X-ray source, the rotation stage and a flat panel detector. The source is
a micro-focus 150 kV Hamamatsu X-ray source with a tungsten target. By
varying the filament voltage and current, a 100 kV filament voltage and a
100 pA was found to provide the best contrast and lowest noise in the re-
constructed foam images at high spatial resolution. The image magnification
was determined by the source-detector distance (SDD) and the source-object
distance (SOD). The magnification M is then given by M = %g In the ma-
jority of experiments, SDD was set at 130 mm and SDD at 390 mm resulting
in a three-fold magnification factor. This maps a 17 gm? sample area onto
a detector pixel of size 0.05 mm?. By varying SDD and SOD, magnifica-
tion values between 2 and 6 were achievable. Larger magnification requiring
a large SDD, resulted in increased image noise due to the additional air

through which the X-ray beam must pass.

The sample was mounted on a precision rotation stage from Huber Ger-
many, which rotated the sample through 360° during the imaging process.
A 360° sample rotation was required due to the cone-beam geometry of the
X-ray beam produced from our source. As the sample is rotated, several
images or projections of the sample were recorded. The more projections
which were recorded, the greater the image quality of the resulting recon-
structed image. However, due to the limited lifetimes of the foam samples
that we were examining, the number of projections had to be significantly
reduced to lower the imaging time. Our samples were formed from 500 im-
age projections. Due to the presence of several defects within the detector
itself, normalising images were first taken before imaging. In particular a set
of ‘open’ and ‘closed” beam images, corresponding to direct imaging of the
X-ray source while activated and deactivated, were captured. These images

were later used during the image reconstruction phase.
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2.3.3 Image reconstruction

Figure 2.4: Composite images illustrating the image processing steps required
to progress from a series of vertical projections of the imaging object to a
series of horizontal slices through the object. (a) shows an example of the
initial images captured during the acquisition process. 500 such images are
recorded at 0.72° increments of rotation of the sample. Several horizontal
white lines across the image are observable. These defects are caused by
dead pixels in the detector array. (b) shows the same image after defect cor-
rection and normalisation. The intensity gradient across the image has been
equalised and the dead pixel defects have been removed. (c¢) The generation

of the sinogram from the corrected images.
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The image reconstruction process - the transformation from the image
projections into two-dimensional image slices - was conducted using the com-
mercially available software Octopus V8.2 [53]. This software is based upon a
back-projection algorithm with convolution and correction for the cone beam
geometry. The 500 sample projections, combined with the 10 open and 10
closed beam images, were selected for processing. The original images were
cropped to the areas of interest so as to reduce processing time. A region out-
side the bounds of the object was chosen for normalisation purposes. The 500
images were then re-normalised such that this section has constant intensity
over all 500 projections. This is necessary to compensate for the variation
of the X-ray intensity produced by the source over time. This variation in
beam intensity leads to non-isotropic image contrast in the final images if
uncorrected. A ring filter value of 3 was chosen for historical purposes to
remove the effect of dead detector pixels (see Fig.2.4) [54]. Such dead pixels,
of constant intensity, would produce rings in the final reconstructed images
it left uncorrected. After the image-stack normalisation procedure, the sino-
grams — a visual represenation of the Radon transformation — were produced
[50]. The sinograms were then combined to form horizontal slices through
the image through the application of the central slice theorem. To do so,
however, requires setting the three dimensional object centre so that the re-
sulting image reconstruction was clear throughout the sample. A Gaussian

filter was also applied to the image data at this point to reduce image noise.

The reconstructed data is composed of a series of 8-bit greyscale images
measuring 1500 x 1500 pixels (see Fig.2.5). This means that each pixel of the
reconstructed image has a value in the range [0:256]. A pixel value of 0 cor-
responds to pure black while a value of 256 corresponds to pure white. Each
image represents a horizontal slice, 15 pm thick, taken through the sample
(for a magnification factor of 3). These images may be combined to form
an image stack, a sequential series of images that may be used by rendering

software such as 3DstudioMAX to produce three-dimensional renders of our
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foam samples [55].
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Figure 2.5: A two-dimensional image slice taken through an ordered foam
showing the image data produced following successful image reconstruction.
Dark segments of the image correspond to the gas phase of the foam, while
brighter areas of the image correspond to the liquid phase. Due to the similar-
ity between the linear attenuation coefficient associated with the surfactant
solution and the container of the experiment, these two phases cannot be

separated in the resulting reconstructed images.

2.4 Image processing

Following the successful imaging, reconstruction and visualisation of a foam

using X-ray tomography, we now wish to obtain information, such as bubble
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size, position, shape etc. from our data. Due to the thinness of the films
of a foam (in the regime of 50 nm [6]) being below our current imaging
resolution, such features are not present on the reconstructed images and
thus individual bubbles do not appear as separated objects (Fig.2.6). If a
simple segmentation was applied to the image data at this point, only one

particle composed of the bubble-conglomerate would be identifiable.

Figure 2.6: Magnified section of Fig.2.5. The Plateau borders and vertices of
the foam are clearly visible. However the thin films separating neighbouring

bubbles are not present within the image.

[t is the function of image processing to reproduce the missing thin films
and thus separate the individual bubbles from the position of the imaged
vertices. Following this, image segmentation can be performed, resulting
eventually in full statistical information about the foam packing. This image
processing was conducted using the commercially available software MAVI,
following a similar procedure as to that employed in the reconstruction of a

zine metallic foam [37]. These steps were:
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Filtering

A median filter was applied to the image data. A median filter replaces each
pixel with the mean value of its nine neighbours. This reduces image noise

associated with digital photographs.

Binarisation

Binarisation is the process by which each greyscale image with pixel values
between [0:256] is converted to a binary image for which each pixel has a
value of either 0 or 1. This process begins by examining the histogram of
pixel values associated with each image slice. An example of such a histogram

is shown in Fig. 2.7.
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Figure 2.7: (left) Greyscale image slice of foam. (right) Histogram of pixel
values shown in the image. Peaks associated with bubbles (dark image area,
centred around 60) and liquid (light image areas, centred 210) are clearly

seell.

Two peaks are observed in this histogram - one peak is associated with
the darker image regions corresponding to the gas phase of the foam, while

the second peak refers to the lighter pixels associated with the liquid phase.
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Based on this histogram, a threshold value of 98 can be chosen to binarize
the image - any pixel with a value less then 98 is set to zero, while any pixel
with a value greater than 98 are set to one. The threshold value must be
chosen such that the vertices are completely resolved while image noise is
limited. If the threshold value is set too high, image-noise will result in over-
segmentation of the resulting image. The results of this binarisation process

are shown in Fig.2.8.
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Figure 2.8: Binary image of foam slice. Black regions correspond to the

gas-phase and white regions to the liquid phase of the foam.

Distance measure

A distance measure is a method by which a greyscale image may be formed
from a binary image by assigning each pixel of the background (black regions)

a value equal to the minimum distance to the nearest foreground (white
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regions) pixel [56]. Fig.2.9 demonstrates this process applied to a single-

pixel image.

Figure 2.9: Example of the application of the Euclidean distance measure
applied to a binary image composed of a single foreground pixel (top left).
The distribution of image values is shown below. After applying the distance
measure to the image. the resulting pixel values across the image show a

linear increase

For this process, distance may be measured using either the Chebyshev
measure, the Manhattan measure, or the Fuclidean measure [56]. Both
Chebyshev and Manhattan distance measures take advantage of the dis-
crete nature of the image data. The Chebyshev considers distance only
along the 8 nearest neighbour directions of a particular pixel, while the

Manhattan Measure assumes that the distance is measured along the di-
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rection of the 4 nearest neighbours, i.e. along the coordinate lines. The Eu-
clidean distance is calculated by embedding the image in a two-dimensional
space. The distance between two pixels is calculated using the normal def-
inition of the euclidean metric and rounded to the nearest whole number
i.e. the distance between two pixels p(xi,y;) and q(z9,y2) = d(p,q)p =
ROUND(+/(x2 — 21)2 + (y2 — 11)2).

Since this measure does not take advantage of the discrete nature of

the image data, the Euclidean distance measure is the most computation-
ally inefficient distance measure. However, due to the accuracy and ease of
interpretation of this measure, it was used in our calculations. For each back-
ground pixel, the distance to the nearest foreground pixel is calculated. The
background pixel value is then changed to this distance value. Fig.2.10 shows
the euclidean distance measure applied to the binary image slice shown in

Fig.2.8.

Figure 2.10: Euclidean distance measure applied to binary image slice.
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Geodesic Transformation

The euclidean distance transformation results in the formation of a distinct
maximum at the centre of each separated bubble. This process. however, pro-
duces unwanted maxima associated with signal noise and defects produced
during the imaging process. To reduce their effects in the segmentation pro-
cess, a Geodesic transformation is applied to the image.

Geodesic transformations are a set of morphological operators based upon
the ideas of a marker image f and a mask image g [56]. The basic operators
of this transformation class are Geodesic Dilation and Geodesic Erosion. For
our purposes - determining the position of local maxima within the image

data - we need only examine geodesic dilation defined as

00 (f)=08"f g (2.4)

where ¢! is elementary dilation - the process by which an image foreground
object feature is expanded outwards by a pixel value of 1 - and A is the point-
wise minimum operator defined as fAg: X — R : (fAg)x = min(f(z), g(x)).
Using 0 we may define the morphological operation reconstruction by dila-
tion:

Ry(f) = 6,(f) (2.5)
where 1 is such that ();(f) = (5;+1(f) i.e. unitary geodesic dilation is succes-
sively applied to the image until the image converges to a steady state. A
special case of this reconstruction by dilation operator may be used to sup-
press unwanted maxima within our image. If f is reconstructed by dilation
using the masking image f — h, for a user defined f, the so-called adaptive

H-Extrema operator is formed, defined as

HMAXy(f) = R}(f — h). (2.6)

When applied to an image, H-extrema operator suppresses all maxima

within the image whose maximum image value is less than the user-defined
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variable h. When applied to the image, maxima associated with image noise
are significantly reduced. The results of the application of the adaptive h-

extrema to the experimental images is shown in Fig.2.11.

Figure 2.11: Application of the geodesic transformation to the image slice.

Unitary addition

Each pixel value of the image is increased by a value of 1 (see Fig.2.12).
This maintains image detail in the following processing steps when images

are subtracted.
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Figure 2.12: Application of unitary addition to the image slice.

Inversion masking

The original binary image shown in Fig. 2.8 is inverted and used as a mask,
see Fig. 2.13. The image is inverted using the simple procedure f(i) =
1256 — f(i)] for each pixel i of the image. This process replaces each 0 value
pixel with a 256 value pixel and a 256 value pixel with a 0 value pixel. The
resulting image was used to mask Fig. 2.12. The process of masking involves
the multiplication of the two images i.e. for two images f and g, the product
of the image multiplication A(x.y) = f(x.y) * g(x.y). The multiplication by
the binary image - where each pixel has a value 1 or 0 - means that only

those highlighted features are kept in the final image.
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Figure 2.13: The inverse binary image used as a mask to reinstate feature

borders.

2.4.1 Inversion

image is inverted again. Following this inversion process, the image 7
The image is inverted again. Following this inversi 1 the image now
contains a series of minima located at the centre of the original bubbles.
With each separate bubble now marked, the segmentation of the image can

be completed using the watershed transformation.

2.4.2 Watershed Transformation

The watershed transformation is a method by which an image may be sub-
divided into a series of connected regions sharing particular characteristics
[56]. In this case, the criterion used for segmentation is that the final regions

of the image should correspond to separate bubbles
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The watershed transformation is based upon visualising the greyscale im-
age as a topological surface, the height of each point being equal to the value
of the corresponding pixel value. The watershed transformation succeeds
in calculating the location of the various catchment areas associated with
this surface - i.e. the various separated areas in which fluid would collect
if water was poured onto the surface. These catchment areas are calculated
by simulating a flooding of the image. the sources of liquid located at the
regional minima of the image. As more liquid is added to the image, the
height reached by liquid in the image is increased. This leads to the water
table of a given minimum increasing in extent. Where two adjacent water

tables meet, a border region is created to separate the connected regions.

The watershed transformation is an efficient method used to segment an
image. It is typically used for the separation of overlapping objects within
an image. The process begins by determining the local pixel minima within
the image. In this case, these local pixel minima correspond to the bubble
centres. Each of these minima is assigned a pixel number and becomes a basin
for the following flooding step. Each basin is expanded outwards from the
central basin until contact is made with the surrounding expanding basins.
When this occurs, a boundary region - set with pixel value 0 - is established.
When each pixel of the image has been assigned a new value - either a basin
label or a boundary value of 0 - the watershed process has finished. The
resulting image can no-longer be considered as a greyscale value. Rather
than image intensity or distance, each pixel value now refers to a connected

region within the image.
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Figure 2.14: Application of the watershed transformation. Each connected

domain is given a unique numeric identifier, corresponding to a unique colour.

2.4.3 Masking

During the watershed transformation step, information regarding the original
image geometry has been lost. In particular, the positions of the Plateau
borders and vertices of the foam are no longer present. Using the binary
image shown in Fig.2.13. the watershed image in Fig. 2.14 was masked to
take into account the presence of these lost image features (see Fig. 2.15).
At this stage, the image data is saved as a “. RAW” image format type. This
Raw data type allows the image data to be successfully imaged as individual
bubbles using visualisation software such as 3DStudioMax [55]. Examples of

such visualisations are shown in figures 2.15 and 2.16.
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Figure 2.15: The masked watershed image. The connected domains within

this image correspond to individual bubbles.

2.4.4 Object details

Statistics regarding the connected domains shown in Fig.2.16 may now be
calculated. Important statistics including object position, volume, surface
area, Euler number and shape factor are easily obtainable. The centre po-
sition of each connected domain is determined by calculating the cube of
minimum volume in which the image feature may be inscribed. The result-
ing image data is outputted in the form of a text file the data of which may
be easily analysed using a variety of computer programmes. The majority
of data analysis is conducted using the programming language Python, with

the installed extensions Numpy and Scipy [57, 58].
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(a) (b)

Figure 2.16: Visualisation of the segmented tomographic data using 3DStu-
dioMax. (a) Conglomerate of bubbles individually coloured to demonstrate
the successful segmentation of the image data (b) Visualisation of an indi-
fidual bubble produced during image segmentation. The individual voxels of
the object can be seen.

2.4.4.1 Data filtering

Following successful segmentation of the image data, a statistical analysis
of the bubble sizes and positions was then conducted. During this analy-
sis, several anomalous readings were observed in the object data. This was
most obviously demonstrated through a calculation of the sphericity of the
particles.

The sphericity S of a particle is a measure of the divergence of the shape
of a three-dimensional particle from a sphere of the same volume [50]. In

mathematical terms, the sphericity of a particle S is given as

=

I~

m3(6V),)
S = — i . 2.—’
A4[) ( ‘)

where V,, and A, correspond to the volume and surface area of the particle in
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question. For continuous three-dimensional objects the maximum sphericity
S = 1 corresponds to a perfect sphere. A divergence from this spherical
shape will lead to an increase in the surface-to-volume ratio resulting in a
decrease in the sphericity measure e.g. the sphericity of a cube is ( %) ~ 0.8.
The sphericity of the particles identified for a typical sample sample is shown

in -Fig.2:17.
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Figure 2.17: Histogram of the sphericity S for the particles within a typi-
cal foam sample. Note that there is a large peak centred at approximately
0.9, corresponding to the bubbles of the sample. However, there are many

particles for which the sphericity is above the physical maximum value of 1.
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Although there is a peak in sphericity at S = 0.9 corresponding to the
bubbles of the experiment, it is also apparent that the sphericity of some
of the particles within the system exceeds 1. This result is non-physical for

continuous three-dimensional shapes.

We believe that this non-physical result is due to over-segmentation of the
original image data. This may result in objects not topologically-equivalent
to spheres within the object data. For such objects within discrete three di-
mensional data, it may be possible for the associated sphericity to be greater
than 1 due to the difficulties associated with defining the surface area of
individual voxels. Such problems may be overcome by examining the Fuler

number of each particle identified within the object data

The Euler characterisation is a method of identifying an object as a mem-
ber of a particular topological class [56]. The Euler number or Euler Char-

acteristic, x, is defined as

x=V-FE+F (2.8)

where V', E and F' are the number of vertices, edges and faces of the shape.
For a continuous object, the Euler characterisation is determined from a
triangulation of that object. It can be shown that the Euler characterisation
of an object is independent of the chosen triangulation[56]. For the case of
a sphere, or any object topologically equivalent to a sphere, y = 2. Other
objects, e.g. tori, have associated with them a different Euler number (0).
We filtered our data such that only those objects with y = 2 were allowed.
The new distribution of sphericity, filtered against Euler number, is shown
in Fig.2.18.
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Figure 2.18: Sphericity of the foam sample as filtered using Euler number y.
By excluding all objects which are not topologically equivalent to a sphere, it
is seen that the majority of those particles with S > 1 have been significantly

reduced.

This filtering process removes the majority of those objects with the non-
physical sphericity S > 1. When an analysis of our filtered data was then
conducted, it was found that the majority of segmentation noise had been

eliminated which had been previously causing difficulty had been removed.
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The bulk ordering of

monodisperse foam

In this chapter the three dimensional structure of monodisperse aqueous mi-
crofoam will be discussed. The structure of monodisperse foam samples will
be first studied through a visual inspection of images reconstructed from the
tomographic data, the acquisition process of which was described in Chap-
ter 2. Following this, a statistical analysis of the foam positional data will
be conducted. This statistical analysis will focus on various order parame-
ters previously employed in the study of a variety of granular systems. In
particular we will examine the coordination number, the radial distribution
function, the Steinhardt order parameter and the packing-fraction associated
with each foam packing. Using these analytic techniques, we will investigate

how foam structure depends upon sample size and age.

3.1 Experimental method

Monodisperse microfoams are produced using the apparatus shown in Fig.
2.2. The surfactant solution used was a 5 % by volume aqueous solution of

the commercially available detergent Fairy liquid. This is found to produce

49
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Figure 3.1: X-ray tomographic image of an ordered monodisperse foam com-
posed of 5000 bubbles of average diameter 780 + 40 pm. The bubbles are
seen to arrange into a sample approximately 5 bubbles deep.

stable foams suitable for a wide range of experiments [59]. The gas phase

was a combination of Nitrogen and Perfluorohexane (PFH).

Bubble samples were periodically taken from the output of the low focus-
ing device and analyzed to determine the bubble diameter distribution. Once
a stable foam of desired bubble size and dispersity was produced, a sample
was collected into the container shown Fig. B.1. By varying the collection
time the number of bubbles captured could be changed, thus changing the
container filling depth. The container, now filled with a mixture of bubbles

and liquid, was closed within the solution by sliding a glass plate over the
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opening of the container. The filled container was then removed from the
solution and mounted on a plastic plinth, after which it was imaged using
our uC'T X-ray tomographic device. The resulting tomographic data was
processed using Octopus and segmented using MAVI as detailed in Chapter
2.

3.2 Variation of sample crystallisation with
filling depth

The structure of the foam samples was analysed as a function of their filling
depth. It was found that the foam samples could be divided into two distinct
groups - thin samples and thick samples. For our purposes, a sample will be
considered “thin” if the number of foam layers is less than or equal to 10 and
thick if the number of foam layers exceeds this number. It is found that the

ordering behaviour of the foam systems is well described by this divide.

3.2.1 Thin samples

The first samples investigated using X-ray tomography were composed of a
few thousand bubbles, forming foam samples which extended only a few mm
above the foam-liquid interface. In this manner it could be guaranteed that
the foam sample had a high liquid fraction, providing the best chance of ob-
taining images suitable for successful image reconstruction. Fig.3.1 shows the
holotype! for these thin foam samples. It is composed of roughly 5000 bub-
bles, of average bubble diameter 780 pm + 20. These bubbles have arranged
into a foam sample 8 bubble layers thick.

The ordering behaviour of this foam sample is immediately apparent on

investigating the first reconstructed images. These images are formed by

'A holotype is a term I have procured from biology which I feel fits quite well here - a
holotype is a single physical specimen used for the description of a species.
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Figure 3.2: Image of a monodisperse microfoam of average diameter 780 + 20
pum. (A) the top of the foam and (B) the bottom of the foam are separately
visualised. On both the top and bottom of the foam, the bubbles are seen to
order into hexagonal arrangements of bubbles.

showing only the gas phase of the foam sample. The resultant images show
the foam as a packing of spheres. On examination of the top and bottom of
the foam (see Fig.3.2), referring to the section of the foam in contact with the
liquid and that in contact with the container respectively, it is seen that the
bubbles of the foam are arranged into a two-dimensional hexagonally closed
packed structure.

By examining the liquid phase of the foam, the Plateau borders and ver-
tices of the foam sample may be shown instead. As previously discussed, the
films separating neighbouring bubbles can not be captured by the particular
tomographic method employed here due to their thinness [6]. This results in
an examination of the liquid phase only resolving the Plateau borders and

vertices of the foam sample.
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However, our imaging shows the Plateau borders and junctions of the
foam sample allow the internals of the foam sample to be examined more
closely than possible when viewing the gas phase alone. Fig.3.3 shows a
reconstruction focusing on the liquid phase of the 4% layer of the foam sample.
The regular, ordered nature of the Plateau borders and lattices indicated that
the previously observed surface ordering extends into the bulk of the foam

sample.

Figure 3.3: Reconstruction image of the thin foam sample, 5 layers deep,
highlighting the liquid phase of the foam sample. The Plateau border and
vertices of the foam are clearly visible, their regular, repeating structure

indicating the presence of order within the center of this sample.
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Following these general observations of order within these foam samples,
closer inspection of the reconstructed data can yield much greater information
about the foam structure. By examining the stacking pattern of successive
layers within the foam crystal, the nature of the ordering of the system can
be determined. Fig.3.4 shows a selection of the topmost three layers of the
thin foam sample. The bubbles within the selection have been coloured blue,
green and red as they correspond to the A,B and C layers generally associated
with closed-packed structures [60]. We can extend this method of identifying
the crystallisation of the sample throughout all foam layers. The results of

such an analysis are shown in Fig. 3.5.

(A) (B)

Figure 3.4: A selection of bubbles from the top of the thin foam sample
colored red,blue and green to correspond to the A.B and C packing layers
of spheres. These sets of bubble are therefore seen to order into an fcc
arrangement. (A) shows the selection of bubbles from a profile angle, while
(B) shows the bubbles from above. Transparencies have been employed to
make the lower layers of the selection more visible.
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=

Figure 3.5: A cuboid extracted from the center of the foam sample. The

>NV N >

layers of the foam have been coloured red,blue and green to correspond to
the A, B and C packing layers of spheres. It is seen that the foam sample
is composed of an ABC packing of spheres throughout its width, indicating
that the observed surface crystallisation extends into the “bulk” of this thin
sample. (i) shows the sample as viewed at the foam-liquid interface, while
(i1) shows the top of the foam far from this interface. (iii) and (iv) show

different side aspects of the same foam.
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[t is seen that the ABC packing of bubbles extends through all layers of
the foam structure. This indicates that the observed surface fcc crystalli-
sation of the sample extends into the “bulk” of these thin foam samples,
although it must be recognised that no part of this foam sample is more than

8 bubble diameters away from the boundary of the sample.

On viewing the individual layers of the foam sample, many interesting
defects within the crystal structure were observed. Fig.3.6 shows several
sequential layers of the thin foam sample. On each layer the defects present
are highlighted. In particular, there exists a grain boundary between two
regions of distinct fee crystallisation (Fig.3.6 A and B). It is also seen that
there is a deformation of the crystal lattice around a larger bubble which was

accidentally introduced into the foam (see in Fig.3.6 C and D).
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(a) (b)
() (d)

Figure 3.6: Several sequential layers of the thin foam sample. Grain bound-

aries are highlighted are highlighted using lines, while vacancies are shown
with circles. (a),(b).(c) and (d) show successive foam layers from the top of

the foam sample.
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After this visual inspection of the foam sample, we processed the im-
age data using MAVI as described in Chapter 2. We first fitted several
distributions, including log-normal, Lorentzian etc. to the bubble diameter
distribution. It was found that the distribution was best described by a
Gaussian distribution, although slight deviations were found to occur (see
Fig.3.7). However, for our purposes, such deviations are not significant. The
sample was found to have a mean diameter of 730 + 20 pum. This results in

a dispersity less than 5%, classifying the sample as monodisperse.
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Figure 3.7: Distribution of bubble size following filtering by sphericity and
Euler number. The distribution was fitted using to a Gaussian distribution

with a mean of 730 + 20 pm.
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The coordination number as calculated for the thin sample shown in
Fig.3.1 is plotted in Fig.3.8. The distribution shows two separate peaks lo-
cated at n = 9 and n = 12. Both of these peaks correspond to the presence of
hexagonally closed packed ordering within the sample. The n = 12 peak cor-
responds to hexagonally closed packed ordering within the foam bulk, while
n = 9 corresponds to the same ordering, truncated by the limits imposed

upon the sample by the boundary.
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Figure 3.8: Plot of the probability distribution P(n) of the coordination

nurnber n for the thin foam example shown in Fig.3.1.

The radial distribution function of the first thin sample is shown in

Fig.3.9. The experimental plot (black line) shows the RDF function as cal-
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culated for a cubic section of 800 bubbles within the center of the foam bulk.
This is a necessary requirement of the RDF function, as a calculation of the
experimental curve would be skewed by particles along the foam boundary
for which the symmetry of the system has been broken. When compared
to the theoretical RDF of an ideal lattice (Red delta functions), it is seen
that there is a good agreement between theoretical and experimental peak
position up to a distance of r’—o = 4. It is seen that the amplitude of the
experimental curve decreases more rapidly than the theoretical prediction
suggests. This is due, in part, to the imperfections in the fcc lattice, mainly

due to the dispersity of the foam sample.

3.2.2 Thick foam sample

A typical example of a thick foam sample is shown in Fig.3.10. The foam
is composed of 20,000 bubbles of average diameter 800 + 40 pm, arranged
into a sample 20 bubble layers thick. Unlike in the case of the thin foam
samples, in which the ordered nature of the foam sample is identifiable from
the surface ordering of the bubbles, such an analysis is not possible on these
thick foam samples. Fig.3.10 show the (a) top, (b) side and (¢) bottom of the
foam sample. While hexagonal ordering is observed along the top and sides
of the foam sample, the same ordering is not present along the bottom of
these thick foam samples, at the foam-liquid interface. Instead, an apparent

random positional arrangement of spheres is seen to occur.
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Figure 3.9: Calculation of the radial distribution function g(r) for the thin
foam sample. The experimental radial distribution function calculated for
the bubble crystal (black) is compared to g(r) calculated for an ideal fcc
lattice (red). The radial positions, r. of each peak is normalised by the
radial position of the first peak of each distribution ry. This corresponds
to the minimum particle separation in both the fcc lattice and the bubble
crystal. The coincidence of the experimental and theoretical peaks at the
same position indicate that the foam has formed an fec lattice.
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Figure 3.10: A reconstruction of the thick foam sample showing (A) the top
of the foam and (B) the side of the foam and (C) the foam bottom. The top
and side surface layers of the foam sample exhibit hexagonally closed-packed

structures similar to those seen with the thin foam sample shown in Fig.3.2

The internal structure of the foam may be examined by investigating a
two-dimensional horizontal section taken through the foam bulk. Such a sec-
tion is shown in Fig. 3.11. It is seen that bubbles form regular arrangements
when in proximity to the boundaries of the sample. However, far from the
boundaries of the sample, in the foam bulk, the bubbles show no apparent
order. This is again seen if we excise this central region and conduct a visual
inspection of the bubble center positions (see Fig.3.12). Again, no apparent

order is seen.
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Figure 3.11: A horizontal slice taken through the 11" layer of the thick foam
sample showing the distribution of the liquid phase. Darker regions shown
the position of the gas associated with each bubble. The bubbles appear to
be regularly arranged when in proximity to the boundaries of the sample,

however on extending
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Figure 3.12: The internal structure of the thick foam sample. No apparent
order may be seen within the bubbles. The sample is coloured so as to enable

neighbouring bubbles to be easily distinguished.

To determine the exact nature of this thick foam sample, we conducted the
same analysis as was performed on the thin foam sample. The coordination
number and radial distribution functions were again calculated.

The coordination number of the thick foam sample is shown in Fig.3.13.
When compared to the distribution associated with the thin foams sample,
(Fig. 3.2), it is seen that the distribution is composed of a single peak.

Several other differences are observed:

e The n = 9 peak which corresponds to the ordering of particles at the
surface of the sample, is less obvious when compared to the thin foam
sample. This is due to the loss of order seen along the bottom face of

the sample.
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Figure 3.13: Plot of the probability distribution of contacts P(n) versus n
for the thick foam example shown in Fig.3.10.
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e P(n) still displays a peak at n = 12, but now there is a smooth increase

of P(n).

Following the calculation of the coordination number, we then calculated
the RDF of the thick foam sample, the results of which are Fig. 3.14. It is
seen that the functional form of the RDF distribution is significantly different
to that shown for the thin foam sample (see Fig.3.9). The sharp peaks
indicative of a crystal structure are now are now replaced with two broad
peaks, with the second peak exhibiting two sub peaks located at o~ 1.65
and 1.9. Following this split double peak, the oscillations of the RDF quickly
approaches 1.

The presence and form of the split second peak gives valuable information
about the structure of these foam packings. Bernal et al., in the study of
the structure of liquids using a hard sphere model, determined that a ran-
dom packing of spheres has associated with it a unique RDF [32, 33]. In
particular, it was found that the random sphere packing RDF has a split
second peak. with two sub-peaks located at ;= = V3 and 2. This splitting
of the second peak is a result of local arrangements of the first, second and
third nearest neighbours within the sphere packings. It is found that the
first nearest neighbour will reside at a position of =l corresponding to
particles directly in contact with the central sphere being examined. The
next two peaks, at e V3 and 2 correspond to second and third nearest
neighbours within the packing, as shown in Fig.3.15. Following these local
arrangements, the radial distribution quickly approaches 1, indicating uncor-
related sphere positions. Since the original work of Bernal, this particular
functional form of the RDF for disordered sphere packings has been verified
in various experimental systems, particularly the large hard-sphere systems
examined by Aste et. al.. Through the use of X-ray tomography, they exam-
ined several packing of 150,000 hard-sphere beads of diameter 1.00 + 0.05
mm. Such RDF have also been found in the study of the structure of glasses
[61].
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Figure 3.14: Plot of the radial distribution function for the thick foam sample
shown in Fig. 3.10. The experimental curve is shown as a continuous black
line, while the positions of the local arrangements associated with a Bernal
packing of spheres is shown in red. Note the splitting of the second peak of
the distribution at 1.65 and 2.
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Figure 3.15: A two-dimensional illustration of the local arrangements which
lead to the split second peak in the RDF of a random packing of hard spheres.
[t is seen that the three closest spheres to any sphere closest are located at
distances — =1,1.73 and 2.0

The positions of the split-second peaks associated with hard sphere pack-
ings are overplotted using red-dashed lines on the foam experimental data
in Fig.3.14. It is seen that the foam peaks reside near to their hard-sphere
counterparts. Several differences are seen to occur between the hard-sphere
and foam experiments. Firstly, it is seen the experimental peaks of the foam
experiments are not as sharp as those expected for hard spheres. The form
of the RDF is also seen to differ slightly. In the hard-sphere experiments,
the slope of ¢(r) gradually increase to a local maximum at g(r) = /3, before
progressing smoothly to the next local maximum at r = 2, after which a
shard decrease in g(r) is seen [45]. In our foam experiments such a sharp
decrease in ¢g(r) is not observed. In addition, it is found that the relative
heights of the two split-peaks of the RDF have been inverted with respect
to the hard sphere case i.e, for the hard sphere case g(v/3) < g(2) while the
bubble experiments show g(v/3) > ¢(2).



3.2. Variation of sample crystallisation with filling depth 69

[t has also been previously reported that a power law relationship of the
form g(r) = co|r — 79| exists in the range 1 < = < 1.3 [45]. Aste et
al. reported values of a between 0.25 and 0.45, depending on the packing
fraction of the system being examined. Fig. 3.16 shows that our data is not
well described by such a power law relationship. The same power law to the

experimental data for our disordered bubble packing.
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Figure 3.16: A power law of the form g(r) = co|r — ro|* fitted to the RDF
of the thick foam sample. The best fit produced a power law exponent ¢ =
1.8, however it is clearly seen that this is a poor fit to the data.

The discrepancy between the hard sphere and foam RDF are a result of
two main differences between the two systems. The relative small sample size
of the bubble experiment (20,000 bubbles vs 150,000 hard spheres of Aste et
al) it is likely to result in the broadening of the radial distribution function
of the foam data. Also, the finite compressibility of the bubbles of the foam
sample will lead to a lack of a sharp changes in g(r) and the inversion of the
relative heights of the two peaks of the split second peak.

In spite of these differences, we believe this split second peak is the most

convincing experimental evidence that a foam may be well described as a
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random packing of spheres. This assumption has been the basis of many
simulations of foams, where the energy-minimised Voronoi tessellation of a

random packing of spheres is taken as the initial system configuration.

3.3 Temporal evolution of monodisperse foam

sample

In order to determine the effect of coarsening on the foam samples that
we were investigating using X-ray tomography, a test sample composed of
roughly 16,000 bubbles was produced and imaged once per day over seven
days, so that the evolution of the bubble size distribution could be deter-
mined. This was a requirement, as we were unable to find sufficient informa-
tion regarding the effect of perfluorohexane on the coarsening of a monodis-
perse foam.

During the evolution of the foam sample, it was found that the bubble
diameter distribution of the sample did not change dramatically. On each day
of the experiment, the dispersity of the sample remained below the threshold
of 5% which, in experiment, defines the distribution as monodisperse [5].
However, it was found that the internal structure of the foam sample changed

significantly over the seven day of the experiment.

3.3.1 Experimental Method

A monodisperse foam was produced as described in section 2.3.1 and placed
into a cubic container as shown in Fig.B.1. The container was filled with
roughly 15000 bubbles.

The filled container was sealed with a glass plate and affixed to a cylin-
drical plinth for the duration of the experiment. The foam was imaged using
X-ray tomography as described in section 2.3.2. The sample was imaged at

the same time each day. Between images, the sample was removed from the



3.3. Temporal evolution of monodisperse foam sample 71

tomographic device and stored in a secure location.
Following the successful imaging of the sample over the seven days of the
experiment, the image data was processed and segmented as described in

section 2.3.3. The data was then analysed as described below.

3.3.2 Results

Figure 3.17: Visualisation of the foam used to examine the temporal evolu-
tion of such samples on the first day of the experiment. The image shows
the foam-liquid interface of the sample. The foam, composed of 15,000 bub-
bles of average diameter 795 £+ 40 pm is seen to have regions of hexagonal
order near the sample boundary, while the central region is lacking such a

structure.
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Fig.3.17 shows a 3D representation of the foam sample on the first day
of the experiment. The sample has ordered into a structure 10 layers deep.
Around the borders and near the corners of the sample, the structure is seen
to be hexagonally arranged, while no such ordering is seen near the center of
the foam sample.

The distribution of bubble sizes were calculated for each of the seven days
of the experiment and is shown in Fig.3.18. These distributions were fitted to
a Gaussian distributions, the resulting average bubble diameter distribution

and second moment of which are plotted in Fig.3.19.
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Figure 3.18: Overplot of the histogram data for the seven days of the exper-
iment. It is seen that the histograms broaden slightly over the course of the
experiment, corresponding to a slight coarsening of the foam. Due to the use
of PFH gas. however, such coarsening was limited and the sample could be

considered monodisperse throughout its lifetime.
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It is seen that the average bubble diameter increases during the lifetime
of the experiments, rising from 795 pm to 810 pm. This is due to the
unavoidable coarsening within the sample [49]. However, due to the addition
of Perfluorohexane to the Nitrogen gas, the coarsening rate of the foam is
significantly reduced when compared to that of a pure nitrogen foam [6]. In
particular, it is noted that the dispersity of the foam remains less than 5%
over the seven days of the experiment. This means that the foam may be

considered as monodisperse throughout its lifetime.
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Figure 3.19: The average bubble diameter, with standard deviation of the
bubble diameter shown as error bars, plotted over the lifetime of the experi-
ment. [t is seen that, although the average bubble diameter is increasing over
the lifetime of the experiment, the ratio of the standard deviation to aver-
age bubble diameter remains less than 5%, indicating that the foam remains

monodisperse throughout its lifetime.

However, we found that several interesting structural changes occurred



74 Chapter 3. The bulk ordering of monodisperse foam

within the sample during the seven days of the experiment. Such changes are
best illustrated by two-dimensional plots of the XY center positions of the
bubbles over the seven days. This corresponds to a collapse of the z-axis of a
three-dimensional plot of the bubble centre positions. Such a plot of center

positions is seen in Fig.3.20.

The sample was imaged three hours after production on the first day of
the experiment. The first day of the experiment shows the bubble centres are
arranged into regular lines close to the boundary of the sample. Such regular
arrangement of bubbles are seen to extend up to 6 bubble diameters away
from the boundary of the sample. In the center of the sample, however,
no such ordering is observed. This indicated that crystalline ordering is
present close to the boundary walls, while the center of the sample is possibly
disordered. On the second day of the experiment, this boundary ordering is

seen to extend more prominently into the central region of the foam sample.

On the third day of the experiment, the ordering of the central region
has been significantly diminished. In addition, the extent of the boundary
region has been reduced when compared to the first day, the order regions
extending to a maximum 3 bubble diameters from the container wall. We
believe this is due to a “bumping” of the sample on the third day of the
experiment. This disturbance, we believe, disordered the ordered sections of

the foam sample.
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Figure 3.20: Plot of the XY coordinates of the sample over the seven days
of the experiment, labelled by the day number. On the first day of the
experiment, the bubble are seen to form regular rows of particles close to
the container walls. The bulk of the sample shows no such ordering. Over
the seven days of the experiment is seen that this central region of the foam
sample becomes ordered. This is demonstrated through the onset of a regular

pattern in the center of the sample.
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For the next four days of the experiment, the sample was not again dis-
turbed. The ordering behaviour that was observed to occur during the first
two days of the experiment was seen to progress during the remaining days of
the experiment. In addition to the extension of the boundary ordered regions
into the bulk, it is seen that separate regions of order spontaneously occur
within the foam bulk on the fifth, sixth and seventh days of the experiment.
No additional imaging time was available to continue the experiment past
the seventh day of the experiment.

In order to more accurately examine the ordering behaviour, we calculated
several metrics of order for the sample, including the contact number, the
translational order parameter, the bond orientational order parameter and

the packing fraction of the sample.

3.3.2.1 Coordination number

To quantify the ordering within the sample, the coordination number dis-
tribution over the seven days of the experiment were calculated and over-
plotted. The results of such a calculation are shown in Fig.3.21.

On the first day of the experiment, shown in red, a wide distribution of
contacts is seen to occur within the sample. On the second day of the exper-
iment, shown in green, this wide distribution begins to show a peak at n=12.
On the third day of the experiment, the initial broad distribution of contacts
within the sample is seen to re-occur. This corresponds to the disturbance
of the experiment which occurred on the third day of the experiment, as has
been previously discussed. From the third day of the experiment onwards,
no further disturbance of the sample occurred. During this time, the contact
number distribution is seen to evolve into a two-peaked distribution centred
around n=9 and n=12. As we have previously discussed for the thin foam
sample, this corresponds to hexagonal ordering along the boundary of the
sample and within the foam bulk. While the height of the n = 12 peak is

seen to increase steadily over the last 4 days of the experiment, the n=9
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Figure 3.21: Variation of the contact number distribution over the lifetime of
the experiment. The number of contacts n is plotted against the probability
of that contact within the sample P(n). Over the course of the experiment,
the initial wide distribution is seen to resolve itself into a two-peaked dis-
tribution centred at n=9 and n=12. These peaks correspond to hexagonal
ordering occurring along the foam boundary and within the foam bulk.

peak is seen to remain at a constant value throughout the lifetime of the
experiment. This implies that the ordering of bubbles around the boundary
of the sample does not change - the increase in the order within the sample
occurs within the foam bulk. This indicates that he disordered central region

of the foam is progressing towards a more ordered state.

3.3.2.2 Translational order parameter evolution

Fig.3.22 shows the translational order parameter GG as calculated for the
sample over the seven days of the experiment. It is seen that the order

parameter decreases over the first two days, before dramatically increasing
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on the third day. This corresponds to the previously discussed disturbance
of the sample on the third day. During the next four days, G is seen to
decrease. This corresponds to the ordering of the sample which was observed

from the XY center positions shown in Fig.3.20.

Over the last four days of the experiment, GG decays roughly exponentially,

G(t) = 0.45e~"9% 1 0.018, seen as the solid line in Fig.3.22.
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Figure 3.22: Graph showing the variation of the translational order param-
eter G over the course of the seven days of the experiment. It is seen that
(G decreases during the first two days of the experiment, before dramatically
increasing on the third day due to the disturbance of the sample. This is
followed by a smooth decrease in G, fitted to an exponential with an offset.



3.3. Temporal evolution of monodisperse foam sample 79

3.3.2.3 Bond orientational order coefficient

While the calculation of the translational order parameter shows that the
sample is progressing towards a more ordered state, it does not provide in-
formation about local configuration of bubbles. In our pursuit of this local
information, we calculated the Bond Orientational Order Parameter (BOOP)

for each bubble within the sample.

The BOOP or Steinhardt order parameter is a measure of the rotational
order within a sample [61]. Although there exists several methods by which
this rotational symmetry may be classified, it is found that Steinhardt’s
characterisation, developed to investigate the onset of ordering within glasses,
has proven the most useful in a variety of simulations and experiments [62,
45]. In particular, it has proven useful in determining order within colloidal
systems and granular media and is used to determine the onset of phase
transitions in these systems.

The bond orientation order parameter is based upon the association of a
spherical harmonic Q,,; = Y, (¢i;,0;;) with each “bond” within the system.
A bond, for the BOOP case, is defined as a vector r7; joining the center
positions of neighbouring objects ¢ and j. ¢;; and 6;; are the polar and
azimuthal angles of this bond with respect to a spherical coordinate system.
For the bond orientational order parameter, two particles are considered
neighbours if the distance between the centres of two particles || is less
than 1.3 d where d is the average particle diameter, as demonstrated in
Fig.3.23 (This corresponds to the position of the first minimum of the RDF
function for a disordered packing [61]). Other definitions used to define
the neighbourhood of a particle are based on the Voronoi tessellation, or a
weighted Voronoi tessellation, of the center positions of the lattice. The faces
of the resulting tessellation point to neighbouring particles within the sample.
It is found, however, that changes in the definition of the neighbourhood does
not produce significant differences in the BOOP parameters calculated for

the same packing [63].
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Figure 3.23: A 2D illustration showing the bond associated between the
packing of two particles ¢ and j. Only those particles whose centers lie within
the disc of radius 1.3d are considered nearest neighbours within the packing.
(r,0;;) are the polar coordinates of neighbouring particles with respect to
an arbitrary reference frame. For a three dimensional system, the azimuthal
angle ¢;; between neighbouring particles must also be included.
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So as to guarantee the directional invariance of the BOOP parameter,
only even spherical harmonics (I = 0,2,4,6...) are considered. For symmetric
packings the first nonzero results are obtained for 1=4 and 1=6. Spherical
harmonics with 1=4 are particularly sensitive to hcp order and crystals with
cubic symmetry, while 1=6 is sensitive to icosahedral symmetry [61]. For
this reason. only the fourth and sixth spherical harmonics are considered.
It is found that the value associated to a particular bond through the use
of these spherical harmonics is dependent on the frame of reference chosen.
To ensure the invariance of the order parameter associated with a particular
bond, frame-independent averages of spherical harmonics need be considered.

For the 4" and 6" spherical harmonics, these averages are defined as,
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where ¢;; and 6;; are the polar and azimuthal angles associated with the
particular bond within the system, Y™ is the ["* spherical harmonic, n; is
the number of nearest neighbours of the particle being considered and N
is the total number of particles within the system [61]. Y;"™(¢;;,6;;) is the

spherical harmonic, defined as
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where F/"(cosf;;) are the Legendre polynomials. Each crystal structure
will have associated with it a unique set of (4 and Qg values with which
it may be identified. Examples of ()4 and Qs BOOP parameters associated

with a variety of crystal structures are listed in table 3.1. If the system
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studied exhibits no particular ordered structure, a wide distribution of BOOP

parameters is seen to occur, as shown in Fig.3.24.

Table 3.1: BOOP parameters of several common structures.

(‘Stl'll('l'lll‘(‘ ‘\ Q4 I Qs J

[ fec 10.19094 [ 0.57252 |

| hep 0.097722 | 0.48476
[cosahedral || 0 0.66332
Lﬁiqﬁu}glﬁ i J‘L() X N B

Count

0.4 0.6
Q

(b)

Figure 3.24: BOOP analysis of a disordered sphere packing produced using a
computer simulation. (a) Simulation of a disorder packing produced using a
standard conjugate gradient method to minimise the system energy [64]. (b)
a wide distribution of ()4 and Qg parameters are seen to characterise such a

disordered structure.

We produced histograms of ()4 and Qg parameters for the positional data

of each bubble within the sample over the lifetime of the experiment. To
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compute the BOOP parameter, we used the C algorithm produced by Wang
et al. [65]. Examples of such histograms are shown in Fig.3.25 and Fig.3.26.
In these plots there occurs several peaks in the experimental data at positions
associated with fcc and hep ordering. Note however, in Fig.3.25, there does
not exist a peak in the experimental data which corresponds to the onset of
hep ordering. This is a result of Q4 and g being sensitive to different crystal

symmetries [61].
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Figure 3.25: Example of the calculation of ()4 for an experimental packing
(day 1 of the lifetime experiment). Note that there exists no peak corre-

sponding to hep ordering within the ()4 distribution.
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Figure 3.26: Example of the calculation of ()¢ for an experimental packing

(day 1 of the lifetime experiment).

To overcome these problems associated with the different sensitivities
of the BOOP parameters, two-dimensional histograms of both the ()4 and
Qs order parameters may be produced. Such a plot for the first day data
is seen in Fig. 3.27. The bubble center positional data was analysed to
calculate the BOOP for each particle within the packing. Local regions of
crystallisation, as well as amorphous regions, could then be identified and
classified. For our purposes, we identified a region as belonging to a particular
crystallographic group if the bubble examined lay within +0.1 of the )4 and
() values associated with the ideal case of such a lattice. Such bounds were
found to correctly identify crystalline regions when compared to a visual

inspection of the sample.
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Figure 3.27: (a) graph of 4 against () for the first day of the experiment. It
is noted that in addition to the peaks associated with fcc and hep packings,
there also exists a separate peak located at (0.30.0.22). To determine the
reason for this separate peak, a visualisation of the sample was produced,
shown in (b). Regions corresponding to the unidentified peak were coloured

green.

[t is seen that the BOOP data is composed of a series of peaks as well as
a wide distribution of points. Most prominently within the data there exists
two peaks located at (0.19.0.57) and (0.09,0.48). These peaks correspond to
the formation of fcc and hep regions of crystalline ordering within the sample.
In addition to these peaked regions, in the region 0.2 < ()4 < 0.4 and 0.2 <
Qs < 0.24 a wide distribution of points is seen. These points correspond to
the amorphous regions within the foam sample. This distribution is similar to
the wide distribution reported for amorphous configurations within granular
media [45].

[t is noted that a separate peak exists at roughly (0.30.0.22). This region

was not seen to correspond to any known crystal configuration. To determine
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the origin of this peak, we produced a visualisation of the system in which
points in space corresponding to this unknown region where coloured green
(see Fig.3.27b). This analysis shows that the peak corresponds to linear
chains of particle along the boundary and top of the sample. This is due
to segmentation noise within the sample and was exclude from all further
analysis. The remainder of our analysis is shown in Fig.3.28 and Fig.3.29
which show the evolution of the Q4 and Q¢ order parameters, as well as a
plot of the positions of bubble ordered locally into fce configurations (shown

in red) and hep region (shown in blue).
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Day 1

Day 3

Day 4

Figure 3.28: Figure showing the evolution of the (), and ()¢ order parameters
of the foam sample during the 15, 3" and 4" days of the experiment. In
addition to the 2D histogram of the @4, ()¢ order parameters, a plot of the
bubble center positions is also included. Those particles identified as existing
in an fce configuration are shown in red while hep bubbles are shown in
blue. Over the lifetime of the experiment, it is seen that the heights of the
points associated with fcc and hep ordering increas in time, while the regions

associated with disordered spheres decreases in intensity.
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Figure 3.29: Figure showing the evolution of the ()4 and ()¢ order parameters
of the foam sample during the 5", 6'" and 7'" days of the experiment. In
addition to the 2D histogram of the ()4, Q) order parameters, a plot of the
bubble center positions is also included. Those particles identified as existing

in an fce configuration are shown in red while hep bubbles are shown in blue.
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Throughout the lifetime of the experiment there is no clear divide between
regions of fce and hep crystallisation. Instead, the two regions of crystalli-
sation seem to coexist within the same regions of the foam sample. This
suggests the formation of RHCP regions within the sample.

As the system evolved in time, it was seen that the @4, Qg distribution
changes with time. The two peaks associated with fcc and hep ordering
increase in intensity, while the broad region of points associated with a dis-
ordered sphere packing is seen to decrease in extent. This corresponds to the
increase in the ordered nature of the sample, which we have previously seen
through the use of the translational order parameter G.

From our BOOP data, we calculated the ratio of the number of fcc ordered
bubbles (Ny..) and hep bubbles (Np.,) within the sample, the variation of

which, over the seven days of the experiment, is shown in Fig.3.30.

Figure 3.30: % plotted over the seven days of the experiment. It is seen

that the ratio remains above 1 for the lifetime of the experiment, indicating

a preference for fcc crystallisation.
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% is seen to reside above a value of 1 for the entire lifetime of the
experiment. This indicates a preference for fce crystallisation throughout
the foam lifetime. This is in keeping with recent theoretical work on the
preference for fec over hep by Heitkam et al. [66]. They determined that
linear arrangements of spheres present within an fce lattice (e.g. along the
[110] direction) which are absent within the hep lattice make these structures
mechanically more stable when formed under deposition of spheres. This

results in a preference for fce crystals within monodisperse bubble crystals.

3.3.2.4 Packing fraction

The packing fraction ¢ for our foam sample was calculated over the seven
days of the experiment. We limited the calculation of ¢, however, to the
central region of the foam which is seen to be disordered on the first day
of the experiment. In this manner, we might expect to observe a steady
increase in packing fraction from the value associated with a random packing
of spheres ¢ rcp =0.64 to the value associated with hexagonally closed-packed
structures of ¢ = 0.74 on the seventh day of the experiment [13, 30].

The packing fraction was calculated for within a sphere of radius R cen-
tred within the sample. A spherical volume was chosen due to the ease by
which those bubbles on the boundary of such a sphere may be accounted for.
R was chosen such that the outer limit of the sphere did not intersect the
ordered boundary regions of foam on the first day seen in Fig.3.20(1).

The packing fraction of the sample may be given by

N
> V(ri,di)
i=0

smR3

where 7; is the radius of the i"* bubble, R is the test volume being examined,

6= (3.4)

and d; is the distance from the center of the test sphere to the center of the i*"
bubble. When calculating ¢ using Eq.3.4, bubbles on the border of the test

volume examined (i.e. |R —r;| < d; < |R+ r;|) must be taken into account.
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To do this, we consider the intersecting volume of a sphere of radius R with

a spherical bubble of radius r;. Doing this, we may write V (r;, d;) as

77(H+r—d)2(d2+2(1r1—2.'f11'2+2(1R+6rB—3H2) IR b 7‘z'| <d; < |R . 7'i|
sr d; < |R -y
0 otherwise

(3.5)

Applying this formula allowed the packing fraction of the sample to be

measured accurately while taking account of boundary bubbles. The results

of this volume-fraction measurement are shown in Fig.3.31.
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Figure 3.31: Variation of the packing fraction ¢ of the sample over the seven

days of the experiment.

It is seen that the resulting volume fraction does not behave as one would

expect for a similar system of hard spheres. Firstly, ¢ resides above the
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maximum packing fraction associated with hard spheres of 0.74. In addition,
no variation is seen to occur in ¢ over the seven days of the experiment - no
complementary increase in ¢ is seen to occur as the order within the sample
increases.

To verify this packing fraction calculation, and to obtain a more detailed
understanding of the variation of the packing fraction within the foam sam-

ple, we decided to calculate the Voronoi tessellation of the sample.

3.3.2.5 Voronoi tessellation
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Figure 3.32: Visualisation of the Voronoi tessellation of the central region
of the foam sample. (a) shows this region as imaged on the 1% day while
(b) shows the same section on the 7" day. The bubbles are represented by
spheres of the same radius while the red lattice shows the Voronoi tessellation

. The images have been generated using POV-Ray [70].

The Voronoi tessellation is a method of dividing space based on the distri-
bution of a number of points. More specifically, given a finite set of distinct

points in space, the Voronoi tessellation associated with each point all regions
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in space which are closest to it, as determined by some metric of distance
[67]. For our purposes, we use the Euclidean distance metric. This tessella-
tion may be used to accurately characterise the neighbourhood distribution
of a packing, as well as providing a method by which the local packing frac-
tion of a sample may be calculated [68]. To calculate the Voronoi tessellation

of our sample we used the freely-available C++ libraries Voro++ [69].
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Figure 3.33: Variation of the average packing fraction ¢ over the seven days
of the experiment. This average is not seen to vary significantly over the

lifetime of the experiment.

The Voronoi tessellation of a cubic section excised from the central region
of the foam sample was calculated. This is the central region which appears
disordered on the first day of the experiment, but approaches an ordered
state on the last day of the experiment. Fig.3.32 shows a visualisation of the
Voronoi tessellation of this internal section on the first and last day of the

experiment.
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The Voronoi tessellation may be used to calculate a local volume fraction
for each bubble ¢; within the sample by diving the volume of the i particle
by the volume of the corresponding i*" Voronoi cell. Fig.3.33 shows the
average of these local packing fraction ¢ for each day of the experiment. It is
seen that, through this distinct measurement method, the packing fraction is
again seen to reside above the expected values for both random and ordered
sphere packings. In addition, no obvious variation of packing fraction occurs
over the lifetime of the sample. Also, no change in the distribution of local

packing fractions is seen to occur, see fig.3.34.
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Figure 3.34: Distribution of the average packing fraction for each day of the
experiment. The distribution is not seen to change significantly over the

seven days of the experiment.

To verify that the Voronoi tessellation had been correctly implemented,
we classified the order within the sample through the use of the isoperimetric

quotient () defined as
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367V ?
TS

Q (3.6)

where S and V' are the surface area and volume of the Voronoi cell [71].
The Voronoi tessellation of each crystal structure has associated with it a

particular ) value (see table 3.2).

{ Structure | Q ]
fee 0.7405
hep 0.7534
SC 0.5236

sphere 1

Table 3.2: @ factor for various crystal symmetries [71].

Fig.3.35 shows the distribution of the ) factor for the first, third and
seventh day of the experiment. The peak corresponding to hexagonal order-
ing within the sample ~ (.74 increases over the lifetime of the experiment,
showing the progressive ordering of the sample. Our analysis is not sensitive
enough to distinguish between fce and hep using this order parameter. On
the seventh day of the experiment, however, a second peak in the ) distri-
bution is seen to occur at Q = 0.67. This sub-peak does not correspond to
a () value of any well-known crystal structure. To determine the sources of
this extra peak, a xz plot of the bubble center position was produced (see

Fig.3.36), the points in the plot coloured to correspond to particular ) factor.
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Figure 3.35: Distribution of the @ factor for the first, third and seventh day

of the experiment.
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Figure 3.36: Xz plot of the center positions of the bubbles within the ex-
cised central section of the foam on (a) the first and (b) the last day of the
experiment. Those regions corresponding to hexagonally closed packed re-
gions were coloured red, those regions corresponding to the peak at () = 0.68
are coloured blue, while those regions corresponding to other () values are

coloured green.

It is seen that the peak at () = 0.68 corresponds to bubbles at the top
and bottom of this excised foam sample. These bubbles are most likely
hexagonally ordered bubbles whose Voronoi cells have been affected by the
boundary condition imposed.

The results of the isoperimetric quotient analysis of the Voronoi sample
correctly identified regions of hexagonal ordering within the sample. We

therefore conclude that the Voronoi tessellation has been correctly imple-
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mented for the sample. The unexpected results of the packing fraction anal-
ysis, however, is still unexplained. To determine the cause of the unusually
high packing fraction, the variation of the packing fraction of the individual
Voronoi cells was analysed for each structure. In particular, the variation of
the packing fraction as a function of vertical height within the excised foam
structure was analysed. The result of this analysis is shown in Fig.3.37. The
individual Voronoi cell volumes are shown in red, while the average Voronoi

cell packing-fraction is shown with cyan diamonds.
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Figure 3.37: Plot of the variation of the average packing fraction ¢ as a
function of height Z for the third day of the experiment. The packing fraction
for each Voronoi cell ¢; is shown in red. It is seen that the packing fraction

increases as the distance from the bottom of the section (at Z = 0) increases.

While the individual packing fraction varies significantly (0.60< ¢ <
1.00), it is seen that the average packing fraction increases steadily with

height within the sample. The onset of ordering within the sample produces
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a banding of the Voronoi packing fraction data as the bubbles arrange into
parallel planes (see Fig.3.38). This leads to difficulty in calculating the av-

erage packing fraction as a function of height within the sample.
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Figure 3.38: Plot of the variation of the average packing fraction ¢ as a
function of height Z for the seventh day of the experiment. The packing
fraction for each Voronoi cell ¢; is shown in red. It is seen that the packing
fraction increases as the distance from the bottom of the section (at Z = 0)
increases. Note the grouping of data indicates the onset of ordering within
the sample. This leads to a difficulty in calculating the packing fraction

between ordered planes of bubbles.

We repeated this analysis for each day of the experiment, the resulting
variation of the average packing fraction as a function of height is plotted for

each day of the experiment in Fig.3.39.
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Figure 3.39: Variation of the average packing fraction within the foam sample
as a function of height. In general, each day of the experiment shows the

same increasing trend in the packing fractions.

On each day, the average packing fraction is seen to follow the same gen-
eral trend, increasing with height within the sample. ¢ is seen to be relatively
constant for a given height throughout the lifetime of the sample, indicating
that the transition from a disordered to a ordered state does not effect the
packing action of the sample. This behaviour is due to the compressibility
of the bubbles being used in experiment. The finite compressibility of these
bubbles allow them to achieve a packing fraction higher that the upper bound
of of 0.74 associated with hard spheres. The packing fraction increases as a
function of height within the sample due to the action of underlying foam

layers. For a given layer within the foam, the buoyancy force of the underly-
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ing foam layers forces bubbles of upper layers closer together. This has the
effect of increasing the packing fraction of these higher foam layers, as seen

in experiment.

3.4 Fcc-bee transition

So far, our experiments have focused on a three-dimensional characterisation
of foams within the wet-foam limit where an fcc packing of bubbles is seen
to occur. As we have seen, however, monodisperse foams may spontaneously
crystallise into both fce and bee crystals, depending on their liquid fraction
[5]. These configurations correspond to the most efficient packing of spheres
(fece structure in the wet limit) and one of the most efficient partitioning of
space (bee lattice in the dry limit).

Foams provide a unique opportunity to study the continuous change be-
tween these densely packed structures as a function of liquid fraction. By
varying the osmotic pressure of a monodisperse foam, Hohler et. al. success-
fully studied the nature of this transition, carefully observing the structural
re-arrangements that must occur between an fee and a bee foam [5].

Their study, however, involved the optical characterisation of foam struc-
ture within a cylindrical geometry. Such a study is limited to surface layers.
In addition, a cylindrical boundary condition is not commensurate with the
symmetry of a bee lattice which leads, inevitably | to defects within the crys-
tal. In order to overcome these problems, we aimed to investigate the fcc to
bee foam transition using X-ray tomography.

Our experiment involved filling a rectangular container of internal di-
mensions 20mm x 20mm x 80mm (schematic shown in B.6). Approximately
70,000 bubbles of average diameter 700 pm were loaded into our container.
The relative height of this container was such that gravitational drainage
would produce a wet foam near the foam-liquid interface, while a dry foam

would exist near to the top of the container. The container was then imaged
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along its length. Our first relatively successful tomographic reconstructions

is seen in Fig.3.40.

Figure 3.40: Imaging of monodisperse foam of average bubble diameter
roughly 400 pm. Successful reconstruction of the foam is possible only near
the foam-liquid interface. As the distance from this interface is increased, the

liquid fraction of the foam decreases, and reconstruction is no longer possible.

Close to the foam-liquid interface, successful reconstruction of the foam
sample is possible. However, the local liquid fraction of the foam decreases
with distance from this interface, resulting in a reduction of the X-ray ab-

sorption profile of the foam, resulting in a failure to reconstruct the dry areas
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of the foam. Thus, we are unable to successfully observe the transition be-
tween fcc and bee regions. In an attempt to increase the X-ray absorption
of our foam sample, we added silica nanospheres to our surfactant solution.
This has been previously found to increase the probability of imaging such
features using our low-energy X-ray tomography method [54]. We found,
however, that this did not produce the increase in X-ray absorption required
to produce a usable reconstruction. With our current imaging technique is

therefore not able to successfully image this fce to bee transition.

3.5 Conclusions

We have investigated the crystalline nature of monodisperse aqueous foams
in a rectangular container. We have found that small samples, 8 layers deep,
form fce foam crystals. The crystal nature of the sample was determined
through the analysis of the packing structure of subsequent layers of the foam
sample and the radial distribution of the center positions of the bubbles. This
ordering was seen to propagate through the foam bulk of the thin sample.
These thin foam samples are seen to demonstrate many three-dimensional
crystalline defects, including grain boundaries and interstices, due to the
rectangular confinement of the sample.

On increasing the number of layers of the foam sample, it is seen that
the crystal nature of the sample changes. Along the boundaries of these
samples, hexagonal ordering is seen to occur. The central regions of these
samples, however, do not demonstrate any particular hexagonal ordering. On
calculation of the RDF for these samples, the second peak of the distribution
was seen to split with sub-peaks located at roughly % ~ V3 and 2. This
split second peak is associated with a Bernal packing of spheres. This is
the first observation that the center of these samples are not crystalline in
nature. In addition, this is the first experimental evidence that a foam may

be approximated as a Bernal packing of spheres.
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We also investigated the temporal evolution of our monodisperse foam
samples. To do this, we image a sample composed of 16000 bubble formed
into a sample 14 layers in depth. On the first day of the experiment the
sample was composed of ordered regions along the boundary of the sample
and a disordered region within the center of the sample. Over the seven days
of the experiment, this disordered region was seen decrease in extent over the
lifetime of the experiment. Through the calculation of the translational order
parameter GG and the () and ()¢ bond orientational order parameter, the
ordering of this central region could be charted. It was seen that the system
did indeed progress towards a more ordered state. Through a calculation
of the ratio of the number of fcc and hep ordered bubbles, it was seen that
there is a preference for the formation of fce rather than hep regions of
crystallisation, in keeping with recent theoretical calculations and previous

experiments.

On calculation of the packing fraction of the sample, it was found that
the packing fraction of the sample resided above the upper bound of 0.74 as-
sociated with hard spheres. It was also found that ordering of the sample did
not produce a corresponding increase in the packing fraction measurement.
To determine the reason for this unusual behaviour, the Voronoi tesselation
of the internal structure of the foam sample was computed. This allowed
the packing fraction of each cell within the foam sample to be calculated
separately. From these measurements, it was again seen that the average
packing fraction was independent of the structure of the foam sample. On
examination of the individual cells, however it was found that the packing
fraction increased as a function of height h within the sample. We therefore
see that packing fraction is not a good metric of order within a foam system,

unlike for hard sphere systems.

We believe that the onset of ordering of this sample is due to an uninten-
tional “annealing” caused by a change in temperature within the experimental

lab over time. The sample was kept in an experimental lab the temperature
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of which changed by up to 5°C' between day and night. This change in tem-
perature leads to an expansion and contraction of the bubbles within the
sample. This ‘anneals’ of the sample, leading to an increase in order over
time.

We attempted to capture the transition between regions of fcc and bee
crystallisation. It was found, however, that the sensitivity of our current
experimental apparatus was not sufficient to capture this transition, due to

its low liquid fraction.
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Chapter 4

Forming the Weaire-Phelan
structure - the use of templates

for directed foam crystallisation

In Chapter 3 we saw how bubbles may spontaneously crystallise into fcc or
hep structures. Here we report on experiments using templates. which force
bubbles, of the appropriate bubble size, into predefined crystals. Using such
techniques we were able to produce for the first time an experimental example

of the Weaire-Phelan structure.

107
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Figure 4.1: High resolution image of the Weaire-Phelan structure composed

of monodisperse bubbles of average diameter 1.2 mm

4.1 Weaire-Phealan structure

From our X-ray tomographic experiments, we have seen that monodisperse
aqueous microfoams spontaneously crystallise into fce and hep crystal struc-
tures, as well as random Bernal packings [72]. These structures, however, are
associated with a wet foam, where the liquid fraction of the foam is above 15%
[73]. For lower liquid fractions the expected energy-minumum configuration
is different. Kelvin’s original conjecture for the most efficient partitioning of

space was a 14-sided truncated octahedron, arranged into a bec lattice [74].
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Computer simulations, however, have shown that this Kelvin cell is not the
most efficient partitioning of space. Indeed, in 1993, Prof. Denis Weaire and
his PhD student, Robert Phelan, showed that a new structure - the Weaire
Phelan (WP) structure - was more efficient than Kelvin’s original solution
[14]. This structure is based upon the energy-minimised Voronoi tessella-
tion of the Al5 lattice with the constraint that the cells of the resulting
structure are of equal volume. The WP structure is composed of an ordered
arrangement of two types of polyhedral cells - an irregular dodecahedron and

a tetrakaidecahedron (coloured red and green respectively in Fig. 4.2).

Since its discovery in 1993 an experimental realisation of the structure
proved elusive, except for reports of sightings of partial WP structures [75].
Instead, dry monodisperse foams were found to form random structures with
a wide distribution of cell shapes [76]. However, Fortes et. al. found that by
confining monodisperse bubbles of average diameter 3 mm between a liquid
interface and a glass plate, large crystalline samples of the Kelvin structure
could be produced [77]. Such experimental examples of the Kelvin structure
could also be produced through the use of monodisperse microbubbles. By
reducing the liquid fraction of such foam, either through the manipulation
of the osmotic pressure [5] or generating a foam column a few centimetres
in height [29], a transition between an fcc and a bee foam crystal may be

provoked.

The relative ease by which the Kelvin structure is produced in experiment
when compared to the more efficient WP structure is due to a fundamental
difference in their structure. The {110} planes of the Kelvin structure are
well adapted to fit against a planar surface, forming a surface pattern close
to that of the honeycomb [1, 78]. Due to this, the Kelvin structure may be
easily produced against a flat liquid surface, or against the flat walls of most
experimental containers. The WP crystal, however, cannot be cleaved so as

to present such a flat surface.
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Figure 4.2: Computer generated Voronoi tessellation of the A15 lattice un-
der the constraint of equal-volume cells. The WP structure is the surface-
minimised version of this tessellation. The structure is composed of two
layers of bubbles on parallel {111} planes. The unit cell of is shown is shown
in colour - dodecahedron highlighted in red and tetrakaidecahedra in green.
Image generated with 3 dt [15].
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4.1.1 Experimental method

The experimental formation of the WP structure required the production of a
container the surface of which is templated with the WP structure. Initially,
an attempt was made to produce such a container using the commercial soft-
ware Solidworks [79]. However, it was found that the complicated nature
of the curved surfaces involved in the construction of large WP templates
exceeded the resources available to this software. Instead, the template ge-
ometry was produced using the freely available software Surface Evolver[80].
A large rectangular WP structure was produced such that the {100} planes
formed the walls of the structure. This crystal was then subtracted from a
rectangular block, producing a schematic composed of the negative of the WP
structure. The schematic was saved as a .stl file, suitable for processing using
a 3D printer. The physical container was then fabricated using an object 250
TM rapid prototype machine allowing the generation of objects of resolution
85 um. The material used for the generation of these templates was Objet
FullCure720. This transparent material allows the sample to be illuminated
from a wide variety of directions. An example of one such template is shown

inis shown in Fig. 4.3.
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Figure 4.3: Photograph of the template used to produce the WP structure.
The template is placed in a surfactant solution, to receive bubbles emitted
from below. The inner surfaces correspond to {100} faceted planes of the WP
structure (sample dimension 41x41x20mm?; lattice spacing 4mm; volume

3

available to each bubble 8mm?; maximum number of bubbles 16 x 16 x 7 =

1792).

A surfactant solution of 1% volume fraction Fairy Liquid in water was
used. Monodisperse bubbles were produced through the injection of nitrogen
gas through a capillary tube with internal diameter of roughly 0.3 mm, placed
into the surfactant solution at constant depth. The diameter of the resulting
bubbles was determined by measuring the inter-bubble distances in a two-

dimensional closed-packed array of bubbles. The WP container was inverted
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in the surfactant bath to remove trapped air and positioned to collect the
microbubbles. By varying the filling time of the container, the number of
complete foam layers could be controlled. Once filled, the container was
sealed by sliding a glass plate over the open face of the container. The
container was then slightly shaken by hand as this was found to produce
coherent foam crystals. Finally, the sample was then mounted on a glass
stand, illuminated from above using a planar backlight, and photographed

from below using a Canon EOS 50D camera.

4.1.2 Results

An example of the resulting WP structure is seen in Fig.4.4. A comparison
between the vertex positions in the experimental foam (Fig.4.4) and the sim-
ulation of the WP structure (Fig.4.2) shows that coherent WP foam crystals
could indeed be formed. We have successfully made foam crystals up to 1600
bubbles in size. We have also made foam crystals up to 6 bubble layers in
thickness, seen in Fig.4.1.

As seen in Fig.4.1, the tetrakaidecahedron cells of the experimental WP
structure apparently have a square central face, expanded on in Fig.4.6a.
This is due to an optical effect of produced by the bubbles of the WP struc-
ture in contact with the liquid layer. The surface of these bubbles are hemi-
spherical in shape (see Fig.4.5), resulting in a lensing effect, making the faces
of subsequent layers of the WP structure appear smaller.

We may show this by treating the surface of the bubbles as ideal hemi-
spheres (see Fig.4.5). Applying the usual equations associated with refraction
from a curved interface, it may be shown that the magnification M associated

with such an interface is given by

1
;fnzls + ;;

Where n, and n; are the refractive indices of the water and liquid phases,
2
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Figure 4.4: Photograph of the experimentally produced WP foam viewed
along its (100) 2-fold axis of symmetry. The foam was produced in the
template shown in Fig.4.3. The sample contains approximately 1500 bubbles,
arranged into six layers. Many fine details are observed, which are also seen
in simulation, confirming the absence of defects.
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Figure 4.5: Illustration showing hemispherical interface which results in the
optical distortion of the WP structure, resulting in the formation of an appar-
ent square face in what WP structure when viewed along the (100) direction.
The hexagon faces of the WP structure are shown as green planes.

R is the radius of curvature of the bubble interface in contact with the liquid
phase. Using Mathematica we apply this magnification constant to a series
of hexagons, rotated 90° with respect to each other and separated by the
same distances as they would appear in an experimental foam. It is seen
that the resulting image mimics the experimental photographs of the WP

structure, as shown in Fig.4.6.
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(b)

Figure 4.6: (a) Detailed view of one of the tetrakaidecahedron cells of the
experimental WP structure. (b) A simulation of the optical effect leading to

the apparent square face within the WP structure.

We found that coherent foam crystals could only be produced if the bubble
size was matched to the template dimension. If a direct match between the

two length scales was not made, the resulting foam contained several defects.

Several templates were made for different bubble sizes. It was found, how-
ever, that WP crystals could not be produced for bubble diameters greater
than 3 mm in diameter. The deposited bubbles are seen to deform, failing to
produce the WP structure. For smaller bubbles, it was again found that the
production of a WP structure was difficult. This is due to the WP structure

being not stable for liquid fractions above (.18 [81].



4.2. Directed-crystallisation of wet foam samples 117

4.2 Directed-crystallisation of wet foam sam-

ples

In Chapter 3 we have seen that monodisperse micro foams spontaneously
order into hexagonally closed packed crystals for small foam samples, while
larger samples exhibit random disordered arrangements of bubbles within
the foam bulk [72]. For future experiments, as well as for industrial applica-
tions, we are interested in methods by which the structure of these wet foam
samples may be controlled. To do this, we investigate how the surface of the
containers into which the bubbles are placed influences the resulting foam
structure.

Our previous experiments involved placing monodisperse bubbles into
rectangular containers with flat internal surfaces. These flat surfaces are
complimentary to the (111) closed-packed planes of the fec lattice. In partic-
ular, the flat top of the container against which the bubbles are forced due
to buoyancy, causes these bubbles to form a fce {111} closed packed plane,
with defects required to match the rectangular boundary condition of the
container. We believe that this closed-packed plane then forms a template,
which provokes the ordering of further bubble layers.

To determine the effect of the structure of this top surface layer on the
resulting foam structure, we investigate the effect of a “rough” surface on
the resulting foam structure. Following this, we determine if an ordered
arrangement of cylinder holes may evoke the crystallisation of a monodisperse
foam sample along the fce (100), as has been previously demonstrated in

colloidal crystals [82].

4.2.1 Random-template surface

To determine if a rough surface will frustrate the formation of an initial
ordered foam layer, and thus the formation of an ordered foam crystal, a

template was designed composed of a random arrangement of square pegs,
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each peg of dimensions 0.8 x 0.8 x 0.8 mm?®. A random arrangement of these
pegs was guaranteed through the use of a computer script which produced a
random 24 x 24 array of 1s and 0s. This array was then used to produce an
arrangement of 24 x 24 pegs, the presence or absence of a peg corresponding
toa 1 or 0 in the generated array. The resulting template is shown in Fig.B.5.
Monodisperse bubbles of average diameter 790 + 40 pm were placed into the
container using the method described in section 3.1, after which the sample
was imaged by X-ray tomography, the reconstruction of the foam shown in

Fig.4.7.

Figure 4.7: Ordering of bubbles 790 + 40 pm within the the container with
the random template, shown in Fig.B.5.(a) and (b) show the top of the foam,
in contact with the templated surface, and the bottom of the foam, in contact
with the foam-liquid interface, respectively. It is seen that both of these faces,
although not planar in nature, appear to be closed-packed.

It is seen that both the top of the foam, in contact with the container
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template, and the bottom of the foam, in contact with the foam-liquid inter-
face, show the same hexagonally ordered structures. To determine the exact
nature of this ordering, we calculated the RDF of the the foam structure,
shown in Fig.4.8. This RDF is compared against the RDF of an ideal fcc

lattice, as well as the crystalline foam sample examined in section 3.2.1.
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Figure 4.8: Graph showing the RDF of the sample shown in 4.7. The narrow
peaks of the distribution, and coencidence with the theoretical peaks of an
ideal fcc lattice, indicate the formation of such a structure.

Although the peak positions of this sample compare favourably with the
peaks of the ideal fce lattice, it is seen that a deviation of this RDF is seen

when compared to the RDF of a sample ordering against a flat boundary.
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We believe this deviation is due to the rough boundary condition imposed
upon the sample. However, on the whole, the sample may still consider the

sample as ordered.

4.2.2 Fcc (100)

A container was produced the top surface of which was templated with a
square arrangement of cylindrical holes, of diameter 800um and depth 400
pum (see Fig.B.3). These cylindrical holes matched the expected positions of
bubbles within a fce (100) plane. Monodisperse bubbles of approximately
800pm were introduced into the container and imaged using X-ray tomogra-
phy, the result of which is shown in Fig.4.9.

The square arrangement of bubbles in each layer of the foam sample
indicate that the sample has been successfully directed to crystallise along
the fce (100). Several defects are seen to occur within the sample, such as a
grain boundary seen in the middle of the sample. This, we believe, is due to
a possible mismatch between the template and bubble size. Such a mismatch
has been see to produce similar defects within colloidal crystals [82].

In addition to the the templated container composed of a square arrange-
ment of cylindrical holes, an additional template of a square arrangement of
cubic “pegs” was constructed. It was originally hoped that these square pegs
would again force the foam structure into a similar square arrangement of
bubbles, invoking the formation of fcc {110} planes in subsequent foam lay-
ers. The top surface of this container was composed of a square lattice (12 x
12) of cubic “pegs” (0.8 x 0.8 x 0.8 mm?) as shown in Fig.B.3. Fig.4.10 shows
the ordering of a foam sample, 6 layers deep, of average diameter 840 + 40
pum within this container. It is seen that the topmost layer of the foam, in
contact with the template surface of the container, has indeed form a square
arrangement of bubbles associated with an fee (100).

We calculated the RDF for the sample, the results of which are shown in

Fig.4.11. Unexpectedly, however, the RDF demonstrates the same form as
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Figure 4.9: Images showing 2D image slices through the monodisperse foam
of average bubble diameter approximately 800 pm placed within the tem-
plated container shown in Fig.B.3. (a). (b), (¢) and (d) show sections taken
through the 1%, 274 3" and 4" layers of the foam sample. The square
arrangement of the bubbles in each layer indicate that the foam sample is
growing along the (100).
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Figure 4.10: Ordering of bubbles 840 + 40 pm within the the container
templated with the square lattices of pegs shown in Fig.B.3. It is seen that
the topmost layer of the foam sample, in contact with the container template,
has ordered into a regular square arrangement of bubbles.
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for a random packing of bubbles, as demonstrated in section 3.2.1.
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Figure 4.11: RDF for the sample shown in Fig.4.10. It is seen the the func-
tion is composed of broad peaks, with a split second peak characteristic of a
random packing of bubbles. The red lines, drawn at % = /30 and 2 indi-
cate the positions of the two sub-peaks associated with a random packing of
spheres.

4.2.3 Conclusions

We have successtully produced the Weaire-Phelan structure using a container

the internal surfaces of which were templated with the Weaire-Phelan struc-
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ture. Perfect crystals of up to 1600 bubbles were easily formed. Continuing
research will be devoted to other possible ordered foam structures, includ-
ing the family of clathrates and structures such as those derived from the
Frank-Kasper phases, which have been conceived and discussed for many
years, but never realized [83, 84, 85]. Achieving this will open the field to
the experimental investigation of their properties. In addition, such samples
could be solidified using gelling agents [86], opening up further possibilities
to experimentation and application.

We have also seen that simple templates may also be used to alter the
crystal structure of these monodisperse foam structures. A rough boundary
condition was not seen to change the crystallisation of the sample. Through
the use of a square arrangement of cylindrical holes of the same diameter
as that of the bubbles employed in experiment, we were successfully able
to direct the growth of a foam along the fcc {100} direction. it was found
that a similar square arrangement of pegs frustrated the crystallisation of the

sample, the resulting bubble pile resembling a disordered packing of spheres.



Chapter 5

Building the pyramids: perfect
bubble crystals

5.1 Introduction

Through the use of X-ray tomography, we have seen that the internal struc-
ture of monodisperse microbubbles (see Chapter 3). We have seen that these
foam samples may be either fce, polycrystalline, or indeed disordered in struc-
ture [72]. This is due, in part, to the rectangular containers in which these
foam samples are prepared. Such a container will generally produce a sample
containing grain boundaries. because the favoured surface planes of the crys-
tal structure (e.g. {110} etc. for the Kelvin structure) cannot be matched to
all of the faces. This is also the reason fce crystals grown in such a container
are found to contain grain boundaries [29].

If we wish to extend the initial work of Bragg (see section 1.1.2), however,
extending the bubble model of crystal structure in three dimensions, an ef-
ficient method of controlling the crystal structure of the sample is required.
This is necessary as, unlike in the two-dimensional raft of Bragg, there exist
several stable structures in three dimensions [60].

We have seen in chapter 4 that we may control the crystal nature of a

125
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sample through the use of a templated mould to direct the crystallisation of
the sample. Using such a technique, we have successfully generated the first
experimental realisation of the Weaire Phelan structure (see chapter 4.1).
This templating method, however, has associated with it several disadvan-
tages. Firstly, due to the fine detail required to produce a given structure,
this templating method requires access to high-precision manufacturing fa-
cilities. Secondly, due to the requirement of matching the bubble size to the
template dimensions, a new container must be produced for each bubble size.
This also results in the failure of many experiments due to slight variation

in the bubble size.

In this chapter, we report on the development of a technique to direct the
crystallisation of a foam sample through the use of flat-sided pyramidal shaped
containers. This new method offers the possibility of creating perfect single
crystals, without the rigorous control over bubble size required when using a
rectangular container [87], or a templated container [88]. In addition, the flat
boundaries of such a container do not require the same precision machining
that a templated container requires. Finally, the initial growth in small layers
at the apex of the pyramid effectively seeds the growth of a single crystal.

Accidental grain boundaries therefore seem less likely in a pyramid.]

Our strategy has fulfilled expectations. In particular, perfect fce crystals
of up to 500 bubbles have been made very easily. With appropriate pyramids,
we have also made bee and simple cubic crystals, although the total number
of bubbles that can be ordered is severely limited by instability[89]. We
believe this instability will become less limiting when smaller bubbles are

used.

We are also able to make strained versions of all these crystal types
through small variations of pyramid geometry. Further designs can induce
deliberate defects, such as the fce twin boundary described here in section
5.3.1. In addition we have conducted the first experiments aimed at pro-

ducing ordered bidisperse foam, analogous to familiar ionic solids, with some
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success, and the expectation of their extension to larger systems.

Our work carries further into three dimensions the original research pro-
gramme of Bragg, which was to use bubbles as model atoms. In addition the
methodology may also provide a route to fabrication of solidified crystals for
a variety of applications, e.g. polymeric, metallic or ceramic foams, possibly

for industrial applications [86].

5.2 Experimental techniques

To create a crystal of a given type, a container must be fabricated the walls
of which are parallel to an appropriate plane of the corresponding lattice. By
examining the conventional cells of the sc, bee and fee crystal structures, as
shown in Fig.5.1, such a choice may be made by selecting close-packed planes
or planes on which the spheres are relatively well packed.

For example, the selected simple cubic (sc) pyramid geometry is formed
from the intersection of three {100} planes, producing a tetrahedron with a
vertex angle - the face angle at the vertex of the pyramid - of 90°.

The chosen bee pyramid, produced from the intersection of four {110}
planes, is a 4-sided pyramid of vertex angle ('os_l(%).

The walls of the fce pyramid are formed from the intersection of three
{111} planes, resulting in a regular tetrahedron of vertex angle 60°. Note
that during the extraction of these geometries no reference has been made
to any particular bubble size. The intention is that these geometries should
evoke particular crystal types independent of the size of the particles being
used.

Most pyramids were fabricated with a Object 300 rapid prototype ma-
chine using Object Vero Clear polymer as was used for the WP structure.
Each of these pyramids had an internal edge length of 3 em. Larger pyramids
were fabricated by hand using perspex sheeting.

As a preliminary, several hard-sphere experiments were conducted. The
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(s¢) (bee) (fce)

Figure 5.1: The conventional crystal cells and appropriate pyramid container
associated with simple cubic (sc), body-centred cubic (bee) and face-centred
cubic (fce) crystals. The chosen crystal directions that correspond to well-
packed planes are highlighted. The intersection of these planes produces the
pyramid structures which may be used to direct crystallisation of monodis-
perse and bidisperse foams. Unit cell images produced using Vesta rendering
software [90].
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pyramids were inverted and filled with monodisperse metal spheres of di-
ameter 0.98 + 0.01 mm. This involved dropping spheres individually into
a pyramid and shaking the structure slightly so the sphere would find its
lowest position. The container was photographed after the addition of each
sphere.

All our foam experiments were conducted using an aqueous solution of
the commercial detergent Fairy Liquid (5 % volume fraction). Monodisperse
bubbles were produced by the injection of nitrogen gas under constant pres-
sure into this solution via a capillary tube (see Fig.5.2a). Bubble size was
controlled by regulating the gas flow rate. Most of our experiments were
carried out with bubbles of diameter significantly smaller than the capillary
length (about 2mm). In this regime (that of wet foam), many layers of bub-
bles can be prepared under gravity, while maintaining spherical shapes with
small distortions.

The average bubble diameter was determined from an experiment in
which these bubbles are allowed to form a two-dimensional hexagonal raft
at the surface of the solution. The centre-to-centre distance of bubbles then

approximates the bubble diameter.

Glass capillary

ramid container

Glass plate
rfactant solution

(a)

Figure 5.2: Experimental set-up. (a) An inverted open pyramid is submerged
into surfactant solution and filled with monodisperse nitrogen bubbles. (b)
Example of the side view of bubbles (diameter 5.04+0.08 mm), crystallised
in the bee structure inside a pyramid of the type shown in Fig.5.1 (middle).
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The pyramids were placed into the solution and inverted to remove trapped
air, before being positioned with the apex pointing upwards, as shown in Fig.
5.2. They were then slowly filled from below with monodisperse bubbles, as
described above. Due to the nature of our experimental setup, the filling
process of the containers was not directly observable. Once filled, the pyra-
mid was sealed by sliding a glass plate over the open side. At this stage,
the pyramid was shaken gently by hand as this helps to produce coherent
crystals. The container was placed on a glass stage, lit from above using a
planar backlight and photographed from below using a CCD camera. The
foam structure was checked by examining the refracted image of sub-surface
bubbles in the outermost foam layers [28].

For the formation of a perfect fcc crystal within the geometry that we
have constructed here, the number of bubbles Ny, may be determined by
counting the number of complete foam layers n. The 7 it" layer within the

1+1

fece foam will contain bubbles The total number of bubbles within the

foam sample is then given as Z n-— l+l = 1/6(n)(n + 1)(n + 2). Repeating
i=1
this analysis for the ideal sc¢ and b(‘(‘ structures generated by out pyramids

yields

Nee = Ngee = 1/6(n)(n + 1)(n + 2), (5.1)

Nice = 1/6(n)(n + 1)(2n + 1). (5.2)

5.3 Main results

5.3.1 Face centred cubic and related structures

As expected, the most successful experiments were those undertaken with
the aim of producing the fce structure, bounded on all sides (including the

free surface of the bottom layer) by close packed planes.
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The results of the hard sphere experiments is shown in Fig.5.3. The
photograph shows the pyramid from above. It is seen that the growth tech-
nique successfully produces successive close-packed layers grown along the

fce < 111 > direction.

(5) (6)

Figure 5.3: A series of images showing the growth of a hard-sphere fcc crystal
within a regular tetrahedron of vertex angle 60°. Each image is labelled by
the number of fcc layers imaged, showing the crystal growing to 7 layers deep.
Note that each subsequent layer is close-packed and free of defects.

Bubbles were loaded into the pyramids as described above. As Fig.5.4
illustrates, using the 3-sided 60° pyramid we were able to produce perfect
fce crystals comprising of up to 500 bubbles. The photographs show three

such crystals, consisting of bubbles of 0.54, 2.42 and 4.72 mm in diameter.
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We find that fcc crystals are stable in both wet (bubbles much less than the

capillary length [y >~ 2mm) and fairly dry foams (bubbles larger than ).

~ 14 layers | 8 layers B 4 layers
D=0.54+0.01mm D=2.42+0.03 mm D=4.72+0.04 mm

Figure 5.4: Images of the generation of fcc crystals for a 10 fold change in
bubble size. The foam crystals are imaged from the base, i.e. in a (111)
direction.

In order to demonstrate the flexibility of this technique to direct the
crystallisation of foams, we designed a pyramid to produce a coherent grain
boundary between the two distinct regions of fce crystallisation. This geome-
try was formed conceptionally from the joining of two fcc pyramids producing
a four-sided pyramid with a vertex angle of 60° (see Fig. 5.5a). The basal
plane of this conjoined pyramid corresponds to crystal planes of {1%%} type

on each side.

It was found that this four sided pyramid was successful in generating a
coherent grain boundary, a twin boundary between two perfect fcc crystals.
Fig. 5.5b shows a typical example of the foam structure generated. The
position of the grain boundary is highlighted. As the { 1%%} is not close-
packed, the foam is seen to create two sets of opposed terraces of close-packed
111 planes (Fig.5.5¢)
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Figure 5.5: (a) Rendering of the four-sided 60° pyramid used to generate the
coherent grain boundary. (b) Photograph showing the {1%%} plane of the
experiment. The first two {111} planes are shown in red and blue, while the
twinning boundary is shown in green. (c¢) fce lattice showing the intersection
of three {111} planes (in red) and a single {133} plane (in yellow). This
intersection produces the stacked terraces of {111} planes which are seen in
experiment and indicated by matching colours.
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5.3.2 Preliminary experiments on other systems
5.3.2.1 Body centred cubic crystals

Body centred cubic (bee) crystals were formed in the 4-sided pyramid shown
in Fig.5.1 (b). Our experiments with hard spheres readily show that these
indeed form the bee structure in this geometry, as is shown in Fig.5.6.

Our bubble experiments have shown that monodisperse foam structure
within this pyramid strongly depend on the diameter of the bubbles used.
For large bubbles (i.e. dry foams), with a diameter roughly greater than
2 mm, it is seen that the bubbles spontaneously crystallise into perfect bee
crystals. For such relatively dry foam, this is the well-known Kelvin structure
(77, 29, 5]. We have successfully generated such perfect bee crystals up to
7 layers deep composed of 140 bubbles. When the bubble size is reduced
below 2 mm, it is seen that complete crystallisation of the sample is no longer
guaranteed, pointing to the instability of bee for wet foams (see section 1.1.2).

Nevertheless, the attempt to make bee wet foams in this way is not futile.
The shear instability of bee refers to uniform shear and this is incompatible
with the hard-wall boundary conditions of the pyramidal experiments. This
is demonstrated by our ability to successfully form many-layered bee crys-
tals with incompressible hard spheres within such a geometry (see Fig.5.6).
Our current inability to form bee erystals with monodisperse bubbles is due
to their finite compressibility, which is inversely proportional to the bubble
radius. We therefore expect to be able to make such crystals (and also sc) up
to a certain critical size determined by the capillary length, for sufficiently

small bubbles.

5.3.2.2 Simple cubic crystals

An attempt was made to form a simple cubic (sc) crystal using the 90°
pyramid shown in Fig.5.1. Note that the sc structure is susceptible to the

same type of instability as the bee lattice. Due to this we could only produce
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(2)

F (3) (4)

Figure 5.6: A series of images showing the generation of a bee lattice of hard
spheres of diameter 1 mm within a 4-sided pyramid. The images are labelled
by the number of complete layers.
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~ 3 layers ~ 5 layers
D=0.71 £0.01 mm D=0.90 + 0.01 mm

5»léyers | 5 layers
D=1.81 £ 0.02 mm

5 layers | 7 layers
D=3.60 + 0.07 mm D=5.04 + 0.09 mm

Figure 5.7: Within the square pyramid bubbles of diameter exceeding roughly
1 mm spontaneously crystallise into bee along the < 100 > direction. Such
ordering does not occur for smaller bubbles (bottom row of photographs).
(Photographs taken from below.)
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perfect sc structures up to 3 layers in depth, as shown in Fig.5.8 (b). A second
complication arouse in the intervention of the fcc crystal (Fig.5.8 (d)). This
is due to the cubic symmetry of the two structures.

Increasing the number of foam layers above this, it was found that the
foam formed a polycrystalline structure (see Fig.5.9). Close to the boundaries
of the container, the foam orders into a sc structure, while the centres of such

samples are arranged into a hep configuration.

5.3.2.3 Bidisperse foams

We also carried out preliminary experiments concerning the ordering be-
haviour of bidisperse foams within the same geometries. In relation to the
model of Bragg, this corresponds to the production of “ionic” bubble crystals
and it also calls to mind the educational work of Ramme [91].

The experimental procedure was similar to that employed in the produc-
tion of monodisperse foams. The pyramids were filled until the formation of a
complete foam layer. This filling scheme was continued, the bubble diameter
alternated between successive foam layers.

As shown in Fig.5.10, we formed three-layered ordered bidisperse foams.
However, on production of the fourth layer, it is seen that the deposited
bubbles disrupt the lower layers, producing interstitial defects and a disor-
dered foam. It is possible that such a disturbance of lower layers occurs also
during the formation of monodisperse foam crystals, but since in this case
the bubbles are all the same. the foam can relax again into a perfect crystal.
Future systematic experiments, involving a more gradual deposition process,
should enable the formation of much larger ordered bidisperse foam samples,

as there seem to be no inherent instabilities in this case.

5.3.2.4 Strained lattice

We have seen that a perfect fce lattice may be formed through the ordering

of bubbles within a three-sided pyramid of vertex angle 60°. By changing
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(c)

Figure 5.8: Formation of crystals in a three-sided pyramid of vertex angle
90° pyramid (bottom view, D= 1.09 + 0.02 mm). (a), (b) and (c¢) show
successive layers of a simple cubic (sc) lattice, with 3, 6 and 10 bubbles,
respectively. However, (d), (e) and (f) show the formation of an alternative
crystal structure, consisting of 6,10 and 18 bubbles in the successive layers.
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Figure 5.9: The same pyramid as in figure 5.8, but filled with more than 10
layers of bubbles (D=1.09 + 0.02 mm, as before), shows the formation of a
polycrystalline foam. In the centre of the crystal the bubbles have arranged
into a hep configuration (B), while closer to one of the pyramid walls they
form an sc structure (A).
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Figure 5.10: Three layers of an ordered bidisperse foam (bubble diameter
ratio 0.37) within a 60° three-sided pyramid (bubble diameters: 5.60 4+ 0.12
mm and 2.0740.03 mm).
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this vertex angle we can study the effect of a strain on the bubble crystal
structure. We conducted a series of experiments where we placed monodis-
perse microbubbles into three-sided pyramids of vertex angle 60°, 65°, 75°,
85° and 90°. In this way, we can also investigate the transition of an ordered

foam from a fce configuration to a sc configuration.

65? b
8 layers 6 layers
D=1.09+0.02mm D=1.10£0.01mm

Figure 5.11: Images showing the arrangements of bubbles in three sided
pyramids of vertex angles 65° and 75°. The bubbles within the 65° pyramid
appear to arrange into the defect-free strained fcc crystal as seen for a 60°
pyramid (see Fig.5.4). The bubbles in the 75° pyramid still conform to
strained fcc structure.

Fig.5.11 shows the ordering of monodisperse microbubbles of approxi-
mately 1 mm in diameter in such pyramids. (The cases of bubbles ordering
within 60° and 90° pyramids have been discussed separately in the sections
on fee and sc erystallisation.) The 65° pyramid produces a fcc lattice, with no
obvious defects observed in our largest sample, 12 layers deep, composed of

roughly 350 bubbles. In the 75° pyramid, the bubbles again appear to order
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| Structure | Observed plane ] Current Max no. bubbles | Comments

fee

{111}

500

Successful for all
sizes reported here.

bee

{100}

140

Successful for dry
Currently unstable
foams due to comp
ity of bubbles. Furt
periments with smal
bles may be successt

SC

{111}

18

Unstable for both
dry foams.

Twinned fce

{133}

N —
B | =

500

Successful — generat
twinning defect.

Bidisperse

{111}

12

Currently limited t

crystals

Table 5.1: Summary of experimental results.

into an fcc lattice. However, on comparison with the ordered crystals pro-
duced from the 60° pyramid, it is noted that the interbubble distance in each
layer is now greater than the bubble diameter, making subsurface bubbles
visible. This corresponds to the formation of a face-centred orthorhombic
crystal structure [92]. Bubbles in the 85° pyramids formed crystals which
closely resembled those produced in the 90° pyramid associated with the sc

lattice.

5.4 Conclusions

Through selective choice of the vertex angle of three and four sided pyramid
containers, we have directed the crystallisation of monodisperse foams into
fce,bee and se configurations, albeit with limited success for bee and sc. as
yvet. A summary of the experimental results is shown in table 5.1.

We have seen that in the most promising case, that of fcc, monodisperse

foam grown in an appropriate pyramid can produce perfectly ordered foams
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across a wide range of bubble sizes. Bee and sc are more problematic, in that
instabilities are unavoidable. Nevertheless, with more carefully controlled
experiments, and smaller bubbles, we expect to extend these experiments
considerably, since confined growth tends to suppress instability.

We found that the generation of fcc crystals was robust against strain
imposed by small changes in the vertex angle.

We have shown that this method may be easily adapted to the generation
of ordered bidisperse foams as well as the selective generation of defects
within otherwise perfect crystals.

This methodology may easily be scaled upwards for practical applications,
allowing for the selective crystallisation of metallic, ceramic and polymer
foams. For such applications we intend to investigate the ordering behaviour
of these monodisperse microbubbles under forced drainage conditions. The
forced continuous flow of surfactant solution through the apex of a pyramid
during the filling procedure would replace the shaking of the samples that
we currently apply to produce coherent crystals.

Finally, our ability to precisely control the three-dimensional structure of
monodisperse foam samples, combined with new tomographic techniques [72],
will allow us to greatly expand the original programme of Bragg which was
to elucidate the structure of ordered and defective materials with a system

visible to the naked eye.



144 Chapter 5. Building the pyramids: perfect bubble crystals




Chapter 6

Formation of columnar crystals

in wet foam systems.

g ———-

Figure 6.1: Graphic showing the ordering of monodisperse microbubbles
within a cylindrical tube. The bubbles are seen to order in a regular, re-
peating structure. The nature of these ordered cylindrical packings will be
examined in this proceeding chapter.

The ordering of spheres within cylindrical confinement is found to be a
non-trivial and important packing problem. First studied computationally,
such structures have been found in a variety of physical systems. In this chap-
ter, we investigate these ordered structures using monodisperse microbubbles

(see Fig.6.1).
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6.1 Introduction

Fce crystal structures are seen to be the most efficient packings for unbounded
three dimensional systems [93]. Within the atomic structures of solids, the
crystallisation of nanoparticles, the arrangement of colloidal spheres and the
crystallisation of foams in the wet limit, the fce structure is readily seen to
occur [21, 60, 94, 95]

However, the question which the fcc structure addresses - which is the
most efficient packing of spheres - only provided a universal answers for the
specific case of an unbounded packing. For more realistic case of a bounded
packing, the limitations of the border may result in the pure fcc lattice being
no-longer the most efficient packing structure. Although it is possible for the
boundary of such a finite packing to be chosen to match the symmetry of a
particular crystal structure (see Chapter 5) in general, this will not be the
case. In these cases, an “alternative” structure must be formed.

These alternative structures may take the form of a random arrangement
of spheres [45], or a crystalline lattice with the addition of specific defects -
such as dislocations, grain boundaries etc. [72]. However, for certain extreme
cases, the most energy efficient structure diverges significantly from the fcc
configuration of the bulk. One particularly rich and interesting example of
such boundary conditions resulting in unique crystal structures occurs when
spheres are confined in cylindrical tube of similar internal dimensions.

Present in various physical systems, the first systematic approach to this
problem was conducted by Pickettet. al. in 2000 [96]. By conducting simu-
lated annealing of frictionless hard spheres in cylindrical confinement, Pickett
found the minimum energy configuration of hard spheres of diameter d when
placed in a cylindrical tube of internal diameter D. By dividing these two
lengths, a non-dimensional parameter A = % may be defined to describe the
system. On increasing A from the minimum possible value of 1, at which
value the system consists of a linear chain of spheres, Pickett found that

the optimum packing structures migrated through a series of chiral and non-
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chiral ordered phases. In addition, it was found that the packing fraction of

spheres ¢ varied in a non-linear fashion as A is increased (see Fig. 6.2).
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Figure 6.2: Graph showing the variation of packing fraction ¢ against % =
As A is increased. Figure reproduced with permission from Mughal et. al
[97]

Following the initial study of Pickett, the theoretical basis of the packing
problem was finally unwrapped by Mughal et al. in 2011 [98]. They deter-
mined that each of these columnar crystals may be described by a periodicity
vector, V., which links equivalent spheres within the structure. Unwrapping
the cylindrical centre positions of the sphere within the packing results in a
pattern of points which, when combined with the periodicity vector can be
extended to produce a infinite 2D lattice of points. Each structure may then

be categorised by the type of deformation of a regular 2D hexagonal lattice
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required to replicate the sphere-packing lattice.

A=1.750 A=1.890 A=1.995 A=2.000 A=2.215 A=2.415
Achiral Chiral Chiral Chiral Chiral Achiral

Figure 6.3: Examples of optimum cylindrical packings generated from simu-
lated annealing for several values of A, represented as bubbles within a glass
capillary. Images generated from simulation data provided by Mughal et al.
[99] and generated using POV-Ray [70].

Those structures which require no deformation i.e. whose periodic vector
fits onto a regular hexagonal lattice, are called symmetric structures (exam-
ple: A = 2.000 in Fig.6.3). Those structures which require a localised strain
of the lattice are know as line slip structures [98] (example: A = 2.215 in
Fig.6.3). The theoretical basis of Mughal et. al. may be used to understand
a wide variety of systems in which the ordering of spherical particles within

cylindrical geometries occurs.
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One of the most interesting examples of these cylindrical systems was
studied by Hodak and Girifalco. Using Monte Carlo methods, the minimum
energy arrangement of Cy particles with diameter of 6.27 A within cylindrical
nanotubes of varying width was studied[100]. Although the potential between
the particles differed significantly from the excluded-volume interaction, as
employed by Pickett and Mughal, it was found that the ordering properties
of the system was very similar to the hard sphere model for low A value. On
increasing A, the ordered structures produced are seen to diverge from the

results of simulated annealing.

Tymezenko et. al. investigated the ordering characteristics of polystyrene
spheres of diameter 1 gm inside the cylinder-like pores of a silicone membrane
[101]. Again, although the system interactions differed significantly when
compared to an ideal hard sphere system, the two systems were seen to
exhibit the same ordering behaviour for low A values and independent of the

boundary conditions used.

We believe that wet foams offer the ideal system with which to study these
cylindrical packing of spheres. Previously, Weaire et al. demonstrated that a
wide variety of ordered dry foam structures are seen to spontaneously occur
if monodisperse bubbles of average diameter roughly 1 e¢m are introduced
into a cylindrical tubes of diameter of the same order (see Fig.6.4) [102].
Each structure may be defined by a number A, equal to the tube diameter
divided by the average bubble diameter, and may be characterized through
the use of phyllotactic notation!. Such ordered structures were also seen

to spontaneously occur within tubes of square and triangular cross-sections

'For each ordered structure, the surface layer of the foam is composed of a hexagonal
grid of cells. This allows the structures to be categorised through the use of phyllotactic
notation, first developed to describe the distribution of leaves around the branches and
stems of plants. By unwrapping the surface structure so as to form a hexagonal gird, in a
similar fashion as that employed by Mughal et. al., a set of basis vectors may be defined
[102]. By decomposing the vector V' linking identical cells into this basis, the number of
each lattice vectors [ and m may be calculated. These two numbers, along with their sum
n, are then used as a triplet (LLm.,n) to describe the resulting cylindrical structure.
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110 21 220 321

Figure 6.4: Monodisperse bubbles of average diameter roughly 1 c¢m are
seen to spontaneously order under cylindrical confinement. Each structure

(103, 104].

is labelled using phyllotactic notation.

By making such cylindrical dry foams wet, the resulting structures resem-
ble the previously discussed hard-sphere cylindrical packings (see Fig.6.5). If
we employ monodisperse microbubbles bubbles in such experiments, a good
approximation to the ideal hard sphere system of Pickett et al. and Mughal
et al. may be expected in the limit of small bubble radius. This is due
to the limited friction which exists within foam systems and the scaling of

the bulk modulus, K, of a bubble to the radius r as + [1].2 As the bubble

) g . . . . . .
“The bulk modulus of a material is the resistance of that material to compression. It

. . - rOP o . N .
is given by K = -V % where V' is the volume of the object, 6 P is the pressure change.
For the case of an isolated spherical bubble V = %m‘B and P = l% where ~ is the surface

tension of the liquid phase. Inserting these parameters into the equation for the bulk leads

to 4
K=_—. (6.1)
3r

This leads to K ;1
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(a) (b) (c) (d)

Figure 6.5: A monodisperse foam, of average bubble diameter 1.2 mm, pro-
ducing a A =1.5. (a) Near the foam-liquid interface the structure, is seen to
resemble a packing of spheres of the same A value. As the distance form the
foam-liquid interface is increased (b) - (d), the liquid fraction of the foam is
decreased and the polyhedral nature of the foam increases. A direct com-
parison between the foam structure and the hard-sphere experiments is then
not possible.

diameter is decreased the bulk modulus increases, leading to the bubble be-
coming more hard-sphere-like. The negligible contact friction which exists
between the bubbles allows the foam to spontaneously produce the maximal
volume-fraction state without requiring the annealing necessary to generate
similar structures in hard-sphere systems [105]. For this reason, they form
the ideal system to study the optimum packing of spheres within cylindrical
geonetries.

Two sets of experiments were conducted to determine the ordering be-
haviour of monodisperse microbubbles within a cylindrical geometry and

how they compare to similar hard-sphere systems: Firstly, by introducing
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monodisperse microbubbles into glass capillaries, we attempted an optical
characterisation of their structure. Following this, we used X-ray tomography

to characterise their internal structure within cylindrical polymer containers.

6.2 Optical experiments

Our optical experiments involved the ordering of monodipserse microbubbles
within thin glass capillary tubes, of internal diameter of the order of 1 mm.
The capillaries were formed from glass tubing, initially of internal diameter 1
cm and length 15 em. The tubes were heated to melting point using a bunsen
burner, at which point they were stretched by hand, the final length of the
hollow glass filament determining its internal diameter. The glass filament
was then cut into 5 e¢m long pieces. The capillary tubes were photographed
from both ends, their internal diameter and circularity were then measured
using Image.J. > Tubes whose circularity was above 0.85 and whose diameter
varied less than 1% along the tube length were then used for our packing
experiments.

Monodisperse microfoam was produced using a flow focusing device, as
described in Chapter 2. The foams were produced from nitrogen gas and
5% by volume aqueous solution of commercial detergent Fairy Liquid. Once
produced, the foam sample was collected in a petri dish. The sample was then
illuminated from below using a planar back-light and imaged from above.
The bubble diameter was calculated by measuring the centre-to-centre bubble
distance in a 2D hexagonal array. A characterised tube was placed into the
foam layer, the capillary action of the surfactant solution drawing the bubbles
into the tube. The tubes were then mounted either horizontally or vertically.
The filled tube was photographed using a Canon FOS 50 D DSLR camera

3Circularity is a measure of the divergence of two-dimensional shape from that of a
perfect circle [50]. It is defined as C' = % where A is the area of the object and P is
the perimeter of the object [50]. For a perfect circle, C=1, but this value decreases as the

circular nature of the object decreases.
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combined with a 190mm macro lens and 15 cm bellow extension, which allows
high-resolution optical images.

From the optical images, the packing fraction ¢ may be calculated as
follows, assuming that the bubbles are both spherical and incompressible.
For N bubbles of radius r, ordering within a cylindrical tube of radius R, we

obtain

gﬂ-‘N"B
TR2h

where h is the length of the foam sample being examined. Using the

=

relation \ = IL? this leads to:

INX%r

o= ’
4h

The packing fraction of the cylindrical packing may then be calculated by

(6.2)

measuring the number of particles N per unit length A within the wet region
of the foam. The optical distortion of the bubble packing by the glass of the
capillary tube made determining the exact location of bubbles difficult. This

increased the error associated with our packing fraction data.

6.2.1 Results

It was seen that the cylindrical foam structure strongly depended on the
orientation of the capillary tube with respect to gravity. We thus examine

the horizontally and vertically orientated capillary tubes separately:

6.2.1.1 Horizontal tube experiments

When mounted horizontally, the resulting “height” of the foam column with
respect to gravity is, at most, equal to the diameter of the containing cylin-
der. It is therefore easy to ensure that the entire foam column remains wet,
increasing the number of bubbles that may be included when determining the

packing fraction of the system. The packing fraction results for the ordering
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of microbubbles within a horizontally orientally capillary tube are shown in
Fig.6.6.

e e
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Figure 6.6: Variation of the packing fraction ¢ with A obtained from exper-

iments using monodisperse microbubbles in horizontal capillary tubes. The

continuous line refers results of simulated annealing from this range of A = &

[106].

[t is seen that the experimentally obtained values for volume fraction
reside far above the expected volume fraction of hard sphere packings as
several experimental values also resided above ¢ = 0.74, the upper-bound
for hard-sphere packings in three dimensions. In addition, the structures
observed occur at A values not expected from the hard sphere simulations.
For example, 220 structure was found at A = 1.5, where simulated-annealing
experiments predict such a structure for 2 < A < 2.039 [99).

The differences between this experimental system and simulation is due,
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in part, to the horizontal orientation of the tube. Although advantageous
producing a uniform liquid fraction along the foam, the horizontal orienta-
tion results in the buoyancy force of the bubbles being directed normal to
the central axis of the tube. In this respect, the resulting system does not
resemble the simulations of Pickett and Mughal in which the bubbles are

forced together.

6.2.1.2 Vertical tube experiments

The experiments were repeated with the capillary tube now mounted verti-
cally. The action of the buoyancy force along the long axis of the cylindrical
tube now forces the bubbles together, reducing the inter-bubble distance. In
this respect,the system now more closely resembles the hard-sphere model of
simulated annealing, against which our experiments are compared.
Examples are seen in Fig. 6.7. For each experimental A value, the result-
ing foam morphology now matches that expected from simulated annealing,
however the experimental packing fraction still resides above that expected
for hard-spheres, although it is closer to the theoretical results (see Fig.6.6).
Again, this is due to the finite compressibility of the bubbles. The experiment
was repeated for samples of several different bubble diameters. It was seen
that variation of bubble diameter did not produce a measurable difference in

packing fractions using this experimental method.

6.3 Tomographic experiments

Due to the optical distortion of the glass tube and the problem associated
with determining the spacial limit of individual bubbles, it was decided to
characterise the packings using X-ray tomography. This method of charac-
terisation has several advantages over previous optical experiments. Firstly,
due to the lack of refraction of X-rays from the wall of the cylindrical con-

tainer. the optical distortion of the samples is no-longer a concern. Secondly,
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(110) (211) (220) (422)

Figure 6.7: Examples of the 110, 211, 220 and 422 structures formed using
bubbles of diameter approximately 1 mm,

due to the increased spacial resolution available from this method, we may
greatly increase the accuracy of our packing fraction calculations. We may
also calculate the contact number distribution for each packing. In addition,
this method allows us to examine high A\ value packings. whose many lavers

of internal bubbles may not be studied accurately using optical techniques.

6.3.1 Experimental method

Monodisperse foam was produced using the flow-focusing setup shown in

Fig. 2.2. The bubbles were then loaded into a container fabricated using
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Figure 6.8: Variation of ¢ against A for a vertically mounted capillary tube.
It is seen that the experimental packing fraction resides above those values
associated with simulated annealing. This is due to the finite compressibility
of the foam sample.

an Object Eden 3D printer, described in section 4.1.1. The container was
composed of a polymer block in which 26 separate cylindrical chambers were
formed (see Fig. B.2). The holes ranged in diameter from 0.8 mm to 3.3
mm in 0.1 mm intervals. This allows 26 cylindrical packings of different
A values to be imaged at the same time. The container was placed in a
surfactant solution (%5 by volume fraction aqueous solution of Fairy Liquid)
and inverted to remove trapped air. A syringe was used to inject surfactant
into each cylindrical chamber to remove any additional trapped air bubbles.
The container was then moved over the outlet of the flow focusing device.

Once sufficiently filled with bubbles, the container was tapped lightly to help
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crystallisation. The outlet of the container was closed by sliding a glass plate
over the open face of the container. The resulting system was then mounted
on a polyurethane plinth and allowed to rest for two hours before being
imaged. This allowed the system to settle, allowing for successful imaging
of the sample. The tomographic data was then processed using the Octopus

software as described in Chapter 2.

A collection of the resulting foam structure is shown in Fig.6.9. 5 cylinders
of diameter 2.9, 3, 3.1, 3.2 and 3.3 mm are shown (left to right), with smaller
tube diameters visible behind. Each bubble on the exterior of the foam
sample may be resolved. Fig.6.9 (B) shows the top of the foam sample while
Fig.6.9 (C) shows the bubbles near the foam-liquid interface. As the distance
from the foam-liquid interface is increased, the bubbles are seen to become

more polyhedral in nature, corresponding to a dryer foam.

In Fig.6.9 A it is seen that as the distance form the foam-liquid interface
increases, the structure of the foam structure changes. This structural change
may be explained by the compression of bubbles within the foam column
by the buoyancy force of the underlying foam layers. This results in the
effective bubble diameter decreasing as a function of height from the foam-
liquid interface. This provokes the change in foam structure as a function
of distance from the foam-liquid interface h. During our later analysis of
these foam structures, we limited our investigation to those bubbles within
a height H,, of the foam-liquid interface, defined by equation 1.2 in section
1. By focusing on this region, we guarantee that our foam sample may be
considered wet, while avoiding the added complication of a structural change

along the foam sample.
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Figure 6.9: Reconstruction of the raw three-dimensional tomographic data

showing the ordering of microbubbles within the cylindrical chambers. Sev-
eral different viewpoints of the foam are shown. including (A) profile shot,
(B) the top of the foam and (C) the bottom of the foam near the foam-liquid

interface.



160 Chapter 6. Formation of columnar crystals in wet foam systems.

Note that an attempt was also made to analyse the structure of dry foams
far from the foam-liquid interface using our tomographic data. However,
it was found that due to the reduced liquid content of this foam, X-ray
contrast was not sufficient to preform a usable segmentation of this data (see
Fig.6.3.1).
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Figure 6.10: Plot showing the xz coordinates of the bubble center positions
obtained from the data segmentation. It is seen that the density of bubble-
center positions decreases dramatically far from the foams-liquid interface.
The is due to our inability to successfully segment dry foam using our current
X-ray tomography setup.

6.3.2 Data processing

Following the imaging of the foam sample, the data was processed to extract
the bubble center positions as described in section 2 using MAVI. The average
bubble size was calculated by fitting a Gaussian to the distribution of bubble

diameters (see Fig. 6.11).
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Figure 6.11: Histogram of bubble diameter distribution for a typical sample
used in the cylindrical foam experiment. The resulting distribution was fitted
to a Gaussian, resulting in an average bubble diameter of 720 £+ 40 um
vielding a polydispersity of 5 %, thus identifying the sample as monodisperse
according to the definition laid out in section 1.

Once a sample had been verified as monodisperse, the bubble center po-
sition data was then segmented to assign each bubble to a particular foam
column. The xy center positions of each bubble within the sample was plot-
ted and a rectangular grid was overlaid to aid in this segmentation process

(Fig. 6.12).

6.3.3 Results

After successful segmentation of the positional data of the bubbles, the foam

columns were analysed under three separate criteria.

e Cylindrical morphology
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Figure 6.12: Partitioning of the experimental data. Red points indicate the
bubble center position. The blue rectangular grid, 50 pixels in width, serves
as a guide for the manual segmentation of the experimental data. Image noise
leads to a few stray particles outside of the columnar bubble structures.

e Packing fraction

e Contact number distribution

6.3.3.1 Cylindrical morphology

The bubble center positions were visualised using the freely available software
POV-Ray [70]. Each bubble was represented by a sphere, the radius of which
was equal to the radius of the corresponding bubble.

It was found that the experimental foam ordered into coherent structures
close to the foam-liquid interface. The foam structures were broken into two
categories. We call those structure for which all bubble of the sample are
in contact with the container wall low A\ wvalue structures. Structures which

contain internal bubbles, i.e. bubbles which are not in direct contact with
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the boundary of the container we call high \ value structures.

6.3.3.1.1 Low A For low A values it was found that the resulting foam
structures were well described by the results of simulated annealing. Fig.6.13
and Fig.6.14 show the comparison between two foam structures of similar A
values - 2.22 + 0.01 and 2.24 + 0.01. It is seen that the foam structure closely
follows the results of hard sphere experiments. In particular, it is seen that
a small change in A value produces the same structural changes in both the

foam and hard-sphere system.

Simulation Experiment

2.1949<A<2.2247 A =2.22 +0.01

Figure 6.13: Comparison between the hard-sphere structure produced by
simulated annealing and the foam experiment with a corresponding A value
of 2.22 + 0.01. It is seen that both simulation and experiments show the same
pairs of spheres rotated through 90°. Note the separation present between

bubbles of each second layer of the structure.
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Simulation Experiment

2.2247<\<2.2655 A=2.24 +0.01

Figure 6.14: Comparison between the hard-sphere structure produced by
simulated annealing and the foam experiment with a corresponding A value
of 2.24 £+ 0.01. It is seen that both simulation and experiments show the
same pairs of spheres rotated through 90°. Note that the bubbles that were

separated in Fig.6.13 are now in contact.

6.3.3.1.2 Large A\ An accurate determination of the exact onset of in-
ternal spheres is not possible from these tomographic experiments due to the
inability to continuously measure the structural changes with increasing A.
However, we see that structures without internal spheres are seen up to A
= 2.5 after which the next successfully imaged structure, at A = 2.9 shows
the emergence of a structure with internal spheres. This range of A\ values
includes A = 2.73, the value associated with the onset of internal spheres in
simulated-annealing data [99)].

The first of these foam structures with internal spheres is seen in Fig.6.15.
Both the external and internal bubbles are seen to form ordered structures.
For this structure (A =3.13 + 0.1) it is seen that the internal structure is
composed of a series non-connected spheres. Results from simulated anneal-

ing show that a similar structure may occur for hard spheres, although at a
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different A value of 2.8711 < A < 2.873 [99]. As the A value of the experiments
is increased (Fig. 6.16 and Fig.6.17), it is seen that the ordered external and
internal structures are seen to increase in complexity. In Fig.6.18 we see that
the internal structure of the foam resembles a A\ = 2.215 packing from the

results of simulated annealing (see Fig.6.14).

(a) (b)

Figure 6.15: Foam structure of A = 3.13 £ 0.1. It is seen that the ordereded
exterior foam structure (a) contains within it a series of disconnected internal

spheres seen in(b)
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(a) (b)

Figure 6.16: Foam structure of A = 3.47 £+ 0.1. The internal structure is

seen to form a zig-zag structure.
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(@) (b)

Figure 6.17: Foam structure of A = 3.66 &+ 0.1. The internal structure is

seen to form a closer-packed zig-zag structure.

(a) (b)

Figure 6.18: Foam structure of A = 4.19 &+ 0.1. The internal structure is

seen to resemble that of a A = 2.215 structure.
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On further increasing the A value of the packing, it is found that a third
layer of ordered bubbles may be found. Such a three-layered ordered foam
structure is seen in Fig.6.19. As we remove the external layers of the foam
sample, it is seen that each underlying foam layer is phyllotactic in nature.
As the value of A is increased, the internal structure of the foam is seen to
change again. In Fig.6.20, it is seen that the increasing A value results in the
internal spheres of the packing coming into contact. Further simulations are
required to study the exact transitions which occur within these systems as
A is increased. It is hoped that current experiments may form the seed for

such simulation.

(@) (b) (c)

Figure 6.19: Visualisation of the foam packing structure for A = 4.74. Suc-
cessive ordered layers of the foam sample are coloured green, red and blue.

Each successive layer of the foam is seen to be ordered



6.3. Tomographic experiments 169

(a) (b) (€)

Figure 6.20: Visualisation of the foam packing structure for A = 5.14. Suc-
cessive ordered layers of the foam sample are coloured green, red and blue.

Each successive layer of the foam is seen to be ordered

6.3.4 Packing fraction

From the positional and diameter data available for each bubble, we may
more accurately calculate the packing fraction than possible from our previ-
ous optical measurements. In particular, we may take into account the effect
of boundary bubbles on the resulting packing fraction.

Fig.6.21 shows a diagram of a packing of spheres, of radii r; into a tube
of radius D. The packing fraction for the system within a length H of tube

may be written as

n
3V
o= (6.3
7P H )
where V; is the volume of the i sphere within the tube length H and

n is the total number of spheres being considered. There are three separate
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Figure 6.21: A diagram showing the packing of spheres, of radius r packed
into a tube of diameter D. The packing fraction of the system is investigated
in a section of length H.

cases for the form of this volume V;. For those spheres which are completely

contained within the tube section, the volume V; is given as

2

4 .
Vr(r;) = gm"»‘. (6.4)
For bubbles on the boundary of the tube element (i.e. |z; —t| < r; or

h

|zi — b| < r; where z; is the vertical coordinate of the i"" sphere, and ¢, b are

the positions of the top and bottom of the tube section being examined) must
be treated separately. The volume element V; for such boundary spheres is

given by either

20 : 1
Va(ri,h) == (grf —rih+ 5/1") : (6.5)

or

20, ; il
Ve(ri,h) = <§rf + r2h — gh,") : (6.6)
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depending on which section of the sphere is located within the tube ele-
ment, as shown in Fig.6.21. Following these definitions of the volume associ-
ated with each sphere within the tube, the following rules can be written to

determine each sphere’s contribution to the volume fraction measurement.
1. For |z; —t| > r; AND |z; — b >r AND b < z; < t, V; = Vp(r;).
2. For |z, —t| < r; AND z; > ¢, V; = Va(ry, |2 — t])
3. For |z; —t| < r; AND 2; < t, V; = Vg(r, |z — t|)

4. For |z; —b| <r; AND 2; > b, V; = Vg(r;, |zi = b|)

o

For |z; — b| < 1; AND z; < b, V; = Va(ry, |2 — b|)

Using these rules, we may accurately calculate the packing fraction of

each structure.

6.3.4.1 Results

The initial calculation of the packing fraction ¢ and A using the tube radii
obtained from the schematic shown in Fig.B.2 demonstrated several unusual
results. On comparison with the simulated annealing results of Mughal et.
al. [107], it was found that the wet foam structures diverged significantly
from their hard sphere counterparts with, for example, a 422 foam struc-
ture occurring where a 110 hard-sphere structure is expected. Secondly, the
calculated packing fraction resided high above the results of simulated an-
nealing. Several experimental data points exceeded the maximum packing
of 0.74 associated with fcc packing. In addition, several points were seen to
reside above the physically unrealistic value of 1.

This discrepancy between the hard sphere simulations and the foam sys-
tems is due. in part, to the compressibility of the bubbles. However, due to
the non-physical packing fractions above 1, we believe that the absorption

of surfactant solution into the polymer from which the cylindrical containers
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were produced played a significant role. This swelling of the polymer resulted
in a reduction of the tube radius. Calculations based upon these decreased
tube radii will result in artificially decreased A and increased ¢ values. In ad-
dition, this swelling was found to result in the some of the cylinders becoming

elliptical in cross section.

To combat these various problems,we fitted new tube radii to the distribu-
tion of points associated with each tube. This was done by first examining the

distribution of bubble positions from the center of each tube (see Fig.6.22).

650 45
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2 25
550 g
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g
T 20
15
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" i " 0
100 120 140 160 180 200 220 240 260 280 0 20 30 40 50
Position from tube center (voxels)

Figure 6.22: (A) plot showing the position of bubble centers within a cylinder
and (B) a histogram of the bubble center positions. It is seen that the bubbles
are arranged in concentric rings. The bubbles in the outer ring are used to

determine a new tube radius for the system being examined.



6.3. Tomographic experiments 173

Figure 6.23: Comparison between the fitted (left) and original (right) tube
diameter. The center of each bubble is marked using a red point, while the
extent of each bubble is shown by a light red disc. The center of the tube
is marked in blue while the extent of the tube is shown in light blue. The
fitted tube radius covers the extent of each bubble, while the original tube

diameter suggests the extrusion of bubbles out of the cylindrical container.

Those tubes which were not found to be circular in nature were excluded
from further analysis. The centres of the outermost peak of these histograms
was used to fit a circle the diameter of which is used as the new tube diameter.
It was found that this new tube diameters more realistically describe the

packings, as seen in Fig6.23.

Upon successful calculation of the new tube radii, the packing fraction of
the sample was again calculated and compared to the previously calculated
packing fraction using the old tube radius. The comparison is shown in
Fig.6.24.
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Figure 6.24: Comparison between the packing fraction as calculated using
the initial tube radius (yellow) and the fitted tube radius (red). It is seen
that the fitted tube diameter more closely follows the packings associated

with simulated annealing.

The final packing fractions are shown in Fig.6.25. It is seen that the new
packing fraction more closely follows the results of simulated annealing. The
foam experiments overestimate the packing fraction associated with hard
spheres, but this is due to the finite compressibility of the bubbles in the

experiment.
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Figure 6.25: Comparison between the packing fraction as calculated using
simulated annealing (continuous red line) and experimental foam packing
data (blue points). It is seen that the experimental data lies roughly in line

with the results of simulated annealing.

6.3.4.2 Contact number distribution

The contact number distribution was calculated for each experimental cylin-
drical packing. Again. the contact number for each particle was calculated
using the conditions outline in section 1.2.1. The resulting contact number

distribution is shown in Fig.6.26.
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Figure 6.26: Variation of the distribution of the average number of contacts
within the cylindrical foam structures with A. It is seen that, as A increases,
the system approaches C' = 12, the values associated with maximal contact
number in three-dimensions. A theoretical prediction for the average contact

number is shown in cyan, while our best experimental fit is shown in green.

It is seen that, as A increases, the average contact number C' increases as
a function of A\, approaching C' = 12 for large A, the values associated with
maximal contact number in three-dimensions. A simple theory may be put
forward to describe the functional dependence of C' on A.

We examine an fce lattice with a nearest neighbour separation of d. The

density of points within this lattice p is given by
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V2

The density of bonds within this lattice pg is given as
6v/2

d3 :
On average, a plane, of angle ¢ and « with respect to an arbitrary normal

vector 2, will cut N bonds per unit area where

N = 2dpgcosfcosa

48+/2 :

= (6.9)
(wd)?

Averaging cosf and cosa between 0 and 7. A cylinder of length [ and

, diameter D inserted into an fee lattice will cut N, bonds given by

48+/2
A= ((mzy) (7DI) (6.10)

The number of internal bonds within this cylinder is given by

wD?] B nD?l (6.11)
1 "7 5hs '

The number of internal contacts of each sphere is given as

€= 19~ number of cut bonds

number of spheres
192 d
= 12— | ——=
(+5)

1
~ 1210475 (6.12)

In the limit of A — oo, €' will approach 12, the value associated with
closed-packed structures. For lower A\ values, the boundary of the sample is

more important, leading to deviations from our theory. This is seen in Fig.
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6.26 where the theoretical prediction is plotted alongside our experimental
results. Our prediction underestimates the contact number distribution for
each A value, however the deviation between theory and experiment decreases
for increasing A. A fit of our data (see Fig.6.26) to the expression C' = 12—A§
results in a good description of the data, with A = 19.46 £+ 0.01 as expected

form our simple theory.

6.4 Conclusions

Both optical and tomographic experiments of small bubbles, within the wet
foam limit, have been shown to correspond well to the result of simulated
annealing for the optimum configuration of hard spheres within cylindrical
confinement. In both cases the morphology of the foam packing are seen to
closely resemble what is expected from simulated annealing. When the pack-
ing fractions of such packings was calculated, it was found that the optical
foam experiments consistently overestimate the packing fraction expected for
hard spheres, while the tomography results showed large scatter when com-
pared to the results of simulated annealing. We believe that this is primarily
due to the finite compressibility of the bubbles and the finite compressibil-
ity of the bubbles when compared to hard spheres. For large A values, it
is seen that a series of foam structures with one and two layers of internal
spheres occurs. Each internal layer of bubbles is seen to be ordered, with
their structure similar to those foam structures of lower A value. From the
positional available from our tomographic data, we were able to calculate
the coordination number for our foam packing. It is seen that the resulting
contact number distribution follows the functional form of a simple theory
based on the average number of contacts within an ideal fce lattice.

In future, we will investigate larger A value structures using X-ray tomog-
raphy through the use of bubbles of smaller bubble diameter. This will also

allow us to more accurately determine if such bubbles more closely approach
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the hard-sphere limit. Through the use of phase-contrast synchrotron radi-
ation, will will also investigate the transition regime between wet and dry

foams which is currently difficult to probe using optical techniques.
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Chapter 7
Future work

We have seen that convenient, low-energy X-ray tomography may be used
to successfully image wet, monodisperse foams. We have also demonstrated
that, through careful selection of the boundary conditions of such foam sam-

ples, their internal structure structure may be controlled.

In the future, we hope to extend this work, focusing on the use of these
foam structures as an analogy for atomic crystalline systems. In this way we
will further extend the original work of Bragg, providing new, exciting and
fruitful insights into crystal structures and dynamic atomic processes [21].
Our current experimental setup allows us to capture features of the order of
30x107°% m when successfully reconstructing a sample composed of bubble
700x107°% m in diameter. In precious experiments, it has been shown that
700 gm bubbles the may be used to quantitatively model the behaviour of
atomic copper systems [22]. This is due to unique scaling behaviour of the
inter-bubble potential with the bubble radius directly to the atomic scale. If
we, similarly, scale the resolution of our current 3D imaging technique we see
that we can achieve a modelling resolution of roughly 9x10~? m, compara-
ble to current leading AFM setups, vet in fully-resolved 3D. This makes our
experimental method one of the highest resolution, most economical meth-

ods of examining crystalline behaviour in three dimensions. In particular,
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we will aim to conduct the first experimental particle-resolved indentation

experiments.

7.1 Nanoindentation

Nanoindentation is a method of determining the physical characteristics of a
material based upon the pressing of a hard tip, of defined geometry, under
small load into the substance being tested [108]. The Bragg bubble model has
been successfully used to model the nanoindentation process in two dimen-
sions (26, 27, 109]. However, there are many three-dimensional crystalline
defects which do not have a two-dimensional counterpart, and therefore can-
not be explored with current methodology. We aim to produce the first
indentation experiments into a three-dimensional bubble crystal. We have
already conducted a preliminary experiment in which a Berkovich style in-
denter (see Fig.7.1) is forced into an ordered bubble pile composed of 2000
bubbles of average diameter 700 pum.

Using our current imaging X-ray tomographic technique, we found that
we can successfully image these foam samples, as shown in Fig.7.2.

Through the use of a stepper motor and force gauge, we will repeat this
experiment in a quasi-static indentation experiments. By imaging after each
indentation increment, we will be able to chart the various structural changes
which occur as the crystal is deformed. In particular we will, for the first time,
be in a position to investigate the nucleation of subsurface defects within a
perfect crystal lattice in three dimensions.

Due to the high resolution of our imaging techniques, the deformation of
each bubble will be measurable. From these deformations, we may calculate
the local stress within our sample as is currently performed in analogous two-
dimensional experiments [110]. This will allow the stress distribution within
an experimental indentation experiment to be measured locally for the first

time.
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Figure 7.1: Sketch of the experimental setup used to conduct the first inden-
tation into an ordered bubble pile. In our experiments, we used a small foam
sample (composed of 5000 bubbles of average diameter 700 pm) into which
is indented a Vickies style indenter.

Using the advances we have made in directed crystallisation, we will in-
vestigate how indentation dynamics depend on the crystal structure of the
solid under investigation. Such a study is not possible in two dimensions
where only one structure — a hexagonal arrangement of bubbles — is stable.
We may, using the same techniques, study the dynamics of a grain bound-
ary, or dislocation, and determine their effect on the load curve measured
by the indentation tip. The flexibility and control permitted to us with this
bubble model will allow us to tailor our experimental setup to study many

real three-dimensional crystalline system.

7.2 Phase contrast synchrotron imaging

Our current imaging technique allows a rapid, cost-effective method of imag-

ing wet foams samples, thus opening a wide frontier of experiments to be
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explored. The success of this imaging technique is due to the increased X-
ray absorption associated with the high liquid fraction of these foams. As
we have seen in section 3.4, however, our imaging technique is not applica-
ble to dry foam where sufficient sample absorption for producing a usable

reconstruction is not available.

We may overcome this problem through the use of phase-contrast syn-
chrotron imaging. This imaging method, based upon object reconstruction
from the phase-change of a X-ray beam, provides higher-sensitivity than ac-
cessible by standard absorption based tomography [111]. This will enable us
to study several interesting aspects of dry foams as well as to perform many
dynamic experiments due to the high temporal resolution available at such
facilities.

In particular, we aim to investigate the structural transition which occurs
between an ordered fce wet foam and an ordered bee dry foam. We have
already unsuccessfully tried to capture this transition region using our low-
energy X-ray tomography method (discussed in chapter 4). Using phase-
contrast tomography, however, we will repeat this experiment, allowing for

the form of this transition to be imaged in three-dimensions for the first time.

The temporal resolution at these facilities will allow for the first topo-
graphic imaging of a sheared foam. The shearing of foam has been the sub-
ject of intense investigation as foams serve as a relatively easy experimentally
accessible example of a complex fluid [112]. It is also found that microfoams
represent an ideal system with which to study the glass transition, the shear-
ing of polydisperse microfoams having been previously used to study the for-
mation and mechanical properties of metallic glasses [113]. Although these
experiments have been conducted in three dimensions, such studies have been
limited to bulk characterisation of the foams due to the difficulties of imaging
within the foam mass. As a result, the opportunity to link global behaviour
to local dynamics is lost[114]. This has led to the restriction of most shearing

experiments to two-dimensions where the resulting experimental images can
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be processed to show such interesting phenomena as shear banding, vortices
formation, etc. Using these high-energy imaging facilities we will be able to
perform the first three-dimensional shear experiments with particle-resolved
data. Such experimental data, without two-dimensional confinement, will
allow direct comparison with a variety of physical models. In particular, we
will be able to directly compare our experiments to recent theoretical work on
the onset of the glassy phase in soft matter[115]. We will also investigate the
shear behaviour of a coherent grain boundary, controlled through our work
on controlled crystallisation section 5, providing the first experimental im-
ages of dislocation nucleation at a grain boundary, its propagation through
an ordered crystalline structure, and its re-absorption into a neighbouring
grain boundary. Such an analysis of this important dynamic process is not

possible using other experimental techniques.
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Figure 7.2: Reconstruction of a foam sample composed of bubbles of average
diameter 800um indented by a Berkovich tip. (1) shows the initial configu-
ration of the bubble pile. (2),(3) and (4) show the same pile as the indenter
tip progresses 0.5, 1 and 1.5 mm into the bubble pile.



Appendix A
Contact angle of surfactant

solution on container wall

During our experiments, we wished to characterise the interaction of our
surfactant solution with the surface of the polymer container used. To do
this, we measures the contact angle of our surfactant solution (5% volume
fraction detergent Fairy Liquid in water) on the surface of our container
walls made from Object verroclear. The surface of our containers, however,
is not completely smooth due to the nature of its production. This process
involves the deposition of subsequent parallel layers of liquid polymer upon
each other, each layer being cured through the use of a UV light source.
This process allows for the creation of complex geometries, limited to a 20
um vertical resolution. The resulting pieces have associated with them a
surface roughness in all directions perpendicular to the plane of deposited
polymer. The use of such surfaces would lead to large errors in any contact

‘dllgl(’ measurement.

To combat this problem, we printed a flat surface parallel to the deposi-
tion direction. leading to smooth surface. We then characterised the surface
by measuring the contact angle of our surfactant solution on the polymer
used to construct our containers. The contact angle was measured using the

sessile drop technique. A single drop of surfactant solution was formed on the
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surface of our container. The drop was photographed in profile, the resulting
drop shape analysed using a sessile drop analyser plug-in for ImageJ[116].

An example of the experimental analysis is shown in Fig. A.1.

Figure A.1: Experimental images showing the formation of a drop on the
flat surface of a typical experimental container. The drop profile was fitted
using Image.J. The resulting contact angle was approximately 33°.

Our measurements showed that the contact angle for the surfactant so-
lution on the Object Veroclear polymer was 33° 4+ 5°. This contact angle is
in keeping with previous measurements of contact angle for the surfactant
solution on glass. However, it is noted that similar ordering experiments have
been conducted using a variety of different plastics and glasses. It was seen

that this did not effect the ordering behaviour of the bubbles [16].



Appendix B

Schematics

The following schematics were produced using the commercially available
software Solidworks [79]. Once the schematics were produced, the structures
were printed using an Objet Eden 250 3D rapid-prototype machine capable

of accurately producing object features between 20-80 pm in size.
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Figure B.2: Schematic of the template used for the generation of cylindrical
foam structures imaged with X-ray tomography. The device is composed of
26 number of cylinders of diameter ranging from 0.8 to 3.3 mm in 0.1 mm
intervals.
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Figure B.3: First template for generating fce (100) orientated crystals.
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Figure B.4: Second template for generating fce (100) orientated crystals.
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Figure B.5: Template used to examine the effect of roughness on sample
crystallisation
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Figure B.6: Template used for examining fce to bee transformation.
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Glossary

CT Computer Tomography.
Dodecahedron A polyheadron with twelve flat faces.

Grain boundary The interface between two distinct regions of crystallisa-

tion .

Hele-Shaw cell A sample container composed of two parallel pieces of flat

glass. separated by a small distance in the order of millimeters .

Interstices A crystalline defect formed from the occurrence of an object at

a previously unoccupied lattice site.

Lennard-Jones potential A simple mathematical model for the descrip-

tion of atomic interactions .

Packing fraction The ratio of the volume of the packing substance, to the

entire volume of the packing structure.

Plateau border The meeting point of three foam surfaces.

Vacancies A crystalline defect formed from the absence of an object at a

lattice site.

197



Glossary

Vertex The meeting point of Plateau borders - central nodes of high liquid

content within the foam.

Voronoi tesselation A Voronoi tesselation is a division of space based upon
a distribution of points. Typically, such a division associates those
regions of space which are closer to a particular point, as determined

by a distance metric.
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