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Abstract

E(iual-sized t)ul)])les of average diameter less than one niillimetre are found to 
spoiltaneouHly crystallise upon formation. While ])revioiisly employed by Sir 
Laurence Bragg as an ideal system with wdiich to study crystalline systems, 
this work has bemi so far limited to two-dimensions due to the problems 
associated with imaging foams in three-dimensions. Here we demonstrate 
that advances in //.CT X-ray tomograiihy have now produced a technicine 
which will allow for the successful three-dimensional imaging of these foams.

Using this technicine, we investigated the structure of monodisiierse nii- 
crofoams of different system sizes. The crystal nature of the samples was 
determined through a visual inspection of the stacking of the individual bub
bles, the calculation of the coordination miinber and radial distribution func
tion (RDF) of the bubble center positions. It was found that small samples 
(~5{)00 babbles), spontaneonsly order into fee crystals. Larger samples (~ 
20,000 bubbles), which form foams approximately 20 layers deep, are seen 
to have a different internal structure . Near the bonndaries of snch sample, 
hexagonal ordering is still observed. Within the foam bulk, Imwever, the 
coordination number and RDF indicate that no crystalline order is i)resent. 
Instead, the wide distribution of the coordination number and the split sec
ond peak of the RDF indicate that the sample has formed a Bernal packing 
- a disordered packing of spheres.

We also investigate the teni])oral evolution of a sample composed of a])- 
proximately 15,000 bublrles which was imaged every day over seven days.



The sample was stabilised against coarsening such that the sample remained 
monodisperse throughout its lifetime. During the experiment, the internal 
structure of the sample was seen to evolve from a disordered state on the 
first day of the experiment, to a more ordered state on the seventh day of the 
experiment. We characterised the order of this sample through the use of the 
coordination number and RDF function as well as the the bond orientational 
order parameter (BOOP) and the Voronoi tessellation. The Voronoi tessel
lation was also used to calculate the local packing fraction 0 of the sani])le. 
It was found that as the sample ordered, no corresponding change in the 
packing fraction 0 occurred. Packing fraction is therefore not a useful metric 
of order within these foam samples.

Following this characterisation of the niori)hology of these monodisi)erse 
foam sami)les, we investigated several methods by which their structure may 
be controlled and direct('d. Firstly, through the use of a cubic container the 
internal surface of which was templated with the geometry of the Wdaire- 
Plielan (\\T) structure, several experimental examples of the WP structure' 
were produced. Following this, we developed a method by which foam struc
ture may be directed through the use of planar boundary conditions. In this 
endeavour, we developed several pyramids the faces of wdiicli were i)arallel 
to the closed-packed directions of the simple cubic (.sc), body centred cubic 
(bcc) and face centred cubic (fee) crystals. Using this method, we success
fully generat('d i)erfect fee crystals of bubble diameter between 0.5 and 4.7 
nnn. Bcc foams could be produced successfully for bubbles between 1 and 5 
mrn. We also examined the formation of the unstable sc lattice. To demon
strate the flexibility of this method, we produced a coherent grain boundary 
between two regions of distinct fee crystallisation, as well as several examples 
of a sheared fee lattice. Finally, the ordering of bubbles within cylindrical 
conhiiements was also studied. The resulting structures were compared to 
simnlations focusing on the optimum packing of hard spheres within simi
lar confinenient. It was found that the morphology of the cylindrical foam



structures closely resembled their hard-si)liere counterparts. Packing fraction 
measurements of our foam samples were seen to correspond well to compu
tational results of hard spheres.
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Chapter 1

Introduction

Figure 1.1: A photograph cienionstrating the beauty and complexity inherent 
within foams.



Chapter 1. Introduction

An aqueous foam, (see Fig. 1.1) may be defined as a a two phase system 
composed of a continuous liquid phase and a dispersed gas phase [1]. How
ever, there also exist foams in which the continuous phase is a solid, such as 
for a metallic foam, or a biofoam in wdrich the continuous phase is ceramic in 
nature[2, 3]. A dispersion of liquid within a continuous liquid phase, known 
as an em.ulsion, may also be considered. All these exhibit many similar char
acteristics associated with foams [4].

1.1 Some foam characteristics

Figure 1.2: An image of a single bubble floating in free space. Minimisation 
of surface area results in a spherical shape.

A single isolated bubble will take on a familiar spherical shape (see 
Fig. 1.2) as a result of foam’s tendency to minimise its total energy, resulting 
in a shape of miniinum surface area [1]. Bringing many bubbles together pro
duces a bubble cluster. If the number of bubbles is increased again, a foam is
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formed. The structure of a foam is far more complex that that of the humble 
isolated bubble. While many factors determine foam morphology, there exist 
three main qualities, in the form of the dtspersity, the liquid fj-action and the 
average bubble size, which broadly determine foam strnctnre.

The dispersity of a sample is the ratio of the standard-deviation to the 
mean of the bubble diameter distribution. A sample wdiose dispersity is 
less than 5 % is generally described as monodisperse whilst a sample whose 
dispersity is larger than 5 % is described as polydisperse [5].

Once produced, it is found that a foam evolves in time. This is a result 
of the internal pressure associated with each bubble. The pressure difference 
l)etween the interior and the exterior of a bubble is given as

AP = 47
(1.1)

where 7 is the surface tension of the licpiid i^hase and r is the bubble 
diameter [1]. This equation inqjlies that smaller babbles have a higher inter
nal pressure than larger bubbles. The resulting gradient in pressure between 
small and large babbles causes a diffusion of gas, through the hlms and licpiid 
phase of the foam, from small babbles to large bubbles. This coarsening of 
a foam leads to the dispersity of the foam increasing with time, as well an 
increase in the average bubble diameter as 7’ oc tT2 j’qj

The liquid fraction 0/ of a foam is the ratio of the volume of the continuous 
liquid phase of the foam V/ to the total foam volume V/[l]. Liquid fraction 
may be used as method of broadly classifying foams into two groups: for 
low liquid fractions, with 0/ < 0.2 a foam is described as being dry while, 
conversely, for 0; > 0.2 a foam is described as being ivet [1]. The liquid 
fraction may be expressed in terms of the fraction of the disperse gas phase 
0J, of the foam as 0/ = 1 — 0„. If we consider a foam as a grannlar packing 
of bubbles, 0^ is equivalent to the packing fraction 0 of granular media.

For many purposes, controlling the licpiid fraction of a foam is a desirable, 
i)ut difficult, process. The difficulty arises from the tendenacy of most foams
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to dry out due to gravitational drainage [7]. This inay be counteracted, re
sulting in a stable wet foam, in several ways. Most simply, a continnous 
supply of liquid may be added to the topmost section of the foam, replacing 
the liquid lost through drainage. This process, known as forced drainage, will 
result in a wet foam, however the throughflow of licpiid is not suitable for 
many static experiments. A static wet foam may be produced in micrograv
ity, where gravitational drainage is essentially turned off. Such micrograv
ity experiments are generally conducted using a droi)-tower, sounding-rocket 
or during parabolic flights. This results in microgravity experiments being 
both expensive and time-limited due to the short intervals of microgravity 
produced in these experiments [8, 9].

The alternative to the above methods is through exi)loitation of the caj)- 
illary effect as.sociated with liquids. The capillary effect, which draws licpiid 
along objects placed into the surface of a licpiid, will also result in liquid 
rising into a foam in contact with a licpiid surface. This counteracts gravita
tional drainage, resulting in a section of wet foam adjacent to the foam-liquid 
interface. It may be shown that the height of this wet section Hyj is given by

w — -0
ja

T.2)

where Iq is the capillary length of the licpiid phase and d is the average bubble 
diameter [1]. Iq = where 7 is the surface tension of the licpiid phase of 
the foam, p is the licpiid density and g is acceleration due to gravity. For 
typical surfactant solution, Iq « l.Gmrn. For bubbles of 1 cm in diameter, 
the wet region is O.OOOl ni in height above the foarn-liciuid interface, thus 
extending less than one layer into the foam structure. However, if the average 
bubble diameter is signihcantly reduced, say into the regime of 100 pm, the 
corresponding wet region extends 1 cm into the foam, resulting in several 
wet foam layers. This effect can be used to produce a static, stable wet foam 
suitable for experimental investigation.

We may now investigate the structure of foam in the two extremes of
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liquid fraction. We will also investigate how this structure depends on the 
dispersity of the sami)ie.

1.1.1 Dry foam

Figure 1.3: A dry foam demonstrating the various rules of Plateau.

A dry foam is composed of a series of interconnected polyhedral cells (as 
seen in Fig. 1.3), the underlying geometry of which is dictated by Plateau’s 
rules [10]. Joseph Plateau, a 19th Century Belgian physicist, conducted the 
hrst experimental study of dry aqueous foams, leading to four empirical rules 
regarding their local structure [ij. These rules are :

1. Foams are composed of smooth interfaces.

2. Each soap him has constant mean curvature across its surface.

3. Three soap dims meet at ^ = 120° to form a Plateau border'.
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4. Four Plateau borders meet at cos ^( — 1/3) ~ 109° to form a vertex.

These rules are a result of foam’s tendency to minimise surface area [1]. 
While Plateau’s rules accurately describe the local geometry of a dry foam, 
the foam’s global pro])erties may not be deduced from them. The analysis 
of these global properties was first performed by Matzke, a biologist, in 1939 
when he determined the distribution of the number of faces and edges of a 
dry monodisperse foam composed of 5000 bubbles [11]. This analysis showed 
a wide distribution of edges and faces for the foam, indicating that a bulk 
dry foam is disordered in nature, with the average number of faces (/) ~ 14. 
This random nature of dry monodisperse foam was concisely demonstrated 
by Kraynik et. al. who recovered the same distribution of edges and faces 
in comi^nter simulations of nionodisi)erse foams [12]. To j^rodnce the foam 
structure, a disordered packing of si)heres was first generated. The Voronoi 
tessellation of this packing was then calculated, and used to i)roduce a real
istic foam structure through its energy minimisation using Surface Evolver.

Wliile this random structure of foams is seen to dominate in experiment, 
the cpiestion may be asked what is the most efficient foam structure? The 
most efficient dry monodisi)erse foam structure is the one wdiich partitions 
spac'c into ecpial-nnits while minimising its surface area. In two dimensions, 
it is found that such a condition is fulhlled by the honeycomb lattice [1]. 
In three dimensions, however, this is a non-trivial (piestion, first addressed 
by Lord Kelvin in 1887 in his ])ursnit of the ideal structure of the ether - 
the medium which was believed to permeate all sj^ace. Now known as the 
Kelvin conjectw'e, he stated that the ideal structure was that of the truncated 
octahedron (see Fig. 1.4) which fulfilled this minimum partition problem of 
space [13].

In 1993, however, Weaire et al. discovered a new' structure - the Weaire- 
Plielan (^\T) structure - which was found to be a more efficient partition 
of space by 0.18% wdien compared with the Kelvin structure [14]. The WP 
structure is based on the energy-minimised Voronoi tesselation of the A15
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Figure 1.4: A simulation of two Kelvin cells produced using Surface Evolver. 
The Kelvin cells are a space-filling polyhedron based ni)on a bcc lattice [6].

crystal structure constrained such that each cell of the resulting structure 
has the same volume (see Fig. 1.5).The resulting structure is composed of 
two distinct types of polyhedra - one is the irregular dodecahedron coui- 
po.sed of pentagonal faces while the second is a regular tetrakaidecahedron 
composed of two hexagonal and twelve ])entagonal faces. The unit cell of 
the WP structures is conii)osed of an arrangement of 2 dodecahedrons and 6 
t et r akaidec'ahedra.

From its discovery in 1993, however, an unresolved qiiestion has troubled 
the \^T solution to the Kelvin problem. After the theoretical discovery of the 
W’P structure, several exanii)les of Kelvin cells within monodisperse foams 
were found [IG. 5]. In these experiments, monodisperse bubbles of average 
diameter approximately 1 niru were introduced into a Hele-Shaw cell. As the 
bubbles filled up the cell, the licpiid fraction of the top most layer of bubbles
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Figure 1.5: A simulation image of the WP structure. The tetrakaidecahedra 
are shown in blue while the dodecahedrons are shown in brown. Image 
rei)roduced with permission from Ruggero Gabrelli using 3dt [15].

was reduced by gravitational drainage. Once the foam had become dry, the 
resulting conhguration of bubbles was identihed as a series of Kelvin cells by 
visual insi^ection. During all such exi)eriments, however, no example of the 
W’P structure was found.

It was believed that experimental verihcation of WP structure might not 
be possible due to the small difference in surface energy of the two structures 
and the complexity of the WP structure. In Chapter 4 we will examine a 
method by which the WP structure may be formed in exi)eriment.
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1.1.2 The structure of wet foam

As the liquid fraction of a dry foam is increased, through one of the vari
ous methods described in section 1.1, the foam structure begins to change. 
The vertices and Plateau borders of the foam swell, diminishing the angular 
nature of the original dry foam. Eventually, for high liquid fractions, the 
foam may be considered as a packing of spheres rather than a partition of 
space, as demonstrated in Fig. l.b for two-dimensional foams. As the liquid 
fraction of the foam is increased, the question of the foam’s ideal structure 
changes from one concerned with the minimum partitioning of space to a 
related question; which is the ideal packing of spheres?

(b) (•)

Figure 1.6: Experimental packing of bubbles into the honeycomb configura
tion for the case of a dry foam, an intermediate foam and the wet case (the 
dry foam is confined between two glass plates, while the intermediate and 
w'et cases are free-fioatiiig Bragg rafts). Note that in the wet (c) case the 
bubble appear separated due to an ojhical effect.

In two dimensions, the same efficient hexagonal partitioning of space pro
duces the most efficient j)acking of discs (as seen in Fig. 1.6). In three dimen
sions, however, this simple relationship between the two problems is no longer 
valid. Both the A15 lattice and the BCC structure which form the basis of 
the \VP and Kelvin structure for drv foams are found to be unstable for wet
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foams [7, 17, 18]. Instead, it is the well-known fee structure, first envisaged 
by Kepler in his pursuit of the structure of snowflakes, which is the most 
efficient packing in three-dimensions, although such a statement has only 
recently been proven [19, 20].

While ordered foams are difficult to produce in dry foam, it is found 
that wet monodisperse foams spontaneously order into their minimum en
ergy coiffiguration of the fee lattice. Such spontaneous ordering is shown in 
Fig. 1.8 in which a photograph shows the surface ordering of a monodisperse 
foam sample of average diameter 800 firn. The regular hexagonal arrange
ment of file topmost layer of this foam indicates the ordered nature of the 
underlying foam. The crystalline nature of these systems was first studied 
by Bragg and Nye in 1947 [21]. They found that a two dimensional raft 
of nionodisi)erse microbubbles formed an ideal model system with which to 
study crystalline structure [22, 23]. This was due to the ability to form grain 
bonndaries, interstices and vacancies through the removal and addition of 
bubbles, and control of the boundary conditions of the sample [24]. In ad
dition, it has been found that the inter-bubble potential in such a 2D raft 
closely resembles the Lennard-Jones potential[25]. In fact, for bubbles of 
the right diameter, the resulting ]rotential may be scaled with bubble diam
eter accurately to the inter-atomic potential of coi)per atoms [23]. Indeed, 
the accnracy and efficiency of this bubble model for the study of crystalline 
structure has continued to the present day, with the Bragg bubble raft form
ing the basis for many experiments investigating the nanoindentation process 
[26, 27].

Although primarily interested in the two dimensional ordering of such 
samples, Bragg et al. demonstrated that when three dimensional samples 
of monodisperse microbubbles were formed, surface details indicated the 
presence of crystalline ordering [21]. Within such samples, they also found 
surface evidence for the formation of grain bonndaries (see Fig.1.7). More 
recently, van der Net et. al. investigated the ordering nature of these three-
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Figure 1.7: Photograph of the top layer of a 3D monodispese aciueous foam 
of average bul)ble diameter 400 //rn . The bubbles are seen to spontaneously 
form distinct crystal domains which are separated by disordered grain bound
aries.

dimensional l)ubble crystals using ray tracing techniques [28]. By comparing 
computer simulations of crystalline arrangements of glass spheres with exper
imental photographs of monodisperse microfoams, the ordering nature of the 
surface of such bubble crystals may be determined (see Fig.1.8). They found 
that regions of fee and hep ordering existed at the surface of these samples. 
They also found evidence for interstices, vacancies and grain boundaries di
rectly nnderneath the surface layers of these three-dimensional foams (see 
Fig. 1.7) [29]. Optical limitations, however, prohibited the study of these 
foams beyond the hrst three foam-layers adjacent to the sanii)le surface.

The spontaneous crystallisation of these foam systems has produced par
ticular interest due to the lack of such analogous behaviour in similar systems
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Figure 1.8: Photograph of the surface of a uiouodisperse luicrofoaui (average 
diaiiieter 800 //m)- The fee (111) nature of the crystallisation can l)e deter
mined through examination of the refracted image of the second (red) and 
third (yellow) layers in the first (blue) layer of the foam.

of si)herical particles. For exanii)le. in D.G. Scott’s first investigation of large 
packing of hard spheres [30] in 19G0, it was found that the packing fraction 
0 - the total volume of spheres divided by the total volume of the system - 
of large ciuantities of spheres did not exceed 0.64, far below the packing frac
tion of 0.74 associated with hexagonally closed-packed structures [13]. Such 
a random packing state is known as a random packing or maximally random 
jammed (MRJ) state [31].

The internal structure of these random packings of spheres was first stud
ied by the Irish physicist Bernal in his investigation of liquids [32]. He showed
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that ill disordered packings of spheres, in which no long-range order is ob
served, there still exists local, short-range translational order [33]. Dne to his 
inhnence on the study of these disordered packings, such packings are now 
referred to as Bernal packings.

In spite of the many aiiplications of these monodisperse microfoams, full 
three-dimensional study of monodisperse foam crystals has been somewdiat 
limited. This has been dne to the problems associated with an optical charac
terisation of the ordering behaviour of these foam samples due to the multiple 
scatterings of light which occur within these samples. Such scattering, which 
produces the characteristic white hue of foams, also limits detailed optical 
analysis of their internal structure. In 1992 Durian et ai, how’ever, devel
oped a method of using these multiple scatterings of light to determine the 
average bubble diameter of wet foams by modeling this light propagation by 
scattering as a diffusion i)rocess [34]. How'ever, this methodology is limited 
to sami^les of small average bubble diameter (« 100 ft,m) and provides no 
information about internal foam structure.

Full three dimensional characterisation of these foam structures requires 
advanced imaging teclmicpies. Using MRI technology, Gonatas et al. success
fully studied the coarsening dynamics of a three dimensional foam [35]. How
ever, due to limited conii)ntationaI pow’er at the time of the experiment, bub
ble radii were determined from the apparent radii seen on two-dimensional 
sections taken through the foam sanij)le. This results in a systematic shift 
in the bubble size distribution. In addition, the relative high cost of MRI 
machines (~ $1 million) excludes these machines from standard foam labo
ratories.

A more low'-cost alternative to this imaging techniciue is offered by optical 
tomograi)hy, which has been successfully used to image a dry foam [36]. Due 
to the relative simplicity of the experimental components required (ojjtical 
camera, rotation stage, planar backlight), optical tomography is a (piick and 
cost-effective method of characterising the three-dimensional qualities of a
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foam. However, as with most oj^tical techniciues, three-dimensional charac
terisation is limited to dry foams of a thickness such that all parts of the foam 
are at one-time visible. The possibility of observing truly “bulk” qualities of 
a foam is therefore lost.

X-ray tomography has proven to be a useful tool for studying the internal 
structure of both wet and dry foam. In Chapter 2 we will investigate how 
X-ray tomography has been api)lied to aqueous foams, and demonstrate that 
advances in pCT now provide ns with a cheap and convenient method by 
which the internal structure of wet foams may be investigated. Such analysis 
will produce fully-resolved three-dimensional positional data of our foams, 
allowing, to date, the most compete characterisation of these useful foam 
systems.

1.2 Order parameters

When investigating three dimensional positional data, it is desirable to eni- 
l)loy (piantihable measures of structure to distinguish between disordered and 
ordered systems. There exists sc'veral metrics of order which are positively 
correlated [31]. Each order metric investigates a different aspect of the or
dering of the sample. For our purposes, we will use the coordination number, 
the radial distribution function, the bond orientational order parameter and 
the Voronoi tessellation to quantify the ordering of our foam samples. These 
metrics are calculated using the bubble center positions produced using the 
commercially available software MAVl [37].

1.2.1 Coordination number

The coordination iinmber is the number of nearest neighbours for a given 
particle within a packing [31]. It is found that the coordination number may 
be used as a crude measure of order for granular packings. Experimentally, 
it has been used to characterise ordering within sphere packings [32]. Hexag-
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oiially closed packed structures will generally have a coordination number 
of n = 12, excluding bonndary cells. For random packings of hard spheres, 
while locally n may vary significantly, globally n will average to 6, as is given 
by the isostatic argument [38].

There exists several methods by which the neighbourhood of a particle 
may be defined, e.g. through the use of the Voronoi tessellation to define 
a local neighbourhood for each particle within the packing. The average 
contact number is then defined by the number of faces of the corresponding 
Voronoi cell. However, snch definitions have associated with them compli
cations which make their physical interpretation difficult e.g. a Voronoi tes
sellation for an fee lattice produces a coordination nninber of r? = 14 when, 
physically, a s])here within an fee lattice has n = 12.For present purposes, it 
was found that a simple definition of contac’t based on the distance between 
particles was the most efficient to inij)lement, analyse and interj)ret. We 
define two particles, i and j, as neighbours if

[r'i — J'jl </?,: + Hj :i.3)

where and Fj are the j)ositions of the d" and particles within the 
pac'king, and H, and Rj are the corresi)onding particle radii. The probability 
distribution P('n) of particles with ri neighbours can give valuable information 
about the local structure of a i)articular packing. A wide distribution of 
P{n) indicates disorder within the sample, while sharp maxima indicate the 
presence of local ordering. However, detailed information about the structure 
being examined is not i)rovided by this order measure.

1.2.2 Radial distribution function

The Radial Distribution Function (RDF), also known as the pair correlation 
function. g{r) is a mathematical rei)resentation of translational order within 
a sample [39]. It is a correlation function of particle center positions which
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examines the distril)ution of nearest neighbours within a sample. The RDF 
may be given as;

g{r) =
V'

TV N

4:Tn'‘̂ N‘^
:i.4)

i=0

where r is the radial distance from a given particle, N is the number of 
particles and C is the enclosing volume of the particles being examined. For 
the case of completely periodic systems - such as a perfect crystal lattice 
- the corresponding RDF function will be composed of a series of fl-peaks. 
The location of these peaks corresj^onds to the radial positions of neighbours 
within the crystalline lattice. For the case of a finite packing, however, care 
must l)e taken that the border of the sami)le does not influence the resulting 
RDF. So as to avoid this complication, when computed, only those points 
which are a distance from the boundary of the sanii)le are considered. 
Increasing r„iax increases the range investigated by the RDF, but reduces the 
number of experimental points being averaged, resulting in in an increase in 
data noise. Tyi)ically, the radial distances r of the RDF are normalised by 
the position of the first peak of the radial distribution function tq. This, 
generally, corresponds to the diameter of the particles being examined.

Due to the uniqueness of the lattice positions associated with each crystal 
structure, the RDF acts as a signature by which the exact structure of a 
crystal lattice may be examined. In this respect, it is related in function 
to the structure factor S{k) of X-ray scattering data. In fact, g{r) may be 
related to spatial Fourier transformation of the structure factor S{k) [40].

The radial distribution function may also be used to calculate an addi
tional order metric, the translational order parameter G, for the i)acking. 
This single, scalar number, is a convenient measure which may be used to di
rectly compare differences in translational symmetry between two structures 

]. The translational order i)aranieter G is defined as
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G =
9{rn

(1.5)

where g{r„,in) is the value of the sample’s RDF at the hrst minimum while 
fjif'max) is the value at the hrst maximum (see Fig. 1.9) [39]. As the RDF of a 
perfectly crystalline samj^le is composed of a series of discrete delta fnnctions, 
fj{f'rnin) = 0, resulting in G = 0. As the sample becomes more disordered, 
the discrete delta fnnctions widen into a continuous distribution of points, 
resulting in an increase in g(r,„i„). This leads to a non-zero valne of G for 
disordered systems, the value of G increasing as the translational disorder of 
the system increases. The values of g(r,„in) and g(r„jaT) are calculated from 
fourth order i)olynomial hts to the exi)erimental data.

Figure 1.9; Plot showing the hrst maximum and minimum of the RDF func
tion used to calculate the translational order parameter. The ratio between 
these two values is used as a metric of translational order G within the sam
ple. 4*^' order polynomials are htted to the data to hnd the accurate values 
of the maximum and minimum values of the RDF.
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1.3 Thesis outline

Using //,CT X-ray tomography, which is described in Chai)ter 2, we will in
vestigate the structure of monodisperse microfoams. In Chapter 3, we will 
investigate the variation of the ordering of such foams with sample size, as 
well as with sample age. Following this characterisation, w'e will investigate 
methods by which their structure may be controlled. Chapter 4 will look at 
the use of templates to control these sami)les, while Chapter 5 will investigate 
the use of carefully selected planar boundary conditions of the sami)le. Fi
nally, in Chapter 6, the study of the ordered structures produced when such 
monodisperse microfoams are confined within cylinders will be described.



Chapter 2

X-ray tomography of liquid 
foams

2.1 Introduction

X-ray toinography is a iion-destructive method of ol)tainiiig full, three di
mensional data about the structure of an object [41]. First develoi)ed by 
Godfrey N. Hounsfield in the 197()s [42], tomography has had most success
ful aj)plications in the medical area where Computer Tomography or CT has 
been used for the diagnosis of disease and the imaging of complex injuries. 
In the area of physics, it has had many applications. In particular, over the 
last twenty years. X-ray tomography has been applied to the area of granular 
media with much success [43, 44].

Before the development of X-ray toniograi)hy, the methods employed in 
determining statistics from granular media, such as object location, size and 
neighbourhood distribution was a difficult, and time consuming, process. 
This is best illustrated in the pioneering work of J.D. Bernal on the random 
packing of hard spheres which aimed to describe the structure of li(iuids 
using a hard sphere model [32]. Although such a description of liquid failed 
to fulfil the early i)roniise of the work, Bernal successfully pioneered the study

19
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of the structure of hard sphere packings. In particular, Bernal and Finney 
conducted the hrst study of the coordination number and radial distributions 
associated with these packings [33]. To conduct these measurements, up to 
4000 spheres were i)laced into a burlap sack and annealed by hand. Ink was 
then introduced into the sack, and allowed to dry. Individual ink-coated 
spheres were then broken from the conglomerate. From the ink pattern on 
each sphere, the number of nearest neighbours ( those neighbours in contact 
with an individual sphere) and close neighbours (spheres directly beside but 
not in contact with a particular sphere) could be determined. To calculate 
the radial distribution function, a packing of 5000 spheres was sintered to 
produce a solid conglomeration. The resulting conglomeration of spheres 
was mounted on a free-standing milling machine. Successive 1 m.m thick 
sections were removed along the z axis of the structure. The centre position 
of each si)here, identihed as the centre of the disk of maximal area associated 
with the milling of each si)here, could be measured in three dimensional space 
through the use of a plum-line attached to an xy grid mounted above the 
conglomeration. The resulting data set of sphere center positions was then 
used to calculate the radial distribution function for the packing. Obviously, 
this was an incredibly time-consuming and hardly reproducible experimental 
process.

The develoinnent of X-ray tomography has allowed this same experiment 
to be repeated, with greater ease, on a larger scale, to a higher precision. 
For example, in 2005, Aste et al. conducted a toniograi)hic investigation of 
the packing of 150,000 nionodisi)erse beads of 1 mm in diameter [45]. Their 
increased accuracy allowed them to completely characterise the structure 
through the use of many order j)aranieters, including the RDF(see section 
1.2).

X-ray tomography has also been successfully applied to image the internal 
strncture of aqueous foams of various liciuid fractions. Lambert et al. have 
used this high-energy X-ray tomography to examine the coarsening dynamics
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associated with three-dimensional foams [46. 47]. Using the high-resolntion 
data provided by these images (resolution ~ 10 prn), and advanced segmen
tation techniques, Lamber et. al. were able to determine the average bubble 
diameter for each bubble within the sample. The evolution of the average 
bubble radius f with time, the coordination number of each bubble, and the 
characteristics of the growth-rate constant G could be determined.'

Stocco et. al. used phase-contrast X-ray tomogra])hy to study the evolu
tion of i)article stalhlised foams. Image resolution of 1 //m was available at 
the BAMline (Bessy, HZB, Germany). This i)erniitted the bubble-size distri
bution of the foam sample to be accurately measured over time, allowing the 
coarsening dynamics of such a foam to be investigated which showed that the 
addition of the silica nanospheres to the licpiid phase halted the coarsening 
of small bubbles (diameter < 30 //,//;).

To date, however, X-ray toniograi)hy of aqueous foams has been confined 
to high energy X-ray facilities e.g. Euroi)ean Synchrotron Radiation Facility 
(ESRF). These facilities provide the high sensitivity and rapid accpiisition 
rate recjuired to produce usable reconstruction of aciueous foams. However, 
due to the large expense and limited time available for individual studies at 
such facilities, the range of experiments that may be conducted is limited.

We believe that we may image monodisperse wet foams, however, using 
convenient low-energy //CT X-ray tomography. Due to the relatively high X- 
ray absorption from the thick Plateau borders and vertices of such a wet foam, 
successful X-ray imaging is possible. Such /cCT imaging, however, is a slow 
process, recpiiring acciuisition times of several hours rather than seconds when 
using high-energy X-ray tomography. This long acquisition time is therefore 
not suitable for imaging a typical dry aqueous foam due to its relatively 
rapid coarsening rate. The coarsening rate of monodispese microbubbles, 
however, is significantly reduced when compared to these foams. Firstly,

Tt may be shown that the growth rate of a bubble of vohime. V, in a three dimensional 
foam is of the form ^ [48]



22 Chapter 2. X-ray tomography of liquid foams

due to the low initial dispersity of our samples, the differences in pressures 
between neighboring bubbles is reduced when compared to a polydisperse 
foam, resulting in a slower initial coarsening rate. In addition, the high 
liquid fractions of these monodisi)erse microfoams result in thick Plateau 
borders, vertices and soap hhns. As the coarsening rate of a foam is inversely 
I)roportional to the film thickness of the foam, this results in the coarsening 
rate of our monodisperse microfoam decreasing significantly when compared 
to a dry foam [6]. The coarsening rate of our monodisperse microfoams may 
be further reduced through the use of the concept of a frustrated froth [49]. 
Weaire et. al. showed that the evolution of a foam composed of two gasses 
is determined by the gas of the lowest permeability. It was found that the 
addition of even a small (piantity of slow-diffusing gas produces a dramatic 
reduction in the coarsening rate of the foam, producing foams stable against 
coarsening for several hours [6].

2.2 Basic X-ray tomography theory

Toniograi)hy is based upon Lambert-Beer law; namely there exists a loga
rithmic relationship between the intensity of light transmitted through an 
object and the absorption coefficient of the object itself, or, stated concisely

A = log (2.1)

where A is the absorption coefficient of the body, Iq is the initial intensity 
of the radiation and Id is the transmitted radiation [50]. This coefficient can 
be expressed in terms of the linear attenuation coefficient /q a local mea
sure of the absorption characteristics of the body, as A = J //(x, y) dxdy, for 
absorption in the xy plane of radiation travelling in the z direction. This 
linear attennation coefficient is the product of the object density and the 
mass-absorption coefficient of the material in question. It contains all the
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structural information required to obtain a complete three-dimensional re- 
constrnction of the objects in question.

For the purposes of illustrating the principle of tomography, however, we 
will examine the case of a two-dimensional object O, illuminated by a planar 
X-ray source, the radiation from which is measured at a planar detector D 
(see Fig. 2.1).

Figure 2.1: Illustration showing the ex])eriniental setup used in X-ray to
mography ex])erinients. composed of an X-ray source S, the test object O, 
and the irlanar detector D. During the experiment the object () is rotated 
through an angle 0 and a two-dimensional intensity profile p{i\ 0) is recorded 
at the detector D.

During tomography the object is rotated around its central axis. For
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each rotation angle 0, a one-dimensional intensity profile p{r. (j)) dependent 
on the distance from the centre of the object r is recorded. The Radon 
transformation states that each of these prohles, p{r,(j)), is simply a one
dimensional projection of the two-dimensional object being imaged;

p{r,(p) = j p{x,y)6{xcos<j) + ysincj) — r)(\x(\y. (2.2)

The Cental Slice Theorem provides a method by which the form of // may 
be calculated wdien p is known [50]. It states that the 1 dimensional Fourier 
transformation of the measured i)rohles is equal to the two-dimensional Fourier 
transformation of the linear attenuation coefficient:

I p{r, 0)c —‘I'Kirz (Ir — //.(;r, (2.3)

Once p has been measured, its Fast Fonrrier Transform (FFT) may i)e 
calculated, which is then related to the 2D FFT of //. By then calculating 
the inverse FFT, the original // may be calcnlated.

2.3 Experimental procedure

Our X-ray tomographic experiments were broken down into 4 stages. These 
^s were:

1. Sample preiraration

2. Image acquisition

3. linage reconstruction

4. Image processing

Following the image processing stej), the analysis of the experimental data 
was conducted.
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2.3.1 Sample preparation

The foam samples were produced using a rnicrofluidic flow-focus'i.ng device 
which allows for the production of monodisperse foams of average bubble size 
between 10(1 /cm and 1500 ftrn. The rapid production rate of foam from such 
a device means that large foam samples (consisting of about 1000 bubbles) 
can be generated before the sample has coarsened significantly [51]. A flow 
focuser consists of a closed chamber into which there are two input channels 
and one outlet channel. Through the inlets is supplied a constant How of 
surfac'tant solution, as well as gas at constant pressure. At the confluence of 
surfactant and gas supply at the outlet nozzle, it is found that an instability 
between the two supplies arises. This instability produces a foam of small 
bubble diameter [52]. For particular combinations of flow rates of surfactant 
solution, ])ressure of gas and nozzle size, the foam i)roduced is monodisperse. 
The size of the resulting bubbles is a function of both How-rate of the surfac
tant solution and the output nozzle size. By increasing the surfactant flow 
rate and decreasing the ontj^ut nozzle size, the average bubble diameter may 
be decreased.

For our X-ray tomographic experiments, the surfactant solution used to 
produce our foams was composed of 5% by volume arpieous solution of the 
commercially available detergent Fairy Liquid. This is found to i)roduce sta
ble foams suitable for a wide variety of experiments. The gas-j)hase of onr 
foams was composed of a mixture of Oxygen-Free Nitrogen gas and Per- 
fuorohexane (PFH). PFH, with a very low solubility, results in a significant 
reduction of the coarsening rate of a foam when added to a sample (see section 
1.1). This was particularly important during our X-ray tomograidiy exper
iments as any movement produced by coarsening during image acciuisition 
will result in a blurring of the reconstructed images.

It was found that foams containing PFH exhibit a rapid expansion of the 
average bubble size when directly exposed to air. This is due to the diffusion 
of Nitrogen gas into the foam from the atmosphere in an attenii)t to ecpialise
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the partial pressure gradient produced by the presence of the PFH. This 
results in a increase in the average bubble size, as well as an increase in the 
polydispersity of the sample. Even once the sample has been sealed from the 
atmosi)here, the resulting bubble size gradient will continue to increase the 
coarsening rate of the foam, again causing rearrangements within the sample, 
and thus image blurring during the tomographic process.

To Nitrogen gas suppty To surfactant solution

Figure 2.2; Illustration of the surfactant-bath used to generate foams for 
X-ray tomographic experiments. The flow focusing device, attached to the 
bottom of the surfactant bath, j)roduces nionodis])erse bubbles which are 
then captured in a surfactant-hlled sample container. In this way, the bubbles 
are never exposed to atmosphere, resulting in a stable foam.

To avoid this effect, we hxed onr flow-focusing device to the bottom of 
a surfactant bath, as shown in Fig.2.2. The sample containers were placed 
into the same bath, rotated and shaken so that all trapped air within the 
container was released. The flow focusing device was then engaged. Once 
a stable stream of bubbles, of the desired bubble diameter, was produced 
the surfactant-filled container was positioned above the opening of the how- 
focusing device. This allowed the monodisperse bubbles to be produced 
and captured without exposing the foam to the atmosihiere. Once hlled, 
the container was sealed by sliding a glass plate over the open face of the
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container, which was then removed from the solution.
It was found that a slight expansion of the foam with time still occurred. 

This, we believe, was due to evolution of dissolved nitrogen gas from the 
solution into the bubbles. To combat this effect, a rest-time of two hours was 
established between foam production and foam imaging. This was found to 
produce a foam sufficiently stable for imaging purposes. Following the rest 
time, each sample was affixed onto a polyurethane mounting stage through 
the use of a hot glue resin. The stage was then hxed within the X-ray 
tomographic device.

2.3.2 Image Acquisition

Figure 2.3: A photograph of the X-ray tomographic apparatus used to image 
our foam samples. Showing X-ray source, rotation stage ui)on which the 
samples are mounted, and the X-ray detector. The entire device is enclosed 
in a blue steel box to contain the X-ray radiation during sample imaging.
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X-ray tomograpliy was conducted in the Metallic foams group at tlie 
Helmholtz-Zentrum Berlin institute. Tlie X-ray tomograpliic device that 
was used is sliown in Fig.2.3. The device is composed of three main parts; 
the X-ray source, the rotation stage and a flat panel detector. The source is 
a micro-focus 150 kV Hamamatsu X-ray source with a tungsten target. By 
varying the filament voltage and current, a 100 kV filament voltage ani a 
100 pA was found to provide the best contrast and lowest noise in the re
constructed foam images at high spatial resolution. The image magnification 
was determined by the source-detector distance (SDD) and the source-object 
distance (SOD). The magnification M is then given by M = |^. In the ma
jority of experiments, SDD was set at 130 mm and SDD at 390 rnm resulting 
in a three-fold magnification factor. This maps a 17 fim'^ sample area onto 
a detector pixel of size 0.05 mm^. By varying SDD and SOD, magnifica
tion values between 2 and G were adiievable. Larger magnification requiring 
a large SDD, resulted in incTeased image noise due to the additional air 
through which the X-ray beam must pass.

The sample was mounted on a precision rotation stage from Huber Ger
many, which rotated the sample through 360" during the imaging process. 
A 3G0° sample rotation was recjuired due to the cone-beam geometry of the 
X-ray beam j)roduced from our source. As the sample is rotated, .several 
images or projections of the sample were recorded. The more i)rojections 
which were recorded, the greater the image ciuality of the resulting recon
structed image. However, due to the limited lifetimes of the foam samples 
that we were examining, the number of projections had to be significantly 
reduced to lower the imaging time. Our samples were formed from 500 im
age projections. Due to the presence of several defects within the detector 
itself, normalising images were hrst taken before imaging. In particular a set 
of ‘open’ and ‘closed’ beam images, corresponding to direct imaging of the 
X-ray source while activated and deactivated, were captured. These images 
were later used during the image reconstruction phase.
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2.3.3 Image reconstruction

(a)

(b)

(c)

Figure 2.4: Composite images illustrating the image processing steps required 
to progress from a series of vertical projections of the imaging object to a 
series of horizontal slices through the olrject. (a) shows an exami)le of the 
initial images captured during the accpiisition process. 500 such images are 
recorded at 0.72“ increments of rotation of the sample. Several horizontal 
white lines across the image are observable. These defects are caused by 
dead pixels in the detector array, (b) shows the same image after defect cor
rection and normalisation. The intensity gradient across the image has been 
ecjualised and the dead pixel defects have been removed, (c) The generation 
of the sinogram from the c’orrected images.
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The image reconstruction i)rocess - the transformation from the image 
projections into two-dimensional image slices - was conducted using the com
mercially available software Octopus V8.2 [53]. This software is based upon a 
back-projection algorithm with convolution and correction for the cone beam 
geometry. The 500 sanii)le projections, combined with the 10 open and 10 
closed beam images, were selected for processing. The original images were 
cropped to the areas of interest so as to reduce processing time. A region out
side the bounds of the object was chosen for normalisation pnri)oses. The 500 
images were then re-normalised such that this section has constant intensity 
over all 500 projections. This is necessary to compensate for the variation 
of the X-ray intensity produced by the source over time. This variation in 
beam intensity leads to non-isotroi)ic image contrast in the final images if 
nncorrected. A ring hlten value of 3 was chosen for historical purposes to 
remove the effec’t of dead detector i)ixels (see Fig.2.4) [54]. Such dead pixels, 
of constant intensity, would produce rings in the hnal reconstructed images 
if left nncorrected. After the image-stack norniahsation procedure, the sino
grams - a visual represenation of the Radon transformation - were produced 
[50]. The sinograms were then combined to form horizontal slices through 
the image through the application of the central slice theorem. To do so, 
however, requires setting the three dimensional object centre so that the re
sulting image reconstruction was clear throughout the sample. A Gaussian 
filter was also applied to the image data at this point to reduce image noise.

The reconstructed data is composed of a series of 8-bit greyscale images 
measuring 1500 x 1500 pixels (see Fig.2.5). This means that each pixel of the 
reconstructed image has a value in the range [0:256]. A pixel value of 0 cor
responds to pure black while a value of 256 corresponds to pure white. Each 
image represents a horizontal slice, 15 prn thick, taken through the sample 
(for a magnification factor of 3). These images may be combined to form 
an image stack, a secpiential series of images that may be used by rendering 
software such as SDst/adioMAX to j)roduce three-dimensional renders of our
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foam samples [55].

Figure 2.5: A two-dimensional image slice taken through an ordered foam 
showing the image data produced following successful image reconstruction. 
Dark segments of the image correspond to the gas phase of the foam, while 
brighter areas of the image correspond to the licpiid phase. Due to the similar
ity between the linear attenuation coefhcient associated with the surfactant 
solution and the container of the experiment, these two pha.ses cannot be 
sei)arated in the resulting reconstructed images.

2.4 Image processing

Following the successful imaging, reconstruction and visualisation of a foam 
using X-ray tomography, we now wish to obtain information, such as bubble
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size, position, shape etc. from our data. Due to the thinness of the films 
of a foam (in the regime of 50 nm [6]) being below our current imaging 
resolution, such features are not present on the reconstructed images and 
thus individual bubbles do not appear as separated objects (Fig.2.6). If a 
simple segmentation was applied to the image data at this point, only one 
particle composed of the bubble-conglomerate w'onld be identifiable.

Figure 2.G: Magnified section of Fig.2.5. The Plateau borders and vertices of 
the foam are clearly visible. However the thin films separating neighbouring 
bubbles are not present within the image.

It is the function of image processing to reproduce the missing thin films 
and thus separate the individual bubbles from the position of the imaged 
vertices. Following this, image segmentation can be performed, resulting 
eventually in full statistical information about the foam packing. This image 
I)rocessing was conducted using the commercially available software MAVI, 
following a similar procedure as to that employed in the reconstruction of a 
zinc metallic foam [37]. These steps were;
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Filtering

A median filter was applied to the image data. A median filter replaces each 
pixel with the mean value of its nine neighbours. This reduces image noise 
associated with digital photographs.

Binarisation

Binarisation is the jrrocess by which each greyscale image with pixel values 
between [0:256] is converted to a binary image for which each pixel has a 
value of either 0 or 1. This ])rocess begins by examining the histogram of 
pixel values associated with each image slice. An example of such a histogram 
is shown in Fig. 2.7.

Figure 2.7: (left) Greyscale image slice of foam, (right) Histogram of pixel 
values shown in the image. Peaks associated with bubbles (dark image area, 
centred around 60) and liquid (light image areas, centred 210) are clearly 
seen.

Two peaks are observed in this histogram - one peak is associated with 
the darker image regions corresponding to the gas phase of the foam, while 
the second peak refers to the lighter pixels associated with the liquid phase.
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Based on tliis histogram, a threshold value of 98 can be chosen to binarize 
the image - any pixel with a value less then 98 is set to zero, while any pixel 
with a value greater than 98 are set to one. The threshold value must be 
chosen such that the vertices are completely resolved while image noise is 
limited. If the threshold value is set too high, image-noise will result in over
segmentation of the resulting image. The results of this binarisation process 
are shown in Fig.2.8.

Figure 2.8: Binary image of foam slice. Black regions correspond to the 
gas-i)hase and white regions to the liquid phase of the foam.

Distance measure

A distance measure is a method by which a greyscale image may be formed 
from a binary image by assigning each pixel of the background (black regions) 
a value ecpial to the minimum distance to the nearest foregronnd (white
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regions) pixel [56]. Fig.2.9 demonstrates this process applied to a single
pixel image.

Figure 2.9: Exami)le of the ai)plication of the Enclidean distance measure 
applied to a binary image composed of a single foreground pixel (top left). 
The distribntion of image values is shown below. After ajiplying the distance 
measure to the image, the resulting pixel values across the image show a 
linear increase

For this process, distance may be measured using either the Chebyshev 
measure, the Manhattan measure, or the Euclidean measure [56]. Both 
Chebyshev and Manhattan distance measures take advantage of the dis
crete nature of the image data. The Chebyshev considers distance only 
along the 8 nearest neighbour directions of a particular pixel, while the 
Manhattan Measure assumes that the distance is measured along the di-
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rectioii of the 4 nearest neighbours, i.e. along the coordinate lines. The Eu
clidean distance is calculated by embedding the image in a two-dimensional 
space. The distance between two jjixels is calcnlated using the normal def
inition of the euclidean metric and rounded to the nearest whole number 
i.e. the distance between two pixels p{xi,yi) and q{x2,y2) = (Kp^Q)e = 
R()UND( v/(x2-Xi)2 + (y2-?/i)2).

Since this measure does not take advantage of the discrete nature of 
the image data, the Euclidean distance measure is the most computation
ally inefficient distance measure. However, due to the accuracy and ease of 
interpretation of this measure, it was used in our calculations. For each back
ground pixel, the distance to the nearest foreground pixel is calculated. The 
background pixel value is then changed to this distance value. Fig.2.10 shows 
the euclidean distance measure ap])hed to the binary image slice shown in 
Fig.2.8.

Figure 2.10: Euclidean distance measure applied to binary image slice.
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Geodesic Transformation

The euclidean distance transformation results in the formation of a distinct 
maximum at the centre of each separated bubble. This process, however, pro
duces unwanted maxima associated with signal noise and defects produced 
during the imaging process. To reduce their effects in the segmentation pro
cess. a Geodesic transformation is applied to the image.

Geodesic transformations are a set of nior])hological operators based upon 
the ideas of a marker image f and a mask image g [56]. The basic oj^erators 
of this transformation class are Geodesic Dilation and Geodesic Erosion. For 
our i)urposes - determining the i)osition of local maxima within the image 
data - we need only examine geodesic dilation defined as

(2.4)

where d' is elementary dilation - the process by which an image foreground 
object feature is exj)anded outwards by a pixel value of 1 - and A is the point- 
wise minimum operator defined as fAg : A' —>■ R : {fAg)x = rmn{f{x),g{x)). 
Using 5 we may define the morphological operation reconstruction by dila
tion;

Kif) = Kif) (2.5)

where i is such that Sg{f) = i.e. unitary geodesic dilation is succes
sively ai)i)lied to the image until the image converges to a steady state. A 
si)ecial case of this reconstruction by dilation operator may be used to sup
press unwanted maxima within our image. If / is reconstructed by dilation 
using the masking image f — h, for a user defined /, the so-called adaptive 
H-Extrema operator is formed, defined as

HMAXh{f) = R){f-h). (2.6)

When applied to an image, H-extrema operator suppresses all maxima 
within the image whose maximum image value is less than the user-defined
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variable h. When applied to the image, maxima associated with image noise 
are significantly reduced. The results of the application of the adaptive h- 
extrema to the experimental images is shown in Fig.2.11.

Figure 2.11: Application of the geodesic transformation to the image slice.

Unitary addition

Each pixel value of the image is increased by a value of 1 (see Fig.2.12). 
This maintains image detail in the following processing steps when images 
are subtracted.
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Figure 2.12: Application of unitary addition to the image slice.

Inversion masking

The original binary image shown in Fig. 2.8 is inverted and used as a mask, 
see Fig. 2.13. The image is inverted using the simple procedure f{i) = 
|25G — f{i)\ for each pixel i of the image. This process replaces each 0 value 
pixel with a 256 value pixel and a 256 value pixel with a 0 value i)ixel. The 
resulting image was used to mask Fig. 2.12. The process of masking involves 
the multii)hcation of the two images i.e. for two images / and g, the i)roduct 
of the image multiplication h{x,y) = f{xxg) * g{x, y). The multiplication by 
the binary image - where each pixel has a value 1 or 0 - means that only 
those highlighted features are kej)t in the hnal image.
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Figure 2.13: The inverse binary image used as a mask to reinstate feature 
borders.

2.4.1 Inversion

The image is inverted again. Following this inversion process, the image now 
contains a series of minima located at the centre of the original bubbles. 
With each separate bubble now marked, the segmentation of the image can 
be completed using the watershed transformation.

2.4.2 Watershed Transformation

The watershed transformation is a method by which an image may be sub
divided into a series of connected regions sharing particular characteristics 
[56]. In this case, the criterion used for segmentation is that the final regions 
of the image should correspond to separate bubbles.
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The watershed transformation is based upon visualising the greyscale im
age as a topological surface, the height of each i)oint being equal fo fhe value 
of the corresponding pixel value. The watershed transformation succeeds 
in calculating the location of the various catchment areas associated with 
this surface - i.e. the various separated areas in which fluid would collect 
if water was i)onred onto the surface. These catchment areas are calculated 
by simulating a flooding of the image, the sources of liquid located at the 
regional minima of the image. As more licpiid is added to the image, the 
height reached by liquid in fhe image is increased. This leads to the water 
table of a given minimum increasing in extent. Where two adjacent water 
tables meet, a border region is created to sei)arate fhe connected regions.

The watershed transformation is an efficient method used to segment an 
image. It is tyi)ically used for the separation of overlapping objects within 
an image. The process begins by determining the local pixel minima within 
the image. In this case, these local pixel minima correspond to the bubble 
centres. Each of these minima is assigned a j^ixel number and becomes a basin 
for the following flooding step. Each basin is expanded outwards from the 
central basin until contact is made with the snrronnding expanding basins. 
When this occurs, a boundary region - set with pixel value 0 - is established. 
Wdien each pixel of the image has been assigned a new value - either a basin 
label or a boundary value of 0 - the watershed process has finished. The 
resulting image can no-longer be considered as a greyscale value. Rather 
than image intensity or distance, each i)ixel value now refers to a connected 
region within the image.
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Figure 2.14; Ai)plicatioii of the watershed traiisformatiou. Each connected 
domain is given a unicpie numeric identiher, corresponding to a unique colour.

2.4.3 Masking

During the watershed transformation step, information regarding the original 
image geometry has been lost. In particular, the positions of the Plateau 
borders and vertices of the foam are no longer present. Using the binary 
image shown in Fig.2.13. the watershed image in Fig. 2.14 was masked to 
take into account the presence of these lost image features (see Fig. 2.15). 
At this stage, the image data is saved as a “.RAW”’ image format type. This 
Raw data type allows the image data to be successfully imaged as individual 
bubbles using visualisation software such as 3DStudioMax [55]. Examples of 
such visualisations are shown in hgnres 2.15 and 2.16.
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Figure 2.15: The masked watershed image. The conneeted domains within 
this image corres])ond to individnal bubbles.

2.4.4 Object details

Statistics regarding the connected domains shown in Fig.2.16 may now be 
calculated. Important statistics including object position, volume, surface 
area, Euler number and shai)e factor are easily obtainable. The centre po
sition of each connected domain is determined by calculating the cube of 
minimum volume in which the image feature may be inscribed. The result
ing image data is outputted in the form of a text file the data of which may 
be easily analysed using a variety of computer programmes. The majority 
of data analysis is conducted using the programming language Python, with 
the installed extensions Numpy and Scipy [57, 58].
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Figure 2.1G: Visualisation of the segmented tomographic data using 3DStu- 
dioMax. (a) Conglomerate of bul)l)les individually coloured to demonstrate 
the successful segmentation of the image data (b) Visualisation of an indi- 
fidual bubble produced during image segmentation. The individual voxels of 
the object can be seen.

2.4.4.1 Data filtering

Following successful segmentation of the image data, a statistical analysis 
of the bubble sizes and positions was then conducted. During this analy
sis, several anomalous readings were observed in the object data. This was 
most obviously demonstrated throngh a calculation of the sphericity of the 
particles.

The sphericity S of a i)article is a measure of the divergence of the shape 
of a three-dimensional particle from a sphere of the same volume [50]. In 
mathematical terms, the si^hericity of a particle S is given as

S =
7r3(6Vp)3

A.,, (2.7)

where Vp and Ap correspond to the volume and surface area of the particle in
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(piestion. For continuous tliree-diniensional objects the maximum sphericity 
5=1 corresponds to a perfect sphere. A divergence from this spherical 
shape will lead to an increase in the snrface-to-volnme ratio resulting in a 
decrease in the sphericity measure e.g. the sphericity of a cube is (|) ~ 0.8. 
The sphericity of the particles identified for a typical sample sample is shown 
in Fig.2.17.

Figure 2.17: Histogram of the sphericity 5 for the particles within a typi
cal foam sample. Note that there is a large peak centred at ai)proximately 
0.9, corresponding to the bubbles of the sample. However, there are many 
particles for which the sphericity is above the physical maximum value of 1.
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Although there is a peak in sphericity at S' ~ 0.9 corresponding to the 
bubbles of the exi)eriment, it is also ai)parent that the sphericity of some 
of the particles within the system exceeds 1. This result is non-physical for 
continuous three-dimensional shapes.

We believe that this non-physical result is due to over-segmentation of the 
original image data. This may result in objects not topologically-eciuivalent 
to spheres within the object data. For such objects within discrete three di
mensional data, it may be possible for the associated sphericity to be greater 
than 1 due to the difficulties associated with defining the surface area of 
individual voxels. Such problems may be overcome by examining the Euler 
number of each ])article identihed within the object data

The Euler characterisation is a method of identifying an object as a mem
ber of a particnlar tojK)logical class [56]. The Euler number or Euler Char- 
actensUc, is defined as

^ = V~ Ed-F (2.8)

where V', E and F are the number of vertices, edges and faces of the shape. 
For a continuous object, the Euler characterisation is determined from a 
triangulation of that object. It can be shown that the Euler characterisation 
of an object is independent of the chosen triangulation[56]. For the cavse of 
a sphere, or any object topologically equivalent to a sirhere, ,\ = 2. Other 
objects, e.g. tori, have associated with them a different Euler number (0). 
We hltered our data such that only those objects with y = 2 were allowed. 
The new distribution of sphericity, hltered against Euler number, is shown 
in Fig.2.18.
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Figure 2.18; Sphericity of the foam sample as filtered using Euler number y. 
By excluding all objects which are not topologically equivalent to a sphere, it 
is seen that the majority of those particles with S' > 1 have been significantly 
reduced.

This filtering process removes the majority of those objects with the non
physical sphericity S > 1. When an analysis of our filtered data was then 
conducted, it was found that the majority of segmentation noise had been 
eliminated which had been previously causing difficulty had been removed.
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The bulk ordering of 
monodisperse foam

Ill this chapter the three (liiiiensioiial structure of monodisperse acpieous mi
crofoam will be discussed. The structure of monodisperse foam samples will 
be first studied through a visual inspection of images reconstructed from the 
tomographic data, the acquisition process of which was described in Chai)- 
ter 2. Following this, a statistical analysis of the foam iiositional data will 
be conducted. This statistical analysis will focus on various order parame
ters previously employed in the study of a variety of granular systems. In 
particular we will examine the coordination number, the radial distribution 
function, the Steinhardt order parameter and the packing-fraction associated 
with each foam packing. Using these analytic techniiiues, we will investigate 
how foam structure depends upon sample size and age.

3.1 Experimental method

Monodisperse microfoams are produced using the apparatus shown in Fig. 
2.2. The surfactant solution used was a 5 % by vohnne aqueous solution of 
the commercially available detergent Fairy liquid. This is found to produce

49
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2 mm
Figure 3.1: X-ray tomographic image of an ordered inonodisperse foam com
posed of 5000 bubbles of average diameter 780 ± 40 //m. The bubbles are 
seen to arrange into a sample approximately 5 bubbles deep.

stable foams suitable for a wide range of experiments [59]. The gas phase 
was a combination of Nitrogen and Perfluorohexane (PFH).

Bubble samples were periodically taken from the output of the flow focus
ing device and analyzed to determine the bubble diameter distribution. Once 
a stable foam of desired bubble size and dispersity was produced, a sample 
was collected into the container shown Fig. B.l. By varying the collection 
time the number of bubbles captured could be changed, thus changing the 
container hlling depth. The container, now filled with a mixture of bubbles 
and liquid, was closed within the solution by sliding a glass plate over the
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opening of the container. The filled container was then removed from the 
solution and mounted on a plastic plinth, after which it was imaged using 
our /tCT X-ray toinograijhic device. The resulting tomographic data was 
processed using Octopus and segmented tising MAVI as detailed in Chapter 
2.

3.2 Variation of sample crystallisation with 
filling depth

The structure of the foam sanii)les w'as analysed as a function of their filling 
dei)th. It was found that the foam samples could be divided into two distinct 
groups - thin sami)les and thick samples. For our purposes, a sample will be 
considered “thin” if the number of foam layers is less than or e(iual to 10 and 
thick if the number of foam layers exceeds this number. It is found that the 
ordering behaviour of the foam systems is well described by this divide.

3,2.1 Thin samples

The first samples investigated using X-ray tomography were composed of a 
few thousand l)nbbles, forming foam samples which extended only a few rum 
above the foam-licphd interface. In this inaimer it could be guaranteed that 
the foam sample had a high liquid fraction, providing the best chance of ob
taining images suitable for successful image reconstruction. Fig.3.1 shows the 
holotype^ for these thin foam samples. It is composed of roughly 5000 bub
bles, of average bubble diameter 780 prn ± 20. These bubbles have arranged 
into a foam sami)le 8 bubble layers thick.

The ordering behaviour of this foam sanii)le is immediately apparent on 
investigating the first reconstructed images. These images are formed by

' A liolotype is a term I have procured from biology whicli I feel fits cpiite well here - a 
holotype is a single physical specimen u.sed for the description of a species.
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(A) (B)

Figure 3.2: Image of a moiiodisperse microfoam of average diameter 780 ± 20 
//,m. (A) the top of the foam and (B) the bottom of the foam are separately 
visualised. On both the top and bottom of the foam, the bubbles are seen to 
order into hexagonal arrangements of bubbles.

showing only the gas phase of the foam sample. The resultant images show 
the foam as a packing of spheres. On examination of the top and bottom of 
the foam (see Fig.3.2), referring to the section of the foam in contact with the 
liquid and that in contact with the container respectively, it is seen that the 
bubbles of the foam are arranged into a two-dimensional hexagonally closed 
packed structure.

By examining the liquid phase of the foam, the Plateau borders and ver
tices of the foam sample may be shown instead. As previously discussed, the 
hlnis separating neighbouring bubbles can not be captured by the particular 
toniograiihic method employed here due to their thinness [6]. This results in 
an examination of the liquid phase only resolving the Plateau borders and 
vertices of the foam sample.
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However, onr imaging shows the Platean borders and jnnctions of the 
foam sample allow the internals of the foam sample to be examined more 
closely than possible when viewing the gas phase alone. Fig.3.3 shows a 
reconstruction focusing on the liquid phase of the 4*^ layer of the foam sample. 
The regular, ordered nature of the Plateau borders and lattices indicated that 
the i)reviously observed surface ordering extends into the bulk of the foam 
sami)le.

Figure 3.3; Reconstruction image of the thin foam sample, 5 layers deep, 
highlighting the liquid phase of the foam sample. The Plateau border and 
vertices of the foam are clearly visible, their regular, rei)eating structure 
indicating the presence of order within the center of this sample.
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Following these general observations of order within these foam samples, 
closer inspection of the reconstructed data can yield much greater information 
about the foam structure. By examining the stacking pattern of successive 
layers within the foam crystal, the nature of the ordering of the system can 
be determined. Fig.3.4 shows a selection of the topmost three layers of the 
thin foam sami)le. The bubbles within the selection have been coloured blue, 
green and red as they correspond to the A,B and C layers generally associated 
with closed-packed structures [GO]. We can extend this method of identifying 
the crystallisation of the sample throughout all foam layers. The results of 
such an analysis are shown in Fig. 3.5.

(A)

Fignre 3.4: A selection of bubbles from the top of the thin foam sample 
colored red,blue and green to correspond to the A,B and C packing layers 
of spheres. These sets of bubble are therefore seen to order into an fee 
arrangement. (A) shows the selection of bubbles from a prohle angle, while 
(B) shows the bubbles from above. Transparencies have been employed to 
make the lower layers of the selection more visible.
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Figure 3.5: A cnboid extracted from the center of the foam sample. The 
layers of the foam have been coloured r(xhblue and green to correspond to 
the A, B and C packing layers of spheres. It is seen that the foam sample 
is composed of an ABC packing of spheres throughout its width, indicating 
that the observed surface crystallisation extends into the “bulk” of this thin 
sample, (i) shows the sami)le as viewed at the foam-licpiid interface, while 
(ii) shows the top of the foam far from this interface, (iii) and (iv) show 
different side aspects of the same foam.
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It is seen that the ABC packing of bubbles extends through all layers of 
the foam structure. This indicates that the observed surface fee crystalli
sation of the sample extends into the “bulk” of these thin foam samples, 
although it must be recognised that no part of this foam sample is more than 
8 bubble diameters away from the boundary of the sample.

On viewing the individual layers of the foam sample, many interesting 
defects within the crystal structure were observed. Fig.3.6 shows several 
sequential layers of the thin foam sample. On each layer the defects present 
are highlighted. In particiilar, there exists a grain boundary between two 
regions of distinct fee crystallisation (Fig.3.6 A and B). It is also seen that 
there is a deformation of the crystal lattice aroniid a larger bubble which was 
accidentally introduced into the foam (see in Fig.3.6 C and D).
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Figure 3.6: Several seciuential layers of the thin foam sample. Grain bound
aries are highlighted are highlighted using lines, while vacancies are shown 
with circles. (a),(l)),(c) and (d) show successive foam layers from the top of 
the foam sample.
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After this visual inspection of the foam sample, we processed the im
age data using MAVI as described in Chapter 2. We first htted several 
distributions, including log-normal, Lorentzian etc. to the bubble diameter 
distribution. It was found that the distribution was best descrilred by a 
Gaussian distribution, although slight deviations were found to occur (see 
Fig.3.7). However, for our purposes, such deviations are not significant. The 
sample was found to have a mean diameter of 730 ± 20 //rn. This results in 
a dispersity less than 5%, classifying the sample as monodisperse.

Bubble diameter (gm)

Figure 3.7: Distribution of bubble size following hltering by sphericity and 
Euler number. The distribution was htted using to a Gaussian distribution 
with a mean of 730 ± 20 //m.
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The coordination nmnber as calculated for the thin sample shown in 
Fig.3.1 is plotted in Fig.3.8. The distribution shows two separate peaks lo
cated at n = 9 and n = 12. Both of these peaks correspond to the presence of 
hexagonally closed packed ordering within the sam])le. The u = 12 peak cor
responds to hexagonally closed packed ordering within the foam bulk, while 
n = 9 eorresi)onds to the same ordering, truncated by the limits imposed 
uiron the sami)le by the l)oundary.

Fig;ure 3.8; Plot of the probability distribution P{n) of the coordination 
nui.nber ?? for the thin foam exanii)le shown in Fig.3.1.

The radial distribution function of the first thin sample is shown in 
Fig,.3.9. The experimental plot (black line) shows the RDF function as cal-
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ciliated for a cubic section of 800 bubbles within the center of the foam bulk. 
This is a necessary requirement of the RDF function, as a calculation of the 
experimental curve would be skew'ed by particles along the foam boundary 
for which the symmetry of the system has been broken. When compared 
to the theoretical RDF of an ideal lattice (Red delta functions), it is seen 
that there is a good agreement between theoretical and experimental jieak 
position up to a distance of ^ = 4. It is seen that the amjilitude of the 
experimental curve decreases more rapidly than the theoretical prediction 
suggests. This is due, in part, to the imperfections in the fee lattice, mainly 
due to the disiiersity of the foam sample.

3.2.2 Thick foam sample

A typical example of a thick foam sample is shown in Fig.3.10. The foam 
is com])osed of 20,000 bubbles of average diameter 800 ± 40 //.m, arranged 
into a sample 20 bubble layers thick. Unlike in the case of the thin foam 
samples, in wdiich the ordered nature of the foam sample is identihable from 
the surface ordering of the bubbles, such an analysis is not possible on these 
thick foam samples. Fig.3.10 show the (a) toj), (b) side and (c) bottom of the 
foam sample. W'hile hexagonal ordering is observed along the top and sides 
of the foam sample, the same ordering is not present along the bottom of 
these thick foam samples, at the foam-liiiuid interface. Instead, an apparent 
random positional arrangement of spheres is seen to occur.
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Figure 3.9: Calcnlation of the radial distribution function g(r) for the thin 
foam sample. The exi)eriniental radial distribution function calculated for 
the bubble crystal (black) is compared to g(r) calculated for an ideal fee 
lattice (red). The radial positions, r, of each peak is normalised by the 
radial position of the hrst peak of each distribution co. This corresponds 
to the minimum particle separation in both the fee lattice and the bubble 
crystal. The coincidence of the experimental and theoretical peaks at the 
same i^osition indicate that the foam has formed an fee lattice.
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(B)

Figure 3.10: A reconstruetion of the thick foam sami)le showing (A) the top 
of the foam and (B) the side of the foam and (C) the foam bottom. The top 
and side surface layers of the foam sample exhibit hexagonally closed-packed 
structures similar to those seen with the thin foam sample shown in Fig.3.2

The internal structure of the foam may be examined by investigating a 
two-dimensional horizontal section taken through the foam bulk. Such a sec
tion is shown in Fig. 3.11. It is seen that bubbles form regular arrangements 
when in proximity to the boundaries of the sample. However, far from the 
boundaries of the sample, in the foam bulk, the bubbles show no apparent 
order. This is again seen if we excise this central region and conduct a visual 
inspection of the bubble center positions (see Fig.3.12). Again, no apparent 
order is seen.
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Figure 3.11: A horizontal slice taken throngh the iF^ layer of the thick foam 
sample showing the distribution of the liquid phase. Darker regions showm 
the position of the gas associated with each bubble. The bulrbles appear to 
be regularly arranged when in proximity to the boundaries of the sample, 
how'ever on extending
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Figure 3.12: The internal structure of the thick foam sample. No apparent 
order may be seen within the bubbles. The sample is coloured so as to enable 
neighbouring bubbles to be easily distinguished.

To determine the exact nature of this thick foam sample, we conducted the 
same analysis as was performed on the thin foam sample. The coordination 
number and radial distribution functions were again calculated.

The coordination number of the thick foam sample is shown in Fig.3.13. 
When compared to the distribution associated with the thin foams sample, 
(Fig. 3.2), it is seen that the distribution is composed of a single peak. 
Several other differences are observed;

• The r; = 9 peak which corresponds to the ordering of particles at the 
surface of the sample, is less obvious when compared to the thin foam 
sample. This is due to the loss of order seen along the bottom face of 
the sample.
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Figure 3.13: Plot of the probability distribution of contacts P{n) versus n 
for the thick foam examine shown in Fig.3.10.
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P{n) still displays a peak at n = 12, but now there is a smooth increase
of P(n)-

Following the calculation of the coordination number, we then calculated 
the RDF of the thick foam sample, the results of which are Fig. 3.14. It is 
seen that the functional form of the RDF distribution is significantly different 
to that shown for the thin foam sample (see Fig.3.9). The sharp peaks 
indicative of a crystal structure are now are now replaced with two broad 
peaks, with the second peak exhibiting two snb peaks located at ^ ~ 1.65 
and 1.9. Following this split double peak, the oscillations of the RDF cpiickly 
approaches 1.

The presence and form of the split second peak gives valuable information 
about the structure of these foam packings. Bernal et ai, in the study of 
the structure of licpiids using a hard sphere model, determined that a ran
dom i)acking of spheres has associated with it a uniciue RDF [32, 33]. In 
particular, it was found that the random sphere i)acking RDF has a split 
second peak, with two snb-peaks located at ^ = \/3 and 2. This si)litting 
of the second peak is a result of loc'al arrangements of the first, second and 
third nearest neighbours within the sphere packings. It is found that the 
first nearest neighbour will reside at a position of ^ = 1 corresponding to 
particles directly in contact with the central sphere being examined. The 
next two peaks, at ^ = \/3 and 2 correspond to second and third nearest 
neighbcmrs within the packing, as shown in Fig.3.15. Following these local 
arrangements, the radial distribution cpiickly apiiroaches 1, indicating uncor- 
relateci sphere positions. Since the original work of Bernal, this particular 
functional form of the RDF for disordered sphere packings has been verified 
in various experimental systems, particularly the large hard-sphere systems 
examined by Aste et. ai. Through the use of X-ray tomography, they exam
ined several packing of 150,000 hard-sphere beads of diameter 1.00 ± 0.05 
mm. Such RDF have also been found in the study of the structure of glasses 
[61].
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Figure 3.14: Plot of the radial distribution function for the thick foam sample 
shown in Fig. 3.10. The experimental cmrve is shown as a continuous black 
line, while the positions of the local arrangements associated with a Bernal 
packing of spheres is shown in red. Note the splitting of the second peak of 
the distribution at 1.65 and 2.



68 Chapter 3. The bulk ordering of nionodisperse foam

Figure 3.15: A two-dimensional illustration of the local arrangements which 
lead to the si)ht second peak in the R DF of a random packing of hard si)heres. 
It is seen that the three closest spheres to any sphere closest are located at 
distances — = 1,1-73 and 2.0ro ’

The positions of the si)ht-second peaks associated with hard s])here pack
ings are overi)lotted using red-dashed lines on the foam experimental data 
in Fig.3.14. It is seen that the foam peaks reside near to their hard-sphere 
counterparts. Several differences are seen to occur between the hard-sphere 
and foam experiments. Firstly, it is seen the experimental peaks of the foam 
experiments are not as sharp as those expected for hard spheres. The form 
of the RDF is also seen to differ slightly. In the hard-sphere experiments, 
the slope of g{r) gradually increase to a local maximum at g{r) = \/3, before 
progressing smoothly to the next local maximum at r = 2, after which a 
shard decrea,se in g{r) is seen [45]. In our foam experiments such a sharp 
decrease in g{r) is not observed. In addition, it is found that the relative 
heights of the two split-peaks of the RDF have been inverted with resjject 
to the hard sphere case i.e, for the hard sphere case g{\/3) < g{2) while the 
bubble experiments show (y(\/3) > g{2).
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It has also been previously rei)orted that a power law relationship of the 
form (/(?’) = Col?’ — r'ol" exists in the range 1 < ^ < 1.3 [45]. Aste et 
ah reported values of a between 0.25 and 0.45, dei)ending on the packing 
fraction of the system being examined. Fig. 3.16 shows that our data is not 
well described by such a power law relationship. The same power law to the 
exj)eriniental data for our disordered bubble packing.

Figure 3.16; A power law of the form <j{r) = Co|r — ro|" fitted to the RDF 
of the thick foam sample. The best fit produced a power law exponent c = 
1.8, however it is clearly seen that this is a poor fit to the data.

The discrepancy between the hard sphere and foam RDF are a result of 
two main differences between the two systems. The relative small sample size 
of the bubble experiment (20,000 bubbles vs 150,000 hard spheres of Aste et 
al) it is likely to result in the broadening of the radial distribution function 
of the foam data. Also, the finite compressibility of the bubbles of the foam 
sample will lead to a lack of a sharp changes in g[r) and the inversion of the 
relative heights of the two peaks of the split second peak.

In spite of these differences, we believe this sjjlit second peak is the most 
convincing experimental evidence that a foam may be well described as a
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random packing of spheres. This assumi)tion has been the basis of many 
simulations of foams, where the energy-minimised Voronoi tessellation of a 
random packing of spheres is taken as the initial system configuration.

3.3 Temporal evolution of monodisperse foam 

sample

In order to determine the effect of coarsening on the foam samples that 
we were investigating using X-ray tomography, a test sample composed of 
roughly 16,000 bubbles was produced and imaged once per day over seven 
days, so that the evolution of the bubble size distrilmtion could be deter
mined. This was a re(iuirement, as we were unable to hnd sufficient informa
tion regarding the effect of perhuorohexane on the coarsening of a monodis
perse foam.

During the evolution of the foam sample, it was found that the bubble 
diameter distribution of the sample did not change dramatically. On each day 
of the experiment, the disi)ersity of the sample remained below the threshold 
of 5% which, in experiment, dehnes the distribution as monodisperse [5]. 
However, it was found that the internal structure of the foam sample changed 
signihcantly over the seven day of the experiment.

3.3.1 Experimental Method

A monodisperse foam was produced as described in section 2.3.1 and placed 
into a cubic container as shown in Fig.B.l. The container was hlled with 
roughly 15000 bubbles.

The hlled container was sealed with a glass plate and affixed to a cylin
drical plinth for the duration of the experiment. The foam was imaged using 
X-ray tomography as described in section 2.3.2. The sample was imaged at 
the same time each day. Betw'een images, the sample was removed from the
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tomograi)hic device and stored in a secure location.
Following the successful imaging of the sample over the seven days of the 

experiment, the image data was i)rocessed and segmented as described in 
section 2.3.3. The data was then analysed as described below.

3.3.2 Results

Figure 3.17: Visualisation of the foam used to examine the temporal evolu
tion of such samples on the first day of the experiment. The image shows 
the foam-licinid interface of the sample. The foam, composed of 15,000 bub
bles of average diameter 795 ± 40 p/m is seen to have regions of hexagonal 
order near the sample boundary, while the central region is lacking such a 
structure.



Fig.3.17 shows a 3D representation of the foam sample on the first day 
of the experiment. The sample has ordered into a structure 10 layers deep. 
Around the borders and near the corners of the sample, the structure is seen 
to be hexagonally arranged, while no such ordering is seen near the center of 
the foam sample.

The distribution of bubble sizes were calcnlated for each of the seven days 
of the experiment and is shown in Fig.3.18. These distributions were htted to 
a Gaussian distributions, the resulting average bubble diameter distribution 
and second moment of wdiich are plotted in Fig.3.19.
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Diameter / mm

Figure 3.18: Overplot of the histogram data for the seven days of the exper
iment. It is seen that the histograms broaden slightly over the course of the 
experiment, corresponding to a slight coarsening of the foam. Due to the use 
of PFH gas. however, such coarsening was limited and the sample could be 
considered monodisperse throughout its lifetime.
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It is seen that the average l)nbble diameter increases during the lifetime 
of the experiments, rising from 795 ^irn to 810 p,r??. This is due to the 
unavoidable coarsening within the sample [49]. However, due to the addition 
of Perfluorohexane to the Nitrogen gas, the coarsening rate of the foam is 
significantly reduced when compared to that of a pure nitrogen foam [6]. In 
particular, it is noted that the dispersity of the foam remains less than 5% 
over the seven days of the ex])erinient. This means that the foam may be 
considered as monodis])erse throughout its lifetime.
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Figure 3.19: The average bubi)le diameter, with standard deviation of the 
bubble diameter shown as error bars, plotted over the lifetime of the experi
ment. It is seen that, although the average bubble diameter is increasing over 
the lifetime of the exi)erinient, the ratio of the standard deviation to aver
age bubble diameter remains less than 5%, indicating that the foam remains 
monodisperse throughout its lifetime.

However, we found that several interesting structural changes occurred
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within the sample during the seven days of the experiment. Such changes are 
best illustrated by two-dimensional plots of the XY center positions of the 
bubbles over the seven days. This corresponds to a collapse of the z-axis of a 
three-dimensional plot of the bubble centre positions. Such a plot of center 
positions is seen in Fig.3.20.

The sani])le was imaged three hours after prodviction on the hrst day of 
the experiment. The hrst day of the experiment shows the bubble centres are 
arranged into regular lines close to the boundary of the sample. Such regular 
arrangement of bubbles are seen to extend up to 6 bubble diameters away 
from the boundary of the samj)le. In the center of the sample, however, 
no such ordering is observed. This indicated that crystalline ordering is 
present close to the boundary walls, while the center of the sample is po.ssibly 
disordered. On the second day of the experiment, this boundary ordering is 
seen to extend more prominently into the central region of the foam sample.

On the third day of the experiment, the ordering of the central region 
has been significantly diminished. In addition, the extent of the boundary 
region has been reduced when compared to the first day, the order regions 
extending to a maximum 3 bubble diameters from the container wall. We 
believe this is due to a “bumping” of the sample on the third day of the 
experiment. This disturbance, we believe, disordered the ordered sections of 
the foam sample.
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(1) (2) (3)

(4) (5) (6)

(7)

Figure 3.20: Plot of the XY coordinates of the sample over the seven days 
of the experiment, labelled by the day number. On the first day of the 
experiment, the bubble are seen to form regular rows of particles close to 
the container walls. The bulk of the sample shows no such ordering. Over 
the seven days of the experiment is seen that this central region of the foam 
samjjle becomes ordered. This is demonstrated through the onset of a regular 
pattern in the center of the saini)le.
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For the next four days of the experiment, the sample was not again dis
turbed. The ordering behaviour that was observed to occur during the first 
two days of the experiment was seen to progress during the remaining days of 
the experiment. In addition to the extension of the boundary ordered regions 
into the bulk, it is seen that separate regions of order spontaneously occur 
within the foam bulk on the fifth, sixth and seventh days of the experiment. 
No additional imaging time was available to continue the experiment jjast 
the seventh day of the experiment.

In order to more accurately examine the ordering behaviour, we calculated 
several metrics of order for the sample, including the contact number, the 
translational order parameter, the bond orientational order ])arameter and 
the packing fraction of the sanii)le.

3.3.2.1 Coordination number

To (luantify the ordering within the sample, the coordination number dis
tribution over the seven days of the experiment were calculated and over- 
j)lotted. The results of such a calculation are shown in Fig.3.21.

On the hrst day of the exj)eriment, shown in red, a wide distribution of 
contacts is seen to occur within the sample. On the second day of the exper
iment, shown in green, this wide distribution begins to show a peak at n=12. 
On the third day of the experiment, the initial broad distribution of contacts 
within the sanii)le is seen to re-occur. This corresponds to the disturbance 
of the experiment which occurred on the third day of the experiment, as has 
been previously discussed. From the third day of the experiment onwards, 
no further disturbance of the sanii)le occurred. During this time, the contact 
number distribution is seen to evolve into a two-peaked distribution centred 
around n=9 and n=12. As we have previously discussed for the thin foam 
sample, this corresponds to hexagonal ordering along the boundary of the 
sample and within the foam bulk. While the height of the n = 12 peak is 
seen to increase steadily over the last 4 days of the experiment, the n=9
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Figure 3.21: Variation of the contact unmber distribution over the lifetime of 
the experiment. The number of ('oiitacts n is plotted against the probability 
of that contact within the sample P{n). Over the course of the experiment, 
the initial wide distribution is seen to resolve itself into a two-peaked dis
tribution centred at /;=9 and /(=12. These peaks correspond to hexagonal 
ordering occurring along the foam boundary and within the foam bulk.

peak is seen to remain at a constant value throughout the lifetime of the 
experiment. This implies that the ordering of bubbles around the boundary 
of the sample does not change - the increase in the order within the sample 
occurs within the foam bulk. This indicates that he disordered central region 
of the foam is progressing towards a more ordered state.

3.3.2.2 Translational order parameter evolution

Fig.3.22 shows the translational order parameter G as calculated for the 
sample over the seven days of the experiment. It is seen that the order 
parameter decreases over the first two days, before dramatically increasing
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on the third day. This corresponds to the previously discussed disturbance 
of the sample on the third day. During the next four days, G is seen to 
decrease. This corresponds to the ordering of the sample which was observed 
from the XY center positions shown in Fig.3.20.

Over the last four days of the experiment, G decays roughly exponentially, 
G{t) = + 0.018, seen as the solid line in Fig.3.22.

Figure 3.22: Grai)h showing the variation of the translational order param
eter G over the course of the seven days of the experiment. It is seen that 
G decreases during the hrst two days of the experiment, before dramatically 
increasing on the third day dne to the disturbance of the sample. This is 
followed by a smooth decrease in G, htted to an exponential with an offset.
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3.3.2.3 Bond orientational order coefficient

While the calculation of the translational order parameter shows that the 
sample is progressing towards a more ordered state, it does not provide in
formation about local configuration of bubbles. In our pursuit of this local 
information, we calculated the Bond Orientational Order Parameter (BOOP) 
for each bubl)le within the sami^le.

The BOOP or Steinhardt order i)arameter is a measure of the rotational 
order within a sample [61]. Although there exists several methods by which 
this rotational symmetry may be classified, it is found that Steinhardt’s 
characterisation, developed to investigate the onset of ordering within glasses, 
has proven the most useful in a variety of simulations and experiments [62, 
45]. In i)articnlar, it has proven useful in determining order within colloidal 
systems and grannlar media and is used to determine the onset of phase 
transitions in these systems.

The bond orientation order parameter is based ui^on the association of a 
spherical harmonic Qmi = with each “bond” within the system.
A bond, for the BOOP case, is defined as a vector i\j joining the center 
I)Ositions of neighbonring objects i and j. and Oij are the polar and 
azimnthal angles of this bond with resi)ect to a spherical coordinate system. 
For the bond orientational order parameter, two particles are considered 
neighbours if the distance between the c’entres of two particles ]r7j| is less 
than 1.3 d where d is the average particle diameter, as demonstrated in 
Fig.3.23 (This corresi)onds to the position of the first minimum of the RDF 
function for a disordered packing [61]). Other definitions used to define 
the neighbourhood of a particle are based on the Voronoi tessellation, or a 
weighted Voronoi tessellation, of the center positions of the lattice. The faces 
of the resulting tessellation point to neighbouring particles within the sample. 
It is found, however, that changes in the definition of the neighbourhood does 
not produce significant differences in the BOOP parameters calculated for 
the same packing [63],
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Figure 3.23; A 2D illustration showing the bond associated between the 
packing of two particles i and j. Only those particles whose centers lie within 
the disc of radius 1.3d are considered nearest neighbours within the packing. 
{?■, djj) are the polar coordinates of neighbouring particles with respect to 
an arbitrary reference frame. For a three dimensional system, the azimuthal 
angle <pij between neighbonring particles must also be included.
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So as to guarantee the directional invariance of the BOOP parameter, 
only even sidieric-al harmonics (1 = 0,2,4,6...) are considered. For symmetric 
packings the first nonzero results are obtained for 1=4 and 1=6. Spherical 
harmonics with 1=4 are particularly sensitive to hep order and crystals with 
cubic symmetry, while 1=6 is sensitive to icosahedral symmetry [61]. For 
this reason, only the fourth and sixth spherical harmonics are considered. 
It is found that the value associated to a particular bond through the use 
of these spherical harmonics is dependent on the frame of reference chosen. 
To ensure the invariance of the order parameter associated with a particular 
bond, frame-independent averages of spherical harmonics need be considerf'd. 
For the 4^^* and 6'^* si)herical harmonics, these averages are defined as,

m=—\ i=\ ’
Y,\T(4>ijA
J=1

(3.1)

m=-6 i=l ' 1=1

2\ 2

(3.2)

where and Otj are the i)olar and azimuthal angles associated with the 
particular bond within the system, F)’" is the spherical harmonic, rp is 
the number of nearest neighbours of the particle being considered and N 

is the total number of i)articles within the system [61]. is the
spherical harmonic, dehned as

'2/ + l(/-6)! 
47r (/ 4-6)!

(3.3)

where P}"[cosOij) are the Legendre polynomials. Each crystal structure 
will have associated with it a uniciue set of and values with which 
it may be identified. Examples of Q4 and Qa BOOP parameters associated 
with a variety of crystal structures are listed in table 3.1. If the system
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studied exhibits no particular ordered structure, a wide distribution of BOOT 
parameters is seen to occur, as shown in Fig.3.24.

Table 3.1; BOOP parameters of several common structures.
Structure Qi Qq

fee 0.19094 0.57252
hep 0.097722 0.48476
Icosahedral 0 0.66332
Liquid 0 0

(a) (b)

Figure 3.24: BOOP analysis of a disordered sphere packing i)roduced using a 
computer simulation, (a) Simulation of a disorder packing produced using a 
standard conjugate gradient method to minimise the system energy [64]. (b) 
a wide distribution of and parameters are seen to characterise such a 
disordered structure.

We irroduced histograms of and Qg parameters for the positional data 
of each bubble within the sample over the lifetime of the experiment. To
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compute the BOOT i)arameter, we used the C algorithm produced by Wang 
et al. [G5]. Examples of such histograms are shown in Fig.3.25 and Fig.3.26. 
In these plots there occurs several peaks in the experimental data at positions 
associated with fee and hep ordering. Note however, in Fig.3.25, there does 
not exist a peak in the experimental data which corresponds to the onset of 
hep ordering. This is a result of Q4 and Qq being sensitive to different crystal 
symmetries [61].

600

500

400

Br 300

200

100

Bond orientational order parameter Q,

Figure 3.25: Example of the calculation of Q4 for an experimental packing 
(day 1 of the lifetime experiment). Note that there exists no peak corre
sponding to hep ordering within the Q4 distribution.
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Bond orientational order parameter

ideai infinite fee iattiee 
Ideai infinite hep iattiee 
Experimentai data

0.8 1.0

Figure 3.26: Example of the calculation of for an experimental packing 
(day 1 of the lifetime exiieriment).

To overcome these problems associated with the different sensitivities 
of the BOOT parameters, two-dimensional histograms of both the Q4 and 
Qq order iiaranieters may be produced. Such a plot for the first day data 
is seen in Fig. 3.27. The bubble center positional data was analysed to 
calculate the BOOP for each particle within the packing. Local regions of 
crystallisation, as well as amorphous regions, could then be identihed and 
classified. For our purposes, we identihed a region as belonging to a particular 
crystallographic group if the bubble examined lay within ±0.1 of the Q4 and 
Qe values associated with the ideal case of such a lattice. Such bounds were 
found to correctly identify crystalline regions when compared to a visual 
inspection of the sample.
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Figure 3.27: (a) graph of Q4 against for the first day of the experiment. It 
is noted that in addition to the i)eaks assoeiated with fee and hep parkings, 
there also exists a sei)arate peak located at (0.30,0.22). To determine the 
reason for this sei)arate peak, a visualisation of the sample was produced, 
shown in (b). Regions corresponding to the unidentihed peak were coloured 
green.

It is seen that the BOOT data is composed of a series of peaks as well as 
a wide distribution of points. Most prominently within the data there exists 
two peaks located at (0.19,0.57) and (0.09,0.48). These peaks corresi)ond to 
the formation of fee and hep regions of crystalline ordering within the sample. 
In addition to these peaked regions, in the region 0.2 < Q4 < 0.4 and 0.2 < 
Qq < 0.24 a wide distribution of ix)ints is seen. These points correspond to 
the amorphous regions within the foam sample. This distribution is similar to 
the wide distribution reported for amorphous configurations within granular 
media [45].

It is noted that a separate peak exists at roughly (0.30,0.22). This region 
was not seen to correspond to any known crystal configuration. To determine
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the origin of this peak, we produced a visualisation of the system in which 
points in space corresponding to this unknown region where coloured green 
(see Fig.3.27b). This analysis shows that the peak corresponds to linear 
chains of particle along the boundary and top of the sample. This is due 
to segmentation noise within the sample and was exclude from all further 
analysis. The remainder of our analysis is shown in Fig.3.28 and Fig.3.29 
which show the evolntion of the and Qe order parameters, as well as a 
plot of the positions of bubble ordered locally into fee configurations (shown 
in red) and hep region (shown in blue).
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Day 1

Day 3

Day 4

jf.v
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Figure 3.28: Figure showing the evolution of the Q4 and Qe order parameters 
of the foam sample during the 1®*, 3’'^ and days of the experiment. In 
addition to the 2D histogram of the order parameters, a plot of the
bubble center i)ositions is also included. Those particles identihed as existing 
in an fee configuration are shown in red while hep bubbles are shown in 
blue. Over the lifetime of the experiment, it is seen that the heights of the 
points associated with fee and hep ordering inereas in time, while the regions 
associated with disordered spheres decreases in intensity.
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Figure 3.29: Figure showing the evolution of the Q4 and Qq order parameters 
of the foam sample during the 5*’\ 6‘*’ and 7’^'^ days of the experiment. In 
addition to the 2D histogram of the Q4, Qe order parameters, a plot of the 
bubble center positions is also included. Those particles identified as existing 
in an fee conhguration are shown in red while hep bubbles are shown in blue.
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Throughout the lifetime of the experiment there is no clear divide between 
regions of fee and hep crystallisation. Instead, the two regions of crystalli
sation seem to coexist within the same regions of the foam sample. This 
suggests the formation of RHCP regions within the sample.

As the system evolved in time, it was seen that the Qa.Qq distribution 
changes with time. The two peaks associated with fee and hep ordering 
increase in intensity, while the broad region of points associated with a dis
ordered sphere i)acking is seen to decrease in extent. This corresponds to the 
increase in the ordered nature of the sanij)le, which we have previously seen 
through the use of the translational order i)aranieter G.

From our BOOT data, we calculated the ratio of the number of fee ordered 
bubbles [Njee) lit'p bubbles {N^cp) within the sample, the variation of 
which, over the seven days of the ex])eriment, is shown in Fig.3.30.

Figure 3.30: Nhr
Nf cc

plotted over the seven days of the experiment. It is seen
that the ratio remains above 1 for the lifetime of the experiment, indicating 
a preference for fee crystallisation.
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N is seen to reside above a value of 1 for the entire lifetime of the
^hcp

experiment. This indicates a preference for fee crystallisation throughout 
the foam lifetime. This is in keeping with recent theoretical work on the 
preference for fee over hep by Heitkam et al. [66]. They determined that 
linear arrangements of spheres present within an fee lattice (e.g. along the 
[110] direction) which are absent within the hep lattice make these structures 
mechanically more stable when formed under deposition of spheres. This 
results in a ])reference for fee crystals within inonodisperse bubble crystals.

3.3.2.4 Packing fraction

The packing fraction (p for our foam sainjile was calculated over the seven 
days of the exiieriment. We limited the calculation of (p, however, to the 
central region of the foam which is seen to be disordered on the first day 
of the experiment. In this manner, we might exjiect to observe a steady 
increase in packing fraction from the value associated with a random packing 
of spheres (pncp =6-64 to the value associated with hexagonally closed-packed 
structures of (p = 0.74 on the seventh day of the experiment [13, 30].

The packing fraction was calculated for within a sphere of radius R cen
tred within the sample. A spherical volume was chosen due to the ease by 
which those bubbles on the boundary of such a sphere may be accounted for. 
R was chosen such that the outer limit of the sphere did not intersect the 
ordered bonndary regions of foam on the first day seen in Fig.3.20(1).

The jiacking fraction of the sample may be given by

(p = i=0 (3.4)

where is the radius of the bubble, R is the test volume being examined, 
and di is the distance from the center of the test sphere to the center of the 
bubble. When calculating (p using Eq.3.4, bubbles on the border of the test 
volume examined (i.e. ]i? — Cj] < di < ]i? -|- /’jj) must be taken into account.
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To do this, we consider the intersecting volume of a sphere of radins H with 
a spherical bubble of radins /’j. Doing this, we may write V{ri,di) as

7r(/f+r-rf)2(rf^+2dr-3r2+2dfl+6ri?-3i?2)
\2d

- JV{n,d,)={ Inr, 
0

|i? - Til < di < \R + ri\
di < \R - I'il 

otherwise
(3.5)

Applying this formnla allowed the packing fraction of the sample to be 
measured accurately while taking account of boundary bubbles. The results 
of this volume-fraction ineasnrement are shown in Fig.3.31.

1.0

Figure 3.31: Variation of the packing fraction 0 of the sample over the seven 
days of the exjierinient.

It is seen that the resulting volume fraction does not behave as one would 
expect for a similar system of hard spheres. Firstly, 0 resides above the
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maximum packing fraction associated with hard si)heres of 0.74. In addition, 
no variation is seen to occur in 0 over the seven days of the experiment - no 
complementary increase in 0 is seen to occtir as the order within the sample 
increases.

To verify this packing fraction calculation, and to obtain a more detailed 
understanding of the variation of the packing fraction within the foam sam
ple, we decided to calculate the Voronoi tessellation of the sample.

3.3.2.5 Voronoi tessellation

Figure 3.32: Visualisation of the Voronoi tessellation of the central region 
of the foam sample, (a) shows this region as imaged on the 1®^ day while 
(b) shows the same section on the 7'^ day. The bubbles are represented by 
spheres of the same radius while the red lattice shows the Voronoi tessellation 
. The images have been generated using POV-Ray [70].

The Voronoi tessellation is a method of dividing si)ace based on the distri
bution of a number of points. More specifically, given a finite set of distinct 
points in space, the Voronoi tessellation associated with each point all regions
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in space which are closest to it, as determined by some metric of distance 
[67]. For our purposes, we use the Euclidean distance metric. This tessella
tion may be used to accurately characterise the neighbourhood distribution 
of a packing, as well as providing a method by which the local packing frac
tion of a sample may be calculated [68]. To calculate the Voronoi tessellation 
of our sample we used the freely-available C-I-+ libraries Voro-|--(- htQ

0.90

0.75

0.70

0.65

Figure 3.33; Variation of the average packing fraction 0 over the seven days 
of the experiment. This average is not seen to vary signihcantly over the 
lifetime of the exi)erinient.

The Voronoi tessellation of a cubic section excised from the central region 
of the foam sample was calculated. This is the central region which appears 
disordered on the hrst day of the experiment, but approaches an ordered 
state on the last day of the experiment. Fig.3.32 shows a visualisation of the 
Voronoi tessellation of this internal section on the hrst and last day of the 
experiment.
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The Voroiioi tessellation may be used to calculate a local volume fraction 
for each bubble 0^ within the sample by diving the volume of the particle 
by the volume of the corresponding Voronoi cell. Fig.3.33 shows the 
average of these local packing fraction 0 for each day of the experiment. It is 
seen that, through this distinct measurement method, the packing fraction is 
again seen to reside above the expected values for both random and ordered 
sphere packings. In addition, no obvious variation of packing fraction occurs 
over the lifetime of the sample. Also, no change in the distribution of local 
packing fractions is seen to occur, see fig.3.34.

250

100

Figure 3.34: Distribution of the average packing fraction for each day of the 
experiment. The distribution is not seen to change significantly over the 
seven days of the experiment.

To verify that the Voronoi tessellation had been correctly implemented, 
we classified the order within the sample through the use of the isoperimetric 
quotient Q defined as



3.3. Temporal evolution of mouodisperse foam sample 95

Q =
367rT'^

5'^

(3.6)

where S and V are the surface area and volume of the Voronoi cell [71]. 
The Voronoi tessellation of each crystal structure has associated with it a 
particular Q value (see table 3.2).

Structure Q
fee 0.7405
hc]) 0.7534
sc 0.5236

sphere 1

Table 3.2: Q factor for various crystal symmetries [71].

Fig.3.35 shows the distribution of the Q factor for the first, third and 
seventh day of the experiment. The i)eak corresponding to hexagonal order
ing within the sample ~ 0.74 increases over the lifetime of the experiment, 
showing the progressive ordering of the sanii)le. Our analysis is not sensitive 
enough to distinguish between fee and heir using this order parameter. On 
the seventh day of the experiment, however, a second peak in the Q distri
bution is seen to occur at Q = 0.67. This sub-peak does not correspond to 
a Q value of any well-known crystal structure. To determine the sources of 
this extra peak, a xz plot of the bubble center position was produced (see 
Fig.3.36), the points in the plot coloured to correspond to particular Q factor.
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Figure 3.35: Distribution of the Q factor for the first, third and seventh day 
of the exiieriinent.
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(a)
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(b)

Figure 3.36: Xz plot of the center positions of the bubbles within the ex
cised central section of the foam on (a) the hrst and (b) the last day of the 
exiieriment. Those regions corresponding to hexagonally closed packed re
gions were coloured red, those regions corresponding to the peak at Q = 0.68 
are coloured blue, while those regions corresponding to other Q values are 
coloured green.

It is seen that the peak at Q = 0.68 corresponds to bubbles at the top 
and bottom of this excised foam sample. These bubbles are most likely 
hexagonally ordered bubbles whose Voronoi cells have been affected by the 
boundary condition imposed.

The results of the isoperinietric quotient analysis of the Voronoi sample 
correctly identihed regions of hexagonal ordering within the sample. We 
therefore conclnde that the Voronoi tessellation has been correctly iniple-
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mented for the sample. The unexpected results of the packing fraction anal
ysis, however, is still unexplained. To determine the cause of the unusually 
high packing fraction, the variation of the packing fraction of the individual 
Voronoi cells was analyssed for each structure. In particular, the variation of 
the packing fraction as a function of vertical height within the excised foam 
structure was analysed. The result of this analysis is shown in Fig.3.37. The 
individual Voronoi cell volumes are shown in red, while the average Voronoi 
cell i)acking-fraction is shown with cyan diamonds.

Figure 3.37: Plot of the variation of the average packing fraction 0 as a 
function of height Z for the third day of the experiment. The packing fraction 
for each Voronoi cell 0, is shown in red. It is seen that the packing fraction 
increases as the distance from the bottom of the section (at Z = 0) increases.

Wlhle the individual packing fraction varies significantly (0.60< 0 < 
1.00), it is seen that the average packing fraction increases steadily with 
height within the sample. The onset of ordering within the sample produces
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a banding of the Voronoi jjacking fraction data as the bubbles arrange into 
parallel planes (see Fig.3.38). This leads to difficulty in calculating the av
erage packing fraction as a function of height within the sample.

Figure 3.38: Plot of the variation of the average packing fraction 0 as a 
function of height Z for the seventh day of the experiment. The packing 
fraction for each Voronoi cell is shown in red. It is seen that the packing 
fraction increases as the distance from the bottom of the section (at Z = 0) 
increases. Note the grouping of data indicates the onset of ordering within 
the sample. This leads to a difficulty in calculating the packing fraction 
between ordered planes of bubbles.

W’e repeated this analysis for each day of the experiment, the resTilting 
variation of the average packing fraction as a function of height is plotted for 
each day of the experiment in Fig.3.39.
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Figure 3.39: Variation of the average packing fraction within the foam sample 
as a function of height. In general, each day of the experiment shows the 
same increasing trend in the packing fractions.

On each day, the average packing fraction is seen to follow the same gen
eral trend, increasing with height within the sample. 0 is seen to be relatively 
constant for a given height throughout the lifetime of the sample, indicating 
that the transition from a disordered to a ordered state does not effect the 
packing action of the sami)le. This behavionr is due to the compressibility 
of the bubbles being used in experiment. The hnite compressibility of these 
bubbles allow them to achieve a packing fraction higher that the upper bound 
of of 0.74 associated with hard spheres. The packing fraction increases as a 
function of height within the sample due to the action of underlying foam 
layers. For a given layer within the foam, the buoyancy force of the underly-
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ing foam layers forces bubbles of upper layers closer together. This has the 
effect of increasing the packing fraction of these higher foam layers, as seen 
in experiment.

3.4 Fcc-bcc transition

So far, onr experiments have focused on a three-dimensional characterisation 
of foams within the wet-foam limit where an fee packing of bubbles is seen 
to occur. As we have seen, however, monodisperse foams may spontaneously 
cry.stallise into both fc’c and bcc crystals, dejrending on their licpiid fraction 
[5]. These conhgnrations corres])ond to the most efficient packing of spheres 
(fee strnc’tnre in the wet limit) and one of the most efficient partitioning of 
space (bcc lattice in the dry limit).

Foams jnovide a nnicpie opportnnity to study the continnous change be
tween these densely packed strnctnres as a fnnetion of liquid fraction. By 
varying the osmotic pressure of a nionodis])erse foam. Holder et. al. snccess- 
fnlly studied the nature of this transition, carefully observing the strnctural 
re-arrangements that must occur between an fee and a bcc foam [5].

Their study, however, involved the optical characterisation of foam strnc- 
tnre within a cylindrical geometry. Snch a stndy is limited to surface layers. 
In addition, a cylindrical bonndary condition is not commensnrate with the 
symmetry of a bcc lattice which leads, inevitably , to defects within the crys
tal. In order to overcome these prolrlems, we aimed to investigate the fee to 
bcc foam transition using X-ray tomography.

Our experiment involved hlling a rectangular container of internal di
mensions 2()nnn x 2()nnn x SOnnn (schematic shown in B.6). Approximately 
70,000 bubbles of average diameter 700 //n; were loaded into our container. 
The relative height of this container was snch that gravitational drainage 
would produce a wet foam near the foam-liciuid interface, while a dry foam 
would exist near to the top of the container. The container was then imaged
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along its length. Our first relatively successful tomographic reconstructions 
is seen in Fig.3.40.

Figure 3.40: Imaging of monodisperse foam of average bubble diameter 
roughly 400 //,rn. Successful reconstruction of the foam is possible only near 
the foam-liqnid interface. As the distance from this interface is increased, the 
licpiid fraction of the foam decreases, and reconstruction is no longer possible.

Close to the foam-liquid interface, successful reconstruction of the foam 
sample is possible. However, the local liquid fraction of the foam decreases 
with distance from this interface, resulting in a reduction of the X-ray ab
sorption profile of the foam, resulting in a failure to reconstruct the dry areas
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of the foam. Thus, we are unable to successfully observe the transition be
tween fee and bcc regions. In an attempt to increase the X-ray absorption 
of our foam sample, we added silica nanospheres to our surfactant solution. 
This has been previously found to increase the probability of imaging such 
features using our low-energy X-ray tomography method [54]. We found, 
however, that this did not jiroduce the increase in X-ray absorption required 
to produce a usable reconstruction. With our current imaging technique is 
therefore not able to successfully image this fee to bcc transition.

3.5 Conclusions

We have investigated the crystalline nature of nionodisi)erse aqueous foams 
in a rectangular container. Wt' have found that small sanii)les, 8 layers deej), 
form fee foam crystals. The crystal nature of the sam])le was determined 
through the analysis of the j^acking structure of subsecpient layers of the foam 
sani])le and the radial distribution of the center positions of the bubbles. This 
ordering was seen to proi)agate through the foam bulk of the thin sanii)le. 
These thin foam samples are seen to demonstrate many three-dimensional 
crystalline defects, including grain boundaries and interstices, due to the 
rectangular confinement of the sample.

On increasing the number of layers of the foam sample, it is seen that 
the crystal nature of the sample changes. Along the boundaries of these 
samples, hexagonal ordering is seen to occur. The central regions of these 
samples, however, do not demonstrate any particular hexagonal ordering. On 
calculation of the RDF for these samples, the second peak of the distribution 
was seen to sj^lit with sub-peaks located at roughly \/3 and 2. This
split second peak is associated with a Bernal packing of spheres. This is 
the first observation that the center of these samples are not crystalline in 
nature. In addition, this is the first exj)eriniental evidence that a foam may 
be api)roximated as a Bernal packing of si)heres.
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We also investigated the temporal evolution of our monodisperse foam 
samples. To do this, we image a sample composed of 16000 bubble formed 
into a sample 14 layers in depth. On the first day of the experiment the 
sample was composed of ordered regions along the boundary of the sample 
and a disordered region within the center of the sample. Over the seven days 
of the experiment, this disordered region was seen decrease in extent over the 
lifetime of the ex])eriment. Through the calculation of the translational order 
I)arameter G and the and Qq bond orientational order parameter, the 
ordering of this central region could be charted. It was seen that the system 
did indeed i)rogress towards a more ordered state. Through a calculation 
of the ratio of the nnmber of fee and hep ordered bubbles, it was seen that 
there is a ijreference for the formation of fee rather than hep regions of 
erystallisation, in keeping with recent theoretical calcnlations and previous 
experiments.

On calculation of the packing fraction of the sample, it was found that 
the packing fraction of the sample resided above the npi)er bound of 0.74 as
sociated with hard spheres. It was also found that ordering of the sample did 
not produce a corresponding increase in the i)acking fraction measnrement. 
To determine the reason for this unusual Irehaviour, the Voronoi tesselation 
of the internal structure of the foam sample was computed. This allowed 
the {)acking fraction of each cell within the foam sample to be calculated 
separately. From these measurements, it was again seen that the average 
packing fraction was independent of the structure of the foam sample. On 
examination of the individual cells, however it was found that the packing 
fraction increased as a function of height h within the sami)le. \W therefore 
see that packing fraction is not a good metric of order within a foam system, 
unlike for hard sphere systems.

We believe that the onset of ordering of this sample is due to an uninten- 
tional“anneahng'’ caused by a change in temperature within the experimental 
lab over time. The sample was kept in an experimental lab the temperature
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of which changed by uj) to 5°C between day and night. This change in tem
perature leads to an expansion and contraction of the bubbles within the 
sample. This ‘anneals’ of the samj)le, leading to an increase in order over 
time.

\^e attempted to capture the transition between regions of fee and bcc 
crystallisation. It was found, however, that the sensitivity of our current 
experimental api)aratus was not sufficient to capture this transition, due to 
its low licpiid fraction.



106 Chapter 3. The bulk ordering of inonodisperse foam



Chapter 4

Forming the Weaire-Phelan 
structure - the use of templates 
for directed foam crystallisation

Ill Chaiiter 3 we saw how bubliles may spontaneously crystallise into fee or 
hep structures. Here we report on experiments using templates, which force 
bubbles, of the appropriate bubble size, into predehneci crystals. Using such 
techniciues we were able to produce for the hrst time an experimental example 
of the W’eaire-Phelan structure.

107
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Figure 4.1: High resolution image of the Weaire-Phelan structure comi)osed 
of monodisperse bubbles of average diameter 1.2 rrirn

4.1 Weaire-Phealan structure

From our X-ray tomograirhic experiments, we have seen that monodisperse 
aqueous microfoams spontaneously crystallise into fee and hep crystal struc
tures, as well as random Bernal packings [72]. These structures, however, are 
associated with a wet foam, where the liquid fraction of the foam is above 15% 
[73]. For lower liquid fractions the expected energy-minumum configuration 
is different. Kelvin’s original conjecdure for the most efficient partitioning of 
space was a 14-sided truncated octahedron, arranged into a bcc lattice [74].
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Coini^uter simulations, however, have shown that this Kelvin cell is not the 
most efficient partitioning of space. Indeed, in 1993, Prof. Denis Weaire and 
his PhD student. Robert Phelan, showed that a new structure - the Weaire 
Phelan (WP) structure - was more efficient than Kelvin’s original solution 
[14]. This structure is based upon the energy-minimised Voronoi tessella
tion of the A15 lattice with the constraint that the cells of the resulting 
structure are of e(iual volume. The WP structure is composed of an ordered 
arrangement of tw'o types of i)olylu'dral cells - an irregular dodecahedron and 
a tetrakaidecahedron (coloured red and green respectively in Fig. 4.2).

Since its discovery in 1993 an experimental realisation of the structure 
I)roved elusive, exc('])t for rei)orts of sightings of partial WP structnres [75]. 
Instead, dry nionodisi)erse foams were found to form random structures with 
a wide distribution of cell shapes [7b]. However, Fortes et. al. found that by 
confining nionodisi)erse bubbles of average diameter 3 mm between a licpiid 
interface and a glass plate, large crystalline sami)les of the Kelvin structure 
could be produced [77], Such experimental examples of the Kelvin structure 
could also be produced through the use of monodisi)erse microbubbles. By 
reducing the licpiid fraction of such foam, either through the manipulation 
of the osmotic pressure [5] or generating a foam column a few centimetres 
in height [29], a transition between an fee and a bcc foam crystal may be 
provoked.

The relative ease by which the Kelvin structure is produced in experiment 
wdien comjiared to the more efficient WP structure is due to a fundainental 
difference in their structure. The {110} planes of the Kelvin structure are 
well adapted to fit against a planar surface, forming a surface pattern close 
to that of the honeycomb [1. 78]. Due to this, the Kelvin structure may be 
easily produced against a flat liquid surface, or against the flat walls of most 
experimental containers. The WP crystal, however, cannot be cleaved so as 
to present such a flat surface.
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Figure 4.2: Computer generated Voronoi tessellation of the A15 lattice un
der the constraint of eciual-volume cells. The WP structure is the surface- 
minimised version of this tessellation. The structure is composed of two 
layers of bubbles on parallel {111} planes. The unit cell of is shown is shown 
in colour - dodecahedron highlighted in red and tetrakaidecahedra in green. 
Image generated with 3 dt [15].
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4,1.1 Experimental method

The experimental formation of the WP stnicture required the production of a 
container the surface of which is templated with the WP stnicture. Initially, 
an attempt was made to produce such a container using the commercial soft
ware SoUdwo'fks [79]. However, it was fonnd that the complicated nature 
of the curved surfaces involved in the construction of large WP templates 
exceeded the resources available to this software. Instead, the template ge
ometry was produced using the freely available software Surface Evolver[80]. 
A large rectangular WP structure was produced such that the {100} planes 
formed the w'alls of the structure. This crystal was then subtracted from a 
rectangular block, producing a schematic composed of the negative of the WP 
structure. The schematic was saved as a .stl file, suitable for processing using 
a 3D printer. The physical container was then fabricated using an object 250 

rajiid prototype machine allowing the generation of objects of resolution 
85 //rn. The material used for the generation of these templates was Objet 
FullCiLre720. This transparent material allows the sample to be illuminated 
from a wide variety of directions. An examine of one such template is shown 
inis shown in Fig. 4.3.
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Figure 4.3: Photograph of the template used to produce the WP structure. 
The template is placed in a surfactant solution, to receive bubbles emitted 
from below. The inner surfaces correspond to {100} faceted i)lanes of the WP 
structure (sample dimension 41x41x20n7,nP; lattice spacing 4rmn; vohnne 
available to each bul)ble Srmn^] maximum number of bubbles IGx 16x 7 = 
1792).

A surfactant solution of 1% vohnne fraction Fairy Liquid in water was 
used. Monodisperse bubbles were produced through the injection of nitrogen 
gas through a capillary tube with internal diameter of roughly 0.3 mm, placed 
into the surfactant solution at constant depth. The diameter of the resulting 
bubbles was determined by measuring the inter-bubble distances in a two- 
dimensional closed-packed array of bubbles. The WP container was inverted
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in the surfactant bath to remove trapped air and positioned to collect the 
niicrobubl)les. By varying the filling time of the container, the number of 
complete foam layers could be controlled. Once filled, the container was 
sealed by sliding a glass plate over the oi)en face of the container. The 
container was then slightly shaken by hand as this was found to produce 
coherent foam crystals. Finally, the sami)le was then mounted on a glass 
stand, illuminated from above using a planar backlight, and photogra])hed 
from l)elow using a Canon EOS 5()D camera.

4.1.2 Results

An example of the resulting WP structure is seen in Fig.4.4. A comparison 
between the vertex positions in the exi)eriniental foam (Fig.4.4) and the sim
ulation of the WP structure (Fig.4.2) shows that coherent WP foam crystals 
could indeed be formed. We have successfully made foam crystals up to IGOO 
bubbles in size. We have also made foam crystals up to 6 bubble layers in 
thickness, seen in Fig.4.1.

As seen in Fig.4.1, the tetrakaidecahedron cells of the experimental WP 
structure api)arently have a scjuare central face, exi)anded on in Fig.4.6a. 
This is due to an optical effect of produced by the bubbles of the WP struc
ture in contact with the liquid layer. The surface of these bubbles are hemi
spherical in shape (see Fig.4.5), resulting in a lensing effect, making the faces 
of snbseciuent layers of the WP structure appear smaller.

We may show this by treating the surface of the bul)bles as ideal hemi
spheres (see Fig.4.5). Applying the usual equations associated with refraction 
from a curved interface, it may be shown that the magnification M associated 
with such an interface is given by

M = 1
n-z-ni g I

Rn2 n2
(4.1)

Where 112 and rq are the refractive indices of the water and licpiid phases,
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Figure 4.4: Photograph of the experimentally produced WP foam viewed 
along its (100) 2-fold axis of symmetry. The foam was produced in the 
template shown in Fig.4.3. The sample contains approximately 1500 bubbles, 
arranged into six layers. Many fine details are observed, which are also seen 
in simulation, confirming the absence of defects.
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Figure 4.5: Illustration showing heiuisplierical interface which results in the 
optical distortion of the WP structure, resulting in the fonnatioii of an appar
ent .scjuare face in what WP structure when viewed along the (100) direction. 
The hexagon faces of the WP structure are shown as green ]rlanes.

R is the radius of curvature of the bubble interface in contact with the liquid 
phase. Using Matheniatica we apply this magnification constant to a series 
of hexagons, rotated 90° with respect to each other and separated by the 
same distances as they would appear in an experimental foam. It is seen 
that the resulting image mimics the experimental photographs of the WP 
structure, as shown in Fig.4.0.



Chapter 4. Forming the Weaire-Phelan structure - the use of templates for 
116 directed foam crystallisation

(a) (b)
Figure 4.6: (a) Detailed view of one of the tetrakaidecahedron cells of the 
exi)erimental WP structure, (b) A simulation of the optical effect leading to 
the apparent square face within the WP structure.

We found that coherent foam crystals could only be produced if the bubble 
size was matched to the template dimension. If a direct match between the 
two length scales was not made, the resulting foam contained several defects.

Several templates were made for different bubble sizes. It was found, how
ever, that WP crystals could not be produced for bubble diameters greater 
than 3 rnm in diameter. The deposited bubbles are seen to deform, failing to 
produce the WP structure. For smaller bubbles, it was again found that the 
production of a WP structure was difficult. This is due to the WP structure 
being not stable for licpiid fractions above 0.18 [81].
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4.2 Directed-crystallisation of wet foam sam

ples

Ill Chapter 3 we have seen that moiiodisperse micro foams spoiitaneously 
order into hexagonally closed packed crystals for small foam samples, while 
larger samples exhibit random disordered arrangements of bnlibles within 
the foam bulk [72], For future experiments, as well as for industrial applica
tions, we are interested in methods by which the structure of these wet foam 
sainjiles may be controlled. To do this, we investigate how the surface of the 
containers into which the bnlibles are jilaced influences the resulting foam 
structure.

Our previous experiments involved jilacing monodisiierse bubbles into 
rectangular containers with flat internal surfaces. These Hat surfaces are 
coiiipliinentary to the (111) closed-packed planes of the fee lattice. In jmrtic- 
ular, the Hat top of the container against which the bubbles are forced due 
to buoyancy, causes these bubbles to form a fee {111} closed packed plane, 
with defects reejuired to match the rectangular boundary condition of the 
container. We believe that this closed-packed plane then forms a template, 
which provokes the ordering of further bubble layers.

To determine the effect of the structure of this top surface layer on the 
resulting foam structure, we investigate the effect of a “rough” surface on 
the resulting foam structure. Following this, we determine if an ordered 
arrangement of cylinder holes may evoke the crystallisation of a monodisperse 
foam sample along the fee (100), as has been previously demonstrated in 
colloidal crystals [82].

4.2.1 Random-template surface

To determine if a rough surface will frustrate the formation of an initial 
ordered foam layer, and thus the formation of an ordered foam crystal, a 
tenii)late was designed composed of a random arrangement of scpiare pegs.



Chapter 4. Forming the Weaire-Phelan stnicture - the use of templates for 
118 directed foam crystallisation

each peg of dimensions 0.8 x 0.8 x 0.8 mm^. A random arrangement of these 
pegs was guaranteed through the use of a computer script which produced a 
random 24 x 24 array of Is and Os. This array was then used to produce an 
arrangement of 24 x 24 pegs, the presence or absence of a peg corresponding 
to a 1 or 0 in the generated array. The resulting template is shown in Fig.B.5. 
Monodisperse bubbles of average diameter 790 ± 40 (.im were placed into the 
container using the method described in section 3.1, after which the sample 
was imaged by X-ray tomography, the reconstruction of the foam shown in 
Fig.4.7.

(a) (b)

Figure 4.7: Ordering of bubbles 790 ± 40 firn within the the container with 
the random template, shown in Fig.B.5.(a) and (b) show' the top of the foam, 
in contact with the templated surface, and the bottom of the foam, in contact 
with the foam-liciuid interface, respectively. It is seen that both of these faces, 
although not planar in nature, appear to be closed-packed.

It is seen that both the top of the foam, in contact with the container
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template, and the bottom of the foam, in contact with the foam-liquid inter
face, show the same hexagonally ordered structures. To determine the exact 
nature of this ordering, we calcnlated the RDF of the the foam structure, 
shown in Fig.4.8. Tliis RDF is compared against the RDF of an ideal fee 
lattice, as well as the crystalline foam sample examined in section 3.2.1.

Figure 4.8; Graph showing the RDF of the samirle shown in 4.7. The narrow 
peaks of the distribution, and coencidence with the theoretical peaks of an 
ideal fee lattice, indicate the formation of snch a structure.

Althongh the peak positions of this sample compare favourably with the 
I)eaks of the ideal fee lattice, it is seen that a deviation of this RDF is seen 
when compared to the RDF of a sample ordering against a flat bonndary.
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We believe this deviation is due to the rough boundary condition imposed 
upon the sample. However, on the wdiole, the sample may still consider the 
sample as ordered.

4.2.2 Fee (100)

A container was produced the top surface of which was templated with a 
square arrangement of cylindrical holes, of diameter 800/tm and depth 400 
/m? (see Fig.B.3). These cylindrical holes matched the expected positions of 
bubbles within a fee (100) plane. Monodisperse bubbles of approximately 
800//rn were introduc('d into the container and imaged using X-ray tomogra
phy, the result of which is shown in Fig.4.9.

The square arrangement of bubbles in each layer of the foam sample 
indicate that the sample has been successfully directed to crystallise along 
the fee (100). Several defects are seen to occur within the sample, such as a 
grain boundary seen in the middle of the sanii)le. This, we believe, is due to 
a i)ossible mismatch between the template and bubble size. Such a mismatch 
has been see to produce similar defects within colloidal crystals [82].

In addition to the the templated container composed of a square arrange
ment of cylindrical holes, an additional template of a square arrangement of 
cubic “pegs” was constructed. It was originally hoped that these scpiare pegs 
would again force the foam structure into a similar scpiare arrangement of 
bubbles, invoking the formation of fee {110} planes in subsequent foam lay
ers. The top surface of this container was composed of a square lattice (12 x 
12) of cubic “pegs” (0.8 x 0.8 x 0.8 mm^) as shown in Fig.B.3. Fig.4.10 shows 
the ordering of a foam sample, 6 layers deep, of average diameter 840 ± 40 
fi.rn within this container. It is seen that the tojjinost layer of the foam, in 
contact with the template surface of the container, has indeed form a square 
arrangement of bubbles associated with an fee (100).

We calculated the RDF for the sample, the results of which are shown in 
Fig.4.11. Unexpectedly, however, the RDF demonstrates the same form as
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Figure 4.9: Images showing 2D image slices through the monodisperse foam 
of average bubble diameter approximately 800 pr/; placed within the tern- 
plated container shown in Fig.B.3. (a), (b), (c) and (d) show sections taken 
through the 1®*, 2”'^, 3'''^ and 4'^ layers of the foam sample. The scpiare 
arrangement of the bubbles in each layer indicate that the foam sample is 
growing along the (100).
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Figure 4.10: Ordering of bubbles 840 ± 40 f^im within the the container 
templated with the square lattices of pegs shown in Fig.B.3. It is seen that 
the topmost layer of the foam sample, in contact with the container template, 
has ordered into a regular square arrangement of bubbles.
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for a random packing of bubbles, as demonstrated in section 3.2.1.

Figure 4.11; RDF for the sample shown in Fig.4.10. It is seen the the func
tion is composed of broad peaks, with a split second peak characteristic of a 
random packing of bubbles. The red lines, drawn at ^ and 2 indi
cate the positions of the two sub-peaks associated with a random packing of 
spheres.

4.2.3 Conclusions

\\c have successfully produced the Weaire-Phelan structure using a container 
the internal surfaces of which were templated with the Weaire-Phelan struc-
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ture. Perfect crystals of up to 1600 bubbles were easily formed. Continuing 
research will be devoted to other possible ordered foam structures, includ
ing the family of clathrates and structures such as those derived from the 
Frank Kasper phases, which have been conceived and discussed for many 
years, but never realized [83, 84, 85]. Achieving this will open the field to 
the experimental investigation of their properties. In addition, such samples 
could be solidified using gelling agents [86], opening up further possibilities 
to experimentation and application.

We have also seen that simple templates may also be used to alter the 
crystal structure of these monodisperse foam structures. A rough boundary 
condition was not seen to change the crystallisation of the sample. Through 
the use of a scjuare arrangement of cylindrical holes of the same diameter 
as that of the bubbles employed in experiment, we were successfully able 
to direct the growth of a foam along the fee {106} direction, it was found 
that a similar scpiare arrangement of pegs frustrated the crystallisation of the 
sample, the resulting bubble pile resembling a disordered packing of spheres.



Chapter 5

Building the pyramids: perfect 
bubble crystals

5.1 Introduction

Tlirough the use of X-ray toniograpliy, we have seen that the internal struc'- 
ture of inon(xlis])erse microhubbies (see Chai)ter 3). We have seen that these 
foam samples may be either fee, polyerystalline, or indeed disordered in struc
ture [72]. This is due, in part, to the rectangular containers in which these 
foam samples are prepared. Such a container will generally produce a sample 
containing grain boundaries, because the favoured surface planes of the crys
tal structure (e.g. {110} etc. for the Kelvin structure) cannot be matched to 
all of the faces. This is also the reason fee crystals grown in such a container 
are found to contain grain boundaries [29].

If we wish to extend the initial work of Bragg (see section 1.1.2), however, 
extending the bubble model of crystal structure in three dimensions, an ef
ficient method of controlling the crystal structure of the sample is required. 
This is necessary as. unlike in the two-dimensional raft of Bragg, there exist 
several stable .structures in three dimensions [60].

We have seen in chapter 4 that we may control the crystal nature of a

125
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sample through the use of a temijlated mould to direct the crystallisation of 
the sample. Using such a technique, we have successfully generated the first 
experimental realisation of the Weaire Phelan structure (see chapter 4.1). 
This templatiug method, however, has associated with it several disadvan
tages. Firstly, due to the hue detail required to produce a given structure, 
this templatiug method requires access to high-precision manufacturing fa
cilities. Secondly, due to the requirement of matching the bubble size to the 
template dimensions, a new container must be produced for each bubble size. 
This also results in the failure of many exi)eriments due to slight variation 
in the bubble size.

In this chapter, we report on the development of a techni(iue to direct the 
crystallisation of a foam sample through the u.se of flat-sided pyrnnndal shaped 
containers. This new method offers the i)ossibihty of creating perfect single 
crystals, wdtliout the rigorous control over bubble size required wdien using a 
rectangular container [87], or a templated container [88]. In addition, the flat 
boundaries of such a container do not require the same precision machining 
that a templated container reephres. Finally, the initial growth in small layers 
at the apex of the pyramid effectively seeds the growth of a single crystal. 
Accidental grain boundaries therefore seem less likely in a pyramid.]

Our strategy has fulhlled expectations. In particular, perfect fee crystals 
of uj) to 500 bul)bles have been made very easily. With appropriate pyramids, 
we have also made bcc and simple cubic crystals, although the total number 
of bubbles that can be ordered is severely limited by instability[89]. We 
believe this instability will become less limiting when smaller bubbles are 
used.

W'e are also able to make strained versions of all these crystal types 
through small variations of pyramid geometry. Further designs can induce 
deliberate defects, such as the fee twin boundary described here in section 
5.3.1. In addition we have conducted the hrst experiments aimed at pro
ducing ordered bidisj^erse foam, analogous to familiar ionic solids, wdth some
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success, and the expectation of their extension to larger systems.
Our work carries further into three dimensions the original research pro

gramme of Bragg, which was to use bubbles as model atoms. In addition the 
methodology may also j)rovide a route to fabrication of solidified crystals for 
a variety of applications, e.g. polymeric, metallic or ceramic foams, possibly 
for industrial applications [86].

5.2 Experimental techniques

To create a crystal of a given type, a container must be fabricated the walls 
of which are i)arallel to an approj^riate i)lane of the corresponding lattice. By 
exaniining the conventional cells of the sc. bcc and fee crystal structures, as 
shown in Fig.5.1, such a choice may be made by selecting close-packed i)lanes 
or planes on which the si)heres are relatively well packed.

For example, the selected simple cubic (sc) pyramid geometry is formed 
from the intersection of three {100} planes, producing a tetrahedron with a 
vertex angle - the face angle at the vertex of the pyramid - of 90°.

The chosen bcc pyramid, i)roduced from the intersection of four (110) 
planes, is a 4-sided ijyramid of vertex angle cos“^(l).

The walls of the fee pyramid are formed from the intersection of three 
{111} planes, resulting in a regular tetrahedron of vertex angle 60°. Note 
that during the extraction of these geometries no reference has been made 
to any particular bubble size. The intention is that these geometries should 
evoke particular crystal types independent of the size of the particles being 
used.

Most pyramids were fabricated with a Object 300 rapid prototype ma
chine using Object Vero Clear polymer as was used for the \VP structure. 
Each of these i)yraniids had an internal edge length of 3 cm. Larger pyramids 
were fabricated l)y hand using i)erspex sheeting.

As a preliminary, several hard-sphere experiments were conducted. The
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0.53°)

(bcc)

Figure 5.1: The conventional crystal cells and appropriate ])yraniid container 
associated with simple cubic (sc), body-centred cubic (bcc) and face-centred 
cubic (fee) crystals. The chosen crystal directions that correspond to well- 
packed planes are highlighted. The intersection of these planes produces the 
pyramid structures which may be used to direct crystallisation of monodis- 
perse and bidisperse foams. Unit cell images produced using Vesta rendering 
software [9
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pyramids were inverted and filled with monodisperse metal spheres of di
ameter 0.98 ± 0.01 mm. This involved dropping spheres individually into 
a pyramid and shaking the structure slightly so the sphere would find its 
lowest position. The container was photographed after the addition of each 
sphere.

All our foam experiments were conducted using an acpieous solution of 
the commercial detergent Fairy Liquid (5 % volume fraction). Monodisperse 
bubbles were produced by the injection of nitrogen gas under constant pres
sure into this solution via a capillary tube (see Fig.5.2a). Bubble size was 
controlled by regulating the gas flow rate. Most of our experiments were 
carried out with bubbles of diameter significantly smaller than the ca|)illary 
length (about 2unn). lu this regime (that of wet foam), many layers of bub
bles can be prei)ared under gravity, while maintaining s])herical shai)es with 
small distortions.

The average bubble diameter was determined from an experiment in 
which these bubbles are allowed to form a two-dimensional hexagonal raft 
at the surface of the solution. The centre-to-centre distance of bubbles then 
approximates the bubble diameter.

(b)

Figure 5.2: Experimental set-uj). (a) An inverted open pyramid is submerged 
into surfactant solution and filled with monodisperse nitrogen Imbbles. (b) 
Exanii)le of the side view of bubbles (diameter 5.04±0.()8 rnm), crystallised 
in the bcc structure inside a pyramid of the type shown in Fig.5.1 (middle).
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The pyramids were placed into the solution and inverted to remove trapped 
air, before being j)ositioned with the apex pointing upwards, as shown in Fig. 
5.2. They were then slowly filled from below with monodisperse bubbles, as 
described above. Due to the nature of our experimental setup, the filling 
process of the containers was not directly observable. Once filled, the pyra
mid was sealed by sliding a glass plate over the open side. At this stage, 
the pyramid w'as shaken gently by hand as this helps to i)roduce coherent 
crystals. The container was placed on a glass stage, lit from above using a 
planar backlight and photographed from below using a CCD camera. The 
foam structure was checked by examining the refracted image of snb-snrface 
bubbles in the outermost foam layers [28].

For the formation of a perfect fee crystal within the geometry that we 
have constructed here, the number of bublrles Nfcc may be determined by 
counting the number of complete foam layers n. The layer within the
fee foam will contain bubbles. The total nnmber of bubbles within the

2
foam sample is then given as ~ l/6(n)(n -|- !)(?; -|- 2). Repeating

!:=i
this analysis for the ideal sc and bcc structures generated by out pyramids 
yields

Nsc = Nfcc = l/6(n)(n -H l)(n 4- 2), (5.1)

Nbec — l/6(n)(n -|- l)(2n-(- 1). (5.2)

5.3 Main results

5.3.1 Face centred cubic and related structures

As expected, the most successful experiments were tho.se undertaken with 
the aim of producing the fee structure, bounded on all sides (including the 
free surface of the bottom layer) by close packed planes.
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The results of the hard sphere experiments is shown in Fig.5.3. The 
photograph shows the pyramid from above. It is seen that the growth tech
nique successfully j^roduces successive close-packed layers grown along the 
fee < 111 > direction.

Figure 5.3: A series of images showing the growth of a hard-sphere fee crystal 
within a regular tetrahedron of vertex angle 60°. Each image is labelled by 
the number of fee layers imaged, showing the crystal growing to 7 layers deep. 
Note that each subsecpient layer is close-packed and free of defects.

Bubbles were loaded into the pyramids as described above. As Fig.5.4 
illustrates, using the 3-sided 60° pyramid we were able to produce perfect 
fee crystals comprising of up to 500 bubbles. The photographs show three 
such crystals, c'onsisting of bubbles of 0.54, 2.42 and 4.72 mm in diameter.
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We find that fee crystals are stable in both wet (bubbles much less than the 
capillary length Iq ~ 2mm) and fairly dry foams (bubbles larger than Iq).

~ 14 layers 
D=0.54±0.01mnn

. 5,-, ${i', .-ii;

8 layers
D=2.42±0.03 mm

4 layers
D=4.72±0.04 mm

Figure 5.4: Images of the generation of fee crystals for a 10 fold change in 
bubble size. The foam crystals are imaged from the base, i.e. in a (111) 
direction.

In order to demonstrate the flexibility of this teclmicpie to direct the 
crystallisation of foams, we designed a pyramid to produce a coherent grain 
boundary between the two distinct regions of fee crystallisation. This geome
try was formed conceptionally from the joining of two fee pyramids producing 
a four-sided pyramid with a vertex angle of 60° (see Fig. 5.5a). The basal 
plane of this conjoined pyramid corresponds to crystal planes of {l^^} type 
on each side.

It was found that this four sided pyramid was successful in generating a 
coherent grain bonndary, a twin bonndary between two perfect fee crystals. 
Fig. 5.5b shows a typical example of the foam structure generated. The 
position of the grain boundary is highlighted. As the {l||} is not close- 
packed, the foam is seen to create two sets of opposed terraces of close-packed 
111 planes (Fig.5.5c)
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(b)

Figure 5.5: (a) Rendering of the four-sided 60° pyramid used to generate the 
coherent grain boundary, (b) Photograph showing the {1^^} plane of the 
exi)erinient. The first two {111} planes are shown in red and bine, while the 
twinning boundary is shown in green, (c) fee lattice showing the intersection 
of three {111} planes (in red) and a single {l||} plane (in yellow). This 
intersection produces the stacked terraces of {111} planes which are seen in 
experiment and indicated by matching colours.
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5.3.2 Preliminary experiments on other systems

5.3.2.1 Body centred cubic crystals

Body centred cubic (bcc) crystals were formed in the 4-sided pyramid shown 
in Fig.5.1 (b). Our experiments with hard spheres readily show that these 
indeed form the bcc structure in this geometry, as is shown in Fig.5.6.

Our bubble experiments have shown that monodisperse foam structure 
within this pyramid strongly depend on the diameter of the bubbles used. 
For large bubbles (i.e. dry foams), with a diameter roughly greater than 
2 rmn, it is seen that the bubbles spontaneously crystallise into perfect bcc 
crystals. For such relatively dry foam, this is the well-known Kelvin structure 
[77, 29, 5]. We have successfully generated such perfect bcc crystals np to 
7 layers deej) composed of 140 bubbles. When the bubble size is reduced 
below 2 rmn, it is seen that complete crystallisation of the sanii)le is no longer 
guaranteed, i)ointing to the instability of bcc for wet foams (see section 1.1.2).

Nevertheless, the attempt to make bcc wet foams in this way is not futile. 
The shear instability of bcc refers to uniform shear and this is incompatible 
with the hard-wall bonndary conditions of the pyramidal experiments. This 
is demonstrated by our ability to successfully form many-layered bcc crys
tals with incompressible hard spheres within such a geometry (see Fig.5.6). 
Onr current inability to form bcc crystals with monodisperse bubbles is due 
to their hnite compressibility, which is inversely j)roportional to the bubble 
radius. We therefore expect to be able to make such crystals (and also sc) up 
to a certain critical size determined by the capillary length, for sufficiently 
small bubbles.

5.3.2.2 Simple cubic crystals

An attempt was made to form a simple cubic (sc) crystal using the 90° 
pyramid shown in Fig.5.1. Note that the sc structure is susceptible to the 
same type of instability as the bcc lattice. Due to this we could only produce
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ft

(1) (2)

(3) (4)

Figure 5.6: A series of images showing the generation of a bcc lattice of hard 
si)heres of diameter 1 mrn within a 4-sided pyramid. The images are labelled 
by the number of complete layers.
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« 3 layers 
D=0.71 ±0.01 mm

« 5 layers 
D=0.90 ± 0.01 mm

5 layers
D=1.81 ± 0.02 mm

5 layers
D=2.55 ± 0.03 mm

5 layers
D=3.60 ± 0.07 mm

7 layers
D=5.04 ± 0.09 mm

Figure 5.7: Within the square pyramid bubbles of diameter exceeding roughly 
1 mm spontaneously crystallise into bcc along the < 100 > direction. Such 
ordering does not occur for smaller bubbles (bottom row of photographs). 
(Photographs taken from below.)
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perfect sc structures up to 3 layers in depth, as shown in Fig.5.8 (b). A second 
coniplicatiou arouse in the intervention of the fee crystal (Fig.5.8 (d)). This 
is due to the cubic synnnetry of the two structures.

Increasing the uuniber of foam layers above this, it was found that the 
foam formed a polycrystalliue structure (see Fig.5.9). Close to the boundaries 
of the container, the foam orders into a sc structure, while the centres of such 
samples are arranged into a hej) configuration.

5.3.2.3 Bidisperse foams

W'e also carried out preliminary experiments concerning the ordering be
haviour of h’i,disperse foams within the same geometries. In relation to the 
model of Bragg, this corresponds to the production of “ionic” bubble crystals 
and it also calls to mind the educational work of Rainnie [91],

The experimental procedure was similar to that employed in the produc
tion of monodisperse foams. The pyramids were filled until the formation of a 
complete foam layer. This hlling scheme was continued, the bubble diameter 
alternated between successive foam layers.

As shown in Fig.5.1(), we formed three-layered ordered bidisperse foams. 
However, on production of the fourth layer, it is seen that the dei)osited 
bubbles disrupt the lower layers, producing interstitial defects and a disor
dered foam. It is possible that such a disturbance of lower layers occurs also 
during the formation of monodisperse foam crystals, but since in this case 
the bubbles are all the same, the foam can relax again into a perfect crystal. 
Future systematic experiments, involving a more gradual deposition process, 
should enable the formation of much larger ordered bidisperse foam samples, 
as there seem to be no inherent instabilities in this case.

5.3.2.4 Strained lattice

W’e have seen that a perfect fee lattice may be formed through the ordering 
of bubbles within a three-sided pyramid of vertex angle 60°. By changing
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1 .4''” /-'I

Figure 5.8: Formation of crystals in a three-sided pyramid of vertex angle 
90° pyramid (bottom view, D= 1.09 ± 0.02 mm), (a), (b) and (c) show 
successive layers of a simple cubic (sc) lattice, with 3, 6 and 10 bubbles, 
resi)ectively. However, (d), (e) and (f) show the formation of an alternative 
crystal structure, consisting of 6,10 and 18 bubbles in the successive layers.
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Figure 5.9: The same pyramid as in figure 5.8, but filled with more than 10 
layers of bubbles (D=l.()9 ± 0.02 mm, as before), shows the formation of a 
polycrystalline foam. In the centre of the crystal the bubbles have arranged 
into a hep conhguration (B), while closer to one of the pyramid walls they 
form an sc structure (A).
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Figure 5.10: Three layers of an ordered hidisperse foam (bubble diameter 
ratio 0.37) within a 60° three-sided pyramid (bubble diameters: 5.60 ± 0.12 
nirn and 2.07±0.03 mm).



5.3. Main results 141

this vertex angle we can study the effect of a strain on the bubble crystal 
structure. We conducted a series of exi)eriinents where we i)laced nionodis- 
perse inicrobubbles into three-sided pyramids of vertex angle 60°, 65°, 75°, 
85° and 90°. In this way, we can also investigate the transition of an ordered 
foam from a fee configuration to a sc conhguration.

(o)

^ ; 7 ' 'i)

dtiVV, _ '!^

65°
8 layers

D=1.09±0.02mm

75°
6 layers

D=1.10±0.01mm

Figure 5.11: Images showing the arrangements of bubbles in three sided 
pyramids of vertex angles 65° and 75°. The bubbles within the 65° pyramid 
appear to arrange into the defect-free strained fee crystal as seen for a 60° 
pyramid (see Fig.5.4). The bubbles in the 75° pyramid still conform to 
strained fee structure.

Fig.5.11 shows the ordering of monodisperse inicrobubbles of ajiproxi- 
niately 1 mm in diameter in such pyramids. (The cases of bubbles ordering 
within 60° and 90° pyramids have been discussed separately in the sections 
on fee and sc crystallisation.) The 65° pyramid produces a fee lattice, with no 
obvious defects observed in our largest sample, 12 layers deep, composed of 
roughly 350 bubbles. In the 75° pyramid, the bnblrles again appear to order
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Structure Observed plane Current Max no. bubbles Comments
fee {111} 500 Successful for all 

sizes reported here.
bcc {100} 140 Successful for dry 

Currently unstable 
foams due to comp 
ity of bubbles. Furl 
periments with smal 
bles may be success)

sc {111} 18 Unstable for both v 
dry foams.

Twinned fee 500 Successful generat 
twinning defect.

Bidisperse {111} 12 Currently limited t 
crystals

Table 5.1: Suinmary of experimental results.

into an fee lattice. However, on comparison with the ordered crystals pro
duced from the (30° pyramid, it is noted that the interbubble distance in each 
layer is now greater than the bubble diameter, making subsurface bubbles 
visible. This corresponds to the formation of a face-centred orthorhombic 
crystal structure [92]. Bubbles in the 85° pyramids formed crystals which 
closely resembled those produced in the 90° pyramid associated with the sc 
lattice.

5.4 Conclusions

Through selective choice of the vertex angle of three and four sided pyramid 
containers, we have directed the crystallisation of monodisperse foams into 
fcc,bcc and sc configurations, albeit with limited success for bcc and sc. as 
yet. A summary of the experimental results is shown in table 5.1.

We have seen that in the most promising case, that of fee, monodisperse 
foam grown in an appropriate pyramid can produce perfectly ordered foams
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across a wide range of bubble sizes. Bcc and sc are more problematic, in that 
instabilities are nnavoidable. Nevertheless, with more carefully controlled 
experiments, and smaller bubbles, we expect to extend these experiments 
considerably, since conhned growth tends to suppress instability.

We found that the generation of fee crystals was robust against strain 
imposed by small changes in the vertex angle.

W’e have shown that this method may be easily adapted to the generation 
of ordered bidisi)erse foams as well as the selective generation of defects 
within otherwise perfect crystals.

This methodology may easily be scaled ui)wards for practical applications, 
allowing for the selective crystallisation of metallic, ceramic and polymer 
foams. For such applications we intend to investigate the ordering behaviour 
of these monodisperse microbubbles under forced drainage conditions. The 
forced continuous flow of surfactant solution through the ai)ex of a j^yramid 
during the hlling procedure would rei)lace the shaking of the sami)les that 
we currently ai)])ly to produce colu'rent crystals.

Finally, our ability to precisely control the three-dimensional structure of 
monodisperse foam sanii)les, combined with new tomographic techniques [72], 
will allow us to greatly expand the original programme of Bragg which was 
to elucidate the structure of ordered and defective materials with a system 
visible to the naked eye.
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Chapter 6

Formation of columnar crystals 
in wet foam systems.

g

Figure G.l: Graphic showing the ordering of monodisperse niicrobubbles 
within a cylindrical tube. The bubbles are seen to order in a regular, re
peating structure. The nature of these ordered cylindrical packings will be 
examined in this proceeding chapter.

The ordering of spheres within cylindrical conhneinent is found to be a 
non-trivial and important packing i)roblem. First studied computationally, 
such structures have been found in a variety of physical systems. In this chap
ter, we investigate these ordered structures using monodisperse microbubbles 
(see Fig.G.l).

145
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6.1 Introduction

Fee crystal structures are seen to be the most efficient packings for unbounded 
three dimensional systems [93]. Within the atomic structures of solids, the 
crystallisation of nanoparticles, the arrangement of colloidal spheres and the 
crystallisation of foams in the wet limit, the fee structure is readily seen to 
occur [21, GO, 94, 95]

However, the question which the fee structure addresses - which is the 
most efficient packing of spheres - only provided a universal answers for the 
specific case of an unbounded packing. For more realistic case of a bounded 
[)acking, the limitations of the l)order may result in the pure fee lattice being 
no-longer the most efficient packing structure. Although it is possible for the 
boundary of such a hnite packing to be chosen to match the symmetry of a 
particular crystal structure (see Chai)ter 5) in general, this will not be the 
case. In these cases, an “alternative” structure must be formed.

These alternative structures may take the form of a random arrangement 
of spheres [45], or a crystalline lattice with the addition of specific defects - 
such as dislocations, grain boundaries etc. [72]. However, for certain extreme 
cases, the most energy efficient structure diverges signihcantly from the fee 
conhguration of the bulk. One particidarly rich and interesting example of 
such boundary conditions resulting in unicpie crystal structures occurs when 
si)heres are conhned in cylindrical tube of similar internal dimensions.

Present in various physical systems, the first systematic approach to this 
problem was conducted by Pickett eh al. in 2()()() [96]. By conducting simu
lated annealing of frictionless hard spheres in cylindrical coiffinenient, Pickett 
found the minimum energy configuration of hard spheres of diameter d when 
placed in a cylindrical tube of internal diameter D. By dividing these two 
lengths, a non-dimensional parameter A = ^ may be dehned to describe the 
system. On increasing A from the minimum possible value of 1, at which 
value the system consists of a linear chain of spheres, Pickett found that 
the optimum packing structures migrated through a series of chiral and non-
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chiral ordered phases. In addition, it was found that the packing fraction of 
spheres (p varied in a non-linear fashion as A is increased (see Fig. 6.2).

Figure 6.2: Graph showing the variation of packing fraction 0 against ^ = A. 
As A is increased. Figure reproduced with permission from Mughal et. al
[97|

Following the initial study of Pickett, the theoretical basis of the packing 
problem was hnally unwrapijed by Mughal et al. in 2011 [98]. They deter
mined that each of these columnar' crystals may be described by a periodicity 
vector. which links eciuivalent spheres within the structure. Unwrai)ping 
the cylindrical centre positions of the sphere within the packing results in a 
pattern of points which, when combined with the periodicity vector can be 
extended to produce a infinite 2D lattice of points. Each structure may then 
be categorised by the type of deformation of a regular 2D hexagonal lattice
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required to replicate the sphere-packing lattice.

X= 1.750 
Achiral

A=1.890
Chiral

X= 1.995 
Chiral

X=2.000
Chiral

X=2.215 
Chiral

X=2.415
Achiral

Figure 6.3: Examples of optimum cylindrical packings generated from simu
lated annealing for several values of A, represented as bubbles within a glass 
capillary. Images generated from simulation data provided by Mughal et al. 

tol and generated using POV-Ray [70].

Those structures which require no deformation i.e. whose periodic vector 
fits onto a regular hexagonal lattice, are called symmetric str-uctures (exam
ple; A = 2.000 in Fig.6.3). Those structures which require a localised strain 
of the lattice are know as line slip structures [98] (example: A = 2.215 in 
Fig.G.3). The theoretical basis of Mughal et. al. may be used to understand 
a wide variety of systems in which the ordering of spherical particles within 
cylindrical geometries occurs.
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One of the most interesting examples of these cylindrical systems was 
studied by Hodak and Girifalco. Using Monte Carlo methods, the minimum 
energy arrangement of Ceo particles with diameter of 6.27 A within cylindrical 
nanotubes of varying width was studied[l()0]. Although the potential between 
the particles differed signihcantly from the excluded-volume interaction, as 
employed Iry Pickett and Mughal, it was found that the ordering properties 
of the system was very similar to the hard sphere model for low A value. On 
increasing A, the ordered structures produced are seen to diverge from the 
results of simulated annealing.

Tymczenko et. al. investigated the ordering characteristics of polystyrene 
si)heres of diameter 1 fini inside the cylinder-like pores of a silicone membrane 
[101]. Again, although the system interactions differed signihcantly when 
compared to an ideal hard si)here system, the two systems were seen to 
exhibit the same ordering behaviour for low A values and independent of the 
boundary conditions used.

We believe that wet foams offer the ideal system with which to study these 
cylindrical packing of spheres. Previously, Whaire et al. demonstrated that a 
wide variety of ordered dry foam structures are seen to spontaneously occur 
if monodisperse bubbles of average diameter roughly 1 cm are introduced 
into a cylindrical tubes of diameter of the same order (see Fig.6.4) [102]. 
Each structure may be dehned by a number A, equal to the tube diameter 
divided by the average bubble diameter, and may be characterized through 
the use of phyllotactic notationh Such ordered structures were also seen 
to spontaneously occur within tubes of square and triangular cross-sections

'For each ordered structure, the surface layer of the foam is composed of a hexagonal 
grid of cells. This allows the structures to be categorised through the u.se of phyllotactic 
notation, first developed to describe the distribution of leaves around the branches and 
steins of plants. By unwrapping the surface structure so as to form a hexagonal gird, in a 
similar fashion as that employed by Mughal et. al., a set of basis vectors may be defined 
[102]. By decomposing the vector V' linking identical cells into this basis, the number of 
each lattice vectors / and m may be calculated. These two numbers, along with their sum 
n. are then used as a triplet (l.m.n) to descrilie the resulting cylindrical structure.
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[103, 104],

211

Figure 6.4: Monodisj^erse bubbles of average diameter roughly 1 cm are 
seen to spontaneously order under cylindrical confinement. Each structure 
is labelled using i)hyllotactic notation.

By making such cylindrical dry foams wet, the resulting structures resem
ble the previously discussed hard-sphere cylindrical packings (see Fig.6.5). If 
we employ monodisperse microbubbles bubbles in such experiments, a good 
approximation to the ideal hard sphere system of Pickett et al. and Mughal 
et al. may be expected in the limit of small bubble radius. This is due 
to the limited friction which exists within foam systems and the scaling of 
the bulk modulus, K, of a bubble to the radius r as j [1].^ As the bubble

^The bulk modulus of a material is the resistance of that material to compression. It 
is given by K = —where V is the volume of the object. SP is the pressure change. 
For the case of an isolated spherical bubble V = |7r7’^ and P = ^ where 7 is the surface 
tension of the liquid phase. Inserting these parameters into the equation for the bulk leads 
to

(6.1)
3r

This leads to K (x
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Si’•5

(b)

Figure 6.5: A inonodisperse foam, of average bubble diameter 1.2 mni, i)ro- 
dneing a A =1.5. (a) Near the foam-liquid interface the structure, is seen to 
resemble a jjacking of spheres of the same A value. As the distance form the 
foam-liciuid interface is increased (b) - (d), the licjuid fraction of the foam is 
decreased and the polyhedral nature of the foam increases. A direct com
parison between the foam structure and the hard-si)here experiments is then 
not possible.

diameter is decreased the bulk modulus increases, leading to the bubble be
coming more hard-sphere-like. The negligible contact friction which exists 
between the bubbles allows the foam to si)ontaneously produce the maximal 
volume-fraction state without requiring the annealing necessary to generate 
similar structures in hard-sphere systems [105]. For this reason, they form 
the ideal system to study the optimum packing of spheres within cylindrical 
geometries.

Two sets of experiments were conducted to determine the ordering be
haviour of inonodisperse microbulibles within a cylindrical geometry and 
how they conqiare to similar hard-sphere systems: Firstly, by introducing



monodisperse microbnbbles into glass capillaries, we attempted an optical 
characterisation of their structure. Following this, we used X-ray tomography 
to characterise their internal structure within cylindrical polymer containers.

6.2 Optical experiments

152 Chapter 6. Formation of columnar crystals in wet foam systems.

Onr optical experiments involved the ordering of monodipserse microbubbles 
within thin glass capillary tubes, of internal diameter of the order of 1 7nm. 
The capillaries were formed from glass tubing, initially of internal diameter 1 
C7n and length 15 cm. The tubes were heated to melting point using a bunsen 
burner, at which point they were stretched by hand, the hnal length of the 
hollow glass hlament determining its internal diameter. The glass hlament 
was then cut into 5 cm long pieces. The capillary tubes were photographed 
from both ends, their internal diameter and circularity were then measured 
using hnageJ. ^ Tubes whose circularity was above 0.85 and whose diameter 
varied less than 1% along the tube length were then used for our packing 
experiments.

Monodisperse microfoam was ])roduced using a flow focusing device, as 
described in Chapter 2. The foams were produced from nitrogen gas and 
5% by volume aqueous solution of commercial detergent Fairy Liq^iid. Once 
produced, the foam sanii)le was collected in a petri dish. The sample was then 
illuminated from below using a planar back-light and imaged from above. 
The bubble diameter was calculated by measuring the centre-to-centre bubble 
distance in a 2D hexagonal array. A characterised tube was placed into the 
foam layer, the capillary action of the surfactant solution drawing the bubbles 
into the tube. The tubes were then mounted either horizontally or vertically. 
The hlled tube was photographed using a Ca7ion EOS 50 D DSLR camera

^Circularity is a measure of the divergence of two-dimensional shape from that of a 
perfect circle [50]. It is dehned as C = where A is the area of the object and P is 
the perimeter of the object [50]. For a i)erfect circle, C=l, but this value decreases as the 
circular nature of the object decreases.
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combined with a lOOmin macro lens and 15 cm bellow extension, which allows 
high-resolution optical images.

From the optical images, the packing fraction 0 may be calculated as 
follows, assuming that the bubbles are both spherical and incompressible. 
For N bubbles of radius r, ordering within a cylindrical tube of radius /?, we 
obtain

where h is the length of the foam sa.nii)le being examined. Using the 
relation A = -^ this leads to:

0 =
3A^AV

Ah
(6.2)

The packing fraction of the cylindrical pax'king may then be calculated by 
measuring the number of particles N per unit length h within the wet region 
of the foam. The optical distortion of the bubble i)acking by the glass of the 
capillary tube made determining the exact location of bubbles difficult. This 
increased the error associated with our packing fraction data.

6.2.1 Results

It was seen that the cylindrical foam structure strongly dei)ended on the 
orientation of the ca])illary tube with respect to gravity. Wc thus examine 
the horizontally and vertically orientated cai)illary tubes separately:

6.2.1.1 Horizontal tube experiments

When mounted horizontally, the resulting “height” of the foam column with 
respect to gravity is, at most, ecpial to the diameter of the containing cylin
der. It is therefore easy to ensure that the entire foam column remains wet. 
increasing the number of bubbles that may be included when determining the 
packing fraction of the system. The packing fraction results for the ordering
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of microbubbles within a horizontally orientally capillary tube are shown in 
Fig.6.6.

9- 05

Figure 6.6: Variation of the packing fraction 0 with A obtained from exper
iments using monodisperse microbubbles in horizontal capillary tubes. The 
continnons line refers results of simulated annealing from this range of A = -^ 
[100|.

It is seen that the experimentally obtained values for volume fraction 
reside far above the exj)ected volume fraction of hard sphere packings as 
several experimental values also resided above 0 = 0.74, the upper-bound 
for hard-sphere packings in three dimensions. In addition, the structures 
observed occur at A values not exj)ected from the hard sphere simulations. 
For exami)le, 220 structure was found at A = 1.5, where simulated-annealing 
experiments predict such a structure for 2 < A < 2.039 [99].

The differences between this experimental system and simulation is due,
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in part, to the horizontal orientation of the tube. Although advantageous 
prodneing a nniform licpiid fraction along the foam, the horizontal orienta
tion results in the bnoyancy force of the bubbles being directed normal to 
the central axis of the tnbe. In this respect, the resulting system does not 
resemble the simnlations of Pickett and Mughal in which the bubbles are 
foreed together.

6.2.1.2 Vertical tribe experiments

The experiments were rejreated with the cairillary tube now monnted verti
cally. The action of the buoyancy force along the long axis of the cylindrical 
tube now forces the bubbles together, reducing the inter-bubble distance. In 
this respect,the system now more closely resembles the hard-sphere model of 
simulated annealing, against which our experiments are compared.

Exanij)les are seen in Fig. 6.7. For each experimental A value, the result
ing foam morphology now matches that exjrected from simulated annealing, 
however the exireriniental packing fraction still resides above that expected 
for hard-spheres, although it is closer to the theoretical results (see Fig.6.6). 
Again, this is due to the hnite compressibility of the bubbles. The experiment 
was repeated for samples of several different bubble diameters. It was seen 
that variation of bnl)ble diameter did not produce a measurable difference in 
packing fractions using this experimental method.

6.3 Tomographic experiments

Due to the optical distortion of the glass tube and the problem associated 
with determining the sj^acial limit of individual bubbles, it was decided to 
characterise the packings using X-ray tomography. This method of charac
terisation has several advantages over previous optieal experiments. Firstly, 
due to the lack of refraction of X-rays from the wall of the cylindrical con
tainer. the optical distortion of the samples is no-longer a concern. Secondly,
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(110) (211) (220) (422)

Figure 6.7: Exanii)les of the 110, 211, 220 and 422 structures formed using 
bubt)les of diameter approximately 1 mm,

due to the increased spacial resolution available from this method, we may 
greatly increase the accuracy of our packing fraction calculations. We may 
also calculate the contact number distribution for each packing. In addition, 
this method allows us to examine high A value packings, whose many layers 
of internal bubbles may not be studied accurately using optical techniciues.

6.3.1 Experimental method

Monodisperse foam was produced using the flow-focusing setujr shown in 
Fig. 2.2. The bubbles were then loaded into a container fabricated using
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Figure 6.8: Variation of (p against A for a vertically mounted capillary tube. 
It is seen that the exi)eriniental packing fraction resides above those values 
associated with simulated annealing. This is due to the finite compressibility 
of the foam sample.

an Object Eden 3D printer, described in section 4.1.1. The container was 
comi)osed of a polymer block in which 26 separate cylindrical chambers were 
formed (see Fig. B.2). The holes ranged in diameter from 0.8 mm to 3.3 
rnm in 0.1 mrn intervals. This allows 26 cylindrical packings of different 
A values to be imaged at the same time. The container was placed in a 
surfactant solution (%5 by volume fraction aqueous solution of Fairy Liquid) 
and inverted to remove trapi)ed air. A syringe was used to inject surfactant 
into each cylindrical chamber to remove any additional trapped air bubbles. 
The ('ontainer was then moved over the outlet of the flow focusing device. 
Once sufficiently filled with bubbles, the container was tapped lightly to help
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crystallisation. The outlet of the container was closed by sliding a glass plate 
over the open face of the container. The resulting system was then mounted 
on a polyurethane plinth and allowed to rest for two hours before being 
imaged. This allowed the system to settle, allowing for successful imaging 
of the sample. The tomographic data was then processed using the Octopus 
software as described in Chapter 2.

A collection of the resulting foam structure is shown in Fig.6.9. 5 cylinders 
of diameter 2.9, 3, 3.1, 3.2 and 3.3 rmn are shown (left to right), with smaller 
tube diameters visible behind. Each bubl)le on the exterior of the foam 
sample may be resolvc'd. Fig.6.9 (B) shows the top of the foam sample while 
Fig.6.9 (C) shows the bubbles near the foam-liciuid interface. As the distance 
from the foam-licpiid interface is increased, the bubbles are seen to become 
more i)olyhedral in nature, corresponding to a dryer foam.

In Fig.6.9 A it is seen that as the distance form the foam-licpiid interface 
increases, the structure of the foam structure changes. This structural change 
may be explained by the compression of bubbles within the foam column 
by the buoyancy force of the underlying foam layers. This results in the 
effective bubble diameter decreasing as a function of height from the foani- 
licpiid interface. This provokes the change in foam structure as a function 
of distance from the foam-liquid interface h. During our later analysis of 
these foam structures, w'e limited our investigation to those bubbles within 
a height of the foam-liquid interface, dehned by equation 1.2 in section 
1. By focusing on this region, we guarantee that our foam sample may be 
considered wet, while avoiding the added complication of a structural change 
along the foam sample.
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Figure 6.9: Reconstruction of the raw three-dimensional tomographic data 
showing the ordering of microbubbles within the cylindrical chambers. Sev
eral different view])oints of the foam are shown, including (A) profile shot, 
(B) the top of the foam and (C) the bottom of the foam near the foani-li(iuid 
interface.
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Note that an attempt was also made to analyse the structure of dry foams 
far from the foam-liquid interface using our tomographic data. However, 
it was found that due to the reduced licpiid content of this foam, X-ray 
contrast was not sufficient to preform a usable segmentation of this data (see 
Fig.6.3.1).

•••• •

Figure 6.10: Plot showing the xz coordinates of the bubble center positions 
obtained from the data segmentation. It is seen that the density of bubble- 
center positions decreases dramatically far from the foams-licpiid interface. 
The is due to our inability to successfully segment dry foam using our current 
X-ray tomography setup.

6.3.2 Data processing

Following the imaging of the foam sample, the data was processed to extract 
the bubble center positions as described in section 2 using MAVI. The average 
bubble size was calculated by fitting a Gaussian to the distribution of bubble 
diameters (see Fig. 6.11).
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Figure 6.11: Histogram of bubble diameter distribution for a tyitical sauii>le 
used in the cylindrical foam experiment. The resulting distribution was htted 
to a Gaussian, resulting in an average bubble diameter of 720 ± 40 //m 
yielding a polydispersity of 5 %, thus identifying the sample as monodisirerse 
according to the definition laid out in section 1.

Once a samitle had been verihed as monodisperse, the bubble center po
sition data was then segmented to assign each bubble to a i)articnlar foam 
column. The xy center positions of each bubble within the sample was plot
ted and a rectangular grid was overlaid to aid in this segmentation process 
(Fig. 6.12).

6.3.3 Results

After successful segmentation of the positional data of the bubbles, the foam 
columns were analysed under three separate criteria.

• Cylindrical morphology
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0 200 400 600 800 1000 1200 1400

Figure 6.12: Partitioning of the experimental data. R('d j)oints indicate the 
bubble center position. The blue rectangular grid, 50 jjixels in width, serves 
as a guide for the manual segmentation of the experimental data. Image noise 
leads to a few stray particles outside of the columnar bubble structures.

• Packing fraction

• Contact number distribution

6.3.3.1 Cylindrical morphology

The bubble center positions were visualised using the freely available software 
POV-Ray [70]. Each bubble was represented by a sphere, the radius of which 
was equal to the radius of the corresponding bubble.

It was found that the experimental foam ordered into coherent structures 
close to the foam-liciuid interface. The foam structures were broken into two 
categories. We call those structure for which all bubble of the sample are 
in contact with the container wall low A value structures. Structures which 
contain internal bubbles, i.e. bubbles which are not in direct contact with
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the boundarv of the container we call hiqh A value strnctnres.

6.3.3.1.1 Low A For low A values it was fonnd that the resulting foam 
strnctnres were well described by the results of siimilated annealing. Fig.G.13 
and Fig.6.14 show the comparison between two foam strnctnres of similar A 
values - 2.22 ± 0.01 and 2.24 ± 0.01. It is seen that the foam strnctnre closely 
follows the residts of hard sphere experiments. In particular, it is seen that 
a small change in A value produces the same structural changes in both the 
foam and hard-si)here system.

Simulation Experiment

2.1949fiA.s2.2247 X = 2.22 ±0.01

Figure G.13: Comparison between the hard-sphere strnctnre produced by 
simulated annealing and the foam experiment with a corresponding A value 
of 2.22 ± 0.01. It is seen that both simulation and experiments show the same 
pairs of spheres rotated through 90°. Note the separation present between 
bnbliles of each second laver of the structure.
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Simulation Experiment

2.2247sAs2.2655 A = 2.24 ±0.01

Figure 6.14: Comparison between the hard-sphere strnctnre produced by 
simnlated annealing and the foam experiment with a corresponding A value 
of 2.24 ± 0.01. It is seen that both simulation and experiments show the 
same pairs of spheres rotated through 90°. Note that the bubbles that were 
separated in Fig.6.13 are now in contact.

6.3.3.1.2 Large A An accurate determination of the exact onset of in
ternal spheres is not possible from these tomographic experiments due to the 
inability to continuously measure the structural changes with increasing A. 
However, we see that structures without internal spheres are seen up to A 
= 2.5 after which the next successfully imaged structure, at A = 2.9 shows 
the emergence of a structure with internal spheres. This range of A values 
includes A = 2.73, the value associated with the onset of internal spheres in 
simulated-annealing data [99].

The first of these foam structures with internal spheres is seen in Fig.6.15. 
Both the external and internal bubbles are seen to form ordered structures. 
For this structure (A =3.13 ± 0.1) it is seen that the internal structure is 
composed of a series non-connected spheres. Results from simulated anneal
ing show that a similar structure may occur for hard spheres, although at a



6.3. Tomographic experiments 165

different A value of 2.8711 < A < 2.873 [99]. As the A value of the experiments 
is increased (Fig. 6.16 and Fig.6.17), it is seen that the ordered external and 
internal structures are seen to increase in complexity. In Fig.6.18 we see that 
the internal structure of the foam resembles a A = 2.215 packing from the 
results of simulated annealing (see Fig.6.14).

(b)

Figure 6.15: Foam structure of A = 3.13 ± 0.1. It is seen that the ordereded 
exterior foam structure (a) contains within it a series of disconnected internal 
spheres seen in(l))
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(b)

Figure 6.16: Foam structure of A = 3.47 ± 0.1. The internal structure is 
seen to form a zig-zag structure.
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(b)

Figure 6.17: Foam structure of A = 3.66 ± 0.1. The internal structure is 
seen to form a closer-jjacked zig-zag structure.

Figure 6.18: Foam structure of A = 4.19 ± 0.1. The internal structure is 
seen to resemble that of a A = 2.215 structure.
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On further increasing the A value of the packing, it is found that a third 
layer of ordered bubbles may be found. Such a three-layered ordered foam 
structure is seen in Fig.6.19. As we remove the external layers of the foam 
sample, it is seen that each underlying foam layer is phyllotactic in nature. 
As the value of A is increased, the internal structure of the foam is seen to 
change again. In Fig.6.20, it is seen that the increasing A value results in the 
internal spheres of the packing coming into contact. Further simulations are 
recjuired to study the exact transitions which occur within these systems as 
A is increased. It is hoped that current experiments may form the seed for 
such simulation.

(a) (b) (c)

Figure 6.19: Visualisation of the foam packing structure for A = 4.74. Suc
cessive ordered layers of the foam sample are coloured green, red and blue. 
Each successive layer of the foam is seen to be ordered
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(a) (b) (c)

Figure 6.20: Visualisation of the foam i)ackiug structure for A = 5.14. Suc
cessive ordered layers of the foam sample are coloured green, red and blue. 
Each successive layer of the foam is seen to be ordered

6.3.4 Packing fraction

From the positional and diameter data available for each bubble, we may 
more accurately calculate the j)ackiug fraction than possible from our previ
ous optical uieasuremeuts. Iii particular, we may take into account the effect 
of boundary bubbles oil the resulting packing fraction.

Fig.6.21 shows a diagram of a packing of spheres, of radii into a tube 
of radius D. The packing fraction for the system within a length H of tube 
may be written as

<I) = 1=0 (6.3)

where V) is the volume of the sphere within the tube length H and 
ri is the total luimber of sjiheres being considered. There are three separate
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Figure 6.21: A diagram showing the i)acking of spheres, of radius r packed 
into a tube of diameter D. The packing fraction of the system is investigated 
in a section of length H.

cases for the form of this volume VT For those si)heres which are completely 
contained within the tube section, the volume Vi is given as

^t(a) = -vrrf. (6.4)

For bubbles on the boundary of the tube element (i.e. \zi — t| < Cj or 
\zi — 6| < 7'i where Zi is the vertical coordinate of the sphere, and t, b are 
the positions of the top and bottom of the tube section being examined) must 
be treated separately. The volume element V'i for such boundary spheres is 
given by either

= tt ( + (6.5)

or

Vsiru h) = tt ( + r^h - (6.6)
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depending on which section of the sphere is located within the tube ele
ment, as shown in Fig.G.21. Following these definitions of the volume associ
ated with each sphere within the tube, the following rules can be written to 
determine each sphere’s contriljution to the volume fraction measurement.

1. For \zi — /| > fj AND \zi — b\ > r AND b < Zi <t, Vi = Vrir'i).

2. For \zi -t\< Vi AND z^ > f, V = \zi - t\)

3. For \zi - t| < r, AND Zi < f, V- = Vein, \zi - /|)

4. For I-, - fti < r,: AND 2, > b, V, = 1^^ - b\)

5. For \zi - AND Zi < b, V^ = VA{ri, \zi - 6|)

Using these rules, we may accurately calculate the packing fraction of 
each structure.

6.3.4.1 Results

The initial calculation of the packing fraction 0 and A using the tTibe radii 
obtained from the schematic shown in Fig.B.2 demonstrated several unusual 
results. On comparison with the simulated annealing results of Mughal et. 
al. [107], it was found that the wet foam structiires diverged significantly 
from their hard sphere counteri)arts with, for exanii)le, a 422 foam struc
ture occurring where a 110 hard-sphere structure is expected. Secondly, the 
calculated packing fraction resided high above the results of simulated an
nealing. Several exi)eriniental data points exceeded the maximum packing 
of 0.74 associated with fee packing. In addition, several points were seen to 
reside above the physically unrealistic value of 1.

This discrepancy between the hard s])here simulations and the foam sys
tems is due. in part, to the compressibility of the bubbles. However, due to 
the non-physical packing fractions above 1, we believe that the absorption 
of surfactant solution into the polymer from which the cylindrical containers
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were produced played a significant role. This swelling of the polymer resulted 
in a reduction of the tube radius. Calculations based upon these decreased 
tube radii will result in artificially decreased A and increased 0 values. In ad
dition, this swelling was found to result in the some of the cylinders becoming 
elliptical in cross section.

To combat these various problems,we fitted new tube radii to the distribu
tion of points associated with each tube. This was done by hrst examining the 
distribution of bubble positions from the center of each tube (see Fig.G.22).

600

450

100 120 140 160 180 200 220 240 260 280

(A)

10 20 30 40 50 60
Position from tube center (voxels)

(B)

Figure 6.22: (A) plot showing the position of bubble centers within a cylinder 
and (B) a histogram of the bubble center positions. It is seen that the bubbles 
are arranged in concentric rings. The bubbles in the outer ring are used to 
determine a new tube radius for the system being examined.
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Figure 6.23; Comparison between the fitted (left) and original (right) tube 
diameter. The center of each bubble is marked using a red point, while the 
extent of each bubble is shown by a light red disc. The center of the tube 
is marked in blue wdiile the extent of the tube is shown in light blue. The 
fitted tube radius covers the extent of each bubble, while the original tube 
diameter suggests the extrusion of bubbles out of the cylindrical container.

Those tubes which were not found to be circular iii nature were excluded 
from further analysis. The centres of the outermost peak of these histograms 
was used to fit a circle the diameter of which is used as the new tube diameter. 
It was found that this new tube diameters more realistically describe the 
packings, as seen in Fig6.23.

Upon successful calculation of the new tube radii, the packing fraction of 
the sample was again calculated and compared to the previously calculated 
packing fraction using the old tube radius. The comparisoii is shown in 
Fig.6.24.
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Figure 6.24: Comparison l)etween the packing fraction as calculated using 
the initial tube radins (yellow) and the fitted tube radius (red). It is seen 
that the htted tube diameter more closely follows the i)ackings associated 
with sinmlated annealing.

The final packing fractions are shown in Fig.6.25. It is seen that the new 
packing fraction more closely follows the results of simulated annealing. The 
foam experiments overestimate the packing fraction associated with hard 
spheres, but this is due to the finite compressibility of the bubbles in the 
exi)erinient.
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Figure 0.25: Com])aris()n between the jjacking fraction as calculated using 
simulated annealing (continnons red line) and experimental foam packing 
data (blue points). It is seen that the experimental data lies roughly in line 
with the results of sinmlated annealing.

6.3.4.2 Contact number distribution

The contact mnnber distribution was calculated for each experimental cylin
drical packing. Again, the contact number for each particle was calculated 
using the conditions outline in section 1.2.1. The resulting contact iimnber 
distribution is shown in Fig.6.26.



176 Chapter 6. Fonnation of columnar crystals in wet foam systems.

Figure 6.26: Variation of the distribution of the average number of contacts 
within the cylindrical foam structures with A. It is seen that, as A increases, 
the system approaches C = 12, the values associated with maximal contact 
number in three-dimensions. A theoretical prediction for the average contact 
number is shown in cyan, while our best experimental ht is shown in green.

It is seen that, as A increases, the average contact number C increases as 
a function of A, api)roaching C = 12 for large A, the values associated with 
maximal contact number in three-dimensions. A simple theory may be put 
forward to describe the functional dependence of C on A.

We examine an fee lattice with a nearest neighbour separation of d. The 
density of points within this lattice p is given by
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d-^ (6.7)

The density of bonds within this lattice ps is given as

6^/2
PB = 6p d^ (6.8)

On average, a plane, of angle 0 and « with respect to an arbitrary normal 
vector z, will cnt N bonds per unit area where

N = 2dpB cos 0 cos a 
48v^
{nd)'^ (6.9)

Averaging cosO and cosev between 0 and |. A cylinder of length / and 
diameter D inserted into an fee lattice will cnt Nc bonds given fry

K - (s?) (6.10)

The inimber of internal bonds within this cylinder is given by

7rT»2/ TT D^l
-P4 "

The nmnber of internal contacts of each sphere is given as 

^ nmnber of cnt bonds

= 12-

(6.ii;

number of spheres 
192 d

D
12 - 19.47^

A
(6.12)

In the limit of A —)• oo, C will approach 12, the value associated with 
closed-packed strnctnres. For lower A valnes, the boundary of the sample is 
more important, leading to deviations from onr theory. This is seen in Fig.
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6.26 where the theoretical prediction is plotted alongside our experimental 
results. Our prediction underestimates the contact number distribution for 
each A value, however the deviation between theory and experiment decreases 
for increasing A. A ht of our data (see Fig.6.26) to the expression C = 12—Aj 
results in a good description of the data, with A = 19.46 it 0.01 as expected 
form our simple theory.

6.4 Conclusions

Both optical and tomographic exi)erinients of small bubbles, within the wet 
foam limit, have been shown to correspond well to the result of simulated 
annealing for the optimum conhguration of hard s])heres within cylindrical 
conhnement. In both cases the nior])hology of the foam packing are seen to 
closely resemble what is exi)ected from simulated annealing. When the pack
ing fractions of such packings was calculated, it was found that the optical 
foam experiments consistently overestimate the packing fraction expected for 
hard si)heres, while the tomograi)hy results showed large scatter when com
pared to the results of simulated annealing. We believe that this is primarily 
due to the hnite conii)ressibility of the bubbles and the hnite compressibil
ity of the bubbles when compared to hard spheres. For large A values, it 
is seen that a series of foam structures with one and two layers of internal 
spheres occurs. Each internal layer of bubbles is seen to be ordered, with 
their structure similar to those foam structures of lower A value. From the 
positional available from our tomographic data, we were able to calculate 
the coordination number for our foam packing. It is seen that the resulting 
contact number distribution follows the functional form of a simple theory 
based on the average number of contacts within an ideal fee lattice.

In future, we will investigate larger A value structures using X-ray tomog
raphy through the use of bubbles of smaller bubble diameter. This will also 
allow us to more accurately determine if such bubbles more closely approach
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the hard-sphere limit. Through the use of phase-contrast synchrotron radi
ation, will will also investigate the transition regime between wet and dry 
foams which is currently difficult to probe using optical techniques.



180 Chapter 6. Formation of columnar crystals in wet foam systems.



Chapter 7

Future work

We have seen that eonveuieiit, low-energy X-ray tomography may be used 
to sueeessfully image wet, monodisperse foams. We have also demonstrated 
that, through earefnl selection of the bonndary conditions of such foam sam
ples, their internal strnctiire structure may be controlled.

In the fntnre, we hoi)e to extend this work, focusing on the use of these 
foam structures as an analogy for atomic crystalline systems. In this way we 
will further extend the original work of Bragg, providing new, exciting and 
fruitful insights into crystal structures and dynamic atomic processes [21]. 
Onr current experimental setup allows us to cairture features of the order of 
30x10“^ m w'hen successfully reconstructing a sample composed of bubble 
700x10“® in in diameter. In precious experiments, it has been shown that 
700 ftrn bubbles the may be used to quantitatively model the behaviour of 
atomic copiier systems [22]. This is due to unique scaling behaviour of the 
inter-bubble iiotential with the bubble radius directly to the atomic scale. If 
we, similarly, scale the resolution of our current 3D imaging technique w'e see 
that we can achieve a modelling resolution of roughly 9x10“^'^ m, compara
ble to current leading AFM setups, yet in fully-resolved 3D. This makes our 
experimental method one of the highest resolution, most economical meth
ods of examining crystalline behaviour in three dimensions. In particular.
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we will aim to conduct the hrst experimental particle-resolved indentation 
experiments.

7.1 Nanoindentation

Nanoindentation is a method of determining the physical characteristics of a 
material based upon the pressing of a hard tip, of dehned geometry, under 
small load into the substance being tested [108]. The Bragg bubble model has 
been successfully used to model the nanoindentation process in two dimen
sions [26, 27, 109]. However, there are many three-dimensional crystalline 
defects which do not have a two-dimensional counteri)art, and therefore can
not be explored with cuirrent methodology. We aim to produce the hrst 
indentation exj)eriments into a three-dimensional bubble crystal. We have 
already conducted a preliminary experiment in which a Berkovich style in- 
denter (see Fig.7.1) is forced into an ordered bubble pile conii)osed of 2000 
bubbles of average diameter 700 //.rr;.

Using our current imaging X-ray tomographic techni(iue, we found that 
we can successfully image these foam samples, as shown in Fig.7.2.

Through the use of a stepi)er motor and force gauge, we will repeat this 
experiment in a quasi-static indentation experiments. By imaging after each 
indentation increment, we will be able to chart the various structural changes 
which occur as the crystal is deformed. In particular we will, for the hrst time, 
be in a position to investigate the nucleation of subsurface defects within a 
perfect crystal lattice in three dimensions.

Due to the high resolution of our imaging techniques, the deformation of 
each bubble will be measurable. From these deformations, we may calculate 
the local stress within our sample as is currently i)erformed in analogous two- 
dimensional experiments [110]. This will allow the stress distribution within 
an experimental indentation experiment to be measured locally for the hrst 
time.
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Figure 7.1: Sketcli of the exi)erimental setup used to conduct the hrst inden
tation into an ordered ])nl)ble pile. In onr exi)erinients, we used a small foam 
sample (composed of 5()()() bubbles of average diameter 700 /nn) into which 
is indented a Vickies style indenter.

Using the advances we have made in directed crystallisation, we will in
vestigate how indentation dynamics depend on the crystal strnctnre of the 
solid nnder investigation. Snch a study is not possible in two dimensions 
where only one strnctnre a hexagonal arrangement of bubbles - is stable. 
We may, using the same techniques, study the dynamics of a grain bound
ary, or dislocation, and determine their effect on the load curve measured 
by the indentation tij). The flexibility and control permitted to us with this 
bul)ble model will allow us to tailor our experimental setup to study many 
real three-dimensional crystalline system.

7.2 Phase contrast synchrotron imaging

Our current imaging technique allows a rai)id, cost-effective method of imag
ing wet foams samples, thus opening a wide frontier of experiments to be



184 Chapter 7. Future work

explored. The success of this imaging technique is due to the increased X- 
ray absorption associated with the high liquid fraction of these foams. As 
we have seen in section 3.4, however, our imaging technique is not api)lica- 
ble to dry foam where sufficient sample absorption for jrroducing a usable 
reconstruction is not available.

We may overcome this problem through the use of irhase-contrast syn
chrotron imaging. This imaging method, based upon object reconstruction 
from the phase-change of a X-ray beam, provides higher-sensitivity than ac
cessible by standard absorption based tomography [111]. This will enable us 
to study several interesting aspects of dry foams as well as to perform many 
dynamic experiments due to the high temporal resolution available at such 
facilities.

In particular, we aim to investigate the structural transition which occurs 
between an ordered fee wet foam and an ordered bcc dry foam. We have 
already unsuccessfully tried to capture this transition region using our low- 
energy X-ray tomograi^hy method (discussed in chapter 4). Using i)hase- 
contrast tomography, however, we will repeat this experiment, allowing for 
the form of this transition to be imaged in three-dimensions for the first time.

The temporal resolution at these facilities will allow for the first topo
graphic imaging of a sheared foam. The shearing of foam has been the snb- 
ject of intense investigation as foams serve as a relatively easy experimentally 
accessible example of a complex fluid [112]. It is also found that microfoams 
represent an ideal system with which to study the glass transition, the shear
ing of i)olydisperse microfoams having been previously used to study the for
mation and mechanical jnoperties of metallic glasses [113]. Although these 
experiments have been conducted in three dimensions, such studies have been 
limited to bulk characterisation of the foams due to the difficulties of imaging 
within the foam mass. As a result, the opportunity to link global behaviour 
to local dynamics is lost [114]. This has led to the restriction of most shearing 
experiments to two-dimensions where the resulting experimental images can
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be processed to show snch interesting phenomena as shear banding, vortices 
formation, etc. Using these high-energy imaging facilities we will be able to 
perform the first three-dimensional shear experiments with particle-resolved 
data. Such experimental data, without two-dimensional conhnement, will 
allow direct comparison with a variety of physical models. In particular, we 
will be able to directly conii)are our exi)eriments to recent theoretical work on 
the onset of the glassy phase in soft niatter[ll5]. We wall also investigate the 
shear behaviour of a coherent grain boundary, controlled through our work 
on controlled crystallisation section 5, providing the hrst experimental im
ages of dislocation nncleation at a grain boundary, its propagation through 
an ordered crystalline stiaictnre, and its re-absorption into a neighbouring 
grain bonndary. Snch an analysis of this important dynamic process is not 
possible using other experimental techniciues.
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Figure 7.2: Reconstruction of a foam sample composed of bubbles of average 
diameter SOO/cm indented by a Berkovich tip. (1) shows the initial configu
ration of the bubble pile. (2),(3) and (4) show the same pile as the indenter 
tip progresses 0.5, 1 and 1.5 rnm into the bubble pile.



Appendix A
Contact angle of surfactant 
solution on container wall

During our oxperiinents, we wished to characterise the interaction of our 
surfactant solution with the surface of the polymer container used. To do 
this, we measures the contact angle of onr surfactant solution (5% volume 
fraction detergent Fairy Liquid in water) on the stirface of our container 
walls made from Object verroclear. The surface of our containers, however, 
is not completely smooth due to the nature of its production. This process 
involves the dei)osition of sulrsecpient i)arallel layers of liquid polymer upon 
each other, each layer being cured through the use of a UV light source. 
This process allows for the creation of complex geometries, limited to a 20 
//,r» vertical resolution. The resulting pieces have associated with them a 
surface roughness in all directions perpendicular to the i)lane of deposited 
polymer. The use of such surfaces would lead to large errors in any contact 
angle measurement.

To combat this problem, we printed a flat surface parallel to the deposi
tion direction, leading to smooth surface. \Ve then characterised the surface 
by measuring the contact angle of our surfactant solution on the polymer 
used to construct our containers. The contact angle was measured using the 
sessile drop techni(iue. A single drop of surfactant solution was formed on the
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surface of our container. The droj) was photographed in prohle, the resulting 
drop shape analysed using a sessile drop analyser plug-in for ImageJ[\l^]. 
An example of the experimental analysis is shown in Fig. A.l.

Figure A.l: Experimental images showing the formation of a drop on the 
fiat surface of a typical experimental container. The drop prohle was htted 
using ImageJ. The resulting contact angle was approximately 33°.

Our measurements showed that the contact angle for the surfactant so
lution on the Object Veroclear polymer was 33° ± 5°. This contact angle is 
in keei)ing with previous measurements of contact angle for the surfactant 
solution on glass. However, it is noted that similar ordering experiments have 
been conducted using a variety of different plastics and glasses. It was seen 
that this did not effect the ordering behaviour of the bubbles [16].



Appendix B 
Schematics

The following sclieinatics were produced using the coininercially available 
softw'are SoUdwo-fks [79]. Once the schematics were i)roduced, tin; structures 
were printed using an Objet Eden 250 3D rapid-prototype machine capable 
of accurately ijrodncing object features Iretween 20-80 ///n in size.
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UNLESS OTHERWISE SPECIFIED; 
DIMENSIONS ARE IN MILLIMETERS 
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Figure B.l: Schematic for the simple rectangular container
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Figure B.2: Schematic of the template used for the geiieratiou of cylindrical 
foam structures imaged with X-ray tomography. The device is composed of 
26 number of cylinders of diameter ranging from 0.8 to 3.3 mm. in 0.1 mm 
intervals.
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Figure B.3: First template for generating fee (100) orientated crystals.
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Glossary

CT Computer Tomography.

Dodecahedron A polyheadrou with twelve flat faces.

Grain boundary The interface between two distinct regions of crystallisa
tion .

Hele-Shaw cell A samj)le container composed of two parallel pieces of flat 
glass, separated by a small distance in the order of millimeters .

Interstices A crystalline defect formed from the occurrence of an object at 
a previously unoccui)ied lattice site.

Lennard-Jones potential A simple mathematical model for the descrip
tion of atomic interactions .

Packing fraction The ratio of the volume of the packing substance, to the 
entire volume of the packing structure.

Plateau border The meeting point of three foam surfaces.

Vacancies A crystalline defect formed from the absence of an object at a 
lattice site.
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Vertex The meeting point of Plateau borders - central nodes of high liquid 
content within the foam.

Voronoi tesselation A Voronoi tesselation is a division of space based upon 
a distribution of points. Typically, such a division associates those 
regions of space which are closer to a particular ])oint, as determined 
by a distance metric.
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