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Abstract

Assistive technology has the capacity provide to people with limitations the opportunity to improve 

their quality of life and increase their independence in daily living. The promise of emerging pervasive 

computing technologies is that they will enable a new generation of assistive technologies to offer 

individuals the opportunity to stay in their homes for longer and manage everyday tasks without 

placing a significant burden on their caregivers.

Parkinson’s disease is one of the most common neurodegenerative disorders. To date, there is 

no treatment for this disease. It progresses over time and only its symptoms can be treated. These 

symptoms include tremor, rigidity, i)roblems with gait, and postural instability. Impairment of these 

functions influences the performance of everyday tasks and decreases the (juality of life of sufferers. 

The range and variety of assistive technologies being researched and developed to support people with 

Parkinson’s disease, as well as those that are commercially available, is growing. To date however, 
knowledge about the use of assistive technology by people with Parkinson’s disease is limited. The aim 

of this work is to explore the use of emerging perv'asive computing technologies to develop assistive 

technology to support jjeople with Parkinson’s disease.

The design of new assistive technology to su{)port people with Parkinson’s disease requires an 

identification of their difficulties and needs. To this end, we conducted a user survey of people with 

Parkinson’s disease to investigate their problems and the assistive technology used or perceived to be 

relevant in everyday living. The physical limitations reported by the respondents were consistent with 

commonly reported problems for people with Parkinson’s disease and include problems with mobility, 

physical strength and flexibility issues, gait disturbance, falls, and fatigue. In general, not many 

assistive technologies were used and there was no desire for any particular type of assistive device. 

However, the analysis showed a perceived benefit of the use of assistive technologies in daily living. 

Most of the participants reported problems with mobility and more than one third used assistive 

technology to improve their mobility. Changing location or body position are activities that humans 

tend to perform very often and it is desirable for them to be performed independently. In addition, 

the improvement of motor functions may influence other areas of life and therefore lead to an overall 

increase in quality of life. The results of the survey indicated the need for assistive technology that 

addresses mobility issues, commonly reported in Parkinson’s disease.

People with Parkinson’s disease typically avail of physiotherapy to address mobility issues. As re-



ported in the literature, j^hysical exercises designed to improve posture maintenance, muscle strength, 

and balance, which are performed regularly, can have a positive impact on well-being. Because at­

tending physiotherapy sessions can be problematic and expensive, best practice is to prescribe a set 

of exercises that can be performed by a patient at home. However, two issues with home-based phys­

iotherapy arise. Firstly, the lack of supervision by a physiotherapist may result in improper exercise 

program execution. Secondly, patients may loose the motivation to sustain their exercise routine. 

This thesis investigates the feasibility of developing a system for mobility training at home. Such a 

system should facilitate the physiotherapist in monitoring patients’ exercise routines, and provide the 

patients with feedback to assist them in proper exercise execution and encourage them to perform 

exercise sessions regularly.

To address this question we developed a system for mobility training at home - SMOOTH. The 

objective of the exercises supported by SMOOTH is to strengthen the core muscles, as research 

suggests that this leads to the improvement of posture, balance, and movement patterns and may 

lower the number of falls. SMOOTH was designed to be affordable, accurate, and unobtrusive. In 

addition, to enable people with Parkinson’s disease to use the system independently at home, it was 

required to be safe, convenient, and intuitive. Due to user safety concerns, SMOOTH targets exercises 
on a chair. A number of previous systems detect activities by using wearable sensors and cameras. 

However, those techniques might not be suitable for a home-based system designed for people with 

Parkinson’s disease considering their movement limitations and privacy issues. Our hypothesis is that 

a set of low-cost, fixed sensors are sufficient to measure exercise i)erformance. To our knowledge no 

system supporting exercise monitoring using such sensors placed on a chair has been developed to 

date and there is therefore no study addressing its movement detection accuracy or user acceptance.

To address these issues, having built the system, a user study was conducted. The user study 

was divided into two parts. The first part, investigating the acceptance of SMOOTH, was conducted 

among physiotherapists and people with Parkinson’s disease. The results show that potential users 

perceived SMOOTH to be useful in home-based physiotherapy. The second part, investigating the 

accuracy of SMOOTH, was conducted among healthy people and people with Parkinson’s disease. 

The results indicate that the use of low-cost sensors placed on a chair enables the measurement of the 

exercise performance with accuracy above 91% for all the exercises addressed by SMOOTH but one.
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Chapter 1

Introduction

This thesis investigates the use of emerging pervasive computing technologies to develop assistive 

technology (AT) for people with Parkinson’s disease (PD). PD is the second most common neurode- 

generative disorder |Ben-Shomo et al., 1996). It progresses over time and, to date, only its symptoms 

can be treated. To remain independent longer and improve overall well-being, people with PD can 

avail of AT that compensates for their functional limitations. An initial user survey identified that a 

common problem among people with PD is impaired mobility. This problem is typically addressed 

by exercise programmes in physiotherapy. However, attending physiotherapy sessions can be both ex­

pensive and inconvenient. For these reasons, physiotherapy exercises are often prescribed to patients 

to perform at home, with clear benefits such as the ability to perform exercises at times convenient 

to the patient, lower costs, and no need for travel. Unfortunately, there are also limitations including 

the lack of supervision by the physiotherapist, problems with sustaining motivation to perform the 

exercises regularly, and lack of social contact with the community, which might further influence mo­

tivation |Phillips et al., 2004). According to the study presented by [Cohen-Mansfield et al., 2004) the 

most important factor for the participants was monitoring by a healthcare professional. Preferences 

related to other factors depended on the health and demographic characteristics of the participants. 

For example, cost aspects were not as important to more educated participants with higher incomes, 

while participants who lived alone were more interested in the social aspects of exercise programs.

To address some of this issues, a system for mobility training at home - SMOOTH - was devel­

oped. The purpose of SMOOTH is to facilitate the physiotherapist in monitoring patients’ exercise 

routines, and provide the patients with feedback to assist them in correct exercise execution and also 

to encourage them to perform exercise sessions regularly. The objective of this thesis is to investigate 

the feasibility of exercise monitoring using low-cost, fixed sensors placed on a chair and to examine 

its accuracy and user acceptance. Potential benefits of such system include decreased physiotherapy 

costs, improved motivation to sustain exercise routines by patients, and improved facilities to monitor 

progress by physiotherapists.

This chapter begins with the characteristics of PD and the description of the most common prob-
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lems experienced by people with PD (Section 1.1). The next part of this chapter focuses on AT and 

its role for people with PD (Section 1.2) as well as on pervasive healthcare (Section 1.3). Section 1.4 

briefly introduces the results of a user survey that we conducted to help identify AT that may be 

useful for people with PD. As the survey results identify a need to improve patients’ mobility and 

the concept of home-based physiotherapy is introduced; its advantages and limitations outlined in 

Section 1.5. Following this, the concept of a system designed to support mobility training at home 

(SMOOTH) is introduced in Section 1.6. Finally, the contributions (Section 1.7) and a road map of 

the thesis (Section 1.8) are presented.

1.1 Parkinson’s Disease

Neurodegenerative disorders, such as Alzheimer’s disease, PD, Huntington’s disease, and Multiple Scle­

rosis result from deterioration of neurons; all are progressive over time. Neurons in the brain and spinal 

cord are responsible for controlling various functions such as decision making, processing of sensory 

information, and movement. Neuronal degeneration can lead to limitations in all of these functions 
[Gowthaman et ah, 2007). Despite ongoing research exploring the causes of these neurodegenerative 

disorders, to date, they remain impossible to cure. All methods of treatment, which differ depending 

on disease, result only in limited relief and in delaying their progr(!ssion [Btjzprozvanny, 2009).

PD is the second most common neurodegenerative disorder [Ben-Shomo et ah, 1996J. It results 

from the deterioration of dopamine containing cells of the substantia nigra, which is a brain struc­

ture located in midbrain. The exact cause of the disease is not known. Research suggests several 

different causes such as oxidative stress, toxins, genes, and age [Burkhardt and Weber, 1994). To 

date, there is no definite test that allows the diagnosis of PD. The diagnosis is primarily based 

on history and a clinical examination. Therefore, there is a possibility of a person being initially 

diagnosed with PD and after development of additional symptoms the diagnosis being changed 

[National Collaborating Centre for Chronic Conditions, 2006, Gelb et al., 1999].

PD affects between 0.5% and 1% of the population aged 65-69 years and between 1% and 3% of 

the population over 80 years [Toulouse and Sullivan, 2008]. Its progressive nature and the lack of a 

cure for it suggests that its social and economic impact will increase over time. PD might result in a 

decrease in the quality of life of patients and their caregivers as well as an increased economic burden 

for society [Keranen et al., 2003]. According to a study conducted among the members of the United 

Kingdom Parkinson’s Disease Society [McCrone et al., 2007] the costs related to PD include direct 

social care (5%), direct health care (15%), and informal care from family and friends (80%). For 

that reason it is important to enable people with PD to remain independent as long as possible which 

could reduce the burden on their caregivers and the overall cost of their healthcare [Mann et al., 1999, 

Schrag et al., 2006[. The promise of AT is to support people with disabilities in activities of daily 

living.
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1.1.1 Symptoms

The symptoms of PD include limitations in motor and non-motor functions. Cardinal motor symptoms 

include tremor, rigidity, bradykinesia, gait disturbances and postural instability [Gelb et al., 1999J. 

Tremor in PD is called resting tremor because it usually appears when muscles are relaxed. The tremor 

initially has a frequency of 4-6 Hz although the frequency decreases and the amplitude increases over 

time (Hellwig et al., 2009J. In rigidity, the muscle tone is stiff and does not relax. This can cause a 

decrease in the range of motion and pain [MashhadiMalek et al., 2008]. Bradykinesia, also called ‘slow 

movement’, might influence gait functions and people suffering from it may walk with short, shuffling 

steps [Berardelli et al., 2001]. PD also involves symptoms such as delayed reactions, sudden stopping 

of ongoing movement, and difficulty initiating movements (referred as ‘freezing’). A large number of 

studies have been done to characterise gait disturbances [Ferrarin et al., 2006]. The abnormalities in 

parkinsonian gait include a shortened stride length and reduced velocity. Gait cadence is not altered 

and it can be increased to compensate for stride length reduction. In addition, the trunk is often 

flexed forward and associated arm movements as well as the range of motion at the lower limb joints 

are reduced. Problems with balance are also reported in the literature ]Benatru et al., 2008]. Postural 

instability is usually a sign of more advanced PD and might lead to a loss of independence due to 

falls and injuries. Parkinsonian posture is characterised by a moderate flexion of the knees and trunk 

with elbows bent and arms abducted. In addition, it can involve tilting of the trunk particularly 

when sitting or standing. Other symptoms reported by people with PD are speech and swallowing 

difficulties [Deane et al., 2001a]. They include monotony of pitch and volume, reduced stress and 

imprecise articulation resulting in improper silences and rushes of speech.

Non-motor symptoms are also very common in PD. Over half of patients suffer from more than 

one non-motor symptom [Witjas et al., 2002]. Impairments in non-motor functions affect jjeople with 

PD and their families and might lead to even bigger complications in every day life than motor 

symptoms. Non-motor symptoms include fatigue, sensory, autonomic, and behavioural symptoms as 

well as sleep disorders ]Pandya et al., 2008]. Fatigue is one of the most troubling symptoms in PD 

[Friedman et al., 2007[. It is combined with the feeling of continuous tiredness and lack of energy. 

To date, fatigue is not well understood and therefore under diagnosed. Sensory impairments involve 

off-period pain, paresthesia, and impaired sense of smell and vision. In general, autonomic problems 

increase with disease duration [Verbaan et al., 2007[. They include symptoms that relate to cardiovas­

cular, gastrointestinal, urinary, thermoregulatory, and sexual functioning. Cognitive and behavioural 

symptoms involve depression, dementia, apathy, and anxiety. Most healthcare professionals obtain 

little training in diagnosing those symptoms in people with PD and therefore some of those functions, 

such as depression, are often under diagnosed [Anderson, 2002[. Sleeping disorders include daytime 

sleepiness and insomnia. PD patients often experience low total sleep time and frequent awakening. In 

addition, some of them suffer from intensive, unpleasant, and frightening dreams [Mehta et al., 2008[.

Impairment in all the functions described in this section might influence the performance of ev'ery-
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day tasks and decreases quality of life |National Collaborating Centre for Chronic Conditions, 2006J. 

The biggest influence on quality of life, according to the study [Schrag et ah, 2000], are depression, 

disability, postural instability, and cognitive impairment. For that reason improvement of these limi­

tations should become an important target in the treatment of the disease.

1.1.2 Treatment

As with other neurodegenerative disorders PD progresses over time and only its symptoms can be 

treated [National Collaborating Centre for Chronic Conditions, 2006]. Currently the most effective 

method of minimising the impact of motor symptoms is pharmacological treatment with levodopa, 

dopamine agonists, and MAO-B inhibitors [Thobois et al., 2005]. Even thought treatment with lev­

odopa is the most reliable treatment of motor symptoms to date, it usually develops long-term com­

plications. After 5 years of treatment, about half of people with PD develop motor fluctuations and 

dyskinesia [Jankovic, 2005]. Variations in levodopa intake as well as its short half-life (90 120 minutes) 

appear to influence motor fluctuations such as ‘off-time’ and ‘on-tirne’ effects, but its mechanism is not 

well understood. ‘Off-time’ refers to periods when the medication is not working well, which causes 

worsening of Parkinsonian symptoms. The term ‘on-time’ refers to periods of sufficient control of PD 

symptoms. To allow continuous levels of levodopa to enter the brain its intake can be enhanced by 
MAO-B inhibitors [Stern et ah, 2004]. Research suggests that MAO-B inhibitors can reduce ‘off-time’ 

and therefore limit motor fluctuations. At the beginning, dopamine agonists have been used in con­

junction with levodopa therapy to improve motor fluctuations [Ahlskog, 2003]. However nowadays, 

they are instead used as mono therapy at an early stage of PD due to their effect of delaying motor 

complications.

Motor complications caused by levodopa can be reduced by surgical treatments which involve de­

struction of parts of the brain nuclei (i)allidotomy, thalamotomy, or subthalamotomy) 

[Thobois et ah, 2005]. These procedures can improve dyskinesia, tremor, bradykinesia and rigidity 

[Nagaseki et ah, 1986, Vitek et ah, 2003]. They are usually employed when pharmacological treat­

ment does not have a desirable effect. To avoid the destruction of parts of the brain nuclei, deep brain 

stimulation can be employed. This procedure involves insertion of electrodes to stimulate parts of the 

brain nuclei and is usually offered to people with PD who have severe motor symptoms [Genever, 2009]. 

It can be helpful in tremor, bradykinesia, dyskinesia, and rigidity reduction.

Some limitations associated with PD can be difficult to treat using medical and surgical methods. 

To overcome these difficulties, a variety of rehabilitative therapies are available ]Gage and Storey, 2004]. 

Their purpose is to provide a person with PD with individual compensatory strategies addressing 

their limitations. Most of the people with PD, due to their age, lose on average 20% to 40% of 

their neuromuscular function which might accelerate the loss of mobility and therefore independence 

[Boelen, 2007]. Some studies suggest this loss can be regained by exercises [Doherty, 2003]. Prescrip­

tion of physiotherapy is appropriate at all the stages of PD [Olanow et al., 2001]. Depending on the
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stage, different mobility issues are addressed [Boelen, 2007). At the early state focus is on optimis­

ing general strength, flexibility, balance, endurance, and prevention of impairments. The next stage 

addresses gait deviations and involves improvement of balance and ‘freezing’ avoidance. For patients 

with postural instability, prevention of falls is the main goal and for that reason balance training 

and compensatory strategies to prevent falls are introduced. For patients with severe disability great 

emphasis is placed on maximising flexibility and mobility to improve transfers from one position to 

the other as well as education of the caregivers in providing assistance.

Another therapy offered to people with PD is occupational therapy [Gage and Storey, 2004). Its 

purpose is to teach patients how to modify their every day tasks to make them less difficult. The 

tasks include hygiene, dressing, eating, writing, cooking, and fall prevention. The strategies used 

might involve the use of AT or the appropriate arrangement of the living environment. Because people 

with PD may have problems with multitasking, they can also be taught methods to prioritise their 

attention while performing activities [Boelen, 2007). Some studies suggest that, in conjunction with 

physiotherapy, occupational therapy leads to an overall quality of life improvement [Ellis et ah, 2008).

As described in this section problems with speech and respiratory functions are common in PD. 

To improve voice and speech production in conjunction with pharmacological treatment, speech ther­

apy has proved to be the most effective therapeutic method [Deane et ah, 2001a). Speech therapy 

techniques target two main categories: problems with swallowing and difficulties with speech. The 

techniques mainly address difficulties with speech by appropriate exercises [Gage and Storey, 2004). 

However, they also include respiratory exercises, swallowing strategies, and the use of wearable biofeed­

back devices [Schulz and Grant, 2000).

1.2 Assistive Technology

AT is ‘any item, piece of equipment, or product system, whether acquired commercially off the shelf, 

modified, or customised that is used to increase, maintain, or improve the functional capabilities of 

individuals with disabilities’ [Public Law 100-407, 1988). AT is applicable in many areas of life and can 

be used to support people in their living environments [Johnson et al., 2007, Mann, 2005). It enables 

people to remain independent longer and reduces the cost of their healthcare [Mann et al., 1999) as 

well as the burden for their caregivers [Schrag et al., 2006).

AT can be beneficial for people with PD to cope with activities of daily living and it has the 

potential to allow them to remain independent longer and reduce the overall cost of their healthcare 

[Jutai et al., 2007). Advances in technology have led to the development of a range of ATs to support 

people with PD [Constantinescu et al., 2007). However, most of the available ATs are mechanical 

devices. They include devices to support communication, eating, drinking, writing, dressing, hygiene, 

lighting, mobility, and household tasks [Swann, 2008). Some examples are special pens, adapted plates, 

lifters, and walking aids. The number of commercially available ATs is growing. In April 2001, ABLE-
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DATA^, the AT product database listed 27,000 assistive products (over 18,000 of which were currently 

available) [Scherer, 2002], In June 2009, the same database listed 35,000 assistive products (over 22,000 

of which are currently available). To date, despite the variety of ATs available, knowledge about their 

use and existence among people with PD is limited [Roelands et ah, 2002, Constantinescu et ah, 2007). 

AT for mobility is the largest group of ATs [Scherer, 2002[ and a number of studies focus on balance 

and mobility aids which include canes, walkers, and wheelchairs [Bateni and Maki, 2005[. Even though 

they can increase the confidence and safety of people with PD, as well as compensate for their lim­

itations in some cases, they are abandoned soon after receiving them. The main reasons for this 

are difficulty or risk related to their use, inappropriate prescription, and inadequate user training 

[Agree et ah, 2004[. For that reason it is essential to recognise individual user’s limitations, abilities, 

and needs to adapt existing ATs to individual circumstances or design new ATs that would meet users’ 

requirements and needs.

1.3 Pervasive Healthcare

Pervasive or ubiquitous computing is perceived as being the next generation of information and com­

munication technologies [Weiser, 1991[. Its purpose is to support users in their every day activities by 

providing information, communication, and other services in an intelligent manner. Pervasive com­

puting research covers a wide range of areas. These include distribut(?d and mobile computing, sensor 

networks, human-computer interaction, and artificial intelligence [Reddy, 2006, Cook et ah, 2009[. 

The promise of pervasive technologies is to embtxl computing infrastructure into the environment and 

to enable natural interaction with it [Grimm et ah, 2001 [. This integration allows the user to focus on 

their tasks and make them unaware of the assistance being provided by cominiting devices that are 

blended into the background. To achieve these goals pervasive computing has to address a number of 

challenges [Satyanarayanan, 2001[. In contrast to personal computers and dedicated devices, pervasive 

technology should be transparent to its users. Devices should be unobtrusive and inexpensive, and the 

infrastructure should adapt to environmental conditions and current users’ needs [Estrin et ah, 2002|.

Pervasive healthcare is an emerging area that has the capacity to reduce long-term costs, im­

prove quality of service, and increase independence of its users in daily living [Varshney, 2()03[. It 

spans several areas of life such as transportation, communication, and safety and can support its 

users as well as their caregivers in a number of different manners including monitoring and guidance 

[Muras et ah, 2006[. Smart homes equipped with sensors and reasoning algorithms are designed to 

make life easier and safer and can support their occupants in daily activities 

[Georgia Institute of Technology, 2009, Perry et ah, 2004[. This can be accomplished by fall detec­

tion or behaviour monitoring. In case of an emergency, communication with appropriate authorities 

can be enabled [Axisa et ah, 2005[. Devices such as automatic lighting control, tap and cooker mon­

itors [Georgia Institute of Technology, 2009[ that are able to switch devices off in case of emergency.

^http://www.abledata.com
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as well as ambient displays and speakers to inform occupants about scheduled appointments or tasks 

[Pollack et al., 2003] are all now available. Moreover, smart homes are not the only examples of 

using intelligent devices to improve the quality of life. Guides helping with a task by giving step- 

by-step instructions [Kautz et ah, 2002], devices monitoring time and amount of medication taken 

[Jafari et ah, 2005] and robotic interfaces combined with virtual reality environments for rehabilita­

tion [Holden, 2005] are other examples of emerging pervasive healthcare technologies.

Due to advances in communication, information, and sensor technology it is possible to build 

systems that will monitor users’ well-being at home and support the management of their medical 

condition in unobtrusive and transparent manner [Korhonen et ah, 2003, Cooper et ah, 2008]. Thus, 

pervasive healthcare has the potential to enable a new generation of ATk giving people with limitations 

the opportunity to manage everyday tasks on their own and stay in their homes longer.

1.4 Needs of People with Parkinson’s Disease

To identify the difficulties and ncH^ds of people with PD in daily living we conducted a user survey of 

people with PD [Muras et ah, 2008]. The aim of the survey was to explore individual circumstances of 

people with PD and investigate what kind of ATs may be useful for them. The survey investigated the 

views of participants about the ATs they use and obtained more specific information about features 

that would be worth developing or improving.

The results of the study were derived from a postal survey of randomly chosen members of a 

support group for people with PD (PALS)^, which is a branch of the Parkinson’s Association of 

Ireland. They show that physical condition was the biggest problem for the survey respondents. 

According to the survey results, the most common difficulty experienced by people with PD were 

limitations in mobility (88%). 59% of the respondents had problems with walking and over one third 

(39%) of all subjects used help to move around. Half (51%-53%) of the subjects reported problems 

in changing body position, e.g., getting up from the floor or standing up from a chair. Physical 

strength, flexibility and coordination was described as ‘poor’ or ‘very poor’ by 34%, 25% and 20% 

of the respondents, respectively. The majority of the subjects of the survey reported problems with 

fatigue, which is consistent with the findings of Chaudhuri et al. [Chaudhuri and Behan, 2000]. Over 

half of the participants (54%) suffered from fatigue ‘frequently’ or ‘all the time’ and 70% reported 

that they ‘always’ or ‘often’ become tired fast. Impairment of motor functions not only influences 

independence but might also lead to the risk of falls and injuries [Benatru et al., 2008]. Fear of falling 

is not only a characteristic for people with PD, but may also affect older people [Murphy et al., 2002]. 

For 81% of the respondents it was important to be able to contact someone in the case of a fall.

The results of the survey indicate a possible under-utilisation of ATs by people with PD. The 

participants, in general, did not use a large number of ATs. Devices that they used were mostly for 

walking, changing body position and helping them in self-care tasks. The reason for this could be

^http://gofree.indigo.ie/~pdpals/
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that most of the participants had mobility constraints and the devices mentioned above could greatly 

improve their independence and quality of life. Changing location or body position are activities that 

humans tend to perform very often and any limitation in movement functions can have a significant 

impact and may influence daily activities in a negative manner. The situation can be similar with 

self-care tasks, which have to be performed quite often and the natural behaviour is for people to 

perform them on their own, so any need for help from others may lead to inconvenience. Another 

reason for more the common use of this set of ATs may be awareness of their existence and familiarity 

with them |Constantinescu et al., 2007].

The results of the survey indicated the need for AT that would address mobility issues, commonly 

reported in PD. The improvement of motor functions may affect many areas of life and therefore lead 

to an overall increase in independence and the quality of life |,Iutai et al., 2007, Schrag et al., 2000].

1.5 Home-based Physiotherapy

People with PD typically avail of physiotherapy to address mobility issues ]Keus et al., 2009]. As 

suggested in the review presented by ]Deane et al., 2001b], while most of the studies investigating 

the effectiveness of physiotherapy in PD found in the literature claimed a positive effect, they lacked 

sufficient evidence to support or reject the efficacy of physiotherapy in PD due to methodological 

flaws, e.g., choice of participants, and the small number of patitmts included in many of the studies. 

Despite a lack of conclusive evidence ]Deane et al., 2001b, Keus et al., 2006] there are promising in­

dications that physiotherapy can be beneficial for the support of p(!ople with PD and their well-being 

]de Goede et al., 2001, Ellis et al., 2005, Smidt et al., 2005]. The purpose of physiotherapy is to de­

lay deterioration in motor functions and therefore allow people with PD to stay independent longer 

]King and Horak, 2009]. The main goals for people with PD are to improve limitations in balance, pos­

ture maintenance, agility, flexibility, and muscle strength ]Goodwin et al., 2008]. To improve i)ostural 

stability and muscle strength, which leads to a reduction in the number of falls, balance and high- 

resistance strength training can be performed ]Hirsch et al., 2003]. Other types of training can aim 

at improvement of various aspects of gait and transfer techniciues ]Nieuwboer et al., 2002]. Physical 

exercises can also address particular difficulties in the exec:ution of activities ]Morris and lansek, 1996] 

and improve specific motor functions such as accuracy and speed ]Platz et al., 1998]. It is also good 

practice to perform physical exercises to keep up general fitness ]Miyai et al., 2000]. As presented in 

]Canning et al., 1997] individuals with mild to moderate PD can maintain normal exercise training. 

In addition, the literature suggests that people with PD can improve their motor performance by 

repetitive exercises ]01anow et al., 2001, Montgomery, 2004].

Attending physiotherapy sessions may be problematic and expensive ]Gage and Storey, 2004]. To 

reduce the cost of care, common practice is to prescribe a set of exercises that can be performed by 

a patient at home ]Canning et al., 2009]. The study ]Caglar et al., 2005] suggests the effectiveness of 

such an approach. The exercises address individual limitations and are prescribed keeping the patient’s
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safety in mind. The exercise programmes are usually revised and adjusted on follow-up visits to meet 

user needs. Despite the positive impact of physical exercises, two issues arise with home-based phys­

iotherapy: the lack of supervision by a physiotherapist, which might cause improper exercise program 

execution, and the loss of the motivation to sustain exercise routines by patients [Schoo et ah, 2005). 

Lack of motivation is reported to be a major cause of failure in maintaining exercise programmes 

[Loureiro et al., 2001]. Existing literature indicates that instructions and feedback given by the ther­

apist are usually appreciated by the patient [Friedrich et al., 1996] and play an important role in both 

correct exercise execution and in keeping patients motivated [Caglar et al., 2005].

The findings above suggest that a system to support mobility training at home could be beneficial 

for people with PD and their physiotherapists. The advantage for the therapist would be the possibility 

of continuous monitoring of a patient’s exercise routine and progress. The patients would be provided 

with clear instructions and feedback to assist them in correct exercise execution and encourage them 

to perform exercise sessions regularly [Loureiro et al., 2001[. This thesis investigates the feasibility of 

developing such a system.

1,6 The SMOOTH Concept

To address this question we developed SMOOTH. Several requirements were identified for SMOOTH. 

It should be affordable, accurate, and unobtrusive. These features could encourage people to purchase 

the system and sustain its regular use. In addition, to enable its independent use at home by people 

with PD it should be safe, convenient, and intuitive. The purpose of the system is to help improve the 

most common motor disturbances, which include muscle strength, balance and postural instability. 

Improvement of those functions leads to a reduction in the number of falls, injuries, and increased 

quality of life [Benatru et al., 2008]. Muscle weakness is one of the factors contributing to postural 

instability and for that reason the set of exercises supported SMOOTH aims to strengthen core and 

leg muscles [Falvo et al., 2008]. Core stability improves coordination of body movement and has a 

positive impact on posture and balance. A characteristic of home-based physiotherapy is the lack of 

supervision. As a consequence, safety concerns are paramount when a set of exercises to be performed 

at home is prescribed ]Canning et al., 2009]. To prevent the risk of falls, SMOOTH targets exercises 

that can be performed while seated on a chair.

A number of systems to monitor postures and body movement has been developed. State of the 

art systems employ a variety of methods including decision trees, artificial intelligence, and statis­

tical inference. They use miscellaneous sensors, however the majority utilise cameras and wearable 

accelerometers to collect data. Those techniques might not be suitable for a home-based system de­

signed for people with PD. Placement of wearable sensors can be a problem when considering user 

convenience and the movement constrains often reported in PD. Placing cameras in the home envi­

ronment can also be problematic due to the requirement for dedicated space and initial setup. At 

the time of the investigation, cameras in mobile phones or similar devices were not commonly used
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among older people. As the study conducted by [Kurniawan, 2008| revealed, older people are usually 

passive mobile phone users and in general are afraid to use unfamiliar technology. If the setuj) of 

a camera-based system is too complicated it might be discouraging and lead to its abandonment. 

In addition, cameras situated in a home environment might be perceived to violate a user’s privacy 

(Demiris et ah, 2008|. Some work has been done to detect body posture from using data from a set of 

sensors placed on the chair. Nevertheless to our knowledge no system that would infer user movement 

from such sensors has been developed. As well as systems for movement and posture recognition, a 

number of systems for movement rehabilitation have been developed that do not require movement 

recognition. Existing systems for exercises at home employ novel haptic interfaces and virtual reality 

to provide users with feedback. However, to date most of them are expensive and their effectiveness 

is not fully recognised [Alamri et ah, 2008].

To provide exercise monitoring and user feedback, SMOOTH consists of interfaces for a person with 

PD, physiotherapists and a central server to keep the data. The purpose of the therapist’s interface 

is to prescribe appropriate exercises, adjust their parameters to the user’s condition, and monitor 

the home exercise routine. The user interface helps a person with PD to follow the prescription, it 

provides instructions on how the exercise shoiild be done, and informs users about their performance 

by providing visual and audio feedback. Our hypotluisis is that a set of low-cost, fixt^d sensors is 

sufficient to measure exerdse performance. For that reason, SMOOTH uses a chair augmented with 
the sensors to obtain information about its user. The sc^nsors detect the force put on the seat and the 

distance from the back of the chair. On that basis current movement and position is detected. To 
interfere cmrrent user motion and adjust SMOOTH to their individual circumstances stochastic and 

probabilistic methods are utilised. The information about the current state is used to provide the user 

with feedbac:k and monitor their exercise routine.

1.7 Thesis Contribution

To date there has been some research in the area of pervasive healthcare but to our knowledge there 

has been no detailed study of what kind of technology is desired by people with PD. This research 

focuses on identification of the pervasive technology that could be beneficial for people with PD and 

evaluation of its potential to improve their quality of life and overall well-being. Consequently, the 

main contributions of the thesis can be summarised as follows:

1. Identification of the difficulties and needs of people with PD in daily living. According to the 

user survey mobility limitations were the most common problem among the participants.

2. Identification of a home-based, pervasive AT that has the potential to be beneficial for people 

with PD. The user survey identified a need for the technology to address mobility issues. For 

that reason a system for mobility training at home - SMOOTH was developed.

3. Identification of the requirements for SMOOTH including hardware and software platform.

10
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4. Design and implementation of a framework for SMOOTH. The following sentences added: The 

framework enables flexible acquisition and processing of sensor readings in regards to user char­

acteristics as well cis communication between system modules. In addition, the framework allows 

the definition and adaptation of exercises. To our knowledge, none of the systems found in the 

literature review present a complete framework that supports the functionality mentioned above.

5. Exploration of the feasibility to use a set of low-cost, fixed sensors placed on a chair to detect 

user movement and monitor exercise performance.

6. Evaluation of the exercise monitoring accuracy provided by SMOOTH, in particular:

(a) current position or movement detection;

(b) correct exercise repetition detection;

7. Evaluation of the user acceptance of SMOOTH by people with PD and physiotherapists, in 

particular:

(a) user interface and feedback;

(b) comfort of use;

(c) general feelings about the system;

To empirically answer these questions for SMOOTH a user study with potential system users was 

conducted. The study was divided into two parts. The first part investigated the user acceptance 

of the system and employed a user survey. The second part investigated the accuracy of exercise 

monitoring provided by SMOOTH and included analysis of the data obtained during exercise sessions. 

The results indicate that the use of low-cost sensors placed on a chair enables the measurement of 

exercise performance with accuracy above 91% for all exercises addressed by SMOOTH but one. The 

outcome of the user surveys shows that the system obtained positive feedback from the potential users 

and they perceived it to be useful for home-based physiotherapy.

1.8 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents a taxonomy of pervasive 

healthcare systems, which enables a better understanding of the connection between user needs and 

system features. Chapter 3 describes a user survey of people with Parkinson’s disease. The survey 

recognises difficulties, needs, and views of the participants and identifies the assistive technology that 

has potential to be beneficial for people with PD. Chapter 4 reviews the state of the art in exercise 

monitoring and posture or movement detection. Chapter 5 presents the requirements, design, and 

architecture of SMOOTH. The design of the system and movement inference techniques are described 

in detail. The evaluation of SMOOTH is presented in Chapter 6. It includes the design of the user

11
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study, data collection, analysis, and results. Finally, our conclusions and potential future work are 

discussed in Chapter 7.

12



Chapter 2

Taxonomy 1

This chapter presents a taxonomy of pervasive healthcare systems. When the design of a pervasive 

healthcare system is considered an understanding of its intended users is essential. An appropriate 

user description leads to a better understanding of the user’s needs and therefore a better design of 

the system. The purpose of the taxonomy is to provide common language for computer scientists and 

healthcare professionals (HCP) for the description of pervasive healthcare systems and to enable a 

better understanding of the connection between user needs and system features. To provide a common 

language for computer scientists and HCPs the taxonomy extends the International Classification of 

Functioning, Disability and Health (ICF) (WHO, 2001) [World Health Organisation, 2001]. The ICF 

is a multi-purpose framework for the classification of health and disability. The taxonomy identifies 

a number of properties of pervasive healthcare systems that are substantial when designing a system 

for people with disabilities. These properties were used to inform the design of SMOOTH.

The taxonomy was designed to provide a common language, improve understanding of the system 

features, and allow detailed description of a wide range of pervasive healthcare systems. The level 

of detail used to describe the system could be adjusted to the domain of its use resulting in better 

insight into system features and design.

The remainder of this chapter is organised as follows. The next part of this chapter outlines the 

contribution of the taxonomy (Section 2.1) and overviews related work (Section 2.2). Section 2.3 

describes the structure of the ICF, its components and the relationships between them. Section 2.4 

defines the structure of the taxonomy and describes the properties used for classification of pervasive 

healthcare systems. Section 2.5 pre.sents a classification of existing pervasive healthcare systems, 

showing how they fit into the taxonomy described in this paper. Finally, Section 2.6 presents a 

summary of this chapter.

'The content of this chapter has been published in [Muras et al., 2006].
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2.1 Contribution of the taxonomy

The taxonomy is intended to provide a common language for computer scientists and HCPs for 

describing pervasive healthcare systems. This is expected to lead to a better understanding of the 

connection between user needs and system features. In addition to providing a basis for describing and 

classifying pervasive healthcare systems, the taxonomy may be useful in specifying strategic research 

directions. For example, the taxonomy is expected to expose novel combinations of system properties 

resulting in the identification of research issues to be addressed in the future.

2.2 Related work

The taxonomy identifies a large variety of properties of pervasive healthcare systems including their 

intended users’ impairments and limitations, the environment and purpose of use of the systems as 

well as their inputs and outputs. In contrast, most existing work on classification of pervasive systems 

has focused on describing their properties only in terms of sensors, network structures and protocols.

In |Tilak et al., 2002] the authors presented a taxonomy of wireless nhcro-sensor network models 

that aids the definition of network architectures according to communication functions, data delivery 

models, and network dynamics. The taxonomy of wireless devices in [Cheekiralla and Engels, 2005] 

provides a classification according to five categories - communication, sensing, power, memory, and 

other features. This classification enables the definition of the structure!, communication means and 

components of a pervasive network very precisely. However, when we consider pervasive systems, in 

the context of assistive technology (AT), defining their network architecture is not enough to describe 

and classify them. A higher-level approach was presented by Estrin et al. ]Estrin et al., 2002] who 

defined three dimensions: scale, variability and autonomy in both time and space. These properties 

are oriented toward describing systems according to their j^erception of environment. While such 

approaches can be useful for the description and classification of pervasive systems, they still do not 

address enough properties to classify pervasive systems according to user conditions and needs.

A classification of technical aids for persons with disabilities can be found in ISO standard 

9999:2002 ]ISO, 2002]. This one-dimensional classification consists of three hierarchical levels. Each 

class, subclass or division consists of a code that allows the definition of a unique coding system for 

every family of device. The ISO standard also provides descriptions of the categories at each level. A 

new version of ISO standard 9999:2007 ]ISO, 2007] called ‘Assistive products for persons with disabil­

ity’ is connected with the ICE. It extends n(!w product categories and match all described products 

with ICE domains.
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2.3 International Classification of Functioning, Disability and 

Health

The ICF is based on tiie biopsychosocial model. The biopsychosocial model synthesises a medical 

model that views disability as a feature of the person and a social model that views disability as a 

socially-created problem. This approach enables all aspects of disability, which is always an inter­

action between features of the person and features of the overall context in which the person lives 

|World Health Organisation, 2001|, to be described.

Health condition
(disorder or disease)

f I
Body functions 
and structure

Activity

t i
--- 1

Participation

__ f
1

Environmental Personal
factors factors

Conxtectual factors

Figure 2.1: The model of disability that is the basis for ICF [World Health Organisation, 2001]

Figure 2.1 presents the model of disability that is the basis for the ICF. It considers disability 

and functioning as a result of interactions between health conditions (diseases, disorders and injuries) 

and contextual factors. The contextual factors are composed of external and internal factors. The 

external factors are called environmental factors and they represent the physical, social and attitudinal 

environment in which people live and conduct their lives. The internal factors are called personal 

factors and define the individual, their background, experience, overall behaviour pattern, character 

and other factors that influence how disability is experienced by the person. Figure 2.1 identifies 

the three levels of human functioning classified by the ICF: functioning at the level of the body or 

body part, the whole person, and the whole person in a social context. Disability therefore involves 

dysfunctioning at one or more of these same levels: impairments, activity limitations and participation 

restrictions [World Health Organisation, 2001[.

The ICF offers a flexible framework for classification and description of human functioning and 

disability, for that reason, it was used as a basis for our taxonomy. Its hierarchical structure allows 

the choice of a suitable level of detail for describing a person and identifying impairments, activity 

limitations and participation restrictions.
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2.4 Taxonomy

The root of our taxonomy, which is depicted in Figure 2.2 defines seven main feature categories, that 

allow us to describe a system according to its different properties. Categories A, B, and part of G 

were taken directly from the ICF and were not designed by us.

Two categories of the taxonomy provide the description of pervasive system properties according to 

potential user impairments, activity limitations and participation restrictions. Category A describes 

user impairments according to the physiologi(’al functions of body systems while category B allows 

the description of an assistive device according to the difficulties that a user may have in executing 

activities and involvement in life situations [World Health Organisation, 2001].

An important issue is defining who will be supported by the system. Classification according to 

feature C can distinguish systems designated for persons with disability, people living in the same 

house and, where appropriate, caregivers. This property influences the method used by the system 

to provide feedback. Some systems may support more than one class of person and the feedback 

provided can be different.

The next two categories (D and E) provide the description of the pervasive system according to its 

interaction with the user and the environment. Defined properties refer to the source; of sensor readings 

and the outcome of system actions. The type of measurements taken by the system influences the 

manner in which the readings are processed and how the system’s action is determined and triggercid. 

When systems for people with disabilities are considered, the manner of user feedback is a crucial 

attribute according to which they can be classified.

The next category (F) describes the environment in which the system can be used. This property 

is important, since it implies the architecture of the pervasive network, types of network devices and 

communication protocols used.

The last category (G) of our taxonomy is the most complex one. It enables us to describe the 

system properties according to the manner in which the system assists the user and what areas of 

the user’s life it supports. Six categories of system assistance have been identified, which are locator, 

guide, reminder, communicator, monitor and assistant. These categories describe the type of assistance 

desirable during activities of daily living, and each address different user needs. As identified in the
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ICF, the areas in which this assistance might be used are daily living, indoor and outdoor mobility 

and transportation, communication, protection and health. This category therefore allows systems to 

be classified according to their precisely specified purpose.

In the next part of the chapter, the terms ‘user’ and ‘participant’ will be used interchangeable for 

the description of a person with a disability that makes use of a context-aware assistive device. The 

term ‘caregiver’ and ‘carer’ will be used for any person who provides assistance to the user.

2.4.1 Body functions

The body function categories define user impairments according to the physiological functions of body 

systems. This allows the categorisation of systems with respect to potential users’ conditions. The 

type of user impairment implies the manner of feedback to the user. If a person has problems with 

hearing, the system should not use voice or sound to interact with this person. In contrast if a system 

is classified as an aid for blind people it should not use any visual feedback to its user [Ho et al., 2005]. 

This category also allows systems to be divided according to the manner in which their interface acts. 

The design of aids for persons with cognitive problems has to consider their characteristics and build 

interfaces that would be efficient for them (Kautz et al., 2002). As shown in Figure 2.3, five distinct 

categories of body functions were directly taken from the ICF.

Figure 2.3: Body function categories [World Health Organisation, 2001]

2.4.1.1 Mental functions

Mental functions allow us to describe functions of the brain. They are divided into two categories, 

which are global mental functions and specific mental functions, illustrated in Figure 2.4. Each cate­

gory allow us to describe a user’s mental impairments in more detail. Global mental functions define 

general functions of the brain and include function of consciousness, orientation, intellect, personal­

ity, energy and drive, and sleep. Specific mental functions include attention, memory, experience of 

self and time, and psycho-motor, emotional, perceptual, though, higher-level cognitive, calculation, 

sequencing complex movements functions as well as mental functions of language.
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Figure 2.4: Mental function categories [World Health Organisation, 2001]

2.4.1.2 Sensory functions and pain

Sensory functions and pain allow us to describe a system according to impairments in the users’ 

senses. As illustrated in Figure 2.5, three categories were defined, which are seeing and related 

functions, hearing and vestibular functions, and additional sensory functions. Seeing and related 

functions include quality of vision, functions of sensing light and colour and visual acuity of distant 

and near vision as well as all impairments connected with vision.

To be consistent with the ICF, our taxonomy defines a category for hearing and vestibular functions 

which consists of the two categories: hearing and vestibular functions. Hearing functions include 

sound detection and discrimination, localisation of sound source and speech discrimination. Vestibular- 
functions include sensory functions of the inner ear related to position, balance and determination of 

movement.

The last category additional sensory functions include the senses of taste, smell and touch as well 

as functions related to temperature and stimuli.

Sensory functions 
and pain

Figure 2.5: Sensory function categories [World Health Organisation, 2001]
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2.4.1.3 Voice and speech functions

Voice and speedi functions include production, quality and range of voice as well as the manner of 

speech such as fluency, rhythm or speed. Systems supporting these user impairments, if they interact 

with the user based on its speech, tend to use advanced algorithms for voice recognition.

2.4.1.4 Functions of the cardiovascular, haematological, immunological and respiratory 

systems

This category allows us to describe functions of the heart and blood vessels, blood production and 

immunity, and functions of respiration and exercise tolerance. As depicted in Figure 2.6, we have 

defined four different categories. Functions of the cardiovascular system include functions of the heart, 

blood vessels, and blood pressure. All cardiac problems are covered by this category. Functions of the 

haematological and immunological systems include blood production, oxygen and metabolite carriage, 

and clotting functions as well as functions of the body related to protection against foreign substances, 

including infections. Respiration functions cover inhaling and exhaling air into the lungs, the exchange 

of gases between air and blood and the muscles involved in breathing. Additional functions and 

sensations of the cardiovascular and respiratory systems include functions such as coughing, sneezing 

and yawning, exercise tolerance and various sensations connected with the heart and breath.

Functions of the cardiovascular, 
haematological, immunological 

and respiratory system

Additional functions 
and sensations of the 
cardiovascular and 
respiratory systems

Figure 2.6; Functions of the cardiovascular, haematological, immunological and respiratory system 
categories [World Health Organisation, 2001]

2.4.1.5 Neuromusculoskeletal and movement-related functions

This category allows the description of potential user movement and mobility, including functions of 

the joints, bones, reflexes and muscles. As illustrated in Figure 2.7, three categories were defined, 

to better describe system properties. Functions of the joints and bones allow us to describe the 

pervasive system according to its potential user’s mobility and stability of joints and bones. They 

include functions describing the range and ease of movement, and maintenance of structural integrity 

of a joint as well as the range and ease of movement of the scapula, pelvis, carpal and tarsal bones. 

Muscle functions allow us to describe an individual’s muscle power as well as muscle tension and ability 

to sustain its contraction. The last category movement functions includes properties for identification 

of reflex, voluntary and involuntary movement control as well as related sensations and gait pattern.
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Figure 2.7: Neuromusculoskeletal
[World Health Organisation, 2001]

and movement-related function categories

2.4.2 Activities and participation

The activities and participation category provides the description of activity limitations and partici­

pation restrictions of potential system users. This category enables us to describe pervasive systems 

according to its user’s constraints. It provides properties to define types of tasks that the user can­

not manage. The type of user limitation and restriction puts various requirements on systems like, 

i.e., assistance with exercise. If we consider systems for rehabilitation they can support improve­

ment of different user capabilities. One can aim to improve a user’s ability to change body position, 

whereas another can intend to improve performance of daily routines by providing appropriate exer­

cises (Holden, 2005]. As illustrated in Figure 2.8, five distinct categories of body functions were taken 

directly from the ICF.

Figure 2.8: Activities and participation categories [World Health Organisation, 2001[

2.4.2.1 General tasks and demands

General tasks and demands allow us to describe the potential user of the system according to the man­

ner in which he/she copes with single or multiple tasks, organising routines and handling stress. This 

category includes activities like managing and completing the requirements of day-to-day procedures 

or duties, such as budgeting time and making plans for activities throughout the day or preparing, ini­

tiating and arranging time and space, as well as carrying out coordinated actions in order to complete 

the requirements of day-to-day procedures or duties. In addition, this category also covers carrying 

out tasks demanding significant responsibilities and involving stress, distraction, or crises, such as 

exams or driving a car in heavy traffic.
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2.4.2.2 Communication

This category enables us to identify system’s properties in relation to its user’s restrictions or limita­

tions in communication. They include receiving and producing messages, carrying on conversations, 

using communication devices, and use of spoken language, signs, and symbols. As illustrated in Fig­

ure 2.9, three distinct categories to better describe the system properties were taken from the ICF. 

Communicating - receiving covers comprehending the literal and implied meanings of symbols and 

drawings, messages in spoken and written language and ones conveyed by gestures. Communicating - 

producing includes producing the literal and implied meanings of messages that are conveyed through 

spoken and written language as well as gestures, symbols and drawings.

The last category conversation and use of communication devices and techniques was divided, 

as pictured in Figure 2.9 into two more accurate categories. Conversation and discussion include 

starting, sustaining and ending an interchange of thoughts and ideas, carried out by means of spoken, 

written, sign or other forms of language, with one or more people. Using communication devices and 

techniques allows us the description of the capacity to use telecommunication devices like phones and 

faxes, writing machines such as typewriters, and communication techniques like lip reading.

Conversation and 
use of communication 
devices and techniques

Conversation and 
discussion

Using communication 
devices

and techniques )
F'igure 2.9: Communication categories [World Health Organisation, 2001]

2.4.2.3 Mobility

Mobility refers to every kind of intended movement of the human body. This category describes the 

change of body position or location by walking, running or climbing, and by using various forms of 

transportation. It also covers carrying, moving or manipulating objects. As shown in Figure 2.10, four 

categories are used. Changing basic body position includes performing and sustaining body position in 

such activities as lying down, squatting, kneeling, sitting, standing and bending as well as adjusting or 

moving the weight of the body or transferring oneself from one position to another. Carrying, moving 

and handling objects covers activities such as lifting and carrying objects with the hands, arms or on 

the shoulders, head, hip and back as well as pushing them with the legs or kicking. This category 

also describes properties of hand movements like picking up, grasping, manipulating or releasing.
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and arm use like pulling, pushing, reaching, turning or twisting, throwing and catching. The next 

category allows the description of all aspects of walking and moving. It defines user limitations in 

distance and surface of walking, types of movement like crawling, climbing, running, jumping and 

swimming, moving in different locations within or outside the home and building, as well as using 

specific equipment like skis or wheelchairs. The last category moving around using transportation 

addresses the use of all means of transport, such as bus, boat, train or car including animals and 

animal-powered vehicles as a driver as well as a passenger.

Figure 2.10: Mobility categories [World Health Organisation, 2001)

2.4.2.4 Self-care

This category includes aspects of the user’s ability to manage self-care activities. As illustrated in 

Figure 2.11, seven categories are specified. Washing oneself includes washing and drying one’s whole 
body, or body parts like washing the hands, feet, face or hair, using methods, such as bathing, 

showering, and drying with a towel. Caring for body parts refers to looking after the skin, teeth, hair, 
fingernails and toenails. Toileting focuses on coordinating and managing the elimination of human 

waste (menstruation, urination and defecation), and cleaning oneself aftcii wards. Dressing covers all 

the activities involved in putting on and taking off clothes or shoes as well as their appropriate choice. 

Eating and drinking allows us to describe potential user ability to coordinate all the tasks and actions 

needed to consume served food or drink. The last category looking after one’s health includes ensuring 

one’s physical comfort, managing diet and fitness, and maintaining one’s health by avoiding health 

risks, and following medical and other health advice.

% i Looking afterJ ^ one'shealth J
Figure 2.11: Self-care categories [World Health Organisation, 2001[

2.4.2.5 Domestic life

This category enables the identification of the system properties according to its user’s ability to carry 

out domestic and everyday actions and tasks. It includes acquiring a place to live, food, clothing and

22



Chapter 2. Taxonomy

other necessities also storing them, preparing meals, household cleaning and repairing, caring for 

personal and other household objects, using household appliances and assisting others.

2.4.3 Support

The support category in reference to pervasive healthcare systems allows the identification of who may 

benefit from the system. It does not necessarily have to be the person who is the direct target of the 

device’s action. One device can support more than one person and not necessarily all of them have 

to be the target of its action. If we consider a device that informs a caregiver in case of emergency, 

it also helps its user to stay safe and well even if that person is not the direct target of the device’s 

action |Axisa et ah, 2005j. As illustrated in Figure 2.12, 3 different targets are depicted for support, 

which are the participant, caregiver and vicinity.

Figure 2.12: Support categories

2.4.3.1 Participant

The j)articipant can be described as a person with disabilities who is a user of the system. They can 

receive support from the pervasive assistive device in several manners. That can be adjusting appli­

ances to user’s preferences, warning about potential danger |Perry et ah, 2004], reminding about some 

events or fixed appointments [Wu et ah, 2005, Pollack et ah, 2003], help with exercises JHolden, 2005], 

step-by-step guidance through some task or route ]Kautz et ah, 2002] or contacting a caregiver in case 

of emergency ]Haigh and Kiff, 2004].

2.4.3.2 Caregiver

The caregiver can be described as a person who supports, but not necessarily lives with, the user. For a 

caregiver the most important issue is the user’s safety, so the advantage from using an assistive device 

could be informing them about emergency situations and the progress of daily routines or deviations 

from them ]Haigh and Kiff, 2004, Consolvo et ah, 2004]. The caregiver can also be a healthcare pro­

fessional (HCP), who is in charge of the user’s health and can, for example, be supported by obtaining 

measurements of vital signs for analysis ]Axisa et ah, 2005].
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2.4.3.3 Vicinity

The vicinity can be described as people living with the user in the same flat, house or building, 

but who are not responsible for taking care of the user. They can be supported by pervasive 

systems that would manage domestic appliances and prevent them from causing damage like fire 

[Georgia Institute of Technology, 2009, Perry et al., 2004].

2.4.4 Source of data for sensor

This category allows the description of system properties related to the source of its sensors’ readings 

and enables the classification of systems according to the kind of data that triggers its action. Depend­

ing on the purpose of the assistive device and its level of development various triggers can be used. 

If we consider a system that monitors vital signs its general purpose is to collect data from the user, 

however its action can be triggered by different factors. One of them could be time. In predefined 

periods of time outcome measurements could be sent to a storage server [Axisa et al., 2005). In this 

case, gathered data could be used for later analysis of the user’s health. In a second case, the system 

action could be triggered when collected readings indicate that there is danger to the user’s health. In 

this case information about the risk could be sent to the appropriate authority [Haigh and Kiff, 2004). 

Pervasive systems can use many sources as their input. Usually the more advanced the system is, the 

more information from different sources it uses. This category can classify the pervasive healthcare 

system according to its sensor readings. As illustrated in Figure 2.13, four distinct categories are de­

picted to describe the source of sensor readings, which are participant/individual, object, environment, 

and time.

Source of data 
for sensor

Figure 2.13: Source of data for sensor categories

2.4.4.1 Participant/Individual

This category describes systems that use the person as the source of their sensor readings. They can 

collect typed messages, information about the person’s location jde Silva et al., 2005|, body move­

ments [Holden, 2005(, and voice recordings as well as readings such as vital signs like blood pressure. 

In addition to whatever system action is triggered by the outcome of processing the data described
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above, the user can also activate a device by pressing a button [Haigh and KifF, 2004J. The source 

of collected measurements influences the type of sensors used. Depending on the system’s purpose 

wearable or stationary sensors can be used for measurement collection.

2.4.4.2 Object

This category allows us to identify systems that use some objects as the source of their sensor readings. 

Examples of objects that could be used as the source of measurements are domestic appliances like 

ovens, beds, chairs, light switches, taps, or doors. The system’s sensors can be embedded in the 

objects listed above or focused on them like cameras and they can collect data about the object’s 

location, temperature, movement and state (for example, if a window is opened or an oven is on) 

[Perry et al., 2004|.

2.4.4.3 Environment

This category describes systems that use sensor readings from a wider area using special data pro­

cessing algorithms to receive useful information. As a result of this approach, a lot of different 

information can be obtained. Collected data can be used to recognise people, objects or activities 

jde Silva et al., 2005, Ho et al., 2005). The data are usually obtained from cameras and microphones. 

These type of devices allow the data acquisition from a wide area. Systems classified in this category 

due to processing of gathered data are more likely to require higher processing power.

2.4.4.4 Time

The systems in this category, can use time readings in two ways. Information about the time can be 

used for saving other sensor readings with a time stamp that can be useful for later data processing 

and/or for obtaining an outcome that is situated in space-time |de Silva et al., 2005]. Collected data 

can be used to infer the probability of events or user activities that depend on day time or to place 

detected events in sequential order. The use of information about time can also be utilised to trigger 

reminders about some scheduled tasks.

2.4.5 Target of actuator’s action

This category describes properties of a system’s action. It enables the definition of what individual 

or object a device’s outcome is executed. Pervasive systems can be used for gathering data for future 

analysis by a HCP, informing individuals about some events or fixed appointments or controlling 

some other device [Perry et al., 2004[. Depending on purpose of the system, the target of system 

feedback can vary. The aim of this category is to describe the final target of the system’s action. As 

illustrated in Figure 2.14, four distinct categories are defined to describe the final recipient of a device’s 

action, which are participant, caregiver, object, and data storage. For example, when reminding the 

participant about taking medicines, the ubiquitous assistive device can use text messages, sound or

25



2.4. Taxonomy

blinking lights for this purpose |Ho et ah, 2005, Haigh and Kiff, 2004). All of the systems, regardless 

of the method of communication they use, whose purpose is informing the participant, are covered by 

the participant category.

Target of 
actuator's action

Figure 2.14; Target of actuator’s action categories

2.4.5.1 Participant

This category describes systems in which the user is the recipient of the final action. This user can 

be instructed or reminded about some event, informcid about some fact, e.g., that the front door is 

open, or in the case of using a computer can see the system’s action on the screen |Feys et ah, 2001). 

Assistive devices can also provide assistance with the participant’s activities. They can help with, 

e.g., walking, or medication delivery [Jafari et ah, 2005).

2.4.5.2 Caregiver

This category defines the caregiver as the final recipient of a system’s action. When considering the 

caregiver as a target of action, the main aim of assistive devices, may be to inform them in case of 

danger and about daily routine or some particular event like the participant leaving the house. The 

caregiver can obtain this information by phone, text message or email. As well as receiving emergency 

messages it may be possible to obtain periodic reports with vital-sign measurements such as blood 

pressure or heart and respiration rate.

2.4.5.3 Object

All domestic appliances, devices and equipment are included as objects. This category allows the 

description of all systems whose action is executed on an object. That could be automatic change 

of water temperature from the tap, light control or turning off the oven when it is no longer used 

(Georgia Institute of Technology, 2009). The action may be triggered depending on environmental 

conditions and specific user presence or actions.
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2.4.5.4 Data storage

Data storage can be used for medical purposes as well as for saving the outcomes of monitoring either 

a room (de Silva et al., 2005) or a person [Axisa et al., 2005). This category allows the description of 

systems that do not have a direct impact on their surrounding. Examples of such information could 

be checking if a participant took medicine or who entered some room in the last three hours.

2.4.6 Environment

This category defines where the pervasive system is used. This category provides the classification 

of systems according to the network architecture used, types of network devices and the manner in 

which they communicate. As illustrated in Figure 2.15, two main categories are identified, which are 

indoors and outdoors. This determines the range of system deployment. Environment characteristics 

also influence the accuracy of measurements that have to be taken to accomplish the objectives of the 

system.

Figure 2.15: Environment categories

2.4.6.1 Indoors

The characteristics of indoor environments allows the use of wireless communication technologies as 

well as cable connections. As illustrated in Figure 2.15, it distinguishes between room, house and 

building. These categories were defined to separate systems depending on their range of deployment 

and the manner in which they interact with their users. Technology utilised in a house aims to interact 

with its residents, so it is more likely that it is able to be customised to particular users. In contrast 

systems used in buildings are designated to support many unknown users. In this case, they are 

supposed to be more flexible and universal.

When we consider systems used in one particular room, they usually do not have as developed a 

structure and number of devices as ones placed all over a house or building. As illustrated in Figure 

2.16, room can be better described using five more detailed categories, which are kitchen, bathroom.
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living room, bedroom and other. All of these places put different requirements on a system which is 

placed in them and include different types of appliances. The most important issue for the systems 

placed in bedrooms is their users’ privacy. Pervasive systems that are used in the bathroom must 

be unobtrusive to respect user’s privacy, additionally they should be very reliable and react quickly, 

since this environment is potentially dangerous. The systems placed in kitchen should also be very 

reliable, due to the presence of appliances that are more likely to cause harm. They tend to use 

advanced processing algorithms and efficient user feedback, due to the relatively complex type of 

tasks supported. Context-aware assistive devices placed in living rooms are more likely to customise 

to user preferences quickly and accurately. The other category refers to systems, which are not placed 

in any of previously described rooms.

Figure 2.16: Room categories

2.4.6.2 Outdoors

This category allows the description of the properties of systems that are used outside houses or 

buildings. In contrast to the systems working indoors, assistive devices used here will use technologies 

that require communication over a large area. Because the area of the system deployment is bigger 

than a house or building a very high level of accuracy of sensor’s readings is not available. For 

that reason, in these kinds of systems mostly GPS technologies will be used. The pervasive systems 

that are applicable outdoors mostly use wireless sensors, due to user convenience and environment 

characteristics |Loh et al., 2004|.

As depicted in Figure 2.15, two categories are defined, which are bounded and unbounded. The 

term bounded refers to an area that is restricted in some dimensions. That can be a garden outside a 

house, a car park or a football pitch. Technologies used to cover this space typically use sensors that 

are fixed to some static objects, for example, cameras. The term unbounded, in contrast, refers to the 

world at large. That puts demand on use of wireless and mobile technologies.

2.4.7 Products and technology

This category provides a description of pervasive healthcare systems according to two distinct aspects, 

which are the type of assistance provided and area of use. If we consider systems that guide users, 

information about the type of guidance is essential. If the device gives user directions about a route it
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has different requirements to the device that gives step-by-step instructions to complete some activity 

[Kautz et al., 2002). Some devices can have more than one function and can be used in more than one 

area. Smart homes [Perry et al., 2004, Georgia Institute of Technology, 2009] equipped with many 

context-aware devices can support user’s memory with reminders and monitor its occupant well-being.

Figure 2.17: Products and technology categories [World Health Organisation, 2001]

2.4.7.1 Areas of use

To give a comprehensive view of device use, areas in which it can be used should be defined. The 

taxonomy specifies five areas of use [World Health Organisation, 2001], as illustrated in Figure 2.17. 

Depending on area, devices with different characteristics may be found.

• Use in daily living: It includes all the dev'ices that can be used to help in activities of everyday 

living like cooking, washing, following a schedule, or controlling appliances.

• Indoor and outdoor mobility and transportation : This area contains all the devices that assist 

the user in changing the body position or its location. They can support physical impairments 

such as problems with walking as well as cognitive ones like finding the right way home.

• Communication: This includes all the devices that help to communicate with another person or 

device-like systems that provide simplified languages based on pictures or specialised computer 

interfaces.

• Protection: This area includes devices that prevent harm to the user and keep him remaining 

as safe as possible. This can be monitoring systems informing caregivers in case of any danger, 

appliance managers switching them off when needed or reminders about taking medication.

• Health: This area contains devices that support well-being or recovery. These can be devices for 

rehabilitation or vital signs monitoring.

2.4.7.2 Types of assistance

This category enables us to describe the pervasive healthcare systems according to their purpose 

of use. The pervasive assistive devices are designed to support various user needs. That could be 

reminding about some fixtures, locating missing objects or assistance with some tasks. Six categories 

are defined to describe distinct functions of the systems.
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• Locator: The function of these devices is localisation of objects or people. The systems can help 

the participant to find necessary items or inform caregivers about a participant the location.

• Guide: These systems aim to give the user assistance needed to finish some task. They can 

support performing activities by giving step-by-step prompts or following the appropriate route 

by giving the right direction.

• Reminder : The assistance provided by these systems is reminding a user about scheduled events, 

actions or activities. Depending on user characteristics the type of device feedback can be 

different. That can be, e.g., text message or audio alarms.

• Communicator: The purpose of these systems is to provide communication between the system 

user and third parties. That can be contacting appropriate authorities in case of emergency or 

providing suitable language to enable mutual understanding of participant’s conversations.

• Monitor: The function of these devices is surveillance of people or places. In case of people, 

things like vital signs, performed activities or mobile status can be monitored. In case of places, 

rooms or houses can be monitored and desired information like room occupancy can be received 

by data analysis.

• Assistant: The purpose of these devices is to aid their user in some particular activity, for 

example, haptic devices supporting computer use without hand tremor or devices that help with 
walking.

2.4.7.3 Relationship between areas of use and types of assistance

To provide more specific system descrijjtions, types of assistance are combined with areas of system 

use. This approach allows the creation of a relationship matrix, illustrated in Table 2.1. If relation 

between some areas of use and types of assistance exists it is marked with As pictured, not every 

function of assistance can be applied to all the areas, therefore the matrix defines possible c;onnections. 

This assignment was based on a review of the literature and existing devices, however it is possible to 

add more assignments in case of such a need.

2.5 Classification of pervasive healthcare systems

In order to evaluate the taxonomy, several examples of applying the taxonomy to existing pervasive 

systems are illustrated in Table 2.2. The summarised systems were chosen to cover various properties 

like system purpose, user characteristics and technology used.

‘The Activity Compass’ [Kautz et al., 2002| is hand-held device whose purpose is to show the 

direction to a specified location. It can be used outdoors (GPS is used for the determination of 

user loc:ation) to pinpoint, for example, home, or indoors (infrared ID tags are used) to locate, e.g.,
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Indoor and outdoor mobility and transportation • •
Communication • •
Protection • • • • •
Health • • •

Table 2.1: Relationship between areas of use and types of assistance

a bathroom. It can be useful for people with Alzheimer’s disease (wandering) or other users with 

orientation problems. ‘The Orienting Tool’ [Wu et al., 2005] is also a hand-held device designed to 

provide reminders for people with cognitive decline. ‘The Tremor Control System’ [Feys et al., 2001] 

was created to help people with hand tremor to use computer pointing devices by applying appropriate 

values to parameters like speed or gain. ‘The In-home elder healthcare system’ ]Ho et al., 2005] that 

monitors patients’ medication intake provides information about the amount of medication taken by 

the user and enables reminders if the user is in its vicinity and the time is appropriate. The last 
summarised pervasive system, ‘The Millennium Horne’ ]Perry et al., 2004] is the most complex one. 

Its purpose is to assist users in daily activities like controlling house appliances or adjusting them to 

the environmental state as well as monitoring its user and the house where it is deployed providing 

appropriate alarms in case of emergency.

2.6 Summary

This chapter presented a novel taxonomy of pervasive healthcare systems. The taxonomy identifies a 

set of fundamental properties that enable a system to be described according to user characteristics, 

its purpose and environment of use, as well as the technologies used. These properties are arranged in 

a hierarchical manner starting from the root of the taxonomy, which defines the relationships between 

all seven main feature categories. As a result of its hierarchical structure, the taxonomy is flexible and 

provides easy adjustment to description of new system properties. New categories and properties can 

be easily added depending on system characteristics. For that reason, the taxonomy may be extended 

for novel system properties without reorganisation of its existing structure. In addition, the taxonomy 

is based on the ICF, which provides standard language and a framework for the description of health 

and disability. The taxonomy is unique in considering the attributes of the users in a number of 

different ways. Existing work focuses on providing a framework designed either for the description of 

technologies used or user conditions. The set of properties covered by the taxonomy, that describe 

systems according to their environment and purpose of use as well as the technology applied and their
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Chapter 2. Taxonomy

potential users, provides a better framework for identification of system dimensions in more detail. 

As a result, it can be used for classification of pervasive healthcare systems, in which understanding 

characteristics of their potential user is essential.

The taxonomy was the basis of the creation of user survey ‘Assistive technology in everyday living’ 

described in the next chapter. In addition, the properties of pervasive healthcare systems defined in 

the taxonomy were used to inform the design of SMOOTH.
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Chapter 3

User survey 1

As presented in tiie introduction of this thesis, the range and variety of assistive technologies (ATs) be­

ing developed and researched as well as those that are coininercially available is growing (Scherer, 2U0‘2|. 

To date, despite the variety of ATs that are available, knowledge about their existence and use among 

people with Parkinson’s disease (PD) is limited (Roelands et ah, 2002, Constantinescu et ah, 2007). 

To design and manufacture AT to support people with PD, identification of their ne(!ds is essential. 
For that reason our study engaged the community of peo[)le with PD to investigate their problems and 

the ATs used or perceived to be relevant in their everyday living. The previous chapter presented a 

taxonomy of pervasive healthcare systems designed to enable a better understanding of the connection 
between user needs and system features. Our study was designed on the basis of this taxonomy. The 

aim of the survey was to explore the individual circumstances of people with PD, as well as their ideas 

and opinions about AT that may be used for daily living.

The remainder of this chapter is organised as follows. Section 3.1 describes the design process 

and structure of the survey as well as the data collection procedure. Section 3.2 reports our results 

including those addressing the limitations in functions and activities of the participants, and their 

views on the AT use. This is followed (Section 3.3) by a discussion of the results. Next, survey 

limitations (Section 3.4) and conclusions (Section 3.5) are ])n!sented. On the basis of the survey 

results. Section 3.6 identifies AT that could be beneficial for people with PD. Finally, a summary of 

this chapter is presented.

3.1 Method

Several methods were identified in order to obtain information that could help to better understand 

user needs. They included direct interviews, phone interviews, postal surveys, and observation of daily 

living of the patients in their natural environment. The factor kept in mind during the c:hoice of the 

study methodology was acquiring a representative sample of people with PD in different stadium of the

'The content of this chapter has been published in [Muras et ah, 2008].
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disease. However, there were time and cost constraints, and approval from the ethics committee was 

required for the recruitment of participants and subject to the employment of appropriate methods 

of recruitment and protocols. In the case of personal contact, the recruitment process was more time 

consuming and the protocols were more strict, e.g., required the presence of healthcare professional, 

than in the case of a postal survey. In addition, it is more likely that people in poor condition would 

not be as eager to take part in the study if it required personal contact. For these reasons, this 

study employed a self-reported user survey methodology conducted by post in order to investigate the 

needs of people with PD. The study was approved by the Faculty of Health Sciences Research Ethics 

Committee, Trinity College Dublin.

3.1.1 Survey instrument design

The phase prior to the design of the user survey involved a systematic review of the literature to 

establish what AT may be available for use by people with PD. Articles for the review were compiled 

from a number of sources. Searches were performed in the databases of PUBMED‘^, CINAHL®, 

AMED'* *, ScienceDirect® and the ACM Digital Library®. AT databases were also reviewed and included 

ABLEDATA’^, assistivetech.net*, assistireland.ie®, and Microsoft Accessibility*®. This information 

was used to design the taxonomy described in previous chapter. The taxonomy in conjunction with 

the clinical experience of Dr. Stokes was employed to design the first version of the user survey. The 

initial version of the user survey was revised based on feedback from physiotherapists and occupational 

therapists working with people who have PD and further pilot studies of the survey instrument were 

conducted with people with neurological disorders from the Irish Wheelchair Association (IWA)

3.1.2 User survey

The first part of the user survey consisted of a questionnaire to be completed by the person with PD 

intended to explore participants’ individual circumstances and their views on the AT that they use 

for daily living. The questionnaire consisted of single and multiple-choice questions and Likert rating 

scales. This first part of the survey was designed to gather general information about the participants, 

e.g. age, gender, diagnosis and place of living, as well as more specific information about difficulties 

in daily living and the types and usability of AT used during specified activities of daily living.

The second part of the user survey aimed to explore participants’ ideas and opinions about AT and 

their features. This part of the questionnaire consisted of open-ended questions only. This approach

^ http://WWW.pubmed.gov
*http://www.ebscohost.com/cinahl 
'*http;//web.ebscohost .com/ehost 
^http://www.sciencedirect.com 
®http://portal,acm.org 
^http://www.abledata.coin 
®http://assisti vetech.net 
®http://www.assistireland.ie 

^®http://www.niicrosoft .com/enable/at/ 
^‘http://www.iwa.ie
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enabled participants to give more details about their views and experience.

3.1.3 Data collection

A survey of people with PD was conducted by post. The following inclusion criteria were used: (1) a 

diagnosis of PD; (2) ability to fill out the questionnaire independently; and (3) aged 18 or over. One 

hundred survey sets were delivered to a support group for people with PD (PALS) which is a branch 

of the Parkinson’s Association of Ireland, where they were sent to 100 out of 200 PALS members all 

over Ireland. Address labels were chosen at random, therefore participants recruited ranged from 

newly diagnosed to these with advanced-stage disease. Each survey set contained information about 

the purpose of the research, a consent form, and the questionnaire as well as a stamped envelope with 

return address to facilitate and encourage participants to fill out the questionnaire and send it back. 

The overall response rate during the data collection period (August, 2006 - November, 2006) was 59%.

3.1.4 Analysis of data

Quantitative data were coded and inputted into Excel where descriptive statistics were computed. Chi- 

squared and Fisher’s Exact tests were employed to consider the relationships between categorical data. 

The qualitative data was reviewed by two researchers independently. Responses to open questions 

were reviewed by two researchers independently. They were categorised and themed separately and 

any disagreement between the categories of answers was resolved by discussion.

3.1.5 Limitations of methodology

There are a number of limitations related to the self-reported survey methodology [Razavi, 2001|. 

They include a tendency to agree with statements as presented (acquiescence bias), a tendency to 

respond consistently and avoid extreme sections of the scale (central tendency bias), and a tendency 

to answer questions in such a way as to represent oneself in a favourable light (social desirability 

bias). In self-reported surveys the measurements are subjective for each pai'ticipant, which means 

that there is no common reference between ratings of participants, e.g., one person may rate their 

sight as good and another person having the same sight may rate it as very good. In addition, this 

user survey aimed at exploring participant’s views on AT. It is plausible that some i)articipants did 

not perceive particular devices they use on a daily basis as AT. Finally, the survey was conducted by 

post. Therefore, there might also be a non-responder bias. This methodology was chosen in order to 

obtain a fair representation of people with PD.

^^http://gofree.indigo.ie/~pdpals/
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3.2 Results

This section presents the results obtained from the user survey. The remainder of this section is or­

ganised as follows. Section 3.2.1 presents general characteristics of the participants including their age 

and disease duration. Section 3.2.2 describes problems encountered in every day living including limi­

tations, functions, and activity restrictions. Finally, Section 3.2.3 presents use of and user perspective 

on AT.

3.2.1 General characteristics

A total of 59 (25 men and 34 women) people with PD participated in the study. One person failed 

to report the year in which they were born and for that reason data from 58 subjects was used 

for characterisation of the participants’ age, age of diagnosis and duration of disease. The mean 

participants’ age was 58 years (range 35-77 year's; standard deviation (SD)±10 years), the mean age 

of diagnosis was 49 years (range 20-67 years; SDTll years) and the mean time since diagnosis of PD 

was nine years (range 1-33 years; SD±8 years). The distribution of participants’ ages is illustrated in 

Figure 3.1a and disease duration in Figure 3.1b.

M - .14 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74 75 - 79 80 - 84

Age range

(a) Participants’ age

0-4 5-9 10-14 15 -19 20-24 25 -29 30-34 35 -39

Year range

(b) Disease duration

Figure 3.1: Distribution of participants’ age and their disease duration

Half (51%) of the 59 respondents lived with their spouse or partner, a small proportion (7%) lived 

with their children only, and almost a quarter (24%) lived with their spouse/partner as well as their 

children. The rest of the participants lived alone (12%) or with other people including parents and
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siblings.

3.2.2 Limitations, functions, and activity restrictions

This section presents limitations, functions, and activity restrictions reported by the participants. 

The remainder of this section is organised as follows. Section 3.2.2.1 presents self-reported condition 

of several functions such as flexibility and physical strength. Section 3.2.2.2 describes problems with 

mobility, e.g., changing body position or transferring from one place to another. Section 3.2.2.3 and 

Section 3.2.2.4 report difficulties with self-care and household tasks, respectively. The relationship 

between physical strength, flexibility, problems with mobility, and self-care and household tasks is 

presented in Section 3.2.2.5. Finally, Section 3.2.2.6 describes relationship between tiredness and 
fatigue.

3.2.2.1 Self-reported condition

In Table 3.1 self-reported ratings of participants’ memory, vision, hearing, quality of speech and 

physical condition are illustrated. .4 five-level Likert sc'ale was employed to enable participants to rate 

their responses. The middle rating, which is usually supposed to be neutral, is labeled as ’good’. It 

results in three positive and two negative options and might have influenced the subjects’ ratings. The 

functions and senses listed above were ordered from the highest rated (on top) to the lowest. To put 

them in order the ratings reported as ‘excellent’ and ‘very good’ were added for each function/sense 

and ratings reported as ‘poor’ and ‘very poor’ wen; subtracted from them. The items were ordered 

on the basis of the difference (from highest to lowest). Hearing, memory, and vision were the highest- 

rated. The lowest-rated functions were quality of speech, flexibility, and physical strength. A quarter 

(25%) of the participants rated their flexibility as ‘poor’ or ‘very poor’. The term ‘flexibility’ was used 

in this survey as opposed to the term rigidity often associated with PD as the former is a commonly 

used lay term that incorporates both the rigidity that may be experienced by people with PD and 

general flexibility. The pilot revealed no difficulties with the use of this term. Quality of speech was 

reported as ‘poor’ or ‘very poor’ by 27% of the respondents. Physical strength was reported as the 

most common problem. One third (34%) of the respondents reported it as ‘poor’ or ‘very poor’ and 

only one fifth (19%) as ‘very good’ or ‘excellent’.

3.2.2.2 Mobility

Only 12% of 59 respondents reported that they did not have any problems with changing body 

position and transferring from one place to another. Problems noted by the other respondents (88%) 

are illustrated in Figure 3.2. More men (92%) than women (85%) reported problems with mobility. 

The most common problem for both genders was walking and the majority of the respondents (59%) 

found it difficult. Half of them (51%-53%) had problems with changing body position including 

standing up from a chair, getting up from the floor, getting into/out of bed, and transferring in/out of
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Function or sense Excellent Very good Good Poor Very poor

Hearing 15% 27% 47% 8% 2%
Memory 12% 32% 37% 19% 0%
Vision 9% 22% 53% 16% 0%

Coordination 2% 18% 61% 18% 2%
Quality of speech 7% 19% 47% 27% 0%

Flexibility 4% 19% 53% 23% 2%
Physical strength 5% 14% 47% 32% 2%

Table 3.1: Overall self-reported ratings of participants’ condition

a car. 36% of the respondents had problems with moving outdoors and these were more common than 

difficulties with moving indoors (29%). Going up/down the stairs was a difficult ta.sk for a quarter 

(24%) of the participants. A few respondents (8%) reported ‘freezing’ as a problem in daily living. 

Strength of the hand(s) was a problem for 41% of the respondents and hand movements were reported 

as a difficulty by one third (31%) of them.
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chair floor bed stairs hand(s)

Type of problem

Figure 3.2: Problems with mobility

3.2.2.3 Tasks of self-care

As reported in Table 3.2, over half of the participants said that they did not have any difficulties with 

most self-care tasks. Two thirds of the participants (64%-69%) reported no problems with going to 

the bathroom, washing, and eating or drinking. Half of the subjects (53%) reported no problems with 

dressing. A quarter (21%-26%) found tasks of self-care difficult or needed more time to accomplish 

them but still managed on their own. Dressing, rather than any other of the tasks mentioned above, 

was the most common problem with one fifth (19%) of the respondents needing help from their 

caregivers. Only 2%-3% of the respondents used an AT.
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Task Eating / drinking Using bathroom Washing Dressing

Managed without difficulty 69% 66% 64% 53%
Managed with difficulty 24% 21% 26% 25%

Assistive device used 2% 3% 2% 2%
Help needed occasionally 5% 7% 3% 19%
Help needed all the time 0% 3% 5% 2%

Table 3.2: Management of self-care tasks

3.2.2.4 Household tasks

In Table 3.3, participants’ problems with household tasks are illustrated. A minority of subjects had 

problems with washing up and preparing meals. 63% and 44% of survey respondents, respectively, 

managed to do the tasks listed without difficulty. 18% and 23%, respectively, experienced some 

difficulties but could still manage on their own. 9%-18% of survey respondents could not do them or 

needed the help of other people all the time. 63% of the subjects reported that they did not have 

any problems with doing washing up. More respondents had difficulties with preparing meals. 44% 

could do it on their own without any problems, 16% occasionally needed other people to help them, 

and 7% could not do the task at all. The most common, accoifling to the survey respondents, were 

difficulties with doing shopping, carrying objects, and doing laundry. 58%-61% of the participants 

could complete these tasks on their own and 23%-36% could not do them or needed assistance all the 

time. Cleaning the house was also a significant problem among the survey respondents and a quarter 

(24%) of the participants could not manage it. More respondents, in general, found household tasks 

more difficult than tasks of self-care. Less than 5% of subjects always needed other people’s help with 

self-care tasks, in comparison to 9%-36% of participants who needed another’s help all the time or 

could not do household tasks at all.

Task Washing
up

Prepare
meals

Clean
house

Carry
objects

Laundry Shopping

Managed without difficulty 63% 44% 45% 42% 50% 49%
Managed with difficulty 18% 23% 19% 16% 11% 12%

Assistive device used 4% 0% 0% 0% 2% 0%
Help needed occasionally 7% 16% 12% 19% 11% 4%
Help needed all the time 2% 11% 14% 14% 16% 25%

Not managed 7% 7% 10% 9% 11% 11%
Table 3.3: Management of household tasks
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3.2.2.5 Physical strength and flexibility

33% and 25% of the survey participants, respectively, reported their physical strength and flexibility 

as ‘poor’ or ‘very poor’. Table 3.4 illustrates the relationship between physical strength, flexibility and 

number of people who had problems with self-care tasks. All eight subjects who reported problems 

with physical strength but not flexibility could manage self-care tasks such as eating/drinking, using 

bathroom, and washing on their own and without any use of AT, whereas some participants that 

reported problems with flexibility as well as those with a combination of flexibility and physical 

strength tended to use the help of other people to complete these tasks. As reported in Table 3.5, 

none of the participants who reported problems in both physical strength and flexibility could manage 

household tasks without any difficulty, whereas, some respondents with other conditions could do it. 

In addition, more people in this category could not complete household tasks at all.

As illustrated in Table 3.6, most respondents who reported problems with flexibility but not 

physical strength (n = 4) also had problems with mobility. Fewer participants who reported problems 

with physical strength only {n = 8) had problems with changing body position or moving around in 

comparison to other groups. There were no statistical relationships between users’ ratings and tasks 

of self-care, household tasks, and problems with mobility.

3.2.2.6 Fatigue and tiredness

A common problem among the participants was fatigue and getting tired quickly. As reported in 

Table 3.7, 36% of the subjects said that they had ongoing fatigue ‘frequently’ and 18% declared it 

to be ‘all the time’. More participants reported getting tired fast. 58% of the subjects got tired fast 

‘frequently’ and 12% ‘all the time’. For the purposes of analysis we assumed that participants had 

some condition (fatigue/tiredness) if they reported it ‘always’ or ‘frequently’. As illustrated in Table 

3.8, all participants who reported ongoing fatigue also reported getting tired fast. However, not all 

participants who reported getting tired fast also reported ongoing fatigue.

As reported in Table 3.9, problems with mobility (78%-83%) did not tend to depend on partici­

pants’ condition; however more respondents with ongoing fatigue reported using AT or assistance of 

other people for mobility (48%) than the subjects who did not report ongoing fatigue (28%).

A significant difference was noted in the relationship between those reporting ‘getting tired fast’ 

and the presence or absence of ongoing fatigue - all those who reported ongoing fatigue also reported 

getting tired easily whereas only one third of those who did not have ongoing fatigue reported tiring 

quickly (X-square 26.37, p = 0.000). This did not differ across gender.

Categories of assistance and fatigue were collapsed to yield a 2x2 table, presence/absence of ongoing 

fatigue and independent/require assistance. No significant relationships were noted between fatigue 

and the use of assistance in the following tasks of self-care - going to the bathroom, washing or dressing. 

However, for eating/drinking, those who reported not requiring assistance reported ongoing fatigue in 

significantly greater numbers (p = 0.002).
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Problems with Strength and flexibility Strength Flexibility

Standing up from a chair 7 5 4
Getting up from a floor 7 4 4
Getting into/out of bed 8 4 4

Transferring in/out of a car 6 3 3
Walking 7 4 4

Going up/down stairs 3 0 3
Moving indoors 5 1 2

Moving outdoors 4 1 4
Movements of hand(s) 5 1 2

Strength of liand(s) 5 1 2

Number of participants 9 8 4
Table 3.6: Problems with mobility depending on condition

Condition Never Rarely Frequently Always

1 get tired fast 14% 16% 58% 12%
I have ongoing fatigue 33% 13% 36% 18%

Table 3.7: Problems with getting tired and fatigue

Seventy per c:ent of respondents who reported that they were independent in preparing meals also 

reported ongoing fatigue, whereas 76% of those who sought assistance did not report ongoing fatigue 
(p = 0.002), these results, i.e., more fatigue in those not using assistance are consistent for all other 

household tasks except paying the bills - doing laundry (p = 0.004), doing shopping (p = 0.002) and 

carrying objects (p = 0.000), washing up (p = 0.02), house cleaning (p = 0.01).

3.2.3 Assistive technologies

This section presents use of ATs reported by the participants as well as participants’ perspective on 

ATs they used or would like to use. The remainder of this section is organised as follows. Section 

3.2.3.1 describes ATs used to complete self-care and household tasks. Section 3.2.3.2 and Section

3.2.3.3 present aids used to facilitate mobility and memory, respectively. Section 3.2.3.4 describes 

personal alarms and their importance to the subjects. Finally, Section 3.2.3.5 presents the participants’ 

perspective on AT.

3.2.3.1 AT in self-care and household tasks

As illustrated in Tables 3.2 and 3.3 only a few participants (up to two per task) used AT to help 

themselves in self-care or hous(;hold tasks. Because the use of only very few AT was reported it is 

difficult to derive any conclusions about their usage. However, rather than AT, the survey respondents
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Condition I have ongoing fatigue I do not have ongoing fatigue

I get tired fast 29 9
I do not get tired fast 0 16

Table 3.8: Number of participants who reported tiring fast in relation to fatigue

Condition I have ongoing fatigue I do not have ongoing fatigue

I get tired fast 93% 78%
I do not get tired fast N/A 81%

Table 3.9: Percentage of participants who had problems with mobility

(5%-33%) did use the assistance of other people to help them in activities of daily living.

3.2.3.2 Mobility aids

More than one third (39%) of the 59 survey respondents said that they used assistance for mobility. 

As reported before, more men (92%) than women (85%) tended to have problems with mobility and 

it may be for that reason that more men (44%) than women (35%) used assistance for mobility. Tbe 

most popular form of assistance was a cane (19%). 12%-15% of the subjects used other people’s help, 

walkers, and manual wheelchairs. Only a few of them (2%-7%) used other AT to move around. These 

included tripods, crutches, scooters and AT to transfer in/out of bed. There was a difference in use 

of wheelchairs depending on gender. More women used manual (18%) as well as powered wheelchairs 

(6%) compared to 4% and 0% of men, respectively.

3.2.3.3 Memory aids

One third (34%) of the 53 participants who answered the question said that they used an AT to 

help their memory. Of note was that 54% of 59 respondents reported problems with their memory. 

The most common problem was remembering the names of people (42%). Less than one third of the 

respondents (29%) could not remember the location of objects and less than one quarter had problems 

with remembering what they did yesterday (20%) and last week (24%). 17% of the participants 

reported that they found it hard to remember about medication intake and 12% could not remember 

the names of objects. Few people mentioned that they were forgetting to eat their meals (7%) and 

did not remember other people’s faces (3%). The most common memory aids were paper notebooks 

(19%) and mobile phones (15%). The majority of their users (19%-21%) found them ‘very helpful’ 

or ‘helpful’. 13% of the participants used an alarm clock or timer to remind them about scheduled 

tasks or appointments. 4% of them found this kind of memory aid ‘helpful’ and 9% ‘very helpful’. 

The most common reason for not using AT to help memory was ‘no need to use them’ and 53% of 

all participants responded in this way. Some of the participants responded that they did not have 

sufficient information about technologies to help their memory (15%) and 11% of them had never
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heard of such technologies.

In the survey, the events about which respondents wanted to be reminded were investigated. The 

most commonly used memory aids were for scheduled appointments (30%) and taking medication 

(26%). One fifth (18%-21%) of the subjects used memory aids to remember shopping lists and things 

to do. Less than half of the participants (41%-43%) reported that they did not use any assistance, but 

thought that a technology to remind them about things to do, medication and scheduled appointments 

could be useful. One third (33%-34%) said that reminders of the location of objects and how to do 

various activities could be useful for them.

3.2.3.4 Personal alarms

The majority (89%) of the 54 subjects who answered the question did not use any personal alarms. The 

reasons reported were absence of perceived need (65%), lack of sufficient information about existing 

technologies (22%), and prohibitive cost of AT (2%). In addition, it was reported by participants 

that the technologies were too complicated to be used and there was a lack of sufficient (iducation in 

their use (2%). A number of respondents used automatic phone calls (6%) and voice messages (2%) 

as personal alarms and found them helpful.

In the survey, the importance of events for which an alarm should be triggertid was also investigated. 

Most of the respondents (81%) said that it was ‘very important’ to them that someone was informed 

if they had fallen and could not get up. It was also ‘very important’ to 71% of the participants that 

their next of kin be contacted automatically if they had a medical condition and needed to contact 

someone but were unable. Only 14% of participants (18% of men and 12% of women) reported that 

it was not important to them for contact to be rniade with someone if they had a fall. Half of the 

participants (50%) considered alarms for taking imMication as very important and one fifth (20%) as 

not important at all.

3.2.3.5 User perspective on AT

In the second part of the survey participants’ opinions and ideas in relation to AT were investigated. 

This part consisted of open-ended questions, so tliat participants could state their opinion in more 

detail. The data was transcribed and reviewed independently by two researchers. After analysis, 

six main categories of ATs were identified and agreed between the researchers. They were mobility, 

activities of daily living (ADLs), personal activities of daily living (PADLs), information technology 

(IT) technologies, safety technologies and ‘other’. Because of the variety of answers, some of the cate­

gories required a more in depth analysis and for a better description of participants’ views additional 

subcategories were defined. ‘Mobility’ includes technologies to assist in transfer from one place or po­

sition to another as well as doing exercises. ‘ADLs ’ included home-care skills while ‘PADLs’ describe 

self-care skills including taking medication, dressing and using the bathroom. ‘Safety technologies’ 

include personal alarms and all technologies supporting the safety of their users and the IT category
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includes technologies addressing problems with using a computer. AT mentioned in answers to all 

four questions included in this part of the survey are depicted in Figure 3.3 and described in more 

detail in the remainder of this section.

18 18

c
Cl.

■Q.1 
■ Q.2

E I ■ O.-t

Mobility ADLs PADLs IT devices Safety Other
devices

Category

ADLs — Activities of daily living 
PADLs — Personal activities of daily living

Figure 3.3: ATs reported in atiswers to open-ended questions

The aim of the first question was to obtain opinions about AT that the respondents did not like. 

Nineteen participants answered this question and identified 24 technologies that they did not like. 

Half of the technologies (n =12) were designed for assistance in mobility. They included exercise 

bicycles, technologies for transferring in/out of bed (n = 2) and from one place to another (n = 4), 

e.g. wheelchairs, as well as aids for walking (ri = 5), e.g. a walking frame or a cane. Seven technologies 

to help in PADLs were mentioned. They included technologies installed in bathrooms (n = 5), e.g., a 

bath lift or a grab rail for a shower, and aids in dressing (n = 2), e.g., putting on trousers or tights. 

The rest of the technologies reported by participants included those to help in ADLs (n = 1), using 

a computer (n = 3), e.g., speech recognition software, and other (n = 1). There were two reasons 

why the technologies were disliked. The first was insufficient utility of the technologies (n = 6). The 

second reason was pride and the fact that a person using a particular technology did not want other 

people to think that they are disabled (n = 2).

‘A cane which I don’t like using - as it labels me, also it is not very effective (causes embarrassment)’

(Participant no. 35).

The next question was about AT and their features that were liked and whether the respondents 

considered them helpful. Twenty seven participants identified technologies that were, in their opinion, 

useful. Eighteen of forty technologies mentioned in this question addressed problems with mobility 

including technologies for transferring in/out of bed (n = 3), e.g., hand grabs, and from one place 

to another [n = 3), special chairs (n = 5), e.g., rise recliner, as well as aids for walking (n = 6).
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The respondents identified 14 technologies that were useful in doing their PADLs. They were used 

for dressing (n = 4), taking medication (n = 6), e.g., pill box, or installed in bathroom (n = 4), e.g., 

bath seat. Three people said that they found safety technologies, e.g. personal alarms, useful and 

five reported aids that helped them using a computer very helpful. The respondents identified ATs in 

general rather than their specific helpful features. One person mentioned that it was useful to have 

information about ‘gadgets’ available.

Eleven participants answered the question investigating the improvement of technologies to make 

them more useful. They suggested ten technologies that could be improved. Most ideas were reported 

for assistance in mobility (n = 6). They included size and weight reduction of wheelchairs as well as 

their battery performance (prevention of sudden discharge and longer life time). There were only a 

few improvement demands for walkers (n = 1), chairs (n = 1), and technologies for getting in/out of 

bed (n = 1). Three improvements for assistance in using a computer were reported. They included 

perfecting software, large keypads, and voice-activaied computer programmes.

‘Could speech recognition software be perfected to cope with difficulties of speech in PD?’ (Participant

no. 34).

One improvement for bath equipment was proposed. Two jjarticipants said that it would be useful 

to have better information and training on how to use technologies.

In the last question potential technologies that would be useful for particijrants were investigated. 

29 respondents answered this question and reported 43 ATs. Most technologies {n = 18) were to help 
in mobility. They included technologies for changing body position {n = 9), transferring from one 

place to another (n = 8), and doing exercises (n = 1). Participants also thought that it would be 

helpful to use ATs for PADLs (n = 8). PADLs addressed dressing (n = 2), e.g., putting on socks, 

bath (iquipment (n = 2), and medication intake (n = 4). Support in ADLs was reported useful by six 

respondents and included, e.g. aids for writing, ‘any to aid/improve my writing’ (Participant no. 15) 

or opening jars. Personal alarms were considered to be useful for two participants and six of them 

would be pleased to use electronic technologies like laptop or PDA and computer improvements, e.g., 

‘something to steady the mouse’ (Participant no. 17). Three other technologies including a vibrating 

massager, glasses for double vision, and technology to reduce tremor, ‘ some mechanical technology to 

reduce tremor in hands and arms’ (Participant no. 44), were mentioned. There was also need for 

information about technologies (n = 2).

3.3 Discussion

This section discusses the most important findings from the user survey. The remainder of this section 

is organised as follows. Section 3.3.1 gives overview of representation of the sample used in the study. 

The purpose of the survey was to obtain opinions about ATs used by people with PD. Thus, Section

48



Chapter 3. User survey

3.3.2 discusses the use of ATs among the participants and their desirable improvements. Finally, 

Section 3.3.3 review personal alarms and fear of falling.

3.3.1 Sample representation

The physical limitations reported by respondents in this survey are consistent with commonly reported 

problems for people with PD [National Collaborating Centre for Chronic Conditions, 2006] and not 

unexpected given the age range and duration of disease reported by participants. Mobility issues, 

gait disturbance, falls and fatigue are all reported as a common problems among people with PD 

affecting many areas of daily living [Gelb et al., 1999, Chaudhuri and Behan, 2000, Adkin et ah, 2003, 

Wild et ah, 1981]. The results of the study show that fatigue was the most frequent problem for 

the survey respondents. Over half of the participants (54%) suffered from it ‘frequently’ or ‘all the 

time’ and 70% reported that they get tired fast ‘often’ or ‘all the time’. This is consistent with the 

findings of Herlofsen and Larsen [Herlofson and Larsen, 2003] that reported that 50% of people with 

PD participating in their study had fatigue.

3.3.2 Assistive technologies

The purpose of the study was to investigate the use of AT among people with PD and their opinions 

about them. This has been not reported to date. In general, the survey respondents did not use many 

ATs. Only a few participants (n = 5) reported the use of ATs to help themselves in tasks of self-care 

and household tasks. In both kinds of task the assistance of other people was more commonly used 

than ATs and depending on the task, up to 20% and 33% of the survey respondents used the assistance 

of others in self-care and household tasks, respectively. The reason why ATs were not commonly used 

may be explained by the level of independence reported by the participants. As reported in previous 

sections over 60% of them could perform self-care and household tasks on their own independently. 

However, it is interesting to note that many more respondents used the assistance of other people to 

undertake such activities rather than using ATs. Low utilisation of ATs could be caused by several 

factors. These include lack of knowledge of existing technologies and the fact that some activities are 

not performed very often and there is no need for the participants to do them on their own. Another 

factor could be inappropriate design of ATs, which was reported by some participants in the open- 

ended part of the questionnaire. While it is not possible to draw a ‘cause and effect’ relationship, it 

is notable that those who reported not using assistance for certain tasks of daily living had a higher 

incidence of ongoing fatigue.

In the case of mobility a higher proportion of participants made use of ATs compared to the 

assistance of other people. Of note is that most of the technologies used by the survey participants 

were rather simple mechanical technologies and did not involve advanced computer technology. Over 

half of the participants (56%) used technologies such as canes or walkers and only 5% used automated 

technologies such as powered wheelchairs. The reason for the common use of technologies to improve
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mobility could be, as reported before, that most of the participants (88%) had mobility constraints 

and the technologies mentioned above could greatly improve their independence and quality of life. 

Changing location or body position are activities that humans tend to perform very often and it is 

desirable for them to be performed independently. The reported use of simple mechanical technologies 

may be because they are widely available, commonly prescribed by healthcare professionals, and 

relatively inexpensive.

Despite the possibility that people affected by PD might suffer from cognitive impairment 

[Kida et al., 2007], to date there have been no ‘definitive studies’ of memory aids for them 

[Anderson, 2003]. These survey results show that 60% of the respondents, who did not use mem­

ory aids, reported lack of sufficient information about ATs for memory support as well as difficulties 

in their use. This indicates that they may not realise what useful technology is available or the utility 

of existing technologies may not meet the needs of people with PD. In addition, 41%-43% of partic­

ipants said that even though they did not currently use any technologies to help their memory they 

noted that such technologies could be useful for them to support tasks such as scheduling appoint­

ments (41%), taking medication (42%), and ‘things to do’ (43%). In comparison, only 27% of the 

respondents, who did not use personal alarms, reported lack of sufficient information about them as 

well as difficulties in their use as a factor. A small proportion (up to 15%) us(!d ATs to help themselves 

in activities such as medication management or gait monitoring, however, 51%-53% of the respondents 

who did not use any (jf those technologies declared that they t:ould be useful for them. Few of the 

survey participants used ATs to support other daily activities such as writing.

The survey analysis showed a perceived benefit in the use of ATs to support a variety of activities. 
Jutai et al. [Jutai et al., 2000] noted a ‘positive and strikingly similar’ relationship between perceived 

and actual psychosocial impact of ATs to daily living in people with degenerative neuromuscular 

disease. This suggests that participants in our survey may be missing out on ATs that could possibly 

be very valuable to their independence and qualitj' of life.

3.3.3 Personal alarms and falls

Gait disturbances as well as muscde weakness with postural instability 

|Adkin et al., 2003, Wild et al., 1981], which are common symptoms of PD, may lead to problems with 

balance and changing body position and potentiallj' causing an increased risk of falls. The National In­

stitute for Clinical Excellence (NICE) guidelines

[National Institute for Clinical Excellence (NICE), 2004], which provide guidance on the use of 

medicines, appropriate treatments, and procedures used for diagnosis, propose that older people who 

have sustained an injurious fall should be informed of ways to cope should another fall occur. One 

way of minimising the impact of a fall is to prevent a ‘long lie’ [Simpson et al., 1998]. ‘Best practice’, 

as outlined by NICE, is to summon help if unable to get up in order to avoid a ‘long lie’ which itself 

can create further health problems, e.g., hypothermia. To minimise a ‘long lie’ personal alarms that
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provide a communication link between the person who has fallen and their caregiver can be useful. 

The survey results show that for the majority (81%) of the participants it is very important to contact 

someone in a case of a fall for which the participant is unable to get up. However, the majority of 

the survey respondents (89%) did not use any personal alarms. The main reason given for that was 

absence of need (65%), which is an interesting fact considering that 81% of the participants were afraid 

that they would not be able to contact someone in case of emergency. More than one fifth (22%) of the 

subjects declared that they did not have sufficient information about existing technologies, a possible 

reason for their underutilisation.

3.4 Limitations

The response rate for this survey of 59% is consistent with mean response rates reported in medical 

journals |Asch et ah, 1997J but the results should be interpreted in the context of a possible non­

responder bias. While the sample size is small, the physical limitations described by participants 

suggest that the results may be generalised to people with PD in Ireland. In addition, the description 

of the sample of participants included people with a very recent diagnosis of PD and long-standing 

disease suggesting that it is a fair representation of people with PD. The survey instrument did 

not contain explicit cultural references which would preclude its use in other countries and cultures 

however one must consider that knowledge and availability of AT is informed by accessibility to AT 

which, in turn, may have socio-economic and political influences.

3.5 Conclusion

The limitations above notwithstanding, this survey is the first that explores the views and opinions of 

people with PD about AT. In light of current and future developments in the area of AT for people 

with disabilities, it provides an indicative set of opinions that can inform design and developments 

for people with PD. Engagement by designers and researchers with the community of people with PD 

will ensure that user-centred ATs become available. However, as the results suggest, there is a lack 

of knowledge about the availability of more advanced ATs that may support people with PD even 

though many respondents considered that such supportive technologies would be of use to them. For 

that reason, information dissemination about existing technologies appears to be essential. Methods 

of informing people with PD about ATs available should be improved which will lead to their broader 

use and improve independence and quality of life for people with PD in the future.

3.6 Identification of assistive technology

The survey results were expected to help in the identification of computer-based AT that would be 

the most beneficial for people with PD. The survey participants did not express the desire for any
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Potential AT Supporting survey results

Fall detection and 
post-fall support 

system

System for 
mobility training 

at home

• 88% of the participants reported problems with mobility;

• 51%-53% of the participants reported problems in changing 
body position;

• 85% of the participants reported that it is very important 
or important to contact someone in case of fall and unable 
to get up;

• 81% of the participants reported being afraid that they 
would not be able to contact someone in case of emergency.

• 34% of the participants reported poor or very poor physical 
strength;

• 25% of the participants reported poor or very poor physical 
flexibility;

• 88% of the participants reported problems with mobility;

• 51%-53% of the participants reported problems in changing 
body position;

• 70% of the participants reported getting tired fast frequently 
or all the time;

• 54% of the participants reported fatigue frequently or all the 
time;

• all of these factors might influence ability to perform tasks 
of daily living.

Table 3.10: Types of ATs potentially beneficial for people with PD

particular AT which would help them in activities of daily living and, which is also important, does 

not already exist. Notwithstanding, two general themes emerged from the survey results: problems 

with mobility and concerns related to the fear of falling. To address these themes we identified two 

types of ATs that we believe people with PD could j)otentially benefit from in everyday living. They 

are; a fall detection and post-fall support system, and a system for mobility training at home. The 

results from the user survey supporting such a choice are presented in Table 3.10.

To decide which AT would be more beneficial for people with PD their community was asked to 

form an opinion. The presentation of survey results was given to members of a support group for 

people with PD (PALS)^^, at a meeting held in March, 2007. To obtain their views a short survey 

with questions investigating the perceived usefulness of the two identified ATs was conducted among 

24 participants who were present at the meeting. The results are piresented below.

The first part of the survey investigated falls and fear of falling. More than half (54%) of the 

participants had fallen in past year and approximately the same amount (57%) was afraid of falling. 

65% and 54% of the respondents considered falls and fear of falling, respectively, to be a problem 

and 25% of the participants had fallen and were unable to get up. The second part of the survey

'®http: //gofree.indigo.ie/~pdpals/
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investigated exercise execution at home. 65% of the respondents had been recommended to perform 

exercises by their iiealtiicare professional. Less than half of the participants (45%) followed the 

recommendation most or all the time. 45% of the respondents performed exercises occasionally, and 

the remaining 10% rarely or not at all. Most of the participants (96%) declared that if an exercise 

system that would assist them in daily exercise routine was made available they would use it. Finally, 

questions related to the perceived benefit from both types of systems were posed in the survey. The 

answers are presented in Figure 3.4. In general, a significant majority of the survey participants (88% 

for fall detection and 100% for an exercise system) found both systems ‘useful’ or ‘very useful’. More 

participants (83%) declared that an exercise system would be ‘very useful’ for them compared to 50% 

for a fall detection system.

S 100%

80%

60% -
S'a
B 40% -

20% -
4%

8%

Very useful Useful Unsure Not very useful Not at all

Perceived benefit

® Fall detection and post­
fall support system 

® System for mobility 
training at home

Figure 3.4: Perceived benefit from a fall detection and post-fall support system, and a system for 
mobility training at home

The feedback from the PD community suggests that a system for mobility training at home has 

a bigger perceived benefit than a fall detection and post-fall support system. As presented in the 

introduction to this thesis people with PD can avail of physiotherapy to address mobility issues 

[Keus et al., 2009] and therefore it is common practice to prescribe a set of exercises that can be per­

formed by a patient at home [Canning et al., 2009]. The main goal of physical exercises prescribed to 

people with PD is improvement of limitations in balance, posture maintenance, agility, flexibility, and 

muscle strength [Goodwin et al., 2008]. Improvement of those functions should also lead to reduction 

in a number of falls and related injuries [Benatru et al., 2008]. In addition, the survey results and 

subsequent feedback from the PD community identified a need for AT to support exercise execution 

at home. For that reason SMOOTH - a system for mobility training at home for people with PD was 

developed and is described in the remainder of this thesis.
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3.7 Summary

This chapter presented a user survey of people with PD. The aim of the survey was to explore the 

individual circumstances of people with PD, as well as their ideas and opinions about AT that may 

be used for daily living. A self-reported, user survey was designed. The results of the study were 

derived from a postal survey of randomly chosen members of the Parkinson’s Association of Ireland. 

Analysis were conducted on data from 59 people. According to the survey results the majority of 

the participants reported problems with mobility (88%), fatigue (54%), and getting tired fast (70%). 

Problems with mobility included changing location (59%) and body position (51%-53%). 34% and 

25% of respondents described their physical strength and flexibility, respectively, as ‘poor’ or ‘very 

poor’. For 81% of participants it was important to be able to contact someone in a case of a fall. The 

results of this study indicate a possible underutilisation of ATs by people with PD.
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Chapter 4

State of the Art

This thesis spans the two broad areas of exercise monitoring and posture or movement detection. 

Tiiis chapter gives an insight into both of these areas and reviews the current state of the art in each. 

In the review a number of computer-based systems to support users in performing exercise routines 

or to detect their current posture or activity art; included. The inclusion and exclusion criteria used 

were slightly different for each area and for that reason they are presented at the beginning of the 

corresponding sections. The purpose of this chapter is to review approaches, challenges and results of 

work that has been done to date in these fields and on that basis inform the design of SMOOTH.

The remainder of this chapter is organised as follows. In Section 4.1 systems that were designed to 

monitor and support the performance of exercise routines are presented. Section 4.2 and 4.3 include 

work related to posture and activity recognition respectively. SMOOTH uses a chair equipped with 

sensors to classify movement. Thus, approaches that use a chair to detect posture are presented in 

Section 4.4. Finally, a summary of this chapter is presented in Section 4.5.

The most important concepts related to data processing for body posture and activity recognition 

are introduced in Appendix A. Appendix B provides theoretical background on the essential techniques 

applied in SMOOTH.

4.1 Exercise Monitoring

This section describes state-of-the-art systems designed to monitor exercise execution. Exercise is any 

activity that requires physical or mental effort and is repeated to improve health and maintain fitness 

[Dictionary, 2009]. In the review are included systems whose purpose is to provide users with feedback 

during independent exercise execution and assessment of the user’s performance. Systems that sup­

ported passive movement, which is movement not requiring effort by the participant [Dictionary, 2009] 

were excluded from the review.

Two main categories of systems were identified: virtual environments (VE) for rehabilitation and 

exercise systems with movement recognition. The systems that belong to the first category, presented
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in Section 4.1.1, utilise haptic interfaces manipulated by users to map their movement to a simulated 

environment with which they interact. User performance is assessed on the basis of position in VE, 

not on the basis of direct body position and movement of the user. The systems, that belong to the 

second category, presented in Section 4.1.2, recognise direct user movement and on that basis assess 

user performance and provide feedback.

4.1.1 Virtual environments for rehabilitation

Rehabilitation is a treatment, which assists recovery from injury, illness, or disease to as normal a 

condition as possible [Encyclopedia, 2009). Recovery can be accomplished by modifying the envi­

ronment in which patients live as well as by restoring their physical functions and skills or teaching 

them new skills by exercises. To facilitate rehabilitation a number of systems that utilise VEs and 

haptic interfaces have be<!n developed [Holden, 2005]. Existing systems can be classified on the basis 

of two criteria: target and type of rehabilitation. The target of rehabilitation describes the part of 

the patient’s body used to manoeuvre the haptic interface to the VE. It can belong to one of three 

groups; upper limb, lower limb, and other [Pujita and Kato, 2005[. Type of rehabilitation allows the 

description of the purpose of exercise, which is either restoring physical functions, e.g., range of move­

ment and muscle strength, or restoring/teaching skills that are useful in activities of daily living, e.g., 
movement coordination and precision. The categories of VE for rehabilitation are presented in Figure 
4.1.

Figure 4.1: Virtual environments for rehabilitation

The review of VEs for rehabilitation is presented next. Section 4.1.1.1 presents systems for upper 

limb rehabilitation. Section 4.1.1.2 systems for lower limb rehabilitation, and Section 4.1.1.3 describes 

other systems. This is followed by a summary and discussion of all the systems in Section 4.1.1.4.
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4.1.1.1 Upper limb

Upper limb rehabilitation is the most common area addressed by VEs for rehabilitation. For that 

reason the systems that belong to this category were grouped depending on the type of rehabilitation 

addressed. Systems designed to help users regain physical functions are presented in Section 4.1.1.1. 

Systems designed to allow users to learn new skills or regain lost skills are described in Section 4.1.1.1. 

This is followed by systems that aim to improve both physical functions and skills presented in Section 
4.1.1.1.

Physical functions The purpose of the system presented in [Jack et al., 2000] is to improve; hand 

function in stroke patients. The system supports four simple exercises, which aim to improve range of 

motion, speed, finger movement isolation, and strength of hand. The parameters of the exercises, e.g., 

the required movement range can be adjusted to the user’s characteristics. To enable the monitoring 

of hand motion the system utilises CyberGlove [Immersion Corporation, 2009j. The Rutgers Master II 

(RM-II) [Bouzit et al., 2002[ is used to provide haptic force feedback. The pilot study conducted with 

control subjects suggested a number of improvements including exercise modification, presentation of 

user feedback, and design of haptic interface.

Subramanian et al. [Subramanian et al., 2006[ present a system for upper limb rehabilitation after 

stroke that aims to improve pointing and reaching movenumt. The system simulates an elevator ride 

and the exercises supported by the system involve pressing appropriate buttons in the virtual elevator. 

To detect the position of the hand the Optorak Motion Capture System [Northern Digital Inc., 2009[ 

is employed. A CyberGlove [Immersion Corporation, 2009[ is utilised to obtain the position of the 

fingers. A head-mounted display is used to present the user with the simulation in a VE. To encourage 

the user to exercise the system provides the user with positive and negative feedback as well as 

instructions indicating the target goal. A pilot study was conducted with patients with hemiparesis, 

which is a weakness on one side of the body. The results suggest that movement in VEs performed to 

do some task might differ from movement that is done in order to accomplish the same task in reality.

Morrow et al. [Morrow et al., 2006[ propose a low-cost system for hand rehabilitation post-stroke. 

The purpose of training is to improve range of finger motion, isolation of the movement, and speed 

of flexion. For that purpose two games were developed. In the finger range game the user is asked 

to flex their fingers so that the movement uncovers an image on the screen: the bigger the range of 

movement the more of the image can be seen. In the second game, the user is supposed to move 

the fingers with appropriate speed. If the goal is meet a virtual butterfly flies away from the hand. 

The system uses an Xbox [Microsoft Corporation, 2009[ console and an inexpensive P5 game glove 

[Virtual Realities, Inc., 2009[. The P5 glove can track wrist position using infrared light emitting 

diodes and measure flexion of all fingers by employing resistive bend sensors. The P5 glove used in 

the study does not provide force feedback and is less accurate than its more expensive equivalents, 

e.g., the CyberGlove. For that reason fewer measurements of the hand movement can be taken. The
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overall cost of the system is less than $600. No evaluation of the system is presented in the paper.

Mali et al. [Mali and Munih, 2006] introduce a haptic interface for finger exercise (HIFE). The 

interface was designed for training for people after finger injuries. Two finger exercises were developed 

to increase finger strength and movement functions. They are a virtual damper, and a virtual spring. 

Different difficulty levels and exercise sets can be ctiosen for each user. The exercises focus on finger 

static forces, coordination of finger movement and contact force, finger-tip velocity, and precision. 

The user is provided with visual feedback during exercise execution. The haptic interface used in 

the finger exercises allows finger movement in the entire range of motion and can provide users with 

continuous force up to ION. The accuracy and safety of the haptic interface was found sufficient for 

rehabilitation purposes. No study with people recovering from finger injuries was conducted.

Skills Webster et al. [Webster et al., 2001] present the Computer-Assisted Training (CAT) system 

for unilateral neglect patients created to improve wheelchair manoeuvring. The unilateral neglect is 

an effect of stroke in which the patient forgets about the weaker side of the body [Dictionary, 2009]. 

CAT includes a simulation of a wheelchair with training on obstacle avoidance. Participants navigate 

a virtual wheelchair using a 4-button hand controller. Depending on the user’s performance, tasks 

related to visual perception of spatial relationships with different complexities can be used. CAT 

provides feedback about performance and guidance about correct movement. The evaluation of CAT 

was conducted with 20 unilateral neglect patients. The results suggest that some of the participants 

had difficulty in appropriate perception of the wheelchair pathway.

A group at the University of Nottingham designed a system for post-stroke rehabilitation that 

supervises making a hot drink [Hilton et al., 2002, Immersion Corporation, 2009]. The aim of the 

system is to support a user in practising sequential activities of daily living. The purpose of the 

exercise supported by the system is to complete all tlie sub-tasks required to make a hot drink. Prior 

to each sub-task, verbal instructions explaining each sub-task are given. When motion corresponding 

to the sub-task is sensed animation imitating the sub-task is played. The user can see each step of 

the activity on the screen and hear the corresponding sounds such as pouring water. If participants 

perform an inappropriate task or complete the task incorrectly, they are provided with corrections. 

The system consists of a tangible interface like a kettle or tap and a software application that guides 

the user through the particular steps of the activity. User actions are detected using a camera and 

sensors placed on the objects, e.g., a light sensor to detect intensity of ambient light. The pilot study 

was conducted with seven post-stroke patients.

The V-Store (Virtual Store) [Castelnuovo et al., 2003, Holden, 2005) provides a virtual shop. Its 

objective is to help improve the user’s cognitive functions and to familiarise the user with stressful 

situations. The objective of the training provided by V-Store is to move fruit that can be found on 

virtual shelves from one basket to another. Before each trial, verbal commands, explaining to the user 

how to fill the baskets, are given through loudspeakers. The verbal commands consists of a number 

of steps to be completed with six levels of increasing complexity. Depending on the complexity level.
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a number of distractions such as a telephone ringing are provided to increase time pressure. To move 

objects in the VE the participant uses an active force-feedback (AFF) joystick as a haptic device. No 

trials with potential users are described in the paper.

The VR Kitchen developed by Gourlay et al. [Gourlay et al., 2000| provides occupational reha­

bilitation for people with cognitive impairment following stroke and traumatic brain injury. The aim 

of the rehabilitation is to familiarise patients with the home environment and regain their ability to 

do simple daily living tasks, requiring safety and sustained attention. For example, the user must be 

aware of the danger of burning when touching a hot oven, and must also acknowledge that the kettle 

must not be turned on when empty. The VR Kitchen is a fully interactive simulation of a real kitchen 

and contains a sink, kettle, cup, coffee jar, microwave, power sockets, cupboards and drawers. The 

user performs a series of everyday tasks such as preparing a meal in a microwave oven, using kitchen 

appliances, and making tea. To interact with the appliances a VR glove was designed. It uses bend 

sensors attached to each finger and an elec;tromagnetic tracking system to obtain hand orientation 

and position. The construction of the VR, glove is basic. It does not provide force feedback and is 

not very accurate. Its resolution is low but it allows grasping or moving objects in the scene. A pilot 

study with nine patients with mild to moderate cognitive impairment was conducted. It suggests that 

after practise participants were able to satisfactory manoeuvre objects in the VE.

A similar approach to that of V-Store, called virtual supermarket, is presented by 
[Josman et al., 2006). The purpose of the system is to help post-stroke patients to regain skills that 

are needed in complex task execution. The training provided by the system consists of planning and 
purchasing items in a supermarket. The user is presented with a first-person perspective simulation 

of a medium-sized supermarket. Their task is to buy seven items from a list. The items are chosen 

by mouse clicks. Evaluation of the system was conducted with 26 post-stroke patients. The results 

showed big differences in participants’ performance. In addition, a moderate relationship between the 

performance of participants and their executive functions (abilities to control and regulate behaviours) 

were found. The results suggest the potential of the virtual supermarket to be used in rehabilitation 

of post-stroke patients.

Physical functions and skills Popescu et al. [Popescu et al., 2000] present a system for or­

thopaedic rehabilitation. Orthopaedic rehabilitation is a treatment, which assists recovery from mus­

cular and skeleton problems. The purpose of the system is to regain lost physical functions and skills 

by patients. To retrieve physical functions three exercises are modelled in a VE: squeezing a rubber 

ball, individual finger exercises (DigiKey), and simulation of putty. Exercises designed to retrieve 

skills include a peg board insertion game and a ball game in which the user is supposed to throw and 

catch a ball. The system utilises a magnetic tracker (Polhemus Fastrak (Polhemus, 2009]) and the 

Rutgers Master II (RM-II) glove [Bouzit et al., 2002] to track arm movements and to provide haptic 

force feedback. The platform presented in the paper facilitates remote monitoring, therefore patients 

can perform exercises at home.
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Kuttuva et al. [Kiittuva et al., 2006] present a system, called the Rutgers Arm, for upper arm 

rehabilitation for post-stroke patients. The purpose of the system is to help patient to retrieve lost 

skills and physical functions by playing two therapeutic games. The objective of the pick-and-place 

game is to train motor coordination by moving a hand on a specified trajectory to pick up and place a 

ball on a target. During the exercise the user obtains ongoing auditory feedback. To improve hand-eye 

coordination the BreakoutSD game was implemented. The objective of the game is to destroy a set of 

blocks by bouncing a virtual ball in the desired direction. Parameters of the game, such as ball size or 

speed, can be adjusted to each user. The Rutgers Arm consists of a 3D magnetic tracker (Polhemus 

Fastrak (Polhemus, 2009]) to track arm movements, a table that supports the patient’s arm movement, 

and an arm rest. A pilot study was conducted with one person diagnosed with hemiparesis (weakness 

on one side of the body). The results show improvements in arm motor control and shoulder range of 

motion, which were maintained one week after finishing the trial. In addition, the system helped in 

the patient’s motivation to sustain exercise routine.

In [Burdea et al., 2008] an improved version of the system presented in [Kuttuva et al., 2006], 

called the Rutgers Arm II, is introduced. The main difference is the replacement of the table with one 

that tilts in four directions and the replacement of the magnetic tracker with a vision-based tracking 

system, which uses an infrared camera. In addition, a treasure hunt game to improve arm endurance 
was implemented and included in the platform. Pilot trials were conducted with post-stroke patients. 

Performance of subjects was worse for larger tilt angles of the table.

A system for hand rehabilitation following stroke is presented by Alamri et al. ] Alamri et al., 2008]. 

The purpose of the exercises supported by the system is to regain hand function. Five exercises were 

developed to improve various aspects of hand function. They include handling a cup (improving 

steadiness and hand-eye coordination), arranging Mocks (improving dexterity and hand strength), 

navigating a maze (improving steadiness and hand-eye coordination), squeezing a ball (improving 

fingers strength), and training with a dumbbell (increasing gross motor skills and strength). The 

difficulty of all the exercises can be adjusted to the performance of each patient. The system relies on 

the CyberGrasp system (Immersion Corporation, 2009] for sensing hand position and providing force 

feedback. The feasibility of development the system was validated in a pilot study conducted with 10 

I)articipants.

A system for arm rehabilitation for Multiple Sclerosis (MS) patients is presented in 

(Coninx et al., 2008]. The purpose of the system is to provide arm training to people with MS. Three 

exercises were developed to meet this purpose: a virtual car, book manipulation, and plate tapping. 

The objective of the car game is to pilot the car through a predefined route. In the book manipulation 

task, the user has to grab a book and put it into an available space in a shelf. Several parameters can 

be changed depending on the user’s condition. They include the size of the book, its placement and 

its weight. The aim of the tapping task is to move between two targets as fast as possible. The sys­

tem utilises the PHANToM haptic device (Massie and Salisbury, 1994, SensAble Technologies, 2009]
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to translate user movements into the VE. The PHANToM robot provides six degree-of-freedom input 

(ability to independently move forward/backward, up/down, left/right combined with rotation about 

three perpendicular axes) and force feedback through a stylus-like device. A pilot study conducted 

with MS patients shows that they did not have problems with transformation of their movements to 

the VE and commented positively on the system.

4.1.1.2 Lower limb

Boian et al. [Boian et al., 2002, Boian et al., 2003j present a system for ankle rehabilitation post 

stroke. The system facilitates participants performing exercises in a VE displayed on a PC screen. 

Movements in the VE are controlled by moving the foot and ankle. Two games were developed for 

patient training. In the first game, the user flies an air-plane through a set of 3D hoops. The system 

recognises nine different ankle positions and the position of the hoops can be changed by a therapist 

to reflect treatment goals. In the second game, the user navigates a boat. This exercise requires more 

accuracy from the user, as the boat must stay on the surface of the water. Parameters of both games 

can be adjusted to user characteristics, e.g., range of movement. The system enables recording of user 

performance and its remote analysis by the therapist. To translate the user’s movement to the VE 

the Rutgers Ankle [Girone et al., 2001] is used. This is a haptic interface that consists of a pneumatic 

platform that senses the position of and supplies forces to the patient’s foot. A pilot study of the 

system was conducted with three post-stroke patients who took part in four weeks of training. The 

participants improved the strength of some ankle muscles. In addition, the training had a positive 

impact on gait speed.

Pujita et al. jPujita and Kato, 2005) introduce a system for rehabilitation of people with limited 

walking functions. The purpose of the system is to strengthen leg muscles and improve walking 

function. The system enables patients with insufficient muscle strength and postural stability to 

perform walking exercise at home. The user’s steps are translated into the VE, which simulates a 

walk. While walking it is possible to meet other users of the system, which are presented as avatars 

in a virtual world, and talk to them. A change of walking direction can be accomplished by head 

inclination. To ensure the user’s safety the exercise is performed in a lying position. Two air bags with 

pressure sensors were used to detect steps and translate them to the VE. An initial study shows that 

the energy consumption of walking exercise is 40% that of normal walking and therefore the distance 

has to be three times longer to obtain the same effect.

4.1.1.3 Other

Kizony et al. [Kizony et al., 2002) present an adaptation of the Gesture Xtreme VR system 

[Gesture Xtreme, 2009) for neurological rehabilitation. Four games were adapted for neurological 

rehabilitation to improve a user’s cognitive and physical skills. They include: birds and balls, soccer, 

sharkbait, and snowboard. The Gesture Xtreme uses a digital camera to track movements of the
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user’s body and translate them to the VE. In that way, the user can see himself performing different 

functional tasks, e.g., catching and throwing the ball. The user must stay in a demarcated area and 

can observe his own motion on a large display or projected image. This kind of system allows the 

user to change body position without restriction, provided it is within the demarcated area. Because 

the user’s movements are tracked by a camera and the system does not include any wearable device, 

it cannot provide haptic force feedback. The analysis of results of a pilot study with 10 patients after 

spinal cord injury showed that they had to put more effort into balance training in a VE than in 

conventional therapy. In addition, they are reported to have enjoyed the training and would like to 
repeat it.

Fitzgerald et al. [Fitzgerald et ah, 2008] introduce a system for balance training. To provide the 

training, the open source Neverball game [Neverball, 2009] is used within the VE. The objective of 

the game is to tilt the ground in order to roll a ball though a set of obstacles in order to collect money 

tokens. The system employs a wobble board with fixed motion sensor |Xsens Technologies, 2009] to 

manoeuvre the ball in the VE. To evaluate the system, a study with 12 healthy subjects was conducted. 

The results show high usability of the system and the potential to be used in an exercise programme 
at home.

4.1.1.4 Discussion

A summary of the systems used for rehabilitation presented above is shown in Table 4.1. The table 

describes the systems according to target group for rehabilitation, e.g., stroke patients or people with 

walking impairment, the target of rehabilitation, e.g., upper limb, lower limb or other, and type of 

rehabilitation which includes regaining physical functions or skills. In addition, the table includes 

information about the number of exercises implemented in the system and the haptic interface used 
to map the user’s movements to the VE.

The current state of the art shows that VEs can be suitable for rehabilitation [Holden, 2005]. 

They can reduce the cost of healthcare and enable more patients to perform exercises at home. The 

major cause of failure of home-based therapy is that training without any interaction usually gets 

monotonous and the motivation of the user declines with time [Loureiro et al., 2001]. To prevent this, 

VEs can provide the user with information about their performance using different types of feedback, 

e.g., haptic, visual, and auditory. Exercise routines can be made more interesting and enjoyable 

by the development of various types of games ]Ma et al., 2007]. In addition, user performance can 

be recorded and the therapist can use this information to better adjust exercise programs to user 

characteristics [Popescu et al., 2000].

As presented, sophisticated haptic interfaces have been created to enable therapy for people with 

various limitations. There are a number of issues related to those interfaces that can limit their use 

at home. Some of them might not be suitable for all users because of their size, weight or type of user 

limitation. As suggested in [Jack et al., 2000] the use of gloves can be problematic due to variations
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in hand size, movement patterns and individual fit. At the moment, the setup and maintenance of 

some haptic interfaces can be complicated. For that reason there is often a need for the therapist to 

be present and for supervision of exercise sessions. Even though attempts to reduce the cost of the 

systems were made (Morrow et ah, 2006], most of existing commercially available haptic devices as 

well as software platforms to develop games are still quite expensive. In addition, natural modelling 

of user movements in VE can also be challenging [Burdea, 2000].
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â
3

O

CD

.2
'ot

rZi
0^

ooa<v
<u

q;
>

*4-3

'S

S'

03
XJ
XJ
0)

I
0^aa

l:^

^ S

c
bO
O

U

CO
o
o
(M

o>
o
^3

03
a

:3o

o
'bb

>

0^aa

CD
>

■&

o
U

o
o
o

ThJ3o
O

Xa
OJaa

cS

Ph
!/3
Da
0)
X
*0
a

\

a>
bO+j

o

CO
O
Ocs

o

Xa
a)aa
a

^CJ

a>
a
o
X

o
o
o
C^J

3CJCO
0^ao
a

Xcd

a

a;
X
"oa

\

\

Xa
O)aaa

o

CO
o
o

a

bOgXu

GO

Xa
a;aaa

o

00
o
oCM

ID
-v

S-i
Oa

o
u
D
X>>O

\

Daaa

a;>
Xo

o
Xot-l

w
Ph

\

o;aaa

3a3
>:

00
o
oCM

g
3oO

65



4.1. Exercisfi Monitoring

ao

Xi
id

x:
q;

03sŝ
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Chapter 4. State of the Art

The use of VE in rehabilitation is a relatively new approach. Even though a number of studies 

have been conducted to measure its influence on user’s performance there is still a need for extensive 

evaluation of its effects in comparison to traditional, well established practise [Alamri et ah, 2008].

4.1.2 Exercise systems with movement recognition

Exercise systems with movement recognition in contrast to the systems described previously do not 

translate the user’s movement to a VE. User performance is assessed on the basis of the body position 

and movement of the user. User feedback is provided on the same basis. This approach allows the 

user to perform exercises more naturally and without the need to manoeuvre any device.

The Stroke Rehabilitation Exerciser [Timmermans et ah, 2007] is a home-based system developed 

to increase the efficiency of hand rehabilitation following stroke. The purpose of the exercises imple­

mented in the system is to regain arm functions. The system consists of three elements: a motion 

sensing system along with user and therapist interfaces. It supports prescription of the exercises as 

well as guiding the user during exercise performance. It also provides the user the feedback about 

their performance.

When the user comes to the rehabilitation clinic and is assessed by the therapist, a set of exercises 

is prescribed. When the user performs the exercises from the training plan at home, he/she wears 

a set of wireless inertial sensors on the lower and upper arm as well as on the shoulder and torso. 

This configuration enables the system to measure joint angles, which are used to measure the user’s 

performance. The readings from the sensors, as well as the exercise programme, are stored in the 

database and they can be accessed remotely by the user and therapist applications.

The sensor readings recorded during exercise are the basis for user feedback and progress reports 

for the therapist. The user interface is designed to be very simple with only a few elements. For 

each exercise, instruction videos on how to perform it are shown. While doing the exercise, the user 

is provided with a real-time animated figure and audio and visual feedback. After finishing, simple 

charts with information about performance are presented. The physiotherapist can see the report 

about the user’s performance in conjunction with animated figures representing user motion. Reports 

include statistics such as the number of repetitions, change of joint angles over time and the duration 

and speed of movement.

To detect user posture the body model has to be adapted and sensors calibrated to each patient. 

The recognition of the start of each exercise is based on a fixed threshold on the difference in joint angle 

values over a time window. Potential executions are used to train a Bayesian classifier to recognise 

the start of the exercise. To recognise current hand position during exercise execution, algorithms like 

Dynamic Time Warping, which measures similarity between two sequences that may vary in time and 

speed, or HMM are used. No evaluation of the system is presented in the paper.
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4.1.2.1 Analysis

The concept of the system is almost identical to SMOOTH. The system consists of two modules for use 

by the patient and the physiotherapists and a central server to store the data. The patient is provided 

with instructions and feedback about the exercises and the physiotherapist can view the patients’ 

progress. The main difference between the platforms is in the method of movement detection. The 

Stroke Rehabilitation Exerciser was designed for people after stroke and its objective was to increase 

the efficiency of hand rehabilitation. For that reason the authors use wearable inertial sensors placed on 

the arm, shoulder, and torso. The target group for SMOOTH are people with PD and the objective 

of their rehabilitation is different. Namely, to improve balance and posture by strengthening core 

muscles. Wearable sensors may not be suitable for people with PD due to often reported flexibility 

problems [Muras et ah, 2008]. Similarly, probabilistic models are used for movement detection, but 

their input is based on readings from one type of sensors only and their output corresponds to hand 

joint angles. No actual models and feature calculation methods are presented. No user evaluation of 

this system has been reported.

4.2 Posture Recognition

In our review of posture recognition systems several techniques to recognise current body posture from 

sensor input were identified. Body posture, called also body position, is defined as the arrangement 

of body parts at a particular moment in time. The systems included in the review were classified 
depending on the sensor input to the system. The scope of the review was on the methods used 

to classify general body positions such as sitting or standing. Therefore techniques that focus on a 

particular body part, such as hand gestures, were not included in the review.

Five types of sensor input have been identified: proximity (Section 4.2.1), force (Section 4.2.2), 

acceleration (Section 4.2.3), strain (Section 4.2.4), and visual data (Section 4.2.5). Systems that 

recognise posture on the basis of visual data are the most common. For that reason they were divided 

intro two subcategories: general body postures (Section 4.2.5.1) and posture recognition with a 3D 

model (Section 4.2.5.2). The subcategories are described in more detail in Section 4.2.5. The categories 

of system for posture recognition are presented in Figure 4.2.

4.2.1 Proximity

Quawaider et al. [Quwaider and Biswas, 2008] introduce a wearable sensor network that identifies 

body postures based on the relative proximity of the sensors placed on the different body parts. The 

authors propose a method to distinguish between postures and activities by employing acceleration 

sensor readings. However, the scope of the paper is on detection of two postures (sitting and standing) 

using the proximity of wearable sensors. To measure proximity, the received signal strength indication 

(RSSI), which measures the power present in a received radio signal, is used. The sensor network
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Figure 4.2: Categories of the systems for posture recognition

presented in the paper consists of four Mica2Dot motes (Crossbow Technology, 2009], which are mod­

ules used for enabling low-pov/er wireless sensor networks, placed on the both the upper arms and the 

thighs. Each mote includes a 2-axis accelerometer and a radio transceiver.

To test recognition accuracy of sit and stand positions, data from three participants was acquired. 

They were asked to adopt 50 positions in a specific sequence. Initially classification of the postures was 

based on a set of fixed thresholds on RSSI values. However, the results revealed that the thresholds on 

RSSI values giving the best results were different for each participant. This means that no common, 

universal thresholds that would give the best results for all the participants could be set. To enable 

automatic adaptation to user characteristics, use of HMM was investigated. The RSSI values were 

transformed into a vector of binary values and used as input to the HMM. The size of the vector 

depended on the desirable granularity. The HMM approach obtained better results than the threshold 

method in all cases. Position recognition accuracy for the HMM approach varied from 88% to 94% 

depending on the subject.

4.2.1.1 Analysis

Although this technique is interesting, the authors present results for discrimination between only 

two basic postures. As the authors mentioned there are several issues with the readings’ accuracy. 

Firstly, the signal can be absorbed by garments and therefore its values can be distorted. Secondly, 

the accuracy of the sensor placement on the body is crucial. Therefore it might be problematic to 

distinguish between more similar postures using RSSI values.

4.2.2 Force

In (Hsia et al., 2008] a method to detect three different postures when lying on a bed is presented. 

The postures include supine, lying on the left and lying on the right. The system uses 16 long-narrow 

force resisting sensors (FSR (Interlink Electronics, 2009]) distributed uniformly on the upper part of 

a bed. The choice of sensors and its number was justified by the intention to develop a low-cost
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4.2. Posture Recognition

solution as an alternative to expensive commercial alternatives. The posture recognition is conducted 

by a Bayesian classifier. Readings from each sensor are normalised and used in forming the feature 

vector [A;,s] which consists of two statistics: kurtosis (k) and skewness (s). Kurtosis is a measure of 

the variance in the readings. Skewness is a measure of the asymmetry of the readings. A Gaussian 

distribution is adopted to model the postures on the feature space.

To evaluate the system, data from two subjects was collected. They were asked to adopt two sets 

of positions. The first set consisted of lying positions with different hand position combinations (on 

the body, at the body side, 45°/90° from the body) for all three postures. The second set included a 

combination of hand positions (on the body, at the body side, outstretched) and lying angles {parallel, 

30° clockwise, 30° counterclockwise). The results show that postures from the first set are classified 

with 100% precision. For the second set postures are classified with precision of 64.6%, 93.5%, 86.2% 

for supine, lying on the left and lying on the right, respectively. The results imply that lying angle 

influences the posture detection accuracy of the system.

4.2.2.1 Analysis

The system presents a low-cost, unobtrusive attempt to detect lying positions. As the results suggest, 

the use of long sensors as well as the cho.sen characteristics might not be indicative enough to detect 

a variety of lying positions.

4.2.3 Acceleration

In [Harms et al., 2008] the authors present a posture and movement sensing platform (SMASH) de­

veloped to detect postures relevant to shoulder and elbow joint rehabilitation. The SMASH platform 

is integrated into a loose fitting long sleeve shirt. Currently the system uses 3-axial acceleration sen­

sors placed on a person’s body. A naive Bayesian classifier is used for recognition of j)ostures. Mean 

acceleration values from the sensors are given as the input to the classifier and used as classification 

features.

To evaluate the system in terms of detection of arm postures that are appropriate for shoulder 

and elbow joint therapy, data from eight subjects was collected. The participants wore two 3-axis 

accelerometers - at the end of the sleeve and on the upper arm of the same side. The participants were 

asked to perform three sets of seven exercises. They included: abduction of arm, flexion/elevation 

of arm, rotation of arm, flexion of forearm, neck-grip, and flexion of forearm. Each exercise was 

divided into characteristic postures, which were recognised by the platform. In total 12 postures were 

identified and 288 posture samples were collected.

The system evaluation was conducted for three cases:

• User-specific. Learning and testing were conducted with samples from each user individually.

• User-adapted. Postures of all users were used for learning and testing.

70



Chapter 4. State of the Art

• User-independent. Testing was conducted with samples from users that were not included in the 

learning set.

The overall accuracy of the system was 95% for user-specific, 94% for user-adapted, and 89% for 

user-independent tests. The user-specific learning performs the best, which is not surprising. The 

interesting observation is that the differences are not very big.

4.2.3.1 Analysis

The authors have shown an approach to distinguishing between twelve upper-body postures using the 

readings from two accelerometers placed on one limb. The characteristic positions of seven exercises 

were chosen. On the basis of recognition of a sequence of positions, whether a repetition of a particular 

exercise occurred could be detected. Because the approach does not classify actual movement it might 

not be sufficient accurate to measure exercise performance. An additional problem is the automatic- 

extraction of the postures from the data stream. The integration of the platform and shirt seems to 

be a good idea. This solution limits inconvenience in sensor placement.

4.2.4 Strain

Another garment equipped with sensors is introduced by Mattmann et al. (Mattmann et al., 2007]. 

It consists of strain sensors to detect 27 upper body postures. The strain sensors were developed 

by EMPA, Switzerland [EMPA, 2009). Each sensor thread is of 0.3 mm diameter and its resistance 

linearly varies with strain. Twenty-one 2cm strain sensors were attached to the back of a commercially 

available catsuit using silicone film. A naive Bayes classifier was used to discriminate between the 

positions. The feature vector consists of 21 normalised strain sensor values. The values are normalised 

by subtraction of the mean value of all the sensors when in a base posture.

The system was tested on data from eight male participants. They were asked to perform each 

posture three times. Two sets of 27 postures were obtained from each participant. Similar to 

[Harms et al., 2008] three types of tests were conducted. 5-fold cross validation is used to split testing 

and training data. The system obtains overall accuracy of 97% for user-specific, 84% for user-adapted, 

and 65% for user-independent tests. As results show, the system achieves better outcomes for user 

specific training than for more general training.

4.2.4.1 Analysis

The approach is similar to the one presented in [Harms et al., 2008). The main difference is in the 

type of sensors used. The strain sensors require integration with a very tight garment. Apart from 

that limitation, a high recognition accuracy for user-specific training was obtained. This suggests 

that strain sensors might be usable for classification of even very similar upper body postures. Lower 

accuracy for user-independent tests suggests that position patterns differ for each user and user-specific 

training should be promoted.
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4.2. Posture Recognition

4.2.5 Visual data

Recognition of posture from visual data is the most commonly reported method. These systems are 

classified into two categories. The first category consists of systems that use image characteristics to 

recognise general postures such as sitting or standing. The second category includes systems that use 

models of the human body to recognise body postures.

4.2.5.1 General body postures

Spagnolo et al. [Spagnolo et al., 2003a, Spagnolo et al., 2003b] present an algorithm to detect three 

postures {standing, bent, and squatted) using data obtained from a camera. The system consists of 

two modules: human silhouette detection and posture recognition. To detect the human figure in 

a video sequence an adaptive background subtraction algorithm jKanade et al., 1998] and shadow 

removal technique ]P. Spagnolo and Distante, 2002] are utilised. Adaptive background subtraction 

methods are used for foreground object detection and are usually based on a pixel-based statistical 

model that is used for modelling the background and each pixel is updated on-line to adjust to 

background changes ]Luo et al., 2007]. The authors propose histograms of horizontal and vertical 

projection as features used to clearly separate one posture from the other. The vertical jirojection is 

the sum of all of the rows, and the horizontal projection is the same operation applied to the columns. 

The histograms are used as an input to clustering algorithm in order to recognise the postures. 

The metric that is used for the clustering algorithm is based on Manhattan distance due to its fast 

computation. The evaluation of the system was conducted for a basic competitive learning algorithm 

]Theodoridis and Koutroumbas, 2006]. To evaluate the system 834 images of three postures (standing 

- 501, bent - 218, and squatted - 115) were collected. The images were taken outside the laboratory. 
The results show that the differences in posture detection for a differcmt number of learning samples 

are small. Overall recognition rate is above 90% and is higher for differentiating between two postures 

rather than three, which is not surprising.

Buccolieri et al. ]Buccolieri et al., 2005] describe a system that detects three body postures: stand, 

bend, and squat. Grey-level images are used as input to the system. The system consists of the following 

sequential units: data acquisition, motion detection, feature extraction, and postures classification. 

An ANN classifier with the radial basis function is employed in the system to recognise the postures. 

A radial basis function is a function whose value depends only on the distance from the origin. Three 

image features are used as the input to the classifier. The feature extraction consists of two levels of 

segmentation. Low-level segmentation is responsible for the initial evaluation of active contour (object 

outline) parameters and high-level segmentation for ac:tive contour calculation. The active contour 

calculation is based on the GVF-Snake approach presented in ]Xu and Prince, 1998]. For evaluation 

purposes sequences of 500 images for standing, 220 for bending, and 110 for squatting were obtained. 

They were collected indoors and outdoors. The posture recognition rates for all three types of features 

are similar and are in the range between 92% and 97%.
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A system that recognises four different human postures is presented in [Girondel et ah, 2005b, 

Girondel et ah, 2005a]. The postures recognised are; standing, sitting, squatting, and lying. The 

system consists of two threshold models that describe each posture in relation to the normalised 

distance between different parts of the human body. To detect body position the ‘believe distribution’, 

which is the orthogonal sum of two models, has to be calculated. To evaluate the system data from 

six people was obtained. 10 postures recorded for each participant were used in training the system. 

An overall accuracy of 88% is obtained for training data. For testing, data from six other people was 

collected. They were asked to perform seven postures. They could do them in more relaxed way, i.e., 

move their arms. The recognition accuracy for standing and lying is close to 100%. The body position 

confused the most is squatting with 44-70% detection rate. The overall recognition accuracy is equal 

to 81%.

Cucchiara et al. jCucchiara et al., 2005] also introduce a probabilistic framework for detection of 

four basic postures: standing, sitting, lying, and crouching. The postures are divided into three view- 

based classes and therefore in fact 12 postures are classified by the system. The approach consists of 

two stages: posture classification performed frame-by-frame and ‘temporally integrated’ posture clas­

sification. A human silhouette (blob) is extracted from a video sequence using the SAKBOT system 

]Cucchiara et al., 2001, Cucchiara et al., 2003] and its projection onto the principal axes is computed 

and normalised. The projection is used in a machine-learning algorithm to create probabilistic projec­

tion maps (PPM). The PPMs are used by a Bayesian classifier to detect the postures. In the second 

stage a state transition graph (STG) is created to express probabilities for inter-state transitions and 

add temporal relationships between postures. The evaluation results show that user-specific training 

obtains better results than generic training. Recognition accuracy was tested for a Bayesian clas­

sifier with and without STG. The approach using time dependency (STG) achieved better position 

recognition accuracy of 97%.

Wang ]Wang, 2006] introduces an algorithm for posture detection based on a video sequence from a 

camera. Three postures are recognised by the system: sitting, standing, and lying. The algorithm uses 

features calculated on a blob representing the human silhouette extracted from the video setjuence. 

The features used in position recognition include: inner distance shape context (IDSC), fitted eclipse 

(FE), and projection histogram (PH). Their details are described in the paper. For posture detection 

a k-Nearest Neighbour(k-NN) classifier is used. Experiments were conducted with the data obtained 

from one participant for three viewing angles. During collection of data used for system training, 

not many variations from the three basic postures were allowed. During collection of data used for 

recognition accuracy testing, the subject could move more freely and change their position, e.g., move 

their limbs. To evaluate the approach video sequences in different scenes, clothes and random views 

were collected. A total of 23028 samples was collected. The tests of posture classification accuracy 

were conducted for each feature individually and a method proposed by the authors for feature fusion. 

The fusion was based on majority voting. The classification results were similar for all the features
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tested individually and the worst accuracy was obtained by IDSC (78-100%). The best results were 

obtained by the fusion method (94-100%).

Juang and Chang (Juang and Chang, 2007) introduce a body posture classification method based 

on a fuzzy artificial neural network (ANN). Their system recognises four body postures: standing, 

bending, sitting, and lying. The fuzzy ANN used to recognise the positions is called SONFIN and is 

described in more detail in (Juang and Lin, 1998). The feature vector, which represents body silhou­

ette features, consists of silhouette length width ratio as well as discrete Fourier transform (DFT) 

coefficients. The body silhouette, given as the input of the system, is extracted from video using 

the method described in [Cliien et al., 2002). The choice of frequency domain allows the avoidance of 

problems with silhouette size (scaling) and its position (shifting) in the picture. Therefore normalised 

magnitudes of 20 of the most significant DFT coefficients calculated on horizontal and vertical pro­

jection histograms are included in the feature vector. To evaluate the system 20 samples for each 

posture were obtained. They were used for training of the SONFIN classifier. For testing, 100 ad­

ditional samples for each posture were obtained. An overall recognition accuracy of 98% is reached. 

Another experiment revealed that for 10 training samples per posture the overall accuracy is 89%. 

The results show that the lower number of learning samples lowers the system accuracy.

Analysis A summary of the systems used for general body posture detection from visual data 

presented above is shown in Table 4.2. The systems were summarised according to the numbcir of 

postures recognised, the technique used for posture recognition, and the number of sanqjles used in 

evaluation of system.

Reference Number of 
postures

Recognition
technique

Total
number

of
samples

(Spagnolo et al., 2003a, 
Spagnolo et al., 2003b)

3 Clustering 834

(Buccolieri et al., 2005) 3 ANN 830
(Girondel et al., 2005b, 
Girondel et al., 2005a)

4 Rule-based; belief 
distribution

?

(Cucchiara et al., 2005) 4 Bayesian network ?

(Wang, 2006) 3 k-NN 23028

(Juang and Chang, 2007) 4 Fuzzy ANN 480
Table 4.2: Summary of systems for recognition of general body posture

The systems presented above distinguish between only three or four very different primitive pos­

tures. Even though some approaches obtained reasonably high detection accuracy, the precision of 

the approaches to distinguish between similar postures might not be sufficient for SMOOTH. Different 

methods are utilised for posture recognition. In
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|Wang, 2006, Spagnolo et al., 2003a, Spagnolo et al., 2003b) clustering algorithms are used to sepa­

rate postures on the basis of metrics calculated on the human silhouette extracted from the image. 

Neural networks are employed by [Buccolieri et al., 2005, Juang and Chang, 2007] and probability the­

ory is used as base concept in [Cucchiara et al., 2005, Girondel et al., 2005b, Girondel et al., 2005a]. 

Several issues are identified by the authors. Using spatial features, which quantify the spatial pattern 

of visual data, is sensitive to the position and size of the human silhouette extracted from image. 

For example, the distance of the person from a camera makes a difference. Therefore the frequency 

domain, which represents the spectrum of the signal, and normalisation can be utilised to overcome 

this issue. Human silhouette extraction could also be complex and sensitive to various conditions, 

e.g., illumination. The person’s orientation with respect to the camera is important. Depending on 

the viewing angle metrics could change significantly and detection accuracy could decrease. It is hard 

to determine which approach obtained the best results because the evaluation procedures and the 

number of the samples collected varied for each method.

4.2.5.2 Posture recognition with 3D human model

Pellegrini et al. [Pellegrini and locchi, 2008] introduce a system to recognise human postures by 

matching them to 3D models of the human body. The system detects five different postures: up, sit, 

bend, knee, and laid. It consists of two modules; people localisation and trac:king (PLT) and person 

posture recognition (PPR). The purpose of the PLT module is to extract the human silhouette and 

track it over time. To achieve this goal methods such as background subtraction or Kalman filters 

[Haykin, 2001] are used. The purpose of the PPR model is to track particular points of the human 

body, and classify postures using the 3D model of the human silhouette. The authors defined three 

principal points of the human body: head, pelvis, and the point at which the feet make contact with the 

floor. They are used to compute a feature vector that includes the angles of 4 joints and the person’s 

height. Two different classifiers for posture discrimination were tested: maximum likelihood, and 

HMMs. The HMM takes into account the probability of the transition between postures. Probabilities 

for transitions between postures in the HMM were set empirically. To evaluate the system, data from 

seven subjects was collected. They were recorded using a stereo camera placed 3 meters above the 

ground. 26 video sequences were collected in total. The results suggest that the HMM classifier 

obtains better detection accuracy (86%-100%) than maximum likelihood (78%-100%).

An approach based on a 3D human model is also presented in Boulay et al. (Boulay et al., 2005]. 

The framework combines 2D methods with a 3D model in order to make recognition independent of 

the camera viewpoint. The system classifies four postures: standing, sitting, bending, and lying. To 

classify a set of postures 3D models for each of those postures have to be created. To describe human 

posture, the 3D model defined in [Vosinakis and Panayiotopoulos, 2001] is utilised. The model uses 

9 joints to describe body postures: abdomen (1), shoulders (2), elbows (2), hips (2), and knees (2). 

On that basis, a set of 27 features (3 Euler angles for each joint) is defined to describe every posture
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being recognised. Tlie horizontal and vertical projection of 3D models generated for all possible 

angles and the human silhouette are calculated and used as model postures. The body position to 

be recognised is compared to them and classified as a model posture with the minimum distance. 

The system evaluation involved over 600 samples for four different postures collected in an office by 

a single camera. The results showed that the recognition accuracy for standing, sitting, bending, and 

lying was 96%, 86%, 95%, 98%, respectively. In [Boulay et al., 2006] the authors reduced the number 

of features from 27 to 23. The classification results for standing and sitting did not change whereas 

for bending and lying they dropped to 87% and 92%, respectively.

Analysis The approach to fit the human silhouette detected on a video sequence to a 3D model 

works well in differentiating between very distinct postures. Both models utilise the set of joint angles 

for human posture description. No systems that use 3D models to recognise more similar postures, 

e.g., sitting and sitting leaned forward were found. In that case, matching a human silhouette with 

the model could be much more challenging. For example, data from more than one camera might be 

needed to obtain desirable accuracy. That could lead to the setup of the system being impractical 

and requiring a designated space.

4.3 Activity Recognition

This section presents a review of approaches to recognising human activities from sensor readings. 

Systems that recognise activities cover many areas such as people tracking or detection of activities 

of daily living based on current location or objects currently used. Therefore only systems that allow 

the recognition of activities related to body movement, e.g., cycling or walking up the stairs, and 

changes in body position, e.g., standing up, are included in the review. The review is focused on 

discrimination between different activities, e.g., between walking and running, rather than analysis 

of one particular activity, e.g., length of steps while walking. Many systems included in this section, 

in addition to activity recognition, recognise postures. One difference between the systems included 

in this section and the previous section (posture recognition) is the method of calculation of sensor 

signal features. In activity recognition the features are usually calculated over a number of samples 

to differentiate between activities, whereas in the previous section they are calculated over sensor 

readings at a particular point.

Three types of sensor input have been identified: acceleration (Section 4.3.1), force (Section 4.3.2), 

and combinations of different readings (Section 4.3.3). The systems that recognise activity on the basis 

of acceleration are the most common group. For that reason they were divided intro four subcategories: 

postures and activities (Section 4.3.1.1), postures and transitions (Section 4.3.1.2), periodic activities 

(Section 4.3.1.3), and activities of daily living (Section 4.3.1.4). The subcategories are described in 

more detail in Section 4.3.1. The categories of the systems for activity recognition are presented in 

Figure 4.3.
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Figure 4.3: Categories of the systems for activity recognition

4.3.1 Acceleration

The use of wearable accelerometers is the most common sensing technique for activity detection. 

Acceleration allows the measurement of direction and speed of movement and miniaturisation of 

accelerometers allows them to be embedded into wearable items, e.g., bands or bracelets, and place 

them on different parts of body. That enables measurement of movement of the body parts which are 

related to the activity that is being performed. Some of the systems included in this section in addition 

to signals from acceleration sensors also use signals from gyroscopes, which measure orientation, and 

magnetometers, which measure the strength and/or direction of a magnetic field. Both of those 

measurements were used to calculate the orientation of the device, which can also be calculated from 

the acceleration signal.

This review has identified four general categories of systems that use data from acceleration sensors 

to recognise activities. The postures and activities category (Section 4.3.1.1) includes systems that 

differentiate between activities related to body movement, e.g., walking or running, and body postures, 

e.g., standing or sitting. A second category (Section 4.3.1.2) includes systems that recognise body 

positions, e.g., sitting or standing, and transitions between them, e.g., standing up. They might also 

include other activities related to body movement, e.g., falling. The two remaining categories include 

systems that recognise a number of periodic activities (Section 4.3.1.3), e.g., walking or ridding a 

bicycle, and activities of daily living (Section 4.3.1.4) such as watching television or fixing a car. 

Periodic activities are defined as continuously repeated sequences of movements.

4.3.1.1 Postures and activities

Most of the work in recognising basic posture and movement is based on the use of fixed thresholds and 

decision trees. Bussmann et al. |Bussmann et al., 1998| present an activity monitor (AM) that can 

recognise three postures: standing, lying, sitting, and movement in general. To recognise movement 

the system uses signals from four uni-axial accelerometers, which are placed on the upper part of 

both legs and the sternum. Fixed thresholds on differences in changes of acceleration are employed 

to distinguish between postures and movement. Fixed thresholds on acceleration values are employed
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to distinguish between postures. The data collection to evaluate the system was divided into a 

spontaneous and standardised protocol. In the spontaneous protocol subjects performed activities of 

their choice for four hours in one room. In the standardised protocol the participants were asked to 

perform a predefined sequence of activities. In total 273 postures and movements were collected from 

three subjects. The overall recognition accuracy was 88% for the spontaneous protocol and 96% for 

the standardised one.

Another system for mobility monitoring is presented by Lyons et al. [Lyons et al., 2005]. It 

distinguishes between three basic postures: sitting, standing, and lying and movement in general. The 

system consists of two 2-axis accelerometers placed on the thigh and trunk. It recognises postures and 

movement based on a fixed threshold for the standard deviation of the accelerometer signal calculated 

over a 1-second window. If the activity is a body position, it can be identified depending on trunk 

and thigh angles. The angles are derived from the mean acceleration value calculated over the time 

window. To test the approach over 29 hours of data from one person was collected. The results show 

that overall recognition accuracy was in the range of 84%-95% for postures and equal to 97% for 

discriminating between movement and postures.

The systems described above distinguish between postures and movement in general, however they 

do not distinguish between different types of movement, e.g., walking or running. In [Jeong et al., 2007] 

the authors present a small, low-power activity monitoring system. The system differentiates between 

two postures {standing/sitting, lying) and three activities {falling, running, walking). It uses a signal 

from one 3-axis accelerometer placed on the waist. The algorithm uses a set of empirically-established 

thresholds for differential signal vector magnitude (DSVM) and current values of acceleration to recog­

nise different jiostures and activities. DSVM is calculated according to the equation:

DSVM = \/^i + y'i +

where x,y,z are values of acceleration in three orthogonal (perpendicular) directions. To validate the 

system 100 samples were collected. The system obtained very high accuracy - above 96% for every 

posture/activity.

Ernies et al. [Ermes et al., 2008a| present a system that distinguishes between five 

postures/activities: lying, sitting/standing, walking, running and cycling. The system also uses a 

single 3-axis accelerometer but the accelerometer is placed on the trunk. A decision tree classifier is 

used to discriminate between the activities due to its simple implementation and low computational 

requirements. The time and frequency domain features of the sensor signal are used as input to the 

classifier. Time domain features describe signal changes over time and frequency domain features 

describe the spectrum of signal - the intensity of its frequency. The features are calculated every 

second over a sliding time window. The features include: frequency of the highest peak, spectral 

entropy (measurement of the disorder of signal spectrum), average value of signal, and its variance. 

To evaluate the approach at least 5 minutes of each activity was recorded for three subjects. 118 

minutes of labelled activities were collected in total. The system reaches an average accuracy of 94%.
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The most misclassified activities are walking and running for one of the subjects. This result could 

be caused by an inappropriate variance threshold for discrimination between those activities. The 

authors plan to use more sophisticated methods for thresholds establishment in the future.

A larger number of sensors are used in the study of activity and posture detection presented 

in [Foerster et ah, 1999J. The system consists of four piezoresistive uni-axial accelerometers placed 

on four different locations on the participant’s body: sternum, wrist, thigh, and lower leg. The 

frequency of changes in acceleration signal, which is calculated on data segments longer than 20s, 

as well as acceleration values are used to distinguish between the activities. Values are compared 

to values of model activities and the sample is classified as the activity from which the signal has 

the smallest difference. For the system evaluation 24 male university students were recruited. They 

were asked to perform nine of the following model postures/activities in the laboratory environment: 

sitting, standing, lying supine, sitting and talking, sitting and operating a PC keyboard, walking, 

walking up stairs, walking down stairs, and cycling. In addition, each participant spent about 50 

minutes performing various postures/activities outside the laboratory. The results show that the 

overall misclassification of nine postures/activities performed in the laboratory environment was 4%. 

For postures/activities performed outside the laboratory misclassification was 33%. Problems in 

classification were mainly caused by the similarity of some postures/activities. For that reason some 

postures/activities were combined in the five following classes: lying, sitting, standing, walking, and 

cycling. Average misclassification of each class for the data collected outside the laboratory improved 
to 5%. After elimination of all data segments shorter than 40 seconds, which means that features were 

calculated over a sliding time window no shorter than 40 seconds, the average number of misclassified 

samples was 19% for nine activity classes and 5% for five. The test shows that classification results 

improved for longer data segments and smaller numbers of activity classes. The latter, according to 

the authors, may suggest that the number of sensors or signal features may not have been sufficient 

to distinguish between the initial set of postures/activities.

In (Foerster and Fahrenberg, 2000j the authors present a further investigation of the correlation 

between numbers of sensors placed on the body and the accuracy of activity recognition. Methods 

similar to those reported in (Foerster et ah, 1999( are employed. Five uni-axial acceleration sensors 

for data collection are used. The study was conducted to distinguish between 13 postures/activities: 4 

types of sitting, standing, 4 types of lying, 2 types of walking, walking up and down stairs, and cycling. 

A tree classifier is used to discriminate between postures/activities on the basis of the frequcmcy of 

signal changes from different sensors. 31 particijjants were recruited in the study. They wen; asked 

to perform 3 repetitions of each of 13 postures/activities. The overall accuracy for the data obtained 

from the 5 sensors was 97%. Ffirther tests were conducted for data obtained from two sensors, placed 

on sternum and thigh, and the activities were grouped into four categories: sitting, standing, lying, 

and moving in general. The overall recognition accuracy of each category was 99%.

More sophisticated mechanisms than fixed thresholds or decision tree classifiers have also betui used
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in posture and activity recognition. Wu et al. |Wu et al., 2007| describe a sensor network activity 

monitoring system (SAMS). The system recognises everyday activities performed in an apartment. 

They include 3 postures {sitting, standing, and lying) and 4 activities {walking, ascending/descending 

stairs, swinging legs, and tapping the foot to the ground). SAMS utilises signals from a 2-axis ac­

celerometer to detect the activities. The activity recognition is divided into two levels. At the first 

level joint flexion angles are extracted from the acceleration signal using an extended Kalman filter 

[Haykin, 2001). At the second level the flexion angles are used to recognise activities. Postures are 

categorised on the basis of thresholds for particular flexion angles. To distinguish between periodic 

activities, a set of HMMs corresponding to body segments is employed. The number of hidden states 

in a HMM applied in SAMS depends on the complexity of activity and was set empirically. The 

probability density function of transitions between states in the HMM is modelled as a Gaussian dis­

tribution. To validate the system seven wearable sensors were placed on one participant. The subject 

was monitored during the performance of activities in an apartment. The recognition accuracy of 

postures was 100% and activities was 93%.

In [Khan et al., 2008] authors present a framework of human activity recognition (HAR). HAR 

recognises four activities: lying, standing, walking, and running. It utilises a signal from one 3-axis 

acceleration sensor attached to the chest. Signal features correspond to the coefficients of autoregres­
sive (AR) model. AR models are used in time series analysis to describe stationary time series. The 

feature vector consists of nine acceleration coefficients (3 AR cooffidents for each acceleration axis) 

and can be augmented by two additional acceleration characteristics: magnitude of acceleration signal 

oscillations and tilt of the trunk. An ANN model is employed for the classification of activities. To 

evaluate the system data from seven healthy subjects was obtained. Training and testing samples 

are selected at random. The ANN is trained with 15 samples and tested for 35. The approach ob­

tains overall accuracy between 59%-64% for a feature vector consisting only of AR coefficients. The 

accuracy improves to 99% when the two additional characteristics are added.

A framework based on several machine learning techniques is presented in 

[Thiemjarus and Yang, 2007). The framework recognises 11 activities: sitting (chair), standing, steps, 

sitting (floor), demi-plie, galloping left, skipping, galloping right, side kick, front kick, and walking. It 

utilises four 2-axis accelerometers placed on ankles and legs to obtain the input signal. The framework 

reduces the number of features needed to detect particular activities by using an elimination algorithm 

and redundancy measure proposed by the authors. To validate the framework a 7-minute sequence 

of 11 activities from a single subject was acquired. The feature vector was calculated over a 2-second 

sliding window and consisted of 16 features: raw signals from all the sensors and the corresponding 

signal energy. 20% of the data was used to train the classifier and the rest to test it. Two types of 

classifiers were tested: an 11-state naive Bayes classifier and a corresponding multiple binary decision 

model. The overall recognition rate for both models was 77%. After the application of the elimination 

algorithm and the redundancy measure on binary decision variables the accuracy dropped to 73% for
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9 features in the input vector.

Analysis A summary of the systems used for posture and activity recognition from acceleration

data presented above is shown in Table 4.3. The systems were summarised according to the number

of accelerometers used to obtain data, the number of postures or activities recognised, the technique

used for the recognition, and number of subjects used in evaluation of system.

Reference Number of 
accelerome­

ters

Number
of

activities
or

postures

Recognition
technique

Number
of

subjects

(Bussmann et al., 1998] 4 uni-axial 4 Rule-based 3
[Lyons et al., 2005] 2 2-axis 4 Rule-based 1
[Jeong et al., 2007] 1 3-axis 5 Rule-based ?

[Ermes et al., 2008a] 1 3-axis 5 Decision tree 3
[Foerster et al., 1999] 4 uni-axial 9, 5 Comparison to 

model
postures / activities

24

[Foerster and Fahrenberg, 2000] 5 and 2 
uni-axial

13, 4 Decision tree 31

]Wu et al., 2007] 1 2-axis 7 Rule-based; HMM 1
[Khan et al., 2008] 1 3-axis 4 ANN 7

[Thiemjarus and Yang, 2007] 4 2-axis 11 Bayesian network; 
multiple binary 
decision models

1

Table 4.3: Summary of systems for recognition of postures and activities

The systems presented above used accelerometers placed on the body and are mainly based on 

fixed thresholds on acceleration metrics to distinguish between postures and activities. Even though 

the results suggest that this approach works well to differentiate between postures and movement in 

general, its application to certain movements, e.g., walking and running, is not optimal. One reason 

for this may can be that movement patterns vary for different individuals [de Leon and Sucar, 2002). 

For example, one person can normally walk faster than another. To detect postures, tilt angles 

calculated from acceleration values are mainly employed. This solution obtains reasonable results 

for very different postures, e.g., sitting and lying, but as suggested, for more similar postures more 

sophisticated methods than fixed thresholds should be used. The number of sensors employed in the 

reported approaches is relatively small and for that reason the recognised activities and postures are 

coarse-grained. The results suggest that system accuracy may decrease as the number of activities it 

is required to distinguish increases.
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4.3.1.2 Postures and transitions

As for posture and activity recognition, many of tiie approaches presented in this section are based 

on decision trees and thresholds set on the parameters of the acceleration signal. The common 

choice of decision trees as the classifier could be explained by their flexibility and simplicity. In 

|Najafi et al., 2003| the authors present a system that utilises one kinematic sensor, consisting of a 

gyroscope and a 2-axis accelerometer, attached to the chest to detect body postures and transitions 

between them. The study is based on the experiments and findings described in [Najafi et al., 2000|. 

The system detects the following postures lying, walking, standing, and sitting as well as postural 

transitions: sit-to-lying, lying-to-sit, sit-to-stand, and stand-to-sit. To detect activities a decision tree 

classifier is used. In the first step the data obtained from the sensors is segmented into 1 minute 

blocks, which are used to calculate a set of discrete wavelet transforms (DWTs) and trunk vertical 

displacements. In the second step the signal from different frequency ranges is reconstructed from a 

DWT. The recognition of current activity or posture is made on the basis of fixed thresholds on signal 

characteristics reconstructed from the DWT. Three types of tests were conducted to evaluate the 

system. In the first study 11 elderly subjects were asked to perform six different sequences consisting 

of the activities to be recognised. Overall specificity and sensitivity is in the range of 82%-100%. The 
recognition sensitivity is defined as the number of samples that are recognised properly divided by the 

number of samples that are recognised properly and the number of samples that are not recognised 

and should be. The recognition specificity is defined as a number of samples that are recognised and 
should not be divided by the number of samples that are recognised and should not be and a number 

of samples that are not recognised properly. In the second study 24 elderly persons were asked to 

change their body position in bed. For 144 postural transitions, and 30 transfers out of bed there 

was no detection error. In the third study, 45-60 minutes of daily activities were recorded from nine 

elderly subjects. Recognition accuracy over 90% was obtained.

Another framework for the classification of postures and movements is presented by Mathie et 

al. [Mathie et al., 2004]. The work is based on previous findings presented in [Mathie et al., 2002, 

Mathie et al., 2003[. The framework uses a signal from one waist-mounted 3-axis accelerometer to 

differentiate between 12 activities: sit-to-stand, stand-to-sit, other movement, upright-to-lying, lying- 

to-lying, lying-to-upright, sitting, standing, lying face down, lying on back, lying on left side, and lying 

on right side. Activity recognition is based on a binary decision tree. The binary decision tree consists 

of a number of decision and conclusion nodes. Conclusion nodes, which represent possible outputs, 

can be reached via a set of binary (yes/no) decision nodes. Decision nodes in the binary decision tree 

were established individually and included fixed thresholds, pattern matching and expert systems. To 

evaluate the system 1309 movement sequences from 26 subjects were collected. The participants were 

asked to perform a sequence of the following activities in a controlled environment: stand, lie supine, 

lie left side, lie face down, lie right side, stand, sit, stand, walk along a level corridor, stand, sit, stand, 

walk up a flight of stairs, walk down a flight of stairs, stand, sit, stand, walk along a level corridor.
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and stand. Sensitivity and specificity of overall recognition accuracy was 98% and 99%, respectively.

A system for monitoring older people is introduced by Allen et al. (Allen et al., 2006]. The system 

recognises 8 activities: standing, sitting, lying, stand-to-sit, sit-to-stand, stand-to-lie, lie-to-stand, and 

walking. The input signal for the system is obtained from one 3-axis accelerometer placed on the 

waist and sampled at 45 Hz. The system is based on a Gaussian mixture model (GMM). A GMM is a 

probabilistic model for density estimation using a combination of mixtures, which are in fact Gaussian 

density functions. It can be used in unsupervised learning or clustering. For each activity a separate 

GMM, consisting of 32 mixtures, is trained using an expectation maximisation (EM) algorithm. To 

ensure adaptation to movement variation, the GMM can be trained using large numbers of samples 

from multiple users. The model can be adjusted to individual movement patterns using adaptive 

training based on Bayes methods (Bayesian adaptation) and user-specific data. The input vector 

to the GMM consists of 25 features calculated on acceleration values. To enable the recognition of 

short activities no frequency-domain features, which describe signal with respect to its frequency, are 

included in the vector. The evaluation of the approach was conducted on the data from six healthy, 

elderly subjects. The subjects were asked to perform the sequence of tasks consisting of 8 activities 

on a daily basis. On average each subject collected 340 instances of each activity or posture. 60% of 

the randomly chosen data is used to train and 40% to test the classifier. The results are compared 

to a decision tree cl2issifier described in [Mathie et al., 2004]. The outcomes demonstrate overall 20% 

accuracy improv('ment. Further tests were conducted to investigate the effect of the system adaptation 

to the user characteristics. The average accuracy for subject-specific training of GMM (data of one 

subject used to train and test the classifier), subject-independent training of GMM (data of all the 

subjects but one used to train the classifier and tested for the subject not included in the training 

set) and GMM adjusted to subject characteristics by Bayesian adaptation was 88%, 77% and 92%, 

respectively.

One waist-mounted 3-axis accelerometer is also used in a real-time system to recognise postures 

and activities presented in (Karantonis et al., 2006]. The system recognises 12 activities: sit-to-stand, 

stand-to-sit, lying, lying-to-sit, sit-to-lying, three types of walking, three types of falling, and circuit 

{sit-to-stand, walking, stand-to-sit, sit-to-lying, lying, lying-to-sit, sit-to-stand, walking, stand-to-sit). 

The recognition of the activity is made by a decision tree classifier on the basis of fixed thresholds 

on the magnitude of signal oscillations and trunk tilt angle. To test the recognition accuracy, data 

from six healthy subjects was analysed. Each of them performed a set of 12 tasks. The data was 

logged with a frequency of 45 Hz. The overall detection accuracy was approximately 91%. The lowest 

accuracy was obtained for walking 83%.

In (Nyaii et al., 2006] the authors present a system for activity detection using one 3-axis ac­

celerometer integrated in the shoulder of a garment. The placement of the sensor and its integration 

with a garment is motivated by user comfort and safety. The system detects six following activities: 

sit-stand, stand-sit, lie-sit, sit-lie, stairs up, and stairs down. The recognition of the activities is based
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on a decision tree classifier. The distinction between activities is done on the basis of fixed thresholds 

on acceleration values or characteristics related to a DWT. The DWT used in the system is calculated 

over a 7-second window. To evaluate the approach approximately 5 hours of data from each of six 

subjects recruited for the study was collected. The sensitivity and specificity for 1495 activity samples 

was 95% and 99%, respectively.

Yang et al. [Yang and Hsu, 2007) introduce an algorithm for real-time activity detection that 

uses data obtained from a wearable 3-axis accelerometer attached at belt level. Data are acquired 

with a frequency of 60 Hz. The activities detected by the system include three postures {sitting, 

standing, lying), four postural transitions {sit-to-stand, stand-to-sit, lie-to-sit, sit-to-lie) and falls. 

The recognition of postures and activities is done on the basis of thresholds set on acceleration values. 

Postures are recognised on the basis of tilt calculated over 0.5s window. The activities are recognised by 

a slope mapping technique, which maps data series into a binary sequence, applied in a 2.5s window. To 

evaluate the algorithm 10 subjects were recruited. They were asked to perform 5 activities: lying, sit- 

to-stand, stand-to-sit, sit-to-lie, lie-to-sit, and walking. The algorithm achieved recognition accuracy 

above 90%. The misinterpreted activities could be as a result of variations in the performance of a 

particular activity by one person as well as differences between activity performance among different 

people.

Salarian et al. [Salarian et al., 2007) describe a system to distinguish between four activities: 

sitting, standing, lying, and walking and two postural transitions sit-to-stand and stand-to-sit. The 
system is designed to work for healthy subjects and peojjle with PD. The system uses three kinematic 

sensors. One sensor consisting of a gyroscope and a 2-axis accelerometer is placed on the trunk. Two 

gyroscopes are placed on two shins. The first step in signal processing is filtering to remove tremor, 

which is one of the symptoms in PD. To differentiate between postural transitions and activities a set 

of features such as the duration of a transition, the minimal value of the tilt of the trunk, and the range 

of the tilt is calculated. Those features are used to train two statistical classifiers. The first classifier 

is used to assign the probability of being in transition. The second one is used to discriminate between 

sit-to-stand and stand-to-sit transitions. To differentiate between sitting and standing periods a set of 

fuzzy rules was established. To evaluate the system, tests with 10 PD patients and 10 healthy subjects 

were conducted. 232 samples of various activities were collected from subjects with PD and 272 from 

control subjects. The recognition sensitivity of the activities obtained for people with PD is slightly 

worse than for control subjects 83%-99% and 96%-100%, respectively. The recognition specificity of 

the activities obtained for people with PD is almost the same for control subjects 97%-10t)% and 

98%-100%, respectively. For postural transitions recognition sensitivity is 95% for control subjects 

and 84% for PD patients.

In contrast to simple decision trees more sophisticated methods for activity recognition can be 

used. Song et al. )kwang Song et al., 2008) present an activity recognition system to detect the daily 

activities of older adults using ANNs. The system recognises nine activities: sit-to-stand, stand-to-
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sit, lying, lying-to-stand, stand-to-lying, walking, running, sitting, and four types of falls. It uses the 

signal from a 3-axis accelerometer placed on the waist. To recognise activities a multi-layer perceptron 

learnt by a back-propagation algorithm is employed. The input vector to the classifier includes 14 

feature vectors. Each feature vector consists of a number of features that represent the acceleration 

signal. The features include acceleration and tilt values and are acquired during a 1 second period. 

To validate the method a total number of 5773 samples was collected from seven subjects. The overall 

activity recognition accuracy was 95%.

Analysis A summary of the systems used for posture and transition recognition from acceleration 

data presented above is shown in Table 4.4. The systems were summarised according to the number 

of accelerometers used, the number of postures or activities recognised, the technique used for posture 

or activity recognition, and the number of subjects used in evaluation of system.

Reference Number of 
accelerome­

ters

Number
of

activities
or

postures

Recognition
technique

Number
of

subjects

[Najafi et al., 2003] 1 unit (1 
gyroscope; 1 

2-axis ac­
celerometer)

8 Decision tree 11, 24, 
and 9

[Mathie et al., 2004] 1 3-axis 12 Decision tree 26
[Allen et al., 2006[ 1 3-axis 8 GMM 6

[Karantonis et al., 2006[ 1 3-axis 12 Decision tree 6
[Nyan et al., 2006[ 1 3-axis 6 Decision tree 6

[Yang and Hsu, 2007[ 1 3-axis 8 Rule-based 10
[Salarian et al., 2007] 3 units (3 

gyroscopes;
1 2-axis ac­

celerometer)

4 Set of fuzzy rules; 
statistical 
classifiers

20

[kwang Song et al., 2008] 1 3-axis 9 ANN 7
Table 4.4; Summary of systems for recognition of postures and transitions

Most of the approaches use decision tree or rule-based models to recognise activities. The models 

usually involve manual adjustment of parameters. More automated approaches presented in this 

section are based on artificial intelligence, wavelet transformation, and probability theory. The wavelet 

transformation is very time consuming and for that reason is not suitable for real-time or near real-time 

systems. As suggested in [Allen et al., 2006J, other features calculated in the frequency domain like 

Fourier transform are not suitable for short, non-periodic activity detection. The activities recognised 

by the systems include principal body positions as well as transitions between them. The number 

and type of activities as well as the evaluation protocols varied between the approaches therefore the
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results can not be compared. However, the accuracy obtained by all the systems is usually over 90%, 

which is reasonably good. To evaluate some of the work the data was collected outside a controlled 

setting. The recognition accuracy for such data was lower, but its level was still acceptable.

4.3.1.3 Periodic activities

A number of systems focus on recognition of a number of actions that consist of regularly repeated 

sequences of movements such as running and cycling. Depending on the activity, movements can 

be repeated with different speed and have different characteristics, e.g., range. An ANN classifier is 

used in [Mantyjarvi et al., 2001J to recognise three walking activities (level walking, walking upstairs, 

walking downstairs) and their start/stop points. Two 3-axis accelerometers mounted on the right and 

left hip were used as a signal source. The purpose of the paper is to evaluate the influence of principal 

component analysis (PCA) and independent component analysis (ICA) on recognition accuracy. PCA 

and ICA are techniques used to reduce the number of features required to describe a signal. Pour 

coefficients of a wavelet transform, which describe the signal with respect to its time and frequency, 

for each of six acceleration values form the feature vector. The feature vector is given as an input to 

a multi-layer perceptron, which is used to recognise the activities. To evaluate the system data from 

six subjects was collected. They were asked to follow a predefined scenario in an office environment. 

The results show that data processed by techniques to reduce the number of features in the feature 

vector (PCA and ICA) obtain better results than raw data. The recognition accuracy is 82%-90% 

and 61%-84%, respectively. There is no significant difference in results for PCA and ICA.

The comparison of different types of classifiers to recognise eight activities: standing, walking, 

running, climbing up stairs, climbing down stairs, sit-ups, vacuuming, and brushing teeth is presented 

by Ravi et al. |Ravi et ah, 2005j. The signal from one 3-axial accelerometer placed on the waist is 

utilised to extract the signal features. The features are extracted over a 5.12 second sliding window. 

They include: mean, standard deviation, energy (sum of absolute signal values), and correlation of 

acceleration signal. Comparison of five base-level classifiers (decision tables, C4.5 decision trees, k- 

Nearest Neighbour (k-NN), support vector machine (SVM), naive Bayes) and five meta-level classifiers 

(boosting |Meir and Ratsch, 2003], bagging [Breirnan, 1996|, plurality voting, stacking with ordinary- 

decision trees, stacking with meta-decision trees [Todorovski and Dzeroski, 2003|) is presented in the 

paper. Meta-level classifiers are used to obtain a final prediction from the base-level classifiers’ predic­

tion. The data was collected from two subjects during several days. The results show that meta-level 

classifiers performed better than base-level ones. The plurality voting technique obtained the best 

accuracy, from 91% to 100%. The energy was the least significant signal feature.

Huynh et al. [Huyidi and Schiele, 2006] introduce a hybrid approach to activity recognition that 

combines a generative model, e.g., HMM, with a discriminative model, e.g., SVM. Generative models 

specify a joint probability distribution over observation and desired output of the model. Generative 

models model a full probability of all variables, whereas discriminative models model only dependence
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of unobserved variables on observed variables. The system is designed to detect the eight following 

activities: sitting, standing, walking, walking downstairs, walking upstairs, shaking hands, writing on 

the whiteboard, and typing on the keyboard. Twelve 3-axis accelerometers are used to capture data. 

They are placed on the ankles, knees, elbows, shoulders, wrists, and hips. The generative model used 

in the study is multiple eigenspaces. Multiple eigenspaces are based on PCA and are employed to 

capture essential activity characteristics and reduce the sensor data used to describe the activity. A 

reduced set of data is used to create the feature vector. The feature vector is used as the input to train 

the discriminative classifier. The classifier is based on a SVM. SVMs are a set of supervised learning 

methods. The feature vector consists of the running mean and variance of the acceleration values 

calculated over 0.5s windows. In a previous study [Kern et al., 2003] the relationship between the the 

placement of sensors and the recognition accuracy of different activities by a Bayesian classifier was 

investigated. It was found that an increase in the number of sensors increases detection accuracy of 

complex activities. A data set of 18.7 minutes used in a previous study was employed in this study. 

The results show that the use of multiple eigenspaces can reduce the need for supervision and its 

integration with a SVM can increase overall system performance.

In [Akos Fabian et al., 2007, Gyorbfrd et al., 2009] the authors describe a system that uses three 

MotionBand devices and a mobile phone to recognise the six following activities: resting, typing, 

gesticulating, walking, running, and cycling. Each MotionBand device contains three 3-axial sensors: 

an accelerometer, a magnetometer, and a gyroscope. The sensors are placed on the dominant wrist, 

hip, and ankle. The set of activities to be recognised differs by the intensity of motion and therefore 
the feature vector consists of the variation in changes of the acceleration signal over time for each 

sensor. The variation of signal changes is calculated for every sample over a 2-second time window 

and normalised. To recognise activities six ANNs are employed. Each of them is trained to detect 

only one activity. The feature vector is given as an input to all of the ANNs. If more than one network 

reports activity detection, the activity with the biggest activation function value is considered to be 

detected. To evaluate the system three sets of data from one person were collected. Each set contained, 

on average, 1776 samples per activity. Due to the fact that movement often caused displacement of 

the sensors on the person’s body, two types of feature vectors were investigated. For one vector, 

the variation of signal changes was calculated in all tree acceleration directions. For the other, it 

was a single intensity (signal amplitude) value for each sensor. The outcomes showed that average 

recognition accuracy for the feature vector consisting of single intensity values for each sensor was 

marginally greater. The activities that were recognised with the lowest accuracy were resting and 

gesticulating.

In [Krishnan and Panchanathan, 2008J the authors present an approach that takes into consider­

ation temporal information between samples to recognise activity. Seven activities are recognised by 

the method: walking, sitting, standing, running, cycling, lying down, and climbing the stairs. Three 

accelerometers placed on the hip, dominant ankle, and dominant thigh are used to obtain the data. To
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recognise the activities, sensor readings are grouped into frames consisting of a fixed number of sam­

ples. To improve classification of the frames, the method proposed by the authors combines temporal 

information about the distance between the frames denoted by a Gaussian distribution and similarity 

between current and past frames described by Euclidean distance. To calculate the feature vector, the 

acceleration stream is divided into 512 sample windows with 256 samples overlap. Statistical features 

like mean, variance, correlation or energy (sum of absolute values) of the sample values are calculated 

in that window. Boosted decision stumps (AdaBoost) (Fieund and Schapire, 1995) and regularised 

logistic regression (RLogReg), which are discriminative classifiers used to recognise the activities, are 

adapted to the method proposed by the authors. Logistic regression is prediction of the probability 

of occurrence of an event by fitting data to a logistic logistic curve. The simplest logistic curve is 

a sigmoid function, which has ‘S shape’. To validate the technique data from ten participants was 

collected. The best results are gained for three past frames utilised to classify a current frame. The 

tests conducted by the authors show that adding temporal information on top of the classifiers gives 

better results than without it. After adding temporal information AdaBoost and RLogReg classifiers 

obtained accuracy of 95% and 90%, respectively.

Analysis A summary of the systems used for recognition of periodic activities from acceleration 

data presented in previous part of this section is shown in Table 4.5. The systems were summarised 

according to the number of accelerometers used in the systcmi, the number of jjostures or activities 

recognised, the technique used for activities recognition, and the number of subjects used in evaluation 

of system.

Reference Number of 
accelerome­

ters

Number
of

activities
or

postures

Recognition
techniciue

Number
of

subjects

[Mantyjarvi et ah, 2001] 2 3-axis 3 ANN 6
[Ravi et ah, 2005] 1 3-axis 8 Comparison of 

different classifiers
2

[Huynh and Schiele, 2006] 12 3-axis 8 SVM ?

[Akos Fabian et ah, 2007, 
Gyorbi'ro et ah, 2009]

3 units 
(3-axis ac­

celerometer, 
magnetome­

ter, and 
gyroscope)

6 ANN 1

[Krishnan and Panchanathan, 2008]1 3 2-axis 7 Comparison
(AdaBoost,
RLogReg)

10

Table 4.5: Summary of systems for recognition of periodic activities
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To classify periodic activities machine learning methods and techniques that reduce a number of 

possibly correlated signal features are commonly used. The input features are usually calculated over 

time windows exceeding 1 second to capture characteristics of the signal in respect to its frequency. 

Because some of the features are calculated in the frequency domain their calculation can be time 

consuming. To detect relatively short, non-periodic activities in near-real-time long time windows and 

frequency characteristics might not be suitable.

4.3.1.4 Activities of daily living

In |Bao and Intille, 2004] the authors present a study on the recognition of 20 real-life activities. They 

include activities such as: walking, walking carrying items, sitting and relaxing, working on computer, 

standing still, eating or drinking, watching television, reading, running, bicycling, stretching, strength­

training, scrubbing, vacuuming, folding laundry, lying down and relaxing, brushing teeth, climbing 

stairs, riding elevator, and riding escalator. The system utilises five 2-axis accelerometers to classify 

the activities. They are placed on the hip, wrist, aim, ankle, and thigh. The features from the 

acceleration signal are calculated over a 6.7s sliding window. They include mean value, energy, spectral 

entropy (a measure of the disorder of the signal spectrum), and correlation of the signal. A number of 

classifiers was tested (decision table, k-Nearest-Neighbour, decision tree C4.5, and naive Bayes). To 

evaluate the classifiers, the accuracy of activity recognition and the influence of the number of sensors 

and their placement on it, data from 20 subjects was collected. Two types of data were obtained: 

semi-naturalistic, and specific. For semi-naturalistic data collection, subjects had to perform a number 

of activities listed on a worksheet. Subjects were not aware what was the exact activity because only 

the goal of each activity was known to them. For example, subjects were asked to ‘use the web to 

find out what the world’s largest city in terms of population is’ rather that ‘work on the computer’. 

For specific data collection subjects performed the 20 activities and all of them were explained to 

them in detail. The classifiers were trained on specific data and tested on semi-naturalistic data. 

The best results were obtained by a C4.5 decision tree classifier. The results showed that recognition 

accuracy for user-specific training was better (77%) than for leave-one-subject-out training (73%). 

The reason for that could be differences in activity patters of each participant. Additional tests of 

activity recognition accuracy after reduction of the number of sensors were conducted. The results 

indicated that using only thigh and wrist, and hip and wrist pairs showed less than a 5% decrease in 

recognition accuracy compared to all five accelerometers.

In |Zappi et al., 2007] the authors present an approach to recognising ten gestures carried out by 

workers in a car assembly line using acceleration data from acceleration sensors placed on the body. 

The method uses data acquired from 19 3-axial acceleration sensors placed at regular distances on 

both hands. The system consists of two separate modules. The first module classifies the current 

gesture on the basis of readings from one sensor. Therefore, one such module for each sensor used 

by the method is needed. A HMM is used to recognise current gesture in this module. Each HMM
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(one for each sensor) consists of four hidden states which are fully connected. The feature vector 

given as the input to the HMM consists of acceleration direction (positive, negative, or null). The 

second module fuses the gestures detected by the HMM for each sensor to infer the final gesture. Two 

classifiers were tested for fusion: a majority voting scheme and a naive Bayesian fusion method. In 

naive Bayes fusion all gestures detected by the HMM for each sensor form a vector which is given as 

the input to the naive Bayes classifier. The final gesture is detected on the basis of previously learnt 

probability relationships between outputs of HMMs and actual gestures. To evaluate the system each 

of the ten activities was performed 19 times by a single subject. The results show that the detection 

accuracy increases with the number of wearable sensor nodes and for 19 nodes was equal to 93% for 

majority voting and 98% for the naive Bayes classifier.

Analysis Distinguishing between a number of real life activities can be challenging. The systems 

presented above classify up to 20 activities. In contrast to posture and movement detection methods, 

the systems are based on training rather than on fixed thresholds. This approach enables adjustment 

to user-specific movement patterns, which may be different for each user, and therefore desirable for 

real-life activities. To obtain the accuracy required they use a larger set of wearable sensors than the 

work described in previous sections. The use of more sensing elements can make the systems more 
accurate, because there is more data describing a particular activity. Howevtjr, on the other hand 

their placement becomes more problematic.

4.3.2 Force

Headon et al. (Headon and Curwen, 2001J introduce a method for activity recognition using ground 

reaction force (GRF). GRF refers generically to any force exerted by the ground on a body in contact 

with it. Seven activities are classified by the system: crouch, sit, jump, step, rise to stand, drop 

land, and static position. The approach is based on the idea that the force experienced by the floor 

is dependent on the acceleration of the body acting upon it. By com{)aring GRF to body weight it 

can be decided whether the body acceleration was acting downwards or upwards. For that reason 

the system requires calibration with the weight of the participant, which is done automatically by 

an adaptive weight estimator. The Active Floor [Addlesee et al., 1997], which consists of floor tiles 

placed on load cells, is used as the sensory input. To recognise activities HMMs are used. The signal 

features are calculated over a 20ms time window from the sensor input and normalised by the user’s 

body weight. The features include the mean, standard deviation and slope of the signal as well as 

their first and second order derivatives over time, which represent changes of the signal over time. 

The feature vector is used as an input to a HMM classifier. The number of states in the HMM might 

be different for each activity and was set empirically. To evaluate the system a number of samples 

were collected and used to train and test the system recognition accuracy. The results showed almost 

100% accuracy for each of seven activities.
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4.3.2.1 Analysis

The basic idea of the system is that it is possible to detect body movement from force sensors. The 

features calculated to obtain the feature vector use only weight accumulated in a single point to 

distinguish between actions and therefore the activities that the system can detect are much more 

coarse-grained. As presented, the system is dependent on the weight of the user. For that reason 

the system employs a mechanism to adjust its parameters to the user weight. The set of activities 

distinguished by the system would not be suitable for people with PD. In addition, its deployment in 

the home environment would be problematic.

4.3.3 Combinations of sensors

Because accelerometers allow the measurement of direction and speed of user’s movement, they were 

the most common source of data used to recognise activities. Their readings were often combined 

with readings from different types of sensors such as position or sound sensor to recognise activities. 

This section gives insight into systems that combine readings from accelerometers with different types 

of sensors to recognise activities.

4.3.3.1 Acceleration and position

Ogris et al. [Ogris et ah, 2005| present methods for gesture recognition using data from wearable 

motion and location sensors. The methods are employed to detect 21 gestures performed during fixing 

a bicycle. The scope of the pai)er is to compare different methods of fusion of motion and location 

sensor data. Motion sensors include accelerometers and gyroscopes. The location (3D coordinates) of 

ultrasonic devices placed on the body is calculated using an ultrasonic location system, which consists 

of at least three ultrasonic beacons placed at predefined locations. As the authors pointed out, some of 

the gestures are periodic, e.g., screwing, whereas others are not, e.g., assembling some parts. For that 

reason, the system presented in the paper consists of two subsystems: a location-based classification 

module and a motion-based classification module. The location-based classification utilises features 

obtained from the ultrasonic location system. The feature vector given as an input to a classifier, is 

calculated over a 1-second sliding window and consists of the coordinates of all the ultrasonic devices 

placed on the body. Two classifiers, a C4.5 decision tree and k-NN are tested for accuracy of gesture 

recognition in location-based classification module. The motion-based classification consists of two 

modules: model and frame-based classifications. For the model-based classification raw data from 

accelerometers and gyroscopes are used. For each gesture a dedicated HMM is trained. To reflect the 

continuous nature of the input each node in the HMM is modelled by a single Gaussian distribution. 

The number of states in the HMM, which was set empirically, corresponds to the c:omplexity of the 

task and varies from 5 to 7. For the frame-based classification features like mean, variance, and median 

of acceleration signal over the sliding time window are calculated and form the feature vector that is 

passed to the classifier. As a classifier, C4.5 is chosen because of its low computational complexity.
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Majority over decision is applied to recognise the gesture.

The authors propose three methods of sensor fusion:

• Plausibility analysis. The motion-based classification is applied and the 3 most likely gestures 

are selected. For each gesture an error from the position learnt by the ultrasonic sensors is 

calculated. If the error from the position is within an acceptable range the gesture recognised 

by motion-based classification module with the highest probability is taken as the one being 

recognised.

• Joint feature vector. The vector consisting of ultrasonic and motion features is used as an input 

to the frame-based classification.

• Classifier fusion. The classification is based on ranking from location and motion-based classi­

fication.

To evaluate the system three ultrasonic sensors [Hexarnite, 2009| for location measurement and nine 
acceleration sensors with gyroscopes |Xsens Technologies, 2009] placed at several body positions are 

used. Nine data sets consisting of 21 gestures were recorded and labelled. To better understand the 

nature of the data the gestures were grouped into categories by their similarity. The values in brackets 
represent outcomes for groups of categories. The results show that location-based classification had 

average detection accuracy of 59% (82%) for the C4.5 classifier and 60% (85%) for k-NN. The recog­

nition accuracy is not very high. This may be as a result of the number of tasks and the fact that 

some of them were very similar. For that reason results obtained for grouped tasks are better. The 

best results for the frame-based model were accomplished by the k-NN classifier and were equal 84% 

(90%). As predicted, activity recognition accuracy for non-periodic tasks was higher than for periodic 

ones. On the other hand the model-based approach had the worst results for periodic tasks and its 

average classification accuracy was 65% (78%). The most successful strategy was classifier fusion with 

89% (95%) accuracy. Even though it is 1% worse than plausibility analysis it obtains similar results 

for each gesture. The tests show that additional information from ultrasonic sensors improves the 

results by 6% in comparison to the outcomes from motion sensors only.

In [Stiefineier et ah, 2006] the authors extend the research described above on the data from six 

participants. 21 similar gestures are recognised and the same types of sensors are used placed in 

slightly different locations. Three types of tests were conducted:

• Intra. Samples from an individual user were used for training and data from the same user for 

testing.

• Inter. Samples from all the subjects were used for training and testing.

• External. Testing was conducted f<jr a user not included in the training set.
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The results show that there is no significant difference between intra, inter, and external tests. Position 

classification is around 15% better than the motion classification and it varies from 55% to 73%. 

Classifier fusion is less accurate than position classification alone.

Analysis The authors present the interesting idea of combining readings from acceleration sensors 

placed on different body parts with readings determining the position of the body parts. The set of 

activities chosen for the system consists of very similar actions but despite that the approach obtains 

reasonably high accuracy. In contrast to systems based on readings from the accelerometers only, 

non-periodic activities can also be classified by this system. The system consists of several wearable 

sensors and ultrasonic beacons deployed in the room. Even though the system has the potential to 

classify movements related to the exercise set prepared for SMOOTH, this set of sensors does not 

make it very mobile and convenient to use in terms of sensor placement and user convenience.

4.3.3.2 Acceleration and speed

Ernes et al. [Ermes et al., 2008bJ introduce a system for daily activity and sports recognition. The 

study was based on findings described in [Parkka et al., 2006J. The aim of the paper is to compare 

the results of activity recognition in supervised and unsupervised settings for the following set of nine 

activities: lying, sitting and standing, walking, running, Nordic walking, rowing with a rowing machine, 

cycling with an exercise bicycle, cycling with a real bicycle, and playing football. The supervised setting 

includes activities performed in a laboratory with accurate labelling of these activities made by a 

supervisor, the unsupervised setting includes activities performed outside the laboratory with labelling 

of the activities made by the subject. The system uses signals obtained from two accelerometers placed 

on the hip and wrist, and a GPS receiver. The feature vector is calculated within a 1-second window. 

It consists of time-domain features (mean, variance, median, skew, kurtosis, 25% percentile, and 75% 

percentile) and frequency-domain features (estimation of power of the frequency peak and signal power 

in different frequency bands). In addition, the feature vector includes speed calculated from GPS data. 

Four classifiers for activity recognition were evaluated in the paper:

1. Custom decision tree using a simple threshold mechanism to detect activities.

2. Automatically generated decision tree. A structure similar to the custom decision tree, however 

rules were generated by the ‘treefit’ function from the Matlab Statistics Toolbox 

|The MathWorks, Inc., 2009J.

3. Artificial neural network (ANN) consisting of one hidden layer (15 nodes) with the back propa­

gation algorithm used for learning.

4. Hybrid model, which according to the authors, combines all the best features of the previous three 

methods. Its structure is similar to the custom decision tree, but decision nodes are replaced by 

ANNs.
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Data for the study was collected from 12 subjects in both supervised and unsupervised settings. In 

total 68 hours of data were used. The outcomes show that the hybrid model obtained the best results 

with a total classification accuracy for the data collected under both supervised and unsupervised 

settings equalling 89%. For the model trained and tested with data collected in a supervised setting 

a total accuracy of 90% was noted. For the model trained with data collected in a supervised setting 

and tested with data collected in an unsupervised setting, the total accuracy was 72%.

Analysis This approach distinguishes between periodic activities on the basis of time and frequency- 

domain features as well as the speed of the person. The information about current speed obtained 

from GPS is not meaningful for monitoring of exercises performed at home. The authors investigated 

recognition accuracy of activities performed without supervision. This approach obtained worse results 

than activities performed under supervision. A hybrid model that obtained the best accuracy for 

activity detection is decision tree based. Such a structure might be more difficult to implement for 

data obtained from more than one type of sensor. In addition, the tree structure highly depends 

on the set of activities to be recognised and for that reason adding or removing an activity involves 

rebuilding the tree structure.

4.3.3.3 Acceleration and other

Lester et al. [Lester et al., 2005| propose a hybrid approach to recognising activities using readings 

from different types of sensors placed at a single body location. The sensors measure acceleration, 

light, sound, humidity, and pressure. The approach combines the advantages of a static discrimina­

tive classifier to detect activities with a generative classifier to cai)ture temporal dependency. Decision 

stump, which is a machine learning model consisting of a single-level decision tree, is used as discrim­

inative classifier to recognise activities. The feature vector includes: fast Fourier transform (FFT) 

coefficients, cepstral coefficients (they model spectral energy distribution), spectral entropy (measure 

of the disorder of signal spectrum), band pass filter coefficients, integrals, mean, and variance of the 

signal. To select the most meaningful features and reduce the feature set, the AdaBoost algorithm 

is used. In empirical analysis it was found that a selection of 50 of the most meaningful features is 

optimal. For each activity a separate HMM is trained as a generative model and the classification 

is based on the HMM that detects the activity with the highest probability. To evaluate the sys­

tem 12 hours of data were recorded from two participants over a period of six weeks. Ten activities 

were recognised: sitting, standing, walking, jogging, walking up/down stairs, walking, riding a bicy­

cle, driving a car, and riding an elevator up/down. Comparison of different classifiers (naive Bayes, 

decision stump classifier, HMM with decision stump and with raw data) is presented in the paper. 

The highest classification accuracy was obtained by the HMM with decision stump classifier and was 

equal to 95%. In [Lester et al., 2006[ further tests were conducted. The data was collected from 12 

individuals. The sensors were worn in 3 different locations: wrist, waist, and shoulder. 8 activities 

were investigated: sitting, walking, standing, walking up/down the stairs, riding elevator up/down,
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and brushing teeth. The results showed that classifiers trained by a sensor placed on a single body lo­

cation obtained slightly better results than by three sensors trained altogether. For classifiers trained 

only with the accelerometery signal the overall accuracy was approximately 65% compared to 90% for 

acceleration, sound and barometric pressure. The results suggest that no customisation to the specific 

user is needed.

Maurer et al. [Maurer et al., 2006] present eWatch, a multi-sensor platform to detect activities of 

every day living. eWatch contains four sensors: a 2-axis accelerometer, a light sensor, a temperature 

sensor, and a microphone. The system is designed to distinguish between six activities: sitting, stand­

ing, walking, ascending stairs, descending stairs, and running. The features of the sensor signal are 

calculated every 0.5 seconds on a 4-second sliding window. They include: mean, standard deviation, 

variance, cumulative histogram, inter-quartile range, and crossing rates of the signal. The most mean­

ingful features for the activities are chosen by the Correlation based Feature Selection (CFS) algorithm 

from the WEKA toolkit [Weka, 2009J. A number of classifiers was evaluated. Namely a C4.5 decision 

tree, k-NN, and naive Bayes. Because of the good balance of accuracy and computational complexity 

a C4.5 classifier was chosen for further tests. Six subjects took part in the evaluation of the system. 

They wore six sensors which were placed on the left wrist, belt, necklace, in the right trousers pocket, 

shirt pocket, and bag. Using all the features from all the sensors obtains the best result. It varied 

from 85% to 92% depending on the sensor location. For comparison, the activities detected using only 

the acceleration signal showed only 61%-86% accuracy.

In [Yang and Hsu, 2007] a system to recognise activities from readings obtained from the Body- 

media Armband [Bodymedia, 2009] is presented. The Armband includes five types of sensors: a 2-axis 

accelerometer, a heat flux sensor, a galvanic skin response sensor, a skin temperature sensor, and a 

thermometer. 24 different measurements can be obtained from those sensors. To recognise the activ­

ities a fuzzy Bayesian network is used. For each sensory reading a fuzzy membership function based 

on mean value and standard deviation is created. The membership values are used as an input to a 

fuzzy Bayesian network that infers the activity being performed. The training of the Bayesian network 

is also adapted to fuzzy data. To evaluate the system, 5500 samples of the following activities were 

collected: walking, running, exercising, eating, reading, studying, playing, resting, and sleeping. They 

were labelled and randomly chosen for training and testing of the Bayesian classifier. The results show 

that the fuzzy Bayesian classifier behaves slightly better than a discrete one. The recognition accuracy 

is 74% and 70%, respectively. A further set of tests revealed that recognition accuracy was better 

for both types of signals (acceleration and physiological) (74%) compared with acceleration (45% 

accuracy) or physiological signals (61% accuracy) separately. As predicted the acceleration signal 

contained more meaningful data to distinguish between periodic activities. Worse recognition results 

using data from accelerometers compared to sensors reading physiological signals might be caused by 

the set of activities used in the evaluation which contained more non-periodic activities than periodic
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Analysis All the approaches presented combine information from acceleration sensors with either 

physiological, e.g., body temperature, or environmental sensors, e.g., ambient light. The choice of 

sensors is highly dependent on the set of tasks to be detected. Neither physiological nor environmental 

sensors provide any information about user body movement during exercise.

4.4 Sensing Chairs

In this section a review of chairs designed to sense the body position of their occupant is presented. 

To date and to our knowledge no chairs used to detect user movement have been developed. Sensing 

chairs are divided into two categories depending on the sensors used as input to the system: force 

sensors (Section 4.4.1) and force and distance sensors (Section 4.4.2). A summary of the systems is 

presented in Section 4.4.3.

4.4.1 Force sensors

Force sensors placed on a chair have been commonly used to detect the body position of its occupant. 

Placement of the sensors on the seat or back of the chair allows pressure distribution on these areas 

to be measured. On the basis of pressure patterns different body positions can be recognised.

4.4.1.1 Seated posture recognition by low-cost sensors

Kamiya et al. [Kamiya et ah, 2008) introduce a chair equipped with low-cost sensors to identify sitting 

postures. The system utilises an 8 x 8 grid of force sensors (Flexiforce jTekscan, Inc., 2009]) placed 
on a seat to determine nine seated postures. The postures include:

1. Normal.

2. Leaning forward.

3. Leaning backward.

4. Leaning right.

5. Right leg crossed.

6. Leaning right with right leg crossed.

7. Leaning left.

8. Left leg crossed.

9. Leaning left with left leg crossed.

The pressure values from the 64 sensors form the feature vector. The feature vector is used to train 

and test a SVM algorithm, which is used to recognise the current posture. To solve the problem of 

dependency on individuals two types of normalisation of the feature vector are introduced:

96



Chapter 4. State of the Art

• Position. The feature vector is subtracted from the feature vector for the normal posture.

• Weight. The feature vector is divided by the sum of its 64 values.

Data for system validation were collected from ten male students. They were asked to perform the 

sequence of nine positions listed above. After each position the participants were supposed to return 

to the normal position. Each subject did five trials, so a total of 450 samples were obtained from each 

subject.

Two types of tests were conducted:

• Person-unknown. The data of nine subjects was used for training (4050 frames) and the one not 

included in the set for testing (450 frames).

• Person-known. The individual data from each person was used to train and test the classifier.

For each test the effect of the normalisation method was investigated. The results are shown in Table 

4.6. Recognition accuracy was greater for the person-known than the person-unknown test, which is 

not surprising. The feature vector normalisation had an insignificant influence on the person-known 

test results. For the person-unknown test the results were improved by 3%.

Test Case Accuracy

Without normalisation 90.6%
Person-unknown Normalised (position) 93.0%

Normalised (-t-weight) 93.9%
Without normalisation 98.4%

Person-known Normalised (position) 98.8%
Normalised (-[ weight) 98.9%

Table 4.6: Classification results for nine postures

Analysis The authors used 64 force sensors which is almost 3 times more than SMOOTH. Our 

system was designed to be inexpensive and operate in real time. Even though inexpensive force sensors 

were used in the approach, any increase in their number can increase computation time as well as 

the overall cost of the system. Because the sensors were placed only on the seat, recognition of some 

positions in which the trunk position is crucial, e.g., leaned forward, might be limited. The normal­

isation techniques proposed by the authors seem to improve overall system performance. However, 

the difference in accuracy for the person-known approach is marginal. The system detection accuracy 

is high but it detects only postures and therefore there is no comparison of detection accuracy for 

actions classified by SMOOTH.
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4.4.1.2 Seated posture recognition using sensor mat

Tan et al. (Tan et al., 2001] present a sensing chair equipped with pressure mats manufactured by 

Tekscan (Tekscan, 2009] to detect postures. The mats were placed on the back and seat of an office 

chair. They consist of 4032 (2 mats x 42 x 48 grid) sensing elements in total. Because a pressure map 

is similar to a grey-scale image, pattern recognition algorithms employed in computer vision are used 

for data processing. The data collected by the sensor is pre-processed by filtering and normalisation. 

The initial feature vector consists of 4032 pressure values (number of sensing elements). To reduce 

the number of values in the feature vector PC A is used. The reduced vector is used to restore the 

original vector. Values after restoration are compared against the values of model postures and the 

sample is classified as the posture for which the difference is the smallest.

Evaluation of the sensing chair was conducted for single and multiple users. For the single user a 

trial of 14 sitting postures was performed. Each posture was repeated 10 times. The system classified 

sitting postures with overall accuracy of 95%. The postures included:

1. Seated upright.

2. Leaning forward.

3. Leaning left.

4. Leaning right.

5. Right leg crossed (with knees touching).

6. Right leg crossed (with right foot on left knee).

7. Left leg crossed (with knees touching).

8. Left leg crossed (with left foot on right knee).

9. Left foot on seat pan under right thigh.

10. Right foot on seat pan under left thigh.

11. Leaning left with right leg crossed.

12. Leaning right with left leg crossed.

13. Leaning back.

14. Slouching.

For the multi-user trial, data from 30 subjects was collected. The trial was restricted to 10 positions. 

Each participant performed each posture five times. 1500 samples in total were used to create the 

model postures database. To evaluate detection accuracy two trials were conducted:
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• Familiar subjects. 200 additional samples (one sample per posture per subject) were collected 

from 20 subjects, who had participated in the data collection for the model postures. The overall 

recognition accuracy was 96% and varied depending on position from 90% for leaning back to 

100% for slouching. Classification time and accuracy increased with the number of features 

included in the reduced feature vector.

• Unfamiliar subjects. 400 additional samples were collected from new eight subjects (five samples 

per posture per participant). The overall recognition accuracy was lower in comparison to the 

familiar subjects test and was equal to 79%.

In [Zhu et al., 2003) further investigation of seated posture recognition is described. The authors 

introduce a function based on sliced inverse regression (SIR), which is a method for reduction of 

the number of features in a feature vector needed to describe some data (Duan and Li, 1991). A 

comparison of different methods for feature vector reduction is presented in the paper. They include: 

k-NN, PCA, LDA, and SIR. For the same test data as in the previous study, the results show that 

PCA and SIR produce the best results. The differences between them are insignificant.

Analysis As presented the approach obtained good accuracy for 14 postures. The reason for 

this could be the use of an expensive sensor mat with over 150 times more sensing elements than 

SMOOTH. The placement of a pressure mat on the back of the seat can only detect pressure when 

contact with the mat maintained. Using the mat it is not possible to detect how far the user’s back 

is from the back of a chair. The dimension reduction methods employed in the system are suitable 

for the selection of the most representative signals for each posture. However, several issues arise. 

The methods reduce a data set significantly and might not be useful for already reduced sets of data. 

Their operation time might be time consuming and therefore not suitable for real-time recognition. 

Finally, recognition based on the difference from model postures might not be appropriate for activity 

recognition, because of larger variations in readings for the same activity.

4.4.1.3 Seated posture recognition by robust, low-cost, and non-intrusive sensing

Mutlu et al. [Mutlu et al., 2007] propose a methodology for recognition of seated postures using two 

sensor mats (Tekscan [Tekscan, 2009)) placed on the seat and on the back of a chair. The mats 

consists of 4032 pressure sensors in total. The methodology presented in the paper is used to design 

an accurate system for the classification of seated postures of unfamiliar subjects. The method for 

seated posture recognition applies techniques to reduce the size of the feature vector. In addition, 

it enables hardware cost reduction by the use of a near-optimal sensor placement algorithm for the 

selection of optimally located sensors. The system discriminates among a set of 10 of the following 

postures:

1. Left leg crossed.
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2. Right leg crossed, leaning left.

3. Leaning back.

4. Leaning forward.

5. Leaning left.

6. Leaning right.

7. Left leg crossed, leaning right.

8. Seated upright.

9. Right leg crossed.

10. Slouching.

The feature vector proposed by the authors contains two sets of features, which take into consideration 

the location and quantity of pressure applied. On that basis a feature vector t:onsisting of 51 features 

is created. The feature vector is used to train a posture recognition classifier, which is based on logistic 

regression.

The proposed approach utilises input from a large number of high-resolution sensors, and for that 

reason computation of features in near-real-time is performance demanding. To reduce its cost, a 

near-optimal sensor placement algorithm is introduced. The classifier learns the correlation between 

measurements from selected sensors and feature values. Its aim is to select sensor locations, for which 

feature reconstruction would be as accurate as possible.

Two sets of experiments to evaluate the system were conducted. The first set of experiments 

used the data collected using sensor mats. The second used the data collected by a prototype of 

a sensing chair equipped with low-cost sensors developed by the authors. For the first experiment 

sensor readings collected from 26 males and 26 females were used. The system was trained on the 

data from 23 males and 23 females and tested on the data from the remaining six participants. To 

reduce the number of features used for position recognition a SVM based algorithm is used. Maximum 

posture detection accuracy of 86% was reached by the subset of 30 features, and thereafter the top 30 

features were used for further experiments, which aimed to evaluate the sensor placement algorithm. 

A number of tests were conducted in order to select the number and placement of the sensors providing 

the most meaningful data. The best position recognition accuracy was 87% and was obtained by 31 

sensors. For all 4032 sensors classification accuracy was the same as for 19 and was 82%. On that basis 

the hardware design was limited to set of 19 sensors. To compare the performance of the different 

classifiers the data from 19 near-optimally placed sensors, selected by the method proposed by the 

authors, were used. The accuracy comparison is presented in Table 4.7. The best position recognition 

accuracy was obtained by the SimpleLogistic [Landwehr et al., 2003) classifier.
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Multi-layer perceptron Naive Bayes SimpleLogistic Support vector machine

79.1% 74.9% 82.5% 78.5%
Table 4.7: 10-fold cross-validation results for classification accuracy of four classifiers

The second set of tests was conducted with the use of a prototype chair equipped with 19 near- 

optimally placed low-cost force sensing resistors (FSR [Interlink Electronics, 2009]). As the feature 

vector, force values from 19 sensors were used. The chair prototype and sensor placement is pictured 

in Figure 4.4. Sensor data were collected from 20 participants (10 males and 10 females). Each 

participant was asked to perform 10 positions on 10 occasions. Data from 9 males and 9 females were 

used to train the SimpleLogistic classifier. Data from the remaining two participants were used for 

testing. An overall position recognition accuracy of 78% was achieved.

/*/ > i 1 I

Figure 4.4: Final near-optimal placement of the sensors (on the right) and the prototype of the 
system with FSR sensors (on the left) [Mutlu et ah, 2007]

Analysis The technique for near-optimal sensor placement presented in the paper obtained reason­

ably good results. It is interesting that the most meaningful readings are obtained from the sensors 

placed near the edge of the seat. The sensor placement obtained by the technique depends on the 

data given as the input to the system. That means that sensor placement might vary depending 

on participants, postures and cliair type. Nevertheless, the placement of sensors on a chair used in 

SMOOTH was based on the findings in the paper. The posture recognition accuracy for the prototype 

with 19 sensors is only slightly less than for the design which used a sensor mat. The classifier for 

the chair prototype was trained with data obtained from low-cost sensors and instead of a set of 30 

features as in the previous test, raw sensor values were used as the input. In addition, the sensors 

used in the prototype had different characteristics. These factors may influence overall system perfor­

mance. For that reason, it would be interesting to see what results were obtained for different sensor 

configurations and for different classifiers when using the prototype with 19 low-cost sensors.
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4.4.2 Force and distance sensors

Knight et al. |Knight et al., 2008| present the gesture recognition interactive technology (GRiT) 

designed to prevent a patient from falling when they attempt to stand up from a chair. The system 

is equipped with two types of sensors: force sensitive resistors (FSR [Interlink Electronics, 2009]) 

placed on a seat (12 sensors) and arm rests (2 sensors) of a chair and capacitive proximity sensors, 

which measure a distance, placed on the back of the chair (7 sensors). The readings from the sensors 

are used to extract the following features: static back position, forward leaning angle, total bottom 

pressure, bottom pressure distribution, armrest pressure as well as their change over time. The authors 

suggest the use of a probabilistic model to detect following postures: sitting down, sitting, forward 

lean, slouching, high movement, attempting to exit, standing up, and falling out of chair. Appropriate 

voice, visual or remote alarms are associated with each position detected by the system to prevent 

the patient from standing up from the chair or to inform the personnel about the attempt. Neither 

the actual model nor its evaluation are presented in the paper.

4.4.2.1 Analysis

The system uses force sensors to obtain the pressure distribution on the seat and arm rests of the 
chair and distance sensors to measure the user’s distance from the back of a chair. Even though the 

set of features derived from the sensor readings is presented there is no exi)lanation as to how the 

features are actually calculated. In addition, no exact probabilistic model for position inference and 
its evaluation is presented.

4.4.3 Summary

A summary of the systems using sensors placed on a chair to recognise its occupant’s posture’s 

presented above is shown in Table 4.8. The table describes the systems according to the number 

and type of sensors used, their placement on a chair, the number of postures recognised, and the 

recognition technique. In addition, the table includes information about the number of samples and 

participants used to evaluate the systems.

All sensing chairs jrresented in this section detect body position at a particular moment in time. 

The detection of movement in this way can be achieved by classification of characteristic positions, 

e.g., if a sitting position is followed by a standing position the transition can be classified as a standing 

up movement. Such a method, however, does not recognise the movement itself but only its outcomes, 

which might be inappropriate for an exercise support system. The approach used in SMOOTH aims 

to classify the movement in order to assess if the exercise is performed in a correct way. In contrast 

to the systems described in this section, SMOOTH was designed not only to detect body positions 

but also to detect body transitions using metrics calculated over a period of time.
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4.5. Summary

4.5 Summary

This chapter reviewed the current state of the art in the two areas of exercise monitoring and posture 

or movement detection. Systems that used chairs equipped with sensors to recognise their occupant’s 

position were also reviewed.

As presented in (Loureiro et ah, 2001| the main reason for not sustaining exercise routines at home 

is lack of motivation. For that reason it is important to the keep the user motivated, which might 

lead to more frequent exercise execution. As observed, feedback while doing exercise seems to have a 

positive impact on motivation level. The systems presented in this chapter use audio, visual or haptic 

feedback to inform users about execution of exercises. In addition, some of the systems provide users 

with instructions on how exercises should be performed. Most of the systems for exercise use some 

kind of haptic interface to track user movements. As the review shows some of the devices can be 

cumbersome and not fit all the users. For that reason, a more natural and better solution could be 

the use of unobtrusive sensors to detect user movement and position.

The systems of this type presented in this review used various types of sensors to obtain data 

about their users and the environment. The sensors include force, distance and proximity sensors, 

accelerometers, video cameras as well as sensors obtaining information like temperature or position. 
Placement of sensors differs depending on their type and the information to be obtained. Two main 

types of sensor placement were identificid: on the body, e.g., accelerometers, and stationary, e.g., 

cameras. In addition, the number of sensors used in the systtuns and their position varied. As 

evaluation results suggest, sensor position is highly dependent on the activities and postures to be 

recognised.

The review shows that various reasoning techniques are used to recognise a user’s position and 

movement. They include decision trees, HMM, Bayesian networks, ANN, and fuzzy logic. Some ap­

proaches presented in this chapter used learning techniqu(;s to adjust the system to the characteristics 

of its users whereas others assumed characteristics and set classification thr(!sholds a priori. Because 

the systems presented classify various sets of activities, use a different number and placement of sen­

sors as well as different amounts of data in the evaluation process it is hard to decide which technique 

obtains the highest recognition accuracy.

This chapter gives insight into metrics what are used as the input into reasoning algorithms. In 

general, the metrics are dependent on two factors: whether the system detects movement and the 

type of sensors used to obtain the data. In addition, some of the systems were designed to chose a set 

of the most meaningful features from a much larger feature set. The features were calculated in the 

time domain, frequency domain or both. As suggested, frequency domain features are appropriate 

for periodic movement detection. However, a number of samples from a relatively long time window 

are needed for their calculation. For that reason, they might not be suitable for real-time or near 

real-time systems like; SMOOTH.

The literature review suggests that movement patterns might differ from person to person. For
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that reason learning techniques are used by some of the approaches to adjust the system to the char­

acteristics of their users. As evaluation results show, user-specific training obtains higher recognition 

accuracy than user-independent training and for that reason this approach is adopted in SMOOTH.

The review shows that current state-of-the-art activity-recognition techniques are mostly based 

on readings obtained from wearable acceleration sensors. Even though the recognition accuracy for 

simple periodic activities is reasonably high, the recognition of short, non-periodic activities is still 

limited. In addition, systems that detect complex activities usually require larger numbers of sensors 

placed on the person’s body, which can be a problem for people with movement limitations. These 

two factors make wearable accelerometers unsuitable for potential users of SMOOTH.

In state-of-the-art posture recognition methods the use of cameras and video stream processing is 

the most common approach. Current systems focus on basic posture recognition and there is a lack 

of work on detection of more complex body postures. In addition, the use of cameras at home can 

violate privacy [Demiris et ah, 2008] and therefore they might not be freely used by SMOOTH users.

This review has provided evidence that systems for exercises that provide their user with feedback 

can be beneficial and encourage users to sustain their exercise routine. To date however, no low-cost 

exercise system to strengthen core muscles suitable for home use by people with movement limitations 

has been developed.

Current state-of-the-art sensing chairs show that it is possible to detect their occupant’s position 

from fixed sensors. To our knowledge, no system that detects activities from low-cost set of sensors 

placnd on a chair has not been developed to date. There is therefore a need to research the feasibility of 

activity monitoring using such sensors and explore movement detection accuracy and user acceptance.

105



Chapter 5

Design

The literature review (Cliapter 4) provides evidence that, to date, no low-cost exercise system designed 

to strengthen core muscles, which is suitable for home use by people with movement limitations, and 

no system that detects activities using low-cost sets of sensors placed on a chair have been developed.

Our hypothesis is that a set of low-cost, fixed sensors are sufficient to measure exercise performance. 

To test this hypothesis several related questions have to be answered. What is the set of exercises 

that should be supported by the system? What sensors can be used to monitor the execution of these 

exercises? Finally, what approach should be used to measure exercise performance? This chapter 

answers these questions, identifies the key requiniinents for SMOOTH, and presents the design of the 
system.

The remainder of this chapter is organised as follows. In Section 5.1 requirements for SMOOTH 

are presented. Section 5.2 presents the s(!t of exercises supported by the system and introduces the 

approach used by SMOOTH to measure exercise performance. Section 5.3 addresses the choice of 

sensors for SMOOTH, experiments conducted to evaluate different options, and the final decision 

about the sensor set and its placement. Finally, it gives an overview of the extraction and selection of 

signal features. Section 5.4 describes the approach used to monitor exercise performance. It includes 

the justification for and description of the inference technique based on dynamic Bayesian networks 

(DBNs) used to detect movement and initial experiments conducted to verify the ability of the inference 

technique to monitor exercise execution. In addition, it provides a detailed description of techniques 

used in conjunction with inference such as discretisation. Section 5.5 describes operation of the system 

and the roles of the physiotherapist and patient. Section 5.6 presents the user interfaces designed for 

the physiotherapist and patient. Finally, a summary of this chapter is presented in Section 5.8.

5.1 Requirements

Based on discussions with physiotherapists the following requirements were defined for SMOOTH.

1. Affordable (R. 1) - One of the assumptions of the project was that the system would be made
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available for acquisition by people with Parkinson’s disease (PD) for home use. The possession 

of the system at home sliould enable patients to perform exercises at times that are convenient 

for them and save the need for travel. One of the factors influencing acquisition of assistive 

technology (AT) is its cost [Meng and Lee, 2006). For that reason it is important to minimise 

the cost of the system components and position the overall system in an affordable price range. 

To date, no study investigating affordability for an exercise system for people with PD has been 

found. For that reason, it is difficult to define an affordable price range for the system. However, 

this requirement implies that the cost of the system should he reduced by reduction of the cost 

of its components. This research focused on the reduction of system cost by reduction of the 

cost of sensing elements, i.e., number and price.

2. Accurate (R. 2) - To properly assist users, the system should be able to measure exercise 

performance accurately. Accurate measurement is important for two reasons. Firstly, user 

feedback depends on exercise measurement accuracy. If a user performs an exercise incorrectly 

the system should detect this and provide the user with appropriate advice. In addition, the 

system should not classify an exercise as incorrect if it was performed properly. Such behaviour 

might lead to user frustration and abandoning of the system and exercise routine. Secondly, 

accurate exercise measurement is the basis for information about the performance of user exercise 

routines for the physiotherapist. Inaccurate measurement leads to a discrepancy between the 

system and reality and therefore potentially gives false insight into patient exercise programme 
execution.

3. Unobtrusive (R. 3) - As reported in [Roelands et al., 2002J, some users feel embarrassed using 

AT, which might lead to the abandonment of the device. For that reason, the device should 

look natural, i.e., sensors used to detect user movement should not be noticeable, and the use 

of technology should be transparent to the user, i.e., tasks like collection and transfers of data 

should be done in the background without attracting the user’s attention. In addition, the 

sensors used by the system should not be perceived as violating user’s privacy as might be the 

case, for example, with cameras |Demiris et al., 2008).

4. Safe (R. 4) - The safe use of the system is a major concern. The system is designed for use by 

people with PD for mobility training. As mentioned in previous chapters one of the symptoms of 

PD is motor-function impairment. This includes various mobility limitations and posture insta­

bility, which might increase the risk of falls and injuries (Benatru et al., 2008). In addition, the 

system is designed to be used at home without additional assistance and therefore it is essential 

to keep patient safety in mind when an exercise programme is prescribed |Canning et al., 2009). 

To meet safety concerns and not put the user’s health at risk, the system address exercises that 

can be performed in a chair.

5. Convenient (R. 5) - The system is designed to be used by people with PD at home without
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any additional assistance. Therefore, system maintenance can not be troublesome and no other 

people should be needed to use the system. People with PD should be able to start and carry on 

their exercise routine by themselves. Once the system is set up it should be ready to use without 

any additional installed every time the user wants to exercise. In addition, users should feel com­

fortable during training and there should be no restrictions on their movements. For that reason 

and due to commonly reported difficulties in dressing by people with PD |Abudi et ah, 1997|, 

the use of wearable sensors and tight garments should be limited.

6. Intuitive (R. 6) - The target group for the system are people with PD. Because of the charac­

teristics of the disease they are usually advanced in years [Eeden et ah, 2003] and therefore are 

not always familiar with the newest technologies. It is important to design a user interface that 

is very natural to use. That should lead to minimal need for training on how to use the system 

or no need for the training at all. A complex user interface may discourage users from using the 

system [Renaud and van Biljon, 2008] and in consequence be contrary to the purpose of the sys­

tem. In addition, user feedback provided by the system should be natural and self-explanatory 

so that the user can concentrate on correct exercise execution.

7. Portable (R. 7) - It should be possible to use the system by different users in different locations 

without substantial difficulty to set it up for each user. Such a design would allow a number 

of users to use the same device, e.g., in a nursing home, or to move device from one place to 

the other. In addition, the system should provide the physiotherapist with data about exercise 

performance regardless of its location and the number of users.

8. Adaptable (R. 8) - As noted in the literature review, different people might move in different 

ways jde Leon and Sucar, 2002]. Moveimmt may depend on, for example, the height and weight 

of people. Moreover, people with PD often suffer from movement limitations ]Gelb et ah, 1999] 

and therefore the way that they perform the same exercise may differ significantly. To recognise 

movement patterns properly it is essential that the system adapts to the individual circumstances 

of its user.

SMOOTH addresses all the requirements described in this section. The application of the requirements 

and the design of the system are described in the next part of this chapter.

5.2 Set of exercises

In the previous section the set of requirements for SMOOTH was presented. On this basis a set of 

exercises to be supported by the system was identified. To fulfil the safety requirement (R. 4) only 

exercises that can be performed while sitting in a chair were considered. The choice of exercises was 

preceded by visits to a number of physiotherapy sessions for people with PD ^ in order to give the

'The physiotherapy sessions took place in Royal Hospital Donnybrook, Dublin 4, Ireland.
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researcher better insight into the exercises prescribed to people with PD to be performed at home. 

The final selection of exercises was made after consultation with physiotherapists working with people 

with PD including members of PROP^. In addition, a list of potential difficulties with execution of 

the exercises was established by consultation with the physiotherapists in order to give better insight 

into parameters that could be used to measure exercise performance. The final set of eight exercises 

for SMOOTH, their description, and the list of potential difficulties with their execution are presented 

in Table 5.1.

Table 5.1: Set of exercises for SMOOTH

if Exercise Description Potential difficulties for people with PD

1 Marching in 

sitting

Sit upright in your chair. 

While sitting, 

lift your right knee as 

high as possible and put 

it down. Lift your left 

knee as high as possible 

and put it down. Repeat 

10 times.

• No feet clearance.

• R(;duced number of repetitions.

• Loss of balance to contralateral side of lift.

• Compensation for weak hip flexors by ex­

cessive trunk extension to help lift leg.

• Gradual reduction in amplitude of move­

ment as exercise progresses.

2 Hip walking Sit upright in your chair. • Sliding.
in sitting Try not to lean forward.

While sitting, lift your

right hip off the chair and

• Sliding in conjunction with leaning against

back of chair.

put it down. Then lift • Inability to isolate one side to lift.

your left hip off the chair • Gradual reduction in amplitude of move-
and put it down. Repeat

10 times.
ment as exercise progresses.

^Physiotherapy Research & Older People Group, Department of Physiotherapy, Trinity College Dublin
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Table 5.1: Set of exercises for SMOOTH

# Exercise Description Potential difficulties for people with PD

Abduction Sit upright in your chair,

of the right Try to stay upright, 

leg While sitting, lift right

knee as high as possible 

and move it as far away 

from your left knee and 

foot as possible. Put it 

down for a moment. Lift 

it once more and move it 

back to starting position. 

Repeat 10 times.

• Sliding.

• No feet clearance.

• Rotation of trunk to follow abduction of leg.

• Internal rotation of the hip.

4 Abduction Sit upright in your chair. • Sliding.

of the left Try to stay upright.
• No feet clearance.

leg While sitting, lift left

knee as high as possible • Rotation of trunk to follow abduction of leg.

and move it as far away

from your right knee and

foot as possible. Put it

down for a moment. Lift

it once more and move it
back to starting position.

Repeat 10 times.

• Internal rotation of the hip.

5 Leaning to 

the right

Sit upright in your chair. 

Try not to bend forward. 

While sitting, reach with 

your left hand towards 

the floor as far as 

possible. Return to the 

starting position. Repeat 

10 times.

• Bending forward.

• Reduced range of movemcait.

• Inability to return to midline.

• Lifting leg on contralateral side to maintain 

balance.
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Table 5.1; Set of exercises for SMOOTH

if Exercise

6 Leaning to 

the left

Description Potential difficulties for people with PD

Sit upright in your chair. 

Try not to bend forward. 

While sitting, reach with 

your right hand towards 

the floor as far as 

possible. Return to the 

starting position. Repeat 

10 times.

• Bending forward.

• Reduced range of movement.

• Inability to return to midline.

• Lifting leg on contralateral side to maintain 

balance.

7 Leaning 

forward

Sit upright in your chair. 

While sitting, slowly lean 

forward as far as possible. 

Try to touch your toes 

with your hands. Return 

to the starting position. 

Repeat 10 times.

• Reduced range of movement.

• Inability to return to starting position.

8 Sit to stand Sit upright on the edge of 

your chair. Lean slowly 

forward and stand up. 

Then slowly sit down. 

Repeat 10 times.

• Position not upright (hunched).

• Swinging - moving trunk back and forth in 

order to stand up.

• Not smooth move.

• Fatigue.

• Uncontrolled sitting down.

• Inability to extend hips and knees fully in 

standing.

5.2.1 Assessment of exercise performance

As presented in previous chapters the main goal of SMOOTH is to monitor exercise performance. 

This information is used to:

• provide users with feedback;

• provide physiotherapists with information about user performance.
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To meet this goal, a mechanism to assess whether the exercise is performed properly should be de­

veloped. As presented in Table 5.1 each exercise consists of a number of movements, e.g., ‘leaning 

forward’ consists of sitting, leaning forward, and returning to starting position. The individual move­

ments during an exercise are referred to as movement phases and are described in more detail in Section 

5.4.3. If the movements appear in an appropriate sequence a repetition of the exercise happens. The 

measurement of execution of the exercise can be expressed as the number of correct, also called also 

proper, repetitions completed. A repetition is considered to be performed properly if the movements 

of which an exercise consists are, according to a physiotherapist and given user limitations, performed 

correctly and appear in a valid sequence. Thus, the assessment of correctness of the repetition can be 

based on:

1. the particular movements that are performed;

2. the sequence of these movements.

For example, when performing ‘leaning forward’ the patient might not be able to return to the starting 

position, which means that there is a movement missing to complete the exercise. On the other hand, 

during execution of ‘sit to stand’, swinging might occur. That means that all the correct movements 
are present during the exercise, however their sequence is distorted.

The number of correct repetitions completed during exercise is the metric that is used by SMOOTH 

to measure exercise performance. On this basis a person with PD can be made aware of their per­

formance and a physiotherapist can assess the progress of the patient. The types of interaction with 
users and user feedback used in SMOOTH will be discussed in more detail in Section 5.6.1. A detailed 

description of correct exercise repetition detection is presented in Section 5.4.4.

5.3 Sensors

The previous section presented a set of eight exercises that are supported by SMOOTH. The next 

step in answering the hypothesis that a set of low-cost, fixed sensors are sufficient to measure exercise 

performance was to identify a set of sensors and signal features that would enable measurement of 

these exercises. The remainder of this section is organised as follows. Section 5.3.1 introduces possible 

sensor types that can be used to monitor exercise execution and then discusses their match to the 

requirements defined for SMOOTH (see Section 5.1). Section 5.3.2 describes experiments conducted on 

sensor types that fulfil the requirements in order to investigate the feasibility of their use in SMOOTH. 

The final set of sensors used by SMOOTH and their placement is introduced in Section 5.3.3. Section 

5.3.4 presents movement patterns obtained from sensor readings during exercise. This is followed by 

the description of signal features calculated in SMOOTH and their use (Section 5.3.5 and Section 

5.3.6). Finally, a summary is presented in Section 5.3.7.
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5.3.1 Choice of sensors

The literature review revealed several types of sensors that are used to detect activity and body posi­

tion. A sensor set used by SMOOTH has to fulfil the system requirements presented in Section 5.1 and 

enable measurement of exercise performance. Three essential requirements in terms of sensor choice 

were determined, namely, the sensors used by the system should be affordable (R. 1), unobtrusive 

(R. 3), and convenient (R. 5). As mentioned previously, it was difficult to define an affordable 

price range for the system. This research focused on the use of sensors to measure exercise perfor­

mance, therefore in terms of affordability the focus was on the cost of the sensors used in SMOOTH. 

A number of systems available on the market were investigated and on the basis of the cost of the 

sensors they used, it was assumed that €1000 was a reasonable starting point for the sensor set used 

in the system prototype. This cost could probably be further reduced in a commercially available 

product. Unobtrusiveness and convenience requirements are closely connected to potential users of 

the system and their perceived privacy and comfort during use. The comparison of sensor types used 

in state-of-the-art systems against the njquirements for SMOOTH is presented in Table 5.2.

As presented in Table 5.2 two types of sensors fulfil all the requirements defined for SMOOTH. They 

are force and distance sensors. Both of them can be purchased from a range of suppliers and fixed to a 

surface to detect user movement. Accelerometers, proximity, position, and strain sensors were excluded 

from further investigation due to the fact that they must be placed on the user’s body to detect its 

movement. In addition, the cost of position sensors was prohibitive. As reported earlier, placement 

of wearable sensors can be problematic because of movement limitations related to PD and reported 

problems in dressing [Abudi et al., 1997, Muras et al., 2008). Cameras were not suitable for SMOOTH 

because they could be perceived by user’s as violating privacy when used in the home environment 

[Demiris et al., 2008). In addition, they required dedicated space and setup. Even though pressure 

mats have much higher accuracy than most of the commercially available force sensors, their cost is 

also prohibitive, and therefore they were excluded from further tests. Finally, readings from GPS 

and environmental sensors used by state-of-the-art systems |Lester et al., 2005, Lester et al., 2006, 

Yang and Hsu, 2007, Ermes et al., 2008b] were not applicable because the information provided by 

them, e.g., temperature, is not relevant to monitoring of exercises performed in a chair.

5.3.2 Experiments

As presented in the previous section two types of sensors were identified to have potential to be 

suitable for SMOOTH. The purpose of the experiments described in this section was to investigate 

the feasibility of the use of force and distance sensors to monitor the set of eight exercises presented 

in Table 5.1. The results are presented below.
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Type of sensor Requirement Comments

Affordable Unobtrusive Convenient

Force sensor ✓ ✓ X Suitable; price in range 
from $6 to $25 per unit 

[Trossen Robotics, 2009).

Accelerometer ✓ X ✓ X Wearable; price in range 
from $5 to $500 per unit 

[Analog Devices, Inc., 2009|.

Position sensor X ✓ X Wearable tags; price 
approximately €300 per 

unit (wearable tag or 
beacon) [Hexamite, 2009); 

another available 
equivalent - price over 

€10000 jUbisense, 2009].

Distance sensor ✓ ✓ ✓ Suitable; price in range 
from $29 to $65 per sonar 
and from $12 to $22 pe,r

IR unit
I'Dossen Robotics, 2009].

Proximity sensor ✓ X Wearable; price 
approximately $150 per 

unit
[Crossbow Technology, 2009]

Strain sensor ? ✓ X Wearable; not 
commercially available - 

developed by EMPA 
[EMPA, 2009].

Camera X X X Privacy issues; dedicated 
space and setup required.

Pressure mat X ✓ X Price over €10000 
[Tekscan, 2009,

Xsens Technologies, 2009].

GPS Not applicable.

Environmental sensor Not applicable.
Table 5.2: Choice of sensors for posture and activity detection
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5.3.2.1 Force sensors

For force detection FlexiForce Force Sensors (manufactured by Tekscan, Inc.) [Tekscan, Inc., 2009J 

were used. The manufacturer provides three models of the sensors suitable for use under different 

loads:

1. A201-1 (0 - 1 lb.; 0- 4.4N)

2. A201-25 (0-25 lb.; 0- llON)

3. A201-100 (0-100 lb.; 0- 440N)

Each model was tested for the range of pressures that could be detected in relation to the pressure 

distribution of a person performing exercises in a chair. A number of sensors was placed on the 

seat of a wooden chair and while the researcher performed the exercises described in Table 5.1 the 

sensor readings were observed. On the basis of the readings the A201-1 model seemed to be the 

most suitable sensor for the system. For that reason, the A201-1 is the only force sensor that was 

investigated further. To investigate the accuracy of the sensors the same weight was put on sixteen 

A201-1 sensors and measurements were taken. The measurements were repeated five times for each 

sensor. The sensor readings differed by 7% for a weight equal to approximately half of the maximal 

load for the sensor. It was also noticeable that after removal of the weight there was a few second 

delay before the reading returned to the initial state. In addition, there were minor variations of the 

values for the initial states among the sensors.

5.3.2.2 Distance sensors

Two types of distance sensors were used for the tests:

1. Sonar Ranger SRFIO (manufactured by Devantech) |Devantech, 2009] - This sensor detects a 

single object that is in a range of from 3cm to 6m in line with the sensor. To check its accuracy an 

object was moved several times in the range of the sensor and the distance was measured. Initial 

tests with the use of a solid object showed that the accuracy of the sensor is high. However, 

a further set of tests revealed that the detection accuracy of objects covered in textiles, e.g., 

a cotton T-shirt, was insufficient. The reason for that could be the absorption of ultrasonic 

pressure waves by textiles. Therefore the use of a sonar sensor was discarded.

2. IR Distance Sensors (manufactured by Sharp)[Sharp, 2009] - Two models of IR distance sensors 

with different ranges were selected for the tests:

• GP2D120 (1.57 - 11.81 inches; 4 - 30cm)

• GP2D12 (4 - 30 inches; 10 - 80cm).

An object covered in textile (a cotton T-shirt) was placed at several different distances from the 

sensor. Each reading was repeated five times. The results are presented in Figures 5.1a and
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5.1b. As shown, variance in the readings collected during the trials is very small and might be 

related to human error in the distance measurement. This suggests that readings from both 

types of sensors are repeatable and the measurement error is marginal. As a result, uncertainty 

of the system, specifically physical randomness and indeterminism (see Section 5.4.1), in respect 

to distance sensor readings is low. It was also noticed that when sensors are placed closer than 

10 cm vertically and 25cm horizontally they interfere with each other and their readings are 

distorted. Because of the detection range, model GP2D120 was chosen to be used in the system.

5.3.2.3 Summary

This section described experiments performed with force and distance sensors to measure their ac­

curacy, limitations, and the feasibility of their use in the system. On the basis of the experiments 

FlexiForce Force Sensor A201-1 and IR Distance Sensor GP2D120 were identified to be suitable for 

SMOOTH. A description of their placement is presented in the next section.

5.3.3 Sensor placement

Having identified two types of sensors, the next step was to determine their number and placement to 
monitor the set of exercises to be performed in a chair (see Table 5.1). Because of convenience (R. 

5) and unobtrusiveness (R. 3) requirfunents, all the sensors are placed on a chair. That allows users 

to move without any additional limitations and makes starting exercise sessions more convenient. The 

remainder of this section describes the exact placement and number of force and distance sensors used 

in the system.

5.3.3.1 Force sensors

The purpose of force sensors is to detect the distribution of the user’s weight during exercise. For 

that reason force sensors were placed on the seat of the chair, Their placement was based on ex­

periments and findings of Mutlu et al. |Mutlu et al., 2007] which indicate that uniform or random 

sensor placement is not necessarily the optimal one. The experiments described in Section 5.3.2.1 

show that there was 7% variation in sensor readings. To minimise the impact of the variation, instead 

of using values from individual sensors, the average value of a number of sensors was used. To average 

sensor readings, eight areas that are crucial for identification of leg movements and changes to body 

weight distribution were identified empirically by a number of experiments. The experiments involved 

performance of a set of the exercises addressed by SMOOTH by the researcher and examination of 

the sensor readings. The bigger the change in the sensor readings, the better their placement. The 

number of force sensors belonging to each area varies from two to four. In total 24 A201-1 force 

sensors were placed in these areas. The placement of the sensors on a chair is pictured in Figure 5.2.

In order to extract signal features (see Section 5.3.5) the mean values of the pressure sensors 

belonging to each of the eight areas are used in further processing.
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GP2D120 (4-30cm)

"Measurement I 
Measurement 2 
Measurement 3 

" Measurement 4 
^ Measunmient 5

Distance (cm)
(a) GP2D120

GP2D12 (10-80cm)

"Measurement 1 
Measurement 2 
Measurement 3 

■ Measurement 4 
^ Measurement 5

Distance (cm)

(b) GP2D12

Figure 5.1: Accuracy of sensor readings in relation to the distance

117



5.3. Sensors

(a) (b)

Figure 5.2: Placement of twenty-four A201-1 force sensors on a chair

5.3.3.2 Distance sensors

The purpose of the distance sensors is to detect the distance of the user’s back from the chair and for 

that reason they were placed on the back of the chair. The number of sensors that it was possible to 

place on the chair was limited by mutual inference between the sensors occurring if they were placed 

too close to each other (see Section 5.3.2.2). In addition, the minimum distance detected by the 

GP2D120 distance sensor is 3cm. For that reason and for user comfort sensors should be placed 3cm 
away from the back of the chair. The final placement of five GP2D120 distance sensors was limited 

by the type of chair used in SMOOTH and identified empirically. The chair had nine holes in the 

back. Different combinations of sensors were placed facing those holes. The combination in which the 
sensors did not interfere with each other and their readings changed during performance of exercises 

addressed by SMOOTH were chosen. The placement of the sensors on a chair is pictured in Figure 

5.3.

In order to extract signal features the raw values of the distance sensors are further processed as 

described in Section 5.3.5.

5.3.4 Movement patterns

Having identified a set of sensors for SMOOTH and their placement, to justify their choice, sensor 

readings for the set of eight exercises supported by the system were recorded. The main goal was to 

identify if movement patterns that could be recognised by the system emerge. Several repetitions of 

each exercise were performed by one person and the sensor readings recorded during it are presented 

in Figures 5.4 - 5.9.

It can be clearly seen that there are patterns in the sensor readings that are related to the movement 

phases of each exercise and that they differ between exercises. The next step was to identify a technique 

that would allow their detection and on that basis monitor exercise performance. The choice of the
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Figure 5.3: Placement of five GP2D120 distance sensors on a chair
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Figure 5.4: Movement patterns in sensor readings - Marching in sitting 

technique and its detailed description is presented in Section 5.4.

5.3.5 Feature extraction

To infer movement from sensor readings (see Section 5.4), signal features, that allow discrimination 

between the different movement phases during the exercise (see Section 5.4.3), should be defined. 

The literature review shows that to represent changes in signals over time, sensor readings can be 

grouped into sliding time windows, and signal features can be calculated over these windows. The 

size of the sliding time window as well as the number of overlapping samples depends on the activity 

to be detected and signal features to be calculated. It differs among reviewed studies. For example, 

in [Headon and Curwen, 2001) to detect 7 activities from the Active Floor [Addlesee et al., 1997] a 

20ms time window is used and metrics such as mean, standard deviation and slope as well as their 

first and second order regression are calculated. In [Akos Fabian et al., 2007, Gyorbfro et al., 2009]
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Figure 5.5: Movement patterns in sensor readings - Hip walking in sitting
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Figure 5.6: Movement patterns in sensor readings - Abduction of the left/right leg
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Figure 5.7: Movement patterns in sensor readings - Leaning to the left/right
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Figure 5.8: Movement patterns in sensor readings - Leaning forward
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“pressure area I 
“pressure area 2 

pressure area 
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“ pressure area 5 

pressure area 6 
“pressure area 7 
“pressure area 8 
“distance sensor 1 
“distance sensor 2 
“distance sensor 3 
“distance sensor 4 
“distance sensor 5

Figure 5.9: Movement patterns in sensor readings - Sit to stand

to detect 6 activities from 3 MotionBand devices a 2s time window is used and acceleration variation 

is calculated.

State-of-the-art systems use three types of domain to calculate signal features over time window: 

time, frequency, and time-frequency as described in more detail in Appendix A. The literature review 

suggests that frequency domain, which emphasise the frequency characteristics of the signal, might be 

useful to detect periodic activities. However, they do not perforin well for non-periodic activities, such 

as the movement phases (see Section 5.4.3) defined for SMOOTH. In addition, signal transformation 

to the frequency domain usually requires samples collected over a longer period of time to show the 

frequency characteristic of an activity [Bao and Intille, 2004], e.g., walking or running. For those 

reasons the signal features used in SMOOTH are calculated in the time domain.

The set of signal features for SMOOTH is required to differentiate between static postures like 

sitting upright and movements like moving the trunk forward. In addition, it has to indicate the 

direction of movement. For example, it has to differentiate between moving the trunk forward and 

moving the trunk backward. Finally, it has to make a distinction between different positions such as 

sitting upright and standing. On the basis of these requirements the following signal features calculated 

over a sliding time window are included in the feature set used in SMOOTH:

1. Mean. The mean is the arithmetic average of a set of values. For a finite set of samples 

Xx,X2,.. ■ ,Xn it is given by:
1^ = -E

i=\

2. Difference. This feature is defined as the difference between the mean value of the signal over 

the current time window {t) and the mean value over the previous time window (t — 1). It is 

given by the equation:

d = p, -

3. Standard deviation. This is a measure of the variability or dispersion of a data set. A low 

standard deviation indicates that the signal samples tend to be very close to the same value (the 

mean), while a high standard deviation indicates that the data are spread out over a large range 

of values. In the case where X takes random values from a finite sample set xi,X2, ■. ■ ,Xn, with
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each value having the same probability and p being their mean value, the standard deviation is 

given by:

'I
i ^{Xi - pf

i=l

5.3.6 Feature selection

The most meaningful features, which describe the sensor signal in the most meaningful way, to be 

used to infer the current movement phase might differ depending on the exercise. For example, in 

‘leaning forward’ features calculated over the signals from the distance sensors, which correspond to 

the movement of the back, are crucial, whereas they are not relevant in ‘marching in sitting’. It 

could be assumed that all the features calculated on all the sensor readings can be used to infer the 

current movement phase. This approach however, could increase the complexity of the DBNs used for 

inference in SMOOTH (see Section 5.4.5), not necessary providing better results. To reduce model 

complexity, SMOOTH includes a simple mechanism to select meaningful features which are given as 

the input to inference module. The features are selected on the basis of training and testing sets (see 

Section 5.4.5.2). Initially, the feature set includes 39 different features: 3 features {p,d,s} calculated 

over the set of 13 sensor readings (8 pressure areas and 5 distance values). Only the features that 

change over the sample set are selected and used to infer current movement phase. This means that 
the structure of each DBN depends on the data collected during the training phase (see Section 5.4.5.2) 

and might differ for each user and exercise.

5.3.7 Summary

This chapter presented the choice of sensors for SMOOTH and their placement. A number of different 

types of sensors was identified in the literature review, however, only force and distance sensors met 

the requirements for and are used in SMOOTH. The sensor set consists of twenty-four A201-1 force 

sensors placed on the seat of a chair and five GP2D120 distance sensors placed on the back of the 

chair. Data recorded for this sensor set while performing eight exercises defined for SMOOTH suggest 

that movement patterns emerge from sensor readings and that there is potential for their detection. 

Three types of features from the sensor readings are calculated over a sliding time windcjw. They 

are the mean, difference, and standard deviation of each signal. The most meaningful features are 

selected on the basis of samples collected from the individual users.

5.4 Monitoring of exercise performance

The purpose of this section is to present the approach to monitoring exercise performance used in 

SMOOTH. As noted in Section 5.2.1 exercise performance in SMOOTH is assessed by measuring the 

number of correct repetitions of an exercise completed. However, detection of the number of exercise
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repetitions performed from sensor readings can be challenging and involves recognition of the sequence 

of movements corresponding to the different phases of each exercise. As presented in Section 5.3.4 

readings from the set of sensors chosen for SMOOTH suggest that there are identifiable patterns 

corresponding to the different movement phases of the exercises. A key challenge described in this 

section is the design of the movement phase inference technique used in SMOOTH and detection of 

correct exercise repetitions based on outputs from the inference module.

The remainder of this section is organised as follows. Section 5.4.1 motivates the use of DBNs as 

the movement phase inference technique to be used in SMOOTH. Following that, initial experiments 

to justify the use of Bayesian techniques as an inference mechanism for SMOOTH are presented in 

Section 5.4.2. Section 5.4.3 describes the movement phases for each exercise addressed by SMOOTH 

in detail. Following that, an overview of the use of DBNs to detect correct exercise repetition is 

introduced in Section 5.4.4. Section 5.4.5 describes the DBNs used in SMOOTH in more detail 

including their structure and learning process. In Section 5.4.6 discretisation of signal features is 

described. Finally, a summary of this section is presented.

5.4.1 Selection of inference technique

One of the requirements defined for the system in Section 5.1 is adaptivity (R. 8). People with 

PD often have movement limitations and therefore their individual ranges of movement might differ 

(Gelb et al., 1999]. In addition, |de Leon and Sucar, 2002) note that different people might perform 

the same activity in a different way, e.g., slower or faster. For that reason the inference technique used 

in SMOOTH should have the capability of adjusting its parameters to individual user circumstances. 

This means that it should be able to learn how to recognise the movement patterns of different 

users during exercise. As mentioned in Section 5.2.1 the metric to assess exercise performance used in 

SMOOTH is the number of correct exercise repetitions completed. In order to teach the system correct 

movement patterns, an expert that assesses the correctness of exercise execution and labels sensor data 

with the corresponding phases is needed. The role of the expert is played by a physiotherapist. On 

the basis of labelled data the inference module can then learn the relationship between sensor readings 

and the movement of the user and recognise the current phase of the exercise.

The key challenge for the inference module is to detect the current phase of exercise from low-level 

sensor data. Data obtained from the sensors used by SMOOTH can be uncertain and the inference 

module should cope with that. Korb et al. [Korb et al., 2003| describe three types of uncertainty that 

can occur in systems:

1. Ignorance. This is related to the lack of understanding of how a system operates or the lack of 

information. The lack of information can be caused by the fact that the system has a limited 

number of sensing elements and therefore data obtained from them are incomplete and does 

not include all relevant information. The set of sensors used in SMOOTH is limited to those 

described in Section 5.3.3, which means that some substantial information might not be included
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in their readings.

2. Physical randomness or indeterminism. This refers to noisy data. Even if everything was known 

about the system there would still be a possibility of erroneous readings from the sensors. 

This could be caused by the sensor’s inaccuracy, hardware faults or connection errors. The 

accuracy of the force sensors used in SMOOTH is not very high and therefore they can be 

indeterministic to a certain level. In general sensors are burdened by two forms of uncertainty 

[Page and Sanderson, 1995]:

(a) Absolute sensing uncertainty, which is related to absolute sensor accuracy. For example, 

readings from one sensor might differ depending on environmental conditions, e.g., temper­

ature of the sensor.

(b) Incremental sensing uncertainty, which corresponds to the sensor’s relative accuracy. For 

example, the resolution of a sensor might be limited and not be able to capt ure a change.

3. Vagueness. This refers to the vagueness of asstu tions. Sometimes it might be hard to classify a 

human as rich or not, or brave or not. In SMOOTH vagueness relates to the fact that sometimes 

it can be hard to define strict boundaries between movement phases in an exercise. For example, 

when people are standing up it might be hard to decide where the boundary between sitting 
and standing lies.

State-of-the-art systems for postun; and activity recognition, described in the previous part of this 

thesis, use a broad spectrum of inference techniques. Evaluations of posture and activity recognition 

accuracy provided for these techniques are insufficient to draw any conclusion about their performance 

in relation to the detection of movement during exercise in a chair. To address the problems described 

above and fulfil the requirements for the inference module in SMOOTH Bayesian techniciues can be 

applied. The remainder of this section compares Bayesian networks (BNs)/dynamic BNs (DBNs) to 

other inference techniques used in state-of-the-art systems and justifies the choice of DBNs as the 

inference technique used in SMOOTH.

As noted in Appendix A, a decision tree classifies patterns as one of a number of defined classes. For 

that reason, there is no mechanism that would allow the degree of belief that some particular pattern 

belongs to one class or the other to be assessed. This lack of capability is not desirable considering 

the uncertainty and vagueness with which SMOOTH has to deal and the fact that it might sometimes 

be difficult to decide if a repetition of an exercise is done correctly or to determine the boundary of 

movement phases.

Johansson et al. [Johansson and Falkrnan, 2008] presents advantages of BNs over fuzzy inference 

rules. In fuzzy logic, in contrast to BNs, there is no way to handle uncertain evidence explicitly. 

For that reason, BNs are better suited to deal with uncertainty than fuzzy logic. Fuzzy membership 

functions and fuzzy inference rules for SMOOTH could be very difficult to define due to the lack of 

knowledge about exact dependencies between sensor readings and movement phases.
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In general, rule-based systems are based on logical inference and have three properties 

[Russell and Norvig, 2003]:

• Locality. In logical systems, when rule A B is defined, given evidence A it is possible to 

conclude B without worrying about other rules. In probabilistic systems all the evidence has to 

be considered.

• Detachment. Once logical prof for proposition B is found, it can be used regardless of the 

way in which it was derived. In probability, the source of evidence is important for subsequent 

reasoning.

• TYuth-functionality. In logic, complex sentences can be divided and their truth can be calculated 

from the components. In probability theory, such an approach is not applicable.

These three properties make rule-based systems inappropriate for reasoning under uncertainty. Even 

though several attempts have been made to introduce uncertain reasoning to the systems, they have not 

provided desirable results, and therefore this approach is no longer recommended 

[Russell and Norvig, 2003[.

Correa et al. [Correa et al., 2009] state that BNs have a number of advantages over artificial neural 

networks (ANNs). BNs are more intuitive and allow fast construction while there are no principled 

methods for choosing network parameters for ANNs such as the number of hidden layers, the number 

of neurons in these layers, and the activation function. In addition, the learning algorithm used 

in ANNs does not guarantee the convergence to a global minimum and is prone to over-fitting and 

under-fitting, when too much or not enough data for learning is used [Russell and Norvig, 2003J.

Linear discriminant analysis (LDA) is based on discriminative models, which do not allow to gener­

ate samples from the joint distribution and therefore handling missing data is often more complicated 

in these models. The problem with LDA is that a small training error does not guarantee a small test­

ing error, because the linear discriminant is not effectively determined unless the number of samples 

is several times greater than the dimensionality of the feature space. Linear discriminants are also 

not sufficiently general to handle challenging pattern recognition [Duda et al., 2000|. Recognition of 

movement patterns in SMOOTH might be challenging due to data being obtained from many different 

types of sensors, lack of knowledge about the dependence between the readings and movement phases, 

and the changes of the readings over time to capture movement.

As also presented in Appendix A, nonparametric models recognise postures/activities on the basis 

of similarity to other postures/activities. This means that classification of unfamiliar, according to the 

system classification function, samples might have a big classification error. In addition, nonparametric 

models do not cope well with noisy data, and reasoning under uncertainty [Alpaydin, 2004]. For that 

reason, they are not a suitable inference technique for SMOOTH.

Oliver et al. [Oliver and Horvitz, 2005] presents several advantages of DBNs over HMMs. The 

most important are better learning of dependencies between variables and better resistance to loss of
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some of the observations. The purpose of the inference module in SMOOTH is to detect the current 

phase of movement during the execution of the exercise. To assess accuracy of exercise execution, 

movement phases are modelled as independent events and all of them can be performed improperly. 

However, the current movement phase might still depend on sensor readings at different points of 

time. For that reason DBNs are more suitable to infer activities in SMOOTH than HMMs.

BNs have been used with some success by other researchers to recognise postures and activities 

|Thiemjarus and Yang, 2007, Kern et al., 2003, Yang and Hsu, 2007, Hsia et al., 2008] 

[Harms et al., 2008, Cucchiara et al., 2001, Cucchiara et al., 2003, Cucchiara et al., 2005]. Prom this 

evidence, DBNs were chosen to be used for the recognition of movement phases and the detection of 

correct exercise repetitions in SMOOTH. At the time of choice of inference technique for SMOOTH 

the perceived advantages of DBNs were:

1. They provide resistance to loss of some of the observations and reasoning under uncertainty.

2. They provide a graphical model that is easy to understand and modify.

3. The model naturally represents casual relationships between sensor readings and movement 

phases.

4. I'he learning process is relatively simple and its results should improve with more data.

5.4.2 Initial experiments

To verify the ability of BNs to monitor exercise execution in SMOOTH a small-scale experiment was 

designed. The purpose of the experiment was to investigate the feasibility of using BNs to recognise 

static postures related to exercises that could be performed in a chair from the A201-1 force and 

GP2D120 distance sensor readings. Five distance scuisors and sixteen force sensors mounted on a 

chair were used in the experiment. This section describes the postures considered, the BN used in the 

experiment, and the results.

5.4.2.1 Postures

The set of postures for the experiment was based on the set of exercises described in Section 5.2. 

The body position for each posture was broken down into the position of the trunk and the position 

of the lower limbs resulting in the fourteen positions described in Table 5.3 being assessed in the 

experiment.
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Table 5.3: Body posture descriptions

# Trunk position Lower limb

position

Description

1 Away Away Away from the chair.

2 Sitting upright Both legs down The participant is seated upright in the chair 

with his/her back resting against the back rest. 

His/her feet are resting on the floor, hips and 

knees are flexed to 90 degrees and his/her ankles 

are in the neutral position.

3 Sitting upright Right leg up In this position, the participant is required to 

elevate the right thigh and knee from the chair. 

The knee remains flexed to 90 degrees. The 

participant is seated upright in the chair with 

his/her back resting against the back rest.

4 Sitting upright Left leg up In this position, the participant is required to 

elevate the left thigh and knee from the chair. 

The knee remains flexed to 90 degrees. The 

participant is seated upright in the chair with 

his/her back resting against the back rest.

5 Sitting upright

6 Sitting upright

7 Leaning to the 

right

8 Leaning to the 

left

Right leg This position requires slight hip flexion to clear

abducted the right thigh off the chair. The participant is

seated upright in the chair with his/her back 

resting against the back rest.

Left leg This position requires slight hip flexion to clear

abducted the left thigh off the chair. The participant is

seated upright in the chair with his/her back 

resting against the back rest.

Left side up This position involves elevation of the left leg

and buttocks from the chair and simultaneously 

transferring the weight onto the opposite side.

Right side up This position involves elevation of the right leg 

and buttocks from the chair and simultaneously 

transferring the weight onto the opposite side.
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Table 5.3: Body posture descriptions

# Trunk position Lower limb 

position

Description

9 Leaning to the 

right

Both legs down This position involves movement of the trunk to 

the right, which involves movement of the 

shoulder towards the hip on other side. The 

participant’s feet are resting on the floor, hips 

and knees are flexed to 90 degrees and his/her 

ankles are in the neutral position.

10 Leaning to the Both legs down 

left

This position involves movement of the trunk to 

the left, which involves movement of the 

shoulder towards the hip on other side. The 

participant’s feet are resting on the floor, hips 

and knees are flexed to 90 degrees and his/her 

ankles are in the neutral position.

11 Slouched Both legs down In this position the participant is requested to
protract the shoulder girdle and flex the cervical 

and upper thoracic spine. His/her feet are 

resting on the floor, hips and knees are flexed to 
90 degrees and his/her ankles are in the neutral 

position.

12 Leaning forward Both legs down In this position the participant is required to 

flex the trunk at the thigh. His/her feet are 

resting on the floor, hips and knees are flexed to 

90 degrees and his/her ankles are in the neutral 

position.

13 Rotating to the Both legs down 

right

The person is required to rotate his/ her trunk 

and look over his/her right shoulder. His/her 

feet are resting on the floor, hips and knees are 

flexed to 90 degrees and his/her ankles are in 

the neutral position.
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Table 5.3: Body posture descriptions

# Trunk position Lower limb 

position

Description

14 Rotating to the 

left

Both legs down The person is required to rotate his/ her trunk 

and look over his/her left shoulder. His/her feet 

are resting on the floor, hips and knees are 

flexed to 90 degrees and his/her ankles are in 

the neutral position.

5.4.2.2 Bayesian network

The purpose of inference module was to detect the lower limb and trunk position. It consisted of two 

BNs that had the same structure. The first infers the lower-limb position and the second the position 

of the trunk for each body posture. This separation was introduced to reduce the number of inferred 

body jrositions in each BN. As presented in [Foerster et al., 1999] reduction in the number of possible 

outputs of an inference module can improve recognition accuracy. Each network consists of 8 nodes 

corresponding to the inputs from the pressure sensors and 4 nodes corresponding to the inputs from 
the distance sensors. Because sensor readings are contintious, discretisation parameters for each node 

have to be established. In order to investigate the influence of the number of discretisation categories, 

two different sets of discretisation thresholds were used in the experiments. The thresholds were set 

to fixed values and these values were determined empirically. In order to obtain the threshold values 

a number of trials was conducted with data acquired from the researcher. The threshold values that 

obtained the highest position recognition accuracy were chosen. Two sets of discretisation thresholds, 

called parameters, were applied to two separate inference modules, referred as ‘module 1’ and ‘module 

2’. Each module consisted of two BNs that inferred ‘lower limb position’ and ‘trunk position’. Nodes 

corresponding to sensor readings are discretised into less states in ‘module 1’ (see Figure 5.10a) than 

in ‘module 2’ (see Figure 5.10b). The parameters for the BNs used in the experiment are shown in 

Figure 5.10.

5.4.2.3 Methodology

Five people (2 females and 3 males) aged between 25-35 took part in the experiment. All the positions 

were demonstrated to them and all their questions answered. The chair was adjusted to the partici­

pants high before each experiment. Two sets of the 14 positions listed in Table 5.3 were performed 

by each participant in a chair. The first set was used to learn and the second set to test the inference 

module. Each position was performed five times in each of the two sets. The sensor readings were
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Figure 5.10: BNs used in experiments
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logged with a frequency of 5 Hz and each participant was asked to stay in each position for three 

seconds. After each trial the sensors were re-calibrated, which meant that the participant had to 

come back to the neutral position (position number 2 from Table 5.3) and stay in that position for 5 

seconds. The purpose of calibration was adjustment to the weight of the participant.

5.4.2.4 Results

Evaluation of position detection included two types of tests:

1. User-specific. Learning and testing were conducted with samples from each user individually.

2. User-independent. Testing was conducted with samples from the user that was not included in 

the learning set.

The average error rates for recognition of the 14 positions from the 5 participants are shown in Table

for the user-specific test and in Table 5.5 for the user--independent test.

Participant Module 1 Module 2
Trunk position Lower limb position Trunk position Lower limb position

1 7.71% 11.43% 5.714% 14.14%
2 12.29% 11.29% 13.43% 22.29%
3 0.00% 15.43% 4.143% 24.14%
4 11.71% 17.14% 12.86% 13.86%
5 13.57% 17.86% 26.71% 13.57%

Table 5.4: Error rates for position recognition for user-specific test

Participant Module 1 Module 2
Trunk position Lower limb position Trunk position Lower limb position

1 15.00% 17.86% 15.71% 19.29%
2 35.00% 21.43% 37.14% 22.14%
3 12.14% 22.86% 8.571% 17.14%
4 27.14% 30.00% 24.29% 30.71%
5 16.43% 22.14% 10.00% 17.14%

The results obtained from the experiment suggest that it is feasible to use BNs to detect body 

postures from pressure and force sensors mounted on a chair. The results show that overall recognition 

rates obtained by ‘module T for the user-specific tests are slightly better than by ‘module 2’. Overall 

recognition error for ‘module T and in a user-specific test equals 9% and 14.5% for trunk position 

and lower limb position, respectively. Overall recognition error for ‘module 2’ in user-specific tests 

equals 12.5% and 17.5% for trunk position and lower limb position, respectively. The results show that
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overall recognition rates obtained by ‘module 1’ in user-independent tests are slightly worse than by 

‘module 2’. Overall recognition error for ‘module 1’ in user-independent tests equals 21% and 22.5% 

for trunk position and lower limb position, respectively. Overall recognition error for ‘module 2’ in 

user-independent tests equals 19% and 21% for trunk position and lower limb position, respectively. 

In general, both modules obtained comparable results. That suggests that a lower number of states 

for network nodes is a valid solution and provides similar results. In general, the user-specific tests 

obtained better results than user-independent tests, which is not surprising and is consistent with the 

literature [Bao and Intille, 2004, Harms et ah, 2008). The final finding is that the error rates differ 

significantly depending on the participant. That suggested that use of fixed thresholds to discretise 

node values might not be an optimal solution. A more flexible solution that would adjust discretisation 

parameters to user characteristics should be sought in order to obtain more uniform results.

5.4.2.5 Summary

The results obtained in the experiments show that Bayesian inference is a suitable technique for 

detection of static postures on the chair from the set of sensors used in SMOOTH. For that reason 

the BNs are adapted to measure exercise performance in SMOOTH. Their design and final inference 

model are presented below.

5.4.3 Movement phases

Turaga et al. [Turaga et ah, 2008) propose a distinction between simple and complex activities. The 

authors refer to simple activities as motion patterns usually lasting a short period of time, i.e., tens of 

seconds, and call them actions. On the other hand activities are defined as more complex sequences of 

actions. The boundaries for this categorisation are not very strict and mostly depend on interpretation. 

In Section 5.2.1 we stated that to monitor exercise performance each exercise can be divided into a 

number of movement phases in order to detect correct repetition of the exercise. Relating this to the 

categorisation proposed by Turaga et al. we can refer to an exercise as an activity, which consists 

of a number of simpler motions, movement phases, that can be called actions. In order to detect 

correct exercise repetition we divided each exercise addressed by SMOOTH (see Table 5.2) into various 

numbers of consecutive movement phases. The correctness of this division has been reviewed with 

physiotherapists. The set of exercises addressed by SMOOTH with their corresponding movement 

phases is presented in Table 5.6.
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Table 5.6: Movement phases for the exercises addressed by SMOOTH

# Exercise

1 Marching in sitting

2 Hip walking in sitting

3 Abduction of the right leg

Movement Phases

1. Sitting upright.

2. Moving right knee up.

3. Right knee up.

4. Moving right knee down.

5. Sitting upright.

6. Moving left knee up.

7. Left knee up.

8. Moving left knee down.

1. Sitting upright.

2. Moving to the left.

3. Moving to the right.

4. Sitting upright.

5. Moving to the right.

6. Moving to the left.

1. Sitting upright.

2. Moving right knee up.

3. Right knee up.

4. Moving right knee down.

5. Right leg abducted.

6. Moving right knee up.

7. Right knee up.

8. Moving right knee down.
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Table 5.6: Movement phases for the exercises addressed by SMOOTH

# Exercise

4 Abduction of the left leg

5 Leaning to the right

6 Leaning to the left

7 Leaning forward

Movement Phases

1. Sitting upright.

2. Moving left knee up.

3. Left knee up.

4. Moving left knee down.

5. Left leg abducted.

6. Moving left knee up.

7. Left knee up.

8. Moving left knee down.

1. Sitting upright.

2. Leaning to the right.

3. Leaned to the right.

4. Leaning back to the left.

1. Sitting upright

2. Leaning to the left

3. Leaned to the left

4. Leaning back to the right

1. Sitting upright.

2. Moving trunk forward.

3. Leaned forward.

4. Moving trunk backward.
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Table 5.6: Movement phases for the exercises addressed by SMOOTH

■/f Exercise Movement Phases

8 Sit to stand
1. Sitting upright.

2. Moving trunk forward.

3. Standing.

4. Moving trunk backward.

The movement phases presented in Table 5.6 are used in the DBNs (see Section 5.4.5) as states for 

a movement phase node and are inferred from nodes corresponding to features of the sensor input. The 

movement phases of each exercise correspond to the particular movements that can be distinguished 

in the exercise. The number of movement phases in each exercise differs from four to eight.

5.4.4 Exercise repetition detection

Each exercise repetition consists of a number of movement phases. If the correct movement phases 

appear in the correct order a repetition is counted. The movement phases and their correct order for 

each exercise are presented in Table 5.6. This section presents the main features of the use of DBNs 

to detect correct exercise repetition. The structure of the DBNs is described in more detail in Section 

5.4.5.3.

The model used in SMOOTH is based on the naive Bayes structure, which is a standard approach 

for inference of activity based on a set of observed signal features [Russell and Norvig, 2003]. In 

addition, to indicate movement the model utilises the information from the previous time window. 

For that reason DBNs were employed. The purpose of the DBNs used in SMOOTH is accurate 

recognition of the current movement phase from sensor input. To fulfil the accuracy requirement (R. 

2) the DBNs should detect movement phases with the smallest possible error and indicate if exercise 

has been performed properly.

The current movement phase can be detected improperly due to many reasons. These include 

limited sensor accuracy and noise in the data, lack of essential information from the sensor input, and 

human error related to labelling of learning samples (see Section 5.4.5.2). In SMOOTH, the priority is 

to classify movement as correct if there is a reasonably high chance that the movement was performed 

properly. Otherwise the user c(juld become frustrated that in spite of correct exercise execution the 

exercise repetition was classified as incorrect. This could lead to abandonment of the device. For that 

reason, two different DBNs are generated for each exercise addressed by SMOOTH. The first DBN 

recognises the most probable current movement phase out of all the movement phases defined for the
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Figure 5.11: Exercise repetition detection schema

exercise. The second DBN detects the probability of the current movement phase being performed 

incorrectly.

Figure 5.11 presents an overview of exercise repetition detection from the movement phases inferred 

by the two DBNs. The correct phase sequence is pre-defined for each exercise and presented in Table 

5.6. For example, the valid order of phases for ‘sit to stand’ is: sitting upright, moving trunk forward, 

standing, and moving trunk backward. Each DBX infers the movement phase separately from the same 

sensor readings. If the second DBN detects an incorrect movement phase with belief exceeding some 

defined threshold, exercise execution is considered to be incorrect. Otherwise, it is examined if the 

current movement phase detected by the first DBN using the sensor readings from the current time 

window is the same as the movement phase detected in previous time window. If so, the inference 

is repeated for the next time window. If not, it is examined if the current movement phase is the
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next phase in the sequence defined for a particular exercise. If not, then the exercise repetition is 

considered to be incorrect. If so, it is examined if the current movement phase is the last phase in the 

sequence. If it is, then a correct exercise repetition is counted. If not, the inference is repeated for 

next time window.

5.4.5 Dynamic Bayesian network for SMOOTH

The general approach for movement phase inference from sensor inputs applied in SMOOTH is pre­

sented in Figure 5.12. Sensor readings are pre-processed (see Sections.3.3) and a set of signal features 

is calculated over a sliding time window (see Section 5.3.5). The selected signal features (see Section 

5.3.6) are discretised (see Section 5.4.6.1) and given as the value of the input nodes to the DBNs in 

order to infer the current movement phase and the probability of its correct execution.

sensor
readings
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pre-procc.vung W extraction
•.

W selection
•. •.

W
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Figure 5.12: Current movement phase inference schema

The following part of this section presents the mechanism used for learning within the inference 

module in order to fulfil the adaptivity (R. 8) requiremtmt, and the structure of the DBNs used in 

SMOOTH.5.4.5.1

5.4.5.1 Learning movement phases and parameters

DBNs can learn probability parameters relating to existing dependencies between their nodes in a 

supervised manner. This means that a set of training samples that map sensor inputs to the desired 

outputs of the network in needed. To create such a set for the DBNs used in SMOOTH an expert 

that can match the movement during exercise execution, which is the source of sensor inputs, and the 

movement phases presented in Table 5.6 is required. As noted previously, in SMOOTH, the role of 

the expert is performed by physiotherapists. During the system training phase the user is asked to 

perform two sets of the exercises to be prescribed, called the training and testing samples, and the 

physiotherapist marks the corresponding movement phases as the exercise progresses. This data set is 

used to update the probability parameters and therefore adapt the DBNs to individual characteristics 

of the user (R. 8). The acquisition and use of the training and testing samples are described in more 

detail in Sections 5.4.5.2 and 5.4.6.1, respectively.

Both DBNs used to recognise phases of a particular exercise are learnt separately with data col­

lected from the user and labelled by the physiotherapist in a training phase. The learning process 

involves adjustment of two types of parameters: discretisation parameters (see Section 5.4.6.1), and 

conditional probability tables (CPTs) in nodes in order to infer current movement phase. However, 

the sample sets used to learn each DBN differ (see Section 5.4.5.2). This means that discretisation 

parameters as well as CPTs for each node are optimised to give the best movement phase recognition
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accuracy for a particular set of training and testing samples and might differ for both DBNs.

5.4.5.2 Training and testing samples

Labelled training and testing sample sets used to learn the first DBN are obtained during the training 

phase and can be used without any modifications. However, to learn the second DBN, samples of 

incorrect behaviour during a particular exercise have to be collected in order to allow the association 

of sensor readings with incorrect movement. Collection of incorrect movement samples during exercise 

execution might be difficult, unnatural, and inconvenient. In general, users are encouraged to do exer­

cises properly and for that reason any incorrect movements are usually corrected by physiotherapists 

and should be avoided. Having that in mind, the mechanism for acquisition of incorrect samples was 

designed to utilise samples collected during execution of other exercises. For example, moving trunk 

forward is a valid movement phase in the ‘leaning forward’ exercise, however during ‘leaning to the 

left’ execution of such a movement should be classified as incorrect. Using this approach, samples col­

lected for other exercises can be relabelled in such a way that if some movement phase is not present 

in a particular exercise its label is changed to incorrect. Modified training and testing sample sets are 

used as input data to the learning process of the second DBN. In the set of exercises for SMOOTH, 
21 different movement phases have been identified. The movement phases and the exercises to which 

they belong are presented in Table 5.7. If a particular movement phase does not belong to the exercise 

it is considered to be iiK'orrect for the purpose of the preparation of training and testing sample sets 

for this exercise.

Table 5.7: Correct movement phases for exercises for SMOOTH

# Movement phase Phase correct in

1 Sitting upright • All the exercises.

2 Moving right knee up
1. Marching in sitting.

2. Abduction of the right leg.

3 Right knee up
1. Marching in sitting.

2. Abduction of the right leg.

4 Moving right knee down
1. Marching in sitting.

2. Abduction of the right leg.

5 Moving left knee up
1. Marching in sitting.

2. Abduction of the left leg.
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Table 5.7: Correct movement phases for exercises for SMOOTH

# Movement phase Phase correct in

6 Left knee up
1. Marching in sitting.

2. Abduction of the left leg.

7 Moving left knee down
1. Marching in sitting.

2. Abduction of the left leg.

8 Moving to the right
1. Hip walking in sitting.

9 Moving to the left
1. Hip walking in sitting.

10 Right leg abducted
1. Abduction of the right leg.

11 Left leg abducted
1. Abduction of the left leg.

12 Leaning to the right
1. Leaning to the right.

13 Leaned to the right
1. Leaning to the right.

14 Leaning back to the left
1. Leaning to the right.

15 Leaning to the left
1. Leaning to the left.

16 Leaned to the left
1. Leaning to the left.

17 Leaning back to the right
1. Leaning to the left.

18 Moving trunk forward
1. Leaning forward.

2. Sit to stand.

19 Leaned forward
1. Leaning forward.

20 Moving trunk backward
1. Leaning forward.

2. Sit to stand.
21 Standing

1. Sit to stand.
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5.4.5.3 Structure

As noted previously, there are two DBNs created for each exercise addressed by SMOOTH. Each of 

the DBNs consists of a number of input nodes, referred as feature nodes, that represent features of 

the sensor input signals (see Section 5.3.5). The DBNs differ in the number of states in the output 

node, referred as the phase node, that represents the current movement phase. In the first DBN the 

states of the phase node correspond to the movement phases defined for a particular exercise. This 

network is used to recognise the current movement phase. In the second DBN an extra output state 

corresponding to improper execution of the current movement phase is added. This network is used 

to recognise whether the current movement phase has been performed properly. For example, in the 

first DBN created for ‘leaning forward’, the phase node has 4 states: sitting upright, moving trunk 

forward, leaned forward, and moving trunk backward. In the second DBN one additional incorrect 

state is added to indicate incorrect exercise execution. Therefore, for ‘leaning forward’, the phase 

node has 5 states: sitting upright, moving trunk forward, leaned forward, moving trunk backward, and 

incorrect. Both DBNs are generated separately from the learning and testing samples described in 

the previous section

Figure 5.13 shows the DBN used for inference of the current movement phase in SMOOTH. The 

network consists of a number of nodes representing signal features from force and distance sensors. 

Each feature node has a number of discrete states described in Section 5.4.6.1 in more detail. These 

nodes are connected to the node representing the current movement phase. As noted previously, DBNs 

in SMOOTH are based on a naive Bayes classifier, therefore the feature nodes are independent from 

each other given movement phase. As indicated in Section 5.3.5, features {//, d, .s} for each sensor are 

calculated over a sliding time window in the current time slice t. Therefore each sliding time window 

consists of a number of readings j = I,... ,k. Let {x\^, X2 ,..., Xn } be sensor readings from a number 

of sensors i = 1,..., n at time tj. Mean value p[ and standard deviation s* in current time slice for 
sensor x, are calculated as follows ^ ^i Difference d' is

calculated by subtraction of the mean value of previous time slice from the mean value in the 

current time slice pf, and given by = p* — p*~^. As noted in Section 5.3.3, in SMOOTH sensors 

placed on the seat of the chair are grouped into eight pressure areas and the mean values of each area 

are used as an input for feature calculation. Such a solution was based on the low-accuracy of the 

sensors and empirical results. Therefore, the features are calculated for n = 13 sensor readings (8 

pressure areas and 5 distance values).

Figure 5.14 shows a sample DBN generated for ‘leaning forward’ exercise using training and testing 

samples obtained from the researcher. 33 of 39 features were selected in the feature selection process 

(see Section 5.3.6) therefore 33 feature nodes are connected to the phase node.

140



Chapter 5. Design

5.4.6 Discretisation

The set of signal features available to be used in the inference module of SMOOTH presented in 

Section 5.3.5 consists of 3 features {/x, d, s}. Each of these features can take any value from the real 

number domain, which means that their values are continuous. The naive Bayes classifier used in 

the system requires the estimation of probabilities and continuous node values are not so easy to 

manage, as they often take too many different values for a direct estimation of frequencies. To avoid 

this, a normal distribution of the continuous values can be assumed, but this hypothesis does not 

always provide an optimal solution [Gelrnan et al., 1995|. In addition, as presented in Appendix B 

most BN tools allow only discrete values of nodes in order to learn probability parameters. For that 

reason the continuous values of signal features used in SMOOTH need to be divided into a number of 

intervals to allow the adjustment of DBN parameters to user characteristics. This process of division 

of continuous variables into intervals is usually termed discretisation. Unfortunately, the number of 

ways to discretise a continuous value is infinite |Kotsiantis and Kanellopoulos, 2006|. Therefore the 

key challenge in SMOOTH is to find a set of thresholds to divide the range of feature values into a 

small number of intervals.

The most straightforward method for data discretisation is establishment of fixed thresholds in 

order to create a small number of intervals. The thresholds can uniformly divide the data range into
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intervals or can be decided empirically. Even though this might work reasonably well in some cases, 

the initial experiments presented in Section 5.4.2 show that this approach does not work well for the 

set of sensors used in SMOOTH. The reason for this can be differences in the physical characteristics of 

people, e.g., they have different heights and weights. In addition, movement patterns differ for different 

people. For example, people can perform a movement with different speeds and have different ranges 

of movement. These issues might be crucial when designing a system for people with PD, who often 

have movement limitations [Gelb et al., 1999). To improve the accuracy of inference in SMOOTH, and 

therefore fulfil accuracy requirement (R. 2), it is important to discretise the signal features in a more 

flexible way. As a flexible optimisation tool, genetic algorithms (GAs), which are nowadays widely 

applied to tackle a number of real-world optimisation problems, can be used to discretise continuous 

data [Chen et al., 2006). In principle, GAs select the fittest individuals from the current population 

on the basis of defined criteria and generate the new population by employing recombination and 

mutation. GAs are described in more detail in Appendix B.

5.4.6.1 Discretisation of features for SMOOTH

SMOOTH uses GAs in order to discretise signal features and adjust DBN parameters to the char­

acteristic of individual users. The first step is to define the problem to be solved by a GA. The 

problem is how to divide continuous data from sensor signal features {/qd, .s} into intervals. Such a 

division would enable the DBNs to learn probability parameters for dependencies between the signal 
features and movement phases to obtain the highest accuracy of movement phase inference. To answer 

this question and enable GA application in SMOOTH, a chromosome (solution representation) and 

objective function (criteria for the evaluation of the quality of solutions) have to be defined.

In the DBNs defined for SMOOTH each node related to sensor readings represents one of the 

features {/u,d,s) calculated from the input of a particular sensor. Discretisation of features from 

different sensors in the same way is not necessarily the most optimal solution. For example, the value 

range and behaviour of a distance sensor placed on the back of the chair is different from a force 

sensor placed on its seat. In addition, during exercise a different range of pressures is applied to 

different areas of the seat and therefore the force sensors placed on them. For simplicity and based 

on the results of initial experiments, the smallest reasonable number of states for each feature was 

chosen in order to discretise continuous values of the features. Features, their ranges, the number of 

intervals which corresponds to the number of states in the DBN feature nodes, and their relation with 

parameter n are presented in Table 5.8. Consequently, each chromosome encodes the value of n that 

match the discretisation thresholds for each feature. Each parameter n corresponds to a particular 

feature node in the DBNs used to infer the current movement phase in SMOOTH. Parameters for 

each feature node in the first population are initialised randomly from the range of this feature values 

obtained from training and testing sample sets (see Section 5.4.5.2). As noted in Section 5.3.6, the 

number of feature nodes depends also on training and testing samples. The number of parameters
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encoded in the chromosome corresponds to the number of feature nodes used in the Bayesian model 

and for that reason, the size of the chromosomes might differ depending on the model.

Feature Value range Number of
states

States in relation to parameter
n

mean {/r} pt < 0, oo) 2 < 0,n), < n,oo)
difference {d} dt{—oo, oo) 3 (-00, —n),< -n,n), < n, oo)

standard deviation {s} •se < 0, oo) 2 < 0, n), < n, oo)
Table 5.8: Number of states for feature nodes

The choice of objective function should be related to the purpose of discretisation. In the case of 

SMOOTH the data are discretised in order to learn the DBN’s probability parameters and obtain the 

highest accuracy of movement phase inference. In other words, the objective of the GA is to search 

for the DBN whose discretisation parameters provide the highest inference accuracy. Consequently, 

movement phase inference accuracy is the objective function. The higher the value the more accurate 

the DBN is and the more chromosomes representing it should be selected to breed the next generation. 

To calculate the value of the objective function each chromosome is transformed into a DBN. The 

DBN is learnt using training samples (see Section 5.4.5.2) collected from a user in the training phase 

and tested against testing samples (see Section 5.4.5.2) collected from the same user. The movement 

phase detection accuracy from this test is the value of the objective function. Two separate sample sets 

for learning and testing are used to introduce diversity of user movement to the parameter learning 

process. Bec:ause even correct repetitions of a particular exercise can differ from each other, the 

diversity is needed in order to learn a variety of correct movement patterns.

5.4.7 Summary

This section described the technique used in SMOOTH to monitor exercise performance. Assessment of 

exercise execution is based on the number of correct repetitions completed. A repetition is defintid as a 

valid sequence of the correct consecutive movement phases. To detect the current movement phase and 

assess its correctness DBNs were chosen because of their suitability for reasoning under uncertainty. 

The DBNs utilised in SMOOTH consist of movement-phase nodes and nodes that represent features 

from the sensor signal. Three types of features from the sensor readings calculated over a sliding time 

window are used as the input to DBNs. The feature nodes used in DBNs are selected on the basis 

of samples collected in a training phase from the user for a particular exercise. The values of feature 

nodes are discretised using GAs and dependencies between sensor readings and movement phases are 

also learnt from data acquired in a training phase.
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5.5 Operation

SMOOTH is designed to support people with PD in their exercise routines and enable their physio­

therapist to review their progress. The purpose of this section is to describe in more detail the roles 

of the users, people with PD and their physiotherapists, in the system and what tasks that they are 

exj)ected to perform.

5.5.1 Physiotherapists

The physiotherapist has four roles defined in the system:

1. choice of exercises;

2. calibration of the device to meet the user’s characteristics;

3. [)rescription of an exercise programme;

4. review of exercise programme execution.

When a person with PD comes to a consultation, the physiotherapist examines the patient and 

depending on their condition prescribes a set of exercises that should be performed by this person at 

home. The patient is instructed on how the exercises should be performed. To calibrate the system, 

two sets of each exercise prescribed have to be performed under the supervision of the physiotherapist. 

The movement phases (see Table 5.6) are marked by the physiotherapist as the exercise progresses. 

The supervision of the physiotherapists ensures that exercises are performed properly and training and 

testing samples with corresponding labels, to be used in system calibration, are collected. Following 

that the physiotherapist determines the number of repetitions, sets, and frequency of each exercise to 

be performed by the user at home. When the user returns home, the system is ready to exercise.

The correct number of repetitions of each exercise performed by a user at home can be reviewed 

by the physiotherapist at any time. When the patient consults the physiotherapist they can review 

execution of the exercise programme and change the exercises and their prescription if necessary. If the 

range of patent motion changed remarkably or new exercises were added to the exercise programme 

the calibration process for these exercises should be executed once more.

5.5.2 People with Parkinson’s disease

The role of people with PD in the system is to execute the exercise programme, prescribed by the 

physiotherapist during a consultation, and at home. To support the user, SMOOTH provides the 

user with feedback during the exercise, which helps to perform the appropriate number of exercise 

repetitions. In addition, the user is provided with information about the execution of the exercise 

programme and on that basis can decide, which exercises should be performed. During each session 

the number of correct exercise repetitions is recorded and can be reviewed by physiotherapist at any 

time.
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5.6 Graphical user interfaces

This section begins with a general description of possible user interactions with the system and gives 

insight into the type of feedback used in SMOOTH. To enable the operations described in the previous 

section the applications for the user and physiotherapist were implemented. To fulfil the intuitiveness 

requirement (R. 6) the applications for user and the physiotherapist were designed to have very simple 

graphical user interfaces (GUIs) and intuitive operations. The following part of this section describe 

GUIs in more detail.

5.6.1 User feedback

As presented in the literature review there are a number of ways to interact with system users including 

voice, visual, and haptic feedback. SMOOTH was designed to be used at home therefore a number 

of common interfaces such as digital picture frames, personal computers, and television sets were 

considered as user feedback devices. In addition, a number of interactions such as visual and audio 

clues before and during the exercises were considered. However, to define the most appropriate and 

convenient form of user feedback and user feedback device for SMOOTH as well as the user interface 

further research should be conducted including iterative design and consultation with people with PD. 

This research focused on investigating the feasibility of measuring an exercise routine using inexpensive 

sensors placed on a chair rather than on the design of a user interface. The user interface was built 

mainly for evaluation purposes and can be considered the first iteration of the user interface design 
process.

5.6.2 Physiotherapist interface

Figure 5.15 presents the initial physiotherapist interface screen. It enables the physiotherapist to 

manage the patients, i.e., to add and remove them from the system and to change their details. To 

start working with a particular patient, the patient must be chosen from the list and the ‘continue’ 

button pressed.

To enable calibration of the device to a user’s characteristics the logging interface presented in 

Figure 5.16 was designed. The interface allows the choice of an exercise for which the system should 

be calibrated and selection of the sample set (training or testing). After pressing the ‘start logging’ 

button sensor readings start being recorded. The physiotherapists can mark movement phases as an 

exercise progresses by clicking the ‘next phase’ button or buttons corresponding to the appropriate 

movement phase, e.g., ‘moving trunk forward’. In the sample screen the ‘leaning forward’ exercise, 

which consists of four movement phases (see Table 5.6), was selected to be calibrated.

Following logging and marking the sensor readings, the physiotherapist can prescribe an exercise 

programme appropriate for the user. The exercise programme prescription screen is shown in Figure 

5.17. Once an exercise is selected to be included in an exercise programme the following parameters
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Choose user

[ add user | f delete igg 1 | contlnu^

Figure 5.15: Patient choice screen

Figure 5.16: Logging screen
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Figure 5.17: Exercise programme prescription screen

can be adjusted:

• number of repetitions in one set;

• number of sets to be performed in a day;

• number of days a week when the exercise programme sliould be performed.

To change tiie exercise programme, a new set of exercises and their parameters should be selected. In 

the sample screen, four exercises were selected to be included in the exercise programme: ‘abduction 
of the right leg’, ‘abduction of the right leg’, ‘marching in sitting’ and ‘sit to stand’. For each of them, 

two sets of 10 repetitions to be performed three times a week were prescribed.

Two types of charts were designed to enable th(^ physiotherapists to review user progress. Fig­

ure 5.18a presents a chart that shows the number of exercise sets performed each day during last 

week/month. The pink bars indicate that last week the ‘leaning forward’ exercise was performed 

on three days: two sets on the first day, one set on the second day, and two sets on the third day. 

As described in the example above (Figure 5.17), two sets to be performed three times a week were 

prescribed. This means that the user did five of six sets prescribed (over 80%), which is indicated 

by the blue line. Figure 5.18b presents a chart that shows the number of correct exercise repetitions 

performed in each set in the last week/month. The pink bars indicate that last week five sets of the 

‘leaning forward’ exercise were performed and the number of repetitions in each set varied from 9 to 

10. The blue line indicates that 10 repetitions to be done in each set were prescribed.

5.6.3 User interface

The user interface was not the major research question of the thesis and was mainly built for evaluation 

purposes. For that reason, devices other than a PC (as used in the system evaluation) were not given 

deeper consideration and the interface was not designed to benefit from their potential features. User
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Figure 5.18: User progress screen
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You have done 62% of exercises prescribed.
Try to do a little bit more today.

•• It •• leaning forward
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leaning to the right

- abduction of the left leg

abduction of the right leg

•• .• sit to stand

•• •• •• hip walking in sitting

' " ** marching in sitting

Figure 5.19: Progress screen

interaction with the system aimed at being convenient and simple. However, the user interface was 

neither designed in cooperation with people with PD nor based on previous consultations with them. 

The main reasons for this were time constraints and the fact that it was not the main aim of this 

study.

Figure 5.19 shows a progress screen with which a user is presented after starting the application at 

home. The list of exercises prescribed by the physiotherapists and their parameters are downloaded 

automatically from the data server (see Section 5.7). The icons next to each exercise indicate how 

well the user met the exercise prescription in the last week. For example, the ‘happy icon’ next to 

‘marching in sitting’ shows that enough repetitions of this exercise were done. The ‘sad icon’ next to 

‘abduction of the right/left leg’ indicates that not enough repetitions of these exercise were done and 

the user should do more repetitions. In general, the happier the icon next to a particular exercise, 

the better the user has met the prescription. On the top of the screen general information about the 

exercise programme is presented. To start a particular exercise user should press the corresponding 

button. After that a voice message describing the selected exercise is played.

After starting an exercise the user is presented with the screen shown in Figure 5.20. In the sample 

screen the user selected the ‘leaning forward’ exercise. Five repetitions of this exercise to be done in 

each set were prescribed. To make interaction with the user more natural, the application for the user 

provides the user with visual and voice feedback. As repetition progresses the red progress bar turns 

green. During the exercise the user is provided with voice feedback, which includes messages such as 

‘come back to starting position’ and ‘continue the exercise’. After each correct repetition, the counter

150



Chapter 5. Design

leaning forward

0/5

stop exercise

Figure 5.20: Exercise screen

of repetitions performed is increased and a voice message ‘well done’ is played. When the user exceeds 

the number of repetitions prescribed for one set, a message ‘you have reached prescribed amount of 

repetitions’ is played. After pressing the button ‘stop exercise’ the user is presented with the progress 

screen (Figure 5.19) in which the icons and messages on the top of the window have been updated 

according to user progress.

5.7 System architecture

The overall system architecture is pictured in Figure 5.21. SMOOTH consists of a user module for the 
home environment, a healthcare professional (HP) module for the clinical environment, and a data 

server. The data server is used to store calibration data obtained during a learning session and exercise 

statistics. In addition, it enables the exchange of data between the user and HP modules. The data 

server is introduced to fulfil the portability requirement (R. 7), so that the system is independent of 

the location of its users. The HP and user modules consist of a chair equipped with sensors that is 

connected through an appropriate interface to the feedback device. For feedback separate applications 

for the HP and user were developed (see Section 5.6). The chair used by the user at home and by the 

physiotherapist to calibrate the system is equipped with the same set of sensors.

The system architecture is based on a client-server model. The server runs the application to 

store the data obtained from clients and provides clients with appropriate data. The clients, i.e., user 

and HP modules, can be distributed and access the server simultaneously. The server application as 

well as client modules were implemented in Java therefore every environment that implements Java 

Virtual Machine should be compatible. The clients communicate with the server using web services 

running on the server. This approach enables reliability, flexibility, and re-use, e.g., by a web interface 

presenting data collected on the server. The data obtained from the client applications is stored in the 

database. The data collected by the HP application includes user details, calibration data, and details 

of the exercise prescription. The data collected by the user application includes the time and number
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Figure 5.21: System architecture overview

of exercise rripetitions executed by the user. The exercises and appropriate movemt'iit phases as well 

as other configuration details were defined in an XML file to promote fiexibility of the application.

5.7.1 Realisation

The server and client applications described in this thesis were fully implemented. The server was 

implemented using J2EE technologies such as web services, Enterprise Java Beans, and Java Persis­

tence API to communicate with the MySQL database used to store the data. User and HP modules 

were implemented in Swing as standalone desktop applications. They used a local database (SQLite) 

to store the data and when the connection to the server was available the data was synchronised 

automatically using web services available on the server.

5.8 Summary

To answer our hypothesis that a set of low-cost, fixed sensors are sufficient to measure exercise per­

formance SMOOTH has been designed. At the beginning of this chapter key requirements for the 

system were identified. On that basis, a set of exercises and sensors as well as techniques for monitoring 

exercise performance were selected and are described in this chapter.

Because of safety concerns the set of exercises for SMOOTH includes only exercises that can be 

performed on a chair. Eight exercises were included in the set. They are: marching in sitting, hip 

walking in sitting, abduction of the right/left leg, leaning to the right/left, leaning forward, and sit to 

stand.
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The literature review identified several sensor types that could be used to monitor exercise perfor­

mance. All of them were compared against the system requirements and those meeting the criteria 

were tested. On the basis of the results two types of sensors were used in the system: force and 

distance. Five distance sensors were placed on the back of a chair and twenty-four force sensors on 

the seat in order to detect the current movement phase of the system user. Their readings were used 

as the input to the exercise monitoring module.

The number of correct repetitions completed was used to measure exercise performance. Each 

exercise was divided into a number of movement phases. An exercise repetition happens if the correct 

phases occur in the correct order. To detect the current movement phase a number of techniques 

were considered and DBNs were selected. DBNs are based on probability theory and enable inference 

based on uncertain data and provide mechanisms for learning to adapt to users’ individual movement 

patterns. Two DBNs for each exercise were created to infer the current movement phase and assess its 

correctness. Each DBN uses three types of features calculated over a sliding time window on sensor 

readings. To discretise continuous features and optimise the accuracy of the DBN, GAs were used. 

GAs are a flexible optimisation tool and are nowadays widely applied to tackle a number of real-world 

optimisation problems. The data for selection of feature nodes and learning of the DBNs parameters 

are obtained during a training phase, during which the patient is asked to perform a set of exercises 

in a chair, which are labelled by a physiotherapist.
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Evaluation

SMOOTH was designed to meet needs of people with Parkinson’s disease (PD) and their physio­

therapists. The purpose of this chapter is to present the assessment of the accuracy of the exercise 

monitoring implemented in SMOOTH and the user acceptance of the system. User studies are vi­

tally important in the development of novel technologies and forms of interaction to seek the views of 

their potential future users and optimise their design |Kranz et ah, 2007) and so form the core of the 

evaluation of SMOOTH.

This chapter begins with a presentation of the requirements for the system as defined in the previous 

chapter and discusses how they were addressed in SMOOl'H. Section 6.2 outlines the objectives of our 
user study including the research questions that it was trying to answer. In Section 6.3 the design of 

the user study to ensure that the analysis of its results answered the research questions is presented. 

Two user studies were undertaken to meet the evaluation objectives. Evaluation of user acceptance 

of the system, including data collection and analysis of the data, are presented for physiotherapists 

in Section 6.4.2 and for people with PD in Section 6.4.3. A study designed to measure the accuracy 

of exercise monitoring is presented in Section 6.5. Finally, a summary of this chapter is presented in 

Section 6.6.

6.1 Realisation of Requirements

This section presents how the requirements defined in the previous chapter are addressed by SMOOTH.

1. Affordable (R. 1) - As presented in Section 5.3.1, it was difficult to define an affordable price 

range for an exercise system. In addition, this research only produced a prototype of the system. 

Its cost would likely be reduced if components were purchased in bulk for manufacture. To 

investigate the amount that people would pay for SMOOTH as well as the prices of commercially 

available products further research is needed. Finally, this work focused on the use of sensors to 

measure exercise execution therefore estimation of the system cost is restricted to an estimation 

of the sensor cost. To make the system affordable, the approach was to use a possibly low
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number of inexpensive sensors. The set of sensors for SMOOTH consists of twenty-four A201-1 

force sensors [Tekscan, Inc., 2009| and five GP2D120 distance sensors (Sharp, 2009]. At the time 

of purchase, the price of the force sensors was $24.40 per unit and the distance sensors $21.99 

per unit [Trossen Robotics, 2009). The units included all cables and boards needed to connect 

them to a PhidgetInterfaceKit (Trossen Robotics, 2009], which was used to convert the analog 

sensor readings to a digital representation and could be directly plugged in to a processing unit 

via a USB port. It was possible to connect eight sensors to one PhidgetInterfaceKit therefore 

four PhidgetInterfaceKits were used in the system. The price was $62.20 per unit. The total 

cost of the sensor set used by SMOOTH is summarised in Table 6.1. As presented, the cost 

equals $944.35 which is approximately Euro 640.56 using the exchange rate from 13 October 

2009 (OANDA, 2009).

Unit Unit price Quantity Total price

A201-1 force sensor $24.40 24 $585.60
GP2D120 distance sensor $21.99 5 $109.95

PhidgetInterfaceKit $62.20 4 $248.80

Total cost $944.35
Table 6.1: Cost of sensor set used by SMOOTH

2. Accurate (R. 2) - As noted in Section 5.2.1, accuracy in SMOOTH is related to measurement of 

correct exercise repetition. To fulfil the accuracy requirement a number of techniques have been 

applied in SMOOTH. As described in Section 5.4.4, two dynamic Bayesian networks (DBNs) 

were used to detect correct repetition of each exercise. The first DBN recognises the current 

movement phase and the second DBN the probability of its correctness. The literature review 

(Bao and Intille, 2004, Harms et al., 2008] and initial experiments (see Section 5.4.2) suggest 

that a user-specific approach to parameter learning obtains better results. For that reason, as 

described in Section 5.4.5.1, learning of DBNs parameters was conducted for each user individ­

ually using samples from the particular user.

3. Unobtrusive (R. 3) - As stated in Section 5.3.1, unobtrusiveness is related to privacy as 

perceived by the user during the use of the device, as well as embedding the technology in the 

environment to make it less noticeable to the user. To fulfil the requirement for unobtrusiveness, 

force and distance sensors placed on the chair were used in SMOOTH. This enables integration of 

the sensors with the device in a way that might not be as noticeable to the user. In addition, no 

evidence that force and distance sensors violate a user’s privacy has been found in the literature. 

The communication between the sensors and the user feedback device was carried out using a 

wireless connection therefore it was transparent to the user. The data transfers were automated 

and did not require additional actions from the user.
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4. Safe (R. 4) - As stated in Section 5.2, to fulfil the safety requirement and not put the user’s 

health at risk SMOOTH addresses only exercises that can be performed while sitting in a chair.

5. Convenient (R. 5) - To fulfil the convenience requirement, SMOOTH uses sets of sensors that 

are mounted on a chair. For that reason there is no need for configuration involving placement of 

sensors on the body and there are no restrictions on user movements. The sensors are calibrated 

automatically during the training phase (see Section 5.4.5.1) therefore there is no need for their 

calibration before each exercise. In addition, all the settings needed for starting to exercise are 

downloaded/uploaded automatically (see Section 5.6).

6. Intuitive (R. 6) - As mentioned in Section 5.6, to fulfil the intuitiveness requirement applica­

tions for peoi)le with PD and physiotherapists were designed to have very simple graphical user 

interfaces (GUIs) and intuitive handling.

7. Portable (R. 7) - As presented in Section 5.7, to fulfil the portability requirement the archi­

tecture of SMOOTH involves a data server used for information exchange between system users. 

This means that the system is independent of the location of its users.

8. Adaptable (R. 8) - As noted in Section 5.4.1, to adjust system parameters to individual user 

circumstances DBNs were chosen as the inference technique used in SMOOTH. As described in 

Section 5.4.5.1, DBNs can learn probability parameters relating to existing dependencies between 

sensor readings and movement phases from training and testing sample sets of a particular user. 

In addition, as described in Section 5.4.6.1, genetic algorithms (GAs) were applied in order to 

reflect the physical characteristics and the movement patterns of a particular user.

6.2 Objectives of the User Study

To evaluate the following system requirements: accuracy (R. 2), unobtrusiveness (R. 3), convenience 

(R. 5), and intuitiveness (R. 6) a user study was designed. The objectives of the user study were to 

establish:

1. 0.1 - User acceptance (R. 3, R. 5, and R. 6) of the system by people with PD and physio­

therapists, in particular with respect to:

(a) user interface and feedback;

(b) comfort and simplicity of use;

(c) general feelings about the system.

2. 0.2 - The accuracy (R. 2) and performance of the system in monitoring exercise routines, in 

particular:

(a) current movement phase recognition;
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(b) correct exercise repetition detection.

6.3 Design of the User Study

To meet the objectives described above the user study was divided into two parts. The first part 

evaluated user acceptance of the system, which is presented in Section 6.4. The second part evaluated 

exercise monitoring accuracy, which is presented in Section 6.5.

SMOOTH targets two groups of users: people with PD and physiotherapists. For that reason 

to evaluate the user acceptance of the system two user studies were undertaken. Each study had 

a similar methodology, i.e., exposure to the system followed by a questionnaire investigating users’ 

opinions about the system. The questionnaire is described in more detail in Section 6.4.1. The study 

with physiotherapists was conducted prior to the study of people with PD to obtain suggestions 

for potential changes and improvements to better meet the needs of people with PD. Most of the 

physiotherapists included in the study worked with people with PD on a daily basis. For that reason, 

their opinions about the system operation, set of exercises, number of movement phases in each 

exercise, user interface and feedback as well as the suitability of the system for people with PD were 

essential before trials with the patients. Data collection, study results, their discussion, suggested 

system improvements and their application to SMOOTH are described in Section 6.4.2. Following 

that, the study investigating acceptance of SMOOTH by people with PD is presented in Section 6.4.3. 

Similarly, it includes data collection methods and study results, which are followed by a discussion.

To evaluate exercise monitoring accuracy a study with healthy subjects and people with PD was 

designed. To obtain data for the study, sensor readings were recorded during exercise sessions. They 

were used in a number of tests conducted for different parameters such as the size of the sliding time 

window used to calculate signal features and the belief threshold above which the movement phase 

was assumed to be incorrect (see Section 5.4.4). The purpose of the tests was to measure the accuracy 

of movement phase recognition and the accuracy of proper exercise repetition detection.

The study was approved by the Faculty of Health Sciences Research Ethics Committee, Trinity 

College Dublin.

6.4 User Acceptance

To fulfil objective 0.1 (see Section 6.2) this part of the evaluation explores user views about the 

system. This section begins with a description of the survey instruments used to obtain opinions 

about the system (Section 6.4.1) and is followed by the description of the user studies conducted 

with physiotherapists (Section 6.4.2) and people with PD (Section 6.4.3). Finally, a summary of this 

section is presented in Section 6.4.4.
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6.4.1 Survey instruments

This part of the study employed a self-reported user survey methodology.

6.4.1.1 Design

Two separate user surveys were designed to investigate the views of the two groups of potential users, 

i.e., physiotherapists and people with PD, on the system. The design of the user surveys was based 

on the purpose and requirements for SMOOTH described in previous chapters of this thesis. This 

information in conjunction with the clinical experience of Dr. Stokes was employed to design the first 

version of the user survey. The initial version of the user survey was revised based on feedback from 

physiotherapists during a pilot study.

6.4.1.2 User surveys

Both user surveys consist of a questionnaire to be completed by the participants after a demonstra­

tion of the operation of the system oriented towards that parti(;ipant’s role. The questionnaires aim 

to explore subjects’ views on the system from the user perspective. It includes questions related to 

user interface and feedback, comfort and simplicity of use and general feelings about the system. 

Both questionnaires use a Likert scale with 6 ordered response levels anchored at ‘strongly disagree’ 

and ‘strongly agree’ and consist of 9 or 10 questions, respectively. An additional open-ended ques­

tion for other comments is included to enable participants to give more detailed opinions about their 

views and experience.

6.4.2 Physiotherapists

This section presents the study investigating the user acceptance of the system by the physiotherapists. 

The remainder of this section describes data collection (Section 6.4.2.1), results of their analysis 

(Section 6.4.2.2), a discussion (Section 6.4.2.3), and proposed system improvements (Section 6.4.2.4).

6.4.2.1 Data collection

The following inclusion criteria were used: (1) degree in physiotherapy; and (2) experience in working 

with patients. Physiotherapists working with people with PD identified through professional net­

works'’’^ were invited to participate in the study. In addition. Dr. Stokes contacted physiotherapists 

already known to her. The project was explained to them, including their role, and any pertinent 

questions were answered. One week later, they were contacted again and if they agreed to partici­

pate, written consent was requested on a formal consent form. The meeting with participants was 

scheduled at a time convenient to them. During the session the purpose of the system was explained 

to the participants and its operation, including the applications for physiotherapists and people with

'Physiotherapy Research & Older People Group, Department of Physiotherapy, Trinity College Dublin 
^Dublin Physiotherapy Research Hub, which is part of the National Physiotherapy Research Network (NPRN)
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Figure 6,1: Question 1 - I found the seat appropriate for the treatment.
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Figure 6.2: Question 2 - Overall I found the system easy to use.

PD, was demonstrated. The demonstration of the application designed for people with PD included 

execution of exercises supported by the system performed by the researcher. Following that subjects 

were asked to fill in the questionnaire. 10 physiotherapists agreed to participate in the study.

6.4.2.2 Results

The first question investigated the suitability of the chair chosen for SMOOTH. In general, participants 

agreed that tiie chair chosen for tlie treatment was appropriate. 40% and 10% of the subjects ‘agreed 

or ‘strongly agreed’ with the suitability of the chair, respectively. 30% ‘slightly agreed’ and 20% 

‘disagreed’ with that. The reason for perceived inappropriateness of the chair was lack of arm rests. 

The distribution of participants’ answers is illustrated in Figure 6.1.

The second question investigated if the system was perceived to be easy to use. In general, most 

of the subjects (90%) agreed that SMOOTH is easy to use. 10%, 50%, and 20% of the participants 

‘strongly agreed’, ‘agreed’, or ‘slightly agreed’ with that, respectively. The remaining 10% of the 

subjects ‘slightly disagreed’. The distribution of participant’s answers in illustrated in Figure 6.2.

The third question investigated if the instructions on the screen were unclear to the participants. 

50% and 40% of the subjects ‘disagreed’ or ‘strongly disagreed’ tliat tlie instructions were not clear, re­

spectively. The remaining 10% of subjects ‘slightly agreed’ with that. The distribution of participant’s
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Figure 6.4: Question 4-1 found creation and change of a set of exercises for a patient easy to use.

answers in illustrated in Figure 6.3.

The fourth question investigated if the participants perceived prescription of exercises easy to use. 

In general, all of the subjects agreed that creation of an exercise programme prescription was easy to 

use. 20%, 60%, and 20% of the participants ‘strongly agreed’, ‘agreed’, or ‘slightly agreed’ with the 

statement, respectively. The distribution of participant’s answers in illustrated in Figure 6.4.

The fifth question investigated if the participants perceived the possibility of review of a patient’s 

exercise routine useful. Most of the subjects (70%) ‘strongly agreed’ that review of a patient’s progress 

is useful for them. 20% and 10% of the participants ‘agreed’ and ‘slightly agreed’ with that, respec­

tively. The distribution of participants’ answers is illustrated in Figure 6.5.

The sixth question investigated if the participants found the manner by which the information 

about patient progress is presented to them to be appropriate. In general all of the participants agreed 

that the presentation of patients’ progress was appropriate. 40%, 50%, and 10% of the participants 

‘strongly agreed’, ‘agreed’, or ‘slightly agreed’ with that, respectively. The distribution of participants’ 

answers is illustrated in Figure 6.6.

The seventh question investigated if the participants found marking of movement phases during 

the system training phase inconvenient. Generally, most of the participants disagreed that marking 

movement phases was inconvenient. 10%, 40%, and 10% of the subjects ‘strongly disagreed’, ‘dis-
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30%
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® strongly disagree 
® disagree 
B slightly disagree 
® slightly agree 
• agree
B strongly agree

Answer

Figure 6.5: Question 5-1 liked that I can review the progress of each participant.

50%

40% -

30% -

20% -

10% -

I strongly disagree 
I disagree 
t slightly disagree 
I slightly agree 
I agree
I strongly agree

Figure 6.6: Question 6-1 found the method of presenting information about patient’s progress 
appropriate.
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I Strongly disagree 
I disagree 
i slightly disagree 
I slightly agree 
I agree
I strongly agree

Figure 6.7: Question 7-1 found marking different movement phases inconvenient.

B strongly disagree 
B disagree 
O slightly disagree 
B slightly agree 
B agree
B strongly agree

Figure 6.8: Question 8 - I do not think that tlie patient’s movement was detected properly.

agreed’, or ‘slightly disagreed’ with that, respectively. The remaining 40% of the participants ‘slightly 

agreed’ and ‘agreed’ with that. The distribution of participants’ answers is illustrated in Figure 6.7.

The next question investigated the perceived correctness of movement detection. The system was 

trained prior to the exercise session with data obtained from the researcher and during the session 

exercises were demonstrated by the researcher. Most of the participants (70%) ‘disagreed’ and 20% 

‘strongly disagreed’ that the movement was not detected properly. The remaining 10% of the subjects 

‘slightly agreed’ with that statement. The distribution of participants’ answers is illustrated in Figure 

6.8.

The penultimate question investigated if the participants found the patients’ interface easy to use. 

All the participants agreed that patient’s interface was easy to use. 30%, 50%, and 20% of the subjects 

‘strongly agreed’, ‘agreed’, or ‘slightly agreed’ with that, respectively. The distribution of participants’ 

answers is illustrated in Figure 6.9.

The final question investigated if the subjects would recommend the system to a patient with PD. 

Half of the participants would ‘possibly’ recommend the system. 30%, 10%, and 10% of the subjects 

would ‘probably’, ‘very probably’, and ‘definitively’ recommend it, respectively. The distribution of 

participants’ answers is illustrated in Figure 6.10.
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Figure 6.9: Question 9-1 found the patient’s interface easy to use.
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Figure 6.10: Question 10 - If the system was made available I would recommend it to a patient with 
PD.
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In the open-ended question the participants expressed their comments in relation to the system. 

Six themes were identified from their answers as follows.

Two participants said that they would recommend SMOOTH ‘to younger, less disabled’ patients 

(Participant no. 8) or patients ‘at an early diagnosis’ (Participant no. 7). One participant suggested 

that the exercises supported by the system should be more specific to people with PD. They should 

include trunk rotation rather than abduction of the legs. Three participants mentioned division of 

exercises into movement phases. They felt that ‘some of the exercises had too many phases and would 

be difficult for the patient to follow’ (Participant no. 5), the division into movement phases should 

‘encourage a smooth, continuous movement’ (Participant no. 4) and there should be ‘less of sustained 

hold at each phase’ (Participant no. 2). One participant said that to encourage continuous movement 

‘perhaps a visual or verbal queueing about the sequence of movements would be beneficial’ (Participant 

no. 3). Two participants expressed their opinions about the chair used in SMOOTH. Both preferred 

that the chair had arms, ‘1 would prefer if the chair had arins due to concerns to postural stability’ 

(Participant no. 9). Finally, two participants commented on the general purpose of the system. 

They thought that it is ‘interesting and novel’ (Participant no. 5) and it ‘does look very promising’ 

(Participant no. 9).

6.4.2.3 Discussion

The purpose of this part of the evaluation of SMOOTH was to investigate the opinions of physiother­
apists about the system and to obtain feedback that identified potential improvements to better meet 

the needs of people with PD. The opinions of the participants were used to evaluate the system.

In general, the participants found the system convenient to use (R. 5). Most of the participants 

(90%) found the overall system easy to use. Marking of movement phases during exercise execution 

in the training phase was found to be convenient by 60% of the participants. Reasons for lack of 

reported convenience might be a large number of movement phases identified for the exercises and 

lack of practise. The seat was found appropriate for the duration of the treatment by 80% of the 

subjects. The remaining 20% ‘slightly disagreed’ with that and suggested that the chair should have 

arm rests.

The system was perceived to be intuitive (R. 6) and the GUI designed for physiotherapists got 

positive feedback. Most of the participants (90%) said that the interface was self-explanatory and 

clear to them. All of the participants said that the creation of an exercise set was easy. Similarly, 

all of the physiotherapists thought that the presentation of the information related to the number of 

exercises done by the patients at home was appropriate and gave a good insight into the patient’s 

exercise routine. In addition, all of the participants found the GUI designed for patients and the user 

feedback during exercise to be appropriate.

All of the physiotherapists that participated in the study liked the possibility of monitoring pa­

tient’s progress as well as being able to review the number of exercises actually done by the patient.
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They said that this knowledge would be useful for them to modify the rehabilitation programme.

Most suggestions during the study were related to the division of the exercises into movement 

phases. Conversation during the evaluation of the system and comments written in the user surveys 

revealed that most of the participants felt that the system should encourage fast movement in order 

to resist the bradykinesia (slow movement) often reported in PD |Berardelli et ah, 2001]. In addition, 

the execution of exercises should be more rhythmic and should not contain sustained holds such as 

leaned forward (see Table 5.6). The reason for that was to avoid ‘freezing’ (difficulty initiating 

movement), which is one of the common symptoms of PD [Berardelli et ah, 2001). In general, the 

number of movement phases in the exercises was found to be too large and therefore difficult to follow 

by people with PD. Some of the participants suggested that the exercise set should be more related to 

problems with general body posture and muscle stiffness common in PD [MashhadiMalek et ah, 2008|. 

They suggested to replace ‘abduction of the right/left leg’ exercise with ‘trunk rotation’. Actual 

improvements to the system made on the basis of the feedback from physiotherapists are presented in 
Section 6.4.2.4.

None of the survey participants said that they would not recommend SMOOTH to people with 

PD, which suggests a perceived potential of the system. However, the level of confidence in the recom­

mendation is not very strong - half of the participants would ‘possibly’ recommend it. There might be 

a number of reasons for that. They include perceived problems with division of exercises into move­

ment phases, which is related to exercise execution, lack of armrests and therefore inappropriateness 

of the chair (20% slightly agreed that the chair was inappropriate), and finally the fact that the chair 

is a prototype and sensors placed on it are connected using cables, which might not look very user 
friendly and reliable. It is possible that improvements introduced to the system (see Section 6.4.2.4) 

would increase confidence in recommendation of SMOOTH to people with PD, however, a further 

study should be conducted in order to investigate this.

6.4.2.4 System improvements

Before study with people with PD the feedback from physiotherapists was analysed, which resulted 

in a list of possible changes to the system. The improvements that were applied to the system are 

described in the following part of this section.

On the basis of the comments obtained from physiotherapists that participated in the study, we 

decided to exchange ‘abduction of right/left leg’ exercises (see exercise no. 3 and 4 in Table 5.1) 

to ‘trunk rotation to the left/right’ exercises to better meet the usual exercise programme prescribed 

for people with PD. The description of the exercises added and the potential difficulties with their 

execution by people with PD, which were established by consultation with the physiotherapists, are 

presented in Table 6.2.
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if Exercise Description Potential difficulties for people with PD

3 Trunk
rotation to 
the right

Sit upright in your chair. 
While sitting, turn your 
shoulders to right side as 
far as possible. Turn your 
head and body as well. 
Return to the starting 
position.

• Position not upright.

• Reduced range of movement - turning head 
only.

• Knees follow the trunk.

4 Trunk Sit upright in your chair. • Position not upright.
rotation to While sitting, turn your

• Reduced range of movement - turning headthe left shoulders to left side as
far as possible. Turn your only.
head and body as well. 
Return to the starting 
position.

• Knees follow the trunk.

Table 6.2: Exercises added to SMOOTH

In addition, three participants suggested changes in the movement phases. Feedback from them 

suggested that the number of phases in each exercise should be reduced and phases that required sus­

tained hold should be removed. The set of eight exercises addnissed by SMOOTH with the movement 

phases updated accordingly is presented in Table 6.3.

The list of correct movement phases, which is used for training and testing sample creation (see 

Section 5.4.5.2), for the new set of exercises addressed by SMOOTH was changed according to Table 

6.3.

The improvements described above were applicid to SMOOTH before the study involving people 

with PD. The study is described in the following part of this section.

6.4.3 People with Parkinson’s disease

This section presents the study investigating the user acceptance of the system by the people with 

PD. The remainder of this section describes data collection (Section 6.4.3.1), results of their analysis 

(Section 6.4.3.2), and a discussion (Section 6.4.3.3).

6.4.3.1 Data collection

The following inclusion criteria were used: (1) diagnosis of PD; (2) ability to do the set of exercises on 

a chair designed for SMOOTH; (3) ability to answer the questions in the questionnaire independently; 

and (4) aged 18 or over. People with PD were identified through a support group for people with 

PD (PALS)^, which is a branch of the Parkinson’s Association of Ireland, and a number of previous 

studies. They were sent information about the purpose of the study and an acceptance form to 

be returned if they agreed to participate in the study. A stamped envelope with return address 

was included. Potential participants were provided with the contact details of the researcher in the

^http: / / gofree. indigo.ie/~pdpals/
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Exercise Movement Phases

1 Marching in sitting
1. Sitting upright.

2. Moving right knee up.

3. Moving right knee down.

4. Moving left knee up.

5. Moving left knee down.
2 Hip walking in sitting

1. Sitting upright

2. Moving to the left.

3. Moving to the right.
3 Trunk rotation to the right

1. Sitting upright.

2. Rotation of trunk to the right.

3. Rotation of trunk back to the left.
4 Trunk rotation to the left

1. Sitting upright.

2. Rotation of trunk to the left.

3. Rotation of trunk back to the 
right.

5 Leaning to the right
1. Sitting upright.

2. Leaning to the right.

3. Leaning back to the left.
6 Leaning to the left

1. Sitting upright.

2. Leaning to the left.

3. Leaning back to the right.
7 Leaning forward

1. Sitting upright.

2. Moving trunk forward.

3. Moving trunk backward.
8 Sit to stand

1. Sitting upright.

2. Moving trunk forward.

3. Standing.

4. Moving trunk backward.
Table 6.3: Updated movement phases for exercises addressed by SMOOTH
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■ Strongly disagree 
B disagree 
O slightly disagree 

B slightly agree 
B ^cTx;
B strongly agree

Answer

Figure 6.11: Question 1 - I found the seat comfortable for the duration of treatment.

participation leaflet in case they wished to seek further information. Thereafter, the subjects who 

returned the acceptance form were contacted again and the study was explained to them in more 

detail. They were asked questions related to their condition in order to assess their suitability for the 

study. If they agreed to partic:ipate, written permission was requested on a formal consent form. The 

individual meeting with participants was scheduled at a time convenient to them. During the meeting 

the purpose of the system was explained to the participants and the operation of the application for 

people with PD was demonstrated. After that, the participants were asked to perform a number of 

exercises on a chair. The number of exercises and procedure is described in more detail in Section 

6.5.2. A physiotherapist was present during each session and supervised the exercise execution. During 

exercise execution the subjects had an opportunity to use the application designed for people with 

PD. Following that subjects were asked to fill in the questionnaire (see Section 6.4.1.2). 10 people 

with PD agreed to participate in the study.

6.4.3.2 Results

The first question investigated the suitability of the chair chosen for SMOOTH. In general, participants 

agnxid that the chair chosen for the treatment was appropriate. 60% and 10% of the subjects ‘agreed or 

‘strongly agreed’ with suitability of the char, respectively. 20% and 10% ‘slightly agreed’ or ‘disagreed’ 

with that, respectively. The distribution of participants’ answers is illustrated in Figure 6.11.

The second question investigated if the system was perceived to be easy to use. In general, most 

of the subjects (90%) agreed that the system is easy to use. 30%, 50%, and 10% of the participants 

‘strongly agreed’, ‘agreed’, or ‘slightly agreed’, respectively. 10% ‘disagreed’ with that statement. The 

distribution of participants’ answers is illustrated in Figure 6.12.

The third question investigated if the images/icons on the screen and the voice instructions were 

clear to the participants. 50% and 30% of the subjects ‘strongly agreed’ or ‘agreed’ that the im­

ages/icons and voice instructions were clear’, respectively. The remaining 20% of the subjects ‘slightly 

disagreed’ (10%) or ‘disagreed’ (10%) with that. The distribution of participants’ answers is illustrated 

in Figure 6.13.
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60%

50%

o. 40% -

30% -

20%

10%

0%

• strongly disagree 
I disagree 

I slightly disagree 

I slightly agree 

I agree

I strongly agree

Answer

Figure 6.12: Question 2 - Overall I found the system easy to use.

a. 40% -

I strongly disagree 
( disagree 
I slightly disagree 
I slightly agree 
i agree
I strongly agree

Answer

Figure 6.13: Question 3 - The images on the screen and voice instructions were clear to me.
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B strongly disagree 
B disagree 
n slightly disagree 
B slightly agree 
B agree
B strongly agree

Figure 6.14: Question 4 - The images on the screen helped me to indicate whether I followed my 
exercise prescription.

i 50% -

0%

B stmngly disagree 
B disagree 

^ slightly disagree 

B slightly agree 
B agree
B strongly agree

Figure 6.15: Question 5-1 liked that my physiotherapist can review how often I perform my 
exercises.

The fourth question investigated if the participants perceived the images/icons on the screen to be 

helpful to indicating whether they followed their exercise prescription. In general, most of the subjects 

(80%) either ‘agreed’ (60%) or ‘slightly agreed’ (20%) that the images were helpful. The rest of the 

participants (20%) either ‘slightly disagreed’ (10%) or ‘disagreed’ (10%) with that. The distribution 

of participants’ answers is illustrated in Figure 6.14.

The fifth question investigated if the participants perceived the possibility of their progress been 

reviewed by a physiotherapist to be useful. In general, all of the subjects liked the idea of a possible 

review of their progress. 40% and 60% of the subjects ‘strongly agreed’ and ‘agreed’ with that, 

respectively. The distribution of participants’ answers is illustrated in Figure 6.15.

The sixth question investigated if the participants thought that their movement was detected in­

correctly. Generally, 40% of the participants disagreed that their movement was not detected properly. 

Half of these ‘strongly disagreed’ (20%) and another half ‘disagreed’ (20%). The remainder of the 

subjects (60%) either ‘slightly agreed’ (30%) or ‘agreed’ (30%) that their movement was not detected 

properly. The distribution of participants’ answers is illustrated in Figure 6.16.

The seventh question investigated if user feedback made the exercise routine more enjoyable. All
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35%

H strongly disagree 
H disagree 
ki slightly disagree 
H slightly agree 
B agree
H strongly agree

Figure 6.16: Question 6 - I do not think that my movement was detected properly.

60% -1

50% -

20% -

H strongly disagree 
M disagree

slightly disagree 
B slightly agree 
B agree
B strongly agree

Figure 6.17; Question 7 - This treatment was more enjoyable than performing exercises at home on 
my own.

of the participants stated that this kind of treatment was more enjoyable than performing exercises at 

home on their own. 50%, 40%, and 10% of the subjects ‘strongly agreed’, ‘agreed’, or ‘slightly agreed’ 

with that, respectively. The distribution of participants’ answers is illustrated in Figure 6.17.

The next question investigated if a system like SMOOTH would encourage the participants to 

sustain their exercise routine. All of the participants stated that this kind of system would encourage 

them to do exercises more often. 30%, 60%, and 10% of the subjects ‘strongly agreed’, ‘agreed’, or 

‘slightly agreed’ with that, respectively. The distribution of participants’ answers is illustrated in 

Figure 6.18.

The final question investigated if the system was made available would the participants use it. In 

general, most of the subjects (90%) said that they would use it. 50%, 30%, and 10% of the subjects 

‘strongly agreed’, ‘agreed’, or ‘slightly agreed’ with that, respectively. The remaining 10% of the 

participants said that they would ‘probably not’ use it. The distribution of participants’ answers is 

illustrated in Figure 6.19.

In the open-ended question the participants expressed their comments in relation to the system. 

Four themes were identified from their answers as follows. Three participants stated that ‘ it was very 

enjoyable’ experience (Participant no. 4) and the system ‘has good potential’ (Participant no. 9).
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B strongly agiee

Figure 6.18: Question 8-1 think the system would encourage me to do my exercises more often.

50% -

s 20% -

B not at all 
B probably not 
B possibly 
B pmbably 
B very probably 
B definitively

Figure 6.19: Question 9 - If the system was made available I would use it.
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Five comments in relation to the user feedback given by the system were provided. They said that 

the voice feedback was annoying (n = 2), ‘I found voice from PC annoying' (Participant no. 5), and 

‘voice needs to be louder' (Participant no. 6) (n = 1). One participant stated that ‘it should be easier 

to indicate when exercise should be started' (Participant no. 7). To better illustrate the exercise ‘an 

image of figure doing the exercise or movement' (Participant no. 8) was suggested by one participant. 

On the other hand one participant said that the exercises were ‘clearly illustrated' (Participant no. 9). 

The last theme was related to the encouragement given by the system. Two participants suggested 

that doing exercises should be more rewarding, ‘perhaps introduce rewards for completing exercises' 

(Participant no. 5). Two participants said that the system encouraged them to do exercises, ‘it was 

encouraging to see the numbers coming up on the screen' (Participant no. 10). One person commented 

on the chair used in the system. It was suggested that ‘ the chair needs to be adjustable and needs arm 

rests' (Participant no. 6).

6.4.3.3 Discussion

The purpose of this part of the evaluation of SMOOTH was to investigate the opinions of people with 

PD about the system and obtain feedback that could identify potential improvements to be made to 

the system in the future to better meet user needs. The opinions of the participants were used to 
evaluate the system.

The participants found the system convenient to use (R. 5). Most of the participants (90%) 

found the overall system easy to use. Similarly, the seat was found appropriate for the duration of 

the treatment by 90% of the subjects.

In general, the system was perceived to be intuitive (R. 6) and the GUI and user feedback designed 

for people with PD was appropriate. Most of the participants (80%) said that images/icons on the 

screen and voice instructions were self-explanatory and clear to them. The remaining 20% of the 

subjects stated either that there should be less voice feedback (n = 1) or that voice instructions 

were not loud enough; one could not see the images on the screen because she forgot her glasses 

(n = 1). Most of the participants (80%) said that the images/icons helped them to follow their 

exercise prescription.

All of the participants liked the possibility that the physiotherapist can review how often they per­

formed the exercises. Similarly, all of the subjects found the training using the system more enjoyable 

than performing exercises at home on their own and thought that the system would encourage them 

to do exercises. Subjects’ responses could however be biased by a number of psychological factors 

stemming from the visit to the lab, the presence of the researcher, and a novelty effect related to the 

fact that subjects who took part in the study were more likely to be enthusiastic about new technology. 

To reduce this bias a more extensive study should be conducted wherein participants are chosen at 

random, they are able to use SMOOTH independently at home, and participant’s views on the system 

are collected via an anonymous survey. Such a study was not conducted due to time constraints.
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Most suggestions during the study were related to the user feedback provided by the system. 

Conversation during evaluation of the system, observation of system behaviour during participants 

exercising and comments written in user surveys revealed that the voice feedback provided by the 

system should be slightly modified. The voice messages after each correct repetition were found to be 

confusing due to the delay with which they were played. For example, when the exercise repetition 

were performed quickly, occasionally there was a lag between the message for completion of the actual 

repetition and starting the next movement. This could be avoided by either removing voice messages 

after each repetition or shortening them. Each exercise was always preceded by voice instructions 

describing it. It was noticed that some participants got confused as to when they should start the 

exercise and they were starting as soon as they could hear the voice instructions. As suggested, 

there could be a light turning green to indicate the start of the exercise or a message ‘ 3, 2, 1, go!' 

(Participant no. 7). Some participants also suggested that doing exercises should be more rewarding. 

For example, if the user does all the exercise repetitions prescribed the message ‘congratulations!’ 

should be played (Participant no. 7). Finally, the inclusion of an animated figure showing the exercise 

or movement was suggested.

More than half of the participants (60%) ‘slightly agreed’ or ‘agreed’ that their movement was 

detected incorrectly. This could be caused by the fact that a predetermined set of the parameters was 

used to demonstrate the operation of the system to the participants. A duration of a time window 

was set to 0.25s, and the belief threshold to 90%, because for those parameters the system performed 

well for the researcher. As presented in Section 6.5, those parameters were not the most optimal. For 

that reason, to investigate perceived accuracy of the system, further study should be conducted.

Most of the participants (90%) said that if the system was made available they would use it. The 

remaining 10% of the subjects said that they would probably not use the system because they prefer 

other forms of physical activity, e.g., gardening. No additional comments about feeling uncomfortable 

or being embarrassed by using the system were stated. For that reason, it was concluded that the 

system was perceived to be unobtrusive (R. 3).

6.4.4 Summary

This section presented a study designed to fulfil objective 0.1 (see Section 6.2) and to investigate 

user acceptance of SMOOTH. 10 physiotherapists and 10 people with PD took part in the study. 

The study explored user views about the system and obtained information needed for the evaluation 

of the system. In addition, the study identified a number of possible improvements to the system. 

Three system requirements (see Section 6.1) were evaluated by the user study: unobtrusiveness (R. 

3), convenience (R. 5), and intuitiveness (R. 6). All of these requirements received positive feedback 

from the physiotherapists and the people with PD that participated in the study.
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6.5 Exercise Monitoring Accuracy

To fulfil objective 0.2 (see Section 6.2) this part of the evaluation investigated the accuracy and 

performance of the system. This section begins with a description of the evaluation metrics used 

to assess the accuracy of the system (Section 6.5.1). This is followed by a description of the data 

collection (Section 6.5.2) and a presentation of the generation of the learning and testing samples 

used (Section 6.5.3). Section 6.5.4 presents the results from the study and is followed by a discussion 

(Section 6.5.5). Finally, a summary of this section is presented in Section 6.5.6.

6.5.1 Evaluation metrics

To evaluate the exercise monitoring accuracy (R. 2) of SMOOTH two metrics were used:

1. Accuracy of movement phase recognition. The accuracy of movement phase recognition is defined 

by the number of samples that were recognised correctly by the first DBN (see Section 5.4.4) 

as a proportion of the total number of samples used in a test. The samples correspond to the 

signal features calculated over the sliding time windows.

2. Accuracy of correct repetition detection. The accuracy of correct repetition detection is calculated 

as the number of exercise repetitions detected by the system. The target number of repetitions 

to be performed for each exercise was 10. Some participants performed more than 10 repetitions 

of each exercise. One exercise was done 13 times, one exercise 12 times, and nine exercises 

were performed 11 times. The confusion of the participants was caused by the user application 

not necessarily showing the number of repetitions corresponding to the number of repetitions 

actually performed. To compare the results, the number of repetitions detected by the system 

was normalised and calculated by a proportion of the number of repetitions detected by the 

system to the number of repetitions actually performed by the user and multiplied by 10. For 

example, if the participant performed 13 repetitions and 13 of them were detected by the system 

the normalised number of repetitions was 10. However, when the participant performed 10 

repetitions and 13 of them were detected by the system the normalised number of repetitions 

was 13. During each exercise session the numbers of actual and correct repetitions were noted by 

the supervising physiotherapist (see Section 6.5.2). According to the physiotherapist, the number 

of actual repetitions was equal to the number of correct repetitions for all the participants.

Two parameters were investigated during the tests: the size of the sliding time window used to calculate 

signal features and the belief threshold above which movement was considered to be incorrect.

6.5.2 Data collection

The data for the study was collected from each participant during one exercise session. Two types of 

subjects participated in the study: people with PD and healthy subjects. The detailed description
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Participant Gender Age [years] Height [cm] Weight [kg)

1 female 28 180 78
2 male 31 172 65
3 male 29 182 85
4 male 29 189 95
5 male 41 175 85
6 male 33 175 70
7 female 23 173 60
8 female 23 172 59

Table 6.4 : Healthy people that participated in the study

Participant Gender Age [years) Years since PD diagnosis Height [cm] Weight [kg[

1 male 71 8 170 73
2 male 64 33 170 76
3 male 72 9 170 70
4 male 55 r 180 101
5 male 54 41 180 72
6 female 67 12 155 64
7 female 42 10 164 67
8 male 55 r 162 70
9 male 61 10 180 67
10 female 47 7 163 57

Table 6.5: People with PD that participated in the study

of the recruitment of people with PD is presented in Section 6.4.3.1. Each participant was asked 

to perform eight exercises on the chair as listed in Table 6.3. The exercise session with people with 

PD was supervised by a physiotherapist. Each exercise was described by the physiotherapist to the 

participant. Three sets of 10 repetitions of each exercise were performed by each participant. During 

the exercise, sensor readings were recorded and marked with the corresponding movement phases by 

the researcher. Such a setting was chosen because of the practise required to correctly mark movement 

phases as exercise progresses. The order of the exercises was randomised for each participant. The 

reason for that was to avoid bias related to fatigue and tiredness, which can increase as the exercises 

progress. 2 of 3 sets collected were used to learn the parameters of the DBNs. Following that, 

each participant was asked to perform a fourth set of 10 repetitions of each exercise using the user 

application that provided visual and voice feedback. The number of repetitions actually performed 

by each participant was called out by the physiotherapists and noted, for normalisation purposes (see 

Section 6.5.1). The number of repetitions considered to be correct, according to the physiotherapist, 

was also noted. During exercise execution sensor readings were recorded, but they were not marked

176



Chapter 6. Evaluation

with movement phases. 8 healthy subjects and 10 people with PD participated in the study. Their 

characteristics are presented in Table 6.4 and Table 6.5, respectively.

6.5.3 Samples

As mentioned previously, two parameters were investigated during the tests: the size of sliding time 

window and the belief threshold. Investigated parameters for the time windows and belief thresholds 

are presentrid in Table 6.6 and Table 6.7, respectively. The parameters were chosen empirically, based 

on knowledge of the domain. The data were logged with a frequency of lOOHz.

# Size IsamplesJ Overlap jsamplesj Duration

1 10 0 0.1s
2 25 5 0.25s
3 50 10 0.5s
4 100 25 Is

Table 6.6: Investigated parameters of sliding time windows

# Belief threshold

1 100%
2 95%
3 90%
4 70%
5 50%

Table 6.7: Investigated parameters of belief thresholds

In total, 3 sets of 10 repetitions of each of the 8 exercises for each participant were used to evaluate 

the accuracy of the movement phase recognition. Two sets were used to learn the parameters of the 

DBNs, and the third set was used for testing. To obtain more uniform results three combinations 

of these sets, which are presented in Table 6.8, were used in the tests. To evaluate correct exercise 

repetition detection, two sets were used to learn the parameters of the DBNs, and the fourth set 

(without movement phases marked) was used for testing. Each trial, which was learning the parameters 

of the DBNs and testing their recognition accuracy, was repeated 5 times. The reason for this was 

to get average results, because GAs used in discretisation (see Section 5.4.6.1) are non-deterministic, 

i.e., for the same inputs they can produce different outputs. The mean and standard deviation (SD) 

of the results from all the trials are used in the further part of this chapter.

All the samples described in Section 6.5.2 were collected from the healthy subjects. Two people 

with PD had difficulties with some exercises. Those exercises included: ‘Sit to stand’ (n = 2), ‘Hip 

walking’ {n = 1), and ‘Marching in sitting’ (n = 1). The difficulties included fatigue and problems
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# Sets used for learning Set used for testing

1 1,2 3
2 2, 3 1
3 3, 1 2
Table 6.8: Combinations of sets used in tests

in estimating the number of actual repetitions. For that reason, the samples corresponding to the 

exercises above were not included in the tests.

6.5.4 Results

To measure the accuracy of exercise monitoring in SMOOTH a number of tests was conducted. The 

tests included investigation of dependencies between participants, exercises, different parameters such 

as the size of the time window and belief threshold, and the evaluation metrics (see Section 6.5.1). 

The results are presented in the following part of this section.

6.5.4.1 Exercises and duration of time windows

Figure 6.20a and Figure 6.20b show the accuracy of the movement phase recognition, depending on 
the exercise and the duration of the time window, for healthy subjects and participants with PD, 

respectively. For both, healthy subjects and participants with PD, as the duration of time window 
(excluding the Is time window) increased, so the recognition accuracy increased. The best results were 

obtained by a 0.5s time window used to calculate signal features. The worst results were obtained 

by the Is time window. For the healthy subjects, the differences between phase recognition accuracy 

among the exercises are relatively small. The a\-erage accuracy for all the exercises is above 80% 

(0.5s time window). For people with PD, ‘marching in sitting’ obtained the lowest accuracy (68%). 

Movement phases in all other exercises were recognised with similar accuracy, which was, similarly 

to healthy subjects, above 80% (0.5s time window). The phase recognition accuracy for the Is time 

window that obtained the lowest results, was above 70% for all the exercises. The variation in the 

phase recognition accuracy was generally bigger for participants with PD.

Figure 6.21a and Figure 6.21b show the accuracy of correct repetition detection, depending on the 

exercise and the duration of time window, for healthy subjects and participants with PD, respectively. 

The results were generated for a belief threshold equal to 100%, because it obtained the best results. 

This means that the second DBN was not used to detect incorrect repetitions and only the sequence 

of movement phases recognised by the first DEN’ was taken into consideration (see Section 5.4.4). 

The number of repetitions detected decreases as the duration of the time window increases, therefore 

the highest results are obtained for a 0.1s time window. The detection of repetitions of ‘marching in 

sitting’ was considerably smaller than for other exercises and equal to 5.8 and 3.3 repetitions (0.1s 

time window) for healthy subjects and participants with PD, respectively. Possible reasons for the
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Figure 6.20: Accuracy of movement phase recognition dependent on exercise and duration of time 
window
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Figure 6.21: Accuracy of correct repetition detection dependent on exercise and duration of time 
window

poor results obtained for the ‘marching in sitting’ exercise are discussed in more detail in Section 6.5.5. 

The number of repetitions detected among other exercises was similar and differed from 9.8 to 10.4 

repetitions and from 9.1 to 11 repetitions (O.ls time window) for healthy subjects and participants 

with PD, respectively. Similar to previous tests, the variation in detection accuracy across the trials 

was slightly bigger for participants with PD.

6.5.4.2 Participants and size of time windows

Figure 6.22a and Figure 6.22b show the accuracy of movement phase recognition, depending on the 

participant and the duration of the time window, for healthy subjects and participants with PD, 

respectively. With respect to the exercises, the recognition accuracy for all the participants increased 

as the duration of time window (excluding Is time window) increased, which is not surprising given 

the previous results. The best results were obtained for the 0.5s time window used to calculate signal 

features. The worst results were obtained for the Is time window. The phase recognition accuracy 

varied from 81% to 86% for healthy subjects (0.5 time window). The worst results were obtained by
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Figure 6.22: Accuracy of movement phase recognition dependent on participant and duration of 
time window

participant no. 8. For participants with PD, the phase recognition accuracy varied from 75% to 86% 

(0.5 time window). The poorest results were obtained by participants no. 3, 6, and 9. The variances 

in recognition accuracy across the trials were generally bigger for participants with PD.

Figure 6.23a and Figure 6.23b show the accuracy of the correct repetition detection, depending 

on the participant and the duration of the time window, for healthy subjects and participants with 

PD, respectively. As previously, the results were generated for a belief threshold equal to 100%. 

With respect to the exercises, the number of repetitions detected for all the participants decreased as 

the duration of the time window increased, which is not surprising given the previous results. The 

highest results were obtained for 0.1s time window. For the healthy subjects the number of repetitions 

detected was similar and varied from 9.2 to 10.3 (0.1s time window). For participants with PD, the 

lowest number of repetitions was detected for participant no. 9 and was 6.8 (0.1s time window). For 

all other subjects the number of repetitions varied from 8.3 to 11.2 (0.1s time window). Similar to 

previous tests, the variation in detection accuracy was bigger for participants with PD.
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Figure 6.23: Accuracy of correct repetition detection dependent on exercise and duration of time 
window
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6.5.4.3 Exercises and belief thresholds

Figure 6.24a and Figure 6.24b show the accuracy of correct repetition detection, depending on the 

exercise and the belief threshold, for healthy subjects and participants with PD, respectively. The 

results presented were generated for 0.1s time window, which according to previous tests, obtained 

the highest number of repetitions detected by the system. In general, the number of the repetitions 

detected by the system across all the exercises was similar for healthy subjects and participants with 

PD except ‘hip walking’ and ‘marching in sitting’. For healthy subjects, the system detected in general 

more repetitions of these exercises than for participants with PD. The difference in results varied from 

1.2 to 3.1 repetitions depending on the belief threshold. In addition, the variance across the results 

was bigger for participants with PD. The exercise that obtained the worst results was ‘marching in 

sitting’, which is consistent with previous findings. In general, the number of repetitions detected by 

the system decreased as the belief threshold decreased. The decrease rate depended on the exercise. 

The smallest decrease rate was noted for ‘sit to stand’. The differences in the number of exercise 

repetitions recognised depended on the belief threshold and were 0.3 repetitions and 0.2 repetitions 

for healthy subjects and participants with PD, respectively. In addition, the smallest variance across 

the trials was also noticed for ‘sit to stand’. For the rest of the exercises, the decrease rate was similar 

with a slightly smaller one for ‘leaning forward’.

6.5.5 Discussion

The purpose of this part of the evaluation of SMOOTH was to investigate the accuracy of movement 

recognition archived by the system, in particular movement phase recognition and correct repetition 

detection. The results were used to evaluate the accuracy of the system (R. 2).

Two metrics were used to evaluate the movement recognition accuracy of SMOOTH: movement 

phase recognition and correct repetition detection. As presented in the previous section, the duration 

of the sliding time windows that obtained the best results differed for both metrics. Current movement 

phase was recognised with the highest accuracy for signal features calculated over a 0.5s time window, 

whereas the highest number of correct exercise repetitions was detected for a 0.1s time window. There 

might be two reasons for this finding. The first reason is that human error might occur during the 

labelling of movement phases. Of note, is that the movement phases were labelled as the exercises 

progressed. The shorter the duration of the time window used for feature calculation the more accurate 

the labelling should be. For example, if marking a movement phase is delayed 0.2s this means that in 

case of a 0.1s time window there is high chance that 2 samples will be misclassified by the system and 

in case of a 0.5s time window there is high chance that none of the samples will be misclassified. The 

second reason is the fact that using a 0.1s time window to calculate signal features means that more 

samples are generated for one exercise set. To detect the number of exercise repetitions, a sequence of 

movement phases in the correct order is required. The more samples there are, the bigger the chance 

that they will form a sequence that will be recognised as an exercise repetition. The metric used in
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Figure 6.24: Accuracy of correct repetition detection dependent on exercise and belief threshold
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SMOOTH to assess exercise performance is the number of correct exercise repetitions completed. As 

presented in Figure 6.21, using a 0.1s time window in signal feature calculation allows the detection of 

a number of repetitions, which varies from 9.1 to 11 depending on the exercise and excluding ‘marching 

in sitting’. For ‘marching in sitting’ the number of repetitions detected is much lower and equals 5.8 

and 3.3 repetitions for healthy subjects and participants with PD, respectively. For that reason, a 

0.1s time window used to calculate signal features is to be preferred over 0.5s time window.

The smallest variance in the number of repetitions detected across different trials was for ‘sit to 

stand’. In addition, as presented in Figure 6.24, ‘sit to stand’ had the smallest decrease in the rate of 

number of repetitions detected depending on the belief threshold. What is interesting, as presented 

in Figure 6.21, is that the accuracy of the movement phase recognition in ‘sit to stand’ did not differ 

significantly from other exercises. This might by caused again by human error that may occur during 

the labelling of movement phases. Such an error might result in a component of a new movement 

phase being labelled as part of the movement phase prior to its commencement. This means that even 

if movement phases are not detected properly their sequence might still be undistorted and lead to 

correct exercise repetition detection. In addition, the fact that movement phases in ‘sit to stand’ are 

highly distinguishable from each other might be relevant to small variance across the trials.

The exercise that obtained the worst results for healthy subjects and participants with PD was 

‘marching in sitting’. Depending on the participant, the number of ‘marching in sitting’ repetitions 

detected for the 100% belief threshold varied from 3.5 to 8.3 and from 0 to 8.7 (O.ls time window) for 

healthy subjects and participants with PD, respectively. This means that differences in the number 

of repetitions detected are smaller among healthy subjects. No relationship between the number of 

repetitions detected and participants’ weight, height, age, and disease duration (where applicable) 
was found. This might suggest that the accuracy of repetition detection depends on the way the 

exercise was performed. For example, some participants performed the exercise faster than others. 

In such cases, it was difficult for the researcher to mark movement phases accordingly. In addition, 

‘marching in sitting’ was the only exercise where trunk position was not important to distinguish 

between movement phases. The pressure sensors used in SMOOTH have, in general, lower accuracy 

than distance sensors. This suggests that the exercises for which readings from pressure sensors only 

are crucial for phase recognition are detected with lower accuracy than exercises for which readings 

from pressure and distance sensors are important.

There are no significant differences between the results obtained among healthy subjects. The 

results obtained among participants with PD are also similar to each other. There are no significant 

differences in the average movement recognition accuracy between healthy subjects and participants 

with PD except ‘marching in sitting’ and ‘hip walking’. Participants with PD obtained slightly worse 

results for both of those exercises. In addition, there is bigger variance across the trials in the results 

obtained from participants with PD. This might be related to factors such as age and general condition.

Figure 6.24 presents the number of correct exercise repetitions recognised by the system depending
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on the belief threshold. The best results are obtained for the threshold set to 100%, which means 

that the second DBN is not indicating incorrect movement phase occurrence. These results are not 

surprising given that there are no additional restrictions on the movement phase being correct. To 

investigate the influence of belief threshold on the number of correct repetitions detected by the system, 

the physiotherapist assessed the number of correct exercise repetitions during the exercise execution 

with user application (see Section 6.5.2). All the repetitions of all the participants were assessed 

as being correct. For that reason, it is hard to draw any conclusions about the influence of belief 

threshold on the detection of incorrect exercise repetitions. To investigate this parameter in more 

detail the study which would collect samples of incorrect exercise executions should be conducted.

6.5.6 Summary

This section presented a study designed to fulfil objective 0.2 (see Section 6.2) and investigate the 

movement recognition accuracy of SMOOTH. The study investigated two metrics: accuracy of move­

ment phase recognition and accuracy of correct repetition detection. 8 healthy subjects and 10 people 

with PD took part in the study. The results were used to evaluate the accuracy requirement (R. 2). 

The results suggest that the number of correct exercise repetitions detected by SMOOTH, which is 

used as a metric to measure exercise performance, is within a range from 9.1 to 11 repetitions for all 
the exercises excluding ‘marching in sitting’. ‘Marching in sitting’ obtained lower results. In general, 

there were no significant differences between healthy subjects and participants with PD.

6.6 Summary

This chapter presented an evaluation of SMOOTH. It started with a discussion about how the system 

requirements were addressed in the system design. To assess accuracy (R. 2), unobtrusiveness (R. 

3), convenience (R. 5), and intuitiveness (R. 6) of the system a user study was designed. The user 

study was divided into two parts. The first part aimed to investigate user acceptance of the system 

and therefore evaluate the following requirements: unobtrusiveness (R. 3), convenience (R. 5), and 

intuitiveness (R. 6). The second part aimed to investigate exercise monitoring accuracy and therefore 

evaluate the accuracy requirement (R. 2). The results suggest the realisation of the requirements (R. 

3), (R. 5), and (R. 6) by SMOOTH as evidenced by the positive feedback from the physiotherapists 

and people with PD who participated in the study. Furthermore, the results show that the detection 

accuracy (R. 2) is within range from 9.1 to 11 repetitions for both, healthy subjects and people 

with PD, and all the exercises excluding ‘marching in sitting’. The perceived system accuracy for 

the parameters that obtained the best results should be investigated in further study. In addition, 

the results indicate that the use of low-cost sensors placed on a chair enables the measurement of the 

exercise performance with accuracy above 91% for all the exercises addressed by SMOOTH but one.

The evaluation presented in this chapter could be extended to home-based trials in order to in-
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vestigate issues such as continuity of training, enjoyment, and general user experience. Such a study 

would require participants to have their own copy of SMOOTH at home and to perform exercises on 

a daily basis for a longer period of time as prescribed by a physiotherapist. Such a study could also 

result in valuable user feedback and further suggestions for improvements to SMOOTH, as well as 

investigating the effects of the training on participants’ conditions.
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Conclusions

The research presented in this thesis explored the use of emerging pervasive computing technologies 

to develop assistive technology (AT) for people with Parkinson’s disease (PD). More specifically, it 

focused on investigating the feasibility of exercise monitoring using low-cost, fixed sensors placed on 

a chair and examined its accuracy and user acceptance.

Chapter 1 presented motivation for this work and introduced the basic concepts related to this 

thesis. Chapter 2 presented a taxonomy of pervasive healthcare systems. Chapter 3 described a user 
survey of people with PD. The survey and subsequent feedback from the PD community identified the 

potential use of AT to assist people with PD in mobility training at home and facilitate physiotherapists 
with monitoring of their progress. Chapter 4 reviewed the state of the art in exercise monitoring and 

posture or movement detection. Current state-of-the-art systems show that it is possible to detect 

a person’s position from fixed sensors mounted on a chair but that no system that detects activities 

from a low-cost set of sensors placed on a chair has been developed to date. To research the feasibility 

of activity monitoring using such sensors, SMOOTH - a system for mobility training at home - was 

developed. Chapter 5 presented the requirements, design, and architecture of SMOOTH including 

the techniques used for monitoring exercise performance. Chapter 6 presented the evaluation of 

the system, which included a user study designed to assess the accuracy of the system and its user 

acceptance. The remainder of this chapter summarises the main contributions of this work and outlines 

suggestions for future research.

7.1 Contributions

This work identified the difficulties and needs of people with PD in daily living. A user survey was 

employed in order to obtain this information. The results of the user survey suggest that mobility 

limitations were the most common problem among the participants. The majority of the participants 

reported problems with mobility (88%), fatigue (54%), and getting tired fast (70%). Problems with 

mobility included changing location (59%) and body position (51%-53%). 34% and 25% of respondents
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described their physical strength and flexibility, respectively, as ‘poor’ or ‘very poor’. For 81% of 

participants it was important to be able to contact someone in a case of a fall. In addition, the results 

of this study indicate a possible underutilisation of ATs by people with PD.

This work identified a home-based, pervasive AT that has the potential to be beneficial for people 

with PD. To identify the AT, the results from the user survey and the opinions of the PD community 

were used. The survey participants did not express the desire for any particular AT that would help 

them in activities of daily living and, which is also important, does not already exist. However, two 

potential types of ATs emerged from the survey results. They are: a fall detection and post-fall 

support system, and a system for mobility training at home. To decide which AT would be more 

beneficial for people with PD, their community was asked to form an opinion. The feedback from the 

PD community suggests that a system for mobility training at home would be the most beneficial. 

Therefore, the work presented in this thesis focused on development and evaluation of SMOOTH.

This work identified the key requirements for SMOOTH including the hardware and software 

platform. SMOOTH should be affordable, accurate, and unobtrusive. These features would encourage 

people to obtain the system and sustain its regular use. In addition, to enable its independent use at 

home by people with PD it should be safe, convenient, and intuitive. The purpose of SMOOTH was 

to help improve the most common motor disturbances, which include muscle strength, balance and 

postural instability. Those requirements led to development of a system that uses a set of low-cost, 

fixed, sensors placed on a chair to monitor exercise performance.

In order to explore the feasibility of using a set of low-cost, fixed sensors placed on a chair to detect 

user movement and to monitor exercise performance SMOOTH was developed. This work identified 

a set of exercises to be addressed by SMOOTH, a set of sensors to be used by the system including 

their placement as well as an approach to the assessment of exercise performance. The exercise 

performance was assessed by the number of correct exercise repetitions completed. To detect correct 

exercise repetitions, each exercise addressed by SMOOTH was divided into a number of movement 

phases. If the correct movement phases appeared in the appropriate order, the exercise repetition was 

detected to have happened. A number of techniques such as dynamic Bayesian networks and genetic 

algorithms were applied to detect proper exercise repetition. Detailed descriptions of their application 

was presented in this thesis. In addition, this work described the architecture of the system and design 

of user interfaces for physiotherapists and people with PD.

To evaluate the system a user study was conducted. The purpose of the study was to evaluate 

exercise monitoring accuracy provided by SMOOTH and its acceptance by potential users. The 

study was divided into two parts. To evaluate user acceptance of the system a user survey with 

physiotherapists and people with PD was conducted. The results show that SMOOTH received 

positive feedback from the physiotherapists and the people with PD that participated in the study 

and was perceived to be useful in home-based physiotherapy. To evaluate the monitoring accuracy of 

SMOOTH a study with healthy people and people with PD was conducted. The results indicate that
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the accuracy of correct exercise repetitious detected by SMOOTH is above 91% for all the exercises 

excluding ‘marching in sitting’, which obtained the lowest results. This suggests that our hypothesis 

that a set of low-cost, fixed sensors are sufficient to measure exercise performance is valid.

7.2 Future work

This thesis focused on the development and evaluation of SMOOTH. To evaluate the system a user 

study was conducted. The feedback from potential users suggested a number of improvements that 

could be made to the system. The results obtained from physiotherapists indicate that marking 

movement phases during exercise execution was perceived to be the biggest issue related to the system. 

For that reason, it would be useful to replace supervised learning, which needs all the samples to be 

labelled, with semi-supervised learning, which needs a small number of labelled samples. The results 

obtained from people with PD indicate that minor changes to the user interface could be made. The 

changes include: an animated icon presenting the exercises, reduction/modification of voice feedback, 

a clear indication when an exercise should be started, and the provision to participants of more 

encouragement after doing all the exercises that were prescribed.

The data obtained from the user study was not sufficient to complete an in-depth exploration of 

the influence of the belief threshold on the indication of improper exercise execution. For that reason, 

more extensive user studies should be; designed to investigate this issue as well as how users perceived 

the accuracy of the system and their views after long term use of SMOOTH at home.

SMOOTH addressed a set of eight exercises that could be [)erformed on a chair. The set of exercises 

could be extended to include also exercises that are prescribed not only to people with PD but healthy 

people or people having different conditions. Furthermore, different sensor types could be investigat<;d 

to monitor exercises that can be performed not only on a chair but, for example, on a bed.

Lack of motivation is the main reason for not sustaining exercise routines at home 

[Loureiro et al., 2001|. User study revealed that encouragement was an important factor for the par­

ticipants and some of them suggested that doing exercises should be more rewarding. For that reason, 

different, more motivating, forms of interaction with the user should be explored. For example, social 

networks that would allow the monitoring of other users and therefore introduce competition factor, 

which according to [Roelands et al., 2002| might have positive impact on motivation.

Finally, SMOOTH used a number of correct exercise repetitions to measure exercise performance. 

This information could be extended with additional statistics, e.g., time needed to complete the ex­

ercise, that would give a physiotherapist better insight into user’s performance. Therefore, future 

research could address exploration of additional statistics to monitor exercise performance and meth­

ods of their measurement.
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Data processing

The purpose of this section is to introduce the most important concepts underlying body posture 

and activity recognition systems. A general schema for the processing of sensor data in order to 

recognise activity or body posture is shown in Figure A.l. Each step is introduced in more detail in 

the remainder of this section.

Figure A.l: General schema for activity/posture recognition

A.l Pre-processing

Data pre-processing describes any type of processing of data to prepare it for another processing proce­

dure. The purpose of pre-processing is the preparation of data obtained from sensors for calculation of 

signal features. Depending on the sensors it might not be included in the process of activity/position 

recognition. For example, systems that obtain data from cameras process video streams in order to 

extract human silhouettes from them.

A.2 Feature extraction

Feature extraction, also referred to as feature calculation, involves extraction of characteristics of the 

sensor signal that allow its description in order to distinguish between the postures/activities to be 

recognised by a system. The features can be calculated in on of three domains:

1. Time. No transformation is needed. Features are calculated from a number of samples that 

belong to a sliding time window.
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2. Frequency. The purpose of a transformation into the frequency domain is to determine the 

frequency content of the signal in order describe the spectrum of a signal [Semmlow, 2008j. 

The most straightforward and commonly used technique in the systems reviewed is a Fourier 

transform. Fourier analysis is based on the fact that a waveform can be decomposed into a series 

of sinusoids of different frequencies. It maps the amplitude of the sinusoid to a single point on 

a spectrum’s magnitude curve, and the phase of the sinusoid to a single point on a spectrum’s 

phase curve. The series of sinusoids can be expressed by a mathematically equivalent series of 

sines and cosines;
1

a(m) = — J x{t) cos{2T:mf\t)dt

1

Hm) = f j x(t) sin{2ixmf\t)dt

where /i = is the period of the waveform, and m is a set of integers: m — 1,2, 3,... defining 

the family member. The original signal can be reconstructed from the sinusoidal components 

by the following equation;

x{t) = ^ + ^ a{m) cos{2Trmf\t) + h{m) sin{2ixmf\t)
m=0 771 = 0

3. Time-frequency. The time-frequency domain is a generalisation and refinement of the Fourier 

analysis, in which frequencies are constant over time. The technique used in the systems reviewed 

in the remainder of this chapter to transform a signal from the time to the time-frequency 

domain is wavelet transform or its discrete version, discrete wavelet transform (DWT). A wavelet 

transform is the representation of a function by wavelets [Semmlow, 2008|. In wavelet analysis, 

a variety of function families may be used, but the family member (daughter wavelet) always 

consists of enlarged or compressed versions of the basic function (mother wavelet). This approach 

can be expressed by the continuous wavelet transform (CWT):

/
OO -1 •   I

a;(f)^'F*( —
-OO v 1^1 ^

)dt

where b translates the function across x{t), and a varies the time scale of the probing function 

A DWT is any wavelet transform for which the wavelets are discretely sampled. Wavelets 

provide a compromise between time and frequency and allow the signal description in both the 

time and the frequency domain.

The features can be calculated either on the signal at particular point in time or on a number of 

consecutive samples, called a sliding time window. The features might use metrics such as the mean 

value, standard deviation or maximum value of the signal.
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A.3 Feature selection

Feature selection includes techniques that are used to select a subset of the most meaningful features 

that describe a signal. The main purpose of these techniques is to minimise redundancy in and 

reduce the size of the data. Some systems might not include this step and instead use all the features 

calculated in the previous step. In that case, it is assumed that all of them are meaningful. Methods 

used for feature selection can be simple, e.g., if some feature changes over time for a particular data 

set, it is selected, or more sophisticated, e.g., principal component analysis (PCA) and independent 

component analysis (ICA). Features selected in this step form a feature vector that describes sensor 

readings. The feature vector is given as an input to an inference module.

A.4 Activity/position inference

Activity/position inference involves recognition of activity/position from sensor data. State-of-the-art 

systems, described in the following part of this chapter, use a broad spectrum of inference techniques 

to infer activity/position from some feature vector. A brief introduction of the techniques follows:

• Decision trees. A decision tree is a hierarchical data structure that enables the classification 

of signal patterns through a sequence of rules [Duda et al., 2000). A decision tree consists of a 

root node that is linked to other nodes. Nodes can be linked to other nodes or leaf nodes that 

have no other links. The classification of a pattern starts from the root node, which assesses 

some attribute of the pattern. Based on the outcome, the appropriate link is followed. The 

procedure is repeated for each node until a leaf node is reached meaning that the pattern has 

been classified. The links should be mutually exclusive so that only one link can be followed 

from any node. A decision tree classifies patterns into one of a number of defined classes, which 

means that there is no partial membership of other classes. To generate the decision tree the 

C4.5 algorithm can be used [Quinlan, 1993).

• Fuzzy logic. Fuzzy logic is based on the idea that human thinking is not necessary two-valued 

or multi-valued but can include fuzzy truths [Adeli and Hung, 1995). Fuzzy logic operates on 

fuzzy sets. A fuzzy set A is defined as a collection of pairs:

A = i = l,2,...,n}

where PA{^i) is called the membership function and represents the level of membership of 

variable a;, of fuzzy set A. This means that variable Xi can belong to more than one fuzzy set 

and the membership to each of these sets can be only partial. A fuzzy inference system usually 

consists of a set of fuzzy rules. The rules are usually given in the form:

IF variable IS property THEN action.
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Inference in fuzzy systems is performed by application of fuzzy operations to set of fuzzy rules. 

The fuzzy operations include: fuzzy complement {cA{xi, pA{xi)) = 1 - A{xi, p.A{xi))), fuzzy 

intersections {{A D B){xi, pAnB{xi)) = min{A{xi, pA(xi)), B{xi, psixi)))), and fuzzy unions 

((yl U B){xi, pAusixi)) = max{A{xi,pA{xi)), B{xi, pb[x/)))).

• Artificial neural networks (ANNs). ANNs provide a mathematical model of biological neural 

networks [Hecht-Neilsen, 1990). The model tries to simulate the structure and operation of the 

networks. An ANN consists of an interconnected group of artificial neurons, which are usually 

structured as a number of layers (input layer, a number of hidden layers, and an output layer) 

of connected artificial neurons and weights assigned to each connection. The weights are set in 

a learning process. For example, the back-propagation algorithm a supervised learning method 

that changes connection weights in order to minimise the error of the entire output. Input 

data are processed by propagation through the layers. ANNs are adaptive and can change their 

structure based on external or internal information that flows through the network during the 

learning phase. They can be used to model complex relationships between inputs and outputs or 

to find patterns in data. ANNs might differ with an activation function. The activation function 

of a neuron defines the output of that neuron given an input or set of inputs. An ANN with a 

number of layers can also be referred to as a multi-layer perception.

• Linear discrimination. Linear discriminant analysis (LDA) is a method used in machine learning 

and statistics to find a linear combination of features that allows the differentiation between two 

or more activities/postures [Duda et ah, 2000). A linear classifier recognises activities/postures 

on the basis of the value of the linear combination of the features while minimising the recognition 

errors.

• Nonparametric models. Nonparametric models, in contrast to parametric models like LDA, do 

not make assumptions about inputs [Alpaydin, 2004). In fact, all that nonparametric models 

assume is that similar inputs have similar outputs. For that rijason, their structure is not 

specified a priori but is instead determined from data. The term nonparametric does not mean 

that such models completely lack parameters but that the number and nature of the parameters 

are flexible and not fixed in advance. The nonparametric models recognise postures/activities 

on the basis of similarity to other postures/activities used to train the system in the past. As the 

measurement of similarity, for example. Euclidean distance between model samples and samples 

to be recognised (the straight-line distance between two points) can be used.

• Bayesian Networks (BNs). Bayes’ theorem is based on probability theory, which makes it suit­

able for reasoning under uncertainty. BNs can be considered as a mechanism for applying Bayes’ 

theorem to complex problems [Korb et al., 2003). BNs provide a graphical model that represents 

probabilistic relationships between variables. This means that given values of some variables, it 

is possible to calculate the probability of occurrence of different values of others. In addition.
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BNs have the capability of adjusting their parameters in a learning process. BNs are described 

in more detail in Section B.l.

• Hidden Markov models (HMMs). A HMM is a statistical model and is considered to be a 

specialised form of dynamic BN (DBN) [Duda et al., 2000J. A DBN is a BN that represents 

probabilistic relationships between variables at different points of time. A HMM defines a 

finite set of states with transition probabilities between these states. States in the HMM can 

be visible or not directly visible - hidden. The visible states in the HMM correspond to its 

outputs. To find transition probabilities between states of the HMM, the Baum-Welch algorithm 

(Baum et al., 1970] can be used. In the activity recognition domain a HMM can model a user’s 

action as a set of states with a probability of transitions between them over time.

Techniques for mapping sensor readings to activity/position is also referred as classification. The 

classifiers described above are called base-level classifiers. Some of the systems can involve more than 

one base-level classifier to infer activity/position. For example, many classifiers of different types 

can be used for sensor fusion, which combines sensor readings obtained from different sources. Such 

classifiers are referred as meta-level classifiers and are used to obtain a final prediction from the base- 

level classifiers prediction. Meta-level classifiers include techniques such as boosting [Schapire, 1990) 

(iterative learning weak classifiers and adding them to a final strong classifier), bagging or bootstrap 

aggregating [Breiman, 1996] (averaging several predictors) or majority voting (selection of one of a 

number of alternatives, based on which has the most votes).
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Techniques applied in SMOOTH

This section provides the theoretical background of two essential techniques applied in SMOOTH: 

DBNs (Section B.l), which are used as for inference, and genetic algorithms (GAs) (Section B.2), 

which are used for optimisation of discretisation parameters.

B.l Probability and Bayesian networks

The probability calculus was invented in the century by Fermat and Pascal to model uncertainty in 

gambling. The basic element of the language used in probability theory is a random variable. Every 

random variable has a set of values that it can accept. The values c:an be continuous or discrete. 

Continuous random variables take values from the real numbers. Discrete random variables, including 

Boolean random variables as a special case, take values from a finite set of values. The values must be 

mutually exclusive and exhaustive. An example of a discrete random variable is a coin C. If we toss 

a coin the outcome will be equal to one of two values < heads, tails >. Those values are mutually 

exclusive, e.g., the coin can only be in one state at a time, and exhaustive, e.g., the set of states defines 

all possible outcomes of the toss. If C = tails is the proposition that the coin lands tails up, then the 

probability of that event is given by P{C = tails). For a fair coin, the probability of heads and tails 

is the same and in that case is F{C = tails) = 0.5.

The foundations of probability theory were laid by Audrey Nikolaevich Kolmogorov and can be 

expressed by three fundamental axioms (Russell and Norvig, 2003]:

1. All probabilities are between 0 and 1. For any proposition X,

0 < P{X) < 1.

2. Necessarily true propositions have probability 1, and necessarily false propositions have proba­

bility 0.

P(true) = 1 P{false) = 0.
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3. The probability of combined evens can be expressed as,

p{x u r) = P{X) + P{Y) - P{x n y).

Any function satisfying the above axioms is a probability function.

A crucial aspect in probability theory is conditional probability. It is expressed by the equation:

P{X n Y)P{X\Y) = P{Y)

That is, given that the event Y occurs, the probability that event X will also occur is P{X\Y). The 

concept is shown in Figure B.l, where conditional probability of A on F is the ratio of the common 

area {P{X n F)) to the area representing P{Y).

Figure B.l: Conditional probability P{X\Y) = P{X OY)/P{Y) from [Korb et ah, 2003]

Another important property is independence or marginal independence. Two events X and F are 
probabilistically independent (P(ATF)) whenever conditioning on one leaves the probability of the 

other unchanged. It is described by following equation:

P{XYY) = P{X\Y) = P{X)

The independence is symmetrical, which means that 1^{XYY) ~ P{YTX). For example, 2 rolls 

of a die are normally independent. This means that getting 1 with a first roll will not lower the 

probability of getting 1 on the second roll and the probability is still equal to 1/6. For dependent 

events the occurrence of one event will change the probability that the other will occur. For example, 

there is a box with 5 black balls and 5 white balls. We draw one ball and then without putting it 

back draw another one. The probability that the second ball is black depends on the colour of first 

ball. If the first ball is black then the probability of the second ball being black is 4/9, but if first ball 

is white then probability of the second ball being black is 5/9.

Conditional independence generalises the concept of independence of X and F given some addi­

tional event Z\

XIYIZ = P(A|F, Z) = P(XIZ).

Conditional independence is used when the event Z tells us everything that F does about X and 

possibly more. It means that once Z is known, learning F is uninformative.
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The final concept introduced in this section is joint probability. Joint probability is the probability 

of occurrence of two or more events in conjunction. A full joint probability distribution specifies the 

probability of every combination of events and is given by P(Xi = Xj A A2 = 3^2 A ... A A„ = x„) = 

P{xi,X2, ■ ■ ■ ,Xn)- A full joint probability distribution can be expressed by conditional probabilities 

using the chain rule, which is described by the following equation:

P{xi,X2,...,Xn) = P{xi)*P{x2\xi)*P{x3\xi,X2)*...*P{xn\xi,...,Xn-\) = |a:i,..., i ).
i

B.1.1 Bayesian networks

BNs are graphical models that represent the full joint probability distribution of a set of random 

variables (continuous or discrete) and allow reasoning about an uncertain domain. BNs consist of 

sets of nodes and arcs (links). Nodes in BNs represent random variables and arcs connecting pairs of 

nodes, represent the direct dependencies between them. The only constraint on the arcs allowed in a 

BN is that they can not form any directed cycles. Such graphs are are called directed acyclic graphs 

(DAGs). BNs are generally oriented to handling discrete variables and continuous variables can be 

discretised for most purposes. For example, temperatures can be divided into ranges of a number of 

degrees. Assuming discrete variables, the strength of the relationship between variables is modelled 

by conditional probability tables (CPTh) associated with each node. Modelling with BNs requires 

the assumption of the Markov property. That means that all direct dependencies in the system are 

shown via arcs, and no additional dependencies are present. However, even though arcs are present in 

the model they can be nullified in the CPT, which implies lack of dependency. The Markov property 

implies that the value of particular node in BN depends only on its parent nodes. This fact reduces 

the joint probability in a BN to the following equation:

P{xi,X2, ■ ■ ■,X„) = P(xilParents(Xi)).

(a) Causal chains

Figure B.2: Conditional independencies in BNs from |Korb et al., 2003]

BNs that satisfy the Markov property £!xplicitly express conditional independence in probability 

distributions. In BNs 3 types of conditional independence, which are shown in Figure B.2, can be 

observed [Korb et ah, 2003]:

1. Causal chains. A causal chains of three nodes, where A causes B which in turn causes C is
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shown in Figure B.2a. Conditional independence in this network can be expressed as:

P{C\A AB)= PiC\B) = P(A1C\B).

This means that the probability of C, given B, is exactly the same as the probability of C, given 

both A and B. Knowing that A has occurred does not change our belief about C if we already 

know that B has occurred.

2. Common cause. Two variables A and C having a common cause B is shown in Figure B.2b. 

Common causes can be expressed as the same conditional independence structure as casual 

chains:

P{C\A AB) = P{C\B) = P{A±C\B).

If there is no evidence about B, then learning that A is present will increase the chances of B 

which will in turn increase the probability of C. However, if we already know about B, then 

additional information about A will not tell us anything about C.

3. Common effect. A common effect is represented by a network in B.2c in which the effect (node 

B) has two causes {A and C). Common effects (or their descendants) produce the exact opposite 

conditional independence structure to casual chains and common causes. That is, the parents 

are marginally independent {A±C), but become dependent given information about the common 

effect:

P{A\C AB) = P{A\C) = -^P{A1C\B)

P(C=f) P(C=t)

0.5 0.5

c P(R=0 P(R=t)

t 0.2 0.8
f 0.8 0.2

Figure B.3: Example of BN

An example BN is shown in Figure B.3. It models 4 Boolean random variables: Cloudy, Sprinkler, 

Rain, and WetCrass. The fact of the day being Cloudy affects the probability of the Sprinkler being
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on and the probability of Bain. Sprinkler and Rain furthermore affect the probability of grass being 

wet (WetGrass).

c s R w P{C) P(5|C) P{R\C) P{W\S A R) P{C AS AR A W)
t t t t 0.5 0.1 0.8 0.99 0.0396
t t t f 0.5 0.1 0.8 0.01 0.0004
t t f t 0.5 0.1 0.2 0.9 0.009
t t f f 0.5 0.1 0.2 0.1 0.001
t f t t 0.5 0.9 0.8 0.9 0.324
t f t f 0.5 0.9 0.8 0.1 0.036
t f f t 0.5 0.9 0.2 0 0
t f f f 0.5 0.9 0.2 1 0.09
t t t t 0.5 0.5 0.2 0.99 0.0495
t t t f 0.5 0.5 0.2 0.01 0.0005
t t f t 0.5 0.5 0.8 0.9 0.18
t t f f 0.5 0.5 0.8 0.1 0.02
t f t t 0.5 0.5 0.2 0.9 0.045
t f t f 0.5 0.5 0.2 0.1 0.005
t f f t 0.5 0.5 0.8 0 0
t f f f 0.5 0.5 0.8 1 0.2

Table B.l: Joint probability table

The join probability table for this network is shown in Table B.l. Conditional probabilities (P{C), 

P{S\C), P{H\C), P(IT|5 ^ R)) can be simply read from CPTs for each node in the BN and the joint 

probability distribution (P{C A S A R A W)) is their product from the chain rule. Note that the sum 

of all joint probabilities equals 1 which means that they are mutually exclusive and exhaustive. Any 

possible probability of interest can be derived from the table.

For example, we could calculate the probability of grass being wet (P{W = t)) having no other 

evidence by summing all rows where W = t. That gives P{W = t) = 0.0396 + 0.009 + 0.324 + 0 + 

0.0495 + 0.18 + 0.045 + 0 = 0.6471. Given no evidence, the probability of grass being wet is 65%. The 

probability of some event’s occurrence without any evidence is called its prior probability. In contrast, 

the probability after observing some evidence is called the posterior probability.

In BNs we can perform predictive reasoning, i.e., from new information about causes to new beliefs 

about effects. For example, we could calculate how the fact that there is no rain (R = f) affects the 

probability of the grass being wet (W = t). In that case the joint probability can be expressed as 

P{W = t\R = f) and can be calculated by summing joint probabilities from all the columns where 

W = t and R = f and dividing this sum by the sum of joint probabilities from all the columns where

= /. That gives P(IT = t|/7 = /) = = o.oo9^o.ooi?o+o+g 9+°ai8^°o.o2+o+o.2 = 0-378.

Given that there is no rain the probability of grass being wet has decreased to 38%.

In contrast to predictive reasoning, we can perform diagnostic reasoning, i.e., reasoning from 

symptoms to cause. For example, we could calculate the i)robability of it being cloudy (C = t) 

given no rain (R = f). We can derive the equation needed for the calculation of this probability
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(P{C = t\R = f)) from the conditional probability:

P{X n Y)
P{X\Y) =

P{Y)

p{x n r) = P{x\Y) * P{Y) => P{x n y) = P(y|x) * P{x)

p{x n Y)
P{Y\X) =

PiX)

In our case P{C = t\R = /) = and join probabilities can be read from table P{C =
_ P{C=tAR=f) _  __________ 0:.QS.9-f.0:QPi+0+009__________  — n o'ts The orobabilitv of beinej) P{R=f) ~ 0.009+0.001+0+0.009+0.18+0.02+0+0.2 “ me prooaomiy oi ueing

cloudy when it is not raining is 24%. Those examples demonstrate that BNs can be used to calculate 

the probability of occurrence of any event given an available set of observations.

In pervasive computing BNs can be used to estimate current activity based on input from a set 

of sensors in the environment. The basic BN structure is presented in Figure B.4, where activity to 

be detected is the parent of all sensor nodes. This type of classifier is called a naive Bayes classifier 

and in this case assumes that sensor nodes are independent from each other given activity. Despite 

its simplicity it works surprisingly well [Korb et al., 2003]. To infer activity, diagnostic reasoning is 

used. Activity is perceived to cause sensor readings therefore we infer cause (activity) from symptoms 

(sensory input). To query the activity, sensor readings are sampled and their values are assigned to 

corresponding nodes. Then the update of probabilities for the activity is performed given the sensor 
values.

Figure B.4: Example of BN in pervasive computing

B.1.2 Dynamic Bayesian networks

BNs model probabilistic dependencies between sets of random variables at a particular point of time or 

during a specific time interval. They do not explicitly model temporal relationships between variables. 

The only way to model the relationship between the current value of a variable and its value at a 

different point of time, is to add another variable with a different name. To explicitly model temporal 

relationships BNs can be generalised into DBNs, which model probabilistic and temporal relationships 

between variables while enabling reasoning under uncertainty [Korb et al., 2003].
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Let a BN consist of a set of n variables at a point of time X = {^^1,^2, ■ ■ • 1 ^n}- To construct a 

DBN each variable Xi is considered at to a point in time t so Xl represents variable Xi at time t where 

0 < t <T. In that case the DBN consists of T sets of time dependent variables X^ = {X{,X2, • • •, X^^]. 

If the current time step is represented as t then the previous time step would be represented as t — 1, 

and the next time step as t + 1. The corresponding DBN variables can be expressed as:

• Current time step: X = {Xi,X2, ■ ■ ■ ,X^}

• Previous time step: X = {Xl~^, X^^^,. ■., X^~^}

• Next time step: X = {Xl'^^jX^'^^,... ,X^^]

Each time step is called a time-slice and corresponds to a sliding time window.

DBNs are defined by the following specification [Neapolitan, 2003):

1. An initial BN consists of an initial DAG Gq containing variables in A”® and an initial probability 

of these variables.

2. A transition BN that is a template consisting of a transition DAG G > containing variables in 

A^U and a transition probability distribution > that assigns a conditional probability of 

every value of A'+^ given every value of X*. This means that a transition probability specifies 

all conditional probabilities given by equation:

P4X =x'^'|A' =a:‘)

3. The DBN containing the variables that constitute the T random vectors consists of the DAG 

composed of DAG Go and for 0 < f < T DAG G^ evaluated at t and the following joint 

probability:
T-l

P{x°,... ,x'^) = Poix°)
t=0

All information needed to predict the world state at time t is contained in the description of the world 

at time t-l. No information from earlier times is needed. Therefore, the process has the Markov 

property.

An example of a DBN for activity recognition, which is an extension of the BN presented in Figure 

B.4, is shown in Figure B.5. The initial BN has the same structure, however to extend it with temporal 

information time-slices have been added. Time-slices correspond to different points in time and in the 

example they represent the previous t — I, current t, and next t -I-1 points in time. Usually DBNs are 

not extended to other time-slices, because they become very large too quickly. In the example, the 

current state (activity) depends on evidence (sensory input) from the previous time-slice, and affects 

the particular observations (sensors) at current time-slice.
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Figure B.5: Example of DBN in pervasive computing

B.1.3 Parameter learning for Bayesian networks

A BN including a CPT for each node and arcs representing dependencies between nodes can be based 

on the beliefs of a domain expert or can be learnt from previously observed data. There are two types 

of learning associated with BNs: structure and parameter learning. The goal of structure learning is to 

learn dependencies (arc structure) between the nodes of the network. The aim of parameter learning is 

to learn probability parameters for existing dependencies between nodes , i.e., CPTs. Probabilities that 

are learnt from the data are called relative frequencies. In SMOOTH it is assumed that dependencies 

exist only between sensor inputs and movement phases, and sensor inputs are independent from each 

other given movement phase. For that reason structure learning is not further discussed.

Suppose we have an experiment that can have two outcomes. Let random variable X have two 

values xi and X2 that are possible outcomes of the experiment. We assume that it is possible to 

represent our belief about the relative frequency of W = xj by a random variable F that takes values 

from range [0,1]. The expected value E(F) is defined to be an estimate of the relative frequency. If 

we knew that the relative frequency oi X = xi was / such that P{X = xi\F = f) = f then

1 1

P{X = xi) = J P{X = XI |F = /) P{f)df = I f P{f)df = E{F).

This situation is presented by the BN in Figure B.6. Such a network is called an augmented BN.
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P(f)o
o

P(X=x I F=f)=f

Figure B.6: Augmented BN representing probability distribution of F

B.l.3.1 Binomial variables

Binomial variables are variables that have two values. The simplest possible BN is one consisting of 

a single binomial variable X. The purpose of a learning process is to estimate relative frequencies 

B(F) for both possible values {xi,X2} of the variable X. The probability distribution for F can be 

modelled as a beta distribution, which provides natural way of quantifying prior believes about relative 

frequencies and allows their easy update given the evidence |Neapolitan, 2003|. A beta distribution 

with shape parameters a,b, N = a + b where a, 6 > 0 is defined in terms of the gamma function:

r(7V)P{f) = be.ta{f-,a,b) /““HI-/)b-l 0 < / < 1.r(a)r(6)-
If the relative frequency F has beta distribution with parameters a,b, N = a + b then

PiX=Xi) = E{F) = N'

For a BN with variable X that can take one of the values xi or X2 we can think about parameters a 

and b as the counts of each outcome xj and X2 and N as total number of both outcomes. For example, 

we toss a fair coin C with two possible outcomes heads and tails and observe 60 tails in 100 tosses. 

The expected value E{F) of the probability P{C = tails) = ^ = 0.6. The probability distribution 

P{f) is given by the beta distribution 6eto(/; 60,40). In addition to providing the expected value of 

the probability, the beta distribution represents the strength of an belief in this probability given the 

number of observations. Figure B.7 shows 3 sample beta distributions of belief in P{C = tails) = 0.6 

after a different number of observations. Figure B.7a after 10, Figure B.7b after 100, and Figure B.7c 

after 1000. It can be seen that the more observations we have, the more focused the distribution is 

and therefore represents stronger belief in the estimate.

Easy updates of beta distribution can be used to continually learn the probability distribution for 

F from the observed data d. Let a and 6 be a number of previous observations and s and t a number
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of new observations of values xi and X2, respectively. The probability distribution of F conditional 

on data d is called the updated density function and given by following beta distribution:

P(f\d) = beta{f; a + s,b + t).

The posterior estimate of the relative frequency for X = xiand sample of size M + I is given by:

P(^M+1 = E{F\d).

In the example of coin tossing presented earlier, the beta distribution of belief in P(C = tails) 

after 10 observations (6 for tails and 4 for heads) is given by 6eto(/;6,4). Subsequently, after an 

additional 90 observations (54 for tails and 36 for heads) the updated density function is given by 

beta{f-,Q + 54,4 + 36) = 6eta(/; 60,40) and, finally, after 1000 observations in total (600 for tails 

and 400 for heads) by 6eta(/; 600,400). As presented in Figures B.7 the belief about the estimate of 

relative frequencies gets stronger with the number of observations.

In the previous part of this section, the learning probability distribution in a BN with a single 

binomial variable was presented. It can be extended to a BN with more variables by generalisation of 

the augmented BN (see Figure B.6), which can be determined by the following [Neapolitan, 2003]:

1. A DAG G = {V, E) where V = {X\,X2,..., A„} and each Xi is random variable.
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2. For every i, an auxiliary parent variable Fi of Xi and density function Pi of F;. Each Fi is a 

root and has no edge to any variable except X^. The set of all F^s is denoted by F given by:

F = Fi U F2 U • • • U F„.

3. For every i, for all values pai of the parents PAi in V of Xj, and all values /; of Fj, a probability 

distribution of Xi conditional on pui and /j.

B.l.3.2 Multinomial variables

Multinomial variables are variables that have more than two values. Methods used for learning bino­

mial variables can be extended to discrete multinomial variables by use of a Dirichlet density function 

[Gehnan et al., 1995) that is the multivariate generalisation of the beta distribution. The Dirichlet 

distribution with parameters oi, 02,..., Ur and N = Yl’k=i where ai, 02,..., Ur are integers > 0, is 

given by:

, /r-l ; Ul, n2> • ■ • 1 flr) — F(/] , /2, • • • , /r-l) —
r(7V)

where

nLi r(a,)

T
o<A. <i,^A = i.

/a.-I a2 — 1 f(Xr " -I

The random variables /i, A, ■ ■., /r-i represent probabilities for r values of the node.

If relative frequencies Fi, F2, ■. ■ Fr have a Dirichlet distribution with parameters «], 02,..., a,., 

N = flfc then for 1 < fc < r

P{X = Xk) = E(F,)='^.

For a BN with a variable X that can take one of the values xi,X2, ■ ■ ■ ,Xk we can think about 

parameters ai,a2,... ,ak as the counts of occurrence of the A:** value in N trials. For example, we 

roll a dice D with 6 possible outcomes {1,2,3,4,5,6} and and observe 20 Is, 15 2s, 15 3s, 15 4s, 

15 5s, and 20 6s in 100 tosses. The expected value F(Fi) of the probability that 1 is rolled is 

P{D = 1) = ^ = 0.2. Probability distribution F(/i, A, A, A,/s) is given by Dirichlet distribution

Oir{h, A, A. A, A; 20,15,15,15,15,20).

Similar to the beta distribution the Dirichlet distribution can be used to update the probability 

distribution for F*, from the observed data d. Let oi, 02,..., be the number of previous observations 

and Si, S2,...,Sfc number of new observations of corresponding values xi,X2, ■ ■ ■ ,Xk- The probability 

distribution of F*. conditional on data d is given by following the Dirichlet distribution:

-P(A> A. - • ■./fc-i|rf) = Dir{fi,f2,-- ■ + si,02 + S2,...,a*, + s*,).

In order to learn an entire network the Spiegelhalter and Lauritzen method can be applied 

|Korb et al., 2003). This method is the most broadly used and is available in the standard BN tools. 

Two main assumptions related to the algorithm are that parameters should be mutually independent
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and can be represented as a Dirichlet distribution. Tiie later implies that values of nodes in a BN must 

be discrete. For that reason continuous variables, e.g., temperature or time, have to be discretised 

to be used by this learning algorithm. In pervasive BNs, the variable independence assumption is 

already guaranteed by the Markov property and assumed as general practise for the BN as a whole.

B.2 Genetic algorithms

GAs are a search technique used in computing to find solutions to general optimisation and search 

problems. GAs are modelled on the mechanism of natural genetic systems and try to imitate some 

of the processes observed in natural evolution [Pal and Wang, 1996]. GAs are executed iteratively on 

a set of coded solutions, called a population, with 3 basic genetic operators: selection/reproduction, 

crossover, and mutation. To find an optimal solution to some problem, a GA starts from a set of 

assumed solutions, called chromosomes, and evolves to a better set of solutions over a number of 

iterations, called generations. In each iteration, the objective function, representing fitness criteria, 

determines the suitability of chromosomes to be selected for reproduction. In that way better chro­

mosomes are selected and worse chromosomes eliminated on the basis of their fitness. In the next step 

genetic operators are applied and the outcome chromosomes create a new population, which is used 

as an input to the next iteration. The process is usually stopped when a solution that satisfies certain 

criteria is found, a fixed number of generations is reached, or the highest ranking solution’s fitness 

has reached a plateau such that successive iterations no longer produce better results. A schematic 

diagram visualising a basic genetic algorithm is shown in Figure B.8.

The components of which a GA typically consists are described in more detail below 

[Pal and Wang, 1996):

• Chromosome. A chromosome refers to a possible solution. Traditionally, solutions are repre­

sented in binary as strings of Os and Is, but other encodings are also possible. For example, a 

chromosome can be coded as 010011.

• Population. To solve an optimisation problem, a GA starts with a chromosome represen­

tation of the parameter set {a:i,a:2,... ,a:p}. A set of such chromosomes in a generation is 

called the population. The size of the population can be constant or vary across generations. 

The initial population is usually chosen randomly and its size depends on the nature of the 

problem. For example, the population can consists of 4 chromosomes and be expressed as 

{010111,100001,101010,000100}.

• Encoding/decoding mechanism. This is the mechanism used to convert the parameter values of 

the possible solution to the chromosome representation. Decoding is the reverse process.

• Objective/fitness function. The choice of objective function depends on the problem. The 

objective function is used to choose the best chromosomes to reproduce in the next generation.
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Figure B.8: Basic steps of genetic algorithm from |Pal and Wang, 1996|
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It is chosen in such a way that highly fitted chromosomes (possible solutions) have high fitness 

values. For example, the objective function can be the number of Is in a chromosome.

• Selection/reproduction procedure. This procedure selects individual chromosomes to breed a 

new generation. The number of copies of each chromosome is proportional to its fitness value. 

Popular selection methods include roulette wheel selection and tournament selection. In roulette 

wheel selection, all chromosomes are placed on a ‘roulette wheel’ and the size of the area they 

occupy depends on their fitness function. The higher value of the fitness function, the bigger 

area a particular chromosome occupies. Afterwards, a chromosome is selected for crossover at 

random. Tournament selection involves running several selections, called tournaments, among 

a few chromosomes chosen at random from the population. The winner of each tournament, 

which is the fittest chromosome, is selected for crossover. Most selection methods are stochastic 

and designed in such a way that a small proportion of less fit chromosomes is selected. This 

allows the diversity of the population to be maintained, and prevents premature convergence on 

poor solutions.

• Crossover/recombination. This is a genetic operator used to exchange information between 2 

randomly chosen chromosomes. Crossover consists of 3 steps: selection of pairs of chromosomes, 

determination of crossover probability, and interchange of segments between the chromosomes. 

The number of segments and their length depends on the crossover technique. The most popular 

techniques are: one-point, two-point, multi-point, and uniform crossover. For example, in one- 

point crossover a single point on two chromosomes is selected. All data beyond that point in 

either chromosome is swapped between the two chromosomes. Let a and b be chromosomes that 

are selected by the one-point crossover technique with crossover position A: = 5:

a = 01001111

6 = 01110000

then new chromosomes created by application of this technique are:

a' = 01000000 

b' = 01111111

• Mutation. This is a genetic operator used to introduce genetic diversity into a population. In 

mutation a random position of a random chromosome is selected and replaced by another value 

from a set of values defined for the chromosome. Mutation allows the algorithm to avoid local 

minima by preventing the population from becoming too similar, which might slow or even 

stop the evolution. Sometimes, mutation allows information lost in previous generations to be 

regained. For example, let a be chromosome selected for mutation:

a = 01001101
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if mutation occurs in position k = 2 then the new chromosome is:

a' = 00001101

• Probabilities of performing genetic operations. Probabilities of crossover or mutation can be 

set to a fixed value or adapt to the environment. Because mutation occurs occasionally its 

probability should be very low - typically between 0.001 and 0.01. Crossover occurs more often, 

and its typical value usually varies between 0.6 and 0.9 [Goldberg, 1989).

Recently, GAs have been applied to solve problems in many domains such as business, science, and 

engineering [Davis and Mitchell, 1991[. The following characteristics enhance their application in 

optimisation and searching [Pal and Wang, 1996]:

• GAs work simultaneously allowing the introduction of parallelism into the computational pro­

cedure.

• GAs work with a coded parameter set, therefore a possible seaich space can be controlled by 

varying a coding mechanism.

• In GAs, the search space does not have to be continuous.

• GAs use an objective function as the only criteria and do not need any additional information.

• GAs use a probabilistic set of rules not deterministic ones.
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