
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Practical and Architectural Aspects of Sorting and Searching
Thesis submitted for the degree of Doctor in Philosophy

Submitted:
Defended:
Approved:

September 2009

December 2009

January 2010

Nicholas C.A. Nash, B.A. (Mod.)

Declaration

This thesis has not been submitted as an exercise for a degree at this or any other
university. It is entirely the candidate’s own work. The candidate agrees that the
Library may lend or copy the thesis upon request. This permission covers only single
copies made for study purposes, subject to normal conditions of acknowledgement.

TRINITY COI

2 c

LIBRARY Dl

Summary

The work in this dissertation was motivated by a desire to understand as well as to
improve the performance of certain algorithms and data structures in practice. The
performance of algorithms in practice is influenced by many interacting factors, of which
one of the most important is the architecture of the machine where the algorithm or
data structure is used. In this dissertation we consider architectural as well as other
practical factors influencing the performance of sorting algorithms and data structures.

We begin by studying experimentally the interaction between branch prediction
and sorting algorithms. Even for simple and otherwise well-understood algorithms
such as insertion sort, selection sort and bubble sort we show they have very different
branch prediction characteristics. Our experiments lead to a simple analysis showing
that these algorithms cause asymptotically different numbers of branch mispredictions
on average. We continue to analyse more efficient classic algorithms such as quicksort,
mergesort and heapsort. We show through simple experiments and their analysis that
quicksort has, in a certain sense, the most desirable branch prediction properties of the
efficient algorithms. This demonstrates for the first time a new strength of the classic,
popular algorithm.

A problem closely related to the sorting problem is searching. We continue by
studying dynamic, ordered data structures experimentally, paying attention to their
interaction with architectural features such as branch prediction and caching. We
consider traditional comparison-based search trees as well as less commonly used data
structures that do not rely solely on key comparisons to operate. We note that such
data structures cause far fewer branch mispredictions as a result, and show that in
circumstances where cache performance is not dominant, branch mispredictions can
be. As a result of our experimental study, we propose a new, hybrid data structure
for integer keys based on the burst trie from the string sorting literature. We show
that this data structure requires less space and, on a wide range of test data, operates
more efficiently than all the other data structures considered. Our experiments include
traditional search trees such as a red-black tree, B-tree, as well as data structures

11

Summary 111

specialized to integer keys such as a stratified (van Emde Boas) tree and a hybrid trie
structure inspired by the Willard’s 9-fast trie. We validate our results on different
architectures, compilers and data sets (both synthetic and naturally occuring) showing
that our LPCB-tne data structure performs well in practice.

In an additional contribution, still grounded in the realm of providing algorithms
that perform well in practice, we consider the maximum independent set problem
for a class of graph known as circle graphs, which have a number of applications.
We compare and improve the performance of the two best approaches and finish by
presenting the first output-sensitive algorithm for the problem. We then validate the
performance of our algorithm experimentally showing that it performs substantially
faster than previous approaches.

Ill

Acknowledgements

The support of a number of people enabled me to complete this dissertation. It is a
great pleasure to hnally thank my supervisor David Gregg. David is an ideal supervisor;
always available, full of enthusiasm, ideas, and much useful advice.

I am also very grateful to Sid Touati and Albert Cohen for organizing my very
pleasant three month visit to JiVRM-Saclay. This visit provided me with a wonderful
learning experience.

All my collaborators provided generosity in time and ideas, for which I am very
grateful. I would like to especially thank Julian Seward for interesting discussions, as
well as his assistance in extracting data sets from Valgrind for our work on integer
data structures, which proved interesting and important. I also thank Julian for his
patience: an implementation will come!

I am very lucky to have had great office-mates over the years, many of whom are
now also my friends. I am sure that I will miss the regular discussions and friendly
atmosphere created by such pleasant people. Many of my other good friends from High
School have helped me through the tougher times of research, whether they are aware
of it or not.

I am enormously grateful to my family for unquestioning support. To my sisters
Elise and Mary, and to my brother Oliver. Oliver deserves a special mention: he taught
me to program. His many hours of instruction were also great fun. To my parents, I
can only say that I owe you debts of time, support, kindness and love that I can never
repay.

IV

Table of Contents

1 Introduction 1
1.1 Background and Motivation... 1
1.2 Our Thesis... 2
1.3 Previously Published Work.. 3
1.4 Dissertation Structure and Contributions.. 3

2 Background 6
2.1 Instruction Level Parallelism... 6

2.1.1 Pipelining... 6
2.1.2 Branch Prediction... 8

2.2 Memory Hierarchies.. 11
2.2.1 Caches... 12
2.2.2 Virtual Memory.. 13

2.3 Notation.. 14

3 Sorting and Branch Prediction 16
3.1 Introduction.. 16
3.2 Elementary Sorting Algorithms... 19

3.2.1 Branch Prediction Model... 19
3.2.2 Insertion sort... 22
3.2.3 Selection sort... 24
3.2.4 Bubble sort.. 25
3.2.5 Discussion... 29

3.3 Efficient Sorting Algorithms... 32
3.3.1 Comparing Quicksort, Mergesort and Heapsort........................... 32

3.4 Related Work... 39
3.4.1 Skewed Quicksort... 41
3.4.2 Insertion Mergesort.. 42

3.5 Conclusion... 45

TABLE OF CONTENTS VI

Compciring Integer Data Structures 48
4.1 Introduction... 48
4.2 Burst Tries ..
4.3 Engineering Burst Tries .. 53

4.3.1 In-Node Data Structures... 54
4.3.2 Bucket Data Structures.. 56
4.3.3 Level and Path Compressed Tries.. 58
4.3.4 Engineering Level Compression.. 60
4.3.5 Operations... 62

4.4 Experimental Comparison.. 65
4.4.1 Burst Trie Configuration... 65
4.4.2 Burst Trie Comparison.. 79

4.5 Related Work... 99
4.6 Future Work.. 104
4.7 Conclusion... 106

Maximum Independent Sets in Circle Graphs 108
5.1 Introduction.. 108
5.2 Background.. 109
5.3 Experimental Setup.. HI
5.4 Overview of Algorithms ...112

5.4.1 Supowit’s Algorithm... 112
5.4.2 More Efficient Approaches.. 113

5.5 Apostolico et al’s Algorithm... 114
5.5.1 Set Construction... 116
5.5.2 Optimizations... 118
5.5.3 Type-I Results .. 120
5.5.4 Type-II Results..122

5.6 Valiente’s Algorithm... 123
5.6.1 Optimizations... 129
5.6.2 Type-I Results ..130
5.6.3 Type-II Results.. 133

5.7 Comparison.. 137
5.7.1 Type-I Results .. 137
5.7.2 Type-II Results.. 141

5.8 Register Allocation Results.. 142
5.9 Faster Algorithms... 143

5.9.1 Introducing Ouput Sensitivity..143

VI

TABLE OF CONTENTS Vll

5.9.2 A Combined Algorithm.. 148
5.9.3 Experimental Comparison.. 150

5.10 Conclusion and Future Work... 154

6 Fined Thoughts 157
6.1 Why Experiment?...I57
6.2 Future Directions...158
6.3 Theory and Practice...I59
6.4 Conclusion...161

Bibliography 101

A Additional Experimental Results for Integer Data Structures 175
A.l Alternative Machine Configurations.. I75
A.2 Growth Factor Results...184

Vll

Chapter 1

Introduction

1.1 Background and Motivation

The work in this dissertation was motivated by a desire to understand as well as to
improve the performance of certain algorithms and data structures in practice.

The performance of algorithms in practice is influenced by many interacting factors.
A key factor is architectural. There are certain architectural features that have become
so wide-spread that it is important that the behaviour of implementations of the basic
algorithms of Computer Science be understood when executing on machines with these
architectural features. Some of these architectural features, such as memory bottlenecks
and caching have long been recognized in an algorithmic context. For example, the
External Memory Model of Aggarwal and Vitter [1988] provided a simplified model
of computation to take memory operations into account, more recently the Cache
Oblivious Model of Prigo et al. [1999] has attempted to provide a robust model for
analysing the cache performance of algorithms.

Others architectural features, such as the interactions of algorithms with instruction
level parallelism (ILP) and specifically branch prediction, have only been studied for
the first time much more recently, [Biggar and Gregg 2005; Brodal and Moruz 2005]
despite ILP’s enduring presence in our machines.

Another important factor influencing the performance of algorithms and data struc­
tures in practice is simply their implementation, some constructions used in algorithms
and data structures are extremely difficult to produce practical realizations of. An
example is the stratified tree of van Emde Boas [1977]. This is a dynamic, ordered
data structure offering all operations in 0(logu;) worst-case time, where the keys are
u;-bits in length. The first general purpose implementation of this data structure that
out-performed comparison-based search trees was the work of Dementiev et al. [2004] -

1.2. Our Thesis

nearly 40 years after the data structure was proposed. Even then, the implementation
is quite limited and requires a perhaps impractical amount of space, details of which
can be found in Chapter 4 of this dissertation.

The desire to genuinely understand the behaviour of algorithms and data structures
in practice has given rise relatively recently to the discipline of Algorithm Engineering.
This discipline is driven by the desire to provide efficient algorithms, as indeed is the
classical and extremely successful theory of algorithms. The goal in Algorithm Engi­
neering however is typically focused on achieving an implementation of an algorithm
that performs well on real machines. This performance is validated through experi­
mentation, and as a result often leads to the term Experimental Algorithmics being
used to also describe this field of study. It is within this field of study that the work in
this dissertation falls. Details of some of the successes and contributions of Algorithm
Engineering can be found in the excellent recent survey of Sanders [2009]. Moret [2001]
and McGeoch [2008; 2007] also discuss the field.

1.2 Our Thesis

We believe that practical and architectural aspects of algorithms and data structures
in Computer Science can be effectively studied in an experimental manner, yielding
important insights into their behaviour and providing insight into their performance.

To investigate our thesis, this dissertation provides a study of the behaviour of sort­
ing and searching algorithms on real machines. We experimentally study comparison-
based sorting algorithms and their interaction with branch predictors, an architectural
feature of almost every current computer. We then consider the performance of data
structures whose operations do not rely solely on comparisons. This study of data struc­
tures leads us to compare traditional comparison-based data structures with purely
integer data structures - performing no comparisons between keys - as well as with
hybrid data structures. This study shows that the cache performance of these data
structures is often the most important factor influencing their performance in prac­
tice, although other factors such as branch prediction characteristics are occasionally
dominant.

In an additional experimental study, we examine the performance of a graph al­
gorithm with a number of practical applications: finding a maximum independent set
in a circle graph. In this case, the construction of efficient implementations of these
algorithms leads us to propose new output sensitive algorithms for this problem.

We outline the contributions of these studies in the following Section 1.4.

1.3. Previously Published Work

1.3 Previously Published Work

Portions of this dissertation have appeared in work that has been previously published.
Chapter 3 is based on a paper published with Paul Biggar, Kevin Williams and David
Gregg:

• An Experimental Study of Sorting and Branch Prediction, ACM Journal of Ex­
perimental Algorithmics 12:1.8 (June 2008).

Paul Biggar did the initial experiments for this paper and documented them in a tech­
nical report [Biggar and Gregg 2005]. My contribution to this work was a substantial
number of additional experiments, together with the analysis of the experimental re­
sults.
Chapter 4 is based on two papers published with David Gregg:

• Comparing Integer Data Structures for 32 and 64-bit Keys, ACM Journal of
Experimental Algorithmics, Special issue devoted to Selected papers from WEA
2008 (to appear).

• Comparing Integer Data Structures for 32 and 64-bit Keys, in Proceedings of
WEA 2008 (7th International Workshop on Experimental Algorithms, Province-
town, Cape Cod, MA, USA, 30 May - 2 June 2008), C. McGeogh (ed.). LNCS
5038, pp28-42. Springer, 2008.

Chapter 5 is based on a paper published with Sylvain Lelait and David Gregg:

• Efficiently Implementing Maximum Independent Set Algorithms on Circle Graphs,
ACM Journal of Experimental Algorithmics, 13:1.9 (Eebruary 2009).

In this paper, Sylvain Lelait’s contribution was the correction of the error in Apostolico
et al.’s [1992; 1993] algorithm. My contributions were the experimental evaluation of
Apostolico et al’s algorithm, Valiente’s [2003] algorithm, and the 0(nmin{n, alogn})
time output sensitive algorithm (and its 0(nmin{n, a:}) refinement), together with its
experimental evaluation.

1.4 Dissertation Structure and Contributions

The material in this dissertation is organized as follows:

1.4. Dissertation Structure and Contributions

Chapter 2 provides background material necessary for the material described in sub­
sequent chapters. This material principally comprises a description of the archi­
tectural features that have important algorithmic implications. For readers famil­
iar with basic computer architecture, this chapter serves to simply set the context,
and provide terminology as well a small amount of notation used throughout this
dissertation.

Chapter 3 explores the interaction between classical sorting algorithms and branch
prediction. We find that the branch prediction characteristics of sorting algo­
rithms such as insertion sort, selection sort and bubble sort are very different,
despite the fact that these algorithms are simple and otherwise well-understood.
In the case of efficient sorting algorithms, such as quicksort, heapsort and merge-
sort, we show for the first time another strength of quicksort; its branches are
naturally more predictable than the other algorithms.

Chapter 4 explores the data structures for searching that do not rely solely on com­
parisons between input keys. Despite the widespread popularity of comparison-
based data structures based around search trees, we show that a data structure
obtained by carefully engineering a burst trie data structure performs excellently
in practice. We show experimentally that our engineered data structure requires
less space than many alternative data structures, as well as often having better
cache behaviour. In addition we note that, in situations where cache misses do
not dominate performance, the small number of branch mispredictions incurred
by our data structure improves its performance relative to traditional search trees.

Chapter 5 presents a contribution separate from the preceding chapters, but firmly
within the remit of Algorithm Engineering. We first present an experimental
comparison of two algorithms that are equally efficient (asymptotically) for find­
ing a maximum independent set of a circle graph. These are the algorithms
of Apostolico et al. [1992; 1993] and Valiente [2003]. Despite operating in the
same asymptotic time, Apostolico et aVs algorithm seems - on paper - to be
far less efficient than Valiente’s. We show that with a suitable improvements it
out-performs an implementation of Valiente’s algorithm. We then focus on devel­
oping a highly efficient variation of Valiente’s algorithm, and begin by describing
a variant that is several times faster on average than a direct implementation of
the algorithm. This culminates in a description of an output sensitive algorithm
for finding a maximum independent set in an unweighted circle graph. Previous
algorithms for this problem operated 0(n^) time for an n vertex dense circle

1.4. Dissertation Structure and Contributions

graph, we describe an algorithm operating in time ©(nmin{n, a logn}) where
a is the independence number of the circle graph. We also present experiments
demonstrating that our algorithm is highly efficient in practice, and a sketch of
a more complicated algorithm with slightly better asymptotic behaviour.

Chapter 2

Background

In this chapter, we provide an account of the relevant background material necessary
for this dissertation. The material in this chapter is principally an account of the
basic computer architecture that we consider the algorithmic implications of in this
dissertation. The account we provide is very brief and focuses architectural concepts
rather than their implementation details. Further details can be found in texts on
computer architecture [Hennessy and Patterson 2006; Zargham 1996]. For readers
familiar with this computer architecture the present chapter serves to simply introduce
some terminology and remind the reader of a small amount of standard notation.

2.1 Instruction Level Parallelism

Since the 1960s*, computer processors have attempted to speed up computations of se­
quences of instructions by executing independent parts of the sequence simultaneously,
or in parallel. This is referred to as instruction level parallelism.

2.1.1 Pipelining

In this section we provide an overview of a technique for achieving instruction level
parallelism known as pipelining. Suppose the execution of an instruction for adding
two operands such as ADD X, Y, z can be divided into 5 phases;

1. Instruction fetch (IF): The operation code (op-code) for the instruction is re­
trieved from memory.

*The first general purpose pipelined processor was the IBM “Stretch” 7030 introduced in 1961,
Hennessy and Patterson [2006] provide a brief historical account.

2.1. Instruction Level Parallelism

Cycle
Instruction number 1 2 3 4 5 6 7 8 9

1 IF ID OF EX WB
2 IF ID OF EX WB
3 IF ID OF EX WB
4 IF ID OF EX WB
5 IF ID OF EX WB

Table 2.1: A 5-stage pipeline: the stages are instruction fetch (IF), instruction decode
(ID), operand fetch (OF), execution (EX) and write-back (WB). The parallelism is
visible vertically in the diagram. For instance, at cycle number 5, 5 distinct instructions
are being processed.

2. Instruction decode (ID): The op-code is translated by the processor into a par­
ticular instruction (for example, an integer add instruction).

3. Operand fetch (OF): The necessary operands for this instruction are retrieved
from memory.

4. Execution (EX): The instruction is executed upon its operands.

5. Write-back (WB): The result of the instruction is recorded, or “written back” to
a register or memory.

Assuming each phase takes a single cycle, 5 cycles will be required in total to process
an instruction. The idea of pipelining is to allow one instruction to be in each of
these phases of execution. When the first instruction in a sequence finishes its IF
phase a second instruction can immediately take its place. As a result, at best, a
new instruction can be issued on every cycle instead of once every 5 cycles. Figure
2.1.1 shows an illustration of a full pipeline, where one instruction is in each phase of
execution, or pipeline stage. With pipelining, the latency to complete an instruction
remains 5 cycles, however, the throughput is increased by 5 times: one instruction can
complete on each cycle.

In practice, there are many complications in the implementation of pipelining.
These complications are often referred to as hazards. There are several important
classes of hazard such as structural hazards, data hazards and control hazards. Struc­
tural hazards result when instructions are unable to execute in parallel due to an
over-demand for hardware resources. Data hazards are caused when the results of a
previous instruction in the pipeline are required by a currently executing instruction.
In both cases, the pipeline must stall - delaying the execution of certain instructions

2.1. Instruction Level Parallelism 8

if(a[i] < a[iiiin_idx])
{

min_idx = i;
}
i++;

Figure 2.1: Some C code demonstrating a control hazard.

in order to resolve the hazard. In this section, we focus on control hazards because
they are the most relevant to the material in Chapters 3 and 4.

Control hazards are the result of instructions that change the flow of control in a
program. In order to maintain a full pipeline the next instruction in the sequence of
instructions to be executed must be available. However, in general, it is simply not
possible to know what the next instruction is, as the C code in Figure 2.1 demonstrates.
In Figure 2.1, which instruction will follow the execution of the comparison, the assign­
ment or the increment? We refer to the class instruction generated by a construct like
the if statement above as a branch instruction. If the condition tested by the branch is
true, then we say the branch is taken, otherwise we say the branch is not-taken. When
a branch instruction is encountered, a simple solution is to simply stall the pipeline
until it is known whether the branch is taken or not-taken. However, in order to main­
tain the utilization of the pipeline at a reasonable level, processors employ some form
of prediction in the outcome of branch instructions. We explore these techniques in
the following section.

2.1.2 Branch Prediction

We refer to the dedicated hardware in a processor that attempts to predict the direction
of a branch as a branch predictor. Consider the C code of Figure 2.1. We regard the
repeated execution of the if statement as resulting in the processing of a branch
instruction that presents a stream of values to the branch predictor

T, T, NT, T, T, T, NT . . .

Here T denotes a taken branch, whereas NT denotes a not-taken branch. The purpose
of a branch predictor is to provide the next value in this sequence. The processor
then fetches the next instruction from the address predicted by the branch predictor
without needing to stall the pipeline. When the branch prediction provides an incor­
rect prediction we say a branch misprediction has occurred. This can be very costly:

2.1. Instruction Level Parallelism

potentially causing the computation of all other instructions in the pipeline to be aban­
doned, to allow the processor to fetch instructions from the actual target of the branch
instruction. As an extreme example, the Intel Pentium 4 [Hinton et al. 2001] Prescott
processor had an instruction pipeline of 31 stages, making branch mispredictions very
expensive.

The prediction techniques for branch instructions can be divided into three classes:
static, semi-static and dynamic. Static prediction schemes produce a prediction that is
independent of the history of the branch. When the first pipelined processors appeared,
a typical approach was for a static prediction scheme was to simply do nothing and
continue fetching instructions [McFarling and Hennessey 1986]. An example of more
accurate static technique is to predict forward branches as not-taken and backward
branches as taken. This static prediction technique is motivated by the programming
construct of a loop: programmers tend to use loops for computations that execute
several times, thus, the static predictor will only predict wrongly when the loop exits.
Semi-static branch predictors support a hint bit, that allows the compiler to provide
the predicted direction of the branch. The IBM CELL SPE [Eichenberger et al. 2006] is
an example of a modern processor using semi-static branch prediction.

Almost all modern desktop processors use dynamic branch prediction schemes. A
simple dynamic branch prediction technique is to maintain a small table of counters
indexed by the low-order bits of the addresses of branch instructions. Each time a
branch instruction is executed, its corresponding counter is looked-up in the table and
used to make a prediction. Many branch instructions may correspond to the same
index in the prediction table, and thus their behaviour may interfere with each other.
The mapping of two or more distinct branches to the same index in the prediction
table is known as aliasing, and generally reduces prediction accuracy. These counting
predictors were described by Smith [1981].

The number of bits in the counters in the table play an important role in the way the
prediction scheme operates. In a so-called 1-bit scheme, the branch is predicted to fol­
low the direction it followed on its previous execution. 1-bit predictors achieve between
77% and 79% accuracy, these statistics as well as those in the following paragraphs are
taken from those derived by Uht et al. [1997] over the SPECint92 benchmarking suite.
Typical table sizes are 2^^ = 4096 counters.

Adding more bits to the counters can improve accuracy. A 2-bit predictor, also
commonly referred to as a bimodal predictor, maintains a table of 2-bit counters. The
counter associated to a particular branch is incremented each time the branch is taken
and decremented each time it is not-taken, saturating at the minimum and maximum

2.1. Instruction Level Parallelism 10

ford = 0; i < n; i++)
{

if(i & 1)
{

do_odd_processing();
}
finish_processing();

}

Figure 2.2: Some C code providing a motivating example for a correlating branch
predictor compared to a table of 2-bit predictors.

values. When the leading bit of the counter is equal to zero, the branch is predicted not-
taken, otherwise, the branch is predicted as taken. Although in theory n-bit counters
could be used, the improvement they offer over 2-bit counters is not enough to justify
their use [Smith 1981; Hennessy and Patterson 2006]. 2-bit predictors with table sizes
of 4096 achieve 78% to 89% accuracy [Uht et al. 1997].

More accurate dynamic branch predictors can be obtained by exploiting correlations
in branch outcomes. A two-level adaptive predictor [Pan et al. 1992] maintains a branch
history register. This register records the outcomes of previous branch instructions.
For example, a register contents of 110010 indicates that the last 6 branch outcomes
were taken, taken, not-taken, not-taken, taken and not-taken. A typical length for a
history register is 10-12 bits. For each branch, this register is used to index a table
of bimodal predictors. The address of the branch instruction can also be included in
this index, either concatenated or XORed with it. Two-level adaptive predictors have
t3q3ical accuracies of about 93% [Uht et al. 1997]. A simple example of the strength
of a two-level adaptive predictor can be seen in Figure 2.2. The if statement is taken
on every second iteration of the loop. For a bimodal branch prediction table simply
indexed by the low order bits of the branch instruction address, this would cause the
bimodal predictor to oscillate between predicting taken and not-taken, resulting in
approximately 50% accuracy. With a two-level adaptive predictor the history register
will have a history register ending in 0 or 1, allowing the odd and even iterations of
the loop to be distinguished, and for the branch to be predicted with close to 100%
accuracy.

There are many more complicated schemes for branch prediction than those dis­
cussed above. However, the above provides the necessary conceptual background for
the algorithmic considerations surrounding branch prediction. We also again empha­
size that the account of branch prediction provided above is greatly simplified, and

10

2.2. Memory Hierairchies 11

neglects many of its other interactions with pipelining. An excellent, although still
relatively high-level account of branch prediction and other micro-architectural details
of the Alpha 21264 processor is provided by Kessler et al. [1998].

It is noteworthy that the prediction schemes described above were devised in an
experimental manner, strongly guided by the available hardware resources. However,
prediction problems such as this have received many decades of attention. Predicting
the values of sequences is at the heart of many data compression techniques such as Pre­
diction by Partial Match (PPM) [Bell et al. 1990] or Context Tree Weighting [Willems
et al. 1995], and less explicitly, in dictionary-based data compression techniques such
as LZ77 and the large family of related algorithms [Ziv and Lempel 1977; Bell et al.
1990]. It appears that correlating branch predictors described in this section were de­
veloped independently of data compression techniques, and it is worth noting that the
correlating predictors described above are quite similar to the finite-context modelling
technique of PPM data compressors. More recently, data compression algorithms, es­
pecially PPM, have been used to construct extremely accurate branch predictors in
software. Due to their complexity, they are far from suitable for hardware implemen­
tations however [Srinivasan et al. 2007].

2.2 Memory Hierarchies

In this section we consider another aspect of the design of computers that has algo­
rithmic implications: the memory hierarchy. Typically processors require data at a
speed much faster than main memory can provide it. This would place an extremely
seriously bottleneck on the speed at which computations could be performed due to the
difference in speed between main memory and the CPU were it not for the principle of
locality. This is an experimental observation about the behaviour of programs noting
that programs have a strong tendency to reference “nearby” data, or data within their
“locality”. Here the locality can be spatial or temporal. Spatial locality refers to the
fact that if a program accesses memory address addr then it is likely to also access
other memory addresses with a small difference from addr also. Temporal locality
refers to the fact that programs tend to reuse values that they have recently accessed.
Early accounts of locality of reference (in the context of virtual memory systems, see
Section 2.2.2.) were provided by Belady [1966] and Denning [1968]. Denning [2005]
describes a historical account of the principle’s development. This locality of reference
that programs exhibit motivated the introduction of cache memories, or caches.

11

2.2. Memory Hierarchies 12

2.2.1 Caches

A cache is a small, fast memory that holds a subset of the values in main memory.
When a program makes a request for a value from memory, the value can either be
retrieved rapidly from the cache - a cache hit, or retrieved from main memory and
stored in the cache for later use - a cache miss. The cache is designed to exploit the
principle of locality resulting in an access time to memory that is close to that of the
cache rather than that of main memory. Wilkes [1965] provides the earliest description
of the idea, under the name of “slave memory”. The abstract of his paper [Wilkes
1965, 2000] reads

The use is discussed of a fast memory of, say, 32 000 words as a slave to a
slower core memory of, say, one million words in such a way that in practical
cases the effective access time is nearer that of the fast memory than that
of the slow memory.

Shortly afterwards, the term “cache” was adopted in favour of “slave memory” [Liptay
1968].

When a word of memory is required by a program, caches exploit spatial locality
by also loading surrounding words of memory into the cache. The total number of
words transfered in a single transfer between main memory and cache is refered to as
the cache block size or cache line size. On current desktop machines, typical cache
line sizes are 32, 64 or 128 bytes'!. Caches exploit temporal locality by prioritizing
the eviction of cache lines, typically using an approximation to a Least Recently Used
(LRU) scheme. That is, when a cache line must be evicted (since the cache is smaller
than main memory) the cache line that was made use of the most distantly in the past
is evicted.

In general there is not just a single cache, but generally at least two. This gives rise
to what is referred to as the memory hierarchy. The fastest memory can be regarded
as the processor registers, followed by the first cache (referred to as the level 1 cache),
followed by the level 2 cache, main memory, and then magnetic and solid-state storage
devices. As this hierarchy of memories is descended away from the processor, the size
and latency increase, while cost decreases. On current desktop machines (see Table 4.1
and Section 4.4 for details), level 2 cache sizes of 2MB or 4MB are common, compared
to main memory that is often 4GB or larger. Registers can typically be accessed by
the processor within a single cycle. In Chapter 4 we present experimental results for

^These cache line lengths can be measured using a tool such as cpuid, see http://www.cpuid.org.
Hennessy and Patterson [2006] also provide some example lengths for certain processors.

12

2.2. Memory Hierarchies 13

machines where we have measured a level 2 cache hit (or level 1 cache miss) to cost up
to 20 processor cycles, and a level 2 cache miss to cost up to 200 processor cycles. See
Section 4.4 for details.

There are many implementation details involving caches that we omit, since the
simple discussion above is enough to appreciate the algorithmic considerations con­
cerning memory access. We finish by noting that the need for a processor to access a
large, fast memory was recognized as early as 1946 in the design of computer systems
[Burks et al. 1946; Burks 1989].

Ideally one would desire an indefinitely large memory capacity such that
any particular word would be immediately available. We are forced to
recognize the possibility of construct a hierarchy of memory, each of which
has greater capacity than the preceding but which is less quickly accessible.

2.2.2 Virtual Memory

Computer systems tend to allow the processor to serve several processes at once, and
so it is important that processes can utilize the main memory in a simple, efficient
manner. It is also important that processes be protected from one another, so that one
process may never access memory belonging to another. An additional concern faced
when executing a process is the total amount of memory it requires - what should be
done if the process requires more memory than there is main memory available to it?

Virtual memory was proposed as a technique to manage these concerns. Virtual
memory was introduced in 1972 for the IBM System/370 computers, described by Case
and Padegs [1978]. In a virtual memory system, each process is regarded as executing in
and having access to a contiguous region of memory whose size can exceed the amount
of main memory available, this is called the virtual address space of the process. The
processor together with the operating system (OS) manage the mapping from the
virtual addresses used by the process to the physical addresses required to access the
main memory (and other memory) that is physically available.

The virtual memory system views memory as consisting of fixed sized contiguous
regions called pages. When the process requires memory, the processor and OS provide
it with page-sized regions from the physical memory. The mapping of memory addresses
used by the process for pages of memory, i.e. the virtual addresses, to the physical
address to which the page corresponds is managed via an in-memory data structure
called the page table. For example, with a 4GB = 2^^ byte virtual address space, and
4KB = 2^^ byte page size, the page table requires 2^° entries. This page table is stored

13

2.3. Notation 14

in main memory. As a result, a memory access by a process first requires a main
memory access to look-up the page table to perform the virtual address to physical
address mapping, followed by a memory access to retrieve the desired data. This is an
unacceptable overhead for the virtual memory system, and as a result, another cache
is introduced, referred to as the translation lookaside buffer^ or TLB. The TLB is a
small cache of frequently accessed entries of the page table. When a virtual memory
address requires an entry of the page table not in the TLB (a TLB miss) the page table
in main memory must be accessed, otherwise, the physical address retrieved from the
TLB can be requested directly. We have measured the penalty of a TLB miss to be
approximately 20 cycles on some of the machines we present experimental results for.
Section 4.4 provides details.

As with our discussions of pipelining, branch prediction and caching above, we omit
many important details of virtual memory design since the details above are enough
for the algorithmic considerations in this dissertation.

2.3 Notation

We use only the most well-known standard asymptotic notation in this dissertation,
following the definitions of standard texts [Cormen et al. 2001]. For a function f :R—>-
R, we use the usual definitions for upper, lower and tight bounds on that function:

• We denote by 0{g{n)) the set of functions such that there exist positive constants
c, no such that 0 < /(n) < cg{n) for all n > no.

• We denote by Q.{g{n)) the set of functions such that there exist positive constants
c, no such that 0 < cg{n) < f{n) for all n > no.

• We denote by ©(^(n)) the set of functions such that there exist positive constants
Cl, C2, no such that 0 < Cig{n) < f{n) < C2g{n) for all n > %.

We also occasionally make use of the standard stronger lower and upper bounds:

• We denote by o{g{n)) the set of functions such that for any positive constant c
there exists a positive constant no such that 0 < /(n) < c^(n) for all n > no.

• We denote by u{g{n)) the set of functions such that for any positive constant c
there exists a positive constant no such that 0 < cg{n) < f{n) for all n > no.

*This term was introduced by Case and Padegs [1978] in their description of the virtual memory
system of the IBM System/370 computers.

14

2.3. Notation 15

We use lg(n) to denote log2(n). We denote the n*'* harmonic number as Hn =
1/fc = Inn + 7 + 0(l/n), where 7 = 0.577... is Euler’s constant [Knuth 1997a].

15

Chapter 3

Sorting and Branch Prediction

3.1 Introduction

The sorting problem can be stated as follows: Given as input a sequence (Ji,..., (T„,
provide as ouput a permutation of that sequence such that (t[< a'2 < ... <
Sorting is a fundamental problem that is one of the most well studied in Computer
Science. Many good algorithms are known that offer trade-offs in efficiency, simplicity,
memory use and other factors. Classical analyses of these algorthms, such as the RAM
model used for establishing asymptotic bounds, or Knuth’s MIX machine code make
drastically simplifying assumptions about the cost of different machine instructions
[Knuth 1997b].

More recently it has been recognized that on modern computers the cost of accessing
memory can vary dramatically depending on whether the data can be found in the first-
level cache, or must be fetched from a lower level of cache or even main memory. This
has spawned a great deal of research on cache-efficient searching and sorting [Nyberg
et al. 1994; Agarwal 1996; LaMarca and Ladner 1996, 1997; Xiao et al. 2000; Rahman
and Raman 2001; Wickremesinghe et al. 2002; Frigo et al. 1999].

Another type of instruction whose cost can vary dramatically is the conditional
branch. Modern pipelined processors depend on branch prediction to improve their
performance. If the direction of a conditional branch is correctly predicted ahead of
time, the cost of the conditional branch may be as little as the cost of, say, an integer
add instruction. If, on the other hand, the branch is mispredicted the processor must
flush its pipeline, and restart from the correct target of the branch.

Fortunately, the branches in most programs are very predictable, so branch mispre­
dictions are usually rare. Indeed, prediction accuracies of greater than 90% are typical
[Uht et al. 1997] with the best predictors.

16

3.2. Elementary Sorting Algorithms 17

The cost of executing branches is particularly important for sorting because the
inner-loops of most sorting algorithms consist of comparisons of items to be sorted. In
this chapter we study the interaction between branch prediction and a number of classic
sorting algorithms. We focus on the behaviour of the branches whose outcome depends
on a comparison of input elements presented to the sorting algorithm. Throughout this
chapter we refer to such branches as comparison branches. Branches associated with
controlling simpler aspects of the control flow of the algorithms are of much less interest
because they are generally almost perfectly predictable.

The main contributions of this chapter can be summarized as follows:

• In Section 3.2 we show that insertion sort, selection sort and bubble sort all
cause asymptotically different numbers of branch mispredictions on average. We
demonstrate this with a simple analytical model as well as via experiments on
real hardware. We also examine a little algorithmic folklore, showing by suit­
able experiments that the dominant factor in the performance difference between
shaker sort and selection sort is their different number of branch mispredictions.

• In Section 3.3 we show that compared to mergesort or heapsort, quicksort has
comparison branches that are naturally more predictable. This demonstrates
another strength of the classic, popular algorithm. We also point out an appealing
property of quicksort for the first time: the cost of choosing a poor pivot is
not as high as a classical analysis of the algorithm reveals, since an unbalanced
pivot reduces the branch mispredictions incurred by the algorithm. We present
experiments and their analysis for quicksort showing how the use of a median-of-3
pivot reduces the predictability of the inner-loop branches in quicksort.

• In Sections 3.4.1 and 3.4.2 we consider related work and perform additional ex­
periments investigating that work. Section 3.4.1 examines a practical variation
of Kaligosi and Sanders’s skewed quicksort [2006], and provides experiments cat­
aloging the algorithm’s branch prediction properties as well as its spatial locality.
Section 3.4.2 gives experimental results for Brodal and Moruz’s insertion d-way
mergesort algorithm [2005]. We provide experiments demonstrating their tech­
nique improves the spatial locality of mergesort while simultaneously improving
its branch prediction properties, finally we note their algorithm has an analogue
in terms of quicksort.

17

3.2. Elementary Sorting Algorithms 18

C0)
E
<D

0)
Q.
(0
Co
o

ID0)
Q.
(/)

O
C
2

CD

14

12

10

8

6

4

2 h

Insertion sort
Selection sort

-......... -X-

10000 20000 30000
Number of elements

(a)

40000 50000

(b)

Figure 3.1: This figure shows the number of branch mispredictions caused by some
classic 0(n^) worst-case time sorting algorithms, while operating on uniform random
data. The data points are the number of branch mispredictions caused by a particular
input, divided by the number of elements in that input. These results were gathered
on an Intel Core 2 Duo 2.13GHz processor using PAPI [Dongarra et al. 2003].

18

3.2. Elementary Sorting Algorithms 19

3.2 Elementary Sorting Algorithms

We begin by presenting experimental results for a number of classic elementary sorting
algorithms: insertion sort, selection sort and bubble sort. Knuth [1998a] provides a
very detailed account of these algorithms. Each of these algorithms executes 0(n^)
branch instructions on average (and at worst), and indeed their implementations all
consist of a very simple pair of nested loops. Surprisingly, Figure 3.1 shows that they
clearly cause very different numbers of branch mispredictions.

Figure 3.1(a) shows that insertion sort causes just a single branch misprediction
per element. Figure 3.1(a) also shows that selection sort causes a substantially larger
number of branch mispredictions, although the rate of growth is slow. Figure 3.1(b)
shows the number of branch mispredictions per element incurred by bubble and shaker
sort. The number of mispredictions for both algorithms grows in a similar fashion.
Both algorithms also cause enormously more branch mispredictions than selection and
insertion sort.

Motivated by these experimental results, we now provide a number of simple cal­
culations giving the average number of branch mispredictions caused by these algo­
rithms. In particular, we show that despite the fact that each algorithm executes
Q{n?) branches, somewhat surprisingly they cause asymptotically different numbers of
branch mispredictions. In particular:

• Insertion sort causes 0(n) branch mispredictions.

• Selection sort causes 0(nlogn) branch mispredictions.

• Bubble sort causes 0(n^) branch mispredictions.

These results correspond to the experimental results of Figure 3.1. In the following sec­
tion we outline the assumptions used to derive these results, and the general approach
used in our analysis of these algorithms.

3.2.1 Branch Prediction Model

Section 2.1 discussed instruction level parallelism and branch prediction from a hard­
ware point of view. In this section, we describe the model used when analysing the
experimental results presented in this chapter.

We assume the repeated execution of a C statement like if(x < y) presents a
stream of values to the branch predictor, such as

19

3.2. Elementary Sorting Algorithms 20

taken not taken

Figure 3.2: (a) Shows a 2-bit saturating counter predictor. When the predictor is in
state 00 or 01 the associated branch is predicted not-taken. When the predictor is in
state 10 or 11 the associated branch is predicted taken, (b) Shows the Markov chain
associated to the predictor, where the branch has a probability p of being taken. Here
we name the four states as follows: strongly taken (ST), taken (T), not taken (NT)
and strongly not taken (SNT).

T, T, NT, T, T, T, NT... (3.1)

Here T denotes a taken branch, and NT denotes a not-taken branch. We neglect aliasing
effects described in Section 2.1, and assume there is a dedicated branch predictor for
each branch instruction. The job of the branch predictor is to predict the next value
of this sequence.

The experiments considered in this chapter are designed to reveal the average num­
ber of branch mispredictions caused by sorting algorithms. By average, we mean
assuming the usual average case model in sorting where each input permutation of
{l,...,n} is equally likely [Cormen et al. 2001]. As a result, our experiments are
performed over uniform random inputs to the sorting algorithms and our analysis of
experimental results is performed for the case of a simple bimodal predictor rather than
more complex predictors that are designed to exploit dependence between branch exe­
cutions (see Section 2.1). Moreover, we regard Sequence 3.1 as a sequence of Bernoulli
trials [Feller 1968] with p being the (unknown) probability of observing T.

Under these assumptions, the optimal strategy to predict a whether the next branch
is taken or not is to simply keep a counter, incrementing it for each T observed, and
decrementing it for each NT observed. The sign of the counter is then used to predict

20

3.2. Elementary Sorting Algorithms 21

the next value in the sequence. After n executions of the branch storing such a counter
requires [Igu] bits. In hardware, the number of bits in this counter is fixed, and the
counter saturates at its minimum and maximum value. The result of this saturation
is of course the simple counting branch predictors described in Section 2.1. Figure
3.2(a) shows a saturating 2-bit branch predictor. An early examination of this classic
problem of estimating a probability with finite memory is provided by Leighton and
Rivest [1983]. A discussion of the problem in the context of branch prediction is given

by Michaud [2004].
After repeated execution of a branch instruction, the probability that a saturating

2-bit predictor correctly predicts a branch instruction converges to

C2bit{p) =
3p^ — 3p -f 1 (3.2)
2jP — 2p+ 1

We refer to the function C2Ht as the characteristic function of the branch predictor.
This function is easily derived by modelling the 2-bit predictor associated to a branch
instruction as a Markov chain, shown in Figure 3.2(b). The transition matrix of this
Markov chain is

M =

p p 0 0
1—p 0 p 0
0 1 — p 0 p
0 0 1—p 1 — p

The characteristic function can be derived by solving for the steady state probabilities of
the Markov chain, i.e. the vector s such that Ms = s. These steady state probabilities
are those resulting from a random walk in a Markov chain with reflecting barriers,
and is considered in the general case in standard texts [Feller 1968]. If the saturating
counter has 2k bits, then its characteristic function is given by [Michaud 2004]:

Ck{p) = p-
2p- 1

Independent of A:, if p = 1/2 then C'fe(p) = 1/2. For p > 1/2, the value of C'fc(p)

converges to p as A; —> oo, and for p < 1/2 the value of Ck{p) converges to 1 — p as
k —y oo. Thus, if the number of bits in the counter is not limited, then the probability

of a correct prediction is given by

Cperfectip) = max{p, 1 - p}

21

3.2. Elementary Sorting Algorithms 22

Figure 3.3: This figure shows the characteristic functions of a perfect static branch
predictor and a 2-bit saturating counter predictor. The values of these functions at
a particular probability is the probability the branch with that probability will be
eorrectly predicted, which is what we refer to as the branch’s predictability.

We refer to a (fictional) branch predictor with this characteristic function as a perfect
static predictor. Figure 3.3 shows a plot of Cperfect and C2uu showing the approxima­
tion that C2Ht provides to Cperfect- We will make use of both of these functions when
analysing the experimental results presented below. In general, the analyses in the fol­
lowing sections all follow the same very simple pattern. We begin by making use of the
assumption that all inputs are equally likely to derive the probability that a particular
branch will be taken. We then make use of this probability assuming either a perfect
static or two-bit predictor, giving the expected number of branch mispredictions on
average.

3.2.2 Insertion sort

Insertion sort is a simple, classic, 0(n^) worst (and average) case time sorting algorithm.
Here we show insertion sort causes 0(n) branch mispredictions. The inner loop of
insertion sort, operating on an input a[0. .n-1] is

22

3.2. Elementary Sorting Algorithms 23

item = a[k] ;
while(item < a[k - 1])
{

a[k] = a[k - 1] ;
k—;

}
a[k] = item;

This loop is iterated n - 2 times over the input.* When executing the loop for a
particular value of A:, 1 < fc < n, a[0. .k - 1] is already sorted, allowing a[k] to
be placed in the correct position as shown in the inner-loop above. As Figure 3.1(a)
shows, insertion sort has excellent branch prediction characteristics. Examining the
inner-loop code above it is easy to see why this is so. The comparison branch item
< a[k - 1] is only not-taken exactly once in each inner loop iteration. Intuitively,
the single untaken execution causes the single branch misprediction per element, as
observed in Figure 3.1(a).

Although the analysis here is very simple, we give the details since the analysis of
our experimental results in the following sections follows the same pattern. Let Qf
denote the probability that the branch comparing a[l] to a[l - 1], 1 < / < A:, is
not-taken in the inner loop iteration that is positioning a [k], 1 < A: < n. Defining
B{k) as the average number of mispredictions caused by the execution of the inner-loop
when positioning a [k], we have:

B{k) =^min{Of,l-Q*} (3.3)
1=2

Here we assume a perfect static branch predictor (as discussed in Section 3.2.1), which
causes a misprediction with probability min{p, 1—p} for a branch that is taken (or not-
taken) with probability p. Since we assume all inputs equiprobable, in each execution
of the inner-loop item is equally likely to belong in any of a[l],..., a[k] causing
the corresponding branch to be not-taken — we have simply Qf = 1/k.

The total number of branch mispredictions incurred by insertion sort is thus simply
Yl'kZl B{k), which is clearly 0(n) and explaining the single branch misprediction per
element observed in Figure 3.1(a).

*We assume for simplicity that a[0] initially contains the minimum element.

23

3.2. Elementary Sorting Algorithms 24

3.2.3 Selection sort

Selection sort is another simple sorting algorithm operating in O(n^) average, best and
worst-case time. The inner loop of selection sort operating on an input a[0. .n-1] is

min = k;
ford = k + 1; 1 < n; 1++)

if(a[l] < a [min]) min = 1;
swap(a[k], a[min]);

Here 0 < A; < n - 1 is the outer loop counter. Figure 3.1(a) shows the experimentally
observed branch mispredictions for selection sort. The number of branch mispredictions
incurred by selection sort can be analyzed simply as we now sketch, the analysis is a
simple variation on that provided by Knuth [1997b], adapted to the context of branch
prediction.

The comparison branch a[l] < a [min] is taken only if a[l] is the minimum of
a[k. .1]. Thus, in any given inner-loop iteration, the execution of the comparison
branch is taken with probability l/{l + 1) [Knuth 1997b]. As with insertion sort in the
previous section, we assume a perfect static branch predictor. The expected number
of branch mispredictions B{k) on inner-loop iteration k is then

B(k) =

= Hifc+i

(3.4)

(3.5)

The total branch mispredictions on average is then simply that is

n—1

M{n) = -1)

= {n + l)Hn+i - 2n - 1

(3.6)

(3.7)

Here Hn = is the harmonic number. Since Hn = ©(logn) we have
M{n) = 0(nlogn). The quantity M{n) here is in fact essentially the average number
of changes to the right-to-left maxima in the input, provided by Knuth [1998b].

Thus although selection sort executes 0(n^) branches it causes 0(nlogn) mispre­
dictions, with respect to a perfect static predictor. Re-examining Figure 3.1(a), the log­
arithmic growth rate in the mispredictions per element is evident (consider for example

24

3.2. Elementary Sorting Algorithms 25

the data points at n = 10000,20000,40000). We see that for n = 50000 selection sort
causes approximately 12 branch mispredictions on real hardware, naturally the analysis
for a perfect static predictor slightly underestimates this, indeed M(50000) « 9.

3.2.4 Bubble sort
Bubble sort is another simple sorting algorithm, although notoriously inefficient. Bub­
ble sort works works by iterating the loop shown below at most n — 1 times on an input
a[0. .n - 1] .

forCj =0; j j++)

if(a[j + 1] < a[j])
swap (a [j + 1], a[j]);

}

In this code i is the outer-loop iteration counter, and begins at 0 and counts towards
n - 1. After a full iteration of the inner-loop shown larger elements have moved to
the right, closer to their final location.

As observed in Figure 3.1(b) bubble sort causes far more branch mispredictions
than insertion sort or selection sort, seen in Figure 3.1(a). Particularly interesting
experimental results are observed when the branch mispredictions incurred by each
iteration of the inner-loop of bubble sort are examined as i or the “sweep number”
increases. Figure 3.4(a) shows the number of branch mispredictions caused as the
sweep number varies in bubble sort.

As Figure 3.4(a) shows, initially the branches are quite predictable, however their
predictability reduces quite rapidly as the sweep number increases. Intuitively, the
incremental movement of large keys to the right in bubble sort causes this degradation
in the predictability of its branches. As the data becomes close to being fully sorted
the predictability of the branches improves again. This partial sorting that bubble
sort performs allows it to potentially converge to fully sorted data in fewer outer-loop
iterations than selection sort. We can detect that the data is sorted early if the branch
shown in the inner-loop above is never taken for a whole iteration. However, this partial
sorting also greatly increases the number of branch mispredictions bubble sort incurs,
substantially slowing it over selection sort or insertion sort.

As Figure 3.4(b) shows, the number of cycles per sweep closely mimics the number
of branch mispredictions, indicating that they are the dominant factor in the time
required by bubble sort.

25

3.2. Elementary Sorting Algorithms 26

(a)

(b)

Figure 3.4: (a) Shows the number of branch mispredictions incurred per inner-loop of
bubble sort as the outer-loop iterates or the “sweep number” increases. The curve la­
belled “hardware” is the actual number of branch mispredictions observed in hardware.
The other two curves are plots of the functions S{k) (the perfect static approximation)
and S'{k) (the bimodal approximation) defined in Section 3.2.4, and show that the ap­
proximations made in the analysis of bubble sort’s branch mispredictions give results
close to what is observed in hardware, (b) Shows the number of cycles (i.e. time) per
inner-loop of bubble sort as the sweep number increases. This shows that the number
of cycles is dominated by the number of branch mispredictions caused by bubble sort.

26

3.2. Elementary Sorting Algorithms 27

To understand the high misprediction rate of bubble sort more precisely we define
Qi^ as the probability that inner-loop comparison branch is taken on the outer-
loop iteration, 1 < A: < n. It turns out that

0 otherwise
(3.8)

This is a result of the fact that the comparison branch of the inner-loop is taken
only if a [1] is not larger than all of a [0.. 1 - 1] . For this to be the case, the {I -f 1)*^
branch in the previous outer-loop iteration must have been taken, since otherwise the
previous iteration of the outer-loop left the maximum of a[0. .1 - 1] in a[l]. The
probability that the {I -|- 1)*'^ branch of the previous outer-loop iteration is taken is

Given that the {I + branch of the previous outer-loop iteration was taken,
the probability that a[l] is not larger than all of a[0. .1 - 1] is 1 — !/(/ -t-1), thus.

(3.9)

The bases Qj = 1 - 1/{I + 1) for 1 < I < n and = 0 give the solution shown
in Equation 3.8. It is easy to see that in the first outer-loop iteration {k — 1) the
comparison branch is very likely to be taken, whereas in the last outer-loop iteration
[k = n—1), the comparison branch is very unlikely to be taken. Moving between these
two extremes causes the intermediate branches to be unpredictable.

It is straightforward to show that bubble sort incurs 0(n^) branch mispredictions
with respect to a perfect static branch predictor, as we now outline. Let S{k) be the
number of branch mispredictions caused by bubble sort on its 1 < A; < n outer-loop
iteration:

1=1

(3.10)

Again, we assume a perfect static branch predictor, and fill in the probability that the
comparison branch is taken from Equation 3.8. With a series of rather involved but
standard manipulations [Graham et al. 1994] we obtain:

S{k)^ (1 + T Hk — 2H2k)k if A: < n/2
{1 + Hn — Hk)k otherwise

(3.11)
n

tKnuth [1997b; 1998b] considers a quantity related to Qf, namely HJL = fc" ''Al/n! although
he does not consider or derive Qf itself.

27

3.2. Elementary Sorting Algorithms 28

Figure 3.4(a) shows a plot of S{k), compared to the actual number of branch mispredic­
tions observed in hardware. As expected, S{k), the number of branch mispredictions
expected using a perfect static predictor slightly underestimates the actual number of
branch mispredictions observed in hardware. However, the trends in the number of
branch mispredictions are very similar. This figure also shows a plot of the function:

(3.12)

Recall that C2bit is the characteristic function of a two-bit branch predictor described in
Section 3.2.1. As Figure 3.4(a) shows, the number of branch mispredictions caused by
this approximation of a two-bit finite state predictor, S'{k), also slightly underestimates
the actual number of branch mispredictions observed in hardware, although to a lesser
extent than the analysis according to a perfect static predictor.

Finally, the total number of branch mispredictions incurred by bubble sort with
respect to a perfect static predictor is simply M{n) = Yl'k^iS{k). For simplicity of
notation we assume n is even. Through a variety of rather involved but standard
manipulations [Graham et al. 1994], we have

M(n) = —

+ X

+ -

2 r 1 1
n + l

1
n -I- 2

1
n -I-1 n -I- 2

n/2-l-l
Hn+2 + 1

Thus M{n) = O(n^), showing that bubble sort causes substantially more branch mis­
predictions than insertion sort or selection sort. Recall that as shown above, the latter
two algorithms cause ©(n) and ©(nlogn) branch mispredictions respectively. Bubble
sort is often noted for its undesirability compared to other elementary sorting algo­
rithms, for example Knuth [1998a] states:

In short, the bubble sort seems to have nothing to recommend it, except
a catchy name and the fact that it leads to some interesting theoretical
problems.

Our results add further weight to Knuth’s point of view.

28

3.2. Elementary Sorting Algorithms 29

3.2.5 Discussion

The preceding sections have shown that three of the simplest well-known elementary
sorting algorithms cause asymptotically different numbers of branch mispredictions.
The results above show that simple, similar pieces of code can have very different
branch prediction properties. In particular we have seen that bubble sort has the
worst branch prediction properties. The deficiencies of bubble sort are often noted
compared to other elementary 0(n^) worst-case time sorting algorithms. The apparent
popularity of bubble sort despite its weaknesses are examined in detail by Astrachan
[2003]. We now demonstrate briefly via additional experimentation that the principle
weakness of bubble sort and its variations is their branch mispredictions, an aspect of
the algorithms overlooked by Astrachan [2003] and Knuth [1998a].

The principle objection to bubble sort is that it is substantially less efficient than
other elementary sorting algorithms, and (arguably) no simpler than algorithms such as
insertion sort or selection sort. Bubble sort has several refined variants. For example,
shaker sort is a variation of bubble sort in which there are two inner-loops that are
alternated. One is the inner-loop shown for bubble sort in the previous section. The
other inner-loop scans right-to-left moving small elements to the left in the same manner
as larger elements are moved to the right in bubble sort’s inner-loop shown above.
Although shaker sort has the same worst-case time as bubble sort, it is generally more
efficient in practice.

Figure 3.5(a) shows the level 1 data cache misses caused by insertion, selection
and shaker sort. Figure 3.5(b) shows the number of instructions executed by these
algorithms. Finally Figure 3.6 shows the number of cycles taken by these algorithms.
These results demonstrate the conventional wisdom, that insertion sort is the most
efficient quadratic-time algorithm. Interestingly, Figure 3.5(a) shows that shaker sort
causes substantially fewer level 1 data cache misses than selection sort. Figure 3.5(b)
shows that shaker sort only executes slightly more instructions than selection sort.
However, Figure 3.6 shows that shaker sort is much less efficient than selection sort.
This is due to the enormous number of branch mispredictions incurred by shaker sort,
as shown in Figure 3.1(b), compared to the number incurred by selection sort, in Figure
3.1(a).

In summary, these experimental results show the real reason bubble sort and its
variations such as shaker sort are doomed to inefficiency on modern architectures is
because they incur enormous numbers of branch mispredictions compared to the alter­
native algorithms.

29

3.2. Elementary Sorting Algorithms 30

(a)

(b)

Figure 3.5; (a) Shows the number of level 1 data cache misses per element for the
elementary sorting algorithms. We do not present leve 2 data cache misses because
the inputs fit within the level 2 data cache. We note that shaker sort has better cache
performance than selection sort, (b) Shows the number of instructions per element
executed by the algorithms. These results were gathered on an Intel Core 2 Duo
2.13GHz processor with a 2MB level 2 cache, using PAPI [Dongarra et al. 2003]. The
data is uniform random data generated using the C function random, and each data
point is averaged over ten executions of the algorithms on the data.

30

3.2. Elementary Sorting Algorithms 31

Number of elements

Figure 3.6: This figure shows the number of cycles per element required by the elemen­
tary sorting algorithms. It is noteworthy that while shaker sort is much less efficient
than selection sort, this is not fully accounted for by its cache performance or instruc­
tion count, seen in Figure 3.5. These results were gathered on an Intel Core 2 Duo
2.13GHz processor with a 2MB level 2 cache, using PAPI [Dongarra et al. 2003]. The
data is uniform random data generated using the C function random, and each data
point is averaged over ten executions of the algorithms on the data.

31

3.3. Efficient Sorting Algorithms 32

3.3 Efficient Sorting Algorithms

The preceding sections have shown that well-known elementary sorting algorithms, all
executing the same worst and average case number of comparisons cause asymptotically
different numbers of branch mispredictions on average. In this section we consider the
branch prediction characteristics of efficient sorting algorithms, that is, those that
execute ©(nlogn) comparisons in the worst case, or on average.

This upper bound matches the well-known Q(nlogn) lower bound for any sorting
algorithm that progresses by only making use of comparisons between its input elements
[Cormen et al. 2001]. Unlike the worst-case Q('n?) algorithms of the previous section,
we cannot expect any difference in the asymptotic number of branch mispredictions
caused by these efficient algorithms. An intuitive, informal explanation of why this is
so can be obtained by visualizing the decision tree [Cormen et al. 2001] associated to
a sorting algorithm. We imagine inputs entering the tree at the root, and then flowing
down either to the left or right child depending on the out-come of the comparison at
each node. Eventually, each input flows to its unique associated leaf, at which point
it is correctly sorted. In this view, a branch predictor must assign a labelling to the
nodes of the tree, according to whether it predicts the input to flow to either the left
or right child. Assume that at each node some proportion a G (0,1) of the inputs flow
to the left child and 1 — a inputs flow to the right child. As a result, the labelling of
the branch predictor is wrong /? = min{ci!, 1 — o} of the time at each node. Moreover,
since the decision tree has n! leaves, it has depth f](log^n!) = fl(nlogn). Resulting
in f)(/?nlogn) branch mispredictions on average. We discuss a theorem of Brodal and
Moruz [2005] which essentially results from a formalization of this argument in Section
3.4. Of course, when the decision tree is unbalanced many nodes have a child that
only a small number of inputs flow down to, and the proportion of inputs for which the
branch predictor’s labelling is correct can be higher. Indeed, as we saw above insertion
sort causes only 0(n) branch mispredictions on average.

Despite the fact that all ©(nlogn) (worst or average case) time sorting algorithms
must cause f](nlogn) branch mispredictions, there is of course still the possibility of
differences in the constant factors for branch mispredictions of the algorithms. We
examine this in the following section.

3.3.1 Comparing Quicksort, Mergesort and Heapsort
In this section we study the branch prediction characteristics of three classic sorting
algorithms: quicksort, mergesort and heapsort [Knuth 1998b; Cormen et al. 2001].

32

3.3. Efficient Sorting Algorithms 33

Figure 3.7: The bias and predictability of the principal comparison branches in classic
efficient sorting algorithms.

pivot = a[l];
while(true)
{

while(a[++i] < pivot)
while(a[—j] > pivot)
if(i >= j) break;
swap(a[i], aCj]);

}
swap(a[j] , a[l]):

// i-loop
// j-loop

Figure 3.8: The partition step of quicksort. We refer to the two inner loops as the
i-loop and j-loop.

33

3.3. Efficient Sorting Algorithms 34

We pay particular attention to quicksort. We show that the comparison branches of
quicksort are naturally more predictable than those in mergesort and heapsort, and
examine the influence of the pivot choice on the behaviour of quicksort’s comparison
branches.

We begin by recalling briefly how these algorithms operate.

Quicksort [Hoare 1962] is an algorithm that selects an element from its input called
the pivot and then partitions the other elements into two sets, one set containing
elements at most equal to the pivot and another containing elements at least
equal to the pivot. The keys of these sets should appear respectively to the left
and right of pivot in sorted order. Therefore they can be sorted independently,
each using quicksort. Quicksort operates in ©(n^) time in the worst case, and
©(nlogn) time on average. In studying the branch prediction characteristics of
quicksort, we are interested in the branch that compares elements to the pivot
during partitioning. Code for the partitioning step of quicksort is shown in Figure
3.8. We refer to the comparison branches of quicksort as the i-loop and j-loop
branches.

Mergesort [Knuth 1998b] is another ©(nlogn) worst case time sorting algorithm,
which works by repeatedly merging pairs of sorted lists into a single sorted list
of twice the length. These merges can be done very simply in linear time and
space. Mergesort’s input can be thought of as n sorted lists of length one. To
simplify the description, we assume the number of keys, n, is a power of two.
Mergesort makes Ig n passes over the input where the pass merges sorted lists
of length into sorted lists of length 2h In studying the branch prediction
characteristics of mergesort, we are interested in the comparison branch of the
merge operation, which compares the two elements at the head of the two lists
being merged. We refer to this branch as the merge branch.

Heapsort Another well known general purpose sorting algorithm is heapsort [Williams
1964]. Heapsort’s running time is ©(nlogn) in the worst case. Heapsort begins
by constructing a heap: a binary tree in which every level except possibly the
deepest is entirely filled, with the deepest level filled from the left. In addition, a
heap must also satisfy the heap property: An element is associated with each node
that is always at least as large as the elements associated with all its children
nodes. The sequence of elements resulting from a breadth-first traversal of a
heap’s nodes can be used to represent it unambiguously in an array. Using the
approach of Floyd [1964] an unordered array can be transformed into a heap in

34

3.3. Efficient Sorting Algorithms 35

0(n) worst-case time [Knuth 1998b]. Given a node whose children are heaps but
who may itself violate the heap property, an iteration of Floyd’s approach swaps
the node with the larger of its children, and then repeats the same procedure
with the subtree rooted at that child, until the heap property is satisfied or a leaf
is reached. We refer to this as “sifting down” a node. In studying the branch
prediction characteristics of heapsort, we are interested in the predictability of
this sift-down branch, which compares the two children of a node to determine
the larger child. To build the entire heap, we first sift-down the deepest nodes
having children, followed by their parents, and so on until we reach the root.
Once the heap is built, we gradually destroy it in order to sort. We iterate n — 1
times. On the i*'* iteration we swap the largest element, a[0], with a[n - i].
After each swap, the heap property is restored by sifting down the new root of
the heap (an operation with worst case time 0(logn)). After iteration i the heap
contains n — i elements, and is found in a[0. .n - i - 1]. Meanwhile a[n -
i. .n - 1] contains the i largest elements of the input from smallest to largest.

Figure 3.7 shows the experimentally observed average bias and predictability as­
sociated with the i-loop, merge and sift-down branches of quicksort, mergesort and
heapsort respectively. We define the bias of a comparison branch to be the proportion
of the time the branch is taken on average. We define the predictability of a compari­
son branch to be the proportion of the time the branch is correctly predicted, in this
case by a two-bit saturating counter predictor. These results have been gathered by
instrumenting the individual comparison branches in question with a simulated two-bit
saturating predictor. For quicksort we show the behaviour of two variations of the algo­
rithm. Firstly, a quicksort that chooses a random pivot, and secondly a quicksort that
chooses a pivot using the “median-of-3” [Singleton 1969], where the median element of
the first, middle and last element of the input is used as a pivot.

It is noteworthy that Figure 3.7 shows that quicksort is experimentally observed
to have the most biased and predictable branches of the algorithms. In the case of a
random pivot, the i-loop branch is observed to be approximately 66.6% biased, and
72.0% predictable (the j-loop branch behaves symmetrically, see Figure 3.8). We dis­
cuss this slightly counter-intuitive result — that the branches of quicksort are more
predictable than biased — below. Where the median-of-3 technique is used to choose a
pivot, the z-loop branch is approximately 60.7% biased and 64.2% predictable. On the
other hand, mergesort and heapsort are both observed to have branches that exhibit
bias and predictability of approximately 50%.

Quicksort generally offers superior performance to mergesort and heapsort for a

35

3.3. Efficient Sorting Algorithms 36

variety of reasons, notably its better spatial locality and lower instruction count. These
results show us another strength of quicksort: it has naturally better branch prediction
properties than mergesort or heapsort.

The observed bias of the merge branch in mergesort can be explained very simply
as follows: In merging any two nondecreasingly ordered lists x and y (which we assume
both have oo as their last element for simplicity) the merge branch is taken when
Xi < yj and not taken otherwise. Clearly to exhaust both lists the branch must be
taken |a;| times and not-taken |^| times. In mergesort, the difference in the length of
these lists is at most one, and hence the 50% bias of the merge branch. It is more
difficult to give a simple argument explaining the average bias of the sift-down branch
in heapsort, despite Figure 3.7 showing empirically that the bias and predictability
appear to be close to 50%.

We now analyse the experimental results observed for the comparison branches in
quicksort in detail. As with the analysis of our experimental results for the quadratic
time algorithms in Section 3.2, this analysis is simple and similar to the average case
analysis of quicksort, as is provided in many textbooks [Cormen et al. 2001].

The predictability of the z-loop of quicksort (or, symmetrically the j'-loop, see Figure
3.8) branch depends on the rank of the pivot. When the pivot has rank q, the z-loop
is executed (but not necessarily taken) a total of q times, since there are exactly q — 1
elements that should appear to the left of the pivot after partitioning. With this rank,
the z-loop branch is taken with probability {q—l)/{n—l). Assuming the pivot element
is selected randomly from the input the probability the pivot has rank g' is 1/rz. Thus,
the number of times the z-loop branch is taken on average is given by

;(n+l) (3.13)
9=1

The z-loop is executed on average q = {n-\-l)/2 times, and thus we see that,
on average, the z-loop is taken 2r„/(n + 1) = 2/3 of the time that it is executed,
matching the experimental result of Figure 3.7. This natural bias in quicksort’s inner
loop comparison branches makes them substantially more predictable than those of
the other efficient sorting algorithms such as mergesort or heapsort, as noted above.
Assuming a perfect static branch predictor, the probability that an Tloop is correctly
predicted is given by

1 ”
^» = -E

n ^ max
9=1

',1-’ 1 3n 1
rz — 1 n — 1 j 4n — 4 2(n — 1) (3.14)

36

3.3. Efficient Sorting Algorithms 37

Here we assume n is even for simplicty of notation. Thus, as n grows on average the
z-loop is predicted correctly 75% of the time by a perfect static branch predictor. As
expected this is more accurate than we observe experimentally in Figure 3.7. In this
case it is also straightforward to estimate the predictability when a saturating two-bit

counter is used

1
4 = rn V- 1g=l ^

1

Here C2bit is the steady-state predictability function of a saturating two-bit counter,
described in Section 3.2.1. As n ^ oo this sum approaches the value of the integral

c= fJo
3p^ - 3p + 1 . _ 3 _ ^
2p2 — 2p +1 ^ 2 4 (3.15)

Thus we see that, on average for large n, the predictability of the i-loop branch with
a saturating two-bit counter branch predictor is approximately 71%, closely matching
the experiment of Figure 3.7. We noted above that this branch is approximately 67%
biased (that is, it is taken approximately 67% of the time). The fact that the branch
is more predictable than biased is because the bias is an average. Note that for pivots
of large rank (i.e. when q approaches n) the number of executions of the i-loop is also
large, and that this is also the most predictable case — the probability that the branch
is taken approaches 1.

Although quicksort’s comparison branches are naturally more predictable than
those of heapsort or mergesort, it is notable that this comes at the cost of risking
quadratic time performance. To reduce the chances of quadratic time behaviour, the
pivot in quicksort can be chosen more carefully. As described above, one particularly
common method for choosing a pivot in quicksort is via the median-of-3. Analysing
the experimental results in this case is analagous to the case just described, when a
random pivot is used. The only difference lies in the probability that the pivot has a
particular rank. When chosen via the median-of-3, it is easily shown that the prob­
ability the pivot has rank q is given by R{n,q) = {q — l){n — q)/(3) [Sedgewick and
Flajolet 1996]. The probability that the i-loop is taken in this case is then obtained in
the same fashion as in Equation 3.13, replacing the 1/n term with R{n,q):

3n^ — n — 4
10(n - 1)

Again, the i-loop is executed on average (n -1- l)/2 times in total, and so the bias is

37

3.3. Efficient Sorting Algorithms 38

given by 2/(n + 1)T„ = (3n — 4)/(5n — 5). Thus as n increases the bias approaches
3/5 = 60%, as was observed experimentally in Figure 3.7. This is less than the the 66%
bias when a random pivot is used. This is to be expected, since the median-of-3 pivot
is designed to reduce the total number of comparisons performed. The predictability
of the i-loop with respect to a perfect static predictor is also obtained analgously to
the random pivot case. For the case of a perfect static predictor, we have

In = R{n,q) max1 -“ I n — 1 n — 1 I
0=1 ^ ''

lln^ lln 1
+16(n-l)2 8(n-l)2 2(n + l)2

Thus as n becomes large a perfect static predictor correctly predicts 11/16 69% of
the i-loop branches in a quicksort using a median-of-3 pivot, exceeding the accuracy
observed experimentally in Figure 3.7. These experimental results correspond to the
case of a 2-bit saturating predictor, and the mispredictions can be estimated by the
sum

I^ = ^Rin,q)C2Ht
9=1

q- 1
n

Analagously to the case of a random pivot, when n
value of an integral

oo this sum approaches the

3p^ — 3p+l
2p2 _ 2p -1-1 W{p) dp

Here W is the continous analogue or “shape function” corresponding to R above,
and is given by W{p) = 6p(l - p) [Martinez and Roura 2001]. With the result that
I'oo = 3-37r/4, or approximately 64% predictability, closely matching the experimental
result of Figure 3.7.

Although widely used because of its efficiency in practice, quicksort nonetheless
operates in 0(n^) time in the worst case. This worst-case time can result, for example,
when a series of pivots are chosen such that only a constant number of elements reside
on one side of the pivot at each partitioning step. Clearly it is not desirable for quick­
sort to “go quadratic” in this manner. However, quicksort is widely used in practice
because it performs well on average, essentially because of the fact that its inner-loop is
efficient in practice compared to other ©(nlogn) average case sorting algorithms. Our

38

3.4. Related Work 39

experimental results show an interesting contributing factor to the efficiency of quick­
sort’s inner-loop for the first time, namely that the on average slightly unbalanced
partitioning it performs improves its branch prediction properties, effectively reducing
the cost of each comparison instruction it executes. As we have demonstrated in this
section, quicksort’s branches become less predictable as the quality of the pivot used
is improved via the median-of-3 technique. In work current with that of this thesis,
Kaligosi and Sanders [2006] investigated the performance of quicksort when the pivot
quality is deliberately degraded. We discuss this work in detail in Section 3.4.1.

3.4 Related Work
As early as 1972 Knuth commented on the “ever-increasing number of ‘pipeline’ or
‘number crunching’ computers that have appeared in recent years” whose “efficiency
deteriorates noticeably in the presence of conditional branch instructions unless the
branch almost always goes the same way” (the same comment appears in [Knuth
1998b]). Most likely, Knuth was referring to the IBM 7030 “Stretch” computer (re­
leased in 1961 with a four-stage pipeline), Seymour Cray’s Freon-cooled CDC 6600
supercomputer (released 1964), or other early supercomputers which used pipelining
in the execution of general-purpose instructions.

A number of other authors have considered optimized implementations of sorting
algorithms for more recent single-processor machines. This work however is most often
related to the caching properties of sorting algorithms. An early example is the work
of Nyberg et al [1994]. They present a quicksort-based algorithm for RISC architec­
tures. They found that the main limit on performance was cache behaviour, and do not
consider or refer to branch prediction. More recently, the study of cache-oblivious algo­
rithms [Prigo et al. 1999] has led to cache-oblivious general purpose sorting algorithms
that may be practical [Brodal et al. 2007].

In their classic work, Bentley and Mcllroy [1993] implemented a highly-tuned quick­
sort, to be used in the qsort function of the standard C library. Again, they did not
consider branch prediction, perhaps because the first desktop processors with dynamic
branch predictors (such as the DEC Alpha 21064, MIPS R8000 and Intel Pentium)
were only just appearing around that time.

Sanders and Winkel [2004] investigate the use of predicated instructions on Intel
Itanium 2 processors. In addition to its normal inputs, a predicated instruction takes
a predicate register input. If the value in the predicate register is true, the instruc­
tion takes effect; otherwise it does not. Predication is normally implemented by the

39

3.4. Related Work 40

instruction being executed regardless of whether the predicate is true. However, its
result is only written back to a register or memory if the predicate is true. Although
predicated instructions use execution resources regardless of whether they are allowed
to write back, they allow conditional branches to be eliminated. Sanders and Winkel
show how the partition step in quicksort can be rewritten to use predicated instructions
on an Itanium 2, a highly instruction-level parallel machine. The Itanium 2 provides
large numbers of parallel functional units and registers which make such trade-offs
worthwhile.

Mudge et al [1996] examine the behaviour of the i and j comparison branches in
randomized quicksort, as an example to demonstrate a general method for estimating
the limit on the predictability of branches in a program. Their work provides an early
discussion of the relationship between branch prediction, sorting and data compression.

They note that — as described in Section 3.2.1 — without any a priori knowledge
of the data to be sorted, the optimal predictor for these branches would keep a running
count of the total number of array elements examined so far that are greater than the
pivot. If the majority of the elements examined so far are greater than the pivot, the
next element is predicted as greater than the pivot, and vice versa.

This simple technique described by Mudge et al could be made use of on architec­
tures featuring semi-static branch predictors. In such a situation the hint-bit of the
appropriate i and j branches in quicksort could be dynamically adjusted according to
their simple scheme just described. A modern architecture where this may be practical
is IBM’s CELL SPE architecture. On this architecture there is an 18-cycle branch mis­
prediction penalty, and the branch predictor is semi-static [Eichenberger et al. 2006].
The CELL SPE also features predicated instructions, and hence the performance com­
parison between the two techniques would be interesting. In fact, in a situation such
as this, where it is possible to hint branches optimally, a semi-static predictor could
out-perform dynamic predictors.

Brodal et al [2005] examine the adaptiveness of quicksort. They find that although
randomized quicksort is not adaptive (i.e. its asymptotic analysis does not improve
with respect to some measure of presortedness), its performance is better on data with
a low number of inversions. They justify this by showing that the expected number
of element swaps performed by randomized quicksort falls as the number of inversions
does. The number of branch mispredictions is roughly twice the number of element
swaps, because two branch mispredictions tend to occur when the two while loops of
the partition code exit (see Figure 3.8). Furthermore they provide an empirical relation
between the presortedness of the input, randomized quicksort’s performance, and the

40

3.4. Related Work 41

number of branch mispredictions.
In closely related work, Brodal and Moruz [2006] explore skewed binary search

trees. That is, a binary search tree that is deliberately constructed to have more
nodes in its left subtrees than its right sub-trees. During a search, this biases the
comparison branches executed at each node, improving their predictabilty. For certain
static layouts of the trees, deliberate skewing results in a performance improvement.

Finally, in the following two sections we explore experimentally two pieces of impor­
tant work [Brodal and Moruz 2005; Kaligosi and Sanders 2006] that examine variations
of quicksort and mergesort designed to have improved branch prediction properties.

3.4.1 Skewed Quicksort
In work concurrent to and independent of our own, Kaligosi and Sanders [2006] inves­
tigated the effect of the choice of pivot on the performance of quicksort. They found
that an artificially skewed pivot gives better performance than using a random pivot
or the median-of-3, due to the reduction in branch mispredictions. This performance
increase is despite the increased instruction count such an artificially skewed pivot
causes. Kaligosi and Sanders examine a-skewed pivoting, that is, where the pivot has
rank [anj when sorting n keys. They examine the performance of quicksort when
the pivot is determined randomly, from the median-of-3, or is the true median (i.e. a
(l/2)-skewed pivot). They show that using a (l/10)-skewed pivot gives a performance
increase over all the aforementioned pivot choices. In this section, we provide an addi­
tional experimental evaluation of their work. In particular, we attempt to construct a
more realistic implementation of a skewed quicksort, by improving the spatial locality
of the algorithm and choosing the pivot in a practical manner.

In their experiments, Kaligosi and Sanders sort random permutations of {1,..., n},
and they take advantage of this to compute an ct-skewed pivot very simply, i.e. as
I + a{r — 1), where the end-point indices of the sorting sub-problem are I and r. In
practice however, a skewed pivot must be chosen via sampling. In order to choose an,
on average, l/(s 4- l)-skewed pivot it is necessary to select the minimum of a sample of
s elements as the pivot. This can be seen easily since the probability that the minimum
of a sample of s elements has rank q in an array of n elements is ("Z^) / (”) • And so
the average rank of the pivot is given by Q (s-i) / 0 ~ (n -)- l)/(s -(-1).
In our implementations, sampling is used to select a skewed pivot. Choosing a skewed
pivot adversely affects the spatial locality of quicksort, since larger subproblems are
processed until a deeper depth of recursion than when a better balanced pivot is used.
As a result, to improve performance our skewed quicksort implementation only begins

41

3.4. Related Work 42

to use skewed pivots when the remaining subproblem fits within the level 2 cache.
Figure 3.9 shows experimental measurements of our skewed quicksort implementa­

tion in practice. We also compare to a traditional median-of-3 quicksort implemen­
tation, which chooses its pivot via the median-of-3. this is labelled “Base Quicksort”
in Figure 3.9. In fact, this is the std: :sort function of the GNU C++ Standard
Template Library [Stroustrup 1997] implementation, and the other implementations
differ only in the code that choose their pivot. Figure 3.9(a) shows that as expected,
the number of branches executed increases as the skew of the pivot is increased - this
increase is traded for the improvement in the predictability of the resulting branches,
visible in Figure 3.9(c). Despite only skewing when the number of remaining elements
fits within the level 2 cache, the skewed quicksorts cause slightly more level 2 cache
misses than the base quicksort implementation. Furthermore, although not shown,
they also cause a larger number of level 1 cache misses. Finally Figure 3.9(d) shows
the best performing algorithm is the unskewed base quicksort implementation.

The disparity between the results we observe and those reported by Kaligosi and
Sanders, is likely due to difference in instruction pipeline lengths in the experimental
setups. They report a speed-up on a Pentium 4 Prescott, which has a 31-stage pipeline.
Whereas the Core 2 processor we experimented with has only a 12-stage pipeline. Our
results show that skewing is a somewhat fragile technique for achieving a speed-up in
a quicksort implementation, even when spatial locality is taken into account.

We believe it was important to describe and examine our variant of skewed quick­
sort adjusted to realistically choose a pivot and account for spatial locality, since in
performance critical situations sorting algorithms can be tuned for specific architec­
tures, and even to data sets. A detailed account of automatically constructing sorting
algorithms tuned to a particular machine is provided by Bida and Toledo [2007]. An
earlier account is also provided by Li et al [2005].

3.4.2 Insertion Mergesort
Brodal and Moruz [2005] have shown that any deterministic comparison based sorting
algorithm performing 0{dn log n) comparisons must incur fl{n\og^n) branch mispre­
dictions — this is under the assumption that each key comparison determines the
direction of an immediately following branch instruction. Their theorem results essen­
tially from the formalization of the decision tree argument given in Section 3.3.

In Section 3.2.2 we showed that insertion sort causes 0(n) branch mispredictions,
appealing to the result of Brodal and Moruz with d = u/logn we see that insertion
sort is optimal in the sense that any sorting algorithm performing O(n^) must cause

42

3.4. Related Work 43

(b)

Figure 3.9; This figure shows performance results for skewed quicksorts as well as
a traditional median-of-3 quicksort, labelled “Base Quicksort”, (a) Shows that the
skewed quicksorts execute more branches than base quicksort, with the number of
executed branches rising with the skew. Although not shown, the number of executed
instructions grows in a similar fashion, (b) Shows that the skewed quicksorts also
have slightly worse spatial locality, despite only resorting to skewing when the data
fits inside the level 2 cache, (c) Shows that the number of branch mispredictions does
indeed decrease as the skew increases, however (d) shows that the best performing
algorithm is base quicksort. These results were gathered on an Intel Core 2 Duo
2.13GHz processor with a 2MB level 2 cache, using PAPl [Dongarra et al. 2003]. The
data is uniform random data generated using the C function random, and each data
point is averaged over ten executions of the algorithms on the data.

43

3.4. Related Work 44

Q{n) branch mispredictions.
Brodal and Moruz also described insertion d-way mergesort, a multi-way mergesort

algorithm that is optimal in the sense that it incurs O(nlog^n) branch mispredictions
when performing 0{dn\ogn) comparisons. Brodal and Moruz do not provide perfor­
mance results for their algorithm. We now describe their algorithm and briefly present
performance results for it.

Insertion d-way mergesort is an out-of-place multi-mergesort algorithm operating
in O(dnlogn) time on an input of n keys. For the simplicity of the description assume
n is a power of d. The algorithm performs log^n passes over its input, with the i^^
pass performing d-way merges of sorted lists of length d*“^ into sorted lists of length db
These d-way merges operate as follows: d sorted subarrays of an array a of m keys are
merged in 0{dm) time. The algorithm maintains a vector i = (zi,..., z^) of indices into
the sorted subarrays, together with a permutation tt = (tti, ..., tt^) of {1,..., d} such
that (a[z7ri],..., a[*7rd]) is sorted. To perform a step of the merge, a[z7rj is appended to
the output array and z^j is incremented. The inner-loop of insertion sort (see Section
3.2.2) is then used to update tt to ensure in 0(d) time that (o[z,ri]) • • • > <^[*7rd]) is again
in sorted order. This process is repeated m times, when all the keys in the subarrays
will have been exhausted.

Figure 3.10(a) shows the number of instructions per element for our insertion merge­
sort variations. Increasing d from 3 to 6 causes a significant reduction in instruction
count, however increasing d beyond 6 does not give further reductions in instruction
count, as can be seen in Figure 3.10(a).

Figure 3.10(b) shows that as d is increased in the insertion d-way mergesort there
is a corresponding reduction in the number of branch mispredictions. It is also notable
that as d increases the cache performance of the algorithm also improves, as shown in
Figure 3.10(c).

Figure 3.10(d) shows the cycles per element for each of the insertion mergesort
variations. Our results indicate that Brodal and Moruz’s [2005] insertion merge is a
practical technique, although the base quicksort implementation of Figure 3.9 comfort­
ably out-performs these mergesort variations. One desirable property of the insertion
merge technique is that increasing d improves locality while also reducing branch mis­
predictions. Moreover, it may be possible to substantially mitigate the high instruction
count of the technique by varying the value of d depending on the number of keys which
remain to be sorted. In addition, for small values of d the insertion merge should be
special-cased. It is also likely that the cache performance of the algorithm could be
substantially improved by copying blocks of keys (for example, as many keys as fit in

44

3.5. Conclusion 45

a cache-line) to small buffers when appending keys from subarrays to the destination
buffer. We also note that the insertion merge could also be used in a multi-quicksort
implementation. That is, a quicksort implementation where d pivots are selected at
each partitioning step.

3.5 Conclusion

This chapter has described how a ubiquitous hardware artifact: branch prediction, in­
teracts with a number of classic sorting algorithms. We believe it is important that the
everyday algorithms of Computer Science be understood in detail, and their interaction
with the machines we use be carefully examined. Indeed, dynamic branch predictors
have been present in some form in processors for nearly 40 years. In his description of
the MU5 Instruction Pipeline in 1971, Ibbett [1971] notes

The Instruction Buffer Unit is therefore designed to reduce the number of
occasions on which this delay is incurred by predicting the result of the con­
trol transfer. The prediction technique is based on the use of an associative
store containing addresses of instructions which have previously caused con­
trol transfers to occur and a corresponding conventional store containing
the addresses of instructions to which control was actually transferred.

Ibbet appears to be describing a combination of two concepts now separated in com­
puter architecture: a branch predictor and branch target buffer [Hennessy and Patter­
son 2006].

We have shown that elementary algorithms such as insertion sort, selection sort
and bubble sort cause asymptotically different numbers of branch mispredictions. Of
particular note here is that the large numbert of the unpredictable branch instructions
executed by bubble sort and its variants such as shaker sort dominate its execution
time.

In the case of efficient algorithms, we have shown that quicksort’s inner-loop com­
parison branches are naturally more predictable than those of heapsort or mergesort.
This demonstrates another advantage of quicksort for the first time. In a sense, it shows
that choosing the pivot in a somewhat cavalier manner in quicksort has certain advan­
tages, so long as the quadratic time worst-case of the algorithm is not encountered.
Quicksort’s comparison branches are not only more predictable than those of mergesort
or heapsort, but when pivot choosing does go badly and partitioning becomes unbal­
anced, the inner-loop branches become more predictable. This offers quicksort a certain

45

3.5. Conclusion 46

12 13 14 15 16 17 18 19 20 21
Log2(Number of elements)

(a)

(c)

(b)

Log2(Number of elements)

(d)

Figure 3.10: (a) Shows the instruction counts for the insertion d-way mergesort al­
gorithms, for a variety of values of d. (b) Shows the branch mispredictions per key
for the algorithms, (c) Shows the cache performance of the algorithms, we note that
increasing d also improves spatial locality. The lack of improvement in spatial locality
for d = 9 and d = 12 is a result of the fact that d = 9 suffices to ensure all sub-problems
fit within the level 2 cache for the problem sizes shown. Finally (d) shows the cycles
per key of the algorithms, showing how the results of (a), (b) and (c) translate into
true performance. These results were gathered using PAPf [Dongarra et al. 2003] on
an Intel Core 2 Duo 2.13GHz with a 2MB level 2 cache.

46

3.5. Conclusion 47

amount of natural resistance to poor pivots: although the instruction count increases,
the branch misprediction penalty decreases. We have also shown that skewing quick­
sort is a somewhat fragile technique for achieving a speed-up, even when implemented
carefully. Moreover, it is our view that skewing is unlikely to be an effective technique
on future processors. The current processor trend is towards increased parallelism, and
steps away from so-called super-pipelined designs, where very long pipelines enable in­
creases in the clock-speed of the processor to be reported [Hennessy and Patterson
2006]. We have also presented experimental results for a mergesort variation that is
asymptotically optimal in the number of branch mispredictions it causes. In addition,
we have examined the spatial locality of the algorithm experimentally. In this line, we
have also noted possible improvements to the algorithm, and that there is an analgous
insertion multi-quicksort algorithm.

An important practical observation is that algorithms such as radix sort that do
not compare their input elements in order to sort them are not subject to the resul­
tant problem of branch mispredictions. This observation was made by Knuth as early
as 1972, with the same observation appearing in the latest revision of his classic text
[Knuth 1998b]. Comparison based sorting and searching data structures are more gen­
eral than radix based approaches, although many objects of interest can be ordered
based on their digital representation. Indeed, in the following chapter we explore the
performance of data structures that do not rely only on comparisons, and demonstrate
that in certain situations their superior performance is a result of the small number
of branch mispredictions they incur (see Section 4.4.2). A second important practical
observation is that where comparison based sorting and searching are genuinely nec­
essary (examples occur in certain geometric algorithms [Bentley and Ottmann 1979])
predicated instructions, and good compiler support for them may be important for
improving performance.

Finally, further experiments concerning sorting and branch prediction, as well as
the branch prediction properties of certain cache-aware sorting algorithms can be found
in the paper upon which this chapter is based [Biggar et al. 2008].

47

Chapter 4

Comparing Integer Data Structures
for 32 and 64-bit Keys

4.1 Introduction

Maintaining a dynamic ordered data structure over a set of ordered keys is a classic
problem, and a variety of data structures can be used to achieve O(logn) worst-case
time for insert, delete, successor, predecessor and search operations when maintaining
a set of n keys. Examples of such data structures include AVL trees [Knuth 1998a],
B-trees [Bayer and McCreight 1972; Knuth 1998a] and red-black trees [Cormen et al.
2001]. Red-black trees in particular see widespread use via their GNU C++ STL
implementation [Stroustrup 1997].

Where the keys are known to be integers, different asymptotic results can be ob­
tained by data structures that do not rely solely on key comparisons. For example, the
stratified trees of van Emde Boas [1977] support all operations in 0{\ogw) worst-case
time, while Willard’s q-iast tries [1984] support all operations in 0{y/w) worst-case
time. Such data structures are attractive because of their potential to offer better
performance than comparison-based data structures. However, it is a significant chal­
lenge to construct implementations that reveal their asymptotic performance, especially
without occupying a large amount of extra space compared to comparison-based data
structures. For example, Dementiev et al. [2004] provide a stratified tree implemen­
tation based on the variation described by Mehlhorn and Naher [1990]. While they
achieve superior performance in time against comparison-based data structures, their
data structure occupies more than twice as much space and is restricted to 32-bit keys.

In this chapter we experimentally evaluate the performance of a variety of data
structures when their keys are either 32 or 64-bit integers. We emphasize that although

48

4.1. Introduction 49

we refer to the keys as integers, the keys may be any set of bit-strings all of some fixed
length. A classic example is that the keys may also be floating point numbers, since
their order is preserved when their bit representation is interpreted lexicographically
[IEEE 2008]*.

We find that a carefully engineered variant of a burst trie [Heinz et al. 2002] gener­
ally provides excellent performance in time and space compared to all the alternative
data structures. We experimentally compare the performance of our burst trie variant
in both time and space to red-black trees and 5-trees. Aside from these commonplace
general purpose data structures, we also experimentally examine the performance of
two slightly more ad-hoc data structures [Dementiev et al. 2004; Korda and Raman
1999] that are tailored for the case of integer keys, and have been shown to perform
well in practice. We describe these two data structures in the remainder of this section.

Dementiev et al. [2004] describe the engineering of a data structure based on
stratified trees [van Emde Boas 1977] and demonstrate experimentally that it achieves
superior performance to comparison-based data structures. Their data structure is
highly specialized to the case of 32-bit keys. Their data structure is a hierarchy of
tables. The root table, r, contains 2^® pointers, if there is a key in the data structure
with its highest 16 bits equal to z, then r[z] points to a second level dynamic hash table.
Assuming a level two table, L2, exists and there is a key with bits 8... 15 equal to j
then L2[j] contains a pointer to a third and final dynamic hash table, indexed by the
lowest 8 bits of the keys. These hash tables grow in power of two sizes from a minimum
of 4 to a maximum of 256 entries. To allow the data structure to support operations
such as predecessor and successor, an analogous hierarchy of bit vectors is maintained
together with the tables at each level. This hierarchy of tables is a recursive example
of exponential range reduction, originally used in a data structure devised by van Emde
Boas. We provide further details in Section 4.5.

We refer to this structure of Dementiev et al. as an 5-tree. Although highly efficient
in time, the 5-tree is tailored around keys of 32-bits in length and generalizing the data
structure to 64-bit keys would not be feasible in practice because of the large amount
of space required to maintain efficiency. For example, it would be infeasible for the
root table r mentioned above to contain 2^^ pointers. Thus, it would have to become
a dynamic hash table, with a significant impact on performance. As our experiments
will show, even for 32-bit keys the data structure requires more than twice as much
space as a typical balanced search tree.

’Actually, minor modifications are required to ensure this: the most significant bit is complemented
for non-negative floating numbers, all bits are for complemented negative floating point numbers.

49

4.1. Introduction 50

Korda and Raman [1999] describe a data structure similar to a q'-fast trie [Willard
1984] and experimentally show that it offers performance superior to comparison-based
data structures. Unlike the 5-tree data structure engineered by Dementiev et al. this
data structure is not restricted to 32-bit keys and requires less space in practice. We
now briefly describe the features of Korda and Raman’s data structure relevant to
our discussion. We refer to their data structure as a Q-trie. A Q-trie consists of a
path compressed trie containing a set of representative keys, Ki < K2 < ■ ■ • < Km-
Associated with each representative key Ki is a bucket data structure Bi containing
the set of keys {k e S : Ki < k < Ki+i} for i < m, and {k E S : k > Km} for i — m,
where 5 is the entire set of keys in the data structure.

Each bucket contains between 1 and b — 1 keys. When a new key is inserted into
the data structure the compressed trie is first searched for its predecessor key, giving
a representative key Ki. If the associated bucket Bi already contains 6—1 keys, a
new representative key is added to the compressed trie that partitions the bucket into
two new buckets containing 6/2 keys each. Deletions operate in a similar manner to
insertions, except that when two adjacent buckets Bi and Rj+i contain fewer than 6/2
keys in total the keys of Rj+i are inserted into Bi and /Tj+i is deleted from the trie. A
search in the data structure is accomplished by a predecessor query in the compressed
trie, followed by a search in the relevant bucket data structure.

There are many other non-comparison-based data structures in addition to the two
just mentioned, both practical and theoretical. We provide an overview in Section 4.5.

The contributions of our work are as follows:

1. We provide a thorough experimental comparison of dynamic data structures over
32 and 64-bit integer keys. We provide time and space measurements over uniform
and non-uniform random data as well over data sets that arise more naturally,
and over several different machine architectures, configurations and compilers.
We feel that previous experimental work on integer data structures has been
focused on engineering an efficient variant of a particular data structure, rather
than placing that data structure in context with other comparison-based and
non-comparison based structures in time and space. For example, Korda and
Raman [1999] provide experimental results comparing the Q-trie described above
where the bucket data structure is varied. However, they do not include space
measurements, use only random data, and do not include any classic comparison-
based data structures in their comparison. Dementiev et al. [2004] compare
their engineered data structure only with comparison based data structures, do
not provide space measurements and only examine performance on artificial data

50

4.2. Burst Tries 51

sets. Nilsson and Tikkanen [2002] provide a comparison of several variants of their
releixed level compressed trie structure with comparison based data structures.
Their experiments include time and space measurments over both random and
naturally occuring data. Unfortunately they do not include certain other integer
data structures (e.g. a Q-trie) in the comparison, and amongst their comparison-
based structures they lack a 5-tree — often the most efficient comparison-based
structure for searching. In addition, all of the experiments above were performed
on a single machine architecture. While all of the work described above has made
an important experimental contribution, we hope to contribute by building upon
it in this chapter by providing a more thorough experimental evaluation of integer
data structures.

2. We show that burst tries extend efficiently to a dynamic ordered data structure.
The work of Heinz et al. [2002] examining burst tries focuses on the problem of
vocabulary accumulation, where the keys are variable length strings. The only
operations performed are insert and search, with a final in-order traversal of
the burst trie. In contrast, we consider the case of integer keys with all the
operations usually associated with a dynamic ordered data structure. We show
how all the operations usually associated with a dynamic ordered data structure
can be implemented efficiently through careful engineering. The burst trie variant
we describe is a combination of a level compressed trie [Andersson and Nilsson
1993] with a burst trie. To the best of our knowledge, this combination has not
been studied experimentally in the past.

3. We show that our burst trie variant performs excellently in practice. Although the
full picture is only available by examining our experimental results (see Section
4.4 and Appendix A), we note that our burst trie variant usually offers better
performance than both comparison-based and the other integer data structures
in time, and occupies less space than even space efficient implementations of
comparison-based search trees.

4.2 Burst Tries
In this section we provide the definition of a burst trie and some basic background
information regarding the data structure.

Definition A string w is the u-suffix of a string u ii u = vw.

51

4.2. Burst Tries 52

Figure 4.1: (a) Shows a trie holding the keys 1200, 1600, 7012 and 7567. The leaves of
the trie (black squares) hold the satellite data associated with the keys. A correspond­
ing burst trie, with bucket capacity 2, is shown in (b).

Definition A burst trie with bucket capacity c containing n keys is a tree with the
following properties;

1. If n = 0, the burst trie is empty.

2. If n < c, the burst trie is a bucket data structure containing the n keys and their
associated values.

3. If n > c, the burst trie consists of an internal node with 2* children, i > 1. For
each binary string x of length i, there is a child burst trie containing all the
2;-suffixes of the keys.

Figure 4.1(a) shows an example of a trie while Figure 4.1(b) shows a burst trie
corresponding to it. Although we refer to what has just been described as a burst trie,
using some kind of bucketing in a trie is an old technique. Sussenguth [1963] provides
an early suggestion of the technique, while Knuth analyses bucketed tries [1998a]. In
addition, Knessl and Szpankowski [2000b; 2000a] analyse what they refer to as 6-tries
— tries in which leaf nodes hold up to 6 keys.

We use the term burst trie of Heinz et al. [2002] because their work was the first to
provide a large scale investigation of alternative bucket data structures, the time and
space trade-offs in practice resulting from bucketing, and the bursting of bucket data
structures during insertions, which we describe below.

Searching in a burst trie is similar to searching in a conventional trie. The digits
of the key are used to determine a path in the trie that either terminates with a NIL

pointer, in which case the search terminates unsuccessfully, or a bucket is found. In
the latter case, the search finishes by searching the bucket data structure for the key.

52

4.3. Engineering Burst Tries 53

Figure 4.2: (a) Shows the burst trie of Figure 4.1(b) after inserting the key 1601.
Assuming the buckets can hold at most two key suffixes, inserting the key 1601 causes
the left bucket shown in Figure 4.1(b) to burst. In (b) an OR-tree is shown, a possible
in-node data structure for implementing a burst trie.

Insertion of a key into a burst trie is also straightforward. The digits of the key are
used to locate a bucket where the key should be stored. If no such bucket exists, one
is created. On the other hand, if a bucket is found and it contains fewer than c keys it
need not be burst and the key is simply added to that bucket. Otherwise, if the bucket
already contains c keys, it is burst. This involves replacing the bucket with a trie node
and distributing the keys of this bucket into new buckets descending from this new trie
node. Figure 4.2(a) shows an example of a burst operation occuring on the burst trie
of Figure 4.1(b). It is possible that all keys from the burst bucket belong in the same
bucket in the newly created node. In this case, the bursting process is repeated.

Deleting a key k from a burst trie is performed by first searching for the bucket
where k is stored, as described above. If there is no such bucket, no deletion need
occur. Otherwise, k is deleted from some bucket 6 at a node x. If b is then empty, it is
deleted from x. If x then has only nil child and bucket pointers x is deleted from the
trie. This step is repeated, traversing the path from x to the root of the trie deleting
ancestors encountered with only nil child or bucket pointers. The traversal terminates
when either a node with a non-nil pointer is encountered, or the root of the trie is
reached.

4.3 Engineering Burst Tries

Although the burst trie data structure described in the Section 4.2 leads to a highly
efficient data structure, especially for strings, as shown by Heinz et al. [2002], care must
be taken when engineering it for the case of an ordered data structure for integer keys.

53

4.3. Engineering Burst Tries 54

Our variant of a burst trie makes use of three data structures for which we consider
the engineering concerns: (1) The trie data structure itself. We describe the use of a
trie making use of level and path compression. We note that the combination of level
compression and bucketing in tries has not been examined experimentally in the past.
(2) The bucket data structures at the leaves of the trie, and (3) the data structures
inside the nodes of the burst trie. We describe the alternatives for this latter data
structure in the next section.

4.3.1 In-Node Data Structures

Given a node a; in a trie-based data structure with branching factor 6, and an index i,
0 < 2 < 6, it is often necessary to find Succ(2), that is, the smallest j > i such that
X \j] ^ NIL. This is the bucket or child node pointer directly following x [2]. It is also
often required to find Pred(2), the largest j <i such that x [j] ^ nil. These operations
upon nodes are required, for example to support queries on the trie involving in-order
iteration over its keys. We elaborate on the use of these operations in Section 4.3.5.

Many data structures can be used to support these predecessor and successor op­
erations on the trie node [Demaine 2003]. We experimented with several in-node data
structures for our burst trie variant. The simplest data structure supporting these
predecessor and successor operations is just a linear search over a bit-vector. This
data structure requires only 0(1) worst-case time (all bounds in this section should be
understood as worst case) when a new bucket or child is added or removed from the
node, however, Pred and Succ are inefficient, requiring 0(5) time.

An alternative in-node data structure is an OR-tree. Figure 4.2(b) shows an ex­
ample of this data structure. A breadth-first traversal of an OR-tree can be laid out
in an array inside each node, requiring an additional 0(6) space compared to a simple
bit-vector approach. However, an OR-tree offers all operations in 0(log6) time.

Another simple solution is to implement Pred and Succ using counters.
Where the 2*^ counter, 0 < 2 < [v^] holds a count of the non-zero bits in the range
[21’-sA], 21’\/6] + \Vb] — 1] (except perhaps for the last counter, which covers the range
[6 — \y/b],b — 1]). This data structure allows insertions and deletions in 0(1) time
and supports Pred and Succ in 0(\/6) time, requiring at most [v^] counters to be
examined followed by at most \Vb] bits.

Of course, for large enough inputs the OR-tree will out-perform the counter search,
because it executes asymptotically fewer instructions. However, even for the largest
experiments we conducted in this chapter (see Section 4.4), which include data sets of
227 13 X 10® keys, the branching factor of any node in the burst trie did not exceed

54

4.3. Engineering Burst Tries 55

2'^^. Moreover, it is clear that due to its breadth-first layout, the spatial locality of the
OR-tree is worse than that of the counter search. Drawing on insights from Chapter
3, the OR-tree is also likely to incur more branch mispredictions, since intuitively
one expects that an algorithm executing an asymptotically smaller number of branches
extracts more information from each branch, thus making each branch less predictable.
The spatial locality of the OR-tree can be improved by avoiding the use of the breadth-
first layout, instead a cache oblivious layout can be used [Bender et al. 2000; Brodal
et al. 2002]. We use the simple indexing algorithm of Kasheff [2004] to implement our
cache oblivious OR-tree. Recall that the basic idea behind a cache oblivious layout of
a complete tree of height H is to recursively divide the tree vertically, with the result
that if the cache line length, B, is such that a complete sub-tree of height at most h
fits within a cache line, there exist complete sub-trees of height H/2^ < h < H12'^~^
which are stored contiguosly. As a result loading a sub-tree of height h can cause at
most 2 cache misses (or, 4 cache misses due to alignment issues), resulting in Q{Hfh)
cache misses in a traversal of the tree from root to leaf. Our cache oblivious OR-tree on
n nodes has H = [Ign], and clearly B = a2^ for some 1 < a < 2, giving the optimal
Q{H/h) = ©(log^n) cache misses in the cache oblivious OR-tree.

Figure 4.3 shows experimental measurements for the OR-tree in breadth-first and
cache oblivious layouts, and the counter search as the size of the bit-vector increases.
The bit-vector in this case consists of all zeros except that its right-most bit is set to
a one. The searching operation here is to find the successor of the left-most bit in
the bit-vector. Figure 4.3(a) shows the cycles (i.e. time) per search operation. At the
smaller input sizes, b < 2^^, the counter search is a maximum of approximately 30%
faster than the breadth-first layout OR-tree (although this is not easily visible in Figure
4.3(a)). We note that the OR-tree out-performs the counter search from around b — 2^^
onwards. This is due to the rapidly increasing instruction count of the counter search
compared to the OR-tree, shown in Figure 4.3(b). The smaller number of cache misses
and branch mispredictions incurred by the counter search, shown in Figure 4.3(c) and
(d) respectively do not result in a performance improvement for the counter search,
because they are insignificant compared to the number of instructions executed, even
accounting for their higher cost compared to the average instruction. For the range of
input sizes considered here, the improved spatial locality of the cache oblivious layout
OR-tree is not enough to compensate for the increase in instruction count and branch
mispredictions that the more complicated indexing of the cache oblivious layout causes.
It should be noted that the cache misses shown in Figure 4.3 are level 1 misses, and
are less expensive than the usually considered level 2 misses.

55

4.3. Engineering Burst Tries 56

In our burst trie variant, we have chosen to use the OR-tree as the in-node data
structure. This engineering decision is based on the data just presented. It should
be noted that the experiments above consider the case where the trie nodes are very
sparse, and the bits are not distributed uniformly. If one expects denser nodes and the
burst trie to contain data with a high degree of randomness then the counter search is
preferable. For example, note that if a bit-vector of any number of bits has only 0.1%
non-zero bits and these are uniformly distributed then successor queries on the in-node
structure can be regarded as operating on bit-vectors of 1000 bits long on average,
which is well within the region for which the counter search performs comparatively
well (see Figure 4.3(a)), and moreover it requires only 0(\/&) rather than 0(6) extra
space.

4.3.2 Bucket Data Structures

The choice of data structure used for the buckets of a burst trie is critical in achieving
good performance. Heinz et al. [2002] concluded that unbalanced binary search trees
holding at most 35 strings offered the best performance as a bucket data structure.
They also experimented with linked lists and splay trees [Sleator and Tarjan 1985].
Since the maximum number of keys stored in each bucket is modest (at most 35), a
simple bucket data structure, even with bad asymptotic behaviour, may perform well.
In related work, unsorted arrays of strings have been used as bucket data structures for
burst tries as a basis for the burstsort algorithm [Sinha and Wirth 2008; Sinha et al.
2006; Sinha and Zobel 2005, 2004; Sinha 2004], which is a cache-efficient radix sorting
algorithm.

We experimented with balanced binary trees as well as with unsorted arrays and
sorted arrays. Over all, we found the arrays are far more efficient in practice than the
search trees. It is likely that the arrays incur far fewer cache misses than the search
trees. If unsorted arrays of c elements are used as the bucket data structures, searching
in a bucket takes 0(c) time (all time complexities in the current section are worst case).
Insertion also requires 0(c) time, because each key to be inserted must be searched for
in the bucket before it can be inserted in order to avoid duplication. If sorted arrays
are used, searching in a bucket takes 0(logc) time, while insertion takes 0(c) time. In
practice, the insertion into a sorted array is more expensive than the insertion into an
unsorted array. This is because in unsorted arrays the elements need simply be scanned
to check for the presence of the key to be inserted. In the sorted case the elements of the
array must be rearranged to maintain sorted order. However, the logarithmic search
time in sorted buckets gives much improved search times in practice. Since in many

56

4.3. Engineering Burst Tries 57

7000

6000

5000

4000

3000

2000

1000

OR-tree —'—
OR-tree (CO)
Counter search - - ♦ - -

6 10 12 14 16 18 20
Lo92(Number of bits)

(b)

(c) (d)

Figure 4.3: This figure shows a comparison of the in-node data structures described in
Section 4.3.1. The results are averaged over several thousand successor search opera­
tions on a sparse bit-vector, and were gathered using PAPI [Dongarra et al. 2003] on
an Intel Core 2 2.13GHz, having a 32KB level 1 data cache. All of the data structures
fit within the level 1 data cache. We note the reduced branch mispredictions of the
counter search, shown in (c) and its better spatial locality shown in (d), are not enough
to compensate for its larger instruction count compared to the OR-tree, shown in (b).
As a result, except for very small inputs, the OR-tree performs best, as is shown in
(a). The cache oblivious OR-tree is labelled “OR-tree (CO)”. Due to the extra expense
of computing the cache oblivious indexing for this data structure, its performance is
worse than the standard OR-tree, despite its better spatial locality, visible in (d). The
transition points visible in the cache oblivious OR-tree’s performance at 2^® bits are a
result of that fact that at 2^® bits indexing reverts to breadth-first layout (without this
reversion, the overhead of its cache oblivious indexing is even higher).

57

4.3. Engineering Burst Tries 58

applications, searching is the most frequent operation executed on a data structure we
have chosen the sorted arrays over the unsorted arrays. In addition, predecessor and
successor operations are less efficiently supported by unsorted arrays.

In contrast to the array buckets of the burstsort algorithm, our buckets are sorted
holding at most 128 keys. We investigate the effect of bucket size on our burst trie
variant in Section 4.4.1. This is in contrast to the bucket sizes used in burstsort, where
the buckets are allowed to grow until they reach the size of the processor’s 2nd level
cache which can be several megabytes in size. The buckets are implemented as growable
arrays, and an insertion involves possibly doubling the size of the bucket followed by a
linear scan to find the correct position for the key to be inserted.

As mentioned above, often the most frequent operation executed on a data structure
is a search, and so searching buckets in particular should be efficient. We use a binary
search that switches to a linear search when the number of keys that remain to be
searched falls below a certain threshold. We found a threshold of between 16 and 32
keys gave a performance improvement over a simple binary search. Our burst trie
implementation is designed to provide a mapping from a key to the satellite data
associated with that key, which we refer to as the value for the key. To improve the
spatial locality of searches the keys and values of a bucket should not be interleaved.
Rather, all the keys should be stored sequentially, followed by all the values of that
bucket. This ensures searching for a key makes better utilization of the processor’s
cache lines.

4.3.3 Level and Path Compressed Tries

The burst trie defined in Section 4.2, and introduced by Heinz et al. [2002] uses a
simple trie to search for the bucket in which a key resides. In this section we describe
a burst trie making using of both level and path compression. Level compression was
proposed by Anderson and Nilsson [1993] (see also Nilsson [1996]). Dynamic level and
path compressed tries, or LPC-tries were investigated experimentally by Nilsson and
Tikkanen [2002], we discuss their work in more detail in Section 4.5. However, they
concluded level compression gave rise to tries that offered slower insertions and deletions
than comparison-based structures, while offering faster search operations. Moreover,
their LPC-tries occupy a similar amount of space to comparison-based search trees.
In contrast, the bucketed variations we describe in general provide all operations more
efficiently than comparison-based search trees, while also occupying signficantly less
space. We next give the definition of a path compressed burst trie (PCB-the) and
then of a level and path compressed burst trie {LPCB-tne), slightly amending the

58

4.3. Engineering Burst Tries 59

Figure 4.4: (a) Shows a binary trie, while (b) shows a level compressed trie. The level
compressed trie in (b) is obtained from (a) by replacing the top-most i complete levels
of the trie with a single node of branching factor 2\ and then repeating the process on
the children.

definitions of an LPC-trie given by Nilsson and Tikkanen [2002].

Definition A path compressed burst trie or PCB-trie with bucket capacity c contain­
ing n keys is a tree with the following properties:

1. If n = 0, the PCB-trie is empty.

2. If n < c, the PCB-trie is a bucket data structure containing the n keys and their
associated values.

3. If n > c, the PCB-trie consists of an internal node with 2* children, i > 1, and
a binary string x. The string x is the longest common prefix of all the keys
stored in the PCB-trie. For each binary string y of length i, there is a child trie
containing all the xy-suffixes of the keys.

Definition A level and path compressed burst trie or LPCB-trie, with bucket capacity
c, is a tree with the following properties:

1. The root is a PCB-trie with bucket capacity c having 2* children, where i > 1 is
chosen as large as possible such that the root has no empty child tries.

2. Each child trie of the root is an LPCB-trie.

59

4.3. Engineering Burst Tries 60

Figure 4.4 shows a simple example illustrating the idea of level compression in a trie.
Nilsson and Tikkanen [2002] maintain level compression dynamically through doubling
and halving of trie nodes. Doubling a trie node yields a new trie node having twice
the number of children of the original node, with the children shifted up (at most) one
level of the trie accordingly. Similarly, halving a trie node reduces its branching factor
by half, shifting down its children through the introduction of new binary nodes where
necessary.

The level compression defined for the LPCB-tvie is what Nilsson and Tikkanen
[2002] refer to as perfect. In a dynamic setting, a more relaxed approach to level
compression results in a more robust data structure. Nilsson and Tikkanen point out
that maintaining perfect level compression dynamically can cause a simple sequence of
alternating insertions and deletions to cause computationally expensive restructurings
of the trie. Instead it is desirable to associate two parameters E [0,1], a < /3 with
the trie. A node of branching factor 2* is halved if the number of empty sub-tries is
greater than or equal to [q:2* J. A node is doubled if the result is a new node of branching
factor 2% of which at least [/?2*J of its subtries are non-empty. In all experiments
in this chapter, we have used a = 1/4 and (3 = 3/4. Nilsson and Tikkanen noted
experimentally that this more relaxed approach, somewhat surprisingly, could result
in LPC-tries of smaller total depth than perfect level compression. Later, Janson and
Szpankowski [2007] showed that using this so-called partial fill-up in a level compressed
trie results in a smaller constant factor in the leading term of asymptotic search times
in level compressed tries in the Bernoulli model.

We found that an LPCB-tvie with suitably engineered level compression gave,
in general, the best performance in both time and space compared to all the other
trie data structures in our experimental comparison. In the experiments presented in
this chapter the minimum branching factor of any node in the level compressed trie
structures is 16. We found this to offer a reasonable trade-off between time and space
in the trie. Allowing nodes with very small branching factors can lead to large amounts
of memory allocation, note also that a substantial proportion of the storage of smaller
nodes is simply overhead from the memory allocations required for the node and its
internal structures.

We describe the engineering of level compression in the following section.

4.3.4 Engineering Level Compression

As described in the previous section, level compression can be maintained dynamically
through doubling and halving of trie nodes introduced by Nilsson and Tikkanen [2002].

60

4.3. Engineering Burst Tries 61

Their trie structure begins with binary trie nodes, which then expand when they have
a sufficiently large number of non-empty subtries. We note that doubling and halving
operations can be generalized to the case where the number of bits trie nodes branch on
grows by j bits at a time, j > 1. We refer to 2^ as the growth factor of the trie. When
nodes grow or shrink, the number of subtries respectively increases and decreases by
the growth factor.

We investigated the case where the minimum branching factor of a trie node and
the growth factor were both for j e {1,2,4,8}. There are two reasons the minimum
branching factor and the growth factor are kept equal, the first is that it simplifies the
implementation. It also simplifies the implementation if j divides the number of bits
in the keys in the trie, explaining the choices of j we have used. The second, less
important reason is that when a trie node grows by j bits, only subtries branching on j
or fewer bits have their depth reduced. So if the minimum branching factor is j, growing
by fewer than j bits will never reduce the depth of any subtries. Of course, growing
several times could eventually reduce the depth of the subtries, and even growing by
j bits does not guarantee a reduction in depth of any subtrie - if the subtries have
already grown. In general however, we found this aggressive growth of j bits at a time
to perform well experimentally (see Section 4.4 and Section A.2).

With this more aggressive trie node growth, we use a different critera to Nilsson and
Tikkanen [2002] in order to decide when to increase the branching factor of a node. The
LPCB-the keeps track of the total number of (distinct) keys it contains. A parameter
7 is associated to the trie, 7 is the maximum number of subtrie pointers per key that a
node is allowed to contain. The invariant maintained at each trie node is that B < 'jn,
where B is the branching factor of the trie node and n is then number of distinct keys
in the trie. In other words, 7 is the space overhead per key allowed for trie nodes.
After a key insertion, there is the possibility that certain trie nodes can be grown while
maintaining the given invariant. We use a very simple local property similar to Nilsson
and Tikkanen’s mentioned above. Namely, if an insertion causes a trie node to contain
at least [aB\ non-empty subtries, then it is grown (assuming, as just mentioned doing
so does not violate the space invariant). More complicated priority schemes could also
be used to decide the best node to grow, for example, the node whose growth reduces
the depth of the largest number of other nodes could be chosen. However, we have
not examined the trade-offs in practice that result between maintaining these more
complicated priority schemes and the possible performance improvements they yield.
After a sequence of deletions it is possible that certain nodes in the trie should be
shrunk. A node is shrunk (i.e. the number of bits it branches on reduced by j bits)

61

4.3. Engineering Burst Tries 62

if it violates the space invariant B > (7 + e)n. The parameter e > 0 is included to
keep the amortized cost per insertion and deletion operation reasonable, otherwise, it
is possible that an alternating sequence of insertions and deletions could result in a
node repeatedly growing and shrinking. We provide further details in Section 4.3.5,
where we describe how the individual operations on the LPCB-tv'ie function.

4.3.5 Operations

The preceding sections have described the data structures required for efficiently ex­
tending burst tries to an ordered data structure. The goals of this section are two-fold.
Firstly, to show show how the bucket, in-node and trie data structures described above
can be used efficiently to provide a burst trie with all the usual operations associated
with a dynamic ordered data structure. Secondly, to give important details of how the
operations are implemented, together with their time complexities. The time complex­
ities are provided so that the dependencies on the various parameters of the LPCB-ti'\e
can be understood and summarized succinctly.

The operations described below are for a LPCB-tv\e with maximum branching
factor b and bucket capacity c. Recall that we use an OR-tree as the in-node structure
for the trie nodes, and growable sorted arrays as buckets in the trie. We denote the
maximum height of the trie as h, the value of which is determined by the number of
bits in the keys and the minimum branching factor allowed for nodes in the trie. In
describing the time complexities given below, we refer to the worst-case time unless
otherwise qualified. For clarity, we now give values for the parameters of our LPCB-
trie implementation:

• The minimum bucket capacity (i.e. the capacity when a new bucket is created)
is 2 keys, upon insertion, buckets double until a maximum size of 128 keys. This
gives the parameter c above as 128.

• The minimum branching factor, m, of any trie node is 16. When nodes grow and
shrink, they increase or decrease in size by 16 times. The maximum branching
factor permitted is 6 = 2^°.

• Empirically, by examining space usage, the space overhead parameter, was chosen
as 7 = 8 X 10“^. Also experimentally, the slack parameter was chosen as e =
3 X 10-^

• Finally, the word-size, w, was chosen as either 32 or 64 bits depending on the
input. The maximum height of the trie, h, is w/\gm where m is the minimum

62

4.3. Engineering Burst Tries 63

branching factor of any node. Since we chose m = 16, h is 8 in the 32 bit case,
and 16 in the 64 bit case.

In describing the following operations on the LPCB-trie, we assume that its leaves
(i.e. the buckets) are maintained in order in a doubly linked list.

Locate. We first describe the locate operation, which finds the value associated
with the largest key less than or equal to a supplied key k (or nil if there is no such
key). Assuming the path in the burst trie determined by k leads to a bucket, then that
bucket is searched for the largest key less than or equal to fc, and its corresponding
value is returned. If k is not found in this bucket, the result is the largest key in
the bucket immediately before it in the linked list of buckets, which can be found in
constant time. In this case, the locate operation takes 0(/i + logc) time. In the case
where k does not lead to a bucket, the in-node data structure can be used to find a
bucket requiring &{h + \ogb) time, thus locate requires 0(h 4-max{log6, logc}) time.

Insert. Insertions to an LPCB-trie are one of three types.

1. An existing, non-full bucket is found for the key. In this case, insertion takes
time Q{h + c). Recall that the buckets are growable sorted arrays, requiring 0(c)
time to insert into.

2. Insertion of key k requires the creation of a new bucket. In this case, the in­
node data structure and doubly linked list of buckets must be updated. This
requires finding the two buckets whose keys are the immediate predecessors and
successors of k, and can be accomplished in Q{h -I- log 6) time. Note that the
in-node data structures should be augmented with indices storing the minimum
and maximum non-nil pointer at each node, which we refer to as the node’s
LOW and HIGH fields respectively. The low and high fields are used to avoid
the process of locating the predecessor and successor buckets requiring Q{h\ogb)
time. When a new bucket is created, it may cause the growth of a trie node,
requiring 0(6) time. However, a simple argument shows that due to the use of
relaxed level compression, the amortized time spent on node growth per insertion
can be regarded as constant - as we describe below.

3. An existing, full bucket is found for k. In this case, the insertion can take time
0(/ic). The 0(hc) time is required to find the longest common prefix of all keys
in the bucket to be burst, so that path compression is maintained. Note that
without path compression Q{hc) time is also required, because all the keys may
repeatedly enter the same new bucket and require it to burst. Figure 4.2(a)

63

4.3. Engineering Burst Tries 64

Name Architecture Clock Speed L2 Cache Size Compiler

Knuth Core 2 6400/32-bit 2.13 GHz 2 MB gcc v3.4.6 -03
Beaker Xeon 5138/64-bit 2.13 GHz 4 MB gcc v4.3.3 -03
Stoker Xeon 5140/32-bit 2.33 GHz 4 MB icc v9.1 -03
Melody UltraSPARC IIIi/32-bit 1.28 GHz 1 MB gcc v3.4.5 -03

Table 4.1: The basic specifications of the machines used for gathering experimental
results for the integer data structures.

illustrates the bursting of a bucket. Since a bucket can burst at most once every
c insertions, a straightforward argument can be used to show at most amortized
©(h) time is spent bursting buckets per insertion.

In total, insertion requires 0(h + max{c, log6}) amortized time.
Here we do not include a term of ^ = ©(7m/(m — 1)) that results in a sequence of

insertions. This term results from the fact that growing a node to branching factor
k > \, requires at least m*^/7 insertions, due to the space invariant introduced in the
previous section. Summing the geometric series for the total cost of node growth and
amortizing over this number of insertions gives the A term as shown. For any realistic
choice of 7 and m the term A can be ignored (for instance we chose 7 = 8 x 10“^ and
m = 16 above) and so the time complexity for insertion can be regarded as amortized
©(h + max{c, log 6}).

Other Operations. Deletion from an LPCB-ine is similar to insertion. When
an empty bucket is deleted from a node, the in-node data structure and linked list of
buckets should also be updated. In addition, a node may be shrunk as a result of a
deletion. In general, deletion takes 0(h-t-max{log6, c}) amortized time. Note that this
amortized time for deletion does not include the small magnitude term, similar to A just
mentioned for insertion. In a mixed sequence of insertions and deletions the amortized
costs can easily calculated by considering the minimum number of operations that
can occur between growing and shrinking a node. For example, having grown a node
to branching factor requiring at least m*^/7 insertions, for it to shrink, requiring
©(m'') time, the number of keys must be less than /{') -\- e), and so the amortized
cost per insertion or deletion in this sequence is ©(7/6(7 -|-1)). Iterating over the keys
in order can be easily implemented using the linked list of buckets. Since the buckets
are sorted arrays, in-order iteration is likely to exhibit excellent locality of reference.

64

4.4. Experimental Comp2irison 65

4.4 Experimental Comparison

We now describe the experimental comparison of our burst trie variant with a number
of other data structures. We present experimental results gathered on four separate
machines. This was done in order to vary the instruction set, cache sizes, word sizes,
and compiler used. The details of these machines are given in Table 4.1. In referring
to experimental results, we shall refer to these machines by the name given in this
table. In order to avoid undue repetition in the description of the experimental results,
we present the results for melody and stoker in Appendix A. For knuth and beeiker
we present experimental results measuring cache misses, branch mispredictions and
translation lookaside buffer (TLB) misses. The level 2 cache miss latencies on these
machines is 130—200 cycles, and their translation lookaside buffer (TLB) latency is
approximately 20 cycles. These latencies were measured using calibrator Manegold
and Boncz [2004]. These machines have 14 stage instruction pipelines, and so the
latency of a branch misprediction can be estimated to be approximately 14 cycles
[Intel 2007].

Our experiments investigate the case where the entire data structure fits in main
memory. We used the POSIX standard gettimeofday function for timing measure­
ments, because it offered microsecond resolution timing and is portable to any POSIX
system. Memory use was measured by augmenting the memory allocator to maintain
counts of allocated memory, including the overhead of the allocator. Our memory allo­
cation results report the number of bytes requested by the data structures themselves,
not the entire program. Our memory measurements were conducted in experiments
separate to our timing experiments, and all experiments were conducted on a lightly
loaded machine.

We used a number of different input data sets and access patterns to compare the
performance of the data structures. These included: uniform random keys and access,
biased-bit keys and access, uniform random keys and Zipf access, as well as data
derived from Valgrind [Nethercote and Seward 2007], and another data set comprised
of Genome strings. We provide the relevant details of these data sets in the sections
below discussing the relative performance of the data structures upon them. Table 4.2
provides a brief summary of some these data sets.

4.4.1 Burst Trie Configuration
Our goal is for our burst trie variant to be efficient in both time and space. In particular,
we believe that for our burst trie variant to be of wide applicability it should occupy

65

4.4. Experimental Comparison 66

Log2(Number of keys)

(a)

Log2(Number of keys)

(b)

Figure 4.5: (a) Shows the average time per insertion operation, while (b) shows the
space required by the data structures. This figure shows measurements gathered for
uniform random 32-bit keys. The data structures are burst tries all sharing the same
bucket structure, but with their trie structure varied, as described in Section 4.4.1.
These results were gathered on knuth.

66

4.4. Experimental Comparison 67

(fi
■Dcoo
<D
0)

0)
E

Log2(Number of keys)
(a)

12

10 -

6 -

PCWB-Trie c □
PC8B-Trie
8B-Trie RggggM
LPCB-trie hhh
LCB-trie l\\\m

i
Top Amarok Konqueror

(b)

KPDF

Figure 4.6: (a) Shows the average time per locate operation for uniform random 32-
bit keys, (b) Shows the time for processing the 32-bit Valgrind data sets. The data
structures are burst tries all sharing the same bucket structure, but with their trie
structure varied, as described in Section 4.4.1. These results were gathered on knuth.

67

4.4. Experimental Comparison 68

Top Amarok Konqueror KPDF

(a)

CO
(1)

nCO
CO)
0)

o
E
0)

110

65

60
□

105 + X -

100 8B-Trie -

PC8B-T rie X
95 PCWB-Trie X -

LCB-Trie □
90 LPCB-Trie ■ _

85 -

80 * -

75 -

70 -

13 13.5 14 14.5 15 15.5 16
Time (seconds)

(b)

Figure 4.7: (a) Shows the space required by the data structures for processing the 32-bit
Valgrind data sets, (b) Shows the time and space required by the data structures for
processing the 32-bit Genome data set. The data structures are burst tries all sharing
the same bucket structure, but with their trie structure varied, as described in Section
4.4.1. These results were gathered on knuth.

68

4.4. Experimental Comparison 69

Name Total keys
32-bit 64-bit

Distinct keys
32-bit 64-bit

Uniform random 1.3 X 10® 6.7 X 10^ 1.3 X 10® 6.7 X 10^
Top (Valgrind) 1.7 X 10^ 2.2 X 10^ 2.0 X 10^ 4.0 X lO'^
Amarok (Valgrind) 3.3 X 10^ 4.0 X 10^ 1.3 X 10® 2.4 X 10®
Konqueror (Valgrind) 5.4 X 10^ 6.4 X 10^ 1.4 X 10® 5.2 X 10®
KPDF (Valgrind) 1.0 X 10® 1.3 X 10® 4.3 X 10® 8.9 X 10®
Genome 1.6 X 10^ 1.6 X 10^ 5.0 X 10® 5.0 X 10®

Table 4.2: This table shows characteristics of the data sets used in our experimental
comparison. For the uniform random data, we used data sets ranging of at most 2^^
insertions in the 32-bit case, and 2^® insertions in the 64-bit case. The characteristics
given are for this maximum sized uniform random input. The four data sets: Top,
Amarok, Konqueror and KPDF are derived from Valgrind. Further details of the data
sets are given where we consider experimental results gathered using them.

tn
"O
c
oo0)
CO

(1>
E

25

20

15

10

5 -

PC8B-Trie
PCWB-Trie
LPCB-trie
8B-Trie
LCB-trie

I

Egon
I I

i

o

•n.

$

•

c ,

Top Amarok Konqueror KPDF

Figure 4.8: This figure shows the time required by the data structures for processing
the 64-bit Valgrind data sets. The data structures are burst tries all sharing the same
bucket structure, but with their trie structure varied, as described in Section 4.4.1.
These results were gathered on bealcer.

69

4.4. Experimentzd Comparison 70

Name Path Level Wide Root Min. Branching Factor
8B-Trie No No No 2® = 256
PC8B-Trie Yes No No 2® = 256
PCWB-Trie Yes No Yes 2® = 64
LCB-TVie No Yes No 2^ = 16
LPCB-Trie Yes Yes No 2^ = 16

Table 4.3: The burst trie organizations experimented with in Section 4.4.1. The column
“Path” refers to whether the trie is path compressed or not while “Level” refers to
whether the trie is level compressed. When a trie has a “Wide Root” its root nodes’s
branching factor is 2^®.

no more space than a well implemented comparison based data structure. In this
section we examine experimentally two aspects of our burst trie variant that have
a significant impact on its performance in time and space. Firstly, we examine the
trie structure used to index the buckets, considering simple tries that do not make
use of path and/or level compression as well as both level and path compressed tries.
Secondly, we examine the maximum bucket size used by the burst trie. We do not
intend the experimental results in this section to provide an exhaustive examination
of all the parameters that infiuence the performance of our burst trie variant, instead,
we have chosen to present two in detail that we believe are important. Experimental
results for a third parameter, the growth factor and minimum branching factor of trie
nodes are presented in an appendix (see Section A.2), and are not as extensive as the
results for these preceding two factors.

Trie Organization

The choice of trie structure used to index the buckets of a burst trie has a significant
infiuence over the performance in both time and space of the data structure. As
mentioned above, we have found that an LPCB-tne offers excellent performance in
time and space. In this section, we experimentally compare an LPCB-tne with several
alternative burst trie structures: (1) A burst trie with level compression but without
path compression, referred to as an LCB-trie. (2) A burst trie where each node has
branching factor 2® and with path compression, referred to as a PC8B-the. (3) A
burst trie where each node has branching factor 2® and without either level or path
compression, referred to as an 8R-trie. Finally, (4) A burst trie with a wide root
node of branching factor 2^® with all children nodes having branching factor 2®, and
with path compression. We refer to this latter burst trie as a PCWB-tvie. In the
level compressed tries, all nodes begin with branching factor 2^. These burst trie

70

4.4. Experimental Comparison 71

organizations are summarized in Table 4.3.
Figure 4.5(a) shows the time required by these burst trie variations to perform a

sequence of insertions of 32-bit uniform random keys. Clearly the two level compressed
tries, the LCB-trie and LPCB-tvie, perform best on this data. The two level com­
pressed tries also require the least space, shown in Figure 4.5(b). Due to its wide
root the PCWB-trie is very inefficient in space for small input sizes. As we shall
see in Section 4.4.2, a well-implemented B-tree requires approximately 20 bytes per
insertion! for this data. Even for large sets of keys the PCWB-tne exceeds this (e.g.
at 2^^ insertions it requires approximately 27 bytes per insertion). Figure 4.5(b) also
shows that the two simpler trie structures, the 85-trie and PCSB-trie are also highly
inefficient in space. On this data only the LCB-tvie and LPCB-tne have acceptable
space usage, of consistently between 12 and 17 bytes per insertion. In addition, they
are also the most efficient structures for the locate operation for 32-bit uniform ran­
dom keys, shown in Figure 4.6(a). The locate operation for a key k returns the value
associated with the largest k' < k. Note that this operation is more general than can
be answered efficiently with a hash-table. On this uniform random data, it appears
that the path compression used by the LPCB-tne constitutes an overhead in time
compared to the LCB-trie. This can be seen in both Figure 4.5(a) and Figure 4.6(a),
where the LCB-tvie performs slightly better than the LPCB-tvie.

Figure 4.6(b) shows the performance of the burst trie variations on the 32-bit Val-
grind data sets. On this data the simpler burst trie structures out-perform the level
compressed tries, over-all the PCWB-tvie performs best in time. Figure 4.7(a) shows
that the two level compressed tries offer the best performance in space, with the 85-
trie and PC'85-trie trie structures again requiring space usage that exceeds what is
required by a well implemented comparison based data structure (see e.g. the 5-tree
memory consumption results in Figure 4.19(b)). Figure 4.7(b) shows the time and
space required by the data structures for the 32-bit Genome data set. Here, the level
compressed trie structures perform best with the PC'5-trie performing slightly better
than the LPCB-tvie. On all the data just presented, the LC'5-trie and LPCB-tvie
both offer acceptable memory usage (that is, close to or less than a comparison based
structure for the same data) and the LCB-tvie generally performs slightly better in
time than the LPCB-tvie. That is, path compression appears to constitute an over-

tWe say “per insertion” rather than “per key” because we simply generate a new uniform random
key for each insertion, thus the keys are not distinct - although the number of duplicates is very
small compared to the total number of keys inserted, never exceeding 1.6% in the 32-bit random data.
There are no duplicates in the 64-bit random data. Note also that the data structures contain values
associated with the keys. In our experiments these values contain the same number of bits as the
keys.

71

4.4. Experimental Comparison 72

head. However, for longer keys, path compression can be important. Figure 4.8 shows
the performance of the burst trie variations on the 64-bit Valgrind data sets. Note that
the LPCB-tiie performs substantially better than the LCB-trie. For these data sets,
the use of path compression is important. For example, on the 64-bit top Valgrind
data set, almost all keys have their upper 28 bits consisting of zeros (the keys involved
are in fact memory addresses stored to and loaded from by a real program). This long
common prefix of the keys gives rise to sparsely populated nodes towards the root of
the trie which are never level compressed due to their sparsity. This results in a long
path in the trie to distinguish the keys in the LC5-trie, whereas in the LPCB-trie
the path compression can distinguish the keys with a single trie edge. Given the im­
portance of path compression for longer keys, demonstrated on the 64-bit Valgrind
data sets, we have chosen to use a level and path compressed burst trie, LPCB-trie
in our experimental comparison with other data structures for 32 and 64-bit integer
keys. We next experimentally examine the choice of maximum bucket size used by the
LPC B-tvie.

Bucket Size

Recall that the bucket data structure used by the LPCB-trie in question is a growable
sorted array, described in Section 4.3.2. We experimented with bucket data structures
of maximum size 16, 32, 64, 128 and 256 records. A very important consideration
for choosing the maximum bucket size is the space usage of the resultant LPCB-
trie. Intuitively, it seems a larger bucket size should give rise to a more compact data
structure.

We begin by examining uniform random data, on knuth, a 32-bit Core 2 machine.
Figure 4.9(a) shows the time required for insertions into the LPCB-trie, for these
bucket sizes, generally speaking a bucket size of 128 records gives the best performance
on this machine. Figure 4.9(b) shows that as the bucket size is increased, the space
usage of the trie decreases. The periodic peaks in the memory usage of the data
structure are likely a result of node growth due to level compression, possibly combined
with bucket bursting. As we will see in Section 4.4.2, a compact comparison based data
structure (such as a R-tree) requires about 20 bytes per insertion for this data. For a
bucket size of 128 keys, the space required is slightly less than this: between 12 and
17 bytes per insertion. Figure 4.10(a) shows the time per locate operation for uniform
random data as the bucket size varies. The difference in the time required by the
data structures for the locate operation, is much smaller than is observed for the insert
operation of Figure 4.9(a). Broadly speaking, the two larger bucket sizes of 128 keys

72

4.4. Experimental Comparison 73

Log2(Number of keys)
(a)

Log2(Number of keys)

(b)

Figure 4.9: (a) Shows the time required for insertion operations on the data struc­
tures, while (b) shows the space required by the data structures. This figure shows
measurements gathered for uniform random 32-bit keys. The data structures are level
and path compressed burst tries with the maximum bucket size varied between 16 to
256. These results were gathered on the 32-bit machine, and are described in Section
4.4.1.

73

4.4. Experimental Comparison 74

(/i
■ocoo
0)

CO

Log2(Number of keys)

(a)
12

10 -

LPCB-trie-16
LPCB-trie-32
LPCB-trie-64
LPCB-trie-128
LPCB-trie-256

Amarok Konqueror KPDF

(b)

Figure 4.10: (a) Shows the time required for locate operations on the data structures for
uniform random 32-bit keys, while (b) shows the time required by the data structures
for processing the 32-bit Valgrind data sets. The data structures are level and path
compressed burst tries with the maximum bucket size varied between 16 to 256. These
results were gathered on knuth and are described in Section 4.4.1.

74

4.4. Experimental Comparison 75

Top Amarok Konqueror KPDF

(a)
30000

25000

O)

.9 20000o

15000

COc
i 10000

5000

LPCB-trie-16
LPCB-trie-32
LPCB-trie-64
LPCB-trie-128
LPCB-trie-256

C □

Amarok Konqueror KPDF

(b)

Figure 4.11: (a) Shows the space required by the data structures for processing the
32-bit Valgrind data sets, while (b) shows the total number of instructions executed
for processing the 32-bit Valgrind data sets. These instructions counts were gathered
using PAPI [Dongarra et al. 2003]. The data structures are level and path compressed
burst tries with the maximum bucket size varied between 16 to 256. These results were
gathered on knuth, and are described in Section 4.4.1.

75

4.4. Experimental Comparison 76

CO0)</)CO

<D
oCOo

o
V)co

10

9
8

7

6

5

4

3

2

1

0

LPCB-trie-256
LPCB-trie-128
LPCB-trie-64
LPCB-trie-32
LPCB-trie-16

ti I
Top Amarok Konqueror KPDF

(a)

140

120

100 -

U)0)
X)raO)0)E
o
E 80 a>

60

40

X

LPCB-trie-16 -H
LPCB-trie-32 X -

LPCB-trie-64 X
LPCB-trie-128 □
LPCB-trie-256 ■

□

14.5 15 15.5 16 16.5 17 17.5 18
Time (seconds)

(b)

Figure 4.12: (a) Shows the level 2 data cache misses caused by the data structures
when processing the 32-bit Valgrind data sets, while (b) shows the time and space
required by the data structures when processing the 32-bit Genome data set. The
data structures are level and path compressed burst tries with the maximum bucket
size varied between 16 to 256. These results were gathered on the knuth using PAPI
[Dongarra et al. 2003], and are described in Section 4.4.1.

76

4.4. Experimental Comparison 77

<0cg
o
3u.
Wc

10200

10000

9800

9600

LPCB-trie-16 +
LPCB-trie-32 X
LPCB-trie-64 X

“ LPCB-trie-128 □
LPCB-trie-256 ■

X

+
= 9400

9200

9000
□

440 450 460 470 480 490 500 510 520
Millions of L2 cache misses

(a)

Figure 4.13: This figure shows the level 2 data cache misses and total instructions
executed when for processing the 32-bit Genome data set. The data structures are
level and path compressed burst tries with the maximum bucket size varied between
16 to 256. These results were gathered on knuth using PAPl [Dongarra et al. 2003],
and are described in Section 4.4.1.

77

4.4. Experimental Comparison 78

and 256 keys perform better than the smaller bucket sizes.
We next examine the performance of the data structures on the 32-bit Valgrind

data sets. Figure 4.10(b) shows the time required to process the Valgrind data set for
the different bucket sizes. Figure 4.11(a) shows the space required for the different
bucket sizes on the Valgrind data. As was observed for the uniform random data, the
larger bucket sizes result in more compact data structures, with the burst trie of bucket
size 16 being especially inefficient in space compared to the other data structures.

In contrast to the random data above, the smaller bucket sizes of 16 or 32 records
give better performance in time than the larger bucket sizes of 128 or 256 records on
the Valgrind data. Recall from Table 4.2 that the 32-bit Valgrind data sets contain
relatively small numbers of distinct keys, resulting in relatively small data structures
that miss the second level cache infrequently. Figure 4.11(b) shows the total number
of instructions required to process the Valgrind data sets, while Figure 4.12(a) shows
the total level 2 cache misses. Even allowing for the much greater cost of a level
2 cache miss compared to the average instruction (recall from Section 4.4, a level 2
cache miss, as we measured on knuth, costs approximately 200 cycles), the number of
instructions executed clearly dominates. Indeed, comparing the times in Figure 4.10(b)
to the instruction counts in Figure 4.11(b) provides strong evidence that the times are
determined by the number of instructions executed. On the other hand, for the larger
32-bit Genome data set (Table 4.2 provides details), the relative performance of the
data structures does appear to be determined by their level 2 cache misses. Figure
4.12(b) shows that the time and space required to process the Genome data set, while
Figure 4.13 shows the level 2 cache misses and number of instructions executed. The
level 2 cache misses appear to be dominant in the execution time of the data structures.
For example, the LPCB-tiie with a bucket size of 256 causes executes approximately
9,000 million instructions for this data set, and causes approximately 485 million level
2 cache misses. Recalling again from Section 4.4 that the cost of a level 2 cache
miss costa approximately 200 cycles on this machine, they are clearly the dominant
component of the execution time. Indeed, the ordering of the data structures along
the horizontal axis in Figures 4.12(b) and Figure 4.13 is the same, indicating that the
level 2 cache misses are dominant in the execution time. Finally, we note that as was
observed for the uniform random data, for both the Valgrind and Genome data sets,
as the maximum bucket size increases, the resulting burst trie variants are much more
compact. In Figure 4.12(b) the burst trie variants with maximum bucket sizes of 128
and 256 keys are also seen to be much more compact than those with smaller maximum
bucket sizes.

78

4.4. Experimental Comparison 79

Based on the experimental results just presented, we have used a maximum bucket
size of 128 records for our burst trie variant. We discount smaller bucket sizes of 16, 32
or 64 records because they result in burst tries that consume significantly more space
than comparison based data structures. From the data presented above it appears that
a bucket size of 128 or 256 keys results in data structures with similar performance. We
note that a bucket size of 128 keys gives rise to a compact data structure, performing
slightly better in time on the uniform random and Valgrind data sets than a bucket
size of 256 records. Our LPCB-trie uses buckets of 128 keys.

4.4.2 Burst Trie Comparison
We now compare the LPCB-trie implementation derived from the experimental results
above to a number of other data structures. These are:

1. An LPCQ-trie based on the data structure of Korda and Raman [1999], de­
scribed in Section 4.5. Our version of their data structure makes use of the same
level and path compressed trie, and bucket data structures as our LPCB-trie
implementation. The resulting data structure is substantially more efficient and
requires less space than the data structure originally described by Korda and
Raman.

2. The S'-tree data structure of Dementiev et al. [2004], described in Section 4.5.
Note that the only implementation of this data structure available to us is de­
pendant on the endianness of the underlying architecture, and so it cannot be
executed on our big-endian SPARC machine, melody. Moreover, as described in
Section 4.5 this data structure is inherently restricted to 32-bit keys.

3. A .R-tree implementation^

4. A balanced tree implementation provided by the C-h+ STL map implementation^
[Stroustrup 1997]. Note that in all compilers used this data structure was a red-
black tree [Cormen et al. 2001].

5. Finally, we include a comparison with a simple hash-table implementation. This
implementation is the hashunap data structure obtained from an extension to

^Obtained from http://www.textelectric.net
^See http://gcc.gnu.org. The STL map implementation used the same code on all compiler

versions we present experimental results for (see Table 4.1) - including the Intel C-l—I- Compiler icc,
which shares the gcc STL implementation.

79

4.4. Experimental Comparison 80

Log2(Number of keys)
(a)

60

50

40c o
tr a><nc
■- 30<DQ.
<n
<0

m 20

10

“I-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------r- ■*

S-tree »
' K.....* ’ Red-black tree —^

B-tree —x—-
Hashtable - - -
LPCB-trie -
LPCQ-trie q

O--------O----------- ©.--------Q.--------- -------------^---------o---------- 0.--------- 0-------- .0---------.0--------^-------- 0

X..........^-------- ----------K—------X--------*...........X-------- -X-------- X--------- X---------X...........X------- -X

B........Q - -.......a..........a-B..........B...........B.......•'#..........Q..........G.........Q........a

14 15 16 17 18 19 20 21 22 23 24 25 26 27
Log2(Number of keys)

(b)

Figure 4.14: This figure shows measurements gathered for uniform random 32-bit keys,
(a) Shows the average time per insertion operation. The LPCB-trie performs best, and
better than the comparison-based structures at all input sizes, while the LPCQ-trie
and S'-tree also perform well, (b) Shows the space occupied by the data structures after
a sequence of insertions. The LPCB-trie and LPCQ-trie require the least space, and
the P-tree is also competitive. We note that the S'-tree consistently requires a large
amount of extra space compared to the other structures. These results are discussed
in Section 4.4.2

80

4.4. Experimental Comparison 81

Log2(Number of keys)

(a)

Log2(Number of keys)

(b)

Figure 4.15: This figure shows measurements gathered for uniform random 32-bit keys,
(a) Shows the average time per locate operation on the data structures as the number
of keys in the structure increases. Note that results are shown until the data structure
occupies all of main memory. The 5-tree performs very well, as does the LPCB-
trie. (b) Shows the average time per operation for a mixed sequence of equiprobable
insertions and deletions. The deletions are of keys that have already been inserted to
the data structure. These results are dicussed in Section 4.4.2.

81

4.4. Experimental Comparison 82

Log2(Nunnber of keys)

(a)
60

50

40c o ‘•c<D (/)C
30 h<DQ.

(O 0)
CO

o------o------o-------o-—o------©- •

- >♦.......... ^...........-X----------X............ X--------- K™

20

10

-.0----0----0--- ^---o

-X-------- X--------- -X------- -X-------- -X----------X

•••■O.............. O....... -■o... 'I-..........Q...............B-

Red-black tree
Hashtable
B-tree
LPCB-trie
LPCQ-trie

14 15 16 17 18 19 20 21 22 23 24 25 26
Log2(Number of keys)

(b)

Figure 4.16: This figure shows measurements gathered for uniform random 64-bit keys,
gathered on beaker. Note that the S'-tree does not appear in this figure because it is
restricted to use with 32-bit keys. Results are shown until the data structures occupies
all of main memory, (a) Shows the average time per insertion operation. The LPCB-
trie performs best, and better than the comparison-based structures at all input sizes,
while the LPCQ-trie also performs well, (b) Shows the space occupied by the data
structures after a sequence of insertions. Again the LPCQ-trie requires the least
space, followed by the LPCB-trie. As expected, both use approximately double what
is required in the 32-bit case, shown in Figure 4.14(b), as one expects. These results
are discussed in Section 4.4.2. 82

4.4. Experimental Comparison 83

Log2(Number of keys)

(a)

Log2(Number of keys)

(b)

Figure 4.17: This figure shows measurements gathered for uniform random 64-bit keys.
Note that the 5'-tree does not appear in this figure because it is restricted to use with
32-bit keys. Results are shown until the data structures occupies all of main memory,
(a) Shows the average time per locate operation. The LPCB-trie performs best, and
better than the comparison-based structures at all input sizes, while the LPCQ-tvie
also performs well, (b) Shows the time required for a mixed sequence of equiprobable
insertions and deletions. The deletions are of keys that are already present in the data
structures. These results are discussed in Section 4.4.2.

83

4.4. Experimental Comparison 84

the GNU C++ v3.4.6 STL implementation. This is a simple chaining hash-
table. Although a hash-table is less general than the ordered data structures
that this chapter focuses on, we include it because it nevertheless provides some
insight into the overhead of maintaining order in integer data structures. We
note that the hash-table implementation we have chosen is not likely to be the
most efficient possible (although as we shall see below, it is more efficient in time
than all the ordered data structures), Askitis [2009] provides an experimental
comparison of hash-tables for integer keys.

Our implementations of the LPCB-trie and LPCQ-tvie data structures do not feature
low-level optimizations, and are not very carefully optimized at the language level.
They are also generic, supporting a mapping from any key data type to any value data
type. The only restriction is that the keys are all some fixed length concatenation of
bits. To give an indication of the genericity of the implementations, the LPCB-trie
and LPCQ-tvie differ only in the manner in which buckets are indexed and split - the
code implementing their bucket data structures and their level and path compressed
trie is shared.

Uniform Random Data

In this section we describe the performance of the data structures over uniform random
data. We used Brent’s [2004] pseudorandom number generator implementation for
generating both 32 and 64-bit random numbers. For this data, the results we present
are averaged over several thousand executions of the data structure operations.

Figure 4.14(a) shows the time per insertion for the data structures over 32-bit
uniform random keys, on the 32-bit Core 2 machine knuth. Note that the 5-tree
uses all available memory at 2^^ keys, while the red-black tree and hash-table use all
available memory at 2^® keys. Clearly, the red-black tree is much less efficient than the
other data structures. The noticeable change in slope for the red-black tree’s insertion
time at 2^^ keys is due to the fact that knuth has a 2 MB = 2^^ byte level 2 cache. As
we will see below, the red-black tree requires 32 bytes per insertion, and 2^^ x 32 = 2^^,
exceeding the level 2 cache size.

As is to be expected, the hash-table out-performs the data structures that maintain
order. However, especially for up to approximately 2^*^ insertions, its performance is
close to that of the LPCB-trie. Of the data structures that maintain order, the LPCB-
trie generally performs best.

Even for small numbers of keys the ordered data structures tailored to integer keys

84

4.4. Experimental Comparison 85

out-perform the comparison based structures. For example, for less than keys on
average the LPCB-tvie is approximately 23% faster than the JB-tree.

Figure 4.14(b) shows the memory consumption of the data structures for the inser­
tions of Figure 4.14(a). The ^-tree is clearly a very memory hungry data structure,
this, combined with its restriction to 32-bit keys limits its practicality. After the 5-tree
the red-black tree requires the second largest amount of memory per insertion. Note
that the data structures store a mapping from a 32-bit key to a 32-bit value. The 32
bytes per insertion required by the red-black tree can be explained by considering the
data stored in each node of the tree: 4 bytes for each of: the key, the value, the left
child pointer, the right child pointer, the parent pointer, and the node colour (due to
alignment). Finally, there is an 8 byte overhead from the memory allocator.

It is noteworthy that the hash-table is not particulary space efficient. The hash-
table consists of m linked list chains. After m insertions it approximately doubles in
size (the table does not precisely double because its size is always selected as a prime).
The main space inefficiency is similar to the red-black tree’s. It uses single nodes, in
this case of a linked list, to store keys in the chains of the hash-table. A bucketed
linked list Frias et al. [2009] would likely be more efficient in both time and space.
Nevertheless these results emphasize that classical hash-table implementations are not
particulary space efficient.

The 5-tree, which uses nodes consisting of arrays of keys of up to 200 keys (this
number was chosen because it gave the best performance), uses substantially less mem­
ory than the other comparison-based structure, the red-black tree. The LPCQ-trie
requires approximately 12 bytes per insertion — the least memory of any the data
structures. The LPCB-tvie also has modest memory use, occupying between 12 and
17 bytes per insertion. This difference in memory consumption is likely a result of the
different approaches taken to bucket creation by the two data structures. The LPCQ-
trie splits full buckets into exactly two new half-full buckets. On the other hand, a
full bucket in the LPCB-tvie is burst into a potentially large number of new buckets.
Naturally, when many small buckets are created the space overhead per bucket is em­
phasized. Furthermore, the oscillation in the memory usage of the LPC'5-trie is likely
due to this bursting of buckets too.

Figure 4.15(a) shows the time per locate operation on the data structures, recall
from above that locate(A;) is the value associated with the largest k' < k. Note
that this operation is more general than can be answered efficiently with a hash table.
The times reported here for the hash-table in this figure are for the simpler look-up
operation, as is expected and was the case for insertions, the hash-table operates the

85

4.4. Experimental Compcirison 86

most rapidly, showing the overhead of even the most efficient ordered data structures
compared to an unordered structure.

Typically, data structures are searched more often than they are updated, and so
the performance of this searching operation is likely to be very important in practice.
Amongst the ordered data structures, the integer-specific structures perform better
than the comparison-based structures at all the input sizes shown in Figure 4.15(a).
For up to a large number of keys, 2^^, the S'-tree slightly out-performs the LPCB-tvie.
For the remainder of the input sizes, the LPCB-tx\e performs better. For 2^® insertions,
the largest data set before the 5-tree exhausts main memory, the LPCB-txie's locate is
approximately 23% faster than the 5-tree’s. At 2^^ insertions, the LPCB-tvie's locate
is approximately 41% faster than the locate of its nearest competitor, the LPCQ-txie.

Figure 4.15(b) shows the time per operation for a mixed sequence of equiprobable
insertions and deletions. The deletions are of keys that have previously been inserted
into the data structures. This explains why the average time per operation in this
figure is considerable less than what is observed in Figure 4.14(a), since the data
structures contain approximately half the number of keys for a given input size due to
deletions. Unfortunately the only S-tree implementation available to us^ had bugs in
its delete operation causing it to fail on inputs larger than 2^^ operations. As with the
results just described, with the hash-table aside, the integer-specific data structures
out-perform the comparison-based structures, with the LPCB-ixie peforming best in
general, followed by the next integer-specific data structure, the LPCQ-tx'ie.

The results for random 64-bit keys are shown in Figure 4.16 and Figure 4.17. These
results were gathered on the 64-bit Core 2 machine beaher. For these data sets,
memory usage, shown in Figure 4.16(b) is slightly under twice what is observed in the
32-bit case. This is because the keys and values stored in the data structures are now
64-bits in length, as well as their pointers, however, depending on the data structure,
other fields remain 32-bits or less. The 5-tree is excluded from these results because it
is tailored specifically for 32-bit keys, and extending it efficiently to fid-bit keys requires
an enormous amount of extra space. For the remaining data structures the results for
the 64-bit case are broadly similar to those observed in the 32-bit case. The LPCB-txie
and LPCQ-txie perform better than the comparison-based data structures, with the
B-txee performing substantially better than the red-black tree.

The performance difference between the LPCQ-txie and LPCB-txie is notewor­
thy, and would likely be rather involved to determine analytically. We note that the
LPCQ-txie and LPCB-txie use exactly the same implementations for their in-node

^Obtained from http: //www. mpi-inf.mpg. de/'^ettner/proj /veb/index. html

86

4.4. Experimental Comparison 87

data structures, bucket data structures as well as for the level and path compressed
tries. Their performance difference is a result of the fact that all operations in the
LPCQ-tx\e begin with a predecessor search in the trie, which is slightly more com­
plicated than a simple trie search. The other difference between the data structures
is that the LPCQ-ix\e splits rather than bursts buckets (as described in Section 4.1).
The more aggressive bursting of buckets employed by the LPCB-tvie results in its
slightly higher memory usage observed in Figures 4.14(b) and 4.16(b) compared to
the LPCQ-trie. However, the resulting performance improvement for all operations is
substantial.

In general, for both 32 and 64-bit uniform random keys, the LPCB-tvie offers
modest space usage and excellent performance in time compared to the alternative
data structures.

Non-uniform Random Data

The preceding section examined the performance of the data structures over uniform
random data. In the current section, we examine biased-bit data. In these experiments,
a series of 2^^ « 4.2 x 10® insertions were performed where each bit of the keys is chosen
to be a zero independently with probability p. Then a series of locate operations were
performed using keys chosen in the same way.

Figure 4.18(a) shows the average time taken per locate operation as p varies (again
for the hash-table, we are measuring the simpler look-up operation), on the maohine
knuth. In this case the 5-tree and LPCB-tvie both maintain a considerable advantage
over the other ordered data structures, but only when p is not too small. For very
small p, the performance of all the ordered data structures is similar, with the 5-tree
performing best. Note that as p increases, the number of distinct keys inserted into
the data structure also increases. For p = 0.05, the first data point visible in Figure
4.18(a), there are approximately 100,000 distinct keys inserted, for the final data point
visible, p = 0.45, close to 2^^ distinct keys are inserted (recall that in total 2^^ insertions
are performed). For the comparison based structures, as the number of distinct keys
inserted increases, so too does the resultant search time. However, the time of the
searches on each of the integer data structures is seen to increase and then decrease
again as p increases. The performance of the hash-table observed in Figure 4.18(a) is
quite unexpected. Although it out-performs the ordered data structures as one expects,
one would also expect its performance to be independent of the distribution of input
keys, but its performance improves as the distribution becomes more uniform. We have
verified that this is simply due to reducing instruction count, and does not appear to

87

4.4. Experimental Comparison 88

Bias
(a)

Bias

(b)

Figure 4.18: (a) and (b) shows the performance of locate operations on the data struc­
tures on the machines knuth and beaker respectively for biased-bit data, as the pa­
rameter, p, used to generate the 2^^ keys inserted (prior to the locates shown in the
figures here) and the query keys is varied. These results are discussed further in Section
4.4.2.

88

4.4. Experimental Comparison 89

be due to cache or other effects.
Figure 4.18(b) shows the performance of searches for biased-bit data on the machine

bealcer. The keys are 64-bits in length and for p = 0.05 approximately 1.3 x 10® distinct
keys are inserted into the data structures. There are fewer duplicate keys because the
keys are longer in this case. The number of distinct keys increases rapidly to 2^^ (the
maximum) as p increases (e.g. for p > 0.2 all keys are unique). This explains the times
peaking more rapidly in Figure 4.18(b) compared to Figure 4.18(a) for the comparison
based data structures. For p = 0.25 there are already 2^^ distinct keys in the data
structures. Notably, the trie structures’ performance improves as p increases, while the
total number of distinct keys remains constant. This is likely due to the lower average
depth of the trie structures when data is closer to uniformly distributed. We discuss
the average depth of trie structures in more detail in Section 4.5.

The results in this section have shown that although the LPCB-the is sensitive
to the uniformity of its data, it nevertheless out-performs the alternative ordered data
structures (except the 5-tree on 32-bit keys) except for the most biased data (p < 0.15).

Valgrind Data

We now examine the performance of the data structures over data sets generated using
Valgrind [Nethercote and Seward 2007]. Valgrind comprises a suite of very widely
used tools for dynamic binary instrumentation. The tools include memcheck, used
for detecting memory errors (e.g. leaked memory, wild pointers), helgrind for race
detection, and cachegrind for cache performance profiling, as well as a number of
other tools.

The data sets generated using Valgrind consist of the memory addresses of all the
data memory accesses performed during the execution of a program. This reflects the
use of the data structure to track every memory access performed by a program, as
is done by some Valgrind-based tools. We generated data sets for the Linux program
Top (a task viewer) as well as three applications from the K Desktop Environment:
Amarok (a music player), Konqueror (a web browser and file manager) and KPDF
(a PDF viewer). Each of these data sets contain between 10^ and 10® operations in
total, and 70-80% of the operations are loads. As one would expect for the memory
accesses of a program, these data sets are highly repetitive. The 32-bit data sets
contain between 20,000 and 500,000 distinct memory locations, while the 64-bit data
sets contain between 40,000 and 900,000 distinct memory locations. A load in a data set
generates a search operation on the appropriate data structure while a store generates
an insert operation. Currently, Valgrind uses an AVL tree to perform these operations

89

4.4. Experimental Comparison 90

[Seward 2007]Note that in-order iteration over the data structure is also required at
certain times, removing the possibility of using a hash-table. However, we include a
hash-table in our experimental results to show the margin between it and the fastest
ordered data structure.

Figure 4.19(a) shows the time for processing 32-bit Valgrind data sets. Due to
its simplicity, the hash-table is again the most efficient data structure. Amongst the
ordered data structures, the S'-tree is clearly the most efficient data structure in time,
followed by the LPCB-tne. We note also that Figure 4.19(b) shows the LPCB-tvie
requires the least space of any of the data structures, and that the 5-tree is especially
inefficient in space.

On the uniform random data in Section 4.4.2, the LPCQ-tvie required less space
than the LPCB-txie, whereas on this data this trend is reversed. Recall that the
bucket data structure is a growable array, doubling in size when it is full. When the
number of insertions to a bucket is uniform random, it is easy to show the expected
fullness of the bucket is 75%. For the uniform random data we have observed that both
the LPCB-tvie and LPCQ-tvie generally have approximately this fullness. For this
Valgrind data however, we have noted the LPCB-tvie has approximately 70% bucket
fullness, while the LPCQ-tvie has only 55% fullness - close to its worst case, since
the LPCQ-tvie splits buckets guaranteeing they are always at least 50% full. This
difference in bucket fullness explains the space difference between the LPCB-tvie and
LPCQ-tvie, it is interesting that the LPCB-tvie's space usage appears less dependent
on the randomness of the data than the LPCQ-tvie.

It is notable that the B-tvee performs worse than the red-black tree on these data
sets. Moreover, the LPCB-tvie performs only slightly better than the red-black tree,
and the LPCQ-tvie performs worst on this data - we analyse the behaviour of these
structures in more detail for the 64-bit Valgrind data.

Figure 4.20(a) shows the time required by the data structures for the 64-bit Valgrind
data sets, the 5-tree is not shown here because it cannot operate on 64-bit keys. The
LPCB-tvie performs best in time of any of the ordered data structures. Figure 4.20(b)
shows that the LPCB-tvie also requires the least space of any of the data structures.

For these 64-bit Valgrind data sets, we have performed some additional experiments
to examine their relative performance in more detail. Figure 4.21(a) shows the numbers
of instructions executed by the data structures. As is expected, the hash-table has a
very low instruction count compared to the ordered data structures. It is noteworthy

II Although our information comes from personal communications with Julian Seward, Valgrind’s
lead developer, they can also be verified by examining Valgrind’s source code. Specifically the WordFM
data structure, see http://valgrind.org/downloads/repository.html.

90

4.4. Experimental Comparison 91

w
T3
Coo
(1>

CO

Hashtable
S-tree
LPCB-trie
Red-black tree
B-tree
LPCQ-trie r/zz/J J\ /

\ /
\ /
\ /
\ 7
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ 7
\ 7
\ 7
\ 7
\ 7
\ 7

Amarok Konqueror KPDF

Top Amarok Konqueror KPDF

(b)

Figure 4.19: This figure shows the time, in (a) and space in (b) required by the data
structures to process the 32-bit Valgrind data sets. These results were gathered on
knuth and are discussed in Section 4.4.2.

91

4.4. Experimental Comparison 92

w
TJ
Coo<]}w

20

18

16

14

12

10

8

6

4

2

0

Hashtable
LPCB-trie
Red-black tree
B-tree
LPCQ-trie

- il I
Top Amarok Konqueror KPDF

CO
<D

CQO)0)

(a)
50

45

40

35

30

25

20

15

10

5

0

LPCB-trie
LPCQ-trie
B-tree
Hash-table
Red-black tree

I '-.I

Top

[
Amarok Konqueror KPDF

(b)

Figure 4.20: This figure shows the time, in (a) and space in (b) required by the data
structures to process the 64-bit Valgrind data sets. These results were gathered on
beaker and are discussed in Section 4.4.2.

92

4.4. Experimental Comparison 93

(Ocg
o3
L.

(/>c

wco

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Hash-table
Red-black tree
LPCB-trie
B-tree
LPCQ-trie r/^ / -'1

LI
•5 rn
CO

''y

. I~lI i
Top Amarok

JJ
Konqueror KPDF

Top Amarok Konqueror KPDF

(b)

Figure 4.21: This figure shows the shows the total number of instructions, in (a) and
the total number of level 2 cache misses in (b) when the data structures process the 64-
bit Valgrind data sets. These results were gathered on beaker using PAPl [Dongarra
et al. 2003], and are described in Section 4.4.2.

93

4.4. Experimental Comparison 94

800

700
COco
o 600

■o

CO 500
E
szoc
2

400

n
o 300
COco 200
ii

100

Hash-table
B-tree

- LPCB-trie
LPCQ-trie
Red-black tree

1 n
Top Amarok Konqueror KPDF

CO
0)
CO
CO

(a)
250

200

Hash-table
LPCB-trie
B-tree

. LPCQ-trie
Red-black tree

150 -

g 100 h

50

n.

nE^inFvlB_ JH
Top Amarok Konqueror KPDF

(b)

Figure 4.22: This figure shows the total number of branch mispredictions in (a) and the
total number of level 1 cache misses, in (b) when the data structures process the 64-bit
Valgrind data sets. These results were gathered on beaiker using PAPI [Dongarra et
al. 2003], and are described in Section 4.4.2.

94

4.4. Experimental Comparison 95

that while the LPCB-tvie executes more instructions than the red-black tree, it was
seen to perform better in time in Figure 4.20(a). The observed performance cannot be
explained by level 2 cache misses, since as Figure 4.21(b) shows, the number of level 2
cache misses is insignificantly small compared to the number of instructions executed
- even allowing for the high cost of a level 2 cache miss - and moreover, the red-black
tree and LPCB-tvie (as well as the LPCQ-tvie and B-tvee) have very similar level 2
cache performance.

A possible explanation of the fact that the low instruction count of the red-black
tree compared to the other ordered data structures does not translate into better per­
formance is the red-black tree’s high level of branch mispredictions compared to the
LPCB-tvie shown in Figure 4.22(a). For example, on the KPDF Valgrind data the
red-black tree executes approximately 2.6 x 10^° instructions compared to 3.4 x 10^*^
instructions of the LPCB-tvie. For the same data, the red-black tree causes approxi­
mately 7.3 X 10® branch mispredictions compared to the 3.0 x 10® branch mispredictions
of the LPCB-tvie. Recall from Section 4.4 that a branch misprediction costs approxi­
mately 14 cycles, making the difference between the number of branch mispredictions
significant in magnitude compared to the difference in instruction counts for the red-
black tree and LPCB-tvie observed in Figure 4.21(a). As a result, branch mispredic­
tions are a strong contributing factor to the red-black tree operating more slowly than
the LPCB-tvie, despite its lower instruction count for this data. Another contributing
factor, shown in Figure 4.22(a) is that the red-black tree incurs approximately 10 times
as many level 1 cache misses as level 2 cache misses, with the result that the level 1
cache misses are likely to have a bigger influence on the red-black tree’s performance
than its level 2 misses. We note that the red-black tree causes approximately double
the number of level 1 cache misses of the LPCB-tvie, on average.

We note that the poor relative performance of the LPCQ-tvie on this data com­
pared to its good relative performance on uniform random data in Section 4.4.2 can
be explained by its high instruction count, seen in Figure 4.21(a), and its high level
of branch mispredictions seen in Figure 4.22(a). For data where cache performance
heavily dominates running time (such as the Genome data set we shall see below in
Section 4.4.2) the LPCQ-tvie performs well. As we have just seen, level 2 cache misses
are not dominant for this data. Recall from Section 4.1 that in a search operation the
LPCQ-tvie must perform a predecessor search in its trie structure to find a bucket.
This is a significantly more complicated operation than simply traversing the path de­
fined in the trie by a key, as a burst trie does. This predecessor search results in the
high instruction count and branch mispredictions for the LPCQ-tvie observed on this

95

4.4. Experimental Compgirison 96

data, and in turn, its poor relative performance.
Amongst the ordered data structures, on the 32-bit Valgrind data sets, the -S-tree

performs better than the LPCB-tuQ, however, it requires more than twice as much
memory. On the 64-bit Valgrind data sets, the LPCB-tne is the best performing data
structure. For both the 32-bit and 64-bit Valgrind data sets the LPCB-tv'\e requires
the least space of any data structure.

Genome Data

The final data set used in our experimental comparison is the Genome data set. This
data comes from GenBank, and originally used by Sinha and Zobel [2004] in the eval­
uation of the burstsort algorithm from whom we obtained it. This data set consists of
approximately 3.1 x 10^ strings of 9 characters in length, with each character either ‘a’,
‘c’, ‘g’ or ‘t’. Thus each string can be encoded in 18 bits. We increased the lengths of
the bit-strings to 36-bits by concatenating consecutive pairs in the data set and using
them as a single 36-bit key. The resultant data-set contains approximately 1.5 x 10^
keys, and approximately 5 x 10® distinct keys. Where we experiment with the Genome
data set for 32-bit keys, we use the 32 least significant bits of the keys.

Figure 4.23(a) shows the time and space taken by the data structures for the 32-bit
genome data set. The space usage of the data structures is similar to what was observed
on the uniform random data, the LPCQ-tne is the most compact data structure,
followed by the LPCB-tne^ B-tree and hash-table. It is notable that the space usage
of the 5-tree on this data is particularly high, requiring more than a factor of 10 times
the space of the LPCB-tvie. We note that as above the hash-table is much more
efficient than the ordered data structures. The most efficient ordered data structures
are the LPCB-tvie and 5-tree. The hash-table is approximately a factor of 3 times
more efficient in time than these data structures. Figure 4.23(b) shows the number
of instructions executed and level 2 cache misses caused by the data structures. Of
the ordered data structures, the LPCB-trie has the best cache performance on this
data, coupled with the lowest instruction count. Noting again that the cost of a level
two cache miss is more than 100 times that of the average instruction, it is likely they
are the dominant factor in the execution times of the data structures. Note that the
ordering of the data structures is the same along the horizontal axis of Figure 4.23(a)
and (b).

Figure 4.24(a) shows the time and space taken by the data structures for the 64-
bit genome data set. Here the 5-tree is not shown because it is restricted to 32-
bit keys. On this data, amongst the ordered data structures, the LPCB-tvie is also

96

4.4. Experimental Compeirison 97

(/)
0)

COO)
<D£
o
E0)

(/)cg
o3
k_

(Oc

COco

700

600

500

400

300

200

100

0

Red-black tree +
B-tree X
S-tree X

LPCQ-trie □
LPCB-trie ■
Hashtable o

+
O

□ X

5 10 15 20 25 30
Time (seconds)

(a)

35 40 45

22000

20000

18000 -

16000 -

14000 -

Red-black tree
_ B-tree X

S-tree X
LPCQ-trie □
LPCB-trie ■
Hashtable o

X

□
- 12000 -

10000 -

8000 -

6000 -

+.

4000 o

2000
50 250 300100 150 200

Millions of L2 Misses

(b)

Figure 4.23; (a) Shows the time and space required by the data structures to process
the 32-bit Genome data set. (b) Shows the total instructions executed and level 2 cache
misses incurred for the Genome data set, these instruction counts and level 2 cache
misses were gathered with Valgrind [Nethercote and Seward 2007] (technical reasons
prevented us from using PAPl [Dongarra et al. 2003] in this case), on knuth and are
described in Section 4.4.2.

97

4.4. Experiment2il Comparison 98

(/>co

(/>a>
.Q
CO
O)oE
o
Ed)

280

260

240

220

200 1- O

180 -

160 -

140 -

120 -

100

Red-black tree +
B-tree X

LPCQ-trie □
LPCB-trie ■

- Hashtable 0

X

□

10 15 20 25 30 35
Time (seconds)

(a)

40 45 50 55

16000

14000 -

^ 12000

o
5 10000mc

Red-black tree +
B-tree X

LPCQ-trie □
LPCB-trie ■
Hashtable 0

□
X i

8000

6000 -

4000 -

2000
o

50 100 150 200 250 300 350
Millions of L2 Misses

(b)

Figure 4.24: (a) Shows the time and space required by the data structures to process
the 64-bit Genome data set. (b) Shows the total instructions executed and level 2 cache
misses incurred for the Genome data set, these instruction counts and level 2 cache
misses were gathered with Valgrind [Nethercote and Seward 2007] (technical reasons
prevented use from using PAPI [Dongarra et al. 2003] in this case), on beeiker and are
described in Section 4.4.2.

98

4.5. Related Work 99

the best performing data structure. Figure 4.24(b) shows the level 2 cache misses
and instruction counts of the data structures. Aside from the red-black tree, the
performance of the data structures in time is ordered by their level 2 cache misses (as
can be seen by examining the ordering of these data structures along the x-axis of
Figure 4.24(a) and (b)). However, the red-black tree executes fewer instructions than
the R-tree and LPCQ-tvie (e.g. approximately 40% fewer than the R-tree), and causes
fewer level 2 cache misses (approximately 14% fewer than the R-tree), nevertheless,
the red-black tree requires approximately 45% more time than the R-tree, as Figure
4.24(a) shows.

This poor performance of the red-black tree can be explained by examining the
branch mispredictions and TLB misses it incurs. As was observed for the Valgrind
data set in Section 4.4.2, the red-black tree again incurs a large number of branch
mispredictions compared to the R-tree. On this data it causes approximately 4.8 X 10®
branch mispredictions, compared to 1.1 x 10® branch mispredictions of the R-tree. In
addition, on this data, the red-black tree incurs approximately 5.5 x 10® TLB misses,
compared to the 1.2 x 10® of the R-tree.

In summary, amongst the ordered data structures, the LPCB-tne is the most
efficient in both time and space for these data sets. On the 32-bit genome data, the
S'-tree is almost as efficient in time, but requries more than 10 times as much space
as the LPCB-tne. For both the 32-bit and 64-bit genome data sets, the hash-table
is more efficient in time (although not in space) than the ordered data structures, as
is to be expected, and once again showing the overhead of maintaining order in data
structures.

4.5 Related Work

Being a classic problem, maintaining a dynamic ordered data structure has a large and
rich literature, including many data structures that are theoretical as well as practical.
The most commonly implemented solution to this problem is a balanced search tree
- often binary. For example, the GNU C-h+ [Stroustrup 1997] STL implementation**
of its map type is a red-black tree [Guibas and Sedgewick 1978; Cormen et al. 2001].
The collection of algorithms and data structures LEDA [Mehlhorn and Naher 1998]
offers very similar functionality in its sortseq data structure, which can be realized
using a BB[q:] tree [Blum and Mehlhorn 1980], R-tree [Bayer and McCreight 1972], red-
black tree, randomized search tree [Seidel and Aragon 1996] or skip-list [Pugh 1990].

*See http://gcc.gnu.org

99

4.5. Related Work 100

These data structures have two very general features in common: They implement
their operations only by comparing the input keys, and they offer their operations in
O(logn) time (variously amortized, expected or worst-case), when storing n keys.

This O(logn) time bound for searching in a data structure is the best possible when
only comparisons are made between keys. This is easy to see via the usual decision
tree argument: A search proceeds based on the out-come of a series of comparison
operations organized into a decision tree. The decision tree has n + \ leaves (one extra
for when the key is not found), giving a depth of at least [lg(n -|-1)].

In many applications, the keys in a data structure are strings of bits, such as integers
or floating point numbers. Moreover, real computers have a much more powerful set of
operations than just comparisons, supporting operations such as indirect addressing,
bitwise operations, multiplication and division, all in constant time. A model of such
computers is the unit-cost word RAM, which supports all C-like operations in unit
time, or some subset of them. This model of a computer also includes the restriction
that memory is divided into fixed sized cells, called words. The number of bits, w, in
a word is called the word-size of the machine. In data structure problems over n keys,
it is assumed in this model that w > Ig n, so that all the keys of the data structure can
be represented in single words.

In this context, different asymptotic results can be obtained by data structures
that do not rely solely on key comparisons. These results can be in terms of w, n or
in terms of w and n. We begin our discussion of these results by mainly dealing with
theoretical results first, and describing practical instantiations of them, and practical
data structures afterwards. Hagerup [1998] provides an excellent survey of some of
the results mentioned in this section. A classic early theoretical data structure is the
stratified tree data structure of van Emde Boas [1977] which supports all operations
in 0(logt/;) worst-case time, when operating on w-bit keys. This data structure intro­
duced a subsequently very influential technique for data structures called exponential
range reduction, which we briefly describe. Given an ordered data structure, D, that
operates on b bit keys, this technique extends it to a new data structure, also ordered,
that operates on 2b bit keys whose operations take constant time plus the query time
of D. The new data structure is composed of two parts a top and substructures, the
latter being instances of D. The top consists of an instance of D called T together with
an array S of 2^ pointers to substructures. The top also contains a second array M of
2** entries holding pairs {min, max) which are the minimum and maximum element in
each substructure. We now describe how a predecessor query (i.e. the largest key less
than a given key) can be performed given a 2b bit key, k. The upper b bits of k are

100

4.5. Related Work 101

used to form an index i. If S[i] = nil ov k < min where M[i] = (mm, max), then a
predecessor query for i is performed on T. If there is no predecessor, NIL is returned. If
there is a predecessor, at index j, the value of max retrieved from M\j] is returned as
the b low-order bits of the answer - the b high-order bits are i.In the other case, where
S[i] ^ NIL and k > min (as before retrieved from M[i]), then a predecessor query for
the b lowest bits of k is performed on the substructure pointed to by S[i]. The result of
this query is the b lowest bits of the result to the original predecessor query, the higher
bits are again simply i. Note that in both cases constant time is spent (indexing the
arrays S or M) followed by a single query in an instance of D. Recursively building
the instances of D in the same manner repeatedly halves the length in bits of the keys
that needs to be considered in constant time, giving rise to the 0(logtt;) worst case
time of van Emde Boas’s stratified trees.

Another important data structure is the fusion tree of Predman and Willard [1990]
which supports all operations in 0(log^„n) amortized time, later improved by Willard
[1992; 2000] to worst-case time, and simplified by Andersson [1995]. Combined with
stratified trees, their data structure takes expected 0(min{log^ n, logw}) time, giving
a time that is always (9(\/logn). A more recent example was described by Andersson
and Thorup [2007]. They gave a dynamic data structure supporting all operations in
O (\/log n/ log log n) worst-case time. This data structure is optimal in terms of n,
since Beame and Fich [2002] showed a matching lower bound for the static case, that
is, when the data structure is built once and for all and then only queried.

Such data structures are attractive in theory, and potentially in practice too because
of their superior worst-case times compared to comparison-based data structures. An
important consideration in both theory and practice however is the amount of space
required by these data structures. For example, as described by van Emde Boas [1977],
stratified trees require 12(2"’) space. Willard’s y-fast tries [Willard 1983] showed how
to reduce the space to 0{n) in the static case. Mehlhorn and Naher [1990] showed how
the space could be reduced to 0{n) in the dynamic case, via the use of dynamic perfect
hashing [Dietzfelbinger et al. 1988]. Data structures using more than 0{n) space are
unlikely to be acceptable in many practical situations, for example, in a library where
the data structure is provided without a specific application in mind. With linear space
Patra§cu and Thorup [2006] have shown a lower bound of D(logw), and so stratified
trees are optimal in terms of the word size with linear space. With more space, better
results can be obtained however. For example, in 0(n^ log n/log log n) space, Beame
and Fich [2002] described a data structure in the static case supporting predecessor
queries in 0(min(log w/loglog w, y^log n/ log log n)) time.

101

4.5. Related Work 102

Aside from the space required by the data structures, other considerations include
whether the data structure’s time bounds are amortized or worst-case and addition­
ally whether they are deterministic or randomized. For example, the O(logw) bound
achieved by stratified trees in 0{n) space is achieved via hashing, and so is not de­
terministic. Yet another consideration is the exact set of instructions made use of in
constant time by the data structure. Often just integer multiplication and division are
excluded [Hagerup 1998], or instructions are restricted to those in the class called AC^
[Vollmer 1999], that is, instructions that can be realized by a constant depth circuit
consisting of unbounded fan-in and and OR gates (not gates are not counted), where
the total number of gates is polynomial in the word-size w. This includes familiar
C like bitwise instructions as well as addition and subtraction, but notably excludes
multiplication and division. It also permits other “non-standard” AC^ instructions
(i.e. those that are not currently realized by any real-world computer, or that are
realized, but are not directly available in a standard manner through languages such
as C), which are variously used or unused in designing data structures [Thorup 2003].
In practice, a realistic assumption is probably to assume all standard C instructions
are available, with a caveat that multiplication is usually more expensive than bit-wise
instructions, addition or subtraction, and so data structures firmly based upon it (e.g.
the optimal data structure of Andersson and Thorup [2007] mentioned above) may be
more difficult to construct a practical realization of.

Many of the word-based data structures described above have never been imple­
mented (a notable exception is the work of Andersson [1995], which includes C source
code). In translating theoretical data structures to practice, the principle ideas can
be preserved while making simplifications that may worsen the time bounds, but still
offer improved performance over comparison based structures. A good example is the
Q-trie described by Korda and Raman [1999]. As mentioned in Section 4.1, this data
structure is based on the qf-fast trie of Willard [1984]. The latter data structure offers
all operations in 0{y/w) worst-case time, and requires linear space. Korda and Ra­
man’s structure can be regarded as a g'-fast trie where the trie’s in-node search trees
are disgarded, and the bucket binary search trees are replaced with sorted arrays. The
resulting data structure no longer has 0{\/w) time for its operations, but is nonethe­
less more efficient in practice than both traditional tries and binary search trees on the
random data they examine. A second example of beginning with a theoretical struc­
ture is that of Dementiev et al. [2004], described in Section 4.1. This data structure
makes use of exponential range reduction recursively, described above, inspired by the
structure of van Emde Boas [1977].

102

4.5. Related Work 103

Many data structures for integer keys can be constructed using tries, including
some of the data structures mentioned above - most obviously Willard’s y-fast tries
[Willard 1983] and his p-fast and q'-fast tries [Willard 1984]. Tries are often used in
string processing problems, a context more general than the subject of the present
chapter, since the keys are variable length. A particularly popular string based trie
structure is the suffix trie [Weiner 1973]. The expected height of trie structures and
related quentities has been the subject of intensive study and precise analysis (that
is, constant factors and lower order terms that would normally be hidden by a “big-
Oh” analysis have been analysed), Flajolet [2006] provides a survey. A basic result is
that when n independent random strings are inserted into a trie, the average depth is
O(logn) [Devroye 1982]. Andersson and Nilsson [1993] described a (static) trie data
structure called a level compressed trie, or LC-trie that achieved a much smaller average
depth of just 0(log* n) on uniformly distributed data, or, on Bernoulli distributed data
(where the probability of a zero is not equal to the probability of a one), average depth
O(loglogn). These small depths for random data show the importance of not using it
as the sole basis for evaluating the performance of trie structures.

When all nodes in a trie having b or fewer descendant leaves are replaced with an
alternative data structure containing the keys associated with the leaves, a bucketed
trie, or 6-trie is obtained. The first detailed experimental analysis of a dynamic buck­
eted trie structure where the bucket data structure was varied was given by Heinz et al.
[2002] in the context of string keys and string processing. They refer to the structure
as a hurst trie, and we have chosen to adopt their terminology in this chapter. This
work, together with the practical variations of level compression described by Nilsson
and Tikkanen [2002] gave rise to the LPCB-tne described in this chapter, which is a
level and path compressed burst trie for integer keys. Apart from the two main data
structures, the 5-tree and Q-trie compared to the LPCB-tne structure in this chapter,
there are a number of other data structures that have been described for integer keys
that have also been the subject of experimental analyses. We note a number of these
practical data structures here, the general point here is that a comparison between
them and our LPCB-trie structure cannot be direct since they do not fully fulfill the
requirements of an ordered data structure (i.e. supporting predecessor and successor
queries). For example, the cache efficient tries of Acharyra et al. [1999] were the
subject of implementation and experimental examination, but it does not appear that
they can be extended to an ordered data structure simply, since they make use of hash
tables inside the trie nodes. Despite being based on a hash-table data structure (and
hence, unordered), the work of Askitis [2009] is notable in the present context since it

103

4.6. Future Work 104

is an experimental examination of a hash table specialized to integer keys.
Another trie based data structure that has been the subject of an experimental

analysis is the HAT-tne of Askitis and Sinha [2007]. Although designed for string
keys, it is potentially relevant due to the fact that it may be possible to specialize
the structure to integer keys. Although the authors describe their data structure as
ordered, it makes use of hashing in its buckets, and so certain alternating sequences
of insertions and successor operations are likely to be inefficient as is in-order iteration
over the keys. A final example is the work of Nilsson and Tikkanen [2002], their data
structure is a dynamic level compressed trie, and has been described in this chapter.

We now briefly summarize the context of the work in this chapter, and in particular
the LPCB-tne that we argue is likely to be useful in practice. We note that there is
a rich literature on theoretical word-based data structures, that is, those that take
advantage of the fact that the representation of each key is a (usually fixed length)
bit-string. Although scarcely implemented, the best two practical instantiations we
are aware of are the 5-tree and Q-trie, included in the experiments of this chapter.
Aside from theoretical data structures, there are also many practical word-based data
structures, in particular those based on trie structures. The LPCB-tvie of this chapter
was principally inspired by the combination of a practical variation of LC-tries and
burst tries, specialized to the case of integer keys, and generalized to the case of an
ordered data structure.

4.6 Future Work
There are several avenues open to future work related to the work described in this
chapter. Although the LPCB-trie implementation measured in this chapter is fully
general, supporting insert, search, predecessor, successor operations and in-order iter­
ation over keys, it would be interesting to construct an implementation the conformed
to a standard interface. For example, that of the C++ STL’s map data structure
[Stroustrup 1997]. This is a significant challenge, mainly due to iterator guarantees.
On a C++ map, an insertion to the data structure is guaranteed not to invalidate any
iterators currently pointing to other keys in the data structure. When keys are stored
in growable arrays, how can this be maintained efficiently? Frias et al. [2009] describe
related issues that arise when implementing a bucketed C++ list implementation.

A second avenue of exploration could attempt to further improve the performance
in time and space of the LPCB-tvie. Given a fixed burst trie, it need only store key
suffixes in its buckets, improving space usage as well as spatial locality (note that the

104

4.6. Future Work 105

same cannot be applied to Q-tries). However, when the branching factors of trie nodes
can vary (i.e. via level compression), the length of the suffixes that need to be stored in
the buckets also varies. For fixed organization burst tries, we provided some results of
limited scope [Nash and Gregg 2008], however it would be interesting to see if there is
a solution that can be engineered for the case of a level compressed burst trie. A caveat
is that, in anecdotal experience, the storage of key suffixes only in buckets results in a
highly complex implementation in order for generality over key lengths and efficiency
to be maintained.

Lastly, of the many theoretical data structures described in Section 4.5, few have
ever been implemented. While direct implementations of many of the data structures
are likely to be infeasible in practice, the literature on integer data structures includes
many techniques for achieving parallelism at the bit-level and some of these techniques
could likely be used in practice. A simple starting point is to take the principle ideas of
a theoretical data structure but replace its components with those that are efficient in
practice, even if not as asymptotically efficient as those used in the theoretical construc­
tions. Andersson [1995] provides an excellent example of this, giving C source code for
a modified version of his 0(\/logn) time search tree (the time complexity of operations
in his implementation is increased to 0(logn/loglogn)). He however only provides
anecdotal experimental experience, and does not concentrate on engineering effort, and
moreover his implementation is likely to be impractical because of its space usage (in
fact, his principle motivation for providing an implementation is not to demonstrate
good performance, but to concretely establish a sublogarithmic time data structure in
a real programming language without the use of multiplication). His implementation
does demonstrate that theoretically appealing data structures may have realizations
that are not impractically complex. An important tool in this context could be the
multi-media instructions now available on almost all modern desktop processors, some
of these instructions operate on very wide operands of up to 256 bits, and could be
used to increase word-level parallelism. A project of particular interest here would be
to create a generic, portable implementation of a data structure such as the one of
Andersson [1995], that can have its “back-end” replaced. This back-end could then be
specialized to use the multi-media instructions available on different architectures, such
as SSE and XOP [AMD 2009; Intel 2009] in order to extract the maximum word-level
parrallelism from the architecture on which the data structure is operating. Recent
work has explored the use of 64-bit architectures to provide additional parralelism
(compared to 32-bit architectures) although targeted towards succinct data structures,
and without making use of multi-media instructions [Vigna 2008; Gog 2009].

105

4.7. Conclusion 106

4.7 Conclusion

This chapter has provided a thorough experimental comparison of efficient data struc­
tures operating over 32 and 64-bit integer keys. In particular we have shown that
extending burst tries to an ordered data structure for integer keys provides a data
structure that is very efficient in both time and space.

In comparisons using uniform and biased random data with red-black trees and
B-trees we have shown that our level and path compressed variant of burst tries,
LPCB-tnes, provide all operations more efficiently in both time and space. We have
also compared our LPCB-tv'\e to Dementiev et a/.’s [2004] S'-tree data structure based
on stratified trees, and found that while Dementiev et a/.’s data structure is competi­
tive in time, it requires far more memory than an LPCB-trie and is less general, being
restricted to 32-bit keys. We have also compared LPCB-txie to Q-tries, a data struc­
ture based on Korda and Raman’s [1999] modification of Willard’s g-fast tries [1984].
We carefully engineered an implementation of LPCQ-tnes, using the same bucket and
node data structures as our burst trie as well as incorporating level compression, and
found that they are generally slightly less efficient in time than LPCB-tv'ies. The
LPCQ-tries requires slightly less space however. On the uniform random data, we
found the LPCB-tvie to require 12 and 17 bjdes per insertion, whereas the LPCQ-txie
required approximately 12 bytes per insertion.

We have also presented results for an application of dynamic, ordered integer data
structures in Valgrind where the keys are 32 and 64-bit integers. Our results show
that in the 32-bit case only the ^-tree data structure operates faster than the LPCB-
txie, but the 5-tree requires almost twice as much space as the LPCB-tx'ie. In the
64-bit case, the LPCB-tx\e requires less space and operates more rapidly than any
of the alternative data structures. We also provided experimental results over a data
set derived from a Genome data set, where the keys are 36-bit integers. In this case,
the LPCB-txie also operated substantially faster and required less space than the
alternative comparison-based structures.

Our experimental results have shown that bucketed tries often achieve good per­
formance compared to alternative data structures by incurring low numbers of cache
misses. However, our burst trie variant has not been explicitly designed to be cache
aware. If cache awareness was introducted, it would be necessary to compare the per­
formance of the trie structures with other cache aware and cache oblivious search trees,
a structure of particular relevance is the cache aware P-f-tree of Rao and Ross [2000].

This chapter demonstrates, through a detailed experimental comparison on both

106

4.7. Conclusion 107

naturally occuring and synthetic data sets, that LPCB-tv\es should be considered as
one of the many alternative data structures for applications requiring a general purpose
dynamic ordered data structure over keys such as integers or floating point numbers.

107

Chapter 5

Maximum Independent Sets in
Circle Graphs

5.1 Introduction

Chapters 3 and 4 of this dissertation have presented experimental and algorithm en­
gineering contributions for two closely related problems: sorting and searching. In
this chapter, we explore the engineering of a problem arising in a somewhat different
area: graph algorithms. We again take an experimental and algorithm engineering ap­
proach, culminating in the proposal of new, output sensitive algorithms for the problem
considered, whose asymptotic efficiency we also justify experimentally.

Finding a maximum independent set in a weighted circle graph is an important
problem that arises in a number of areas. Our interest in the problem arose from an
application in the field of compiler optimization, where one wishes to rapidly compute
a maximum independent set of a circle graph when allocating registers in software
pipelined loops [Eisenbeis et al. 1995; de Werra et al. 1999, 2002]. The problem also
arises in other fields, including VLSI design [Supowit 1987; Cong and Liu 1990] compu­
tational geometry [Asano et al. 1986; Liu and Ntafos 1988], and computational biology
]Zou et al. 2009].

We begin this chapter by providing a detailed experimental evaluation of the two
most efficient algorithms for computing a maximum independent set of a weighted circle
graph. We provide details of our implementations of the algorithms of Apostolico et al.
]1992; 1993] and Valiente]2003], together with time, space and other measurements.
These algorithms operate in a very different manner, but have the same asymptotic
time. In implementing the algorithm algorithm of Apostolico et al. we describe opti­
mizations that significantly reduce both its running time and its memory consumption.

108

5.2. Background 109

We also correct an error in this algorithm. In addition, we show how to restructure
and simplify Valiente’s algorithm, allowing us to remove redundant computations from
the algorithm resulting in much improved performance. Moreover, in the case of both
algorithms, when the density of the circle graph’s associated interval representation is
increased beyond a certain point the efficacy of the optimizations we apply increases
dramatically and as a function of the density. We provide experimental results over
dense and sparse random circle graphs, as well as for circle graphs that arise when
performing register allocation of software pipelined loops in a compiler.

Following this, we compare the best variation of these algorithms to new output
sensitive algorithms that we describe. Compared to our very efficient variations of pre­
vious approaches, we demonstrate experimentally that our output sensitive algorithms
are even more efficient in practice.

5.2 Background

The intersection graph of a finite family of sets 5i,..., is an undirected graph of n
vertices vi,... ,Vn with an edge connecting Vi and Vj only if Si fl Sj (j).

A circle graph is an undirected graph isomorphic to the intersection graph of a finite
set of chords in a circle. A circle graph can be represented either by chords in a circle or
intervals on the real line, and the two representations may easily be obtained from one
another [Gavril 1973]. Figure 5.1 shows an example of these representations together
with the circle graph they give rise to. We can assume without loss of generality that
no two chords (or intervals) share an end-point, since if two chords share an end-point
we can slightly move the end-point of one of the chords without changing the circle
graph [Gavril 1973].

An interval representation of an n vertex circle graph can be encoded as a per­
mutation a of {l,...,2n} where the end-points of the intervals are formed by pairs
{cr2k-i,0'2k), for 1 < A; < n. Note that this makes use of the assumption that no inter­
vals share an end-point. An arbitrary set of intervals can be transformed into this form
in ©(nlogn) time. Further background on circle graphs and related graph families is
provided by Golumbic [2004].

In this chapter we make use solely of this interval representation. The density of
an interval representation is the maximum number of intervals crossing any point on
the real line. Two intervals are said to overlap if neither contains the other and they
are not disjoint. If two intervals overlap then their corresponding chords in the circle
intersect. A maximum weight independent set is then a set of non-overlapping intervals

109

5.2. Background 110

1

2 3 4 5 6
(b)

7 8

Figure 5.1: The chords in the circle of (a) give rise to the circle graph in (c). The
intervals in (b) also give rise to the circle graph of (c). The interval representation in
(b) has density 4.

with largest total weight.
Finding a maximum independent set of a circle graph can be solved in time polyno­

mial in the number of vertices of the graph, Gavril [1973] presented an 0(n^), algorithm
while others developed 0(n^) algorithms [Supowit 1987; Asano et al. 1991; Goldschmidt
and Takvorian 1994]. Other problems that are AP-complete for general graphs can also
be solved in polynomial time for circle graphs, for example Tiskin [2009] has shown
an 0{n\og^ d) time algorithm for the maximum clique problem, and there are also
problems that are A^P-complete for both circle graphs and general graphs [Keil 1993].

In this chapter we begin by presenting highly efficient implementations of the two
efficient algorithms for computing a maximum independent set of a circle graph. These
are the algorithms of Apostolico et al. [1992; 1993] and Valiente [2003]. Apostolico
et al. solve the problem in Q{dn) time and space, given the interval representation
of an n vertex circle graph with density d. Valiente’s algorithm solves the problem in
Q{£) time and 0(n) space, where £ is sum of the lengths of the intervals in the interval
representation. Note that £ = Q{dn) [Valiente 2003]. We also compare the performance
of these two algorithms to that of Supowit’s simple 0(n^) time and space algorithm.

Following this, we describe an algorithm requiring Q{na) time for an n vertex un­
weighted circle graph with independence number a. Such an algorithm is inferior to
the 0(dn) time algorithms mentioned above when a = o{d). As a result, we then show
how this output sensitive algorithm can be modified to give an algorithm operating
in time 0(nmin{d, alogn}). In comparison to the best of the variations we develop
of the 0(dn) time algorithms, we show experimentally that this algorithm performs
excellently in practice. Finally, we sketch how a more complicated algorithm operat­
ing in time 0(nmin{d, a}) can be achieved, although we do not present experiments
determining the practicality of this algorithm.

no

5.3. Experimental Setup 111

5.3 Experimental Setup

In this section we briefly describe how our time, space and other measurements were
gathered, as well as the machine configuration used. Our machine had a pair of dual­
core Intel Xeon 5140 processors, with each core running at 2.33 GHz (note that our
implementations are not parallelized and run only on a single processor), and 4 GiB of
RAM.

We gathered measurements over two types of random interval representation. Re­
call that an interval representation of an n vertex circle graph can be encoded as a
permutation of {1,..., 2n}. Thus, to generate a random interval representation it is
sufficient to generate a random permutation of {1,..., 2n}. Such a generator clearly
generates each interval representation with equal probability, since each interval repre­
sentation is described by the same number of permutations (in particular, each interval
representation corresponds to exactly n\ x 2” distinct permutations).

These random interval representations were generated with sizes beginning at 2000
intervals and growing in increments of 2000 intervals to 50000 intervals. Results gath­
ered over these interval representation were averaged over 20 runs. These random
interval representations are equivalent to the ones studied by Scheinerman [1988]. It
should be noted that the density of interval representations generated in this manner
is almost always very close to n/2. Figure 5.2(a) gives an idea of the distribution of
the density of these random interval representations. We refer to these random interval
representations as Type-I interval representations.

In order to study the behaviour of the algorithms with interval representations of
more varied densities, we generated random interval representations corresponding to
another model described by Scheinerman [1990]. In this model, n random centre points
Ai,..., Xn, uniformly distributed in [0,1] are chosen. In addition, n random so-called
radii Ri,...,Rn, uniformly distributed in [0,r] are also chosen. The n intervals are
then formed by [Aj — Rj, Aj 4- Rj]. These interval representations are then converted
to the usual permutation representation described above in ©(nlogn) time. We refer
to these random interval representations as Type-II interval representations.

The expected interval length in this model is r, and by varying this parameter in­
terval representations in a wide range of densities can be randomly generated. Figure
5.2(b) shows how the average density of these interval representation varies as the ra­
dius parameter is increased. We examine the behaviour of the maximum independent
set algorithms firstly by fixing r and generating interval representations with sizes be­
ginning at 2000 intervals and growing in increments of 2000 intervals to 50000 intervals.

Ill

5.4. Overview of Algorithms 112

(b)

Figure 5.2: For (a) We generated 10® random Type-I interval representation on 20000
chords and recorded their density. This figure shows that the vast majority of interval
representations have density close to n/2. In (b) we generated random Type-II interval
representations of 20000 chords while varying the radius parameter linearly beWeen 0
and 5 in 50 steps, we did this 20 times and averaged the results.

As with the other results, results over these interval representation were averaged over
20 runs. We examined the behavior of the algorithms for radii of 0.1, 0.5, 1 and 5.
These radii give on average densities of 10%, 50%, 75% and 95% of the numDer of
intervals in the interval representation. We also generated results by fixing the number
of intervals at 20000, and then allowing r to vary. To do this, we varied r liuearly
between 0 and 5 in 25 steps.

We used the C library function gettimeofday for timing measurements. For mem­
ory usage we used counters to keep track of the memory allocated and freed by calls
to malloc and free, including the overheads of the memory allocator. Below we also
present results of the number of times particular loops in our implementations iterate,
these iteration counts were measured by inserting counters at the appropriate points
of the program.

5.4 Overview of Algorithms

5.4.1 Supowit’s Algorithm

We begin by briefly describing Supowit’s [1987] simple dynamic programming algorithm
for computing a maximum independent set of a circle graph, requiring ©(n^) time and
space.

Given a circle graph represented by a permutation a of {1,... ,2n} as described

112

5.4. Overview of Algorithms 113

in Section 5.2, let MIS[a, b] denote the weight of a maximum independent set of all
intervals with both end-points contained in [a,b]. Here [a, 6] denotes the set {x E R :
a < X < b}. For an interval i with left end-point a and right end-point b we write
i = [a,b], and denote its weight by Wi.

Clearly MIS[a,b] = 0 for a > 6. The entries of MIS are evaluated such that
MIS[ai,b] is evaluated before MIS[a2,b] for ai > 02, and by decreasing b from 2n
down to 1. If a is the right end-point of some interval then MIS[a, b] = MIS[a -1-1,6].
Otherwise, if a is the left end-point of some interval i — [a, r] with r < 6 then

MIS[a, b] — max(M75[a -I-1,6], Wi + MIS[a -b 1, r — 1] -b MIS[r + 1,6])

The weight of the circle graph’s maximum independent sets is given by M7S'[l,2n].
A maximum independent set itself (and not just its weight) can easily be maintained
during the evaluation of this recurrence. Although very simple, the ©(n^) space re­
quirement of this algorithm limits its practicality (see Sections 5.7 and 5.8).

5.4.2 More Efficient Approaches
The problem of computing a maximum independent set of a weighted circle graph can
be reduced to computing a maximum independent set of an appropriately weighted
interval graph. Both of the algorithms we focus on in this chapter [Apostolico et al.
1992; Valiente 2003] make use of this reduction.

An interval graph is an undirected graph isomorphic to the intersection graph of
a finite set of intervals on the real line. Given an interval graph represented by a
permutation a a maximum independent set of that interval graph corresponds to a
max;imum weight set of disjoint intervals in a. This maximum independent set can be
found easily in ©(n) time and space using a simple dynamic programming algorithm
[Gupta et al. 1982] that we now review.

Given the a representation of an n vertex interval graph, let T[q] denote the weight
of a maximum independent set of all intervals with both end-points in the range [q, 2n].
Clearly T[2n] = 0. If q is the right end-point of some interval, then T[q] = T[q + 1].
Otherwise, if q is the left end-point of some interval i = [q, r] with weight Wi then

T[q] = max{T[q + l],T[r -b 1] + Wf) (5.1)

The weight of a maximum independent set is given by T[l] and a maximum independent
set itself is easily maintained while evaluating the recurrence.

113

5.5. Apostolico et al’s Algorithm 114

Before continuing our discussion of a maximum independent set algorithms, we
introduce a small amount of notation that is used throughout this chapter. We denote
by MIS[a,b] the weight of a maximum independent set of all intervals with both
end-points in [a,b]. For an interval i = [a,b], the maximum weight independent set
contained in i (i.e. a maximum weight independent set of all intervals with both end­
points in [a, 6]) will often be of interest, and we use the notation CMIS[i] to denote
MIS[a,b].

If the interval representation of a circle graph has interval weights given by wi =
CMIS[i], then we can use the preceding recurrence on the circle graph’s interval rep­
resentation to compute the weight of the circle graph’s maximum independent set. If a
maximum independent set of this weighted interval graph is S = {ii,i2, ■■■, im}, then
a maximum independent set of the underlying circle graph is composed of S, together
with all the intervals in a maximum weight independent set contained in each of the
intervals ii,... ,im in S.

We next describe two efficient algorithms for computing these CMIS values for a
weighted circle graph, showing optimizations that greatly improve their run-time in
practice.

5.5 Apostolico et al’s Algorithm

Given an interval representation with density d of an n vertex circle graph, Apostolico
et aVs [1992; 1993] algorithm computes the CMIS values described in the previous
section in 0(dn) time and space. We begin by describing this algorithm and then
describe optimizations that significantly improve its running time and decrease its
memory consumption.

For an interval representation with 2n end-points, the algorithm works as a left-
to-right scan, with a counter m beginning at 1 and counting towards 2n. As the scan
moves from left-to-right the CMIS values are updated progressively. If the scan is at
position m, then all intervals i = [a, b] with a <b <m have CMIS[i] = MIS[a, 6]. We
refer to these intervals as closed, and their CMIS values require no further updating.
On the other hand, all intervals i with a < m < b are referred to as open and have
CMIS[i] — MIS[a, m]. We next describe the two data structures required to maintain
these CMIS values as the left-to-right scan progresses.

Firstly, a linked list OPEN is maintained that contains all open intervals in in­
creasing order of left end-point. Secondly, for each interval i = [a, b] a linked list Lf, of
all open intervals containing i is maintained. These intervals are stored in decreasing

114

5.5. Apostolico et al’s Algorithm 115

order of left end-point. For each of these open interval j = [c,d\, containing i, we also
store MIS[c, b] in the linked list node for j in Li,. We now describe how these data
structures are used by the algorithm.

If the scan is at position m and m is the left end-point of some interval i, then i is
added to the end of OPEN and CMIS[i] <— 0. Otherwise, if m is the right end-point
of some interval i = [a, m], i is removed from OPEN and CMIS[i] ^ CMIS[i] + Wi.
The algorithm must now consider the affect of this new CMIS value on the CMIS
values of all intervals containing i, note that the set of such intervals are a subset of
those in OPEN. Assuming there are intervals in OPEN containing i, we denote by
Pbegin the first interval in OPEN and by Pend the interval in OPEN containing i that
has the largest left end-point.

The CMIS values of these intervals are updated by performing a right-to-left scan,
with a counter q counting downwards from a — 1 (recall that i = [a, m]). We refer to
this right-to-left scan as the local scan. At each position q of the local scan the actions
taken depend on whether q is the right or left end-point of an interval:

1. If the current position q of the local scan corresponds to the right end-point of
some interval j = [c, q] then the list Lg is scanned until we pass the interval Pbegin-
If any interval encountered in this scan is closed, it is removed from Lg. For any
open interval k = [d, e] encountered the following update is performed:

CMIS[k] ^ max(CM/5[A:], MIS[d, q] + CMIS[i])

Here MIS[d,q\ is retrieved from Lg. Pbegin is now advanced to the interval in
OPEN that immediately succeeds the first open interval encountered during the
scan of list Lg, if there is no such interval, the local scan terminates. In addition,
if the left end-point Pbegin is to the right of the left end-point of Pend the local
scan also terminates. This new value of Pbegin removes from consideration all
intervals that have just had their CMIS values updated. It is important that
Pbegin is Computed in constant time. This can be done during the scan of Lg by
noting the first open interval encountered in Lg.

2. On the other hand, if q corresponds to the left end-point of some interval j = [q, d]
containing i, then there are no intervals contained in [q,a] (since otherwise j
would have been removed from consideration when the right end-point of any
such interval contained in [q, a] was encountered in step 1) and so the following
update is performed:

115

5.5. Apostolico et al’s Algorithm 116

CMIS[j] ^ max{CMIS[j],CMIS[{\)

Finally, Pend is set to the interval immediately preceding j in OPEN, since j
requires no further updating during this local scan. The local scan terminates if
there is no such interval, or if the left end-point of this new Pend is to the left of
the left end-point of Pbegin-

After the local scan has finished, the final step to be taken is to construct the list Lm
(assuming m is a right end-point of interval i, and a local scan actually occurred at
all). Creating I/,„ requires traversing all intervals in OPEN from start to end and for
each interval j = [c, cZ] containing i adding it to the front of Lm with its MIS[c, m]
value set to CMIS[j].

This completes the description of computing the CMIS values for an interval rep­
resentation of a circle graph. We now give the space and time analysis of the algorithm
just described. The space required by the algorithm is dominated by the space required
by the L lists. For each of the n intervals we store an L list holding entries for all in­
tervals this interval is contained in. If the density of the interval representation is d
then there can be no more than d—1 entries in each L list. Thus the space complexity
of the algorithm is 0(dn).

The left-to-right scan iterates 2n times. When the left-to-right scan encounters
the left end-point of an interval, a constant time update is incurred. When the right
end-point of an interval is encountered, a local right-to-left scan begins. It is simple
to show that the local scan need never iterate more than 2d times [Apostolico et al.
1992, 1993]. At any point during a local scan when a right end-point is encountered
(i.e. step 1 described in the previous section) up to 0(d) time can be spent removing
intervals from the L lists. However, the total time spent removing intervals from the
L lists can be at most Q{dn) since they contain in total fewer than dn entries. Thus
the algorithm takes Q{dn) time in total.

We next describe how to construct a maximum independent set itself and correct
an error in the description provided by Apostolico et al.

5.5.1 Set Construction

Having constructed the CMIS values in &{dn) time and space, they are used to weight
the interval representation of the circle graph and then find a maximum weight set of

116

5.5. Apostolico et al’s Algorithm 117

L
I

L L

1 2 3 4 5 6 7 8 9 10 11 12
Figure 5.3: This figure demonstrates an error in Apostolico et aVs algorithm [1992;
1993]. When the algorithm’s left-to-right scan is at position 11, we have (assuming all
intervals have unit weights) CMIS[f] = 1, CMIS[e] = 1, CMIS[b] — 3, CMIS[d\ = 2
and CMIS[c] = 1. Since position 11 is the right end-point of c a local right-to-left
scan begins from position 9. Now, 9 is the right end-point of d, and so an update of
the type described in step 1 in Section 5.5 occurs. The update has Ptegin = Pend —
list Lg is scanned and the value MIS[1,9] = 3 is retrieved. This causes CMIS[a] to
be (correctly) updated to 4 from 3. Moreover the pair (c, d) is added to I4. This latter
action is incorrect however, instead the pair (c, b) should have been added to I4.

disjoint intervals, which takes ©(n) time and space. As described in Section 5.4, a
maximum independent set of the circle graph is then formed by these disjoint intervals,
as well as maximum independent sets contained in these intervals.

Therefore, in order to construct a maximum weight independent set itself, a linked
list Vi is associated with each interval i. The list Vi is used for obtaining a maximum
independent set contained in interval i. We first describe the incorrect updation strat­
egy for these V lists described by Apostolico et al*. If CMIS[k] is successfully updated
in step 1 of the local scan described in the previous section the pair {i,j) is added to
Vfc. On the other hand, if CMIS[j] is successfully updated in step 2 of the local scan,
the pair {i, nil) is added to Vj.

The maximum independent set contained in interval i can then be constructed by
examining V^. If is empty, then there are no intervals in a maximum independent
set contained in i. Otherwise, Vi is traversed from start to end. The first pair (^1,^2)
encountered in this traversal implies ji is contained in the set. If 72 = NIL, then the
traversal terminates. Otherwise, is also included in the set and the traversal continues
until it encounters another pair (^’203)1 or the end of the list is reached. Assuming such
a pair is found, and js nil then is included in the set and the traversal searches
for a pair with first element j^. The traversal continues in this manner until a pair with
a second element equal to nil is encountered or it reaches the end of the list. Figure
5.3 shows an example that demonstrates that this updation scheme is incorrect.

* Actually we describe a slight simplification of their scheme, eliminating an array without changing
their algorithm’s (in)correctness.

117

5.5. Apostolico et al’s Algorithm 118

I- - - - - - - - 1- - - - - - - - 1- - - - - - - 1- - - - - - - - - 1- - - - - - - - - 1- - - - - - - 1- - - - - - - - - 1

12345678
(a)

H—r 1—I- ■A- - - - - 1-I -III a
I I I_ _ _ _ I_ _ _ !_ _ _ _ ^^^^

123456789 10
(b)

Figure 5.4: In (a), the right end-points of c and d occur contiguously. We have
limit[4] = 3, and since the left end-point of d is 2, and 2 < 3, we require no en­
tries in L4 because any interval (like a) containing d must contain c too. In (b) the
right end-points of c, d and e occur contiguously, and we have limit[5] = 2. Since the
left end-point of e is 4 and 4 > 2, L5 will have an entry at least for c. L5 does not
require an entry for d because the left end-point of d is 1 and 1 < 2, i.e. an interval
containing d must also contain c. It does require an entry for a however, because 3 > 2.

The incorrect update to the V lists occurs in step 1 of the local scan described in
the previous section. Recall that this is an update to an interval k = [d, e] containing
intervals i = [a, m] and j = [d, q], which has the form

CMIS[k] ^ max{CMIS[k], MIS[d, q] + CMIS[i])

Where MIS[d, q] is retrieved from Lq. In general adding {i,j) to 14 is incorrect when­
ever j did not update MIS[d,q\ to its current value. What is required to make this
correct is to store in each L list node the interval h that caused the most recent up­
date to the MIS value also stored in that node. The pair {i,h) is then added to I4,
where h is retrieved from Lq. The L lists can easily be augmented with this extra data
during their updation after the local scan terminates. When updating an L list for the
right end-point of some interval k = [0,6], and the first entry in I4 is {i,j) the pair
{i,CMIS[k]) should be added to Lj,.

Referring again to Figure 5.3 the error is fixed because when constructing Lg we add
(5, CMIS[a]) to Lg, here b is obtained from the front of 14. Now when the left-to-right
scan reaches position 11 and the local right-to-left scan is triggered from position 9, we
add the pair (c, 5) to I4, with b retrieved from Lg.

5.5.2 Optimizations

The running time of Apostolico et al’s [1992; 1993] algorithm is dominated by the
time spent adding and removing nodes from the L lists. A simple implementation
of the algorithm is likely to call on the operating system in order to dynamically

118

5.5. Apostolico et al’s Algorithm 119

Input: An interval representation a of an n vertex weighted circle graph.
Output: The limit table described in Section 5.5.2.
1^0
for m •»— 2n downto 1 do

limit[m] <— I
if m is the right end-point of some i = [a, m] then

if a > Z then
I a

else
1^0

Figure 5.5: Pseudo-code to build the limit table described in Section 5.5.2, which we
use to avoid adding nodes to the L lists of Apostolico et a/’s [1992; 1993] algorithm.

allocate the nodes in these lists (e.g. in C using malloc and free). Doing so results
in a very inefficient implementation however. This is because the dynamic memory
management operations are often very expensive in time, especially to free memory.
Moreover, when many small units of memory are requested dynamically, as is often
the case when allocating linked list nodes, the overhead of the memory allocator can
be unacceptably high.

As a result, for our implementation linked list nodes are allocated in large pools
and added and returned to those pools by the application. This results in a significant
speed-up to the implementation.

The second optimization we apply is also to the L lists. Consider two intervals
i = [a,b], j — [c, 6 -h 1]. In this case. Lb need only contain nodes for those intervals
that i is contained in but in which j is not contained. This is because in any local
scan (described in Section 5.5) the right end-point of j will be encountered before the
right end-point of i, and all intervals in which i and j are both contained will thus be
removed from consideration before the local scan reaches the right end-point of i. Note
that if c > a then no entries are required in Lf,. This technique can be applied to any
number of intervals whose right end-points occur continguously.

Given the interval representation of an n vertex circle graph, this optimization is
implemented by first preforming a pre-processing pass taking 0(n) time and space. A
table limit is constructed and limit[m\, where m is the right end-point of some interval
i = [a, m], gives the left end-point of the interval with right end-point at m -|- 1, or
zero if there is no such interval. Now if a < limit[m], Lm requires no entries. Figure
5.4(a) shows an example of this situation. On the other hand, if a > limit[m], then

119

5.5. Apostolico et al’s Algorithm 120

Lm should contain entries for all open intervals j = [c,d] with c > limit[m\. If at a
right end-point m, there are also right end-points of intervals at m + l,m + 2,... ,m +p
then limit[m] holds the largest left end-point of those p intervals. Figure 5.4(b) shows
another example of how this limit table is used. Figure 5.5 shows pseudo-code for
constructing this limit table.

Figure 5.6 shows pseudo-code for the entire, optimized version of the algorithm. A
small amount of extra notation is introduced in the pseudo-code. We denote by left{i)
and right{i) the left and right end-points of an interval i. The functions first, prev,
next, add-front, add-end, and remove are all constant time linked-list operations. For
example, first{X) returns the first node in linked list X, while remove{p, X) removes
node p from list X. As a final example, next{p,X) returns the node immediately
following p in X. Both next and prev return nil if the requested node does not exist.
In the pseudo-code we write X •<— remove{p,X) simply as a reminder that remove
modifies X, and similarly for add-front and add-end. Given a node of a linked list
containing data pertaining to an interval i, we use i to denote both that interval and
the node itself. The context always makes the distinction clear however.

Finally, recall that for an interval i = [a,q\ the list L, holds MIS[c,q\ for each
interval j = [c,d] containing i. In the pseudo-code we write w{j,Lq) to denote this
MIS value. Lq also stores, for each interval j containing interval i, the interval that
updated MIS[c,q] to its current value. We denote this interval by h{j,Lq) in the
pseudo-code.

5.5.3 Type-I Results

We now present results for Apostolico et a/’s [1992; 1993] algorithm operating on
randomly generated Type-I interval representations. Figure 5.7(a) shows the run­
times of a basic implementation of the algorithm, together with implementations using
a custom memory allocator, and the fully optimized version, which uses the limit table
as well as a custom memory allocator. The fully optimized version is more than twice
as fast as the basic implementation.

Figure 5.7(b) shows the iteration counts of the loop that builds the L lists, in
both the basic and optimized implementations (note that the the loop that builds the
L list iterates the same number of times in both the basic implementation and the
implementation using a custom memory allocator). In the basic implementation, the
table limit is not employed to reduce the number of nodes added to the L lists and
consequently its iteration counts are greater than in the optimized implementation. On
average, the optimized implementation’s L list building loop iterates about 33% fewer

120

5.5. Apostolico et al’s Algorithm 121

Input: An interval representation cr of an n vertex weighted circle graph.
Output: The maximum weight independent set contained in each interval i of a.
for m <— 1 to 2n do

if m is the left end-point of some i then
CMIS[i] ^ 0
OPEN ^ add.end{i, OPEN)

else m is the right end-point of some i = [a, m]
Pend <- prev{i, OPEN)
CMIS[{\ ^ CMIS\i] + Wi
OPEN <— remove{i, OPEN)
Pbegin ^ first{OPEN)
g <— a — 1
while Pbegin ^ NIL and Pend ^ nil and left{Pbegin) < left{Pend) do

if q is the right end-point of some j = [c, q] then
k first{Lq)
new <— NIL
while k ^ NIL and left{k) > left{Pbegin) do

tmp <— next{k, Lq)
if right{k) > m then

if new — NIL then
new <— next{k, OPEN)

if CMIS[k] < w{k, Lq) + CMIS\i] then
CMIS[k] w{k, Lq) -t- CMIS\i]
Vfc add-front{{i, h{k, Lq)), Vk)

else
Lg

k <— tmp
jq ^ remove{k, Lq)

Pbegin new
else q is the left end-point of some j = [g, d]

if d > m then
if CMIS\j] < CMIS[i]

CMIS\j] ^ CMIS[i]
Vj add.fr(mt{{i, nil), Vj)

Pend *- prev{j, OPEN)
q<r-q-l

if limit[m] < a then
j <— first{OPEN)
while j 7^ NIL and a > left{j) do

if left{j) > limit[m] then
{k,9) first{Vj)
Lm <— add-front{{k, CMIS\j])) Pm)

j <— next{j, OPEN)

Figure 5.6: Pseudo-code for a corrected, optimized version of Apostolico et aVs [1992;
1993] algorithm, described in Section 5.5. The limit table is pre-computed using the
algorithm of Figure 5.5.

121

5.5. Apostolico et al’s Algorithm 122

times than in the basic implementation.
Figure 5.8 shows the memory consumption of our implementations. Using a custom

memory allocator reduces the dynamic memory allocator’s overhead resulting in a
significantly lower memory consumption. The fully optimized version avoids adding
many nodes to the L lists using the limit table and so has an even lower memory
consumption. On average, the memory fully optimized version requires less than half
the memory of the basic implementation.

5.5.4 Type-II Results

We now describe the behaviour of Apostolico et a/’s [1992; 1993] algorithm on randomly
generated Type-II interval representations. Figure 5.9(a) shows the run-time of a basic
implementation of the algorithm as the radius parameter is varied. As the radius is
increased, the run-time increases too. This is to be expected since the density of the
interval representations increase as the radius is increased, and the algorithm operates
in Q{dn) time. Figure 5.9(b) shows the run-time of our optimized implementation of
the algorithm. The performance of the optimized implementation of the algorithm
is significantly better in all cases. What is especially noteworthy however is that
the running time of the optimized implementation does not simply increase as the
density of the supplied interval representation increases. The slowest case for the
basic implementation, that is, when the radius is 5, is the second fastest case for the
optimized implementation. This speed-up when the density is increased is a result of
the optimization using the limit table. Recall that the limit table is used to avoid
adding nodes to the L lists (saving both time and space) when two or more right end­
points occur contiguously in the interval representation. As the density increases, the
probability of consecutive right end-points increases. Thus this optimization results in
progressively greater gains.

Figure 5.10(a) shows the memory consumption of the basic implementation of the
algorithm. As the radius is increased the memory consumption of the algorithm in­
creases. As with the timing measurements, this is to be expected since the algorithm
operates in Q{dn) space. Figure 5.10(b) shows the memory consumption of the op­
timized implementation. Again, like the timing results just described, the memory
consumption is better in all cases, but also does not simply increase as the radius is
increased. Figure 5.11(a) and Figure 5.11(b) show the number of times the loop that
builds the L lists iterates in the basic and optimized implementations respectively. This
gives a more machine independent view of the optimizations applied to the algoritlim.
Note that the speed-up observed is not solely due to these loops iterating a smaller

122

5.6. Valiente’s Algorithm 123

number of times, since the memory allocator has also been replaced.

5.6 Valiente’s Algorithm

Valiente [2003] describes a simple algorithm for constructing a maximum independent
set of a weighted circle graph, taking 0(£) time and only 0(n) space, where £ is the
total interval length of an interval representation of the circle graph. We first describe
this algorithm and then give optimizations that dramatically improve its running time.

The algorithm applies the reduction of Section 5.4 recursively, resulting in a simple
bottom-up dynamic programming algorithm. The reduction of Section 5.4 provided
an 0(n) time and space algorithm for finding a maximum independent set contained
in the interval [1,2n] given the CMIS values of all intervals contained in [1,2n]. The
idea of Valiente’s algorithm is, given any interval i = [a, 5], if the CMIS values are
known for all intervals contained in i then we can compute CMIS\^] in 0(Zi) time and
space, where li = b — a is the length of interval i.

To ensure all CMIS values of intervals contained in i are known when computing
CMIS[i], Valiente suggests sorting the intervals in nondecreasing order of interval
length. A bucket sort takes 0(n) time and space to sort the intervals, and then the
CMIS values are computed in order for each interval.

For an interval i = [a, 6] we define MIS[q] iov a < q<h as the weight of a maximum
independent set of all intervals contained in [q, 5]. Clearly M/S[6] =0. \i q is the right
end-point of some interval then MIS[q\ = MIS[q -|- 1]. Otherwise, if j = [qf, c] with
c < b (i.e. q is the left end-point of an interval j contained in z), we have

MIS[q] = max{MIS[q + 1], MIS[c + 1] + CMIS\j]) (5.2)

CMIS[i] is then given by MIS[a + l]+Wi. Solving this recurrence for an interval takes
time linear in the length of that interval, and so solving it for all intervals takes 0(£)
time where £ is the sum of the lengths of the intervals. Note that the space required
by the recurrence can be re-used for each interval, and so computing the CMIS values
takes &{lmax) space, where Imax is the maximum length of any interval. In fact, a simple
strategy is to use a single table to evaluate both Recurrences 5.1 and 5.2, requiring
0(n) space. Storing all the CMIS values requires an additional 0(n) space.

In order to construct a maximum independent set itself, a linked list is main­
tained for each interval while computing Recurrence 5.2. For an interval i, a list Ci is
maintained which stores a reference to all intervals directly contained in a maximum
independent set of i (that is, Ci contains all j in a maximum weight independent set

123

5.6. Valiente’s Algorithm 124

(a)

(b)

Figure 5.7: This figure shows the results for our implementations of Apostolico et
aVs [1992; 1993] algorithm operating on Type-I interval representations, (a) Shows
the running times of our implementations, (b) Shows the the iteration counts for
the loop that builds the L lists in the basic and optimized implementations. The
optimized implementation’s L list building loop iterates on average about 33% fewer
times than the loop that builds the L list in the basic implementation. In both figures,
the optimized version is shown operating on larger interval representations than the
other two, because they allocate all available memory on larger inputs. For the same
reason, the implementation using a custom memory allocator is shown operating on
larger interval representations than the basic implementation.

124

5.6. Valiente’s Algorithm 125

10000 20000 30000
Number of Intervals

40000 50000

Figure 5.8: This figure shows the memory consumption of the our implementations of
Apostolico et aVs [1992; 1993] algorithm. The optimized version is shown operating on
larger interval representations than the other two, because they allocate all available
memory on larger inputs. For the same reason, the implementation using a custom
memory allocator is shown operating on larger interval representations than the basic
implementation.

125

5.6. Valiente’s Algorithm 126

10000 20000 30000 40000 50000
Number of Intervals

(b)

Figure 5.9: This figure shows the results for our basic implementation of Apostolico et
al’s [1992; 1993] algorithm operating on Type-II interval representations, (a) Shows the
running times of our basic implementations of the algorithm. As the radius parameter
is increased the density of the interval representations increases and so does the running
time. In (b) we see that the optimizations to the algorithm allow it to operate faster
in all cases. However, the algorithm also operates much more rapidly on high density
interval representations, the worst case for the basic algorithm, shown in (a).

126

5.6. Valiente’s Algorithm 127

10000 20000 30000 40000 50000
Number of Intervals

(b)

Figure 5.10: This figure shows the results for our basic and optimized implementations
of Apostolico et al’s [1992; 1993] algorithm operating on Type-II interval representa­
tions. In (a) we see that as the radius is increased the memory required by the basic
implementation of the algorithm also increases. The results for the optimized version
are shown in (b). Due to the optimizations described in Section 5.5.2, memory us­
age is substantially smaller in all cases, and does not simply increase as the radius is
increased.

127

5.6. Valiente’s Algorithm 128

10000 20000 30000 40000 50000
Number of Intervals

(b)

Figure 5.11: This figure shows the number of iterations of the L list creation loop for
our basic and optimized implementations of Apostolico et al’s [1992; 1993] algorithm
operating on Type-II interval representations. These results show that the speed-up
observed when comparing Figure 5.9(a) to Figure 5.10(a) is due to a reduction in the
number of iterations of this loop. This reduction is a consequence of the observations
described in Section 5.5.2

128

5.6. Valiente’s Algorithm 129

I—I—;—'—^—I—\—I—1*^ I

123456789 10
Figure 5.12: Shows an example of our optimization to the right-to-left scan of Valiente’s
[2003] algorithm. The right-to-left scan for interval b would ordinarily begin at position
8, with our optimization however, it begins at position 2. Similarly, the right-to-left
scan for interval c would ordinarly begin at position 6, but using our optimization it
begins at position 5 instead.

of i such that j ^ Ck for any other k E Ci). Thus the C lists require 0(n) space.
When Recurrence 5.1 is evaluated using the CMIS values, it stores a linked list

of the disjoint intervals contained in a maximum independent set. This linked list
requires 0(n) space. Thus the total space complexity of Valiente’s algorithm is 0(n).
Using this linked list and the C lists it is then a simple matter to retrieve a maximum
independent set itself.

5.6.1 Optimizations

Recall from the previous section that to compute CMIS[i]^ we must have previously
computed CMIS[j] for all intervals j contained in i. While sorting the intervals in
nondecreasing order of length is a sufficient condition for ensuring that this is the case,
it is not necessary. Instead, the algorithm can operate in manner similar to that of
the algorithm of Apostolico et al [1992; 1993]. That is, as a left-to-right scan with a
counter m beginning at 1 and counting towards 2n. If m is the right end-point of some
interval i, we use Recurrence 5.2 to compute CMIS[i] via a right-to-left scan. We are
guaranteed to have already computed CMIS\j] for all intervals j contained in i since
their right end-points must have occured to the left of m. Thus, there is no need to
sort the intervals by length.

Sorting the intervals generally takes only a very small fraction of the algorithm’s
total execution time, and so simply removing the sorting does not significantly improve
the algorithm’s performance. However, when the algorithm operates as a left-to-right
scan with local right-to-left scans as described in the previous paragraph there is po­
tential for a more significant optimization. Consider a right-to-left scan for an interval
i = [a, q], and suppose that the interval j = [c, d\ is the interval with d chosen as large
as possible while d < q. The right-to-left scan will begin by setting MIS[q] = 0, and

129

5.6. Valiente’s Algorithm 130

then, since there are no intervals with both end-points in [d, q] we will have MIS[q] = 0
for all q> d. When the right-to-left scan reaches d and we have MIS[d\ = 0, it is at
this point clear that we are going to re-evaluate Recurrence 5.2 for interval j as the
right-to-left scan continues.

To avoid such re-evaluations we evaluate Recurrence 5.2 in a single table M of
2n -|-1 elements. Initially M is initialized to all zeros. We also introduce an additional
variable last to the algorithm which is initially zero. During the left-to-right scan
last holds the left end-point of the interval whose right end-point was most recently
encountered. When scanning from left-to-right if m corresponds to the right end-point
of some interval [a, m] we compute only the values M[last], M[last—1],..., M[a] (using
Recurrence 5.2) in the right-to-left scan. The variable last is then set to a and the
left-to-right scan continues. Figure 5.12 shows an example of this optimization at work.

Pseudo-code for an optimized implementation of Valiente’s algorithm can be seen in
Figure 5.13. The pseudo-code introduces one new function interval, this is a constant
time operation and interval{x) returns the interval with (left or right) end-point x.
The remainder of the notation used in the pseudo-code was already described when
the pseudo-code for Apostolico et aVs [1992; 1993] algorithm was described in Section
5.5. The pseudo-code also shows the details of how the C lists are constructed using a
table P.

5.6.2 Type-I Results

We now describe our measurements of Valiente’s [2003] algorithm operating on Type-I
interval representations. Figure 5.14(a) shows the running times of our implementation
of Valiente’s algorithm. The optimized version is more than three times faster on
average than the basic implementation. Figure 5.14(b) shows the number of times the
right-to-left scan of Valiente’s algorithm (see the pseudo-code in Figure 5.13) iterates in
the basic implementation versus the optimized implementation. Note that, in the basic
implementation, the right-to-left scan begins at m — 1 instead of the last variable which
we introduced. These iteration counts give a more machine independent account of the
performance of the algorithms. In this case it is clear that the factor of 3 speed-up
comes directly from our optimization reducing the number of iterations of the inner-
loop also by a factor of 3.

Finally, Figure 5.15 shows the memory consumption of our optimized implementa­
tion of the algorithm. The basic and optimized implementations have nearly identical
memory usage (in the optimized implementation two buffers associated with bucket
sorting the intervals are elided), and so only the memory consumption of the opti-

130

5.6. Valiente’s Algorithm 131

Input: An interval representation ct of an n vertex weighted circle graph.
Output: The maximum weight independent set contained in each interval i of a.
M[1..2n + 1] <- 0
P[1..2n + 1] ^ 0
last <— 1
for m <— 1 to 2n do

if m is the right end-point of some interval i = [a, fe] then
for q <— last downto a -I-1 do

if q is the left end-point of some interval j — [q, c]
and M[c + 1] -I- CMIS[j] > M[q -I- 1] then
M[q] ^ M[c + 1] + CMIS\j]
P[q] c

else
M[q] ^ M[q + 1]
P[q]^P[q + l]

CMIS\i] ^ M[a + 1] +
X <— P[a + 1]
while x^O

j <— interval{x)
Ci <— add.front{j, Ci)
X <— P[x]

last a

Figure 5.13: Pseudo-code for our optimized version of Valiente’s [2003] algorithm,
described in Section 5.6.

131

5.6. Valiente’s Algorithm 132

(a)

(b)

Figure 5.14: Shows the running time and memory usage of our implementations of Va­
liente’s algorithm [2003] operating on Type-I interval representations. For the timing
measurements in (a), two implementations are shown: A basic implementation, and an
implementation using the optimizations we describe in Section 5.6.1, these optimiza­
tions provide more than a factor of 3 speed-up. (b) Shows the number of times the
right-to-left scans of the implementations iterate, as is to be expected from the timing
results, the number of iterations of the optimized implementation is approximately one
third that of the basic implementation.

132

5.6. Valiente’s Algorithm 133

Figure 5.15: Shows the memory usage of our optimized implementation of Valiente’s
algorithm [2003]. The basic and optimized implementations have very similar memory
usage. Compared to the memory usage of Apostolico et aVs shown in Figure 5.8 the
memory usage is very modest.

mized version is shown. What is of note is that the algorithm uses far less memory
than Apostolico et a/’s algorithm (see Figure 5.8). Of course, this is to be expected,
since Valiente’s algorithm requires only 0(n) space when operating on an n vertex
circle graph, as is clearly borne out by the graph in Figure 5.15.

5.6.3 Type-II Results

We now present the results for Valiente’s algorithm operating on Type-II interval rep­
resentations. Figure 5.16(a) shows the running time of our basic implementation of
Valiente’s algorithm as the radius of the interval representation is varied. Increasing
the radius on average causes both the density and total interval length of the interval
representations to increase. As expected, since Valiente’s algorithm operates in 0(£)
time the running time of our basic implementation of the algorithm also increases.
Figure 5.16(b) shows the running time of our optimized version of Valiente’s algorithm
as the radius of the interval representation is varied. The optimizations cause the al­
gorithm to operate significantly faster in all cases. The optimizations we have applied
to Valiente’s algorithm have a similar affect to those we applied to Apostolico et a/’s
[1992; 1993]. That is, as the radius (i.e. density and total interval length) is increased,
the run-time of the optimized algorithm at first increases, but then decreases again.

133

5.6. Valiente’s Algorithm 134

60
-■— Radius = 0.1
-X - Radius = 0.5

■ Radius = 1
a Radius = 5

10000 20000 30000
Number of Intervals

40000 50000

10000 20000 30000 40000 50000
Number of Intervals

(b)

Figure 5.16: This figure shows the results of Valiente’s [2003] algorithm operating
on Type-II interval representations. In (a) we see that as the radius is increased
(which causes both the average density and average total chord length to increase too)
the running time of the basic implementation of the algorithm also increases. The
performance of the optimized algorithm is significantly better in all cases. We also
observe that the run-time no longer increases as the radius increases.

134

5.6. Valiente’s Algorithm 135

(b)

Figure 5.17: This figure shows the results of Valiente’s [2003] algorithm operating on
Type-ll interval representations. In both (a) and (b) we observe the (modest) memory
consumption of the basic and optimized versions of the algorithm respectively. As the
radius increases, the memory consumption descreases, this is because the C lists (see
Figure 5.13) require less space at higher radii. The memory consumption, as expected,
is essentially identical for both implementations.

135

5.6. Valiente’s Algorithm 136

(a)

Number of Intervals

(b)

Figure 5.18; This figure shows the results of Valiente’s [2003] algorithm operating on
Type-II interval representations. Figures (a) and (b) show the respective number of
inner loop iterations for the basic and optimized versions of the algorithm. For the basic
implementation the number of inner loop iterations increases as the radius increases.
However, in the optimized version, the number of inner-loop iterations for radii of 0.1
and 0.5 are close to identical, as are the number of inner-loop iterations for radii of
1 and 5. This figure demonstrates the speed-up observed in Figure 5.16 is due to a
reduction in the number of inner-loop iterations as a consequence of the observations
made in Section 5.6.1.

136

5.7. Comparison 137

Figure 5.17(a) and Figure 5.17(b) show the memory consumption of the basic and
optimized versions of the algorithm respectively. Our optimizations have only a tiny
affect on the memory consumption of the algorithm. As a result, the figures are very
close to identical. The fact that at lower radii the memory consumption is higher is a
result of the fact that the total number of disjoint intervals in the interval representation
falls as the radius increases, and consequently fewer C list entries are required on
average.

Finally, Figure 5.18(a) shows the iteration counts of the inner-loop of our basic
implementation of Valiente’s algorithm. Similar to the timing measurements, increasing
the radius for the unoptimized version causes the number of inner-loop iterations to
increase. However, Figure 5.18(b) shows that increasing the radius does not necessarily
cause the number of inner-loop iterations to increase in the optimized implementation
of the algorithm. In fact, the number of inner-loop iterations for radii of 0.1 and 5
are close to identical, as are the number of inner-loop iterations for radii of 0.5 and 1.
The difference in the run-times of the algorithm observed in Figure 5.16(a) and Figure
5.16(b) can be attributed to the extra time spent constructing the C lists (see Figure
5.13).

5.7 Comparison

At this point it is interesting to compare the algorithms we have discussed above. We
first compare the algorithms operating on Type-I interval representations, and then on
Type-II interval representations.

5.7.1 Type-I Results

Figure 5.19(a) shows a comparison of the run-times of the algorithms operating on
randomly generated Type-I representations. Firstly we note that the run times grow
like when there are n intervals. This is to be expected, indeed it is straightforward
to show that the average total interval length, iavg of a randomly generated Type-I
interval representation is given by £avg = \n{2n + 1). To see this, note that there
are C{n) — (2n)!/(n! x 2”) distinct interval representations of n vertex circle graphs.
Moreover, the total length of all such interval representations is T{n) = C(n — l)[(2n —
1) -I- 2(2n — 2) -f 3(2n — 3) H------ h (2n — 1)] = C{n)^n{2n +1), which gives the average
length as claimed. Moreover, as we saw above in Figure 5.2 that davg, the average
density is given by davg ~ n/2.

137

5.7. Comp2irison 138

10000 20000 30000
Number of Intervals

(a)

40000 50000

12

10 -

Optimized Valiente
Basic Valiente
Optimized Apostolico

a Base Apostolico
---- -- Supowit

.....s-

(0

coooCO

8 -

6 -

(D
E

Figure 5.19: (a) Shows a comparison of the run-times of our optimized and unoptimized
implementations operating on randomly generated Type-I interval representations, (b)
Shows the results of the algorithms operating on randomly generated Type-II interval
representations of 20,000 intervals as the radius parameter is varied. As the radius is
increased the density and total chord length of the circle graphs’ interval representations
increases.

138

5.7. Compairison 139

Radius

(a)

(b)

Figure 5.20: fa) Shows the inner-loop iteration counts of a direct implementation of
Valiente’s [2003] algorithm operating on randomly generated Type-II interval represen­
tations of 20,000 intervals as the radius parameter is varied, (b) Shows the inner-loop
iteration counts of our optimized implementation of Valiente’s algorithm (see Figure
5.13) on the same data.

139

5.7. Comparison 140

Radius
(c)

Radius
(d)

Figure 5.21: (a) Shows the number of iterations of the L list building loop in a direct
implementation of Apostolico et aVs [1992; 1993] algorithm, operating on randomly
generated Type-II interval representations of 20,000 intervals as the radius parameter
is varied, (b) Shows the number of iterations of the L list building loop in an optimzed
implementation of Apostolico et a/’s algorithm (see Figure 5.6) on the same data.

140

5.7. Comparison 141

It is noteworthy that when our optimizations are applied to Apostolico et aVs [1992;
1993] algorithm it actually performs slightly better than a simple implementation of
Valiente’s algorithm on inputs of up to about 45000 intervals. This small gain however
comes at the price of the much larger memory usage of Apostolico et aVs algorithm.
Note that Supowit’s [1987] simple 0(n^) time and space algorithm is the most space
hungry — allocating all available memory on circle graphs with more than 10,000
vertices, and so its timing measurements are only visible in the bottom left of Figure
5.19(a).

The most efficient of the algorithms in both time and space is the optimized version
of Valiente’s algorithm, which dramatically out-performs the other implementations.

5.7.2 Type-II Results

Figure 5.19(b) shows a comparison of the run-times of the algorithms, on randomly
generated Type-II interval representations having 20,000 intervals. As the radius (i.e.
density and total interval length) is increased, the run-time of the unoptimized imple­
mentations increases. There is a very slight decrease in the run-time of the unoptimized
implementation as the radius grows beyond about 1, because of the reducing number
of entries required in the C lists. In the case of the optimized implementations how­
ever, the run-times increase with the radius, and then begin to rapidly decrease. The
run-time of Supowit’s [1987] algorithm, whose time complexity is not dependent on the
density of the interval representation, does not vary as the radius parameter is adjusted.
Although this algorithm is more efficient than a direct implementation of Apostolico
et a/.’s algorithm, it is much less efficient than the optimized implementations.

Figure 5.20(a) shows the inner-loop iteration counts of a basic implementation of
Valiente’s [2003] algorithm as the radius is increased, while Figure 5.20(b) shows the
inner-loop iteration counts of our optimized implementation of Valiente’s algorithm.
The optimized algorithm’s inner-loop always iterates fewer times, but the gains become
most pronounced as the radius gets large. Similarly, Figure 5.21(a) shows the iteration
counts of the L list building loop in a direct implementation of Apostolico et aVs
algorithm [1992; 1993], and Figure 5.21(b) shows the iteration counts of the L list
building loop in our optimized implementation of Apostolico et al’s algorithm. As
with our implementation of Valiente’s algorithm, the loop always iterates far fewer
times in the optimized implementation, but the improvement is most significant as
the radius becomes large. The memory consumption of Apostolico et a/’s algorithm
is dominated by these L lists, and so the difference in memory consumption of the
unoptimized versus the optimized implementations progresses in a similar way to the

141

5.8. Register Allocation Results 142

difference between the iteration counts shown.
We do not show the inner-loop iteration counts for Supowit’s [1987] algorithm,

because they are independent of the radius parameter (i.e. the density of the circle
graph’s interval representation).

5.8 Register Allocation Results

Circle graphs arise naturally in the context of register allocation during the compilation
of software pipelined loops using the so-called meeting graph [Eisenbeis et al. 1995;
de Werra et al. 1999, 2002). In this section we provide experimental results for the
algorithms described above operating on circle graphs arising during register allocation.

The circle graphs are derived from loops in the standard SPEC Integer and Floating
point benchmarks, Livermore loops and Linpack and Whetstone benchmarks. We
evaluated the algorithms using approximately 2,000 such circle graphs in total. The
number of vertices, n, of these graphs ranges from only 4 vertices to approximately
12,000. The circle graphs arising in this application are on average quite dense, with
average density about 0.6n. The minimum density of any graph is 0.4n, while the
maximum density is n.

Figure 5.22(a) shows the performance of the algorithms on these circle graphs.
As observed in Section 5.7, Supowit’s very simple algorithm out-performs a direct
implementation of the more complex algorithm of Apostolico et al. However, the
competetiveness of our improved version of Apostolico et a/’s algorithm is notable,
performing better than a direct implementation of Valiente’s algorithm. Note that
each data-point in Figure 5.22(a) corresponds to the register allocation of a single
loop in a program being compiled, and so very fast processing is essential. The best
performance on these circle graphs is achieved by our improved version of Valiente’s
algorithm.

The great majority of circle graphs arising in our tests are reasonably small, having
less than 2,000 vertices. Figure 5.22(b) shows that the relative performance of the
algorithms holds also for these smaller graphs. The two most practical algorithms
are our improved versions of Apostolico et a/’s algorithm and Valiente’s algorithm.
It is again notable that the observations of Section 5.5.2 lead to an implementation
of Apostolico et a/’s algorithm that is more efficient than a direct implementation
of Valiente’s algorithm. This is despite the apparently substantial complication of
Apostolico et a/’s algorithm.

Finally, comparing Figure 5.23(a) and Figure 5.23(b) shows, as expected, the much

142

5.9. Faster Algorithms 143

more efficient use of space made by Valiente’s algorithm compared to the other algo­
rithms.

5.9 Faster Algorithms

Our optimized version of Valiente’s algorithm described above is appealing because
of its combination of simplicity and efficiency. In this section, we describe output
sensitive algorithms for the maximum independent set problem in a circle graph. That
is, their time complexities are bounded in terms of the independence number (i.e. the
cardinality of the maximum independent sets) of the circle graph.

The development of an output sensitive algorithm is motivated by the experimental
results presented in Figure 5.24, in both (a) and (b), it can easily be seen that the inde­
pendence number of the circle graphs is substantially smaller than their density. These
experiments indicate that an output sensitive approach may be fruitful in designing an
efficient maximum independent set algorithm for circle graphs.

We begin by describing a simple output sensitive algorithm requiring 0(na) time,
for an n vertex unweighted circle graph with independence number a. As we note
via an example in Section 5.9.1, there are simple low density circle graphs with high
independence number, making this simple output sensitive algorithm inferior to the
0{dn) time algorithms described above for certain circle graphs. We then show how
this can be modified to achieve an algorithm operating in time ©(nmin{d, alogn}).
We experimentally evaluate both of these algorithms showing that on both the random
circle graphs this latter algorithm performs better than all the algorithms described
above by a substantial factor - between 5 and 7 in our experiments.

Finally we finish by sketching how an improved algorithm can be constructed, which
we have we leave an experimental evaluation of to future work. This algorithm operates
in time Q{nmm{d,a}). Note that, in work completed shortly after the submission
of this dissertation [Nash and Gregg 2010], an alternative approach to achieving an
algorithm with the aforementioned time complexity has been noted. That article [Nash
and Gregg 2010] also includes a more formal treatment of the output sensitivity.

5.9.1 Introducing Ouput Sensitivity

Output sensitivity can be introduced to Valiente’s algorithm (see Section 5.6 and Figure
5.13), by tracking changes to the values of the cells of M. Note that Recurrence 5.2
is repeatedly evaluated within M. When a cell M\j] changes (i.e. increases in value).

143

5.9. Faster Algorithms 144

(0
■ocoo0)(/)
o
E

4

3.5

3

2.5

2

1.5r—

1

0.5

0
C

0.06

0.05

^ 0.04
<0
•o c o
J 0.03
<D
E

0.02

0.01

Basic Apostolico
Supowit

Base Valiente
Optimized Apostolico

Optimized Valiente

2000 4000 6000 8000 10000 12000
Number of Intervals

(a)

Basic Apostolico
Supowit

Base Valiente
Optimized Apostolico

Optimized Valiente

*>***? d*® ° ° ° ° ,
Qq

500 1000 1500
Number of Intervals

2000

(b)

Figure 5.22: (a) Shows the times taken by the algorithms on circle graphs arising from
performing register allocation on software pipelined loops, (b) Provides a closer look
at the times taken on the smaller of these circle graphs, in particular those with at
most 2,000 vertices.

144

5.9. Faster Algorithms 145

1600

1400

1200

m 1000 -

800

600

400

200

0

o
E
0)

Basic Apostolico
Supowit

Optimized Apostolico

2000 4000 6000 8000 10000 12000
Number of Intervals

(a)

CO

&■
o
E
d)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Base Valiente +
Ootimized Valiente x

—1------------ 1-------------1------------ 1

X

K

m

m

K

1 t 1

2000 4000 6000 8000 10000 12000
Number of Intervals

(b)

Figure 5.23: This figure shows the space used by the algorithms when processing
circle graphs arising from performing register allocation of software pipelined loops,
(a) Shows the peak memory occupied by Supowit’s algorithm, which requires 0(n^)
space, as well as Apostolico et a/’s algorithm and our improved version of it, which
both require 0(o/n) space, (b) Shows the peak space required by Valiente’s algorithm
and our improved version. The space requirements are very close to identical, with
the improved version requiring very slightly less space in practice, although this is not
visible in the figure. The space usage is very modest compared to that of Supowit and
Apostolico et a/’s algorithms, shown in (a).

145

5.9. Faster Algorithms 146

500

Density
. Independence Number

•»

•' s

- ’ i
t

‘ •
* t

■

'

L\ i . \..

Q. 10000

300 400 500 600 700 800 900 1000 1100
Parameter

(a)

Figure 5.24: For (a) We generated 10^ random Type-I interval representation of 1000
intervals and recorded their density and independence number. This figure shows
that the vast majority of interval representations have density close to n/2, while the
independence number is substantially smaller. In (b) we generated random Type-II
interval representations of 20000 intervals while varying the radius parameter linearly
between 0 and 5 in 50 steps, we did this 20 times and averaged the results.

4-

X

1 2 3 4 5
I

6
(a)

7 8 9 10

(b)

Figure 5.25: (a) Shows an interval representation of a circle graph while (b) shows the
flow graph associated to this interval representation.

146

5.9. Faster Algorithms 147

then, according to Recurrence 5.2, at most two other cells can also increase in value
as a result. Namely, M[j — 1], and if there is an interval [i,j — 1], then M[i] can also
increase. If these values do indeed increase, they will result in the need for further cells
to be processed, again determined by Recurrence 5.2.

Figure 5.25 shows an interval representation in (a), and in (b), a directed graph
associated to that interval representation. We refer to this directed graph as the flow
graph of the interval representation. Each end-point in the interval representation in
(a) has a corresponding node in (b). There is an edge from node number x to node
number y if a change in the value of M[x] can cause a change in the value of M[y], as
defined by Recurrence 5.2.

We now outline how a maximum independent set of a circle graph can be computed
using this flow graph. Note that the flow graph itself need not be constructed, since it
is implicit in the interval representation.

We use the same notation as in Figure 5.13. For an n interval a representation of a
circle graph, the algorithm proceeds as a left-to-right scan with a counter rn beginning
at 1 and counting towards 2n. A linked list W is maintained, which contains pairs
{t, v). The presence of {t,v) in W indicates that if the current value of M[t\ is less than
V, then M[t] should be updated to v.

When the left-to-right scan reaches position m and m is the right end-point of an
interval, then the pair {last, M[r + 1] + CMIS[i]) is added to W. Here last, is the
left end-point of the interval i = [last, r] whose right end-point is largest that is to the
left of m. As in Figure 5.13, CMIS[i\ is the weight of a maximum independent set
contained in i.

Following this possible addition to W, a loop begins that terminates only when
W is empty. In each iteration of the loop an update {t,v) is removed from W and
applied to M as described above. If the value of M\t\ changes, it add pairs to W for
all out-going edges in the associated flow graph at node number t, provided there is
at least one open interval at the destination node of those edges (an interval is open
if its left end-point is to the left of m, and its right end-point is to the right of m.).
Determining whether there is an open interval containing any point can be determined
easily in constant time. If the value of M[t] does not change, no new pair is added to
W.

When this process terminates, if m is the right end-point of an interval j = [a, m]
CMIS[j] is assigned the value Wj + M[a -|-1]. The left-to-right scan then advances by
increasing m by one.

The appeal of this algorithm is that it attempts to update M the minimal amount

147

5.9. Faster Algorithms 148

required. Indeed, for an unweighted circle graph each of the n cells in M can be
updated at most a times, and so the algorithm requires at worst Q{na) time. Such an
algorithm is of course desirable in a situation when a = o{d).

However, there are simple low-density graphs with a = n, for which the algorithm
requires 0(n^) - inferior to the Q{dn) algorithms described in Sections 5.5 and 5.6.
This quadratic time behaviour can be seen when the circle graph has the following
interval representation: a single interval [1,2n], together with the intervals [2a, 2a + 1]
for 1 < a < n. In this case, it is easily seen that at each right end-point 2a -|-1 of one of
the unit-length intervals, the inner-loop of the algorithm (i.e. the loop that terminates
when W is empty) will in fact update every value of M from a — 1 down to 1, clearly
causing quadratic time performance.

Quadratic time performance in the worst case can be avoided by ensuring all updates
for each interval are processed in strictly right-to-left order. This involves maintaining
order in the list W, and results in an algorithm requiring 0(nlognmin{d, a}) time^,
which is still asymptotically worse than the 0(dn) algorithms we saw above when a
dominates d.

As we shall see in the next section, a more efficient output sensitive algorithm can
be obtained by dividing M into blocks of contiguous cells, and tracking changes in-order
only between blocks. For sufficiently large blocks this approach will be seen to provide
an algorithm operating in time 0(nmin{d, alogn}).

5.9.2 A Combined Algorithm

In this section we describe an algorithm that avoids the quadratic time behaviour just
described, giving an algorithm operating in time 0(nmin{d, alogn}).

Referring again to Figure 5.13 we regard M as being partitioned into [(2n-|- 1)/B]
blocks of size B, where n is the number of vertices in the circle graph. The 1 <
i < \{2n + l)/5] block is a contiguous region of M comprised of the B cells at indices
1 -h (i — 1)B,.. .,iB.

The output sensitive algorithm for computing a maximum independent set of an n
vertex circle graph proceeds as a left-to-right scan over the array M. The algorithm
also maintains a priority queue X of blocks ordered increasingly by left end-point.

If at position m there is an interval i = [a, m], then a loop iterates until X is empty
or the highest priority block in X is disjoint from the interval i = [a, m] being processed.

^Of course, a log-logarithmic factor could also be achieved with the data structure of van Emde
Boas [1977].

148

5.9. Faster Algorithms 149

On each iteration, the highest priority block is removed from X. Let the left and right
end-points of this block be u and u + B — 1. Recurrence 5.2 is directly evaluated in the
array M for this block, with a counter q counting down from minju -|- 5 — 1, m — 1}
to max{a-|- l,u}. We refer to this as processing a block. During this processing, if the
value of any entry M[q] increases, and there is an interval j = [t,q— 1] with t < u and
M[t] < M[u] + CMIS[j], then the block containing t is added to X provided there is
at least one open interval containing t In addition, after processing the block, if M[u]
has increased in value and M[m — 1] < M[u], then block containing u — 1 is added to
X provided there is at least one open interval at u — 1.

Assuming this iteration over X occured, CMIS[i] is assigned the value Wi+M[a+1],

and if M[a] < M[m + l] + CMIS[i] the block containing a is added to X. Then, unless
m = 2n, the left-to-right scan advances, increasing m by 1.

When this algorithm terminates, the value CMIS[i] will have been computed for
each interval i. To compute the weight of a maximum independent set of the entire
circle graph, a single invocation of the interval processing described for Valiente’s algo­
rithm in Section 5.6 is invoked with end-points [1, 2n]. This completes the description
of our output sensitive algorithm.

In the worst case, for each interval i = [l,r], each of the [(r — /)/J5] blocks of that
interval will require evaluation and be processed in 0{B) time. Thus, in total for all
intervals, 0(£) time is spent processing blocks. Recall from Section 5.2 that in terms
of the density parameter d this is ©(dn) time.

Note that when the algorithm terminates, X is empty. This is because the process­
ing of an interval is guaranteed to remove all blocks from X that the interval intersects,
moreover, as was stipulated in the condition for adding a block 5 to A, there must be
at least one open interval intersecting b, implying that any block b added to X will
also be removed from A. As a result, the total number of additions to A is equal to
the number of removals from A.

For each removal from A the algorithm spends &{B) time processing the re­
moved block, thus, the algorithm can perform at most Q{dn/B) removals from A
because as we just noted at most Q{dn) time can be spent processing blocks at
worst. Thus, assuming A is implemented as a heap that can contain Q{n/B) blocks,
&{dn/B\og{n/B)) time is spent in total performing removals from A. It follows that
choosing B = D(logn) implies at most Q{dn) time is spent performing additions to
and removals from A.

The time complexity of this algorithm can also be characterised in terms of the
independence number, a, if the circle graph is unweighted. Note that, in processing

149

5.9. Faster Algorithms 150

any block, at least one value in the table M contained in that block increases. Thus,
since no value in M can increase more than a times, we spend in total Q{B‘̂q) time
processing the Q{Ba) updates to a particular block. Since there are Q{n/B) blocks
in total, &{naB) time in total is spent processing blocks. Recall from above that
to guarantee 0(o?n) worst-case time we must have B = n(logn), and thus, choosing
B = 0(logn) at most 0(nQ; logn) time will be spent processing blocks. In addition,
each block can be added to X in total Q{Ba) times and so in total for the 0('i/5)
blocks, at most 0(nQlog(n/R)) time is spent adding and removing blocks from X.
Thus the algorithm runs in time 0(nmin{d, ologn}) in the worst case. As we shall
see in the following section, this algorithm also performs well in practice.

5.9.3 Experimental Comparison
Random Graphs

Figure 5.26(a) shows the performance of the maximum independent set algorithms on
random Type-I interval representations. Clearly the two output sensitive algorithms
outperform the efficient implementation of Valiente’s algorithm described in Section
5.6.1. We have measured experimentally that the these graphs have independence
number about 2Aly/n on average, as Figure 5.28(a) shows. Moreover, as we noted
in Figure 5.2, they have density about n/2 on average. In this situation, the efficient
implementation of Valiente’s algorithm is effectively operating in 0(n^) time. While
the simple output sensitive algorithm is operating in time 0(n^-^) and the blocked
output sensitive algorithm is operating in time 0(n^'^ logn). This explains the relative
performance of the algorithms for these random circle graphs, in particular why the
simple output sensitive algorithm performs better than the blocked output sensitive
algorithm for these random circle graphs.

Figure 5.26(b) shows the performance of the maximum independent set algorithms
on random Type-II interval representations of 20,000 intervals. Here, as the radius
parameter is varied the density of the interval representation increases. We have ex­
cluded the first data point for the simple output sensitive algorithm from this plot,
since it requires approximately 6 seconds to complete and makes the plot difficult to
read. Here it is notable that the simple output sensitive algorithm performs worst
until the interval representations become dense enough. Figure 5.28(b) shows how the
independence number of these graphs varies (somewhat unusually) with their density,
excluding the first data point where the density is 1 and the independence number is
20,000 making the plot difficult to read. The improvement to Valiente’s algorithm in-

150

5.9. Faster Algorithms 151

10000 20000 30000
Number of Intervals

(a)

40000 50000

(b)

Figure 5.26: This figure shows the performance of the maximum independent set al­
gorithms on randomly generated interval representations of circle graphs as described
in Section 5.3. In (a) the performance of the algorithms is shown on what we refer
to as Type-I interval representations as the number of intervals is increased. While
(b) shows the performance of the algorithms for Type-II interval representations of
20,000 vertices as the radius parameter (and consequently the density) is varied. The
generation of these Type-I and Type-II interval representations is described in Sec­
tion 5.3. In both plots, “Optimized Valiente” is the variation of Valiente’s algorithm
described in Section 5.6.1. “Simple Output Sensitive” is the 0(na) time algorithm
described in Section 5.9.1, and “Blocked Output Sensitive” is the 0(nmin{d, alogn})
time algorithm described in Section 5.9.2. These results are discussed in Section 5.9.3.

151

5.9. Faster Algorithms 152

<n
T3coo0)
10

a>
E

0)
E

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

120

100

80

= 60

40

20

Optimized Valiente ■
Simple Output Sensitive □

Blocked Output Sensitive +

^ ff:
□ □

500 1000 1500
Number of Intervals

(a)

2000

Optimized Valiente ■
Simple Output Sensitive □

Blocked Output Sensitive +

□
? +

□

+

□

4000 6000 8000 10000 12000
Number of Intervals

(b)

Figure 5.27; This figure shows the performance of the maximum independent set algo­
rithms on the interval representations of circle graphs that arise when performing the
register allocation of software pipelined loops, as described in Section 5.3. In (a), all
interval representations are shown while in (b) we show only interval representations
having at most 2,000 intervals. In both plots, “Optimized Valiente” is the variation
of Valiente’s algorithm described in Section 5.6.1. “Simple Output Sensitive” is the
0(na) time algorithm described in Section 5.9.1, and “Blocked Output Sensitive” is
the 0(nmin{d, alogn}) time algorithm described in Section 5.9.2. These resuhs are
discussed in Section 5.9.3.

152

5.9. Faster Algorithms 153

(a) (b)

Figure 5.28: This figure shows, in (a), how the average independence number of the
Type-I interval representations varies as the number of intervals, n, increases. We also
show the function 2.470^, which closely matches the measured independence number.
In (b) the independence number of Type-II interval representations of 20,000 intervals
varies as the radius parameter (and consequently their density, see Figure 5.2) is varied.

volving the introduction of the variable last (see Figure 5.13 and Section 5.6.1) causes
the efficient implementation of this algorithm to operate more rapidly for dense Type-
II interval representations. The simple output sensitive algorithm also incorporates
this improvement, and so despite the increase in independence number visible to the
right in Figure 5.28(b), its performance nevertheless improves. The blocked output
sensitive algorithm seems the most desirable on these Type-II interval representations,
it performs almost as well as the simple output sensitive algorithm for the majority of
the interval representations, and enormously better for the low density interval repre­
sentations with high independence number (for example, as mentioned above, the first
data point that we have excluded in order to make the plot readable).

Register Allocation Graphs

Figure 5.27(a) shows the performance of the maximum independent set algorithms on
the interval representations of circle graphs that arise while performing register alloca­
tion, as described in Section 5.3. Here it is again clear that output sensitive algorithms
offer substantially improved performance - up to a factor of 10 for the largest graphs,
with the blocked output sensitive algorithm performing best. Figure 5.27(b) shows
the same data as Figure 5.27(a) but shows the results only for interval representations
of up to 2,000 vertices. Here it is clear that the output sensitive algorithms are also
much more efficient, with the blocked output sensitive algorithm performing up to 5
times better than the efficient implementation of Valiente’s algorithm. These results

153

5.10. Conclusion and Future Work 154

demonstrate that on naturally occuring circle graphs the output sensitive algorithms
also substantially better than existing algorithms.

5.10 Conclusion and Future Work

This chapter has provided an experimental evaluation of the two most efficient algo­
rithms for computing a maximum weight independent set of a circle graph, and shown
how to construct highly efficient implementations of these algorithms.

We have described optimizations for the algorithm of Apostolico et al [1992; 1993]
that dramatically improve its running time and decrease its memory consumption.
For example, on randomly generated Type-I interval representations, we observed on
average a halving of both memory consumption and running time, although the gains
are even greater when the density of the interval representations is high for Type-II
interval representations. In addition we have pointed out and described how to correct
an error in this algorithm.

Although Apostolico et a/’s algorithm has worse memory consumption than Va-
liente’s [2003] algorithm, both operate in Q{dn) time. Therefore it was important to
compare the running times of both algorithms in practice. When implemented effi­
ciently the running time of Apostolico et a/’s algorithm is lower than that of Valiente’s
algorithm for moderate to large numbers of intervals while operating on Type-I interval
representations. In addition, when randomly generating Type-II interval representa­
tions of 2,000 to 50,000 intervals, at a range of radii we observed that our optimized
implementation of Apostolico et a/’s algorithm significantly out-performs our basic
implementation of Valiente’s algorithm (compare Figure 5.9(b) and Figure 5.16(a)).

We also described how to adjust Valiente’s algorithm so that it uses a single left-
to-right scan with many local right-to-left scans similar to that of Apostolico et a/’s
algorithm. Doing this allows an unnecessary sorting step to be removed from the
algorithm. This change to Valiente’s algorithm also enabled us to remove unnecessary
recomputations from the algorithm and describe an implementation that is more than 3
times faster on average than a direct implementation of the algorithm, while operating
on randomly generated Type-I interval representations. Like our optimizations to
Apostolico et a/’s algorithm, the optimizations we describe are even more effective
at high densities.

In addition to these results on random circle graphs, we have also demonstrated
the practicality of our improvements on circle graphs that arise in practice. We have

154

5.10. Conclusion and Future Work 155

provided results for circle graphs that arise when performing register allocation of
software pipelined loops. In this application area, efficiency is crucial since many
thousands of loops may need to be compiled.

In addition, after this detailed experimental evaluation of previous approaches, we
have compared the best resulting variant with our output sensitive algorithm, showing
that our algorithm is the also the most efficient in practice.

Recall that our output sensitive algorithm operates in time 0(nmin{d, alogn})
for an unweighted circle graph. An immediate avenue for future work is to extend the
analysis of our algorithm to the case of weighted circle graphs, or at least to examine its
performance on weighted circle graphs. At present, we do not have naturally occuring
data sets that include weighted circle graphs, although we could include random weights
in the generation of our Type-I and Type-II random interval models.

Of course, with the use of a more efficient priority queue data structure [van
Emde Boas 1977] the time complexity of the output sensitive algorithm can be im­
proved to 0(nmin{d, aloglogn}), although it is unclear if the resulting algorithm
would be practical. We discuss this issue in more detail in the following chapter (see
Section 6.3).

We note that a there is also an algorithm operating in 0(n min{(i, o;}) time. We
first sketch an algorithm operating in time 0(n min{d, a}-\-n log(n/d)) and then show
how its time can be improved to the one above. This algorithm is a combination of
the algorithms described in Sections 5.9.1 and 5.9.2, where the block size, B is chosen
as Q{d). Within each block. Recurrence 5.2 is only evaluated directly, in 0(d) time, if
processing the block in the simple output sensitive manner described in Section 5.9.1
causes more than 0(d) updates to the array M. It can then be seen that there can
be at most 0(n) additions and removals from the priority queue, which can contain
at most 0(n/d) entries, this results in the 0(nlog(n/d)) term in the time complexity
above. Moreover, we are guaranteed that at most 0(d) time is spent processing each
of the 0(n) blocks, since as mentioned above we explicitly switch to direct evaluation
of Recurrence 5.2 (requiring 0(d) time) when the simple output sensitive updation
described in Section 5.9.1 performs more than 0(d) updates. This gives a 0(dn)
bound on the algorithm’s time. Finally, we can be sure the simple output sensitive
evaluation performs no more than Q{na) updates. The 0(nmin{d, a} + nlog(n/d))
time bound above on this algorithm then follows.

As a final improvement, it is straightforward to show that a > \n/d] (since there
must be at least this many disjoint intervals). As a result we see immediately that
the time above can be written 0(nmin{d + log(n/d),a). Moreover, for d = O(logn)

155

5.10. Conclusion and Future Work 156

we can simply use Valiente’s algorithm without affecting the output sensitivity of the
algorithm, while for larger d, we use the 0(d) sized block output sensitive algorithm
just described, giving time 0(nmin{d, o}), since d dominates the logarithmic term.
We leave the full description and experimental evaluation this somewhat complicated
algorithm to future work.

Another interesting item for future work is the measurement of the independence
number of circle graphs that occur in applications, and a comparison of this with ran­
dom graph models. Knowledge of the independence number allows simple comparisons
with Q{dn) time algorithms presented in this chapter. For example, for a randomly
generated Type-I interval representation, the number of disjoint intervals converges to
2y/n/n in probability [Boucheron and de la Vega 2001]. It seems that such results could
be extended to independence number of circle graphs and then compared to graphs
that occur in practice. As we noted in Figure 5.28 random Type-I unweighted circle
graphs, appear to have independence number on average approximately 2Al^Jn. We
have not measured the independence number of circle graphs that occur in applications
such as register allocation and RNA analysis, and further investigation of both these
random and application derived circle graphs is the subject of future work.

156

Chapter 6

Final Thoughts

This dissertation has presented experimental results for, and improvements to some
important algorithms and data structures. This chapter briefly presents some con­
cluding reflections on these results, drawing conclusions both about the results in this
dissertation and the experimental study of algorithms and data structures in computer
science in general. Finally, we describe general directions for future work.

6.1 Why Experiment?
Algorithms and data structures are indisputably the building blocks of Computer Sci­
ence. It is our opinion that a fruitful point of view is to study algorithms and data
structures in an experimental manner reminiscent of the way in which natural phe-
nomenona are studied in the natural sciences. In this section, we outline the importance
of experimentation in developing the contributions of this dissertation.

Chapter 3 of this dissertation studied the interaction between a ubiquitous feature
of almost every modern computer - instruction pipelines - and a sorting algorithms,
an extremely common computational task. These experiments naturally lead to a
deepened understanding of sorting algorithms. We believe understanding all aspects
of the basic components of our science is of paramount importance. This dissertation
provided the first full account of what is likely to cause variations of bubble sort such
as shaker sort to perform so badly in practice; their surprisingly bad branch prediction
characteristics, something previously over-looked in explaining their poor performance
in practice. This dissertation also, for the first time, pointed out and analysed another
factor contributing to quicksort’s tight inner-loop compared to mergesort or heapsort:
it has better branch prediction properties. We emphasize again that we believe it is
very important to understand these basic algorithms of Computer Science.

157

6.2. Future Directions 158

Chapter 4 of this dissertation illustrates another way in which experimentation
can be fruitful. This time in the context of data structures. This chapter provides
a demonstration of an important outcome of experimentation with algorithms and
data structures, often referred to as algorithm engineering. By adapting a simple data
structure from the string sorting literature - the burst trie - we were able to engineer
a general purpose integer data structure that we believe should be of use in many
applications. By experimenting extensively we were able to understand the behaviour
of many data structures in practice. We noted that cache performance is very often
dominant; where it is not, branch mispredictions can be. We note that this latter
observation provides further motivation for making use of the rich (and in our view,
largely neglected in terms of implementation) theoretical literature on data structures
that do not use only comparison instructions to order data.

Chapter 5 of this dissertation again illustrates algorithm engineering. It also illus­
trates what we view as another important aspect of experimentation with algorithms:
practice can lead to good theory. By noting experimentally that two random circle graph
models lead to circle graphs with small independence number, we developed output
sensitive algorithms for this problem. We then validated their theoretical performance
both on the random circle graph models and on naturally occuring circle graphs.

6.2 Future Directions

In this section we briefly outline future directions for research arising from the work
conducted for this dissertation. Although the opportunities for future work were noted
throughout this dissertation, we pause here to point out more general directions.

The work in Chapter 3 of this dissertation, concerning sorting and branch predic­
tion, was focused on the average case performance, and used only uniform random
data to evaluate the branch prediction properties of the algorithms. An interesting
experimental study could examine the behaviour of the algorithms with more realistic
data sets. Unfortunately, no such standard data sets are available, but such a study
could also attempt to devise such data sets. Failing the definition of new data sets, at
least different input distributions (and not just uniform random) could be used. This
is potentially quite a large undertaking, a lot of experimental data may result, and the
analysis may not be simple.

An immediate direction for future work arising from the work on integer data
structures in Chapter 4 is the engineering of a theoretically efficient word-parallel data
structure. The performance of the resulting data structure could then be compared

158

6.3. Theory and Practice 159

against the engineered variants of the Q-tv\e and burst trie introduced in Chapter 4.
Although the burst trie variant developed in this chapter is efficient in both time and
space in practice, it does not take advantage of many of the techniques of word-level
parallelism. As we noted in that chapter, a suitable candidate for implementation
of a theoretical data structure might be Andersson’s [1995] simple, multiplication free
integer search tree, providing all operations in 0{y/\ogn) time. If an implementation of
this, or another word-parallel data structure proved successful (and we emphasize that
such implementations may not achieve the exact time bounds offered by the theoretical
version, but simply operate more efficiently than comparison-based data structures),
a more general programme for research could then attempt to develop a library of
word-parallel data structures with well-known interfaces, for example, similar to the
C++ STL where possible.

Finally, Chapter 5 also offers immediate directions for future work. Finding the
maximum independent set of a circle graph arises in a number of areas in addition to
compiler optimization, such as VLSI design, RNA analysis and computational geome­
try. An important piece of experimental work could examine the use of the algorithm
in these areas, gather data sets, and assess the relative performance of the algorithms
presented in Chapter 5. In particular, the importance of output sensitivity in these
application areas could be assessed. As noted in Chapter 5, a simple, immediate piece
of future work is the complete description, implementation and experimental evalu­
ation of the 0(nmin{d, a}) time algorithm for the maximum independent set of an
unweighted circle graph.

6.3 Theory and Practice

Here we pause for a moment to make a general point about the relationship between
theoretical algorithms and data structures, and their practical realizations. The goal of
this section is certainly not to suggest that the theoretical development of algorithms
should carefully avoid constructions that may not be practical - the ideas involved in
the development of a new algorithm or data structure are often simply important in
themself. Rather, our goal in this section is to identify a class of gap that we believe is
important to address, and that it may be possible to narrow or close. We are referring
to development of efficient implementations of integer data structures mentioned in the
previous section.

Recall that in the development of the output sensitive algorithms in Chapter 5
we assumed a priority queue with logarithmic time operations was available. This

159

6.3. Theory and Practice 160

lead to the time complexities of our blocked output sensitive algorithms (see Section
5.9.2) having logarithmic factors. As was briefly mentioned in Chapter 4, assuming the
availability of a stratified (van Emde Boas) tree [1977], these times can be improved
to having log-logarithmic factors. For example, the resulting time complexity for our
block output sensitive algorithm is then 0(nmin{d, nloglogn}). In Chapter 3, we
expressed the time complexity of a stratified tree in terms of the word-length, w, of
the underlying machine as O(logiy), since we were interested in a general purpose data
structure for integer keys. These time complexities can also be expressed in terms of
the universe size, u. In Chapter 3, u = 2“^ and so we have the operations on the
stratified tree in time O(loglogti) while requiring 0{u) space. Of course, in the case
of computing a maximum independent set of a circle graph, u = n. However, there is
an important practical reason that we did not quote the log-logarithmic bound.

The point is that, for a fixed size bounded universe, a stratified tree provides
O(log log u) time operations, however, in almost every algorithmic application involv­
ing the data structure (such as the maximum independent set algorithm mentioned)
an implementation is required that works for a range of different sizes of universe. De­
spite this, we are unaware of any practical implementation of the data structure that
provides such flexibility. For instance, Mehlhorn and Naher [1990] do provide such an
implementation, but it is far from efficient. Indeed Dementiev et al. [2004] show that
it is less efficient than even simple comparison based data structures. The situtation
is different for a fixed universe size, indeed, as Dementiev et al. demonstrated, and as
our experimental results of Chapter 3 showed, for 32-bit keys (a universe of size 2^^),
an efficient (in terms of time) stratified tree implementation is possible.

It might be noted that in the case at hand, all our experiments for the maximum
indepedent set algorithms of Chapter 4 involved circle graphs of no more than 50,000
vertices, and so a stratified tree over a universe of size 2^® would have sufficed. However,
the resulting time complexity should be quoted as 0(nmin{(i, aloglogu}) where u is
the universe size of the implementation. Without further modifications, it must then be
accepted that the implementation will not function for circle graphs of n > u vertices.

Despite the fact that, as far as we are aware, no sufficiently general implementation
of a stratified tree exists to make the claim of an algorithm having a O(log log n)
factor realistic, it is common to see such bounds quoted. For example, Apostolico et
al. [1992] present a maximum clique algorithm for an m edge n vertex circle ^raph
operating in time 0(min{n^,mloglogn}), via the use of a stratified tree. Sich a
bound is neither incorrect nor dishonest, but it is definitely not the bound that will
currently arise in a practical realization. This is an unfortunate gap between theory

160

and practice. This gap is one that we hope to address in future work, as mentioned in
the previous section. Note also that a negative result in this engineering work would
also be important. If integer data structures, including stratified trees as well as word-
parallel data structures, resisted substantial experimental and engineering effort at
their implementation, it could still, in our view, help to drive theory closer to practice,
since bounds achieved using such data structures might at least be accompanied by a
caveat.

We are not the first to point out such gaps between theory and practice, Moret [2001]
provides several examples. For example. He points out that the Predman and Tarjan’s
[1987] 0{\E\P{\E\,]y|)) time* minimum spanning tree algorithm is less efficient than
Prim’s simple (9(|E|log|I7|) time algorithm, except for dense graphs with billions of
vertices — well beyond the size of those that occur in any application. However,
we have not seen the importance of engineering integer data structures highlighted
before, we emphasize that practical implementations of such data structures have the
potential to improve the practical performance of the many algorithms relying on such
data structures.

6.4 Conclusion
Sorting and searching are two fundamental, closely related problems in Computer Sci­
ence. This dissertation has presented experimental insights and their analysis for clas­
sic, comparison-based sorting algorithms. A detailed experimental study of data struc­
tures for searching integer keys has been presented, based around the engineering of
a data structure, the LPCB-tvie, for integer keys that is efficient in both time and
space. We believe this data structure could fruitfully be used in many applications.
Finally, in an additional contribution, we have studied the maximum independent set
problem on circle graphs. As well as carefully implementing and evaluating previous
techniques, we have presented the first output sensitive algorithms for this problem,
and experimentally demonstrated their efficiency.

We believe these contributions advance the understanding of some basic algorithms
and data structures in Computer Science, as well as improving their efficiency in prac­
tice.

"Here P{m,n) — minffc : log^*''(n) < m/n}, and so I3{n,n) = log* n

161

Bibliography

Acharya, A., Zhu, H., and Shen, K. (1999). Adaptive Algorithms for Cache-Efficient
Trie Search. In ALENEX ’99: 1st International Workshop on Algorithm Engineering
and Experimentation, pages 296-311, London, UK. Springer-Verlag.

Agarwal, R. C. (1996). A super scalar sort algorithm for RISC processors, pages
240-246.

Aggarwal, A. and Vitter, Jeffrey, S. (1988). The input/output complexity of sorting
and related problems. Common. ACM, 31(9):1116-1127.

AMD (2009). AMD64 Architecture Programmer’s Manual Volume 6: 128-Bit and 256-
Bit XOP, PMA4 and CVT16 Instructions.

Andersson, A. (1995). Sublogarithmic searching without multiplications. In FOCS ’95:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
page 655, Washington, DC, USA. IEEE Computer Society.

Andersson, A. and Nilsson, S. (1993). Improved behaviour of tries by adaptive branch­
ing. Inf. Process. Lett, 46(6):295-300.

Andersson, A. and Thorup, M. (2007). Dynamic ordered sets with exponential search
trees. J. ACM, 54(3): 13.

Apostolico, A., Atallah, M. J., and Hambrusch, S. E. (1992). New clique and indepen­
dent set algorithms for circle graphs. Discrete Applied Mathematics, 36(l):l-24.

Apostolico, A., Atallah, M. J., and Hambrusch, S. E. (1993). Erratum: New Clique
and Independent Set Algorithms for Circle Graphs (Discrete Applied Mathematics
36 (1992) 1-24). Discrete Applied Mathematics, 41(2):179-180.

Asano, T., Asano, T., and Imai, H. (1986). Partitioning a polygonal region into trape­
zoids. J. ACM, 33(2):290-312.

162

Asano, T., Imai, H., and Mukaiyama, A. (1991). Finding a maximum weight indepen­
dent set of a circle graph. lEICE Transactions, E74(4):681-683.

Askitis, N. (2009). Fast and compact hash tables for integer keys. In Mans, B., editor,
Thirty-Second Australasian Computer Science Conference (ACSC 2009), volume 91
of CRPIT, pages 101-110, Wellington, New Zealand. ACS.

Askitis, N. and Sinha, R. (2007). Hat-trie: A cache-conscious trie-based data struc­
ture for strings. In Bobbie, G., editor. Thirtieth Australasian Computer Science
Conference (ACSC2007), volume 62 of CRPIT, pages 97-105, Ballarat Australia.
ACS.

Astrachan, O. (2003). Bubble sort: an archaeological algorithmic analysis. In SIGCSE
’03: Proceedings of the Sfth SICCSE technical symposium on Computer science
education, pages 1-5, New York, NY, USA. ACM.

Bayer, R. and McCreight, E. M. (1972). Organization and Maintenance of Large
Ordered Indices. Acta Inf, 1:173-189.

Beame, R and Fich, F. E. (2002). Optimal bounds for the predecessor problem and
related problems. J. Comput. Syst. Sci., 65(l):38-72.

Belady, L. (1966). A study of replacement algorithms for virtual storage computers.
IBM Systems Journal, 5(2):78-101.

Bell, T. C., Cleary, J. G., and Witten, I. H. (1990). Text Compression (Prentice Hall
Advanced Reference Series). Prentice Hall.

Bender, M. A., Demaine, E. D., and Farach-Colton, M. (2000). Cache-oblivious b-
trees. In FOCS ’00: Proceedings of the fist Annual Symposium on Foundations of
Computer Science, page 399, Washington, DC, USA. IEEE Computer Society.

Bentley, J. L. and Mcllroy, M. D. (1993). Engineering a sort function. Softw. Pract.
Exper., 23(11):1249-1265.

Bentley, J. L. and Ottmann, T. (1979). Algorithms for Reporting and Counting Geo­
metric Intersections. IEEE Trans. Computers, 28(9):643-647.

Bida, E. and Toledo, S. (2007). An automatically-tuned sorting library. Softw. Pract.
Exper., 37(11):1161-1192.

163

Biggar, P. and Gregg, D. (2005). Sorting in the presence of branch prediction and
caches. Technical Report TCD-CS-05-57, University of Dublin, Trinity College.

Biggar, P., Nash, N., Williams, K., and Gregg, D. (2008). An Experimental Study of
Sorting and Branch Prediction. J. Exp. Algorithmics, 12:1-39.

Blum, N. and Mehlhorn, K. (1980). On the average number of rebalancing operations
in weight-balanced trees. Theoretical Computer Science, ll(3):303-320.

Boucheron, S. and de la Vega, F. (2001). On the independence number of random
interval graphs. Combinatorics, Probability and Computing, 10(05) :385-396.

Brent, R. P. (2004). Note on marsaglia’s xorshift random number generators. Journal
of Statistical Software, 11 (5): 1-4.

Brodal, G. S., Fagerberg, R., and Jacob, R. (2002). Cache oblivious search trees
via binary trees of small height. In SODA ’02: Proceedings of the thirteenth annual
ACM-SIAMsymposium on Discrete algorithms, pages 39-48, Philadelphia, PA, USA.
Society for Industrial and Applied Mathematics.

Brodal, G. S., Fagerberg, R., and Moruz, G. (2005). On the Adaptiveness of Quicksort.
In Proc. 7th Workshop on Algorithm Engineering and Experiments, pages 130-140.

Brodal, G. S., Fagerberg, R., and Vinther, K. (2007). Engineering a cache-oblivious
sorting algorithm. ACM Journal of Experimental Algorithmics, 12.

Brodal, G. S. and Moruz, G. (2005). Tradeoffs Between Branch Mispredictions and
Comparisons for Sorting Algorithms. In WADS, pages 385-395.

Brodal, G. S. and Moruz, G. (2006). Skewed binary search trees. In ESA’06: Proceed­
ings of the 14th conference on Annual European Symposium, pages 708-719, London,
UK. Springer-Verlag.

Burks, A. W. (1989). Perspectives on the computer revolution. Ablex Publishing
Corp., Norwood, NJ, USA.

Burks, A. W., Goldstine, H. H., and von Neumann, J. (1946). Preliminary discussion
of the logical design of an electronic computing instrument. . Report to the U.S.
Army Ordnance Department.

Case, R. P. and Padegs, A. (1978). Architecture of the IBM system/370. Commun.
ACM, 21(l);73-96.

164

Cong, J. and Liu, C. L. (1990). Over-the-cell channel routing. IEEE Trans, on CAD
of Integrated Circuits and Systems, 9(4):408-418.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition.

de Werra, D., Eisenbeis, C., Lelait, S., and Marmol, B. (1999). On a graph-theoretical
model for cyclic register allocation. Discrete Applied Mathematics, 93(2-3): 191-203.

de Werra, D., Eisenbeis, C., Lelait, S., and Stohr, E. (2002). Circular-arc graph col­
oring: on chords and circuits in the meeting graph. European Journal of Oper.
Research, 136:483-500.

Demaine, E. (2003). Fixed Universe Successor Problem . Advanced Data Structures,
MIT Course 6.897.

Dementiev, R., Kettner, L., Mehnert, J., and Sanders, P. (2004). Engineering a Sorted
List Data Structure for 32 Bit Keys. In Proc. of the Sixth SIAM Workshop on
Algorithm Engineering and Experiments, New Orleans, LA, USA, pages 142-151.

Denning, P. J. (1968). Thrashing: its causes and prevention. In AFIPS ’68 (Fall, part
I): Proceedings of the December 9-11, 1968, fall joint computer conference, part I,
pages 915-922, New York, NY, USA. ACM.

Denning, P. J. (2005). The locality principle. Commun. ACM, 48(7):19-24.

Devroye, L. (1982). A note on the average depth in tries. Computing, 28:367-371.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., auf der Heide, F. M., Rohnert, H., and
Tarjan, R. E. (1988). Dynamic perfect hashing: upper and lower bounds. In SECS
’88: Proceedings of the 29th Annual Symposium on Foundations of Computer Sci­
ence, pages 524-531, Washington, DC, USA. IEEE Computer Society.

Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., and Zhou,
M. (2003). Experiences and lessons learned with a portable interface to hardware
performance counters. In IPDPS ’03: Proc. of the 17th International Symposium
on Parallel and Distributed Processing, page 289.2, Washington, DC, USA. IEEE
Computer Society.

Eichenberger, A. E., O’Brien, J. K., O’Brien, K. M., Wu, P., Chen, T., Oden, P. H.,
Prener, D. A., Shepherd, J. C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P.,

165

Gschwind, M. K., Archambault, R., Gao, Y., and Koo, R. (2006). Using advanced
compiler technology to exploit the performance of the Cell Broadband Engine archi­
tecture. IBM Systems Journal, 45(l):59-84.

Eisenbeis, C., Lelait, S., and Marmol, B. (1995). The meeting graph: a new model
for loop cyclic register allocation. In PACT ’95: Proceedings of the IFIP WGIO.3
working conference on Parallel architectures and compilation techniques, pages 264-
267, Manchester, UK. IFIP Working Group on Algol.

Feller, W. (1968). An Introduction to Probability Theory and its Applications. Wiley.

Flajolet, P. (2006). The ubiquitous digital tree. In Durand, B. and Thomas, W.,
editors, STAGS 2006, volume 3884 of Lecture Notes in Computer Science, pages
1-22. Proceedings of 23rd Annual Symposium on Theoretical Aspects of Computer
Science, Marseille, February 2006.

Floyd, R. W. (1964). Treesort 3: Algorithm 245. Communications of the ACM,
7(12):701.

Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596-615.

Fredman, M. L. and Willard, D. E. (1990). Blasting through the information theoretic
barrier with fusion trees. In STOC ’90: Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages 1-7, New York, NY, USA. ACM.

Frias, L., Petit, J., and Roura, S. (2009). Lists Revisited: Cache Conscious STL Lists.
Journal of Experimental Algorithmics (JEA). To appear.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999). Cache-Oblivious
Algorithms. In FOGS ’99: Proceedings of the fOth Annual Symposium on Foun­
dations of Computer Science, page 285, Washington, DC, USA. IEEE Computer
Society.

Gavril, F. (1973). Algorithms for a maximum clique and a maximum independent set
of a circle graph. Networks, 3(3):261-273.

Gog, S. (2009). Broadword computing and fibonacci code speed up compressed suf­
fix arrays. In Vahrenhold, J., editor. Experimental Algorithms, 8th International
Symposium, SEA 2009, Dortmund, Germany, June f-6, 2009. Proceedings, pages
161-172.

166

Goldschmidt, 0. and Takvorian, A. (1994). An efficient algorithm for finding a maxi­
mum weight independent set of a circle graph. lEICE Transactions, E77-A(10):1672-
1674.

Golumbic, M. C. (2004). Algorithmic Graph Theory and Perfect Graphs (Annals of
Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The
Netherlands, The Netherlands.

Graham, R. L., Knuth, D. E., and Patashnik, O. (1994). Concrete Mathematics: A
Eoundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic framework for balanced trees. In
SECS ’78: Proceedings of the 19th Annual Symposium on Eoundations of Computer
Science, pages 8-21, Washington, DC, USA. IEEE Computer Society.

Gupta, U. I., Lee, D. T., and Leung, J. Y.-T. (1982). Efficient algorithms for interval
graphs and circular-arc graphs. Networks, 12(4):459-467.

Hagerup, T. (1998). Sorting and searching on the word ram. In STAGS ’98: Proceedings
of the 15th Annual Symposium on Theoretical Aspects of Computer Science, pages
366-398, London, UK. Springer-Verlag.

Heinz, S., Zobel, J., and Williams, H. E. (2002). Burst tries: a fast, efficient data
structure for string keys. ACM Trans. Inf. Syst, 20(2):192-223.

Hennessy, J. L. and Patterson, D. A. (2006). Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 4th edition.

Hinton, G., Sager, D., Upton, M., Carmean, D., Kyker, A., , and Roussel, P. (2001).
The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal, Ql.

Hoare, C. A. R. (1962). Quicksort. Computer Journal, 5(1):10-15.

Ibbett, R. N. (1971). The MU5 Instruction Pipeline . The Computer Journal, 15(1):42
- 50.

IEEE (2008). Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages
1-58.

Intel (2007). Intel 64 and IA-32 Architectures Optimization Reference Manual.

167

Intel (2009). Intel Reference Manuals, see http://www.intel.com/products/processor/manuals

Janson, S. and Szpankowski, W. (2007). Partial fillup and search time in Ic tries. ACM
Trans. Algorithms, 3(4):44.

Kaligosi, K. and Sanders, P. (2006). How Branch Mispredictions Affect Quicksort. In
Proceedings of The Ifth Annual European Symposium on Algorithms (ESA W06).
(to appear).

Kasheff, Z. (2004). Cache-Oblivious Dynamic Search Trees. M.eng., Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

Keil, J. M. (1993). The complexity of domination problems in circle graphs. Discrete
Applied Mathematics, 42(l):51-63.

Kessler, R. E., Mclellan, E. J., and Webb, D. A. (1998). The Alpha 21264 nicro-
processor architecture. In In Proceedings of the 1998 International Confererce on
Computer Design, pages 90-95.

Knessl, C. and Szpankowski, W. (2000a). A Note on the Asymptotic Behavior of rhe
Heights in b-Tries for b Large. Electr. J. Comb., 7.

Knessl, C. and Szpankowski, W. (2000b). Heights in Generalized Tries and PATEICIA
Tries. In LATIN 2000: Theoretical Informatics, fth Latin American Sympcsitm,
Punta del Este, Uruguay, pages 298-307. Springer. LNCS 1776.

Knuth, D. E. (1997a). The Art Of Computer Programming, Volume 1 (3rd ed.): Fm-
damental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood C.ty,
CA, USA.

Knuth, D. E. (1997b). The Art Of Computer Programming, Volume 1 (3rd ed.): Funda­
mental Algorithms, pages ppl20-160, pp73-78. Addison Wesley Longman PubLsh ng
Co., Inc., Redwood City, CA, USA.

Knuth, D. E. (1998a). The Art Of Computer Programming, Volume 3 (2nd el.):
Sorting And Searching, pages 458-478, 482-491, 506. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA.

Knuth, D. E. (1998b). The Art Of Computer Programming, Volume 3 (2na el):
Sorting And Searching, pages pllO, pl75, pp73-180, ppl53-155, ppl58-168. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

168

Korda, M. and Raman, R. (1999). An Experimental Evaluation of Hybrid Data Struc­
tures for Searching. In Proc. of the 3rd International Workshop on Algorithm Engi­
neering (WAE), London, UK, pages 213-227.

LaMarca, A. and Ladner, R. (1996). The influence of caches on the performance of
heaps. J. Exp. Algorithmics, 1:4.

LaMarca, A. and Ladner, R. E. (1997). The influence of caches on the performance
of sorting. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete
algorithms, pages 370-379. Society for Industrial and Applied Mathematics.

Leighton, F. T. and Rivest, R. L. (1983). Estimating a Probability Using Finite Memory
(Extended Abstract). In Proceedings of the 1983 International EOT-Conference on
Fundamentals of Computation Theory, pages 255-269, London, UK. Springer-Verlag.

Li, X., Garzaran, M. J., and Padua, D. (2005). Optimizing Sorting with Genetic Algo­
rithms. In CGO ’05: Proceedings of the international symposium on Code generation
and optimization, pages 99-110, Washington, DC, USA. IEEE Computer Society.

Liptay, J. S. (1968). Structural aspects of the System/360 Model 85: II The cache .
IBM Systems Journal, 7(l):373-379.

Liu, R. and Ntafos, S. C. (1988). On decomposing polygons into uniformly monotone
parts. Inf. Process. Lett., 27(2):85-89.

Manegold, S. and Boncz, P. (2004). Cache-memory and tlb calibration tool.

Martinez, C. and Roura, S. (2001). Optimal Sampling Strategies in Quicksort and
Quickselect. SIAM J. Comput, 31(3):683-705.

McFarling, S. and Hennessey, J. (1986). Reducing the cost of branches. SIC ARCH
Comput. Archit. News, 14(2):396-403.

McCeoch, C. C. (2007). Experimental algorithmics. Commun. ACM, 50(11):27-31.

McCeoch, C. C. (2008). Experimental Methods for Algorithm Analysis. In Kao, M.-Y.,
editor. Encyclopedia of Algorithms. Springer.

Mehlhorn, K. and Naher, S. (1990). Bounded ordered dictionaries in O(loglogN) time
and 0(n) space. Inf. Process. Lett., 35(4): 183-189.

Mehlhorn, K. and Naher, S. (1998). LEDA. Cambridge University Press.

169

Michaud, P. (2004). Analysis of a tag-based branch predictor . Technical report,
INRIA.

Moret, B. (2001). Towards a discipline of experimental algorithmics. In Proc. 5th
DIM ACS Challenge.

Mudge, T., Chen, I.-C., and Coffey, J. (1996). Limits to Branch Prediction. Technical
Report CSE-TR-282-96.

Nash, N. and Gregg, D. (2008). Comparing integer data structures for 32 and 64 bit
keys. In McGeoch, C., editor. Proceedings of the Seventh International Workshop on
Experimental Algorithms, pages 28-42, Provincetown, Cape Cod, MA, USA. LNCS
5038.

Nash, N. and Gregg, D. (2010). An output sensitive algorithm for computing a maxi­
mum independent set of a circle graph, (submitted).

Nethercote, N. and Seward, J. (2007). Valgrind: a framework for heavyweight dynamic
binary instrumentation. SIGPLAN Not., 42(6):89-100.

Nilsson, S. (1996). Radix Sorting and Searching. PhD thesis, Lund University.

Nilsson, S. and Tikkanen, M. (2002). An Experimental Study of Compression Methods
for Dynamic Tries. Algorithmica, 33(l):19-33.

Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., and Lomet, D. (1994). AlphaSort:
a RISC machine sort. In SIGMOD ’Qf: Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, pages 233-242, New York, NY,
USA. ACM Press.

Pan, S.-T., So, K., and Rahmeh, J. T. (1992). Improving the accuracy of dynamic
branch prediction using branch correlation. In ASPLOS-V: Proceedings of the fifth
international conference on Architectural support for programming languages and
operating systems, pages 76-84, New York, NY, USA. ACM.

Patra§cu, M. and Thorup, M. (2006). Time-space trade-offs for predecessor search. In
Proc. 38th ACM Symposium on Theory of Computing (STOC), pages 232-240. See
also arXiv:0603043.

Pugh, W. (1990). Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668-676.

170

Rahman, N. and Raman, R. (2001). Adapting Radix Sort to the Memory Hierarchy.
J. Exp. Algorithmics, 6:7.

Rao, J. and Ross, K. A. (2000). Making B+- trees cache conscious in main memory.
SIGMOD Rec., 29(2):475-486.

Sanders, P. (2009). Algorithm Engineering - An Attempt at a Definition. In Albers, S.,
Alt, H., and Naher, S., editors. Efficient Algorithms, volume 5760 of Lecture Notes
in Computer Science, pages 321-340. Springer.

Sanders, P. and Winkel, S. (2004). Super Scalar Sample Sort. In Albers, S. and Radzik,
T., editors. Algorithms . ESA 2004: 12th Annual European Symposium, volume 3221
of Lecture Notes in Computer Science, pages 784-796, Bergen, Norway. Springer.

Scheinerman, E. R. (1988). Random interval graphs. Combinatorica, 8(4):357-371.

Scheinerman, E. R. (1990). An evolution of interval graphs. Discrete Math., 82(3):287-
302.

Sedgewick, R. and Flajolet, P. (1996). An introduction to the analysis of algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Seidel, R. and Aragon, C. R. (1996). Randomized Search Trees. Algorithmica, pages
540-545.

Seward, J. (2007). Personal Communication.

Singleton, R. C. (1969). Algorithm 347: an efficient algorithm for sorting with minimal
storage [Ml]. Commun. ACM, 12(3):185-186.

Sinha, R. (2004). Using Compact Tries for Cache-Efficient Sorting of Integers. In
Ribeiro, C. C., editor, Proc. of the Third International Workshop on Efficient and Ex­
perimental Algorithms (WEA 2004), pages 513-528, Angra dos Reis, Rio de Janeiro,
Brazil. LNCS 3059.

Sinha, R., Ring, D., and Zobel, J. (2006). Cache-efficient String Sorting using Copying.
J. Exp. Algorithmics, 11:1.2.

Sinha, R. and Wirth, A. (2008). Engineering Burstsort: Towards Fast In-Place String
Sorting. In WEA, pages 14-27.

Sinha, R. and Zobel, J. (2004). Cache-conscious Sorting of Large Sets of Strings with
Dynamic Tries. J. Exp. Algorithmics, 9:1.5.

171

Sinha, R. and Zobel, J. (2005). Using Random Sampling to Build Approximate Tries
for Efficient String Sorting. J. Exp. Algorithmics, 10:2.10.

Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search trees. J. ACM,
32(3):652-686.

Smith, J. E. (1981). A study of branch prediction strategies. In ISCA ’81: Proceed­
ings of the 8th annual symposium on Computer Architecture, pages 135-148, Los
Alamitos, CA, USA. IEEE Computer Society Press.

Srinivasan, R., Frachtenberg, E., Lubeck, O., Pakin, S., and Cook, J. (2007). An
Idealistic Neuro-PPM Branch Predictor . Journal of Instruction Level Parallelism,
9:1 - 13.

Stroustrup, B. (1997). The C+-h Programming Language, Third Edition. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Supowit, K. J. (1987). Finding a maximum planar subset of a set of nets in a channel.
IEEE Trans, on CAD of Integrated Circuits and Systems, 6(l):93-94.

Sussenguth, E. H. (1963). Use of Tfee Structures for Processing Files. Commun. ACM,
6(5):272-279.

Thorup, M. (2003). On ACO implementations of fusion trees and atomic heaps. In
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Dis­
crete algorithms, pages 699-707, Philadelphia, PA, USA. Society for Industrial and
Applied Mathematics.

Tiskin, A. (2009). Semi-local string comparison: algorithmic techniques and applica­
tions. CoRR, abs/0707.3619.

Uht, A. K., Sindagi, V., and Somanathan, S. (1997). Branch Effect Reduction Tech­
niques. Computer, 30(5):71-81.

Valiente, G. (2003). A new simple algorithm for the maximum-weight independent set
problem on circle graphs. In Ibaraki, T., Katoh, N., and Ono, H., editors, ISAAC,
volume 2906 of Lecture Notes in Computer Science, pages 129-137. Springer.

van Emde Boas, P. (1977). Preserving Order in a Forest in Less Than Logarithmic
Time and Linear Space. Inf. Process. Lett, 6(3):80-82.

172

Vigna, S. (2008). Broadword implementation of rank/select queries. In McGeoch, C.,
editor, Proceedings of the Seventh International Workshop on Experimental Algo­
rithms, pages 154-168, Provincetown, Cape Cod, MA, USA.

Vollmer, H. (1999). Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Weiner, P. (1973). Linear pattern matching algorithms. In SWAT ’73: Proceedings of
the Ifth Annual Symposium on Switching and Automata Theory (swat 1973), pages
1-11, Washington, DC, USA. IEEE Computer Society.

Wickremesinghe, R., Arge, L., Chase, J. S., and Vitter, J. S. (2002). Efficient sorting
using registers and caches. J. Exp. Algorithmics, 7:9.

Wilkes, M. (1965). Abstracts of Current Computer Literature. Electronic Computers,
IEEE Transactions on, EC-14(2):281-293.

Wilkes, M. V. (2000). Slave memories and dynamic storage allocation, pages 371-372.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Willard, D. E. (1983). Log-logarithmic worst-case range queries are possible in space
G{N). Information Processing Letters, 17(2):81-84.

Willard, D. E. (1984). New trie data structures which support very fast search opera­
tions. J. Comput. Syst. Sci., 28(3):379-394.

Willard, D. E. (1992). Applications of the fusion tree method to computational ge­
ometry and searching. In SODA ’92: Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms, pages 286-295, Philadelphia, PA, USA. Society
for Industrial and Applied Mathematics.

Willard, D. E. (2000). Examining computational geometry, van emde boas trees, and
hashing from the perspective of the fusion tree. SIAM J. Comput, 29(3): 1030-1049.

Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J. (1995). The Context Tree
Weighting Method: Basic Properties. IEEE Transactions on Information Theory,
41:653-664.

Williams, J. W. J. (1964). Heapsort: Algorithm 232. Communications of the ACM,
7(6):347-348.

173

Xiao, L., Zhang, X., and Kubricht, S. A. (2000). Improving memory performance of
sorting algorithms. J. Exp. Algorithmics, 5:3.

Zargham, M. R. (1996). Computer architecture: single and parallel systems. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Ziv, J. and Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 23:337-343.

Zou, Q., Zhao, T., Liu, Y., and Guo, M. (2009). Predicting rna secondary structure
based on the class information and hopfield network. Computers in Biology and
Medicine, 39(3):206 - 214.

174

Appendix A

Additional Experimental Results
for Integer Data Structures

A.l Alternative Machine Configurations

In this section we present additional experimental results for the data structures de­
scribed in this Chapter 4. As was done in the main experimental comparison of Sec­
tion 4.4, we refer to the machine configurations by the names (beaker, knuth, melody,
stoker) given in Table 4.1. The descriptions of the experimental results in this section
are brief, the naming of the data structures and other details can be found in Section
4.4. Note also that we do not provide space measurements for every machine, this is
because they are identical for machines of the same word-size. Thus we provide space
measurements for one 32-bit and one 64:-bit machine.

In addition to the data distributions described above, we also consider the perfor­
mance of the data structures where queries are drawn from the Zipf distribution. That
is, we insert a sequence of uniform random keys fci,..., and then perform a series
of queries, where the probability of searching for km is

Z{m) = 1/m"
Er=i 1/*^

Here s is the parameter of the distribution. Note that s = 0 implies uniform random
selection of query indices. Increasing s results in a distribution where the lower indices
occur with higher probability than higher indices. For example, in general the first
index is 2® times more likely to occur than the second. For s = 1, fci is queried half
the time, k2 one third of the time, et cetera. We have used s = 0.8 in our experiments.

175

Log2(Number of keys)

(a)

Log2(Number of keys)

(b)

Figure A.l; These results were gathered on melody, (a) Shows the insertion times for
the data structures, (b) shows the locate times for the data structures. The data is
uniform random 32-bit keys.

176

Log2(Number of keys)

(a)

(b)

Figure A.2: These results were gathered on melody, (a) Shows the time for a mixed
sequence of insertions and deletions for the data structures, (b) shows the locate times.
The data is uniform random 32-bit keys, (b) Shows the time required for Zipf dis­
tributed locate operations, described above.

177

(0
■ocoo
d)«

60
LPCB-trie
Red-black tree
B-tree
LPCQ-trie

Amarok Konqueror KPDF

(b)

Figure A.3: These results were gathered on melody, (a) Shows the time for a sequence
of locate operations for biased bit data, as p varies. Prior to the locates, 2^^ insertions
also of biased bit data are performed. The keys are 32-bits in length, (b) Shows the
time for the data structures to process the 32-bit Valgrind traces.

178

Log2(Number of keys)

(a)

Log2(Number of keys)

(b)

Figure A.4: These results were gathered on stoker, (a) Shows the insertion times for
the data structures, (b) shows the locate times for the data structures. The data is
uniform random 32-bit keys.

179

Log2(Number of keys)

(a)

(b)

Figure A.5; These results were gathered on stoker, (a) Shows the time for a mixed
sequence of insertions and deletions for the data structures, (b) shows the locate times.
The data is uniform random 32-bit keys, (b) Shows the time required for Zipf dis­
tributed locate operations, described above.

180

CO
TD
Coo
0)

05

Bias

(a)
14

12

S-tree
LPCB-trie

- Red-black tree
B-tree
LPCQ-trie

Amarok Konqueror KPDF

(b)

Figure A.6; These results were gathered on stoker, (a) Shows the time for a sequence
of locate operations for biased bit data, as p varies. Prior to the locates, 2^^ insertions
also of biased bit data are performed. The keys are 32-bits in length, (b) Shows the
time for the data structures to process the 32-bit Valgrind traces.

181

70

60

50u>
T3

o 40 o ® w
30

20

10

0

80

LPCB-trie LPCQ-trie B-tree Red-black tree

40

35

30 -

25 -
(0
"O

8 20
<a
W

15 I-

10 -

LPCB-trie LPCQ-trie B-tree Red-black tree

(a)
(b)

Figure A.7: These results show the time required to process the 32-bit Genome data
set by the data structures, (a) Shows the time on melody, while (b) shows the time on
stoker.

182

(a)

(b)

Figure A.8: (a) Shows the time to process a sequence of Zipf distributed locate oper­
ations on beeiker. (b) Shows the time to process a sequence of Zipf distributed locate
operations on knuth.

183

A.2 Growth Factor Results

Figure A.9(a) shows the time required to perform insertions of uniform random 32-bit
keys into LPCB-tvies as growth factor is varied. We note that j = 4 gives the best
performance. Figure A.9(b) shows the space required by these LPC^-tries. Unsur­
prisingly, as the minimum branching factor and growth factor is increased, the tries
require more memory. We note that j = A results in a reasonably compact structure
(indeed, as we shall see in Section 4.4, less than the comparison based data structures
we examine) usage. The LPCB-tiie structure with the most aggressive growth, j = 8,
requires an impractical amount of extra space for many of the input sizes. A pre­
cise explanation of its memory usage is not trivial, since several factors influence this:
the growth of trie nodes, the bursting of buckets and the addition of (possibly very
sparse) trie nodes. Figure A. 10(a) shows the time to perform a locate operation on
these LPCB-tiie structures. The locate operation returns the value associated with
the largest key less than or equal to the key provided to it. The LPCB-ivie with j = A
generally performs best, except for the last two data-points where the j = 8 LPCB-tvie
performs better.

184

(a)

Log2(Number of keys)

(b)

Figure A.9: (a) Shows the time required for insertion operations on LPCB-tvies, with
different minimum node degree and growth factors, (b) Shows the space required by
the data structures for the sequence of insertions in (a). The keys inserted are uniform
random 32-bit integers. These results were gathered on the machine knuth, we provide
the details of our experimental setup in Section 4.4.

185

Figure A. 10: This figure shows the time required for locate operations on LPCB-
tries with different minimum node degree and growth factors. The keys are uniform
random 32-bit integers. These results were gathered on the machine knuth. Details of
our experimental setup can be found in Section 4.4.

186

