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Summary

Liischer provided a method by which the Euclidean correlation function, used in 
lattice field theories, can be used to evaluate the scattering phase shift, side-stepping 
the Maiani-Testa Theorem. This result is explored in the context of relativistic 
particles in a specially anisotropic box.

Perturbative calculations and anisotropic lattice simulations are used to estimate 
the decay width of an unstable particle in a scalar quantum field theory, which mod­
els the decay of a glueball, G, into a two pion state, tttt. The Euclidean perturbative 
calculations examine the two particle energy spectrum, which is then linked to the 
scattering phase shift, up to second order in the coupling. The Minkowski perturba­
tive calculations, unrestrained by the Maiani-Testa theorem, afford direct access to 
the decay width. These results are used as a comparison for the Monte Carlo sim­
ulations, in particular to gain an insight into the link between the energy spectrum 
and the scattering phase shift.

Using Markov Chain Monte Carlo integration techniques applied to anisotropic 
space-time lattices, we can estimate the exact two particle energy spectrum. From 
this point, we apply Liischer’s method to recover the scattering phase shift. A genetic 
fitting algorithm is developed to fit this data to a Breit-Wigner function to provide 
a value for the decay width.The importance of certain off-diagonal elements of the 
correlation matrix is noted. When the glueball to tttt case is examined, the analogous 
elements will be of particular interest. The experience gained from the model theory 
will provide a foundation for a similar application of Liischer’s method to the G —> tttt 
decay.

A summary of the current state of glueball research is provided. We then proceed 
with a thorough discussion of the methods used in glueball simulations, before pre­
senting preliminary results for the (S' —> tttt correlation matrix entries. In particular, 
encouraging results using the distillation method are given for the G rnr correlator.
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Chapter 1

Introduction

Q uantum  Chromodynamics (QCD) is widely held as the theory of the strong inter­

action. It is a non-Abelian SU{3)  gauge theory of fermionic fields, called quarks and 

gauge fields called gluons. These fundamental particles carry a charge in three colours, 

labelled red, green and blue, in analogy with the prim ary colours. Two of the distinc­

tive properties of QCD are confinement and asym ptotic freedom. Confinement states 

th a t the force between two quarks does not decrease as their separation increases. 

Asymptotic freedom states th a t a t high energies, the interactions between quarks and 

gluons become weak. This theoretical prediction of QCD was dem onstrated experi­

mentally and is held as a cornerstone in the assertion of QCD as describing the strong 

nuclear force. QCD also predicts the existence of bound states of gluons, called glue- 

balls. These states are so exotic th a t confirmation of their existence would provide 

strong support for the acceptance of QCD. Current research (Sec. 5.1) from various 

fields mostly accept th a t some of the experimentally observed resonances correspond 

to glueball states, though there is little agreement about which of these resonances 

actually are glueballs. The ultim ate goal of this project is to strengthen the link 

between the experimental and theoretical understanding of glueballs, using Lattice 

Quantum  Chromodynamics.

Lattice Quantum Chromodynaics (LQCD) is the theory of QCD formulated on 

a discrete space-time grid with spacing a. In this formulation, the quarks fields are 

represented by values at each grid point, while the gluon fields are represented on the
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links between the grid points. Numerical techniques, such as Markov Chain Monte 

Carlo can be used to evaluate certain fundamental objects in the theory, in particular, 

correlation functions. This procedure allows for the computational, non-perturbative 

exploration of QCD, which is automatically regularised by a 1/a momentum cut-off. 

As well as providing a means for the examination of the underlying properties of 

QCD, such as confinement and the running of the coupling, LQCD also gives access 

to energy spectra of the particles in the Standard Model, which will be of particular 

interest to us.

T he Problem

Among the predictions of QCD is the existence of glueballs. While their existence is 

not essential for QCD to hold, confirmation of their existence would provide substan­

tial support to the case for QCD as the theory of the strong interaction. However, 

as is highlighted in Ref. [1], there is a fundamental disagreement between how the 

experimentalists and the theorists observe glueballs.

The experimentalists, looking at scattering processes in particle accelerators, mea­

sure the differential cross sections, related to decay widths, of the particles to a high 

level of accuracy. The theorists, on the other hand, use the exponential decay of 

Euclidean correlation functions to examine the energy spectra of the particles. The 

contrast between these two approaches is highlighted in Fig. 1-1, which shows typical 

experimental and theoretical results. It is clear, in this case, that any realtionship 

between the experimental glueball candidates and the theoretical results is vague.

The first attem pt at a solution to this difference in approach might be to use the 

Euclidean correlation function to gain access to the decay width. But the Maini-Testa 

Theorem [8] implies that there is no direct access to the decay width from a Euclidean 

correlation function. (Formally, this theorem states that S-matrix elements cannot be 

extracted from infinite-volume Euclidean-space Green functions, except at kinematic 

thresholds.) This theorem does allow for a relationship between decay widths and 

Minkowski correlation functions. However, the Monte Carlo integration techniques 

employed to evaluate the correlation functions require a Euclidean formulation to

9
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lightest flavour singlet 0++ mesons from [3]. The un­

quenched results are from SESAM [4], UKQCD-I [5], 

and UKQCD-II |6]. Taken from [7].

Figure 1-1: Experimental and theoretical results.
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provide a positive definite probability  measure.

And so, the problem  is th a t LQCD, employed by theorists, can be used to calcu­

late Euclidean correlation functions which, due to  the M aiani-Testa Theorem , provide 

no direct access to  decay w idths, m easured by experim entalists. This forms a funda­

m ental barrier in the identification of glueballs.

The Solution

This problem  was addressed by Liischer [9]. He suggested a relationship  between finite 

volume energy eigenstates, as solutions to  the Schr5dinger equation, and singular 

periodic solutions to  the Helm holtz equation, related to  the  scattering  phase shift. 

Once th is link between the finite volume energy spectrum  and scattering  phase shift 

has been established, the  decay w idth  of the  particle can easily be recovered from the 

scattering  phase shift using a pertu rb a tiv e  expansion or a B reit-W igner model. W hile 

we cannot take the  short route across the top  of the flow diagram  below because of the 

M aiani-Testa Theorem , we will dem onstra te  the process of tak ing  the long route from 

Euclidean correlation function to  decay w idth, via finite volume energy spectrum  and 

scattering  phase shift.

Euchdean C orrelation
7^  Decay W idth

Function

i  T

F in ite  Volume Energy
— > Scattering Phase Shift

Spectrum

O ur intention is to  dem onstrate  th is principle on a theory which m odels decay of 

the glueball, G, into a two pion s ta te , tttt. We will dem onstrate  how the m ethods 

prevalent in LQCD can be utilised to  apply Liischer’s m ethod to such a decay. We will 

com pare the  results using this technique to  those of pertu rba tive  calculations, before 

tu rn ing  our a tten tion  to  the glueball to  tttt decay itself. Using the  experience gained 

from the  model theory, we will perform  a  prelim inary exam ination of the glueball to  

TTTT decay correlation function, w ith  a  view to  im plem enting Liischer’s m ethod to  this 

case in the future.

11



This document is divided up as follows. Chapter 2 presents Luscher’s result 

along with a brief account of its origins. The theory used as a model of the glueball 

to TTTT decay is also discussed. In Chapter 3, the details of the perturbative and 

Monte Carlo calculations of this model theory are described and the results of these 

calculations are described in Chapter 4. Chapter 5 details the glueball to tttt theory 

and measurements. The conclusions of the project are in Chapter 6.
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Chapter 2 

Volume Dependence of Energy Levels

We now investigate the finite volume eflfects that come about due to an unstable 

state. Our goal is to use these finite volume effects to calculate the mass and width 

of the resonance associated with the unstable state. To get an intuitive idea of the 

origin of the volume dependence, we will first examine the quantum mechanical case, 

before looking at a more general case.

We will then discuss the model theory which will be studied over the coming 

chapters and address the choice of parameter values and box volumes.

2.1 Volume Dependence of the Energy Levels

In this section, we will examine the link between the finite volume energy spectrum 

and the scattering phase shift. Initially, we will look at a quantum mechanical exam­

ple to gain an insight into the origin of this connection, before turning our attention 

to the general case of non-relativistic particles in a spacially anisotropic box. Follow­

ing Liischer’s approach [9], we will demonstrate how the one-to-one mapping between 

the singular periodic solutions to the Helmholtz equation and the Schrodinger equa­

tion leads to an association between the scattering phase shift and the finite volume 

energy spectrum.
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2.1.1 A Quantum  M echanicai Exam ple

In this section, we follow Ref. [10] closely and also Ref. [11]. In the case of two

identical, non-relativistic particles of mass m  and spin 0, we have the two particle

wavefunction, ' ip{x,y), which satisfies

i^{x,y) ^'ip{y,x) (2.1)

The Hamiltonian for the system is of the form

H  = H o +  V, (2.2)

where

= +  (2.3)

and

Vipix,  y) = ' ^  V(x - y  + nL)'ip{x, y).  (2.4)
n

In the case with zero total momentum, the wavefunction depends only on the particle 

separation, z — x  — y, and we can write the Schrodinger equation as

1
+ V{z) -ip{z,0) = Eip{z,0)  (2.5)

m  dz'^

For a given E,  this has a unique solution

t/;^(2) =  +  (2.6)

where p = y m E  and 5{p) is the scattering phase shift. In a finite volume, we impose 

the periodic boundary conditions

M - L / 2 )  =  ^ ^ (L /2 ) ,  V ^^(-L/2) =  V’̂ (L /2 ) .  (2.7)

This gives us

g2i<5(p)gj.pL _

=> p L  =  27rn — 2(5(p)

Around a resonance, the scattering phase shift can be writen as

^{p) = Sb {p ) + Snip), (2.8)

14



E
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Figure 2-1: Qualitative plot of avoided level crossings.

where 63 is a smooth background shift and <5̂  is the resonance shift, given by

A ^  ̂ -  J l 7 -g/?. -  E  + iT /2  
E - i V / 2 '

(2.9)

Looking at the dependence of £  on L in Fig. 2-1, the most striking effect are the 

plateaus which form at the resonance energy, Efj. These avoided level crossings are 

a signature of an unstable state  and, as we will see, are an intrinsic part of the link 

between the energy spectrum and the decay width.

Numerical Calculation

As a simple dem onstration of this effect, we write a latticised form of the Hamiltonian, 

for a system of two identical particles interacting through the potential

V{x , y )  =
a  if |x — y| <  S] 

0 if |x — j/| > S.
( 2 ,10 )
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Figure 2-2; Q uantum  m echanical avoided level crossings.

We rew rite th is H am iltonian in term s of centre of mass and relative coordinates, 

^ 1  _  ^  energy levels of the system  are now given by the

eigenvalues of the  m atrix , H.  We can also define v =  5y /m\a\ ,  which characterises 

the strength  of the in teraction. W hen we exam ine the dependence of these eigenvalues 

on the  box size L, in Fig. 2-2, we can see these avoided level crossings quite clearly.
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2.1.2 The General Case

Having gained a heuristic idea of the volume dependence of the phase shift in a simple 

quantum  mechanical example, we now move onto the general case of relativistic 

particles in an anisotropic box. This general case was first described by Liischer 

[9], linking the finite volume energy spectrum  to the scattering phase shift. This 

was expanded upon in Ref. [12]. As will be described below, the crucial element of 

this procedure is the one-to-one relationship between the solutions to the stationary 

Schrodinger equation, associated with the energy, and the singular periodic solutions 

to the Helmholtz equation, which can be related to the scattering phase shift. This 

will lead us to  the equation

5{p)=^-4>{q) mod 7T, 9 =  1^- (2-11)

where 0(p) is a continuous function defined by

ta n (-0 (g ))  =  V
Z o o ( l , r ; 7 ? l , 7 ] 2 )

Zoo{s, q̂ ] Tji, 772) is a generalised Zeta function;

Z oq{ s , m ,  m )  =

The numerical evaluation of Zoo(s,g^) will be looked at in a later section. The 

variables, rji and 772, are related to the spatial anisotropy of a box of volume L  x 

771L  X rj2L. The dependence of the generalised Zeta function on 771 and 772 is through 

the relationship between r  and f; f  =  (t'i/77i, r2/772, rs).

Energy E igenstates

For two spinless bosons of mass m  w ith zero to tal momentum, interacting through a 

short range force, the state  of the system -0(x, ^  is a function only of their relative 

vector, r. The Hamiltonian is

H  = - ^  + V{r).  (2.14)

17



The potential is assumed to be smooth and of finite range (l^(r) =  0 for r > i?). A 

solution to the stationary Schrodinger equation

Hi) = (2.15)

can be expanded in spherical harmonics;

oo I
V'(r) = E E  (2.16)

1=0 m=—l

The coefficients, 'ipimi:''') satisfy the radial Schrddinger equation

* „ {r ) =  0. (2.17)dr^ ^

The radial Schrodinger equation has only one linearly independent solution, ui{r, k), 

which is bounded near the origin, giving us

^Pim{r) = bimUi(r,k), (2.18)

where

E  = k^jm.  (2.19)

For r > R,  the potential vanishes, and the solution to the radial Schrodinger

equation can be written as a linear combination of spherical Bessel functions, j i ikr)

and rii{kr)\

ui{r, k) = ai{k)ji{kr)  +  (3i{k)ni{kr), (2.20)

which gives us

■tpir) = him{oti{k)ji{kr) +  (3i{k)ni{kr)). (2.21)

All conventions regarding Legendre polynomials, spherical harmonics and spherical 

Bessel functions are as in [13]. For our purposes, the most important property of 

these amplitudes, ai{k) and Pi{k) is their relation to the scattering phase;

2i5i{k) ^  Q/(fc) +ipi{k)  , .
ai{k)- im  ^

18



Singular Periodic Solutions to the Helmholtz Equation

When we enclose the particles in a box of volume L x r j iL  x rj2L the momenta o f the

particles becomes quantised as k =  (27r/L)n. We define, for n G Z^,

n =  ( n i / 771, 712/ 772, na) (2.23)

n =  (7i i 77i , 7i 27?2 ,n 3 ) (2.24)

At this point, we shift our attention to singular solutions of the Helmholtz equa­

tion;

^k^) i ) {r )  =  Q. (2.25)

The singular periodic solutions to this equation can be formed from the Green’s 

function
1   , p ip f

G{r,  k^) =  ^  ^ 2  +  p  • (2-26)
p

Further singular solutions can be found by differentiating with respect to r. To ensure 

linear independence of the solutions, we must use differential operators which are not 

proportional to the Laplacian operator. To this end, we use harmonic polynomials;

y im {^  =  r^Yim{e,4>). (2.27)

This gives us a set of complete, linearly independent solutions of the Helmholtz 

equation of degree /;

Gimir, k^) =  3^/™(V)G(f, e ) .  (2.28)

Any general solution can thus be written as a linear combination over this set;

A  I

^irnGimir, k^). (2.29)
1=0 m = —l

The sum over I is conducted up to some angular momentum cut-off, A. The original 

system may be retrieved by taking the A —> oo limit. We now expand our basic 

functions, Gimif^k'^), in terms of spherical harmonics;

(-1)'A:'+^
X l m { i i r ) n i { K r )  - I -

I'm '
Gim{f,k^) = 47T

(2.30)
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The m atrix, Mim-vm', is given by

M ,„ ,.  =  E  V ( 2 i + m '+ mo + 1)r]ir}2'n' ' q +

X  ̂  ̂ I . (2.31)
m  m ' —s

The convention for the Wigner 3 j symbols,

0 0 0

J l  J2 J3

mi rri2 m 3
(2.32)

is as presented in [13]. The modified Zeta function is defined by

Zirn{s, m m )  =  Y .  (2.33)
n

As we will see later, a closed integral form can be used to evaluate this Zeta function. 

In [9], a theorem is presented which states tha t there is a one to one correspondence

between the eigenfunctions of in a finite volume and the singular periodic solutions

to the Helmholtz equation. Thus, we can relate our energy eigenstate expansion, 

Eq.2.21, with our general solution to the Helmhotz equation, Eq. 2.30. This gives us 

a system of equations in the coefficients, bim',

E  E  Vl'm' ,lm (2.34)
l'=0 m'=—l'

h m m  = - (2-35)

If these equations are recast using our expression for the scattering phase in term s of

a{k)  and /5(A:), Eq. 2.22, we see th a t there will only be a non-trivial solution for the

coefiiients bim if

det[e^*^ -  t/] =  0, (2.36)

where

U  =  (2.37)

For small relative momentum, k, the scattering phases behave like

tan5,(A;) ~  (2.38)
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In the low momentum limit, d  wave and g wave effects can be neglected. Whether 

we are dealing with cubic symmetry {rii =  r}2 =  I),  symmetry =  772 7̂  1, or D2

symmetry, the leading contribution is

g2i5o =  (2.39)
moo -  I

Here, moo is shorthand for the matrix element This can be rearranged to

give us

t a n 5 o -  — 2----------
moo ^00(1, 772)

We have now established a link between the finite volume energy spectrum and the 

scattering phase shift. In the next chapter, we will see how to pratically implement 

this result to calculate the decay width, using the model theory.
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2.2 The Model

We work with a scalar field theory with two fields; 0 and x- The Lagrangian for our 

theory is

+ ml)<p +  ^ X i-d ^  +  (2.41)

For simplicity sake, we write

= - 8 “̂ +  m l (2.42)

h \  = —d^ +  (2.43)

We have three free parameters in our theory; m^, and A. As we shall see 

below the coupling, //, is related to and A. The fields interact through the 

term Cint =  Above the threshold, ie. when > 2rn^, a 0 particle can decay

into two X particles (Fig. 2-3). This model is of interest as the 0 ^  XX decay can 

be seen as first approximation of the G ̂  tttt decay, with analogies between the 0

field and the glueball, and the \  field and the pion. The exploration of this G —>■ titt

decay is our ultimate goal. By investigating this model theory, we hope to vmderstand 

Liischer’s method more completely when applying it to glueball decays.

2.2.1 An Extra Term in the Action

When we consider the theory

^  + ^1)4) + (2.44)

we see that if we integrate the 0 field out of the exponential of the action, we are left 

with
g-l/2(X'A\x)+A2(xA'“\)2/4^ ^2.45)

The extra Â  term above brings about a vacuum instability in the x field. This extra 

term comes from completing the square in 0 in the Lagrangian with the interacting 

term. To overcome this vacuum instability in the complete theory, we introduce 

another term, =  /ix^/4!, where // =  GA /̂rr? .̂ The value of is chosen so that this 

term will always be greater than the exponentially increasing term above.
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Figure 2-3: Feynman Diagram for the decay vertex.

2.2.2 Kinematics

Before investigating the energy spectrum, let us firstly examine the kinematics of 

such a system. For two identical, non-interacting bosons, with mass m, and spatial 

momentum pi, p 2 , in a brick-shaped box of volume x the total energy of the 

system in the rest frame of the box, which we shall call the laboratory frame, is

(2.46)

The centre of mass frame is moving with velocity.

P
(2.47)

where P  is the total momentum, + f>2 - In this frame the energy is given by

=  2 \ /p ^2 +  m? (2.48)

The momentum, is related to the rest frame momenta by

f =  7(Pi -  w Jpf+  ?n2) = - 7 (p2 -  +  m2) (2.49)

where
1 (2.50)

y / l  — E c m

and

ip = IPl  + P i ,  7 V  = 7 'v\\ + P i (2.51)

The parallel and perpendicular projections of p  are given by p\\ =  {p.v)v /v ‘̂ and 

P i — p  — P\\- Ref.[14] generalises Liischer’s method to the case where P  7  ̂ 0. In our 

case, however, we will restrict ourselves to the P  = 0 case.
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2.2.3 Param eters

Our theory has 3 parameters; and A. We are interested in energies, E, in

the elastic region, 2m^ < E < 4m^. As we decrease the lattice volumes we must 

examine before reaching an avoided level crossing increase. However, as we make 

heavier, the signal in the Monte Carlo simulations becomes weaker. Thus our aim is 

to make as large as possible without losing the signal critically. Since preliminary 

Monte Carlo simulations of the theory gave workable signals up to Eat = 1-5, we 

use this as our upper limit. This give us TUŷ at = 0.375. We subsequently choose 

m^at = 1, where at is the temporal lattice spacing. For the coupling A, we use a 

value of Xat = 0.5. This then gives us // =  0.0625.

As will be elucidated in subsequent chapters, the extraction of energy levels from 

Monte Carlo simulations depend on the limit

lim -  log = E. (2.52)
oo C  [ t )

This limit is necessary to ensure that contributions from higher energy states are 

negligible. To allow Nt to be sufficiently large for this limit to hold, without critically 

slowing the simulation, we use temporally anisotropic lattices with Nt 7  ̂ Ng, as is 

discussed in Ref. [15].

Since our aim is to measure the finite volume spectrum, we must, at this point 

consider the range of volumes to be examined. If we were to use spatially isotropic 

hypercubes, V = Nt x N^, the computational workload would soon scale beyond our 

capabilities. To avoid this problem, we use brick shaped volumes, V = NtX N^ x N^. 

This allows us to vary the spectrum without this scaling issue. This method has 

already been applied in Ref. [12], which examined the adjustments needed to the 

generalised Zeta function to account for the symmetries of these lattices. We will set 

Nt — 40 and Ng = 5, and vary N^ between these two values to give us the changing 

volume required. The subtleties arising in the energy spectrum and scattering phase 

shift from this choice of topology will be addressed in later chapters.

Thus, our lattice will have dimensions Nt x N^ x In particular, for the Monte 

Carlo simulations, we set Nt = 40, N'g = 5 and vary N^ from 9 to 40.
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2.3 Previous Studies

Since the publication of Ref. [9, 11, 16, 17] dem onstrated how the finite energy spec­

trum  was related to its infinite volume scattering phase shift, many studies have taken 

advantage of this result. In particular, Ref. [14] worked on a theory similar to ours, 

but with discrete values for the fields and included both the rest and non-rest frames. 

A similar non-rest frame study was examined in Ref. [18]. Ref. [19] investigated the 

application of this results to four dimensional (j)̂  theory in the broken phase. Another 

study germane to our own was carried out by Ref. [12] into the extension of Liischer’s 

result to brick shaped volumes. In two dimensions, examinations of 0 (3 ) nonlinear 

(7-model [20] and two coupled Ising spins [21] have been carried out. In Ref [22, 23], 

the result was applied to three dimensional QED. In recent years, Liischer’s method 

has been utihsed in quenched QCD [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].
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Chapter 3 

Perturbation Theory/MC Simulation

of 0 ^  XX

In this chapter, our aim is to discuss the methods used to  examine the energy spec­

trum  and, hence, the decay width of our scalar 0 ^  \ X  theory. The Maiani-Testa 

Theorem state tha t S-matrix elements, and hence decay w'idths, cannot be extracted 

from infinite-volume Euclidean-space Green functions, except at kinematic thresh­

olds. As was demonstrated in the previous chapter, however, the information about 

the decay width in the Euclidean formulation is encoded in the finite volume energy 

spectrum, in particular, a t the avoided level crossings, w^here two energy levels come 

close to contact (Fig. 3-1). The separation of the energj-’ levels at this point is strongly 

linked to the mixing between the states at th a t point. We are especially interested in 

the crossings between the 0 and xx  states. Therefore, in the Euclidean case, we are 

interested in mixing several states of the system, O ,  together to evaluate the energy

\

L

Figure 3-1: An avoided level crossing.
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spectrum . To th is end, we create a correlation m atrix , Cap',

Ca p ^ { Oa { t y Op { Q) ) .  (3.1)

We will ta lk  in subsequent sections abou t the  form these operators take and  how 

they are calculated in the  pertu rba tive  and M onte Carlo sim ulation cases. T he mixing 

between sta tes described above will be m easured by the  off-diagonal entries of this 

m atrix .

Firstly, we use pertu rb a tio n  theory to  obtain  an analy tic result using a trunca ted  

Taylor series in the exponential of the  action. We expand each m atrix  elem ent, Cajs 

in A. In the Euclidean case, we then solve the m atrix  equation

d e tC ’“ ^(Q) =  0 (3.2)

for the energy, Vl.

In the Minkowski case, we are unrestrained by the M aiani-Testa theorem  and

can gain direct access to  the decay w idth from the individual correlation functions,

w ithout having to  evaluate the entire correlation m atrix .

Secondly, we approxim ate the exact result using M onte Carlo in tegration tech­

niques. We diagonalise the  correlation m atrix  and fit these eigenfunctions to

C { t ) ^ A e r ^ \  (3.3)

Once we have discussed the specifics of reaching our energy spectrum  by each of 

these m ethods, we will then  look a t how, in each of these two cases, we get from th is 

spectrum  to  the  decay w idth  of the  0  field, F.

3.1 Perturbation Theory of Scalar Fields

The aim  of our calculations in pertu rb a tio n  theory  is to  gain an understanding  of w hat 

to expect from the M onte Carlo sim ulations and to  provide support for those results. 

We use the  Euclidean and Minkowski form ulations of pertu rba tion  theory to  achieve 

these ends in different ways. In the Euclidean case, we can use the correlation m atrix  

to  probe the energy spectrum  and from there, the scattering  phase shift. Since th e
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Maiani-Testa theorem, which limits the access to the decay width in the Euclidean 

case, does not affect the Minkowski case, we are able to calculate decay width directly 

from the 0 ^ 0  and XX XX correlators individually.

In the discussion which follows, we will assume a Euclidean metric and comment 

on the differences arising in the Minkowski case where appropriate.

3.1.1 General Perturbation Theory

When dealing with a general theory of two scalar fields, 4> and we can write the 

Lagrangian of the system as

From here, we can write the action as the integral of the exponential of the system. 

We break this down into interacting and non-interacting parts.

(3.4)

(3.5)

where

A'*., = + mix (3.6)

At this point we introduce a generating functional;

(3.7)

 ̂ ip '^ K -^ p + q '^ K ^ ' q)i 1
,  ̂  62

-y/det det K-̂

1 (3.8)

From the original definition of W{p,  q), we can see th a t a general n-point function 

can be written in terms of derivatives of the generating functional.

V(f)Vx(pai ■ - - ( p a r X h i  ■ - - X b s ^ (3.9)
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Next, we expand the interacting part of the action, Sint, in terms of the coupling, A.

T>(f)Vxe Sint _
U i M i i

ly  {p, q)
p = g = 0

Replacing this in the n-point function, we eventually have

/  V ( f) V x (p a ^  ■ • • (t>arXb, • ■ • Xfe.e - s

E oo
n = 0  n! d p a i . . . d p a r d p b i  ■ ■ ■ 9 p b ,

If our coupling, A is small, we truncate this expansion at order Â . 

In the Minkowski case, the important results become

^4>,x = -^0  +

1
-y/det det

(3 .10)

p - i i )

(3 .12)

(3 .13)

(3 .14)

E oo J_ 
n = 0  n!

/  V ( l ) V x ( p a i  ■ ■ ■ (f’a r X h  ■ ■ ■

 [iS m  ( - i | , - > | ) ) " » - ( p , 9 )
d p a i - - - d p a r d p b ^ - - d p b s p = q = 0

(3 .15)

At this juncture, we have a general formula from which we can evaluate the n- 

point function for a general Cint- We now need to specify our interaction Lagrangian 

to investigate the case we are interested in.
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Object Euclidean Minkowski

4> Propagator 

X Propagator 

Vertex 

Vertex

1 i
^+Po+™0

1 i

X

/x/4!

P Q - p ^ - m ' ^ + K

X

^i /A\

Table 3.1: Feynman rules for the model scalar field theory.

3.1.2 Scalar 0 ^ 2 %  Theory

Now we restrict our attention to the special case. We examine a theory of two scalar 

fields, (f) and in which the (j) field decays into two x fields. We also require th a t 

> 2niy.. In this case our interaction Lagrangian is given by

C in t  =  (3.16)

We now write down the Feynman rules for this specific theory (Table 3.1).

We impose momentum conservation at each vertex, integrate over each undeter­

mined momentum and divide by the symmetry factor of the diagram.

3.1.3 Lattice Form of the Feynm an Propagator

In this subsection, we assume a Euclidean formulation and follow the argum ent in 

[36]. As mentioned above, the operators and are given by

=  (3.17)

For our numerical calculations, we will need a latticised version of these operators, 

and in particular, their inverses. As we will see later, we will require our temporal 

Fourier component to be continuous. We are, however, interested in the finite spacial 

volume properties of the theory. So, while we regard the time direction to be of 

infinite extent in a continuous variable, the spatial dimensions have finite extent in

discrete latticised variables. Rewriting in this way, we see th a t

3

A (n, Tn)4,^x ~  ~  “I" ~  (3.18)
1 = 1
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where i is the unit vector in the i direction. The indices, m  and n, label the sites of 

the discrete spatial lattice. To find the inverse of this operator, we must look at its 

Fourier Transform. By translational invariance, the spatial part will be diagonal.

The conventions regarding Fourier Transforms are the same as those followed in

The diagonal nature of the spacial components of the Fourier Transform gives 

great benefit to performing the numerical calculations in momentum space. Thus, we

of the lattice, to a problem of size N . These latticised propagators will form the 

building blocks of the operators used to form the correlation matrix.

3.1.4 A First Approximation

The standard method for calculating a decay width is to calculate the renormalised 

masses and couplings directly using perturbation theory as described in Ref. [37] 

and to use these to find the value of P. The decay width, F, depends only on the 

renormalised masses and couplings;

The idea is to calculate the renormalised masses and couplings directly using pertur­

bation theory, and to use these to find the value of F.

2(^n7n) “H TT1̂  .̂ 5i*nm

3

i = l
3

=  ^ ' 0 - 2  ^ ( c o s ( f c i )  -  1) +

t = i

(3.19)

|37|.

can reduce a problem of size N^, where N  is the number of points in each direction

(3.20)
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M ass Renorm alisations

The Fourier Transform of the two point function can be written as

[  =  0  ̂ 2 +  2 \  2  ̂ 2 +• • •
J  P ^ -  P ^  -

~  p2 _  ^ 2  _  ^ (3-21)
P  ^Ct>Q ^ 4>

This full propagator has a pole at the physical mass, which is the solution to the 

equation

[ p " - m 5 , - E * ( p ) | | , , . „ j = 0 .  (3.22)

The object, is the sum of all one particle irreducible diagrams with two external

4 >  propagators. This is simply a X X  loop diagram;

S«(p) =  A" y  (j, _  j.)2 _  (3-23)

The same technique can be used to evaluate (Q |Tx(x)x(0)|Q ). In this case, 

has contributions from both the 4 > x ^  and the terms;

2 __________ 1 f i  f  d ^ k  1J  (27t)4 _  ^ 2 ^  (p  _  ^-)2 _  ^ 2 ^  +  2 y  (27t)4

While and S^(p) are logarithmically divergent in the continuum, they can be

evaluated numerically using the lattice regularisation, described previously. Solving 

Eq. 3.22 and the equivalent equation for the x  field, we obtain values for the renor­

malised masses in Eq. 3.20. The only other input in this formula is the renormalised 

couphng, \ r .

Coupling Renorm alisations

Again, looking at (n|r^(x)(/)(0)|r2), we see th a t

d  x { V L \ T 4> { x ) ( f ) { Q ) \ V t ) e ^  2 _  2 5^2 _  ^ 2  ^<^5^2 _  ^ 2

P  ^ 4,0 p  ^ 4>o P  ^ < t >0 
1 1

p ' ^

where
1 f  d ^ k  1  1

(3.25)



The residue of the =  0 pole is

The amplitude for any low momentum scattering process will be shifted by this fac.or. 

Since any diagram of this form has a factor of attached to it, we can account for 

this shift by making the substitution A ^  V ^A , giving us our renormalised coupling 

A. While a similar calculation can be carried out for the renormalisation of this 

is not necessary for our evaluation of Eq. 3.20. The methods outlined above can be 

used to calculate all the mass and coupling renormalisations needed to evakate F 

using Eq. 3.20.

3.1.5 Operators and Correlators in Perturbation Theory

As will be discussed in the coming sections, the energy spectrum and decay width in 

perturbation theory are, in both the Minkowski and Euclidean formulations, inked 

to correlation functions of operators. We now investigate the operators we w;ll use 

to form the correlators in perturbation theory, their functional form and the contri­

butions from the various Feynman diagrams of the <t> ^  X X  theory. The correlation 

matrix is given by

Q j  =  I  V < | ) V x e - ^ { ^ ^ \ ^ J )  (3.28)

where

\ ^ o )  =  J  (3.29)

{ ^ o \  =  f  e ^ P ^ { x , t ) d ^ x  (3.30)

and

i) =  J e  P^^^^x{^i , ' t )x{£2, t )d^xid^o!;2  (3.31)

($i| =  J  (3.32)

Expanding to order Â  using the Feynman rules prescribed, we must evaluate nine 

Feynman diagrams in all. Firstly we have the two free diagrams. We then ha' ê five 

diagrams from the (px^ term in the action. Three of these appear in the X X  X X
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(a) u  (c) t

Figure 3-2: ^  XX Channels in

(a) ( t>^ 4> loop (b) 4> ^  XX

scattering

Figure 3-3: Other diagrams from (px̂  term.

expansion (Fig. 3-2), and one each in the 0 - ^ 0  and 0 —̂ expansions (Fig. 3-3). 

There are two further contributions to the XX ^  XX channel coming from the 

term (Fig. 3-4).

It is fortuitous that the coupling in the term, //, should be proportional to Â . 

This greatly simplifies the contribution from that term.

For the sake of example, let us calculate the 0 —> 0 correlator. Since it will be of 

particular interest to us later, we will use a Minkowski formulation.
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(a) cross (b) epaulette (c) sunrise

Figure 3-4: D iagram s from x^-

c{ t )  =  Co{t) +  X^C2{t)

=  I  I  d u ; J < - \ u J u 0 ) ^ K ^ \ u ; , , 0 )
k

X * {uJ2, ^ ( ^ 3 ’ —k)5{u>\ — u;2 +  u;3)(5(u;2 ~  ^ 3  ~  ^

dn= j  dn [ a '; '( q ,  0) +  0)

X J  d u ; ' ^  k - \ u ,  k ) K - \ n  -  - k ) K - \ i X 0 ) (3.33)

As we will see, our in terest lies in the poles of c(i), or in solving the equation 

=  0. D ropping the  integral over the to ta l m om entum , we are left solving an 

equation of the form / ( f i )  =  0.

k - \ ^ , Q )  +  x ^ k - \ n , Q )  J  d u ^ k - \ c o , k ) k - \ n - u , - k ) k - \ n , o )

0) — A'

- 1

(Q — LO, —k)
=  A > ( a O ) - A % ( n )

where

^  J  d u J 2  k)k-\n -  uj, -k).

(3.34)

(3.35)

Thus, the  solution to  c ^(O) =  0 we are looking for will have an order correction

to  the  free solution, rela ted  to  the  XX loop; f l  =  +  (9(A^).



The description given in Eq. 3.45 for the determ inant of the correlation m atrix 

does make some restrictions about which diagrams are included. Let us examine, 

in particular, a typical XX XX term  in the expansion. We write the interaction 

term s as a sum of terms, such as the cross and t-channels, which can be factored into 

products involving two powers of the free XX propagator, Cq, one power of Cq, such 

as the epaulette and sunrise terms and those which cannot be factored in cq, like the 

u- and s-channels;

This analysis discounts contributions from u and s channel scattering and also the 

so-called epaulette and sunrise terms. The 4> ^  4> case is unaffected. At this point, 

we should pin down what is meant by the free XX propagator. Appearing in Eq. 3.45 

as Cuq for i > 0, this im portant object is given by (in the Euclidean metric)

Now th a t we have examined the operators which we will use to form the correlation 

matrix, and considered some of the issues involved in the individual correlators, we 

move on to describe the correlation matrix.

0 =  [ c q {uj) +  \ \ q {u ) c 2 { lo) c q {u j ) +  Cq {uj) c 2 { uj ) ^

~  \^[c2{uj)Co{u)~^C2{to) + Cq^{uj)c2{ijo)cq^{ijo)\. (3.36)

Since the solution to this equation will have an order correction to the free solution, 

we see th a t co(cl’)~^ =  0 to first order (and C2 ^{oj) ^  0 and ^  0). Thus, we

have

Co^(w)c2(tj)co^(a;) =  0 (3.37)

and

{uj)c2{uj) =  0 (3.38)

to order Â . This leaves us with

Cq ^{uj) -  X ‘̂ C2(uj)  =  0 . (3.39)

(3.40)
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3.1.6 Euclidean Correlation M atrix and the Energy Spectrum

In the Euclidean case, the relationship between the correlation matrix and the energy 

is greatly simplified by the purely imaginary nature of the poles of the determinant 

of the correlation matrix. This is a consequence of the Maiani-Testa Theorem [8]. As 

we have demonstrated, the correlator, and hence the determinant of the correlation 

matrix can be written as

det  Cap{t)  =  J ;3.41)

Now suppose f { ^ )  has a simple pole at flp. Since the poles in the Euclidean case are 

purely imaginary, we can assume that Qp =  iu>. (On the other hand, the poles :n the 

Minkowski case will not be purely real. This will complicate the analysis but give us 

direct access to the decay width). Performing this integral over Q, we see that

det Cap{t)  oc e -ujt ;s.42)

Bat spectral decomposition of detCaff i t )  says that

d e t C a p i t )  = ;3.43)

Hence, the energy levels of the system can be retrieved from the poles of the ieter- 

minant of the correlation matrix, or equivalantly, the zeroes of its inverse, by solving

det C  ^(Q) =  0 ;3.44)

where Q is the energy of the system.

To order Â , the determinant of the inverse correlation matrix with one <p state 

and n — 1 XX states is given by
-1

d e t c - \ n )  =

C'ooo + Â Coo2 '̂ C'oi
ACio

AC20

C ' l lo  +

AC02 

0

<^220 + 222

-1-2
kko

i= 0 i = l k = 0

;3.45)
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Although there are contributions from the xx{p) XX{p' ¥" P) order Â , when the 

determ inant is expanded, these term s only appear in higher order corrections, and 

are thus neglected.

3.1.7 Energy and Decay W idths in Minkowski Perturbation  

Theory

In terms of the S m atrix, the Jost function, related to the regular solution to the 

radial Schrodinger equation, T{p)  is given by

Since T{p)  is analytic on < 0, and ^ ( ± p )  cannot vanish a t the same point, the 

Jost function vanishes if and only if the S m atrix has a pole. Thus there is complete 

equivalence between the zeroes of the Jost function and the poles of the S matrix. 

We assume the Jost function is zero for some p = Pr — ipi- When we consider the 

Jost function as a function of £ ,  the mapping from p to E  is a two to one function. 

This means th a t the Jost function is a function on a two-sheeted Riemann surface. 

The first sheet is the ^ p  > 0 half plane and the second sheet is the < 0 half plane. 

The bound states are given by the zeroes of T{p)  on the imaginary axis p lie on the 

negative real axis of the first sheet of E.  The resonance zero a,t p = p r  — ipi is a zero 

on the second sheet given by

£  =  -Bk -  f . (3.47)

Thus, in the Minkowski case, we can access the decay width directly from the imag­

inary part of E.  (For a detailed account of this explanation, see [38].)

Correlators in the M inkowski Case

In the Minkowski case, access to the 5-m atrix, and hence, the decay width, is subject 

to no restrictions from the M aiani-Testa Theorem. Thus rather than concentrate on 

the entire correlation m atrix, as in the Euclidean case, we can gain access to  the 

decay width directly from the (f) (j) and XX XX correlation functions. We will

initially consider the XX ^  XX correlators, followed by the more intricate (p ^  <p
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correlator. For convenience sake, we will carry over the notation from the Eucidean 

correlation function, using the superscript, Ad, to denote the Minkowski formuktion. 

In the Minkowski formulation, the x x  XX correlator, C j f , i ^  0, is given by

As before, the subscript, i, refers to the zth x x  state. The two contributions -,o the 

interaction come from the cross and t  channels, e l s  discussed previously. The fa(tor of 

1/N'^N;^ in the cross channel comes from an extra integration over an undeternined 

momentum in that channel. The energy and decay width can be evaluated namer- 

ically by solving =  0. The case can be solved simply using the nunerical

method outlined below. Any imaginary part developed in this expression relates to 

the decay width, of the XX state in a 0  state. At kinematic thresholds, when 

E^x ^  we expect this decay width to open up.

The 0  —> 0  correlator, requires a more subtle approach, due to the xz loop

diagram. We will follow the method used in [39], adapted to three infinite, conthuous 

and one finite, discretised dimensions. We will consider the temporal directioa and 

the X and y  directions to be of infinite extent, and set the length of the 2  direction to 

bo Nz-  This will reduce the integral over the momentum in that direction to i sum 

over possible momenta given by 2n7: /Nz ,n  G N .  The correction to the (f) corialator 

from the xX loop is given by

d^k S k '  1___________ 1
(27t)^ (27t)  ̂ — ie k'"̂  +  — ie

1
5{k +  A:' -  o)

(27t)  ̂ [(/c +  x p Y  +  p^(l — x ) x  +

(27t)^ [x{rn^ +  {k +p)^  +  (1 -  +  k'^)Y
1

'3.49)
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where D  =  x { l  — x)p^ +  m^ +  kl =  x ( l — x)p^ +  and q =  k — xp. We define k =  

{kt, kx, ky) to be the three vector containing the components of k in the dimensions 

of infinite extent. Using the general formula

rfd = r(fc -  a -  d/2)r(g + d/2) ,3
'  (92 +  D f  { i „Y IK (b )T { i /2 )  ' '   ̂ ^/

we see that

, 2 \   1 “I"   2)/2) / " ^ , 1  1 A 1 9  T -, 0  /  \

 ̂ ^  S  (47r)3-(«-3)/2r ( 2 ) Jq 

The dimension, k, is given by k =  3 -  rf, and examine the ac —> 0 lim it. Using

A^^^ =  l + ' ^ \ o g , A  (3.52)
Zd

and

T { z ) ^ - { l  +  z)-^ (3.53)
z

we see that

s  L ‘ ^ " 5 ^ ( S  ■kz
Our interest is in the imaginary part of n(p^), since it corresponds to the decay 

width, r. When the particles are above threshold (i.e.. < 4i?^), the value of x is

negative and Slogg D =  m, contributing an imaginary part to n(p^). This happens 

over the range x^ < x < x+, where x± =  1/2 ±1/2(1 +  R is related to the

spatial momentum k of the % particles by \Jk'^ +  Tn̂ . Integrating over this range, we 

see that

m {p^)  =
6A2 1+

Â z (47t)3 /2 ^7 ^_  DV2
kz

dx

6A2
Y ' - loge [ i p \ h-  +

^ 2

p2

-logg ( 2 V 2 - i p J l  +  ^

s n ( -m !)  =
6 A2 4i?2

loge I TO^Jl -  ^

A.R?
- lo g e  I 2V2-m^Jl  2"

rrij

(3.55)

(3.56)
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Now, introducing a Heaviside step function when summing over all possible values 

of R^ { k )  =  P  +  vn?̂  around the loop, we see th a t

P  12A  ̂ _  ^
iVz(47r)3/2 log, I m^^/1  -  ^  I (3.57)

4^2
-lo g g  ( 2 V 2  +  m ^ . ! l 2

m i
9 { m ^  — 2 R { k ) ) .

Here, we have collected a factor of 2 from the definition F =  2Q‘n(p^).

N um erical Com plex R oot Finding

We have dem onstrated how we are confronted with a simple complex root finding

problem. To solve this we use M uller’s m ethod [40]. This is an iterative method

similar to the secant method. At each step it makes a quadratic approximation of 

the function, f { x ) .  It then updates the system by

2 / ( ^ f e )  troNXfc+i =  X k ------------ , (3.58)
UJ ±  -  f { X k ) f [ X k ,  Xk - l , Xk - 2 ]

where uj and f [ x k , X k - \ , X k - 2] are divided differences representing first and second 

derivatives respectively.

UJ =  f [ x k ,  X k - i ]  +  f [ x k ,  X k - 2] -  / [ X f c _ i ,  Xfc_i] (3.59)

and

f [ X k - l , X k - 2\ -  f [ X k , X k - l  

-2

' f { X k - 2 )  -  f { X k - l )  f { X k - \ )  -  f { X k ) '

f [ x k , X k - i , X k - 2 \  =  ------------------------------------  3.60)
X k - 2  -  Xk

Xk—2 Xk

given

Xk—2 Xk—\ Xk — l Xk

/ ! . , , ]  =  (3.61)
y  -  X

The presence of the square root in the denominator allows for the existence of complex 

roots, which would not be found by an algorithm like the secant method, which 

makes a linear, rather than quadratic approximation. Also, this method does not 

require evaluation of the derivative as is the case in the Newton-Raphson method.
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for instance. This is beneficial in this case, where the function is are complicated and 

calculation of the derivative would be numerically expensive. Other than iterative 

overheads, the Muller method requires only one function evaluation per iteration. 

The order of convergence of Muller’s method is approximately 1.84. Thus it makes 

more progress per iteration than the secant method (1.62), but less than Newton- 

Raphson (2).

Having examined the form of the correlation matrix in the Euclidean formulation 

and the calculation of the decay width in the Minkowski case perturbatively to order

we will now study the estimation of the correlation matrix using Markov Chain 

Monte Carlo integration techniques.
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3.2 Monte Carlo Simulation of Correlation Matrix

As was discussed previously, in the context of Euclidean perturbation theory, to  gain 

the mixing of states to properly describe the avoided level crossings, the object of 

interest in the Monte Carlo simulations of the model <p ^  XX theory is the correlation 

m atrix

=  (0„,„(i)*0„,6(0)> (3.62)

where the operators Oo,a(i), represent the 0 and XX states. Previously, when calcu­

lating m atrix elements, we expanded the exponential in the action to order A .̂ We 

could then evaluate the m atrix exactly to order up to some momentum cut-off 

governed by the lattice spacing, a. Monte Carlo simulation provides us with a tool to 

estim ate the elements of this m atrix non-perturbatively, up to some statistical error.

3.2.1 Correlation M atrix

When evaluating the m atrix elements. Cab, we, in fact, want to measure the vacuum 

subtracted correlation function;

Cab(t) =  I y V c p V x e - ^ i ^ a l ^ t )  -  J  V(t>Vxe-^{^a) I  Vct>Vxe-^{^b)  (3.63)

To calculate these integrals, we perform Markov Chain Monte Carlo integrations with 

fixed point j Z .  At each iteration, once we have the field thermalised at the fixed 

point, we construct the creation and annihilation operators by summing up all the 

values of the field on a given time-slice. The value of the integrals is evaluated over 

many field ensembles. We would like to include operators, firstly, in which the x  

fields have equal and opposite momentum, p, and also the case where the 4> field has 

some momentum, P.  Since we are only interested in the lowest lying energy states 

of the system, it will suffice to include just a few lowest momentum operators. We 

will define an appropriate set of operators, Oa, and measure the correlation matrix, 

{Oa{tyOb{^)) . We then diagonalise this m atrix and extract the energy values from 

the exponential decay of the eigenvalues of the correlation matrix.
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Operators

Since we are only interested in the lowest lying energy states of the system, it will 

suffice to include just a few of the lowest momentum operators. We would hke to

of mass frame. We also need x  operators for the lowest momentum states. As we 

will see later, the states corresponding to the lowest energies changes due to level 

crossings higher in the spectrum. Thus, we must choose our operators differently for 

each Nz- Let us intially define our basic building block operators as simple Fourier 

transforms of the field;

We will now combine these according to the momentum requirements of each specific

The momenta, corresponding to the lowest free energy states, Ei ,  are used. Up 

to renormalisation, these should coincide with the lowest momentum states of the 

interacting theory. Our x x  operators are thus given as

construct 4> operators with momentum P  =  0, concentrating our efforts on the centre

(3.64)
X

and similarly for the x  field;

(3.65)
X

with

(3.66)

4> and XX  operator. The (f) operators are quite simply defined as O p ^  =  As

mentioned previously, we are restricting ourselves to the d =  0 case. The X X  opera­

tors in the d  =  0 case consists of two x  fields with equal and opposite momentum.

m

where N i m z , n z i -

We now correlate these operators giving our correlation matrix.

C!,{t) = {OoAt)^Oo,m (3.68)
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As before, we perform a disconnected subtraction. Whereas in the case of the pertu r­

bation theory, the vaccuum subtraction amounted to excluding certain disconnected 

contractions in the expansion, in the Monte Carlo simulation, we m ust perform these 

subtractions explicitly,

= (0o..{f)'0„,i,{0)> -  (0„,.{())(0„,6(0)) (3.69)

While, in the perturbative case, the extent of the tem poral direction was taken to 

be infinite, in the Monte Carlo simulations, this direction will be of finite extent. The 

expression for the lattice propagator is now extended over the tem poral direction;
3

^ n m +  m ^ 5 nm (3 .70)

Kk =  (3 .71)

The form of the action allows us to perform a simple transform ation of the (j) 

field, which will greatly improve the accuracy of the Monte Carlo measurements in 

channels involving the 4> operator.

3.2.2 Integrating Out the (f) field

To reduce the noise in our measurements, we now note th a t C  is quadratic in 4>. This 

means th a t if we "complete the square" in the (f) field, we can perform a change of 

variables which will leave us w ith a Gaussian integral over our new field ({)'. This 

integration can then be performed analytically. (Here, we use the notation 4>a =  

0(^^) ta )  etc.) Firstly let us see how our 4> field will transform  to give us a Gaussian 

integral.

^ + + +rn\)x + Mx^ +
— 4^pK(f,pq(f)q + X p ^ X P qX q ^4^pXq

, >̂ xlK-̂ p\ , ^XIK^W >^hlK^Lxl
=  I -̂---  I I <̂9 + ----- -̂-  I ---------- 1------

+ X ^ x X  +  (3 .72 )
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We make the change of variable

'L  =  0 .  +  (3.73)

T hus we have

£  =  (3.74)

T he partition  functions

= y  P0e-^'^ (3.75)

and

= I  Vxe-^- (3.76)

are unchanged by th is procedure. Now we will im plem ent th is change of variable in

th ree cases; (0<,), { ( j ) a X b X b )  and (0a0b)-

Z ( t , Z ^  V
JbQ

J./J

(3.77)

T he first term  above, in the  0  field, vanishes, since it is a product of the  odd function, 

0, w ith the even G aussian exponential. This is the  vacuum  sub traction  for th e  0  field. 

Note how the 4 >  field has been replaced in th is expression by a new field, —" ̂  •

Similarly in the second case;

{(l^aXhXc) = ^ j
^ Xa,Xi,,Xc

Xa, Xb, Xc

^  I  Vx  (3 .78)Z,, 1/3
X a . X h . X c
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Figure 3-5: 0 \ x  Effective mass plots for fully stochastic and integrated <p cases at 

similar statistics. In the integrated case, an effective mass of about 0.05 is measured. 

This signal is statistically zero in the fully stochastic case.

The final case is slightly different;

(0a0b) —
1 1

F 2

1 1

Ẑ Zŷ y 2

1 1

ZtjyẐ V2

-s

X a . X i ,  \

2
<pua <j>qb ,-S

( M b  + -s

 ̂ r f
^  \ / 2  ^  "y ^ i p a b  ^  J  ^ X  X u ^ ^ ( p u a X q ^ ' ^  (pqt

^ Xa,Xh

(3.79)

— field. The first termAgain, in the final term, the (j) field is replaced by a  ̂

integrates to give us the Feynman propagator and cross terms, proportional to A 

vanish as before by symmetry. In Fig. 3-5, we see the dram atic effect this integration 

has on, in particular, the 0 —> XX effective mass plot.

While this integration trick clears up the 0 —> XX channel, the inversion of the 00
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is com putationally expensive, especially when it is considered th a t the contribution of 

this channel in negligible unless ~  To prevent an irrelevant calculation from 

critically slowing the simulation, this integration trick is only used in the vicinity of 

an avoided level crossing. Elsewhere, the correlation m atrix is taken to be diagonal. 

W hen we examine the decompostion of the energy eigenstates, we will justify ignor­

ing the overlap between states in this area. Also, when this integration trick isn’t 

implemented, the (f> 4> correlator is measured purely stochastically. Though the

error is higher than  in the integrated case, it will be comparable with the error in the 

XX ^  XX channel. Such a sacrifice is acceptable to simulation time in regions where 

the (}) —̂ XX channel is less relevant.

D iscrete Action

We must rewrite our action in a discrete form for lattice calculations. The anisotropic 

nature of the lattice must be respected by the introduction of two distinct lattice 

spacings, a< and Cg in the tem poral and spatial directions respectively. The discrete 

form of the action used is

To reduce the lattice spacing errors, we set a t  =  0.5, while keeping set to unity. 

This quadratic form of the kinetic terms prevents the fields from collapsing to —oo 

in the Monte Carlo simulations.

3.2.3 From the Correlation Matrix to the Energy Spectrum

W ith our examination of the correlation m atrix measurement complete, we must 

now consider how we will recover the energy spectrum from this point. In Ref. [20], 

Liischer and Wolff equip us with a method for doing ju s t tha t. If we solve the

■ (3-80)
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generalised eigenvalue problem;

C{t)'ipa =  K { t , to )C (t o ) ' lpa ,  (3.81)

we find that the eigenvalues, A, are of the form

Xa = (3.82)

We choose the reference time, to, to be small.

In practice, this can be achieved by diagonalising D{t)]

D{t) = (3.83)

Each of these eigenvalues is then fit to an exponential from which the energy of

each state can be extracted. This also affords us the opportunity to examine the 

composition of the eigenvectors, corresponding to these eigenfunctions. We see 

that xt>a = a gives the projections of onto the states used to compose

the correlation matrix. The normalised squares of these components can be used to 

analyse the composition of each eigenvectors.

Now that we have discussed the extraction of the finite volume energy spectrum 

from the correlation matrix using both Euclidean perturbation theory and Markov 

Chain Monte Carlo, we must now examine the path from this spectrum to the decay 

width, as presribed by Liischer.
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3.2.4 From the Energy Spectrum  to the D ecay W idth

Now that we have discussed how to extract the energy spectrum of our theory, using 

both Perturbation Theory and Monte Carlo integration, we now must use this finite 

volume spectrum to calculate the infinite volume scattering phase shift, as Liischer 

prescribes, and then fit this to a perturbative or Breit-Wigner function to calculate 

the decay width.

Since the expression for the scattering phase shift, 5, is a function of the absolute 

value of the momentum, p, we must find some way to express p as a function of the 

energy, E. There are a number of possibilities [14, 19]. A simple approach would be 

to use the lattice dispersion relation directly, writing it as

For low energies, this will work quite well, but approaching the inelastic threshold, 

W  = 4m^, lattice effects make this method unfeasible. The next approach is to use

While these bounds are tight (to about 1%), we will still waste the accuracy of the 

data by using this method.

If we assume that our energy state is bounded between two free energy levels; 

< W  < Wn+i, with associated momenta Pn and Pn+u we can write the momen­

tum, p, of the state with energy W  as

We, now, simply interpolate a value of p until we find p which satisfies the lattice 

dispersion relation for that value of W .

• E  p

(3.84)

the limits of the elastic region to define bounds on p. The elastic region is bounded 

by 0 < p < VSm^. Replacing this in the lattice dispersion relation, this gives us

•\/3cos~^ 1 — • (̂cosh(Vl /̂2) — coshm;^) < p < cos“  ̂ [1 — (cosh(H^/2) — coshm;^)] (3.85)
O

P =  ppn +  { I -  p)Pn+l - (3.86)
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•p S{p)

Now th a t we have values for the momentum corresponding to the energies, we are 

now ready to evaluate the scattering phase shift, S{p). Again, we have

S{p) = -0 (g )  mod 7T, 9 =  (3-87)

where (f){p) is a continuous function defined by

tan(-(^(g)) =  0(0) =  0. (3.88)

Zoo{s, q^) is a generalised Zeta function;

Zoois, q^) = (f^ -  g^)"® (3.89)

Our next task is to evaluate Zoo(s, q^) numerically.

N um erical Calculation of the Generalised Zeta Function

To evaluate the generalised Zeta function numerically, we must first truncate the 

infinite sum in some way. We write it as

2|m(s,9^.i?i,>)2) =  +  /  *  (‘■‘e'’’A',■'„((, 0) (3.90)

where

yim = r%m{.0,4>) (3.91)

and K{t,  x)  is the heat kernel of the Laplace operator on a d-periodic torus (i.e. such 

th a t the periodicity is given by 4>{x) =  (—l)'^”0(x +  27T7n), n G Z^);

=  K { t , r ) -  (27t)-^ ^ihr-tffi ^ 3  9 3 ^
|n|<A

= ( t ) ' y i ^ K \ t , T )  (3.94)
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We have introduced a cut-off A in the sum. The value of A is chosen such that 

Â  >  In particular, for / =  m =  0 and s =  1, we have

1   roo

= ^5= +  (2ir)’ /  dt e‘"’K ^(t,0 )  (3.95)

As t  ^  oo, the integrand vanishes. As t —>■ oo, 0) =  Using this

asymptotic behaviour, we can rewrite this as

2’oo(l,ĝ 77l,7?2) = -  (1̂ ) ^
V  4 n  , r ^ .

|r |< A

+  (27t)  ̂ /  dt fe^'^'K^o(t,0)
J o  L ^

/oo

dt ~ 2 .  (3.96)

Rearranging this and performing the intergration from 1 to cxd analytically, it becomes 

Zoo{l,q^,VuV2) = 47r
n

^ _ i ) d t
Jo

VlV2

[ ' (3,97)
A  V

We have now written Zoo(l, 5 ,̂ ?7i, %) in a form which can be computed numerically; 

a quickly converging sum and an integral which can be evaluated using Simpson’s 

Rule.

In Fig. 3-6, we see the plot of 4>{q) against we obtain using this method. A 

direct numerical comparison for the =  772 =  1 case is available in [17] and for the 

m  7  ̂ V2 case in [1],

•5{p)  r

The final step in the process is to calculate the decay width, F, from the scattering 

phase shift, 5{p).  There are two ways to achieve this; we can fit to a Breit-Wigner 

expression. While this is theory independent, it is only valid for certain values of 5{p) 

(tt/4  <  5{p) <  37t/4). Alternatively, we can fit to a tree-level perturbative expansion 

for 5{p).  While this is valid for all values of the scattering phase shift, it is model
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Figure 3-6: 0(g) vs

dependent and also subject to the inherent higher order corrections of a perturbative 

calculation.

Breit-W igner Fit

For 7t/ 4 < 5(p) < 37t/ 4, the Breit-Wigner form

We fit the values of and F using this expression. While this approach has the 

advantage of being model independent, only the few measurements in the region of the 

avoided level crossings fall in the range over which this form is valid. Measurements 

away from the avoided level crossings, where 5 ~  tt or 5 ~  0, may not be included in 

a fit to a Breit-Wigner function.
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Perturbative Fits

An alternative approach is to use a tree-level perturbative expansion for 5{p). Con­

versely, this is model dependent, but works for the full range of values the scattering 

phase shift. Writing 5{p) as a sum of a regular and a singular part, as in, [14], we 

have

S{p) = 5r {p)+5s {p)  (3.99)
3 ^  A |_  4 ^  m2
47tW  Z2t:W p  m \

167rl'F(I4^2 _

^r{p) = - 7:1777 +   2~~^ (3.100)
" ~ ^ 4>

tan(5,(p)) =  -7 ^ 3 7 7 7 ^S ------ ^  (3.101)

We fit these to the phase shift data with A/?, /xr and as our fit parameters. Once 

values for these parameters have been found, we can use them to calculate the decay 

width from

r  =  (3.102)

The discussion of the methods used in the Euclidean formulation of perturbation 

theory and Markov Chain Monte Carlo to, firstly, calculate the finite volume energy 

spectrum and hence, evaluate the decay width, is now complete. We now address the 

results of these calculations, and also the Minkowski perturbation theory calculations.
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Chapter 4 

Results/ Analysis of (/> —> xx

The results of the calculations discussed in the previous chapter are now presented. 

We will begin with the perturbative calculations, then the Markov Chain Monte Carlo 

results, before, finally, comparing the outcomes of the two approaches.

4.1 Perturbation Theory Results

The results of the perturbative calculations come in three parts. Firstly, we will 

examine the estimate of the decay width, F, from the mass and coupling renormali­

sations. Subsequently, the Euclidean energy spectrum and scattering phase shift and 

the Minkowski decay width will be investigated.

4.1.1 Mass and Coupling Renormalisations

We initially look at the mass and coupling renormalisations. We solve

^ 4>,X0 (4.1)

with
d^k 1 1

(4.2)(27t)4 _  ^ 2^  (p _

and

Ex(rt =  A^y'
1 I(27t)4 P  _  (p _  k)
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Renormalised Values Bare Values

1.0016 1

0.3949 0.375

0.588 0.5

2.0808 1.5

Table 4.1: Masses and couplings renormalised perturbatively

The values of are calculated numerically using the prescription given in the 

section on the lattice form of the progagator. The box sizes, and Nt are set to 40 

and Ns is increased until an infinite volume limit is reached. Plots of the renormalised 

masses and couplings against Ng are given Fig. 4-1. Stable values are seen to be 

reached by about Ng = 25. The renormalised values of the masses and couplings are 

presented in Table 4.1. As we will see, these values match well with those measured 

in the Monte Carlo simulations. Using these in the perturbative expansion for the 

decay width, F(Eq. 3.20), gives us a value of F =  8.44 x 10“ .̂ A plot showing how 

r  approaches this value with increasing Ng is given in Fig. 4-2. One important point 

to note is that the correlation matrix approach takes into account the correlations 

between the 4> and XX states, omitted in this method. This is strongly believed to 

be a cause of any discrepancy between the results of the two approaches.

4.1.2 Euclidean Correlation M atrix and Spectrum

For these calculations, we set Ng = 5, Nt = 40 and varied N^ from 10 to 40. At 

each lattice volume, the lowest four xx states, together with the resting (f) state were 

used to construct a correlation matrix. The nuances of ordering states on this brick 

shaped lattice will be discussed in the Monte Carlo results section. By solving the 

matrix determinant equation

detC '^(Q) = 0 (4.4)

we can probe the energy spectrum of the states in the Euclidean formulation, as was 

observed in the last chapter.
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Figure 4-1: Perturbative mass and coupling renormalisations
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0.0092
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0 .0084,

Ns

Figure 4-2: T  vs Ng using the renormalised couplings and masses in the perturbative 

expansion.

Energy Spectrum

The energy spectrum calculated in perturbation theory is shown in Fig. 4-3. This 

gives us some guideline of what to expect from the Monte Carlo simulations, though 

there will be some corrections. Also, the two approaches depend on slightly

different dispersion relations, a fact which will manifest itself as discrepancies at high 

energies.

The avoided level crossings caused by the (j) state  cutting across the x x  spectrum 

are evident. These crossings can be quantified by looking at the param eter p, defined 

previously when we were examining the interpolation of the momenta by

P =  PPn +  ( 1 - p K + 1 -  (4.5)

The dependence of p  on for the (f) state is presented in Fig. 4-4. We can clearly see 

initially the value of p  falling to zero. This corresponds to the 4> state moving towards 

the first excited xX state  a t the avoided level crossing at =  20. At this point, p  

returns to a value of 1, as it begins to chart the movement of the the 0 state  from
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Figure 4-3: Two particle spectrum  in Euclidean perturbation theory.

the first excited to the second excited x x  state. Again, we see p falling towards zero 

a t an avoided level crossing just beyond the limit of our investigation a t =  40.

We also examine the scattering phase shift, 5{jp) , as a function of momentum 

(Fig. 4-5). As was noted in Ref. [14], points with p  > and small lattice volumes 

are subject to large finite volume polarisations and finite lattice spacing effects. Thus 

only values of 5{p) for the (f) state, and the ground and first excited XX  states are 

plotted. While we cannot continue down the path laid out in the previous chapter, 

as this would require us to fit the phase shift data  to the perturbative expansion, 

this examination of the scattering phase shift the perturbative case gives us a useful 

comparison for the Monte Carlo data. Ŵ e see a sudden step in the scattering phase 

at p =  0.307. This momentum corresponds to an energy of m ^ .  The cluster of points 

near the origin correspond to the ground xX state, while the vertical line comes from 

the 0 state. The excited xX state  accounts for the remaining points forming the 

horizontal plateaux.

59



—  First excited  to ground state 
Second excited  to first excited

0.8

0.6
Q .

0.4

0.2

N
Z
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Figure 4-5: 6{p) vs p /n i^  from perturbation theory.
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4.1.3 M inkowski Form ulation and the D ecay W idth

We saw in the previous chapter, tha t the imaginary part of the energy at the pole 

in the correlation function is related to the decay width of a particle. Here, we will 

look at the results for the ^  and X X  X X  cases separately.

(f) Decay W idth

From the previous chapter the decay width of the 0 particle is related to the \ X  loop, 

and can be written as a sum over the x x  states;

While the dependence of F on A is trivially quadratic, the behaviour when the 

masses are changed is less obvious. The plots in Fig. 4-6 give us good qualitative 

insight into F. For these plots, we set =  100000, rtiy. =  0.375, rn ^  =  1 and A =  0.5, 

varying only the param eter indicated. Though the value of seems very large, it is 

necessary to go to this volume to ensure the infinite volume limit in this case. Looking 

a t the relationship between F and we see th a t F =  0 a t — 0.75 =  as is 

to be expected at threshold. The value of F then rises quickly as is to be expected 

for an increasingly unstable particle. Similarly, as the x particle becomes heavier, 

the decay width becomes smaller, vanishing a t the threshold.

Now let us examine the dependence of F on the volume of the box, N ^ . A  plot 

of F against for the 4> state  can be seen in Fig. 4-7. This plot shows individual 

contributions from each of the x X  states, as well as the sum, as indicated in Eq. 4.6. 

We can see how each of the xX channels starts contributing once the Heaviside step 

function is satisfied. This produces discrete jum ps in F as the new decay processes 

become available. In the infinite volume limit, N z  —> oo, F tends to a value of

-  2 R { k ) ) .

(4.6)

F =  8.93 X 10-^.
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Figure 4-7: F vs for the 4 >  state.

62



.25

0.75 100
N,z

Figure 4-8: The XX spectrum.

XX D ecay W idth  and Spectrum

We investigated the properties of the ,\x states more thoroughly. We were able to 

solve the equation =  0 directly. This final form of this equation is

where Here we have used // =  A^/4m^. The volume factor between

the two interaction terms comes from a extra integration over an undetermined mo­

mentum in the s-channel diagram.

As well as giving us access to the decay width, via the imaginary part of fi, we 

could also plot the energy from the real part. The energy spectrum can be seen in 

Fig. 4-8. A dashed line is included to indicate =  1 to guide the eye. We see slight 

plateaux in the spectrum around m^. The reasons for this are linked to the high 

dependence of the interacting term s of Eq. 4.7 on m^. If we look at = ^ x x ! ‘̂  

(Fig. 4-9), we see th a t it takes on non-zero values at other values of corresponding 

to these plateaux. When the xX  energy is close enough to m<̂ , it is kinematically 

possible for the xX  state to decay to a (/> particle. Thus, we see spikes in around
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Figure 4-9: ' ^ E  vs for the xx states.

the appropriate values of N ^ .

We have used several techniques in both the Euclidean and Minkowski formula­

tions of perturbation theory to measure various im portant quantities in the model 

<t̂  —* X X -  As the value of the coupling, A, is sufficiently small, we would hope th a t 

there would be a strong agreement with the results of the Monte Carlo simulations, 

which will be discussed next.
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N ,  = 9 TV, =  12 A , =  16

P |^/27t P \p \ / 27t P \p \ / 27t

1 (0,0 ,0) 0 (0 ,0 ,0) 0 (0,0,0) 0

2 (0,0 ,1) 0.111 (0,0 ,1) 0.0833 (0,0,1) 0.0625

3 (0,1,0) 0.2 (0 ,0 ,2) 0.167 (0,0,2) 0.125

4 (0,0 ,2) 0.222 (0,1 ,0) 0.2 (0,0,3) 0.1875

5 (0,1 ,1) 0.229 (0,1 ,1) 0.216 (0,1,0) 0.2

6 (0,0,3) 0.333 (0,0 ,3) 0.25 (0,1,1) 0.32

Table 4.2: This table shows how the lowest six energy states differ for varyious values 

ofiV..

4.2 Monte Carlo Simulation Results

We now turn  our attention to  the results of the Monte Carlo integration of the corre­

lation matrix. Firstly, let us look at the two particle spectrum  in the A =  0 case. This 

is done directly using the lattice dispersion relation (Eq. 4.11). The justification for 

using the lattice, rather than continuum, dispersion relation will be apparent when 

we investigate the one particle spectrum. We now encounter one of the problems 

with using brick shaped lattices; the ordering of the momentum states depends on 

the volume. For instance, we list the lowest five momenentum states in the free the­

ory a t Nz = 9 ,12,16 (Table4.2).

It is evident th a t momentum states can swap order because of the constancy of 

Ns- This is dem onstrated quite dram atically when we look at the lowest ten states of 

the free spectrum  in Fig. 4-10. We see states with Py = 0 decaying to 2m^  and states 

with Py — I dropping to +  (27t/5)^, with the states crossing through each

other, bring about this order swapping. As a consequence of this, care will be needed 

when operators are being constructed for the correlation m atrix in the interacting 

case to ensure the lowest states are chosen at each
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Figure 4-10: The lowest ten states of the free two particle spectrum

4.2.1 Single Particle Spectrum

The correlation of single x states is carried out as follows.

(4.8)

To calculate the phase shift, we first must determine m.y,. This is done by correlating 

X rest states {p = 0 in Eq. 4.8). Including finite volume polarisation effects, we expect 

m^{L)  to behave like
c e - ^ x N z

(4.9)

This is an adaptation of the formula used in [14] to the case of a lattice of spatial 

volume N l  x When the data  is fit to this function we obtain = 0.3924(1). In

Fig. 4-12, we see th a t this value fits well into the x spectrum.

The X dispersion relation is examined to ascertain whether the continuum disper­

sion relation

E{p) = J p ^  + m2 (4.10)
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Figure 4-11; \  dispersion relation 

holds in our sim ulations, or if the la ttice  alternative

3

cosh(£’(p)) — coshm ^ =  ^ ^ ( 1  — cospi)  (4-H)
i=l

is required. To th is end, x  operators were constructed w ith the lowest m om entum  

sta tes  of th a t  volume. The energy of each operato r was taken calculated from the 

exponential decay of the correlation function of the operator with itself. In Fig. 4-11, 

we have the  dispersion relation. We see a strong agreem ent w ith the la ttice dispersion 

relation (Eq. 4.11), bu t a large deviation from Eq. 4.10 a t large p, due to the  small 

spacial ex ten t of the  lattices. As a  by-product of the investigation of the dispersion 

relation, we have th e  x  spectrum  (Fig. 4-12).

4.2.2 Two Particle Spectrum

W hen constucting  the  correlation m atrix  in the  two particle case, we m ust take the 

sam e precautions to  ensure th a t the lowest sta tes a t each volume are chosen. Once 

th is is done we can m easure Ca /3 as prescribed. We then im plem ent the diagonalisa-
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Figure 4-12: The five sta tes  of the x spectrum  m easured using M onte Carlo in tegra­

tion. The solid line is included to  make the  avoided level crossings more evident.

tion  procedure described previously, giving us exponentially  decaying eigenfunctions 

which we can then  fit to  cx trac t the energy of th a t sta te . T he energy spectrum  can be 

seen in Fig. 4-13. We can see the (0, 0 ,1) and (0, 0, 2) sta tes  decaying to  the constan t 

(0 ,0 , 0) s ta te , crossing over the 0  sta te . The error bars on th e  0 s ta te  energy levels 

drop dram atically  between =  18 and =  22. Over this range of 0  field is 

in tegrated  ou t, as described previously in Sec. 3.2.2, leaving the  Feynm an propagator 

plus a stochastic contribution a t C>(A^). This results in a significant reduction the 

energy error bars for these values of N z -

In the  vicinity of the level crossings, where the overlap between the sta tes is non- 

negligible, it is possible to  decompose the energy eigenstates, into the  s ta tes  rep­

resented by the correlation m atrix  using T he norm alised squares

of the  com ponents, V'a indicate the com position of each eigenvector of th e  correlation 

m atrix . We expect to  see the  individual energy sta tes  shift between the  s ta tes  con­

structed  as the energy levels cross. In Fig. 4-14(a), we see how the second energy level 

is in itia lly  dom inated by the  4> ^  4> s ta te , bu t switches to  the  first excited ^  XX 

state . In Fig. 4-14(b), as is to  be expected, we see th e  th ird  energy level m irror this 

transition . The dom inance of the  eigenvectors by one particu la r s ta te  im m ediately
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Figure 4-13: Two Particle Spectrum

either side of the level crossing justifies the omission of off-diagonal m atrix  elements 

away from th is area.

4,2.3 Scattering Phase Shift and Decay W idth

Using the m ethod outlined previously in Sec. 3.2.4, we retrieve the  associated mo­

m enta for each value of the  energy. We then use these values to  evaluate S{p). These 

values of S{p) were then  fit to  the B reit W igner form ula

/  7T \  — m ?

-  2) =

W hile it would be ideal to  fit to  the  p ertu rba tive  form and ex tract values for 

the renorm alised couplings, the  uncertainties involved in fitting  values this small 

render this approach im practical. F ittin g  d a ta  to  a discontinuous function such as 

Eq. 4.12 presents problem s to  the s tandard  M arquardt-Levenberg fitting  algorithm . 

I t is worthwhile to  investigate th is problem  and discuss the  solution.
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Figure 4-14: Crossings 

A  G e n e t ic  F i t t in g  A lg o r ith m

Our object is to find best fit values for M  parameters, for a function .r/,-), 
with N  variables fitted to N  data points, The standard approach to fitting  

data to a given function to extract the values of a set of param eters is to  apply the 

M arquardt-Levenberg algorithm  [40]. This is a numerical algorithm  for solving the 

problem of m inim ising the function

^  -  Vk]'̂  (4.13)
k=l

to give a least square fit. Starting w ith an initial parameter vector, /?, it iteratively  

updates (3 using a first order Taylor expansion

f {x , !3  +  5) ^  f {x ,!3)  +  J5. (4.14)

Here, x  represents the variables. The m atrix, J , is associated with the derivatives of 

/  w ith respect to the parameters, /?,. From here the iterative process can be reduced 

to solving a m atrix inverse problem, involving the m atrix J .

A problem occurs when one of the derivatives of /  w ith respect to one o f the 

param eters is discontinuous. In our case, the first derivative of Eq. 4.12 w ith respect
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to is discontinuous in the region in which we are interested. A solution to this 

problem is to adapt a genetic algorithm for the purposes of fitting.

The principle of genetic algorithms [41] is to repeatedly "breed" a population of 

solutions to a problem. The parents are selected using some fitness function, which 

serves to ensure th a t favourable solutions are chosen with greater frequency. The 

algorithm also allows for random m utation of genes which assists in the exploration 

of the entire solution space. We will now examine the particulars of adapting such 

an algorithm  for fitting.

S tarting with a random initial population of R  solutions, gi, we obtain a value 

for each gene using Eq. 4.13.

Let the lowest of these Xi’s be called X b e s t ,  and the average be X a v e -  Our aim 

is to "breed" a gene which minimises this x^ function. Thus, if a gene has a lower 

X^ value, it should be more likely to be chosen as a parent. Therefore, our fitness 

function is given by

We can now view the value of G{gi) as the probability of gene i being chosen as a 

parent. W ith this task completed, we turn  our attention to  the m atter of combining 

the parent genes to produce favourable children. In a typical genetic algorithm this 

is done by bitwise exchanging segments of the parent genes. This proved to be an 

ineffective way of combining real, continuous values however,since large segments of 

the parent genes are bitwise identical for double precision numbers. A more satis­

factory solution was to take a weighted average of the parent genes. Combining two 

genes, Qa and gb, componentwise, to get gc, we have

G{g )̂ =

The value of A  is used to normalise the values such th a t

R

(4.15)

(4.16)
i = l

This means th a t

A
1

(4.17)
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Figure 4-15: Plot of the lowest xlest value of the population against the number of 

iterations for the genetic fitting algorithm.

Aside from receiving genes from the parents, genetic modification is also allowed 

by random mutations using a Poisson process. This is achieved by randomly adding a 

small amount to a value of Also, using a Poisson process, we can bring about

migration by randomly removing a gene and replacing it with a randomly assigned 

new values. These two processes ensure that the algorithm explores the entire phase 

space of solutions.

When this procedure has been applied many times, the resultant gene-pool will 

produce a gene with the ideal fit values of p i .  Fig. 4-15 shows a typical progression 

for the Xbest value as the algorithm iterates. The discrete drops in xlest caused 

by favourable mutations and migrations. In Fig. 4-16, we see a plot of 5 vs p ,  along 

with a curve representing the fitted Breit Wigner function. A good agreement is 

seen between the fit function and the data over the range of the fit. Outside this 

range, the Breit-Wigner formulation is unreliable and the fit is less accurate. As in 

the perturbative case, only the (j) state and the ground and first excited XX states are



0 .9 9 5  ±  2  X 1 0 - 3

0 .3 9 2 4  ±  1 0 “ ^

F 8 .2 (6 ) X 1 0 -3

Table 4.3: Fit values from Monte Carlo simulations.

included, due to large finite volume polarisation and finite lattice spacing effects in 

the higher x x  states. The values obtained from this fit for and F, together with 

the value of from the one particle spectrum, are presented in Table 4.2.3.

The value, F =  8.2(6) x 10“  ̂ { x ^ / d . o . f .  =  0.12) is in reasonable agreement with 

the values obtained from, the perturbative calculations, as is shown in Sec. 4.3.

4.2.4 Matrix Elements

In the next chapter, our interest will turn to the calculation of elements in G —̂ tttt 

correlation matrix. We will examine, in particular, the G tttt matrix element. At 

this point, we will briefly investigate the role of the corresponding (f) XX element 

in the model theory. The importance of this element (given by Coi, i 7  ̂ 0 in the 

expansion below) in the perturbative calculation is evident when the expansion of 

the determinant of the correlation is examined;
- 1

detC-^(Q) =

C*00o +

ACio

AC20

ACoi AC02
C*iio +  A^Ciij 0

0 C 2 2 0  + Â C;222

i=0 i=l  k=Q

This matrix element is the only off-diagonal element to contribute at (9(A^). To gain a 

more quantitative understanding of the importance of the (j) ^  XX correlator, Coi(t), 

in the Monte Carlo simulations, we examine (Fig. 4-17) the behaviour of Coi(O) in 

the region of the avoided level crossing. We see a discrete step in 6 *02(0 ) for all i at 

the avoided level crossing at N z  =  2 0 .This indicates this channel is very sensitive to
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Figure 4-16: P lo t of S vs p  w ith  fit function. This shows the  d a ta  along w ith the 

Breit-W igner function associated w ith the fit values. The fit was perform ed over the 

range tt /4  <  S < 37t / 4  and was ex trapo lated  over o ther values of p.
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Figure 4-17: The behaviour of the 0 — XX correlator in the vicinity of the avoided 

level crossing.

the reordering of the states and an accurate measurement of this quantity is essential 

in the vicinity of the avoided level crossing.

4.3 Comparison of Perturbative and Monte Carlo 

Results

There are three points of contact between the two approaches. Firstly in Fig. 4-18, 

we see a plot of the two particle spectra from the perturbative and Monte Carlo 

simulations. We see a strong agreement between the two cases as would be expected 

for a small value of A.

Fig. 4-19 shows a comparison of the scattering phase shift, < (̂p), for the two cases. 

Again, the da ta  for the two cases are relatively close. Discrepancies must be expected, 

as the two obey different dispersion relations, which will lead to a slight variation in 

the values of the mom enta associated with each value of the energy.

Finally, we look a t the three values obtained for the decay width of the 0  particle, 

F. The two values from the perturbative calculations, as well as the Monte Carlo 

simulation value are shown in Fig. 4-20. The values all agree to about 10% accuracy.
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Figure 4-18: The two particle spectra from the perturbative and Monte Carlo simu­

lations.
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Figure 4-19: The scattering phase shift, S { p ) ,  from the perturbative and Monte Carlo 

simulations.
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Figure 4-20: The decay width, F from the two perturbative calculations and Monte 

Carlo simulations.

As is to be expected when A is small (0.5), the perturbative results compare well 

to the Monte Carlo data. To conclude the discussion of the model 4> \ x  theory, we 

w'ill present the results in an experimental format. To do this, we plot the probability 

density function, f { E ) ,  analogous to the mass distributions measured in scattering 

experiments;

f [ E )  =
A

(4.20)
-  m̂ ) +

/I is a normalisation factor, which is set equal to 1. In Fig. 4-21, the function, f { E ) ,  

is plotted for the two estimates of F from perturbation theory (mass and coupling 

renormalisations, and Minkowski perturbation theory), as well as the Monte Carlo 

result, with upper and lower bounds. The value of F found in Minkowski perturbation 

theory does not have a value of ni^ naturally associated with it from our calculations. 

For this curve, rn^ was set to the bare value of 1. We have used various approaches in 

perturbation theory and Markov Chain Mote Carlo to evaluate the decay width, F, 

of the 4> particle in the model 4> —> XX theory. Our particular interest was in applying 

Liischer’s method to the Euclidean formulation of this theory, exploring all the issues 

raised in using this technique to calculate F. The value found in this m anner was 

found to be in good agreement with the results from Minkowski perturbation theory.

Having gained experience in the 0 —> \ X  model theory, our interest now lies in 

a preliminary investigation of the G —> tttt correlation matrix, with a view to a full
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Figure 4-21: Probability density functions for 0 ^  xx results. Perturbative results 

from the mass and coupling renormalisation approach and Minkowski perturbation 

theory, as well as the Monte Carlo result with error bars are shown.
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application of Liischer’s m ethod to this interaction in the future.
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Chapter 5

QCD

5.1 Glueballs in QCD

It is believed tha t all hadrons are made from quarks and gluons. So far, in all 

examined hadrons, the quark content has been greater than the gluon content. There 

is also, however, the possibility of hadronic states in which the gluonic contribution is 

dominant. Such states are known as glueballs. Glueballs are so exotic from the point 

of view of naive quark model th a t their existence will be a direct support of QCD. 

Experim ental endeavours to identify glueballs have been hampered by an inability 

to unambiguously identify glueball states. Several candidates have been isolated 

using many varied methods, with little clear consensus about which states actually 

correspond to glueballs.

As explained in Ref. [42], one approach is to attem pt to group the experimentally 

observed scalar states into flavour multiplets. The states remaining after this process 

serve as a starting point for the identification of glueballs. O ther distinctive features of 

glueball states, such as their abundance in gluon rich processes and their suppression 

in 77 reactions can, also serve as a guideline for the identification process. One scheme 

using this process [43] suggests /o(1370), /o(1500) or /o(1710) as glueballs. Although, 

Ref. [44] uses QCD factorisation based on an effective Lagrangian to suggest th a t 

/o(1710) has a large quark content. Another scheme [45] seems to point towards 

/o(600). Q uantitative glueball results are available from QCD sum rules and Lattice
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QCD. From QCD sum rules calculations, the lightest glueball state is predicted to 

have a mass of 1 GeV with a width into tttt  of 1 GeV and a width into 7 7  of 0 . 2  

keV ([46]).

For many years, Lattice QCD has been used as an ab initio tool for the exploration 

of the glueball spectrum. The following review of recent progress in the field is based 

on Ref. [7]. In pure SU{3)  Yang-Mills theory, the lowest lying glueball has a mass of 

1 7 0 0  MeV ( [ 1 5 ] ) .  In th a t particular study, a to tal of 1 3  glueballs with masses under 

4  GeV were found with various states. Much of the work in quenched lattice 

QCD has concentrated on the lower spin states. Chen et al ( [4 7 ] )  reported the mass 

of the lightest scalar glueball to be 1 7 1 0 ( 5 0 ) ( 8 0 )  MeV, in agreement with the value 

found in Ref. [15] .  The results suggest th a t there should be only two O"’"*' mesons 

between 1 3 0 0  and 1 8 0 0  MeV. This would imply th a t this observed glueball state  is 

contained in the / o ( 1 3 7 0 ) ,  / o ( 1 5 0 0 )  or / o ( 1 7 1 0 )  states. Although, Ref. [48] examines 

the mixing between glueball and quark states and suggest tha t the / o ( 1 7 1 0 )  state  is 

7 5 %  glueball. This result has been called into question [5].

Unquenched simulations [4, 5] have rethought this mixing of glueball and qq states 

and suggested a much lighter mass for the lightest flavour singlet 0++. This would 

imply a stronger connection with the lighter / o ( 6 0 0 )  and / o ( 9 8 0 )  mesons. These 

simulations were carried out on coarse lattices, although Ref. [49] reports unquenched 

calculations with a ~  0 . 2  fm. Thus far, continuum extrapolations have only been 

possible in the unquenched simulations. The dependence of glueball masses on the 

lattice spacing was found to be large unless Symanzik improved gauge actions are 

used, as in Ref. [50] .  Also in unquenched studies, variational techniques are required 

to monitor the mixing of qq and glueball states with singlet scalar mesons. This was 

done by Hart [51] .

It is clear th a t there are many approaches to the task of glueball identification, and 

while most sources agree th a t the glueball states account for some of the experimental 

resonances, there is h ttle  clear agreement about which exact ones. LQCD is at the 

forefront of the theoretical simulations of glueballs. In the coming sections, we will 

dem onstrate the methods used in these calculations. The long term goal is to  repeat
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Luscher’s analysis on the G —> tttt interaction, as carried out previously in the model 

(f) —> XX theory. New techniques and results will be provided which are central to the 

un.derstanding of G tttt interaction, corresponding to the (f) XX m atrix element 

described in the model theory.

5.2 Simulating Glueballs

The spectrum  of glueballs in QCD can be probed non-perturbatively using lattice 

techniques. To calculate the necessary transition m atrix elements, very large statistics 

are needed for the Monte Carlo simulations. This prohibits large lattice size. On the 

o ther hand, the scale of the glueball masses requires a small lattice spacing in the 

tem poral direction so th a t a reliable signal may be extracted from the correlator 

before it is lost to statistical noise. A compromise between these two conflicting 

requirements is provided by anisotropic lattices. In an anisotropic lattice, a large 

lattice spacing is used in the spatial directions to keep the com putational size of the 

problem small, along with a small tem poral lattice spacing which allows for a better 

signal detection. The spatial grid separation should be comparable to the size of the 

wavefuntion of the state ( 0.2 fm). The temporal lattice spacing should be given by 

the inverse of the energy scale being measured. In the case of glueballs, about 1.5 

GeV. This corresponds to a length scale of about 0.12 fm. To allow a clear signal to 

develop in the simulations, a lattice spacing somewhat smaller than  th a t is ideal.

In this section, we will discuss the topics necessary for simulation of glueballs on 

such anisotropic lattices. In many cases, these will analogous calculations to those 

in the model theory, while other topics will be case specific. Firstly we will examine 

the gauge and fermion actions, discussing the improvements, such as Symanzik and 

tadpole improvement of the gauge fields and ARIA actions for the fermion fields, 

which can be made to reduce discretisation errors. We will, then, investigate the 

operators used to form the correlation m atrix in this theory. The process of smear­

ing the operators to reduce spurious contributions from higher energy states will be 

discussed. Special consideration will be given to the expression of spin on a lattice. 

Having dem onstrated all aspects of operator construction, we will investigate the for-
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mation of the correlation matrix and the extraction of masses. Finally, the procedure 

of setting the scale to recover physical masses will be discussed.

5.2.1 Gauge Actions on a Lattice

Firstly, we address the discretisation of the gauge fields, which will be used to rep­

resent the glueball operators. Symanzik [52] and tadpole [53] improvements are used 

to remove some of the discretisation errors which occur in the naive discretisation.

Sym anzik Improvem ent

To remove all 0{a^) errors from all Green’s function in lattice QCD at tree level in 

perturbation theory, it suffices to remove all O(a^) artefacts from the action and the 

operators. W ith a view to removing these artefacts from the action, let us examine 

the Wilson lattice gauge action;

= -  f/„„(x)| (5.1)
X , f t > U

where f3 = 2N/ g^. If we take with the temporal and spatial plaquette variables,

Usp = Ui{;x)Uj{x+ i )U l{x- \ - j )U \x) ,  (5.2)

Utp =  Ut{x)U^{x + i ) U l { x ^ j ) U \ x ) ,  (5.3)

we can rewrite the Wilson discretisation in a way which has the correct naive contin­

uum limit, respecting the anisotropic approach we have taken;

S g [U] = (3 = ^ J  d^xTvF.^F^''  +  0 { a l  a?). (5.4)

Here ^ is, at tree level, the anisotropy factor

i  = as/at- (5.5)

Also, we have split the temporal and spatial parts of the action, Q,tp and flgp-,

Qtp = ^  ^ReTr[l  -  Utp{x)] (5.6)
x,i

^̂ sp = 5]] ^-R err[l -  f7^p(a:)]. (5.7)
3

X , l < J
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At the tree-level in perturbation theory, any lattice operator, O, constructed from link 

variables will have an asymptotic expansion in powers of the spatial and temporal 

lattice spacings that can be written using a basis of local continuum operators of 

dimension d  =  d s - \ -  d t \

0  = Y , a f a t ' £ r M -  (5.8)
d a

These continuum operators respect all the symmetries of the anisotropic lattice 

and are also gauge invariant. There are two such dimension four operators;

0 \  = (5.9)
i j

0̂ 2 =  (5.10)
i

There are no operators of this kind for dimensions less than four, none of dimension 

five and eighteen of dimension six. Let us write a general improved action in the form

•^0 X i

To eliminate the 0{a^) errors in O, we simply tune the coefficients, Cj, such that

the coefficients of the dimension six operators vanish, and the coefficients of the

dimension four operators are equal. Of the elementary loops available to us for this 

process, we follow the convention made in Ref. [50]. We use the sum over all spatial 

plaquettes, Qsp, temporal plaquettes, Qjp, 2 x 1  spatial rectangular loops, flsr, and 

short temporal rectangles of one temporal and two spatial links, flstr-

^ s p

X i > j

1 -  U,{x)Uj{x+i)Uj{x+j)U]{x)

^ t p

X  i

1 -  Ut{x)Ui ix+i )Ul{x+i)Uj ix) 5

r 2 g r 1 -  U^{x)Ui ix+i )Uj ix+2i )Uj ix+i+j )U} ix+j )Uj {x)
X

^ s t r 1 — Ui{x)Ui{x+i)Ut{x + 2i)Ul{x +  i+ i )Uj {x+i )Ul { x )
X i

When we apply the above procedure to pin down the weights, q , we arrive at the 

action

Sii = P ~  ~  ■ (5.12)
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This action has 0{a^, aj) errors. The 0{a^)  errors can be removed by adding terms 

such as a rectangle with two temporal links and one spatial link. The improvement 

conditions can be altered slightly to remove the redundant high energy modes this 

will introduce. The remaining 0{a^)  contributions are suppressed by as given in 

Eq. 5.5.

Tadpole Improvem ent

When we represent the gauge fields in terms of an exponential, we

introduce terms with vertices with an arbitrary number of gauge fields. The higher 

contributions are lattice artefacts. Contracting the gauge fields in these terms leads 

to ultra-violet divergences from tadpole diagrams. Since tadpole contributions are 

generally process independent, it is possible to measure their effect in one quantity 

and correct for this elsewhere. To proceed, we rewrite the gauge fields in terms of an 

infrared and an ultraviolet part;

U^{x) = =  uqUi,{x ) (5.13)

This new field is much closer to the continuum value, since the ultraviolet effects from 

the tadpoles have been divided out, giving a better agreement between perturbative 

and non*perturbative calculations. Extending this idea to the anisotropic case, we 

have

U, = UsUi{x) (5.14)

Ut = UtUt{x). (5.15)

One common choice of tadpole factors are the fourth root of the plaquettes, {^RTrUsp)

and (IKTr[7tp). In Landau gauge perturbation theory,

1 -  cx (5.16)

Since, on our anisotropic lattices, at -C a«, we set Ut — 1. Rewriting our action (5.12) 

with tadpole improvement, we have



5.2.2 Fermion Actions on a Lattice

It is substantially harder to construct a lattice description of fermion fields. A naive 

attem pt to discretise the fermion will lead to the doubler problem, described at length 

in [36]. A solution to this problem was proposed by Wilson. In doing so, however, 

he breaks chiral symmetry at 0{a).  These errors are prohibitively large for the use 

of Wilson fermions on coarse lattices. If we use field redefinitions which involve free 

parameters, we will have redundant couplings which can be set to remove doublers. 

One such class of actions are the D23A actions.

D234 A ctions

Up to the existence of doublers, a naive description of fermions given by the operator 

7 . V + m,  using an improved lattice derivative

Ve;x =  (̂ 1 -  \ a lA ,^  =D^ + (5.18)

where

=  4" +  f̂ ) +  U l ( x -  - f t ) -  2t/>(x)) (5.19)

will yield a lattice action with 0{a'^) errors. The simplest way to remove the doublers 

without introducing any leading order errors is to perform a field redefinition in the 

continuum and, only then, discretise the action. In the continuum, the action is

= + (5.20)

We redefine the field;

■ipc

i>c

=  ■ tpcM ntpc

M n =  C l c M c ^ c - (5.21)

The canonical choice of field redefinition is



Expanding the transformed fermion operator gives us

M q = rr ic ( l  + ^ratruc^ + D  j

The Hermitean a^i, matrices are defined by

I
= - l p , x . l u \  =-(Tvn- (5.24)

We have used

2 ~  (5.25)

The lattice version of the field strength tensor, is given by the clover term

|54|;

iJV. =  -  f l ) .  (6.26)

where is the sum of four one-by-one oriented loops of links, starting at x. The 

upper right corner is

U^{x)Uu{x +  il)U^{x 4- v)^U^{x)K (5.27)

Using leading order discretisations of the derivatives gives us the Sheikholeslami- 

Wohlert action on an anisotropic lattice;

Msw  =  me f l  +  ]^ratmA +  7 . V -  ^rata.F. (5.28)

This action gives the doublers a large mass at the cut-off scale for any r > 0 and

no doublers at r =  1. Taking these expansions of continuum derivatives to the next

order gives the class of D 234 actions;

M d234 =  rric(l  + ^ r a tm A  +  ^  7 //V^(l -

( Z !  (^-29)
\  M

D234 Actions on Anisotropic Lattices and ARIA

As was discussed previously in Sec.5.2 , the energy scales being simulated require 

lattice spacing of about 0.04 fm.This cannot be achieved on an isotropic lattice 

as the cost of the simulations scales as 0 (a ‘̂ ). The use of an anisotropic lattice
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greatly alleviates this problem, however, such a lattice has less axis perm utation 

symmetry, resulting in the anisotropic action having more independent coefficients. 

At the quantum  level, some of these coefficients must be tuned to  restore space-time 

exchange symmetry. To derive a D234 class action for an anisotropic lattice, the 

allowed operators at 0(a )  consist of the spatial and tem poral parts of the Wilson 

and clover term , and [7 tDt, ^  7 , ^ ] .  The most general field transform ations lead 

to three redundant operators, so two coefficients remain to be tuned at O (a).These 

can be chosen to be the spatial and tem poral parts of the clover. On an anisotropic 

lattice, one must also allow a relative coefficient between the tem poral and spatial 

kinetic terms. This can be tuned non-perturbatively, by imposing, for example, a 

relativistic dispersion relation for the pion. Thus our D234 action for an anisotropic 

lattice is

^^D 234 =  +

From the field redefinition, Eq. 5.22, for a fixed Wilson param eter, r, we recover 

spatial doublers in the anisotropic case, since Qc —> 1 as a.t —̂ 0. To construct such 

a redefinition suitable for the anisotropic case, let us write

Qcfic = 1 -  ^ { l o D o  -  rric). (5.31)

This sets some of our free parameters;

{vo.Vi) =  (1,// )̂

(ro ,ri) =  (r,0) (5.32)

Improving tem poral derivatives is problematic since it necessarily involves includ­

ing increasingly non-local contributions which introduce lattice ghosts. To circum­

vent this, we retain the one-hop improvement of the field redefinition, but remove the
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improved tem poral discretisation. This amounts to setting the parameters as follows;

The removal of spatial doublers is ensured by choosing bi — 1/6 and di =  s. Putting 

all this together gives us our final fermion action;

At tree level, the fermion anisotropy, is given by ^ =  a^/at. We call the action here 

ARIA; Anisotropic, Rotated, Improved Action. Its leading errors are at 0{af ,a l ) .

5.2.3 Distillation

To smear quark fields, a new method called distillatiori' was used. The usual gauge- 

covariant smearing algorithm uses an approximate representation of the function

choice of a  means a very small number of modes contribute to the smearing operator, 

and a truncation can be introduced while m aintaining a good smearing method. The 

m ethod constructs a small vector space of “smooth” fields by finding the lowest N  

eigenvectors of V. In this simple test, N  =  16 was used. These vectors are then used 

to construct a smearing operator on fields on sites of the lattice;

{do,di) =  (0,s). (5.33)

MARIAi>{x)
1

1
2u,

[(r -  'fo)Ut{x)ip{x +  £) +  (r +  'yo)Ul{x -  i)ip{x -  i)]

( s  +  ~  ~  2i)^{x -  2i)^ (5.34)

□ =  exp (cT^V^) (5.35)

with the gauge covariant Laplace operator and a  a free param eter. A typical
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N

^{x,y)  = ’' ^ v { x )  ^  v*{y) (5.36)
i=l

Then it is seen that all correlation function of smeared fields can be computed using 

just 0{N)  inversions, which requires a modest amount of computer time.

A correlation function such as the pion-pion correlator becomes

= Tr □M~^n7 5 DM“^n7 5  

=  Tr {v*

= Tr {v*M^-^v){v*M-^v) (5.37)

where in the last step, 7 5 -hermiticity of the quark operator has been used;

(5.38)

Note that since all elements of the propagation matrix between eigenvectors i and j, 

Vij =  can be computed, the method provides all-to-all propagation from

the vector space of smooth fields, allowing accurate Monte Carlo measurements of 

many diagrams that are typically noisy, such as those including disconnected quark 

lines. These disconnected diagrams will be needed to measure correlation between 

glueball operators and two-pion states.

5.2.4 Glueball Operator Construction

To achieve the goal of extracting the energy states from the correlation matrix, as in

our model theory, we must create a set of operators corresponding to glueball and

TTTT states, analogous to the </> and states we had previously.

One major difference between the 4> —> XX model and the current model is that 

the glueball and tttt states have non-trivial The mass of a glueball with a

given can be extracted from the large t behaviour of the correlation function, 

C{t) =  (0|$f-^^ (̂t)$^ )̂'^(0)|0), where R  denotes the lattice irrep corresponding to the 

in question. The operator, — (0|$^-^^(i)|0), is a gauge invariant,

translationally invariant, vacuum subtracted operator, which creates a glueball from 

the QCD vacuum.
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Smearing

The construction of operators which overlap strongly with the glueball energy eigen­

states of the system is important to ensure that contamination from higher energy 

states becomes negligible before statistical noise masks the signal. One method widely 

employed to reduce the effect of higher modes is smearing. Two spatial smearing 

schemes were used in the operator construction. In the one link scheme, a spatial 

link, Uj{x), is replaced by a weighted sum of itself plus the four spatial staples along 

that link, projected into SU{3):

where Vsu(3) denotes projection into 5/7(3). We denote this smearing scheme by 

Sxs- In double link smearing, superlinks of length 2a  ̂ are constructed using staples 

connecting sites separated by a distance twice that of the length of the source link 

variable:

and we denote this mapping by f\^. These individual schemes were composed with 

each other to give six smoothing schemes, Si. The paths for these basic operators are 

shown in Fig. 5-1, taken from [50].

5.2.5 Spin on a Lattice

In the continuum a glueball state is described by its spin (i.e. its transformation 

properties under SO (3)), J, and its behaviour under charge conjugation, C, and 

spatial inversion, P. The allows us to attach a label The lattice reduces the 

symmetry of the states. Rather than being determined by the state’s action under 

5 0 (3 ) ,  the spin now depends on how the state behaves under the octahedral point 

group, O. O has 24 elements given by the proper rotations, divided across five 

conjugacy classes.The single valued irreducible representations are Ai, A2, E, T\ and

=  Vsuiz) Uj{x) +  Xs Uj { x+k)  U l i x + j )  , (5.39)

+ A/ ^  Uk{x) Uj { x+k)  U j ( x + j + k )  U l { x + 2 j ) \ ,  (5.40)
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Figure 5-1; The Wilson loop shapes used to form the lattice glueball operators, 

labelled Operator 1, Operator 2 and Operator 3, respectively.

T2 , with dimension 1, 1, 2, 3 and 3 respectively. When spatial inversion is taken into 

account, the symmetry group becomes Oh =  O ® Ci. Cj is the two element group 

containing the identity and spatial inversion elements. The remaining symmetry to 

be taken into account is charge conjugation. Thus we can refer to the full symmetry 

group of zero momentum on a cubic lattice as the irreps are labelled

A 2 ^, and Having established the symmetry group on a lattice, we

must now examine how to retrieve the continuum symmetry, J^'", of a state with a 

discrete symmetry To do this, we match the degeneracies observed in the lattice 

simulations with a given to those expected for the various . For example, 

if two degenerate states appeared in the E  and T2  channels, we could associate this 

with a spin 2 state in the continuum. A table of the number of times an irrep of O 

occur in the subduced representations, J [ O oi 50 (3 ) restricted to O are given in 

Table 5.1, from [15].

5.2.6 Correlation Matrices

Once we have constructed glueball states, we now form a correlation matrix, Cab-

CABi t )  =  ^ ( 0 |4 ! f * ( T + i )  (5.41)
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Table 5.1: Number of times each irreducible representation of the octahedral group 0  

occurs in the subduced representations J  J. O of the rotation group 5 0 (3 ) restricted 

to subgroup O.

J  A \ A 2 E  T\ T2

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0  1 1

4 1 0 1 1 1

The operators, <I>i^^(r), are given by

=  ^ R e T r U c i t )  (5.42)
X

= 7ri(r)7r_i(r). (5.43)

Here, Uc is a closed path  ordered product around the closed loops of Fig. 5-1 and

7̂1 ("̂ ) =  ^ u { x ,T ) - i 5 d { x ,T )  (5.44)
X

7T_i(r) =  ^ d ( f , r ) 7 5 i/(f,T ), (5.45)
X

where u and d are distilled fields. Fig. 5-2 shows the three types of correlation 

functions which make up the correlation matrix. To date, only the disconnected 

part of the tttt ^  tttt diagram has been evaluated. The connected contributions are 

expected to be less noisy. We now follow the path laid out in Sec. 3.2.3 to recover 

the energy spectrum  from the correlation matrix, as for the 4> XX model.

So far, the simulations have advanced to this point. It is, however, beneficial to 

look a t the remaining steps in the process of calculating the energies, some of which 

were not necessary in the 4> XX case.
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Figure 5-2: C orrelation functions m aking up the  correlation m atrix . 

Variational M ethod

The last step  in th e  operato r construction process is to  combine these "building 

blocks" in a sensible way to  guarantee a m axim al overlap w ith the lowest lying glueball 

in the channel of interest. A general linear com bination of the basic operators is 

formed;

(5.46)
Q = 1

The coefficients, Va , are determ ined using the  varia tional m ethod; by minim ising 

the  effective mass
E a / 3 ^ «  C a p i t o ) (5.47)

w ith respect to  C a p  is the  correlation m atrix ,

Co,p{t) = ^ (0 |(^ i^ )(T  +  0  0{f^(r)|O). (5.48)
T

of vacuum  sub trac ted  operators — (O|0i^^(t)|O). Let denote a

column vector whose elem ents are the  optim al values of the  coefficients v ^ \  The 

m inim isation criterion reduces to  solving the  eigenvalue problem

C ito )  C(0) (5.49)

T he eigenvector, corresponding to  th e  largest eigenvalue, gives us the

values of which correspond to  the  operato r best overlapping w ith the

ground s ta te  of the glueball in the channel under investigation. Similarly, operators 

can be constructed  for the higher energy s ta tes  of the glueballs in each channel.
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5.2.7 Setting the Scale

In order to convert the glueball masses measured into physical values, we must deter­

mine the temporal lattice spacing, Uf. To do this, we choose some physical quantity, 

measured experimentally, and measure it on the lattice in terms of a< [55]. The ex­

perimentally known value is then used to determine the lattice spacing. A quantity 

which is well determined experimentally, and easily evaluated numerically is the best 

choice. Usually the mass of some low-energy particle is used. However, experimental 

glueball results afford us no such candidate.

Instead, we look a t the hadronic scale param eter, ro, defined in terms of the force 

between quarks;

The benefits of this technique are listed in Ref. [56]. One problem this approach is 

th a t ro can not be measured by direct experiment.

To measure ro, we first calculate the static quark potential, V’(7^, for various 

values of r, from the expectation vales of Wilson loops. We see that

These measurements are made independently of glueball mass simulations. Again 

to avoid excited state  contributions, single link smearing is used. Statistical noise is 

significantly reduced by constructing Wilson loops with thermally averaged temporal 

links. As when extracting a mass from a correlation function, the potential is taken 

from the exponential behaviour of the Wilson loops. A suitable plateau region is 

chosen to minimise the uncertainty in V  (f) and a fit is used to extract the best 

fit values.

We now make an ansatz for the form of the potential;

This form of the potential was found to fit the da ta  on course lattices well. Differen­

tiating analytically, we see tha t

(5.51)

V( f )  — — + ar  + Vo 
r

(5.52)

(5.53)
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in terms of the string tension, a. To find the ratio, ro/ag, we need the anisotropy 

factor, as/at,  since our estimates of the potential are in term s of a* [atV{f^).  Since 

the renormalisation is small [55], it is safe to use ^ for the anisotropy factor.

While To was first introduced as a replacement for the string tension to avoid 

fitting da ta  over diff’erent length scales, which is affected by lattice artefacts at short 

distances and by finite volume effects at large distances, the lattices used in this study 

are too coarse to apply this procedure.

Now th a t we have discussed all the issues in extracting the energy spectrum  from 

glueball calculations, we move on to look a t the results which have been obtained 

thus far.

5.3 Glueball &; 7T7T Correlators

Measurements were made on 100 configurations of a 8  ̂x 96 lattice, with two flavours 

of dynamical quarks and using the tuned param eters of Ref. [55]. Fig. 5-4 shows 

the correlation functions between smeared Wilson loop sources, such as would be 

used to measure the glueball spectrum  in the theory of gluons alone. O perator 2 is 

seen to have the lowest noise, but signals are seen in all channels. Fig. 5-5 shows 

the correlation between these three operators and the distilled two-pion operator 

(with zero relative momentum). Again, very good signals are observed for such low 

statistics. Analogous to the (j) XX m atrix elements, the accurate measurement 

of this correlator forms a vital part in the estim ation of the energy levels in the 

neighbourhood of the avoided level crossings.

Fig. 5-3 shows the disconnected part of the correlation function between two pions 

at rest at the source and the same sink function. The distillation m atrix elements 

of Eqn. 5.36 are needed for propagation from time-slice t  back onto itself for all 

values of t =  0 . . .  95. These elements can be estimated efficiently using a stochastic 

method where sources are added every four time-slices with random weights. Two 

independent random sources are needed to compute the two propagators on each 

time-slice (as seen in the left panel of Fig. 5-2). Unfortunately, when the sources are 

on time-slices t  such th a t t  mod 4 =  0, four sources would be needed. Since this is
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Figure 5-3: tttt —> tttt correlator.

unavailable in the data  set used here, these time-slices are absent from Fig. 5-3.

In these test simulations, ~  700 MeV and the only open threshold is the 

G —> TTTT decay. As the physical pion mass is approached, more thresholds open. 

Present tests are a long way from exploring this complication.

As was dem onstrated with the model (j) —> X X  theory, the successful application 

of Liischer’s m ethod depends largely on the measurement of the 0  —̂ x X  elements 

of the correlation m atrix in the vicinity of the avoided level crossings. The results 

presented above clearly show th a t the G —*• tttt measurements have advanced to  a 

point where a serious a ttem pt to implement Liischer’s method can be made. In the 

immediate future, the next step will be to enlarge the set of glueball operators being 

used, and include the connected terms in the tttt operator. This would provide the 

tools necessary to investigate the finite volume energy spectrum, progressing towards 

the glueball decay width.
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Figure 5-5: G ^  tttt correlator.
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Chapter 6

Conclusions

6.1 Conclusion

The existence of glueballs would provide strong evidence for the  acceptance of Q uan­

tum  Chrom odynam ics a.s the  theory  of the strong interaction. B ut, as was highlighted 

in the in troduction , the  differing observables in theory and experim ent, presents a 

fundam ental problem in the  identification of glueballs. This problem  originates in the 

M aiani-Testa Theorem  which infers th a t there can be no d irect access to  the decay 

w idth, as m easured by experim entalists, from the Euclidean correlation functions, as 

calculated by theorists.

We have dem onstrated  how a link can be m ade between a Euclidean correlation 

m atrix  and the  particle decay w idth, via the  finite volume energy spectrum  and the 

scattering  phase shift, as prescribed by Liischer in |9]. This m ethod is based on a 

one-to-one correspondence between solutions to  the H elm holtz equation and solutions 

to  the sta tionary  Schrodinger equation.

To gain an understand ing  of how this m ight be im plem ented for the glueball 

to  TTTT decay, we created a m odel scalar field theory which allowed a 0  particle to  

decay in to  two x  particles, when kinem atically possible. We explored the finite 

volume energy spectrum  and scattering  phase shift of th is  theory  using Euclidean 

p ertu rb a tio n  theory, as well as perform ing direct calculations of th e  decay w idth  of 

the (f) particle in Minkowski pertu rb a tio n  theory.
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These calculations provided a valuable comparison to the results of the Monte 

Carlo simulations carried out in the ^  X X  theory. Using Markov Chain Monte 

Carlo integration techniques, we were able to extract the finite volume energy spec­

trum  for a collection of 0 and XX states. From this point, we followed Liischer’s 

method from the energy spectrum  to the associated momenta, which was used to 

evaluate the scattering phase shift before, finally, fitting this da ta  to a Breit-W igner 

formula to extract a value of the decay width of the (p particle. The results were, at 

all points of contact, in good agreement with the perturbative results. In particular, 

our estimates of the decay width all agreed to within 10%.

A first investigation of the corresponding correlation functions in QCD th a t would 

m ediate decay between the scalar glueball (in analogy with the 0 field of the model) 

and two-pion states (the x  field of the model) was performed. The calculation was 

done on very low statistics for a study of gluonic physics, using only 100 gauge 

field configurations. Nevertheless, good signals were seen tha t would enable the 

first calculations of mixing between glueball states and pions at finite volume to be 

carried out. This would be the first step towards a reliable determ ination of the decay 

param eters of the scalar glueball of QCD and would give direct information relevant 

to experimental searches for these states.
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