
Egocentric Gesture Recognition for Head-Mounted AR devices
Tejo Chalasani* Jan Ondrej† Aljosa Smolic‡

V-SENSE, School of Computer Science and Statistics
Trinity College Dublin

ABSTRACT

Natural interaction with virtual objects in AR/VR environments
makes for a smooth user experience. Gestures are a natural extension
from real world to augmented space to achieve these interactions.
Finding discriminating spatio-temporal features relevant to gestures
and hands in ego-view is the primary challenge for recognising
egocentric gestures. In this work we propose a data driven end-to-
end deep learning approach to address the problem of egocentric
gesture recognition, which combines an ego-hand encoder network
to find ego-hand features, and a recurrent neural network to discern
temporally discriminating features. Since deep learning networks
are data intensive, we propose a novel data augmentation technique
using green screen capture to alleviate the problem of ground truth
annotation. In addition we publish a dataset of 10 gestures performed
in a natural fashion in front of a green screen for training and the
same 10 gestures performed in different natural scenes without green
screen for validation. We also present the results of our network’s
performance in comparison to the state-of-the-art using the AirGest
dataset.

Index Terms: Egocentric Gesture Recognition—Deep Learning—
LSTMs—; Human Computer Interfaces—Natural Gestures

1 INTRODUCTION

Interaction with virtual objects in Augmented Reality (AR) is a core
principle for smooth user experience. Gestures represent a natural
way of interaction and communication in our daily life. Thus recog-
nising gestures and using them to interact with virtual elements is
a natural extension from reality to AR. With commercially-viable
wearable AR devices like Microsoft HoloLens, Magic Leap One,
Daqri Smart Helmet being available to consumers the need for intu-
itive ways of interaction increases. The head-mounted AR devices
have a camera that is placed between the eyes of the user giving
an egocentric view of the world. Recognising egocentric gestures
thus gives us a natural way to interface with the virtual elements
displayed in such AR devices.

As different AR/VR applications may vary significantly regarding
their user interactions, the set of gestures needed for smooth user in-
teraction may also be very different. Therefore, solutions should also
be easily adaptable and extensible for different applications. Having
a large dataset with many different ego-hand gestures as defined
in [26] is good to test different recognition algorithms. However,
it does not address the challenge of easily adding or removing new
gestures to the dataset, since a large number of users are required
to perform the gestures in multiple different scenarios. Devices like
HoloLens do support a small quantity of hand gestures, but they do
not support addition of new gestures. In this paper not only do we
address the issue of recognising ego-hand gestures, but also the abil-

*e-mail: chalasat@scss.tcd.ie
†e-mail:jan@volograms.com
‡e-mail:smolica@scss.tcd.ie

Figure 1: Network Architecture to recognise egocentric gestures: Ego-hand mask
encoder (EHME) that encodes a sequence of input images and Recurrent Neural Network
(RNN) to recognise the gesture from sequence of encoded images.

ity to add new gestures easily to data driven deep learning networks
with reduced amount of data.

We propose an end-to-end learnable deep network architecture
(Fig 1) to encode ego-hand features and use them in a recurrent
neural network (RNN) to find temporal features that can map a
given arbitrary length image sequence to a gesture. Furthermore,
we propose a new data augmentation process using a green screen
masking technique as a way to create a large amount of data from
a small set of captured data which is used to train our proposed
network. In addition, as our approach is fully automatic, it also helps
us to eliminate the extremely time-consuming and costly process of
annotating each and every frame interactively for hand segmentation.
Our proposed network not only simplifies the architecture, making it
plausible to be used on future wearable devices, but also forgoes the
usage of an optical flow branch and a 3D CNN, which is standard in
many action and gesture recognition frameworks like [2, 14, 19, 21].

Further, we make our dataset publicly available, which consists
of gestures performed in front of a green screen by 22 different
users recorded with an egocentric camera on HoloLens and the
corresponding segmentation masks. The green screen dataset is
augmented and used to train our network. Gestures performed in a
normal environment (i.e. not in front of green screen, also provided
in the dataset) are then used for testing. Each image in the database
is also provided with egocentric camera 6DOF pose information.

Consequently, the main contributions of our work are the follow-
ing:

• We introduce a new deep network architecture that simultane-
ously encodes ego-hand features and finds temporal features
for gesture recognition in RGB image sequences of an arbi-
trary length. The network is smaller compared to the existing
architectures making it plausible to fit on future wearable AR
devices.

• We introduce a new data augmentation technique using green
screening to train from a small amount of captured data which

ar
X

iv
:1

80
8.

05
38

0v
1

 [
cs

.C
V

]
 1

6
A

ug
 2

01
8

also eliminates the need for manual ground truth hand mask
annotation.

• We publish a green screen egocentric gesture dataset that can
be used for training egocentric gesture recognition and is easily
extendable.

It must be noted that the network architecture presented would
be very slow to run on current mobile devices without specialised
hardware to run deep neural networks, one of the aims of this work
is to look for architectures smaller in comparison to existing ones
but not necessary to run on existing mobile headsets.

2 RELATED WORK

Vision-based gesture recognition traditionally used hand-crafted
spatio-temporal features mainly in a rule based framework [3, 16] or
in a machine learning framework based on Hidden Markov Models
(HMM) [15]. Ego motion from the camera in AR devices adds
another layer of complexity when compared to gesture recognition
from static cameras. To deal with this additional complexity meth-
ods like [1] suggest homography compensation as a preprocessing
step before calculating hand crafted features like improved Dense
Trajectories (iDT) [23].

Recent advances in Deep Learning techniques, general purpose
GPU usage and the availability of large amounts of annotated data
lead to tremendous improvements in various computer vision related
problems like object detection [11, 20, 25], tracking [8, 18] and
object localisation [5]. To deal with the temporal component of
activity and gesture recognition using deep learning there are two
main approaches. The first one uses optical flow and a 3D CNN to
extract spatio-temporal features and to pass them to an SVM or class
entropy layer for classification [14, 19, 21, 22, 24]. The second uses
the outputs of CNNs as inputs to RNN as these kind of networks are
designed to inherently manage the temporal dimension [2, 4].

Neurological research [6] suggests a two branch approach to
action recognition, a ventral branch for object recognition, and a
dorsal branch for motion recognition. This inspired the two stream
approach for action recognition using deep learning [19], which
was extended to egocentric action recognition by adding a third
stream consisting of ego-hand segmentation information that was
manually generated [21]. Taking inspiration from the above work,
instead of manually adding hand masks as input, we rather encode
ego-hand masks automatically and use these encoded features in a
second branch which consists of an RNN to deal with the challenge
of recognising egocentric gestures from image sequences.

Zhang et al. [26] recently published a database of egocentric
gestures specific to interactions in wearable devices. This dataset
contains 83 different gestures performed by 50 users in various
settings. However, we posit that gestures are continuously evolving
and there is a need for adding new gestures. For a new gesture to be
recognised in the framework proposed by [2, 26] 50 different users
have to perform the gesture in 8 different scenarios. This makes
adding a new gesture for recognition a cumbersome task, which is
one of the challenges we address in our work.

The method in [10] uses per-frame pose information of hands,
generated as described in [27], and provides this pose information
to a Long Short Term Memory network (LSTM) for recognising
gestures. However, this method has two limitations, it can not deal
with gestures performed with both hands and all parts of the hand
need to be visible in order to get proper pose information, which is
not the case with our network.

3 EGO-CENTRIC GESTURE DATABASE

Gestures are usually coupled with a specific task and are rarely
the same across different applications. Having a database with a
large amount of ego-gestures [26] is important to help with the
evaluation of different recognition algorithms. However, defining a

new gesture is a cumbersome task since it needs to be performed by
many subjects in many different scenarios. To alleviate this problem,
we used a data augmentation technique which reduces the amount of
data that needs to be collected and pre-processed. Table 1 shows the
number of different backgrounds that are needed for our database in
comparison to existing ego-hand gesture databases.

We defined a set of 10 basic gestures that use left, right and both
hands (see Figure 3). We collected training gestures from 22 users,
each repeated the gesture 3 times. Users performed the gesture in
front of a green screen wearing HoloLens without any restrictions
on the duration of each gesture, allowing them to express naturally.
This resulted in a large variance in the duration per gesture and per
user, which are described in Figure 4. In addition to the images
(RGB) captured by the egocentric camera, we also collected the
6DOF camera/head pose information that is given by the HoloLens.

Database # of Subjects # of Backgrounds
AirGest [10] 6 6
EgoGest [26] 50 8
Ours 20 1

Table 1: Table comparing the number of backgrounds needed for existing ego-hand
gesture databases with ours. Our database needs only one background compared to
others making it much easier to collect data for adding new gestures.

The generated images were processed using a green screen seg-
mentation algorithm of a typical video editing software [17] to
generate masks of hands automatically, eliminating the need for
manual generation of hand masks per image. Figure 2 illustrates the
process of database generation. The hand masks along with their
corresponding images and labels per frame were stored and will be
made publicly available.

Unlike the training gestures, we collected testing gestures in
natural settings. These gestures were captured in real office environ-
ments with various backgrounds. We have collected testing gestures
from 6 users, each gesture being repeated twice. After inspecting
each video, we removed gestures that were performed outside of
camera’s field of view and we ended up with 7 to 9 samples per
gesture.

To reflect real world situations, our dataset is generated from
users with varying skin tones, under different lighting conditions,
some users wearing full sleeves, and some wearing watches or
bracelets. In comparison, in previously captured datasets ([10, 26]),
the gestures are more clinical in the sense that each gesture has the
same movement of hands or restricted duration. We showed users
a video of each gesture at the beginning of the capture and then let
them express the gesture naturally.

4 NETWORK ARCHITECTURE

The idea of the new architecture is to find spatial feature maps
specific to ego-hand gestures and to use these feature maps in a RNN
to learn temporal discrimination for recognising ego-hand gestures,
while keeping the network small. We achieve this by designing a
two stage network architecture.The first stage is Ego-Hand Mask
Encoder Network (EHME Net). EHME Net has an hourglass (Fig 1)
structure, with a series of convolution filters of increasing depth and
decreasing height and width, until they are sufficiently small. Then,
we suffix the network with deconvolution filters with decreasing
depth and increasing height and width until they reach the size of the
mask. We give a detailed description of our EHME Net in Section
4.1. Finally, we use the feature maps near the neck of the hourglass
as an input to an LSTM network to classify the sequence of encoded
features.

The number of parameters that needs to be estimated can approxi-
mate the complexity and size of a network. Our network compared to
AirGest is much smaller (Table 2 lists the total number of estimated
parameters for our network in comparison to the AirGest network).

Figure 2: Data Collection Process:: Step 1: User performs gestures in front of a green screen wearing HoloLens. Step 2: Record the images taken from Ego-View camera in HoloLens
which sees user’s hand performing gestures and a green screen background. Step 3: Transfer frame images to a computer and use a green screen extraction software to generate hand
masks for each of the images. Step 4: Save the masks along with their corresponding RGB images.

0 - Right Shoot 1 - Left Shoot 2 - Smash 3 - Right punch 4 - Left Punch

5 - Push Back 6 - Right Block 7 - Left Block 8 - Right Teleport 9 - Left Teleport

Figure 3: Our training set of 10 gestures captured in front of a green screen.

Figure 4: Bar graphs describing the variance in number of frames the user needed to
perform a gesture.

We believe this could eventually lead to a portable implementation
on mobile devices.

Network # of Parameters
OurNetwork 960485
AirGest 17535551

Table 2: Size of our network in comparison to AirGest [10] in terms of number of
parameters to be estimated.

In the subsections 4.1, 4.2 we elaborate on the architecture of
the module that encodes ego-hand features and the module that
recognises gestures from a sequence of encoded ego-hand features

respectively.

4.1 EHME Net
The first stage of EHME consists of two layers of Resnet 18 [25],
appended with convolution and pooling layers. The input size of
an image is fixed at 224x126. The series of Resnet, convolution
and pooling layers gradually change the feature map size at the
neck of EHME to 7x4xdepth. The depth of the layer can be varied
depending on the gesture dataset. For experiments on our dataset, we
fixed the depth to 64. Table 5 shows all the parameters used to define
the shape of EHME used in testing on our gesture dataset. At the end
of the neck, we append deconvolution layers to gradually upsample
the width and height to size of the mask. And the feature maps’
depth decreases to 2 from 64 through the deconvolution layers. At
this stage we use a 2D CrossEntropyLoss layer for training, which
assigns a probability to each pixel belonging to egocentric hand or
not.

Inspired by [7] we add an extension to the neck in order to simul-
taneously generate an ego-hand mask and recognise the encoded
features that belong to a particular gesture (see Figure 1). To achieve
this, we reduce the size of encoded features to a depth using an
average pooling layer and connect this to a fully connected layer of
the size of the number of gestures used Ng. For training, we also
include a 1D CrossEntroyLoss layer at the end. At this point we get
a per frame gesture recognition (frame level).

4.2 Sequence Recognition Net
Frame level recognition can be inaccurate and noisy due to different
reasons. Individual images from different gesture sequences can be
very similar. In our natural scenario we also have large individual
variations for same gestures. Exploiting the temporal dimension
and coherence in the data helps to improve the results significantly
as we will show in our results (sequence level). Generally, RNNs
are known to encode such time-related information well. However,
traditional RNNs suffer from the problem of vanishing or exploding

Figure 5: Data augmentation step. The training image on the right is a combination of
a random background and a segmented frame using a binary mask (on the left).

gradients. LSTMs are considered an improvement for that problem
over traditional RNNs [9] as they can also forget information that is
not relevant over time. Not only do they have better convergence but
also provide the ability to be trained on and used with sequences of
arbitrary length. This property is crucial for recognition of natural
gestures considering the variation in duration needed to express the
same gesture by different people (see Figure 4). Table 5 shows
the parameters of our LSTM that is used for the gesture sequence
classification. The hidden layer from the last image in the sequence
is connected with a fully connected layer of a size Ng to classify the
sequence of gestures.

5 TRAINING

We trained our network using the augmented training dataset. The
dataset augmentation process is described in Section 5.1. The trained
network is evaluated using our testing dataset that was collected in
natural environments without green screen in the background. This
ensures that our network works well on unseen data. The hyper-
parameters used for training EHME and Sequence Net are presented
in Table 3. In Section 5.2 we discuss the strategy used for training
our network.

5.1 Data Preprocessing
We apply the mask that is obtained by the green screen removal
process as described in Section 3 to the corresponding egocentric
image and add Ni backgrounds images to it. Figure 5 shows the
mask applied to one of the images. This creates Ni images from
one captured image with the same mask. As background we chose
Ni random images from a set of 40,000 images from the COCO
Test dataset [13]. For our training we set Ni = 5, which increases
the size of dataset fivefold. In addition, we also add one of the
following ’none’, ’poisson’, ’gaussian’, or ’salt&pepper’ noises
randomly, to ensure that we are not over-fitting data. Then, we store
each of these images separately along with the gesture id and their
corresponding mask. We scale down all the images and masks to
224x126 resolution and normalise them.

5.2 Training Procedure
The training data is 90/10 split for training and validation respec-
tively throughout the training process. We train the network in 3
phases, the network parameters from each phase are transferred to
the next one. This process is described in Figure 6. In the first phase,
we train our EHME defined in Section 4.1 with one loss function
appended to deconvolution layers learning the ego-hand masks. We
use the 2D cross entropy loss and an ADAM optimizer with learning
rate 10−5 for this purpose. The data is shuffled and we train for 5
epochs with batch size of 50. This first phase, in principle trains a

Figure 6: Parameter transfer from various phases of training.

hand segmentation network that can actually be used for this pur-
pose as we will show in our experiments with the AirGest dataset
described in Section 6.2.

In the second phase, we append an average pooling layer and
then a fully connected layer with outputs size Ng to the neck of the
network. A 1D Cross Entropy Layer is added to do per frame gesture
recognition. The parameters obtained from Phase 1 are transferred
to Phase 2. Then the network is trained on a combined loss function
using 2D cross entropy loss from phase 1 and 1D cross entropy loss
from this phase with equal weight for both loss functions. We use
ADAM optimiser with learning rate 10−6 and train for 18 epochs
with batch size of 50. At this point we get a frame level gesture
recognition framework, which can be inaccurate as explained before
and evaluated in our experiments below.

For the final phase, we modify our data augmentation approach.
Instead of using a random background and noise for every image, we
now use the same augmentation for the whole gesture sequence, such
that each gesture sequence has the same background and noise. This
is needed for the final phase of training to simulate real conditions.
We send a given sequence into the EHME net in a single batch, and
save the encoded features as a sequence. Once all the sequences
are saved we use these as input to the LSTM. The hidden layer
from the last sequence is connected to a fully connected layer with
outputs size Ng and then to a 1D cross entropy layer for sequence
recognition. All the parameters from earlier phases are used to
initialise the weights of EHME + LSTM networks and we do end-
to-end training combining the three loss functions. For optimisation,
we use a Stochastic Gradient Descent algorithm, with learning rate
of 10−6 and momentum 0.7. We train for 60 epochs. All the hyper-
parameters used for training are summarised in Table 3. After this
final phase we get our full network for sequence gesture recognition.

Phase Optimiser Loss Function Batch Size Epochs
Mask Generation Adam, 10−5 2D Cross Entropy 50 5
Mask Generation
+
Frame Level Recognition

Adam, lr=10−6
2D Cross Entropy
+
1D Cross Entropy

50 18

Sequence Level Recognition SGD, lr=10−6,
momentum=0.7

1D Cross Entropy 1 60

Table 3: Parameters used in various phases of training.

6 EXPERIMENTS AND RESULTS

Network # of Gestures
Classified
Correctly

of Gestures
Classified
Wrongly

Accuracy
%

Frame Level 49 35 58.33
Sequence Level 60 24 71.42

Table 4: Accuracy results for gesture recognition on our dataset

We have tested our network architecture on our testing database
and on a dataset from AirGest [10]. Our testing dataset contains
10 natural gestures, where fingers are clipped, frames have a strong
motion blur, and there is a variation within a gesture (see Figure 7 for
examples). The AirGest dataset contains 4 gestures (click, bloom,
zoom out and zoom in) that are performed in a clinical manner, i.e

Network Parameters
EHME Encoded Features Sequence Net

Node Type Output Size Node Parameters Node Type Output Size Node Parameters Node Type Output Size Node Parameters

Resnet18 1 112x63x64

Resnet18 2 56x32x64
Resnet18 3 28x16x128

Parameters from [25]

conv1 14x8x128 3x3, stride 2, padding 1
conv2 7x4x64 3x3, stride 2, padding 1 Average Pool 1x1x64 7x4 LSTM 64 input 64, hidden 128, layers 3
deconv1 14x8x32 4x4, stride 2, padding 1 Fully Connected 1x11 64x11 Fully Connected 10 64x10
deconv2 28x16x16 4x4, stride 2, padding 1
deconv3 56x32x8 4x4, stride 2, padding 1
deconv4 112x64x4 4x4, stride 2, padding 1
deconv5 224x126x2 4x4, stride 2, padding (2,1)

Table 5: All the parameters used for various modules of the network architecture.

gestures have clear separation between phases, they are performed
slowly without motion blur, and are fully contained in the center of
the video.

In the following section we present and discuss the results from
various phases of our network on our dataset, and in Section 6.2 we
present comparative results of our network on the AirGest dataset.
Our network architecture is implemented in PyTorch and we used a
PC with an Intel Core i7 CPU and NVidia Titan Xp GPU for both,
training and testing.

(a) Clipped Fingers (b) Strong Motion Blur (c) Gesture Variation

Figure 7: Examples of frames from testing sequences. a) Left Block gesture that was
not performed fully inside the camera FOV. b) Smash gesture done at high speed with
a strong motion blur effect. c) Push Back gesture that is a variation to the one in the
training dataset.

6.1 Recognition on our dataset
As mentioned in Section 5.2 we used 3 phases for training. In our
testing we report results of networks from Phase 2 and Phase 3.
The network result obtained from Phase 2 of training can perform
recognition per frame. The input to this network is a sequence of
RGB images of a gesture, and we get a gesture classification for
each frame. A simple voting strategy is followed giving each gesture
a vote if a frame is predicted to be that gesture. The sequence is then
assigned the gesture with maximum number of votes. We call this
frame level recognition.

For sequence level recognition we input a sequence of images
to the network from Phase 3. As we can observe from the results
in Table 4 sequence level recognition performs much better than
frame level recognition. The same hand pose can be part of multiple
different gestures, but during different stages of performing the
gesture. Since frame level recognition does not consider time, it
could easily misclassify a gesture. Adding a temporal recognition
component like an LSTM solves this issue as is evident from the
results in Table 4.

To analyse recognition performance on each gesture we present
a normalised confusion matrix in Figure 8 for results from the se-
quence level recognition. The mislabelled gestures are within the
same hand (as in a left-handed gesture is being labelled as another
left-handed gesture but not a right-handed). The recognition of
gesture 7 - Left Block is especially low and is confused with Left
Shoot and Teleport gestures. Looking at the testing videos closely,
one observation that could explain this confusion is a large head
movement that creates relative motion inside the frame similar to
the one in Shoot (up-left motion) and Teleport (circular motion in
left direction). To improve the accuracy in these situations we are
planing in the future to utilise the head pose transformation that can
be obtained from HoloLens.

Also, in the Teleport gesture, some users used the whole arm
to create circular motion, where others used only one finger. This
small finger-motion is especially challenging to distinguish from an
egocentric view as it can be occluded by the arm or hand, and can
be easily confused with Shoot or Punch gestures. This is something
that should be taken into consideration when designing gestures for
egocentric view recognition.

The network to find hand pose [27] which was used in AirGestAR
[10] could not recover poses for many of the ego-hand images in
our dataset, as it was not designed to handle complex scenarios
like motion blur and clipped fingers which frequently occur in our
dataset. Our network however could handle such situations which
was not the case with AirGestAR network strategy. So we could not
perform a comparative study using their network.

Figure 8: Normalised Confusion Matrix for 10 gestures in our database. X-axis has the
predicted labels and Y-axis the ground truth labels

6.2 Recognition on AirGest Dataset
To compare our network with previous work we used a dataset from
AirGest [10]. This dataset does not have hand masks as ground
truth, which are needed to perform Phase 1 training in our network.
To avoid manual mask extraction, we used our Phase 1 network
that is trained with our training dataset to generate these masks
automatically. After visual verification, we used these masks as a
ground truth in addition to frame level labels in Phase 2 training.
Finally, we followed the same procedure mentioned in section 5.2
for Phase 3 training.

To provide comparative results we used the same training and
testing data as described in [10]. The confusion matrix is presented
in Figure 9 and the overall accuracy in Table 6. Our final network’s
performance is able to match the AirGest network’s despite being
smaller in size.

7 CONCLUSION & FUTURE WORK

We propose a novel deep learning network architecture which simul-
taneously encodes ego-hands in a sequence of images and recognises
the egocentric gesture. A novel data augmentation technique using
green screening to decrease the burden of collecting large amounts

Network # of Gestures
Classified
Correctly

of Gestures
Classified
Wrongly

Unclassified Probability
Threshold
(σ)

Accuracy
%

Ours 77 3 0 0.5 96.25
Ours 75 3 2 0.66 93.75
AirGest 75 2 3 0.7 93.75

Table 6: Accuracy results for our network and network from [10] on AirGest dataset.
Following the procedure used in [10] we experimented with different probability thresh-
olds to mark a gesture sequence as classified vs unclassified. Any sequence with
probability lower than the mentioned threshold is marked as unclassified.

Ours with σ = 0.5 AirGest σ = 0.7

Figure 9: Confusion matrix for AirGest dataset.

of data from a large number of users is introduced. The network
architecture in conjunction with the data augmentation technique
makes adding a new egocentric gesture for recognition easier. In
addition, we also publish our training and testing dataset with 10
gestures performed in a less clinical and a less constrained man-
ner. We evaluate our network which is trained on the augmented
dataset and tested on a natural (i.e. gestures performed not in front
of green screen) dataset. Our network can deal with a variations
in the gestures’ length, style and motion blur as presented in the
results.

Recognising gestures on continuous video is also essential for
making natural interactions possible on head-mounted AR devices.
Handling this challenging task is one of the directions we want
to explore in the future. Another direction we want to seek is to
use head pose information and other modalities provided by the
AR devices to deal with sudden and extreme head motion, paving
the way for recognition of more complicated gestures in difficult
scenarios and natural activities (e.g. GTEA Gaze+ [12]).

ACKNOWLEDGMENTS

This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under the
Grant Number 15/RP/2776. Sincere thanks to Sahitya Parvathaneni
for doing the major part of illustrations.

REFERENCES

[1] L. Baraldi, F. Paci, G. Serra, L. Benini, and R. Cucchiara. Gesture
recognition in ego-centric videos using dense trajectories and hand
segmentation. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pp. 702–707, 2014. 2

[2] C. Cao, Y. Zhang, Y. Wu, H. Lu, and J. Cheng. Egocentric Gesture
Recognition Using Recurrent 3D Convolutional Neural Networks with
Spatiotemporal Transformer Modules. 2017 IEEE International Con-
ference on Computer Vision (ICCV), pp. 3783–3791, 2017. 1, 2

[3] R. Cutler and M. Turk. View-based interpretation of real-time opti-
cal flow for gesture recognition. Proceedings of IEEE International
Conference on Automatic Face and Gesture Recognition, pp. 416–421,
1998. 2

[4] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 39(4):677–691,
2015. 2

[5] R. Girshick. Fast R-CNN. Proceedings of the IEEE International
Conference on Computer Vision, 2015 Inter:1440–1448, 2015. 2

[6] M. a. Goodale and a. D. Milner. Separate visual pathways for percep-
tion and action. Trends in Neurosciences, 15(I):20–5, 1992. 2

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. Pro-
ceedings of the IEEE International Conference on Computer Vision,
2017. 3

[8] D. Held, S. Thrun, and S. Savarese. GoTurn:Learning to Track at
100 FPS with Deep Regression Networks. European Conference on
Computer Vision (ECCV), 2016. 2

[9] S. Hochreiter and J. Urgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 1997. 4

[10] V. Jain, R. Perla, and R. Hebbalaguppe. AirGestAR: Leveraging
Deep Learning for Complex Hand Gestural Interaction with Frugal
AR Devices. Adjunct Proceedings of the 2017 IEEE International
Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2017,
pp. 235–239, 2017. 2, 3, 4, 5, 6

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Advances In Neural
Information Processing Systems, pp. 1–9, 2012. 2

[12] Y. Li, Z. Ye, and J. M. Rehg. Delving into egocentric actions. Proceed-
ings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 287–295, 2015. 6

[13] T.-Y. Lin, C. L. Zitnick, and P. Doll. Microsoft COCO : Common
Objects in Context. Arixiv, pp. 1–15, 2015. 4

[14] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz.
Online Detection and Classification of Dynamic Hand Gestures with
Recurrent 3D Convolutional Neural Networks. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4207–4215,
2016. 1, 2

[15] M. A. Moni and A. B. M. Shawkat Ali. HMM based hand gesture
recognition: A review on techniques and approaches. Proceedings -
2009 2nd IEEE International Conference on Computer Science and
Information Technology, pp. 433–437, 2009. 2

[16] Mu-Chun Su. A fuzzy rule-based approach to spatio-temporal hand ges-
ture recognition. IEEE Transactions on Systems, Man and Cybernetics,
Part C (Applications and Reviews), 30(2):276–281, 2000. 2

[17] Natron. Natron. www.natron.fr, 2018. 2
[18] I. Posner and P. Ondruska. Deep Tracking: Seeing Beyond Seeing

Using Recurrent Neural Networks. Proceedings of the 30th Conference
on Artificial Intelligence (AAAI 2016), pp. 3361–3367, 2016. 2

[19] K. Simonyan and A. Zisserman. Two-Stream Convolutional Networks
for Action Recognition in Videos. Advances in Neural Information
Processing Systems, pp. 1–11, 2014. 1, 2

[20] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR, abs/1409.1:1–14, 2014. 2

[21] S. Singh, C. Arora, and C. V. Jawahar. First Person Action Recognition
Using Deep Learned Descriptors. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2620–2628, 2016. 1, 2

[22] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3D convolutional networks. Proceed-
ings of the IEEE International Conference on Computer Vision, 2015
Inter:4489–4497, 2015. 2

[23] H. Wang, C. Schmid, A. Recognition, and T. Iccv. Action Recognition
with Improved Trajectories. Proceedings of the IEEE International
Conference on Computer Vision, pp. 3551–3558, 2013. 2

[24] P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, and P. Ogunbona. Large-scale
Isolated Gesture Recognition Using Convolutional Neural Networks.
IEEE International Conference on Pattern Recognition, pp. 19–24,
2017. 2

[25] S. Wu, S. Zhong, and Y. Liu. Deep Residual Learning for Image Recog-
nition. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–17, 2016. 2, 3, 5

[26] Y. Zhang, C. Cao, J. Cheng, and H. Lu. EgoGesture: A New Dataset
and Benchmark for Egocentric Hand Gesture Recognition. IEEE
Transactions on Multimedia, 9210(c):1–1, 2018. 1, 2

[27] C. Zimmermann and T. Brox. Learning to Estimate 3D Hand Pose
from Single RGB Images. Proceedings of the IEEE International
Conference on Computer Vision, 2017. 2, 5

	Introduction
	Related Work
	Ego-Centric Gesture Database
	Network Architecture
	EHME Net
	Sequence Recognition Net

	Training
	Data Preprocessing
	Training Procedure

	Experiments and Results
	Recognition on our dataset
	Recognition on AirGest Dataset

	Conclusion & Future Work

