
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

KAFCA: Knowledge Autonomy for Reactive Context-aware
Applications

Neil O’Connor

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Compnter Science)

July 2010

COLLEGE'

1 0 APR 2012

LIBRARY DUBLIN

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any other

University, and that unless otherwise stated, it is entirely my own work. I agree that Trinity College

Library may lend or copy this thesis upon request.

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

0^ Co/\ tVar'
Neil O’Connor

Dated: 4th June 2010

Acknowledgements

I would firstly like to sincerely thank my supervisor Prof. Vinny Cahill for his help and guidance

throughout this process. It has been an invaluable learning experience.

I have been fortunate enough to be surrounded by interesting, friendly and supportive people in

the Distributed Systems Group, and you have made this a fantcistic place to work. In spite of my

self-perceived hardship I think I will look back on these years as some of my best, and I hope that

some of you will remain my friends for life.

I would also like to thank my family, who have never complained that I’m taking too long. Thank

you for never questioning that I’d get there in the end.

Finally to Jen, who has been there through every high and low. You know what that has meant

to me.

Neil O’Connor

University of Dublin, Trinity College

July 2010

IV

Abstract

Pervasive computing represents a vision of networked computers being distributed throughout our

everyday environment in order to transparently provide services to people. The use of sensors enables

the deployment of so-called context-aware pervasive computing applications that can perceive their

operating context and alter their behaviour accordingly for the user.

Much work in the context-aware computing field focuses on simplifying application development

by providing means for developers to define contexts of interest at design time. With these approaches

correct application behaviour depends on the developer’s knowledge. If the developer has an incorrect
understanding of the deployment environment then the context definitions may be inaccurate. This is

likely to be the case as applications are deployed in the real world, which is inherently unpredictable.

Contexts are also typically defined relative to a fixed set of sensors or sensor types forseen by the

developer. In the real world these sensors may not be available and may even be unsuitable for

detecting the context in particular environments. An application cannot adapt context definitions that

are fixed at design time to correct context-definition inaccuracy or sensor unavailability/unsuitability.

Some approaches in the context-aware computing field apply artificial intelligence (AI) techniques

to reduce the dependency on the developer, by learning context definitions at run time. Existing

approaches have the potential to adapt context definitions to the run-time environment, however they

limit the application to a fixed set of sensors. They also depend on a discretisation layer that abstracts

from raw sensor data to make the learning task feasible. This discretisation layer is fixed at design time

and limits the resolution at which the application can learn its context definitions. It may therefore

limit the accuracy of learned context definitions.

Our hypothesis is that context-aware applications in unpredictable environments are constrained

by structures that are encoded at design time, and could more accurately infer their context if they

self-configured their context definitions at run time. We characterise applications with this capability

as knowledge autonomous. Knowledge-autonomous applications would extract meaning from sensor

data and use this meaning to adapt their context definitions, thereby allowing them to use the most

suitable, available sensors.

We have identified two key requirements for knowledge autonomy in context-aware applications.

Context definitions should be represented such that an application can independently interpret them,

so they can be evaluated and corrected at run time. There should also be means to select the set

of sensors used to distinguish contexts at run time, and evaluate sensor suitability relative to the

application’s goals.

To address these requirements we define the two-phase Knowledge Autonomy For Context-aware

Applications (KAFCA) process, in which application-interpretable meaning for context is derived from

application actions. Central to this process is the use of reinforcement learning to learn mappings

from sensor data to actions at run time. As with other approaches that apply AI techniques this

necessitates a discretisation layer. The first phase of the KAFCA process iteratively refines how data

from individual sensors is discretised to improve the accuracy of the resulting context definitions.

The second phase iteratively combines sensors based on their individual context definitions, and

evaluates application performance while using different combinations. The most suitable set of sensors

is identified from those available to a context-aware application.

We demonstrate that reinforcement learning is a suitable technique for learning the meaning of

discretised sensor data. We show that the accuracy of context definitions can be significantly improved

by refining the discretisation layer, subject to a trade off between accuracy and learning time. We
also show that where user or environmental characteristics are sufficiently varied an application that

selects its sensors at run time outperforms applications that use fixed sets of sensors.

VI

Publications Related to this Ph.D.

• Neil O’Connor, Raymond Cunningham and Vinny Cahill Self-adapting Context Definition. In

Self-Adaptive and Self-Organizing Systems (SASO), Boston, USA, July, 2007.

vn

Contents

Acknowledgements iv

Abstract iv

List of Tables xiii

List of Figures xiv

Chapter 1 Introduction 1

1.1 Pervasive computing... 1

1.2 Context-awcire computing.. 2

1.3 Motivation .. 3

1.3.1 Context misinterpretation.. 4

1.3.2 Sensor unavailability or unsuitability.. 5

1.3.3 Hypothesis.. 6

1.4 Thesis objectives... 6

1.5 Knowledge Autonomous Context-aware Applications... 7

1.6 System model... 8

1.7 Thesis assumptions.. 10

1.8 Thesis contribution.. 10

1.9 Thesis outline... 11

Chapter 2 State of the Art 12

2.1 Knowledge-intensive context definition ... 13

2.1.1 Design-time approaches.. 13

2.1.1.1 Context Toolkit.. 14

vm

2.1.1.2 Java Context-Awareness Framework (JCAF)....................................... 15

2.1.1.3 Sentient Object Model ... 17

2.1.1.4 Summary... 18

2.1.2 Run-time approaches... 19

2.1.2.1 PACE.. 20

2.1.2.2 Context Studio.. 22

2.1.2.3 Summary... 23

2.2 Learned context definition ... 24

2.2.1 Supervised, unsupervised and reinforcement learning 25

2.2.2 Common discretisation architecture .. 25

2.2.3 Bayesian networks.. 27

2.2.3.1 A naive Bayes classifier approach ... 28

2.2.3.2 A hidden Markov model approach... 29

2.2.3.3 Structural learning.. 31

2.2.3.4 Summary... 32

2.2.4 Artificial neural networks.. 33

2.2.4.1 Self-organising maps... 34

2.2.4.2 SCM .. 36

2.2.4.3 SenSay... 37

2.2.4.4 Summary.. 38

2.2.5 Reinforcement learning ... 39

2.2.5.1 Gaia... 39

2.2.5.2 Zaidenberg et al.. 41

2.2.5.3 Fuzzy-state learning... 42

2.2.5.4 Summary... 43

2.2.6 Case-based reasoning... 44

2.2.6.1 LISTEN .. 44

2.2.6.2 MyCampus.. 45

2.2.6.3 Summary... 46

2.2.7 Data mining ... 47

2.2.7.1 User-preference mining... 47

2.2.7.2 Summary... 48

2.3 Chapter summary .. 49

Chapter 3 Design 52

3.1 Knowledge-autonomous context definitions .. 53

3.1.1 Introspective context... 55

3.1.2 Representation of context definitions.. 57

3.1.2.1 Sensor-data representation.. 57

3.1.2.2 Context edges... 58

3.1.3 Critique.. 60

3.2 KAFCA.. 60

3.3 Discretisation... 64

3.4 Reinforcement learning.. 68

3.4.1 Action selection.. 69

3.4.1.1 Action selection in KAFCA.. 70

3.4.2 Reward.. 70

3.4.3 Knowledge update.. 71

3.4.3.1 Knowledge update in KAFCA.. 72

3.4.4 Stopping learning... 74

3.5 Accurate context definition ... 74

3.5.1 Discrete-state initialisation ... 75

3.5.2 Discrete-state refinement .. 75

3.5.2.1 Inconsistent-discrete-state identification... 77

3.5.2.2 Discrete-state-subspace splitting... 77

3.5.3 Context definition .. 79

3.6 Sensor selection.. 81

3.6.1 Combination selection.. 84

3.6.2 Context combination... 85

3.6.3 Combination evaluation... 86

3.6.4 Critique.. 87

3.7 Chapter summary .. 88

Chapter 4 Implementation 89

4.1 Overview .. 89

4.2 Context-aware application.. 92

4.3 MoCoA ... 94

4.4 KAFCA manager... 95

4.5 Discretisation.. 97

4.6 Reinforcement learning.. 98

4.7 Accurate context definition ... 101

4.8 Sensor selection... 107

4.9 Chapter summary ... 110

Chapter 5 Evaluation 111

5.1 Evaluation goals .. Ill

5.2 Considerations in the selection of scenarios ... 112

5.3 The line scenario.. 113

5.3.0.1 Lessons... 113

5.4 The grid scenario.. 115

5.4.0.2 Lessons... 115

5.5 Sentient-couch scenario ... 118

5.5.1 Simulation ... 119

5.5.2 Application implementation... 121

5.5.3 Configuration.. 121

5.5.4 Experiment... 122

5.5.5 Results ... 122

5.5.6 Conclusion ... 125

5.6 Power-management scenario... 126

5.6.1 Sensors ... 127

5.6.2 Application goal... 128

5.6.3 Emulation.. 129

5.6.4 Application implementation... 131

5.6.4.1 Reward Model.. 131

5.6.4.2 Sensor-evaluation metric .. 133

5.6.5 Configuration... 136

5.6.6 Experiment... 136

5.6.6.1 Oracle and always-on applications.. 136

5.6.6.2 Threshold applications ... 137

5.6.6.3 Fixed-sensor applications.. 138

5.6.6.4 Run-time sensor selection application... 138

5.6.6.5 Evaluation metrics.. 139

XI

5.6.7 Results for recorded sensor data .. 139

5.6.7.1 Energy savings... 140

5.6.7.2 User-perceived performance.. 141

5.6.7.3 Impact on device lifetime... 143

5.6.7.4 Conclusion.. 144

5.6.8 Sensor-data analysis..145

5.6.8.1 Correlation.. 145

5.6.8.2 Pattern occurrences..147

5.6.8.3 Conclusion... 149

5.6.9 Sensor-data generation... 150

5.6.10 Results for generated sensor data.. 152

5.6.10.1 Energy savings.. 153

5.6.10.2 User-perceived performance.. 154

5.6.10.3 Impact on device lifetime... 157

5.6.10.4 Conclusion..158

5.7 Generalisability of results... 158

5.8 Performance and scalability.. 159

5.9 Chapter summary ... 159

Chapter 6 Conclusions 161

6.1 Achievements... 161

6.2 Objective achievements .. 163

6.2.1 Knowledge autonomy ... 163

6.2.2 Flexibility of context definitions... 164

6.2.3 Selection of suitable sensors.. 164

6.2.4 Sensor unavailability at run time.. 164

6.3 Guidelines and heuristics.. 165

6.4 Future work.. 166

6.4.1 Learning efficiency... 166

6.4.2 Increased automation of the KAFCA process... 167

Bibliography 169

xn

List of Tables

1.1 Sensor meta data... 9

2.2 Summary of state of the art approaches to context definition .. 51

5.1 Sentient-couch configuration... 122

5.2 Processed sensor data captures time.. 127

5.3 Power-management sensors... 128

5.4 Sentient-couch configuration... 136

5.5 Fixed-sensor sets... 138

5.6 Patterns of sensor data from (Harris, 2007) ... 147

5.7 User and environmental characteristics.. 150

5.8 Characteristics of generated users ... 151

xui

List of Figures

1.1 Structure of a context-aware application.. 2

1.2 Context interpretation depends on the environment.. 4

1.3 Poor abstractions lead to context misinterpretation .. 5

1.4 KAFCA within the MoCoA middleware.. 9

2.1 Context Toolkit components and relationships from (Dey et ah, 2001)........................ 14

2.2 JCAF context model from (Bardram, 2005).. 16

2.3 Sentient Object Model from (Biegel & Cahill, 2004) 17

2.4 User preferences in context definitions... 19
2.5 The PACE framework from (Henricksen et ah, 2006) 21

2.6 PACE preferences for a context-aware communication tool from (Henricksen et al.,

2006) ... 21

2.7 Context Studio from (Korpipaa et ah, 2005) 22

2.8 Common discretisation architecture .. 26

2.9 An example Bayesian network from (Charniak, 1991)... 27

2.10 Korpipaa et al. context-representation layers from (Korpipaa et ah, 2003).................. 28

2.11 Smith et al. runtime training-data interface from (Smith et ah, 2006)........................... 30

2.12 An artificial neural network... 33

2.13 A self-organising map from (Van Laerhoven & Cakmakci, 2000).................................... 34

2.14 Clusters of data in a self-organising map from (Van Laerhoven & Cakmakci, 2000) . . 35

2.15 SenSay two-step approach from (Krause et ah, 2006).. 37

2.16 Gaia context infrastructure from (Ranganathan & Campbell, 2003).............................. 39

2.17 Zaidenberg et al’s learning and interaction approach from(Zaidenberg et al., 2009) . . 40

2.18 Fuzzy discretisation from (Ali et ah, 2008)... 42

2.19 LISTEN case representation from (Zimmermann, 2003) .. 44

XIV

2.20 Data mining of contexts from (Tsang & Clarke, 2007) .. 47

3.1 A semiotic triangle (adapted from (Ogden & Richards, 1923)) 54

3.2 An application’s perception of the environment... 57

3.3 Context definitions in the sensor space ... 59

3.4 KAFCA processes .. 61

3.5 A discrete state in 3-dimensional space.. 65

3.6 Contexts are collections of discrete states .. 67

3.7 Reinforcement-learning steps .. 68

3.8 An inconsistent discrete state.. 73

3.9 Initial discrete states .. 75

3.10 Inappropriate discrete states cause inaccurate context definitions................................. 76

3.11 Potentially-inconsistent states.. 77

3.12 Discrete-state-subspace splitting ... 78

3.13 Discrete states that are too small represent no sensor values.. 78

3.14 Discrete-state refinement.. 79

3.15 Similar discrete states are combined in contexts... 80

3.16 Search for best sensor combination.. 84

3.17 Combining contexts ... 86

4.1 High-level architecture ... 90

4.2 High-level sequence of operations... 91

4.3 Commonly-used classes ... 92

4.4 The Sensor and Action classes.. 92

4.5 The abstract RewardModel and SensorEvaluationMetric classes.................................... 93

4.6 The MoCoA class... 94

4.7 MoCoA- operations ... 94

4.8 KAFCAManager class.. 95

4.9 KAFCAManager- sequence of operations.. 96

4.10 The Discretisation class... 97

4.11 Discretisation- operations.. 97

4.12 The reinforcement-learning classes.. 98

4.13 Reinforcement-learning- sequence of operations... 99

4.14 The AccurateContextDefinition class... 102

XV

4.15 Accurate context-definition- sequence of operations.. 103

4.16 The SensorSelection class.. 107

4.17 Sensor selection- sequence of operations.. 108

5.1 The line scenario.. 113

5.2 Q-value oscillation in an inconsistent discrete state... 114

5.3 the grid scenario.. 115

5.4 Temporal dependency in the grid scenario...117

5.5 Example user-weight profiles .. 122

5.6 Context-definition inaccuracy.. 123

5.7 Required learning iterations... 124

5.8 Cost-benefit analysis of discrete-state refinement... 125

5.9 Recorded usage trace based on idle periods .. 127
5.10 Key periods for changing the power state ... 131

5.11 Oracle-application behaviour ... 137

5.12 Threshold-application behaviour .. 137

5.13 Total energy consumption.. 139

5.14 Delta energy consumption from the Oracle application.. 140

5.15 False suspends ... 142

5.16 Manual activations.. 143

5.17 Breakeven not reached.. 144

5.18 Correlation between bluetooth, face-detection sensors and idle time............................... 146

5.19 Bluetooth pattern occurrences.. 147

5.20 Face-detection pattern occurrences... 148

5.21 Object-range pattern occurrences.. 149

5.22 Total energy consumption.. 152

5.23 Delta energy consumption from the Oracle... 153

5.24 False suspends ... 155

5.25 Manual activations.. 156

5.26 Breakeven not reached.. 157

Chapter 1

Introduction

Context-aware applications deployed in a pervasive-computing environment are designed to identify

their operating context from sensor data and adapt their behaviour appropriately. These applications

may encounter unpredictable environmental and user characteristics when they are deployed, making

it difficult to construct context definitions that are appropriate in all environments. In addition the
set of sensors available to the application at run time may be unknown. Expected sensors may be

unavailable, while suitable but unexpected sensors may be present. Sensor unpredictability increases

the difficulty of defining application contexts.

This thesis investigates how context-aware applications attach meaning to sensor data so they

can independently reason about their context definitions- be knowledge autonomous. The principal

objective of this research is to define mechanisms to increase a context-aware application’s accuracy

at identifying its context thereby improving application performance. A secondary objective is to

simplify the task of the developer when building this class of application by reducing the requirement

for encoding expert knowledge.

This chapter introduces pervasive computing and its relationship with context-awareness, moti­

vates the research, presents the contributions of the work and, finally, outlines a roadmap for the

thesis.

1.1 Pervasive computing

Pervasive (or ubiquitous) computing is heralded as the next age of computing (Satyanarayanan, 2001;

Weiser, 1991). Pervasive computing refers to the seamless integration of information technology (IT)

in everyday life. The objective is to replace the current model of IT usage, where users actively

1

1.2. Context-aware computing

Figure 1.1: Structure of a context-aware application

perform tasks at dedicated computing devices, with a model where devices transparently assist users-

providing information and services in an intelligent, unobtrusive manner. The user and their tasks

should be the central focus rather than the technology.

While computing devices are not yet pervasive, we are progressing towards this vision. Personal

digital assistants (PDAs), mobile phones, large-scale displays and digital cameras are commonly used

devices that resemble those of Weiser’s vision (Bell & Dourish, 2007). Mobile phone deployment, in

particular, is widespread, and approaching saturation in places (Harris, 2007). These devices offer

ever increasing processing power, storage, networking and functionality to replace that of the common

desktop computer (Barton et al., 2006).

Although the hardware is becoming more widespread we are still some way from seamlessly pro­

viding useful services to the user. In Mark Weiser’s own words- “applications are of course the whole

point of pervasive computing” (Weiser, 1993). Context-aware computing addresses the challenge of

building applications that provide these services.

1.2 Context-aware computing

Context-aware computing is a fundamental component in realising the vision of pervasive computing.

Its objective is to increase application usability and effectiveness by taking environmental context into

account (Baldauf et al., 2007). Gartner predict that “conditions will develop in 2009 through 2012

that will lead to mainstream adoption of context-aware computing” (Gartner, 2009).

Context describes the state of the environment in which an application operates. Dey’s popular

definition describes context as “any information that describes the relevant elements of a given situa­

tion” (Dey et al., 2001). Context-aware applications identify the context and adapt their behaviour

accordingly without explicit user intervention (Schmidt et al., 1999).

Context data may come from a variety of sources including the physical environment, network

statistics, device status and user profiles (Baldauf et al., 2007). We are particularly interested in

Chapter 1. Introduction

sensors that detect aspects of the physical environment, as this is the user interface for context-aware

applications and key to transparent interaction. Figure 1.1 shows a context-aware application that

gathers sensor data from the environment, infers its context, and alters how it affects the environment

through actuators.

Obviously these applications depend on the availability of sensors in the environment. It is part

of the pervasive-computing vision that sensors will be embedded in the environment to provide sen­

sor data. There is already significant progress in this direction with laptop computers and mobile

phones now featuring global positioning system (GPS) location sensors, accelerometers, cameras and

microphones. In the future, sensors embedded in traditional systems may also be integrated into the

pervasive-computing environment to provide sensor data to generic applications. Examples could in­

clude thermostats in home-heating systems, road-traffic cameras, and motion detectors on automatic

doors. Increasing numbers and types of sensors may create new ways for applications to detect their

context.

1.3 Motivation

Standard applications operate in a limited number of situations and a developer designs the appli­
cation to operate appropriately in each situation (Kofod-Petersen, 2006). In contrast, context-aware

applications operate in the real world, where each deployment environment is unique and the situa­

tions that arise are unpredictable. This unpredictability makes it more difficult to build applications

that operate correctly.

Most research in context awareness focuses on technical and syntactic issues associated with storing,

querying and interpreting context. These issues have been widely researched and surveyed (da Costa

et ah, 2008; Baldauf et ah, 2007; Modahl et ah, 2005). However the challenge of defining the “right”

contexts for an application- contexts that cause appropriate adaptation at run time- has received

little attention (Mikalsen & Kofod-petersen, 2005). In general this issue is ignored by making context

definition a knowledge-intensive task. This places the responsibility for defining correct application

contexts on the developer’s expert knowledge of the application and environment. As Flanagan

observes “an expert is needed to define contexts and user needs in those contexts” (Flanagan, 2005b).

The accuracy of context definitions in knowledge-intensive approaches depends on the knowledge of

the developer.

Unfortunately the developer cannot define how an application should react to every possible en­

vironmental situation since there are an unbounded number of situations in the real world (Banavar

1.3. Motivation

“hot day” in Dublin "hot day" in Dubai

I i
0 18 25 27 37

Temperature (°C)

Figure 1.2: Context interpretation depends on the environment

&: Bernstein, 2004). In order to build an application the developer must make aissumptions about the

run-time environment. Unpredictability in the real world means these assumptions may not be true,

and we identify two problems that this causes for context definition.

1.3,1 Context misinterpretation

Correctly identifying the context depends on accurate interpretation of sensor data, however the

correct interpretation may depend on the particular environment. Kofod-Petersen describes this

challenge for context-aware applications: “The ability to know exactly what should be done, when,

how and why are not necessarily well known when constructing the application" (Kofod-Petersen,
200G). For example an application designed to infer a “hot day” context in Dublin might interpret

this from temperature readings in the range 18°C to 25"C, however the same temperature readings

in Dubai would not indicate the “hot day” context (Fig. 1.2). Accurate interpretation of the context

depends on the specific run-time environment in which the application is deployed.

Some researchers have applied learning techniques from artificial intelligence (AI) to address this

challenge. The fields of AI and ubiquitous computing share an overlapping interest in interpreting and

responding to the dynamics of the environment (Leahu et ah, 2008). Context-definition approaches

based on AI techniques learn about context in order to reduce their dependency on expert knowledge.

Various techniques such as Bayesian networks, reinforcement learning and case-based reasoning have

been applied and each has its own particular requirements and limitations when applied to learning

context definitions. A common issue when using these techniques is that sensor data is too fine­

grained to learn individual interpretations for all possible sensor values. As we discuss in Chapter 2

context-definition-learning approaches require a discretisation layer that maps from low-level sensor

data to discrete states, to reduce the granularity at which sensor data is considered.

Context definitions are learned at the granularity offered by discrete states in the discretisation

layer. Atkin states that “much of the art of problem solving (using AI techniques) depends on choosing

the appropriate set of states” (Atkin & Cohen, 2000). If the discrete states do not capture important

changes in the environment learned context definitions may be inaccurate and lead to incorrect appli-

Chapter 1. Introduction

discrete states

/\
learned “hot day”

I
TH I' IE

0 j 5 10

raw sensor data

15 20
»■

25
Temperature (°C)

correct “hot day"

Figure 1.3: Poor abstractions lead to context misinterpretation

cation behaviour. For example consider the discrete states 0-5, 5-10, 10-15"C,... for a temperature

sensor (Figure 1.3). In an environment where the context “hot day” is 18 to 25"C, the application

(limited by the discretisation layer) would learn that 15 to 25°C is the “hot day” context. In this case

temperatures between 15°C and 17°C are misinterpreted as “hot day” due to this context-definition

inaccuracy.

The challenge of defining an appropriate set of discrete states is compounded in context-aware

applications by unpredictability in the run-time environment. Discrete states that are suitable for
learning in one run-time environment may not be suitable for learning in another. Existing context-

definition-learning approaches define the discretisation layer using expert knowledge at design time

and do not adjust it for the run-time environment (c.f. Chapter 2).

1,3.2 Sensor unavailability or unsuitability

Another potential issue caused by unpredictability in the run-time environment is sensor unavailability.

Contexts are typically defined relative to a fixed set of sensors assumed to be available at run time,

and in the absence of a required sensor the context cannot be inferred. A number of approaches

(Dey et ah, 2001; Bardram, 2005; Biegel & Cahill, 2004) treat the issue of sensor unavailability as a

resource-discovery problem. In these approaches sensor types rather than specific sensor instances can

be associated with an application at design time. Instances of these sensor types are discovered and

connected to at run time. These approaches address syntactic issues of identifying and selecting sensor

instances, however the issue of using unforeseen sensors is not addressed. Only sensors of exactly the

expected types can be used. For example, a sensor that measures temperatures in "Fahrenheit or

"Kelvin cannot be used to infer a “hot day” context by an application that only expects temperatures

in "Celsius. The sensors produce equivalent information but only those of the expected type produce

data that the application knows how to interpret. Existing approaches assume that at least one

1.4. Thesis objectives

instance of each expected sensor type will be available at run time and are unable to adapt if this is

not the case (c.f. Chapter 2).

Environmental unpredictability may also affect sensor suitability. In many cases it is impossible for

a developer to specify the particular combination of sensor data from which a context should be inferred

(Banavar & Bernstein, 2004). A predefined set of sensors may not detect the relevant characteristics for

inferring a context in a particular run-time environment. For example an application designed to infer

a “meeting” context based on voice activity may not function correctly in a shared-office environment.

In this environment simultaneous phone calls by multiple individuals could be misinterpreted as a

“meeting”. Existing approaches do not consider the suitability of sensors for inferring the context at

run time (c.f. Chapter 2).

1.3.3 Hypothesis

These issues highlight the difficulty of defining contexts that are accurate in all run-time environments.

Our hypothesis is that context-aware applications in unpredictable environments are constrained by

elements of their context definitions that are fixed at design time, and could more accurately infer their

context if they self configure their context definitions at run time. We characterise these applications

as knowledge autonomous, as their context definitions do not contain knowledge from an expert.

Knowledge-autonomous applications would independently attach meaning to sensor data, and this

would facilitate context definitions that accurately interpret data from the most suitable sensors in

the run-time environment.

1.4 Thesis objectives

This thesis addresses the challenge of defining the right contexts for context-aware applications. In

Section 1.3 we identified ways in which an application’s ability to identify its context could be affected

by the unpredictability of its run-time environment. An application might misinterpret how sensor

data indicates the context in different environments, or use sensors that are unsuitable for sensing the

context. It might also be unable to identify the context if particular sensors become unavailable. We

define two main objectives of this thesis to address these challenges.

Objective 1: Accurate run-time interpretation of context from sensor data

Applications should identify their context appropriately for the run-time environment in which they

are deployed. To achieve this goal they should interpret sensor data at run time to identify contexts

Chapter 1. Introduction

correctly. The first objective of the thesis is to explore how existing approaches are limited in how

they adapt application context definitions to the run-time environment, and how these limitations

should be addressed to improve the accuracy of context definitions.

Objective 2: Suitable sensor selection from those available

The set of sensors that produce useful information for identifying contexts may depend on the char­

acteristics of different run-time environments. The second objective of this thesis is to examine how

existing approaches are limited in their ability to identify suitable sensors, and address these limita­

tions to increase the autonomy of context-aware applications. This objective also addresses the issue

of sensor unavailability, as applications would choose the most suitable sensors from those available.

1.5 Knowledge Autonomous Context-aware Applications

In this thesis we describe a process for Knowledge Autonomous Context-aware Applications called

KAFCA. KAFCA addresses the reliance on expert knowledge that we identify as a limitation of

context accuracy in existing approaches to context definition (Section. 1.3).

In a scenario where KAFCA is applied we envision a context-aware application deployed in an en­

vironment unforeseen by the developer. This environment may be very different from the envisioned

run-time environment in terms of appropriate context definitions and available, suitable sensors. Ini­

tially the application learns how to infer its context from individual sensors. Contexts are characterised

by the application adaptation they cause, so the application learns when it is appropriate to take par­

ticular actions. Contexts are defined on a discretisation layer to make learning feasible, and the

discrete states in this layer are iteratively refined to increase the accuracy of dependent context defini­

tions. Subsequent to learning context definitions for individual sensors the KAFCA process combines

and evaluates different sets of available sensors, and the most suitable combination is identified. By

adapting its context definitions at run time the application accurately identifies its operating context

in its current environment.

Reinforcement learning (Sutton & Barto, 1998) is central to the KAFCA process as it is used to

learn policies, which are mappings from sensor data to actions. A policy defines meaning for sensor

data that the application can use to reason about its context definitions. KAFCA has two distinct

phases and policies are used in both.

The first phase of the process learns accurate context definitions for individual sensors. Reinforce­

ment learning necessitates a discretisation layer, however unlike other learning approaches to context

1.6. System model

definition the discretisation process is not immutable. Instead it is refined at run time to improve the

accuracy of context definitions. The refinement process is iterative. Reinforcement learning is used to

learn policies, which in turn are used to identify context-edge locations- boundaries between different

contexts. Discrete states near context edges are refined so that context edges can be identified with

greater accuracy. This process is repeated to improve the accuracy of context definitions. This phase

of KAFCA addresses the issue of context misinterpretation described in Section 1.3.1 by expressing

contexts on discrete states that are adjusted for the run-time environment.

The second phase of KAFCA addresses the sensor unavailability and unsuitability issues described

in Section 1.3.2. In general not all available sensors will be suitable for inferring the context so an

informed search is used to identify potentially useful sensor combinations. Sensors are combined

using the context definitions learned during the first phase of KAFCA. Application performance is

measured while using different combinations and the results of the evaluation inform the search for

other combinations. The most suitable sensors are iteratively identified and are selected as the run­
time sensors for the application.

In the course of our evaluation we investigate the suitability of reinforcement learning as an ap­
proach for learning the meaning of discretised sensor data. Reinforcement learning requires that the

application developer define a reward model that evaluates the effectiveness of application actions.

There are two common reward-model types- long-term and immediate- and we investigate the impli­
cations of using each type when learning about sensor data.

We measure the effect of discrete-state refinement on context-definition accuracy, by recording

their accuracy after each pass of the refinement process. V/e also record the learning overhead of each

pass, and using this data we carry out a cost-benefit analysis of accuracy versus learning time.

Finally, we investigate the effect of sensor selection on application performance. The performance of

an application that uses the KAFCA process to select sensors is compared to applications with different

fixed sets of sensors. These applications are tested in environments where user and environmental

characteristics vary, which creates the potential for sensor-suitability issues. Application performance

is evaluated and compared across a number of application-specific metrics.

1.6 System model

KAFCA’s scope includes context definition and sensor selection, but excludes other elements of

context-awareness such as sensor discovery, description and communication, as well as actuator com­

munication. These tasks are delegated to the MoCoA middleware Senart et al. (2006). MoCoA is a

8

Chapter 1. Introduction

Figure 1.4: KAFCA within the MoCoA middleware

Value Type Description
Min double Minimum value that the sensor can produce (may be —oo)
Max double Maximum value that the sensor can produce (may be oo)

Precision double Maximum precision offered by the sensor
Initial-boundaries [Jdouble Initial set of discrete-state boundaries

Table 1.1: Sensor meta data

middleware that provides a set of programming abstractions and services for building context-aware

applications. In addition to the suitability of these abstractions for KAFCA this middleware was also
chosen due to the author’s prior experience with it. We discuss MoCoA in more detail in Section 4.3.

The overall system model is shown in Figure 1.4. MoCoA constructs applications using the sentient-

object abstraction. Sentient objects are intelligent entities that extract and interpret context informa­

tion from sensors to adapt their behaviour. The KAFCA process provides the logic within a sentient

object by defining contexts and activating actuators in response to context changes. MoCoA presents

sensors to the sentient object as software-event producers and actuators as software-event consumers.

This abstracts away the complexity of interfacing with physical devices from KAFCA.

In addition to the data-delivery services offered by MoCoA the KAFCA process also requires that

sensors be annotated with meta-data. These values are used to initialise discrete states for a sensor

and control the degree of discrete-state refinement that occurs. Required meta-data values are listed

in Table 1.1. The Min and Max values, along with the Initial-boundaries value are used to define

the initial set of discrete states. The Precision value defines the limit to which discrete states can be

refined. Various standards for sensor meta-data have been proposed. The most common standards

are surveyed and compared in (Chen & Helal, 2008), with the most frequently used being SensorML

(Open Geospatial Consortium, 2000) and IEEE 1451 (National Institute of Standards and Technology,

2005). All of these standards are suitable for representing this simple sensor meta-data.

1.7. Thesis assumptions

1.7 Thesis assumptions

In order to scope the work a number of assumptions are made across the thesis. We summarise these

assumptions in this section and they are discussed in more detail where necessary in the remainder of

the thesis.

With respect to sensor data we assume that it is reliably delivered periodically to an application,

and that sensor data from multiple sensors arrives, or at least can be reasoned about, in parallel. We

also assume that sensors produce ordered sensor data, and that sensor data that cause similar the

application to adapt its behaviour similarly are situated in close proximity to each other based on

that ordering.

With regards to reinforcement learning we assume that the set of sensors that the reward model

depends on are always available to an application, that the set of actions available to an application

are known at design time, and that we can identify when sufficient learning has occurred based on the

stability of learned policies. Although we expect unpredictable deployment environments we assume

that the environment changes slowly enough to allow the application to learn stable policies using

reinforcement learning.

1.8 Thesis contribution

To date a number of approaches to run-time context definition have been proposed. These approaches

depend on underlying fixed structures that limit their ability to learn accurate context definitions and

select suitable sensors. The context-definition learning approach described in this thesis contributes

to the state of the art in context awareness by addressing the following issues:

• Existing definitions of context focus on describing context in terms of types of information:

location, identity, objects and time. However these are hurnan-interpretable structures that an

application cannot process without interpretations defined by a developer. This thesis defines

context in terms of application behaviour, which can be independently learned by the application

at run time using AI techniques.

• Existing approaches to context definition rely to various degrees on structures that encode

expert knowledge. These structures cannot be autonomously adjusted by the application at run

time to correct context-definition inaccuracy. This thesis describes context definitions that are

flexibly defined in terms of context edges, and a technique for refining definitions to improve

their accuracy at run time.

10

Chapter 1. Introduction

• Existing approaches to context definition are restricted to sensor types that are defined at design

time. However this limits their ability to adapt to sensor unavailability or unsuitability. This

thesis describes an algorithm for selecting the most suitable application sensors from those

available to improve application performance.

In summary, this thesis describes the development of a process for defining contexts that are accurate

in the current run-time environment, and are inferred from the most suitable set of sensors available.

1.9 Thesis outline

The structure of the remainder of the thesis is as follows. Chapter 2 presents a survey of background

material and related research in the field. It highlights the achievements and limitations of existing

approaches. Chapter 3 introduces the main concepts of our approach to knowledge-autonomous, run­

time context definition. Chapter 4 presents an implementation of the approach. Chapter 5 evaluates

the effectiveness of the approach for a number of scenarios. Chapter 6 presents conclusions, open

questions and opportunities for further research.

11

Chapter 2

State of the Art

Knowledge autonomy for context-aware applications is concerned with making context definitions

independent of expert knowledge. This will allow applications adapt their context definitions to be

accurate for the current run-time environment and infer the context from an unforeseen set of sensors,

as discussed in Chapter 1. Context definitions define how context-aware applications reason about

sensed context and their own behaviour. In the final step of this reasoning process the application

makes a decision to adapt its behaviour, e.g., if contextx do actioriy. This step will almost certainly
depend on other reasoning processes, e.g., to determine that the application is actually in contextx-

We define a context definition as;

All processes that alter or add interpretation to raw sensor data, between the point where

a sensor generates data and the point where an application makes a decision to adapt its

behaviour based on that data.

These holistic context definitions may encapsulate layers of processing and interpretation across mul­

tiple components of a context-aware application.

In our review of related work we compare four aspects of each approach, which reflect the objectives

of the thesis outlined in Section 1.4. To evaluate the ability of approaches to accurately interpret

context in different run time environments (Objective 1) we examine (1) the flexibility of their context

definitions at run time and (2) the expert knowledge required to adjust those context definitions.

The flexibility of definitions limits how they can be adjusted to correct inaccuracy at run time, and

their dependency on expert knowledge limits how autonomously the adjustment can be made by

the application. To evaluate the ability of approaches to select suitable sensors from those available

(Objective 2) we examine whether they consider (3) the usefulness of sensors or sensor information

12

Chapter 2. State of the Art

for identifying contexts at run time, and (4) how they address the issue of expected sensors being

unavailable.

We distinguish between two general categories of context-definition approaches: knowledge in­

tensive and learned. Most approaches to context awareness are in the knowledge-intensive category.

Approaches in this category explicitly encode expert knowledge in context definitions dictating how

an application identifies, interprets and adapts to context. In comparison a relatively smaller number

of approaches are in the learned-context category. These approaches apply artificial intelligence (AI)

techniques to learn context definitions. Learning approaches have the potential to learn beyond expert

knowledge encoded in the application and adapt their context definitions independently.

The body of research in knowledge-intensive context-aware approaches is large. A number of best-

practices have emerged and these have been integrated in frameworks, toolkits and middleware to aid

application development. Due to the size and maturity of this body of research we limit our discussion

to these generic approaches and how they approach context definition. The body of research in learned

context is smaller and we structure our discussion around the underlying learning techniques. Each

technique is illustrated with representative examples of approaches that apply it.

2.1 Knowledge-intensive context definition

Knowledge-intensive approaches to context definition are those that depend on expert knowledge to

construct context definitions. Approaches in this category have progressed from initial standalone

applications (surveyed in (Abowd et ah, 1999; Pascoe, 1998)) to frameworks, middleware and toolkits

that provide generic support for application development (surveyed in (Baldauf et ah, 2007; Moore

et ah, 2007; Bolchini et ah, 2007; Modahl et ah, 2005; Strang & Linnhoff-Popien, 2004)). These generic

approaches aim to simplify the process of application development by providing structures and services

that are commonly needed in context-aware applications. Knowledge-intensive approaches can be

further categorised based on whether they support changes to context definitions at run time or only

at design time. This has obvious implications for the adaptability of their context definitions to the

run-time environment.

2.1.1 Design-time approaches

Design-time approaches are a subset of knowledge-intensive approaches to context awareness (da Costa

et ah, 2008; Banavar & Bernstein, 2004). These approaches encode context definitions in the applica­

tion at the design stage of its life cycle and the definitions are immutable at run time. A large number

13

2.1. Knowledge-intensive context deRnition

Interpreter

(Application

Aggregator

Discoverer

Interpreter

Widget
Context

Architecture
> Sensor

Figure 2.1: Context Toolkit coiiiponents and relationships from (Dey et ah, 2001)

of approaches belong to this category.

2.1.1.1 Context Toolkit

The Context Toolkit (Dey et ah, 2001) is a conceptual framework and toolkit developed at the Geor­

gia Institute of Technology. Its main aim is to free developers from low-level issues associated with
acquiring sensor data so they can focus on high-level application behaviour. The approach is inspired

by toolkits for graphical user interface (GUI) development that insulate the developer from presen­

tation issues using widgets. The Context Toolkit encapsulates context-awareness concerns using five

components. Context widget components encapsulate the complexity of interfacing with individucd

sensors and provide application access to sensor data. Interpreter components process and transform

data from a widget or widgets into higher-level context knowledge. Aggregator components gather

logically-related knowledge from multiple context widgets for easy access by applications. Service

components encapsulate actuators that the application can activate to affect the environment. Dis­

coverer components support reuse of components by maintaining a registry of available components.

All components execute independently of each other and may be reused by multiple applications. Fig.

2.1 shows an example configuration where two applications connect to multiple components.

At design time the developer specifies which components are required for a particular application.

Where necessary the developer creates components that are not already available. At run time the

application uses a discoverer component to find required widget, interpreter, aggregator and service

components. Component lookups are performed at discoverers using either a specific name (white

pages lookup) or service description (yellow pages lookup).

14

Chapter 2. State of the Art

Analysis Context definitions in the Context Toolkit are spread across components used by an

application as well as the application itself. Context widgets can process sensor data to identify low-

level contexts, e.g., determine the activity in which a user is engaged. Interpreter widgets process

data from context widgets to determine high-level contexts, e.g., identify that a meeting is occurring

based on the number of users and sound level in a room. The application itself defines how service

components should be invoked in reaction to particular contexts. These processes combine to form

the context definitions of the application. In the Context Toolkit components and applications are

defined at design time and there is no facility for adjusting their encapsulated context-definition logic

at run time. Therefore the issue of context misinterpretation and the associated inaccuracy in context

definitions cannot be addressed by this approach at run time.

The Context Toolkit encapsulates individual sensors within context widgets, and applications

are configured to use a particular set of widgets to determine their context. The yellow-pages lookup

service offered by discoverer components allows applications to adapt to the unavailability of particular

instances of their required sensors. This partially addresses the issue of sensor unavailability however

it relies on at least one instance of each required sensor being available. The issue of selecting sensors
that are suitable for detecting the context in the current run-time environment is not considered in

this approach.

This approach depends entirely on the developer’s ability to encode context definitions, therefore

applications based on this approach have no knowledge autonomy.

2.1.1.2 Java Context-Awareness Framework (JCAF)

The .lava Context-Awareness Framework (JCAF) (Bardram, 2005) is a Java-based infrastructure and

application programming interface (API) for building context-aware applications. Its goal is to provide

a simple framework that developers can extend to support particular applications. There are two core

parts to the framework: a programming model and a run-time architecture. The JCAF programming

model enables the developer to build applications for deployment in the JCAF infrastructure. It

provides a minimal set of Java interfaces and classes for generic support of context modeling. A

context model defines the real-world entities that are of interest to an application. Context modeling

in JCAF is carried out by building object-oriented models in Java. The core modeling interfaces are

Entity, Context, Relation and Contextitem (Fig. 2.2). These interfaces are implemented and extended

by the developer to define a model of context for an application. Each context model is managed by

a context serviee in the run-time architecture.

The run-time architecture of the JCAF is three-tiered. The first tier contains applications, the

15

2.1. Knowledge-intensive context definition

Figure 2.2: JCAF context model from (Bardram, 2005)

second contains context services, and the third contains sensors and actuators. Context services gather

sensor data from sensors, relate it to entities in their managed context model and inform applications of

resulting context changes. The JCAF uses an event-based publish/subscribe approach to communicate

between applications and context services. Type-based subscription is supported so applications can

subscribe to context changes of a particular type from any context service. Applications encode

knowledge of how to respond to contexts, and their reactions are propagated by context services

to actuators. The run-time architecture is designed to be modifiable and extensible at run time by
supporting addition, deletion and modification of context services, sensors, actuators and applications.

Analysis Context definitions in the JCAF span context services, context models and applications.

Context services interpret sensor data to identify its effect on context models and propagate context

changes to applications. Applications interpret and react to these context changes. The JCAF run­

time architecture is modifiable at run time however changes can only be made at the granularity of

components. There is no run-time mechanism for changing the internal structure of context services,

context models or applications so the issue of context misinterpretation cannot be addressed by this

approach at run time.

The JCAF run-time architecture uses the publish/subscribe paradigm to communicate between

applications and context services. It supports type-based subscription so applications can subscribe to

all context information of a particular type. This partially addresses the issue of sensor unavailability

as the application does not depend on a particular context-service (and hence sensor) instance, however

16

Chapter 2. State of the Art

Actuator

Sensory Context inference
Capture Hierarchy Engine Produc* ^ J \ J

\

Sentient Object

Figure 2.3: Sentient Object Model from (Biegel & Cahill, 2004)

it relies on at least publisher for each type of context information being available. The issue of sensor

unsuitability is not considered in the JCAF.

As in the Context Toolkit this approach relies entirely on the developer’s ability to encode context
definitions, therefore the resulting applications have no knowledge autonomy.

2.1.1.3 Sentient Object Model

The Sentient Object Model (SOM) (Biegel & Cahill, 2004) is a framework that supports the devel­
opment of mobile, context-aware applications. Its goal is to make this class of application easier to

design, prototype and test so that developers and end users are empowered to build their own ap­

plications. To achieve this it provides a visual programming tool for sentient objects, which reduces

the need to write complex code. Sentient objects are entities with interfaces to sensors, actuators

and other sentient objects. The SOM applies an event-based communication approach based on the

publish/subscribe paradigm to connect sentient objects to sensors and actuators at run time. A sen­

tient object consumes software events from sensors and other sentient objects, performs some internal

processing of these inputs, and produces software events that influence actuators and other sentient

objects (Fig. 2.3).

A sentient object has three internal reasoning components. The sensory-capture component inter­

prets low-level sensor data to derive higher-level context data. Bayesian networks may be used to fuse

sensor data from multiple sensors. The context-hierarchy component manages a hierarchical set of

contexts in which the application may exist. The hierarchy is based on the Context-Based Reasoning

(CxBR) paradigm (Gonzalez & Ahlers, 1998), and encapsulates knowledge about possible actions in

17

2.1. Knowledge-intensive context deBnition

contexts and consequences of those actions. The inference-engine component applies conditional rules

to reason about the context based on context data derived in the sensory capture component. It is

also responsible for reasoning about adapting application behaviour.

Analysis Context definitions in the SOM span all three internal components of a sentient object,

and may span other sentient objects that provide input. The sensory-capture component derives

context data from sensor data. The context-hierarchy encapsulates knowledge of potential contexts

and actions. The inference-engine encapsulates knowledge in rules to reason about contexts and

actions. There is no support for adjusting context definitions at run time to address the issue of

context-misinterpretation.

Sentient objects and sensors in the SOM are loosely coupled due to the underlying event-based,

publish/subscribe communication model. Similar to the JCAF this creates the potential for sentient

objects to use any sensors that publish sensor data of the expected type, and partially addresses the

sensor-unavailability issue. The issue of sensor unsuitability is not addressed.

This approach relies entirely on the developer to define context definitions within sentient objects

at design time, therefore its applications have no knowledge autonomy.

2.1.1.4 Summary

Knowledge-intensive approaches that do not facilitate adjustments to context definitions at run time
obviously cannot adapt their context definitions to the run-time environment. Any changes to the

structures underlying their context definitions require a return to the design phase. These approaches

can only address the context misinterpretation issue described in Section 1.3.1 by “undeploying” the

application, editing its context definitions, and redeploying. This process may have to be repeated

many times if multiple instances of an application in different environments require unique context def­

initions. The process of defining accurate context definitions may also be iterative if misinterpretations

of the context are not completely understood prior to redesign.

Tsang argues that design-time approaches can facilitate run-time changes to context definitions

through user preferences (Tsang, 2009). Knowledge-intensive approaches can treat user preferences

as a sensor input. For example, in the Context Toolkit a context widget could represent the user’s

food preference e.g. Italian, Mexican or Chinese. The preference value can act like a switch on how

the application reasons about context. It effectively enables and disables different sets of context

definitions at run time. For example in Fig. 2.4 the food-preference value changes how the application

acts in context a from action x to actiony. The preference is a part of the context definition as it

18

Chapter 2. State of the Art

//(Context^ and Italian) then do Action^
//(Context^ and Italian) then...
//(Context^, and Italian) then...
//(Context^ and Italian) then...

//(Context^ and Mexican) then do Action^
//(Context^ and Mexican) then...

(Context^ and Mexican) then...
//(Context^ and Mexican) then...

User preference

Figure 2.4: User preferences in context definitions

influences how the application reasons about context. However each preference switch at run time

must be foreseen and encoded at design time and there is no facility for adjusting how preferences

influence decisions at run time. Therefore context definitions that include user preferences do not

address the issue of context misinterpretation at run time.

In these approaches interpretations of sensor data are encoded in context definitions and applica­

tions are therefore limited to sensors for which they have interpretations. Context definitions based

on other sensors must be encoded using expert knowledge and require a return to the design phase.

These approaches define loosely-coupled relationships between applications and sensors, and lookup

services are used to locate sensors at run time. Lookups based on sensor type rather than specific sensor
instances can handle the failure of individual sensors. However in these approaches the interpretations

of sensor data are encoded in their context definitions and applications are limited to the types of

sensors that they can interpret. Therefore these approaches provide limited support for the issue of

sensor unavailability as they require that at least one instance of each required sensor is available.

The issue of sensor unsuitability for detecting the context in particular environments is not addressed.

These knowledge-intensive approaches are completely dependent on the expert knowledge of the

developer when building applications therefore they exhibit no knowledge autonomy.

Other examples of knowledge-intensive approaches that are similarly limited to design-time context

definition include SOCAM (Gu et ah, 2004), Context Fabric (Hong & Landay, 2004), Context Shadow

(Jonsson et ah, 2003) and Hydrogen (Hofer et ah, 2003).

2.1.2 Run-time approaches

Knowledge-intensive run-time approaches facilitate changes to context definitions at run time. These

approaches are motivated by the need for personalisation of context-aware applications, as users may

have diverse requirements (Henricksen et ah, 2006) and these requirements can only be estimated at

19

2.1. Knowledge-intensive context definition

run time (Korpipaa et al., 2005).

2.1.2.1 PACE

A framework for context-aware computing was developed as part of the Pervasive Autonomic Context-

aware Environments (PACE) project (Henricksen et al., 2006). The goal of the framework is to

integrate user preferences with context as a basis for flexible adaptation decisions at run time. The

framework is divided into layers to support context awareness and user preferences (Fig. 2.5). The

context-gathering layer uses event-based communication to gather data from sensors. This data may be

processed into higher-level context data using interpreters amd aggregators. The context-reception layer

translates inputs from the context-gathering layer into a fact-based representation for the layer above.

The context-management layer maintains a set of context models that are defined in a predicate logic.

These models are populated with facts from the context-reception layer. The query layer provides

an interface for applications and the preference-management layer to query context models. The

preference-management layer stores repositories of preferences and evaluates preferences on behalf of

the programming toolkit. Finally the programming toolkit lies between applications and the preference-

management layer. It provides methods for preference-based branching, which is a process of evaluating

different contexts based on the user’s preferences.

Users express their preferences by assigning a score to behaviour choices for a particular context.

Preferences are expressed as context-score pairs, where a score is a numeric value in the range 0 to

1 (larger scores imply increased preference for an option) or a special character (A- option must

be selected, []- option must be vetoed, ±- indifference to option). Fig. 2.6 shows some example

preferences for a context-aware communication tool (Henricksen et ah, 2006). The preference name

{pl-p4) is shown on the left and the context and scoring expressions for each preference are preceded

by the keywords when and rate respectively. For example p2 states that when a synchronous channel

is requested and the user is occupied and the purpose is not urgent then the request is forbidden {rate

!])•

This preference format is not directly exposed to the user. Instead the authors suggest that

applications include an interface for customising application-specific preferences. The programming

toolkit compares the scores assigned to different behaviour choices in a particular context and selects

the highest scoring behaviour to carry out.

Analysis The PACE framework provides a model for customising context-related preferences at

run time. Context definitions within the framework span the context-gathering, context-reception.

20

Chapter 2. State of the Art

Figure 2.5: The PACE framework from (Henricksen et al., 2006)

pi = -when Synchn>nou.sMo(Je(channel) a -•CanUseChannel{callee, channel)
rate t]

p2 = when SynchronousModetchannel) A Occupiecl(callee) A -'llr^ent(priority)
rate 1;

p3 = when Urgent(priority) a SynchronousMode(channel)
rate 1

p4 = when Urgent(priority) A -'SynchwnousMode(channel)
rate 0.5

Figure 2.6: PACE preferences for a context-aware communication tool from (Henricksen et al., 2006)

context-management layers and preference-manager layers, as each of these layers carries out some

interpretation of sensor data or affects reasoning about context in some way. The framework empowers

the user to adjust the user-preference element of context definitions at run time by assigning scores

to preferences. The other elements axe fixed in the application at design time and may introduce

inaccuracy into the context definitions that cannot be corrected at run time. As a result the PACE

framework has limited ability to address the issue of context misinterpretation at run time.

The PACE framework loosely couples sensors and applications as it uses an event-based commu­

nication model. This creates the potential for applications to use any sensors that publish events of

21

2.1. Knowledge-intensive context definition

Figure 2.7: Context Studio from (Korpipaa et al., 2005)

the required type. The sensor unavailability issue is partially addressed as the application needs at

least one sensor of a required type to be available. The issue of sensor unsuitability is not addressed.

This approach depends entirely on expert knowledge from the developer and user therefore the

applications have no knowledge autonomy.

2.1.2.2 Context Studio

The Context Studio (Korpipaa et al., 2005) is a tool for customising context-aware applications. Its

goal is to empower end users to create their own context-aware solutions using a GUI. Instead of

defining context definitions at design time the Context Studio provides contexts and actions to the

user so they can define context definitions at run time. The set of available contexts and actions is

defined in an ontology at design time, and the GUI enables the user to bind contexts to application

actions using condition-action rules at run time. Rule conditions can combine multiple pieces of

context information using logical operators such as and, or, not .

A context framework handles the background monitoring of contexts and rules (Fig. 2.7). Context-

source components wrap context-information providers such as sensors. Context-abstractor compo­

nents perform operations on sensor data to infer higher-level context information. Sensor data is

transformed by context source and abstractor components to a set of contexts defined by an ontology.

The context-manager component receives and stores all context data and provides a uniform interface

for accessing it. The rule-script-engine component monitors the contexts in user-defined rule condi­

tions and activates application actions through the activator component. The feedback component is

22

Chapter 2. State of the Art

an actuator that informs the user of application actions using vibration or sound.

Analysis The Context Studio provides end users with an interface for defining their own context

definitions. Context definitions in the Context Studio span context sources and context abstractors,

the context ontology, and user rules. Only the user rules are adjustable at run time through the

Context Studio. Therefore it has limited ability to address the issue of context misinterpretation at

run time.

The application ontology limits the context information, and hence the set of sensors, available for

defining rules. There is no support for adjusting the ontology or the underlying set of context sources

and abstractors at run time. This means the Context Studio cannot adapt to sensor unavailability.

The issue of sensor unsuitability is not addressed either. This approach has the potential to be

extended such that the user can integrate new sources of sensor data and context at run time. This

would enable the approach to address both these issues.

Again, this approach is entirely dependent on the expert knowledge of the developer and user
therefore it has no knowledge autonomy.

2.1.2.3 Summary

Knowledge-intensive approaches that adjust context definitions at run time are better able to ad­

dress context-misinterpretation issues than purely design-time approaches, as the user can correct

inaccuracies as they arise. However the described approaches facilitate limited changes to context

definitions. Context definitions still depend on elements that are statically defined at design time and

may introduce inaccuracy that cannot be corrected at run time.

As with knowledge-intensive design-time approaches these approaches may define loosely-coupled

relationships between applications and sensors. This allows the application adapt to the unavailability

of particular sensor instances as long as at least one sensor of the required type is available. This

partially addresses the sensor unavailability issue. The issue of sensor unsuitability is not addressed.

As noted above there is potential to extend knowledge-intensive approciches such as these to enable

the user to integrate now sensors at run time. This extension would address both of these issues.

Such approaches depend on the developer and user to explicitly define and adjust context defini­

tions using expert knowledge therefore they exhibit no knowledge autonomy.

23

2.2. Learned context definition

2.2 Learned context definition

This section describes approaches to context-definition that apply learning techniques. These are

approaches that gather knowledge beyond that explicitly encoded in context definitions by developers

at design time or users at run time. Learning techniques have been applied to context-awareness for

almost as long as context-awareness has been studied (Clarkson & Pentland, 1998) however context­

learning approaches are not as widespread as knowledge-intensive approaches.

Leahu et al. summarise the limitations of knowledge-intensive approaches and argue the case for

learning in context awareness, drawing parallels between knowledge-intensive approaches and classical

AI approaches (Leahu et aJ., 2008). They state that the typical approach in classical AI was to identify

reaJ-world entities, represent them using symbolic representations and use rules to reason about the

symbols. However AI researchers discovered that there are “serious technical limitations to the goal of

building complex, reliable, and dynamically relevant world models”. Knowledge-intensive approaches

to context definition are also based on world models and will encounter the same limitations (Leahu

et ah, 2008). In a similar argument Bell and Dourish state that most pervasive-computing research is

“oriented around a conception of the world as orderly and homogenous” but that “the world in which

ubicomp systems are currently deployed is messy and heterogenous and is likely to stay that way”
(Bell & Dourish, 2007).

Learned context-definition approaches cite two main motivations: personalisation of user context
definitions and context-definition accuracy at run time. Flanagan argues that useful context-awareness

requires user personalisation, but that users are restricted by the complexity of manually personal­

ising context definitions at run time (Flanagan, 2005a). Context-definition learning addresses this

concern by removing the requirement for manual personalisation. Kofod-Petersen states that predict­

ing accurate context definitions for the run-time environment is not always possible at design-time

(Kofod-Petersen, 2006). Context-learning approaches address this concern by learning accurate con­

text definitions based on the run-time environment. The context-definition accuracy argument is a

more general case of the personalisation argument, as personalised context definitions address accu­

racy for individual users whereas context-accuracy in general may apply to applications with one, or

many, or even no users.

In order to compare learned context-definition approaches we first describe different learning types:

supervised, unsupervised and reinforcement learning. We also describe a common discretisation archi­

tecture that is shared by context-learning approaches and explain its motivation. Finally we discuss

different learning techniques that have been applied to learning context definitions: Bayesian networks,

artificial neural networks, reinforcement learning, case-based reasoning and data mining.

24

Chapter 2. State of the Art

2.2.1 Supervised, unsupervised and reinforcement learning

Learning techniques can be characterised by how they learn. Russell and Norvig distinguish three

types of learning: supervised, unsupervised and reinforcement learning (Russell & Norvig, 2003).

Supervised-leaming techniques learn a general function for mapping inputs to outputs from training

data. Training data consists of example inputs and the corresponding outputs provided by external

supervisors. Unsupervised-learning techniques learn how input data is organised based on similarities

between input data, and without any requirement for training data. Reinforcement-learning tech­

niques learn the usefulness of actions using feedback from the environment. They use trial-and-error

to identify the best action to take in different situations.

Analysis Supervised-learning techniques require training data, which creates a dependency on ex­

pert knowledge. Training examples may be difficult to obtain and the accuracy of the general function

depends on the accuracy of the training examples (Veeramachaneni et al., 2005). Supervised-learning

techniques may also encounter an incompleteness problem where training data does not adequately
represent general data (Tapia et al., 2006). Another issue with supervised-learning approaches is that

they can only generalise about data for which they have training examples. In the case of learning

context definitions this means that only sensors for which there is labeled training data can be used.

This obviously limits their ability to select suitable sensors at run time.

Unsupervised-learning techniques learn organisational structures within input data however the

relevance of those structures to the application is unknown. A purely unsupervised approach cannot
learn appropriate application behaviour because it has no information about what constitutes a correct

action (Russell & Norvig, 2003). In the case of learning context definitions this might mean that a

set of application contexts can be identified, but how they affect application behaviour is unknown.

Reinforcement-learning techniques use feedback from the environment to inform them of the use­

fulness of their actions. Expert knowledge is required to encode interpretations for feedback and define

what good actions are. These techniques also use a trial-and-error approach to learning that may be

unsuitable for some applications, e.g., safety-critical systems.

2.2.2 Common discretisation architecture

As discussed in Chapter 1 context data may come from a variety of sources (Baldauf et al., 2007), but

we are particularly interested in sensors that sense aspects of the physical environment. Sensors in

this class may be capable of producing thousands of unique sensor values depending on their precision.

This presents a challenge to learning techniques as the complexity of the problem scales linearly with

25

2.2. Learned context definition

Context definitions f D

Learning

/ I \
/ I \

/ I \

A
/ \

Pre-processing

/ \
Discrete states O O O O O

A A A A A
/\/\/\/\/\♦

Raw sensor data
V V V V

Figure 2.8: Common discretisation architecture

the number of states they consider (Sutton & Barto, 1998). Laerhoven and Cakmakci observe that if

raw sensor values are used as inputs for learning techniques the performance of the application would

suffer (Van Laerhoven & Cakmakci, 2000).

As a solution for learning about context definitions it is considered reasonable to “fix a set of basic

features that are extracted from the observed data” (Himberg et al., 2003). Fig. 2.8 demonstrates how

a preprocessing step translates multiple raw sensor-data values to a layer of representative discrete

states, so that the number of inputs to the learning technique is manageable. Context definitions

are learned on top of this layer. This architecture is common to many context-definition learning

approaches and is variously referred to as discretisation (Brdiczka et al., 2006), quantization (Battes-
tini & Flanagan, 2005), feature extraction (Ma et al., 2003) and cue extraction (Van Laerhoven &

Cakmakci, 2000) in the literature.

Analysis Discretisation of sensor data is necessary in order to facilitate learning techniques, however

it may affect the accuracy of learned context definitions. Discretisation causes information loss relative

to the original source, which may result in important changes in the environment going unnoticed

(Park et aJ., 2006; Albinali et al., 2007). Context definitions are learned on top of the discretisation

layer and can only capture environmental changes that are captured by the discrete states. When

important changes are not captured during discretisation the result is context-definition inaccuracy

and therefore context misinterpretation (Section 1.3.1). The challenge for context-definition-learning

approaches is to define appropriate discrete states for sensor data such that information lost during

discretisation is not important to the application.

26

Chapter 2. State of the Art

■^2) Bowel problem

Figure 2.9: An example Bayesian network from (Charniak, 1991)

2.2.3 Bayesian networks

This section describes approaches that apply Bayesian netv/orks to learning context definitions. A

Bayesian network is a probabilistic model for reasoning. It is a compact representation of a joint

probability distribution over a set of variables (Callan, 2003), i.e., the probabilities that two or more
events occur at the same time. In a Bayesian network each node represents a variable. Each variable

has a set of possible discrete states and a conditional probability table with associated probabilities of

each state occurring. Links between nodes in the network encode conditional dependencies between

variables, so the network and tables provide a decomposed representation of the joint probability

distribution for the variables. In practical terms, given evidence of the state of some variables in the

network a Bayesian network reasons about the likely state of other variables.

A classic example of a Bayesian network is illustrated in Fig. 2.9 (Charniak, 1991). The network

defines the causal relationships between a family being out {XI), whether the family dog has a

bowel problem {X2), whether a light in the home is on {X3). The links between nodes represent

interdependencies. By observing the values of the leaf nodes (light on, hear bark) probabilities can be

calculated for the other nodes in the network.

The network structure and the conditional-probability tables for nodes can be either hand-defined

using expert knowledge or learned using supervised learning (Tapia et ah, 2006). Parameter learning

is used to learn the joint probability of states, i.e., the probability of a state occurring at one node

given the states of other nodes. Structural learning is used to learn the links between nodes in the

network, i.e., their causal dependencies.

A simple Bayesian network called a naive Bayes classifier is often used in context-learning ap­

proaches. This network assumes that the leaf variables of the network are independent of each other.

27

2.2. Learned context definition

Context

1
Classification:

Bayesian networks

Quantization;
Signal to symbol conversion

Feature extraction:
MPEG7, statistical

Measurements:
9 channels

T
World

Figure 2.10; Korpipaa et al. context-representation layers from (Korpipaa et al., 2003)

Each variable independently contributes to the probability of higher-level variables (contexts) and less
training data is required to learn these probabilities. Hidden Markov models are another commonly-

used technique that represent temporal probabilities using sequences of Bayesian networks (Russell &

Norvig, 2003). They are often used for temporal pattern recognition, e.g., speech.

2.2.3.1 A naiVe Bayes classifier approach

Korpipaa et al. apply a naive Bayes classifier to classify the contexts of a mobile-device user (Korpipaa

et al., 2003). Their approach combines sensor data from accelerometers, a microphone, a thermome­

ter, a light sensor, a humidity sensor and a skin-conductivity sensor. Sensor data is processed through

a series of context-representation layers before being classified in contexts by the naive Bayes clas­

sifier (Fig. 2.10). The measurements layer gathers sensor data from nine application sensors. The

feature-extraction layer applies the MPEG-7 standard to extract 47 discrete sound features, and also

performs statistical processing on data from other sensors to extract discrete features such as walking,

running, indoor lighting, and sunlight. The quantization layer maps extracted features to represen­

tative symbols for processing by the naive Bayes classifier. The classification layer identifies active

contexts from a pre-defined set of thirteen possible contexts (inside, outside, speech, car, elevator etc.)

using a naive Bayes classifier.

In this approach the network structure of the naive Bayes classifier is pre-defined so no struc­

tural learning is required. The network probabilities are learned using supervised parameter learning.

28

Chapter 2. State of the Art

Training data is gathered by placing the device and sensors in known contexts and periodically record­

ing the set of symbols from the quantization layer. Each periodic set of recorded symbols is manually

labeled by the developer with the correct context. The network probabilities are learned by finding

the maximum a posteriori (MAP) estimate for the training data. The posterior probability is the

probability that is computed after evidence has been observed (Callan, 2003). Learning is carried out

before the application is deployed so the network probabilities are static at run time.

Analysis This approach learns the probabilities of different contexts given evidence from sensors

using supervised learning. Learning occurs at design time therefore the accuracy of learned con­

text definitions depends on training data being representative of the run-time environment. Context

definitions are not adjusted at run time.

Sensor data is processed at the feature-extraction and quantization layers before learning occurs

in the classification layer. Learned context definitions span all of these processes but only the network

probabilities are learned. The other processes are fixed and may introduce inaccuracy in context

definitions that the learning process cannot address. The set of sensors in the measurements layer is

fixed by the developer at design time and there is no facility for adapting to unavailability of sensor

instances. The issue of sensor unsuitability is not addressed either.

This approach depends on expert knowledge to define the feature extraction and quantization

layers, and also to correctly label the training data with contexts. However it removes the requirement

for the developer to explicitly define the entire context definition therefore it exhibits some knowledge

autonomy.

2.2.3.2 A hidden Markov model approach

Smith et al. describe a framework for identifying user context based on environmental noise (Smith

et ah, 2006; Ma et ah, 2003). Rather than focus on speech as evidence of context the approach

interprets complex sounds from a variety of sources such as air conditioning, car motors and keyboard

clicks. They apply a hidden Markov model to process sequences of sound data and identify high-

level contexts. Sensor data passes through two phases before being processed by the hidden Markov

model. In the preprocessing phase audio data is segmented in clips, and in the feature-extraction

phase features of each clip are extracted into mel-frequency cepstral coefficients (MFCCs). An MFCC

represents the power spectrum of a particular sound. The feature-extraction phase identifies any of

thirty-nine potential MFCCs in an audio clip, and these become the inputs to the hidden Markov

model.

29

2.2. Learned context definition

Q Context Demo - School of Compunng Sciences, Unhmrslly of East Ani^
F<e
^CUtPljf* I TtaWng''t f Bfowset 1

J‘tf lEl

■neat utme

8000 11025

16000 22050 i 44100

8 IS

xtonod lantgnod

1 littte mdldn I Mo«ii«ao

[mow) ttorao

iLen^h

AutoTraIn
'«jiiaTi.fin»Ti I. ■■niiii. ft?::.

Ptease Inpul tfiename of »cM»e: SMirLob

beach
iNjedkmsiie
bus
car
luottiaM
launcbetle
lecture
ofTIce
iMjb
rabstation
silence
stroel

Sated a ccane from Mt or inpul a new scene name, dicfc 'Aucolraat' to start traMno

Figure 2.11: Smith et al. runtime training-data interface from (Smith et ah, 2006)

Of particular interest in this framework is their approach to run-time learning. Initial training data

for supervised learning is gathered prior to deployment and used to learn default network probabilities.

The authors recognise the need to adapt the application to its run-time environment so they facilitate

gathering new training data at run time. The user is responsible for labeling this data with the context

in which it is gathered. The initial training data and run-time training data are combined and new

network probabilities are learned. Gradually the initial training data is replaced by run-time data

so that network probabilities reflect the run-time environment. Fig. 2.11 shows the user interface

for recording training data at run time. The user specifies a name for the new context or selects the

name of an existing context that needs retraining. An audio sample is recorded, processed, and new

network probabilities for the specified context are learned.

Analysis This approach applies supervised learning and a hidden Markov model to learn context

definitions. Unlike other Bayesian network approaches to context definition it recognises that the

run-time environment may be unpredictable and facilitates gathering training data at run time. By

gathering and labeling data at run time it addresses the issue that supervised learning is only as

accurate as the training data. Other approaches artificicilly create a context in which to gather and

label sensor data, which may not match the real world. Here the user labels the training data with

the context that they are actually encountering.

30

Chapter 2. State of the Art

Context definitions in this approach span the preprocessing and feature-extraction phases as well

as the hidden Markov model. The preprocessing and feature-extraction phases are encoded at design

time and are not adjusted at run time. They may introduce inaccuracy in context definitions that

learning cannot address. A single microphone sensor is used to detect the context in this approach

and the issues of sensor unavailability and sensor unsuitability are not addressed. In this approach

the authors are only concerned with detecting the context using audio data, however if the approach

was generalised to other sensors then the issue of sensor suitability would become an issue.

This approach depends on expert knowledge to encode the preprocessing and feature-extraction

phases, and also to correctly label the training data. However the developer or user does not have to

explicitly define or adjust the entire context definition therefore it is somewhat knowledge autonomous.

2.2.3.3 Structural learning

Albinali et al. present a framework for detecting human-activity contexts from sensor data (Albinali

et ah, 2007). The research is motivated by a number of applications, including observation of patient

activity for early diagnosis of medical conditions. They apply a naive Bayes classifier to identify

contexts from sensor data.

In this framework training data is gathered and labeled with the correct context by the developer.

Sensor data is preprocessed prior to being used for learning network probabilities. The first phase

of preprocessing is feature encoding, where sensor data is discretised to a set of features based on

predefined thresholds. The second phase of preprocessing is feature selection, where features for

learning are selected. Features that do not occur in the training data, i.e., discrete states that are never

active, are ignored. Then multicollinearity analysis, a statistical method for measuring correlation, is

carried out to identify features that are redundant. If two or more features are highly correlated then

only one needs to be used as an input to the naive Bayes classifier.

Due to the uncertain set of features that remain after preprocessing the framework selects the

network structure automatically. A hill-climbing algorithm is used to iteratively increase the number

of nodes and links in a network. At each iteration supervised-parameter learning is used to learn

probabilities for the current network using training data and the network’s effectiveness for identifying

known contexts is measured. The most effective network is selected for run-time interpretation of

sensor data.

Analysis This approach applies supervised learning and a naive Bayes classifier to learn context

definitions. The accuracy of learned context definitions depends on training data being representative

31

2.2. Learned context deGnition

of the run-time environment. This is illustrated by their approach of discarding features that do not

occur in the training data, on the assumption that these features will not be useful in the run-time

environment. Context definitions are not adjusted at run time.

Learned context definitions span the feature-encoding step as well as the naive Bayes classifier

probabilities. The feature-encoding step is fixed at design time and may introduce inaccuracy in

learned context definitions that cannot be corrected by learning.

An interesting feature of this approach is the elimination of redundant sensor data using multi­

colinearity analysis. This process goes some way towards addressing the sensor-unsuitability issue

in that it evaluates the usefulness of sensor data. The current version eliminates redundant features

(particular sensor data) rather than sensors, however it is reasonable to envision sensors being elim­

inated by extending the process. However a key point is that features are eliminated based on how

redundant they are when compared to other features. The usefulness of features to the application

is not evaluated during feature selection. Even highly-correlated features differ to a degree and this

difference could capture important information for detecting the context, i.e., the small differences

may be relevant to the application.

In contrast their structural-learning approach for selecting the network structure evaluates features

based on how useful they are for detecting the context. This captures their usefulness to the application

and if extended could capture the usefulness of sensors to the application. However the challenge of

integrating new sources of sensor data at run time is not addressed and would be obstructed by the

fixed feature-encoding step, which only knows how to discretise data forseen by the developer. The

issue of sensor unavailability is not considered.

This approach depends on expert knowledge to define the feature-encoding step, as well as to label

training data. As with other Bayesian network approaches the learning process gives this approach

some knowledge autonomy.

2.2.3.4 Summary

Bayesian networks are the most frequently-applied approach to learned context definition. They

require supervised training to learn network probabilities. This introduces a dependency on the

developer or user to explicitly label sensor data with associated contexts, which is a major obstruction

to knowledge autonomy. Context definitions that are accurate for the run-time environment require

run-time training data, which requires that every application has a human in the loop. This goes

against the vision of pervasive computing where devices disappear into the background, and may not

be feasible for all context-aware applications.

32

Chapter 2. State of the Art

Input layer Hidden layer Output layer

Inputs

Active nodes

Inactive nodes

Outputs

Figure 2.12: An artificial neural network

Other examples of learning approaches that apply Bayesian networks to context definition include

Chang et al. (Chang et ah, 2007), Harris and Cahill (Harris & Cahill, 2005a), Muhlenbrock et al.

(Muhlenbrock et al., 2004) and Brdiczka et al. (Brdiczka et al., 2006).

2.2.4 Artificial neural networks

A number of approaches have applied artificial neural networks (ANNs) to learning context definitions.

These approaches apply ANNs to learn patterns or clusters within sensor data that indicate contexts.

ANNs are computational models that mimic how the brain processes information using networks of

neurons (Russell & Norvig, 2003). Networks are composed of layers of nodes connected by directed

links, with an input layer, a number of hidden layers, and an output layer (Fig. 2.12). ANNs reason

by taking inputs in to their input layer and then spreading activation across the network to arrive at

some conclusion (node activation) at the output layer.

Nodes in the network are activated depending on their inputs, which may come from other nodes

or from outside the network. Each link between nodes has a numeric weight that defines the influence

of the link. A node evaluates its activation status by calculating the weighted sum of its input links

and passing this sum through an activation function. The activation function is designed to produce

active outputs (~ 1) when the “right” inputs are provided and inactive outputs (~ 0) when the “wrong”

inputs are provided. ANNs learn by adjusting the link weights that influence node activation. Fig.

2.12 shows an example of an ANN. The inputs cause two of the nodes in the input layer to activate

and produce an output. Their outputs cause a further two nodes to activate in the hidden layer,

which in turn cause a node to activate at the output layer. For a more detailed discussion of ANNs

see (Russell & Norvig, 2003).

33

2.2. Learned context dednition

Output layer

Figure 2.13: A self-organising map from (Van Laerhoven & Cakmakci, 2000)

2.2.4.1 Self-organising maps

Van Laerhoven and Cakmakci apply an ANN approach to learn user-activity contexts from sensor

data (Van Laerhoven & Cakmakci, 2000; Van Laerhoven, 2001). They apply a self-organising map
(Kohonen, 2001), a type of ANN, to learn context-definitions that are personalised to the particular

user. Self-organising maps are neural networks with topologically-related nodes, usually organised as
a 2-d grid. They process data to produce a low-dimensional representation of high-dimensional data.

In a self-organising map each node has a unique vector of weights, with one weight per input source.

Self-organising maps learn by adjusting the weight vectors of nodes within the map. Numerical input

data is combined in a vector form and mapped to a representative node (Fig. 2.13). The representative

node is the node with the numerically closest weight vector to the input vector. After it is identified the

representative node adapts its weight vector a little towards the input-vector values so that it better

represents them. Over a number of iterations the weight vectors of nodes become representative of

the weight vectors of frequently-occurring clusters of similar input data.

Fig. 2.14 shows a visualisation of nodes and data clusters from (Van Laerhoven & Cakmakci, 2000),

where x and y are the self-organising map axes and the z axis is the number of node occurrences.

It should be noted that in this figure the clusters are labeled with context names, however these

labels were not learned. The self-organising map lemns about patterns of input data and the result

of learning is simply a set of unlabeled nodes, their weight vectors and their number of occurrences.

Van Laerhoven and Cakmakci apply a self-organising map to cluster sensor data from a wide

variety of sensors including accelerometers, infrared sensors, carbon monoxide detectors, microphones,

pressure sensors, temperature sensors, touch sensors and light sensors (Van Laerhoven & Cakmakci,

2000; Van Laerhoven, 2001). A sensor layer gathers data from these sensors and passes it to a cue

layer. The cue layer preprocesses sensor data to a set of cues. Cues must be numeric to facilitate

their comparison to weight vectors in the self-organising map, therefore the cue layer uses functions

34

Chapter 2. State of the Art

,, lisM*. lifkt aff •irtsN*,
oataid*,

, aat mavinf

O' '»

Figure 2.14: Clusters of data in a self-organising map from (Van Laerhoven & Cakmakci, 2000)

like averaging, standard deviation and fast Fourier transformation to process data. A clustering layer

takes features as input, combines them in an input vector and passes them to a self-organising map,

which learns a set of unlabeled clusters as described above. Finally clusters are labeled by the user

in a supervision layer, in a process called supervised classification. These processes combine to learn

context definitions at runtime.

Analysis This approach applies unsupervised learning of a self-organising map to learn context

definitions. The initial clustering of data is unsupervised as sensor data is not labeled with the

context, however learned contexts are not directly useful to the application. A subsequent supervision

layer is required to define the relevance of clusters to the context-aware application.

Context definitions in this approach span the cue layer, the clustering layer and the supervision

layer. The cue layer processes are fixed at run time but do not discretise sensor data to discrete states

as in other approaches. Instead they apply statistical methods to summarise data. However there may

still be some information loss during processing, e.g., statistical outliers are lost with averaging and

standard deviation. Therefore the cue layer may introduce inaccuracy in learned context definitions

that cannot be corrected at run time. The issues of sensor unavailability and unsuitability are not

considered.

This approach depends on expert knowledge to define the cue layer processes and also to label

contexts so that they are useful to the application. The clustering process gives this approach limited

knowledge autonomy.

35

2.2. Learned context definition

2.2.4.2 SCM

The Symbol-string Clustering Map (SCM) (Flanagan, 2005a,b) is a product of the Nokia Research

Centre that arose out of research into context-sensitive user interfaces for mobile devices. The goal is

to tailor the menu options presented to the user depending on their context. It addresses the limitation

of self-organising maps that can only cluster numeric data.

In the SCM there are a set of nodes, each of which has a unique symbol string. Each node has

a weight vector similar to the self-organising map, and each weight in its vector is associated with

a particular symbol in the node’s symbol string. Sensor input to the SCM is also in the form of a

symbol string. The representative node for an input string is identified by comparing the symbols

in the input string with those in each node’s symbol string. The weights of overlapping symbols are

summed for each node, and the node with the highest overall weight (the greatest overlap) is selected.

The representative node’s weight vector is updated by increasing the weights of overlapping symbols

slightly. Clusters are identified based on the nodes that receive the highest numbers of updates, in

the same way as for self-organising maps.

In this approach sensors for acceleration, atmospheric pressure, temperature, humidity, sound and

location are used. Sensor data and user actions are recorded as training data for unsupervised and

supervised learning. The recorded user actions label the data. Sensor data is discretised to a set of

symbols in a preprocessing step and then processed by the SCM to identify clusters. Clusters are then

associated with actions in a supervised-learning step. The training data is processed again and actions
are probabilistically associated with clusters by calculating the ratio of cluster occurrences when the

user took a particular action to the cluster occurrences when they did not. These probabilities are

used to customise the mobile-device menu depending on the context.

Analysis This approach applies unsupervised learning and SCM to learn context definitions. The

initial clustering of data is unsupervised, however the application cannot use the learned clusters

directly. The supervised-training step probabilistically associates actions with clusters to complete

the context definition.

Context definitions in this approach span preprocessing to symbols, the SCM and the action

probabilities. The preprocessing step is fixed at design time therefore it may introduce inaccuracy

in context definitions that cannot be corrected at run time. The issues of sensor unavailability and

unsuitability are not addressed.

Training data for the supervised-learning step is implicitly labeled by the user when they take

an action, therefore this is not a knowledge-intensive process. However, the process for discretising

36

Chapter 2. State of the Art

Sensor
Data

Context
Information Configuration

Context Preference
Classifier Learner □

Feedback User
Interaction

Figure 2.15: SenSay two-step approach from (Krause et cil., 2006)

sensor data to symbols depends on expert knowledge therefore this learning approach is not completely

knowledge autonomous.

2.2.4.3 SenSay

SenSay is a context-aware mobile device developed at Carnegie Mellon University (Krause et ah, 2006).

The goal of the research is to make the mobile device learn user contexts and automatically modify

its settings based on these contexts. Sensor input is provided by various wearable sensors including

accelerometers, thermometers, galvanic skin response sensors and microphones. The authors describe

a two-phase approach for learning context definitions (Fig. 2.15). The context-classifier phase learns

how sensor data is clustered to define contexts and the preference-learner phase learns how user

preferences are influenced by those contexts.

The context-classifier preprocesses sensor data using running averages, sums of absolute difference

and fast Fourier transformations. These processes must produce numeric outputs as they are used as

inputs to a self-organising map. The self-organising map identifies clusters of sensor data as in the

approach described in Section 2.2.4.1. The preference learner then uses a Bayesian network to learn

the probabilities of user preferences given contexts. Since the set of contexts is unknown the network

structure must be learned, and they apply a K2 structure-learning algorithm (Cooper & Herskovits,

1992) which iteratively builds networks to identify the best combination of nodes for predicting user

preferences.

Initial learning in this approach is based on prerecorded sensor data and is carried out before

runtime. Sensor data is recorded in contexts and labeled with user preferences by the developer. The

self-organising map is trained to identify clusters using the sensor data, and the Bayesian network

learns how user preferences are predicted using the labeled training data. The approach also facilitates

learning at run time by employing a buffer to record recent sensor data and user preferences. The

self-organising map and Bayesian network are then retrained at run time.

37

2.2. Learned context deHnition

Analysis This approach applies unsupervised learning with a self-organising map and supervised

learning with a Bayesian network to learn context definitions. Training data is recorded at run time

so that learned context definitions are relevant for the run-time environment.

Context definitions in this approach span preprocessing, the self-organising map and the Bayesian

network. As in the other self-organising map approach the preprocessing step does not discretise

sensor data to discrete states but the statistical methods it uses may cause information loss. This

process is fixed at design-time and may introduce inaccuracy in context definitions that cannot be

corrected at run time.

As in the Bayesian network approach proposed by Albinali et al. (Section 2.2.3.3) this approach

carries out structural learning of the Bayesian-network structure. In the course of structural learning

the usefulness of clusters for predicting user preferences is evaluated, which suggests that this approach

evaluates sensor suitability. However clusters represent multi-dimensional data from many sensors and

the usefulness of particular dimensions (sensors) cannot be distinguished. As was the case for Albinali

et al. the challenge of integrating new sensors at run time is not addressed and would similarly be

obstructed by the preprocessing step, which only knows which statistical methods to apply to sensors
forseen by the developer. The sensor unavailability issue is not addressed.

Similar to the SCM-based approach training data for the supervised-learning step is implicitly

labeled by the user so gathering training data is not a knowledge-intensive process. However the
preprocessing step is based on expert knowledge therefore this learning approach is not fully knowledge

autonomous.

2.2.4.4 Summary

These approaches to learning context definitions apply artificial neural networks to learn clusters

of sensor data that are indicative of the context. The learning process outputs clusters that have

unknown relevance to applications as they are unlabeled, and a supervised step is necessary to define

how clusters affect the application.

These clustering approaches are best described as flexible elements of the discretisation process. A

potential issue is that clusters emphasise sensor data that occur frequently, mid infrequently occurring

data may go unnoticed. The frequency of occurrence does not necessarily correlate to their importance

to an application for identifying the context. Sensor data that rarely occurs may be equally or more

important to the application for this purpose. As with other discretisation approaches it is important

that this useful information is not lost during discretisation (Section 2.2.2).

38

Chapter 2. State of the Art

Figure 2.16: Gaia context infrastructure from (Ranganathan & Campbell, 2003)

2.2.5 Reinforcement learning

This section describes approaches that apply reinforcement-learning techniques to learn context def­

initions. Reinforcement learning is a computational approach to learning from interaction with the

environment (Sutton & Barto, 1998). These approaches depend on feedback from the environment to

learn the utility of actions in different situations. Feedback is interpreted by an application-specific
reward model that calculates how effective the action was and produces a representative numeric re­

ward. Reinforcement learning identifies the best action to take in different situations by comparing

the accumulated rewards for each possible action, i.e., the action’s utility. In context-aware systems

reinforcement learning is applied to learn how applications should select actions in contexts.

2.2.5.1 Gaia

The Gaia project carried out at the University of Illinois provides a middleware for building context-

aware applications (Ranganathan & Campbell, 2003). They apply reinforcement-learning to learn

appropriate application behaviour in different contexts. The middleware includes a context infras­

tructure for context-aware applications (Fig. 2.16). Context providers represent sensors or other

sources of context information. They may reason about and process raw sensor data to infer low-level

context, using logic structures such as fuzzy logic and first order logic. Context synthesizers identify

high-level contexts by combining data from context providers. Context consumers are the context-

aware applications that interpret context and adapt their behaviour. The context-provider lookup

39

2.2. Learned context deSnition

World Model

Figure 2.17: Zaidenberg et al’s learning and interaction approach from(Zaidenberg et aJ., 2009)

service facilitates lookups for context providers and synthesizers at run time.

In the Gaia middleware applications may explicitly encode how context is interpreted using rules,

or learn how context affects them using various algorithms including reinforcement learning, although

the specific algorithm is unspecified. The set of contexts relevant to the application are specified by

the developer at design time. The application learns at run time by taking actions in contexts and

observing the user’s reaction (feedback). Depending on the user’s reaction the application increases

or decreases the probability of taking that action again in the same context.

Analysis This approach applies a reinforcement-learning algorithm to learn context definitions.

Context definitions span the context providers and context synthesisers that preprocess sensor data

as well as the learned action-probabilities in the context consumer. Only the action probabilities are

flexible at run time, and the preprocessing steps may introduce inaccuracy in the context definition

that cannot be corrected at run time. Gaia provides a lookup service for finding context providers and

synthesizers at run time, therefore this approach has the potential to handle the failure of particular

sensors as long as at least one context provider of each required type is available. The issue of sensor

unsuitability is not considered.

This approach assumes that a user is available to provide feedback to the application. Such a

requirement is very similar to that of supervised learning where expert knowledge is used to explicitly

label training data. In this case the user implicitly labels the context with an action by using their

expert knowledge to provide explicit feedback about actions. The context providers and synthesizers

of each application also depend on expert knowledge to define how they process data, therefore this

approach has limited knowledge autonomy.

40

Clmpter 2. State of the Art

2.2.5.2 Zaidenberg et al.

Zaidenberg et al. learn context definitions for a context-aware personal assistant using reinforcement

learning (Zaidenberg et al., 2009). Their approach learns to associate actions with perceived user

situations based on feedback provided by the user in reaction to actions. One of their goals is to

accelerate the learning process. To achieve this they construct a world model in which many actions

can be emulated without affecting the user.

Fig. 2.17 shows an overview of their approach. When the application interacts with a user it uses

its current policy, a mapping from contexts to actions, to select actions. A fixed set of contexts are

defined as predicates, e.g., absent(user) indicates the user is absent from their office. The developer

defines a default policy for these contexts at design time so that initial actions are acceptable to the

user. The approach then learns new policies at run time to customise context definitions for the user.

In this approach the reinforcement-learning technique does not interact directly with the environ­

ment. Instead the user’s reactions to actions are recorded and used to update a world model. The

world model has two parts- a transition model and a reward model. The transition model defines

how actions cause transitions between contexts and the reward model defines the rewards for actions
taken in contexts. These models are learned using supervised learning, based on the recorded user

interactions. The approach then uses the world model to emulate the real world. The DYNA-Q

reinforcement-learning algorithm (Sutton, 1990) is used to learn a new policy by interacting with the

world model. The new policy replaces the existing policy and the data gathering process begins again.

Analysis This approach applies a reinforcement-learning technique to learn context definitions. As

in the previous approach it assumes the existence of a human in the loop who provides feedback for

actions. A potential issue with their approach is the completeness of the world model. When the

approach is gathering training data it only executes the actions in the current policy, i.e., one action

per context. The world model they learn only has knowledge of the transitions and rewards associated

with this limited set of actions, therefore the new policy that is learned by the reinforcement-learning

algorithm is similarly limited. The proposed approach is missing a significant element of reinforcement

learning- exploration. Exploration is where actions other than the perceived best action are taken in

order to learn new knowledge.

In this approach context definitions span the low-level predicates and the learned policy, and are

also influenced by the world model as it dictates how the policy is learned. The set of predicates is

defined at design time and may introduce inaccuracy in context definitions that cannot be corrected

at run time. There is no discussion of the sensors that populate predicates with information so the

41

2.2. Learned context definition

Fuz;}'partition for the state Linguistic description for each membership function

—Ml ."coldmorning”

'M: '."coldafternoon"

"U} :“hot morning"

-Pi '."hotexening"

Figure 2.18: Fuzzy discretisation from (Ali et al., 2008)

issues of sensor unavailability and sensor unsuitability are not addressed. The approach depends on

expert knowledge to define the predicates and their relationship to sensor data, and there is also a

dependency on a user explicitly providing feedback based on their expert knowledge. Therefore this

approach’s knowledge autonomy is limited.

2.2.5.3 Fuzzy-state learning

Ali et al. (Ali et al., 2008) investigate how context-awareness is applied to assistive living for the elderly

or disabled. The approach is applied to a scenario where a quadriplegic requires assistance when

drinking coffee, eating a meal, taking a bath and using a computer. The context-aware application

assists these activities by automatically turning on the TV, adjusting seat height, heating water etc.

They apply a reinforcement-learning technique to learn when it is appropriate to take these actions.

Of particular interest is their approach to the discretisation of sensor data. Rather than define one-to-

one mappings between sensor data and discrete states this approach uses fuzzy sets (Zadeh, 1965) to

define these relationships. Each fuzzy set has a membership function that calculates the membership

(0-1) of sensor data in the set. The membership represents the degree to which sensor data is in

the set, i.e., a membership of 1 implies complete membership and 0 implies no membership. In

this approach the developer defines fuzzy states to represent sensor data (Fig. 2.18). Each state

has a membership function and a symbolic description, e.g., cold morning. By evaluating sensor

data against the membership function of each fuzzy state its membership is established, and the

membership represents the certainty that the application is in that context. For example, (12°C,

11:37am) might have a membership of 0.5 in the “cold morning” fuzzy state, whereas (10°C, 9:14am)

might have a membership of 0.8 in the same fuzzy state. In the second case it is both more “cold”

and more “morning”. The developer captures this relationship between sensor data and membership

42

Chapter 2. State of the Art

in the membership function, i.e., what it means to be a “cold morning”. Sensor data may even have

membership in multiple fuzzy states e.g. (12”C, 11:37am) could have membership in “cold afternoon”

too.

In this approach the applied reinforcement-learning algorithm is Q-learning (Sutton & Barto,

1998). The fuzzy-state discretisation layer affects how the algorithm is applied when selecting and

updating actions. When selecting the next action to execute in reinforcement learning, the possible

actions in a state are compared based on their utility. However in this approach data may have partial

membership in a number of states, each with its own set of action utilities. These are combined by

scaling each state’s utilities by the membership in that state, summing the scaled values for each

action, and selecting the action with the highest overall utility. A similar technique is applied when

updating action utilities in states. The reward for an action is applied to each active state, but is

scaled by the membership (of the sensor values when the action was executed) in that state. This

approach uses recorded sensor data that is labeled by the developer with appropriate actions, and

performs learning prior to run time.

Analysis This approach applies reinforcement learning to learn context definitions. It is noteworthy

for its discretisation process which uses fuzzy sets. The membership of data in sets represents the

certainty that the application is in a particular context, and affects how actions are selected and

updated.

Context definitions span the fuzzy-state discretisation and the learned knowledge of actions. Al­

though the discretisation process does not define a one-to-one mapping to discrete states the rela­

tionship between sensor data and discrete states is still fixed. The membership functions defined by

the developer at design time control this relationship and may introduce inaccuracy that cannot be

corrected at run time. The issues of sensor unavailability and unsuitability are not addressed. This

approach depends on expert knowledge to define the membership functions and also to label recorded

sensor data, therefore it has limited knowledge autonomy.

2.2.5.4 Summary

In general reinforcement-learning techniques do not require labeled data however all of these ap­

proaches involve the developer or user for this purpose. This nullifies one of the advantages of re­

inforcement learning, i.e., it can learn using feedback from the environment. The main knowledge-

intensive element of reinforcement learning should be the reward model that captures how useful

actions are. It must encapsulate knowledge of the application goal and environment to achieve this.

43

2.2. Learned context definition

Solution description

Problem description - - ■

Recommendation

Object-ID

Context

Location

Identity

Time
Environment/

___ AcMy___

Figure 2.19: LISTEN case representation from (Zimrnermann, 2003)

These approaches do not discuss the reward model a.s the feedback they receive already encapsulates

how useful actions are.

2.2.6 Case-based reasoning

This section evaluates approaches that apply case-based reasoning (CBR) to learning context defi­

nitions. CBR (Kolodner, 1993) is a process for solving new problems based on known solutions to
similar problems (cases). Cases consist of problem-solution pairs. A CBR application goes through

four steps when it solves a problem (Aamodt & Plaza, 1994): retrieve the most similar case based on

a similarity function, reuse the knowledge in that case to solve the new problem, revise the proposed
solution by evaluating its success cuid repairing any faults, and retain new knowledge as a new learned

case or by modifying existing cases. Approaches that apply CBR to learning context definitions store

context data and application actions as cases.

2.2.6.1 LISTEN

A framework for context-awareness based on CBR was developed as part of the LISTEN project

(Zimmermann, 2003). The goal of the project is to address context-awareness in audio-augmented

environments and provide users with personalised audio experiences, e.g., in museums and galleries.

The framework for context-awareness has four main layers. A sensor layer collects sensor data from

sensors in the environment. A semantic layer maps sensor data to an application-specific context

model. This is a multi-step process: sensor-data is discretised to entities in the context model, entities

are related to each other to infer high-level contexts (using association, aggregation and composition),

and the context is compared to previous contexts to observe its progression over time. A control layer

generates commands to execute and passes these to an indicator/actuator layer that executes them.

The LISTEN framework applies CBR by mapping the problem-solution pairs of a case description

44

Chapter 2. State of the Art

to context-recommendation pairs (Fig. 2.19) in the control layer. Four elements of context within a

case (location, identity, time and environment/activity) are populated by different sets of entities in

the context model. The combinations of these entities represent a four-dimensionaJ vector of contexts.

At run-time the current case is identified by populating it using the currently-active context-model

entities. This case is compared to stored cases based on its location in the four-dimensional vector,

with a high weight on the location, time and identity of the user. The solution of the nearest stored

case is passed to the indicator/actuator layer for execution.

Analysis Context definitions span the semantic layer where sensor data is discretised and the control

layer where CBR is applied to identify actions to take. Sensor unavailability and unsuitability issues

are not considered.

Crucially this approach is missing the third and fourth steps of CBR described above, namely,

it does not revise case solutions and retain new knowledge. This approach doesn’t learn knowledge

beyond that encoded by the developer therefore it is a purely knowledge-intensive approach. We

include it as an introduction to the next approach, MyCampus (Sadeh et ah, 2005), which does not
give a complete description of how cases are related to context or how similar cases are selected.

2.2.6.2 MyCampus

The MyCampus project (Sadeh et ah, 2005) conducted at Carnegie Mellon University investigates and

experiments with pervasive computing technologies. The project focuses on a semantic web infras­

tructure for re-usable, context-aware services with an emphasis on privacy and personalisation. They

apply CBR to address usability issues associated with capturing user preferences for personalisation

of context definitions.

In the MyCampus infrastructure sources of context data such as sensors are represented as semantic

web services. A context-aware application operating on behalf of a particular user can access these

sources to identify the user’s context. The infrastructure supports yellow-page lookups for resources

at run time.

A central element of the infrastructure is an e-wallet that stores each user’s resources such as

their personal characteristics, schedule and preferences. Preferences may refer to any context-aware

application and this creates a challenge for preference editing. Developing a unique preference-editing

interface per application is prohibitive, and general purpose editors are too complex for normal users.

To address this issue they apply CBR to learn user preferences. This approach is applied in a single

application- context-aware message filtering.

45

2.2. Learned context definition

The message-filtering application chooses when to notify the user of received messages based on the

message and recipient’s context. Initially the application gathers a set of sample cases by delivering

messages and observing user feedback, i.e., the appropriate action to take. The application stores the

context and the appropriate action for each message as a new case. The context data they store in

each case is the message type and sender, and the recipient’s location and activity. When sufficient

cases are stored the application uses these cases to select delivery options for new messages, although

the exact similarity function they use for comparing cases is not described.

Analysis The MyCampus project gives a brief description of how CBR is applied to learn person­

alised context definitions. Importantly they describe how new cases are learned using user feedback,

so this CBR approach has the potential to learn new context definitions. Sensor data is recorded

in cases along with user actions, therefore this approach is best classified as a supervised-learning

approach as it depends on example inputs and outputs from which to generalise.

The sensor data used in the example application is from high-level sources, e.g., the user’s calendar

provides their location and activity, and the message provides the message type and sender. No low-

level sensors are described, however other CBR approaches require discr(!tisation of low-level sensor

data (Kofod-Petersen & Aamodt, 2006; Ma et al., 2005; Zimniermann, 2003) and this is most likely

the case for the MyCampus approach also. If discretisation is fixed at run-time (as is the case in other

approaches) then it may introduce inaccuracy in context definitions that cannot be corrected.

The MyCampus infrastructure supports yellow-page lookups of resources at run time therefore

it can handle the unavailability of individual sensor instances, however it requires that at least one

instance of each required type be available. The issue of sensor suitability is not addressed.

The approach requires expert knowledge to define the similarity metric for comparing cases, as

well as to define any discretisation process. The user is also needed to implicitly label sensor data

with actions so that cases can be constructed. Therefore the knowledge autonomy of this approach is

limited.

2.2.6.3 Summary

These projects apply CBR to context-awareness. The MyCampus project demonstrates that CBR-

based approaches can learn new cases and therefore new context definitions at run time. A key

element for successfully applying CBR is the similarity function that is used to compare cases. This

function dictates how newly-encountered cases relate to cases for which there are known solutions. In

context-aware applications the similarity function compares cases based on sensor data. It is defined

46

Chapter 2. State of the Art

Case Selection;
Semantic and
context based
case retrieval

Mining:
Identification of
user behaviour
patterns

Rule Selection:
Prioritisation
and selection of
adaptation rules /

Adapt:
Use rules to
make adaptation
decisions

Figure 2.20; Data mining of contexts from (Tsang & Clarke, 2007)

by the developer at design time and therefore only compares cases based on the sensors and data that

the developer forsees. This may prevent new sensors being incorporated into the application at run

time.

Other approaches including AmbieSense (Kofod-Petersen & Aamodt, 2006) and Ma et al. (Ma

et ah, 2005) have applied CBR to context-awareness, however similar to the approach used in the

LISTEN framework they do not learn new cases so they are knowledge-intensive approaches.

2.2.7 Data mining

This section describes approaches that apply data mining to learn context definitions. Data mining

is the process of identifying relevant and useful patterns and relationships within large amounts of

data, which can subsequently be used to make predictions (Callan, 2003). Individual records within

the data are referred to as cases and the collection of records to be mined is referred to as the case

set.

2.2.7.1 User-preference mining

Tsang and Clarke (Tsang & Clarke, 2007) apply data mining to the personalisation of user context

definitions. The work is motivated by the difficulty of manually specifying user preferences in existing

approaches. The premise of their solution is that users are habitual and their habits are hidden within

their historical data.

Their approach gathers a case set by recording user behaviour and sensor data over time. A single

case consists of a number of different elements. For example, a case for a restaurant application

might be “{preference=chinese, cuisine=chinese, cost=cheap, meal=lunch, day=wednesday}” (Tsang

& Clarke, 2007). The preference variable refers to the user’s cuisine preference, euisine and cost

variables refer to properties of the restaurant, meal and day refer to context information. Possible

case-element values are limited to those defined in a user model.

Fig. 2.20 shows an overview of their four-stage approach for mining context definitions. The case-

selection stage selects a set of relevant cases from the overall case set. Relevant cases fulfill two criteria-

47

2.2. Learned context definition

they are semantically similar to the current problem being solved and they have similar context.

Semantic similarity is defined by the object hierarchy in the user model, e.g., when recommending a

restaurant relevant cases include those related to both restaurants and cafes, as they share a parent

dining object. Context similarity is defined by matching values, e.g., if the current context is “dinner

time on a weekend” then it only selects cases where the user made decisions in the same context.

The mining stage applies an association-mining approach to identify relationships or correlations

between items in the case set. The particular algorithm they use is the Apriori cilgorithm (Agrawal

et ah, 1996), which discovers associations by determining the frequency that case-element values

occur together. The output of mining is a set of rules in the form of predicates, e.g., cost=cheap =>

restaurant-choice=chinese, where cheap and Chinese are case-element values. Data mining may yield a

large number of rules so the rule-selection stage evaluates which rules should be used. They employ a
common practice from association mining which is to compare rules in terms of confidence and support.

Confidence represents the accuracy of the rule, i.e., the proportion of cases that it describes correctly.

Support represents the number of cases that contribute to the rule. These two characteristics are used

to select the best set of rules to execute. The adapt stage then executes the selected rules.

Analysis This approach applies association mining to learn context definitions. A case set of user

actions in different contexts is recorded and mined. The approach is best classified as a supervised-
learning approach as it depends on correct inputs and outputs to generalise from. The process of

gathering sensor data is not described, however the symbols described in cases are high-level concepts

which may need to be derived, e.g., infer “cheap” from m.enu prices.

Context definitions span any preprocessing of recorded symbols in cases and the mined association

rules. The preprocessing element may introduce context-definition inaccuracy that this approach

cannot correct at run time. The issues of sensor unavailability and unsuitability are not considered.

This approach depends on expert knowledge to define any discretisation process and also to im­

plicitly label sensor data with actions. These requirements limit its knowledge autonomy.

2.2.7.2 Summary

Data mining approaches share a number of parallels with case-based reasoning. They both depend on

a historical set of cases that link contexts to actions. Both approaches match the current context to

existing cases and identify the best action to take. Data mining does not require a similarity metric to

compare cases however, and instead relies on more generic measures of similarity such as the overlap

in elements between cases.

48

Chapter 2. State of the Art

2.3 Chapter summary

This chapter reviews the current state of the art in context definition. Table 2.2 summarises the

extent to which existing approaches can adjust their context definitions at run time, their dependency

on expert knowledge, and their ability to address sensor unavailability and unsuitability issues. Our

survey shows that the techniques applied in related projects provide limited support for these issues,

and none of the issues is fully supported by any approach.

Approaches provide flexible context-definitions at run time by enabling the user to make manual

changes or by learning context definitions based on run-time sensor data. In each case the degree

to which context-definitions are flexible is limited by fixed underlying discretisation processes. These

processes may introduce inaccuracy in context definitions that cannot be corrected using existing

approaches.

Learning approaches to context definition exhibit some knowledge autonomy by learning context

definitions beyond those explicitly encoded by the developer. The knowledge-autonomy of learning ap­

proaches is limited by their dependency on developer knowledge to define discretisation processes that

interpret sensor data, as well as other learning-technique specific structures such as the reward model
(reinforcement learning) and similarity metric (CBR). Approaches that apply supervised-learning also

depend on expert knowledge to label training data.

A number of approaches address the issue of sensor unavailability by loosely coupling sensors and

applications. These approaches provide some kind of lookup service to enable connection to sensor

instances at run time. This approach only provides limited support for the issue of sensor unavailability

as it assumes that at least one sensor of each required type will be available at run time.

A small number of approaches address sensor unsuitability to a degree by evaluating the usefulness

of sensor data. These approaches do not consider entire sensors, nor do they facilitate integrating new

sensors beyond those specified by the developer therefore they provide very limited support for the

issue of sensor unsuitability.

Our own approach bears various similarities to these existing approaches. It belongs in the run­

time, context-learning category of approaches as it seeks to learn about context beyond the knowledge

encoded by the developer at design time. Obviously it shares the underlying learning technique used

by the reinforcement-learning based approaches in Section 2.2.5, however it does not rely on a user to

provide regular feedback that indicates the context, i.e., some form of training data. Instead we tcike

a more traditional reinforcement-learning perspective where feedback comes from the environment

rather than explicitly from a user.

The work by (Ali et ah, 2008) described in Section 2.2.5.3 has a similar focus to our own approach

49

2.3. Chapter summary

in terms of considering raw sensor data. However their approach, which discretises sensor data using

fuzzy logic, relies on a set of membership functions that limit the flexibility of context definitions at

run time. Our own approach to discretisation has no such fixed structures.

The approaches taken by (Albinali et al., 2007) and (Krause et al., 2006) to select appropriate

network structures for Bayesian networks bears a strong resemblance to our own approach to the search

for the most suitable sensors. They evaluate the usefulness of particular pieces of sensor data from

these sensors. However these approaches operate with fixed sets of sensors and fixed discretisation

layers that limit which sensors can be used at run time. Our approach addresses this issue by learning

how to discretise sensor data at run time for unforeseen sensors.

50

Chapter 2. State of the Art

1)
6

-4-3a
COa
.9
‘SCC(V

Xa;
-4-3aoCJ
a;
3
‘x

>>soao
§
bO

Oa

-4-3

1
1aa

fr.4o
COa
CO

CO

CO
COa;tH

>>
-4-3

3a
■4-3

*3
COa
uo
COc
CO

COV
CO
CO0)
{-4XJ

<<
Knowledge-intensive design time

Context Toolkit - - o -
Java Context-Awareness Framework - - o -
Sentient Object Model - - o -

Knowledge-intensive run time
PACE o - o -
Context Studio o - - -

Bayesian networks
Korpipaa et al. - o - -
Smith et al. o o - -
Albinali et al. - o - o

Artificial neural networks
Van Laerhoven and Cakmakci o o - -
SCM o o - -
SenSay o o - o

Reinforcement learning
Gaia o o o -
Zaidenberg et al. o o - -

Ali et al. - o - -

Case-based reasoning
LISTEN - - - -

MyCampus o o o -

Data mining
Tsang and Clarke o o - -

• = supported, O = limited support, - = no support
Table 2.2: Summary of state of the art approaches to context definition

51

Chapter 3

Design

Our aiiailysis of state-of-the-art approaches to context definition shows that existing approaches provide

limited support for adjusting context definitions at run time. This affects their ability to handle issues

caused by uncertainty in the run-time environment- context misinterpretation, sensor unsuitability,

and sensor unavailability. To address these issues context-aware applications should evaluate the

accuracy of their context definitions and the suitability of sensors available at run time. State-of-

the-art approaches to context definition are limited by their dependence on expert knowledge to

provide either the entire context definitions of an application or elements of context definitions. These

knowledge structures are not flexible at run time, so they limit an application’s ability to evaluate and

correct its context definitions. The structures also limit the types of sensors that an application can

use to identify the context, so existing approaches oidy partly address sensor unavailability and do

not address sensor unsuitability for identifying contexts. To overcome these limitations an approach

must remove expert knowledge from its context definitions, i.e., become knowledge autonomous.

The research question that this thesis addresses is that of what techniques and algorithms are

necessary to support accurate run-time context definition in unpredictable operating environments,

including identifying suitable sensors from those available and accurately identifying the context from

their sensor data. This thesis answers the research question by describing a novel process for learning

context definitions at run time.

We begin by discussing existing definitions of context and their limitations for knowledge-autonomous

context definition. We define the meaning of context from the perspective of the application. We then

describe a representation for context definitions that is expressed on raw sensor data, to remove any

dependency on expert knowledge. This representation also facilitates the use of a flexible set of sen-

52

Chapter 3. Design

SOTS. We then describe the KAFCA process that applies our theory of knowledge-autonomous context

to learn context definitions. At the core of the process is reinforcement learning (Sutton & Barto,

1998), which we identify as the learning technique that is least dependent on expert knowledge. Rein­

forcement learning is used to learn mappings between sensor data and actions, which the application

interprets to define context definitions. We define a set of algorithms around this learning technique

that refine the discrete states on which learning is based to improve the accuracy of context definitions,

and combine and evaluate sets of sensors to select the most suitable set from those available. These

techniques and algorithms combine in a two-phase process that addresses the limitations of existing

approaches by removing knowledge-intensive structures from context definitions. The remainder of

this chapter provides a detailed description of the approach proposed in this thesis, and concludes

with a summary of how the chcillenges identified in Section 1.3 are addressed.

3.1 Knowledge-autonomous context definitions

In order to design an approach where the application can interpret and adapt its context definitions

autonomously we must first understand what context is. In this section we examine existing definitions

of context and their usefulness for knowledge-autonomous context definitions.

We follow the description of the evolution of context-aware systems described in (Baldauf et ah,

2007), from stand-alone applications to generic frameworks that support application development.

Early research in context-awareness focused on defining context in terms of types of information.

Schilit and Theimer describe context as location, identities of nearby people, objects and changes

to those objects (Schilit & Theimer, 1994). Ryan et al. describe context as the user’s location,

environment, entity and time, and also people and objects in the user’s environment (Ryan et ah,

1998). Dey and Abowd’s (Dey & Abowd, 2000) definition is widely cited:

“any information that can be used to characterize the situation of entities (i.e., whether

a person, place or object) that are considered relevant to the interaction between a user

and an application, including the user and the application themselves.”

More recent definitions classify context information along two dimensions: external and internal

(Prekop & Burnett, 2003; Hofer et ah, 2003). The external (physical) dimension refers to context

that can be measured in the physical environment. The internal (logical) dimension refers to user

context, e.g., goals, business processes, emotional state.

These definitions of context focus on context from a human perspective. They emphasise that

context definitions should be based on internal representations of external entities, i.e., a world model

53

3.1. Knowledge-autonomous context definitions

Reference (Interpretation)

Referent
(Physical phenomenon)

Figure 3.1: A semiotic triangle (adapted from (Ogden & Richards, 1923))

(Leahu et al., 2008). As such they are well suited to knowledge-intensive approaches as these ap­

proaches capture a developer’s perspective of application contexts. However these definitions of context

are not well suited to knowledge-autonomous approaches, as they are based on human-interpretable

symbolism that the application cannot intuitively interpret, as it has no innate knowledge of locations,

identities or objects.

The semiotic triangle (Ogden & Richards, 1923) can be used to explain why human symbolism

limits an application’s ability to introspect about its context definitions. The semiotic triangle is a

model that explains how linguistic symbols are related to the real-world objects that they represent.

The triangle combines three elements (symbol, referent and reference) in a reasoning model (Fig.

3.1). An internal symbol stands for an external referent, and the relationship between symbol and

referent is captured by a reference. Nehaniv describes how the semiotic triangle defines meaning

within software applications (Nehaniv, 1999). A physical phenomenon is internally represented by

the application using a symbol. The mappings between the physical world and symbols are captured

in an interpretation that signifies the meaning of the symbol to the application. The symbols alone

are meaningless to the application without the interpretation. Context definitions based on human

symbols must similarly have interpretations for those symbols provided so that the context definitions

are meaningful to the application.

For example, the symbol cold is meaningless to an application as it has no innate understanding of

cold. The symbol only becomes meaningful if the application somehow encapsulates an interpretation

of cold, such as “coW is an undesirable context. Activate a heater to change the context to warm,

which is a more desirable context”. The application can only interpret human symbols as it has been

instructed to interpret them. It cannot reason about the accuracy of the interpretations as it has no

innate knowledge of the human reasoning they capture. Therefore these human-centric definitions of

context do not facilitate application introspection about context.

54

Chapter 3. Design

A small number of existing definitions of context do not focus on human symbolism. For example

Hull et al. describe context as aspects of the local environment (Hull et al., 1997), and Brown defines

context as elements of the environment that the computer knows about (Brown, 1996). However

these definitions are too vague to capture the effect of context on the application, or the relationship

between sensor data and context.

For a context-aware application to be knowledge autonomous it must be capable of introspection

over its context definitions. To achieve this we must define context in terms that are meaningful to

the application and independent of human symbolism.

3.1.1 Introspective context

We require an application-oriented definition of context to enable introspection over context defini­

tions. Gellersen et al. discuss the confusion that may arise from using the term “context” at different

levels of .abstraction (Gellersen et al., 2002). They describe three levels of abstraction- a specific oc­

currence of an aspect of the environment, e.g., a specific place; a particular aspect of the environment,

e.g., location; and the entire environment that surrounds an application. We use the term “context”

to refer to the entire real-world situation of an application.

To better understand the relationship between sensor data and context we begin by examining

the motivation for context. A context-aware application perceives the environment through sensors

that can produce thousands or even millions of unique values. For example a temperature sensor with

range 0.00-100.00°C has 10,000 possible values. It is infeasible to encode how each value uniquely

affects an application. Contexts refer to the environment at a much less fine granularity, therefore they

have the effect of simplifying the application’s perception of the environment. We therefore define a

practical motivation for context:

Context simplifies an application’s perception of the environment by generalising about

sensor data.

In knowledge-intensive approaches contexts are defined based on expert knowledge, e.g., values in

the range 3-15"C indicate the context “cold”. The sensor values in this range share some common

relevance or meaning to the application (from the developer’s perspective), which is symbolised by

“cold”. As discussed earlier the application has no innate knowledge of what “cold” is therefore it

cannot introspect about its accuracy or relevance. Introspective context definitions must be based on

meaning that is relevant to the application.

Although the meaning of context to the application has not been explored, a number of researchers

55

3.1. Knowledge-autonomous context definitions

have investigated the meaning of sensor data. Nehaniv (Nehaniv, 1999) examines mathematical no­

tions of meaning, stressing that the meaning of information is revealed in how it influences an agent.

A discussion of sensor data in (Polani et ah, 2001) suggests that meaning is grounded in how it is

used, based on a notion originating in linguistics (Wittgenstein, 1968). Using this terminology we

state that context-aware applications use sensor data to influence how they select the actions to be

performed. Based on this usage we define meaning for context-aware applications:

The meaning of sensor data to a context-aware application defines how it affects action
selection.

As contexts are generalisations of sensor data they share the same meaning to the application as the

sensor data they represent. We finalise our definition of context:

A context represents sensor data that causes the same action selection.

Although this definition of context may appear overly generic it captures the meaning of context to
an application and also the effect that the context has on its behaviour, i.e., how an application might

reason philosophically about its context. In this definition context simply serves as a generalisation
of stimulii that affect application behaviour. Further interpretation of context would involve human

symbols and semantics that cannot be intuitively interpreted by an application. In the next section we

consider how an application reasons more practically about its context by creating context definitions.

We assume that the set of actions available to the application are known a priori and therefore

the set of application contexts are implicitly known. Although a human might define two different

contexts, e.g., “at the cinema” and “in meeting”, from the application’s perspective they might be the

same context- “set mobile phone to silent”.

Unlike existing definitions of context this definition does not depend on human symbolism and

instead focuses on context from the application’s perspective. The definition is simple and abstract

but it has a considerable implication for knowledge-autonomous context definitions. By comparing

the meaning (influence on action selection) of different sensor data the application can evaluate if they

belong in the same or different contexts. This comparison facilitates introspection about the accuracy

of context definitions.

Furthermore, we will show that reinforcement learning can be applied to learn how sensor data

influences action selection. As a result there is no requirement for the developer to define this meaning

using expert knowledge. The use of reinforcement learning is discussed in detail in Section 3.4.

56

Chapter 3. Design

■ n-tuple

Figure 3.2: An application’s perception of the environment

3.1.2 Representation of context definitions

Given this definition of context we now consider how context definitions should be represented. The

representation must be flexible to support our requirements for knowledge autonomy (Section 1.3.3).

The relationships between sensor data and contexts, and the set of sensors used to distinguish contexts

must both be flexible. This facilitates adjusting context definitions at run time to address context

nusinterpretation and sensor unsuitability or unavailability.

3.1.2.1 Sensor-data representation

Context is interpreted from sensor data, so we begin by defining how sensor data is represented

by the application. A context-aware application consumes sensor data from sensors in the physical

environment. KAFCA uses the MoCoA middleware to interact with sensors so the complexity of

communicating directly with sensors is abstracted away (Section 1.6).

To avoid knowledge-intensive structures that may limit the accuracy of context definitions (Section

2.2.2) the application must work with raw sensor data. The application infers its context from a set

of n sensors. At a point in time the current readings from each sensor are combined as an n-tuple,

and the n-tuple represents the application’s current view of the environment. The set of all possible

n-tuple combinations from n sensors lie within an n-dimensional sensor space (Figure 3.2). Each

sensor’s range of possible values represents a single dimension of the sensor space.

It should be noted that the application does not store the entire sensor space of tuples, rather the

sensor space represents application awareness of the set of environmental situations it can distinguish.

The set of possible tuples can be calculated by the application using sensor meta-data that describes

their range of values and precision (Section 1.6). Any set of n sensors can be combined to form a

57

3.1. Knowledge-autonomous context definitions

sensor space therefore this representation of sensor data addresses the requirement that the set of

application sensors be flexible.

3.1.2.2 Context edges

In Section 3.1.1 we describe context as a generalisation of sensor data that cause the same action

selection to occur. Based on the representation of sensor data we have just described contexts represent

sets of similar n-tuples in the sensor space.

We make the assumption that sensor data is ordered. This makes the sensor space a Euclidean

space, where the distance between points in the space can be measured. The ordered-data assumption

is true for many sensors in the physical environment, e.g., distance, temperature, weight, height,

voltage, pressure, speed, acceleration etc. Under this assumption it is our intuition that in general

similar tuples will be co-located in the sensor space. This allows the application to define contexts as

regions in the sensor space.

We exploit the co-location of similar tuples to define contexts as contiguous subspaces within the

sensor space. Within a context all sensor tuples are homogenous, i.e., they share the same meaning.

Each context is bounded by context edges. A context edge is a boundary to a region of sensor space

where the meaning of tuples is homogenous. All tuples on one side of the context edge share the same
meaning as they are within the context, while tuples on the other side have different meaning(s).

Contexts are defined in terms of their context edges. Rather than define explicit associations

between tuples and their context they are implicitly associated by being located in the sensor space

between the context edges of a context definition. The idea of defining contexts in terms of context

edges is derived from a discussion of continuous state spaces in (Atkin & Cohen, 2000). Atkin argues

that there are particular critical points in the space where decisions are made and that the continuous

space between these points are irrelevant to the application. We equate critical points to context

edges, as the application makes the decision to change its behaviour when its context changes, i.e.,

when the environment changes such that the current tuple is across a context edge from the previous

tuple. Once it has adapted to its new context the exact state of the environment is irrelevant, that

is, until another context edge is crossed.

Fig. 3.3 shows a number of tuples in a sensor space. Each tuple is colour-coded based on the action

selection it causes. Context edges separate subspaces where the meaning of tuples is homogenous.

The figure illustrates a sensor space where two different subspaces cause the same action selection,

however they are separated by a third subspace that has different meaning. These similar subspaces

are philosophically in the same context as they cause the same action selection, however in practice

58

Chapter 3. Design

context-definition, context-definition^ context-definition..

Tuples that cause Action,

O Tuples that cause Action^

■ “ Context edge

Figure 3.3: Context definitions in the sensor space

they each have their own context edges and therefore are defined in separate context definitions

(context — definition A and context — definitionc)-

It is important to distinguish between the concepts of context and context definitions. Contexts

define how an application should behave in its environment, whereas context definitions are manifes­

tations of application contexts in particular sensor spaces. The fact that a particular sensor space

represents a context in two separate subspaces is a function of that sensor space. A different set of

sensors and associated sensor space might represent the context in a single subspace or more than

two subspaces, however this does not change the philosophy of the subspaces belonging to the same

context.

Sensor spaces have previously been proposed as a means of representing context (Padovitz et ah,

2005) but only using static, knowledge-intensive contexts expressed on the sensor space. With our

approach the application can introspect about its context definitions by comparing the meaning of

neighbouring tuples and adjust its context definitions appropriately. The context edges that it iden­

tifies at run time are accurate for the particular run-time environment.

It should be noted that although multiple context definitions can be expressed on the same sensor

space not all contexts are necessarily identified by the same sensors in the sensor space. For example,

in Fig. 3.3 context — definition a and context — definitions both have irregular shapes in the sensor

space. In order to test if an application is in one of these contexts the values of both sensor^ and

sensory must be considered, e.g., the application is in the context defined by context — definitionA

if the value from sensorx is between xq and xi, or if the value from sensorx is between xi and X2 and

the value from sensory is between yi and 2/2- In contrast the application can test if the application is

59

3.2. KAFCA

in the context defined by context — definitionc by considering only the value from sensorx, i.e., the

application is in the context defined by context — definitionc if the value from sensorx is between

X3 and X4. The value from sensory does not affect whether the application is in this context or not.

This representation of context definitions addresses the issue of context misinterpretation at run

time, as the relationship between sensor data and context is not fixed. Instead context definitions are

defined in terms of context edges. The application can identify context edges at run time to define

context definitions that are accurate for a particular run-time environment.

3.1.3 Critique

Our definition of context focuses on how context-aware applications react to their operating context

by selecting actions. A limitation of this view of context is that it doesn’t capture how sequences of

values from sensors indicate a context. This limits the applicability of the approach to applications that

simply react to changes in their operating environment. The challenge of knowledge-antonomously

defining context definitions that capture how sequences of sensor data indicate the context is considered

beyond the scope of this thesis.

Our definition of context and representation of context definitions emphasise context as a gener­

alisation of sensor data. This is motivated by the wide range of sensor readings that sensors in the

physical environment produce. We are particularly interested in such sensors as the physical envi­

ronment is the user interface for context-aware applications, and key to transparent interaction with

users (Section 1.2). Internal sources of data such as a user-profile, calendar, device status, or network

status could be modeled as software sensors and integrated in context definitions, as long as their data

was converted to numeric data that could be mapped to tuples in a sensor space. Such conversions

would be sensor specific, and we do not consider this challenge to be within the scope of the thesis.

Our representation of context definitions also depends on ordered sensor data. Sensors that do not

produce ordered data could also be integrated in context definitions, however it would not be possible

to generalise about their sensor data based on regions in the sensor space. Each sensor value would

have to be individually mapped to a context or generalised about based on expert knowledge. We do

not consider the challenge of integrating such sensors within the scope of the thesis.

3.2 KAFCA

The KAFCA process applies techniques and algorithms to realise this theory of knowledge-autonomous

context definition. Figure 3.4 shows a high-level overview of the elements of KAFCA. Interactions

60

Chapter 3. Design

Figure 3.4: KAFCA processes

with the environment through sensors and actuators are delegated to the MoCoA middleware (Senart

et ah, 2006). This allows KAFCA to ignore low-level issues such as connections, communication

protocols and routing, and focus on higher-level context-definition issues.

The KAFCA process is organised as a set of subprocesses that are executed to learn context

definitions at run time. At the core of KAFCA are two subprocesses for accurate context definition

and sensor selection. These subprocesses depend on the other two subprocesses within KAFCA-

reinforcement learning and discretisation.

Reinforcement learning is a key enabler of the context-definition and sensor-selection processes

as it is used to learn how sensor data infiuences action selection. This provides the meaning for

sensor data that underpins our application-oriented definition of context. As discussed in Chapter 2 a

variety of techniques have been applied in approaches that learn context definitions. Some degree of

supervision is a common requirement among the surveyed approaches and this requirement introduces

a dependency on expert knowledge. Supervision may take the form of data labeled with correct actions

(Bayesian networks, CBR, data mining) or supervised labeling of learned contexts (artificial neural

networks). Although supervision is a necessary requirement in most of these approaches it is not

a necessary requirement for reinforcement-learning-based approaches. Reinforcement learning uses

feedback from the environment to evaluate the effectiveness of actions. The surveyed reinforcement-

61

3.2. KAFCA

learning-based approaches in Chapter 2 simplify the problem of interpreting feedback by relying on a

human in the loop to provide explicit feedback about actions, i.e., supervision. However feedback can

come from sources other than users so there is potential for autonomous learning of context definitions.

We therefore identified reinforcement learning as the most knowledge autonomous learning technique.

The reinforcement-learning subprocess outputs a policy that maps sensor data (represented by discrete

states or contexts) to actions, which is used by other KAFCA subprocesses to increase the accuracy

of context definitions and identify suitable sensors.

As is the case for other approaches that apply learning techniques KAFCA must perform some

discretisation of sensor data to make the learning task feasible. In related approaches discretisa­

tion encapsulates expert knowledge that is inflexible at run time, however KAFCA defines a flexible

discretisation process based on discrete .states that is independent of expert knowledge. The discreti­

sation subprocess maps sensor data to discrete states that represent particular subspaces of the sensor

space. The set of discrete states (and subspaces) is adjustable so the KAFCA process can adjust how

sensor data is discretised. The discretisation subprocess also discretises sensor data to contexts as

they similarly represent subspaces of the sensor space, although at a higher level of abstraction than

discrete states.

The accurate-context-definition subprocess defines context definitions for individual sensors that

interpret the context as accurately as is possible from that sensor’s data. As discussed this sensor data
must be discretised before reinforcement learning can be applied. In order to define context definitions

that are accurate they must be expressed on discrete states that capture important changes in the
environment (Section 2.2.2). The accurate-context-definition subprocess refines discrete states at

run time to capture these important changes i.e. changes in application context. An initial set of

discrete states is constructed for a sensor based on the meta data it provides. These discrete states

are iteratively refined to improve their representation of context edges. When refinement is finished

context edges are identified and context definitions are defined for a sensor.

The sensor-selection subprocess combines and evaluates different sets of available sensors to iden­

tify the best combination for detecting application contexts. Combinations are selected using an

informed search, which uses the results of previous combination evaluations to guide its selection of

future combinations. Each sensor in a combination has its own set of one-dimensional context def­

initions from the accurate-context-definition subprocess, and these definitions are combined to form

n-dimensional definitions for a combination of n sensors. Application performance while using each

combination is measured against a developer-defined metric, and the result feeds back into the search

for better combinations. This subprocess continues until application performance is no long improved

62

Chapter 3. Design

by using different combinations of sensors.

Alg. 1 is a high-level algorithm that shows the sequence and iterations within the KAFCA process.

The first phase of KAFCA iterates over the set of available sensors. Discrete states are initialised for

each sensor, and then iteratively refined by learning a policy for the current set of discrete states

and then splitting discrete states near context edges. After refinement a set of context definitions

are defined for the sensor. The second phase of KAFCA iteratively selects the most suitable sensors

for an application. In each iteration a new combination of sensors is selected, and their individual

context definitions are combined. A policy is learned for these contexts and application performance

is evaluated while selecting actions based on this policy.

As an example consider a simple application that is responsible for closing and opening office blinds.

It discovers five sensors in its environment when deployed- temperature, light intensity, sound level,

atmospheric pressure and humidity. Each sensor may contribute data that is useful for identifying the
application context, however the application has no prior knowledge of these sensors.

In the first phase of KAFCA each sensor is considered in sequence. When it is under consideration

a set of discrete states are initially defined for each sensor based on its meta data. These states

are refined over a fixed number of iterations by learning how the application should behave in each

discrete state and then updating discrete-state boundaries to reflect what has been learned. At

the end of its individual consideration context definitions are derived for the sensor by identifying

chains of similar, neighbouring states. In this example each of the five sensors will have their own

context definitions at the end of phase one, that represent how their individual sensor data influences

application behaviour. For example the temperature sensor might indicate that when temperatures

drop below 11”C the shutters should close to conserve heat, the light intensity sensor might indicate

that shutters should close above 60W' to aid computer-screen visibility.

Once all sensors have been individually considered they can be combined in phase two of KAFCA.

Sensors are combined by constructing n-dimensional rectangles from their contexts identified in phase

one. For example, the temperature sensor has two context definitions from phase one- 0-ll°C and 11-

100“C, while the light-intensity sensor also has two context definitions- 0-60W and 60-500W. When

combined these form four two-dimensional context definitions- (0-11,0-60), (11-100,0-60), (0-11,60-

500), (11-100,60-500). The application is evaluated against a metric for its performance, and the

result of this metric feeds back into the search for better combinations.

63

3.3. Discretisation

Algorithm 1: KAFCA Algorithm
/* PHASE 1: Accurate context definition */
foreach sensor s do

Initialise discrete states using meta data for s;
for i=l to number of refinements do

learn policy using reinforcement learning;
refine discrete states;

end
define contexts for sensor s;

end
/* PHASE 2: Sensor selection */
while application-performance improves do

select a new combination to evaluate;
combine the context definitions of sensors;
learn policy using reinforcement learning;
evaluate performance using this combination;

end

3.3 Discretisation

The discretisation subprocess identifies discrete states and contexts to which raw sensor data belongs.

Both discrete states and contexts represent subspaces within the sensor space. Raw sensor data is

retrieved through the MoCoA middleware and combined in the n-tuple structure described in Section

3.1.2.1. An n-tuple is then discretised to a discrete state or context by comparing its coordinates in the

sensor space to the subspaces they represent. The specific structure to which sensor data is discretised

depends on the phase of KAFCA. During discrete-state refinement, for example, the process has not

yet defined any contexts therefore sensor data is discretised to a discrete state. During sensor selection

the contexts of each sensor will have been defined therefore sensor data is discretised to a context.

We first discuss how sensor data is discretised to discrete states. Our initial implementation

of discretisation used a nearest-neighbour approach to define the subspace that is represented by a

discrete state. Each discrete state had a centre point that marked the centre of its subspace. Discrete

states were distributed around the sensor space, and sensor-data tuples were discretised to a discrete

state based on their proximities to discrete-state centres. The distance between tuple coordinates and

the centre points of discrete states was measured using the Euclidean-distance metric from coordinate

geometry.

distance{a, b) = \J(oi — 6i)^ -|- {a^ — ^>2)^ + + {dn —

This simple discretisation process works well for one-dimensional spaces, however in spaces larger

than one dimension it is difficult to reason about the boundaries between discrete states. In KAFCA

64

Chapter 3. Design

Figure 3.5: A discrete state in 3-dimensional space

reinforcement learning learns policies that map sensor data to actions at the granularity of discrete

states, and context edges are identified at the boundaries between dissimilar discrete states. With a

nearest-neighbour discretisation there is no explicit representation of discrete-state boundaries. The

shape of each discrete state’s subspace depends on its centre point and the center points of other

discrete states. This made it too complex to define the location and shape of a boundary (and context
edge).

Due to this complexity we changed our focus to a more regular discretisation based on n-dimensional

rectangles. In this approach a discrete state represents a subspace in n dimensions. Its size in each

dimension is defined by a range of values between a lower and upper bound. Fig. 3.5 shows the sub­

spaces represented by two discrete states in three-dimensional space. Each discrete state’s subspace is

defined by its range of values in each dimension, and the boundaries of the subspaces are predictable.

Alg. 2 is an algorithm for identifying if discrete states are neighbours. Neighbours are identified

by comparing their ranges in each dimension of their subspace. The number of dimensions in which

their ranges overlap are counted. A dimension in which they do not overlap is also stored. If n-1 of

their n ranges overlap and the non-overlapping ranges of the states meet end-to-end (i.e. in range r

the upper bound of state si is the lower bound of state S2, or vice versa), then their subspaces share

a boundary and therefore they are neighbours. In Fig. 3.5 the ranges of the discrete states overlap in

dimensions y and z, and the ranges in dimension x meet end-to-end.

The discretisation subprocess maps raw sensor data to a discrete state by comparing tuple coordi­

nates to each discrete state’s subspace. The algorithm for discretising sensor data to a discrete state

is shown in Alg. 3. Sensor data is first combined in an n-tuple, and then compared to each discrete

state. Each element of the n-tuple is compared to the range of a discrete state in the corresponding

dimension. If all elements are between the lower and upper bounds of a discrete state then that state

is identified as the representative of the sensor data and returned.

65

3.3. Discretisation

Algorithm 2: Neighbouring discrete-state identification algorithm
Input; Discrete states si and s2
Output: true if states share a boundary
numberOverlapping = 0;
nonOverlapping = -1;
/* compare each dimension */
foreach dimension dim do

if dimensionfdim] of si overlaps dimensionidim] of s2 then
I increment numberOverlapping-,

end
else

I nonOverlapping = dim;
end

end
/* check if their ranges overlap in n-1 dimensions cind meet in the other */
if numberOverlapping equals (number of dimensions - 1)
and dimensionfnonOverlapping] of si meets dimensionInanOverlapping] of s2 then

I states are neighbours;
end
else

I states are not neighbours;
end

Algorithm 3: Discrete-state discretisation algorithm
Input: Sensor data
Output: Representative discrete state
/* combine sensor values in em n-tuple */
foreach sensor s in n dimensions of current sensor space do

I add current reading from s to n-tuple;
end
/* find discrete state */
foreach discrete state d do

foreach dimension dim of d do
if tuplefdim] NOT within discrete-state range for dim then

I skip to next discrete state;
end

end
if all tuple values within discrete-state ranges then

I return discrete state d;
end

end

The discretisation subprocess also discretises sensor data to contexts. Contexts are defined on

top of discrete states and therefore may take on irregular shapes. Rather than define the boundaries

of a single context subspace we define contexts as collections of discrete states. The discrete states

in a context represent contiguous regions of the subspace, i.e., they neighbour each other, and the

66

Chapter 3. Design

J

■ Discrete-state
boundary

' Context edge

Figure 3.6: Contexts are collections of discrete states

discrete states at the edges of these contiguous regions define context edges (Fig. 3.6). Sensor data

is discretised to a context by comparing tuple coordinates to the subspaces of discrete states within a

context (Alg. 4). This algorithm compares tuple elements to discrete-state ranges in the same manner

described in Alg. 3. However in this algorithm the context to which the representative discrete state

belongs is returned rather than the discrete state itself.

Algorithm 4: Context-discretisation algorithm
Input: Sensor data
Output: Representative context
/* combine sensor values in an n-tuple */
foreach sensor s in n dimensions of current sensor space do

I add current reading from s to n-tuple;
end
/* find context */
foreach context c do

foreach discrete state d in context c do
foreach dimension dim of d do

if tuplefdim] NOT within discrete-state range for dim then
I skip to next discrete state;

end
end
if all tuple values within discrete-state ranges then

I return context c;
end

end
end

67

3.4. Reinforcement learning

Environment RL Application

state (S|)

action (a)

state (s,.)

reward (r)' t+1'

action selection

knowledge update

Figure 3.7: Reinforcement-learning steps

3.4 Reinforcement learning

The reinforcement-learning subprocess takes a set of discrete states or contexts as input and outputs a

policy that maps the input states to application actions. Learned policies are used across the KAFCA

process, to identify discrete states that should be refined, to define contexts, and to select actions

during evaluation of different sets of sensors.

Reinforcement learning learns the effectiveness of actions in states through trial and error (Callan,

2003). In KAFCA a state may be either a discrete state or a context depending on the phase of

the process. The reinforcement-learning subprocess has five steps that are repeated until a policy is

learned (Fig. 3.7):

1. The current state St is observed at time t.

2. An action at is selected and then executed.

3. The resultant transition to a (possibly new) state is observed.

4. A reinforcement (reward) rt+i is received that represents the “goodness” of action at.

5. Knowledge of action rewards is updated.

These steps are repeated periodically to learn a policy for optimal application behaviour, with the

period configured by a period-between-actions pai’ameter. In our approach the observed states in

steps 1 and 3 are discrete states or contexts presented to the reinforcement-learning subprocess by

the discretisation subprocess. Both of these structures are interpreted by the reinforcement-learning

subprocess as states. Steps 2, 4 and 5 require individual discussion of action selection, reward, and

knowledge update. In addition we discuss the issue of identifying when learning is finished. Our

68

Chapter 3. Design

discussion of reinforcement-learning concepts is at a complexity level necessary to design and use

KAFCA. For a more in-depth discussion see (Sutton & Barto, 1998).

3.4.1 Action selection

In the second reinforcement-learning step an action is selected and executed. In applications of

reinforcement learning it is common to define the set of states and possible actions in those states

at design time based on expert knowledge. This is not possible in our approach as the set of states

is unknown at design time. Instead the developer defines a set of available actions and any of these

actions can be selected in any state.

Discussions in reinforcement learning distinguish between two conflicting goals of action selection-

exploration and exploitation (Kaelbling et ah, 1996). The exploration goal is concerned with learning

the effect of multiple actions in each state. It is achieved by experimenting with actions and observing

the associated rewards. Application performance is negatively affected by exploration as some actions

that are taken may not be as effective as others. In contrast the exploitation goal is to maximise

application performance by choosing what are perceived to be the best actions. A consequence of

taking the “best” action is that other actions are not executed and knowledge about their usefulness is

not learned. The real optimal action may be ignored resulting in suboptimal application performance.

The challenge of balancing these goals so as to optimise long-term application performance is a

common dilemma in reinforcement learning, and a variety of strategies have been proposed to address
it. These have been surveyed and compared in the literature (Kaelbling et ah, 1996; Sutton & Barto,

1998). One obvious strategy is to greedily select the “best” action at all times although this obviously

means that new knowledge is accumulated very slowly or not at all. The e-greedy strategy addresses

this by behaving in a near-greedy fashion. Each time an action is selected there is a small probability e

that the action is selected randomly. The degree of exploration is controlled by the value for e defined

by the developer, and the value reduces over time so that action selection becomes increasingly greedy

as knowledge is accumulated. A draw-back of the e-greedy approach is that when selecting an action

randomly it is as likely to choose the worst action as the second-best action, i.e., it doesn’t exploit its

existing knowledge of actions. Softmax action selection addresses this by grading the probability of

choosing actions. Actions are graded by some function of their current estimated value so that “better”

actions have a higher probability of being chosen. The function is parameterised with a value that

controls the degree to which better actions are more likely to be chosen. Initially a high value is used

and actions are selected almost completely randomly as a result. Over time the value is decreased so

that actions are selected more greedily and the application takes advantage of learned knowledge.

69

3.4. Reinforcement learning

Any of these action-selection strategies may be applied to reinforcement-learning problems, and

the outcome largely depends on the parameters that are selected (Bowling & Veloso, 2002).

3.4.1.1 Action selection in KAFCA

In our own experiments we observed that the action-selection strategy could affect our perception of

when sufficient learning had occurred. The focus of the reinforcement-learning subprocess in KAFCA

is on learning an accurate policy so that sensor data can be interpreted. There is no requirement for

exploiting learned knowledge during learning. This is not the same focus as action-selection strategies

such as e-greedy and softmax, which balance learning against application performance by mixing

exploration and exploitation.

In experiments where we applied the softmax strategy we observed that the exploitation element

of the strategy caused the perceived-optimal action to be executed more frequently. This reflected

the strategy’s goal of optimising application performance. However a consequence of this was that

other, potentially more optimal, actions were executed less frequently. Once an action was perceived
to be optimal the policy was very slow to change to the truly optimal action. It often appeared that

sufficient learning had occurred as the policy was changing so slowly.

To overcome this issue we define a simple action-selection strategy that is motivated by the focus

on learning an accurate policy rather than exploiting learned knowledge. In KAFCA actions are

selected completely randomly to maximise learning. By selecting actions randomly it removes any

bias towards particular actions so that the truly optimal policy is learned as quickly as possible. We

discuss how the reinforcement-learning subprocess identifies that an accurate policy has been learned

later in Section 3.4.3.

3.4.2 Reward

In reinforcement learning “the purpose or goal of the agent is formalized in terms of a special rewEird

signal passing from the environment to the agent” (Sutton & Barto, 1998). The reward is a simple

number rt € R that captures the value of taking the action selected and executed in Step 2. Discussions

often refer to it passing from the environment to the application because in reinforcement learning all

sensors, including those that sense the reward, are considered to be outside the application. In practice

the application senses changes to the environment after taking an action and calculates an appropriate

reward internally using a reward model. The reward model is a developer-defined, application-specific

algorithm for calculating rewards given inputs about the environment. It is the main knowledge-

intensive element of reinforcement learning as it encapsulates expert knowledge of the application’s

70

Chapter 3. Design

goal and its environment. Alg. 5 shows a simple example of a reward model with conditions and

associated rewards. It takes sensor data from a developer-defined set of sensors as input. This input

is interpreted as defined by the developer and an appropriate reward is returned.

Algorithm 5: A simple reward model
Input; Environmental changes
Output: Reward
/* Developer conditions define when good and bad rewards are given */
if post-action environment is ... then

I give a good reward;
end
else if post-action environment is ... then

I give a bad reward;
end

Although the reward model is a knowledge-intensive structure it does not limit the application’s

ability to learn as other learning techniques do. Techniques that require labeled training data are

particularly limited as they can ordy generalise about sensor data for which they have training examples

(Section 2.2.1). In contrast the reward model can be used to learn about sensor data that was not

forseen by the developer. The reward model calculates the reward for an action taken in a state.

The underlying sensor data that the state represents is irrelevant to the reward model. This enables

reinforcement learning to learn a policy that maps unforeseen sensor data to actions.

3.4.3 Knowledge update

The knowledge-update step takes the reward rt+i calculated for action at in state St by the reward

model, and updates its knowledge of actions and rewards. Various representations of this knowledge

are used in reinforcement-learning. An important characteristic that categorises them is whether they

are model-based or model-free (Kaelbling et al., 1996). Model-based approaches require the definition

of all possible states and state transitions a priori. This obviously requires expert knowledge and

introduces inflexibility at run time. In contrast model-free approaches do not require such knowledge

and are therefore more suited to our knowledge-autonomous approach.

We adopt the model-free representation used in Q-learning (Watkins & Dayan, 1992) as well as

its knowledge-update formula. Q-learning stores knowledge in the form of state-action combinations

with associated utility values- Q-values. A Q-value reflects the learned value of taking an action in a

state. The optimal action for a state is identified by comparing the Q-values for each of its possible

actions. The update formula for a Q-value is shown in Alg. 6.

A Q-value Qt+\{st,at) is updated based on its current value {Qt{st,at)), the observed reward for

71

3.4. Reinforcement learning

Algorithm 6: Q-value update formula

Qt+i{st,at) = Qt{st,at)+a[rt+^{maxQ{st+i))-Q{st,at)]

an action (rt), and the long-term value of the action (the maximum Q-value in the transitioned-to

state maxQ{st+i)). The degree to which a particular update affects the current value is controlled by

the a value, also known as the learning rate. Similarly the degree to which an update is affected by

the long-term value of an action is controlled by the 7 value, also known as the discount rate. Both

values are in the range 0-1 and are specified at design time.

In deterministic environments where actions cause predictable state transitions the learning rate

should be 1, as each Q-value update has reliable, consistent information. The real world where

context-aware applications are deployed is not deterministic, and a learning rate close to 0 smooths

the learning curve by reducing the effect of individual updates. There is an obvious trade-off between

the speed (learning rate = ~ 1) and accuracy (learning rate = ~ 0) of learning that is controlled by

the developer.

The discount rate is more application specific, as its value depends on whether rewards occur

frequently or infrequently. For example, an application that learns a path through a maze can only

be rewarded when it succeeds (exits the maze) (Sutton & Barto, 1998). Each action taken on the
path contributes to success, but this is only realised once the goal is achieved. For applications in

this category the state in which rewards are received is often referred to as the goal state. Rewards

received in the goal state are propagated by state transitions caused by actions, and the maxQ{st+i)

element of the Q-learning update function. A discount rate of ~ 1 places a high value on the long-term

benefit of an action, and ensures that rewards are propagated to states that are not goal states. In

an application where every action has an immediate reward the long-term value may be less relevant

(discount rate = ~ 0).

3.4.3.1 Knowledge update in KAFCA

In our experiments we observed that the learning rate has a significant impact on the accuracy of

learned policies when applied to sensor data. One obvious reason for this is that the environment is

non-deterministic and therefore a low learning rate should be used, as described above. However we

observe another phenomenon that is more specific to learning about discretised sensor data. Discrete

states that contain a context edge exhibit a spatial dependency between their subspace and their

Q-vcilues. Their Q-values depend on where in their subspace rewards are gathered. We categorise

72

Chapter 3. Design

Subspace where
is appropriate

■ Discrete-state
boundary

' Context edge

Subspace where A.
is appropriate

Figure 3.8; An inconsistent discrete state

such states as inconsistent discrete states as the meaning of the sensor data they discretise is not

consistent- more than one action is optimal within their subspace.

Fig. 3.8 illustrates an example inconsistent state. When sensor values indicate that the environ­

mental situation is on the left side of the context edge the rewards indicate that action Ai is optimal.

On the other side of the context edge rewards indicate ciction A2 is optimal. The spatial dependency

manifests itself as an oscillation in the Q-values of inconsistent discrete states, e.g., first Ai appears
optimal, then A2 appears optimal, then Ai again and so on. The action that appears to be optimal

for the discrete state depends on the specific point in its subspace where the action is executed, there­
fore we class it as a spatial dependency. The true optimal action in an inconsistent discrete state is

unknown. If the rewards for both actions are equal then we would expect the action associated with

the greatest proportion of the subspace to appear optimal. Otherwise it depends on the relative scale

of the rewards as well as the relative proportions of the actions’ subspaces. The important thing is

that the same action is learned consistently so that a learned policy for discrete states is consistent.

The solution to this issue is to use a very low learning rate (~ 0.01) to ensure that the Q-values of

a discrete state reflect rewards gathered across its entire subspace, and are not solely influenced by

rewards gathered recently in a particular part of the subspace. The scenario in which this phenomenon

was observed is discussed in more detail in Section 5.3.

In our experiments where rewards were long term rather than immediate we observed that a

temporal dependency rather than a spatial dependency affected the accuracy of the learned policy.

Long-term rewards are propagated between states by state transitions. The rewards stem from goal

states and are propagated outwards from these states by state transitions. However the order in which

states are visited is unknown. This order dictates how rewards are propagated and therefore affects

the action perceived to be optimal in states. Similarly to the spatial dependency this phenomenon

is addressed by using a very low learning rate to smooth the propagation of rewards between states.

73

3.5. Accurate context deHnition

The scenario in which this phenomenon was observed is discussed in more detail in Section 5.4.

3.4.4 Stopping learning

Reinforcement-learning-based approaches often do not address the question of when to stop learning

because they treat learning as a continuous process. The ratio of exploration to exploitation may

decrease over time based on the action-selection strategy (Section 3.4.1) however learning never stops

completely. The KAFCA process requires that multiple policies be learned therefore learning must

have a definitive end.

It has been shown that Q-learning “converges to optimum action-values with probability 1 so

long as actions are repeatedly sampled in all states” (Watkins & Dayan, 1992), but this is under the

assumption that an infinite number of actions is taken. The reinforcement-learning subprocess cannot

know that a learned policy is truly optimal without taking infinite actions, however it monitors the

stability of the learned policy to identify when sufficient learning has occurred. At predetermined

intervals a new policy is constructed from the current Q-values. This policy is compared to policies

constructed at previous stability checks. When a sequence of consistent policies is observed the
reinforcement-learning subprocess assumes that an optimal policy has been learned, stops learning

and returns the stable policy. The interval between stability checks and the required sequence length

of stable policies are configured by the developer at design time.

This approach to stopping learning based on the stability of a policy is effective as long as the

period over which stability is evaluated {intervalBetweenStabilityChecks*requiredSequenceLength)

is sufficiently long such that any changes in the policy are observed. During our evaluation we observed

that where the rate of change of Q-values was too slow a policy could appear to be stable when it was

not. This can only be addressed by selecting larger values for interval between stability checks and the

required sequence length. This issue is discussed further in Section 5.5.

3.5 Accurate context definition

Accurate context definition is the first phase of the KAFCA process. It takes sensors as input and

outputs context definitions for those sensors. The accuracy of context definitions depends on the

ability of discrete states to capture context changes in the environment, therefore this subprocess

refines the discrete states that represent sensor data. This occurs at run time to ensure that learned

context definitions are accurate for the run-time environment. During the accurate-context-definition

phase of KAFCA sensors are processed individually over three steps: initial discrete states are defined

74

Chapter 3. Design

min initial-boundaries max

i _J
Discrete states

Raw sensor-data

max

Figure 3.9; Initial discrete states

for a sensor, these discrete states are refined iteratively, and finally context definitions are defined.

We now look at these steps in more detail.

3.5.1 Discrete-state initialisation

The discrete-state-initialisation step defines an initial set of discrete states for a sensor prior to learning

occurring. Discrete states are necessary to reduce the granularity at which sensor data is provided

to the learning algorithm (Section 2.2.2). Sensors produce different sets of values so a generic set of

discrete states cannot be used. This step takes a sensor’s meta-data and produces a set of discrete

states to suit that sensor’s data. The meta-data describes a sensor’s range of possible values and

initial discrete-state boundaries (Section 1.6).

The discrete states for an individual sensor represent one-dimensional ranges of sensor values.

During discrete-state initialisation discrete states are created to represent all possible sensor values

between the meta-data min and max values, with boundaries defined by the initial-boundaries meta­

data (Fig. 3.9). In the event that the min or max meta-data values of a sensor are —oo or oo the

boundary on the first or last state is open-ended. This is the case in Fig. 3.9 where the discrete state

Sx has no upper bound. All sensor values greater than the lower bound of s^’s range are mapped to

the state. The algorithm for initialising a sensor’s discrete states is shown in Alg. 7. The lower bound

of the first discrete state is the meta-data min value. Each value in the meta-data initialBoundaries

array represents the upper bound of one discrete state, and also the lower bound of another. The

upper bound of the final state is the meta-data max value.

3.5.2 Discrete-state refinement

In Section 1.3.1 we identify that fixed discretisation of sensor data may limit the accuracy of learned

context definitions. Accurate context definitions depend on discrete states that represent context

edges well. Fig. 3.10 illustrates the inaccuracy that is introduced when an inappropriate set of

discrete states are used. The illustrated sensor space contains two context edges and is discretised to

five discrete states. The first context edge lies within the discrete state S2 and the second lies on the

75

3.5. Accurate context definition

Algorithm 7: Discrete-state initialisation algorithm
Input: Sensor meta data
Output: Initial discrete states
/* Set the lower bound for the first discrete state */
lowerBound = meta_data.min;
foreach b in nieta_ data.initialboundaries do

upperBound = 6;
create discrete state with range lowerBound to upperBound;
lowerBound = upperBound;

end
/* create the final discrete state */
create discrete state with range lowerBound to meta data.max;

discrete states

\,

inaccuracy
1 identified

i__i context edges.

I i
t ^3 I VI

■ action A,
■ action
□ action Aj

raw sensor data

25

context edges

Figure 3.10: Inappropriate discrete states cause inaccurate context definitions

boundary between S4 and S5. Context definitions are expressed at the granularity of discrete states,

therefore the first context edge is identified at the boundary between the dissimilar states S2 and S3.

This introduces some inaccuracy into a context definition due to the difference between the identified

and actual context-edge location.

In this example S2 is an inconsistent discrete state, as described in Section 3.4.3, as it discretises

sensor data that does not have consistent meaning. Inconsistent discrete states introduce inaccuracy

in context definitions as they hide the true context-edge location. In contrast the second context edge

lies at the boundary between states S4 and S5. The perceived context edge correlates with the real

context edge and therefore the discrete states introduce no inaccuracy. States S4 and S5 are both

consistent states as the context edge lies at their boundaries and not within their subspaces.

The discrete-state-refinement step takes the initial discrete states of a sensor and iteratively refines

them so they better capture context edges. In order to achieve this KAFCA must identify inconsistent

discrete states and split their subspaces. The current version of KAFCA refines the one-dimensional

discrete states of individual sensors in the accurate-context-definition phase. However, this refinement

76

Chapter 3. Design

discrete states

\,
potentially inconsistent

discrete states

/I \
TT S3 S4

------ Tagil iif
S5

action A,
action

raw sensor data

25

context edge

Figure 3.11: Potentially-inconsistent states

approach could also be applied to n-dimensional discrete states.

3.5.2.1 Inconsistent-discrete-state identification

Inconsistent discrete states are those discrete states that contain context edges. The true location of

context edges (and therefore the true inconsistency of states) cannot be known without knowledge of

how every sensor value influences action selection. As discussed earlier it is infeasible to learn about

sensor data at this granularity therefore KAFCA can only reason about the potential inconsistency of

discrete states. Potentially-inconsistent discrete states are those discrete states that have dissimilar

neighbours (Fig. 3.11). The reinforcement-learning subprocess learns a policy for the set of discrete

states currently being refined. This policy is used to compare neighbouring discrete states and identify

dissimilar neighbours.

In the example in Fig. 3.11 the true context-edge location may be in the subspace of either discrete

state S2 or S3, so both are potentially inconsistent. The subspaces of both S2 and S3 are therefore

split.

3.5.2.2 Discrete-state-subspace splitting

Each potentially-inconsistent discrete state represents sensor data in n dimensions however it may

have a context edge in only one/some of those dimensions. Fig. 3.12(a) shows a two-dimensional

sensor space that has a context edge in each dimension. The sensor space is represented by twenty

discrete states (si-S2o). Some states such as si, sg and sn have no dissimilar neighbours therefore

they are not potentially inconsistent. A number of discrete states have dissimilar neighbours in just

one dimension. States S2, S3, sy, sg and S12 have dissimilar neighbours along the x-axis, while states

^14) si5, S18, Si9 and S20 have dissimilar neighbours along the y-axis. These discrete states only need

to be split along the axis in which they have dissimilar neighbours to improve the accuracy with which

77

3.5. Accurate context deRnition

15
action A,
action Aj 15

S,6 Sl7 ®18 S,e S20
Si, S,2 l“s,3“ Sl4 ■ S,3

Se S7 I S3 S9 ®10
s, Sj I S3 S4 S5

®16 Sl7 S,. s,„
52.

S,i S12 ®23 ®ii S,4 5,.
s„

Se S7 ®22 Se ®25 S9 S,o
s. S2 S21 S3 S24 S4 S5

(a)
25 0 25

(b)

Figure 3.12: Discrete-state-subspace splitting

discrete states

raw sensor data
resolution

25

Figure 3.13: Discrete states that are too small represent no sensor values

they capture context edges. State S13 has dissimilar neighbours along both axes and therefore must

be split in both dimensions. Fig. 3.12(b) shows the discrete states that are output after inconsistent

states have been split. An inconsistent state with dissimilar neighbours in m of its n dimensions is

split into 2"* discrete states after refinement.

Inconsistent discrete states are split as long as the split subspaces represent sensor data. Subspaces

smaller than the granularity of the sensor data do not represent any values within the sensor space. Fig.

3.13 shows a situation where a discrete state (ss) does not represent any sensor values, as the sensor

space it represents lies between possible sensor values. This situation is unlikely to occur for sensors

that have a high degree of precision however it could occur for sensors with a coarse granularity, e.g.,

the granularity of a road-traffic sensor would be a single car. To guard against this case each sensor

is annotated with a meta-data value for sensor precision (Section 1.6) and this value is considered

during discrete-state splitting.

Fig. 3.14 shows the progression of a set of discrete states as they are refined over a number of

iterations. At each iteration the subspaces of potentially-inconsistent discrete states are split so they

capture context edges more accurately. The number of refinement iterations is configured by the

developer at design time.

The algorithm for refining discrete states is shown in Alg. 8. For each refinement a new policy is

learned for the current set of discrete states. The inconsistency of each discrete state is then evaluated

78

Chapter 3. Design

inaccuracy
identified I actual

context edge

Initial discrete states

context edge

I I
I l'

□ action A,
□ action A,

VBUTSfSOBSStS, IS4

0

After first refinement

-H-

II

25

S,
'.f " J'"SB Ksemst

S3 S5 ISe S4 S3

25

After second refinement

...s;-'^ S2 s3^iii|0|i4s6 s4 s5

25

Figure 3.14: Discrete-state refinement

by comparing its optimal actions to those of its neighbours. If it is inconsistent then it is compared
to its neighbours in each dimension. If the neighbours in that dimension are different, and its range

is sufficiently large, then its subspace is split in that dimension.

We describe the operation of this algorithm using the temperature sensor from the example dis­

cussed at Alg. 1. The algorithm refines an initial set of discrete states such as 0-32, 32-64, 64-100°C

for the sensor. In the first iteration it learns a policy for these discrete states, and the policy indicates

that the shutters should close for the first discrete state (0-32"C), while all other discrete states cause

them to open. This indicates that there is a context edge in one of the first two states, and these states

are therefore split into four states- 0-16, 16-32, 32-48, 48-64°C. This brings the boundary between

discrete states in the discretisation layer closer to the context edge (ITC) In the second iteration a

policy is learned that indicates that 0-16°C now causes the shutters to close, while all others cause

them to remain open. As a result the discrete states 0-16°C and 16-32°C are split into four states

to further refine knowledge of the context-edge location. This process continues for a predetermined

number of iterations.

3.5.3 Context definition

Contexts are defined when the number of refinements specified by the developer have been carried out.

As described in Section 3.3 contexts are collections of discrete states and their subspace is defined

79

3.5. Accurate context deGnition

Algorithm 8: Refine inconsistent discrete states
Input: Discrete states
Output: Refined discrete states
foreach refinement r do

learn policy for discrete states using reinforcement learning;
foreach discrete state d do

get optimal action for d from policy;
select neighbouring discrete states of d;
get optimal actions for neighbours;
/+ check if the discrete state is inconsistent */
if action for d != neighbour actions then

/* check in which dimensions it should be split */
foreach dimension dim of d do

select neighbouring discrete states in dim;
if action for d != dim neighbour actions
and range in dim >= 2*meta_data.precision then

I split d in dimension dim;
end

end
end

end
end

Policy for final discrete states
I I

E
I

■ action A,
□ action
□ action A3

In
I 25

Context definitions

0 25

Figure 3.15: Similar discrete states are combined in contexts

by the combined subspaces of their discrete states. The context-definition step compares discrete

states to their neighbours based on a learned policy. Dissimilar neighbours indicate context edges and

similar neighbours indicate context spaces. Fig. 3.15 shows how similar neighbouring discrete states

in one-dimensional space are combined in contexts.

The current version of KAFCA carries out context definition on individual sensors during the

accurate-context-definition phase, however the approach also facilitates context definition for n-dimensional

discrete states, i.e., combined sensors.

80

Chapter 3. Design

The algorithm for combining discrete states in contexts is shown in Alg. 9. A policy is learned for

the finalised set of discrete states after refinement. Each discrete state is compared to its neighbours

to evaluate which context it should be assigned to. If the discrete state is similar to a neighbour

and that neighbour is in a context then it is added to the context. If the discrete state has multiple

similar neighbours, in multiple contexts then those contexts axe joined together to form one contiguous

context. If none of its similar neighbours are in contexts, or it has no similar neighbours, then a new

context is created and the discrete state is added.

Again we describe this algorithm using the temperature sensor from earlier discussions. For this

sensor, due to a context edge at ll'C, the significant discrete states after refinement are located near

this point in the sensor space. After 4 refinements by Alg. 8 these states would be ..., 6-8, 8-10, 10-12,

12-14, ... A learned policy for these states would show that states that represent values below 10°C

cause the shutters to close while those above 12°C cause the shutters to open. For the purposes of

this example we assume that the discrete state 10-12°C also causes the shutters to close, although

this is uncertain due to the context-edge location at ITC. Alg. 9 compares discrete states to identify

context-edge locations and define contexts. Starting at the first discrete state (0-4) it compares it to

its neighbours. For each neighbour, in this case on the discrete state 4-6, it compares their actions in

the policy. 4-6 has the same action but does not belong in an existing context definition therefore 0-4

is added to a new context definition. The discrete state 4-6 is then compared to each of its neighbours,
finds that the similar neighbour 0-4 is already in a context definition and is assigned to that context

definition. This continues up to and including 10-12, as these similar, neighbouring discrete states are

all added to the same context definition. Beyond this point the discrete state 12-14 finds that it has

no similar neighbours in existing context definitions and is added to a new context definition. As the

algorithm progresses all remaining discrete states are added to this definition. The outcome is a pair

of context definitions that represent the sensor space 0-12°C and 12-100”C respectively.

3.6 Sensor selection

Sensor unavailability or unsuitability may limit the ability of a context-aware application to identify

its context. The sensor-selection subprocess is responsible for selecting the most suitable sensors for

identifying the context from those available to the application at run time. The sensor-selection phase

of KAFCA commences when the accurate-context-definition subprocess has completed. It takes the

context definitions of individual sensors as input and outputs the most suitable set of sensors for an

application.

81

3.6. Sensor selection

Algorithm 9: Context-definition algorithm
Input: Discrete states
Output: Contexts
learn policy for discrete states using reinforcement learning;
foreach discrete state s do

get optimal action for s from policy;
select neighbouring discrete states of s;
foreach neighbour state n do

get optimal action for n from policy;
/* check if they should be in the same context */
if action for s == action for n then

/* if the neighbour is in cui existing context */
if n belongs to existing context then

if s is not in an existing context then
I add s to context of n;

end
else

I join context of s and context of n;
end

end
end

end
/* if not in a context then create a new context */
if s is not in an existing context then

I create new context with s as first member;
end

end

The sensor-selection subprocess applies a similar approach to those used by (Albinali et ah, 2007)

and (Krause et ah, 2006) to select the structure of Bayesian networks (discussed in Chapter 2).

The structure of a Bayesian network defines how variables (nodes) are related to each other. The

approaches of (Albinali et ah, 2007) and (Krause et ah, 2006) select the structure of Bayesian networks

so that they best identify high-level contexts. They identify the best structure by iteratively extending

the network (adding new nodes) and then evaluating the new structure. The probabilities for each

version of the network structure are learned using training data, and each network’s accuracy at

identifying contexts is measured. The accuracy is calculated by comparing the outputs of the trained

network to the correct outputs in the training data. They select the network structure that provides

highest accuracy.

The sensor-selection subprocess similarly identifies the best sensors by iteratively combining them

and evaluating their accuracy for identifying contexts. In our case accuracy is measured in terms

of application performance, based on the intuition that more suitable sensors lead to better decision

making and better application performance. The approaches of (Albinali et ah, 2007) and (Krause

82

Chapter 3. Design

et al., 2006) can only evaluate the accuracy of networks that use sensors for which they have labeled

training examples. In contrast our evaluation is more generic. It is independent of the underlying

sensor data used to identify contexts, therefore it can be used to evaluate sensors that were unforeseen

by the developer at design time.

In this subprocess sensors are combined and evaluated over three steps: a new combination of

sensors is selected, their context definitions are combined, and the combination is evaluated.

In our example application there are five available sensors. By this phase of KAFCA each of

these sensors has its own context definitions based on its refined discrete states. The challenge now

is to identify the most suitable combination of these sensors for identifying application contexts. The

first step is to identify the best individual sensor for the application, which will serve as a base

for other combinations of sensors. A policy is learned for each individual sensor and application

performance is evaluated while reacting based on this policy. For example, the ai)plication using

solely the temperature sensor would cause the blinds to close when temperatures were below 12°C and

open otherwise. The performance of the application, given this pattern of behaviour, is measured using

a developer-defined metric. By comparing the performance of each sensor the best individtial sensor is

identified and this sensor becomes the base sensor, in this example we assume the temperature sensor
provides the best context information and therefore causes the best application behaviour.

In a second iteration each of the other four sensors is then combined individually with the tem­

perature sensor. Each pair’s possible values form a 2-dimensional sensor space, and their individual

context definitions are combined to form 2-dimensional rectangular context definitions. A policy is

again learned for each combination and application performance while using the policy is evaluated

against the metric. If application performance while using a sensor combination surpasses the per­

formance of the individual temperature sensor then that combination becomes the new base. In this

example the combination of temperature sensor and light-intensity sensor may surpass the individual

temperature sensor.

In a third iteration the three remaining sensors are each combined individually with the two

base sensors. Each new combination forms a 3-dimensional sensor space and 3-dimensional context

definitions. Again a policy is learned for each three-sensor combination and application performance

is evaluated with each policy. In this example the performance of none of these combinations surpass

the two-sensor combination of temperature and light-intensity sensor, therefore the sensor-selection

process has completed and the most suitable sensors have been found.

83

3.6. Sensor selection

n=1

n=3

n=4

n=2 senSj, sens^j sens^^ sens^j sens^^
combination base

f------11
senSj j jjSenSj jga senSj^ga

Figure 3.16: Search for best sensor combination

3.6.1 Combination selection

The combination-selection step selects the next set of sensors to be combined and evaluated. It

performs an informed search to identify the most suitable combination of sensors for the application.

The search is informed by measurements of application performance in the combination-evaluation

step, which we will discuss in Section 3.6.3.

The example in Fig. 3.16 illustrates the informed-search algorithm. The search begins with single

sensors (n^l). Each sensor is selected individually and its evaluation result is used to identify the

most suitable single sensor for identifying application contexts. This sensor becomes the base for

combinations of size n=2. These combinations are selected by taking the base sensor and combin­
ing it with each other available sensor. The best-performing pair becomes the new base for future

combinations of size n=3, the best performing trio becomes the new base for future combinations of

size ri=4, and so on. Combinations are extended until the performance of a base combination is not

exceeded by those of its child combinations, in this case when n=A.

The search algorithm is shown in Alg. 10. An initially empty baseSensors set of sensors is defined.

For each iteration the context definitions of each available sensor is combined with the definitions of

the current base sensors to form a set of child context definitions. These definitions are evaluated,

and the best-performing set of child sensors is identified. If the best child sensors perform better than

the current base sensors then they become the new base.

During sensor selection all sensors are treated equally. This is based on the intuition that any

sensor may provide useful and interesting information to any application, and limiting the sensors

considered may cause information loss. However in the interest of increasing the efficiency of the

search it might be useful to prevent some sensors being considered. SensorML (Open Geospatial

Consortium, 2000) is a standard for sensor meta data. In KAFCA it might be used to discard sensors

from consideration in two ways. Where multiple sensors of the same type are available it could be used

84

Chapter 3. Design

to discard those sensors that provide less accurate sensor data. It might also be used to discard sensors

of a similar type to those that have already been evaluated and found unsuitable by an application.

For the purposes of this thesis we do not employ such an approach as our focus is on maximising the

information available to applications so they can accurately identify their context.

Algorithm 10: The combination-search algorithm
Input: Evaluation results
Output: sensors
baseSensors is an empty set of sensors;
basePerformance = -1;
while new baseSensors found and not all sensors combined do

foreach sensor s do
bestChildSensors is an empty set of sensors;
bestC hildPer f ormance = -1;
if s not in baseSensors then

/* combine using the context-combination step */
childContexts = context combination(s, baseSensors);
/* evaluate using the combination-evaluation step */
childPerf ormance — combination eva.luation{childCcnitexts);
/* check if this is the best performing child */
if childPerf ormance > bestChildPer f ormance then

I bestChildPer f ormance = childPerf ormance;
\ bestChildSensors = .s -I- baseSensors;

end
end

end
/* check if the best child is better than the current base */
if bestChildPerformance > basePerformance then

base Per f ormance = bestChildPer f ormance;
baseSensors — bestChildSensors;

end
end
/* The final set of base sensors are most suitable */
return baseSensors;

3.6.2 Context combination

The context-combination step takes the one-dimensional contexts of individual sensors and combines

them to form n-dimensional contexts. The contexts of sensors are combined by extending each context

of one sensor with each context of the others. Fig. 3.17 illustrates how the individual contexts of two

sensors {sensi and sens2) are combined to create a set of two-dimensional contexts. These contexts

represent the combined sensor space of both sensors. Three dimensional contexts contexts are created

by combining a set of two-dimensional contexts with the contexts of a third sensor. The algorithm

85

3.6. Sensor selection

sensor

sensor

contexts

I r

I I
15

15

25
sensor.

25

Figure 3.17: Combining contexts

for combining contexts is shown in Alg. 11.

Algorithm 11: Context-combination algorithm
Input: sensor combination
Output: n-dimensional contexts
/* initialise the combined contexts */
cojnbmedCoiitexts = the contexts of the first sensor;
/* iteratively extend these contexts with the contexts of the other sensors */
foreach other sensor s in combination do

tejnp is an empty set of contexts;
foreach context c of coinbinedContexts do

/* extend the combinedContext with each context of s */
foreach context cc of s do

extend context c with context cc;
add extendedContext to temp-,

end
end
combinedContexts = temp-,

end

3.6.3 Combination evaluation

The combination-evaluation step evaluates the suitability of sensors for identifying the context, which

informs the search for the best sensor combination. Sensor suitability is relative to the application

and its goals, therefore we cannot define a generic measure of suitability. Instead it is measured

using an application-specific metric for application performance. The better the application performs

while using a set of sensors to identify its contexts the more suitable those sensors are for identifying

application contexts. Similar to the reward model (Section 3.4.2) the metric uses sensor data to

observe and record application performance. It then calculates a simple number r G R that captures

the overall performance of the application.

86

Chapter 3. Design

The combination-evaluation step observes application performance over an evaluation period. In

order to define how the application should behave a policy is learned for the n-dimensional contexts of

the current sensor combination using reinforcement learning. This policy maps contexts to application

actions. During the evaluation period the application periodically discretises sensor data to an n-

dimensional context, performs a lookup on the appropriate action for that context in the policy, and

executes the action. The application-specific metric for application performance is also updated and

may gather data specified by the developer. At the end of the evaluation period the metric produces

a numeric representation of the application’s performance while using the particular combination of

sensors, and this is the value that informs the search for the best combination. The algorithm for

combination evaluation is shown in Alg. 12.

Algorithm 12: Combination-evaluation algorithm
Input: N-dimensional context definitions
Output: Evaluation result
learn policy for contexts using reinforcement learning;
for i=0 i<evaluation period i + =period between actions do

record developer-defined data for metric;
discretise sensor data to context c;
get optimal action a for c from policy;
execute a;

end
calculate metric result;

3.6.4 Critique

This approach to identifying the most suitable set of sensors is effectively a hill-climbing search. A

hill-climbing search is a heurestic search that always aims to improve on the existing solution with the

next solution- it never selects a less effective solution Callan (2003). As a result it may find a local

minima and fail to find the true optimal solution. This could potentially occur in our algorithm if the

most suitable sensors were only effective when combined together and not effective when combined

with other sensors, e.g., in Fig. 3.16 the combination sensi^s is not evaluated. However both sensors

are evaluated individually in sensi and senss, and on multiple other occasions with other sensors,

e.g., sens2,i and sens2,3) therefore we consider this search sufficient for identifying the most suitable

set of sensors in most cases.

87

3.7. Chapter summary

3.7 Chapter summary

This chapter described the design of the approach to knowledge-autonomous context awareness pro­

posed in this thesis. Initially we discussed existing definitions of context and their relevance and

limitations for knowledge-autonomous applications. A novel definition of context from the applica­

tion’s perspective was then described, which is independent of human symbolism. This lead into a

description of how sensor data and contexts should be represented so that an application could adjust

its context definitions. We described a flexible representation of sensor data based on a sensor space,

and a flexible representation of context based on context edges.

The KAFCA process that realises this theory of knowledge-autonomous context was then described.

At the core of the process is reinforcement learning, which is used to learn policies that map discretised

sensor data to application actions. The issues of action selection and knowledge update are common

challenges in reinforcement learning, and these issues were discussed from the perspective of learning

about sensor data. A flexible discretisation process for sensor data was also discussed.
The KAFCA process uses reinforcement learning to learn accurate context definitions and select

the most suitable sensors for an application. The accurate-context-definition subprocess addresses

the challenge of defining contexts that are accurate for the run-time environment, by refining how

sensor data is discretised. An initial set of discrete states to represent the sensor data of a sensor are
defined using sensor meta data. These discrete states are iteratively refined by learning a policy that

describes how they influence action selection, identifying inconsistent discrete states that may contain

context edges, and splitting these discrete states. Context definitions for each sensor are defined when

refinement finishes.

The sensor-selection subprocess addresses the challenge of selecting suitable, available sensors at

run time. The process searches for the best sensor combination using an informed-search algorithm-

new sensor combinations are selected based on the performance of previous combinations. The context

definitions of individual sensors are combined to form n-dimensional context definitions, and applica­

tion performance is measured while using these context definitions to adapt its behaviour. The best

set of sensors for inferring the context in a particular run-time environment is iteratively identified

using this process.

88

Chapter 4

Implementation

The previous chapter describes the design of our approach to learning context definitions at run

time, and discusses how its techniques and algorithms combine to addresses the issues of context

misinterpretation as well as sensor unavailability and unsuitability.

This chapter describes the C++ implementation of these techniques and algorithms using diagrams
in Unified Modelling Language (UML) notation and code where necessary. The UML was selected due

its recognition as a modelling-language standard and also due to the author’s familiarity with it. We

use class diagrams to capture the information and interfaces of elements within the implementation,

and sequence diagrams to capture the interactions and collaborations between these elements at run

time. C++ was selected as the programming language of the implementation due to the availability

of a reinforcement learning framework which was extended by this implementation. This framework

is discussed further in Section 4.6.

We begin the chapter with a high-level overview of the implementation that is structured around

different groups of functionality for discretisation, reinforcement learning, accurate context definition,

and sensor selection, and we describe the sequence of interactions between these functional groups

during the KAFCA process. This is followed by descriptions of the classes and their interactions

within these functional groups. We also discuss configuration details as well as the implementation of

the most important operations.

4.1 Overview

The implementation of KAFCA described in this thesis is divided into a number of functional groups.

Fig. 4.1 shows an overview of the architecture. At the top level are context-aware applications.

89

4.1. Overview

Context-aware Applications

KAFCA Manager

Accurate
context definition

Reinforcement learning

Discretisation

MoCoA

Figure 4.1: High-level architecture

Each application defines configuration parameters and application-specific implementations of required

classes, e.g., the possible application actions and the reward model for evaluating actions. The KAFCA

manager provides an entry point for applications to the KAFCA process and acts as a coordinator of

the other functional groups. The accurate-context-definition and sensor-selection groups implement

the algorithms described Sections 3.5 and 3.6 of the design chapter. The reinforcement-learning group

is responsible for learning policies that define the relationship between sensor data and actions, and

the discretisation group manages the mapping from sensor-space tuples to discrete states and contexts.

At the bottom of the architecture is the MoCoA middleware, which handles interactions with sensors

and actuators.

Fig. 4.2 illustrates the sequence of interactions that occur between these functional groups during

the KAFCA process. As shown in the figure the application interacts only with the KAFCA manager,

which coordinates the other functional groups of the implementation. The functionality within each

group is accessed through a single class that coordinates interactions with other classes.

A number of inter-related classes are commonly used across most of the functional groups (Fig.

4.3). Both the DiscreteState and Context classes represent sets of sensor-data tuples in the sensor

space. The DiscreteState class encapsulates a vector of Range instances that represent its dimensions

90

Chapter 4. Implementation

Context-aware KAFCA Accurate Sensor Reinforcement Discretisation MoCoA
application Manager ContextDefinition Selection learning

* defineO

I getAvailableSensorsO

initialiseDiscreteStatC!

1 sensors
—r

1
1

1
1
1 1

tsO
1
1
1
1

1
1
1
1

1
1
1
1

lesO

1
1
1

1
i
1

1
1
1

leamPollcyO • getCurrentStateO* 1

* getSensorValu^)

^^sensor I I

Figure 4.2: High-level sequence of operations

91

4.2. Context-aware application

Figure 4.3: Commonly-used classes

Action
+actuator; string
^command: string
+equals(other;Actlon*): bool

Sensor
+ld: string
+min; double
+max: double
-fprecision: double

Figure 4.4: The Sensor and Action classes

in the sensor space. Each Range defines a lower and an upper bound for a particular dimension of

the sensor space. The Context class in turn encapsulates a vector of DiscreteStates that represent

its dimensions in sensor space. Both classes extend the abstract State class, which is used internally

by the reinforcement-learning functional group. The Policy class encapsulates learned knowledge of

mappings between states and actions in Policy Elements. We now describe the functional groups

within the architecture in more detail.

4.2 Context-aware application

The context-aware application encodes developer knowledge at the design phase of the application

lifecycle. It defines application-specific structures and parameters that are required by KAFCA. The

Action class (Fig. 4.4) encapsulates actuator and command attributes. The actuator attribute stores

the name of an actuator and the command attribute defines the change to the actuator that the Action

92

Chapter 4. Implementation

Abstract RewardModel Abstract SensorEvaluationMetric

+sensors: vector<Sensor*> +sen5or5: vector<Sensor»>
+getRewa rd(a;Action*,preAction:vector<double>,

postAction:vector<double>): double
+update(a;Action*,preAction;vector<double>,

postAction;vector<double>): double
+ineasurePerforiiiance(); double

Figure 4.5: The abstract RewardModel and SensorEvaluationMetric classes

causes. The application must include a set of Action instances, one per possible application action,

that set the values of these attributes.

The abstract RewardModel class (Fig. 4.5) defines a getReward() method for calculating the reward

during reinforcement learning. This method takes the action, as well as sensor-data tuples for before

and after action execution as parameters. The set of sensors that are required for calculating the

reward are specified in the sensors attribute of RewardModel. These sensors are used to select sensor

data for the preAction and postAction sensor-tuple parameters of getReward(). The application must

include a subclass of RewardModel that specifies required sensors for calculating the reward in the

sensors attribute and implements the getReward() method.

The abstract SensorEvaluationMetric class (Fig. 4.5) defines the methods updatef) and mea-

surePerformance(). The updatef) method is used to periodically update a record of application per­

formance across an evaluation period by interpreting preAction and postAction sensor data, and the

Action taken. Similar to the RewardModel these sensor-data tuples are populated with sensor data

from the sensors specified in the sensors attribute of this class. The calculateResult() method uses

recorded data to calculate some application-specific measure of performance. The application must

include a subclass of SensorEvaluationMetric that implements these methods and sets the required
sensors in the sensors attribute.

The sensors specified in the RewardModel and SensorEvaluationMetric classes are instances of the

Sensor class (Fig. 4.4). The id attribute of the class stores a unique identifier that matches the name

of a physical sensor, and the other attributes represent sensor meta-data required by the KAFCA

process. In the context-aware application only the id attribute of each Sensor instance needs to be

specified by the developer. The other attributes are populated from sensor meta-data at run-time.

In addition to these classes the application also defines parameters that configure the KAFCA pro­

cess. Reinforcement-learning requires leamingRate and discountRate parameters to configure the Q-

learning update function. The periodBetweenActions parameter must also be defined. Our approach

to identify when learning is complete based on policy stability requires parameters for updatesBe-

tweenStability Tests and requiredStableSequenceLength. The discrete-state-refinement process requires

a numberOfRefinements parameter that defines the number of refinements to carry out for each sensor’s

93

4.3. MoCoA

MoCoA
+getAllSensors(); vector<Sensor*>
+getSensorReading(s:Sensor*): double
+executeActlon(a:Action*): void

Figure 4.6: The MoCoA class

MoCoa MoCoA
middleware

Sensor

getAI|Sensore^
* consumeO------=*1-|

sensor event I I

I * new SensorO
I

getSensorReadingO

double _ JJ<g«n=2'^£.vej;7jJ

executeAction(
raiseO

-►1-^0

Figure 4.7: MoCoA- operations

discrete states. Finally the sensor-selection process requires a numberOfEvaluationActions parameter

that defines how many actions should be taken when evaluating each sensor combination.

The context-aware application makes a single start() method invocation on the KAFCA manager,

which takes these structures and configuration values as parameters.

4.3 MoCoA

As introduced in Chapter 1 MoCoA is a middleware that provides a set of programming abstractions

and services for building context-aware applications (Senart et ah, 2006). MoCoA supports a set of

programming abstractions that are suitable for building a wide range of context-aware applications.

For each abstraction it provides a library of components that can be integrated into applications. In

MoCoA applications are structured around the sentient object abstraction (Biegel & Cahill, 2004),

where sentient objects are intelligent components that interpret and use context information from

sensors and other sentient objects to drive their behaviour. In this model a sensor is perceived to be a

94

Chapter 4. Implementation

KAFCAManager
+start(a;vector<Action*>,rm:Rewa rdModel*,

se:SensorEvaluationMet ric*,learningRate;double,
discountRate:double,periodBetweenActions:int,
updatesBetweenStabilityTests:int,requlredStableSequenceLength;int,
numberOfRefinements:int,numberOfEvaluationActions;int); void

+exploit(s;vector<Sensor*>,p:Policy*); void

Figure 4.8: KAFCAManager class

software-event producer that produces events in response to its observations in the real world. Sentient

objects affect the environment through actuators, which are devices that consume software events and

react by attempting to change the environment. MoCoA uses the STEAM event service (Meier &

Cahill, 2003) to support this event-based communication. In this framework KAFCA delegates its

sensor and actuator communication and discovery to the MoCoA abstractions.

Fig. 4.6 shows the MoCoA class. The MoCoA class provides methods for sensor and actuator

interaction that are required by other processes, and delegates communication to the MoCoA middle­

ware. The middleware uses the STEAM event service (Meier & Cahill, 2003) to support event-based

communication with sensors and actuators. STEAM events consist of a subject and an attribute list of

name-value pairs. Sensors are STEAM event producers and actuators are STEAM event consumers.

The MoCoA middleware provides a consume() method for consuming events from STEAM and a
raise() method for raising events over STEAM.

Fig. 4.7 illustrates the operations and interactions that occur within the MoCoA class. The

MoCoA class’s getAvailableSensors() method creates and returns a vector of Sensor instances based

on sensor-data consumed by the MoCoA middleware. The getSensorReading() method retrieves a

sensor reading for the parameterised Sensor via the MoCoA middleware. The executeAction() method

raises the event specified by the Action parameter.

4.4 KAFCA manager

Fig. 4.8 shows the KAFCAManager class. The KAFCAManager class provides an entry point for the

context-aware application to the KAFCA process. Fig. 4.9 illustrates the sequence of operations and

interactions that occur within the KAFCAManager. The process commences when the start() method

is invoked by the context-aware application. The first operation is to retrieve the set of available sensors

by invoking getAvailableSensors() on the MoCoA class, which returns a vector of Sensor instances.

The KAFCAManager then delegates to the AccurateContextDefinition class to define Contexts. The

define 0 method is called once for each Sensor and returns one-dimensional Contexts for the particular

95

4.4. KAFCA manager

Context-aware
application

KAFCA
Manager

----!““
Accurate

ContextDefInItlon
Sensor

Selection

I

31

E

I

B **aiMF

getAvallableSensorsi)

getCurrentStateO

gatActionForStateO

MoCoA

— r ••

"D

Figure 4.9: KAFCAManager- sequence of operations

Policy

31

sensor. When all sensors have been processed individually the KAFCAManager delegates to the

SensorSelection class to select the best set of sensors for the application. The select() method returns

the Policy for those sensors. Finally the KAFCAManager class self-invokes its exploit() method

(Listing 4.1). This method retrieves the current state from the Discretisation class, selects the action

associated with that state from the Policy, and executes the action using the MoCoA class. The

exploit() method iterates every periodBetweenActions seconds until the application is undeployed.

//Get the current state of the environment

State St = Discretisation-> getCurrentState (sensors) ;

Z/Sele c t and execute the appropriate action for this state

Action a = policy->getActionForState (st) ;

MOCOA- > executeAction(a);

//SleeP /or an application- specific period between actions

Sleep (per iodBetweenActions) t

Listing 4.1: The exploit () method

96

Chapter 4. Implementation

Discretisation
+getCurrentTupT.e(s; vector<Sensor*>): vector<double>
+getCurrentState(s;vector<Sensor*>,possibleStates:vector<State*>); State*

Figure 4.10; The Discretisation class

Discretisation MoCoA State

getCurrenlTuple^ i • gelSensorReadIngO

T1pie I ^sensor readingsensor-data tuple

-

getCurrentStateO I
^ ^ getCurrentTupleO

S]
yoiVi/ui le

P * representsO

true/false

DiscreteState

(PHASE 1]

representsO

-----------true/false | |

(PHASE 2]

Context

---- 1----

representsO

Tl

Figure 4.11: Discretisation- operations

4.5 Discretisation

The Discretisation class provides raw or discretised sensor data to other functional groups within

KAFCA (Fig. 4.10). It manages the combination of sensor data into tuples and mapping tuples to

DiscreteStates and Contexts. Fig. 4.11 illustrates the operations and interactions that occur when

accessing sensor data through the Discretisation class. Raw sensor data is accessed through the

getCurrentTupleO method. This method takes a vector of Sensors as a parameter and iteratively

calls getSensorReadingO on the MoCoA class to retrieve the current reading for each Sensor. These

readings are combined and returned as a vector of doubles. The getCurrentState() method takes

vectors of Sensors and States as parameters. It retrieves the current sensor-data tuples and then

iterates through the States calling the represents() method to identify the representative State for that

tuple. The representsO methods of the DiscreteState and Context classes implement the discretisation

97

4.6. Reinforcement learning

I i(Framework class I
I I

Extended
I ^ framework class

Figure 4.12: The reinforcement-learning classes

algorithms described in Section 3.3.

4.6 Reinforcement learning

The reinforcement-learning functional group learns policies that map DiscreteStates or Contexts to

application Actions. Our implementation of this functionality extends the reinforcement-learning

framework described in (Salkham et al., 2008). This framework provides commonly-used classes

for reinforcement learning, and implementations of different action-selection and knowledge-update

algorithms. However the framework does not support all of our requirements for reinforcement learning

therefore we extend its classes to provide additional functionality.

Fig. 4.12 illustrates the classes used for reinforcement learning, and indicates classes that are

from the existing framework and classes that have been extended. The ReinforcementLeaming class

provides an entry point to the functionality through its leamPolicy() method. This method takes the

application Actions, States, RewardModel and configuration parameters for reinforcement learning,

and returns a Policy that maps parameter States to Actions.

The Q Value class encapsulates a State and Action, and the value of taking the action in the

state. The Model class encapsulates a vector of Q Values that represent all possible State-Action

combinations. The discrete optimisation problem (DOP) class of the framework assumes that the set

of states is fixed at design time by a developer, therefore we extend this class with the DynamicDOP

98

Chapter 4. Implementation

Figure 4.13: Reinforcement-learning- sequence of operations

class that provides functionality for constructing a Model at run time. The QLearning class implements

the Q-learning update function (Alg. 6). The RandomActionSelection class extends the framework’s

abstract ActionS election class and implements the selectProm() method so that it selects an Action

randomly from the parameter vector of Actions.

Fig. 4.13 illustrates the sequence of operations that occur when learning a Policy. The learnPol-

icy() method of the ReinforcementLeaming class initiates reinforcement learning. Its first action is

to create a Model of Q Value instances for the parameter States and Actions by invoking buildModel()

on the DynamicDOP class. The explore() method is then called every periodBetweenActions seconds

99

4.6. Reinforcement learning

until a stable Policy is learned (Listing 4.2). The explore() method implements the five steps of rein­

forcement learning (Section 3.4). It first gets the current State from the Discretisation class. It then

selects an action using the RandomActionSelection class. The action is executed using the MoCoA

class and a reward is calculated by the application-specific RewardModel implementation. The Q Value

for the State and Action is retrieved from the Model and updated using the update() method of the

QLeaming class. Every updatesBetweenStabilityTests updates the testStability() method is invoked

(Listing 4.3). The method creates a new Policy based on current Q-values and this Policy instance

is compared to the Policy instance from the previons stability check using the isStable() method. If

they are dissimilar then the new Policy replaces the old policy, i.e., the stable sequence is set to zero.

It they are the same then the stableSequence attribute of the old Policy is incremented and the new

Policy is discarded (it is a duplicate). The value of stableSequence is compared to the requiredStable-

SequenceLength parameter to test if a sufficiently long sequence of the same policy has been observed.

When a sufficiently long stable sequence is observed learning finishes and the Policy is retnrned.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

//Get the current state of the environment

State s = Discretisation->getCurrentState(sensors);
//Select a random action to execute

Action a = RandomActionSelection->selectFrom(act ions);
//Get the sensor - data specified by the RewardModel
vector<double> preAction =

Discretisation->getCurrentTuple(RewardModel->sensors);
//Execute the action
MOCOA->executeAction(a);
//Get the sensor-data after the Action
vector<double> postAction =

Discretisation->getCurrent!’uple(RewardModel->sensors);
//Calculate the reward

double reward = RewardModel->getReward(a, preAction, postAction);
//Select and update the Q-value
QValue q = Model->getQValue(s, a);
QLeaming->update (q , reward);
numberOfUpdate s ++;
//If sufficient updates have occurred test the stability of the Policy
if (numberOfUpdates 7, updatesBetweenStabilityChecks == 0) {

if (testStability() == true)

100

Chapter 4. Implementation

return DynamicDOP->getPolicy();
}
//Sleep for an application-specific period between actions
Sleep(periodBetweenActions);

Listing 4.2: The exploreO method

//create a Policy from current QValues
Policy neuPolicy = DynamicDOP->getPolicy();
//check if all state actions are the same in old and new policies
bool allElementsMatch = true;
for (unsigned int i=0; i<oldPolicy->elements.size(); i++){

PolicyElement pQld = oldPolicy->elements[i];
if (! pOld->a->equals(neuPolicy->getActionForState(pOld->s))

allElementsMatch = false;
}
//if all elements match then increment the stable sequence counter
if (allElementsMatch)

oldPolicy->stableSequence++;
else

oldPolicy = newPolicy;
//if the observed sequence matches the required sequence
if (oldPolicy->isStable(requiredStableSequenceLength))

return true ;
else

return false;

Listing 4.3: The testStabilityO method

4.7 Accurate context definition

The accurate-context-definition functional group applies the algorithms discussed in Section 3.5 to

define accurate context definitions. Fig. 4.14 illustrates the AccurateContextDefinition class and Fig.

4.15 illustrates the sequence of operations for accurate context definition. The define() method of the

AccurateContextDefinition class is the entry point to this functionality. The first step of the process is

101

4.7. Accurate context definition

AccurateContextDefinition
+define(s;Sensor*,a:vecto r<Actlon*>,refinements:Int,

learningRate:double,discountRate:double,
updatesBetweenStabilityTests;int,
requiredStableSequenceLength:int): vector<Context*>

+initialiseDiscreteStates(srSensor*): vector<DiscreteState*>
+refineDiscreteStates(p:Policy*); vector<DiscreteState*>
+checkInconsistency(pe:PolicyElement*,p:Policy*): vector<DiscreteState*>
+assignToContext(peiPolicyElement*,p;Policy*): Context*

Figure 4.14: The AccurateContextDefinition class

to initialise discrete states for the parameter Sensor by invoking the initialiseDisereteStates() method.

This method implements the initialisation algorithm (Alg. 7) and creates DiscreteState instances that

represent sensor values between the Sensor’s min and max vcilues.

The refine.DiscreteStatesO method is then called refinements times to refine the default DiscreteS­

tate instances of the Sensor. This method invokes leamPolicy() on the ReinforcementLearning class

to learn a Policy for the current set of DiscreteStates, as described in Section 4.6. The checklncon-
sistencyO method is then called for each PolicyElement to check if its encapsulated DiscreteState

is inconsistent (Listing 4.4). Neighbouring Policy Elements are retrieved and compared to a Poli­

cyElement using the similarTo() method. If the PolicyElement has dissimilar neighbours then the

dimensions of the encapsulated DisereteState must be split. New DiscreteState instances are created

to represent the divided sensor space, as per the algorithm for splitting inconsistent discrete states

(Alg. 8). A vector of refined DiscreteStates is returned from each iteration of the refineDiscreteStates()

method.

102

Chapter 4. Implementation

Figure 4.15: Accurate context-definition- sequence of operations

103

4.7. Accurate context definition

Once the final refinement of DiscreteStates has occurred the accurate-context-definition process

moves on to context definition. A Policy for the final set of DiscreteStates is learned. The assign-

ToContext() method is called for each Policy Element to assign its encapsulated DiscreteState to a

Context (Listing 4.5). This method implements the context-definition algorithm (Alg. 9). Neigh­

bouring Policy Elements are retrieved from the Policy and compared to the parameter Policy Element.

Depending on their similarity and membership in existing Contexts the encapsulated DiscreteState is

either added to an existing Context or a new Context is created.

After all DiscreteStates have been assigned to a Context the vector of one-dimensional Contexts

for the parameter Sensor is returned.

1

2

3

4

5

6
7

8
9

10
11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

//get the neighbours of the current Policy element being checked
vector<PolicyElement♦> neighbours = Policy->getNeighbours(currentElement);
//create a record for dimensions in which the currentElement should be split
vector<bool> splitInDimension;
for (int i=0; i<currentElement->dimensions.size(); i++){

splitInDimension.push_back(false);
}
//mark dimensions in which there are dissimilar neighbours
for (int i=0; i<neighbours.size(); i++){

if (! currentElement->a->equals(neighbours [i]->a)){
//get the dimension in which they’re neighbours

int d = currentElement->s->(shareEdgeInDimension(neighbours[i]->s));
splitInDimension[d] = true;

}
}
//refine the discrete state in dissimilar dimensions
DiscreteState s = (DisereteState)currentElement->s;
vector<Discretestate *> refinedStates;
refinedStates.push_back(s);
for (int i=0; i<splitInDimension.size(); i++){

//check if this dimension should be split
if (splitInDimension[i]){
vector<Discretestate *> temp;
//each existing refined state must be split in two in dimension i
for (int j=0; j< refinedStates.size(); j++){

104

Chapter 4. Implementation

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Discretestate♦ si = new DiscreteState();
Discretestate♦ s2 = new DiscreteState();
for (int k=0; k<refinedStates[j]->dimensions.size(); k++){

double lowerBound = refinedStates[j]->dimens ions[k]->lowerBound;
double upperBound = refinedStates [j]->dimens ions[k]->upperBound;
double midpoint = (upperBound - lowerBound) / 2;
//this is the dimension to be split
if (k == i){

si->addDimension(new Range(lowerBound, midPoint));
s2->addDimension(new Range(midPoint, upperBound));

}
//these dimensions are unchanged by the current refinement
else {

s1 ->addDimension(new Range(lowerBound, upperBound));
s2->addDimension(new Range(lowerBound, upperBound));

}
}
//store in temp vector until existing refined states are processed
temp.push_back(sl);
temp.push_back(s2);

}
//assign newly refined states to this vector for more splitting
refinedStates.assign (temp.beginO , temp.endO);

return refinedStates;

Listing 4.4: The checkInconsistencyO method

//get the neighbours of the current Policy element being checked

vector<PolicyElement♦> neighbours = Policy->getNeighbours(currentElement);
//check for similar neighbours and their Contexts

vector<DiscreteState♦> similarNeighbours;
for (int i=0; i<neighbours.size(); i++){

if (currentElement->a->equals(neighbours[i]->a))
similarNeighbours->push_back(neighbours[i]->s);

105

4.7. Accurate context definition

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

//check if any similar neighbours are part of an existing Context
vector<Context*> similarNeighbourContexts;
for (int i=0; i<contexts.s ize () ; i+ +){

for (int j=0; j<similarNeighbours.size(); j++){
if (contexts[i]->containsState(similarNeighbours[j]))

similarNeighbourContexts.push.back(contexts[i]) ;
}

}
//if neighbours not in existing context then create new context
if (similarNeighbourContexts.size()==0){

Context c = new Context () ;
c->dimens ions.push_back(currentElement->s) ;
contexts.push_back(c) ;

}
//if one similar neighbour is in a context then add to that context
else if (similarNeighbourContexts.size()==1){

similarNeighbourContexts[0]->addDimension(currentElement->s);
}
//if more than one similar neighbour is in a context the combine the contexts
else if (similarNeighbourContexts.size()>1){

//assign the state to the first similar context

similarNeighbourContexts[0]->dimens ions.push_back(currentElement->s);
//append the dimensions of other contexts to the first context
for (int i=l; i<similarNeighbourContexts.size(); i++){

similarNeighbourContexts[0]->dimensions.insert(
similarNeighbourContexts[0]->dimensions.end(),
similarNeighbourContexts[i]->dimensions.begin(),
similarNeighbourContexts[i]->dimens ions.end()) ;

//erase the other context

vector<Context*>: :iterator context Iterator;
contextiterator = contexts.begin();
while (contextiterator != contexts.end()){

if (♦contextiterator == similarNeighbourContexts[i])
contexts.erase(contextiterator);

106

Chapter 4. Implementation

Listing 4.5: The assignToContextO method

4.8 Sensor selection

SensorSelection
♦select(s:vector<Sensor»>,a:vector<Actlon*>,

contexts :vector<Context*>,'learr»lnQRate: double,
dlscountPUte:double,updatesBetweenStabilityTests:Int,
requiredStableSequenceLength:lnt): Policy*

♦nextSelectlonO: void
♦selectCoablnatlon(s:vector<Sensor*>): vector<Sensor*>
♦coablneContexts(exlsting:vector<Context*>,

extenslon:vector<Context*>): vector<Context*>
♦evalu8teCoflblnatlon(p:Pollcy*): double
♦recordPerfonMnce(p:Pollcy*): void

Figure 4.16: The SensorSelection class

The sensor-selection functional group applies the algorithms discussed in Section 3.6 to select the

most suitable sensors for the application. Fig. 4.16 illustrates the SensorSelection class and Fig. 4.15

illustrates the sequence of operations for selecting sensors. The select() method of the SensorSelection

class is the entry point to this functionality. This method is invoked once by the KAFC A Manager to

start the sensor-selection process. The nextSelection() method is then iteratively called until the best

set of sensors is identified.

The first step of the nextSelection() method is to select a new sensor combination to evaluate using

the selectCombination() method, which implements the combination-selection algorithm (Alg. 10).

The combineContexts() method is then called to combine the Contexts of selected sensors (Listing

4.6). This method implements the context-combination algorithm (Alg. 11). A Policy for these n-

dimensional Contexts is learned by invoking learnPolicyf) on the ReinforcementLeaming class. The

sensor combination is evaluated by invoking evaluateCombination(). Within this method the record-

Performance() method (Listing 4.7) is invoked numberOfEvaluationActions times with periodBetween-

Actions seconds between each invocation. In each invocation the current Context is retrieved from the

Discretisation class. The Action to take in this Context is retrieved from the Policy and executed by

the MoCoA class. The performance of the application is recorded by the update() method of the Sen­

sor EvaluationMetric subclass specified by the application. Once all iterations of recordPerformance()

have been carried out the measurePerformance() method is called on the Sensor EvaluationMetric

subclass. The result of this calculation feeds into the search for the best set of Sensors.

107

4.8. Sensor selection

Figure 4.17: Sensor selection- sequence of operations

When the best-performing set of sensors is identified the select() method returns the Policy for

that set of sensors.

108

Chapter 4. Implementation

//iterate through the contexts of the first sensor(s)
for (int i=0; i<sensorlContexts.size(); i++){

//iterate through the discrete states of sensor I’s contexts
for (int j=0; j<sensorIContexts[i]->dimensions.size () ; j+ +){

//iterate through the contexts of the second sensor
for (int k=0; k<sensor2Contexts.size(); k++){

//iterate through the discrete states of sensor 2’s contexts
for (int 1=0; 1<sensor2Contexts[k]->dimens ions.size() ; ! + +){

//extend each Discrete state of sensor 1
sensorIContexts[i]->dimensions[j]->addDimension(

sensor2Contexts[k]->dimensions[1]->dimensions[0] ;
}

}
}

Listing 4.6: The combineContextsO method

//Get the current state of the environment

State* St = discretisation->getCurrentState(sensors);
//Get the sensor data specified by the SensorEvaluationMetric
vector<double> preAction =

discretisation->getCurrentTuple(SensorEvaluationMetric->sensors);
//Select and execute the appropriate action for this state
Action* a = policy->getActionForState(st);
MoCoA->executeAct ion(a);
//Get the sensor data specified by the SensorEvaluationMetric
vector<double> postAction =

discretisation->getCurrentTuple(SensorEvaluationHetric->sensors);
//update the record of application performance
sensorEvaluationHetric->update(a, preAction, postAction);
//Sleep for an application - spedfic period between actions
Sleep(periodBetueenActions);

Listing 4.7: The recordPerformanceO method

109

4.9. Chapter summary

4.9 Chapter summary

This chapter described the C++ implementation of our approach to knowledge-autonomous context

awareness. Initially we described a high-level overview of functional groups within the implementation,

and the interactions that occur between these groups. This was followed by descriptions of the

classes and their interactions within functional groups. We also discussed configuration details and

implementation code for significant operations.

no

Chapter 5

Evaluation

This diapter describes the evaluation of our approach to knowledge autonomy for context-aware

applications. We begin by outlining the goals of the evaluation and discuss each scenario relative to

these goals.

5.1 Evaluation goals

In Chapter 1 we defined the objectives of the thesis: to accurately identify application contexts

from sensor data interpreted at run time, and to select suitable sensors for identifying application

contexts at run time. The goals of this evaluation are to measure how effectively each of these thesis

objectives have been achieved. We also define an additional goal of the evaluation, which is to evaluate

reinforcement learning as an appropriate technique for learning interpretations of discretised sensor

data. We now describe how the implemented scenarios fulfill these goals.

KAFCA applies reinforcement learning to learn policies for discretised sensor data. It is difficult

to follow the progress of the learning process in complex scenarios due to the stochastic nature of

reinforcement learning and the significant number of learning iterations that are necessary. Our first

two scenarios, line and grid, are simple scenarios that are intended to identify issues when applying

reinforcement learning to learn policies for discretised sensor data. They apply reinforcement learning

processes that use both types of reward model, immediate and long-term, and they address the goal

of identifying if reinforcement learning is suitable for learning about sensor data.

The first phase of the KAFCA process addresses accurate run-time context definition, the first

objective of the thesis. The sentient-couch scenario evaluates the effect of refining discrete states at

run time on the accuracy of context definitions. The sentient couch is a sensor-enabled device that

111

5.2. Considerations in the selection of scenarios

identifies occupants based on their weight, and the application’s task is to learn the context definitions

that distinguish different occupants. The progression of context definitions is recorded over a number

of refinements and compared to the known, ideal context definitions to measure their inaccuracy.

The results indicate the effect of the first thesis objective on the context definitions of context-aware

applications. A cost-benefit analysis of context-definition accuracy versus learning time is also carried

out.

The second phase of the KAFCA process addresses the selection of suitable sensors at run time,

the second objective of the thesis. The power-management scenario evaluates the effect of selecting

sensors at run time on application performance. The application in this scenario manages the power

status of a computer monitor. Experiments are based on both real-world sensor data gathered from

users in a variety of office environments, and also on generated sensor data. Three different classes

of context-aware applications are tested and compared to measure the relative effectiveness of sensor

selection at run time- knowledge-intensive applications, learning applications that use fixed sets of

sensors, and an application that selects sensors at run time using KAFCA. Application performance

is mecisured using metrics for energy efficiency, user-perceived performance and device life expectancy.

These metrics indicate the effect of the second thesis objective on context-aware applications.

5.2 Considerations in the selection of scenarios

A variety of reasons lead to the selection of the scenarios described in this chapter. Ideally there would

be a set of benchmarking tests against which we could compare our approach however our review of

the related approaches in Chapter 2 revealed no common set of tests or applications. In general, each

approach is focused on a particular type of context-aware application, and the learning technique they

apply is determined by the underlying sensor data for the type of application. For example, hidden

Markov models are commonly used for processing sound data while data mining techniques are used

where large collections of high-level examples are available. It is difficult to directly compare different,

best-of-breed approaches as their suitability to particular applications is varied.

Another factor, and significant challenge, in selecting scenarios for this thesis was the availability

of data sets of sensor data. Our basic requirements were that sensor data be in its raw form, and from

multiple sensors that produce ordered sensor data. More particularly this sensor data needed to be

gathered in various deployment environments to create the potential for identifying suitable sensors,

and there needed to be a recorded source of environmental feedback from which a reinforcement­

learning reward could be gathered. Ultimately these constraints dictated that only one scenario

112

Chapter 5. Evaluation

Action. Context Edge

I
Discrete states

Raw sensor data q 20
about X

Action,

s s 1 s s s1 2 3 4 5

40 60 80 100

Figure 5.1: The line scenario

would be based on real sensor data, with the remaining scenarios simulating sensor data in some way.

5.3 The line scenario

The line scenario represents a one-dimensional sensor space that contains a single context edge. These

characteristics make it the simplest possible scenario in which to evaluate reinforcement learning. The

sole sensor for the line scenario measures a simulated characteristic X of the environment and produces

data in the range 0-100. Its precision is 0.01 units and its initial discrete state boundaries are at 20,

40, 60 and 80 units (Fig. 5.1).

The application in this scenario affects the environment using two actions. Action\ increases the

value of X towards 100 and Action2 decreases it towards 0. The goal of the application is to keep

the value of X near to the context edge. This might equate to a temperature-control application that

keeps the room temperature near a particular level. In order to achieve its goal the application should

learn to select Actioni for sensor values between 0 and the context edge, and select Action2 for sensor

values between the context edge and 100. The reward model reflects this. A positive reward (-1-1)

is given when Actioni is executed below the context edge and a negative reward (-1) when executed

above it. Action2 is similarly rewarded in the opposite cases.

5.3.0.1 Lessons

Our experiments with this scenario indicated that reinforcement learning could be an effective tech­

nique for learning policies that indicate how sensor data influences action selection. However we

observed that the learned policy was not always consistent across different experiments, even when

the context edge did not change. Our first reaction to this was to increase the number of learning

iterations to ensure that sufficient learning occurred and Q-values had time to stabilise, however this

solution was ineffective. To better understand the problem we recorded and examined the progress of

Q-values during an experiment. We expected to observe a smooth learning curve as the optimal action

emerged for each state but instead we observed that for one state (ss) the Q-values oscillated. The

113

5.3. The line scenario

Q-values — Action^
■ ■ Action.

Figure 5.2: Q-value oscillation in an inconsistent discrete state

action for that state in the policy depended on the phase of the oscillation when learning stopped. We

also observed that the extent of the oscillation depended on the size of the action effect, e.g., where

the effect was small (a 1 unit change to the value of X) the oscillation was more pronounced than
where the effect was larger (a 5 unit change to the value of X). No oscillation was observed when the

effect of each action was set to a random amount.

The source of the oscillation became clear when we examined the Q-values and the value of A' in

parallel. The learned action for S3 depended on the most recent part of its subspace to be visited during

learning, i.e., there was a spatial dependency between the subspace and the Q-values. The rewards

gathered to the left of the context edge within S3 made Q-values oscillate such that Action i appeared
optimal, and the rewards gathered to the right of the context edge within S3 made Q-values oscillate

such that Action^ appeared optimal. This was our first encounter with an inconsistent discrete state,

described in Section 3.4.3. The observed oscillation was more pronounced when the effect of each

action on X was small, as it took more actions to move across the sensor space. The application

would spend longer within each part of the inconsistent state, execute more actions, gather more

rewards, and cause more Q-value oscillation.

Through further experimentation we discovered that the magnitude of the oscillation could be

controlled by the learning rate used in the Q-value update function (Section 3.4.3). Fig. 5.2 exemplifies

the oscillation that occurs in the Q-values for an inconsistent discrete state such as S3. At high

learning-rates a Q-value is mainly affected by the most recent updates. This makes the oscillation

more pronounced as Q-values can change more quickly. Very low learning rates smooth the learning

curve by reducing the effect of individual updates, so that Q-values represent updates over a longer

period, i.e., across the entire subspace of an inconsistent state. Some oscillation still occurs due to

the spatial dependency but it is insufficient to cause the perceived optimal action to change. Using a

very-low learning rate (~ 0.01) we were able to learn consistent policies across different experiments.

114

Chapter 5. Evaluation

current tuple

•context edge A

Figure 5.3: the grid scenario

5.4 The grid scenario

The grid scenario is a variation on a classic reinforcement-learning scenario (Sutton &: Barto, 1998).

In the classic scenario an application moves around a grid of states where one state is specified as a

goal state (Fig. 5.3a). The application is aware of the state it currently occupies in the grid. The

application’s task is to learn a policy that guides it from any state in the grid to the goal state using

up, down, left and right actions. These actions cause deterministic transitions between grid states in

the classic scenario. The reward model gives a positive reward of 100 for any action that causes a

transition to the goal state, and -1 for every other action.

This is an interesting scenario as it allows us to evaluate learning policies for discretised sensor

data where the rewards are long-term. In our interpretation of this scenario the environment is a

sensor space in two dimensions. The X and Y sensors in this scenario measure the coordinates of the

application in the sensor space. They both produce data in the range 0-100, their precision is 0.01

units and they have initial discrete-state boundaries at 25, 50 and 75 units (Fig. 5.3b). We use the

same long-term reward model as in the classic scenario however the “goal” is a particular subspace

rather than a state.

5.4.0.2 Lessons

As in the line scenario we encountered difficulty learning consistent policies in the grid scenario. There

were two causes of this inconsistency.

The first cause was that for a large region of the sensor space more than one action is optimal.

115

5.4. The grid scenario

In Fig. 5.3b it is equally optimal to execute either down or left in the subspace above context edge

A and to the right of context edge B. Both actions move the application equally towards the goad

subspace. In an experiment the learned policy could map discrete states for this subspace to either

down or left. From a reinforcement-learning perspective either is correct as both are optimal, however

from the perspective of KAFCA it creates a potential issue when identifying the locations of context

edges. If two neighbouring discrete states both have the same pair of equally optimal actions, and

each state is associated with a different one of those actions, then it would appear that there is a

context edge between two states when in reality there is none.

To address this problem we considered a solution where a policy could map a discrete state to

more than one action. It is statistically very unlikely that both optimal actions would have identical

Q-values, therefore there must be some threshold on what is considered “optimal”, e.g., Q-values

within 1% of the optimal Q-value are also considered optimal. This threshold would be configurable

by the developer at design time. When we implemented this solution we observed that in policies

some discrete states were accurately identified as having more than one optimal action, however we

also observed discrete states where there was significant variation between Q-values of actions that

should be equally optimal (10-15% in some cases). These variations were too wide to be reasonably

considered “optimal” using our threshold-on-optimality solution.

By examining Q-values over the course of an experiment we established that these cases were

caused by a different, second cause of inconsistency in learned policies. In the line scenario a spatial

dependency exists between the point in the sensor space where an action is taken and the immediate

reward for that action. The grid scenario uses a long-term reward model rather than an immediate one

so such a spatial dependency does not exist. Instead a Q-value is influenced by the state transition

that an action causes, as these transitions propagate long-term rewards from other states. These

transitions are the second cause of inconsistency in learned policies for the grid scenario as learned

Q-values depend on the order in which transitions occur, i.e., there is a temporal dependency between

Q-values and transitions.

A long-term reward model creates a reward path from the goal to other discrete states. Fig. 5.4

illustrates how rewards are propagated through a reward path. Discrete states that do not transition

directly to the goal subspace can only gather rewards via intermediary discrete states, si, S2 and S5

are the only discrete states that can transition directly to the goal subspace and receive the associated

immediate reward. All other states must learn from rewards propagated from these states. When

transition ti occurs an immediate reward is given to the action left in discrete state S2. If transition

t2 occurred before tj then there would be no reward for t^ to propagate, however if t2 occurs after ti

116

Chapter 5. Evaluation

^13 S,4 S,5

o
^16

6
Sg ®10

. •til o

T

F O
^12

Sg SgO

’1
S7 Sb

s,

G^i
c To
•

S3 S4

• Start
o End

Transition

Figure 5.4: TemporaJ dependency in the grid scenario

then the transition propagates some of the immediate reward received at ti. Similarly transition t^

propagates some of the reward that was propagated by t2- In Fig. 5.4 the transitions form a reward

path from Si to Sie via six transitions. The final transition ta from sie to sis rewards the action left

in Si6 with some of the reward originally received for ti. If only these transitions propagate rewards

then the optimal action for .sie will be perceived to be left, even though left and down both lead

equally optimally to the goal subspacc. Obviously many more transitions and reward propagations
occur during learning, however this example captures the temporal dependency in a reward path.

The reward path creates a temporal dependency as there is an order in which rewards propagate

between discrete states. There may be many reward paths that lead from a discrete state to the goal.

A discrete state’s Q-values depend on the Q-values of other states in those paths. In our experiments

the cases that we identified where there was significant variation between the Q-vcilues of actions that

should be equally optimal were a result of more transitions occurring on one path than on another.

More rewards were propagated along one feedback path and therefore only one action appeared more

optimal.

Through further experimentation we established that, similar to the spatial dependency, the tem­

poral dependency could be addressed using a very low learning rate. This reduced the effect of

individual updates (and transitions) on Q-values, so that rewards were propagated more slowly. The

order in which transitions occurred was less of an issue as Q-values were learned over a longer learning

period.

In this particular scenario the spatial dependency was more obvious due to the existence of equally-

optimal actions in some regions of the sensor space. The success of our threshold-on-optimality

approach for identifying equally optimal actions depended to a large extent on the threshold selected

117

5.5. Sentient-couch scenario

by the developer, which would be an extra requirement for expert knowledge. We also intuitively felt

that scenarios where multiple actions were optimal were unlikely to arise in real-world environments, as

such environments are too non-deterministic for actions to be exactly, equally optimal. Due to these

considerations we ultimately decided that facilitating multiple optimal actions was an unnecessary

extension of our approach and as such is excluded from the current version of KAFCA.

5.5 Sentient-couch scenario

In the sentient-couch scenario a context-aware application uses sensor data to identify the user cur­

rently occupying a couch. The scenario is based on an old psychoanalyst’s couch in a shared office in

Trinity College, which is augmented with industrial-load sensors so that the weight of a person on the

couch can be sensed. Load sensing is well suited for context identification as changes in weight distri­

bution are indicative of movement and interaction in the physical environment (Schmidt et ah, 2002).

The sentient-couch platform has previously been used for a number of context-aware applications.

The first implementation was a custom application that identified an individual based on their weight

and issued a personalised greeting (Wolfe, 2003). The application was subsequently rebuilt using the

Sentient Object Model as an evaluation of its ability to model and implement systems (Biegel, 2004).

In this scenario the application must identify users that do not always weigh the same amount.

Even in the course of a day their weight varies based on what they have eaten or the clothes they

are wearing. The challenge is to identify the range of sensor readings that indicate a context where a

particular user is on the couch.

We apply KAFCA’s accurate-context-definition process to this task. Rather than use the physical

sentient couch and its sensors we simulated its operation. There are a number of reasons for simulating

rather than experimenting with real sensor data. An objective of this scenario is to evaluate the trade

off between learning iterations and the accuracy of context definitions. As the number of refinements

increases so do the number of learning iterations, and running the experiments in real time would

prohibit a significant analysis of this trade off. Another reason for choosing simulation over real-

world deployment is the repeatability of experiments. By repeating experiments we can establish

that consistent, accurate policies are being learned using reinforcement learning, and that the issues

encountered in the line and grid scenarios do not reoccur.

118

Chapter 5. Evaluation

5.5.1 Simulation

In the simulation each simulated user has a weight range that defines the range of weights that can

be detected while they are on the couch. The MoCoACouch class extends the MoCoA class from

our implementation (Section 4.3) so that it encapsulates attributes for the current occupant and the

most recent action executed, so that feedback from the user can be simulated. The getAllSensors()

method instantiates two sensors- weightSensor and userFeedbackSensor. weightSensor has a range

between 0 and 100kg, a precision of 0.01 kg, and initial discrete-state boundaries at 10, 20, 30, 40,

50, 60, 70, 80 and 90kg. It is used by the application to measure the weight currently on the couch.

The userFeedbackSensor is specified by the reward model as the source of feedback that is used to

calculate rewards. The getSensorReading() method returns sensor data for the weight on the couch

and simulated user feedback for actions. (Listing 5.1). The execute Action () method updates the most

recently executed action so it can be used to calculate simulated user feedback by comparing the

action to the current couch occupant.

The couch’s context is simulated using Monte Carlo simulation, where the next couch context is

generated from a discrete probability distribution. This approach is used to generate values randomly

according to a defined distribution. The probability of no change to the current context is 0.9, the

probability of the couch becoming vacant is 0.05, and the probability that someone new gets on the

couch is 0.05. This is implemented in the nextCouchContext() method of the MoCoACouch class.

//Current user on couch
User* occupant;
//Most recently executed action
Action* lastAction;
//get available sensors

vector<Sensor *> getAllSensors (){
//instantiate the two application sensors, set their meta data, and return

them

}
double getSensorReading(Sensor s){

//Simulate the weight of the occupant on the couch
if (s->id == "weightSensor")!

if (occupant==NULL)
return 0;

else {

119

5.5. Sentient-couch scenario

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

double random = (double)rand() / RAND.MAX;
return occupant->min + random ♦ (occupant->max - occupant->min)

}
//Simulate user feedback
} else if (s->id == "userFeedbackSensor"){

if (occupant->id == lastAction->command)
return 1 ;

else
return -1;

}
}
//Store the last action executed
void executeAction(Action♦ a){

lastAction = a;
}
//set the next couch state
void nextCouchContext(){

//couch activity {no change, user gets off, user gets on}

//select a random number between 0 and 1
double random = (double)rand() / RAND_HAX;
//p(no change) = 0.9
if (random<0.9) {

//no change to couch

}
//p(user gets off) = 0.05
else if (random < 0.95){

occupant = NULL;
}
//piuser gets on) = 0.05
else {

User* randomUser = selectRandomUser();
occupant = randomUser;

}

Listing 5.1: The MoCoACouch class

120

Chapter 5. Evaluation

5.5.2 Application implementation

The implementation of the application in this scenario extends and instantiates the classes within

KAFCA as discussed in Section 4.2.

The application creates eleven instances of the Action class. Ten of the instances identify the users

of the application, i.e., possible couch occupants. The actuator attribute of each instance is “display”

and the command attribute is the “userlD” (user 1-user 10). Obviously in the simulation there is no

physical actuator, however the “display” could be a screen on which the userlD is displayed. The final

action instance is the action to take when the couch has no occupant. The actuator and command

attributes in this instance are set to NULL.

The application also specifies a CouchRewardModel subclass of RewardModel (Listing 5.2). The

getReward() method returns a negative reward (-1) when feedback from the user indicates that they

were identified incorrectly, and no reward (0) otherwise.

//set the sensors needed for this reward model
sensors.push_back(new Sensor("userFeedbackSensor")) ;

//Calculate the reward based on user feedback
double getReward(Action * a, doublet] preAction , doublet] postAction){

//if the action did not identify the right user
if (postAction to] == -1){

return -1;
}
//if the action identified the right user
else if (postAction to] == 1){

return 0;
}

}

Listing 5.2: The CouchRewardModel class

5.5.3 Configuration

The application must configure the reinforcement learning and accurate-context-definition subpro­

cesses of KAFCA, as discussed in Section 4.2. The configuration parameters are shown in Table

5.1.

121

5.5. Sentient-couch scenario

Parameter Value
leamingRate 0.01

discountFactor 0
periodBetween Actions 30 seconds

updatesBetweenStability Tests 200
requiredStableSequenceLength 10

numberOfRefinements 9
Table 5.1: Sentient-couch configuration

discrete states

weightSensor
I—I H

user-weight profiles

H H

Two profiles within
one discrete state

100

Figure 5.5: Example user-weight profiles

5.5.4 Experiment

Each experiment has 10 unique, randomly distributed user profiles. A random minimum weight is

selected for each user. The maximum weight for a user is randomly selected in the range l-5kg above

their minimum weight (Fig. 5.5).

In each experiment context definitions are defined between each refinement of discrete states.

The context edges of learned context definitions are compared to the known context definitions for

simulated users. Each learned context definition has a lower and upper bound on the subspace

it represents. These bounds should correspond to a user’s minimum and maximum weight if the

definition is accurate. The inaccuracy of each context definition (as a percentage) is the ratio of the

context subspace that is inaccurate to the overall size of the context subspace.

[learnedLower Bound — user Minimum] -|- [learnedUpper Bound — user Maximum]
* 100learnedUpper Bound — learnedLower Bound

In each experiment the number of learning iterations required to learn a stable policy is also

recorded for each refinement.

5.5.5 Results

The context-definition inaccuracy across 100 experiments is summarised in Fig. 5.6. The graph

122

Chapter 5. Evaluation

Figure 5.6: Context-definition inaccuracy

shows the progression in inaccuracy over 9 refinements of the KAFCA accurate-context-definition

process, wliere RO is the inaccuracy before any refinement occurs and R1 to R9 show the inaccuracy

after each refinement. The bar-and-whisker plots (or box plots) show the median, interquartile range,

valid range, and outliers in the data. The median is used rather than the mean as the mean is very

sensitive to extreme observations, which may distort the view of what is typical (Baron, 2007).

The plot for RO summarises the inaccuracy of context definitions based on initial discrete states.

The median inaccuracy is 75.9%, with most values in the range 68.2-86.6%. At this stage of the

experiment we observe that a number of contexts (~ 2 per experiment) go undetected. This occurs

when a single discrete state encapsulates more than one context (Fig. 5.5). These contexts can only

be distinguished from each other when the state is divided in subsequent refinements.

After one refinement of the discrete states (i?l) the median inaccuracy drops to 54.3%, with range

39.0-67.2%. This is a 28% reduction in inaccuracy compared to RO. Inaccuracy continues to fall

significantly over a number of refinements when compared to RO, with further median drops of 20%,

19%, 13%, 9% and 5%, at R2, R3, R4, R5 and R6 respectively.

By R6 the median inaccuracy is just 3.8%, a total drop of 95% from the inaccuracy at i?0. Beyond

this point the improvements in accuracy are negligible. In R9 the inaccuracy actually increases due

to the “failure” of our stability-based approach to stopping learning. By this refinement the subspaces

of some discrete states are so small that learning is an extremely slow process. Each discrete state

must be visited a number of times, and the probability of visiting tiny states is proportionally small.

In some cases it appeared that the policy was stable when in fact learning was just extremely slow.

123

5.5. Sentient-couch scenario

Figure 5.7: Required learning iterations

Learning was stopped prematurely and this caused learned policies to be inaccurate. As a result

of inaccuracy in policies the learned context definitions were also inaccurate, and the median and

range of inaccuracies actually increased as a result. This issue could be addressed by increasing the

required sequence of stable policies and the updates between stability tests, however this demonstrates

that ultimately there is no way to identify when sufficient learning has occurred. Our stability-based

approach is merely a guide to identify when learning appears to be finished.

The number of required learning iterations was also recorded across the set of 100 experiments

(Fig. 5.7). It should be noted that the minimum number of iterations to learn a stable policy is

2000, as we configure the application to stop learning after observing a sequence of the same policy 10

times, and this stability check is applied every 200 iterations. In fact the stability approach potentially

increases the number of required iterations by 2000, as the first policy in the stable sequence is the

same cis the last, i.e., no further learning was necessary after the first policy in the stable sequence.

In RO the median number of iterations is 3000, which suggests that approximately 1000 iterations

were required to learn a stable policy (plus 2000 to establish that it was stable). In Rl the median is

3500, suggesting that 1500 iterations were required to learn a stable policy- a 50% increase over RO.

As the number of refinements increases so does the required number of iterations. The median peaks

at 17000 iterations in R7.

When we remove the iterations used to identify that the policy is stable we observe that each

124

Chapter 5. Evaluation

Figure 5.8: Cost-benefit analysis of discrete-state refinement

additional refinement between RO and R7 requires on average 47% more iterations than the previous

refinement (range 43-54%). This is not the case in refinements RS and R.d where there is no appre­

ciable increase over the iterations required in R7. This appears to be a result of the situation noted

above, where learning was so slow that the policy appeared to be stable. If a longer requiredStable-

SequenceLength was configured then it is likely that we would observe the same rate of increase in

required learning iterations as in other refinements.

A cost-benefit analysis of accuracy versus required learning iterations is shown in Fig. 5.8. The

graph shows the % increase in context-definition accuracy per learning iteration for each refinement

of the discrete states, compared to definitions for the previous version of the discrete states. The

benefit at RO is obviously 0 as no refinement has occurred. i?l yields a median 0.014% increase in

context-definition accuracy over the context definitions at RO. The median yield drops off quickly

as the number of refinements increases. R2, R3, Ri and R5 yield 0.006, 0.004, 0.002 and 0.001%

respectively per learning iteration. R6-R9 yield almost no increase per learning iteration.

5.5.6 Conclusion

The first objective of the thesis is to accurately interpret application contexts at run time. These

results show that KAFCA can increase the accuracy of context definitions at run time by refining

discrete states. Across six refinements the median inaccuracy is reduced by 95%. The majority of

125

5.6. Power-management scenario

this improvement occurs by the third refinement (68%). A side-effect of refining the discrete-state

subspaces is a requirement for increased numbers of learning iterations. Our analysis shows that in

this scenario the required number of iterations increases by ~47% per refinement. This affects the

benefit of each additional refinement- the first refinement yields more than 10 times the improvement

in context-definition accuracy compared to the fifth refinement, which suggests that the number of

refinements to apply in a scenario should be carefully chosen.

This thesis is concerned with the accuracy of context definitions, however it cannot be ignored that

a very large number of learning iterations may be necessary with reinforcement learning. This is partly

a consequence of the low learning rate we use to overcome the spatial dependency. Another factor in

this scenario is the large number of possible application actions. Each of the eleven actions must be

executed multiple times in each discrete state in order to learn an accurate policy. It is also worth

noting that 50% of the time the couch is unoccupied based on our discrete-probability distribution

(Section 5.5.1). Learning iterations when the couch is unoccupied do not provide the application with

any knowledge about actions in user contexts.

These factors combine to increase the required number of learning iterations. In the real world it

would be unrealistic to get feedback from a user for this magnitude of iterations. A reward model

where the application does not depend on explicit user feedback, and instead senses feedback from

the environment, would address this issue.

5.6 Power-management scenario

In the power-management scenario a context-aware application transparently manages the state of

users’ desktop monitors. The objective is to minimise the electricity consumption of the monitor

while maintaining user-perceived performance. The application uses a variety of sensors to identify

the context, and real-world sensor data for these sensors is used from a previous study (Harris, 2007).

In this scenario we emulate the real world using this recorded sensor data.

The original study evaluated the potential energy savings of context-aware power management

over traditional power-management techniques. A population of twenty office employees was selected

for the study. Employees were chosen to represent a diverse set of users, with different computer-usage

profiles and working in different office environments. They held a variety of johs and worked in both

shared and single offices. Their usage of the computer as well as sensor data for a set of sensors was

recorded for each user, at five-second intervals, over a five-day period. The user’s usage trace waa

recorded by observing idle periods when the keyboard and mouse were not in use (Fig. 5.9).

126

Chapter 5. Evaluation

idle periods

Figure 5.9: Recorded usage trace based on idle periods

5.6.1 Sensors

The sensors in the original study were chosen to detect the user at different distances from the

computer. A bluetooth sensor is used to detect the user when they are anywhere in the office, by

detecting a bluetooth dongle that the user carries. A microphone is similarly used to sense the user’s

presence anywhere in the office. A camera and ultra-sonic range finder are used to detect the user when

they cire at their desk. The idle time of the computer is modeled as a software sensor, which detects

that the user is actually using the computer. It provides data concerning how long the computer has

been idle.

The recorded sensor data was preprocessed for some sensors in the original study. There were two

layers of processing, the first of which discretised some of the raw sensor data. The image produced by

the camera was processed using a standard face-detection algorithm (Intel, 2006) so that it produced

a binary output- either a face was detected or not. The microphone output was processed using

a voice-activity algorithm (Intel, 2007) so that it produced an output in the range 0-100. Values

represent the percentage of voice activity in the previous 5 seconds. Henceforth we refer to these as

the face-detection and voice-activity sensors as these are the characteristics of the environment that

they measure.

Sensor Value Meaning
0 The user was detected in last period
1 One period since the user was detected
2 Two periods since ...

Table 5.2: Processed sensor data captures time

The second layer of processing added a time element to data from the bluetooth and face-detection

sensors. Table 5.2 demonstrates how time was captured in a sensor value, by adding the notion of

127

5.6. Power-management scenario

Sensor Meaning Range Precision Initial boundaries
Bluetooth Periods since tag detected 0 - 00 1 1, 5, 10

Face detection Periods since face detected 0 - oo 1 1, 5, 10
Voice activity % Voice activity in last period 0 - 100 1 25, 50, 75
Object range Range (cm) to object 0 - 200 1 50, 100, 150

Idle time Seconds since computer activity 0 - 00 1 1, 60, 120, 300, 600
Power status Monitor power state (suspended/active) 0, 1 0.5 0.5

Table 5.3: Power-management sensors

sequence to the data. Sensor data from the object-range and idle-time sensors was not preprocessed.

In addition to these sensors we define a power-status sensor that senses when the monitor is active

or suspended. Table 5.3 summarises the data produced by each sensor in this scenario, as well as their

meta data. The power-status sensor’s precision and initial boundaries are set to 0.5. This means that

only two discrete states are defined for it during discrete-state initialisation. Each of these represents

one of its two possible values- 0 and 1.

All of these sensors fulfill our ordering requirement for sensor data (Section 3.1.2.2). This would

not be the case without the preprocessing carried out on some of the sensor data, e.g., the image

produced by the camera would not meet this requirement in its raw state. However preprocessing

also causes data to be lost/hidden from the application. For example, the microphone is capable of

detecting more than voice activity, e.g., it could detect a door being closed. Similarly the camera could

detect more than the user’s face, e.g., it could detect movement within the room. These potentially

useful characteristics of the environment were lost during preprocessing as the original study focused

on a specific set of characteristics. This motivates the provision of as much environmental detail as

possible, and facilitating the application to autonomously choose what is useful.

5.6,2 Application goal

The fundamental assumptions of power management are that idle periods occur during the operation

of a device and that these periods can be predicted with some certainty (Benini et al., 2000). Energy

consumption is reduced by transitioning from higher to lower power states during idle periods. The

challenge to power management is that most power state transitions have a significant cost. Typically

they may:

1. Consume extra energy while making the transition.

2. Reduce the lifetime of the device. Some devices wear out faster when switched on and off

frequently.

128

Chapter 5. Evaluation

3. Reduce device performance from the user’s perspective, e.g., the user may have to wait for the

device to resume.

The first two concerns mean that not all idle periods are long enough to justify suspending a device.

A power-management application should predict whether the idle period will be long enough to justify

the transition cost (the break-even time). The third concern means that the application should also

predict when the idle period will end, and power up the device so it is ready for the user.

We emulate power managing the same device as the original scenario, a computer monitor. The

monitor consumes 45.8 Wh^ while activated, and 1.8 Wh while suspended. The break-even time is 60

seconds, and the suspend and activate times are both 2 seconds (Harris, 2007). A power-management

application must take these characteristics into account.

5.6.3 Emulation

In order to emulate the retrieval of sensor data from the real world the MoCoAPowerManagement

class extends the MoCoA class. It encapsulates an attribute for the monitor’s power state, and the

executeAction() method changes the state of this attribute to emulate the monitor being activated or

suspended. The getAllSensors() method instantiates and returns the six sensors in Table 5.3. The

getSensorReadingO method returns sensor data for a sensor from log files of recorded sensor data.

Eaeh entry in the log files is a timestamp-value pair. The emulated time is maintained inside the

MoCoAPowerManagement class so that the correct sensor readings can be retrieved from log files

based on their timestamps. If the end of the recorded sensor data is reached before a stable policy

is learned then the emulation returns to the beginning of the recorded sensor data and the learning

process continues.

//Power status: active = 1, suspended = 0
string devicePowerState = 1;
//Emulated time

long emulatedTime = -1;
//get available sensors

vector<Sensor*> getAllSensors (){
//instantiate the six application sensors , set their meta data, and return

them

}

^ 1 Watt hour (Wh) is the amount of energy needed to run a 1 Watt device for 1 hour

129

5.6. Power-management scenario

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

//retrieve the sensor reading from an emulated sensor
double getSensorReading(Sensor s)^

//special case if the sensor detects the emulated power state
if (s->id == "devicePowerStateSensor")

return devicePowerState;
//initialise the emulated time to the start of the experiment
if (emulatedTime == -1){

//initialise to first timestamp in file;
emulatedTime = fileManager->getFirstTimestamp(s->id);

}
//get the value for the parameterised sensor at the current emulated time
double value = fileManager->getData(s->id, emulatedTime);
//check if reached end of file, make recursive call to get first reading
if (fileManager->endOfFile(s->id)){

emulatedTime == -1;
return getSensorReading (s) ;

}
//increment emulatedTime by the configured period between actions
else {

emulatedTime += periodBetueenActions ;
return value;

}
}
//Change the power state of the device
void executeAction(Action * a){

if (a->command=="activate")
devicePowerState = 1;

else if (a->command=="suspend")
devicePowerState = 0;

//the defer action makes no change to the power state

Listing 5.3: The MoCoAPowerManagement class

130

Chapter 5. Evaluation

in use

not about
in use to use

I ^
Time

Figure 5.10: Key periods for changing the power state

5.6.4 Application implementation

The application in this scenario extends and instantiates KAFCA classes as discussed in Section 4.2.

It also creates three instances of the Action class to control the power state of the monitor. The

suspend and activate actions have obvious effects on the power state, and the defer action makes no

change to the current power state.

5.6.4.1 Reward Model

The application also specifies a PowerManagementRewardModel subclass of RewardModel. This re­

ward model went through a number of different iterations during experimentation. Our initial version

took into account the amount of wasted idle period before suspending, as well as penalties for sus­

pending when the monitor was still in use and also for not activating when the user was about to use

the monitor. This reward model required that weights be set on these different elements so that an

overall reward could be calculated. We experienced some initial success with this approach but found

that it was necessary to tailor the weights to individual users to learn accurate policies. The correct

weights for a user could only be identified through trial and error, and this depended on the developer

identifying when it looked like “good” policies were being learned. Therefore we felt this model was

too dependent on expert knowledge.

The second version of the reward model attempted to minimise the dependency on expert knowl­

edge by simplifying the reward calculation. We identified two key periods where it was appropriate to

change the power state of the monitor: when the computer is not in use it is appropriate to suspend,

and when the user is about to use the computer it is appropriate to activate (Fig. 5.10). When the

computer is in use it is appropriate to defer changing the power state. This version of the reward

131

5.6. Power-management scenario

model gave balanced rewards (+ 1 and -1) for selecting actions correctly or incorrectly in these periods.

Our intuition was that the sensor data that was observed in these periods would be consistent and

therefore would become correctly associated the appropriate actions for the different periods. For ex­

ample, if the value 0 from the bluetooth sensor was observed in the about-to-use period but not in the

not-in-use period then it would become associated with the activate action. However our subsequent

analysis of the sensor data (Section 5.6.8) revealed that there was insufficient consistency in the sensor

data and as a result this reward model was not effective.

The current version of the reward model builds on the approach used in the second version, however

instead of using balanced rewards (-1-1 and -1) the rewards emphasise the importance of true positives

over false positives, e.g., it is more important to activate correctly in the about-to-use period (+ 10)

than it is to activate incorrectly in the not-in-use period (-1). This was the most effective reward

model we identified during experimentation (Listing 5.4).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

//set the sensors needed for this reward model
sensors.push_back(new SensorC'idleTimeSensor"));
sensors.push.back(new Sensor("devicePowerStateSensor"));

//Calculate the reward based on the idle time

double getReuard(Action♦ a, double [] preAction, doublet] postAction){
//check if there was an idle period after the action
bool idleAfterAction = (postAction [0] == 0);
//check if the device was active before the action
bool deviceActiveBeforeAct ion = (preAction [1] == 1);

if (a->command=="suspend"){
//suspended correctly if there was an idle period after suspense
if (idleAfterAction)

return 1;
else

return -2;
}
else if (a->command=="activate"){

//activated correctly if there was no idle period after activation
if (!idleAfterAct ion)

return 10;

132

Chapter 5. Evaluation

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

else
return -1;

}
else if (a->command=="defer"){

//if its deferring suspend
if (deviceActiveBeforeAction){

//deferred suspend incorrectly as there was an idle period
if (idleAfterAction)

return -2;
else

return 1 ;
}
//if its deferring activation

else if (!deviceActiveBeforeAction){
//deferred activate correctly as there was an idle period
if (idleAfterAction)

return 10;
else

return -1;
}

Listing 5.4: The PowerManagementRewardModel class

5.6.4.2 Sensor-evaluation metric

The application also specifies a PowerManagementSensorEvaluationMetric subclass of SensorEvalu-

ationMetric. This class implements the update() and calculateResult() methods using application-

specific logic to measure application performance. Similar to the reward model this metric went

through a number of iterations. The initial metric measured how optimally the application managed

energy consumption by recording the proportion of idle periods that the monitor was suspended for.

However during experimentation the sensors selected while using this metric did not provide good user-

perceived performance. In particular the user was frequently forced to activate the computer manually

at the end of the idle period. In fact this metric showed improved performance when the monitor was

not activated automatically, as energy was saved in the about-to-use period where the monitor should

133

5.6. Power-management scenario

have been activated. This metric focused too much on the application’s energy performance and did

not capture all elements of the application’s goals.

The current version of the metric measures application performance based on the ratio of correct

action selections to the total number of actions taken (Listing. 5.5). The update() method records

the occurrences of specific events, such as where the application failed to suspend the monitor when

it was idle, or when the user was forced to manually power up the monitor. This version of the metric

attempts to balance the importance of user-perceived performance and energy saving.

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

//set the sensors needed for this sensor - evaluation metric
sensors.push_back(new SensorC'idleTimeSensor"));
sensors.push_back(new Sensor("devicePowerStateSensor")) ;

//record occurrances of different events

int totalActivates = 0;
int totalSuspends = 0;
int manualActivates = 0;
int falseSuspends = 0;
int inefficientActivates = 0;
int failureToSuspends = 0;

//update the record of application behaviour

void update (Act ion ♦ a, doubled preAction , doubled postAction){
//check if there was an idle period before and after the action
bool idleBeforeAct ion = (preAction [0] == 0);
bool idleAfterAction = (postAction [0] == 0);
//check if the device was active before the action
bool deviceActiveBeforeAction = (preAction [1] == 1);

//a general record of actions
if (a->command=="activate"){

totalActivates++;
}
else if (a->command="suspend"){

totalSuspends ++;
}

134

Chapter 5. Evaluation

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

//a manual activate occurs if the idle period ends but activate is not
called

if (idleBef ore Ac t ion && ! idleAfterAction ScSc ! a-> command ==" act i vat e ") {
manualActivates ++;

}
//a false suspend occurs if there is no idle period after suspend is called
if (!idleAfterAction && a->command=="suspend"){

falseSuspends++;
//also causes a manual activate
manualActivates ++;

}
//on inefficient activate occurs if activation is called before the end of

the idle period

if (idleAfterAction && a->command=="activate"){
inefficientActivates++;

}
//a failure to suspend occurs if suspend is deferred in an idle period
if (idleAfterAction deviceActiveBeforeAction &&

action-> command=="defer"){
failureToSuspends++;

}

double calculateResult (){
//if no contexts are detected by these sensors
if ((totalActivates + totalSuspends) == 0)

return -1;

//calculate the proportion of good activates

double goodActivateProportion = (totalActivates - manualActivates
inefficientActivates)/totalActivates;

//calculate the proportion of good suspends

double goodSuspendProportion = (totalSuspends - falseSuspends -
failureToSuspends)/totalSuspends;

//return the average

135

5.6. Power-inaiiagement scenario

Parameter Value
learningRate 0.01

discountFactor 0
periodBetweenActions 5 seconds

updatesBetweenStability Tests 1000
requiredStableSequenceLength 10

numberOfRefinements 4
numberOfEvaluationActions 5000
Table 5.4: Sentient-couch configuration

return (goodActivateProportion + goodSuspendProportion)/2;

Listing 5.5: The PowerManagementSensorEvaluationMetric class

5.6.5 Configuration

The application must configure KAFCA as discussed in Section 4.2. The configuration parameters

are shown in Table 5.4.

5.6.6 Experiment

Each experiment is centred around the data for a particular user. The performance of different power-

management applications are evaluated and compared during an experiment. A theoretical Oracle

application is used to measure the optimal power consumption for a user. An always-on application

is used to show the opposite end of the energy-efficiency spectrum. A number of threshold applica­

tions are also defined that represent standard, knowledge-intensive approaches to power management.

KAFCA is used to learn context definitions for a set of context-aware applications that use fixed

sensors. It is also used to learn context definitions for an application that selects the most suitable

sensors at run time. The performance of each of these applications is measured and compared using a

number of application-specific metrics. We now look at each of these applications and the evaluation

metrics in more detail.

5.6.6.1 Oracle and always-on applications

The Oracle application is a theoretical application that has future knowledge of user requests for a

device (Simunic et al., 2000). This application suspends the device at the beginning of an idle period

that exceeds the break-even time. If the device is in the suspended state the application activates it

136

Chapter 5. Evaluation

Immediate power down

Oracle-application
behaviour

Figure 5.11: Oracle-application behaviour

Wasted energy

Threshold-application
behaviour

Figure 5.12: Threshold-application behaviour

just in time to service the next request from the user (Fig. 5.11). The performance of this optimal

application is a useful baseline to which to compare the performance of realisable applications.

At the opposite end of the energy-efficiency spectrum is the always-on application (Harris, 2007).

This application makes no attempt to conserve energy by suspending during idle periods. The differ­

ence in energy consumption between the Oracle and always-on applications is the maximum that can

be saved through power management. We use the energy consumption of the always-on application

as an upper bound when comparing applications.

5.6.6.2 Threshold applications

Threshold applications are the standard for power management of devices (Harris, 2007). These

applications simply wait until an idle period exceeds some predefined threshold before powering down

the device (Fig. 5.12) and energy is wasted while waiting for the threshold to pass. These applications

do not attempt to predict when the device will be used next so the user must manually reactivate the

device.

The original study implemented applications with thresholds of 5, 10, 15, 20, 25 and 30 minutes. In

addition to these applications the original study experimented with a variation on standard threshold

applications. The Standby/Wakeup on Bluetooth {SWOB) application adds a threshold on user

137

5.6. Power-management scenario

Application

HHH
a>
s

1—H

H
m

-4-Joo
a;:3s

cr;o
a;bO

(-1
4ĈJa;

O

Q

.2
o;4ĈP
q;

(Jh

a
a
CP

;>

IT /
IT, BT / /
IT, OR / /

IT, BT, OR / / /
IT, BT, FD / / /

IT, BT, OR, FD / / / /
IT, BT, OR, FD, VA / / / / /

Table 5.5: Fixed-sensor sets

presence to the standard threshold on idle time (Harris & Catnll, 2005b). This application uses the

bluetooth sensor to detect the user’s presence. When the idle time exceeds 1 minute and the user has

not been detected in the last 5 periods the monitor is suspended. The monitor is activated when the

user is detected again. We evaluate the same basic threshold applications as the original study (T05,

TIO, T15, T20, T25, T30) and also the SWOB application for comparison.

5.6.6.3 Fixed-sensor applications

The original study compared the performance of seven fixed-sensor applications to threshold applica­

tions using Bayesian networks to learn contexts Harris (2007). Table 5.5 shows the set of sensors used

in each application. In our experiments KAFCA is used to learn accurate context definitions for a

fixed set of sensors. The first phase of KAFCA is carried out as normal, and defines context definitions

each for individual sensor. The second phase of KAFCA is restricted so that only one combination

of sensors is considered for each application. The policy that is output from KAFCA defines how an

application should select actions given sensor data from its particular combination of sensors.

5.6.6.4 Run-time sensor selection application

In addition to fixed-sensor applications the experiment also evaluates a sensor-selection application

where sensors are selected at run-time using KAFCA. In the case of this application the second phase

of KAFCA is carried out as described in Section 3.6, and the policy that is output defines how the

application should select actions given sensor data from the selected, most suitable set of sensors.

138

Chapter 5. Evaluation

Figure 5.13: Total energy consumption

5.6.6.5 Evaluation metrics

The performance of each application (oracle, always on, threshold, fixed sensor, and sensor selection)

is evaluated against a number of application-specific metrics. Each application runs for the duration

of the recorded sensor data and the results of its performance are gathered. We apply similar metrics

to the original study to evaluate energy efficiency, user-perceived performance, and the impact on

device lifetime.

The delta-energy-consumption-from-Oracle metric measures the difference between the energy con­

sumption of an application and the energy consumption of the Oracle application. This metric mea­

sures the energy wasted by an application compared to the Oracle application, which wastes no energy.

User-perceived performance is measured using two metrics. If the application incorrectly suspends

when the monitor is in use then the user experiences a false suspend (FS) and must wait for the

monitor to reactivate. If the device does not automatically activate at the end of an idle period then

the user experiences a performance delay and must perform a manual activate (MA). Occurrences

of these events are counted to measure user-perceived performance. The impact of an application

on device lifetime is measured by counting the number of times the device suspends but the time

suspended is less than the breakeven period. This is referred to as the breakeven-not-reached (BNR)

metric.

5.6.7 Results for recorded sensor data

In these experiments bar-and-whisker plots are again used to summarise the results from eighteen

users for which there is recorded data. As in the sentient-couch scenario the median is used as the

mean is sensitive to outliers. All experimental results have been averaged so they represent application

139

5.6. Power-management scenario

Figure 5.14: Delta energy consumption from the Oracle application

performance per day.

Fig. 5.13 summarises the energy consumption per day of users in the study. The median consump­

tion was 152Wh, which equates to approximately 3 hours usage per day. Most users consume between

64 and 368Wh on their computer monitors, i.e., between 1 and 7 hours per day approximately. A

single outlier uses 818Wh per day, which equates to ~17 hours of usage per day. It would seem that

there was some error when recording the data for this user as it is very unlikely that a user would

work an average of 17 hours per day over five consecutive days. Regardless of this outlier the range

in energy consumption of other users shows that individual users have very different device-usage

patterns.

5.6.7.1 Energy savings

Fig. 5.14 summarises the energy efficiency of each application relative to the Oracle application.

The results for threshold and learned applications are displayed in separate graphs due to space con-

140

Chapter 5. Evaluation

straints. With the exception of the SWOB application the threshold applications perform similarly in

terms of energy savings. Their median values are in the range 551--618Wh from the Oracle application.

The SWOB application performs significantly better with a median value of 173Wh from the Oracle.

The SWOB application suspends the monitor after just one minute of an idle period so this difference

in performance suggests there are many idle periods between 1 and 5 minutes long which the monitor

can suspend for.

The learned applications perform very well in comparison to the threshold applications (note the

change in scale on the y-axis). Their median values range between 19.9 and 21.8Wh from the Oracle.

Such a small variation in performance suggests that the sensors used by each application had very

little effect on performance under this metric. The application that used only the idle-time sensor

{IT) performed better than the application that used all sensors {IT, BT, OR, FD, VA). The idle-time

sensor detects idle periods with 100% accuracy and is therefore very suitable for selecting when to

suspend the monitor and save energy. This suitability was confirmed when we examined the sensors

select€!d for users by the sensor-selection application. In every case the idle-time sensor was selected

as part of the most suitable set. The sensor-selection application’s median value is 21.3, which is a

7% worse performance than the best fixed-sensor application {IT, median = 19.9).

5.6.7.2 User-perceived performance

User-perceived performance is measured using the FS and MA metrics. The results of the FS

metric are shown in Fig. 5.15. It is immediately obvious that none of the threshold applications cause

any FSs. This is to be expected as their encoded logic explicitly specifies that all suspends occur when

the device is idle. In contrast almost all of the learned applications cause FSs for some users. Only

the learned application where just the idle time sensor is used {IT) shows no FSs. This is unsurprising

as this application is only influenced by the idle time, much like a standard threshold application. In

other learned applications the idle time is not the only influence on action selection and some FSs

occur. This is particularly obvious in the case of the application that uses all sensors {IT, BT, OR,

FD, VA). However it should be noted that all learned applications show a median of 0 FSs per day,

and that many users do not experience FSs at all. The sensor-selection application performs quite

well, and it is noteworthy that its overall range of results (0-0.81) is significantly smaller than the

ranges of other learned applications excluding IT (0-4.1 is the next smallest). This suggests that by

selecting the most suitable sensors for each user the number of FSs they experienced was reduced

although the result is not conclusive.

141

5.6. Power-management scenario

6

5

4
>«
(9
“3

1

0 1 1 1
-Jiiiv ^\ »

> > >
-S'

Threshold applications

Figure 5.15: False suspends

The results of the MA metric are shown in Fig. 5.16. Threshold applications that use only idle

time do not attempt to activate the monitor before the user requires it, therefore every idle period

in which they suspend causes an MA. The longer the thresholds of these applications the fewer times

they suspend, and therefore the fewer MAs they cause. This trend can be seen across the applications

from T05 to T30, as the median number of MAs falls from 3.9 to 1.9 per day. The SWOB application

performs very well under this metric and only causes a median of 0.4 MAs per day.

In comparison to the threshold applications the learned applications perform very badly under

this metric. The IT application has the highest median number of MAs at 11.01 per day. As

observed previously this application behaves much like a threshold application as it is only influenced

by the idle time. Therefore it initially seems strange that this application causes so many MAs

compared to threshold applications. On closer examination of the behaviour of the IT application

this was explained by more frequently suspending than standard threshold applications. More frequent

suspensions of the monitor meant more MAs when the user returned. This also accounted for the

142

Chapter 5. Evaluation

/> />
'<?> ■<^

Learned applications

Figure 5.16; Manual activations

increased numbers of MAs in other learned policies, as they also suspend far more frequently than the

threshold policies.

Interestingly, the IT application was not greatly outperformed by the other fixed-sensor applica­

tions or the sensor-selection application, even though it did not attempt to activate at the end of

idle periods. The median values of learned applications are between 8.9 and 10.6 MAs per day. This

suggests that the other sensors did not help the application to activate before the user returned to

the monitor. The sensor-selection application’s median value of 10.3 was 16% worse than that of the

best fixed-sensor application {IT, BT median = 8.9).

5.6.7.3 Impact on device lifetime

The impact on device lifetime is measured using the breakeven-not-reached (BNR) metric and the

results of this metric are shown in Fig. 5.17. The threshold applications again perform well under

this metric. Even the worst performing threshold application {T05) has a median of just 0.4 BNRs

143

5.6. Power-management scenario

Figure 5.17: Breakeven not reached

per day.

In comparison the learned applications again perforin badly under this metric. The reason for

these results is the same as for the MA metric, i.e., these applications cause more frequent suspends

and are therefore more likely to incur BNRs. All of the learned applications perform similarly, with

median values between 4.7 and 6.3 BNRs per day. This suggests that the sensors used by different

applications did not help the application to avoid suspending when it would result in a BNR. The

sensor-selection application’s median value (4.6) is the same as the best fixed-sensor application {IT,

OR).

5.6.7.4 Conclusion

These results reveal a number of interesting points. Firstly they show that there is a trade off between

energy conservation and user performance/device lifetime. The learned applications significantly out­

perform the threshold applications in terms of energy efficiency, but are outperformed by the threshold

applications based on user-perceived performance and impact on device lifetime. The learned appli-

144

Chapter 5. Evaluation

cations cause an increased number of MAs and BNRs as they suspend the device more frequently to

reduce its energy consumption.

The sensor-selection application shows very little difference in performance compared to fixed­

sensor applications. Significantly the IT application which uses only the idle-time sensor performs

almost as well as other learned applications that use a variety of sensors. This suggests that the other

sensors do not assist the application in identifying the context, in particular to avoid MAs and BNRs.

To better understand this we must analyse the usefulness of sensor data to the application.

5.6.8 Sensor-data analysis

Our analysis of the recorded sensor data is intended to identify which sensors provide data that is

suitable for identifying contexts. We start by measuring the correlation between sensor data and idle

time, and then analyse the patterns of sensor data that are observed in different contexts.

5.6.8.1 Correlation

Correlation is a commonly-used approach to evaluate the relationship between data. It is often under­

stood to mean any relationship between variables, but more formally statistical correlation (usually

measured as a correlation coefficient) indicates the strength and direction of a linear relationship be­

tween two random variables (Baron, 2007). It measures the degree to which one linear variable can

predict the value of another. There are a variety of methods for calculating correlation coefficients.

We apply the well-known Pearson product-moment correlation coefficient (Moore, 1999). The coef­

ficient output ranges from -1 to -1-1. A coefficient of +1 implies that a linear equation describes the

relationship between the first and second variables perfectly- every increase in the value of the first

variable is mirrored by an increase in the value of the second variable. A coefficient of -1 also implies

perfect correlation, where every increase in the value of the first variable is mirrored by a decrease in

the value of the second variable. A coefficient of 0 implies there is no linear relationship between the

variables.

In this scenario it is obviously important that sensor data can be used to predict when the monitor

will be idle, i.e., that there is a correlation between sensor data and the idle time. Only two of the

sensors used in this scenario fulfill the linear requirement- the bluetooth and face-detection sensors.

Intuitively the values from these sensors should increase as idle-time increases. Fig. 5.18 shows the

measured correlation between the bluetooth and face-detection sensors with idle time. The figure

summarises the coefficients as measured across all periods and also across only idle periods. It is

impossible to measure the correlation across only active periods, as the idle value is always zero in

145

5.6. Power-management scenario

0.5

-0.5

-1 -

%
% \

%
Sensor, Period

Figure 5.18: Correlation between bluetooth, face-detection sensors and idle time

these periods and this causes division-by-zero issues during coefficient calculations.

Each bar-and-whisker plot summarises the coefficients calculated for individual users. The first

thing of note is the wide variation in correlation across users. In all plots the correlation for different

users may be complete (~ 1) or nonexistent 0). This demonstrates that in this scenario sensor

suitability is dependent on the user and/or environment. The bluetooth plots for all and idle peri­

ods are very similcir (median 0.99), which suggests that the bluetooth sensor is equally effective for

detecting the user when active and idle. The face-detection sensor has a lower correlation for both

all and idle periods (medians 0.41, 0.53) suggesting that it is less reliable for detecting the user. The

difference between the all and idle period plots suggests that it is better at detecting when the user

is away than when they are present.

Statistical correlation is a commonly used metric for evaluating the relationship between variables

however its usefulness for this scenario is limited as it can only be applied to two of the four available

sensors. It also provides a general measure of how correlated sensor data is but does not capture how

useful the sensor data is, e.g., it does not capture how consistently sensor data predicts the user’s

return in the about-to-use period. In order to analyse the sensor data further we examine patterns

that occur in the data during specific periods.

146

Chapter 5. Evaluation

User detected User undetected
Bluetooth 0 >0

Face detection 0 >0
Object range 30-80 90-160
Voice activity 0-40 0-40

Table 5.6: Patterns of sensor data from (Harris, 2007)

Figure 5.19: Bluetooth pattern occurrences

5.6.8.2 Pattern occurrences

In this section we examine the patterns of sensor data that occur in different periods within the

recorded data, and their implications for a power-management application. In the original study the

author identified patterns in sensor data that indicated when the user was detected at the device.

These patterns are summarised in Table 5.6. The original study observed that the voice-activity

sensor consistently output readings in the range 0-40, regardless of whether the user was present or

not. This lead them to conclude that this sensor was useless for detecting the user.

The occurrences of these patterns are analysed for three periods- in use , not in use and about to

use. These periods were previously described in our discussion of the reward model (Section 5.6.4). We

select these periods as in each a different application action is appropriate. During in-use periods the

application should defer suspending, during not-in-use periods the application should suspend, and

during about-to-use periods the application should activate. We analyse the occurrences of patterns

in these periods for each sensor.

Pattern occurrences for the bluetooth sensor are shown in Fig. 5.19. Each plot summarises the

147

5.6. Power-management scenario

Figure 5.20: Face-detection pattern occurrences

proportion of user-detected to user-undetected patterns in each of the three periods as a percentage.

As expected a high percentage of the patterns in in-use periods indicate that the user is detected

(median 99%). Similarly a high proportion of the patterns in about-to-use periods indicate the user is

detected (median 99%). This is significant as it means the bluetooth sensor can detect the user before

they require the monitor. However the not-in-use period results show that a significant proportion

of patterns indicate the user is detected despite the monitor being inactive (median 19%). These

occurrences may be a result of the user leaving the bluetooth dongle at the computer while they are

away, or working in the proximity of but not at the monitor.

An equivalent set of plots for the face-detection sensor are shown in Fig. 5.20. It is immediately

obvious that this sensor is significantly worse at detecting the user in in-use periods than the blue­

tooth sensor. A low percentage of the patterns in in-use periods indicate that the user is detected

(median 41%). The wide range of percentages (8-80%) suggests that this sensor is very dependent

on the particular user and/or environment. An incorrectly-oriented camera or a room with low-light

conditions could be responsible for poor face-detection rates (Harris, 2007). In contrast this sensor

is very effective for detecting that the user is not present during not-in-use periods (median 99%).

It rarely detects the user in about-to-use periods (median 14%). This may be a consequence of the

processing delay when identifying a face in an image, described in the original study.

The pattern-occurrence plots for the object-range sensor are shown in Fig. 5.21. The sensor is

reasonably good at detecting the user in in-use periods (median 86%), but the range of detection rates

148

Chapter 5. Evaluation

£
o

■E

\ \

Qk Oj-

% %
w 6> 6/

■%. \. \
'h V^ \ \

\
%

Period, Pattern

Figure 5.21: Object-range pattern occurrences

is wide (47-99%). Again this variation may be explained by incorrectly-oriented sensors. In (Harris,

2007) the author notes that it was difficult to orient this type of sensor so that it detected the user

consistently. Similar to the face-detection sensor this sensor is very effective at detecting when the

user is not present (median 97%) in not-in-use periods, but is not very effective for detecting the user

in about-to-use periods (median 52%).

As mentioned previously the original study was unable to identify voice-activity patterns that

indicated the user was detected or undetected. For all periods the observed patterns were in the same

range (0-40). Despite experimenting with a variety of possible ranges we were also unable to discover

any patterns that indicate a user’s presence or absence. As a result we must concur with the original

study’s suggestion that the voice-activity sensor was not suitable for this scenario.

5.6.8.3 Conclusion

This analysis reveals some interesting details about the sensor data. The statistical-correlation analysis

shows that the bluetooth sensor is in general very well correlated with the idle time and that the face-

detection sensor is in general much less correlated. However correlation has limited usefulness for this

scenario as it cannot be applied to all sensors and only provides a high-level measure of the relationship

between sensor data and idle time (user presence).

Our analysis of the patterns of sensor data also show that the bluetooth sensor is very good at

detecting the user when they are at the monitor, and that it also detects the user in the about-to-use

149

5.6. Power-management scenario

Good user/environmental characteristic Bad user/environmental characteristic
Idle time Always reliable -
Bluetooth Carries dongle Leaves dongle at desk

Face detection Bright office Dark office
Object range Correctly oriented Incorrectly oriented
Voice activity Own office Shared office

Table 5.7: User and environmental characteristics

period. However the user is frequently detected at other points during idle periods. This means

that with this sensor an application will encounter a significant number of false positives where the

bluetooth sensor indicates that the user is about to use the monitor. The face-detection and object-

range sensors are less effective for detecting the user’s presence, and their suitability varies widely

across different users (and environments). Both consistently detect when the user is not present, but

the face-detection sensor is poor at detecting the user in the about-to-use period and the object-range

sensor is mediocre at best. Data from the voice-activity sensor has no identifiable pattern.

Based on this analysis we conclude that the recorded sensor data provides very limited oppor­

tunities to test the sensor-selection phase of KAFCA, as most sensors do not consistently provide

suitable sensor data for identifying the context. To test this phase of KAFCA more completely we
decided to generate sensor data for theoretical users that had different personal and environmental

characteristics.

5.6.9 Sensor-data generation

To further evaluate KAFCA sensor data was generated for six different users. Each user had a unique

combination of user and environmental characteristics that dictated the sensors that were suitable to

them, e.g., they might be a conscientious user who always carries the bluetooth dongle, or a user who

works in a dark office and whose face cannot be detected. The possible characteristics are shown in

Table 5.7. Each sensor, with the exception of the idle-time sensor, may provide suitable or unsuitable

sensor data for identifying the context. If a user has the good characteristic associated with a sensor

then their generated sensor data for that sensor will be a good indicator of their context, and vice

versa for the bad characteristic.

Table 5.8 shows the six users and the sensors for which they have good characteristics. The idle­

time sensor is suitable for all users as it is completely reliable for detecting the idle period, independent

of the user or environment. Sensor data is generated for each user according to these characteristics.

The sensor-data generation process generates sensor data for five days for each user, the same

150

Chapter 5. Evaluation

Idle time Bluetooth Face detection Object range Voice activity
userl /
user2 / / / / /
userS / /
user4 / /
user5 / /
user6 / /

/ = good characteristic for this sensor
Table 5.8: Characteristics of generated users

amount as the recorded sensor data from the original study. The first step is to generate the idle

periods for a user. This process is similar to that used to simulate the current context in the sentient-

couch scenario, i.e., it uses Monte Carlo simulation based on a discrete-probability distribution (Listing

5.6). The probability of no idle period is 0.99, the probability of a short idle period is 0.005, the

probability of a medium idle period is 0.04, and the probability of a long idle period is 0.001. Starting

at the beginning of generated time the nextIdlePeriod() method is called every five seconds until an

idle period is generated. Generated time moves forward to the end of the generated idle period and

the process starts again. Once the end of the 5 days of generated time is reached this generation

process stops.

//data generation {no idle period, short period, medium period, long period}

//select two random number between 0 and 1

double random = (double)rand () / RAND_MAX;
double random2 = (double)rand() / RAND.MAX;
double idlePeriodLength ;

//p(no idle period) = 0.99
if (random <0.9){

idlePeriodLength = 0;
}
//p(short period) = 0.005
else if (random < 0.995){

//idle period between 30 and 60 seconds long
idlePeriodLength = 30 + floor(30*random2);

}
//ptmedium period) = O.OO4

151

5.6. Power-management scenario

Figure 5.22: Total energy consumption

Once the idle periods are generated the rest of the sensor data can be generated accordingly. A

new value is generated for each sensor every five seconds and written to the user’s log files. The value

generated for a sensor depends on the current idle period, the user’s characteristic for that sensor, and

the sensor’s error rate. For example the bluetooth sensor in an in-use period, for a user with the good

characteristic for this sensor (always carries the bluetooth dongle), will generated the value 0 with an

error rate of 14%. The values for sensor error rates are taken from the original study (Harris, 2007).

Although the original study observed that the voice-activity sensor did not produce any useful

data we define patterns for this sensor so that its generated sensor data is suitable for some users.

For users that have a good characteristic for this sensor it produces data in the range 0-10 when the

user is away from the monitor and 10-40 when the user is at the monitor. The motivation for this is

simply to create additional scope for sensor selection in the scenario.

5.6,10 Results for generated sensor data

152

Chapter 5. Evaluation

Figure 5.23: Delta energy consumption from the Oracle

We apply the same approach to experiments using generated sensor data as was applied to the

recorded sensor data. Again bar-and-whisker plots are used to summarise the results, and all results

have been averaged so they represent application performance per day. Fig. 5.22 summarises the

energy consumption per day of generated users. They consume between 636 and 839 Wh per day,

which demonstrates that individual generated users have different device-usage patterns.

5.6.10.1 Energy savings

Fig. 5.23 summarises the energy efficiency of each application relative to the Oracle application.

As we observed with the recorded sensor data the performance of standard threshold applications

degrades as the threshold time increases from 5 minutes to 30 minutes. In contrast to the experiments

with real sensor data the SWOB application performs worse than standard threshold applications for

the generated data. Our analysis of the recorded sensor data showed that the bluetooth sensor was

suitable for most users. In contrast the generated bluetooth sensor data is only suitable for two out

153

5.6. Power-management scenario

of the six generated users. The other four users have the “leave the bluetooth dongle at their desks”

characteristic, therefore their presence is incorrectly detected and the monitor is not suspended by

the SWOB application.

As was the case for recorded sensor data, the learned applications perform very well in comparison

to the threshold applications. In the experiments with recorded sensor data there was very little

variation in learned-application performance as all applications based their decisions to suspend the

monitor on the idle-time sensor. In these experiments we observe that other sensors contribute to

this decision and therefore there is more variation in performance. The IT application waits for some

idle time to pass before suspending to avoid incurring BNRs in short idle periods. In comparison

other sensors can detect that the user has left the device and applications that use those sensors can

suspend earlier in the idle period.

The general trend in Fig. 5.23 shows that the more sensors are used in an application the better

its performance. The application with one sensor (median = 24.9) jjerforms worse than applications

with two sensors (medians = 18.0, 20.1), which perform worse than applications with three sensors
(medians = 13.7, 16.5) and so on. It malces sense that applications with more sensors perform better

as they are more likely to use a sensor that matches the good characteristics of different users.

The best performing applications are the IT, BT, OR, FD, VA application and the sensor-selection

application, with medians of 4.7 and 4.8 respectively. The outlier for both applications is userl- the

user which has no good sensor characteristics. The IT, BT, OR, FD, VA policy has a sensor that

suits the characteristics of almost every generated user therefore it is no surprise that this application

performs very well. The sensor-selection application performs similarly well, wasting just 2.1% more

energy than the IT, BT, OR, FD, VA application. The IT, BT, OR, FD, VA application is an unfair

comparator as it uses all available sensors, therefore it is impossible for the sensor-selection application

to select more suitable sensors for users. In fact the sensor-selection application selects just two sensors

for most users, the idle-time sensor plus a sensor that matches their good characteristics (Table 5.8).

If we compare the performance of the sensor-selection application to fixed-sensor applications that

use just two sensors {IT, BT and IT, OR) there is a significant difference in performance. The

median energy wasted by the sensor-selection application is 73% and 76% less than these fixed-sensor

applications.

5.6.10.2 User-perceived performance

The results of the FS metric for generated sensor data are shown in Fig. 5.24. Neither threshold nor

154

Chapter 5. Evaluation

\ " '<?>
'Qs>

Learned applicabons

•>
'<S->

■O'?

Figure 5.24: False suspends

learned applications cause any FSs. This was also the case for threshold applications using recorded

sensor data, while learned applications that used recorded sensor data experienced a small number

of FSs. Our analysis of sensor data showed that sensors were not always consistent at detecting the

user’s presence while the monitor was in use. The reduction in FSs for generated sensor data shows

that the generated sensor data more consistently indicates a user’s presence.

The results of the MA metric are shown in Fig. 5.25. As described previously the standard

threshold applications do not attempt to activate the monitor therefore each of their suspends causes

an MA. The number of MAs decreases as the threshold increases as fewer suspends occur. The SWOB

application again performs well under this metric, although as already observed this application only

suspends the monitor for users that have the good bluetooth characteristic, therefore it also only

activates the monitor for these users. It causes no MAs for the other users.

In comparison to the threshold applications most learned applications perform badly under this

155

5.6. Power-management scenario

40

35

30

>.25 ra a'20
|15

10

5
0

O ^S‘/ > > > > > >,%, <!■
Threshold applications

80

70

60

^50
9
^40

<
2 30

20

10

0
/> /> o>

Qo
'Q? •%

Learned applications

Figure 5.25: Manual activations

metric. The IT application again has the highest median number of MAs at 54 per day. As stated

previously this application behaves like a threshold application as it is only influenced by the idle time

therefore every suspend causes an MA. The other learned applications perform much better as their

sensors detect the user in the about-to-use period. As observed in the discussion of energy savings

(Section 5.6.10.1) application performance improves as the number of sensors they use increases.

Again the IT, BT, OR, FD, VA and sensor-selection applications perform best with medians of 1.5

and 0 MAs per day respectively. The outlier for both applications is userl, the generated user that

has no good characteristics for sensors. The sensor-selection application performs better than the

IT, BT, OR, FD, VA application under this metric, however this cannot be explained by sensor

unsuitability and must be a function of some inaccurate policies being learned. If we compare the

sensor-selection application to other fixed-sensor applications that use two sensors there is again a

significant difference in performance. The IT, BT and IT, OR applications cause 40.5 and 37.5 more

MAs per day respectively compared to the sensor-selection application.

156

Chapter 5. Evaluation

Figure 5.26: Breakeven not reached

5.6.10.3 Impact on device lifetime

The results of the BNR metric are shown in Fig. 5.26. Again most threshold applications perform

well under this metric. The relatively poor performance of the SWOB and T05 applications is

explained by the existence of more short idle periods in the generated data than in the recorded data.

In comparison to the threshold applications most of the learned applications perform badly under

this metric. As discussed earlier this is explained by learned applications suspending the monitor

more frequently. The worst performing is again the IT application, which has no sensor data that

informs it of the user’s proximity to the device. All of the other learned applications outperform

this application as they have some sensor that detects the user’s presence. Again the performance

of applications improve as more sensors are used. The IT, BT, OR, FD, VA and run-time-selection

applications perform best, both with median 0 BNRs per day.

157

5.7. GeneraJisability of results

5.6.10.4 Conclusion

The second objective of the thesis is to select suitable sensors for identifying application contexts at

run time and this objective is achieved by applying the second phase of KAFCA. These results show

that KAFCA can successfully select suitable sensors at run time. Where users and environments

have varying characteristics, and sensors have varying suitability depending on these characteristics,

that application performance can be improved by selecting the most suitable sensors at run time.

Application contexts are identified more accurately by selecting sensors than by using predefined,

fixed sets of application sensors. This indicates the effect of achieving the second thesis objective.

Our analysis of the recorded sensor data showed that it did not have sufficient variation in its

suitability to show the effect of sensor selection. The generated sensor data for users is based on

explicitly defined user characteristics that define the suitable sensors for a user, therefore there is

significant variation in sensor suitability and the effects of sensor selection are obvious in the results.

The sensor-selection application selected sensors that matched the underlying characteristics of

each user. For each metric the performance of the sensor-selection application outperformed all

learned applications except IT, BT, OR, FD, VA. This application uses all available sensors so it is

impossible to select better sensors, however it is unlikely that deployed applications will be designed

to use all available sensors, given the uncertainty in the run-time environment (Section 1.3.2).

5.7 Generalisability of results

The results observed in these scenarios exhibit both the pros and cons of our approach. The evalu­

ation is application specific in each experiment, however we draw some general indications from the

observed results. Reinforcement learning appears to be a viable approach for learning interpretations

of sensor data, however the accuracy of interpretations is heavily dependent on the reward model

and parameterisation of the learning algorithm, as well as on the consistency of the underlying sensor

data. Discrete-state refinement has the potential to significantly improve the accuracy of learned

context definitions but the overhead of learning policies for very refined discrete states may become

prohibitive. Sensor selection is an effective technique where users and/or the environment exhibit sig­

nificantly varied characteristics, and where sensors contribute significantly varied information about

the context.

158

Chapter 5. Evaluation

5.8 Performance and scalability

The results of our experiments in Section 5.4.5 show that there is a significant overhead involved

in learning new policies. This is a issue that is common among reinforcement-learning algorithms

Sutton & Barto (1998), as they learn from an initial position of having zero knowledge about how to

behave. In this thesis reinforcement learning was selected on the basis that it is the technique that is

least dependent on expert knowledge and therefore has the potential to provide greater context-aware

application autonomy at run time. It facilitates our approach to interpret sources of sensor data that

were unforseen by the developer as its reward model can be used to learn policies for any underlying

discrete states and sensor space. However our learning process is particularly slow due to the learning

rate we apply to overcome spatial and temporal dependencies. This slows learning significantly as a

very small proportion (O.OI) of each reward gathered is considered when updating Q-values, and this

exacerbates the performance issue associated with reinforcement learning.

Another concern that is common with learning approaches is their scalability. As the number of

inputs increases the learning task can grow to infeasible sizes Callan (2003). In our approach we apply

apply two levels of generalisation to address this issue. In phase one of KAFCA we generalise about

sensor data using discrete states, and in phase two we further generalise about discrete states using

contexts. The effect of this is to reduce the number of states that the reinforcement learning algorithm

must consider when learning a policy.

5.9 Chapter summary

This chapter described the evaluation of KAFCA, our approach to knowledge autonomy for context-

aware applications. The evaluation process in this chapter had three objectives; to evaluate rein­

forcement learning as a technique for learning accurate policies for discretised sensor, to evaluate

how context-definition accuracy was improved by applying KAFCA to refine discrete states, and to

evaluate the improvement in application performance where a context-aware application selected its

sensors at run-time using KAFCA instead of depending on a predefined set of sensors.

The line and grid scenarios evaluate reinforcement learning as an approach for learning about

sensor data. These simple scenarios evaluated if accurate policies could be learned for discretised

sensor data. The line scenario revealed that inconsistency within discrete states could cause a spatial

dependency that introduced inaccuracy into learned policies. The grid scenario revealed that the

sequence in which discrete states were visited could cause a temporal dependency that also introduced

inaccuracy into learned policies. Both of these issues were successfully addressed by using a very low

159

5.9. Chapter summary

learning rate.

The sentient-couch scenario evaluated the accuracy with which context definitions could be learned,

and the effect of discrete state refinement on accuracy. This scenario showed that discrete-state refine­

ment improved the accuracy of context definitions by up to 95% and that most of this improvement

(68%) occurred in the first few refinements. However it also showed that the learning overhead in­

creased by ~47% per refinement. The first refinement provided 10 times the accuracy improvement

per learning iteration as the fifth refinement did.

The power-management scenario evaluates the effect on application performance of selecting sen­

sors at run-time compared to using a predefined set of sensors. Initial experiments were based on

recorded sensor data however the lack of variation in the performance of applications that used differ­

ent sets of sensors caused us to carry out an analysis of the recorded data. This revealed that most of

the available sensors were not suitable for identifying the application’s contexts. In order to evaluate

sensor selection more completely sensor data was generated for a group of very different users. Each

user had different characteristics that dictated the sensors that provided suitable data for identifying

their context. This lead to more interesting results from applications that used different sets of sensors.

For each metric we observed that application performance improved as the number of sensors used by

an application increased. The performance of the sensor-selection application was only matched by

that of the application that used all available sensors, even though the sensor-selection application
mainly selected just two sensors for each user. In comparison to fixed-sensor applications that also

used two sensors the sensor-selection application performed very well. It wasted 73% and 76% less

energy than these applications, and also caused 0 MAs compared to their 40.5 and 37.5 per day.

160

Chapter 6

Conclusions

This thesis describes the design and implementation of an approach to knowledge-autonomous context-

aware applications. Specifically, it describes a process that supports learning accurate context defini­

tions and selecting the most suitable sensors at run time. This facilitates a context-aware application

to adapt to its current run-time environment, identify its context more accurately, and as a result

improve its performance. There is also a reduced dependency on the developer to encode expert

knowledge in the application. This chapter summarises the achievements of the work and the contri­

butions of the research to the state of the art. It concludes with a discussion of potential areas for

future work.

6.1 Achievements

Our analysis of state-of-the-art approaches to context definition in Chapter 2 highlighted two limita­

tions that motivated the work presented in this thesis. Firstly, the context definitions arising from

these approaches depend to various degrees on encoded expert knowledge. These encoded structures

limit the flexibility of context definitions and the ability to adjust context definitions at run time.

Secondly, these approaches limit an application to predefined sensor types for identifying the con­

text. This meant that issues such as sensor unavailability or unsuitability could not be addressed at

run time. State-of-the-art approaches are dependent on and limited by expert knowledge encoded at

design time.

This thesis presents an approach to knowledge-autonomous context awareness designed to address

these limitations of state-of-the-art approaches. Chapter 3 described the design of our approach to

learning context definitions at run time. Initially, we discussed existing definitions of context, their

161

6.1. Achievements

limitations for describing context for knowledge-autonomous applications, and a novel definition of

context from an application’s perspective. We also described a representation of context definitions

based on context edges that is flexible at run time. We outlined the KAFCA process that applies this

theory of context. At the core of this process is reinforcement learning, which we identified as the

learning technique least dependent on expert knowledge. Reinforcement learning is used to learn poli­

cies that define the meaning of sensor data in terms of action selection. Around this learning technique

we defined two processes to define accurate context definitions and select useful sensors at run time.

The accurate-context-definition process focuses on the inaccuracy introduced into context-definitions

by discretisation. Sensor data has to be discretised to facilitate reinforcement learning, however during

discretisation some information is lost which might prevent the application distinguishing changes of

context. The accurate-context-definition process iteratively refines how sensor data is discretised so

that the accuracy of context definitions is improved. The sensor-selection process then selects sensor

combinations, combines their individual context definitions, and evaluates application performance to

measure the usefulness of the sensor combination. This measure feeds back into the search for the
most suitable sensor combination.

The evaluation of the approach was described in Chapter 5. Four scenarios were implemented with

different evaluation objectives. Tlie first two scenarios, line and grid, evaluated reinforcement learning

as a technique for learning accurate policies that described the meaning of sensor data. These scenarios

showed that reinforcement learning successfully learned accurate policies as long as a sufficiently low

learning rate was used to overcome spatial or temporal dependencies. The third scenario, based on

the sentient couch, evaluated the accuracy with which context definitions could be defined using the

accurate-context-definition process of KAFCA, and the trade off between accuracy and learning time.

Results showed that the accuracy of context definitions increased by up to 95% and that most of this

improvement (68%) occurred in the first few refinements, ft also showed that the learning overhead

increased by ~47% per refinement. The first refinement provided 10 times the improvement in accuracy

per learning iteration as the fifth refinement did. The final scenario, a power-management application,

evaluated the effect of selecting sensors at run time on application performance. The performance of

an application that applied the entire KAFCA process to define contexts and select the most useful

sensors was compared to standard knowledge-intensive power-management applications, as well as

applications that used KAFCA to define contexts but were limited to fixed sets of sensors. Initial

experiments were based on recorded sensor data. The results showed that there was little variation

in the performance of the learning applications, but analysis revealed that this was a result of the

underlying sensor data, which in general did not provide useful information for identifying the context.

162

Chapter 6. Conclusions

Sensor data was then generated for theoretical users with very different characteristics, and the results

of experiments with this data showed much greater variation in performance. Only an application

that used a fixed set of all available sensors matched the performance of the application that selected

sensors at run time. On examination of the sensors selected for each user it was observed that their

sensors matched their defined characteristics, which confirmed that the KAFCA process was selecting

the most useful sensors for users.

The main contributions of this thesis are summarised as:

• An overview of state-of-the-art approaches to context definition with particular attention to

their dependence on expert knowledge, their ability to adjust context definitions at run time,

and their ability to adapt to sensor unavailability and unsuitability.

• A novel definition of context from a context-aware application’s perspective and a flexible repre­

sentation of context based on context edges, both of which are independent of expert knowledge.

• An approach to knowledge-autonomous context definition that uses reinforcement learning to

learn accurate context definitions and select suitable sensors at run time, eliminating the need

for the developer to provide any part of context definitions.

• An evaluation of this approach which shows that it is possible to significantly improve the

accuracy of context definitions by adjusting how sensor data is discretised, and also shows that

it is possible to select sensors to suit different run-time environments and users. Both of these

results improve the accuracy with which application contexts are identified and thereby improve

application performance.

6.2 Objective achievements

In Chapter 1 we defined two thesis objectives- to accurately identify application contexts from sensor

data interpreted at run time, and to select suitable sensors for identifying application contexts at run

time. In our review of state-of-the-art approaches in Chapter 2 we considered four characteristics of

related approaches, which captured how well each approach addressed the thesis objectives. We now

review our own approach in terms of these characteristics. .

6.2.1 Knowledge autonomy

In Chapters 2 and 3 we identified reinforcement learning as the learning technique that is least depen­

dent on expert knowledge, and therefore the most suitable for autonomous, context-aware applications.

163

6.2. Objective achievemeits

With the hindsight of our implementation of the scenarios in Chapter 5 we can review our opinbn

of reinforcement learning. The reward model, for example, is a knowledge-intensive structure, whch

effectively must capture how the application should behave. This is a significant task, and its con-

plexity is most likely beyond that required to define the application contexts at design time usinj a

knowledge-intensive approach. However, once the reward model is defined it creates the potentialto

learn policies for the discrete states of any set of sensors at run time.

Other knowledge-intensive requirements for reinforcement learning include parameters for tie

learning algorithm and for identifying when sufficient learning has occurred. Finally, there is a requie-

ment for an application-performance metric for sensor selection, which is also a knowledge intensve

structure. Overall our solution has quite significant requirements for expert knowledge, however allof

this knowledge can be encoded at design time unlike other learning approaches described in Chaper

2, therefore we consider it to have a greater degree of knowledge autonomy than existing approacfcs.

6.2.2 Flexibility of context definitions

In Chapter 2 we identified that existing approaches to learning context definitions were limited by thar

dependency on a fixed discretisation layer. One of the contributions of this thesis is a discretisatbn

layer that is tailored to the run-time environment. This discretisation layer can be refined to discretse

sensor data at the highest precision offered by the underlying sensor therefore we consider it to re

completely flexible.

6.2.3 Selection of suitable sensors

In the related work we identified only two approaches that considered the relevance of sensor data, aid

these approaches considered particular sensor data values rather than complete sensors. Our approa;h

facilitates the selection and interpretation of any sensor that fulfills the ordered-data criteria at rm

time. Therefore our approach is successful by this measure.

6.2.4 Sensor unavailability at run time

The approaches reviewed in Chapter 2 treated sensor unavailability as a resource-discovery problen,

where a missing sensor could be replaced by another sensor of the same type. Our approach adapts to

use whatever sensors are available in the run-time environment, therefore it implicitly addresses tlis

challenge. However it is not designed to adapt quickly to sensors coming and going in the environmoit

due to the learning time needed to adapt. Therefore, we consider this challenge moderately addressid

164

Chapter 6. Conclusions

by our approach.

6.3 Guidelines and heuristics

Context-aware applications in which this approach could be successfully applied need to meet a number

of requirements. Suitable applications would be those that benefit significantly from customisation,

e.g., where tailoring the application to an environment or user is critical. They would also be intended

for deployment in unpredictable environments where customisation is likely to be needed. Suitable

applications for this approach would also not be affected by the learning time required to customise

the application, and would not be affected by the unpredictability of application behaviour during

learning.

The application would need to be of a reactive nature, as the underlying reinforcement-learning

technicpie causes applications to react to changes in their environment rather than plan for future
changes. Due to the trial-and-error nature of reinforcement learning the application could not be

safety-critical, or would need to be restricted such that the actions it can take are not safety critical.

For example a traffic-signal controller is obviously safety critical as it could potentially cause car

crashes, however safe actions can be defined, e.g., setting a traffic signal to green is only valid when

other, conflicting lanes have a red signal. Such programmatic limitations could allow a learning

application to operate safely.

During our own experimentation we observed that the main challenge of applying this approach

was in learning accurate policies using reinforcement learning. This task was difficult in two ways.

Firstly, it was difficult to capture appropriate rewards in the reward model, and over thousands of

iterations we observed that small changes in the reward model could have significant effects on the

learned policy. The more complex the reward model the wider the range of changes that could be

made to it. Our conclusion was that the simplest reward model was often the most effective, and that

it was better to start with a model that was too simple, discover its limitations and expand upon it,

than to start with an overly complex reward model and be unable to identify why it did not work. Our

experiences in designing the reward model for the power-management scenario are discussed further

in Section 5.5.4.1.

The second difficulty in learning accurate policies was in parameterising the learning process. As

discussed in Sections 5.2 and 5.3 we discovered quite early in our experiments that spatial and temporal

dependencies could influence the accuracy of a learned policy, and that a very low learning rate was

necessary to overcome these issues. This rate should be experimented with for each application

165

6.4. Future work

to maximise the rate at which the application learns. A related issue is that of identifying when

learning can stop for a particular set of discrete states, and this again requires paranieterisation. The

appropriate learning time is completely dependent on the particular application, as the frequency with

which values are encountered affects how often Q-vaJues are updated and therefore how quickly those

values change. This in turn affects how frequently policies should be compared to evaluate if they

have ceased changing and learning has finished.

6.4 Future work

In the development of the approach described in this thesis a number of issues were identified that

could be suitable for further investigation. This section outlines two key areas identified for future

work: learning efficiency and increased automation of the KAFCA process.

6.4.1 Learning efficiency

This thesis addressed the challenge of learning accurate context definitions based on the most useful,
available sensors in the run-time environment. Issues associated with learning time were not consid­

ered, although an evaluation of the trade-off between learning and improvements in context-definition

accuracy was performed. This showed that reinforcement learning was slow to learn accurate poli­

cies, and required a ~50% increase in learning iterations for each refinement of context definitions.

Although the learning time is application specific, this is clearly a significant issue for the deploy­

ment of KAFCA applications. We propose three possible directions for future work to address this

concern: parallelising reinforcement learning of policies, reusing learned knowledge, and generalising

about rewards for offline learning.

The current version of KAFCA serially refines the discrete states of individual sensors to define

accurate context definitions, and then serially evaluates sensor combinations to identify the most useful

set of sensors for an application. Each discrete-state refinement or sensor-combination evaluation

requires a separate learning phase to learn a policy. The eflficiency of the KAFCA process could be

significantly improved if policies were learned in parallel. During learning the reward for an action is

independent of the discrete state or context in which it is executed. It should be possible to parallelise

the update of Q-values across many different sets of discrete states or contexts. Although this would

require an increase in processing and memory requirements it would also greatly reduce the overall

number of learning iterations required by KAFCA.

The current version of KAFCA learns a new policy for each set of discrete states during their

166

Chapter 6. Conclusions

refinement and none of the knowledge from previously-learned policies is reused. Obviously there is

a lot of similarity between policies as many of the discrete states do not change between refinements.

Even in the case of discrete states that are split there are in theory only two actions that can be

optimal for those states, i.e., the optimal actions of dissimilar neighbouring discrete states prior to

splitting. It should be possible to reuse much of the learned knowledge of policies in order to reduce the

learning required to identify a stable, accurate policy. It may even be possible to lead the application

towards particular regions of the sensor space where learning is needed.

Another possible approach to addressing learning efficiency is to carry out some form of offline

learning based on previously observed rewards. In Chapter 2 we discussed an approach proposed in

(Zaidenberg et ah, 2009) that created an offline world model by recording observed states, rewards and

transitions. The world model was used to learn new policies without interacting with the real world.

Apart from a number of issues regarding the completeness of their world model this approach would

not work for KAFCA as its set of states is dynamic, i.e., the world model would be different for each

sensor space, and each refinement of discrete states. Instead it could be possible to create an offline

reward world by generalising about rewards given for actions in the real world. The sensor space of

the reward model is fixed by the developer when they define the set of sensors needed to calculate

rewards. Each reward is calculated for an action at a particular tuple in this sensor space. If these

rewards could be generalised about, e.g., using probability distributions expressed on the sensor space

or a clustering technique, then it would possible to learn policies by interacting with this reward world
offline. This would obviously be a much quicker learning process than interacting with the real world.

The accuracy of learned policies could be evaluated by observing their stability during a subsequent,

short learning period in the real world.

6.4.2 Increased automation of the KAFCA process

This thesis addressed the limitations on context-definition accuracy and flexibility at run time that

were introduced by dependency on expert knowledge. To this end it defined an approach to learning

context definitions that was to a large extent independent of expert knowledge. A potential avenue of

future work to further address the dependency on expert knowledge is in automation of the KAFCA

process. The reward model and sensor-evaluation metric used by KAFCA are essential to guiding the

reinforcement-learning and sensor-selection processes so that the application achieves its goals. These

structures are necessarily dependent on expert knowledge to capture the goals of the application. The

parameters that configure the KAFCA process are knowledge intensive but less application specific, so

it may be possible to reduce the requirement for expert knowledge by further automating the KAFCA

167

6.4. Future work

process.

For example the number of discrete-state refinements to carry out for each sensor is currently de­

fined by the developer. This requires the developer to understand and evaluate the tradeoff between

learning and context-definition accuracy. It should be possible to apply some metric to application

performance that measures this tradeoff and stops refinement when it does not yield sufficient im­

provement in context-definition accuracy. Another example of where the process could be automated

is in detecting when to stop learning. The current method based on the stability of the policy requires

the developer to define the number of iterations between stability tests and the required sequence

of stable policies. Other approaches might be explored that used some standard means to evaluate

stability, e.g., the rate of change of standard deviation among Q-values. The current implementation

also depends on the developer to define the period between action executions. It would be interesting

to examine how the decision-making process could be driven by events or significant changes in the

environment. Obviously to automate the process these events or changes would have to be identified

automatically.

168

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-based reasoning; foundational issues, methodological varia­

tions, and system approaches. Artificial Intelligence Communications 7.

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., k. Steggles, P. (1999). Towards a bet­

ter understanding of context and context-awareness. In HUC ’99: Proceedings of the 1st international

symposium on Handheld and Ubiquitous Computing, (pp. 304-307). London, UK: Springer-Verlag.

Agrawal, R., Mannila, H., Srikant, R,., Toivonen, H., & Verkamo, A. I. (1996). Fast discovery of

association rules, (pp. 307-328).

Albinali, F., Davies, N., & Friday, A. (2007). Structural learning of activities from sparse datasets.

In PERCOM 07: Proceedings of the Fifth IEEE International Conference on Pervasive Computing

and Communications, (pp. 221 228). Washington, DC, USA: IEEE Computer Society.

Ali, F. M., Lee, S. W., Bien, Z., & Mokhtari, M. (2008). Combined fuzzy state q-learning algorithm

to predict context aware user activity under uncertainty in assistive environment. Software Engi­

neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, ACIS International

Conference on, 0, 57-62.

Atkin, M. S., & Cohen, P. R. (2000). Using simulation and critical points to define states in continuous

search spaces. In WSC 00: Proceedings of the 32nd Winter Simulation Conference, (pp. 464-470).

Society for Computer Simulation International.

Baldauf, M., Dustdar, S., k Rosenberg, F. (2007). A survey on context-aware systems. International

Journal of Ad Hoc and Ubiquitous Computing, 2{4), 263-277.

Banavar, G., k Bernstein, A. (2004). Challenges in design and software infrastructure for ubiquitous

computing applications. OecNews, 62, 180-203.

169

Bibliography

Bardrain, J. E. (2005). The java context awareness framework (jcaf) ; A service infrastructure and

programming framework for context-aware applications, (pp. 98-115).

Baron, M. (2007). Probability and Statistics for Computer Science students. Chapman and Hall/CRC.

Barton, J., Zhai, S., & Cousins, S. (2006). Mobile phones will become the primary personal computing

devices. Mobile Computing Systems and Applications, 2006. WMCSA 06. Proceedings. 7th IEEE

Workshop on, (pp. 3-9).

Battestini, A., & Flanagan, J. A. (2005). Analysis and cluster based modelling and recognition of

context in a mobile environment. In Second International Workshop on Modelling and Retrieval of

Context (MRC05).

Bell, G., & Dourish, P. (2007). Yesterdays tomorrows: Notes on ubiquitous computings dominant

vision. Personal and Ubiquitous Computing, 11{2), 133-143.

Benini, L., Bogliolo, A., & Micheli, G. D. (2000). A survey of design techniques for system-level

dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

8{3), 299 316.

Biegel, G. (2004). A Programming Model for Mobile, Context-Aware Applications. Ph.D. thesis.

University of Dublin, Trinity College.

Biegel, G., & Cahill, V. (2004). A framework for developing mobile, context-aware applications. In

IEEE International Conference on Pervasive Computing and Communications (PerCom 2004), (PP-

361-365). IEEE Computer Society.

Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F. A., & Tanca, L. (2007). A data-oriented survey

of context models. SIGMOD Record, 36(4), 19-26.

Bowling, M., & Veloso, M. (2002). Mnltiagent learning using a variable learning rate. Artificial

Intelligence, 136, 215-250.

Brdiczka, O., Reignier, P., Crowley, J. L., Vaufreydaz, D., & Maisonnasse, J. (2006). Determin­

istic and probabilistic implementation of context. In Pervasive Computing and Communications

Workshops.

Brown, P. J. (1996). The stick-e document: a framework for creating context-aware applications. In

Proceedings of Electronic Publishing (EP96), (pp. 259-272).

170

Bibliography

Callan, R. (2003). Artificial Intelligence. Palgrave Macmillan.

Chang, K.-H., Chen, M., & Canny, .1. (2007). Tracking free-weight exercises. UbiComp 2007:

Ubiquitous Computing, (pp. 19-37).

Charniak, E. (1991). Bayesian networks without tears. AI Magazine, (pp. 50-63).

Chen, C., &: Helal, S. (2008). Sifting through the jungle of sensor standards. Pervasive Computing,

IEEE, 7(4), 84-88.

Clarkson, B., &: Pentland, A. (1998). Extracting context from environmental audio. Wearable

Computers, 1998. Digest of Papers. Second International Symposium on, (pp. 154-155).

Cooper, G. F., & Herskovits, E. (1992). A bayesian method for the induction of probabilistic networks

from data. Machine Learning, 9(4), 309-347.

da Costa, C., Yamin, A., & Geyer, C. (2008). Toward a general software infrastructure for ubiquitous

computing. Pervasive Computing, IEEE, 7(1), 64-73.

Dey, A., Salber, D., & Abowd, G. (2001). A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications.

Dey, A. K., & Abowd, G. D. (2000). Towards a better understanding of context and context-

awareness. In Workshop on the What, Who, Where, When and How of Context-awareness. New

York; ACM.

Flanagan, J. A. (2005a). Context awareness in a mobile device: ontologies versus unsupervise/su­

pervised learning. In International and Interdisciplinary Conference on Adaptive Knowledge Repre­

sentation and Reasoning (AKRR05).

Flanagan, J. A. (2005b). Unsupervised clustering of context data and learning user requirements for

a mobile device. In Modeling and Using Context, 5th International and Interdisciplinary Conference,

CONTEXT 2005, (pp. 155-168).

Gartner (2009). Context-aware computing gains momentum.

URL http://gartner.com/DisplayDocument?doc_cd=163256

Gellersen, H. W., Schmidt, A., & Beigl, M. (2002). Multi-sensor context-awareness in mobile devices

and smart artifacts. Mobile Networks and Applications, 7(5), 341-351.

171

Bibliography

Gonzalez, A. J., & Ahlers, R. (1998). Context-based representation of intelligent behavior in training

simulations. Trans. Soc. Comput. Simul. Int., 15(4), 153-166.

Gu, T., Rung, H., & Zhang, D. (2004). A middleware for building context-aware mobile services.

Harris, C. (2007). Context-Aware Power Management. Ph.D. thesis, University of Dublin, Trinity

College.

Harris, C., & Cahill, V. (2005a). Exploiting user behaviour for context-aware power management.

In International Conferenee On Wireless and Mobile Computing, Networking and Communieations,

(pp. 122-130). IEEE Computer Society.

Harris, C., & Caliill, V. (2005b). Power management for stationary machines in a pervasive computing

environment. In 38*^ Annual Hawaii International Conference on System Sciences (IIICSS05), (p.

285a). IEEE Computer Society.

Henricksen, K., Indulska, J., & Rakotonirainy, A. (2006). Using context and preferences to implement

self-adapting pervasive computing applications. Software Practice and Experience, 55(11-12), 1307-

1330.

Himberg, J., Flanagan, J. A., & Mantyjarvi, J. (2003). Towards context awareness using symbol

clustering map. In In Proc. Workshop for Self-Organizing Maps 2003 (WSOM2003), (pp. 249-254).

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., & Retschitzegger, W.

(2003). Context-awareness on mobile devices - the hydrogen approach. In System Sciences, 2003.

Proceedings of the 36th Annual Hawaii International Conference on, (pp. 10 pp. f).

Hong, J. I., & Landay, J. A. (2004). An architecture for privacy-sensitive ubiquitous computing. In

MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and

services, (pp. 177-189). New York, NY, USA: ACM.

Hull, R., Neaves, P., & Bedford-Roberts, J. (1997). Towards situated computing, (pp. 146 153).

Intel (2006). Opencv.

URL http://sourceforge.net/proj ects/opencvlibrary/

Intel (2007). Integrated performance primitives.

URL http://www.Intel.com/cd/software/products/asmo-na/eng/perflib/ipp/index.htm

Jonsson, M., Werle, P., & Jansson, C. G. (2003). Context shadow: An infrastructure for context

aware computing. In Proceedings of Artificial Intelligence in Mobile Systems.

172

Bibliography

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey. Journal

of Artificial Intelligence Research, 4, 237-285.

Kofod-Petersen, A. (2006). Challenges in case-based reasoning for context awareness in ambient

intelligent systems. In M. Minor (Ed.) 8th European Conference on Case-Based Reasoning, Workshop

Proceedings, (pp. 287-299). Oudeniz/Fetbiye, Turkey.

Kofod-Petersen, A., & Aamodt, A. (2006). Contextualised ambient intelligence through case-

based reasoning. In The 8th European Conference on Case-Based Reasoning (ECCBR 2006). Oud-

eniz/Fethiye, Turkey.

Kohonen, T. (2001). Self-Organising Maps. Springer.

Kolodner, .1. (1993). Case-Based Reasoning. Morgan Kaufmann Publishers.

Korpipaa, P., Koskinen, M., Peltola, .1., Makela, S.-M., & Seppanen, T. (2003). Bayesian approach

to sensor-based context awareness. Personal Ubiquitous Comput, 7(2), 113-124.

Korpipaa, P., Malm, E.-J., Salminen, I., Rantakokko, T., Kyllonen, V., & Kansala, I. (2005). Context

management for end user development of context-aware applications. In MDM 05: Proceedings of

the 6th international conference on Mobile data management, (pp. 304-308). New York, NY, USA:

ACM.

Krause, A., Smailagic, A., & Siewiorek, D. P. (2006). Context-aware mobile computing: Learning

context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile

Computing, 5(2), 113-127.

Leahu, L., Sengers, P., & Mateas, M. (2008). Interactionist ai and the promise of ubicomp, or, how

to put your box in the world without putting the world in your box. In UbiComp 08: Proceedings

of the 10th international conference on Ubiquitous computing, (pp. 134-143). New York, NY, USA:

ACM.

Ma, L., Smith, D., &: Milner, B. (2003). Environmental noise classification for context-aware ap­

plications. Lecture Notes in Computer Science : Database and Expert Systems Applications, (pp.

360 370).

Ma, T., Kim, Y.-D., Ma, Q., Tang, M., & Zhou, W. (2005). Context-aware implementation based on

cbr for smart home. In Wireless And Mobile Computing, Networking And Communications, 2005.

(WiMob2005), IEEE International Conference on, vol. 4, (pp. 112-115 Vol. 4).

173

Bibliography

Meier, R., &: Cahill, V. (2003). Exploiting proximity in event-based middleware for collaborative

mobile applications, (pp. 285-296).

Mikalsen, M., & Kofod-petersen, A. (2005). Representing and reasoning about context in a mobile

environment. Revue Intelligence Artificielle (RIA), 19, 479-498.

Modahl, M., Agarwalla, B., Saponas, S., Abowd, G., & Ramachandran, U. (2005). Ubiqstack: a

taxonomy for a ubiquitous computing software stack. Personal Ubiquitous Comput., 10(1), 21-27.

Moore, D. (1999). The Basic Practice of Statistics. New York, NY, USA: W. H. Freeman & Co.

Moore, P., Hu, B., Zhu, X., Campbell, W., & Ratcliffe, M. (2007). A survey of context modeling for

pervasive cooperative learning. Information Technologies and Applications in Education ISITAE07,

(pp. K5-1-K5-6).

Muhlenbrock, M., Brdiczka, O., Snowdon, D., & Meunier, J. L. (2004). Learning to detect user activ­

ity and availability from a variety of sensor data. In PERCOM 04: Proceedings of the Second IEEE

International Conference on Pervasive Computing and Communications (PerCom’04). Washington,

DC, USA: IEEE Computer Society.

National Institute of Standards and Technology (2005). leee 1451: Smart transducer interface stan­

dard.

URL http://ieeel451.nist.gov/

Nehaniv, C. L. (1999). Meaning for observers ajid agents. In Intemation symposium on Intelligent

Control/Intelligent Systems and Semiotics. Cambridge.

Ogden, C. K., & Richards, 1. A. (1923). The Meaning of Meaning. University of Cambridge.

Open Geospatial Consortium (2000). Sensor model language (sensorml).

URL http: //www. opengeospatial. org/stcindards/sensorml

Padovitz, A., Loke, S. W., Zaslavsky, A., & Bartolini, C. (2005). An approach to data fusion for

context awareness. In Fifth International Conference on Modelling and Using Context, (pp. 353-367).

Park, H.-S., Yoo, J.-O., & Cho, S.-B. (2006). A context-aware music recommendation system using

fuzzy bayesian networks with utility theory. Fuzzy Systems and Knowledge Discovery, (pp. 970-979).

Pascoe, J. (1998). Adding generic contextual capabilities to wearable computers. Wearable Comput­

ers, IEEE International Symposium.

174

Bibliography

Polani, D., Martinetz, T., & Kim, J. (2001). An information-theoretic approach for the quantification

of relevance. In European Conference on Artificial Life (ECAL). Prague.

Prekop, P., & Burnett, M. (2003). Activities, context and ubiquitous computing. Special Issue on

Ubiquitous Computing Computer Communications.

Ranganathan, A., & Campbell, R. (2003). A middleware for context-aware agents in ubiquitous

computing environments, (p. 998).

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice Hall.

Ryan, N. S., Pascoe, J., & Morse, D. R. (1998). Enhanced reality fieldwork: the context-aware

archaeological assistant. In V. Gaffney, M. van Leusen, & S. Exxon (Eds.) Computer Applications

in Archaeology 1997, British Archaeological Reports. Oxford: Tempos Reparatum.

Sadeh, N., Gandon, F., & Kwon, O. B. (2005). Ambient intelligence: The mycampus experience.

Tech, rep.. School of Computer Science, Carnegie Mellon University.

Salkham, A., Cunningham, R., Garg, A., & Cahill, V. (2008). A collaborative reinforcement learning

approach to urban traffic control optimization. Web Intelligence and Intelligent Agent Technology,

IEEE/WIC/ACM International Conference on, 2, 560-566.

Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. IEEE Personal Communi­

cations, 8{A), 10-17.

Schilit, B. N., & Theimer, M. M. (1994). Disseminating active map information to mobile hosts.

Network, IEEE, 8{b), 22-32.

Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven, K. V., & Velde, W. V. D. (1999).

Advanced interaction in context. In In Proceedings of First International Symposium on Handheld

and Ubiquitous Computing, (pp. 89-101). Springer Verlag.

Schmidt, A., Strohbach, M., Laerhoven, K. V., Friday, A., & w. Gellersen, H. (2002). Context

acquisition based on load sensing. In In Proceedings of UbiComp: Ubiquitous Computing, (pp. 333-

350). Springer Verlag.

Senart, A., Cunningham, R., Bouroche, M., Connor, N. O., Reynolds, V., & Cahill, V. (2006).

MoCoA: Customisable middleware for context-aware mobile applications. In 8th International Sym­

posium on Distributed Objects and Applications (DOA 2006), vol. 4276 of Lecture Notes in Computer

Science, (pp. 1722-1738). Springer Verlag.

175

Bibliography

Simunic, T., Benini, L., Glynn, P. W., & Micheli, G. D. (2000). Dynamic power management for

portable systems. In Mobile Computing and Networking, (pp. 11-19).

Smith, D., Ma, L., & Ryan, N. (2006). Acoustic environment as an indicator of social and physical

context. Personal and Ubiquitous Computing, 10{4), 241-254.

Strang, T., & Linnhoff-Popien, C. (2004). A context modeling survey. In Workshop on Advanced

Context Modelling, Reasoning and Management, UbiComp 2004 - The Sixth International Conference

on Ubiquitous Computing.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on ap­

proximating dynamic programming. In In Proceedings of the Seventh International Conference on

Machine Learning, (pp. 216-224). Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforeement Learning: An Introduetion. MIT Press.

Tapia, E. M., Choudhury, T., & Philipose, M. (2006). Building reliable activity models using hierar­

chical shrinkage and mined ontology. In The fth International Conference on Pervasive Computing.
Springer Berlin / Heidelberg.

Tsang, S. L. (2009). Supporting Personalised Recommendations in Context-aware Applications. Ph.D.

thesis. University of Dublin, Trinity College.

Tsang, S. L., & Clarke, S. (2007). Mining user models for effective adaptation of context-aware ap­

plications. In IPC 07: Proceedings of the The 2007 International Conference on Intelligent Pervasive

Computing, (pp. 178-187). Washington, DC, USA: IEEE Computer Society.

Van Laerhoven, K. (2001). Combining the self-organizing map and k-means clustering for on-line

classification of sensor data. (pp. 464-469).

Van Laerhoven, K., & Cakmakci, O. (2000). What shall we teach our pants? Wearable Computers,

2000. The Fourth International Symposium on, (pp. 77-83).

Veeramachaneni, S., Sarkar, P., & Nagy, G. (2005). Modeling context as statistical dependence, (pp.

515-528).

Watkins, C. J., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, <?(3), 279-292.

Weiser, M. (1991). The computer for the 21st century. Scientific American, 265{3), 66-75.

176

Bibliography

Weiser, M. (1993). Some computer science issues in ubiquitous computing. Commun. ACM, 36{7),

75 84.

Wittgenstein, L. (1968). Philosophical Investigations. Basil Blackwell.

Wolfe, M. (2003). Smart couch report. Tech, rep.. Department of Computer Science, Trinity College

Dublin.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, ^(3), 338-353.

Zaidenberg, S., Reignier, P., & Crowley, J. (2009). Reinforcement learning of context models for a

ubiquitous personal assistant, (pp. 254-264).

Zimmermann, A. (2003). Context-awareness in user modelling: Requirements analysis for a case-

based reasoning application.

177

