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Abstract

The combination of increasing energy costs, corporate image concerns, and environmental leg­

islation is driving a transition towards energy and resource efficiency within the manufacturing 

sector. Developing a more comprehensive understanding of how energy is consumed within manu­

facturing facilities is now a core component of research efforts aiming to advance industrial energy 

efficiency. This thesis reports on the research undertaken to develop a holistic understanding of 

energy consumption within complex manufacturing facilities at each hierarchical level.

The literature has identified energy transparency as a key enabler of energy efficiency and 

various studies have highlighted structured submetering as the preferable approach to achieve the 

necessary level of transparency. The industrial case study described here considered all aspects of 

the design, installation, and operation of a facility wide energy metering system. The case study 

presents an effective energy metering system implementation strategy that includes a decision 
support tool that identifies where metering devices are needed. The case study also develops 

energy performance indicators based on the data emanating from the installed metering system. 

The metering infrastructure that is installed in the test facility represents the state-of-the-art in 

industrial energy metering and comparable projects have not been reported in the literature to 

date.

A custom power measurement tool facilitated a detailed unit process level energy characterisa­

tion. The energy consumption of each machine tool component was assessed during a structured 

characterisation study. The dynamic behaviour of the machine tool was also investigated during 

a series of machining tests. The machining tests were performed in order to investigate two phe­

nomena; the relationship between power consumption and depth of cut, and also the relationship 

between specific energy consumption and material removal rate. Developing a complete under­

standing of the energy requirements of machining is an essential step towards advancing industrial 

energy efficiency.

A novel nonintrusive intelligent energy sensor revealed that the operational status of a machine 

tool could be inferred from information contained within the power signals recorded at the machine 

tools main incomer. The intelligent energy sensor combines a nonintrusive load monitoring system 

with condition based inference algorithms in order to identify the operational status. Obtaining 

transparency on machine tool status during machining will motivate improvements that can reduce 

the energetic impacts of machining. The research revealed that the information available at the



machine tools electrical service entry is capable of identifying individual component activations in 

addition to the overall operational status.
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Chapter 1

Introduction

1.1 Global energy overview

The scale and breadth of the energy challenge is enormous - far greater than many people re­

alise [1|. Over the past twenty years the world’s energy landscape has undergone a fundamental 

change. During the 1990’s when the price of oil bottomed out at USS20/ barrel, climate change and 

environmental awareness were only issues for environmentalists. This is in stark contrast to the 

rapidly expanding industrialised world of 2013 which places climate change and energy security at 

the forefront of the international agenda [2|.

Between 1996 and 2007, the world’s total output of primary energy - petroleum, natural gas, 
coal, and electric power - increased at an average annual rate of 2.3% |3|. The year 2009 saw 

annual global energy use fall, as a result of the global downturn, for the first time since 1981, 

however, the International Energy Agency (lEA) have predicted that global energy consumption 

will grow at a rate of 1.5% until 2030 [4]. The World Energy Council (WEC) recently reviewed the 

status of the world’s major energy resources and addressed the key challenges of the future. The 

report highlighted the rapid growth of the developing world coupled with the industrialised world’s 

demand for a long term, affordable and secure energy supply as critically important issues [2]. The 

political complexities of the global energy market also pose dangerous threats; the current state of 

political turmoil in the Middle East has the potential to instantly destabilise the market.

An additional complication identified by the WEC are logistics bottlenecks within the energy 

industry. In its logistics bottlenecks report the WEC identified three crucial bottlenecks; oil move­

ment, natural gas and liquefied natural gas (LNG) movement, and electricity transmission [2]. To 

develop the required oil pipeline and tanker networks, gas pipelines and LNG carrier systems, as 

well as smart grids boosting the efficiency of electricity distribution, the WEC estimate that more 

than US$200 billion will have to be spent in the next ten years and an additional US$700 billion 

in the 2020 to 2050 timeframe [2].

In order to effectively address the challenges posed by the current international environment, 

the European Union must take a multi-lateral approach to ensure long term development and 

stability. The Kyoto agreement, signed by over 190 countries with a view to reducing greenhouse

13



1.1. Global energy overview

gas emissions, represents one facet of the global approach that is required to combat the energy 

crisis. The Kyoto protocol established emissions targets for each participating country, relative to 

their 1990 emissions levels. The Kyoto protocol has had a wide reaching influence simultaneously 

forcing governments to develop and implement energy efficiency action plans; organisations to 

adapt energy management strategies; and individuals to become more aware of energy issues.

If global energy consumption trends continue on their current path without any change in 

government policy there will be significant consequences from a climate change perspective [1]. 

Having already increased from 20.9 gigatonnes (Gt) in 1990 to 31.2 Gt in 2011, CO2 emissions are 

projected to reach 37 Gt in 2035 [5]. Of this projected rise in emissions, 6 Gt is attributed to China, 

2 Gt is attributed to India and 1 Gt is attributed to the Middle East |5|. If this trend is realised it 

would lead to a rapid increase in the concentration of greenhouse gases in the atmosphere, causing 

significant climatic change and inflicting irreparable damage on the planet [1]. Research studies 

are already warning that climate change is accelerating with sea levels rising, oceans acidifying and 

ice caps melting much quicker than initially anticipated [6|.

Electricity consumption is also increasing dramatically with a reported rise of over 200% since 

1971 |1]. Approximately 66% of this electricity is generated from fossil fuels, primarily from coal, 

40%, and gas, 20%. In Ireland, the demand for electricity increased by an average of 0.7% per 

annum between 2005 and 2010 [7|. In 2010 the Irish electricity generation fuel mix was dominated 

by geis, with significant contributions from coal, peat, and renewables, see Figure 1.1(a) |7|. In 

terms of energy security, Ireland is heavily dependent on energy imports with 82% of Ireland’s 

primary energy requirements being met by imported oil and gas in 2010, Figure 1.1(b) [7]. This 

figure has risen significantly since the mid 1990’s when domestic production accounted for 32% 

of the total primary energy requirement. The key drivers behind this increase are a substantial 

increase in energy use coupled with a decline in indigenous natural gas and peat production [7]. 

There is a possibility that this trend could be reversed in the near future with recent exploratory 

drilling projects off the coast of Ireland at Barryroe and the Porcupine Basin reporting significant 

oil deposits.

Renewables, 7.5%-^ 

Other, 1.6%
Oil, 2.1%
Peat, 9.9%
Coal, 17.6%
Gas, 61.3%

(a)

>>oc
0)

-a
Eo.a)

"O

oC.
E

(b)

Figure 1.1 - (a) Generation of electricity in Ireland in 2010, (b) Import dependency, adapted from |7]
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1.2. Environmentally benign manufacturing

1.2 Environmentally benign manufacturing

Globally, the industrial sector is the largest consumer of energy [8], see Figure 1.2. The manufac­

turing sector, which is a subset of the industrial sector covering the mining and quarrying of raw 

materials, construction, and also the manufacture of finished goods and products is responsible 

for over one third of global energy use and CO2 emissions |4]. According to Duflou et al. [9], 

manufacturing is responsible for 84% of the industrial sectors energy related CO2 emissions and 

90% of the industrial sectors energy consumption.

The manufacturing industry is central to the economy’s success, contributing to employment 

growth, innovation, technological advancement and productivity. Environmentally benign manu­

facturing is a philosophy that facilitates economic progress while minimising pollution, waste and 

conserving resources. The implementation of environmentally conscious management strategies, 

regulatory policies, and operating principles will help protect the environment for future genera­

tions.

Other*, 46.4%--------------
Transport, 6.8%------------
Non-energy use, 11.6%-| 
Industry. 35.2%-1

Non-energy use, 4.2% - 
Transport, 0.4% 
Other*, 15.9% • 
Industry. 79.5%-1

L Other*, 56.9%

---- Transport, 1.6%
----  Industry, 41.5%
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Figure 1.2 - Global total final consumption by sector, adapted from |10]

Manufacturing enterprises require energy in order to produce goods and any increase in pro­

duction results in increased energy consumption. Herrmann et al. [11] noted that limiting pro­

duction output is not a feasible option, therefore the improyement of energy efficiency in complex 

manufacturing facilities is a necessity. Energy efficiency in this context refers to methodologies, 

frameworks, and procedures that reduce the volume of energy required per unit of production. 

The opportunities that exist to use energy more efficiently at each stage of product manufacture 

must be explored as they often represent cost effective ways of cutting emissions and improving 

productivity. According to the lEA [1], up to 35 exajoules, equivalent to 26% of current primary
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energy use in industry could be saved every year if all proven technologies and best practices were 

implemented throughout the industrial sector. Although reducing energy consumption has typi­

cally been promoted as a cost cutting exercise, the future will see the implementation of reduction 

and optimisation strategies being driven by the need to avoid levies and taxation.

1.3 Energy measurement enabling a sustainable future

1.3. Energy measurement enabling a sustainable future

In order to overcome the climate and energy challenges already described, significant changes 

are required. For a successful global transition to sustainable development it is necessary to 

more efficiently integrate academic results and insights with practical applications in society [12]. 

Similarly there is an urgent need for decision makers to develop and implement proactive, integrated 

policies and strategies that will assist societies manage all resources in a more sustainable way 

[12]. Although there is little doubt that a combination of smart grids, time of use tariffs, and 

renewable energy generation represent the long term solution to the energy crisis, more efficient 

energy consumption has the potential to make the most significant contribution in the short term. 

As a result of this, there is an increased emphasis on adopting environmentally benign processes 

and products [13[.

Manufacturing enterprises typically transition towards environmentally benign processing by 
reducing utility expenditure in a number of ways: implementing energy efficient technologies, 

removing out dated equipment, running energy awareness programs for staff, and implementing 
lean manufacturing initiatives. In an effort to better understand the overall impact a manufacturing 

facility has on the environment a conceptual model focussing on the flows of material, energy, and 

waste has been developed and tested [14[. Herrmann et al. [15] observed that a fundamental 

precondition for accurately identifying and implementing energy efficiency improvement measures 

is transparency about the energy demands of all processes within a manufacturing facility.

From the perspective of energy consumption, machine tools represent an example of one area 

where significant savings can be made [16, 17[. Many machine tools are less than 30% efficient 

[18], and in an effort to reduce energy wastage during production researchers have focused on a 

wide variety of approaches including: automated energy monitoring [19], energy management [20], 

simulation [21], ecodesign [22], sustainability [23], and reducing consumables [24].

It is clear that improving energy efficiency is desirable for many reasons, and this improvement 

can only be realised by accurately quantifying current consumption patterns. The energy and power 

measurement technologies required to provide this quantification also provide energy transparency 

locally within manufacturing facilities; this not only improves understanding of energy usage but 

also provides a broad quantitative perspective on day to day consumption. Therefore power and 

energy metering technologies not only facilitate process improvements and developments; they also 

fully support the broader smart grid/time of day pricing implementation infrastructure.
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1.4. Research focus

1.4 Research focus

This study is concerned with the development of measurement and characterisation methodolo­

gies that facilitate the quantification of energy consumption in manufacturing facilities at various 

hierarchical levels. The aims of the research are:

• To accurately quantify the energy consumption of a complex manufacturing facility via the 

implementation of a site wide energy metering system and the development of analytical 

disaggregation techniques;

• To investigate the component level power consumption of a machine tool representing a unit 

process within a manufacturing facility;

• To design, develop, and experinrentally verify, a nonintrusive intelligent energy sensor capable 

of recognising the operational status of a machine tool based on the information which exists 

within the power signals.

An industrial case study was undertaken in a large multinational biomedical device company lo­

cated in Ireland. A wireless state-of-the-art energy metering system was installed which facilitated 

a detailed energy analysis. The scale of the installed energy metering system coupled with the 

resulting process level energy consumption disaggregation represent two areas of novelty in this 

section of the work.

The second major component of the research involved the design and development of a cus­

tomised power metering device in order to allow the test machine tool to be characterised from a 

power consumption perspective. The metering device was calibrated against high end commercially 

available power measurement equipment. Each machine tool component was investigated indepen­

dently and the machine tool’s performance during machining was also evaluated. The observed 

results throughout this section align with recently published research studies in the field.

The final stage of the research involved the development of a novel nonintrusive intelligent 

energy sensor. The system deploys voltage and current sensing elements at the main incomer of 

the machine tool and assesses the current machine tool status based on the patterns that exist 

within the acquired time and frequency domain signals. The measurement system employs statis­

tical pattern recognition techniques including principal component analysis and median absolute 

deviation in order to identify the operational status of the machine tool.
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Chapter 2

Literature review

2.1 World energy outlook

The economic, political, and environmental climates currently facing governments worldwide are 

unprecedented. The need to ensure a secure energy supply is now more urgent than ever. The 

past decade has brought almost unparalleled uncertainty to the energy industry cliaracterised by 

the recent turmoil in the Middle East and North Africa, a global recession, and the catastrophic 

earthcpiake and tsunami which triggered the F’ukushima nuclear disaster in Japan [4]. The global 

recession has provided an unexpected, and relatively narrow, window of opportunity to take action 

to concentrate investment on low carbon technologies |2|. A combination of the rate at which 

economies and populations within the developing world grow, energy efficiency trends, environ­

mental legislation, and the development and deployment of new technologies will all play a role in 

reducing the projected gap between the supply and demand of energy. Figure 2.1 [2,4,25].
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Figure 2.1 - Growing gap between energy supply and demand, adapted from [25j

2.1.1 Primary energy sources

The world’s aggregated energy usage is growing steadily. This increased energy consumption is 

strongly coupled to economic growth in both developing and industrialised countries - the relation-
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2.1. World energy outlook

ship between energy consumption and GDP is illustrated in Figure 2.2. For a more comprehensive 

analysis of this relationship, the works of Jean-Baptiste and Decroux [26] and Lee and Chang [27] 

are both informative and concise.
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Figure 2.2 - Relationship of GDP and Energy, adapted from [26]

Primary energy is defined as the energy used by the end user plus generation, transformation 

and distribtition losses [28]. Fossil fuels currently supply 80% of global primary energy and this 

figure is expected to remain largely the same through 2030 [1[. According to the lEA [1], global 

primary energy demand will increase by 36% before 2035. Almost all of this growth increase, ap­

proximately 93%, is attributed to emerging economies. From a European perspective, the primary 
energy mix has changed significantly over the past 40 years, see Figure 2.3.
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Figure 2.3 - EU27’s evolving energy mix (% of electricity consumption), adapted from [6]

In 1971 almost half of Europe’s power came from coal, 23% from fuel oil, and 4% from nuclear 

energy. The generation mix has changed and in 2008, 23% of Europe’s electricity came from gas, 

just 3% from fuel oil, and in the region of 20% from renewable sources [6[. Although a wide range 

of technological developments and new policies will improve the energy scenario in the coming 

years, the global energy system is still not on a sustainable path [5]. An overview of recent trends
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and the current state of some important primary energy sources is given in sections 2.1.2 and 2.1.3.

2.1.2 Non renewables

Although the proliferation of renewable energy sources is predicted to increase rapidly, the lEA [5] 

project that the principal source of energy up to 2035 will continue to be fossil fuels. Although the 

demand for coal, oil, and gas is predicted to grow in absolute terms between 2012 and 2035, their 

combined share of the global energy mix will decrease from 81% to 75% during the same period [5].

2.1.2.1 Coal

Coal production increased by 1.7 billion tonnes between 1996 and 2006, or at an average annual 

rate of 2.9% |3]. According to the WEC |2], world coal reserves amount to 860 billion tonnes, of 

which 405 billion (47%) is classified as bituminous coal, 260 billion (30%) is sub-bituminous, and 

195 billion tonnes (23%) is lignite. The USA, Russia and China account for nearly 60% of global 

reserves (1|. By 2030 the use of coal is expected to rise by over 60% with developing countries 

responsible for 97% of this increase. It is estimated that coal’s share in global electricity generation 

will increase from 41% to 44% by 2030 |1].

2.1.2.2 Oil

Global reserves of crude oil are reported to be approximately 1,482 billion barrels, with 81% of 

these reserves held by OPEC member countries [29|. As demand increases and supply diminishes, 

the price of oil will increase as time progresses; the OPEC Reference Case assumes a nominal 

price that remains in the USSlOO/barrel range over the years to 2020, reaching US$155/barrel by 

2025 [29]. Oil pricing is a delicate and multifactorial problem. The IE A [30] noted that the price of 

oil must be sufficiently high to provide an incentive for its development and supply, but oil prices 

must not be so high that they impair global economic growth. The sector that has the biggest 

impact on oil demand is the transportation sector, and moving forward it is predicted that this 

will remain true [30].

2.1.2.3 Oil shale

Oil shale is a sedimentary rock that shale oil and combustible gas can be extracted from by 

destructive distillation. Oil shale deposits exist in many parts of the world and the size of these 

areas and their associated ability to generate revenue varies dramatically. Total world resources of 

shale oil are estimated at 4.8 trillion barrels [1]. Because of the higher costs associated with shale 

oil, due to the additional costs of mining and extracting the energy, only a small number of oil shale 

deposits are currently being exploited in Brazil, China, Germany, and Israel [1]. However, with 

the continuing decline of petroleum supplies and the increased costs of petroleum based products.
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oil shale presents opportunities for supplying some of the fossil based energy needs of the world in 

the future [1|.

2.1.2.4 Natural gas

Natural gas is the cleanest and most efficient fossil fuel; it will play a pivotal role in the battle 

to overcome present and future environmental challenges. According to the lEA [1|, natural gas 

reserves are sufficiently abundant to cover global gas demand for many decades. At the end of 

2008, 103 countries were identified as possessing proved reserves of natural gas with a total volume 

estimated to be in the region of 186 trillion cubic meters. As is the case with coal, some of the 

world’s largest reserves are held by the Russian federation. Natural gas demand is projected to 

increase by 1.6% per year between 2007 and 2030 to a total of 4.4 trillion cubic meters |1]. In 

terms of global primary energy demand the share of natural gas is projected to rise from 21% in 

2010, to 23% in 2030 (4]. The lEA [4] report that the industrial sector is expected to increase its 

natural gas demand from 1 trillion cubic meters in 2010 to 1.5 trillion cubic meters by 2030.

2.1.2.5 Nuclear

The generation of nuclear electric power increased by 369 billion kilowatt hours between 1996 and 

2006, or at an average annual rate of 1.5% [3]. Due to the low share of fuel costs relative to total 
generating costs, nuclear power generators continue to be highly cost competitive |1]. Uranium 

costs account for approximately 5% of total generating costs and because of this plants are insulated 

from the volatility of fuel costs. This point is illustrated by noting that 2007 saw Uranium spot 

prices hit an all time high of USS 350/kgU - compared to US$ 25/kgU in 2003 - and the generating 

costs of nuclear power plants were barely affected |1].

As of January U* 2010, the lEA [1] reported that there were four hundred and thirty seven 

nuclear power reactors in operation worldwide, with a total capacity of 372 GW; the 2,588 TWh 

of electricity produced by these nuclear reactors in 2009 translated into a market share of 14%. 

During the year 2009 the UK Nuclear Installations Inspectorate approved an additional 10 years 

of operation for 2 reactors and the Garona nuclear power plant in Spain was also granted a four 

year license extension [1]. In addition to this, discussions had started in Germany with a view to 

postpone the nuclear phase-out policy that required the closure of its reactors between 2015 and 

2025 [1].

On the 11*^ March 2011, a powerful magnitude nine earthquake occurred off the north coast 

of Japan, which generated a tsunami that struck the shore causing devastating damage. The 

earthquake and, in particular, the tsunami had a disastrous impact upon the Fukushima Dai- 

ichi (No. 1) nuclear power station, which was to become the centre of world attention as a 

consequence |31|. The perception of nuclear power was altered following the Fukushima disaster and 

it had an immediate impact on the development of nuclear facilities worldwide. In the aftermath
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of the accident, China slowed its nuclear spending and revised their goal for generation from 

solar power from 5 GW to 10 GW [32]. The German government also committed to upgrading the 

transmission grid, a precondition for replacing nuclear energy with solar, wind, and other renewable 

power sources |32]. The Fukushima disaster has renewed a global commitment to rigorous nuclear 

safety and stimulated an increased interest in other carbon free energy solutions.

2.1.3 Renewable energy sources

Manzano-Agugliaro et al. [33] defined a renewable energy source as a sustainable resource available 

over the long term that can be used for any task without negative effects. Renewable energy 

resources currently supply 14% of the total world energy demand and this share is expected to 

increase significantly to between 30% and 80% before 2100 [33]. According to the IE A [5], this 

increase will be driven by incentives, falling costs, technological advancements, and rising fossil 

fuel prices.

2.1.3.1 Hydropower

Hydroelectric power plants reliably generate low-cost electricity by harnessing the energy contained 

in flowing water. Manzano-Agugliaro et al. ]33] reported that hydroelectric power is currently the 

largest renewable energy resource contributing to electricity generation in 160 countries. China is 

the largest producer of hydroelectricity, followed by Canada, Brazil, and the United States ]33]. 

The lEA [5] reported that 3,190 TWh of hydropower were generated in 2010, corresponding to 

16% of global electricity generation and 88% of electricity generated from renewables.

Hydroelectric power systems are characterised by low operations and maintenance costs and 

long operational life spans. Although hydroelectric power plants do not pollute the water or air 

they do have a measurable environmental impact. Hydroelectric facilities can change the local 

environment by affecting the natural habitat in the dam area. The construction of dams can effect 

fish migration and the operation of hydroelectric generators can change river water temperature 

often harming plants and animals.

2.1.3.2 Wind energy

The extraordinary growth of wind energy can be demonstrated by noting that the European 

projection for 2010, set out in the European Commission’s 1997 White Paper on renewable energy, 

was 40 GW [1]. This figure represented a sixteen fold increase in the 1995 capacity, and was 

achieved by 2005. The total European capacity at the end of 2012 was 106 GW; 101 GW onshore 

and 4,993 MW offshore ]34]. Global wind capacity has been doubling about every three years since 

1990, see Figure 2.4, and it is the renewable resource that has grown at the fastest rate. Total 

capacity at the end of 2012 was over 282 GW ]35].
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Figure 2.4 - Growth of world wind capacity, adapted from |35]

Numerous estimates exist to try and assess the total energy available from the wind. One 

estimate presented by Archer and Jacobson [36], suggested that the global wind resource, exploiting 

only the best sites, with wind speeds above 6.9 m/s at 80 m, could cover the world’s electricity 

needs seven times over. The International Energy Agetrcy’s Reference Scenario [1] suggested a 

global capacity of 422 GW by 2020, but other studies projected higher. The European Wiird 

Energy Association [37] estimated that there will be 230 GW in Europe by 2020, 40 GW of which 
will be offshore. According to the EIA [38], offshore wind farms are over 150% more expensive 

than comparable onshore wind developments. In order to achieve the installed capacity estimated 
by the lEA and assuming an installed cost of US$ 2,000/kW, an investment of around US$ 522 

billion will be required over the next 10 years [36].

2.1.3.3 Solar

Solar power can be used to generate electricity at a utility scale in two ways; concentrating solar 

power (CSP) and photovoltaic technologies (PV). CSP technologies use the sun’s energy to generate 

heat that will drive either a steam turbine or an external heat engine. At the start of 2011, the total 

installed capacity of CSP plants was 1.26 GW. In photovoltaic systems the photons in sunlight are 

converted directly into electricity. The lEA [5] reported that PV electricity generation increased 

from 14 GW in 2008 to 70 GW in 2011 [5]. A key benefit of solar power systems is their ability to 

generate and supply electricity in regions that are not connected to an electricity supply grid.

Turney and Fthenakis [39] noted that solar powered electricity generation is experiencing rapid 

growth with total worldwide installed capacity increasing by 40% every year. One of the major 

drawbacks associated with solar power systems is their cost; the EIA [38] have reported that in 

terms of US$/MWh solar power is approximately 100% more expensive than the price of energy 

derived from a conventional coal power plant. In addition to this cost constraint, areas with limited 

sunlight are also problematic. The largest producers of solar energy in the world are Germany, 

Japan, and the USA.

24



2.1. World energy outlook

2.1.3.4 Geothermal

Geothermal energy is the energy contained as heat inside the earth. The commercial harnessing of 

geothermal energy for electricity generation has existed since early in the 20*^ century. Thermal 

energy from the earth’s core heats up underground water sources producing steam. This steam 

is then channeled towards turbines where it generates electricity. One major drawback associated 

with geothermal power is the resources limited availability, mainly in harsh geographical locations 

at high altitude, beside active volcanoes, or in tectonically active regions. According to Manzano- 

Agugliaro et al. [33], the exploitable potential of geothermal energy systems will increase over the 

next decade as a result of technical innovations however, the resources limited availability will 

result in a steady decrease of growth rates.

2.1.3.5 Biomass

Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy 

and biomaterials. Currently forestry, agricultural and municipal residues, and purpose grown 

energy crops are the main feedstocks for the generation of electricity and heat from biomass. Using 

bioenergy saves the environmental cost of disposing waste material however the burning of biomeuss 

releases large amounts of particulates and gases which have a negative impact on the environment. 
Of the total global bioenergy produced today, wood biomass accounts for 87%, agricultural crops 

for 9% and municipal and industrial waste for 4% [33]. The main advantage biomass possesses 

over other renewable energy sources is its availability; biomass is abundantly available throughout 

the world unlike wind and geothermal resources [33].

Although renewable energy sources are less harmful to the environment than traditional non­

renewable sources, the installation and operation of renewable energy power plants can still have 

adverse environmental impacts which need to be considered. With respect to large scale solar 

power installations, Turney and Fthenakis [39] identified a series of environmental impacts which 

fall under five main headings: land use intensity, human health, plant/animal life, geohydrological 

resources, and climate change. None of the 32 identified impacts are negative relative to traditional 

power generation, however, the removal of forest spaces to allow the construction of solar power 

facilities is an example of one indirect cause of CO2 emissions associated with the development of 

renewable energy power plants.

The rate of diffusion of renewable energy technologies (RET’s) is also a concerning issue. An 

extensive literature survey was conducted by Negro et al. [40] that categorised the main problems 

hampering the diffusion of RET’s. Market structures, legislative failures, capability problems, and 

infrastructural failures are all included within the list of systemic problems that are effecting the 

diffusion rate of RET’s [40[. Negro et al. [40] observed that a one size fits all solution does not exist 

and that it is necessary for stakeholders to focus on the technologies that will provide the largest
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benefits. It is inevitable that the exploitation of renewable energy sources will continue to increase 

over the next twenty years, however energy derived from non renewable sources will continue to 

meet most of the world’s growing energy needs, Figure 2.5.
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Figure 2.5 - Global primary energy demand, adapted from |:

2.1.4 EU total final consumption

Total final energy consumption is all energy that is delivered to the end user; it differs from pri­

mary energy as it does not include transmission and transformation losses. Consumers of electric 

power differ widely depending on their requirements for power and for this reason utility com­

panies typically categorise consumers into broad sectors. The residential sector includes private 

households and apartment buildings where energy is consumed primarily for space heating, water 

heating, air conditioning, lighting, refrigeration, and cooking. The commercial sector includes non­

manufacturing business establishments including hotels, restaurants, retail outlets, social premises, 

and educational institutions. Finally the industrial sector represents the segment of the economy 

that includes agriculture, construction, fisheries, forestry, and manufacturing. The sector by sector 

breakdown of final energy consumption for the EU-27 in 2010 is displayed in Figure 2.6.
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Figure 2.6 - Final energy consumption by sector, adapted from |41]
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2.2 Energy use in industry

Industrial facilities consume energy in order to perform a number of tasks; electrical energy is 

used to power machinery, pumps, belts and fans, gas is used for heating, while compressed air is 

used for applications including pneumatic actuation and cleaning. Manufacturing companies are 

therefore financially exposed to energy cost fluctuations; they are affected directly by the energy 

cost of making products, maintaining office operations, receiving raw materials and delivering 

finished goods [42|. Herrmann and Thiede |21] reported that energy efficiency is becoming an 

important area for manufacturing companies as a result of the volatility associated with energy 

prices. According to the lEA |1], industrial energy consumption will grow at an accelerated rate 

until 2030, with much of the projected growth occurring in non-OECD countries. Throughout this 

period electricity will continue to be the essential energy form, see Figure 2.7.
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Figure 2.7 - Projection of world industrial energy consumption by sources, adapted from |43|

One of the primary factors that is driving this energy consumption increase is increasing ma­

chine tool complexity. A study described by Zein [43] highlighted how the power consumption of 

manufacturing equipment has grown over the past 70 years. The data presented in Figure 2.8 is de­

rived from three German automotive metalworking manufacturing facilities. The long term trend 

evident in the dataset identifies a significant amplification of power ratings for both grinding and 

turning machines. It is the opinion of Zein [43| that this trend is interrelated to the introduction 

of CNC controls in machine tools at the end of the 1970’s.
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Figure 2.8 - Empirical long term trends in machine tool power ratings, adapted from |43]

2.2.1 Defining energy efficiency

A number of different definitions exist for energy efficiency. At a macro level the definition of 

energy efficiency is quite general, for example, the Energy Information Administration (ElA) in 

the United States define energy efficiency as "the ratio of the amount of energy services provided to 

the amount of energy consumed". The fnternational Standard Oranisation (ISO) use "the ration 

or other quantitative relationship between an output of performance, service, goods or energy, and 
an input of energy" (44|. From an economic standpoint, energy efficiency is defined as the energy 

used per unit of economic output; also known as energy intensity. Finally from a physics and 

engineering perspective energy efficiency is defined by the first law of thermodynamics, measuring 
the relationship between the total amount of energy inputs and the corresponding amount of useful 

energy outputs.

2.2.2 Drivers for and barriers to improving energy efficiency in industry

Delivering goods and services more efficiently, using less energy, is a core component of today’s 

attempts to reduce global carbon emissions [45]. Improving energy efficiency remains the largest 

and least costly strategy for realising reductions in carbon emissions, according to the lEA [46]. In 

manufacturing, energy cost has traditionally been only a small portion of the total production cost, 

and therefore, energy cost has received relatively little attention. The combination of increased 

energy prices, corporate responsibility, and environmental legislation have forced senior manage­

ment in manufacturing facilities to become energy conscious and focus time and capital on energy 

efficient optimisation projects [47|.

Within the manufacturing sector there still remains scepticism around the effectiveness of energy 

efficiency projects which hinders the implementation of energy reduction strategies; this barrier 

results in the creation of an energy efficiency gap. This phenomenon has been defined as the
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deviation between actual and ideal energy system requirements |43]. Taylor [48] reported that 

the energy efficiency gap exists primarily because the seemingly obvious benefits of implementing 

energy efficiency improvement projects - cost savings, improved compliance, reduced liability, etc., 

- are not sufficient to ensure cleaner production practices are adopted. The energy efficiency gap 

represents an unexploited opportunity to improve energy performance that remains untapped. The 

main drivers to improving energy efficiency in the manufacturing sector have been described in 

the literature as either economic or environmental: the most prominent barriers can be partitioned 

into organisational or economic categories [49].

2.2.2.1 Economic and environmental drivers

The economic drivers for energy efficiency in the European manufacturing sector can be loosely 

divided into three sections: energy prices, economic climate, and policies and regulation. Energy 

markets and market prices influence the decisions made by manufacturing companies regarding 

whether or not to invest in energy efficiency projects. As with all economic problems, the economics 

of energy efficiency is a question of balancing costs and benefits. For the end user this involves 

weighing the higher initial costs of purchasing energy-efficient components against the projected 

future cost savings associated with the components improved energy performance. High energy 

prices do not just influence the procurement decisions of the end user, Gillingham et al. [50] reported 

that higher energy prices have a significant impact further upstream in the technology development 

process; forcing manufacturers to produce more efficient goods. As a result of the increasing global 

resource constraints, it is probable that energy prices will continue to grow at an accelerated rate. 

A recent research study presented by Altmann et al. [51] highlighted the development of oil price 

projections between the year 2000 and 2010, see Figure 2.9. If these projections are realised, the 

level of capital investment injected into energy efficiency improvements will be forced to increase 

in order to combat the inflated price of energy.

Figure 2.9 - Development of oil price projections over time, adapted from [51]
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The economic climate also has a measurable impact on energy efficiency within the manufac­

turing sector. Studies have shown that periods of economic growth have a positive impact on 

efficiency due to an increased level of investment in efficiency [51,52]. This increase in efficiency is 

not usually seen as a reduction in energy consumption as periods of economic growth invariably 

result in increased production which stabilises the energy consumption. This fact is illustrated 

by noting that since the year 2000, industrial growth has averaged slightly less than 2% annually 

whereas energy consumption has remained constant [51]. Periods of economic decline result in an 

overall reduction in energy consumption without efficiency improvements, see Figure 2.10.
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Figure 2.10 - Development of industrial final energy consumption and production index, adapted 

from [51]

From a policy standpoint, the EU has a total of around 260 measures that have been imple­

mented or considered in the industrial sector, of which 180 measures are being applied [52]. Most 

of the ongoing measures are relatively recent; nearly 70% have been implemented since 2000 and 

more than 40% since 2005 ]51]. In a recent EU policy overview document, the number of ongoing 

energy efficiency measures by type were presented, see Figure 2.11.

The most widely recognised and influential measure within the financial measures category is 

the EU Emissions Trading Scheme (EU-ETS). The EU-ETS, which aims at the energy generation 

industry and also large industrial emitters, is by far the most important instrument to reduce GHG 

emissions in the industrial sector [52]. Another measure that is forecast to have a significant effect 

on energy efficiency in the industrial sector is the ecodesign directive (Directive 2005/32/EG).

From a regulatory point of view, energy management and the implementation of energy man­

agement standards are the key drivers for industrial energy efficiency improvements [53]. Energy 

management standards comprise a small number of steps that assist a company to actively man­

age energy use and cost, reduce emissions without incurring a negative effect on operations, and
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Figure 2.11 - EU policy measures by type, adapted from |52|

dociinieiit all savings for both internal and external use. Thuinann |53] observed that there is no 

one size fits all solution to energy management and the development of an appropriate program is 

dependent on the size of the facility, the type of industry, number of employees, and energy sources 

used. A typical energy management standard includes the following;

• A strategic plan - covering the measurement, management, and documentation of any im­

plemented measures;

• A cross-divisional management team - led by a representative who deals directly with senior 

management;

• Policies and procedures - addressing energy procurement and consumption;

• Projects - demonstrating the continuous improvement in energy efficiency;

• Energy manual - a document that evolves in parallel with the implementation of energy 

efficient procedures and projects;

• Key performance indicators - the identification of these indicators provides management with 

a metric to continuously monitor;

• Periodic reporting - both internal and external audits track progress;

All energy management systems follow a similar methodology; plan, act, check, review. ISO 

50001 :Energy Management Systems Standard, represents the current state-of-the-art in energy 

management throughout Europe. This standard is based on existing management standards such 

as ISO 9001:Quality Management Systems, ISO 14001 :Environmental Management Systems, and
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2.2. Energy use in industry

replaces the previous energy management systems standard ISO 16001. ISO 50001 defines a stan­

dardised framework of systems and processes designed to enable organisations to manage and 

enhance energy performance hy achieving measurable energy savings, Figure 2.12.

0-

C bC

CL. S

Figure 2.12 - Energy management system model, adapted from |43]

2.2.2.2 Organisational and economic barriers

It is widely accepted that the efficient utilisation of energy is a key method for reducing greenhouse 

gas emissions and achieving energy policy goals however, the combination of organisational and 

economic barriers continues to impede the progress of energy efficiency projects. According to Sol- 

ding and Thollander [54], the aforementioned barriers to energy efficiency are the principal reason 

why obviously cost-efficient measures are not always implemented and the energy efficiency gap 

is sustained. Several studies have confirmed that due to the uncertainty of the savings achievable 

through the implementation of energy efficiency improvements and energy management programs, 

there is hesitancy from senior management to invest the level of capital required in order to make 

significant savings [43,55,56].

This point of view is supported by a recent survey that also cites the inadequate amount 

of technical expertise on evaluating projects and the lack of awareness about opportunities as 

additional barriers [49]. Mecrow and Jack [57] placed further emphasis on this knowledge barrier; 

a recommendation was made to improve end user awareness in order to dispel incorrect beliefs 

that exist in the industrial sector. For example, it is a commonly held belief that purchasing a 

motor rated higher than the application demands, will result in a longer motor lifetime. In practice
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however, an over rated motor will have higher iron losses, magnetising losses, and friction losses 

which will substantially reduce the motors efficiency [57]. Thiede et al. [58] observed that this 

knowledge gap is particularly prevalent in SME’s. Additional barriers identified within the survey 

of Swedish manufacturing companies conducted by Rohdin and Thollander [49] included the cost 

of production disruption and inconvenience.

As outlined above, energy efficiency choices fundamentally involve investment decisions that 

trade off higher initial capital costs and uncertain lower future operating costs. A large proportion 

of the economic literature covering energy efficiency focuses on behavioural failure and in par­

ticular the potential impact policy changes can have to counteract and correct the behaviour of 

manufacturing companies. Gillingham et al. [50] observed that if behavioural failures lead to under 

investment in energy efficiency, then a degree of energy consumption reduction could be available 

at low or even negative cost. At the same time, policies that provide a means of correcting envi­

ronmental externalities, such as emissions price, may not be well suited to inducing these relatively 

low-cost energy and emission reductions [50].

Economic market barriers, defined as disincentives to the adoption or use of a good, may in 

some cases, be beyond the control of policy makers. For example, potential market barriers from 

an energy efficiency perspective include low energy prices and high technology costs, neither of 

which can be influenced by policy makers [50]. The economic barriers that can be influenced by 

policy makers, along with suggested policy options for the removal of these barriers is presented 

in Table 2.1.

Economic barriers Potential policy options

Energy market

Environmental externalities Emissions pricing (cap-and-trade)

Energy security Energy taxation

Capital

Liquidity constraints Financing/loan programs

Innovation

Research and development R & D tax credits

Information

Lack of information Information programs

Table 2.1 - Overview of economic barriers to energy efficiency [50]
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2.3. Characterising the electrical energy requirements of manufacturing systems

2.3 Characterising the electrical energy requirements of manufacturing systems

Characterising and quantifying the energy consumed within manufacturing facilities has been iden­

tified as an area of importance by a number of researchers including Kara et al. [59] and Rahimifard 

et al. [60]. Within the majority of manufacturing facilities improving the efficiency of electricity 

consumption is prioritised over other energy forms including gas, as it is used in greater quantities 

and is significantly more expensive per kWh, see Figure 2.13.
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Figure 2.13 Electricity and gas prices per kWh, adapted from [61[

Electrical energy is used in manufacturing facilities to power machine tools, production sup­

porting equipment, lighting, ventilation and chiller systems, as well as other ancillary devices, see 

Figure 2.14. The primary function of electricity in industrial facilities throughout the EU however, 

is to power motors and pumps.

Motors, 65% '''-----------------------------------------------
Lighting, 15%
Other, 20%

Figure 2.14 - Breakdown of industrial electricity consumption, adapted from [8]

Hesselbach et al. [62[ noted that as a consequence of the high levels of energy consumed dur­

ing manufacturing, companies have an economic motivation to consciously consider energy issues 

alongside traditional production objectives including cost, quality, and time. In order to increase 

the efficiency of electrical energy consumption and reduce energy waste, Kopac and Pusavec [63[
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2.3. Characterising the electrical energy requirements of manufacturing systems

suggested that manufacturing companies must follow the resource flow, quantify it, and analyse 

the data in order to identify opportunities for improvement. As part of this analysis, it is essential 

to take a holistic approach that considers the electrical energy requirements of equipment required 

directly and indirectly during production [62,64]. Figure 2.15 shows a model of a manufactur­

ing facility developed by Herrmann and Thiede [21] that maps the electrical energy consumption 

requirements of a typical manufacturing facility.

gas. oil, 
electricity

'Tooling
heating

'rechnical 
building 
services 

'I BS) ■

need for defined 
production conditions

waste heat 
exhaust air

allocation of media

backflow of media

electricity

Figure 2.15 Production facility model, adapted from [21]

One key aspect of the model developed by Herrmann and Thiede [21] is the interdependencies 

that exist between process energy and enabling energy. For example, machining processes generate 

heat that is emitted from the machine tool to the local environment, this additional heat forces 

the HVAC and chiller systems to work harder in order to maintain a constant facility temperature. 

In order to allow a structured analysis of a manufacturing facility it is possible to decompose the 

system hierarchically, see Figure 2.16. A perspective on some of the key contributors to energy 

consumption at a variety of levels follows.

1. Global supply chain (Section 2.3.1)

2. Facility (Section 2.3.2)

3. Significant energy user

4. Value stream (Section 2.3.3)

5. Machine (Section 2.3.4)

6. Machine tool component (Section 2.3.5)
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Figure 2.16 - Hierarchical breakdown of a manufacturing system

2.3.1 Global supply chain

Duflou et al. [9] defined a global supply chain as a set of three or more entities directly involved 

in the upstream and downstream flows of products, services, finances, and/or information from 

a source to a customer. At this level, a manufacturing organisation consists of a global web of 

operations and activities including suppliers, production sites, research and development facilities, 

inventory hubs, and sales centres. The increasing geographical scope of these supply chains is 

now exposing organisations to a variety of cultural, legal, administrative, linguistic, and political 

issues that impact on the smooth running of operations [65]. Duflou et al. [9] observed that each 

country has its own associated environmental impact depending on the primary energy sources 

used. As a result of this, significant differences exist between countries that rely on conventional
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2.3. Characterising the electrical energy requirements of manufacturing systems

power generation, snch as Australia, versus countries that have already moved towards renewable 

energy, for example Brazil |9].

The movement of goods throughout this global supply chain has a negative impact on the 

environment that can be reduced by optimising the management of the supply chain. Smith and 

Schmidt [65] reported that large multinational organisations including Walmart, Ikea, and Tesco 

are investing in the optimisation of their supply chain energy consumption in order to address 

corporate level energy efficiency and sustainability targets. Kara and Ibbotson [66] detailed a 

methodology for quantifying the impact globalised manufacturing has on the embodied energy of 

products. The study assessed six different products manufactured from various raw materials in 

a global manufacturing network. The study found that product, material and key supply chain 

parameters play a crucial role [66].

A study presented by Vanek and Sun [67] developed and implemented an energy consumption 

model to explore the environmental impact of supplying temperature controlled food products 

to variotis locations within the US using surface transportation. The study found that there is 

significant energy savings potential available from optimising materials souring, transportation 

choices, and inventory costs. A further study presented by Pearce et al. [68] used Google maps to 

minimise the embodied energy of transportation by optimising transport routes.

The imi)rovement potential available from optimising logistics was further highlighted in a study 

by Nuortio et al. [69] which focused on the environmental impacts of municipal waste collection in 

industrialised cities. The study focused on 169 refuse collection routes in a city located in eastern 

Finland. The study used matlab to implement improvement heuristics that optimised the distance 

each refuse collection vehicle traveled in a given day. The experimental results demonstrated that 

significant energy and cost savings can be achieved by optimising the ro\iting and scheduling of 

logistics operations [69].

2.3.2 Facility

Research studies at the facility level primarily focus on quantifying and optimising the energy 

consumed by high-level services such as HVAC and lighting, which are responsible for maintaining 

the required product conditions and environment. A study presented by Herrmann and Thiede [21] 

found that process and space heating, lighting, compressed air, and steam are responsible for 

approximately 35-40% of the total manufacturing industry’s energy consumption. Research studies 

in this area also focus on the effects of energy management systems, the minimisation of peak load 

surcharges, as well as building design and construction [9,70].

HVAC systems are one of the largest consumers in typical commercial and industrial facilities. 

A research project reported by Mathews et al. [71] highlighted a number of ways to improve the 

energy efficiency of a HVAC system in a commercial building. Within this research project, the 

provision of HVAC accounted for 54% of the buildings total energy consumption [71]. The majority
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of the improvement potential existed in the optimisation of control strategies that simultaneously 

enhanced the occupiers comfort levels while reducing the systems energy consumption. Examples of 

control system changes described in this study include setback control, which allows air temperature 

to increase in unoccupied areas and also enhanced economiser control by varying the amount of 

outside air that is input to the HVAC system [71], In a further study concentrating on HVAC 

systems, Fassiudin and Budaiwi |72] presented technical opportunities for optimising the energy 

consumption of HVAC systems in non-domestic buildings. Again key findings here included varying 

the temperature set points during periods of unoccupancy and optimising operating schedules [72].

Lighting systems have also been studied in detail with a view to understanding their impact 

on facility consumption. Ryckaert et al. [73] observed that in order to accurately assess a lighting 

installation the power load, P, needs to be calculated. This P value is dependent on:

• The efficiency of the lighting gear, 7?gear;

• The efficacy of the light sources, Tjiampi expressed in Lumens per Watt;

• The efficiency of the light fixture;

• The utilance, U, is the efficiency of directing the luminous flux from the light fixture to the 

task area;

• The maintenance factor, MF, is defined as the ratio of the illuminance on a given area at the 

end of the maintenance cycle to the initial illuminance of the same area; [73]

Because the lighting gear can have a considerable impact on the lamp efficacy and lamp power, 

the efficiency of the gear and the efficacy of the lamp are combined in the system efficiency, qsys- 

The target value proposed in the research of Ryckaert et al. [73] is:

Vsys Vgcar -Vlamp ^ (2.1)

The use of this type of system efficiency calculation penalises the use of inefficient gear, including 

incandescent lamps, while, in general, T5 fluorescent lamps or the most efficient high pressure lamp 

types easily meet the required value set out in the Ryckaert et al. [73] study. Recently LED’s have 

attracted a lot of attention and interest due to their minimal energy consumption in comparison 

with existing technologies; for example, a 3 W LED can replace a 40 W halogen lamp. LED’s 

also have an extremely long life span, and can emit coloured light without the use of coloured 

filters [74]. Apart from the actual light fittings, the energy consumption of a lighting installation is 

strongly dependant on lightning controls including presence detection and dimming; these controls 

must also be optimised to maximise efficiency [75]. The work of Duflou et al. [9] is an example 

of a study that focuses on energy efficient lighting controls. The proposed lighting control system 

regulates the quantity of artificial light supplied while simultaneously ensuring the overall intensity 

of illumination is constantly above a minimum threshold [9[.
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Energy conscious building design is another viable method to reduce energy consumption at 

facility level. According to the research work of Harvey et al. [76], the single most important factor 

in the design of low energy buildings is a high performance envelope. For the case of manufacturing 

facilities, Duflou et al. [9] identified the key functions of the building envelope as thermal and sound 

insulation, as well as protection from humidity. In particular, the building envelope provides 

thermal stability for the manufacturing equipment [9]. Harvey et al. [76] reported that effective 

building design can result in savings of up to 75% by eliminating the need for mechanical heating 

and cooling equipment. Pachero et al. [70] also reviewed the existing literature on energy efficient 

building design including building orientation, shape, envelope system, passive heating and cooling 

mechanisms, shading, and glazing. The influence that each of these parameters has on energy 

demand was assessed and the best combinations of design options were proposed.

2.3.3 Value stream

The work of Duflou et al. [9] describes value streams as multi-machine ecosystems. Within these 

ecosystems the goal is to completely utilise all energy inputs and therefore remove environmental 

wastes. An energy cascade framework is proposed which describes how individual energy inputs 

can be consumed in multiple processes [9[. Examples presented in the Duflou et al. [9] study include 

the use of industrial waste heat from a furnace as an energy input for a heat treatment process 

and also the generation of electricity from industrial waste heat using a Rankine cycle. The work 

of Vikhorev et al. [77] supports the assertions made by Duflou et al. [9] and suggests scheduling 

production activities with heat requirements in parallel with other processes that release heat in 

order to take advantage of energy cascading.

Several research teams have presented frameworks that attempt to holistically quantify value 

stream level energy consumption. The total equivalent energy tool (TEE), described by Naughton 

[64] is used to quantify the energy requirements and energetic impact of supporting utilities. The 

TEE tool is used exclusively for the semiconductor manufacturing industry, which is resource 

intensive, using large amounts of energy, water, and chemicals [78]. The TEE tool normalises all of 

the tool configuration differences by establishing an energy boundary condition around each piece 

of semiconductor manufacturing equipment. The main components of the TEE tool are the energy 

conversion factors (ECF’s), these ECF’s are a measure of the total energy required to produce a 

given utility per unit mass of volume [64]. The basis of the TEE method is summarised in the 

following formulae [64]:

TEE:SME = SMEoe + SMEieu + SMEjeh (2.2)

where:

TEEsme = Total equivalent energy 

SAIEpE = Direct energy supplied to equipment
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SMEjeu = Indirect energy for utilities 

SMEjeh = Indirect energy for heat removal

2.3. Characterising the electrical energy requirements of manufacturing systems

Another study that attempts to separate the two discrete components of energy consumption; 

direct energy and indirect energy was presented by Rahimifard et al. [60). The primary aim 

of this particular research project was to map the embodied energy of a product by holistically 

analysing the total value stream energy requirements. Rahimifard et al. [60] defined the direct 

energy consumed by a product as:

DEa = ^{TE{i)A + AE{i)A) (2.3)

The indirect energy component, that encapsulates the energy required by supporting activities, for 

example control systems, lubricants and coolant is defined as [60]:

m
IEa = '^IEzone{j)A (2.4)

j=i

where:

DEa = Total direct energy consumed by product A 

TEa = Theoretical energy consumed by product A 

AEa = Auxiliary energy consumed by product A

The overarching model that describes the research of Rahimifard et al. [60[ is included in 

Figure 2.17 which illustrates the author’s method of distinguishing between direct and indirect 

energy consumption.

Direct energy (DE) •
required by various 
processes to manufacture 
a product
Theoretical energy (TE) 
is the calculated minimum 
energy required to carry out 
a process
Auxiliary energy (AE) 
is the energy required by 
supporting activities to 
carry out the process
Indirect energy (IE) ____
is the overhead energy^ 
required by a manufacturing 
environment in which a 
process is carried out

Direct energy
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Casting Forming Machining Polishing 
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Figure 2.17 - The embodied product energy framework, adapted from [60]
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The significant impact that supporting equipment has on the overall process consumption was 

also assessed by Gutowski et al. |79]. An automobile production line was investigated and the 

results showed that the proportion of the total energy consumption resulting from machining 

was only 14.8% of the total for the line in question, see Figure 2.18. Over 31% of the total 

energy consumption resulted from the use of cooling lubrication fluids to counter the intense heat 

generated in the cutting zone during the observed machining processes |79].

2.3. Characterising the electrical energy requirements of manufacturing systems
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Figure 2.18 Energy used as a function of production rate, adapted from |79|

Within discrete manufacturing facilities energy consumption at a value stream level is strongly 
influenced by process planning and production scheduling. Production schedules are typically 

optimised with respect to cycle times and throughput without considering energy costs. The 

studies presented by Vikhorev et al. |77], Pechmann and Schoeller [80], and Duflou et al. [9] 

describe techniques that aim to optimise production schedules in order to minimise value stream 

energy consumption, see Figure 2.19.
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Figure 2.19 - Influence of PPC on energy demand, adapted from [9]
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Pechmann and Schoeller [80] investigated the optimisation of energy costs via intelligent pro­

duction scheduling. The software tool developed in this study allowed a production schedule to be 

developed that avoids the creation of energy consumption peaks and also allows a twenty four hour 

energy consumption forecast to be created [80]. An alternative approach that proposes complex 

event processing as a viable method to dynamically optimise production schedules was presented 

by Vikhorev et al. [77],

2.3.4 Machine

The majority of research works that focus on the energy consumption and energy efficiency of 

machine tools concentrate on individual machines and work stations within the context of a broader 

production system. The key factors for machine tool designers are functionality, cost, accuracy, 

and safety; until recently, minimising energy consumption has not been a priority. Increasing 

energy prices and a focus on the environmental impacts of production have ensured that energy 

consumption is now an important factor for the end user [81,82]. The energy consumption of 

manufacturing machines is not normally constant during a production process but rather highly 

dynamic depending on the state of the machine [62]. Zein [43] described how the overall electrical 

energy demand of a machine tool results from the temporal accumulation of each components 

power consumption, see Figure 2.20.

Machine tool system boundary

2.3. Characterising the electrical energy requirements of manufacturing systems

Figure 2.20 - Accumulation of power demands in a machine tool system, adapted from [43]

The consensus amongst the research community is that investigations into the electrical energy 

consumption of manufacturing machines must go beyond the tool chip interface in order to obtain 

a full understanding. This is a result of the fact that the energy consumed by machine tools during 

machining is significantly greater than the theoretical energy required in chip formation [83]. Recent 

studies have illustrated that the specific cutting energy can account for less than 15% of the total 

energy consumed by a modern machine tool during machining [83]. Herrmann and Thiede [21] 

observed that this value is subject to change depending on the process in question, but regardless
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of the operation being carried out, the tare consumption, i.e. the energy consumed outside of chip 

formation, is significant.

Until recently, research projects at a machine tool level have assumed energy requirements are 

proportional to the physical amount of material being processed, and have therefore neglected this 

tare consumption, due to unloaded motors, coolant pumps, controllers, fans, and other peripheral 

equipment |22]. In the case of an automated 5-axes milling machine investigated by Dahmus and 

Gutowski [84| this constant energy requirement was responsible for between 40% and 90% of the 

total energy consumption. An additional study which highlighted the impact of using over sized 

machine tools and the energy intensive nature of peripheral equipment was conducted by Rajemi 

et al. |85j. The study compared two machines; a conventional Mazak VTC-41 and a micro milling 

machine. The results of this study illustrated that the conventional machine used 800 times more 

energy than the micro milling facility |85]. The majority of the energy consumed by the Mazak 

VTC-41 was required to drive the spindle where most of the torque available was not needed for 

the job. Within the manufacturing sector it is typically the case that multi-purpose machining 

centres are purchased to perform single processes and are often substantially over specified.

By performing detailed investigations into the energy profile of manufacturing machines, critical 

components can be identified. Once these critical components have been identified, optimisation 

strategies can be designed and implemented, e.g. high efficiency motors, that will act to improve 
the overall efficiency of the process in question [81|. In order to optimise energy performance, 

it is critical that machine tools are appropriately specified for their given task. The design and 

development of low energy footprint machines with high power efficiency presents a significant 

opportunity to reduce the environmental impact of machining |85].

Within recent research studies, the most widely applied approach to characterising a machine 

tools energy consumption is to divide it into fixed and variable components. The fixed component 

includes the energy requirements of machine tool modules such as control units, pumps, and 

coolers which enable an operational state. The process induced variable energy consumption of a 

production machine is comprised of the energy required for tool handling, tool positioning, and 

material removal. The work of Hesselbach et al. [62] provides an example of a study that separates 

the fixed and variable components of a machine tools power profile, see Figure 2.21.

From the perspective of improving energy efficiency, researchers have been analysing machine 

tools since the early 1980’s. One of the earliest studies that assessed the energy efficiency of 

machine tools was presented by Filippi et al. [86] in 1981. The authors gathered together data 

from 10 different NC machine tools involved in various operations. It was concluded that the 

majority of each machine tools available power was never fully exploited and the machine tools 

spent on average 40% of the time in idle [86]. Anderberg and Kara [87] provided a quantitative 

representation of the effects different machining strategies have on machine tool energy efficiency.

Within the literature, researchers also focus on the specific energy consumption of machining.
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Figure 2.21 - Energy profile of a grinding machine, adapted from |62]

i.e. the energy required to remove material. An example of one such study is the work of Gutowski 

et al. |79| which proposes a formula that attempts to quantify the energy required to remove 

material;

P = Po + ki) (2.5)

where:

Po = Idle power (kW)

ki) = Rate of material processing [crrP/s)

In the work presented by Diaz et al. [88] the concepts proposed by Gutowski et al. [79] were 

developed to include a broader sample of process rates. In this study the total specific energy, which 

includes cutting and air cutting power consumption was found to have an inverse relationship with 

the material removal rate, see equation 2.6. Within this equation, k is a constant and b represents 

the steady state specific energy. The air cutting power demand was found to dominate the specific 

energy in this study with the cutting power demand only having a minimal impact on the specific 

energy.

ecut = k* + b (2.6)

Draganescu et al. [89] presented an alternative approach to calculate specific energy based on 

cutting power, Pc, machine tool efficiency, r), and the material removal rate, z.

Pr
Er. =

60r;2
(2.7)

Kara and Ibbotson [66] focused exclusively on specific energy consumption and presented an 

empirical approach to develop unit process energy consumption models for different material re­

moval processes. The models developed in this research focused on milling and turning operations.
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The resulting models achieved accurate assessments of the environmental impact of the manufac­

turing processes; the derived models presented were over 90% accurate for predicting the energy 

consumption [66].

In an additional study presented by Fratila [90], the cutting energy dissipated as heat and 

its repartition between workpiece, tool, cutting fluid and environment was quantified for a gear 

milling process with respect to different cooling/lubrication strategies. The effects that coolant 

and lubrication strategies have on the energy requirements of material removal is a topic that has 

received significant attention within the literature. Specifically, Pusavec et al. [91] investigated 

the environmental impacts of modern lubrication strategies which typically result in significant 

reductions of solid waste, water usage, and acidification but can increase energy consumption.

The current state of the art in the area of energy efficient machine tools is primarily concerned 

with green mode machines that reduce idle power consumption and also research projects that aim 

to reduce the mass of moveable objects with a view to reducing the overall power requirements. 

Dietmair and Verl [92] observed that the efficiency of a manufacturing process can be significantly 

reduced if a machine with high efficiency components is not switched off or put into a green mode 
during idle periods. The apparently obvious solution to this problem, i.e. turning off machines 

whenever they are not needed, is not an ideal solution as there is a significant energy requirement 

to start-up and maintain equipment in a ready state, as demonstrated by Gutwoski et al. [79[.

Already there are a large number of multinational machine developers releasing ’green’ machines 

into the marketplace. For example, Siemens drive technologies unit has developed Sinumerik Ctrl- 
Energy, a complete range of automation, drives and software components that focus on allowing 

a machine tool to operate effectively while reducing the power requirements of each operational 

state [93]. There are also research groups throughout Europe that focus solely on reducing the 

energy consumed during machining. An example of one such group is the research centre for 

manufacturing technology (RCMT), part of an EU project group (EcoFIT) which is aimed at 

the development of manufacturing machines with moveable parts that have significantly less mass 

than traditional machines [94]. The intention of all the EcoFIT methods is to replace the missing 

machine structure static stiffness with the so called mechatronic stiffness, which actively employs 

the control of feed drives. Sulitka et al. [94] noted that the successful completion of research studies 

in this area will allow manufacturing machines to be controlled by smaller, more accurate, and 

more energy efficient motors and drives.

2.3.5 Machine tool component

The optimisation of individual machine tool components represents an important area where sig­

nificant potential exists to improve the overall environmental performance of machine tools [9]. As 

a result of the increasing number of research studies focusing on the power consumption of indi­

vidual machine tool components, large organisations including the Yamazaki Mazak Corporation -

45



2.3. Characterising the electrical energy requirements of manufacturing systems

a global leader in the manufacture of machine tools - now publish the power consumption of every 

machine component in their operations manual, see Figure 2.22. Further to this, Mori et al. |95] 

noted that machine tool manufacturers are now beginning to conduct research studies with the 

goal of enhancing the energy efficiency of their products.
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Figure 2.22 - Peak power demand for Mazak FH-4800 machine tool components

The benefits of obtaining component level power consumption information were also highlighted 

by Byrne et al. [96] who observed that information within the power signals of feed drives and 

spindle motors can be used for indirect process monitoring. Altintas [97] performed a study that 

used feed drive current measurements in order to detect tool breakages, whilst Bhattacharyya et 

al. [98] used spindle motor current and voltage measurements in order to monitor tool condition 

during face milling operations.

Beyond the implementation of obvious efficiency improvement measures, including high ef­

ficiency feed drives and spindle units, researchers have proposed more complex approaches to 

improve the energy performance of individual components. Diaz et al. [99] proposed a kinematic 

energy recovery system (KERS) that could recover significant amounts of energy during spindle 

decelerations and store this energy in super-capacitors. The simulated results showed total power 

savings of up to 25% however, Diaz et al. [99| concluded that kinetic energy recovery systems would 

only become viable if energy prices increased or the unit cost of super-capacitors decreased.

Avram and Xirouchakis [17] identified the key factors governing the energy consumption of a 

machine tool spindle as its inertia, the type and size of bearings, lubrication technique, and its 

electrical drive and control. Recent research studies have drawn attention to the impact machine 

tool spindles can have on the power system; particularly focusing on the generation of harmonics
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[100]. Standard machine tool spindles are driven by pulse width modulated frequency inverters 

which electronically alter the width of voltage pulses to the spindle motor in order to control spindle 

speed.

The standard configuration of pulse width modulated variable frequency drives use six pulse 

rectifiers. The rectifiers provide the intermediate DC circuit voltage which is filtered in an LC low 

pass filter. The output voltage and frequency are then controlled electronically, as described in 

Figure 2.23. In this example, the triangular signal in Figure 2.23 represents the carrier or switching 

frequency of the inverter. The modulation generator produces a sine wave signal determining the 

width of the pulses, and therefore the RMS voltage of the inverter. Frequency inverters generate 

harmonics because of the nature of the front end rectifier design. Characteristic harmonics are 

based on the number of rectifiers, i.e. the pulse number, and can be determined by the following 

equation:

h = {71 X p) ± 1 (2.8)

where;

n = an integer (l,2,3,4,..,n)

p = number of pulses or rectifiers

For example, the six pulse rectifier within typical frequency converters will have the following 

characteristic harmonics:

/i=(lx6) ± 1 5*^ & 7*^ harmonics

h = {2 X 6) ± 1 11*^ & 13*^ harmonics

h = {3 X 6) ± 1 --+ 17*^ & 19*^ harmonics

(2.9)

30
Supply

I'o other 
equipment

Frequency converter
Diode bridge Intermediate 
rectifier DC circuit

^_rrYYV

'Friangle
generator

Modulation
generator

TJL

PWM
output

Inverter

< 3®

' -TLnnnrLTL

Figure 2.23 - Pulse width modulation

The harmonic losses that result from operating high speed spindles was reported by Chen et 

al. [101]. Within this study the researchers designed an output filter that improved the total
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harmonic distortion from 99.6% to 33.95% for a 24000 rpm spindle. The research work of Wakileh 

[102] provided a detailed discussion on harmonics in rotating machines which also described typical 

harmonic reduction methods. The generation of harmonics resulting from the operation of machine 

tool spindles will continue to rise as manufacturing companies proceed to demand higher and higher 

processing performance, see Figure 2.24.
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Figure 2.24 - Growth of main spindle performance, adapted from [43]

2.3.6 Environmental evaluation of machine tools

According to Dornfeld [103], a major source of motivation behind the development of environmental 

machine tool assessment standards comes from Europe’s CECIMO organisation. CECIMO - the 

European association of machine tool builders - covers approximately 99% of total machine tool 

production in Europe and more than one third worldwide [104]. CECIMO have lead the way 

with respect to the environmental assessment of machine tools by implementing a self regulatory 

initiative aiming to improve the energy performance of machine tools.

The high relevancy of machine tool energy consumption has made the development of environ­

mental machine tool evaluation strategies inevitable. According to a recent Franhoffer study, there 

are gaps in the standardisation of machine tools specifically regarding ecodesign, machine tool en­

ergy labeling, power consumption measurements, power modes, power management, consumption 

of lubricants/compressed air, and the measurement of process waste generation [105]. The work 

of Herrmann et al. [106] highlighted the importance of machine tool energy labeling as an enabler 

for energy efficiency improvements.

ISO 14955 aims to address the ecodesign of machine tools, the assessment of the energy con­

sumption of individual machine tool components, and the development of standardised test pieces 

for the analysis of metal cutting and metal forming tools. The standard is currently under develop)- 

ment and will only consider energy consumed during the dominant use phase, ignoring embedded
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energy due to raw material extraction, transport, set-up, and end of life energy requirements. The 

anticipated layout of the ISO 14955 standard is as follows:

• Part 1: Ecodesign methodology of machine tools

• Part 2: Testing of energy consumption of modules

• Part 3: Test pieces and parameters for metal cutting

• Part 4: Test pieces and parameters for metal forming

The system boundaries of the machine tool to be evaluated under the ISO 14955 standard are 

included in Figure 2.25.

Not! 
parts. us(parts. usciJ tools, cliiirs, and any other aspects not to he eonsidere 
relevant enerny How iwross the system lioundary
* Applies to ciuses with lipiiid lieat exchangers
** Ai)i)lies to cii-ses witliont internal mist filtering
*** Applies to ciuses with centralised Inhrieant nianag<'ment only

Figure 2.25 - System boundaries of the evaluated machine tool, adapted from [107]

It is also predicted that machine tools will be the subject of energy efficiency regulations, under 

the EU Energy using Products (EuP) directive, in the near future. The automotive industry 

has already adapted to this expected change; prospective machine suppliers are now required to 

provide data on how much energy their machines consume in order to produce a standard part [92]. 

Machine tools possess certain characteristics that present a unique set of challenges to the EuP 

directive policy makers which must be addressed if the directive is to be successful. These challenges 

include the huge variety of highly customisable machine tools that are available and also the fact 

that energy consumption is strongly dependent on the end users operating choices.

2.3.7 Life cycle management

Pigosso et al. [108] recently suggested that in order to successfully implement environmentally 

sustainable business models, a transition must be made from traditional economic values to life
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cycle thinking. The full suite of LCM techniques includes life cycle engineering (LCE), life cycle 

assessment (LCA), life cycle costing (LCC), Life cycle inventory (LCI), and more recently life 

cycle development (LCD) and life cycle planning (LCP). The goal of all life cycle tools is to 

protect resources by maximising the effectiveness of their usage [109].

Life cycle analysis is a methodology used to assess the environmental impacts and resource 

consumption associated with the existence of products throughout their entire life cycle [78.109[. 

There are a number of different approaches to the implementation of life cycle analysis including 

cradle-to-gate and cradle-to-grave type studies. A cradle-to-gate style analysis focuses on the 

impacts starting from raw material extraction and includes transport form source to manufacturer 

in addition to the manufacturing processes required to produce the finished product [110[. A 

cradle-to-grave analysis extends from the cradle-to-gate analysis and includes the usage and the 

end of life stages. Understanding the environmental impact of each stage of a products life cycle is 

often complex. One useful way of quantifying the resource consumption in a stage by stage format 

was presented by Kara et al. [110[, see Figure 2.26.

Figure 2.26 - Product life cycle stages, adapted from [66[

In an effort to highlight the importance of life cycle thinking Sullivan [111] presented a research 

study that assessed the environmental impact of two products over a ten year period using LCA. 

The two products were a late 1990’s U.S. family sedan, assuming the vehicle traveled 120,000 miles 

at 23 mpg over a ten year life time, and a late 1990’s era desktop computer, with a three year life 

time. The results, in a stage by stage format are included in Figure 2.27.

For the U.S. family Sedan the use phase dominates and therefore the primary carbon respon­

sibility of the manufacturer would be to design a car with higher fuel efficiency. In the case of the 

desktop computer, the most energy intensive life cycle stage shifts to materials and manufacturing.
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Figure 2.27 - Sedan and CPU life cycle breakdowns, adapted from [111]

which together use about 6.4 GJ or 80% of the total see Figure 2.27. This shift occurs

because semiconductor manufacturing is very energy intensive and computers have relatively short 

lives in the use phase. These examples demonstrate how the carbon load associated with a product 
may shift to different jrhases of its life cycle depending upon characteristics of the product and 

how it is used |112|.

The concepts of life cycle development and life cycle planning were comprehensively addressed 

within a recent CIRP keynote paper by Umeda et al. |113j. The paper proposed a structured life 

cycle development framework aiming to facilitate more effective life cycle engineering. Specifically 

the paper encourages product designers to undertake a broad-based re-envisioning of the entire life 

cycle structure [113). Within the study, life cycle development is modelled as a three stage process:

1. Life cycle planning

2. Product design/life cycle flow

3. Implementation

Umeda et al. [113] focused on the life cycle planning stage in order to provide a robust approach to 

a problem which is generally solved in an unstructured manner. Within the proposed framework, 

Umeda et al. [113] included energy saving during the use phase as an important part of the product 

design process. The energy savings are identified by performing life cycle evaluations on previous 

products and locating hotspots where improvement opportunities exist.

A recent study conducted by Cao et al. [114] investigated the quantity of carbon emitted during 

each phase of a machine tools life cycle. The carbon quantification method proposed by Cao et 

al. [114] is applied to two machine tools; a basic two axis gear bobbing tool, and a highly complex 

seven axis gear bobbing tool. The results observed by Cao et al. [114] again identified the use 

phase as the most influential life cycle stage. The observations made by Umeda et al. [113] and 

Cao et al. [114] were reinforced by Duflou et al. [9] who reported that over 83% and 60% of the

51



2.4. Measurement and quantification of industrial energy

total life cycle environmental impact for cutting machine tools and press brakes resulted from the 

use phase. Linke et al. |115) assessed how greening the process chain can reduce this use phase 

energy consumption.

Several other studies that address the life cycle impacts of machine tools from various perspec­

tives have been proposed within the literature. Abele et al. [9| described a life cycle inventory 

methodology based on theoretical equations that are used to calculate energy consumption and 

process waste. Zein [43] reported on a study which assessed the life cycle of machine tools from an 

economic perspective in the form of a life cycle costing analysis. Figure 2.28 illustrates how the 

use phase again dominates within this economic analysis with 66% of the life cycle costs occurring 

during this phase [43].
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Figure 2.28 - Life cycle costs of machine tools, adapted from [43|

2.4 Measurement and quantification of industrial energy

The quantification of energy consumption within manufacturing facilities is a relatively new process. 

Traditionally manufacturing companies have been satisfied to pay for electricity without analysing 

their consumption patterns. The practice of energy management has become increasingly prevalent 

in all industries as falling profit percentages and an increased emphasis on value for money become 

the norm [116]. In addition to these financial strains, there is also a parallel drive towards reducing 

emissions from industrial facilities and meeting governmental climate change targets [45].

Due to this shift toward energy efficiency, there is a need to effectively manage all energy con­

suming operations. Vikhorev et al. [77] described how energy data is collected at all levels of the

52



2.4. Measurement and quantification of industrial energy

hierarchy from the sub-process level to the global manufacturing sector at a variety of different tem­

poral resolutions depending on the nature of the analysis to be performed. According to Herrmann 

et al. |15], energy metering facilitates one of the critical components of sustainable manufacturing; 

the availability of adequate and prompt information on energy demands and consumption patterns 

at all hierarchical levels.

2.4.1 Power measurement

The electric power consumed by a circuit element is equal to the current in the circuit element, f, 

multiplied by the voltage across it, v, Equation 2.10.

p — VI (2.10)

This equation follows from the fact that voltage is work per unit charge, and current is charge 

transfer per unit time. Equation 2.11.

d,,, \ ((iq \ d,= — = p
dt

(2.11)
/ \ d^

Three phase power systems are the most commonly applied in the industrial sector. A three 

phase power system is symmetrical or balanced if the three phase voltages and currents have the 

same amplitudes and are phase shifted by 120° with respect to each other. A system is asymmetrical 

or unbalanced if either of these conditions is not met. In a typical balanced three phase system 

the total instantaneous power is calculated as follows;

Van = x/SVp cos (cot)

vbn = \/2Vp cos (ujt — 120°) 

vcN = V2Vp COS (ijjt -F 120°) 

ia = V^Ip COS {ojt — 0) 

ib = V^Ip cos {ujt — & — 120°) 

ic = \f21p COS {u}t -0-1- 120°)

P = Pa+Pb+Pc = VAN^a + VbnH + VcNlc 

p = 2VpIp[cos (ujt) cos {ujt — 0) -t- COS (uit — 120°) cos {uit — 0 — 120°)

+ cos {ult -F 120°) cos {cot — 0 -F 120°)]

.'. p = Vplp[3 COS 0 -F cosQ -F 2( —-) cos a]

= 3VpIp cos 0

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

The power triangle is a method that is used to relate the three key components of power, 

explaining the relationship between the active, reactive, and apparent power components. The
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following equations 2.21-2.23 and Figure 2.29 illustrate the relationships that exist within the 

power triangle.

Active power, P = Vrms Jrms <^osQ [Watts) (2.21)

Reactive power, Q = Vrms Irms sin © (VAR) 

Apparent power, S = Vrms hms [VA)

(2.22)

(2.23)

Q, Reactive 
power (VAR)

Figure 2.29 - Power triangle

Researchers have been proposing methodologies to link machine tools and manufacturing pro­
cesses to electrical energy consumption for many decades [11,117,118], it is only now that industrial 

enterprises are being forced to consider this link that electrical energy measurement and monitoring 

have become widespread outside of research labs. It is the opinion of Larek et al. [119] that before 
power consumption in manufacturing facilities can be reduced it is first necessary to quantify the 

amount of energy needed, to determine the degrees of freedom for an optimisation. According 

to Wang et al. [120], the most effective way to obtain an understanding of facility wide energy 

consumption is through online continuous process-level subraetering. Industrial energy and power 

measurement devices typically consist of two sensors - voltage and current - and a meter containing 

a microprocessor that calculates the required values from the acquired data. The implementation 

of a large scale energy metering system should ideally be a keystone of an organisations energy 

management system (EnMS).

An EnMS is a systematic framework for continuously improving the energy performance of 

a facility and can help industrial enterprises reduce energy costs and improve performance and 

productivity [121,122]. ISO 50001, Europe’s most advanced energy management standard encour­

ages the implementation of extensive energy metering systems. Within annex A3 of EN50001 [44], 

the installation of appropriate submetering is advised in order to allow information on energy use 

and consumption to be derived. Further to this, annex A.3.3 suggests the development of energy 

consumption targets and alarms forming an advanced notification system capable of monitoring a 

facilities energy performance; this cannot be achieved without an appropriately designed energy 

metering system. A schematic diagram of a modern industrial electrical energy metering solution 

is included in Figure 2.30.
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Figure 2.30 Modern electrical energy metering solution

There are currently a large number of electrical energy meters available on the market with 

varying degrees of sophistication and functionality. Selecting the correct meter for a given appli­

cation is not trivial as a number of variables require consideration in order to ensure the metering 

solution can measure and record the relevant power quality disturbances and events. Due to the 

constantly increasing number of non-linear and time-variant loads existent within manufacturing 

facilities, the measurement of power quality is becoming increasingly important. Power quality is 

defined as a combination of voltage quality and current quality. An ideal voltage source is a single 

frequency sine wave with constant amplitude, voltage quality is concerned with deviations from 

this ideal voltage level [123]. Current quality is the complimentary term to voltage quality and 

is concerned with the deviation of the current waveform from an ideal sine wave, with constant 

frequency and amplitude, and also the phase relationship between the current and voltage wave­

forms [123]. As a result of the complex nature of both power and power quality monitoring, it is 

important to be aware of the complete measuring instrument specifications, including:

1. Sampling rate: the number of samples taken per unit time - typically reported in terms of 

samples/cycle;

2. Accuracy: the degree of certainty attached to the reported values compared to the true value;

3. Resolution: the smallest change that the device can detect in the quantity it is recording.
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2.4.1.1 Current and voltage sensing

According to Kara et al. [59], the accuracy of a power meter is a function of the measurement error 

associated with the current and voltage sensing equipment. Current sensing is the more difficult 

of the two as it requires a wider measurement range and also needs to handle a broader frequency 

range because of the rich harmonic contents of the current waveform [124]. The most common 

current sensors are now discussed.

Shunt resistors

The underlying principle of operation for a shunt resistor is based on the proportional relationship 

between the current flow and the voltage drop across the shunt resistor. Shunt resistors have found 

extensive application in power electronics due to their low cost, small size, and relative simplicity 

whilst still providing reasonable accuracy [125]. Shunt resistors are introduced into the current 

conducting path and as a result of this they can generate significant power loss. Ripka [126] noted 
that it is for this reason that shunt resistors are often avoided in high current applications. Ziegler 

et al. [125] identified another drawback associated with shunt resistors that relates to the small 

voltage drop across the resistor; this voltage drop requires amplification, altering the bandwidth, 
therefore increasing both the cost and size of the sensor.

(a)
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'shmit.

Current to lie 
measured

[VJ Voltmeter
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■ Simple method
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• Small size 

' Direct measurement

Figure 2.31 - (a) Shunt resistor (b) Principle of operation

Hall-effect sensors

Hall-effect devices can take an open loop or closed loop form and are best suited to DC applica­

tions. A Hall-effect sensor consists of three main components; a core, the Hall-effect device, and 

also a signal conditioner. A constant current excites the device and when this energised sensor is 

exposed to a magnetic field it produces a measurable potential difference. Figure 2.32(b) illustrates 

the working principle of a Hall-effect current sensor. One of the main advantages of a magnetic 

field sensor over a resistive or induction based sensor is the ability to sense currents that generate 

both static and dynamic magnetic fields as opposed to exclusively dynamic magnetic fields [125]. 

Hall-effect current sensors are sensitive to external magnetic fields as well as nearby currents and
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are therefore not ideally suited to electrically noisy environments [124]. Ripka [126] noted that this 

type of sensor is also sensitive to the location of the measured conductor within the sensor.

2.4. Measurement and quantification of industrial energy
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Figure 2.32 - (a) Hall-effect current sensor (b) Principle of operation

Inductive sensors

Induction based current sensors exploit Faraday’s law of induction to measure current. There 

are numerous variations of induction based current sensors including Rogowski coils, but the most 

commonly used in industrial environments is the current transformer (CT). One significant advan­

tage CT’s possess over Rogowski coils is the fact that the output voltage is directly proportional to 

the primary current; there is no integrator required |125|. Rogowski coils are also sensitive to the 

location of the measured conductor within the coil and this is another issue that is not encountered 

when using CT’s. Current transformers operate by converting a primary current into a smaller 

.secondary current, see Figure 2.33(b).

«Induction based 
method
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• Indirect measurement

• High accuracy

Figure 2.33 - (a) Current transformer [125] (b) Principle of operation

There are two main types of current transformer; solid core and split core. Solid core current 

transformers tend to be more accurate than the split core variation however, solid core CT’s are 

significantly more difficult to install [124]. The majority of CT’s used in industry have an iron 

core, and in cases where the CT is exposed to currents above its rating, the core can become
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magnetically saturated and will need to be demagnetised in order to achieve maximum accuracy 

levels; in general the lower the magnetising current the higher the accuracy of the CT [124,127]. 

Split core CT’s are ideally suited to remote power metering applications within industrial facilities 

where the meter is used to monitor the power consumption of more than one machine.

2.4.1.2 Measurement resolution

Power metering equipment can identify a large variety of events depending on the sampling rate, 

accuracy, and resolution of the device. Low sampling rates are only necessary in order to obtain ba­

sic information including minimum, average and maximum power values. Alternatively, very high 

sampling rates are required in order to identify transient events that appear and disappear within 

a fraction of a second. Measurement instruments are available for all possible power measurement 

scenarios; from the oscilloscope, used for real time measurements to the basic multimeter, useful 

for network quality analysis [59].

According to Herrmann et al. ]15], the amount of information that can be derived from a 

metering device is highly dependent on the granularity of the measurements in terms of time and 

amplitude. Within the Herrmann et al. ]15] study, granularity is described as a combination of the 
metering systems sampling rate, resolution, and the digital processing systems capacity. In a study 

presented by Thiede et al. ]58], the accuracy and therefore information content of a measurement 
device is shown to decrease sharply with lower sampling rates. Figure 2.34.

Figure 2.34 - Effect of sampling rate on measurement device accuracy, adapted from ]58]

The identification of power quality disturbances requires high sampling rates, typically in the 

kHz range. Power quality disturbances are broadly categorised into two divisions: variations and 

events. Bollen ]123] describes a power quality variation as a small deviation to either the voltage 

or current waveform that can be measured at any moment in time. Alternatively, Bollen ]123]
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describes power quality events as intermittently occurring deviations. Within the IEEE standard 

1159 [128], the full range of power quality phenomena are classified. Table 2.2 includes a selection 

of these events.

S. No. Categories Duration Voltage magnitude

I Short duration variation

(a) Sag Instantaneous 0.5-30 cycle 0.1-0.9 pu

Momentary 30 cycles - 3 sec 0.1-0.9 pu

(b) Swell Instantaneous 0.5-30 cycle 1.1-1.8 pu

Momentary 30 cycles - 3 sec 1.1-1.8 pu

II Long duration variation

(a) Under voltage > 1 min 0.9 - 0.9 pu

(b) Over voltage > 1 min 1.1 - 1.2 pu

III Transients

(a) Impulsive Nanosecond < 50 nsec

Microsecond 50-1 msec

Millisecond > 1 msec

(b) Oscillatory Low frequency 0.3 - 50 msec 0-4 pu

High frequency 5 fisec 0 - 4 pu

Table 2.2 - Classification of a selection of power quality events [129]

2.4.1.3 Inference and decision making

The installation of power measurement equipment provides information that is used for various 

purposes depending on the hierarchical level that is metered. The implementation of a well planned 

energy metering system within a complex manufacturing facility provides a level of energy trans­

parency and understanding that is typically only available in research labs. As the hierarchical 

level moves from the macro, at facility level, to the micro, at unit process level, the resulting 

volume of data increases exponentially. Seow [130] described this exponential relationship and 

noted the importance of selecting the correct measurement resolution for each hierarchical level, 

see Figure 2.35.

Facility level metering

At facility level, metering equipment is typically installed between the utility provider and the 

main facility electrical incomer. The metering device is often used to obtain aggregate data at low 

sampling rates; a rate of 4 values per hour is not uncommon. This information is then used as a
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Figure 2.35 - Relationship between data volume and temporal resolution, adapted from [130]

means to query monthly utility bills or for other high level analysis. Kara et al. [.59] also suggested 

that facility level metering can be used to adapt the electricity supply contract and prevent peak 

charges by rescheduling certain events. More complex metering at facility level can provide an 

in depth understanding of the power quality within the facility. The analysis of transients is 

an example of one event that can be quantified through the implementation of suitable power 

quality meters. Transients can take either an impulsive or oscillatory form; an impulsive transient 

is unidirectional and can be caused by natural events or the switching of large loads, a typical 
impulsive transient lasts for less than 200 microseconds [123|.

An oscillatory transient is a decaying oscillation imposed on the fundamental. Oscillatory 

transients are commonly generated by switching events within the electrical system. Low frequency 
oscillatory transients are generally caused by capacitor switching; the process whereby capacitor 

banks are switched in and out to improve power factor [131]. It is critical that the correct meter 

is used otherwise incorrect and misleading information will be relayed to the user. Illustrating 

this with an example presented by Bickel [132| which investigated the response of two meters with 

different sampling rates - one sampling at 512 samples/cycle and the other at 83,333 samples/cycle 

- to an identical transient overvoltage. The meter with the lower sampling rate does not correctly 

define the true magnitude of the transient over voltage, see Figure 2,36.

Phase A-N Voltage 
512 noints/cvcle

Phase A-N Voltage 
83,333 points/cycle
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Figure 2.36 - Interpretation of a transient overvoltage, adapted from [132]
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Value stream level metering

At value stream level, power consumption information is useful for optimising production sched­

ules and also facilitating value stream competition by benchmarking consumption. Value stream 

level power consumption information is also used to quantify the energy savings achieved after 

implementing energy efficiency improvement projects, for example, from the opportunities register 

created as part of an ISO 50001 EnMS implementation.

The implementation of more complex metering devices at value stream level can identify a 

wide variety of power quality events that would otherwise go unnoticed. For example, flicker, 

a power quality event created by short term voltage deviations can have a significant negative 

impact on the productivity of machine tool operators within a value stream. Bhattacharyya et 

al. [131] observed that although flicker does not cause harmful equipment damage, it can have 

adverse effects on humans causing physical sickness and sick building syndrome in extreme cases. 

The level of harmonic distortion within a value stream is another important issue that should be 

monitored and analysed. Total harmonic distortion (THD) is expressed as a percentage and can 

be calculated using Equation 2.24 where V„ is the voltage of the harmonic and n = 1 is the 
fundamental.

, /\/J2 -I- V? -4- -I- 1/2
(2.24)%thd = + yi + - +_!:^^ioo

Vi

IEEE standard 519 recommends that harmonic limits on voltage be less than 5% for THD and 
3% of for any single harmonic [133]. Bollen [123] reported that harmonic distortion of the current 

waveform has negative effects on a power system by overheating transformers and cables; for a 

given active power, the heating increases with increasing current distortion and the higher order 

harmonics produce more heating per Ampere than the fundamental component. In certain cases 

the impact of harmonics within a value stream can be so severe as to force equipment derating in 

order to prevent more serious faults. For example, a large third harmonic current can result in 

a large current flowing through the neutral conductor and this can cause serious incidents if the 

neutral conductor is not equipped with overload protection [59,123[. Using the appropriate power 

measurement instruments to accurately quantify the level of harmonic distortion within a value 

streams power system facilitates the mitigation of operational and safety issues arising from the 

presence of harmonics.

Machine level metering

Power monitoring at machine level provides important information about each machines actual 

energy requirements including; average power demand, standby power demand, peak power usage, 

and power factor. This type of information can be used to ascertain a kWh value for each part 

produced and to facilitate the energy labeling of machine tools. According to Kara et al. [59[, 

machine level metering can also be used to evaluate technical improvements and also to supplement 

unit process values to LCI databases. Avram and Xirouchakis [17[ suggested that developing
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a more comprehensive understanding of a machine tools energy requirements facilitates process 

optimisations and unit process benchmarking. More advanced metering devices can facilitate an 

investigation into equipment malfunctions and abnormal performance. For example, the presence 

of long duration voltage sags that last for longer than the maximum duration acceptable by a 

given appliance will force the appliance to shut down. Table 2.5 shows voltage tolerances for some 

common manufacturing equipment.

2.4. Measurement and quantification of industrial energy

Equipment Equipment’s

^min

tolerance limit

Tmax

Allowable

voltage dips

(average)

Programmable logic

controller (PLC)
60% 260ms 40%

3.7 kW AC drive 75% 50ms 25%

AC control relay 65% 20ms 35%

Motor starter 50% 50ms 50%

Table 2.3 - Voltage tolerance of customer’s devices |131]

The measurement of harmonics at individual machines can also identify issues causing opera­

tional and/or safety problems. Harmonics, primarilj' caused by electrical inverters and phase 

controlled modulators have a significant impact on the operation of rotating machines. Wak- 

ileh [102| described how harmonics increase the thermal losses by raising the copper, iron and 

dielectric losses within the machine. Harmonics also produce pulsating torques as a result of the 

harmonics-generated magnetic fields and this can elevate the audible noise of the machine during 

operation |102].

2.4.1.4 Metering costs and industrial marketplace

The cost of power metering equipment is highly variable depending on functionality. There are a 

number of influencing factors that affect the unit cost of a power meter; the primary drivers are 

the number of samples recorded during each cycle in addition to the meters measurement accuracy 

and resolution. Choosing the correct metering device for the required analysis is a challenging task 

that requires an understanding of both the meter characteristics such as measurement resolution, 

sampling rate, and accuracy and also the characteristics of the electrical event including spectral 

content and duration. One key difficulty encountered when selecting a power meter is the con­

trasting measurement requirements of different power system parameters. Delle-Femine et al. [134]
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highlighted this by observing that some phenomena, such as transients, require a very fast analysis 

ill a short time interval, whereas others are assessed over a longer time period. Figure 2.37 plots 

the smallest duration transient identifiable by a meter against its cost in order to highlight the cost 

impact associated with increasing meter complexity. Table 2.4 includes a sample of the results of a 

market survey conducted in order to provide an insight into the options available to manufacturing 

enterprises wishing to monitor their electrical systems.
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Table 2.4 - Sample of power metering survey
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2.4.2 Nonintrusive load monitoring

The concept of an inexpensive, simple to install, and centralised system capable of monitoring 

electric power systems is very attractive [135]. Nonintrusive appliance load monitoring (NILM) 

is a relatively new methodology that is used to estimate the load profiles of electrical end use 

equipment by monitoring the whole load [136]. The nonintrusive load monitor determines the 

operating schedule of the major electrical loads in an electrical system from measurements made 

only at the utility service entry. A nonintrusive load monitor is designed to monitor an electrical 

system that contains a number of devices which switch on and off independently [137].

All NILM systems are based on the discovery that, as electrical end use equipment is turned on 

and off, the total load changes in predictable ways, i.e. devices have characteristic signatures that 

make it possible to disaggregate the total load [136,138]. Pihala [136] defined an appliance signature 

as a measurable parameter of the total load that gives information about the nature and operating 

state of an individual component within the load. According to its internal circuitry, each piece 

of end use electrical equipment can be of resistive, inductive, or capacitive, predominance [139]. 

For example an electrically heated water bath is almost purely resistive while a motor can be 

predominantly inductive.

Inductive and capacitive loads affect the power consumption by shifting the current waveform 
with respect to the voltage waveform. In particular, capacitors delay the current with respect to 

the voltage while the opposite occurs for inductors. Considering that power is the multiplication 

of voltage and current, if voltage and current waveforms are shifted, the power transferred to 

the appliance is reduced. This effect is captured by the active and reactive power components, 

which, in mathematical terms, correspond to the real and imaginary parts of the impedance term 

respectively [139]. In general, appliances work through the real power, while the reactive power is 

due to the presence of storage elements in the appliance circuit, i.e. inductors or capacitors.

Conventional energy metering systems require separate submetering devices for every load of 

interest [140]. This type of submetering system requires a large number of sensors and a means 

of collecting the data from these sensors to a central location [135,141[. In order to alleviate the 

drawbacks of traditional intrusive submetering systems, nonintrusive load monitors that require 

a maximum of three current and/or three voltage sensors installed at the main electric panel of 

a consumer were proposed [135,137,142]. Lin et al. [142] reported that the NILM approach has 

several significant advantages including lower cost and ease of installation/maintenance.

Hart [137] observed that the primary application which has driven many NILM studies is 

monitoring for load research in the residential sector. Utility companies typically monitor hundreds 

of their domestic customers by installing a submetering system on up to eight major loads including 

electric heaters, water heaters, refrigerators and air conditioning equipment, see Figure 2.38. This 

data is then statistically averaged within different demographic classes and used for a range of 

purposes by many audiences, including load forecasters and appliance designers [137[.
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Figure 2.38 - Total domestic load, power versus time, adapted from |137]

2.4.2.1 Existing systems

Pihala |136] observed that within the literature covering nonintrusive load monitoring there is a 

natural dichotomy according to whether information about an appliances state change is continu­

ously present in the load as it operates, i.e. steady state signatures, or only briefly present during 

times of state transition, i.e. transient signatures. Since the early 1990’s researchers have proposed 
systems based on steady state, transient, and hybrid systems. In 1992, Hart jl37] proposed the 

first NILM system that examined only the steady state behaviour of loads. Within this study 

Hart [137] conceptualised a finite state machine to represent a single appliance where power con­

sumption discretely varied with each step change. The system proposed in this study performed 

well however there were limitations, for example, appliances with very small power consumption 

could not be identified and the system was also unable to distinguish between different loads with 

similar real power and reactive power consumptions [142,143[. Laughmann et al. [143[, Chang et 

al. [141], and Hsueh et al. [144] all provide commentary on the improvement opportunities that 

arose from this early NILM publication.

The earliest NILM application within the industrial sector was presented by Roos et al. [145] 

in 1994. The developed NILM used neural networks to recognise the status of industrial loads 

including fluorescent lights, electric heaters, and arc furnaces. This method, however, was com­

putationally intensive and relatively slow to produce accurate results [141]. In 1996 Robertson et 

al. [146] proposed a system that employed a wavelet transformation technique to classify transient 

behaviours for load identification. The system proposed by Robertson et al. [146] was significantly 

more expensive to implement than the steady state system described by Hart [137] as it required 

high resolution measurement devices to detect the transient behaviour of the loads [141[. The 

work of Cole and Albicki [147] focused on steady state load identification algorithms in 1998; the
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proposed system provided encouraging results but was limited by the fact that it required extended 

periods of time to accumulate real power and reactive power values [141]. More recently several 

authors have proposed new power signature analyses [143,148,149], load identification methodolo­

gies [150-152] and feature selection techniques [153,154] to more effectively disaggregate loads via 

NILM systems.

2.4.2.2 Steady state detection

Under the steady state approach to nonintrusive load monitoring, appliances are distinguished by 

their steady state power consumption alone [135]. Pihala [136] noted that these steady state signa­

tures are easier to detect than transient signatures; the sampling rates and processing requirements 

needed to detect a step change in power are far less demanding than those required to capture a 

transient event. The most common approach to steady state appliance recognition involves the 

utilisation of a signature space. Generally, observed step changes in real and reactive power are 

identified by their proximity to clusters in this signature space, see Figure 2.39.
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Figure 2.39 - 2-D steady state signature space, adapted from [143]

The steady state technique assumes different appliances exhibit unique signatures in the AP 

- AQ plane. Laughmann et al. [143] highlighted that this is not always the case, especially in 

industrial facilities where the number and variety of loads is greater than in a residential property. 

Laughmann et al. [143] identified a further limitation associated with the steady state approach; the 

system must wait until transient behaviour decays so that steady state values can be measured. The 

steady state approach can be expanded by including additional information obtained by examining 

the harmonic currents generated by appliances [137].

Virtually all appliances, with the exception of purely resistive loads, produce an assortment 

of harmonic currents [137]. For example, many motors have triangular current waveforms which
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contain significant third, fifth and other low order harmonics [136|. Laughman et al. |143] identi­

fied fluorescent lights as another example of a piece of typical end use equipment that generates 

high third harmonic currents. Hart |137| proposed that by using an appropriate sensor for the 

frequency range of interest, these harmonic values could be treated as steady state signatures on 

a par with the fundamental frequency signatures. By including harmonic components, the two 

dimensional signature space can be expanded to a three dimensional space facilitating a more 

effective discrimination between similar appliances, see Figure 2.40.

■ Incandescent light bulb turn-on
■ Incantiescent light bulb turn-off
• (Mmpiiter turn-on
• C’ompnter turn-off

Figure 2.40 - 3-D steady state signature space, adapted from [143]

2.4.2.3 Transient detection

Transient load detection takes advantage of information available immediately after equipment 

start up |155]. The transient behaviour of an electrical appliance is intimately related to the physi­

cal task that the load performs. Load classes performing different tasks are therefore distinguishable 

by their transient behaviour |137,141]. For example, the turn on transients associated with a per­

sonal computer and an incandescent lamp are distinct because charging capacitors in a computer 

power supply is a fundamentally different task than heating a lamp filament |143]. Figure 2.41 

illustrates two transients; one associated with turning on a personal computer, Figure 2.41(a), and 

the other for starting an induction motor. Figure 2.41(b).
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Figure 2.41 - Turn on transients (a) personal computer, (b) induction motor, adapted from [156]
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An electric motor driving a pump typically generates a long switch on transient while fluorescent 

lights have a long two step switching on transient [136]. Purely resistive devices do not generate 

transients when switching on. Many industrial motors have a starting coil which provides torque for 

starting but is then switched off automatically after a brief delay and this phenomenon can also be 

captured with a transient analysis. These transients have a flat character with a sudden step power 

drop to the steady state operating level [137]. Alternatively, other motors consume sudden large 

increases in power followed by exponentially enveloped decays lasting several seconds. According 

to Norford and Leeb [155], these decays are the electrical consequences of the shaft coming up to 

speed. Figure 2.42 illustrates the turn on transients of two different induction motors, it highlights 

the characteristic shape of an induction motor start up transient which dilates or contracts in both 

magnitude and time as a function of motor size [155|.

Figure 2.42 - Turn on transient waveforms (a) 160 hp motor, (b) 123 hp motor, adapted from [141]

2.5 Intelligent computation in manufacturing engineering

According to Mekid et al. [157], the future of manufacturing will see an increased proliferation of 

intelligent devices and sensors supporting the enhancement of manufacturing systems. Cannata 

et al. [158] predict that future manufacturing systems will be composed of autonomous entities 

provided with intelligent perception, reasoning, learning, and the ability to seamlessly interact with 

other system units. Systems of this nature will enable the creation of more flexible and effective 

production environments. There are two main driving factors behind the increased proliferation 

of intelligent systems, one is market driven while the other is technology pushed [158]. Within 

the manufacturing industry there is a drive towards mass customisation and variability which can 

be facilitated by reconfigurable manufacturing systems. The technology push results from the 

availability of low power, high performance electronic components which are boosting the creation 

of intelligent systems [158].

SOCR ADES, a European research project with the goal of providing a structured framework 

allowing the development of intelligent manufacturing systems began in 2006. The SOCR ADES

68



2.5. Intelligent computation in manufacturing engineering

framework supports the development of tools and methods that can achieve flexible, reconflgurable, 

scalable, and interoperable network enabled collaboration between decentralised and distributed 

embedded systems [158]. The research work of Mekid et al. [157], coupled with the findings of 

the intelligent production machines and systems (IPROMS) group suggest that the key techno­

logical manufacturing developments will focus on production automation and control. Mekid et 

al. [157] also identified five critical topics that must be addressed in order to enable the successful 

development of intelligent manufacturing systems:

1. Intelligent mechatronic production units

2. Intelligent sensor technology

3. Self diagnosis, tuning, and repair

4. Human machine interaction

5. Rcconfigurable manufacturing control

The design and development of intelligent sensors with embedded processing capabilities that 

can monitor applications and assess performance based on experience accumulated during learning 

periods is a key consideration of this research work. Teti et al. [159] reported that intelligent 

sensor technology is vital to developing .sophisticated manufacturing systems producing high quality 

goods. The deployment of advanced sensors permits information about process conditions to be 

relayed to the user enabling optimisation and enhanced control [157].

2.5.1 Machine tool status monitoring

Developing an understanding of the duration of time a machine tool spends in each operational 

state during processing has been identified as an important research area that can be progressed via 

the implementation of intelligent sensor technology [19,84]. Researchers have presented a variety of 

different perspectives and interpretations on the definition of machining states within the literature. 

Kalla et al. [160] presented a methodology that separates a machine tools power profile into three 

components; basic energy, idle energy, and tool tip energy, see Figure 2.43. The summation of all 

three types of energy. Equation 2.25, represents the total process energy consumption.

^total — ^basic * (ftasic) T ^idle * i^idle) 4" ^milling * {^milling')

where,

Etotai is the total process energy 

Phasic is the power during the basic mode 

fbasic is the total process time 

Pidie is the power during idle periods

ttdie is the total time spent during idle stages and milling stages

(2.25)
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Pmilling is the power during milling 

tmiiiing is the time which the process spends milling

Figure 2.43 - Determination of power characteristics and energy requirements of machine tools, 
adapted from [160|

Dahmus and Gutowski [84] also proposed a methodology that segregates the power profile of 

a machine tool into three discrete operational modes: idle mode, run-time mode, and production 

mode. During idle mode the machine tool is powered on and static. In run-time zones the machine 

tool is ready for production but not removing material, and finally the machine is in production 

mode when it is removing material. The study reported by Vijayaraghavan and Dornfeld [19] 

described a similar interpretation of operational modes however, Vijayaraghavan and Dornfeld [19] 

proposed a fourth mode of operation reserved for machine tool start up and shut down.

The Vijayaraghavan and Dornfeld [19] study analysed a simulated power profile from a 3-axis 

precision milling machine during the end milling of aluminium using a 2-flute carbide cutter. The 

power requirements were recorded during three different levels of spindle operation; idle (0 rpm), 

low (8000 rpm) and high (16,000 rpm). The resulting power profile. Figure 2.44, illustrates the 

sharp increase in power consumption during spindle accelerations, a key contributor to peak power 

demand in manufacturing facilities. Vijayaraghavan and Dornfeld [19] observed that power con­

sumption increased when the spindle was engaged at a higher rpm, and when there was material 

removal [19].
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Figure 2.44 - Machine states, adapted from [19]

A different perspective on machine states was proposed by Dietmair and Verl [92]. In this 

study an extensive number of machine states were proposed and the power requirements of each 

machine element was quantified during each state, see Figure 2.45. The methodology was proposed 

as a forecasting tool, however a key limitation of the Dietmair and Verl [92] approach was that it 

did not take account of acceleration effects; identified by Vijayaraghavan and Dornfeld [19] as key 

contributors to peak power consumption.
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Figure 2.45 - Power consumption of tool machine in different states, adapted from [92]

The research of Weinert et al. [161] progressed some of the ideas proposed in the research studies 

described previously with the development of the EnergyBlocks methodology. This methodology 

segregates a production process into individual operations that can be considered independently 

and works by matching energy consumption to operational state and time. Each operating state 

is defined as an EnergyBlock and represents the duration of the operation as well as the energy 

required [161]. A mathematical function is used to calculate the energy required for each Energy-
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Block, Peit), at a specific time t:

PB{t) = fmit)yt&[Tm-l,Tm] (2-26)

where:

■Pb(0 = Energy required for each EnergyBlock

The EnergyBlocks methodology integrates energy efficiency criteria with evaluation and de­

cision processes during production system planning and scheduling [161]. The most progressive 

component of this research is the fact that the EnergyBlocks framework allows the energy consump­

tion of a planned, not yet realised production process to be modelled by arranging EnergyBlocks in 

sequence, see Figure 2.46. Herrmann et al. [21] proposed a similar methodology to that of Weinert 

et al. [161] which used process chain simulation as a means to link machine movements and electri­

cal energy consumption. The end goal of the research work presented by Herrmann et al. [21] was 

to identify the most inefficient machine movements with a view to optimising the machine tools 

G-code and improving the energy performance.

Figure 2.46 - Power profile of a laser for plastics welding, adapted from [161]

In an attempt to overcome the difficulties that exist as a result of the closed architectures of 

machine tools Vijayaraghavan and Dornfeld [19] introduced the MTConnect standard for data 

exchange. MTConnect defines an interoperability standard for manufacturing data and a rules 

engine, complex event processing system that can handle data processing [19[. Within the MTCon­

nect system, data exchange is facilitated by an XML based standard which standardises machine 

tool data during data collection [19[. MTConnect is an open standard that addresses the need 

for interoperability and plug-and-play capability within the machine tool industry. An example 

application was presented by Diaz et al. [99] that used MTConnect to integrate multiple sensors -
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x/y/z position, speed, feed, NC information, and a power meter - to create a unified monitoring 

platform for a Mori Seki NV 1500DCG machining centre, see Figure 2.47.

Figure 2.47 - Unified MTConnect based machine tool monitoring system, adapted from [99]

MTConnect was also used in a study conducted by Deshpande et al. [162] that aimed to 

quantify the duration of time a machine tool spent in different operational modes. The Deshpande 

et al. [162] study required the user to input threshold values that allowed the smart energy sensor 

to identify off, idle, and in-cycle machine states. The study also relied on information obtained 

directly from the machine tool controller in order to infer status information. A fixed energy rate of 

10 cents per kilowatt-hour was included in order to allow the sensor to calculate the financial cost 

of the measured energy consumption. The Deshpande et al. [162] study reported strong results, 

however, the inference of machine tool status is only achievable by using a combination of sensory 

inputs.

The application developed by Chiotellis and Grismajer [163] used only power information in 

order to identify the operational status of a 3-axis CNC milling machine. The application is based 

on a combination of status-specific power value thresholds and the dynamic time warping similarity 

metric. The approach proposed by Chiotellis and Grismajer [163] uses low resolution data, 250ms - 

Isec, to identify the operating state and high resolution data, 1ms - 250ms, to perform basic process 

monitoring. Vikhorev et al. [77] built on the work of Chiotellis and Grismajer [163] with a study 

that attempted to identify the operational status of a series of machine tools in a major European 

automotive manufacturing facility. The study required the input of energy status threshold values, 

based on expert knowledge of the process, in order to infer state information. The threshold values 

defined for the test machine tool described in the Vikhorev et al. [77] study are: idling (0.6 - 1 

kW), waiting (3-8 kW), and producing (8 - 30 kW). The system reported positive results but
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was unable to accurately monitor rapidly occurring status changes. Pang et al. [164] presented an 

additional intelligent energy sensor that combined a Savizky-Golay filter with neural networks in 

order to classify the status of an injection moulding machine .

It is clear from the literature that there is an opening for intelligent sensors that can accurately 

infer machine tool status information and also identify machine tool component activations using 

only one sensor. In a recent CIRP keynote paper Teti et al. [159] observed that a combination 

of advanced signal processing techniques and artificial intelligence is required to design and apply 

the innovative sensing devices that are required to enhance future manufacturing systems. One 

of the most widely applied advanced signal processing techniques is pattern recognition, which is 

discussed in section 2.5.2.

2.5.2 Pattern recognition

Pattern recognition is a subject which links statistics, engineering, artificial intelligence, machine 

learning, computer science, and a number of other fields. The ultimate goal of pattern recognition 

is to extract patterns based on certain conditions and to separate one class from the others. The 
process of pattern recognition encompasses data collection, feature extraction and/or selection, 

classification, as well as the interpretation of results, see Hgure 2.48.

'lest

Figure 2.48 - Pattern recognition system, adapted from [165]

The literature suggests that the most natural framework in which to formulate solutions to 

pattern recognition problems is a statistical one that is capable of recognising the probabilistic 

nature of both the data being analysed and, of the form in which the results should be presented 

[166]. In the statistical approach to pattern recognition, each pattern is represented in terms of 

d-features and is viewed as a point in a d-dimensional space. The goal is to chose a minimal number 

of features that will allow pattern vectors belonging to different classes to occupy compact and 

disjoint regions in the d-dimensional feature space [167].

Nadler and Smith [168] defined features as functions of the measurements performed on a class
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of objects that enable that class to be distinguished from other classes in the same general category. 

Features are either selected or extracted from a measured data set. Feature extraction involves the 

extraction of certain attributes that are then used to map the original data to a feature space, in 

most cases a dimensionally reduced space, in which the data will be separable so that classification 

can be performed [167]. Feature selection is the process of identifying the most useful features from 

the recorded data. Jain et al. [167] described the problem of feature selection as follows: given a 

set of d features, select a subset of size m that leads to the smallest classification error. Essentially, 

effective feature selection will create an optimal feature space on which to perform classification.

2.5.3 Dimensionality reduction

The dimension of a data set is the number of variables that are measured on each observation. It 

is important to minimise the dimensionality of a pattern representation wherever possible for two 

reasons; measurement cost and classification accuracy [167]. Cunningham [169] noted that from 

a statistical perspective it is desirable that the number of examples in a training set should be 

significantly greater than the number of features used to describe those examples.

From a mathematical perspective, the task of reducing dimensionality can be stated as follows: 

given the n-dimensional variable x = {xi,X2,...,Xn), find a reduced dimensional representation, 

y = (yii 2/2, •••, yfc) with k ^ n, that captures the majority of the information in the original 
data. Dimensional reduction methods are typically partitioned into the two categories described 

previously; feature selection and feature extraction. Feature extraction methods are commonly 

separated with respect to their transformation properties, i.e. linear or non-linear [165]. Linear 

transformation techniques result in the components of the transformed variable being a linear 

combination of the original variables [170]. Non-linear transformations operate by either non- 

linearising linear methods, e.g. kernel PCA, or using manifold based approaches that attempt to 

preserve neighbourhood information, e.g. Isomaps. An overview of some of the most common 

extraction tools is summarised in Figure 2.49.
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Multi-dimensional 
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Neural I maps
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Principal component \ ✓^on linear independent 
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analysis
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Figure 2.49 - Dimensionality reduction tools, adapted from [165]
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According to Jain et al. [167], linear feature extraction techniques are significantly easier to 

implement than more recent non-linear methods and they achieve similar performance levels in 

many applications. One of the more frequently used pattern recognition techniques that finds 

application in manufacturing research studies is principle component analysis (PCA) [170].

2.5.3.1 Principle component analysis

Bishop [165] defined Principle Component Analysis as the orthogonal projection of a dataset onto 

a lower dimensional linear space, known as the principal subspace, such that the variance of 

the projected data is maximised. It represents the most commonly used feature transformation 

technique used in pattern recognition problems. TWo key mathematical concepts are central to 

principle component analysis; covariance matrices and mean vectors. The mean vector consists 

of the means of each variable and the covariance matrix consists of the variances of the variables 

along the main diagonal and the covariances between each pair of variables in the remaining matrix 

positions [165], In order to compute the covariance of two variables X and Y the following formula 

is used;

COV = S = - x)iYi - y) 
n — 1

(2.27)

where x and y represent the means of X and Y respectively. Once the covariance matrix has been 
calculated the eigenvectors and eigenvalues of this matrix must be found. In order to briefly explain 

eigenvalues and eigenvectors consider an n x ri matrix M, A can only be an eigenvalue of M if there 

exists a non-zero vector x, such that Mx = Ax. All of the eigenvalues and associated eigenvectors 

for the matrix M exist in the characteristic equation which takes the following form [171];

|A/ — A/j = A” -I- mi A" ^ -F m2A" -I- ... -I- ?n„_iA -I- m„ (2.28)

The eigenvector with the largest eigenvalue is known as the first principle component and the 

eigenvector with the second highest eigenvalue is the second principle component and so on. Only 

the eigenvectors corresponding to the M largest eigenvalues are retained and the input vectors 

x”, are projected onto the eigenvectors to give the components of the transformed vectors x" in 

the M-dimensional space [166]. Duda et al. [172] noted that in many cases there are only a small 

number of large eigenvalues, and this implies that M, the number of principal components chosen, 

is the inherent dimensionality of the subspace governing the signal, while the remaining Z) - A/ di­

mensions, where D represents the dimensionality of the d x d covariance matrix, primarily contain 

noise. Figure 2.50 illustrates this process graphically for the case of a 2-dimensional problem. In 

this case the maximum variance would be retained by projecting onto the first eigenvector ui.
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Figure 2.50 - Schematic illustration of PCA applied to 2-dimensional data, adapted from |166|

Within the literature researchers have applied PCA in order to solve a multitude of problems 

within the manufacturing sector. Tsung |173] presented a study focused on the simultaneous 

monitoring and diagnosis of automatically controlled processes using PCA. Further to this, Ilalligan 

and Jagannathan |174] developed a fault isolation and prognosis tool based on PCA; the developed 

tool was then applied to a 0.5 horsepower centrifugal water pump in order to identify normal and 

abnormal operating scenarios.

2.5.4 Classification frameworks

Classification is the final part of the pattern recognition process. During classification a label is 

assigned to an unknown object according to some representation of the objects properties derived 

from sensed data. A typical classification tool requires the input of a d-dimensional feature vector, 

X, composing a number of features extracted from the original sensed data. This feature vector is 

then used to assign the object to one of the m designated classes Ci, C2, •••, Cm-i, Cm- Duda 

et al. [172] reported that the ideal class is a set of similar objects having a selection of important 

common properties. According to Jain et al. |167], the task of choosing the most appropriate 

classifier is a difficult one and it is generally the most readily available or best known classifier 

that is chosen for a specific application. The following table includes a sample of some of the more 

commonly applied classification frameworks.

Method Property Comments

Nearest mean classifier
Assign patterns to the

nearest class mean

Almost no training

needed; fast testing

k-nearest neighbour
Assign patterns to the

majority class
Asymptotically optimal

Fisher linear discriminant
Linear classifier using

mean square error
Simple and fast

Table 2.5 - Overview of classification methods, adapted from [167]

77



2.5. Intelligent computation in manufacturing engineering

2.5.4.1 k-nearest neighbours

K-nearest neighbour classification is a member of the family of memory based classification tools, 

i.e. it relies on an exhaustive search and therefore all of the training data is required at run 

time [167]. In accordance with the work of Elkan [175], let K = {ri, r2,rm} be a set of m 

reference points and let Q = {91,92, •••, 9n} be a set of n query points in the same space, K. The 

k-nn search problem can then be described as a a search for the k nearest neighbours of each query 

point Qi G Q in the reference set R given a specific distance metric [175]. Figure 2.51 illustrates 

the k-nn problem with k = 3. The blue circles correspond to the training/reference data and the 

red cross represents a query point.

Figure 2.51 - 3-nn illustration

According to He and Wang [176], in general the choice of k is non critical. Larger values of 

k reduce the effect of noise but also make boundaries between different classes less distinct. The 

widely accepted best practice is to try several different values of k and choose the value which gives 

the best cross validation [176]. The one obvious disadvantage of using a k-nn search algorithm for 

classification is the computational load that results from the fact that all data points are required at 

run time [175|. Elkan [175] reported that in studies where the dimensionality of the data is greater 

than twenty, the method is very slow however, in applications where the effective dimensionality 

of data is low the method performs very well.

Examples of studies that have implemented k-nn classification within the manufacturing in­

dustry include the work of He and Wang [176] which used the k-nn rule to detect faults during 

semiconductor manufacturing processes. This study used the k-nn rule to classify unlabelled sam­

ples as either normal or one of a number of known faults and reported strong results in an industrial 

application [176[. In a study reported by Li and Liao [177], the k-nn rule was used to detect tool fail­

ure in a face milling operation. The study investigated the effectiveness of a k-nn based procedure 

to recognise tool failures based on AE-signals during the milling of high chromium materials [177].
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2.5.4.2 Measures of dissimilarity

Several techniques that find application in pattern recognition are based on similarity between 

objects, for example the nearest neighbour classification method described above, multidimensional 

scaling, and cluster analysis. For a function calculating the similarity between objects A and B to 

qualify as a distance metric. Bishop [166] stated that the following must be true;

1. Symmetry - D(x,y) = D{y,x)

2. Constancy - D(x,x) = 0

3. Positivity - D{x, j/) = 0 if and only x = y

4. Triangle inequality - D{x, y) < D{x, z) + D{y, z)

A variety of metrics have been proposed to assess the level of dissimilarity between numeric 

variables and generally the choice of a particular metric is dependent on the application. Some of 
the most common metrics are described here.

Euclidean

The contours of equal Euclidean distance from a point are circles in two dimensions. According 

to Jain et al. [167], Euclidean distance is the most commonly used distance metric in k-nn based 

studies within the literature.

^Euclideani^^ y} (j y^y (2.29)

Manhattan

The Manhattan distance, also know as the box-car, city-clock, or absolute value distance uses a 

distance calculation based on a grid [178]. The contours of equal distance from a point using the 

Manhattan distance are diamonds in two dimensions. The Manhattan distance is computationally 

less expensive than the Euclidean distance and may find application in studies where speed is 

critical.

^Manhattani^ ^ 1/) ^i=l I Vil (2.30)

Chebyshev

The Chebyshev distance, also known as the maximum value distance, primarily finds application 

in studies where the execution speed is crucial and the time required to calculate the Euclidean 

distance is unacceptable [178]. The contour lines of equal Chebyshev distance from a point are 

squares in two dimensions.

^Chebyshev^^iy) 1/i I (2.31)
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Figure 2.52 illustrates the contours of equal distance in a two dimensional space for the Euclidean, 

Manhattan, and Chebyshev distance metrics.

Maiiliiittan
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Figure 2.52 - Contours of equal distance, adapted from |178]

2.6 Summary

It is clear that the consumption of energy is a key enabler of economic growth and it represents one 

of the core components of modern life. The International Energy Agency has predicted that our 

dependence on energy will continue to grow over the next twenty years and although international 

governments are devising methodologies to ensure renewable energy sources increase their share 

of the energy mix, fossil fuels will remain to be a significant contributor. This combination of 
increasing energy demand and reducing energy supply will create unique challenges that must be 

addressed globally. As a direct result of these energy challenges, increasing energy efficiency and 
reducing the environmental impact of production have become major technological and political 

necessities. This need for change has seen a significant expansion in the number of international 

research journal publications that aim to address all aspects of energy consumption within the 

manufacturing sector since the year 2000; Figure 2.53 highlights this rising interest in energy 

conscious manufacturing.
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Figure 2.53 - Energy efficiency journal publications
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Researchers from Ireland (Naughton [64]), the U.K. (Rahimifard et al. [60]), Germany (Her­

rmann et al. [21] and Hesselbach et al. [62]), and also the USA (Vijayaraghavan and Dornfeld [19]) 

are publishing studies that address topics including the power consumption of technical building 

services and the energy efficient optimisation of manufacturing equipment. These journal papers, 

along with numerous books, governmeutal reports, magazines, and other sources have created an 

extensive manufacturing energy efficiency literature. Researchers have identified numerous areas 

where opportunities to improve energy performance exist however studies have also highlighted 

the scepticism that remains within the manufacturing sector around the effectiveness of energy 

efficiency projects which continues to hinder their implementation [49,62].

One key pillar of sustainable production is the minimisation of energy and material waste. In 

order to minimise energy waste, it is first necessary to understand consumption patterns. Accord­

ing to the literature, the most effective way to obtain an understanding of facility wide energy 

consumption is through online continuous process-level submetering [120]. Although the quantifi­

cation of energy consumption has been identified as an important task there is scant attention given 

to the process of industrial energy metering within the literature. The work presented by Kara et 

al. ]59] represents the most comprehensive study, however there is space within the literature for 

studies which support and develop the observations made by Kara et al. [59].

An additional area that is not comprehensively addressed within the literature relates to the 

development of energy metering system implementation strategies within manufacturing facilities. 

Studies that can effectively describe the installation of the metering system infrastructure, the 

interpretation of the acquired data at each hierarchical level, and the generation of robust energy 

performance indicators could add significant value to the research area.

The design and development of intelligent sensors with embedded processing capabilities that 

can monitor applications and assess performance based on experience accumulated during learning 

periods has been identified as a crucial component of future manufacturing systems. In addition 

to this, the challenges associated with accurately measuring energy consumption at a machine tool 

component level have been identified as a key issue for the CIRP Energy and Resource Efficiency 

and Effectiveness (EREE) focus group ]179]. There is a related opening in the literature for contri­

butions that aim to deploy intelligent energy sensors in order to monitor the energy performance 

and operational status of machine tools.
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Chapter 3

Characterising the electrical energy consumption of manufac­

turing process chains

3.1 Complex manufacturing environments - test facility overview

The objective of the industrial case study was to characterise the electrical energy consumption 

of a complex manufacturing facility. The investigations examined the multiscale aspects of energy 

consumption ranging from an entire facility down to an individual machining process. Under the 

United Nations International Standard Industrial Classification (ISlC) framework the organisation 

is a class 3250 facility specialising in medical device manufacturing. Energy is required for numer­

ous processes performed on site ranging from the casting of parts through to finishing processes 

including grinding and polishing, see Figure 3.1.

Receipt of raw 
material

^ Casting

' Electricity 
' Compressed air 
' Natural gas 
' Water

I Machining |

■ Electricity 
' Compressed air 
' Water 
■Oil

Finishing >
Product
dispatch

Cleaning

■ Electricity
■ Compressed air 
' Water
■Oil

■ Electricity
■ Water

Figure 3.1 - Manufacturing cycle

3.1.1 Identification of system boundaries

Large manufacturing facilities are connected to the national grid, a 6,500km network of high voltage 

transmission stations and power lines, at a medium voltage. In Ireland, a small number of the 

largest industrial consumers receive electricity at a higher voltage, approximately 20 kV, due to 

the type and quantity of operations performed on site. Electricity is received at a main incomer 

before it is transformed down to the required voltage. Electrical energy is then distributed to a 

facilities end use equipment via a number of distribution boards, see Figure 3.2.
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3.2. Development of energy measurement strategy

400 kV/220 kV/110 kV 38 kV/20 kV/10 kV

Figure 3.2 - Electricity distribution in case study facility

Electrical energy is consumed during each stage of a products life cycle, this research study 

concentrates on the electricity consumed during the manufacturing stage of the life cycle. The 

energy consumed by the sourcing, processing, and transport of raw materials is not considered and 

neither is the energy consumed during product distribution, end use, and disposal. Figure 3.3.

1 Boundary of | 
I this research study |

Figure 3.3 - Boundaries of study

3.2 Development of energy measurement strategy

In an effort to assess the energy consumption of the test facility in a systematic manner, a two 

stage energy measurement strategy was devised. Phase one of this energy monitoring strategy 

aimed to develop a macro level understanding of the energy requirements of the test facility. This
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first phase was performed using a remote power meter and provided a quasi-static picture of 

energy consumption within tlie facility. The second stage of the monitoring campaign involved the 

installation of fixed metering devices capable of relaying continuous data streams to a custom built 

energy management platform.

The completion of both phases of this monitoring project were needed in order to achieve the 

required level of energy transparency to facilitate the development of energy performance indicators 

capable of continuously monitoring the overall energy performance of the test facility. The use 

of submetering in order to obtain transparency around the energy demands and consumption 

patterns existent within manufacturing facilities has been identified as an essential energy efficiency 

improvement enabler in research studies reported by Kara et al. [59], Herrmann et al. [15], and 

Wang et al. [120].

3.3 Phase one

The first step of the initial investigation consisted of a site walkthrough and an assessment of 

utility bills. The completion of this phase of the study facilitated the formulation of fundamental 

energy performance indicators that allowed high level energy performance to be monitored on a 
monthly basis. During the site walkthrough name plate information from each piece of equipment 

was collected and stored in a database. The information collected related to the electrical rating of 

the equipment and also its electrical configuration, single phase, three phase star/delta etc.,. Only 

major electrical system components including air compressors, extraction fans, and large pumps 

were considered at this stage of the assessment; this allowed an approximate breakdown of total 

site energy to be developed.

3.3.1 Measurement equipment

A remote power meter was used in conjunction with a small number of previously installed fixed 

energy meters to complete the first phase of the monitoring study. The remote power meter used 

in this study was a Fluke Powerlogger 1735, Figure 3.4. The meter has an 8 channel configuration, 

with four channels used for monitoring current - 3 phases and 1 neutral - and the remaining four 

channels used for voltage measurement - again 3 phases and 1 neutral. The meter can accurately 

measure all single phase, three phase wye, and three phase delta wired equipment. The Fluke 

Powerlogger 1735 measurement device has a broad range of functions; it is capable of measuring 

basic energy consumption but it can also monitor more complex events like voltage sags/surges 

and can uncover harmonic issues that could potentially disrupt or damage critical machinery. The 

meter has a sampling rate of up to 10.24 kHz used to examine harmonics; at its maximum reporting 

rate the meter will write three current and three voltage measurement values every 0.5 seconds to 

a measurement file; a minimum, average and a maximum.
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Voltage Measurement
Measurement Range: <830 V ac 
Resolution: 0.1 V

Current Measurement 
Measurement Range: 1-150 A 
Resolution: 0.01 A

measurement measurement

Figure 3.4 - Fluke powerlogger 1735

3.3.2 Fundamental energy performance indicators

The primary goals of energy performance indicators (EnPI’s) are to enhance energy consump­

tion understanding, increase energy efficiency, and decrease energy intensity. At a national level 
energy performance indicator’s have found application as useful instruments for measuring the 

progress of sectoral CO2 emission reduction efforts [122]. Examples of some existing high level 

EnPl frameworks are the Global Reporting Initiative (GRI), World Business Council for Sustain­

able Development (WBCSD), and the International Organisation for Standardisation ISO 14031 

environmental management standard.

Although numerous studies have explored the use of EnPPs at national level, scant attention has 

been given to the concept of designing and implementing EnPI’s within a single facility [180]. The 

most widely applied facility level EnPI is Specific Energy Consumption (SEC) or Energy Intensity 

(El); defined by UNIDO [181] as the amount of energy required in order to produce one unit of 

economic output - in this case kWh/unit shipped. The total electrical energy consumption and the 

number of units shipped from the test facility in this study have been recorded over the previous 

six years. The SEC has been calculated each year and the results are included in Figure 3.5.

Specific energy consumption is calculated using the total facility electrical energy consumption, 

including both value add and non value add operations. This implies that if variables unrelated to 

production experience change, the SEC will change accordingly. Using this metric as a high level 

energy performance indicator is useful as it gives one single value that summarises the sites overall 

energy efficacy however, it is important to exercise caution when applying this statistic as a result 

of the issues outlined above.
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Figure 3.5 also includes summary information on yearly milestones that have improved the 

overall energy efficiency on site. Specific energy consumption does not decrease each year because 

other events within the facility - such as the expansion of office operations - negate the impact 

of improvement projects. If more advanced indicators are to be developed and implemented it is 

necessary to disaggregate the total facility load in accordance with EN 50001 |44|.

2006 2007 2008 2009 2010 2011

EN 50001
Research collaborations 

16001 accreditation
--------- Innovation centre opened
Expanded green principles

-Energy efficiency prioritised

Figure 3.5 Specific energy consumption - kWh/unit; yearly energy milestones included

3.3.3 Disaggregating total facility load

During phase one of the investigation over 50 individual pieces of equipment were analysed. The 

power meter was connected to the machine as described in Figure 3.4 and the meter was then set 

to record a value every ten seconds for a period of twelve hours. Table 3.1 includes a sample list 

of a selection of the equipment that was investigated as part of this phase of the study.

No. Name Average power Note

1 Dust extraction unit 1 34.98 kW Figure 3.6

2 Coolant system supply pump 4.15 kW -

3 Air handling unit 6 supply 31.88 kW Figure 3.7

4 Air handling unit 6 return 4.45 kW -

5 Compressed air unit 2 144.95 kW -

Table 3.1 - Sample of monitored equipment

Figure 3.6 illustrates the recorded power profile from one of the facilities dust extraction units

87



3.3. Phase one

and the simplified operational sequence. The dust extraction system removes particulate matter 

from certain machining processes in order to maintain air quality and enhance operator safety. Sand 

blasting, grinding, and polishing are examples of operations requiring dust extraction within the 

test facility. Although extraction is only required during and immediately after material removal, it 

is constantly supplied to each machine. The primary power consuming component of the extraction 

system analysed here is the large extraction fan that maintains the air velocity required in order 

to keep the dust particles in suspension until they reach the collection point. The power profile is 

essentially constant which is to be expected considering the fan is driven by a fixed speed motor. 

Figure 3.6 also illustrates the meter connection process in addition to the dust extraction units 

location within the facility’s electricity distribution system.
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Figure 3.6 - Dust extraction fan power profile

Figure 3.7 illustrates the recorded power profile from one of the facilities air handling units 

(AHU); integral parts of the facilities heating, ventilation, and air conditioning system. The main 

purpose of each AHU is to circulate and condition air that is used to maintain the appropriate 

temperature and humidity in both manufacturing and office areas. Each air handling unit has two 

fans; one for supply and one return. The power profile included in Figure 3.7, alongside the meter 

connection process and the distribution system location is for a supply fan.

Completing a similar analysis on all of the key electrical system components and collating 

the results, allowed a preliminary energy consumption breakdown pie chart to be developed, see 

Figure 3.8. This preliminary breakdown provides a first perspective on which operations are most 

significant in terms of energy consumption.
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Figure 3.7 Air handling unit 6 supply fan power profile
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Figure 3.8 - Electricity consumption in case study facility - 48 hour measurement interval

3.4 Phase two

The second phase of the energy monitoring strategy involved the design, specification, and instal­

lation of a fixed metering system capable of continuously relaying data to a custom built energy 

management platform. The installation of a fixed energy metering system facilitates the develop­

ment of an accurate energy consumption breakdown and also allows more advanced process level 

energy performance indicators to be established [58].
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3.4.1 Energy metering installation strategy

In order to ensure that measurement devices were installed at all of the appropriate locations within 

the test facility, a metering installation strategy was developed. The installation strategy, which is 

applicable to any manufacturing facility, is a number of sequential steps ensuring an effective and 

cost efficient metering system is installed. Thiede et al. [58] observed that the need to maximise 

energy transparency must be weighted against the level of investment required for acquisition and 

installation as well as operating costs for continuous evaluation and maintenance.

The first phase of the metering implementation strategy is to install metering devices at each 

of the main electrical system points, level 1 components; site incomer, transformers, and also 

distribution boards. Beyond these high level electrical points, all significant energy users, level 2 

components, identified in accordance with state-of-the-art European energy management standards 

must be metered. A basic decision support tool is then required to effectively select the end use 

equipment, level 3 components, requiring fixed measurement devices, see Figure 3.9. The selection 

criteria are as follows;

1. Equipment with static power consumption, i.e. a kW demand not more than 3(t from the 

mean during the screening test, over 20 kW require the installation of a metering device.

2. Equipment with an average power consumption greater than 5 kW and a dynamic power 
profile, i.e. a kW demand outside of the 3cr limit during the screening test, require the 

installation of a metering device.

Figure 3.9 - Energy metering implementation methodology

The test facility in this study required a flexible metering solution that could quickly and
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easily adapt to the movement of equipment to different locations on the plant floor. The variables 

required from the meters were kW, kWh, and power factor information to feed into the existing 

building management system (BMS). The metering system needed to be capable of integrating 

with the pre-existing quality and site management systems. The meter that provided the optimum 

solution for the given application from a cost, functionality, installation, and support standpoint 

was the Episensor ZEM-61 wireless three phase electricity monitor. Figure 3.10.

&
Measurement range 
Current: 0.1 A - 6 kA 
Voltage: 75 V - 470 V AC
Wireless range 
up to 300 m

Multiple parameters 
kWh, PE. V, I. kVA & more

ZEM-61--

ZEM-61--

ZEM-61 -1-------  tWireless^_
sensor 

network *

Enterprise systems

Energy management 
software

Data export

Figure 3.10 Episensor ZEM-61 three phase electricity monitor

Each ZEM-61 meter sends kW, kWh, and power factor information wirelessly, using 802.15.4 
(Zigbee), to a SiCA gateway which is then linked, via ethernet, to a SiCA server that communicates 

directly with the existing BMS. In accordance with the metering implementation strategy, meters 

were installed at the main incomer and all of the distribution boards. Measurement devices were 

also installed at each significant energy user, including air compressors, chillers, extraction fans, 

etc.,. An example of some of the results obtained during the level 3 screening investigation are 

included in Table 3.2.

Operation Type Power Profile Avg. Power (kW) Install Meter

Milling Dynamic 7.42 Yes

Coolant pump Static 9.87 No

Sand blasting Dynamic 2.84 No

Extraction fan Static 34.26 Yes

Cleanline (large) Dynamic 15.31 Yes

Table 3.2 - Sample of screening investigation results

From a systems integration perspective, the metering system combined seamlessly with the 

existent quality and management structures on site. The newly installed energy metering system 

provides a level of energy consumption transparency that is typically only available in research 

labs and facilitates the use of statistical methods to analyse and forecast past, present, and future 

energy consumption.
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3.4.2 Enhancing energy transparency

Herrmann et al. [15| observed that the temporal resolution of the data coming from the energy 

metering system controls the level at which indicators can be implemented. Operating at its 

maximum resolution the metering system described in the previous section outputs data every 

fifteen minutes. Figure 3.11 illustrates the power consumption profile of a sample month at four 

different temporal resolutions.
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Figure 3.11 - Temporal resolution of energy metering system data

Assessing data over different time scales at multiple temporal levels facilitates a holistic analysis 

of energy consumption [19]. At a yearly and monthly resolution long term trends and seasonal 

variation have been observed; this type of information allows the most energy intensive periods of 

the year to be identified. At a weekly and daily resolution medium term trends can be observed. 

The normal variation throughout a working week and the baseline energy demand have been 

identified at this level. Accurately calculating a facility’s maximum energy demand is also possible 

at this resolution, this has allowed the organisation to optimise their maximum import capacity 

(MIC) agreement with the energy supplier, achieving significant savings.

At an hourly and fifteen minute resolution daily trends can be observed. The typical daily 

schedule from office start up, break times, and major equipment operation has been observed here. 

This provides an opportunity to micro manage the facility from an energy perspective and optimise
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the production schedule. Optimising production schedules from an energy perspective has been 

identified as a viable energy performance improvement method by researchers including Vikhorev 

et al. [77], Pechmann and Schoeller [80], and Duflou et al. [9], Figure 3.12 illustrates the different 

information and trends that can be identified by analysing data over a variety of time scales.

©

©

Figure 3.12 - (a) Total power consumption for a three month period; clear weekly trends are visible; 

(b) Total power consumption data for one week in .July; weekly start up, daily patterns, and weekly 

shut down visible; (c) Individual daily events that can be identified and analysed.

3.4.3 Advanced energy performance indicators

Although it has been illustrated that useful conclusions can be drawn from analysing the total 

power consumption of a manufacturing facility, there are limitations. In order to further improve 

the level of information available it is necessary to analyse each significant energy user (SEU) 

individually. Vikhorev et al. [77] reported that implementing energy management methods at the 

factory floor level is only possible if energy consumption is continuously monitored. Vikhorev et 

al. [77] also reported that the identification and monitoring of SEUs is a critical component of any 

attempt to develop holistic energy efficiency improvement strategies. The previously described 

energy metering infrastructure has facilitated the disaggregation of total facility load into SEUs. 

A production correlated indicator, focusing on compressed air, and an environmentally correlated 

indicator focusing on chilled water are now discussed.
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Compressed air

Compressed air is responsible for approximately 10% of the total energy consumed in the industrial 

sector [15]. Within the test facility compressed air is responsible for approximately 15% of the 

facility’s energy load, and is used for a number of operations including cleaning and purging. 

The compressed air requirements are met by one variable speed compressor and three fixed speed 

compressors. The fixed speed compressors operate in a duty-standby cycle with one fixed speed 

compressor always in operation to satisfy the base load during periods of production. The variable 

speed compressor is used to fulfil the additional dynamic compressed air load. Figure 3.13 illustrates 

the total facility compressed air requirements for a sample month and also the energy requirements 

of each individual compressor over a one week period.
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Figure 3.13 - (a) Total compressed air system demand for a sample month; (b) Power consumption 

for each of the four air compressors over a seven day period

In addition to the electrical power requirements of the compressed air system, the total com­

pressed air flow is also continuously monitored. By recording two compressed air variables the 

performance of the system can be robustly monitored in a near real-time environment. Regressing 

the compressed air system flow rate against the associated power consumption yields a strong cor­

relation, = 90.9%. Monitoring the flow rate and associated power consumption at a variety of 

system loads on a periodic basis allows the overall system condition to be assessed, see Figure 3.14. 

An energy performance indicator of this form ensures that the compressed air system is operating 

optimally and minimises energy wastage.
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It is important to understand that the overall efficiency of the compressed air system is strongly 

influenced by the running order of the air compressors. In particular, the kWh/in'^ metric depends 

on the operational level of the variable speed compressor relative to the total compressed air load. 

In order to minimise the energetic impacts of compressed air suprply it is critical to develop sophis­

ticated control structures that ensure the optimal combination of fixed speed and variable speed 

air compressors are being used. Figure 3.15 highlights two important compressed air variables, the 

proportion of the total compressed air requirement that is being serviced by the variable speed 

compressor (%VSD) and the kWh/m^ statistic, over a one week period. Figure 3.15 illustrates 

how the kWh/m^ metric spikes when the compressed air demand increases above the threshold 

that one air compressor can supply. During these short periods, the compressed air system is at its 

least efficient. The results included in Figure 3.15 provide another insight into energy performance 

that is only possible as a result of the structured energy measurement approach proposed in this 

research study.
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Figure 3.15 - Compressed air system efficiency (kWh/m^) and %VSD
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Chilled water

Chilled water is used within the facility as a coolant for the air conditioning system. As the 

ambient temperature within the facility increases, the chilled water system consumes more energy 

in order to maintain the appropriate temperature. Similarly if the ambient temperature decreases, 

the chilled water system requires less energy in order to maintain the appropriate temperature. 

Assessing the chilled water power consumption in conjunction with the ambient temperature it is 

possible to assess the effectiveness and performance of the system continuously, see Figure 3.16.

R^= 71.5%

3.4.4 Energy performance indicators as forecasting tools

Statistical analysis has been used to analyse previous data in order to locate trends and forecast 

future needs for many years. Techniques including time series analysis, trend analysis, adaptive 

filtering, moving averages, and regression find application as statistical forecasting tools. In this 

study a multiple linear regression analysis was performed; the aim was to predict the energy 

consumption of a future month, based on the energy data collected from the two preceding months. 

Throughout a typical year a number of variables effect the overall energy consumption including 

the level of production and seasonal weather effects.

Considering only the total power consumption at an hourly rate over a three month period a 

multiple linear regression equation was developed. This equation was able to accurately predict 

the power consumption of monthly i based on the power consumption of the two preceding months, 

monthjv-i and month;v_2. The use of two preceding months as predictor variables provides enough 
input data to the model to ensure that it accounts for short and medium term variation, including 

seasonal change, see Equation 3.1. Within the model each month is represented by four seven day
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3.5. Mapping value stream energy requirements

weeks and this allows for comparisons between months of different lengths.

Mn = -20.8 + 0.0926A/iv-2 + 0.954A;a,_i; (3.1)

Applying the model to an unseen data set, in an attempt to verify its robustness yielded the 

following results, Figure 3.17.

<f)

time

April------ May------ .June------ July(measured)------ July(predicted) ■

Figure 3.17 - Regression analysis of hourly power consumption (a) data used for model development 
(b) using model for prediction

The forecasting approach proposed here is a basic two point autoregression. There is scope here 

to develop and refine the proposed approach, for example, a moving average based autoregression 

could be used. A more sophisticated approach that attempted to predict each of the variables that 

contribute to the total electrical energy consumption could also be developed. In this case, more 

complicated models do not necessarily guarantee more a accurate prediction of energy consumption 

and this is due to the inherent dynamics and uncertainty that characterise manufacturing facilities. 

The uncertain nature of weather, building occupancy levels, and production schedules make the 

task of developing reliable predictive models a challenging task.

3.5 Mapping value stream energy requirements

A variety of different approaches have been taken to the task of quantifying and optimising value 

stream energy consumption, including simulation |11,21|, planning |161], modeling [118], coordi­

nating building services [62], and mapping process flows |182]. One of the most contemporary
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3.5. Mapping value stream energy requirements

approaches to optimising value stream energy consumption involves empowering machine tool 

operators with the authority to alter the production schedule in order to make the best use of 

resources and time [77], The test facility analysed in this work produces a variety of products, all 

of which are manufactured in one of five value streams. One of the value streams was selected for 

an in-depth analysis; the chosen value stream produces two product lines. The two products pass 

through different processing steps and also require different levels of cleaning and inspection. In 

order to obtain a better understanding of the energy requirements of the product A and product 

B value streams a process by process analysis was performed. The process chains for product A 

and product B are included in Figure 3.18 and Figure 3.19.

Figure 3.18 - Product A value stream
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Figure 3.19 - Product B value stream
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Each testing period consisted of three complete processing cycles, during this time the ma­

chines power profile was measured and recorded. The research studies of Hesselbach et al. |62| 

and Gutowski et al. [79] identified the ability to segregate the two types of machine tool power 

consumption - fixed and variable - as a key benefit of machine tool power profiling. The fixed 

component, that remains constant once the machine is powered on, is the result of keeping the 

machine in a an operational state whereas the variable component results from of all of the machin­

ing operations required to manufacture products. Figure 3.20 illustrates the energy requirements 

of each process required to manufacture product A and product B. The total kWh required for 

each product was calculated after the complete process chain was monitored and this allowed a 

comparison to be performed, see Figure 3.21.

Figure 3.20 - Process power consumption
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Figure 3.21 - Product A and Product B, kWh/part
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The larger number of steps required for product B is evident from Figure 3.20 and another 

interesting issue that is highlighted here is the large energy consumption of non value adding 

operations including inspection and cleaning. This finding supports the assertions of Duflou et 

al. [9] who previously identified technological change and process substitution as methods that 

can yield significant environmental gains. The results included thus far in this section only take 

account of the energy consumed directly by each process, there is no consideration of supporting 

services, lighting, or HVAC.

3.5.1 Quantifying the total energy requirements of machining

Figure 3.22 describes the machine tool energy quantification framework that allows the complete 

energy requirements of a machine tool to be calculated. Gutowski et al. [79] observed that holistic 

quantification frameworks are required due to the fact that the energy required to perform the 

primary task - cutting metal by plastic deformation - only accounts for a small portion of the 

overall machine tool energy consumption.
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Figure 3.22 - Quantification of total machine energy consumption

The framework presented here accurately quantifies the total energy requirements of an individ­

ual machine tool accounting for supporting services, overheads, and the energy consumed directly 

by the machine tool. This energy quantification framework is based on empirical data as opposed 

to the theoretical data described in previous research studies [60,110[. An additional novel aspect 

of the framework proposed here is the use of the machine tools physical footprint as a means to

100



3.5. Mapping value stream energy requirements

allocate the energy consumed by overheads.

Machining and machine tool services power consumption

The sample machine tool was a Mazak FH-4800 milling machine. This machine is used to perform a 

large number of operations on the workpiece including drilling, milling, tapping and polishing. The 

electrical load drawn by each Mazak machine is heavily dependent on the machining state. The 

development of an understanding of the quantity of energy a machine tool consumes in different 

operational states has been identified as an important research area |19,84). Research teams led 

by Kalla et al. [IGO] and Dietmair and Verl |92] have presented a variety of different perspectives 

and interpretations on the definition of machining states within the literature. The power profile 

for a typical batch, consisting of twelve identical parts, is included in Figure 3.23 showing both the 

maximum and average machine tool energy consumption.

12mm roughing Drilling operations 6mm finishing

Figure 3.23 - Milling machine power profile

In addition to the energy consumed directly by the Mazak during processing there are addi­

tional pieces of support equipment that facilitate the milling operation. According to Duflou et 

al. [9] it is necessary to quantify the energy consumed by auxiliary support equipment in order to 

accurately determine the overall energy requirements of a unit process. Each Mazak is linked to a 

centralised coolant distribution system. The coolant system requires two large pumps, operating 

on a duty/standby schedule, to distribute the coolant throughout the plant. Coolant is used to 

enhance cutting performance and maintain acceptable interface temperatures between the machine 

tool and the workpiece before it is filtered at the base of each machine and returned to the coolant 

reservoir by another pump.

In order to allocate a proportion of the coolant systems electrical consumption to a single
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3.5. Mapping value stream energy requirements

machine the overall consumption was recorded. The centralised coolant system feeds eighteen 

similar machines, therefore, the supply pump’s power consumption was divided equally between 

each consumer; giving a per machine value of 0.230 kW. Each machine also has its own coolant 

return pump which sends the used fluid back to the centralised coolant reservoir. The power profile 

for one of the coolant return pumps is included in Figure 3.24; the average electrical load is 0.630 

kW. The total electrical load per machine, resulting from the supply of coolant is therefore 0.860 

kW.
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Figure 3.24 - Coolant return pump
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For a work environment to be considered safe, it must be adequately illuminated, maintained at an 

appropriate temperature, and sufficiently ventilated. Numerous researchers have provided compre­

hensive coverage on the energy requirements of industrial lighting [73], and HVAC installations [71]. 

Attributing a certain percentage of the electricity consumed by the facility overheads to a certain 

process or process chain is possible through the use of a suitable metric; within the framework 

proposed here, the consumption of all utilities is described in terms of a discrete measurable unit 

- kWh/m^. The light fittings that illuminate the machining cell containing the Mazak FH-4800 

milling machine are 55 Watt fluorescent tubes. There are 24 of these light fittings covering an area 

of approximately 215 m^, therefore 6.15 x 10“^ kWh’s are required per square meter each hour.

The electrical load attributed to HVAC can be established using the same technique. The air 

handling unit (AHU) that services the product A line is responsible for the HVAC of a large area 

of the facility; approximately 1,350 m^. In order to correctly attribute a kWh value to each meter 

squared of floor space both the supply fan and return fan were metered individually. The supply 

fan draws an average load of 31 kW and the return fan draws 4.5 kW. This gives a cumulative total
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of 35.5 kW for the air handling unit. The total requirement is therefore 2.6 x 10“^ kWh’s per square 

meter each hour. Figure 3.25 illustrates the minimum and maximum power consumption during 

each one second recording interval as well as the average power consumed during the recording 

interval for the AHU supply fan.

Minimum power (kW) Average power (kW

S? c? .
f?’ ts’ sS* (S’ rv*

(S’' (S’’

H Maximum power (kW)

Figure 3.25 AHU supply fan

The cumulative total consumption for this machine tool is 111.67 kWh per 12 hour shift. The 

following pie chart, Figure 3.26, illustrates the kWh/shift energy consumption breakdown. A simple 

assessment that only considered the energy required directly by the machine tool would result in an 

apparent energy requirement of 89.76 kWh or approximately 80% of the actual energy consumed. 

The results of this study align with the research work of Gutowski et al. [79] that identified two 

key strategies to minimise energy use; the redesign of energy intensive support equipment and 

improving the rate at which machine tools can operate.

89.76

7.56
9.36 ™ Mazak FH-4800 

m AHU

H Coolant return 

□ Coolant supply 

■ Light

Figure 3.26 - Total machine consumption, kWh/shift
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3.6. Summary

Structured measurement methodologies aimed at quantifying the energy consumption of man­

ufacturing at facility level, value stream level, and process level have been described. The results, 

which align with state-of-the-art research studies, illustrate the degree of energy transparency that 

can be achieved via the implementation of robust measurement approaches. The test facility now 

possesses a level of energy transparency, illustrated in Figure 3.27, that does not typically exist in 

industry and has not previously been reported in the literature. The work presented in this chapter 

provides a means to overcome the energy transparency issue highlighted by Thiede et al. [58] as one 

of the key obstacles that impedes the implementation of energy efficiency improvement projects.

C.A

IIVAC

Dust extraction

Refrigeration

Value stream 2

Value stream 1

Turning

CMM

Sand blasting/Laser marking

Value stream 3

Value stream 4

Value stream 5
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Machine

Milling machine

Low Level of energy transparency High

Figure 3.27 - Energy consumption transparency resulting from the state-of-the-art metering instal­
lation

3.6 Summary

The work described within this chapter has closely followed the trends that exist in the literature, 

specifically, energy efficiency projects and research efforts are focused around discrete levels of
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the manufacturing facility [59]. Initially the production facility was mapped out and each of the 

five product lines was identified. The energy consumption of the plant, taken from utility bills, 

was recorded. This information alone was unable to provide value stream or individual machine 

information.

A metering strategy was developed and deployed which allowed the total electrical energy 

consumption to be disaggregated into its significant energy users in accordance with state of the 

art European standards |44]. The initial phase of the metering strategy used commercially available 

remote power metering devices to monitor each piece of equipment individually. The second phase 

of the metering strategy involved the design and installation of a facility wide energy metering 

system. The majority of these meters were installed on high level distribution points in addition 

to the sites significant energy using equipment.

The metering infrastructure that is installed in the test facility represents the state-of-the-art 

in industrial energy management and comparable projects have not been reported in the literature 

to date. The information emanating from the energy management system was then used to de­

velop energy performance indicators allowing the effectiveness of energy projects to be accurately 

quantified as well as optimising energy cost savings from the perspectives of both procurement and 
end use.

A holistic, approach was taken to the task of quantifying the total energy requirements of 

an individual manufacturing process. This section of the research was in line with the most 

recent research literature from within the CIRP community as well as other relevant academic 

journals [19,85,118]. The total amount of energy consumed directly and indirectly was quantified 

and the results observed here aligned with the results of the aforementioned research studies.

In order to further develop energy transparency the research needed to progress to the next 

hierarchical level and assess an individual machine tool at a component level. Characterising indi­

vidual machine tool components in both the frequency and time domains requires the development 

of a purpose built measurement tool. The development and application of this tool as well as the 

obtained results are described in chapter 4.
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Chapter 4

Machine tool electrical energy characterisation

4.1 Energy requirements of machine tool systems

Preliminary studies on the environmental performance of machine tools indicate that over 99% 

of the environmental impacts are due to the consumption of electrical energy during the usage 

phase of its life cycle [118]. For this reason the European Commission have identified machine 

tools as a top three priority for inclusion into the product categories regulated by the ecodesign 

directive [183]. The International Standards Organisation are also developing standards that focus 
on machine tools; addressing the environmental evaluation of machine tools in ISO 14955-3/4, and 

the evaluation of manufacturing systems in ISO 20140 [18,184]. Herrmann et al. [106] reported 

that characterising the energy consumption of machine tools is a critical step towards improving 

efficiency. The increasing number of research contributions by different machine tool builders 

demonstrates the increasing interest in the energy performance of the equipment they develop [95]. 

CECfMO - the European Association of Machine Tool Builders - has also launched a self-regulatory 

initiative (SRI) that supports the identification of measures to improve the energy efficiency of 

the machine tools their members produce. Furthermore, the research community have developed 

working groups focusing exclusively on the energy consumption of machine tools, for example 

the cooperative effort on process emissions in manufacturing (C02PEI) group, the University of 

Wichita’s unit process life cycle inventory (UPLCI), and the CIRP collaborative working group on 

energy and resource efficiency and effectiveness (EREE).

The increased attention given to machine tools by international regulatory bodies and research 

institutions coupled with the fact that the overall energy efficiency of a typical machine tool is 

estimated to be less than 30% [18], makes the development of a thorough understanding of their 

energy use desirable. The performance of a machine tool is dependent on the cooperative inter­

actions between the spindle, feed drives, and peripheral equipment [17[. According to Herrmann 

et al. [15], the total energy consumption results from the temporal accumulation of the individual 

power demands of each subordinate component. Studies have also shown the energy consumed 

by a machine tool system during machining is strongly influenced by cutting parameters, machine 

tool efficiency, and the rate of material removal [18]. Optimising machining parameters against

107



4.2. Experimental setup

a set of environmental criteria was presented as a means to reduce the environmental impacts of 

machining by Krishnan and Sheng |185j. Krishnan and Sheng [185] presented a case study that re­

ported a 4.5% energy saving by implementing an environmental process plan versus a conventional 

process plan [185]. Traditionally researchers have focused on specific cutting energy (SCE) [186], 

and specific energy consumption (SEC) [118] as methods to assess the energy efficiency of machine 

tools. Balogun and Mativenga [183] observe that there is a need within industry and the research 

community to accurately relate machine tool motion to energy consumption at a component level.

4.2 Experimental setup

4.2.1 CNC machine

The machine tool that was used in this case study was a Hurco VM2 vertical machining cen­

tre, Figure 4.1, available in the advanced manufacturing technology laboratory at Trinity College 

Dublin.

Hurvo VM2 specifications
Spindle speed range 400 - 8000 rpm
AC voltage supply 400 V (3 phase)
Machinable area 1168 mm X 457 mm
Tool changer capacity 16
Table load capacity 550 kg
Machine weight 4080 kg

HMI

CNC Interpolator
n

X-axis Y-axis Z-axis 11
servo servo servo 1
drive drive drive 11

Spindle
controller

' 4'" axis ; 
[optional!

servo servo servo
motor motor motor

Spindle
motor

Spindle, 11 kW 
X-axis servo motor, 1.3 kW 
Y-axis servo motor, 1.3 kW 

Electrical —► Z-axis servo motor, 2.0 kW
consumers —► Magazine motor, 0.185 kW

Compressor 
Chiller unit 
Other -

• Console
■ Spindle head fan
■ Worklights
■ Tool unclamp

Figure 4.1 - Hurco VM2 CNC Machine Tool

The Hurco VM2 is a 3-axis CNC machine with a table size of 1,168 mm x 457 mm [187]. The 

machine has a Fanuc 6M model B controller. The spindle of the Hurco VM2 is powered by an 

11 kW motor allowing spindle speeds of up to 8,000 rpm. The machine requires a three phase
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power supply and can operate in either a delta or wye configuration. Specific information related 

to travel limits, automatic tool changing, and load capacities have been extracted from the relevant 

machine tool documentation and included in Figure 4.1.

4.2.2 Data acquisition of electrical energy

Accurately measuring the electrical energy consumption of the test machine described in Sec­

tion 4.2.1 is a critical aspect of this chapter of the research work. A typical power meter is equipped 

with an on board processor that will calculate RMS current and voltage values from the raw data 

waveforms. It is therefore not possible to access the raw waveforms using commercially available 

power monitoring equipment. In order to obtain the valuable current and voltage waveforms re­

quired in this research a custom measurement system was designed and developed, Figure 4.2. 

This measurement system combines National Instruments data acquisition hardware and software 

in order to record and display energy consumption information. Voltage was recorded with a NI 

9225 DAQ and current was recorded with a NI 9239 DAQ. Data was sampled and analysed using 

a custom built dedicated software tool.
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Figure 4.2 - Custom power monitoring device

The measurement of current required a voltage output current transformer; the EL Components 

50A 0.33V CT was selected as it was the most suitable product available in terms of the primary
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current input range and also the corresponding voltage output. The measurement of voltage 

required the design and installation of voltage reduction circuitry due to the limitations of the 

NI 9225 data acquisition module. The NI 9225 is primarily designed to monitor single phase or 

three phase wye configured voltages, to a maximum of 300 Vrms- The voltage reduction circuity 

illustrated in Figure 4.2 enabled the measurement of the 400 Vrms Ihie to line voltages resulting 

from the Hurco VM2 machine tool’s delta configured power supply.

4.3 Measurement system calibration and verification 

4.3.1 Current measurement calibration

Attaching a 2.5 kW resistive load to the test circuit, and using a variable autotransformer to 

modify the circuit voltage allowed known currents to be drawn. The autotransformer used in this 

study has an analogue dial that is used to vary the voltage. In order to ensure the calibration was 

accurate a Tenma 72-7725 multimeter and a Metrix MX-22 multimeter were used to monitor the 

voltage and current respectively, see Figure 4.3.

r f
remna 72-7725 Metrix MX-22 
multimeter multimeter

r©i r@i

Variable
autotransformer

A
Load

Figure 4.3 - Current Measurement calibration set up

The standardised calibration method has been developed in order to robustly characterise each 

individual current measurement device. The test operates between 0-9 Amps incrementing in 

0.5 Amp steps. During each step of the calibration procedure 49 consecutive data points are 

recorded alongside the amplutide of current displayed on the Metrix multimeter. This data is 

then post processed in Matlab where the CT response characteristics are extracted. Loading and 

unloading each measurement device in a symmetrical manner facilitates the evaluation of sensor 

linearity, hysterisis, and sensitivity. A typical sensor response from a single calibration cycle for 

each of the three CT’s is shown in figures 4.4, 4.5, and 4.6.
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Figure 4.4 - Current transformer no.l calibration results
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4.3.2 Current measurement verification

In order to verify the accuracy of the entire measurement chain a study was conducted that 

compared the recorded values from the custom power monitoring device with a state of the art meter 
during a machining process. The machining verification test allowed the custom measurement 

devices accuracy at higher loads, up to 20 Amps to be assessed. Both measurement devices were 

installed at the main incomer of the Hurco VM2 machine tool described in Section 4.2.1 and a 

series of milling operations were performed. The HT Italia power quality analyser. Figure 4.7, is a 

high end commercially available power monitor allowing the accurate measurement of true RMS 

current and voltage. The meter can also measure active, reactive, and apparent power consumption 

in addition to a wide variety of other power related variables including voltage sags, surges, and 

spikes.

HT Italia PQA 824 specification
Measurement range 1-300 Amps*
Crest factor < 3
Resolution 0.1 Amp
Accuracy 0.5% reading -|- 0.6% full scale
* Values under 1 amp are zeroed

Figure 4.7 - HT Italia PQA 824 power quality analyser

112



4.3. Measurement system calibration and verification

The HT Italia’s maximum reporting rate is 1 Hz for RMS voltage and RMS current. In contrast 

to this, the TCD power meter measures, records, and exports the current and voltage waveforms 

at a sampling rate of 2 kHz. This sampling rate can be increased up to 25 kHz. In order to allow 

an accurate comparison between the two power measurement devices, the TCD power metering 

data was normalised in order to achieve the same resolution as the HT Italia meter. A CAD/CAM 

drawing illustrating two of the Hurco VM2’s test operations is included in Figure 4.8.
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Figure 4.8 - Measurement verification workpiece

The first verification operation used a 10 mm HSS milling tool to machine the inner pocket 

illustrated in Figure 4.8; the second verification operation machined the rectangular slot. The 

workpiece material was aluminium (6060). The measured currents from each of the three power 

supply lines from both the TCD meter and the HT Italia power meter for test one are included in 

Figure 4.9, the measurements for test two are included in Figure 4.10. The machining parameters 

are also included in each figure. In both of the test cases there is a strong correlation between the 

measured values from each metering device. The R-squared values are 95.3%, 97.1%, and 96.2% for 

operation one and 97.3%, 96.4%, and 96.9% for operation two. The largest source of error within 

the correlations is intrinsically linked to the limitations of the HT Italia power meter which zeroes 

all current readings with a magnitude of less than 1 Amp. The current transformers supplied with 

the HT Italia have an operating range of 1-300 Amps, and therefore 1 Amp represents just 0.33% 

of the full measurement range. The TCD current transformers have a narrower operating range of 

0-50 Amps and do not encounter the same problems when monitoring low amplitude currents.
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Figure 4.9 - Current verification machining operation no.l
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Figure 4.10 - Current verification machining operation no.2
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4.4 Machine component analysis

The Hurco VM2 characterisation was completed by conducting a component level energy consump­

tion study. A machine tool energy map was developed after the relevant electrical wiring diagrams 

were analysed, see Figure 4,11. The analysis of each machine tool component required each com­

ponent to be activated independently three times under every loading condition investigated. This 

type of power assessment aligns with recent state of the art research studies published within the 

CIRP community by Behrendt et al. |188|. Each individual component was characterised in terms 

of both current and power consumption in the time and frequency domains.

Although the main consumers within the Hurco VM2 machine tool, for example the spindle 

motor, are balanced loads the machine tool itself is electrically unbalanced. The primary source of 

this imbalance emanates from the point on the electrical diagram in Figure 4.11 where the single 

phase supply is created. Phase 1 and phase 3 are used to create the single phase supply that is 

used to power a number of fans and lights, and as a result of this they carry significantly more 

current than phase 2 during normal operation. To illustrate this point. Table 4.1 shows the RMS 

current of each phase during a number of different operating conditions.

Machine state Il(Amps) 12 (Amps) I3(Amps)

Idle 2.4051 0.9282 1.7253

Spindle accelerating 19.0652 16.4361 16.6794

Spindle at 8,000 rpm 4.0842 2.2474 2.6764

Table 4.1 - Current load during various operating states

Due to the fact that the Hurco VM2 system is electrically unbalanced, this research uses the two 

wattmeter method to calculate the total power consumed by the machine tool. The two wattmeter 

method is based on Blondel’s theorem [189], which states that the power in any system containing 

n wires, can be calculated using n - 1 wattmeters, see Figure 4.12. Blondel’s theorem holds true 

for any system, balanced or unbalanced, given a voltage source and a load of any complexity [190|. 

Connecting both wattmeters as described in Figure 4.12 will result in the two wattmeters, W1 and 

W2 reading the following;

Wi = j VAc{t)iaA{t)dt (4.1)

^2 = 7f [ 'VBc{t)ibB{t)dt (4.2)
-< Jo

Independently neither reading has any meaningful value but the combined value represents the
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Yaskawa SGDH-15AE Servo drive

Figure 4.11 - Hurco VM2 Electrical distribution
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Figure 4.12 Hurco VM2 two-wattmeter power measurement

total power in the circuit;
rT

\Vi -I- W + VBcibBdt

I r . .= Tf I VAciiAC + iAs) + VBc{iBC + iBA)dt (4.3)
^ Jo
I . 1 ■ 1 /"^ ■

= ^ y VAC^Acdt + Y' J VBciBcdt Y J (^4CMB + VBC‘iBA)dt

Using the convention of double subscript notation, the integrand of the last integral can also be 

expressed as follows;

VAC^AB + VBciBA = VAC^AB — '^’BC'i-AB

= (vaC - VBc)iAB = {vac + VcbYab = VaB^AB

rT^ .T ^ rl

■. fUi -I- IU2 = — J VAC^Acdt Y J Vsc^Bcdt Y J

= PZi + Pz2 + Pzs

VAsiAadt

(4.4)

(4.5)

4.4.1 Spindle

The Hurco VM2 machining centre uses a precision balanced cartridge spindle that is made of high 

grade alloy steel [187|. The spindle shaft, located inside the cartridge, is supported by steel bearings. 

The spindle drive unit contains a closed-loop system that controls and monitors the spindle motor 

[187]. A microprocessor-based encoder governs the closed-loop control system. Although the 

majority of modern machine tools are equipped with motorised spindles the Hurco VM2 uses a no 

slippage gear belt with a 1:1 pulley ratio to couple the spindle motor to the spindle [100,187].

The Yaskawa F7 drive unit that controls the spindle is pulse width modulated (PWM) and is 

designed specifically for use with three phase induction motors. The motor is fully enclosed and 

uses forced-air cooling [187]. According to Avram and Xirouchakis [17] the key factors governing 

the spindles energy consumption are its inertia, the type and size of bearings, lubrication technique, 

and also its electrical drive and control. Figure 4.13 illustrates the key components of the Hurco 

VM2 spindle system; Table 4.2 includes selected spindle specifications.
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Figure 4.13 - Hurco VM2 spindle components, adapted from |100,187]

Spindle motor power

Hurco VM2

Rpm range 0 - 8000 rpm

Continuous (kW) 11.0

Peak 1 min. rating (kW) 15.0

Spindle torque

Hurco VM2

Continuous (Nm) 74.0

Peak 1 min. rating (Nm) 102.0

Table 4.2 Hurco VM2 spindle specifications [187]

The power consumption of the spindle was investigated from two perspectives; dynamic and 

steady state. The dynamic component of the spindle consumption is the result of the starting 

transient that occurs when the spindle is initially energised. The starting transient is composed of 

two discrete components that are commonly referred to as the inrush current and the locked rotor 

current. The inrush current is required to establish a magnetic field in the core of the motor each 

time a voltage is applied. Abele et al. [100] observed that the peak value of inrush current will vary 

slightly each time the spindle is energised due to the residual magnetism in the core. In certain 

cases the peak value can be as high as twenty times the rated motor value. This component of the 

starting transient typically decays within the first few cycles of the line voltage. It is important
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4.4. Machine component analysis

to consider inrush current when sizing circuit breakers for motor circuits but it only represents a 

small part of the starting transient.

The locked rotor current is the larger of the two components of the initial starting transient. 

W'hen power is first applied to the motor, the stator field will draw very high current since the 

rotor is not turning. As the rotor begins to turn, it will induce current into its laminated coils 

and build up torque. This causes the rotor to spin faster, until it approaches the speed of the 

rotating magnetic field. At the rated load of the motor, the rotor will spin at slightly less than the 

synchronous speed, this difference is referred to as slip. It is this rotor slip that allows the motor 

to increase rotor torque and current to match the load requirement [100]. Acceleration time must 

also be considered when analysing the start up sequence of the Hurco VM2 spindle system.

The acceleration time is the time the motor takes to reach the user defined spindle speed. Faster 

acceleration time is desirable, but this often results in excessive current peaks and other undesirable 

effects [lOOj. In order to combat the undesirable effects of the fastest possible acceleration time, 

at higher spindle speeds the Hurco’s controller limits the amount of current that the motor can 

draw, Figure 4.14. As a result of this current limiting control, the spindle consumes a fixed level 
of power during acceleration. Depending on the required spindle speed this max spindle power 

will be required for a varying time period, see Figure 4.15. When the spindle reaches the required 

speed, the motor only requires the minimum power necessary to maintain the required rotational 

speed.
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Figure 4.14 - (a)Spindle acceleration power (b)Spindle static load power
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Figure 4.15 - Spindle start statistics - power

There is a dynamic relationship between spindle speed and power consumption which depends 

on the operating range of the spindle. An analysis of the spindles power-speed characteristics 

was performed and two independent relationships were observed, Figure 4.16. In zone A there 

is an inverse relationship between spindle speed and power consumption. The power required to 

rotate the spindle at 1,000 rpm, 1.798 kW, is significantly more than than the power required at 

3,000 rpm, 1.571 kW. In zone B there is a direct relationship between spindle speed and power. At 

4,000 rpm the required power is 1.584 kW and at 8,000 rpm the power requirement is 2.021 kW,

Zone A Zone B

— Spindle power
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1750
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1650
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- Linear(Power)

4 5 6 7 8
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Figure 4.16 - Hurco VM2 power-speed analysis

The varying spindle speed-power relationship observed here is the result of the dynamic inter­

actions between the mechanical and electrical components that form the spindle system. At low 

speeds the spindle system is less effective at transforming electrical power to mechanical rotation.
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4.4. Machine component analysis

whereas above the spindles base speed the system is able to more effectively transform the input 

electrical energy to mechanical rotation. Equations 4.6 and 4.7 describe the relationships that exist 

between spindle speed, N, and machine tool power in each zone.

Power{W) = -0.113(fV) + 1904, 

PoweriW) = 0.110(7V) + 1102,

(4.6)

(4.7)

The findings observed during the power-speed characterisation described here expand on a por­

tion of the research work presented by Vijayaraghavan and Dornfeld |19]. Vijayaraghavan and 

Dornfeld [19] suggest that there is a direct relationship between machine tool power consumption 

and spindle speed. The Hurco VM2 machine tool analysed in this study only exhibits a direct 

relationship between power consumption and spindle speed at the higher spindle rpm range, 4,000 

- 8,000 rpm. In the lower spindle rpm range, 1,000 - 3,000 rpm, the Hurco VM2 demonstrates an 

inverse relationship between power consumption and spindle speed. These findings align with a re­

cent research study presented by Balogun and Mativenga [183] which found adynamic relationship 

between spindle speed and power depending on the operating range.

In addition to the current and power characterisations presented above, a harmonic analysis 

was performed in order to develop an understanding of the frequency characteristics of the spindle 

motor system. The Yaskawa F7 inverter, which controls spindle speed, has two power sections; 

a rectifier section and an inverter section. The AC source voltage is converted into DC voltage 

by the rectifier circuit; the F7 inverter uses a standard six pulse rectifier. The inverter circuit 

then converts the DC voltage into a PWM controlled variable voltage AC output. The six pulse 

rectifier has a nonlinear load characteristic, i.e. it draws a distorted current waveform even though 

the supply voltage is sinusoidal, causing the generation of harmonic currents in accordance with 

Equation 4.8.

h = {n X p) ± 1 (4.8)

where;

n = an integer (1,2,3,4,..,n) 

p = number of pulses or rectifiers

The harmonic analysis was performed by investigating the harmonic content of the current 

waveforms when the spindle was operating at full load during acceleration and at a reduced load 

rotating at 4,000 rpm. During this assessment current measurements were taken at the frequency 

inverters input terminals ensuring that all measured phenomena resulted from spindle system op­

eration. Figure 4.17(a) illustrates the results of the full load harmonic analysis and Figure 4.17(b) 

illustrates the results of the reduced load test. The magnitudes of the characteristic harmonics, par­

ticularly the 5*^, 7*^, 9‘^, and iF^ are significantly greater than the non-characteristic harmonics 

at full load.

121



4.4. Machine component analysis

(a) Full load
30

supply
F requency 
converter

I, measurement
- I2 measurement
- F, measurement

(fib
■■

(b) Reduced load - 15% of full

To other machine 
components

c
hC
cd

I,-
4-

I,-

Frequency (Hz)

Figure 4.17 - AC current waveform at frequency inverter under different loading conditions

Although the THD is higher in the reduced load scenario the absolute magnitude of the har­

monics is dramatically reduced, negating the majority of the adverse impacts on the system. The 

observed results align with published documentation from Yaskawa [191] and also research studies 

investigating the generation of harmonics resulting from the use of six diode rectihers [192]. In 

order to improve the performance of frequency inverters from the perspective of harmonic mitiga­

tion, researchers have proposed numerous different rectifier topologies that signihcantly reduce the 

characteristic harmonic magnitudes [192].
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4.4.2 Axis motion

The Hurco VM2 uses AC servo drive systems to position the machine tool components and work- 

piece in the required position. The positional accuracy of each feed drive is a function of the 

trajectory generation and control algorithms, mechanical drives and guides, amplifiers, motors, 

and sensors |193|. Abele et al. [100] noted that the positional accuracy and speed of the feed 

drives are key determinants of machine tool quality and productivity. The trajectory generation 

algorithm considers the machine tool kinematics in decoupling the spatial tool motion into each 

feed drive [193]. Each axis motor is equipped with a rotary encoder that provides velocity and 

position feedback signals for each closed-loop system, see Figure 4.18.

Servo drive

Power
Electronics

.
\.7^

Servo motor

Mechanical transmission

Current control Velocity control Position control

Figure 4.18 - Hurco VM2 feed drive components, adapted from [193]

The Hurco VM2 uses the Ultimax system to control axes velocity and travel direction [187]. 

The servomotors are enclosed, transistor-driven, and self-cooled; as a result of the motors brush­

less design they are free from flashover and commutation losses [187]. The servomotors power the 

X, y, and z axis ballscrews by belt drive. The x and y axes are both driven by 1.5 kW Yasakawa 

servo motors. According to Altintas et al. [193], ballscrew drives are currently the most commonly 

used in machine tools; they are characterised by high efficiency {rj = 95-98%), low heating, minimal 

wear, and a long service life. Approximate positioning and travel specifications appear in Table 4.3.
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Axis feed rate

Axis X, Y Z

Cutting (m/min) 7.6 7.6

Rapid traverse (m/min) 24.0 19.0

Maximum travel

Axis X Y, Z

Distance (mm) 1016 457

Table 4.3 - Hurco VM2 axis specifications [187]

This section describes a power consumption characterisation conducted on the y-axis, and a current 

consumption characterisation conducted on the x-axis. Figure 4.19 illustrates the average power 

consumption of the y-axis drive system at a variety of different feed rates. Each test was performed 
three times in order to obtain statistically significant results. The measurement device was con­

nected at the y-axis servo drive input terminals as shown in Figure 4.19. The power consumption 

was observed to increase linearly as the feed rate increased from 250 mm/min to 1000 mm/min.
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Figure 4.19 - Y-axis power consumption
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An analysis of the current consumption characteristics of tlie x-axis during rapid and standard 

speed traversals was conducted. During this test the measurement device was installed at the x-axis 

servo drives input terminals and each test was repeated three times. Phase one and phase three 

were observed to supply power to the x-axis servo drive at all times but phase two only contributed 

to the system during rapid traversal. This phenomena is a characteristic of the Yaskawa x, y, and 

z axis servo drives which only load all three phases during high load conditions, as experienced 

during rapid axis accelerations. Figure 4.20 illustrates a sample of the findings from the x-axis 

current consumption characterisation.

cu
o

Cl,

2000

1500

1000

500

0,

Rapid traverse 
24.000 mm/min
1.000 inm/min 

- Power

3~

0 2.5 5.0
4'ime (s)

Rapid traverse

Y askawa 
Servo drive

-LI measurement
— L2 measurement 
— L3 measurement 

I'o other machine 
com]X)nents

Encoderl
X-axis

1,000 mm/min

2.20 2.25 2.30 2.35
Time (s)

2.40 5.50 2.55 5.60
Time (s)

5.65 5.70

Figure 4.20 - X-axis power consumption

The z-axis carries the machine tool spindle and its positional accuracy ensures accurate depths 

of cut at the workpiece. The z-axis is driven by a 2.0 kW Yasakawa servo motor. The maximum feed 

rates for cutting and rapid motion are 7.6 m min and 19 m/min respectively. During the assessment 

of z-axis power consumption the measurement device was installed at the input terminals of the 

axis servo drive, as illustrated in Figure 4.21, and therefore only measured the power consumed 

directly by the z-axis. The power consumption of horizontal axes is a function of a number of 

variables including friction losses in guideways, bearings, and cutting forces. Abele et al. [100] 

noted that vertical axes must also consider the influence of gravity which opposes upward motion 

and supports downward motion.

The z-axis system requires a baseline power consumption of 290 Watts in order to maintain 

the position of the spindle unit. The power consumption of the servo system decreases below 

the baseline as the spindle head is lowered towards the work table. In order to lower the z-axis
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downwards at 100 mm/min the average power consumption is 260 Watts. Raising the z-axis at a 

rate of 100 mm min requires an average of 360 Watts. The most energy intensive movement of 

the z-axis is the rapid traversal of the spindle head from the work table towards its home position. 

The average power required to rapidly raise and lower the spindle head at its maximum feed rate, 

19,000 mm/min, is 2.68 kW and 18 W respectively. Figure 4.21 illustrates the power consumption 

of the z-axis servo drive under a variety of different loading conditions.
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Figure 4.21 - Z-axis power consumption

4.4.3 Auxiliary components 

Coolant system

Although current research studies are focused on minimising the use of coolant, wet cutting is still 

widely used in industry [118]. The VM2 machine tool coolant system is self contained and consists 

of a flood coolant nozzle, washdown hose, and an externally mounted spray gun to clean chips from 

the inside of the enclosure. Used coolant is filtered free of chips, oil, and other contaminants before 

being recirculated into the coolant tank. To assess the power consumed by the coolant system the 

measurement device was installed at the main incomer of the machine tool. Figure 4.22 illustrates 

the power profile associated with activating the coolant pump; the power profile shows the mean 

and standard deviations of 3 coolant pump activations. The power profile shows an initial turn
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on transient which is tlien followed by a constant level power requirement while the coolant pump 

remains active.
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Figure 4.22 ~ Coolant pump analysis

12.5 15.0

Tool change

The VM2 automatic tool change (ATC) operation uses a swinging arm tool changing mechanism to 

load and unload tools from a vertically orientated tool change magazine. When a tool is requested 

the appropriate pocket rotates 90° making the tool available to the swing arm. The tool changing 

arm then rotates to simultaneously grab the tool in the magazine pocket and also the tool in the 

spindle. The spindle then unclamps the tool allowing the tool change arm to motion downwards 

and simultaneously pull the tools out of the spindle and the magazine pocket. The tool change 

arm then rotates through 180°, swapping the tools and allowing the spindle to clamp the new tool. 

Finally, the tool change arm and the magazine pocket return to their original position. To assess 

the power consumed during a tool change operation the measurement device was installed at the 

main incomer of the machine tool. Figure 4.23 illustrates the power requirements of a tool change; 

the power profile shows the mean and standard deviations of 3 tool change operations.
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Figure 4.23 - Tool change analysis
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4.4.4 Idle mode

In order to quantify the idle power consumption of the test machine the measurement device was 

initially installed at the machine tool isolator. Each component was then assessed individually to 

achieve an accurate breakdown. The measurement device recorded the power consumption of each 

component for a period of five minutes during idle mode. The study showed that the Hurco VM2 

requires approximately 1.01 kW of power during idle periods; Figure 4.24 illustrates the component 

level idle power breakdown.
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70 W (6.9%)

Other,
265 W (26.2%)

no W (10.9%)

Unloaded spindle motor, ----
80 W (8.0%)
Unloaded axis motors 
320 W (31.7%)

Figure 4.24 - Hurco VM2 idle power consumption

The idle power consumption of the Hurco VM2 is comprised of a number of individual consumers 

including machine tool lighting, the CNC console, unloaded axis drives, a heat exchanging fan, 

and additional peripheral equipment. Recent research studies have shown that the idle power 

consumption of machine tools is highly variable and is not related to the size of the machine. A 

study presented by Behrendt et al. |188] suggested that there is no relationship between machine 

size and idle power consumption however, machine tool complexity was observed to exhibit a direct 

relationship with idle power consumption. Current state of the art research studies in the area 

of energy efficient machine tools are focusing on green mode machines that reduce standby power 

consumption. Already there are a large number of multinational machine developers releasing 

green machines into the marketplace. One example of this is Sinumerik Ctrl-Energy, a range of 

solutions developed by Siemens allowing machine tools to operate effectively while reducing energy 

consumption [93].

4.5 Material removal analysis

In an attempt to quantify the energy required to remove material a series of machining tests were 

performed. In the first machining test, all machining parameters remained constant as the depth of
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cut was changed during the machining of an aluminium (6060) workpiece; each test was replicated 

three times. Figure 4.25 illustrates power increasing linearly as the depth of cut increases. This 

trend supports the findings of recent research studies from within the literature which suggest there 

is an almost linear relationship between power and depth of cut during milling processes [88].

Figure 4.25 also shows that the constant power required to keep the machine in a ’ready 

state’ dominates the overall power requirement. This observation supports the results of a study 

conducted by Diaz et al. [88] that highlighted machining time as the dominant energy consumption 

parameter for high tare machine tools. The additional energy required to cut workpiece material 

represents only a small fraction of the total energy required. Again this finding aligns with work 

presented by Balogun and Mativenga [183], Gutowski et al. [79], and Dahnius and Gutowski [84] 

who found that the energy required to remove material was responsible for less 15% of the total 

energy in certain studies.
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Figure 4.25 - Aluminium DOC analysis

Specific energy is a fundamental parameter derived from the power and machining conditions 

in machining processes. In this section specific energy consumption (SEC) is defined as the energy 

consumption of a machine tool to remove 1 cm^ of material in accordance with the research work 

of Kara and Li [118]. The use of a standardised metric such as SEC allows different machine tools 

and different processing parameters to be accurately compared. Research studies suggest using 

SEC is a preferable method to assess the energy required to remove material because it is a simple
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concept to apply and it takes account of both the static and dynamic components of machine tool 

power consumption [183]. Specific energy consumption can also be used to quantify the efficiency 

of a machine tool during processing; the SEC can then be used as an optimisation metric.

The power consumption values used in the SEC calculation described here only include the 

power consumed during processing. The energy required for machine start up, clamping, and 

workpiece positioning are not included. The tests performed here involved machining a slot into 

an aluminium (6060) workpiece and varying the depth of cut. The material removal rate was 

calculated by multiplying the width of cut, depth of cut, and feed rate. The SEC was then 

calculated by integrating the power consumed during the relevant machining test over the duration 

of time taken to remove 1 cm^ of material. Figure 4.26 illustrates the findings of this test; there is 

an inverse relationship between material removal rate (MRR) and SEC. This finding aligns with 

the research work of Diaz et al. [88] who demonstrated an inverse relationship between specific 

energy and material removal rates during a milling process. Similarly, Kara and Li [118] observed 

an inverse relationship between specific energy and material removal rate for a variety of different 

machine tools with varying parameters.
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Figure 4.26 - SEC analysis

The findings observed here suggest that from the perspective of energy consumption the most 

efficient machining strategies are those which remove the maximum quantity of material in the 

minimum amount of time. Theoretically this is true, but in reality it is not an optimal solution 

as excessive feed rates and cutting speeds have been shown to cause rapid tool wear resulting in 

rough work finishes ]95]. State-of-the-art machining strategies are being developed by machine tool 

builders who are actively seeking to reduce the power consumption of their products in a number of 

novel ways, for example; adjusting the acceleration profiles of spindle motors, developing adaptive 

pecking cycles, and selectively deactivating non-continuously required devices ]9,95].
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4.6 Summary

A power measurement system was designed and developed to facilitate a machine tool electrical 

energy characterisation. The measurement system was calibrated against sate-of-the-art commer­

cially available power monitoring devices. The values of > 95% obtained during machining tests 

verified that the system was accurate and reliable. The primary source of error which lead to dis­

crepancies during the verification tests was intrinsically linked to the performance of the HT-Italia 

calibration device which zeroed all current readings with a magnitude of less than 1 Amp.

An energy consumption characterisation was performed on a Hurco VM2 3-axis CNC milling 

machine by applying the power measurement device to the main electrical incomer of the machine 

and mapping the machines internal electricity distribution system. Individual machine components 

were characterised by activating each component three times under various loading conditions in 

order to obtain statistically significant results. The most energy intensive machine tool component 

was observed to be the spindle motor, with an instantaneous power consumption of 11.89 kW 

observed during spindle acceleration when the motor must overcome forces resulting from inertia 

and frictional resistance.

Machining tests were performed to investigate two phenomena; the relationship between power 

consumption and depth of cut, and also the relationship between specific energy consumption 

and material removal rate. During the first set of machining tests, the parameters were held 
constant with a spindle speed of 5000 rpm and a feedrate of 700 mm/min; the depth of cut 

increased from 1 mm to 5 mm in steps of 1 mm. The material workpiece was aluminium (6060). 

Machine tool power consumption was observed to increase almost linearly with depth of cut with 

approximately 0.118 kW of additional power required for each 1 mm increase in depth of cut. 

These observed results align with recent research studies describing a linear relationship between 

power consumption and depth of cut [88].

The second set of machining tests also used an aluminium (6060) workpiece. The machining 

parameters were held constant with a spindle speed of 4000 rpm and a feedrate of 500 mm/min. 

The depth of cut increased from 0.5 mm to 5 mm in steps of 0.5 mm in order to vary the material 

removal rate. Each machining operation was performed three times. An inverse relationship 

was observed between specific energy consumption (kJ, cm^) and material removal rate (cm^/s). 

The results obtained in these tests match the findings of similar studies that have recently been 

published within the CIRP community and also within the broader research community [88,183].
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Chapter 5

Nonintrusive machine tool load monitoring

5.1 Motivation

One of the key motivations behind the development of a nonintrusive intelligent energy sensor is 

the development of unit process level energy consumption transparency; identified by the Knowl­

edge, Awareness, and Prediction (KAP) EU-FP7 funded research project as a key enabler of energy 

efficiency optimisations |194]. Within the KAP research framework, techniques including complex 

event processing and data stream analysis are proposed as methods capable of achieving the im­

portant levels of innovation that are required to optimise energy consumption in manufacturing 

facilities [194|.

Traditionally an intrusive approach to load monitoring has been employed to assess the energy 

consumption of manufacturing equipment |142j. The intrusive monitoring approach requires a 

large number of sensors to be deployed on each component in order to monitor and control the 

energy usage. The context-aware approach to industrial energy metering proposed by Herrmann 

et al. [15] is an example of an approach that relies on information emanating from energy measure­

ment devices and additional sources - including manual inputs from operators - in order to derive 

higher quality information from the available metering data. The potential of reduced-cost data 

acquisition has motivated the development of nonintrusive load monitoring (NILM) systems. The 

ability of NILM systems to associate observed electrical waveforms with the operation of particular 

devices makes it an attractive alternative to complex arrays of intrusive monitoring sensors [195]. 

Reducing the scope of sensor deployment overcomes many of the drawbacks associated with multi­

sensor arrays. Traditional multi-sensor arrays increase the difficulty and the cost of installation, 

particularly for short term or temporary monitoring [135|.

Within the literature researchers have proposed a variety of NILM systems based on the steady 

state and/or transient load characteristics of individual components. Both transient and steady 

state based NILM systems have associated benefits and drawbacks. The development of a NILM 

system based solely on steady state detection is much less demanding than a system requiring the 

capture and analysis of transient phenomena. A limitation of steady state systems is the impossi­

bility of distinguishing between two different appliances with identical steady state signatures. A
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5.2. Nonintrusive intelligent machine energy sensor

typical drawback associated with the deployment of a transient based NILM is the high sampling 

rates required in order to obtain transient information. Since both steady state and transient NILM 

systems have their own strengths and weaknesses, considering both for a study is an interesting 

approach that has been explored within the literature; for example Chang et al. [144] and Norford 

et al. [155]. The main steps in a non intrusive load monitoring system are (a) the acquisition 

of electrical signals, (b) extraction of the important events and (c) production of a component 

classifier, see Figure 5.1. Leeb et al. [156] noted that the likely success of any NILM system is 

related to the rate of event generation at a particular point. A machine tool is therefore a suitable 

application due to the sequential nature of CNC machining.

Nonintrusive load monitoring system

v(t)- 

i(t) ■
Data

acquisition

Signal 
analysis 

and feature
Load

classification
Process

inference
extraction

Feature
parameters

Classification 
tool set

Figure 5.1 - Nonintrusive load monitoring system

The power measurement device that is used to acquire the electrical signals has been highlighted 

as one of the most important facets of a non intrusive load monitoring application. Within the 

literature there exists several examples of NILM studies which use defective measurement equip­

ment. Figuieredo et al. [196] developed a NILM system that obtained power measurements via a 

prototype meter from ISA- Intelligent Sensing Anywhere. The meter was only capable of reporting 

one parameter value at any moment in time and this resulted in the existence of a delay between 

the reporting of variables. Further to this, the meter randomly failed to export data points caus­

ing measurement errors [196]. According to Chang et al. [144] a robust, reliable, and accurate 

NILM system can only be realised if a custom measurement device has been developed. Chapter 4 

has previously described the development, calibration, and verification of the measurement device 

used in this research study. The intelligent energy sensor proposed here is a novel approach to the 

industrial smart metering issue described by Herrmann et al. [15].

5.2 Nonintrusive intelligent machine energy sensor

The intelligent energy sensor combines a two-tiered nonintrusive load monitoring system with 

condition based inference algorithms to quantify the energy consumption and operational status
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5.2. Nonintrusive intelligent machine energy sensor

of the test machine during machining. The primary goal of the intelligent energy sensor described 

here is to accurately quantify the duration of time and the energy consumed by a machine tool in 

each of the three machining states:

• Idle mode - machine is powered on but not ready for production

• Run-time mode - machine is "ready" for production with spindle motor activated

• Production mode - machine is removing material

The intelligent energy sensor also aims to identify the spindle speed during machining, the number 

of tool changes, coolant pump activations, and important summary statistics including peak power 

demand. A flow chart describing how the system operates is included in Figure 5.2 and an in-depth 

explanation is included within Section 5.3.
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Figure 5.2 - Intelligent energy sensor flow chart
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5.3. Time domain

Initially the system analyses the RMS power waveform and searches for activations using an 

event detection algorithm. Each recorded load signature is normalised, dimensionally reduced, 

and plot in a two-dimensional signature space before it is compared against a library of training 

signatures. Frequency information from the current waveforms is then used to verify the initial 

classification decision. Expanding NILM systems to include harmonic data as described here is 

a scheme that has been deployed within the literature in order to improve the accuracy of usage 

disaggregation tools [143]. Once a spindle activation has been detected and verified, a series 

of condition based statements are employed in order to calculate the power consumed and time 

spent in each of the three operational states. All of the data is initially acquired using LabVIEW 

hardware and software; the data processing and analysis is implemented in Matlab.

5.3 Time domain

5.3.1 Training

The NILM segment of the intelligent energy sensor is trained using a supervised learning process 

where training data is labelled with a predefined class. To illustrate an example of the learning 

process, the spindle and coolant pump training processes are described below. The measurement 

device is installed at the main electrical service entry to the machine, as shown in Figure 5.3, and 
the component in question is activated five times. The coefficient of determination, /?^, tables 

included in Figure 5.3 and Figure 5.4 highlight the repeatability of each component activation. 

The spindle acceleration process occurs in parallel with a rapid z-axis motion from the machines 

home position to the work table. The spindle acceleration training process illustrated in Figure 5.4 

therefore includes this rapid z-axis motion.

0)&o
CL,

4000r 
3500 - 
3000 
2500- 
2000 
1500 
1000 
500 

0

LI measurement 
L2 measurement 
L3 measurement

Coolant pump

Activation No.
1 2 3 4 5

1 96.4 96.7 97.4 97.2
2 96.4 98.4 97.3 98.8
3 96.7 98.4 97.9 98.6
4 97.4 97.3 97.9 98.9
5 97.2 98.8 98.6 98.9

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

—Activation 1 —Activation 2 —Activation 3 —Activation 4 —Activation 5

Figure 5.3 - Coolant pump activation training data
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5.3. Time domain

-Activation 1 Activation 4 
-Activation 2 —Activation 5 
-Activation 3

Activation No.
1 2 3 4 5

1 97.2 97.7 96.9 97.9
2 97.2 98.1 97.8 98.0
3 97.7 98.1 97.6 97.7
4 96.9 97.8 97.6 97.9
5 97.9 98.0 97.7 97.9

R table (All values %)

Figure 5.4 - Spindle (8000 rpm) activation training data

A series of n features - a iiuinber of measurements that represent the original data - are recorded 

for each load signature and a class label is assigned. The feature parameters used in this study are 

included in Table 5.1. The selected features are a superset of those used by researchers attempting 

to apply pattern recognition tools to domestic and industrial applications [77, 195]. Figure 5.5 

illustrates the signature recorded by the activation detection algorithm and also the normalised 

load signature for an 8000 rpm spindle acceleration. Figure 5.5 also includes the features associated 

with the 8000 rpm spindle acceleration load signature.

Feature Equation Description

Data Pk RMS power values
P■* mm min (Pfc) Minimum value of the window

Pnorrrimax max (Pk) - min (Pk) Maximum value of the feature

Pnornirms ^J^i:{Pk-Prmn)^ Root mean square of the feature

Pnorruavg ^ Y)(Pk - Pmin) Mean value of feature

Pnorms D \Jn “ (Pmin) ~ Pavg)^ Standard deviation of the feature

Pnormc f Pnorrnmax/ Pnorrnrms Crest factor

PnormpF Pnormrms/Pnormavg Form factor

The index k is from (t-(n-l)) to (t)

n = number of points in each window

Table 5.1 - Feature parameters
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5.3. Time domain

— Recorded signature. P
— Normalised signature. Pnorni

F'eature Value
Pnorm„,„^ 11.15 kW
Pnormnn„ 9.56 kW
Pnorm„yj, 8.94 kW
Pnornis,,! 3.41 kW
Pnornifi,,,,. 3.5 seconds
Pnornicp 1.16
Pnonupp 1.07
Class label spin8

Figure 5.5 8000 rpm spindle activation energy signature

At this point each load signature is represented by 7 features, i.e. the data is seven-dimensional. 

A principle component analysis is performed in order to reduce the dimensionality of the data. 

Principal component analysis is a mathematical decomposition of variance that assumes the di­

mensionality of a dataset can be reduced by linear transformation. With respect to the PCA 

proposed here, this assumption is not unreasonable. Within manufacturing systems there are ex­

amples of non-linearities, the spindle power-speed analysis presented in Section 4.4.1 is an example 

of one such non-linearity. However, when all existing relationships are aggregated, it is reasonable 

to consider a manufacturing system as a linear system. Although this assumption is not unrea­

sonable, it is critical to exercise caution when using PCA based approaches to extrapolate beyond 

the training region.

A PCA transforms the initial data points into a rotated orthogonal coordinate system where 

the origin is the mean of the data points and the axes are described by the eigenvectors. In order 

to effectively implement a PCA the data set must be normalised in order to obtain a dataset with 

a mean of zero. Achieving this is done by subtracting the mean from each dimension, i.e. all of the 

data in the first dimension di have di subtracted, and all of the data in the second dimension ^2 

have ^2 subtracted etc.,.

The covariance matrix of the dataset is then calculated. For an n dimensional dataset the 

covariance matrix will have n rows and n columns. Each entry in the matrix is the result of 

calculating the covariance between two separate dimensions with the exception of the diagonal of 

the matrix which represents the variance of each dimension. The covariance matrix calculated for 

the seven-dimensional data recorded in this study takes the form:
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5.3. Time domain

C =

^ cov{di,di) cov(di, ^2) cov{di,dz) cov{di, da) con(di,d5) cov{di,de) con(di, d7)''

cov{d2,di) cov{d2, d2) cov{d2, da) con(da, da) con(d2, da) con(d2,dg) con(d2, dj)

cov[dz,di) cov{d3, (^2) con(da, da) cov{dz, da) cov{di,d^) cov{d3,de) con(da,d7)

cov(di,d\) cov{di, (^2) cov(d4,da) cou^d^^da) cov{d4, da) cov{d4, dg) cov{d4,dY)

cov{d5,di) cov{dz,d2) cov{d5,d3) cov{d^, da) con(da, da) cov{d5,de) con(da,d7)

cov{de,di) cov(dQ,d2) con(de, da) cov(de, da) con(d6,d3) cov{de,de) cov{de, dj)

yCov{dT, di) cov{dj,^2) cov{dY, da) con(d7, da) con(d7,da) cov(^dy, d^) cov{dY, dj)^

The eigenvectors of tiiis covariance matrix are then calculated. The eigenvector with the largest 

eigenvalue is known as the first principle component and the eigenvector with the second highest 

eigenvalue is the second principle component and so on. Typically only the M largest eigenvalues 

are retained which significantly reduces the dimensionality of the data. Duda et al. [172] observed 

that in many cases there are only a small number of large eigenvalues, and this implies that A/, the 

number of principal components chosen, is the inherent dimensionality of the subspace governing 

the signal.

Although a certain amount of information is lost by ignoring the principal components with 

the smallest eigenvalues it is generally not significant as the vast majority of the variation within 

the data is accounted for by the M largest principal components [197]. In the case of the data in 

this study the first and second principal components account for over 95% of the variation in the 

data and the first three principal components account for over 99% of the variation.

The new dimensionally reduced dataset is calculated by multiplying the mean adjusted data 

by the derived transformation matrix, Equation 5.3. Choosing the first two principal components 

will result in a transformation matrix containing the eigenvectors associated with the two largest 

eigenvalues as columns. Equation 5.1, and choosing the first three principal components will result 

in a transformation matrix containing the eigenvectors associated with the three largest eigenvalues. 

Equation 5.2.

Tm = [eigi eig2) (5.1)

Tm = (eiffi eig2 eigs) (5.2)

Final Data = Tm x AdjustedData (5.3)

Figure 5.6 and Figure 5.7 illustrate a sample of the most important component activations trans­

formed into two-dimensional and three-dimensional feature spaces. This methodology of mapping 

manufacturing machine tool component activations onto a PCA transformed feature space repre­

sents a novel contribution to this research area.
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5.3. Time domain

F^riiicipal coinpoiieiit 1

Figure 5.6 PCA data representation (2D feature space)

O Spindle start 3000 RPM O Spindle start 8000 RPM
O Spindle start 1000 RPM O Coolant pump activation

O Tool change

Figure 5.7 - PCA data representation (3D feature space)

Choosing the correct number of principal components is typically done by implementing some 

sort of visual heuristic; in this case a Pareto chart is used, Figure 5.8. The eigenvalues eigi, eig2,..., 

eign are placed in a bar graph with the cumulative total represented by the line graph. An elbow
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5.3. Time domain

point is identified in Figure 5.8 between the second and third eigenvalues. Choosing the number 

of principal components is a decision made by the system designer and in this case, the first two 

principle components are deemed to adequately represent the original data, accounting for over 

95% of the total variance in the original dataset.

100
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OJ60 > 
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Figure 5.8 - Scree plot

5.3.2 Classification methodology

The intelligent energy sensor described in this research study uses a k-nearest neighbour classifier 

to classify query samples recorded in the time domain. Several NILM systems utilise k-nn classifiers 

including the studies presented by Lin and Tsai [142] and Tsai and Lin [198]. Within k-nn based 

systems classification is acdiieved by identifying the nearest neighbours to a query example and 

using those neighbours to determine the class of the query [199]. Details of the k-nn classification 

framework are included in Section 2.5.4.1.

Within this research study there is a training dataset D containing (aii), g |i,|D|| training sam­

ples, collected as described in Section 5.3.1. Each training sample is described by a set of F features 

and labelled with a class label yj £ Y. The classification objective is to categorise each unknown 

sample u. A variety of metrics exist that can be used to calculate the distance between u and x, 

for each Xi £ D. The chosen distance metric in this study is Euclidean distance and the k nearest 

neighbours are identified based on this metric.

 ̂Euclideani^ 1 v') {x^ Vi)^ (5.4)

The most basic approach to assigning a class to a query sample is the majority rule which classifies 

the unknown sample based on the majority class among the unknown samples nearest neigh­

bours [199]. This study uses a distance weighted voting technique where the vote of each nearest 

neighbour is weighted by the inverse of its distance to the query.
1

vote{yj) =
yjYi{Xi - y,)2

(5.5)
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5.4. Frequency domain

5.4 Frequency domain

The intelligent sensor system proposed here can be customised to monitor and record harmonics 

up to and including the 249*^ order across all three phases if necessary. In order to verify the 

initial time domain classification, a series of key harmonic relationships can be assessed which can 

identify the spindle status. The key relationships allow the identification of three discrete spindle 

states; off, accelerating, and rotating at constant speed. The key harmonic relationships that are 

observed in the analysis of the machine tool current waveforms are the relative magnitudes of the 
jth harmonics. When the machine tool spindle is not energised the magnitude of the 

3'’*^ harmonic is greater than that of the and harmonics.

When the machine tool spindle is energised this relationship is inverted as a result of the 

frequency inverter design described in Section 4.4.1. In addition to this, during periods of spindle 

acceleration the magnitude of the 5*^ and harmonics is over two times the magnitude of the 

3'''^ harmonic. Figure 5.9 illustrates this changing relationship during different spindle operating 

conditions. Figure 5.9 also illustrates the amplitude changes of the and 13‘* harmonics during 
the different spindle operating conditions. Both of these observed results are expected as the 5‘^, 

7th, iF'*, and 13*^ harmonics are all characteristic harmonics of the Hurco VM2’s Yaskawa F7 six 

pulse frequency inverter. Although the key harmonic relationships exist within all three current 
phases only the /i harmonics are used to verify the spindle status in order to avoid redundancy.

Phase 1 current

f (50Hz

Spindle off 
Spindle 4000 RPM 
Spindle 8000 RPM

Figure 5.9 - Harmonic analysis
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5.5. Conditional inference

5.5 Conditional inference

Once the intelligent energy sensor has detected, classified, and verified a spindle activation, the 

system waits a set stabilisation period which is determined by the spindle speed. Figure 5.10 

illustrates the stabilisation period for a sample 7000 rpm spindle acceleration and Figure 5.10 also 

includes a table listing the duration of the stabilisation periods for each of the eight spindle speeds 

analysed in this study.

Spiudle speed (RPM)
Stabilisation period (s)

mean std. deviation
1000 0 0

2000 0.55 0.05
3000 0.95 0.03
4000 1.00 0.07
5000 1.05 0.03
6000 1.15 0.08
7000 1.50 0.05
8000 1.65 0.05 4.2 4.6 5.0 5.4

'Fiine (s)

Figure 5.10 - Spindle stabilisation periods

At this point the machine is in a machining ready position and the system searches for a power 

consumption increase signifying the beginning of a machining process. The system implements a 

change of mean detection algorithm in order to identify and record a consumption increase resulting 

from material removal. The detection of mean changes in a measured time series data set can be 

posed as a hypothesis testing problem in which the null hypothesis (Hq) is that there is no change 

of mean in the data and the alternate hypothesis (Hi) is that a mean change exists within the 

data set. In reality, either the null or alternate hypothesis will be true and the change of mean 

detection algorithm will indicate which hypothesis is true.

The median absolute deviation (MAD) algorithm reported in studies by Leys [200] and Adekeye 

and Azubuike [201] is used here. The median (Md), is a measure of central tendency similar to 

the mean, however the median offers the significant advantage of not being strongly influenced by 

the presence of outliers [201]. Using the MAD is a more robust approach to the measurement of 

statistical dispersion than comparable methods as it displays a strong resilience to outliers due 

to its basis on the median rather than the mean. Commonly used statistics including standard 

deviation place heavier weights on outliers as the distances from the mean are squared.

The median is calculated by sorting observations in ascending order and calculating the mean 

rank of the observations. The median absolute deviation is calculated using Equation 5.6. A more
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5.6. Test workpieces

comprehensive description of how to calculate the MAD which includes example applications is 

provided by Leys [200],

MAD{X) = Median{\X ~ Median{X)\) (5.6)

Calculating the MAD therefore requires the following steps:

1. Calculate the median of the original data series

2. Subtract this median from each value in the original data series values to obtain a new data 

series

3. Calculate the median of this new data series

Selecting the length of the sliding window, w, that is used for the cutting detection algorithm 

is important. The optimal window length is one that is sufficiently large that it does not recognise 

outliers as structural changes within the data set. However, it is crucial that w is not set too large 

which would have the effect of smoothing out all changes in the recorded time series. In this study 

the sliding window includes four data points. The window shift is 1 data point (50 ms) per time 
slice. Therefore, at each time t, the content of the window is:

(Pt-s, Pt-2t Pt-li Pt) (5.7)

The robustness of the cutting detection algorithm is improved by incorporating slope information 

in order to allow rapid axis motions which may occur during typical machining operations to be 

separated from material removal. The first change point representing the beginning of material re­

moval is detected by the cutting detection algorithm when the MAD statistic breaches a threshold, 

6MAD, and the slope, is below a threshold value, 5m- These machine tool specific threshold val­

ues were obtained during an extensive training period that assessed the algorithms effectiveness at 

identifying cutting zones, using different threshold values, during a series of machining operations. 

The power consumption at this point is recorded. Following this, each change point detected by 

the cutting detector alternates the system between a ‘cutting’ and ‘not cutting’ condition. Material 

removal is adjudged to have ceased when the power consumption decreases below the threshold 

defined by the initial change point detected by the MAD.

5.6 Test workpieces

Assessing the energy efficiency of multiple machine tools has been identified as a key research area 

within the literature. Researchers have concluded that the development of a standard test piece is 

a necessity if accurate comparisons are to be made between machine tools. The definition of these 

standard workpieces remains an unsolved problem that will be addressed in parts three and four 

of ISO 14955: Machine tools - environmental evaluation of machine tools [184). While researchers
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await the introduction of internationally accepted workpieces, they will continue to design their 

own test workpieces.

Behrendt et al. |188] recently designed a test piece based on the Japanese Standards Associations 

(JSA) existing guideline. Mild steel (AISI 1018) was used as the workpiece material and the test 

included seventeen different features incorporating face milling, pocketing, and drilling operations. 

Another test that requires the completion of three milling operations performed with an 18 mm 

diameter carbide tipped cutter on a steel workpiece was proposed by a different CIRP research 

team [184]. Further to the two mentioned CIRP approaches, Avram and Xirouchakis [17] presented 

an energy consumption testing strategy that involved performing numerous milling operations 

under various loading conditions on an aluminium (7022) test piece. This study assesses the 

performance of the intelligent energy sensor by testing it on two workpieces described in Section 5.7.

5.7 Experimental results 

5.7.1 Workpiece one

The first test uses a 10 mm carbide cutting tool to machine a slot with a 2 mm depth of cut into an 

aluminium (6060) workpiece. During this test there are no tool changes and the machine operates 

without coolant. The relevant machining information for this test is included in Figure 5.11.

Operation # 1
Depth of cut (mm) 2
X feed rate (mm/min) 500
Y feed rate (nun/min) 500
Z feed rate (mm/min) 100
Spindle speed (RPM) 5000

Figure 5.11 Workpiece one

Figure 5.12 illustrates the initial spindle acceleration detection and classification. An activation 

is detected when the slope, increases by more than a predefined value, . The system continues 

to record this load signature until a combination of conditions are met; firstly the slope, 

decreases by more than a predefined value, <52, and the relationships between Powerrm3{x) and 

Powerf{Ms{{x) — 5), and PowernMsi^) and PowerrmsHx) — 1) meet certain conditions signifying 

a consumption decrease followed by a stabilisation. The machine tool specific activation detection 

values were obtained during the initial component level training phase. The chosen values were 

the most effective at repeatedly isolating similar signatures for each component activation during 

the training phase.
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The recorded activation is then normalised by subtracting the minimum value, Pmin, from each 

of the activation values. Each of the seven features described in Section 5.3 are then computed for 

the normalised activation and a feature vector of the form Fv = [Ti F2 F3 ... Fj] is produced. 

At this point the feature vector, Fv, is multiplied by the transformation matrix, Tm, in order to 

transform it into the feature space shown in sub plot 3 of Figure 5.12.
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Figure 5.12 - Spindle activation identification and classification

The red point within sub plot 3 of Figure 5.12 represents the detected activation described 

above. The system now computes the inverse Euclidean distance between the test point and each 

of the training samples within the feature space. The inverse Euclidean distances between the test 

point and its three nearest neighbours, calculated using l/dEuciidean{x^y) =
- ViP

included in Table 5.2. The tabulated results show the activation has been correctly classified as a 

5000 rpm spindle acceleration.

146
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k-nn Euclidean distance Inverse Euclidean distance Class label

k=l 453.74 0.0022 Spin5

2 489.94 0.0020 Spin5

3 530.08 0.0018 Spin5

Table 5.2 - Detected activation (i), 3-nearest neighbours

The I\ current profile, illustrated in sub plot 4 of Figure 5.12, also recorded during the event 

detection process is used to verify the assigned class using the method described in Section 5.4. This 

validation test operates by monitoring the relationship between the spindle frequency inverter’s 

characteristic harmonics and non-characteristic harmonics. The spindle level plot included in sub 

plot 1 of Figure 5.12 includes the spindle level for the duration of the test. The plotted values are 

the results of a sliding window fft test in accordance with the following:

• level 1 - 3’-'' > 5*'" & 3’’'^ > 7"“

• level 2 - 5"* > 3’'" & 7*'* > 3̂rd

• level 3 - 5"'* > 2 * (3'''^) & 7*'" > 2 * (3’'^')

In the case of the activation currently under consideration the magnitude of the 5*^ harmonic, 

7.62, and the magnitude of the 7‘^ harmonic, 4.19, are both more than double the 3’"'^ harmonic 

magnitude of 1.88. This supports the findings of the initial classification tool which labelled the test 

sample as a spindle acceleration. Following the identification of a 5000 rpm spindle acceleration 

the system waits 1.05 seconds for the power consumption to stabilise in accordance with the table 

included in Figure 5.10. At this point the system searches for a consumption increase resulting 

from material removal by implementing the cutting detection algorithm described in Section 5.5.

The cutting tool is adjudged to have made contact with the workpiece - in 8K:cordance with the 

conditions set out in Section 5.5 - 1.45 seconds after the spindle has stabilised at 5000 rpm. The 

power consumption increase is recorded by the cutting detection system. The algorithm continues 

to run until the spindle is powered off; this occurs approximately 22.15 seconds after the cutting 

process begins. Within the spindle on zone the cutting detection algorithm identifies two periods 

of material removal and a rapid axis acceleration, illustrated in Figure 5.13. In order to validate 

the sensors observation that the spindle is powered off, a further verification test is performed 

using the frequency information as described in Section 5.4. In this case, the magnitude of the 5*^ 

harmonic, 0.85, and the magnitude of the 7*^ harmonic, 0.66, are both below the 3’''^ harmonic 

magnitude of 1.62 providing further validation that the spindle has been powered off.
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— Cutting detected
— Rapid axis motion

0 2.5 5.0 7.5 10,0 12.5 15.0 17.5 20.0 22.5 25.0
Time (s)

Figure 5.13 — Workpiece one material removal detection

Figure 5.14 includes the data provided by the intelligent energy sensor summary report for the 

first test workpiece. The test lasts for a total time of 35.2 seconds and 20.55 Wh are consumed by 

the machine tool during this period.

Run time mode,
5.90 seconds (16.7%) 
Idle,
8.75 seconds (24.9%) 
Cutting.
20.55 seconds (58.4%)

Idle,
2.98 Wh (14.5%) 
Run time mode, 
5.79 Wh (28.2%) 
Cutting,
11.77 Wh (57,3%)

Figure 5.14 - Workpiece one machine state power and time breakdown

5.7.2 Workpiece two

The second workpiece incorporates facets of the test strategies developed within the literature 

described in Section 5.6. The workpiece material is mild steel (AISI 1018). Multiple operations 

are performed with varying machining parameters. During this test there are two tool changes and 

the machine operates with and without coolant for different operations. The following is a list of 

the three operations included for the second test workpiece test:

• 10 mm cutting tool to machine a slot with a 4 mm depth of cut, operation number 1 in 

Figure 5.15;
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• 8 null cutting tool to machine a slot with a 2 mm depth of cut, operation number 2 in 

Figure 5.15;

• 6 mm cutting tool to drill a 6 mm diameter hole to a depth of 10 mm - 2 mm pecking distance 

- operation number 3 in Figure 5.15.

The relevant machining information for this test is included in Figure 5.15.

Operation # 1 2 3
Depth of cut (iniii) 4 2 10
X feed rate (mm/min) 500 250 N/A
Y feed rate (mm/min) 500 250 N/A
Z feed rate (mm/min) 100 100 125
Spindle speed (HPM) 4000 7000 7000

Figure 5.15 - Workpiece two

The initial spindle acceleration, detection, and classification diagrams are included in Fig­

ure 5.16. The activation, detected when the slope, increases by more than a predefined value, 

(5i, continues to be recorded until a combination of conditions are met. Firstly the slope, 

must be observed to decrease by more than a predefined value, <52, and the relationships between 

Power[iMs(x) and Power— 5), and Powerand PowerhmsHx) — 1) must also 
meet certain conditions signifying a consumption decrease followed by a stabilisation.

The recorded activation is then normalised as described previously by subtracting the min­

imum value, Pmin, from each of the activation values. Each of the seven features described in 

Section 5.3 are then computed for the normalised activation and a feature vector of the form 

Fv = [Fi F2 Fz ... Fr] is produced. At this point the feature vector, Fv, is multiplied by the 

transformation matrix, Tm, in order to transform it into the feature space shown in sub plot 3 of 

Figure 5.16.

The highlighted point within sub plot 3 of Figure 5.16 represents the detected activation de­

scribed above. The inverse Euclidean distances between the test point and each of the training 

samples within the feature space is then recorded. The recorded distance between the test point and
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its three nearest neighbours are included in Table 5.3. The tabulated results show the activation 

has been correctly classified as a 4000 rpm spindle acceleration.

Activation
detected

Normalised
feature

parameters
recorded

Transformed 
to feature 

space
3-nearest neighbours 

identified and 
class assigned

Class verified

5.0 5.3 5.6 5.9 6.2 6.5 
Time (s)

50
2500 
2000 

S 1500
S. 1000

500
03

.S -500
"-1000

-1500

20

10

5.0 5.3 5.6 5.9 6.2 6.5 
d’ime (s)

I
-6000-2000 2000 6000 10000 

Principal component 1

5/
¥ 7/

" 50 250 450 650 850 1050
Frequency (Hz)

Figure 5.16 - Spindle activation identification and classification

k-nn Euclidean distance Inverse Euclidean distance Class label

k=l 66.75 0.0149 Spin4

2 82.13 0.0121 Spin4

3 91.44 0.0109 Spin4

Table 5.3 - Detected activation (ii), 3-nearest neighbours

The Ii current profile, illustrated in sub plot 4 of Figure 5.16, also recorded during the event 

detection process is used to verify the assigned class using the method described in Section 5.4. 

In the case of the activation currently under consideration the magnitude of the 5‘^ harmonic, 

7.13, and the magnitude of the 7*^ harmonic, 4.11, are both more than double the 3’’'^ harmonic
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magnitude of 1.98. This supports the findings of the initial classification tool which labelled the test 

sample as a spindle acceleration. Following the identification of a 4000 rpm spindle acceleration 

the system waits 1.00 seconds for the power consumption to stabilise in accordance with the table 

included in Figure 5.10 before searching for a material removal process.

The detection algorithm observes another event and records an additional load signature within 

the spindle stabilisation zone. The recorded activation, normalised activation, and feature space 

mapping are all included in Figure 5.17. The intelligent energy sensor classifies this load signature 

as a coolant pump activation. The red point within sub plot 3 of Figure 5.17 represents the detected 

activation described above.

Activation
detected

Normalised
feature

parameters
recorded

'rransformed 
to feature 

space
3-nearest neighbours 

identified and 
class assigned

Class verified

2500 

2000 
I 1500 
§. 1000

O.

500 

0

.£ -500 
^-1000 

-1500 I
-6000-2000 2000 6000 10000 

Principal component 1

Figure 5.17 - Coolant pump activation identification and classification

The system now computes the inverse Euclidean distance between the test point and each of 

the training samples within the feature space. The inverse Euclidean distance between the test 

point and its three nearest neighbours, calculated using l/dEuciidean{x,y) = , ^ , are
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included in Table 5.4. The tabulated results show the activation has been correctly classified as a 

coolant pump activation.

k-nn Euclidean distance Inverse Euclidean distance Class label

k=l 121.54 0.0082 Cool

2 128.22 0.0077 Cool

3 165.39 0.0060 Cool

Table 5.4 - Detected activation (iii), 3-neare.st neighbours

After the stabilisation period has elapsed the system searches for a consumption increase re­

sulting from material removal by using the cutting detection algorithm described in Section 5.5. 

The cutting tool makes contact with the workpiece 3.45 seconds after the coolant pump has been 

activated and the associated increase is recorded and stored. The machining operation is adjudged 

to have ceased when the power consumption returns to the static level observed before material 
removal was detected, a period of 7.45 seconds. The algorithm continues to run until the spindle 

is powered off; this occurs approximately 10.75 seconds after the cutting process begins. Within 

the spindle on zone, the cutting detection algorithm identifies three periods of material removal 

and two rapid axis accelerations, illustrated in Figure 5.18.

Figure 5.18 - Workpiece two - operation one material removal detection

The spindle is deemed to have been powered off when the power consumption returns to the 

recorded level during idle mode. At this point the verification test is performed as described within 

Section 5.7.1 covering the first test workpiece. The magnitude of the 5‘^ harmonic, 0.89, and the 

magnitude of the 7*^ harmonic, 0.62, are both below the 3'"'^ harmonic magnitude of 1.58 at this 

point validating the identified spindle off status.
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The next activation detected by the intelligent energy sensor after the machine tool spindle 

is powered off is included in Figure 5.19. The figure includes the initial recorded activation, 

normalised activation, Ii current waveform, harmonic study, and feature space mapping. Following 

the steps outlined above this activation is identified as a tool change operation. The frequency 

verification test is useful here as the tool change process represents one of the few operations that 

can only occur whilst the spindle is powered off. Therefore, assessing the spindle status during the 

tool change operation provides a level of component verification.

Activation
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2000 

I 1500
B. 1000
Coo
a

500
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<j
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*^-1000 

-1500
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0

(

3-nearest neighbours 
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Class verified
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oO,
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0
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Time (s)

-6000-2000 2000 6000 10000 
Principal component 1
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Figure 5.19 - Tool change identification and classification

The system computes the inverse Euclidean distance between the test point and each of the

training samples as previously described. The inverse Euclidean distance between the test point and

its three nearest neighbours, calculated using l/dEuciideanix,y) = , ^ , are included in
- ytr

Table 5.5. The tabulated results show the activation has been classified as a tool change operation.
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k-nn Euclidean distance Inverse Euclidean distance Class label

k=l 21.56 0.0464 Tool

2 22.21 0.0450 Tool

3 31.77 0.0314 Tool

Table 5.5 - Detected activation (iv), 3-nearest neighbours

The intelligent sensor follows the same procedure for the rest of the recorded power profile 

identifying an additional two spindle activations, both 7,000 rpm, and another tool change acti­

vation. The system also quantifies the duration of material removal within each run time zone. 

Figure 5.20 includes a summary of the data provided by the intelligent energy sensor for the second 

test workpiece.

]_Run time mode,
37.60 seconds (34.9%) 

_Idle,
29.15 seconds (27.0%) 
Cutting,
41.05 seconds (38.1%)

Idle,
10.20 Wh (13.3%) 
Cutting.
27.61 Wh (35.9%) 
Run time mode, 
38.95 Wh (50.8%)

Figure 5.20 - Workpiece two machine state power and time breakdown

5.8 Summary

Numerous researchers, including Vijayaraghavan and Dornfeld [19] and Dahmus and Gutowski 

[84], have identified the duration of time a machine tool spends in each operational state during 

processing as an important research area; Vikhorev et al. [77] observed that the time production
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machines spend in idle represents 20% - 30% of the energy losses in a manufacturing facility. 

The intelligent energy sensor described in this chapter combines a nonintrusive load monitoring 

system with condition based inference algorithms in order to quantify the energy consumption 

and operational status of the test machine during machining. Herrmann et al. |15] suggest that 

obtaining transparency on machine tool status during operational periods will increase the level of 

motivation to alter behaviour and reduce the energetic impacts of machining.

The NILM segment of the intelligent energy sensor was trained using a supervised learning 

process where training data is labelled with a predefined class. A selection of features were collected 

for each component activation. Each machine tool activation was then mapped onto a PCA 

transformed feature space; a process that has not previously been reported in the literature. During 

testing periods query activations were mapped onto the feature space and a 3-nn classification tool 

was employed to classify the unknown query. A median absolute deviation algorithm was applied 

to identify material removal zones.

The combination of algorithms which form the intelligent energy sensor and their application 

to a cutting machine tool are novel contributions to the research area. The developed sensor was 

applied to a Hurco VM2 3-axis CNC milling machine. The proposed sensor is a low cost solution 

which can support the expansion of unit process life cycle inventory databases and assist the 

industry transition towards sustainable manufacturing. The intelligent energy sensor was tested 

on two workpieces. The design of the workpieces was inspired by workpieces from the literature, in 
particular the workpieces described by Behrendt et al. [188] and Avram and Xirouchakis |17| were 

influential. The intelligent energy sensor reports strong results, accurately identifying individual 

component activations as well as the operational status of the machine tool during machining.
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Chapter 6

Conclusions and recommendations for future work

6.1 Summary

This research work has higlilighted the importance of developing a holistic understanding of energy 

consumption within manufacturing facilities at each hierarchical level. The need for this under­

standing has been driven by the rising cost of energy, the fac:t that energy has become a major 

cost driver within manufacturing facilities, and the widespread implementation of environmental 

legislation. Developing a more comprehensive understanding of how energy is consumed within 
manufacturing facilities is a core component of research efforts aiming to advance industrial energy 

efficiency.

This study presents an array of tools which consider energy consumption at all levels of the 

manufacturing facility hierarchy. One of the critical challenges facing plant managers is the need to 

gain transparency inside the complex energy distribution networks of their manufacturing plants. 

Studies within the literature have identified submetering as a necessary task in order to develop the 

level of energy transparency required. The industrial case study presented in this work describes 

an effective energy metering system implementation strategy. The case study describes a decision 

support tool that identifies where metering devices are needed and also develops energy performance 

indicators based on the data emanating from the installed metering system.

The design and development of a custom power measurement tool facilitated a detailed machine 

tool energy characterisation. Component level transparency was achieved by assessing individual 

components under various loading conditions and recording the consumption characteristics. The 

machine tools dynamic behaviour was also analysed with a series of machining tests. The machin­

ing tests were performed in order to investigate two phenomena; the relationship between power 

consumption and depth of cut, and also the relationship between specific energy consumption and 

material removal rate.

Quantifying the duration of time a machine tool spends in each operational state has also been 

identified as an important research area. Obtaining transparency on machine tool status during 

machining will motivate improvements that can reduce the energetic impacts of machining. This 

study presents a novel nonintrusive intelligent energy sensor that combines a nonintrusive load
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monitoring system with condition based inference algorithms in order to identify the operational 

status of a machine tool during machining. The intelligent energy sensor is novel in terms of both 

its design and application.

6.1.1 Manufacturing process chain electrical energy characterisation

An industrial case study was undertaken to investigate the energy consumption of a complex 

manufacturing facility at various hierarchial levels. A wireless-state-of-the-art metering system 

was installed in order to improve the level of energy transparency within the facility. In an effort 

to ensure energy measurement devices were installed at appropriate locations a generic metering 

installation strategy was developed that assessed the magnitudes and trends that existed within 

the power profiles of each piece of equipment. Although researchers have previously highlighted the 

importance of electrical energy measurement within manufacturing facilities [59,120|; the metering 

infrastructure that is now installed in the test facility represents the cutting edge in this area and 

similar projects have not been reported in the literature to date.

The information emanating from the energy metering system was used to develop energy per­

formance indicators allowing the effectiveness of energy projects to be accurately quantified as well 
as optimising energy cost savings from the perspectives of both procurement and end use. At a 

facility level the test site consumes over 17 GWh of electricity each year. Initial results disaggre­

gated this total facility consumption into the most significant energy users with production (42%), 
compressed air (15%), and dust extraction (11%) representing the most significant consumers. 

Other notable contributors included HVAC (9%), chilled water (8%), and office spaces (.3%).

A detailed investigation into the electrical energy requirements of process chains was conducted. 

This section of the study focused on one value stream that produced two separate products. The 

process chains for both products were mapped out from an energy perspective and the require­

ments of each process were quantified. In terms of direct energy consumption, product A required 

2.26 kWh/unit and product B required 2.49 kWh unit. The product A line included seven pro­

cesses while the product B line included ten processes. The most energy intensive processes for 

product A were the clean line (51.99%), milling (32.07%), and in process cleaning (6.32%). The 

most energy intensive processes for product B were inspection (38.23%), the clean line (28.51%), 

and turning (17.18%). One of the most interesting results observed at this juncture was the por­

tion of the overall energy consumption that is associated with non-value adding operations such 

as cleaning and inspection.

A unit process level investigation was performed on a single piece of manufacturing equipment, 

a Mazak FH-4800 milling machine. A holistic quantification methodology was developed which 

accounted for the energy required directly and indirectly by the machine tool. The results of 

this section observed that overheads, in the form of lighting and HVAC accounted for 10.37% of 

the total energy required. The provision of coolant accounted for approximately 9.24%, with the
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machine tool itself requiring 80.39% of the total required energy. The results observed in this 

section of the research were in line with studies from within the CIRP community as well as other 

relevant academic journals |19,85,118].

It can be concluded that a structured methodology is necessary to allow the discrimination 

between energy consumers in complex manufacturing facilities due to the level of complexity in­

herent in modern manufacturing sites with primary and supporting energy, various hierarchical 

levels, as well as multiple processing steps. The methodology developed herein allowed a complete 

disaggregation of the energy consumed within a complex manufacturing facility.

6.1.2 Machine tool electrical energy characterisation

A power measurement tool was designed and developed to facilitate a machine tool energy charac­

terisation study. The measurement system was calibrated against a sate-of-the-art commercially 

available power monitoring device. The values of > 95% obtained during verification tests 

proved that the system was accurate and reliable. The primary source of error which lead to dis­

crepancies during the verification tests was intrinsically linked to the performance of the calibration 

device. The HT-Italia power meter used in conjunction with HT-FLEX33 current transformers 
zeroed all current readings with a magnitude of less than 1 Amp.

An energy investigation was performed on a 3-axis Hurco VM2 CNC milling machine. The 

electrical distribution network that exists within the machine tool was mapped. Individual ma­

chine components were then characterised by activating each component three times under various 

loading conditions in order to obtain statistically significant results. The spindle was the compo­

nent requiring the most power, with a maximum instantaneous power consumption of 11.89 kW 

observed during spindle acceleration. A power-speed analysis found a dynamic relationship be­

tween spindle speed and power consumption depending on the operating range. Both the x and y 

axis are powered by 1.3 kW servo motors, with the z axis being driven by a larger 2.0 kW servo 

motor primarily due to the increased mass carried by the z axis.

Auxiliary components including the coolant pump and tool change motor were also analysed. 

The coolant pump required a peak power of 3.42 kW during its initial turn on transient, and 

then 1.22 kW during steady state operation. The tool change motor required a peak power of 

1.52 kW during its initial turn on transient, and then 1.39 kW during steady state operation. 

The contribution of peripheral equipment to the machine tools idle power requirement was also 

quantified. Unloaded motors (39.7%) and cooling fans (10.53%) represented the most energy 

intensive pieces of idle mode equipment.

Machining tests were performed in an attempt to investigate two phenomena; the relationship 

between power consumption and depth of cut, and also the relationship between specific energy 

consumption and material removal rate. The machining tests were performed on an aluminium 

(6060) workpiece. During testing the machining parameters were held constant - with a spindle
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speed of 5000 rpm and a feedrate of 700 mm/ min - and the depth of cut was increased from 

1 mm to 5 mm in steps of 1 mm. Each machining operation was performed three times. A 

linear relationship between power consumption and depth of cut was observed. Approximately 

0.118 kW of additional power were required for each 1 mm increase in depth of cut. The results of 

these machining tests aligned with recent research studies that also described a linear relationship 

between power consumption and depth of cut |88].

The second set of machining tests also used an aluminium (6060) workpiece. The machining 

parameters were held constant - with a spindle speed of 4000 rpm and a feedrate of 500 mm/min 

- while the depth of cut increased from 0.5 mm to 5 mm in steps of 0.5 mm in order to vary 

the material removal rate. Each machining operation was performed three times. An inverse 

relationship was observed between specific energy consumption (kj/cm^) and material removal 

rate (cm^/s). The results obtained during these machining tests matched the findings of similar 

studies that have recently been reported in the literature [88,183].

The hierarchical approach ultimately leads to the unit process level, and raises the question of 

the capability of energy and power data to characterise machine tool performance, considering that 

consumption levels can be low, under 0.1 kW, and difficult to measure. The methodology developed 

based on metering multiple machine tool subcomponents demonstrated that the measurement of 

energy and power is a viable approach to resolve component level consumption in certain circum­
stances. This approach is not without limitation and its effectiveness may be reduced as depth of 

c\it decreases below 0.5 mm and if small diameter tools are used.

6.1.3 Nonintrusive machine tool load monitoring

The potential of reduced-cost data acquisition has motivated development of nonintrusive electrical 

load monitoring devices. The devices have primarily been deployed in domestic buildings [137], but 

their use in commercial and industrial facilities is increasing [155]. This work, distinct in both its 

approach and application area focused on an individual milling machine tool. A novel nonintrusive 

intelligent energy sensor was designed, developed, and tested. The system deployed voltage and 

current sensing elements at the main incomer of the machine tool and assessed the current machine 

tool status based on the patterns existent within the acquired data.

The implementation of the intelligent energy sensor, based on measurements at a single point, 

required feature extraction and classification techniques in order to separate individual loads. The 

proposed intelligent energy sensor combines a NILM approach with conditional inference algorithms 

in order to identify the machine tools operational status as well as individual component activations.

An activation detection algorithm is used to detect when a machine component has been en­

ergised; when an activation is detected the system records the relevant waveforms and collects a 

series of time domain and frequency domain features. The time domain features included maxi­

mum power, RMS power, crest factor, form factor, etc.,. Frequency domain features included the
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3’’'^, 5^^, and 7*^ harmonics. Training the system was completed by activating the machine tool 

components five times and recording all features.

In order to maximise the separation distance between each machine component activations 

time domain features a principal component analysis was performed. The results of the principal 

component analysis showed that including the first two principal components described 96% of the 

variation, and the first three principal components accounted for 99% of the variation. A scree plot 

identified the first two principal components as the most important components to be included and 

this allowed the seven time domain features to be transformed and visualised in a 2-D space that 

accounted for 96% of the original data variation.

Classification of the time domain signals was performed by a three-nearest neighbours tool. 

K-nn based classification systems find application in many NILM systems due to their simplic­

ity in computation and implementation. Classification of the frequency domain information was 

performed by comparing the relative magnitudes of characteristic harmonics. A median absolute 

deviation algorithm was then deployed in order to identify material removal zones. The intelligent 

energy sensor was tested on two workpieces based on existing workpieces from the literature.

An intrusive approach to metering involving the deployment of multiple sensors is advantageous 

in lab arrangements, however the potential to undertake a detailed examination of the global 

machine tool power consum]>tion in an intelligent manner presents the advantages of reducing 

the hardware cost and installation difficulty of the metering system. The methodology developed 

based on PCA and MAD algorithms demonstrated it was possible to discriminate between machine 

states and recognise certain component activations. Therefore it can be concluded that with 

the appropriate analysis architecture, and the appropriate level of training for the algorithm, a 

nonintrusive and intelligent approach to energy metering provides a viable alternative to multi­

sensor arrangements.

6.2 Recommendations for future work

The areas where future work could be undertaken include:

• Developing alternatives to traditional cleaning/inspection processes

• Further investigations into the relationship between process parameters and energy consump­

tion

• Identifying machine tool components by injecting electrically intrusive signatures

• Developing an intelligent energy sensor that interfaces with state-of-the-art machine tool 

controllers

There is an opening in the literature for studies that investigate alternatives to the traditional 

non-value adding operations including cleaning and inspection. The results observed within this
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study highlighted the energy intensive nature of conventional biomedical device cleaning processes 

and the impact they have on the overall energy consumption for each part. Studies that propose 

methods that either change or remove standard cleaning and inspection operations from biomedical 

process chains have the potential to make significant energy savings.

There is an opportunity for research projects that investigate the effects of adapting machin­

ing process plans in order to reduce energy consumption. There are currently a small number of 

research publications that address this area however, there is scope for the development of environ­

mental process plan optimisation strategies that can be applied to multiple machining processes. 

Also, within the literature there is still not a complete understanding of the relationship that exists 

between machining parameters and energy consumption. Although unit process energy databases 

do exist there is a need for a comprehensive database created by multiple stake holders that can 

assist in the development of a thorough understanding of how process parameters impact on energy 

consumption.

Further work on the intelligent energy sensor developed here could include an on-line solution 

which could report on the machine status in real-time. As the existing system operates on a 

conventional computer platform there is also scope to connect the intelligent energy sensor to a 

variety of communication networks, including the web; allowing the machine tool status to be 

monitored remotely.

The development of a more comprehensive machine tool component activation tool capable of 

identifying individual axis movements could be facilitated by injecting an electrical signal onto 
each device. For example, in order to differentiate two identical axis positioning servo motors, a 

different voltage harmonic or transient could be injected into the servo motors electrical signals.

An additional opportunity for future work results from current developments in machine tool 

controllers. As more and more controllers provide access to energy consumption information there 

is scope for an application that interfaces directly with machine tool controllers in order to infer 

the operational status of the machine tool. The development of a generic intelligent energy sensor 

that is capable of learning machine tool signals from different machines would represent a major 

contribution to the research area that could evolve into a valuable commercialisation project.
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close all; 
clear all; 
clc; 
tic;
%%% DATA FILE
dataOl = dlmread('wkp2dataset.txt');
%%% LOADING RAW DATA 
lenOl = length(dataOl); 
timeOl = dataOl(:,1);
Il_val01 = dataOl (:,7);
I2_val01 = dataOl(;,6);
I3_val01 = dataOl(:,5);
Vl_val01 = dataOl(:,2);
V2_val01 = dataOl(:,3);
V3_val01 = dataOl (:,4);
Il_rms_val01 = dataOl(:,10);
I2_rms_val01 = dataOl (:,9);
I3_rms_val01 = dataOl(:, 8);

G., CALIBRATION FACTORS 
ical = 148.17; 
veal = 3.03;
%%% CALIBRATED DATA 
1101 = ical.*Il_val01;
1201 = ical.*I2_val01;
1301 = ical.*I3_val01;
Il_rms01 = ical.*Il_rms_val01;
I2_rms01 = ical.*I2_rms_val01;
I3_rms01 = ical.*I3_rms_val01;
Vl_01 = veal.*Vl_val01;
V2_01 = veal.*V2_val01;
V3_01 = veal.*V3_val01;
%%•■ POWER CALCULATIONS 
V3_01neg = V3_01.*-l; %% V3 negative 
Wl_01 = V2_01.*I101; %% Wattmeter 1 
W2_01 = V3_01neg.*1301; %% Wattmeter 2 
Power_01 = Wl_01 + W2_01; %% Both Wattmeters 
Powerrms_01 = rmseod(Power_01,100,0,1); > RMS power
save = Powerrms_01';
%%% RMS POWER WAVEFORM PLOT 
figure (1)
plot(Powerrms_01); hold on; 
title ('Power - worl<piece test')
%%% PCA VARIABLES
A = dlmread{'traindata_adj.txt'); %% 
normal = dlmread('meandata.txt'); %)
%%% PCA CALCULATION 
A1 = A';
covariance_matrix = cov(A);
[eigenvectors eigenvalues] = eig(covariance_matrix); 
pi = eigenvectors(;,7); 
p2 = eigenvectors(:,6); 
p3 = eigenvectors(:, 5) ;
feature_vect2 = [pi p2]; %% Two dimensional transformation vector 
feature_vector2 = feature_vect2'; %% Transposing two dimensional 
transformation vector
final_data2D = feature_vector2 * Al; %% Transformed training data set 
bl = final data2D{l,:);

Training data matrix 
Normalisation mean vector

182



b2 = final_data2D{2,:);
READ CLASS LABELS

filelD = fopen('datalabels.txt','rt') 
labels_b = textscan(filelD,' s s s 
SSS S S S S S S'SSS

- S ^ S “ s 
S S »S "i

s 's', 'CollectOutput',true) ;

■'S '-.s -s ■'s "-.s ~s ;s '‘S s
S : S * S - S ? S •' S : S S S ts
- loading class labels

Stabilisation values for spindle

s s ' s s s 
fclose (filelD); 
newdat = cat(1,labels_b{1});
%%. Stabilisation periods 
stables = dlmread('stables.txt 
activations 
„„ SETTING CONDITIONS 
test_length = length(Powerrms_01); 
tl=[0:1:length(Powerrms_01(1:test_length))]; 
t =tl';
event_start = []; 
event_stop = []; 
change_start = 0; 
change_stop = 0; 
location = []; 
distances = []; 
slope_store = [];
Fs = 2000; 
activations = [];

SETTING MAD CONDITIONS 
store = []; 
machining = 0; 
cutting = []; 
cutting_power = []; 
spin_off =[]; 
slope_set = [];
RT_stop = []; 
run_time = []; 
run_time_duration = []; 
run_time_power = []; 
rapid_accel = 0; 
spindle_off = 0; 
change = 0;

NAMING CLASSES 
Spinl = sym('Spinl') ;
Spin2 = sym('Spin2');
Spin3 = sym('Spin3');
Spin4 = sym ( ' Spin4 ' )/■
Spins = sym('Spins');
Spin6 = sym('Spin6');
SpinV = sym('Spin7');
Spins = sym('Spins');
Cool = sym('Cool');
Tool = sym('Tool');
%%% Finds activations
pop = 1; %%% Variables that control when the long if loop is triggered
popped = 1; %%% Variables that control when the long if loop is triggered
%%% Figure counters 
madplot = 10; 
counter = 2;
for i=S:length(Powerrms_01(1:test_length)) 
slope_top = Powerrms_01(1, Powerrms 01(l,(i-l));
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slope_bottom = (i) - (i-1); 
slope = slope_top/slope_bottom; 
slope_store = [slope_store slope]; 
pop = pop;
if slope > 390 && change_start == 0
event_start = [event_start t(i-l)];
disp('change start')
change_start = 1;
change_stop = 0;
end
if change_start == 1 && Powerrms_01(1,(i)) < Powerrms_01(1,(i-5)) - 300 &&
abs(Powerrms_01(1, (i)) - Powerrms_01(1, (i-1))) < 100
event_stop = [event_stop t(i)];
disp('change stop')
change_start = 1;
change_stop = 1;
popped = pop + 1;
end
if change_start == 1 && change_stop == 1 
change_start = 0; 
change_stop = 0; 
end
%%% Collect the start and stop points of each activation
if popped > pop %% needs to only fire if an additional activation has
occured
pop = 1; %%% resetting the trigger variables 
popped = 1; %%% resetting the trigger variables 
for j = 1:length(event_stop)
eval(['event_start' num2str(j) ' = event_start(l,(j));']); 
eval ( [ ' event_stop ' nuir\2str(j) ' = event_stop (1,(j ));']) ;
%%% This section collects and collates all the features from each 
%%% activation
%%% plots each activation - necessary only for visualisation 
% figure((counter*2)-1);
% subplot (2,1,1);
% plot(I101(eval(['event_start' num2str(j) '*100: event_stop' num2str(j) 
'*100;']))) %% plots current waveform for each activation
% plot(Powerrms_01(eval(['event_start' num2str(j) ': event_stop' num2str(j) 
';']))); %% plots rms power waveform 
% subplot(2,1,2);
% plot(I101(eval(['event_start' num2str(j) '*100: event_stop' num2str(j) 
'*100; ' ])))
%%% FEATURES
eval(['template' num2str(j) ' = Powerrms_01(event_start' num2str(j) ': 
event_stop' num2str(j) ');']) %% Collects the data plotted in each event 
window
eval(['template_min' num2str(j) ' = min(Powerrms_01(event_start' num2str(j)
': event_stop' num2str(j) '));']) *»% Minimum value of each window
eval(['norm_temp' num2str(j) ' = template' num2str(j) ' - template_min'
num2str(j) ';']) %% Normalises each window to zero position
eval(['x_max' num2str(j) ' = max(norm_temp' num2str(j) ');']) %% Maximum
value in the normalised window
eval(['x_rms' num2str(j) ' = rmseod(norm_temp' num2str(j) ' ,
length(norm_temp' num2str(j) ') ,0,1);']) %% rms value of the normalised
window
eval(['x_avg' num2str(j) ' = mean(norm_temp' num2str(j) ');']) %% Average 
value in the normalised window
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= (event_stop' nuin2str(j) ' - event_start' 
Length of each window in seconds 
' = x_max' num2str(j) ' / x_rms' num2str(j)

/ x_avg' num2str(j)

eval(['x_sd' num2str(j) 
normalised window 
eval(['x_t' num2str(j) 
num2str(j) ')/20;']) 
eval(['x_cf' num2str(j)
CF of the normalised window
eval{['x_ff' num2str(j) ' = x_rms' num2str(j)
FF of the normalised window 
eval(['x_features' num2str(j) ' = [ x 
x_avg' num2str(j) ' x_sd' num2str(j) _ 
x_ff' num2str(j) '];']) Summary 
eval(['test_vect' num2str(j) ' = x_features' 
test vectors
eval(['test' num2str(j) ' = x_features' num2str(j) 
Normalises each test vector
eval(['test_point' num2str(j) ' = test' num2str(j)

std (norm_temp' num2str(j) ');']) ?;% SD of the

max' num2str(j) 
x_t' num2str(j)

x_rms'
' X cf

num2str
num2str

']) %%
'])

j) ' 
j) '

num2str(j) ' ] ) Creates

- normal ] )

feature vect2 ;'])

point' num2str(j) '(1,1) - 
test_point' num2str(j) '(1,2)

(m) ] ;

Transforms each test vector by using the transofrmation matrix 
%%%% DISTANCE CALCULATIONS 
for m = 1:50
eval(['euclidean_distance - sqrt(( test 
final_data2D(1, (' num2str(m) ' )))"2 + ( 
final_data2D(2, (' num2str(m) '))) '2 ) ; '])
location = [location (m)];
distances = [distances euclidean_distance]; 
knn = [distances euclidean_distance; location 
end
eval(['knn' num2str(j) ' = knn;'])
eval(['[Y, I] = sort(knn' num2str(j) '(1,;));'])
eval(['B' num2str(j) ' = knn' num2str(j) ' ( : , I) ; ' ]) ;
%%% SAVING LOCATION - %% (2,1) gives location on nearest neighbour// (1,1) 

Distance closest neighbour is from test point 
eval(['nearestl_activation' num2str(j) ' 
eval(['nearest2_activation' num2str(j) ' 
eval(['nearest3_activation' num2str(j) '
%%% SAVING DISTANCE
eval(['nearestl_activation_dist' num2str 
eval(['nearest2_activation_dist' num2str 
eval(['nearest3_activation_dist' num2str(j)
%%% SAVING INVERSE DISTANCE 
eval(['nearestl_inv_dist' num2str(j) 
eval(['nearest2_inv_dist' num2str(j) 
eval(['nearestS inv dist' num2str(j)

= B' num2str(j) '(2, 1) ; ' ] )
= B' num2str(j) '(2, 2) ; ' ] )
= B' num2str(j) '(2, 3) ; ' ] )

(j) ' = B' num2str(j) ' (1, 1) '])
(j) ' = B' num2str(j) ’ (1, 2) ' ] )
(j) ' = B' num2str(j) ’ (1, 3) '])

1/B' num2str(j) ' (1, 1); ' ] )
1/B' num2str(j) ' (1, 2) ; ' ] )
1/B' num2str(j) ' (1, 3) ; '] )

%%% Setting nearest neighbours 
eval(['nearest_l = B' num2str(j) '(1,1) 
eval(['nearest_2 = B' num2str(j) '(1,2) 
eval(['nearest_3 = B' num2str(j) '(1,3) 
%%% Setting nearest neighbours (inverse 
eval(['nearest_linv = 1/B' num2str(j) ' 
eval(['nearest_2inv = 1/B' num2str(j) ' 
eval(['nearest_3inv = 1/B' num2str(j) ' 
%%% Finding location of nearest classes 
eval(['nearestl_class = B' num2str(j) ' 
eval(['nearest2_class = B' 
eval(['nearest3_class = B' 
location = []; 
distances = []; 
knn = [];

Euclidean distance)
])
] )
])

Euclidean distance) 
(1,1);'])
(1,2) ; ' ] )
(1,3) ;

num2str(j ) 
num2str(j )

(2,1); 
(2,2) ; 
(2,3) ;

'])

']) 

' ] ) 
'])
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end
?,?« ACTIVATION WITHIN CLASSIFICATION RADIUS 
if nearest_l < 580 && nearest_2 < 580 
disp('system has identified an activation') 
activations = [activations 1]; %%«% Activation counter 
class_labell = newdat[1,nearestl_class); 
class_label2 = newdat{1,nearest2_class); 
class_label3 = newdat{1,nearest3_class);
%%% KNN CONDITIONS 

ALL EQUAL
if class_labell == class_label2 & class_label2 == class_label3 
inv_euc_dist = nearest_linv + nearest_2inv + nearest_3inv; 
class = class_labell; 
end
%%% 1st n and 2nd n equal 
if class_labell == class_label2 
inv_euc_distl = nearest_linv + nearest_2inv; 
inv_euc_dist2 = nearest_3inv; 
if inv_euc_distl > inv_euc_dist2 
class = class_labell;
else if inv_euc_dist2 > inv_euc_distl
class = class_label3;
end
end
end
%%% 2nd n and 3rd n equal
if class_label2 == class_label3
inv_euc_distl = nearest_linv;
inv_euc_dist2 = nearest_2inv + nearest_3inv;
if inv_euc_distl > inv_euc_dist2
class = class_labell;
else if inv_euc_dist2 > inv_euc_distl
class = class_label2;
end
end
end
%%% 1st n and 3rd n equal 
if class_labell == class_label3 
inv_euc_distl = nearest_linv + nearest_3inv; 
inv_euc_dist2 = nearest_2inv; 
if inv_euc_distl > inv_euc_dist2 
class = class labell;
else if inv_euc_dist2
class = class_label2;
end
end
end
%%% ALL UNEQUAL

> inv euc distl

if class_labell _
inv_euc_distl = nearest_linv; 
inv_euc_dist2 = nearest_2inv; 
inv_euc_dist3 = nearest_3inv; 
if inv_euc_distl > inv_euc_dist2 
class = class_labell; 
end
if inv_euc_dist2 > inv_euc_distl 
class = class label2;

class label2 S class label2 ~= class label3

& inv euc distl > inv euc dist3

& inv euc dist2 > inv euc dist3
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end
if inv_euc_dist3 > inv_euc_dist2 & inv_euc_dist3 > inv_euc_distl
class = class_label3;
end
end
%%* DISPLAYING CLASS
nameidx = getnameidx(newdat, class); - Finds location of identified class 
stabilisation_period = stables(nameidx,1); %%% Choosing the correct
stabilisation period
stable_seconds = stabilisation_period/20; 
disp(['Activation identified as:' class])
if class == Spinl | | class == Spin2 I I class == Spin3 | I class == Spin4 | | 
class == Spins | | class == Spin6 I I class == SpinV | | class == SpinS I I class 
== Tool
%%. FREQUENCY VERIFICATION
eval(['len_test = length(event_start' num2str(j) '*100: event_stop' 
num2str(j) '*100);']) ) Gets length of current waveform
eval(['test_current = 1101(event_start' num2str(j) '*100: event_stop' 
num2str(j) '*100);']) Gets current waveform
eval(['test_time = timeOl(event_start' num2str(j) '*100: event_stop' 
num2str(j) '*100);']) Gets time stamps
NFFT_test = 2''nextpow2 (len_test) ;
YI_test = fft(test_current,NFFT_test)/len_test; 
fl_test = Fs/2*linspace(0,1,NFFT_test/2+l);
%%%%% Plotting current and fft - only use if visualisation needed 
% figure; hold on;
% subplot(2,1,1); hold on; 
t plot(Fs*test_time,test_current);
% subplot(2,1,2); hold on;
% plot{fl_test,2*abs(YI_test(1:NFFT_test/2+l)))
%%%% SAVING HARMONIC MAGNITUDES
eval(['bars' num2str(j) ' = (2*abs(YI_test(1:NFFT_test/2+l)));']) 
hars = (2*abs(YI_test(1:NFFT_test/2+l))); 
if length(hars) == 2049 
harl = max(hars(50:150)); 
har3 = max(hars(250:350)) 
harS = max(hars(450:550)) 
harV = max(hars(650:750)) , 
end
if length(hars) == 4097 
harl = max(hars(100:300)); 
har3 = max(hars(500:700)); 
har5 = max(hars(900:1100)) ; 
har7 = max(hars(1300:1500)) ; 
end
if length(hars) == 8193 
harl = max(hars(250:1000)); 
har3 = max(hars(750:1500)); 
har5 = max(hars(1800:2200)); 
har7 = max(hars(2600:3000)); 
end
%%%% Frequency conditions 
if har3 > har5 && har3 > har7
disp('spindle off verified in frequency domain') 
end
if har5 > har3 && har7 > har3 && har5 < 2*har3 
disp('spindle active status verified in frequency domain';
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= find(Powerrms_01(mcstart' num2str(j)
1200) ;']) %% Finding next time the spindle is

end
if har5 > 2*har3
disp('spindle start up sequence verified in frequency domain') 
end 
end
%%% This if loop only allows the MAD analysis to begin if a spindle 
^%% acceleration has been detected
if class == Spinl I I class == Spin2 I 1 class == Spin3 I I class == Spin4 | | 
class == Spins I | class == Spin6 I I class == Spin? | | class == SpinS 
disp(['This activation requires a stabilisation period of ' 
num2str(stable_seconds) ' seconds']) %% Displaying stabilisation period
disp('MAD analysis in process')

FIND MACHINING ZONE
eval(['mcstart' num2str(j) ' = event_stop' nuin2str(j) ' + 
stabilisation_period ;']) i% Sets machining start time for each spindle 
activation
eval(['low' num2str(j)
':length(Powerrms_01)) 
powered off...
eval(['mcstop' num2str(j) ' = low' num2str(j) '(1,1) ; ' ]) 1% Sets machining 
start time for each spindle activation
eval{['madtest' num2str(j) ' = Powerrms_01(mcstart' num2str(j) ':mcstop' 
num2str(j) ' + mcstart' num2str(j) ');']) %% Sets madtest array 
figure(2*madplot) ;
plot((eval(['madtest' num2str(j) ';']))) ?>% Plots waveform for each machining
test zone
madtest = eval(['madtest' num2str(j) ';']); ..i Setting madtest for each time 
the MAD is calculated
%%% Collecting run time power consumption
for i = eval(['event_start' num2str(j) 'imcstart' num2str(j) ';']);
run_time_power = [run_time_power Powerrms_01(i)];
end
eval(['change_stamp' num2str(j) ' = [] ;'])
%%%% MAD analysis %%%% 
for i = 4:length(madtest)
eval(['MAD_zcne' num2str(j) ' = madtest' num.2str(j) '(4:length(madtest' 
num2str(j) '));'])
eval(['time' num2str(j) ' = [4:1:(length((madtest' num2str(j) ')))];'])
X = [ madtest(1, (i)-3) madtest(1, (i)-2) madtest(1, (i)-1) madtest(1, (i)) ] ; 
val(i) = mad(x,l); %%% the '!' in column two forces medians to be used 
store = [store val(i)];
MAD_zone = eval(['MAD_zone' num2str(j) ';']); 
slope_top = madtest(1,(i-1)) - madtest(1,(i-2)); 
slope_bottom = (i-1) - (i-2); 
slope = slope_top/slope_bottom;
slope_set = [slope_set slope]; %% Record all slopes 
eval(['stable_power = Powerrms_01(mcstart' num2str(j) 
power value
threshold = stable_power + 80; %%% Sets threshold 
if val(i) < 20 && machining == 0 && rapid accel == 0;

');']) %% Sets stable

eval(['change_stamp' num2str(j) ' 
machining = 0; 
rapid_accel = 0;
run_time_power = [run_time_power madtest(i)
change = 1;
end
%%% Machining started

[ change_stamp' num2str(j) ' 0 ];'])
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if change == 0 && val(i) > 20 && val(i) < 60 && slope > 40 && machining == 0 
&& rapid_accel == 0 s& madtest(i) > threshold;
eval(['change_stamp' num2str(j) ' = [ change_stamp' num2str(j) ’ 1 ];']) 
machining = 1; 
cutting = [cutting 1];
cutting_power = [cutting_power madtest(i)]; 
rapid_accel = 0; 
change = 1; 
end
%%% CHANGE POINT
if change == 0 && machining == 1 && spindle_off == 0 && val(i) > 40 && slope 
< -10;
eval(['change_stamp' num2str(j) ' = [ change_stamp' num2str(j) ’ 0 ];']) 
cutting = [cutting 0]; 
machining = 1; 
rapid_accel = 0;
run_time_power = [run_time_power madtest(i)];
change = 1;
end

Machining continuing
if change == 0 && machining == 1 && rapid_accel == 0 && madtest(i) > 
threshold;
eval(['change_stamp' num2str(j) ' = [ change_stamp' num2str(j) ' 1 ];']) 
machining = 1; 
cutting = [cutting 1];
cutting_power = [cutting_power madtest(i)]; 
rapid_accel = 0; 
change = 1; 
end
%%% rapid accel
if change == 0 S& val(i) > 50 && machining == 0 && rapid_accel == 0; 
eval(['change_stamp' num2str(j) ’ = [ change_stamp' num2str(j) ' 2 ];']) 
machining = 0; 
rapid_accel = 1;
run_time_power = [run_time_power madtest(i)];
change = 1;
end
if change == 0 & Powerrms_01 > 0 ;
eval(['change_stamp' num2str(j) ' = [ change_stamp' num2str(j) ' 0 ];']) 
change = 1; 
machining = 0; 
rapid_accel = 0;
run_time_power = [run_time_power madtest(i)]; 
end
%%% RESET VARIABLES 
change = 0; 
contact = 0; 
spin_off = 0; 
end
figure;
eval(['plotyy(time' num2str(j) MAD_zone' num2str(j) ',time' num2str(j)
',change_stamp' num2str(j) ');'])
title('Power - workpiece test - machining zone')
%%% Find run-time mode duration
eval(['run_time = Powerrms_01(event_start' num2str(j) ':RT_stop);']) 
run_time_duration = [run_time_duration length(run_time)]; 
disp('MAD analysis complete')

189



Verify spindle off
eval(['offverify' num2str(j) ' = I101(mcstop' num2str(j) '*100 + mcstart' 
num2str(j) '* 100:mcstop' num2str(j) '*100 + mcstart' num2str(j) '*100 +
399); ' ] )
eval(['len_test_off = length(offverify' num2str(j) ');']) 
eval(['test_current_off = offverify' nuin2str(j) ';'])
eval{['test_time_off = tiraeOl(mcstop' num2str(j) '*100 + mcstart' num2str(j)
'* 100:mcstop' num2str(j) '*100 + mcstart' num2str(j) '*100 + 399);']) gets 
time stamps
NFFT_test_of f = 2''nextpow2 (len_test_off) ;
YI_test_off = fft(test_current_off,NFFT_test_off)/len_test_off; 
fI_test_off = Fs/2*linspace(0,1,NFFT_test_off/2+1);

(2*abs(YI_test_off(l:NFFT_test_off/2+l)));']) 
NFFT test off/2+1)));

eval(['hars_off' num2str(j) ' = 
hars_off = (2*abs(YI_test_off(1 
if length(hars_off) == 257 
har_offl = max(hars_off(10:20)) 
har_off3 = max(hars_off(35:45)) 
har_off5 = max(hars_off(60:70)) 
har_off7 = max(hars_off(85:95)) 
end
%%%% Frequency conditions
if har_off3 > har_off5 s& har_off3 > har_off7 
disp('spindle off verified in frequency domain') 
end
if har_off5 > har_off3 && har_off7 > har_off3 && har_off5 < 2*har_off3
disp('spindle active status verified in frequency domain')
end
if har_off5 > 2*har_off3
disp('spindle start up sequence verified in frequency domain')
end
end
%%%% Activation outside classification radius 
else if nearest_l > 580 && nearest_2 > 580
disp('system has not identified a recognisable activation')
end
end
%%% plot signature space - only needed for visualisation 
% figure;%(counter*2)
% plot(bl,b2,'b*'); hold on;
% eval(['plot(test_point' num2str(j) '(1,1), test_point' num2str(j)
' (1,2),''r*' ') '])
%%% INCREMENT COUNTERS 
counter = counter + 1; 
madplot = madplot + 1; 
end 
end
%%%% QUANTIFICATION CALCULATIONS
TL = test_length/20; %%% TL = test length
POWER_TOTAL = mean(Powerrms_01);
ENERGY_TOTAL = (TL/3600)*POWER_TOTAL;
MR = length(cutting)/20; %%% MR = Material removal
CUT_P0W = mean(cutting_power); %%% Average power consumption
CUT_ENERGY = (MR/3 600)*CUT_POW;
RT = length(run_time_power)/20;
RT_POW = mean(run_time_power); %%% Average power consumption 
RTZ = RT; %%% RTZ = Run time zone 
RT ENERGY = (RTZ/3600)*RT POW;
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IT = TL - (RT+MR); IT = Idle time
MP = (max(Powerms_01))/lOOO; MP is maximum power during the test
CA = sum(activations); This counts the total number of activations in a
given test
IDLE_ENERGY = ENERGY_TOTAL - (CUT_ENERGY + RT_ENERGY);

SUMMARY REPORT
dispC- - - - SUMMARY REPORT
disp(['Total test duration; ' num2str(TL) ' seconds']) 
disp(['Total test energy: ' num2str(ENERGY_TOTAL) ' Wh']) 
disp(['Total idle time; ' num2str(IT) ' seconds']) 
disp(['Total idle energy: ' num2str(IDLE_ENERGY) ' Wh']) 
disp(['Total Run time duration: ' num2str(RTZ) ' seconds']) 
disp(['Total Run time energy: ' num2str(RT_ENERGY) ' Wh']) 
disp(['Total cutting time: ' num2str(MR) ' seconds']) 
disp(['Total cutting energy: ' num2str(CUT_ENERGY) 
disp(['Number of component activations detected: ' 
disp(['Maximum power demand: ' num2str(MP) ' kW']) 
toe

' Wh'])
nura2str(CA) ])

Command Window - Test 1

------ SUMMARY REPORT-------
Total test duration: 35.2 seconds
Total test energy: 20.5548 Wh
Total idle time: 8.75 seconds
Total idle energy: 2.9860 Wh
Total Run time duration: 5.90 seconds
Total Run time energy: 5.7952 Wh
Total cutting time: 20.55 seconds
Total cutting energy: 11.7736 Wh
Number of component activations detected: 1
Maximum power demand: 11.2429 kW

Command Window - Test 2

------ SUMMARY REPORT----
Total test duration: 107.8 seconds
Total test energy: 76.7694 Wh
Total idle time: 29.15 seconds
Total idle energy: 10.2054 Wh
Total Run time duration: 37.6 seconds
Total Run time energy: 38.9525 Wh
Total cutting time: 41.05 seconds
Total cutting energy: 27.6114 Wh
Number of component activations detected: 6
Maximum power demand: 11.8967 kW
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