LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Adaptive Composition of Personalised
Learning Activities

A thesis submitted to the
University of Dublin, Trinity College
in fulfillment of the requirements for the degree of

Doctor of Philosophy

lan O’Keeffe
Knowledge and Data Engineering Group,
School of Computer Science and Statistics,
Trinity College Dublin,

Ireland.

September 2012

TRINITY COLLEGE
2 4 MAY 2013

LIBRARY DUBLIN

kl/wco 995 A

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or
allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity

College Library conditions of use and acknowledgement.

s = - - - - - - - = 1 - -
1 1
1
!
i
...._...._...'._r._l.Ell..r._.I'__:-IH.._'.._.-._.E.-._'...__......_._._..._..._..._........: ________ —

. e ey . . . N
g‘_-l._r._':-lql. o . i i . 1 .
“r. : : "‘
BTy A= :

« s,

bR

TN N T = 1 - . . a

Acknowledgements

[would like to thank my supervisor, Prof. Vincent Wade, whose support and guidance has
been invaluable from the very start. His experience and insight have been instrumental in

ensuring that I continued along the right path.

I would also like to recognise the contributions that my collegues in the Knowledge and
Data Engineering Group at TCD have made. Both directly through collaboration and
indirectly through the sharing of their own research experience. They have provided me
with a wealth of new ideas and new ways to look at problems. As James Watson, best
known as a co-discoverer of the structure of DNA, once said “if you're the brightest person

in the room, you're in trouble”.

Finally I would like to pay thanks to my family for their love, support and understanding.

Ian O’Keeffe
University of Dublin, Trinity College
September 2012

il

v

Abstract

eLearning practitioners are increasingly adopting more activity based approaches to online
learning, as they move away from more traditional content centric approaches in an effort
to provide their learners with more engaging and effective learning. This trend can also
be seen as part of the wider evolution of the internet from a content delivery platform to

a more collaborative and creative environment.

However, although existing eLearning platforms provide some access to services they
do not fully meet the needs of this new generation of eLearning. Platforms such as
Moodle or Blackboard do not provide support for the sequencing of services as part
of an activity, a requirement of pedagogically sound elLearning activities. Additionally,
they represent a walled garden with a limited range of services available with which to
implement activities. Existing approaches to the delivery of eLearning activities also lack
support for personalisation. Technologies such as Adaptive Hypermedia have successfully
demonstrated the benefits that personalisation of a content composition can provide to
the learner. However, such technologies do not currently extend to the personalisation of

service compositions.

The key motivation of this research is to address these limitations through an innovative
approach to the adaptive composition of both multimedia content and services in a unified
manner. This thesis describes the requirements for a system that can adaptively select
and sequence multimedia content and services as part of a pedagogically driven eLearning
activity. Based on these requirements this thesis presents the design and implementation

of such a system.

To evaluate and validate this research a series of experiments were carried out and are
described in this thesis. The evaluation experiments provide a means of analysing four key

aspects of the system described; (i) the ability to support a range of eLearning activities;

(ii) support for the adaptive sequencing and selection of content; (iii) the support for the
adaptive sequencing and selection of services; and (iv) the performance and scalability of
the system.

An analysis of the results from this evaluation validates the approach taken in this research
as it demonstrates the ability of the system to generate a range of personalised eLearning
activities. Furthermore the evaluation shows that the system can deliver personalised
eLearning in an effective manner without significant adverse impact on the educational or

usability aspects of the composition.

vi

Contents

Acknowledgements
Abstract

List of Tables

List of Figures
Abbreviations

Chapter 1 Introduction

Ll Mobiwabtion., = : o : o 5 sites 5 5 @ # @ 5 8 5 9 60w 5 & 5 E 5§
1.2 Research Question
1.3 Objectives
1.4 Contribution to State of the Art
1.5 Technical Approach
1.6 Thesis Outline,

Chapter 2 State of the Art - Adaptive Learning

2.1 Introduction
2.2 Learning to Support Personalisation
2.2.1 Learning Theory Perspectives

Vil

iii

XVi

xviii

XXV

........ 3

........ 8

2.2.1.1 Associationist/Empiricist Perspective 8

2.2.1.2 Cognitive Perspective 9

2.2.1.3 Situative Perspective 10

222 Leorning Aetivities « « oo « o s vs so s 8 v 8 s 9w v a8 8 EB 5 @ 8 11
2.2.2.1 DialogPlus Project L. 11

2:2:22 LADIEPIOJEtt - : « s w6 5 5 5 3 5 ¢ a5 56 5 8 5 8w s 5 12

2.23 Analysis 14

2.3 Adaptation Techniques for Learning Content 16
2.3.1 Adaptive Presentation Techniques 19

2.3.2 Adaptive Navigation Techniques 20

2.4 Survey of Adaptive Hypermedia Systems 2
241 AHA! . . e 21
2.42 ADAPT? e 23
243 APeLS o e e e e e e e e e e e e e e e e 24

244 ActiveMatho 26
2.4.5 1IMS Learning Design -« . . o o v vt it it e 27

2.4.6 Comparison of Content Adaptation Systems 29
2.4.6.1 Adaptation CompariSon : . « = « & s « « + 5 « &« 6 5 5 o . s 30

2.4.6.2 Content Support Comparison 38

2:5 "SUMMEAEY = 6 6« 5% 98 ¢ 56 65 86 5 ww 9e 8535 8 0% 2 ndsbfa 41
Chapter 3 State of the Art - Adaptive Service Composition 43
Sl Introduetion . « 5 o s s s < mrs 6w e w5 s w B E s B E wE s B 5 W E G ow 43
3.2 Service Orchestration 44
3.2.1 Web Service Business Process Execution Language 44
3.2.2 Yet Another Workflow Language 46

viii

3.2.3 CAWE Framework 48

324 CBPEL i 2 5l o v o oo e e o o e ey S e e 49

3.3 Service Comiposition as PIanming . s : o & s v 5 5 5 5 ¢ s 4 & orsbs s wls 5 50
3.3.1 Planning Techniques 50
3.3.1.1 PlanningasSearch. 50

3:3.1:2 Rule Based Composition . « ¢ & : 5 ¢ s w o o oo s a0 s a s 51

3.3.1.3 Hierarchical Task Networks 51

S 3.0 GrAphplan o 0 s e s s e e e e e e 52

3315 PDDIGi. . . o . v s sis s m s e e s e e e e 52

3.3.2 Web Service Composition Systems 53

SEB 2 OV S T s i s o A b s T el B e 54

3:3:2.20 JSHOR2 o st b e e L e e e e 55

3:3.2.3 OWILS-XPlam . ot ae e e s e s e e s 56

3:3.24 PORSCEIL - . . v ol aie e v o et s e o s s 57

3.4 Related Technologies, 58
3.4.1 Mashups 58
3.42 Portletsand WSRP 59
S S I P 62

3.5 Comparing Composition Techniques 63
3.6 Summary . .o ... 66
Chapter 4 Design 68
4.1 INGEOAUCEION = 5 5 5 « % 7 506 s il 5 w5 stk 5 @ 5w e o s o e E A A B G w3 68
4.2 Requirements 69
4.2.1 Educational Motivations 69
4.2.2 'Technical Requirements : « « v o ¢ o s o « o5 s w v 8 5 55 5 5 & 5 & 70

4.3

4.4

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Architecture Overview e 71

Modellifle = c.w : w12 9w 58 ¢ 8 5 58 2 5 & %6 & % ¥ 3 8 5 6 2 8id 5 & 8 8 4 & 3 73
4.4.1 Narrative Model L 75

4.4.1.1 Sequencing Constructs 75
4.42 Learner Model 78
4.4.3 Content Model 78
4.44 Service Model 79
4.45 PWE Model 80
Use Case SCEHATIO « 5 m o5 s & & 6.9 5 8 § 808 § 96 5 & 5 & 5 6.5 69 5 5 & s 80
Supporting Adaptive Activities 81
4.6.1 Adaptive Behaviour 81
4.6.2 Service Selection and Dynamic Composition 83
Interactive Service Control Flow 85
Adaptive Engine Design 85
4.8.1 Engine Management i et e it e s e n e e e 86
4.8.2 Model Management 87
483 Data Managemient « o« : o ¢ o8 « @ ¢ + % 3 oom 5 % 5 8 8§ & 5 @ K5 @ 88
4.8.4 Additional Functionality 88
4.8.5 Adaptive Engine Execution 88
Delivery of User Oriented Services 89
Unified lser-Interface = £a c 5« mms @6 s b i mw s s 56 d6G % 6 45 5 90
Component Interaction 91
4.11.1 Personalisation Phase 92
4.11.2 Experience Phase 93
Summary 94

Chapter 5 Implementation 95

5.1 Imtroduction. e e 95
5.2 System Implementation 95
521 OVEIVIEW i i i i e e e e e e e e e e e e e e 95
5:2:2 - Adaptive ENEINE ns iwle s & 5 5o lrinta s 5 oal bl s at e L 97
5.2.2.1 AdaptiveEngine 98

5.2.2.2 EngineManager 98

5.2.23 Meodelling . : «o 5 oo s s e s i s e E s s A e s 100

5.2.2.4 DataManager. 101

5.2.2.5 Custom Functions 102

9:2.3 1 'Datd SEOTAPE = v o w = o & Sissp 5 mm s o 5 o ww Bl s ® a6 104
5.2.3.1 Database Access 105

5.2.4 Service COMPOSET . . . & v v v v v v v e v e e e e e e e e e e e 105
5.2.5 Composition Mapper 111
5.2.5.1 BPELGenerator 112

5:2:5:2 ATCHINET " 5 i 50s 5 e 8o 0 o & moo o B B B RS 114

5.2.5.3 Deployer 115

8:2.6 Workflow Engine . : « ¢ « o 5 5 6 6s b 5 5 506 55 5 w5 5 5 5 5 & a0 115
527 User Portal 116
7 7 O I o P R 118

5.2.72 Instrument 118

5273 Build 118

B2l CONtENt o« c v s s o 5w ne ¢t B e B ne R ARG B E S 119

5.27.5 Services e e 120

5.2.8 Service Implementation 121

5.3 Model Implementation 123

%

5.3.1 Learner Model 124

5:3:2 Content Model « : « + v 5 w0 2 65 ¢ 8 2 8 5 8E s @ s @i 8 5 %L B 126
5.3.3 Service Model 127
534 NarrativeModel . . v i 6 5w 55 « o6 n b 50 66 5 5 5 @ 5 & 4w 130
53.5 PWE Model 131
5.3.6 Composition Model oo 132

Bt InirlioH PO « o o o x x o0 5% 28 5 6 « 9B 5 5 § B E B s HE R L EY S 133
5.4.1 Skeleton WSBPEL Process 134
5.4.1.1 Brokering a WSRP service in WSBPEL 136

5.4.1.2 Implementing the Sequence Pattern 138

5.4.1.3 Implementing the Parallel Split Pattern 140

5.4.1.4 Implementing the Exclusive Choice Pattern 142

5.5 Authoring a Narrative 144
5.6 Summary ... 149
Chapter 6 Evaluation 150
6.1 Introduetion . « : & + 5 ¢ 24 3 5 « 55 26 5 5 5 55 6w §H s B A H S R 150
6.2 Outline of Experiments, 151
6.3 Experiment One - Control Flow Between Services 154
6.3.1 Methodology 155
6.3.2 Resultsand Analysis 165
6.3.3 Conclusions 171

6.4 Experiment Two e 172
0:4-10 TNVethodBlogy - - v : s coomdd & L6 5 G & ¢ B85 95 68 & 5.6 56 & 50 173
6.4.1.1 Evaluation Criteria and Metrics 174

6.4.1.2 Experimental Workbench 174

xii

6.6

6.4.1.3 SCENATIOS . . v v v v o v e e b e e e e e e e e 175

6:4.1.4 - Scenario TWo = : » s ¢ 50w 5 5 w5 6o gomed s G wl o el 177
6.4.1.5 Scenario Three 177
6:4-2, Resultsh s o Bedidon . onm s 56 ore e 5 b b S olE s a i 179
GRISIE PATIA] VSISO Al Y] . . S W L R e i T B e 179
6.4.3.1 Support for Control Flow 179
6.4.3.2 Support for Adaptation Techniques 179
6.4.3.3 Appropriate Non-Adaptive Service Selection 181
6.4.3.4 Dynamic Composition by Al Planner 182
6.44 Conclusions e e 184
Experiment Three - Adaptive Selection and Adaptive Sequencing 185
6.5:1 Methodology : o 2 & & < 5 v o v s 5 5 @ - w5 85 a w e s E e S s 186
6.5.2 Results o6 oo ol e i e e e e e 188
6.5.2.1 Support for Adaptive Behaviours. 188
6.5.2.2 Quality of Content 191
6.5.2.3 Usability 195
6.5.3 Discussion and Analysiso 198
6.5.4 Conclusions 205
Experiment Four - Performance and Scalability 206
6.6.1 Environment Configuration 206
6.6.2 Evaluation of Adaptation Process Performance 208
6.6.2.1 Evaluation Set Up and Execution 208
6.6.2.2 Results 209
676:2:3 ANALYSIS 5 5 5 5 805 fe s m o B F e E R E e F B BE By s e 212
6.6.3 Evaluation of Runtime Performance 213
6.6.3.1 Part One 214

6.6.4 Conclusions 218

6.7 SUMMATY o et e e e e e e 219
Chapter 7 Conclusion 220
7.1 Introduction 220
7.2 Objectives and Achievements 220
7.2.1 Stateofthe Art 220

7.2.2 Unified Architecture 222

7.2.2.1 Mechanisms and Techniques for Adaptive Behaviours . . . 223

7.2.3 Evaluation 225

7.3 Contribution to the State of the Art 226
7.4 Future Work 220
7.4.1 Collaborative Activities 227

7.4.2 Support for Authoring of Personalised Web Experiences 228
Bibliography 230
Appendix A Evaluation Experiment One 257
A.l LADIiE Use Case Definitions 2567
Appendix B Evaluation Experiment Two 310
B.1 Personalised Learning Activity Wevb Application + = 910
B.1.1 Models e e e e e .. 310

B.1.1.1 Adaptive Web Application Implementation ; @ Bl4

B.1.1.2 Use Case Scenarios 316

B.2 Narrative Models 333
B.3 PDDL Domain Definition« 338
Appendix C Evaluation Experiment Three 342

X1v

Gl _SQL.Course ATHIACHS : = s s 5 0% 56 3 5 & 66 3 @ s 8 5 € § 5 § & % 8 § & & 342

C.1.1 Narrative Model 342

C.1.2 Learner Model 345

C.1.3 Content Model 348

C.1.4 Sereenshots « . v i i e e e e e e e 349

G.2 Evaluation Questionnaires « . . « o v i ¢ w5 s s b mi w5 @ s ow 5w s e s 351
C.3 Experimental Data 356
3 OILT 0 o e e e e e 356

C.4 Correlation Data . . « . o« v« o b 2 oo s o v s b s e e e e s s e a s 357
C.4.1 Spearman Correlation Table 359

C.4.2 Table of Calculated Values0 oo v asis as 360
Appendix D Evaluation Experiment Four 361
DgIMeter Eest P Iamt um s 1, c e & 0, & 5 s 2T o 6w s 5 o e T s T B 361
D.2 Adaptation Process Benchmarking Raw Data369
D.3 Adaptation Process Benchmark Server Performance Data 370
D.4 Runtime Performance Benchmarking Raw Data37
D.5 Runtime Performance Benchmarking Raw Data 377
Appendix 257

XV

List of Tables

2.1 LADIE Use Case 4 Definition 13
2.2 LADIiE Use Case Gap Analysis - DialogPlus Tasks 15
2.3 Comparison of Supported Adaptation Techniques and Model Usage of
Adaptive eLlearning Systemso 31
2.4 Comparison of Support for Content and Services in Adaptive eLearning
Systems 39
3.1 Summary of comparison of service composition techniques. 64
4.1 Control Flow Constructs 7
6.1 Mapping between requirements and experiments 152
6.2 Supported workflow patterns required to implement LADIE use cases 167
6.3 Level of support for each of the LADIE use cases using the 5 workflow patterns169
6.4 Mapping between scenarios and LADIE use cases 174
6.5 Breakdown of evaluation criteria as they apply to specific experiment scenarios179
6.6 Patterns required and level of support for implemented scenarios 180
6.7 Results for Adaptive Selection of Services in Scenario One 180
6.8 Services selected to instantiate tasks in Scenario One 180
6.9 Services selected to instantiate tasks in Scenario One 182
6.10 Services selected to instantiate tasks in Scenario One 183

XVvi

6.11

6.12

6.13

6.14

6.17

6.18

6.19

6.20

6.21

6.22

Summary of findings for Dynamic Composition of services
Effectiveness of Subject Matter Representation Results (O e Rl L
Summary of results from evaluation questions on adaptive behaviours

Summary of results from evaluation questions on quality of content flow .

Effectiveness of Subject Matter Representation Results (QIT) .« oo

) Software Configuration of Host Server One

Software Configuration of Host Server Two
Software Configuration of Host Server Three
Average build times (in seconds) for personalisation PLOCESS . « o « v : « . .
Breakdown of average time spent per user during 50 user benchmark . . .
Average response times (in milliseconds) for getMarkup requests

Average response times (in milliseconds) for performBlockingInteraction

PEGUESHS & . 5% o el v e s v e s m e i e s s e

Xvil

. 199

. 200

201

207

207

207

210

. 211

1.1

2.1

2.2

2.3

24

3.1

3.6

3.7

4.1

4.2

4.3

4.4

List of Figures

Research Methodology 5
LADIE Use Case Gap Analysis - Breakdown of DialogPlus Task Usage . . . 15
Abstract Model of an Adaptive Hypermedia System 17
Brusilovsky’s Taxonomy of Adaptive Hypermedia Techniques 18
ARelSIATCHITECTITE" © 5w 2 2% 5@ 2 5 2 s 6w s @ 355 5 @ 5 68 585 & 8400 25
Simple YAWL process definition. 47
Gripper planning domain described in PDDL 52
Gripper planning problem described in PDDL 53
OWL-S Ontology Structure 54
Example portal user interface consisting of four individual portlets 59
Activity Diagram of the WSRP two step protocol. 61
Example WSDL document describing a simple ‘Hello World’ service 62
A high level overview of the system architecture. 72
Sequencing of tasks in a Peer Review Activity 80
Logical Architecture diagram of the Adaptive Engine component 86
Architectiire of the User Portal . .ow o sm ¢ & som s 505 o 5 & 5 505 w0 o 5 e 91

Component diagram illustrating the interaction of components during the

personalisation PhaSe . . . 5w o w s ¢ sow s m e w e m s B s B s B s e e 92

xviil

4.6

5.5

5.6

5.7

5.8

5.9

5.10

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Component diagram illustrating the interaction of components during the

experience phase e e e e e e e 94
Detailed view of the system architecture 96
Component view of the Adaptive Engine (AE) Architecture 98
AT Planner Service Architecture. 106

Element structure for XML model defining set of services available to

Service COMPOSEL = & 5 + « i & o & 5 % 2 5 & 5 5w 56 ¢ So 668 @ 5 ® s oo 106
Element structure for XML model defining service composition problem . . 107
XML description of a Service 108
PDDL description of a Service 109

Snippet of the report generated by LPG-td showing the solution to a

planning problel = « s 2 = 5 v 5 5 5w s G s w E 6 s E e = B s s S s 109
Example XML encoded solution to a planning problem 110
High level diagram of the Composition2BPEL Service 111

Structure of a WSBPEL process archive for the ActiveBPEL workflow engine. 114

Navigation Paths through PWE User Portal 117
Extracting PWE navigation structure and content references from PWE

model e e e e e e e e e 119
The delivery of services to the user requires the integration of several portlet

teChnolofies, aw oo 9w ¢ s & & 5d 68 s @ § 938 6 (08 48 : BELE S 8o 86 121
Example instance of a Learner Model 125
The <service> elements e 128
The <general> elements 128
The <functional> elements 129
The <predicate> elements 129
The <technical> elements 129

X1X

5.29

5.31

5.32

9:99

5.34

6.1

0:2

6.3

6.4

6.6

Example element structure of the PWE Model 131
The <composition> elements 132

The <service> elements 1:33

Visualisation of the WSBPEL code used to bootstrap a PWE Service

Composition e 135
[Mlustration of WSBPEL code to manage the execution of a WSRP portlet . 137

UML Sequence diagram illustrating the handling of requests for services

from the User Portal 138
Hlustration of the WSBPEL code to implement the Sequence Pattern . . . 139

Screen shot showing the tab based metaphor used to implement the parallel

Split POTLlEt ¢ v 5 5 2 ¢ m s 5 4 s W mE s s S E e P B e e E B e s 141
[lustration of the WSBPEL code to implement the Parallel Split Pattern . 141

Screen shot of a portlet used in the implementation of the Exclusive Choice

Pattern e 142

[ustration of the WSBPEL code to implement the Exclusive Choice Pattern143

Simple Concept Space 144
Example Learnier Model « o = . a6 : 56 g5 58 296 55 05 &5k wlems o e 145
Example Content Model 145
Narrative Model exXtract « : oo d w s 5o ne s 52 9e 96 5 & 5,000 6 - ok w0 147
LADiIE Use Case Gap Analysis - Breakdown of DialogPlus Task Usage . . . 166
Supported workflow patterns required to implement LADIE use cases 168

Bar chart illustrating the level of support for each of the LADIE use cases

based on the 5 workflow patterns 170
Activity Diagram for Scenario One o : « o o v & o 5 o oo ¢ shaalh oo %os 176
Narrative Model for Scenario One 176
Activity Diagram for Scenario Two 177

XX

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

Activity Diagram for first possible composition from Scenario Three 178

Activity Diagram for second possible composition from Scenario Three . . . 178
Abstract Activity Diagram for ScenarioOne 183
Scenario One Activity Diagram representing instantiated PWE 183
How many times did you rebuild the course? 189
(a) QATABIE . . v o s v v b s e d ks e s s R e e s g 4w e 189
(b) Q4 Graph 189

(a) Q6 Table . . . o e e e e e e e e e e e e b 190
(B) QB GIAPh - - - = < =5 <s 2% s a5 5« 8 558 T 4R E e RS 6 190
id the course generated reflect the course you wanted? 191
(a)r w@ETahlef W el s o e e & A i F g b il el BBl e s s S e B 191
() Q) A G e L T T L LT R P Lot i 191
Did the course sections contain the content you expected? 191
(a) Q13 Table. 191
(b)) QIB3CTaph « < v ¢ w5 6 5 55 5 % 5 wE s & 58 B B E s E 191
Were the courses generated easy to navigate? 192
(o) CHOTABlE . « « = ¢ w5 s o s s s 8 s ww s 75 85 6o 655 8355883 192
(b) QIO Graph 192
Did the course content appear disjoint?o 193
(a) Q11 Table. 193
(b} KILGraph o v o i et s e s s e s G e EE 193
Would have liked greater control of content structure? 193
(a) Q15 Table. 193
(b)) QIBGraph « : v 5 ¢ « s 56 s 5 6.5 3 5 8 © s & 5 A5 5 8§ 9 8 8¢5 53 193
Effectiveness of Subject Matter Representation 194

Xx1

6.19

6.20

6.21

6.22

6.24

6.25

6.26

6.27

6.28

(a) Database Concepts 194

(b) Creating B DEtADEEE & « v« « o ¢ v o s o 5 525 0 s was@sws6¢pe 194
(¢c) Populating a Database 0. 194
([d} Database Retriewal : « o « « v « v s 5 5 26 s 6% w5 585 635 ¥+ 8 ¢ am 194
(e) Database Applicationso 0oL 194
Graphs of SUS Scores 195
(B KeanSUS S0BFE— « u+ ofs ne s 655 @6 a6 698 3 8% 2% an o0 195
(b) Frequency Distribution of SUS Scores from Evaluation 195
Were the objectives of the generated course(s) clear to you? 196
(a) - QB Table .« v o e v v s e e e S e e h e e e e e 196
(Bl CITLTEDR o o oo v 4 @ T 5 ¢ B s b B EF s B HE e e i W R 196
Upon completion of the online course did you feel you had completed the

objectives? L L L e e e e e e e e 197
(a) Q8 Table, 197
(B LB CraEpD - : 2 - « 54 55 Lo ¢ 58 5 © 5 2w LB B E BE L E E A 197
Would you have found the ability to modify the web interface beneficial? . . 197
() QI6GTable . . . =« v o s+ v s sim s ms m o e s @ s & s m o ms o 5 197
(b) Q16 Graph 197
Was the quantity of content on each page satisfactory? 198
(a) Ql4Table. e 198
L B o 198
Mean Effectiveness Scores by Course Section 202
Frequency Distribution of Effectiveness Scores by Course Section 203
Screenshot of Apache JMeter Test Plan for personalisation process benchmark209
Line graph plotting average time taken to generate PWE 210
1 Minute Load Average on build server during 50 user benchmark 211

xxii

6.29

6.30

6.31

6.32

6.33

6.34

Percentage CPU Usage on build server during 50 user benchmark 211
Bar chart showing breakdown of average time spent for 50 user benchmark 212

Line graph plotting average response times for getMarkup requests (1-200

3L) R R 216

Line graph plotting average response times for getMarkup requests (1-50

TEQUESES) -« & v vt e e e e e e e e e e e e e e e e e e 216

Line graph plotting average response times for performBlockingInteraction

requests (1-200 requests) L. 217

Line graph plotting average response times for performBlockingInteraction

requests (1-50 requests) 217

xxiii

XXiv

Abbreviations

AE Adaptive Engine

AH Adaptive Hypermedia

Al Artificial Intelligence

AJAX Asynchronous JavaScript and XML
AHS Adaptive Hypermedia System

AM Adaptation Model

APel.S Adaptive Personalised eLearning Service
API Application Programming Interface
ASP Active Server Pages

CAS Computer Algebra System

CAWE Context Aware Workflow Execution Framework
CPU Central Processing Unit

DAML-S DARPA Agent Markup Language for Services
DM Domain Model

DOM Document Object Model

ELF E-Learning Framework

EMML Enterprise Mashup Markup Language
ESB Enterprise Service Bus

HCI Human Computer Interaction

HTML Hypertext Markup Language

HTN Hierarchical Task Network

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment
J2EE Java Platform Enterprise Edition

JCP Java Community Process

JDBC Java Database Connectivity

JDOM Java Document Object Model

JISC Joint Information Systems Committee
JSON JavaScript Object Notation

JSP Java Server Pages

JSR Java Specification Request

JVM Java Virtual Machine

LADiIE Learning Activity Design in Education
LAN Local Area Network

LIP Learner Information Profile

LMS Learning Management System

LOM Learning Object Metadata

XXV

OMDoc
OWL-S
PC

PDD
PDDL
PWE
RDF
RPC
RSS
SaaS
SCORM
SCP
SOAP
SQL
STRIPS
SUS
TWT

Ul

UM
UML
URI
URL
W3C
WS
WSBPEL
WSDL
WSFL
WSRP
WSRP4J
XHTML
XML
XMLDB
XSL
XSLT
YAWL

Open Mathematical Document

Web Ontology Language for Services
Personal Computer

Process Definition Document

Planning Domain Definition Language
Personalised Web Experience

Resource Description Framework

Remote Procedure Call

Really Simple Syndication

Software as a Service

Sharable Content Object Reference Model
Symbolic Computational Program

Simple Object Access Protocol

Structured Query Language

Stanford Research Institute Problem Solver
System Usability Scale

Tolerable Wait Time

User Interface

User Model

Unified Modeling Language

Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium

Web Service

Web Service Business Process Execution Language
Web Service Definition Language

Web Service Flow Language

Web Services for Remote Portlets

Web Services for Remote Portlets for Java
eXtensible Hypertext Markup Language
eXtensible Markup Language

eXtensible Markup Language Database
eXtensible Stylesheet Language
eXtensible Stylesheet Language Transformations
Yet Another Workflow Language

xxvi

Chapter 1

Introduction

1.1 Motivation

Users on the internet have become accustomed to a web that is more than an interactive
hypermedia but is a integrated mix of rich multimedia services and hypermedia content.
Users are now contributors and active participants on the web, communicating and
interacting with each other using a range of services such as Gmail, MSN Messenger. They
are no longer simply consumers of content but are also content creators and publishers,
using content sharing and collaborative tools like Flickr, YouTube, wikis and blogs. This
evolution is moving us towards the original vision for the internet as “a collaborative
medium, a place where we [could] all meet and read and write” [Berners-Lee 05]. In
this environment, users seamlessly move between interacting with services, for example
voting, rating, annotating and communicating, to content interaction, viewing, navigating,
downloading, etc. The internet is increasingly being used as a platform to carry out
complex tasks that require users to combine services and related content in order to achieve

their goals.

In the educational domain, the application of eLearning technologies has become
increasingly more advanced. It has become inherently web based with a growing emphasis
on activity based learning. An example of such an activity, within an educational context,
is a peer review activity, which not only requires access to appropriate content but also
requires services to support authoring, submission, annotation and discussion. Not only

do these services need to be made available but they must be presented in a specific order

according to the educational requirements of the activity.

There is an ongoing move from the simple use of such technology for the delivery of
content via the internet using bespoke websites towards the use of more integrated
environments such as Blackboard [Blackboard Inc. 10|, Sakai [Sakai Foundation 10] and
Moodle [Moodle Trust 10]. These systems provide environments that support the
application of more complex pedagogical strategies by providing services that the educator
can combine with their own content to produce learning experiences that engage the
learner. In this way the educator can apply strategies such as activity based learning,
which they commonly apply in the classroom, in their eLearning based teaching. However,
such environments do not go far enough in addressing the needs of eLearning practitioners.
Despite their support for services, they do not provide any means by which the author of
a learning experience can control the sequencing of the services included in their activity.
As such, these environments do not fully support activities such as peer review because
they cannot control exactly when a specific service is provided to a Learner. Furthermore.
they still suffer from the same problems as traditional content centric el.earning. They
can only offer a one size fits all approach which does not take into account the needs of
the user as an individual. The closed nature of such systems presents another limitation.
They limit the educator to using the services that are provided by the system, they cannot
take advantage of services that are not available outside of the environment provided by

the system.

Personalisation technologies, such as Adaptive Hypermedia [Knutov 09, Brusilovsky 01],
have been successfully shown to provide real benefits to the user by adaptively selecting
and sequencing content to meet the needs of the user. However, such systems have so
far focused almost exclusively on the adaptive delivery of interactive content, e.g. GALE
[Smits 11], KnowledgeTree [Brusilovsky 05b] and PersonalReader [Henze 05]. As we move
towards next generation web technologies, there is a need to provide a combination of
adaptive selection and sequencing of multimedia content with adaptive selection and
sequencing of user centric services. We define the notion of a Personalised Web
Experience (PWE) as an experience that involves the integration of the personalised
selection and presentation of content, personalised service adaptation and personalised
service composition. Thus the personalised web experience provides a significant

engagement of the user in carrying out activities on the web.

This research aims to provide a radical rethink of Adaptive Engines (AE) [Brusilovsky 01],
where the AE supports adaptive composition of web services as well as multimedia web
content. Such a next generation AE will effectively generate adaptive service workflows and
adaptively compose content, seamlessly integrating the adaptive selection, composition
and presentation of content and services. This work builds upon existing AE technology
and integrates portal and semantic web business process and planning techniques to

support the unified AE.

1.2 Research Question

The research question posed in this thesis asks “what are the appropriate techniques and
technologies required to support the delivery of personalised web based experiences that
combine adaptively sequenced and selected multimedia content with adaptively composed

interactive services in a unified manner”.

The focus of this research is on the design and implementation of a framework capable of
generating and delivering personalised web experiences. The aim of this framework is to
support the strategically driven, adaptive selection and sequencing of multimedia content
and interactive, user centric services in order to deliver a web based experience that is

tailored to the needs of the user.

1.3 Objectives

In answering the research question posed in this thesis, three objectives will be addressed.
The first objective is to carry out a literature review of the state of the art in those research
areas that are of significance to this work. Specifically, this review will investigate the
technologies and techniques that can be used for the adaptive selection and composition
of content and services for eLearning. The state of the art review will also investigate
systems and techniques for the composition of services and the management of control

flow between services.

The second objective is to research, iteratively develop and test an integrated adaptive
system suitable for the pedagogically driven composition of multimedia content and

interactive services. The developed system will also be capable of delivering the generated

educational compositions to the user.

The third objective is to carry out a detailed evaluation of the implemented system.
This evaluation will look at the complexity and performance of the system as well as the

usability of the system from the perspective of the relevant stakeholders.

1.4 Contribution to State of the Art

This thesis makes two notable contributions to the state of the art in Adaptive Educational
Hypermedia Systems (AEHS). The major contribution is the development of an innovative
framework, which enables adaptive content presentation and navigation as well as flexible
and extensible service composition in a unified environment. This framework facilitates

the delivery of activity based eLearning through a web based environment.

The second minor contribution is the development of design concepts for the integration of
adaptive behaviours in the composition of services. These design concepts, as illustrated
by the developed framework, can be utilised in order to support both adaptive sequencing

and adaptive selection of services.

1.5 Technical Approach

To achieve the specified research goals, an experimental approach was employed as
illustrated in figure 1.1. The first step in the employed methodology was to carry out
a survey of existing systems and techniques with respect to content centric approaches to
the delivery of adaptive eLearning. This was then combined with requirements for learning
activities. A survey of the techniques currently available for the composition of services
was also carried out. This aspect of the survey investigated both the area of dynamic

service composition and the orchestration of services.

Based on this survey a set of learning activities, designed by an expert community of
practice in eLearning, were identified. These activities were analysed in order to identify
requirements in terms of workflow support. Based on this analysis. a test implementation
for an integrated adaptive service and content composition system was developed. This
test implementation was then subject to an iterative development and testing process to

reach a stable system.

Analysis of Analysis of

Content Centric Learning Activity
elLearning Support
\ Definition /
> of Initial 4

Requirements

Identification of Selection of
key workflow < Use Case
patterns Activities
/\Design and

lterative

\-Im/plementation
Evaluation

1) Control Flow

2) Adaptive Composition of Services

3) Adaptive Composition of Content

4) Performance and Scalability

Figure 1.1: Research Methodology

Following the development cycle a set of four experiments were devised and carried out in

order to evaluate the developed system with respect to the research question.

The first experiment was an analysis of the service sequencing capabilities of the system
based on the learning activities identified as part of the state of the art survey. The
second experiment was based on the implementation of a set of learning activities as the
basis for an analysis of the adaptive service selection and sequencing functionality of the
system. The third experiment was a user study based evaluation of a system capable of
adaptively selecting and sequencing content. The fourth experiment carried out as part
of the evaluation consisted of a set of benchmarks designed to evaluate the performance

and scalability of the system.

1.6 Thesis Outline

The rest of this thesis is structured as follows, the state of the art review of Adaptive
Learning is provided in Chapter 2. This is followed by the review of the state of the

art in Adaptive Service Composition in Chapter 3. The design of the prototype system

is discussed in Chapter 4 with the details of its implementation provided in Chapter 5.

Chapter 6 describes the evaluation of the research. The thesis concludes with a discussion

of the conclusions and future work in Chapter 7.

Chapter 2

State of the Art - Adaptive

Learning

2.1 Introduction

The use of the internet as a medium for accessing information has exploded in
recent years providing more and more of the world’s population with access to
readily available information that they would not otherwise have access to. There
are now 2 billion internet users worldwide, double the number from 5 years ago
[Telecommunication Development Bureau 11]. This growth has also seen the internet
become a popular tool for the delivery of both formal and informal learning. However, the
very nature of the internet, access to massive volumes of content, can also present users
with significant problems as they attempt to access information. Not only must they find

appropriate content that covers the concepts that they are interested in but that content

must also be in a form that is accessible to them.

Even in the context of formal learning environments on the internet, where the content is
generally restricted to a closed corpus of high quality content, the learner can still have
difficulty in making use of the information due, for example, to a lack of prior knowledge
in the necessary prerequisite concepts. Many factors can result in a learner not being able
to take full advantage of the information contained in the content, hardware restrictions
such as network bandwidth or screen size can affect their ability to access some forms

of content while disabilities or a lack of literacy can make some forms of content more

appropriate relative to others.

Adaptive Hypermedia (AH) is an area of research that attempts to address these issues by
adapting or personalising multimedia content, such as that found on the internet, based
on the needs of the individual. This is achieved by capturing information that can be used

to inform the process of personalising the content.

This chapter discusses the techniques and mechanisms used in AH to adapt content to the
needs of the user. As part of this discussion, four mature Adaptive Hypermedia Systems

are discussed in detail and their design and functionalities compared.

As a significant application domain for personalised web technologies, such as AH, a
discussion of the eL.earning domain is also presented. The discussion provides a summary
of the main theoretical basis for learning theory and discusses their relevance with respect

to the personalised web and activity based learning.

2.2 Learning to Support Personalisation

2.2.1 Learning Theory Perspectives

Learning Theory is the study of the psychological theory that underpins educational
design. As with many areas of psychology, there is no single accepted view of how
the human mind learns. Instead there are many different ‘perspectives’” on the nature
of learning. These perspectives can be grouped together into clusters based on the
fundamental assumptions that underpin each perspective. This section follows the
approach of Greeno, Collins and Resnick [Greeno 96], who identified three clusters or
broad perspectives: the Associationist/Empiricist perspective, the Cognitive perspective

and the Situative perspective.

2.2.1.1 Associationist/Empiricist Perspective

The Associationist perspective views learning as the creation, reorganising and
re-enforcement, through repetition, of associations between units of knowledge. In
associationism, learning is considered to be the process of building associations between

elementary units, which is achieved through sequences of activity. In associationism,

learning tasks are constructed hierarchically with simpler tasks as pre-requisites of more
complex tasks. This sequencing is achieved through ‘task analysis’, a process developed
by Gagné [Gagné 85]. In this approach the assumption is that simpler tasks must be

mastered before more complex ones.

One area of learning theory that can be aligned with the associationist perspective is that
of Behaviourism [Watson 25|, which views the mind as a ‘black box’ and defines learning
as the change in behaviour resulting from the experiences of the learner. This perspective
emphasises learning as an active process in which ‘learning by doing’ [Dewey 38]' or
activity based learning is the mechanism through which these changes in behaviour
are made. Another important aspect of the Behaviourist approach is the provision of
immediate feedback based on the activities of the learner. This emphasis on feedback to
the user implies that the composition/sequencing of tasks for an individual learner should

be personalised so that the learner’s performance in prior tasks can be taken into account.

2.2.1.2 Cognitive Perspective

In the Cognitive perspective learning is seen as the interaction between concepts and
the learner’s mental model of the world. As such, it is how the learner processes
the information that is important rather than the information itself, as is the case
in associationism. As well as the learner’s mental model, the cognitive perspective
places importance on meta-cognition or ‘thinking about thinking’. This is because, from
a cognitive perspective, the challenge for the learner is to be build a framework for

understanding the domain in question.

As each individual learner develops their own mental model and so makes sense of the
world in their own way, the cognitive perspective can be seen to promote the idea of
treating each learner as an individual and providing them with personalised activities

that take into account their needs [Meyes 04].

Constructivism is an increasingly important aspect of the cognitive perspective, which
places importance on activity as a means of building new forms of understanding. As the
cognitive perspective in general sees learning as the construction of a broad mental model

of a domain, it is important that the activities provided to a learner are authentic to the

' Although ‘learning by doing’ is not exclusively associated with Behaviourism, it is one of the theoretical
perspectives that have arisen from it.

domain in question. Activities that are out of context do not allow the learner to develop
the skills necessary to apply the knowledge in the actual domain. This view can be seen
to draw from the situative perspective on learning theory and has lead to the development
of the social constructivist paradigm, which is influenced by the work of Vygotsky. In
the social constructivist paradigm, collaboration among learners as they take part in an
activity is emphasised as social interaction is considered to be an important factor in

constructing knowledge [Vygotsky 78].

Cognitive Constructivism is based on the work of Piaget [Piaget 70] and theorises that
humans must construct their own knowledge rather than being able to immediately
understand and use information that is given to them. This construction of new knowledge
is achieved though experiences that allow the learner to create mental models, which
can then be modified through processes referred to as assimilation and accommodation
|Piaget 70]. Assimilation is the process of incorporating what is perceived in the outside
world (concepts and experiences) into the learner’s internal model without changing that
model. As such, the learner can ‘pigeon hole’ what they perceive in order to make it fit
into their mental model. Accommodation is the process of changing the internal model to

fit the evidence that is presented to the learner.

In cognitive constructivism the teacher’s role in a classroom is to provide a rich
environment in which the learner is free to explore. This encourages the learner to become

an active constructor of their own knowledge.

2.2.1.3 Situative Perspective

The situative perspective is based on the principle that all learning occurs in a social
context and that the learner will be influenced by the social and cultural setting in which
learning occurs. As such, the focus is on the way in which knowledge is distributed socially.
Learning then becomes about the ability of an individual to successfully participate in
the practices of a community. From this perspective learning must also be personally
meaningful as the learner must have some reason for being part of the community in the

first place.

Situated learning can be viewed as coming in one of two ‘flavours’ [Barah 00]. The first is a

socio-psychological view in which learning is seen as activity based. The emphasis however

10

is on the authenticity of the learning activities with respect to the social context in which
the skills or knowledge are normally embedded. Problem based learning [Barrows 80| and

anchored instruction [Crews 97] are examples of such activities.

The second is an anthropological view of situated learning, which places more emphasis on
the relationships between the learner and the other members of a community of practice
rather than on the activities themselves. The emphasis is then on how the learner’s identity
derives from being part of that community [Lave 91]. In order for this to happen, the
learner must be provided with opportunities for legitimate participation in the community
that allow them to move from simply observing the practices of the community to being
active participants. Examples of this approach include apprenticeships, role play and

debates.

2.2.2 Learning Activities
2.2.2.1 DialogPlus Project

The DialogPlus project [The Dialog Plus Team 04] took an activity based eLearning
approach. The aim of the project was to develop a framework that would support the
authoring of pedagogically informed learning activities. As part of this framework a model
for the authoring of learning activities [Bailey 06] and a set of tools that apply that model
to the authoring process [Conole 05] were developed. The project involved researchers from
the Geography, Education and Computer Science domains from UK and US universities

although the focus of the project was on

In the DialogPlus model, learning activities are referred to as ‘Learning Nuggets’
[Bailey 06] and consist of a sequence of tasks with each task providing access to specific
resources and tools [Bailey 06]. Tasks are contextually delivered based on various
properties including level of difficulty and prerequisite skills and are composed of a
traditional media types such as text, images, audio and video as well as other digital
media types such as interactive maps, Flash objects, databases and modelling applications.
Learning Nuggets can also include quizzes, exercises, submission of written answers and

communication tools such as discussion boards and email [Bailey 06].

Over the course of the DialogPlus project several learning activities were developed

and used in the teaching of Geography to third level students. The topics covered by

11

these activities included Academic Integrity and image processing for Global Information

Systems analysis.

In addition to the technological contributions of the DialogPlus project, it also produced
a taxonomy of learning activities. This taxonomy was designed to provide a basis for
describing learning activities in a manner that would support reuse through a shared
vocabulary for the description of activities. The taxonomy includes both pedagogical and
technological taxa® including, Context (Aims, Environment, Difficulty, etc.), Learning
Outcomes, Pedagogical Approaches, Type (what), Technique (how), interaction (who),

Roles (which), Tools and Assessment.

The taxonomy provides a very detailed basis for the description of activities with each taxa
have many sub types. An example of this detail is the Type taxon, which is broken down
into 6 different sub types; Assimilative, Information Handling, Adaptive®, Communicative,
Productive and Experiential. Each of these has further subtypes providing a total of 35

different categories of task types.

The complexity of the DialogPlus taxonomy is in contrast to the SLEM [D 05] taxonomy;,
which consists of only 8 types of task (Imitation, Reception, Creation, Exercising,

Exploration, Debate, Experimentation, Self-reflection).

2.2.2.2 LADIiE Project

The Learning Activity Design in Education (LADIE) project [Jeffery 06] was set up as
part of the E-Learning Framework (ELF) [Elf 10], which was funded by the UK’s Joint
Information Systems Committee (JISC) and Australia’s Department of Education, Science
and Training (DEST). The aim of ELF was to “produce an evolving and sustainable,
open standards based, service oriented technical framework to support the education
and research communities”. As part of ELF, the LADIiE project aimed to support the
authoring and realisation of Learning Activities. The authoring aspect of the project
aimed to develop a Learning Activity Reference Model [Jeffery 06], which covered every
aspect of the authoring process from design to packaging of the learning activity, including
the discovery of resources and the specification of activity sequencing. To support the

realisation of these learning activities, the project developed a specification for an execution

2Taxa is the plural of taxon, which is taxonomic category or group.
3¢Adaptive’ in the context of the DialogPlus taxonomy means tasks that involve simulation or modelling.

12

environment in which such activities could be run. This environment was designed based

on a component/service orientated approach.

To support the development of this reference model, the LADIiE project ran a series of
workshops with the aim of eliciting activity based eLearning case studies from learning
practitioners. From these case studies, 16 use cases were developed, again in consultation
with the learning practitioners. The definitions of these use cases are provided in appendix

Al

Each of the LADIE case studies describe an authentic learning activity designed to be
applied in an eLearning context. They describe the steps involved in the activity from the
perspective of all of the stakeholders, students, teachers and, where necessary, technical
support staff. The use cases also specify the teaching approaches on which the use case
is based. In addition to the 16 main use cases, an additional set of use cases describe the
steps involved in an online quiz and discussion activity, which are frequently reused in the
16 main use cases. Table 2.1 provides a list of the steps that make up LADiIE use case 4.
This is a discussion based activity in which the student(s) discuss a set of resources and

write a report based on that discussion.

1 | Teacher designs a scenario, collects appropriate resources, and saves them to
the system

2 | Teacher defines student groups and permissions for discussion (see usecase
‘discussion’)

3 | Teacher briefs students on the activity and refers them to the resources and
discussion forum on the system

4 | Students log into system and access the resources

5 | Students discuss the problem (see usecase ‘discussion’)

6 | Teacher sends questions intended to stimulate discussion, and guidance on
writing a report, to the forum

7 | Students write report and save it to the system

8 | System notifies teacher that report has been submitted and teacher retrieves
it

9 | System saves records of activity, discussion and student work for future access
for quality assurance and benchmarking

Table 2.1: LADIE Use Case 4 Definition

An interesting aspect of many of the use cases is that they provide a set of alternative tasks
within the activity that could be selected based on the learner’s prior knowledge, abilities,
the time available for the activity or the progress within the activity. For example in use

case 4 it is suggested that the asynchronous discussion in step 5 could be replaced with

13

a synchronous discussion (this could be realised using, for example, a chat tool or instant
messaging). Similarly, it is suggested that students with reading/writing disabilities could
use a VOIP tool such as Skype to carry out the discussion. Another example of possible
adaptation to the context in which the activity is running is the suggestion that step 7,
where the students save their work to the system could be replaced with the students

emailing the report to the teacher.

The alternative paths and tasks specified in the use cases are interesting as the use cases
were not written with the explicit intention to personalise the activities or to deliver them
adaptively in any other way. It is apparent that the practitioners from whom the use cases
were derived clearly saw the need to tailor the activities to the needs and context of the

student.

As part of the LADIE project, a gap analysis was carried out on the set of use cases
developed by the project. This was achieved through the use of the DialogPlus taxonomy
to identify any areas that might not be well represented by the use cases [Falconer 06].
This analysis showed that the use cases were heavily discussion focused although it was
not clear from the projects findings whether this was representative of the activities that
learning practitioners apply in general or whether it was due to the methodology used to

capture the use cases.

A significant part of the gap analysis was focused on analysing the types of task that were
used in the LADIE use cases. The results of this analysis are reproduced in table 2.2 and
represented visually in figure 2.14. The graph shows the number of occurrences of each
DialogPlus task type in the LADIE use cases. As shown the LADIE use cases show a
strong representation of the Assimilative, Information Handling and Communicative task
types and to a lesser degree the Productive task type. However, Experiential and Adaptive
tasks are not well represented at all with only three experiential tasks and no adaptive

tasks.

2.2.3 Analysis

The three perspectives on learning theory discussed associationist, cognitive and situative

can be characterised as follows [Meyes 04]:

4Use Case 10 was not included in the original analysis carried out by the LADIE project due to its
similarity to Use Case 16.

14

[))
g = _
2| % S| ¢ | &
o E|: |5l §| 5| ¢
sl 2| £ || BE| 2| &
Dl < S |<| O ~ 5|
1 || YES | YES YES
2 YES
3 | YES
4 [YES YES | YES
5 YES
6 || YES | YES YES
7 | YES | YES YES
8 || YES | YES YES | YES
9 | ' YES YES
10 2 " o : - =
11 YES | YES | YES
12 || YES YES | YES | YES
13 || YES YES
14 || YES YES | YES
15 || YES YES
16 || YES | YES YES | YES

Table 2.2: LADIE Use Case Gap Analysis - DialogPlus Tasks

20
% 18
¥ 16 -
.’g 14
5 12
.E 10 +
3 8 1
Z 6 -
g 4
" 2] .
0 <4 :
< < (2 < >
S Y R A
\\® N %Q '\C‘ bo \Q’
o Q"b ’bb o(\ g o
¥ © S N &
& N
¢
DialogPlus Task Type

Figure 2.1: LADIE Use Case Gap Analysis - Breakdown of DialogPlus Task Usage

e Associationist - learning as activity
e Cognitive - learning as achieving understanding

e Situative - learning as social practice

Despite the different background and motivations of each of these perspectives one aspect
that they have in common is the use of activity as a means of learning. For the
Associationist /Empiricist perspective ‘learning by doing’ is the key to the process of
learning as it is the mechanism through which learners build connections between units
of knowledge. The Cognitive perspective encourages the use of activities that are as
authentic to the real world as possible as a means to allow the learner to construct mental
models that can be applied to real world problems. The authenticity of the activity is also
emphasised by the Situative perspective where the focus is on the realistic interactions
of learners with the other members of the community as the learner participates in the
activity.

Personalisation is another common theme across the different perspectives. Associationism
places an emphasis on personalising the composition of tasks to the individual learner
based on their performance in prior tasks. Similarly, the Cognitive perspective suggests

that learners should be treated as individuals and activities personalised to their needs.

Clearly, the motivation for learning activities that are personalised to the needs of
the individual learner is supported by learning theory. It is also clear that eLearning
practitioners are applying this theory in the real world. This is shown by the emphasis
that has been placed on research in this area. Projects such as LADIE and DialogPlus

have illustrated how learning activities are applied by learning practitioners.

2.3 Adaptation Techniques for Learning Content

Adaptive Hypermedia (AH) [Brusilovsky 01] is an area of research that attempts to
address some of the issues that have been identified in traditional hypermedia based
systems. Examples of such issues that are commonly attributed to hypermedia include the
‘Lost in Space’ phenomenon [Conklin 87|, the non-linear paths through the hypermedia
and the one-size-fits-all nature of traditional hypermedia. The ‘Lost in Space’ or ‘Lost

in Hyperspace’ phenomenon refers to when a user has difficulty knowing where in

16

a hypermedia they currently are and how they can get to where they want to go.
Traditional one-size-fits all hypermedia present all users with the same hypermedia
document irrespective of their information needs. These issues can have the effect of
increasing the cognitive load on a learner as they must not only attempt to learn the subject
matter but also successfully navigate the hypermedia [Dias 99, Conklin 87]. AH attempts
to address these issues by adapting the hypermedia to the individual user based on various
properties of the user, for example, the user’s goals, prior knowledge or preferences.

Personalised
Content

() Adaptive (>
Engine

User Domain
Model % Model
Adaptation
Model

Figure 2.2: Abstract Model of an Adaptive Hypermedia System

Adaptive Hypermedia Systems (AHS) are generally characterised as consisting of an
Adaptation Engine and three metadata models, the User Model, Domain Model and
Adaptation Model [Koch 02, De Bra 99|. Figure 2.2 provides an illustration of a generic
model for an AHS. The User Model provides the system with a model of the user that
describes, for example, the goals, prior knowledge and interests of the user. The Domain
Model describes the conceptual structure of the application domain while the Adaptation
Model consists of the adaptation rules that determine how the hypermedia can be adapted
to the user. The three models described represent the Storage Layer of a hypermedia
system that is based on the Dexter Model [Halasz 90]. The Adaptation Model rules are
executed by the Adaptive Engine in order to generate a personalised hypermedia. This is
achieved by reconciling information from the Domain Model with information about the
user from the User Model. For example, only present concept B to the user if their User

Model says that they have completed the prerequisite concept A.

The techniques used in AH to personalise the hypermedia, as categorised by Brusilovsky

in his updated taxonomy of AH techniques [Brusilovsky 01], are considered to fall into

17

Adaptive Natural Inserting/
multimedia language removing
presentation adaptation fragments

Adaptive text Altering

Adaptive presentation fragments

presentation

Adaptation of Canned text

modality adaptation Stretchtext

Adaptive Sorting

hypermedia Direct guidance fragments
technologies
Adaptive link o i Dimming
sorting Hiiging fragments
Adaptive ! Adaptive link

navigation support) hiding Disabling

Adaptive link

annotation Removal

Adaptive link
generation

Map adaptation

Figure 2.3: Brusilovsky’s Taxonomy of Adaptive Hypermedia Techniques
[Brusilovsky 01]

two different categories, Adaptive Presentation and Adaptive Navigation, as is shown
in figure 2.3. Adaptive Presentation techniques adapt the content of a page that is
presented to the user in order to adapt to the users needs. A significant portion of
the research in Adaptive Presentation is in ‘canned text adaptation’ where content is
adaptively included or excluded from the page using techniques such as stretchtext,
inserting/removing fragments or the sorting of fragments [Brusilovsky 96a]. Adaptation
of the modality of the content, for example based on user preferences, is also included in

this category.

Adaptive Navigation techniques attempt to provide a personalised navigation structure

18

across the hypermedia in order to help the user to find the best path through the
hyperspace [Brusilovsky 96al. This is achieved through a range of techniques that range
from Direct Guidance, where the user is provided with the next link that they should
follow to Adaptive Link Annotation where the user is given guidance as to which links

might be appropriate for them.

2.3.1 Adaptive Presentation Techniques

Adaptive Multimedia Presentation The adaptation of the multimedia resources
used in a hypermedia is referred to as Adaptive Multimedia Presentation. Examples
of how this technique can be applied include changing the quality of an image or video

based on the available bandwidth or device characteristics.

Adaptive Text Presentation Adaptive Text Presentation generally refers to a
category of adaptive presentation techniques that attempt to personalise the content of
a hypermedia document through the conditional inclusion of fragments of ‘canned text’
within a page of text. Such techniques are often applied in order to adapt the text to the

user’s prior knowledge, for example to provide an explanation of a term to a novice user.

One technique that falls into this category is Stretchtext [Brusilovsky 96a], which adapts
the text of a hypermedia by adaptively expanding so called ‘hotwords’ to provide more
detailed information on a concept depending on the needs of the user. Early examples of

such systems include MetaDoc [Boyle 94| and KN-AHS [Kobsa 94].

Other techniques that can be classified as Adaptive Text Presentation are the Dimming
of Fragments [Brusilovsky 96a] and the adaptive insertion and removal of text fragments,

as exemplified by the AHA! system [De Bra 06].

Adaptation of Modality Adaptation of the modality of a hypermedia generally refers
to adaptation of the underlying format in which the hypermedia is delivered, for example
delivering audio instead of video based on available bandwidth or synthesising text to

speech when the user is in an ‘eyes busy’ environment.

19

2.3.2 Adaptive Navigation Techniques

Direct Guidance Direct Guidance is considered to be the simplest of the adaptive
navigation techniques to implement. In this technique, the AHS adaptively selects the
next node in the hypermedia that should be visited by the user based on, for example, the
user’s goals or prior knowledge. A link to that node is then added to the current page.
Examples of systems that implement this technique include Interbook [Brusilovsky 98|

and ELM-ART [Brusilovsky 96b].

Adaptive Link Sorting Adaptive Link Sorting provides the user with an ordered list
of links from the current page in the hypermedia based on the relevance of the linked
nodes to the user. The relevance is determined by the system based on the User Model,
for example based on the goals of the user or their prior knowledge. The user can then
choose whether or not to follow the links that they system has identified as most relevant

or to follow alternate links.

Adaptive Link Hiding Adaptive Link Hiding is a mechanism through which the
possible paths through the hypertext can be restricted by ‘hiding’ or turning off the links
from one page to another. Links between nodes can be disabled in order to hide content
from the user that they do not yet have the prerequisite knowledge to understand. This
approach can also be used to constrain the hyperspace that the user sees, based on their
current goals, so that irrelevant or unnecessary content is hidden from them. The AHA!

system [De Bra 06] is a popular example of a AHS that implements this technique.

Adaptive Link Annotation Adaptive Link Annotation is a similar technique to Link
Hiding as it attempts to guide the user through the hypertext by annotating the links in
a page in order to provide visual cues to the user as to the appropriateness of the link
based on the users prior knowledge, goals, interests, etc. The default behaviour of a Web
Browser implements a simple form of this technique. A Web Browser provides the user
with a visual cue, through the colour coding of the hyperlink text, that tells them whether
or not they have previously visited a link thus allowing the user to decide whether or not
they want to follow the link. ELM-ART [Brusilovsky 96b] was one of the first AHS to

implement this technique using it’s ‘traffic light’ annotations.

20

Adaptive Link Generation Unlike the Adaptive Navigation techniques discussed
previously, which annotate or re-order existing links in a hypertext. Adaptive Link
Generation techniques attempt to generate new links between resources. These new
links can be generated based on the discovery of relationships between concepts, or by
recommending links to topics that are related in some way to the topic currently being
viewed by the user. Another approach to Link Generation is the generation of a navigation
structure, such as a ‘table of contents’ that spans the content/concept space taking into
account the user’s prior knowledge, learning goals, preferences, etc. The APeLS system is

an example of how this form of Adaptive Link Generation can be applied [Conlan 03a].

Map Adaptation Map Adaptation refers to the adaptation of a local or global
site map that provides the user with a graphical representation of the hyperspace.
Examples systems that do apply this technique include HYPERCASE [Micarelii 96] and
ExploraGraph [Dufresne 00].

2.4 Survey of Adaptive Hypermedia Systems

In the previous section, the techniques used in AH to provide both Adaptive Navigation
and Adaptive Presentation were summarised and examples of systems that apply those
techniques were provided. This section presents a survey of highly cited adaptive eLearning
systems, providing a summary of the features of each system. It then provides a thorough

comparative analysis of the systems against important AH capabilities and affordances.

2.4.1 AHA!

AHA! [De Bra 06] is an open source AHS that is developed and maintained by the
Technical University of Eindhoven. It follows closely the classical model of an AHS, as
described by Brusilovsky [Brusilovsky 01]. As such, its architecture consists of an Adaptive
Engine (AE), which is used to execute a set of rules, referred to as the Adaptation Model
(AM), in order to select appropriate concepts from a Domain Model (DM) based on the

systems knowledge of the user, as captured in the User Model (UM).

The DM consists of a directed graph of concepts in which the edges represent relationships

between the concepts, for example the concept HTML tag is a prerequisite of the concept

21

Javascript [De Bra 02a]. Content, in the form of XHTML pages, can be associated with

a concept in the DM.

The AM consists of event-condition-action rules that determine any actions that the AE
should take. Each rule is associated with a specific concept from the DM so that for
example, when a user reads a page associated with a specific concept the UM is updated
to reflect an increase in the user’s knowledge of that concept. The rules in the AM also
allow such increases in knowledge to propagate so that an increase in a user’s knowledge
of a subconcept can also trigger their knowledge of a superconcept to be updated as well.
As well as knowledge of a concept, adaptation rules in the AM can also be used to uplate

other properties that are associated with a concept in the UM.

AHA! supports both adaptive navigation, through the use of adaptive link annotation, and
adaptive presentation, through the use of adaptive multimedia presentation and carned
text adaptation. Link annotation is based on the traffic light metaphor with the links to
appropriate concepts annotated with a green light, links to optional concepts annotated
with an amber light and links to concepts that are considered to be inappropriate
annotated with a red light. Annotations are added to any hyperlink in a document that is
marked as conditional based on the adaptation rules associated with the linked concept.
These rules determine the appropriate annotation based on the users knowledge of the

concept.

The content that AHA! uses to deliver adaptive hypertexts consists of XHTML compiant
documents in which the anchor tag, for any hyperlinks that are required to have adaptive
behaviours, are annotated by adding a ‘class’ attribute with the value ‘conditional’. Such
hyperlinks can be used to point to a concept in the DM rather than a specific page or
resource. This allows the AE to be used to select an appropriate page to present tc the
user from the set of pages that are associated with that concept [De Bra 06]. In AHA!this
feature is referred to as ‘adaptive link destinations’. This is a new feature of AHA!3.0,
in previous versions pages of content were explicitly referenced in the DM [De Bra 012b].
AHA! can also support the adaptive insertion of fragments of text within a page. This
can be achieved using one of two supported mechanisms, the first is through the useof a
custom <if> tag that is embedded in the content [De Bra 02b]. The use of this tag alows
adaptation rules to be embedded in the content and used to select an appropriate tock

of text to show to the user. This mechanism has been available in previous versiois of

22

AHA! whereas the second mechanism, which makes use of the XHTML <object> tag, is
only available in the more recent version 3.0 of AHA! [De Bra 03]. This new approach
removes the need to use the non standard tag <if> tag in the content markup as well as
removing the need to embed the rules in the content. Instead the rules are associated with
a concept in the AM. Using the object based mechanism, <object> elements are inserted
into the content at the point where a conditional fragment should be added. This element
has two attributes, the type attribute with value ‘aha/text’ is used to identify the object
to the AHA! engine as it processes the XHTML document and the name attribute is used

to specify the concept that the conditional fragment corresponds to.

2.4.2 ADAPT?

ADAPT? [Brusilovsky 05b] is a distributed AHS, based on the earlier KnowledgeTree
[Brusilovsky 04a] system, in which the various functionalities of the system are separated
out into individual services. The architecture consists of a user portal, through which users
can interact with the system, a user modelling service [Brusilovsky 05al, a set of services
that provide support for a range of different adaptive functionalities and value-adding
services [Brusilovsky 04al. These adaptation services, referred to as ‘activity servers’
[Brusilovsky 04a), can then be combined as required in order to deliver personalised
content. Examples of adaptive services available as part of ADAPT? include QuizGuide
[Sosnovsky 04], an adaptive quiz service, KnowledgeSea [Brusilovsky 04b], a personalised

content recommender and WebEx [Brusilovsky 08], which delivers interactive examples.

As part of the ADAPT? architecture, adaptive behaviours are handled by the value adding
services. On such service is Nav-Ex [Brusilovsky 08, Brusilovsky 05¢], which uses link
annotation to provide adaptive navigation support to courses delivered using ADAPT?.
As part of the ADAPT? architecture, services such as Nav-Ex can be used to add adaptive

behaviours to content that was not originally designed to be used adaptively.

Nav-Ex provides link annotations to the user based on the user’s prior knowledge of the
prerequisite concepts for a given link. Red bullet annotations are used to indicate that a
user does not have sufficient prior knowledge while a green bullet annotation indicates that
a link is appropriate for the user. Links can also be annotated with a green check mark
to indicate that the user has already covered the concepts covered by that link. Nav-Ex

identifies links as appropriate or not using a domain model, which is auto-generated from

23

the content. The user’s knowledge level for the prerequisite concepts of a given link are
retrieved from a binary overlay user model so that a user is considered to have learned a

concept as soon as they have read the corresponding content.

An interesting feature of ADAPT? is its support for what is referred to as ‘intelligent
content’ [Rey-16pez 08]. This consists of pieces of dynamic content, which can be
implemented using various technologies including ASP and Java Applets, that provide
the user with interactive content that provides features such as quizzes and interactive
programming problems [Brusilovsky 05¢|. As mentioned previously, dynamic content in

the ADAPT? architecture is delivered using ‘activity servers’.

2.4.3 APeLS

The Adaptive Personalised eLearning Service (APeLS) [Conlan 03a] is a web based AHS
that was developed in Trinity College Dublin (TCD). The APeLS system is specifically
targeted at eLearning applications and as such has been used to deliver several adaptive
courses covering topics ranging from Mechanics (physics) [Conlan 03a] to the SQL
database query language [Conlan 02]. The adaptive SQL course has been used to teach
undergraduate students in TCD for several years, in that time, it has been shown to have
provided real benefits to the students that have used it in comparison to non adaptive

online courses [Conlan 04].

The APeLS architecture is similar to that of other AHS. as shown in figure 2.4 it consists
of an Adaptive Engine, which is used to reconcile the Learner Model with the Content
Model through the execution of the Narrative Model [Conlan 02]. The Narrative Model

is a key architectural difference of APeLS in comparison with other AHS, such as AHA!

The Learner Model used by APeLS is an XML based description of the user which is
primarily designed to capture information about the competencies that the user has
learned as well as the competencies that they wish to acquire. The schema of this
model is fixed and cannot be modified although it does provide enough flexibility to
store the competencies relating to an arbitrary number of concepts. It is also possible
to capture properties of the learner other than competencies required/learned as long as
the information to be captured conforms to the concept overlay approach to user modelling

that is applied in APeLS.

24

Learner Input Modeler
-

Adaptive
Engine

Personalized
Course Model

Rules Candidate
Engine Selector

(XML)
Personalized
Course
Content
Narrative ik Contet '
Repository Repository

Figure 2.4: APeLS Architecture

APeLS does not define what information about the user is captured in the Learner Model
or how that information about the user is captured. This is up to the developer of the
specific instance of an APeLS course to specify based on the needs of the adaptive course
they are designing. For example, in the Physics course mentioned previously, once a
user has viewed a page it is assumed that their knowledge of the corresponding concept
increased and so their user model is updated. In contrast, the SQL Course instance of

APeLS only updates the user model based on an explicit action of the learner.

The Content Model in APeLS is a collection or XML based metadata descriptions of each
of the content resources that are available to the system for inclusion in a personalised
course. Each metadata description conforms to the same schema although this schema
can be defined by the designer or an adaptive course. This allows APeLS to search across

all of the content metadata as one model in order to identify appropriate content.

The Narrative Model in APeLS is used to encapsulate the necessary domain model
information as well as the adaptation rules that allow the AE to adaptively select
appropriate concepts as part of a user’s personalised course. In these respects, the APeL.S
Narrative Model is equivalent to the Adaptation Model in AHA! However, unlike AHA!,
which only considers the sequencing of concepts as defined in the domain model, APel.S
allows concepts to be sequenced based on strategies that are defined by the author of
the adaptive course, while still taking into account the relationships between the concepts

that are defined in the domain model. This allows adaptive courses that are based on

25

educationally sound strategies to be generated. These strategies are captured in the

Narrative Model.

In addition to the adaptive sequencing of concepts, APeLS also supports the adaptive
selection of appropriate content through a technique referred to as Candidacy [Dagger 03].
Candidacy is based on the grouping of content resources that cover the same concept but
which differ in how that concept is presented. For example, different content resources
might be available to explain a concept to a learner with limited knowledge of a domain
and a learner with a more detailed knowledge. A specialised set of rules, referred to as a
Candidate Selector [Dagger 03], is then used to choose the most appropriate content for
an individual learner. This selection process can also be passed on to an external system,

which has specialised knowledge of how to make the selection.

In both adaptive sequencing and selection, APeLLS can make use of any property of the
learner or content that is available to the Engine in order to influence the execution of the
narrative rules. These rules are executed using the JESS [Friedman-Hill 08] rule engine,
which has been extended to provide a set of Custom Functions [Conlan 02] that allow
the rules to access and manipulate the metadata models. The combination of the flexible
rule language provided by JESS and its support for applying sequencing strategies, APel.S
affords the narrative author a lot of flexibility in how they express the adaptive behaviours

necessary for their course.

2.4.4 ActiveMath

ActiveMath [Ullrich 08, Melis 01] is a web based system for teaching mathematics, which
supports the personalised composition of learning objects. These learning objects are
based on the Open Mathematical Document (OMDoc) specification [Kohlhase 06] for
mathematical documents, which ActiveMath interprets and transforms into a format that
can be delivered to the user, e.g. HTML. In addition to learning objects consisting of
static content, ActiveMath also supports the delivery of interactive exercises [Goguadze 05|
that allow the user to engage with the system by completing exercises such as answering
mathematical problems, either by calculating the answer or submitting a formula, which is
then evaluated by a Computer Algebra System (CAS). As with static content objects, the
exercises are encoded using an extension of the OMDoc specification, which is transformed

into a HTML form. The system can then evaluate how well a user does in an exercise and

26

provide personalised feedback based on that evaluation. ActiveMath supports Adaptive
Navigation through the integration of a course generator component, PAIGOS [Ullrich 09],

which builds personalised courses based on the user’s goals.

Unlike the AH based personalised eLearning systems discussed previously, which use an
application specific set of rules to make decisions about concepts in the domain model,
PAIGOS uses a Hierarchical Task Network (HTN) based Al planning technique to compose
personalised courses (see section 3.3 for more details on HTN and other AI Planning
techniques). This approach allows PAIGOS to decompose the goal of the user into
a set of subtasks that can be satisfied by the resources available to the system. To
achieve this, PAIGOS has a set of rules that describe how a specific educational goal
should be decomposed in order to produce an educationally sound course. As such,
these rules represent a pedagogical model that describes how courses can be generated in
accordance with pedagogically sound strategies. PAIGOS supports six different strategies
or ‘scenarios’ [Ullrich 08], which have been developed based on a constructivist perspective
on learning theory. The six scenarios supported are: discover new content, rehearse weak
points, establish connections between concepts, train intensively, train competencies and

exam simulation.

The PAIGOS course generator affords ActiveMath with a lot of flexibility in terms of how
a course can be delivered as it supports both a priori composition of a course and just in
time selection of appropriate resources. Sections of a course structure can be statically
defined by a course author while still allowing other sections of the course to be adaptively
generated. The content to teach these concepts can then be selected on a just in time basis,
allowing the system to select appropriate content based on the current state of the User
Model. This allows the system to take into account the user’s performance in exercises

that they have recently completed.

2.4.5 IMS Learning Design

Learning Design [IMS 03] is an IMS Specification for the description of pedagogically
driven learning activities using a platform independent language. The specification is
broken into three levels, level A provides support for describing the basic structure of
a static Learning Design that can be executed by a Learning Design player such as

CopperCore [Martens 05] or learning management systems such as .LRN [Del Cid 07] and

27

LAMS [Dalziel 03]. Level B builds upon the basic structure of a Learning design specified
by level A by adding support for adaptivity within the Learning Design while level C
adds support for notifications, which can be used to send messages to a user or to enable

activities.

The basic components of a Learning Design are Roles, Activities and Environments.
Roles allow the author to define different roles that users can carry out within the system,
these roles can be defined as either learner or staff roles although there can be many
different roles defined within these types. Activities are the basic components of a Learning
Design representing individual parts of the course, which are realised through the delivery
of one or more Environments. Activities can be nested to create a tree structure of
activities. Environments are containers for content and services that are necessary to
deliver the Learning Design. By separating the definition of Environments from Activities

it is possible to reuse the Environments as part of multiple Activities.

The sequencing of the delivery of Activities in a Learning Design is controlled by the Play,
which contains one or more Acts. In turn, an Act contains one or more Role-parts, which

link a Role with that Activity that the role should take part in during the Act.

As mentioned previously, adaptive behaviours can be implemented in a Learning Design
using the level B features, of specific interest are Properties and Conditions that this
level introduces. Properties are variables that can be scoped with respect to the ‘run’
(specific execution of the Learning Design) or can be global (exist across all runs of the
Learning Design). Properties can also be personal, reflecting the properties of individual
users. In order to implement adaptive behaviours these Properties can be accessed and
manipulated using Conditions, which are essentially if-then-else statements that can be
triggered by changes to Property values. The most common use of conditions is to set the
isvisible attribute that is part of the definition of all Activities, Environments and Acts.
This allows parts of the Learning Design to be enabled or disabled based on the value of
a Property, which could be set as the result of a previous interaction with the system, or
in the case of a fully integrated LMS such as .LRN, the properties from a Learner Model.
Conditions can also be used to conditionally show/hide sections of a HTML document
being presented to the user. In this case the result of the condition would be to show
or hide a <div> element within the HTML document based on the value of the class

attribute.

28

Learning Design also supports the use of services are part of an activity. The Specification
itself supports three types of services an email service, send-mail; a discussion service,
conference; and a search service, index-search. The implementation of these services
is left up to the platform so that the Learning Design can remain independent of the
platform so that it can be reused. Additional services can be added to Learning Design
by extending the specification with additional service types, which would be specific to
a given platform as other Learning Design platforms would not be able to handle the
extensions correctly. Various different approaches have been taken to address this issue

such as that taken by LAMS as well as others [Del Cid 07].

2.4.6 Comparison of Content Adaptation Systems

To compare the adaptive eLearning systems presented in this chapter, a set of criteria
have been identified. These criteria cover five areas of interest with respect to the research

question, namely:

e Adaptation Techniques
e Adaptation Mechanisms
e Adaptation Scaffolding

e Content Flexibility

Content Interaction with System

The adaptation techniques criteria allow the systems to be compared based on the adaptive
behaviours that they support. These behaviours have been taken from the main stream
classification of adaptive behaviours as discussed in section 2.3. By comparing the adaptive
behaviours supported by the systems discussed it will be possible to identify any trends

that exist in the state of the art in adaptive eLearning systems.

The adaptation mechanism criteria cover the techniques used by adaptive systems to
realise the adaptive behaviours that they exhibit. As such, they cover both architectural
considerations such as the types of content supported and how they make use of the

metadata models available to the system.

The underlying scaffolding upon which the adaptation rules are built can have a significant

impact on how the adaptation rules are authored. For this reason the comparison looks

29

at how the adaptation rules of the different systems are structured upon the underlying

models of the system.

The content flexibility is an important aspect to investigate as it provides an insight
into the overall flexibility of the adaptive system and how easily it can be applied across
different domains. For example, does a system only support content in a specific format

or does the system require content to be tailored or customised specifically to the system.

Related to the flexible support for content is whether or not the system supports or requires
the interaction of the content directly with the system in order to provide some or all of

it’s adaptive behaviours.

These five criteria can be considered to fall into two categories, those that are used to
evaluate the systems based on the Adaptive behaviours supported and those that are used
to evaluate the system based on it’s content requirements. These categorisations are shown
below. The following sections provide an analysis of the systems surveyed based on these

criteria, which is summarised in tables 2.3 and 2.4.

e Adaptation Criteria

— Adaptation Techniques
— Adaptation Mechanisms

— Adaptation Scaffolding
e Content Criteria

— Content Flexibility
— Content Interaction with System

2.4.6.1 Adaptation Comparison

Adaptation Techniques The traditional categorisation of adaptation techniques
focuses on Adaptive Navigation (AN) and Adaptive Presentation (AP). With respect
to AN all of the systems discussed support the adaptation of the navigation structure. In
the case of AHA! and ADAPT? this support is in the form of Link Annotation where as
APeLS and ActiveMath can both be considered to apply Link Hiding and Link Generation
techniques. As discussed by Berlanga et al. [Berlanga 08] and Hendrix et al [Hendrix 09],
Learning Design can support AN using several different mechanisms including Direct

Guidance, Link Hiding and Link Annotation.

30

sweysAg Sururese aandepy jo oFes() [PpoJy pue senbruyda], uorreydepy pojroddng jo uosuredwon) gz alqelL

ON ON ON ON ON MOPYNIOA ERINNEIN
SOx SO S9x ON ON ASoje11g /AF08epa g
OoN ON Sax SOx S [9POJA urewo([
U0 Pre[IsAo syur oanydepy
Suipjogesg uorjejdepy
ON Sax ON Sax ON [POJN UIRWO(] JO SN W} UNYy]
SO S9X S9N S9K SOA || [PPOoIN uoiyeidepy /oiny oyeredag
(3x09
pauued /[RUOI}IPUOD
10§)
ON ON ON ON SO JUDIUOD UL POpPPaqUIS SI[NY
SWISIURYIIJA] uoljeldepy
9DIAIOS
BOGOFpa[MOUY
A[uo yoress d1ye1g A[uo yoress o11e1g Suisn pajroddng
ON ON ON Sax ON [eadL1oy oalydepy
1X99) pauued ,SuotjeuI}sep yuIf
Jjo swewsder jo WISTURYDDU aanydepe, pue 3x9)
UoIsnoul [RUOIIPUO.) Aoeprpue)) [euoIIpuoy) /pauue))
SO ON S9x ON S9x uorRuasal g aaldepy
uorjeIauar) 1oydejowr
yury ‘Suiptyg yurg uoryeIduer) /SuIpty WS oery Suisn
‘aouepino) 10011(] UOI}RIDUDL) MUl yurr] uorjejouuy MUl | uoryejouur urg
SoA Sox SaA S9A SOA uorjediaeN aandepy
sanbruyoay, uorjejdepy
udiseq Sururesry YIBINPAIRY ST2dV LdVAVv 0'¢ iVHV

31

ADAPT? and ActiveMath do not support any AP mechanisms, however the other three
systems in the survey do implement various Adaptive Presentation mechanisms. Both
APeLS and AHA! can adaptively select appropriate content resources using their respective
Candidacy and ‘adaptive link destinations’ techniques. AHA! also supports the conditional
inclusion of fragments of text in an appropriately marked up piece of content, a feature
that is also supported by Learning Design. The implementation of this feature in AHA!
however is a lot more flexible as the individual fragments are separate to the document in
which they are included where as Learning Design requires every possible version of the
text fragment to be included in the document. This is similar to the technique that was

used in older versions of AHA!.

In order to fully cover the full range of adaptive behaviours, Adaptive Retrieval has
also been included as a criteria for comparison. In their general form, none of the
systems covered in this chapter support Adaptive Retrieval. However, ADAPT? can
support Adaptive Retrieval through the use of the KnowledgeSea [Brusilovsky 02] service.
KnowledgeSea can be integrated into an adaptive eLearning course in order to support
the searching of open corpus content. In the case of KnowledgeSea II [Brusilovsky 04b],
the basic search functionality is extended through an adaptive annotation mechanism,
similar to the traditional Link Annotation techniques, that suggests to the user content

that others have browsed.

Courses delivered using ActiveMath can take advantage of a Search Tool, which allows
the user to search all of the content available in ActiveMath by entering mathematical
formulae as well as text. Similarly, a search service can be added to a Learning Design.

However, in both cases the search functionality is not adaptive.

Adaptation Mechanisms The first aspect of AHS design that was investigated was the
mechanism used to encapsulate the adaptation rules. Early AHS embedded the adaptation
rules in the content that they delivered, while others embedded the rules in the engine itself.
Embedding the adaptation rules in the content has several adverse effects, it increased the
complexity of the content authoring, restricted the availability of content and greatly

reduced the ability to reuse or re-purpose the adaptation strategy.

Several subsequent models for the design of AHS, such as AHAM [De Bra 99] and the
Multi Model, Metadata Driven Approach [Conlan 02, Conlan 05], identified this issue and

32

recommended the separation of the adaptation rules into a separate model, referred to
as the Adaptation Model or Narrative Model respectively. This approach would allow
the rules to be modified independently of the engine and/or content and opened up
the possibility of reusing the strategy embodied by the Adaptation Model. Similarly,
embedding the rules in the engine itself reduces the applicability of the engine to different
applications. If the rules are specific to the application domain, e.g. Database Theory then
the engine software is tied to that application domain. Even if the rules are independent
of the domain, they are still likely to be designed based on a specific pedagogical strategy
or teaching approach. To change the strategy used would require the engine itself to be

modified, increasing the cost and complexity of applying the technology.

In all of the systems discussed in this chapter, the rules used to implement Adaptive
Navigation are indeed contained in a separate Adaptation Model. This can also be
considered to be the case for Learning Design as the description of a Unit of Learning in
Learning Design is only focused on the description of the activity sequencing. As such, it
is independent of the engine itself. Based on this agreement in the design of the different
AHS, a separate Adaptation Model can be seen as a characteristic of a modern AHS.
When looking at how Adaptive Presentation is implemented by the systems in this study
that support it, namely Learning Design, APeLS and AHA!, there is not such agreement.
To support conditional/canned text functionality as described by [Gutierrez-Santos 08],
Learning Design requires the content to be written especially, with all possible versions of
the fragment contained in the same document. However, the rules that actually control
which fragment is displayed are part of the Learning Design specification for the Unit
of Learning. AHA! also supports conditional text fragments but it has moved from an
approach in which both the conditional fragments and adaptation rules were encapsulated
in the content resources to a more flexible approach in which the rules are now part of
the Adaptation Model and the content fragments are stored in individual files. APeLS on
the other hand does not require rules or content fragments to be embedded in the content
resources it delivers in order to provide Adaptive Presentation although its implementation
of this behaviour, through Candidacy, does not provide the same level of adaptation

granularity as AHA! or Learning Design.

The way in which an AHS utilises its Adaptation Model is also an interesting aspect of

their design. The question here is when should the adaptive selection and sequencing be

33

carried out, a priori or just in time. In the a priori approach, the AHS would generate
a complete personalised course or presentation before the user is allowed to access the
content. The just in time approach differs in that is makes adaptive decisions about which
concept or specific piece of content to present to the user only at the point when the
user makes a request to the AHS for the next piece of content. For example, when the
user clicks a hyperlink in a web based interface. The a priori approach has the benefit of
allowing the system to generate a complete course in which the user is free to navigate
without the structure of the course or the content presented to the user changing. This
helps to address the issues raised by De Bra [De Bra 00], who identified how an ‘unstable’
hypertext that changed between user visits could be confusing to the user. The problem
with this approach is that the course or presentation generated by the AHS can become
out of date as the user’s knowledge in the domain changes. The just in time approach
results in a course that is always appropriate given the system’s current model of the user
but can cause the user to become disorientated within the hypertext as a result of the

change structure of the document.

The ADAPT? system takes a just in time approach to Adaptive Navigation, however the
possible adverse affects of this approach on the user are not a significant issue for this
system as it does not directly manipulates the link structure of the personalised course.
If an ADAPT? user revisits a page the only change they are likely to notice is that the
annotations on the adaptive links might have changed. AHA! also employs just in time
Adaptive Navigation but unlike ADAPT? it does manipulate the link structure through
the use of its ‘adaptive link destinations’ technique as well as adapting the content itself
dynamically using conditional fragments. As a means of controlling the potential for
confusing the user as they navigate, the designers of AHA! recommend that authors of
adaptive courses design their courses so that they contain ‘explicit static link structures’

and that adaptive links should be used for additional information [De Bra 98].

In contrast, the APeLLS system applies an a priori based approach in which the user is
provided with instruments that allow them to control when the system rebuilds their
personalised course. If the user feels that the course generated by the AHS is no longer
appropriate for them then it is up to the user to prompt the system to build a new course
for them, taking into account the systems updated view of the user. Any changes to the

structure of the course are directly related to the user’s own actions. The ActiveMath

34

system takes a similar approach to APeLS in that the course generation process is carried
out a priori by the PAIGOS component. The actual content delivered to the user is selected
just in time. This allows ActiveMath to select appropriate content for the user based on

how well the user did in previous interactions with the system’s interactive components.

When looking at Learning Design with respect to just in time adaptation versus a priori
adaptation it is a little more difficult to analyse as there is nothing specific in the
specification that defines when the adaptation occurs, instead it is dependent on the player
or LMS that is executing the Learning Design. In the case of a player such as Coppercore,
it is obvious that any adaptation can only be at run time as Coppercore only has access to
user properties that it has acquired during the run of a Unit of Learner. An LMS such as
LAMS or .LRN has access to a user model in order to populate properties in the Learning
Design, which could be used to adapt the Unit of Learning to the user’s needs prior to their
interaction with the system. However, there is nothing in the specification to restrict the
Learning Design from further adapting the Unit of Learning as the User Model changes
over time. This results from the way in which, according to the specification, a Learning
Design player should re-evaluate any conditions as soon as the vales of the properties that
the conditions operate on change. This behaviour would result in the Learning Design

changing as the user navigates through it.

Adaptation Model Scaffolding When looking at how different AHS encode their
supported adaptive behaviours in rules, it is clear that there are several different
approaches that can be taken and that the choices made directly affect the type of course

or presentation that the system can generate.

In order to be able to write rules that describe the adaptation mechanisms in an AHS,
it is necessary to first identify a scaffolding upon which the rules can be layered. Such a
scaffolding would need to be an existing structure that is either available to the AHS at run
time or is considered at design time by the author of an adaptive course or presentation.
Examples of such scaffolds include the Domain Model. the pedagogy or other strategy and.
in the case of activities or services, the workflow the describes the interaction between the

services.

The use of the Domain Model as a scaffolding for overlaying the adaptation rules implies

that the system makes decisions about concepts to be included in a personalised course or

presentation based on relationships between the concepts in the Domain Model. AHA!,
ADAPT? and APeLS all support the execution of rules based on the Domain Model. In
the cases of AHA! and ADAPT?, this is the only type or rule scaffolding that they support
for the implementation of Adaptive Navigation. This is because the rules are designed to
be executed in a just in time manner that reconciles the relationships between concepts in
the Domain Model with the system’s knowledge of the user based on an overlay style User
Model. APeLS, in addition to supporting Domain Model based scaffolding of the rules,
can support the use of other scaffoldings at the same time. ActiveMath, unlike the other
three systems, does not layer its rules on the Domain Model. Although ActiveMath does
generate courses based on a set of concepts to be covered, the rules that determine how

this is achieved are independent of the concepts themselves.

An alternative to using the Domain Model as a scaffolding for the Adaptation Model
rules is to use pedagogy or some other strategy that should influence the structure of the
generated course or presentation. This approach allows the AHS to take into account the
expertise of the course author as well as accepted design principles from the domain in
question, for example pedagogical strategies in eLearning. Both ActiveMath and APeLS
adopt this approach to rule authoring to varying degrees. In ActiveMath, the rules are
entirely based on pedagogical strategies and are independent of the domain over which the
rules are executed. This allows PAIGOS, the course generator component of ActiveMath,
to be used in different application domains without the need to author any rules. The
limitation of this approach is that the author of the course is restricted to using pedagogies

supported by PAIGOS.

APeLS takes a more pragmatic approach to the use of strategy as a scaffolding for the
overlay of rules. It does not prescribe any pedagogical strategies to the author but
instead allows them to make decisions about how the course should be structured for
themselves. As mentioned previously, these strategy based rules can be combined with
Domain Model based rules so that the system can make decisions about both educational
strategy and the relationships between concepts. The complexity of such rules mean that
the author is faced with a significant task, especially if they are not experts in authoring
such rules. This complexity is handled through the use of authoring tools such as the
ACCT [Dagger 05] that allow pedagogical strategies and Domain Model information to

be combined graphically.

36

The main focus of the Learning Design specification is to support the application of a wide
range of pedagogical strategies in eLearning. A such, the basis of a Learning Design is
the sequencing of acts and activities in order to implement the strategy that the designer
wishes to employ. There are limitations in the approach taken by Learning Design such
as the inability to allow the learner to review activities that they have already completed,
as discussed by [Gutierrez-Santos 08]. Learnin Design also requires that the strategy
being employed must be fitted within the hierarchical structure of acts and activities
that Learning Design is based on. Irrespective of these limitations, the adaptation rules
that can be incorporated into a Learning Design are primarily based on the structure
of activities in the Learning Design. Furthermore, Learning Design authoring tools such
as ASK-LDT [Sampson 05], Reload [Reload Project 10] and the LAMS authoring tool
are generally focused on facilitating the designer in structuring the activities. This is in
contrast to authoring tools such as those for APelS or AHA!, which base the authoring

methodology on the Domain Model.

A third possible approach to the scaffolding of adaptation rules is to overlay them on the
control flow (workflow) between the activities or services in a composition. The integration
of services into an AH course is something that has seen limited application. As is the case
with pedagogy in eLearning, there are a complex set of rules that govern the interaction of
services in a composition. In order to adapt the composition it is not only necessary to take
into account the services that are available but also the control flow between the services,
which describes the business logic of the composition. None of the four systems looked at in
this chapter provide any explicit support for this approach. Although ADAPT? supports
the delivery of interactive or ‘intelligent’ content these are treated in the same way as
static content with no support for control flow between the ‘intelligent content’ resources.
Similarly, Learning Design supports the inclusion of services such as communication and
email in a Unit of Learning but these are also treated in the same way as any other content
resource specified in the Learning Design. In contrast, the flexible nature of APeL.S could
provide some degree of support for this form of rule scaffolding as speculated about in

[Conlan 03b] although this has not been realised.

2.4.6.2 Content Support Comparison

Flexible use of Content The content that an AHS uses to generate a personalised
course or presentation is an important aspect of the design of such systems with a direct
impact on the functionality that the system provides as well as several non functional
properties of the system. Content is also expensive to produce and as such can represent a
significant barrier to the deployment of AHS. As part of this review, two areas of interest
have been identified with respect to the relationship between an AHS and the content that
it utilises, the flexibility of an AHS to utilise content and the need/ability for content to

directly interact with the AHS.

The ability of an AHS to use content that consists of content types, such as HT ML, images
and video files, that are commonly used in non-adaptive, web based courses affords such
a system with significant advantages. It allows existing content to be reused by the
AHS without the need for extensive refactoring of the content. Similarly, content that
is developed specifically for delivery as part of an adaptive course can be used by other
systems, both adaptive and non-adaptive. AHA!, ADAPT? and APeLS are all designed
to deliver XHTML based content, however ActiveMath requires ‘learning objects’ to be

developed using the OMDoc XML specification.

A drawback that comes from supporting generic content types is that it prevents the AHS
from providing some Adaptive Presentation behaviours. For example, of the four AHS
looked at in this chapter only AHA! supports the runtime interpretation of adaptive links.
However, in order to achiceve this it is necessary for the links in the XHTML content
to be annotated in the appropriate manner. In contrast both ActiveMath and APeLS
provide the structure of the course to the user and do not make decisions about Adaptive

Navigation at runtime. Similarly, ADAPT? only provides link annotation.

38

SweysAg Fururear s aandepy ul seotaleg pue juajuo)) 10§ proddng jo uosueduio)

‘¥°¢ 919.L

I9sn JO uorjoe
mnorpdxe uo pajyepdn

S s S S ‘ d S
Sax SoA A[uo [epow 9s() Sax SaA 9yepdn [apoy J1os() orduy
ON
uoryejuowa[dul
9y} Aq pepraoad
aq pmoo mq (1 ON Sox ON ON [PPOJN 198[) Jo uorjoadsuy 1as()
Jo wred Apjordxe joN
ON
uoryejuawaduat
AT ey sazmb se yons
07 oyads are yorym IR (J0AT9S A1a1100, wolj
10 coﬁwomﬁw\% w>_uo§8:.r sy0ddng ON POADLIOT SAJIATOS ON S901A19G 10] 110ddng
1 Aq pauyop 10§ p1oddns pajruarg
8901AlI9S 10 j10ddng SOA
S8
paInsyuod
Aeandepe jou
g pesuejawered JuRu0))
ON Sox ON Aqreoryess ON postejoweIe Apandepy
ST I9AI9S KJIATIOR,
woIj Juajuo))
ON
[ePOIN
ON Sox ON S ON 198[) S98S00R A[109IP JUSIUO))
wa)sAg aanydepy
Y}IM UOI}ORIDIUT JUSJUO0))
ON ON ON Sax ON uorjoadsuy juajuoy)
ST
ON ON ON ON SOA aAndepy jo uoryejardiojuy
JRULIOJ DO St
SOA ur aq unw:: MWM—MUQ SOx S Pejpads Suppmg JUDIUO)) SNOSdUIF0IIH
& S S Sc s
! \ < Juajuo N
oN) ‘wp,ﬁm
JULjUO0)) JO 9S[) I[qIXI[]
uSisa(Surusesry UIBIN ATV STedV 2LdVAV 0'¢ iVHV

39

In order to implement canned text adaptation, both AHA! and any system that supports
the Learning Design specification must pre-process any HT'ML content on the server before
passing it to the client to be rendered in the browser. This is necessary in order to identify
fragments of the HTML that should be conditionally shown or hidden. In the case of
AHA! this is either the special <if> tags or HTML <object> tags with the appropriate
class type. Similarly a Learning Design system must look for any <div> element with a
class type that is specified in a condition rule. In the case of content used in a Learning
Design, this means that the content must be designed with this feature in mind, with all
possible alternative content fragments included in the document. This does not prevent
the content from being reused in other systems although it could be confusing for the
user to see all of the possible alternative fragments. The use of the <object> tag in AHA!
removes the need to include all possible alternative fragments in a page but it still requires
the content to be written with the application in mind. Presenting such AHA! content in
a different system would produce a page that potentially had pieces of content missing.
Further more, the use of a mime type that the client browser is not aware of would have

undesirable effects.

Content Interaction with AHS In order to achieve some adaptive behaviours it is
necessary for the content to directly interact with the AHS itself. Examples of such
direct interactions include content that retrieves information about the user from the User
Model in order to adapt itself to the user or similarly content that directly updates the
User Model based on the interactions of the user with the content. In the delivery of static
content, none of the four AHS discussed exhibit this behaviour. When considering the
delivery of interactive content, which ADAPT? and ActiveMath both support, we see that
in order to provide this functionality the content must interact directly with the AHS. In
the case of ADAPT? the content can directly query the Cumulate user modelling service
for information that it then uses to adapt itself to the user. Subsequently, the content can
then update the system’s model of the user based on their interactions with the content.
Similarly, ActiveMath’s activities provide information to the system that is stored in the
systems global User Model. The ability of content to directly interact with the AHS can
provide benefits to the user however it does mean that the content must be specifically
tailored to the architecture of the system and makes it difficult to reuse the content on

any other system.

40

Another mechanism through which content and the AHS can interact with each other is in
the adaptive parametrisation of content. This mechanism would allow an AHS to directly
influence the behaviour of a content resource by provide it with additional information,
for example user preferences. None of the systems discussed provide such a mechanism
for passing parameters to content however, Learning Design does allow parameters to be
passed to services. As Learning Design only allows services to be specified abstractly the
parameters passed to the services can only be general properties that the author of the
Unit of Learning thinks the service might be interested in but there is no guarantee that

the service will actually make use of the information.

2.5 Summary

In this chapter, a state of the art review of the adaptive web has been presented. As part
of this review, the mechanisms and techniques used in Adaptive Hypermedia to provide
personalised web content to the user were described. To capture a clear view of the current
state of the art, a set of long standing Adaptive Hypermedia Systems were discussed. Based
on the analysis of these systems, a set of properties that can be used to characterise the
architecture and functionality of an Adaptive Hypermedia System were developed. These

properties were then used to compare and contrast the systems discussed.

Based on the analysis carried out, it is clear that, as a whole, modern Adaptive Hypermedia
Systems have all adopted the model driven principles put forward by approaches such as
AHAM and the Multi-Model, Metadata Driven Approach. However, the adoption of a
pedagogical model, which can be abstractly considered as a strategy model, has not, so

far, been unanimously adopted.

It is interesting to note how ADAPT? and ActiveMath both support what could be
referred to as ‘intelligent content’, that is content that adapts to the user independently
of the Adaptive Hypermedia System itself. Although this can be seen to have benefits
from the perspective of the end user, it does present significant problems in relation to
interoperability and content reuse. An important outcome of the analysis is the limited
support provided by any of the Adaptive Hypermedia Systems surveyed for services.
Although ActiveMath and ADAPT? both support content that the user can interact with,

this ‘interactive content’ is, from an implementation perspective, tightly bound to the

41

functionality and infrastructure of the respective systems. Furthermore, this interactive
content is treated in the same manner as non interactive content with no provision made

for the support of control flow or data flow between the interactive components.

42

Chapter 3

State of the Art - Adaptive

Service Composition

3.1 Introduction

In the previous chapter the different techniques that can be applied in order to personalise
multimedia content based on the needs of the individual were discussed. However, to
be able to provide the Learner with adaptively composed activities, it is necessary to be
able to not only adaptively select and sequence content but also to do the same for the

interactive services that need to be combined with the content to create an activity.

The composition of services can be categorised as either static or dynamic [Rao 04,
Dustdar 05]. Static composition techniques are generally those in which the composition
of services is generated at design time with the desired services selected by the designer
and the necessary control flow put in place. Research in the area of workflow can be placed
into this category. Dynamic composition techniques are those in which the composition
is generated at runtime with the necessary services selected and sequenced as part of the
orchestration. This category of composition covers a wide range of techniques ranging

from rule based to Al planning.

This chapter presents a state of the art review of both static and dynamic service
composition domains, introducing the various techniques that can be applied as well as
examples of systems that apply those techniques. The chapter is structured as follows, a

survey of service orchestration systems and technology are presented in section 3.2, this is

43

followed by a survey of service composition techniques based on Al planning in section 3.3.
Some background on techniques and technologies related to the composition of services is
also provided in section 3.4. An analysis of the systems surveyed in this chapter is then
presented in section 3.5. This analysis is based on systems and technologies from both
the service orchestration and Al planning surveys and focuses on the applicability to the

techniques and technology in addressing the research question.

3.2 Service Orchestration

This section discusses various techniques for the orchestration of Web Services. Such
techniques are traditionally seen as static composition techniques. This is essentially
the case with technologies such as Web Service Business Process Execution Language
(WSBPEL 2.0) [Oasis Consortium 07], which is the de facto industry standard for Web
Service Orchestration. However, the state of the art clearly indicates a trend towards
orchestrations that can adapt towards the needs of the user or the context in which
the workflow is being executed. This is illustrated by the varying degrees of dynamism
supported by systems discussed in this section. A comparative analysis of the systems
discussed in this section along with the AI planning based systems discussed in the next

section is provided in section 3.5.

3.2.1 Web Service Business Process Execution Language

Web Service Business Process Execution Language (WSBPEL) is an Oasis specification
for the description of executable Web Service orchestrations using an XML grammar.
WSBPEL is based on the work carried out by Microsoft and IBM on their earlier workflow
languages, XLANG and WSFL [Leymann 01]. As WSBPEL is designed to orchestrate Web
Services it supports communication between the process and the services or ‘partners’ that

are used in the workflow using SOAP as the underlying transport mechanism.

The basic component of a WSBPEL process is the activity. There are activities to support

the basic functionality of invoking partner services:

e <receive>

e <reply>

44

e <invoke>

Control flow in a WSBPEL process can ecither be handled using hierarchical structured
programming constructs or, alternatively, graph based techniques. The structured

approach is supported by a set of control flow activities:

e <sequence>

o Jif>

e <while>

e <repeatUntil>
e <forEach>

o <pick>

The execution of activities in parallel is supported through the use of the <flow> activity,
which acts as a container for activities that can be executed in parallel. Dependencies
between parallel activities can be defined through the use of a <link>. Links can also be

used to link execution of any activity in a WSBPEL process, even outside of a <flow>.

Messages passed to and from Web Services can be stored in local variables using the
<assign> activity. During the execution of an assign activity the information in the
message can be manipulated so that, for example, only the necessary information is stored
to the variable. This is achieved through the use of XPath to select the appropriate parts
of the message. Similarly, the data can be manipulated using basic operations to perform
tasks such as basic arithmetic, boolean logic and string manipulation. The assign activity

also supports the transformation of messages using XSLT transforms.

In WSBPEL, correlation, the matching of messages to the appropriate running instance
of a workflow, is carried out based on declarative properties in the messages. All messages
sent to a running WSBPEL workflow must contain appropriate fields that can be used to
uniquely identify a specific instance of a workflow. For example, in a workflow designed
to support a B2B transaction, the customerID property of a message might be used to
uniquely identify the appropriate instance. If a corresponding instance of a workflow is
not currently running on the workflow engine then it can be started, if appropriate. The

properties used for correlation must be defined in the workflow at design time.

WSBPEL has seen widespread adoption with many commercial and open source

workflow engines supporting the language. These include IBM Websphere [IBM 08|,

45

Microsoft Biztalk [Microsoft 09], Oracle BPEL Process Manager [Oracle 09], Apache
ODE [Apache Foundation 10b] and ActiveVOS! [Active Endpoints 10]. WSBPEL is also
an important component of many Enterprise Service Bus implementations, for example
JBoss Riftsaw [JBOSS Community 11], which uses Apache ODE, and Glassfish ESB
[Glassfish Community 11]. There is also a wide range of commercial and open source
authoring tools for WSBPEL including Netbeans SOA Project [Netbeans Community 09,
Eclipse BPEL Project [W3C 11], ActiveVOS [Active Endpoints 10] as well as tools from

Oracle and other commercial vendors.

WSBPEL supports two methods of binding concrete Web Services with partnerlinks. The
first is at design time when the endpoint for the Web Service must be explicitly specified
in the process definition. In this case, the existence of the endpoint is often verified by
the workflow engine as part of the deployment of the process definition. Alternatively, the
partner can be dynamically assigned at run time by setting the value of a variable in the
workflow to the desired endpoint prior to the invocation of the activity in question. The
URI for the Web Service can be obtained by the workflow, for example, as a result of the

invocation of a Web Service earlier in the process flow.

3.2.2 Yet Another Workflow Language

Yet Another Workflow Language (YAWL) [van der Aalst 04] is a workflow language
developed by Technical University of Eindhoven based on the work of van der Aalst on
workflow patterns [van der Aalst 98]. YAWL is a graphical language that is influenced by
earlier work on the use of petri-nets to describe workflow [van Der Aalst 03]. As such it

is based on a ‘net’ or graph consisting of tasks to be completed.

The basic language constructs in YAWL are Tasks, Composite Tasks, Conditions and
Flow Relations. Figure 3.1 provides an example of a simple YAWL process. As can be
seen from the diagram, a YAWL net bears a strong resemblance to a petri net with Tasks
corresponding to ‘places” and Conditions to ‘transitions’. Unlike in petri-nets, Tasks can
be linked directly to other Tasks without the need for a Condition in between. In this
case the Condition can be considered to have been added implicitly. Composite Tasks
are used to link an abstract task within a workflow to an additional ‘net’ that defines the

implementation of the task. Using this approach it is possible to break a complex workflow

'ActiveVOS was formerly ActiveBPEL.

46

into a hierarchical structure which is easier to author and manage.

Tasks in YAWL are linked to ‘“YAWL services’, which are part of the extension architecture
of YAWL that allows the workflow engine to be used to orchestrate different types of tasks,
the supported services include the orchestration of Web Services using the ‘YAWL Web
Service Invoker’ as well as SMS, Twitter and Email messages. Additionally, YAWL can

be used to orchestrate human tasks using the ‘Default Engine Worklist” service.

/ \
g \
@ ; —" DecideRating ™ ,(D
M
ReceiveSSN /
ReportFault

Figure 3.1: Simple YAWL process definition.

By linking together Tasks using the graphical editor it is possible to generate workflows.
Tasks can be ‘decorated’ with ‘splits’ and ‘joins’, as illustrated in figure 3.1, in order to
add more complex control flow to a composition. Three different types of split/join are
supported, AND, OR and XOR. In the case of OR and XOR, conditions can be added to
the task in order to control which path should be followed. These conditions are based
on the value of variables defined within the ‘net’. Conditions are used in the same way as
transitions in petri-nets, they act as place holders to temporarily store tokens, for example

to facilitate merges.

The YAWL platform consists of the YAWL Editor and the YAWL workflow engine. The
engine itself is a web based platform that supports the management of users and processes.
Unlike WSBPEL, processes can only be started through the web based user interface,
which allows tasks to be assigned to users who can then accept or reject tasks as well as
indicate that the task has been completed. As such a workflow running on the YAWL

workflow engine cannot be directly invoked by a client application.

YAWL supports the dynamic selection of ‘worklets’ at runtime based on a set of rules that
are written by the workflow designer [Adams 06]. This allows tasks within a parent net
to be implemented by child nets that are dynamically selected at runtime from a pool of

available nets.

47

This feature is based on YAWL’s support for Composite Tasks except that worklets are
selected dynamically at runtime based on the execution of a set of rules that are associated
with the Composite Task. These rules can be modified independently of the process net
itself and so allow for new candidate worklets to be deployed even after the original net.
The rules dynamically select from the available worklets based on ‘conditional” data about

the running case that is stored in the case’s process variables.

3.2.3 CAWE Framework

The Context Aware Workflow Execution (CAWE) Framework [Ardissono 10] is an
adaptive workflow system based on the JBoss jJBPM workflow engine [JBoss 11]. The aim
of this system is to support user centric workflows that adapt based on the individual user
as well as contextual properties such as the device they are using. The CAWE Framework
supports the runtime adaptation of the workflow through the use of ‘abstract activities’,
a construct similar to the Complex Tasks used in YAWL, that are adaptively bound
to a concrete workflow implementation at runtime. To support this adaptive selection
mechanism, the CAWE Framework utilises a set of models that represent the User, their
Role and their Context. These models are used to influence the execution of ‘adaptation

policies’, which are used to select an appropriate workflow at runtime.

The CAWE Framework provides the user with a graphical interface to the services that
the workflow is composed of by generating HTML pages consisting of the necessary user
interface components to represent the inputs and outputs of the service. This interface
can be adapted to the needs of the user or to their context by adaptively selecting an

appropriate stylesheet.

One of the advantages of the approach taken in the CAWE Framework is that it
decomposes the workflow into a hierarchy of steps that can be adaptively selected. This
reduces the complexity of the authoring process as well as the task of maintaining or
modifying the workflow as the workflow does not become overly complex as is the case in
systems that attempt to incorporate the possible adaptive branches into a single workflow
process definition. The model driven approach also offers a significant advantage over the
approach taken in YAWL to the dynamic selection of ‘worklets’, which is restricted to

operating on variables contained in the workflow itself.

48

However, to compose an adaptive workflow for the CAWE Framework still requires the
author to generate JBPM workflow definitions for every possible path in the workflow as
well as the adaptation rules to carry out the adaptive selection. Even if the only difference

between two possible paths is a single service instance.

3.2.4 C-BPEL

C-BPEL [Ghedira 06] is a personalised workflow system that supports the adaptive
selection of services to instantiate the activities in a workflow at runtime. C-BPEL is
an extension of the WSBPEL workflow language that allows for the dynamic selection of
services by comparing models of the available services with a User Context Model and
a Web Service Context Model. The author of such an adaptive workflow specifies the
necessary control flow as is the case with a normal WSBPEL workflow but instead of
explicitly referring to the services that should be executed, abstract activities are specified
in the workflow. When, as part of the execution of a workflow, the C-BPEL engine is
required to invoke an abstract service it instead makes a request to the ‘Context Matching
Module’. This component of the C-BPEL system is responsible for dynamically selecting
an appropriate Web Service to fulfil the requirements of the abstract service specified in

the workflow.

In order to allow the Context Matching Module to make a selection, the User Context
Model and Web Service Context Model are passed as part of the request along with
parameter values that are considered necessary for the execution of such a service. The UM
captures information about the user including the device they are using, their preferences
and their goals while the Web Service Context Model contains information about both
the static and dynamic properties of the service that is required. The static properties
include cost, access privileges, quality, etc. while the dynamic properties describe features

such as availability and the response time of the service.

The selection mechanism used to identify appropriate services involves the comparison of
the models passed to the Context Matching Module with the metadata model associated
with all of the services known to the Context Matching Module. The matching algorithm
looks for properties in the available service models that match the properties in the user
model in order to identify the service that is most appropriate in order to implement that

abstract service specified in the workflow.

49

3.3 Service Composition as Planning

Planning as a means of dynamically generating Web Service Compositions can be achieved
through the application of many different techniques. Examples of such techniques include
rule based planning, Al planning graphs, situation calculus and hierarchical task networks.
This section provides an overview of some of the techniques commonly used in dynamic
Web Service composition as well as some related technologies. Following this, systems
that apply these techniques specifically to the problem of Web Service composition are
discussed. A comparative analysis of the systems discussed in this section along with the
service orchestration based systems discussed in the previous section is provided in section

3.5.

3.3.1 Planning Techniques

The automated generation of strategies consisting of sequences of actions is an area
of Artificial Intelligence (AI) research that has seen significant advances in the last 20
years. Many different techniques have been developed to solve planning problems, from
treating the problem as a search problem to advanced algorithms such as Hierarchical Task
Networks (HTN) [Erol 94] and Graphplan [Blum 97]. This section introduces some of the
basic Al Planning techniques that will be discussed later in this chapter in the context of
Web Service composition systems. Also discussed in this section is the Planning Domain

Definition Language (PDDL) as it is closely related to the topic of AI Planning.

3.3.1.1 Planning as Search

One approach that can be applied to the automated composition of services is to treat
the problem as a search problem. Tree search algorithms such as forward chaining, e.g.
breadth first search and depth first search, and backward chaining can be used to generate
a solution to a planning problem by iteratively searching through the available services,
the scarch space, in order to find services that are composable with the current service.
That is, services whose input parameters match the output parameters of the current
service. More advanced search algorithms, such as Ax[Hart 68|, which use heuristics to

improve the performance of the search can also be applied.

50

3.3.1.2 Rule Based Composition

Rule based planning [Rao 04] is based on the selection and sequencing of services using a
rule base consisting of rules that determine the appropriateness of a given service. These
rules primarily look at three main areas message composability, operation composability
and qualitative composability. Message composability deals with whether or not the
output of a given service is compatible with the input of another. Two services are deemed
to be composable if this is the case. Examples of systems that apply this technique to the
composition of Web Services include [Arpinar 05] and [Chan 08]. Operation composability
looks at whether or not the domain, categories, etc. of services are composable. For
example a service in a financial services domain is unlikely to be appropriate if you are
looking for a hotel booking service. Qualitative composability looks at selecting services
that meet the requirements of the end user of the composition based on non-functional

properties of the services such as quality of service, cost, etc.

3.3.1.3 Hierarchical Task Networks

Hierarchical Task Networks (HTN) [Erol 94] take a different approach to planning
compared to classical Al techniques such as tree search algorithms or STRIPS style
approaches such as Graphplan. A HTN attempts to solve a planning problem by
decomposing a high level task, i.e. the goal of the planner, into a set of sub tasks.
This decomposition process is carried out recursively until the high level task has been
decomposed into a set of primitive tasks that can be executed. A HT'N planning domain
consists of tasks, operators and methods. Tasks are the set of ‘things that need to be
done’, each of which consists of a task name and a list of arguments. Operators define the
effects of each primitive task. Methods describe how non-primitive tasks can be performed

by describing the possible decompositions for a given task.

HTN based planning is suitable for us in domains for which the methods for decomposing
the domain based on a hierarchical structure exists. However, a limitation of HTN based
planners is that the quality of the plans produced is limited to the quality of the human

authored methods that describe how to decompose the tasks [Klusch 05].

51

3.3.1.4 Graphplan

Graphplan [Blum 97] is an example of a graph based AT planner and was the first to
make use of this technique. Graph based planners construct a ‘planning graph’ in order
to reduce the amount of search that has to be carried out to find a solution. As such,

Graphplan’s algorithm involves two steps, the generation of the graph and the search step.

The planning graph is generated by first taking the initial conditions (facts) that are
known to the planner, this is the initial step or ‘level’. The second level consists of all the
actions that can be performed based on the initial facts. The third level is made up of all
of the facts that might be true based on the effects of the actions from the previous step.

This process is repeated iteratively.

The process of generating the planning graph reduces the overall graph size by removing
incompatible propositions and actions for example an action that negates the effects of
another action is removed. Another example of an action that can be excluded from the

planning graph would be an action that deletes the preconditions of another action.

When a planning graph has been generated a solution to the planning problem can then

be found using a backward chaining search.

3.3.1.5 PDDL

The Planning Domain Definition Language (PDDL) [Fox 03] is a language originally
developed for use in the 1998/2000 International Planning Competition. The aim of
the language was to provide a standardised means of describing Al planning domains and
problems. PDDL is a STRIPS [Fikes 71] style language consisting of Types, Predicates,
Actions, Initial State and Goal State.
(define (domain gripper-strips) (:predicates (room ?r) (ball 7b) (gripper ?g) (at-robby 7r) (at 7b 7r) (free 7g)
(carry 7o 7g))
(:action move :parameters (?from 7to) :precondition (and (room ?from) (room ?to) (at-robby ?from)) :effect (and
(at-robby ?to) (not (at-robby ?from))))

(:action pick :parameters (7obj ?room ?gripper) :precondition (and (ball 7obj) (room ?room) (gripper ?gripper) (at
70bj ?room) (at-robby ?room) (free ?gripper)) :effect (and (carry 7obj ?gripper) (not (at 7obj ?room)) (not (free
7gripper))))

(saction drop :parameters (?obj ?room ?gripper) :precondition (and (ball 7obj) (room ?room) (gripper ?gripper)

(carry Z7obj ?gripper) (at-robby 7room)) :effect (and (at 7obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

Figure 3.2: Gripper planning domain described in PDDL

Types are objects that exist in the domain, for example a ball or a room in the case of

52

the classic ‘gripper’ planning problem defined in figure 3.2. Predicates specify the state of

an object in the domain based on boolean logic.

Actions define the actions/operations that can be carried out. An action in PDDL is
defined in terms of a unique name, a set of input parameters, a set of preconditions and a
set of effects. Preconditions are set of ‘goal descriptions’ that must be satisfied before an
action can be applied and are defined in the form of first order logic predicates. Similarly,
effects are defined using predicates that specify changes to the domain that occur as a

result of the action.

(define (problem gripperProblem) (:domain gripper-strips) (:objects rooma roomb ball4 ball3 ball2 balll left right)
(:init (room rooma) (room roomb) (ball ball4) (ball ball3) (ball ball2) (ball balll) (at ball4 rooma) (at ball3
rooma) (at ball2 rooma) (at balll rooma) (at-robby rooma) (free left) (free right) (gripper left) (gripper right))
(:goal (and (at ball4 roomb) (at ball3 roomb) (at ball2 roomb) (at balll roomb))))

Figure 3.3: Gripper planning problem described in PDDL

A planning problem declared in PDDL consists of four parts, as defined in figure 3.3, the
objects that exist in the domain, the initial state of the planning domain and the goal
state of the domain. The initial state of the domain declares the predicates that hold
true at the start of the planning problem. For example in the example planning problem
the location of each ball in the gripper problem is specified with respect to a specific
room. Similarly, the desired solution to the planning problem or goal state of the planning
problem is defined in terms of the predicates that should hold true following the execution
of the solution that the planner generates. It is also necessary to specify the planning
domain to which the problem applies. This allows for the separation of the domain and

problem definitions.

3.3.2 Web Service Composition Systems

The AI planning techniques discussed in the previous section are all designed to work on
closed domains that are defined using special languages. In order for these techniques to
be useful in the composition of Web Services, the gap between the technologies used in
AT Planning, for example PDDL, and the technologies used in the Web Services domain

must be bridged. This section describes a set of systems that attempt to do just that.

Before discussing the systems surveyed, a brief summary of OWL-S [Martin 04] is provided
in order to provide some background to the discussion. OWL-S is a semantic technology

commonly used by Web Service composition systems such as those discussed in this section

as it is specifically designed to provide semantic descriptions of services.

3.3.2.1 OWL-S

The Semantic Markup for Web Services (OWL-S), based on the earlier DAML-S
[DAML-S Coalition 02] specification, is a W3C specification for the semantic description
of Web Services using the OWL ontology language. The aim of the OWL-S ontology is
to support the discovery, invocation and composition of services not only by users but by
software agents. The ontology consists of three three main parts, as illustrated in figure

3.4, the service profile, the process model and the grounding.

_____ Simple
Process
Ly Atomic
Process
) Composite
Process
....... SubClass

Figure 3.4: OWL-S Ontology Structure

Service Profile This ontology describes “what the service does”, although it does not
mandate a specific representation. However one possible representation is provided in the
form of the Profile ontology which provides basic information about the service such as
its name and a textual description. The Profile is primarily used to provide a functional
description of the service with the inputs, outputs, preconditions and effects of the service
defined as properties. The Profile also allows for the service to be categorised by means
of the ‘serviceCategory’ property, which can be used to relate the service to a separate

ontology representing a structured categorisation of service types.

54

Service Model This ontology describes the service as a process, allowing a client
to understand how to interact with the service. The Service Model is represented by
the Process ontology, which has three subclasses Atomic Process Simple Process and
Composite Process. An Atomic Process represents a single service that has a concrete
implementation, i.e. a service that can be directly invoked in a single step by a
client. Similar to an Atomic Process, a Simple Process represents a service that can
be completed in a single step. However, a Simple Process does not have an associated
service implementation and cannot be executed by a client. Instead it is intended to be

used to provide a level of abstraction.

Composite Processes are processes that can be decomposed into other processes, either
Atomic, Simple or Composite. The composite process can be described in terms of set of
control flow constructs, sequence, split, split-join, any order, choice, if-then-else, iterate.
repeat-while and repeat-until. Although a composite process is described using these
control flow constructs it is not intended to act as a workflow to be executed but rather

describes how a client can interact with the service in order to achieve the desired outcome.

The Service Model also provides mechanisms through which data flow can be defined

between, for example to output of one service and the input of another.

A lot of work has been carried out on the mapping of WSBPEL to OWL-S such as [Shen 05]
while others have focused on the inverse mapping from OWL-S to WSBPEL [Fuentes 06].
It is not clear, however, that this work aligns with the original purpose of Composite

Processes in the OWL-S ontolgoy.

Service Grounding This ontology describes how a client can access a service by
providing a mechanism through which the service can be grounded to some implementation
specific details such as addressing, protocols, etc. One such grounding is from the OWL-S

ontology to WSDL.

3.3.2.2 SHOP2

SHOP2 [Nau 03] is a HTN based Al planner, which was built upon by Sirin et al. [Sirin 04]
in order to support the composition of Semantic Web Services. In this system the Web

Services are described using an OWL-S ontology, facilitating their discovery and execution

o
ot

by machines.

In SHOP2, operators are not only described in terms of parameters but also have associated

preconditions and effects.

In order to be able to plan over a domain described using OWL-S, the authors developed
a translator that mapped a set of OWL-S process ontologies to a SHOP2 planning domain
that could then be reasoned over by the planner. The translation involves the mapping
of OWL-S atomic processes to SHOP2 operators while simple and composite OWL-S
processes are mapped to SHOP2 methods. SHOP2 was then used to generate a plan based
on the resulting domain with the resulting solution to the planning problem transformed

back into OWL-S.

The solution/plan generated by SHOP2 is limited to a sequence of services as SHOP2
does not support concurrency [Sirin 04]. Another limitation is that the solutions do not
support data flow between the services. As the solutions generated by the SHOP2 based
system are transformed back into OWL-S, they are intended to describe how a client can
invoke the services in the appropriate order to achieve the desired outcome, as such the

plan itself is not intended to be executable.

3.3.2.3 OWLS-XPlan

Another system that applies Al planning techniques to dynamically compose semantically
described Web Services is OWLS-XPlan [Klusch 05]. This system is based on a hybrid Al
planner, XPlan, that combines a graph-plan based planner with a HT'N component. As
was the case for the SHOP2 based planner discussed previously, OWLS-XPlan transforms
a set of OWL-S ontologies into a planning domain and problem before attempting to solve

that problem using the Al planner.

The mapping of OWL-S in this case is to PDDL as XPlan’s graph-plan based planner
operates over more conventional STRIPS style planning domains. As such, the goal of
the converter component is to map OWL-S service descriptions to PDDL actions. OWL-S
service inputs, preconditions and effects are relatively casy to map to their equivalents in
PDDL. However, OWL-S output parameters do not have any corresponding equivalent
in PDDL, OWLS-XPlan addresses this limitation by treating them as a special type of
PDDL effect.

The service compositions generated by OWLS-XPlan are in the form of a sequence of
actions that should be executed in order to have the desired outcome. A such, they do not
support any of the control flow constructs supported by OWL-S. To address this issue.
the designers of OWLS-XPlan propose that the solutions generated by OWLS-XPlan can
be analysed in order to identify parts of the solution that do not contain dependencies
between services and insert appropriate split and join control flow constructs into the
solution [Klusch 05]. However, this approach is still limited as control flow constructs

such as ‘choice’ and ‘unordered sequence’ cannot be identified in this way.

3.3.2.4 PORSCE II

PORSCE II [Hatzi 09] is another Semantic Web Service composition system. As was
the case with SHOP2 and OWLS-XPlan, this system is designed to compose services
based on OWL-S ontologies. PORSCE II only considers the inputs and outputs defined
in the OWL-S service description when generating a planning problem. For each service
description, PORSCE II generates a PDDL action with the OWL-S hasInput mapped to
preconditions of the action and the OWL-S hasOutput mapped to the effects of the action.
As such, PORSCE II does not take into account the OWL-S preconditions or effects when

mapping the service descriptions of available services to a PDDL planning domain.

An interesting feature of PORSCE II is its ability to generate ‘semantically relaxed’ service
compositions in which equivalent or semantically close services might be selected by the
planner when an exact semantic match is not available. This is achieved by analysing the
outputs of the services and comparing them to the concepts in a domain ontology used
by the system. If a semantically similar concept is found in the domain ontology for an
output of a service (represented as an effect in the generated PDDL) then that concept is

added as an additional output of the service.

The use of PDDL allows PORSCE II to make use of any third party AI Planner
that supports the language although the implemented system only supports JPlan
[EL-Manzalawy 04] and LPG-td [Gerevini 04]. The planning problems that are to be
solved by PORSCE II are provided by an end user through a graphical interface that
allows that user to select concepts from the domain ontology used by the system. The
plans produced by the respective Al planners can differ depending on how the planners

work, for example the plans produced by JPlan are purely sequential where as LPG-td

breaks the plans down into steps in which services can be run in parallel if there are no

dependencies between them.

3.4 Related Technologies

3.4.1 Mashups

An emerging trend in Service Orientated Architecture (SOA) and service composition is to
have light weight compositions that can be generated by users without the need for a high
degree of technical knowledge using simple graphical user interfaces. These compositions
or ‘Mashups’ were originally aimed at use cases that required the combination of data
from multiple sources, for example merging data from a RSS feed with data scraped from
another website to meed the needs of a user. Platforms such as Yahoo! Pipes [Yahoo! 11]
provided such functionality, allowing users to link together various data sources, including
Web Services described using WSDL. However mashups, by virtue of their lightweight
nature, were never intended to provide the sort of functionality that workflow systems
such as BPEL and YAWL provide. As such, they generally do not provide any fault
handling capabilities and have limited support for control flow. Surprisingly, mashup
platforms such as Yahoo! Pipes or WSO2 Mashup Server [WSO2 11] do not provide any
mechanisms for generating user interfaces. This is left to the user to develop an interface

based on traditional web technologies such as JSON, AJAX, etc.

Due to the popularity of user based mashups, they have seen significant interest from
more traditional business users, this has resulted in the emergence of two additional
classes of mashup, Business Mashups and Enterprise Mashups. Business Mashups are
seen as mashups that combine internal business data sources as well as web based data
sources. The aim of such business mashup platforms is to provide businesses with the same
degree of flexibility as carlier mashup platforms but with the security of hosting their own
service compositions. With the corporate adoption of mashups has come a proliferation
of platforms including IBM Mashup Center [IBM 10| and JackBe Presto [JackBe 10].
The wide range of platforms available has also seen efforts to develop standards for the
definition of mashups. The Open Mashup Alliance? have developed the Enterprise Mashup
Markup Language (EMML) [Open Mashup Alliance 09], which pushes mashups further

*The OMA consists of a wide range of companies including Adobe, Intel, Capgemini and HP.

into the traditional business process domain with support for process flow constructs
such as if, for, foreach, while and parallel. EMML also supports the use of scripting

languages such as Javascript and Ruby to manipulate the data as well as XSLT.

3.4.2 Portlets and WSRP

Portal servers are a popular technology for the aggregation of web based content that use
the familiar computer desktop paradigm in which individual content sources or widgets
are represented as windows or ‘portlets’ in a shared workspace. Figure 3.5 provides an
illustration of such a portal server interface®. One of the driving motivations behind the
paradigm is that it allows for a highly configurable user interface that can be customised

to meet the needs of a specific class of users or even the individual user.

[a"-'ﬂ-‘- DO | | ™ cotencar 2000
-~ - —— B -~ - - —
| Siatstics Banned Users ‘ |
[. Wednesday May 25, 2010 Add Event |
| search Search Categories ; Aie Y Wi g Permiselons ‘
Aad Category Permissions | 1 |
e e © 855 a5 e |
Sonaml [% U8 B AAR - |
9 Q " Actors
Pacuson) :, A x»nnn Showing 0 resuts
Progect |
e ° 9 Actons | F 1
Punning M -]
Showwng 2 resuts _“‘ —= _—
| |- 2000
f = x 1Page | Recent Chances | AIPpges | Qrobhan Pages
| (2 —-_ -mmnu-‘
| Search
Add 3 new emal account
|| FrontPage g e
Add a Mall Account This & the project wiki please add any documentation on the curment profect hare
Add a Gmall Account g ALCD Pade . & D AAChineC
Yo Retmg Aveagp (0 Vaen)
|| drdrdedes L8 8 8 8
|t A2 Comumen

Figure 3.5: Example portal user interface consisting of four individual portlets

A significant limitation of such portal servers is the need to install the necessary portlets
locally on the portal server. This means that it is not possible to take advantage of a
more service orientated approach to the provisioning of the functionality that a portlet
provides. This limitation can also be seen as a flaw in the attempts of portal servers to
act as aggregators. From a technical perspective, this means that a portlet might have to
be rewritten in order for it to be used on a different platform. For example, a JSR-168"

compatible Java based portlet would need to be rewritten completely in order to run on

3Portal interface shown is from the Liferay portal server
1JSR-168 is a Java Community Process specification for a Portlet API.

59

Microsoft’s Sharepoint portal server.

One approach that can be used to address this issue is to make use of the Web Service
for Remote Portlets (WSRP) [Oasis Consortium 08] specification. This is an OASIS
specification that defines a Web Service based protocol for the delivery of portlets, allowing

portlet providers and consumers to be decoupled.

The WSRP specification defines four services that a portlet producer, a server that
provides portlets, must implement in order to take part in the WSRP protocol. These
include a service description interface, a registration interface, a markup interface and a

portlet management interface.

The service description interface is used by a portlet consumer to query a provider for
information about the portlets that it provides, as such it facilitates the discovery of
portlets given a known provider and allows a consumer to get information necessary to
add a portlet. To support this functionality, the service description interface provides a
single operation, getServiceDescription.

The registration interface allows consumers to register with a producer. This is not
always a required step but if used can allow the producer to customise portlets for a
given consumer based on the capabilities of that consumer. Registration can also be used
by a producer to restrict the portlets or capabilities that it reports to the consumer via
the service description interface. To support this functionality, the registration interface
provides three operations: register, modifyRegistration and deregister.

The markup interface allows a consumer to request the information necessary to render a
portlet from the producer. It is also used by the consumer to notify the producer of any
interactions that a user has with the portlet. The markup that the producer passes to
the consumer is in the form of a fragment of HTML. The markup interface provides the

following operations:

e getMarkup
e performBlockingInteraction
e initCookie
e releaseSession
The portlet management interface allows a Consumer to mange the persistent state of a

portlet. Portlets can have persistent properties that affect their behaviour, such a portlet

60

is referred to as a ‘Consumer Configured Portlet” and can be created by a Consumer
using the clonePortlet operation. Subsequently, the properties of a cloned portlet can
be modified using the setPortletProperties and getPortletProperties operations. A

cloned portlet can be destroyed using the destroyPortlets operation.

Assuming that a consumer has successfully discovered the desired portlet and registered
with the producer, the consumer can then make use of the getMarkup and performBlocking
interaction operations of the markup service to allow it to provide the portlet to the user.
Figure 3.6 provides an activity diagram illustrating how these operations are used as part
of a two step protocol. The first step is to request the markup fragment for the portlet
from the provider using the getMarkup operation (step 1 in the diagram). The fragment
can then be used to render the Ul of portlet as part of the webpage seen by the user (step
2). This process can involve rewriting certain URLs in the portlet interface so that the

consumer can intercept requests made as a result of a user’s interaction with the portlet.

User requests page
S ¥, e
containing portlet getMarkup ~{(1)

Rewrite C

Markup

Portal pa]ge -
(2) with portlet GEJ T
V)
User submits a | f -g
Yorm from g Collect form data o
partiet O | performBlockinginteraction <
(3) Process
new state form Data
'getMarkup, with updated state (4)
Markup
Rewrite C
Portal page
with updated
portlet

Figure 3.6: Activity Diagram of the WSRP two step protocol.

If the user does carry out an action that requires the portlet to process so data, for example
if the user clicks a button in the portlet or submits a form full of information, then the
consumer can notify the producer using the performBlockingInteraction operation (step
3). To invoke this operation, the consumer sends to producer a set of key-value pairs
corresponding to the fields in the user interface that were updated. To provide the user

with an updated interface for the portlet based on the performed action the consumer

61

XN O AN -

25

29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45

must again request the markup fragment for the portlet (step 4).

3.4.3 WSDL

The Web Service Description Language (WSDL) [Curbera 01] is a W3C specification for
the description of services using a XML grammar. The aim of this specification is to
describe a service in terms of the location of the service and the messages that need to be
passed to the service in order to invoke it. As such, it aims to allow different Web Service
implementations, for example JAX-WS [JAX 10] and Microsoft .NET [Microsoft 10c|, to
interoperate with each other. The WSDL specification supports the description of services
that utilise either SOAP or HTTP as their underlying communication mechanism. In fact,
a WSDL document can provide descriptions of both SOAP and HTTP service interfaces

in the case where the service implementations supports both protocols.

<definitions name="HelloService”
targetNamespace="http://www.examples.com/wsdl/HelloService.wsdl”
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas. xmlsoap.org/wsdl/soap /"
xmlns: tns="http://www.examples.com/wsdl/HelloService . wsdl”
xmlns: xsd="http://www.w3.0rg /2001/XMLSchema”>
iyHelloRequest”>
<part name="firstName” type="xsd:string”/>
</message>
<message name="SayHelloResponse”>
<part name="greeting” type="xsd:string”/>
</message>
<portType name="Hello_PortType”>
<operation name="sayHello”>
<input message="tns:SayHelloRequest” />
<output message="tns:SayHelloResponse”/>
</operation >
</portType>
<binding name="Hello_Binding” type="tns:Hello_PortType">
<soap: binding style="rpc”
transport="http://schemas.xmlsoap.org/soap/http”/>
<operation name="sayHello”>
<soap:operation soapAction="sayHello”/>
<input>
<soap: body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="urn:examples: helloservice”
use="encoded” />
</input>
<output>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="urn:examples: helloservice”
use="encoded”/>
</output>
</operation>
</binding>
<service name="Hello_Service”>
<documentation>WSDL File for HelloService </documentation>
<port binding="tns:Hello_Binding” name="Hello_Port”">
<soap:address
location="http://www.examples.com/SayHello/">
</port>
</service>
</definitions >

Figure 3.7: Example WSDL document describing a simple ‘Hello World’ service

Figure 3.7 provides an example of a WSDL document that describes a simple ‘Hello

World” web service. The starting point for a WSDL document is the service element.

62

This provides the name of the service and contains one or more endpoints/ports. Each
endpoint that is defined in a WSDL document corresponds to a specific communication
protocol that the service supports. As such, each endpoint has an address in the form of
a URL that represents the point to which messages should be sent. Each endpoint refers
to a binding, which describes the specific details of the service interface in accordance
with the communication mechanism used by the endpoint. The binding provides technical
information about the operations that the service provides, for example in the case of a
HTTP based binding, the HI'TP method used. The actual specification of the message
type that should be passed to the service during the invocation of a specific operation is
defined as part of the interface. The interface is an abstract definition of the operations
that the service provides and the message types that are used as inputs and outputs of
the operation. The input and output messages for each operation are defined in the type
element of the WSDL document, which can either embed a XML schema describing the

message types or refer to an external schema document.

3.5 Comparing Composition Techniques

This chapter has presented a review of the different techniques. both static and dynamic,
for the composition of Web Services. As discussed, these techniques each have their own
advantages and limitations. To compare and contrast these techniques, serveral properties
have been identified that are relevent when discussing service composition as it might be
applied in the generation of personalised web experiences.
e Static/Dynamic Composition Whether the composition is generated by hand by
a domain expert or by a machine.

e Workflow Can control flow constucts be used to control the order of execution of
services in the compostion.

e Adaptivity Can the composition be adapted to better suit the needs of the user or
the context in which it is being executed.

The findings of the comparison based in these properties are summarised in table 3.1 and

subsequently discussed in detail.

Static/Dynamic As mentioned previously, service composition techniques can be

broadly categorised as either static or dynamic. Static compositions are those that are

63

WS-BPEL | YAWL | CAWE | C-BPEL| Planning
Static/Dynamic|| Static Static Static Static Dynamic
Workflow YES YES YES YES NO
Adaptivity NO Limited | Limited | Limited Limited |

Table 3.1: Summary of comparison of service composition techniques.

authored by a domain expert while dynamic compositions are generated automatically by
an intelligent agent. Obviously work in the area of workflow composition such as eFlow and
C-BPEL illustrate that the line between these two categories have been blurred, however,
they are still useful categorisations as a means of comparing systems based on the degree
of dynamism that exists within the composition and how much manual effort is involved

in generating the composition.

Clearly workflow techniques such as WSBPEL are for the most part static with the need for
a domain expert to explicitly define the entire composition, both selecting the appropriate
services and specifying the control flow between those services. Systems such as YAWL and
the CAWE Framework allow for a degree of runtime dynamism in the workflow through
the dynamic selection of sub processes but this still requires the domain expert to author
all of the possible branches in the subprocesses as well as the rules that govern the selection
process. As such, these approaches can be seen as simply a mechanism through which the
authoring and maintenance of complex workflows can be simplified. Similarly, C-BPEL
only supports the dynamic selection of services based on the needs of the user, requiring

the control flow and indeed the data flow to be authored at design time.

The dynamic composition of services as illustrated in SHOP2, OWLS-XPlan and PORSCE
IT address this authoring complexity through the automated selection and sequencing of
services, assuming that the planning system has access to sufficiently detailed service
descriptions. In this case, the end user/designer is only required to specify the desired

outcome of the composition.

Workflow The ability to explicitly specify the sequencing of services in a composition
can be of critical importance in application domains in which the business logic plays an
important part in the execution of a service composition and the end result is not the only
concern. In eLearning, for example, the sequencing of task in an activity, such as those the

proposed system aims to deliver, is critically important. In this case dynamic composition

64

techniques such as Al planning can be problematic as the planner is only concerned with
achieving the goal state. Furthermore, as discussed previously in this chapter, dynamic
service composition techniques are often limited to producing compositions that are purely
sequential and do not support complex control flow constructs such as branching and

merging.

In cases where control flow is of such importance, static workflow techniques have an
obvious advantage as they are designed specifically to meet this need. The need for
human authoring allows for the domain expert’s business logic to be embedded directly
into the composition. While the advanced support for complex control flow available in
modern workflow systems such as WSBPEL and YAWL allow complex business process

to be represented.

Adaptability The ability to dynamically adapt a service composition to meet the needs
of the user or to the context in which the composition is to be executed can result in
significant improvement in the overall composition relative to a ‘one size fits all’ static

compostion.

The workflow based systems that have been discussed in this chapter support varying
degrees of adaptivity. The WSBPEL language supports the dynamic resolution of business
partners allowing the actual Web Service used to implement an activity in the workflow
to be specified at runtime, for example based on a parameter passed to the process as
part of the execution of a previous activity in the workflow. This feature can be seen
as facilitating the adaptive selection of Web Services although the mechanism used to
carry out the selection is not part of the WSBPEL specification and would need to be

implemented separately.

YAWL goes a step further by allowing the dynamic selection of ‘worklets’ based on the
execution of rules at runtime. This technique can be used to implement both adaptive
selection and adaptive sequencing although the implementation of the selection could be
seen to be overly complex as it would require a degree of workflow to be included in the
worklet. The limitation of this approach is that the rules that govern the dynamic selection

are limited to operating on ‘contextual” data available as process variables.

Despite their obvious advantages, the techniques applied in YAWL and WSBPEL are still

limited in that the workflow and the services used to implement the process must all be

65

explicitly defined by the author at design time.

The CAWE Framework takes the sub process technique used in YAWL to a higher degree
of flexibility by basing the selection of sub processes on a model driven approach in which
both the adaptation rules and the information they operate on are separated from the
process itself. Of the systems discussed, both static and dynamic, the CAWE Framework
and C-BPEL are the only systems that explicitly take into account the needs of the user.
However, C-BPEL is limited in that it only supports the adaptive selection of services and

does not provide any mechanisms for adaptive sequencing.

Although the focus in Web Service composition systems such as those discussed in this
chapter is on the dynamic selection and sequencing of services based on the description
of the service from a functional perspective, it is clear that the techniques can be easily
applied to support the adaptive selection of services based on, for example, the needs of the
user. The Al planning techniques already require that initial properties of the problem are
provided to the system. If these were used to provide additional contextual or user info,
the planner would automatically take this information into account. Obviously this would
also require the services to be described in terms of the non-functional properties that we
are interested in adapting on. This could be achieved though the use of the preconditions

and effects that are already used to describe the services in an Al planning domain.

3.6 Summary

In this chapter, various different techniques for the composition of Web Services have
been discussed. Based on the state of the art systems that were described, covering both
static and dynamic composition techniques, an analysis was carried out with the aim of
comparing these systems and the techniques they apply. From this analysis it is clear
that the state of the art in workflow based composition provides strong support for the
specification of control flow, though at the cost of effort at design time and limited support
for change in the workflow except through further engineering effort. Planning techniques
address the authoring complexity of workflow as well as facilitating the need for dynamic
change in the composition. This is achieved at the expense of control flow which is very

limited in planning based systems.

With respect to adaptivity and specifically personalisation, none of the systems presented

66

provide strong support. Although planning based systems are well positioned to take into
account the needs of the user, they are primarily focused on dealing with change in the
environment, such as the availability of Web Services and non functional properties such
as quality of service and cost. Of the systems discussed, only the CAWE Framework and
C-BPEL explicitly support adaptation based on the needs of the user, with the CAWE
Framework supporting adaptive control flow and C-BPEL supporting adaptive selection
of Web Services. Nether supports the full range of adaptive behaviours, i.e. adaptive

control flow and adaptive selection.

67

Chapter 4

Design

4.1 Introduction

This chapter presents the architecture for a system that supports the adaptive selection
and sequencing of both content and services in order to deliver an educationally sound
learning activity to the learner. The influence of the state of the art, discussed in chapters

2 and 3, on this architecture is also discussed.

This chapter continues by providing an overview of the architecture of the system, clearly
defining the fundamental objectives of the system and describing how each of these
objectives are met by the architecture. This overview is followed by a more detailed

discussion of how each of the individual objectives of is met.

The approach taken in the architecture to model the different concerns is discussed first.
This is followed by details of how the system can utilise these models in conjunction with an
adaptation strategy in order to compose an educationally meaningful activity. The chapter
continues by providing further detail on how services are modelled in order to support their
composition within the context of an adaptive strategy while taking advantage of existing
work on service composition.

Next we discuss how a set of appropriately sequenced services can be delivered to the user
while maintaining the sequencing that is explicitly defined in the adaptation strategy as
well as the sequencing and selection that has been carried out by the system itself. As

part of this discussion of sequencing and delivery of services, we identify a set of workflow

68

patterns that the system will support.

Finally, this chapter provides a more detailed discussion of how the proposed system
will support the execution of the adaptation strategy and provide access to the required

models.

4.2 Requirements

In Chapter One, the following question was posed as the subject of this research:

“What are the appropriate techniques and technologies required to support the delivery of

personalised web based experiences.”

In addressing this question, and based on the state of the art reviews that were
carried out in the domains of personalised content and service composition, a series
of requirements were identified. These requirements fall into one of two categories,

Educational Motivations and Technical Requirements.

4.2.1 Educational Motivations

From the analysis of learning theory presented in Chapter Two we can see a clear
motivation for the use of personalisation as a means to tailor a learning activity to the
needs of the individual learner. This applies to both the composition of content and
activities. The motivation for the focus on eLearning activities themselves is also drawn
directly from learning theory where the engagement of the learner in more active forms of

learning is promoted by the three different learning theory perspectives discussed.

From the state of the art review of personalised eLearning systems it is clear that although
such systems have addressed the need for personalisation, they have not yet applied this
to the personalisation of activities, which not only require the personalised delivery of

content but also of services.

The state of the art review also provided an insight into the types of activities that
eLearning practitioners design and apply in their teaching. Activities such as those
developed by the LADIE and DialogPlus projects illustrate the requirement for control flow
that is not currently supported by existing personalised eLearning systems. The LADIE

activities, for example, require services to be provided in parallel. Such activities also

69

illustrate the need for any system that supports the personalised composition of activities
to support both multimedia content and services. This is necessary because, as shown by
the types of tasks that make up the LADIE use cases, they are a mix of both content and
services involving a range of different tasks including discussion, creation and reception of

information.

4.2.2 Technical Requirements

In addition to the educational motivations that were identified, a series of technical
requirements were also identified based on the state of the art review of adaptive content

and service composition.

A common theme across the personalised eLearning systems surveyed was the adoption
of a multi model approach that separates the metadata models and adaptation rules from
the Adaptation Engine itself. For example the Multi-Model Metadata Driven Approach
taken by APeLS and that AHAM based approach in AHA!. This approach ensures that
the Adaptation Engine can be applied across a wide range of applications while also

facilitating the reuse of both the adaptation rules and the metadata models.

An additional requirement that stems from the application of a multi-model based
approach is that the system should also be flexible in the models that it can interpret.
The system should not, for example, be constrained to a fixed information model for any
of it’s models but rather be capable of supporting many different standards and schemas.
for example IMS Learning Design. This approach would address some of the limitations

that, for example, APeLLS had in terms of it’s fixed Learner Model structure.

One of the limitations of systems based on Learning Design such as Coppercore is that
it is difficult for the developer of an activity to make use of services that are external to
the system. The system developed in addressing the research question should take a more
open approach to the use of both content and services. To achieve this, techniques from

the service composition domain should be used to inform the design of the system.

As discussed in the analysis of the state of the art in Adaptive learning (Chapter 2), there
is limited support for the adaptive selection and sequencing of services in the systems
surveyed. The design of the system implemented as part of this research should address this

limitation and in so doing draw from the state of the art in Adaptive Service Composition

70

(Chapter 3).

One of the technical requirements for a system that is capable of delivering personalised
learning activities is that it can not only adapt the control flow between services but
also enforce that sequencing as users interact with their personalised activities. From
the state of the art review it is clear that orchestration technologies such as WSBPEL are
appropriate solutions to this requirement as they are primarily focused on maintaining such

control flow although generally as it applies to business processes rather than eLearning.

The next requirement is the need to adaptively select services in order to instantiate the
learning activity. This would seem to be a similar problem to that of content selection.
In that case, techniques such as Candidacy and metadata driven search would seem
appropriate. However, this does not account for some of the issues that are specific to
services such as parameterisation and information flow between services. Both of these
issues are taken into account by dynamic service composition technologies such as Al

Planning, as shown in the state of the art review.

From the review of AI Planning techniques, it can be seen such approaches may not be
appropriate for the composition of an entire learning activity due to the requirement that
they are pedagogically sequenced. However, their ability to dynamically compose services
to solve a problem can be used to generate small compositions to meet the requirements of
a single task. Such a feature would allow the system to adaptively generate compositions

where no single service exists to meet the requirements of a given task.

4.3 Architecture Overview

The proposed architecture is influenced heavily by the principles that underpinned APelLS.
discussed previously in the state of the art chapter (section 2.4.3). Of most interest are
the concepts or ‘narrative’ and the multimodel, metadata driven approach. Both of these
principles have been adopted for this system. By adopting the use of narrative, the
sequencing of both content and services can be influenced by an expert activity designer
allowing the system to produce activities that are educationally sound. The application
of the multimodel, metadata driven approach means that the ‘intelligence’ of the system
is moved from the core of the system towards the edges. As such both the modelling of

the application and the application logic itself are separate from the system enabling it

71

to be flexible with respect to the application domains that it can operate in. By applying
both of these techniques, the proposed architecture is designed to deliver a wide range of
different adaptive activities.

Content
Metadata

Narrative Service
Model Metadata

Learner
Learner X Model
I l Adaptive

©
g Engine
- O PWE
o Model
v
= Service
Composer
Workflow Service
Engine Provider(s)

Figure 4.1: A high level overview of the system architecture

As illustrated in figure 4.1, the core component of the system is the Adaptive Engine
(AE). Although based on the same underlying principles as the AE developed for the
APeLS system, this component represents a complete redevelopment, addressing some of
the limitations of the earlier design as outlined in the discussion of APeLS in the state
of the art chapter. The AE is responsible for the execution of the educational strategy,
which is referred to as the ‘narrative’. As well as embodying the educational strategy, the
narrative also describes the adaptive behaviours that the adaptive activity supports. As
the AE executes the narrative, it reconciles the metadata models that are made available

to it in order to adapt the activity to the needs of the learner.

To adaptively compose an activity, a set of three metadata models need to be made
available to the AE. This is in addition to the narrative, which can also be considered as a
model. These three model types are the Content Model, Service Model and Learner Model.
The Content Model describes all of the content that is available to the AE for selection,
similarly the Service Model describes all of the services that the AE can select in order to
satisfy the requirements of the narrative. The Learner Model describes the attributes of
the learner that are important to the system. The ability of the AE to reconcile models

is not limited to these three model types but these three models represent a minimal set

2

required for the system to adaptively compose an activity.

As part of the selection and sequencing of services, the AE makes use of an external
component, the Service Composer, which is capable of dynamically selecting appropriate
services from the collection of available services, which the AE is made aware of through
the Service Model. This component will not only support the selection of existing services
to meet a specific set of requirements but will also enable the dynamic generation of service
compositions from the available services in order to satisfy requirements that are not be

met by the existing services.

The delivery of the activity to the user requires that the system is able to make the services
available in a manner that allows the user to interact with the appropriate service while still
maintaining the sequencing of the service composition. To support this functionality, the
system deploys the personalised service composition (generated by the AE) to a workflow
engine. This acts as a proxy between the user and the services that they are interacting
with and allows services to be delivered to the user in accordance to the design of the
activity. The services that are orchestrated by the workflow engine are delivered to the
user as part of the activity in an integrated environment along with the personalised
content allowing the user to access the content and interact with the appropriate services

in a unified manner.

4.4 Modelling

As mentioned in the previous section, the process of adaptively composing an activity is
driven by the use of metadata models. These models provide the adaptive system with
important information about the various aspects of the system that can have an influence

on the adaptation process.

The modelling of information in this system is based on the multi-model approach taken in
APeLS [Conlan 05, Conlan 02]. As such, the different concerns of the system are modelled
as separate entities from each other. This allows the system to be flexible as different model
types can be added or removed from the system without affecting the other models that

are in use by the system.

In order to be able to apply this multi-model based approach it is necessary for all of

73

the models used by the system to share a common vocabulary. This means that the
terms used to describe learners, concepts, content, etc. in the different models should be
consistent in order to allow the system to reconcile the models with each other as part
of the adaptation process. The vocabulary used in the models is not controlled by the
system at runtime although the use of inconsistent vocabulary in the metadata models

will result in unpredictable behaviour.

As the metadata models used by the system underpin the adaptation process, it is
important that they are able to provide the system with the necessary information in
a way that is flexible enough to allow the metadata to be semantically rich while not
imposing restrictions on the type of information that it is possible to capture. To achieve
this, the system uses XML [W3C 99a] to encode the metadata models. The use of XML, as
a meta language for describing markup languages means that there are very few limitations
on the information that can be captured in the models. This flexibility comes at the cost
of having to deal with the loosely typed nature of XML, however, this system is designed
to be used in domains in which the sources of metadata will have their own controls.
Based on this, it is not necessary to require the explicit definition of metadata schemas
for the metadata models using technologies such as XML Schema [W3C 10]. Such an
approach would require the schemas to be registered with the Adaptive Engine and for
every model loaded to be validated against the schema. Such an overhead would provide
very little benefit and could be redundant as the metadata models are already validated
when they are stored in their respective repositories. Furthermore, the schema for the
metadata models used by the system remain static over the life of the application (the
instance of the system delivering a specific PWE). As such, technologies such as RDF

[W3C 04], which are designed to handle dynamic information models, are not necessary.

Another advantage that is afforded to the system by the use of XML is that it allows
the system to support the use of existing markup standards. XML bindings exist for
many specifications that are used by systems in the eLearning domain. For example, the
IMS Learner Information Profile (LIP) [IMS 05] specification that can be used to model
learners and the ADL SCORM [ADL Initiative 09] specification for describing content.

The use of the multi-model, metadata driven approach [Conlan 02], when applied to
narrative, means that the composition strategy and the adaptive engine are independent

of each other. This means that the system can be used to compose different activities

74

without the need to modify the system architecture.

As proposed in this thesis, the adaptive composition of an activity involves the
reconciliation of four model types, the Narrative, Learner, Content and Service models.
The Narrative Model contains the adaptation rules used to compose the activity. The
Learner Model provides the system with information about the learner necessary for
adaptation. The Content Model describes all of the content that is available to the system
for use in an activity. The Service Model describes the services that are available to
the system for selection. In addition to these models, the system also produces a model
of the activity, the PWE Model, as the output of the composition process. This is a

representation of an activity that has been personalised to an individual learner.

4.4.1 Narrative Model

The narrative model is the embodiment of the strategy that guides the adaptation process.
As such, it provides a framework around which the adaptation is hung. In this role, the
narrative serves two functions. First it provides the system with an outline for activities
that are described in abstract terms. This outline is the basic structure that all of the
activities composed by the system should have, irrespective of any adaptive behaviours.

The second function of the narrative is to describe these adaptive behaviours.

In order to adaptively compose an activity, the narrative supports two fundamental
behaviours, adaptive sequencing and adaptive selection. These behaviours can be applied
to both content and services. The support for adaptive behaviours in the narrative is

discussed further in section 4.6.

The encapsulation of the adaptation strategy in a model provides two significant benefits.
first is the separation of the strategy from the Adaptive Engine, facilitating the reuse of
the engine to execute other strategies. The second related benefit is that it allows the
strategy to be separated from the content and services that are being composed, allowing

the strategy to be applied to different collections of content and services.

4.4.1.1 Sequencing Constructs

To be able to compose educationally meaningful activities, it is necessary to be able to

sequence the services that make up the activity. Unlike the composition of the content

75

parts of the activity, the sequencing of services needs to be enforced both during the
adaptive selection of tasks by the Adaptive Engine and while the user interacts with
the services. This requires that constructs used by the narrative author to define the
sequencing of services are well defined and that they can be interpreted by the system so
that the delivery of the activity to the user is consistent with the activity as defined by

the activity designer in the narrative.

When selecting a set of constructs to use as the building blocks for the sequencing of tasks
it is important to ensure that they represent a sufficiently rich set of behaviours that will

allow the activity designer to create educationally meaningful activities.

The work of van der Aalst [van Der Aalst 03] on workflow patterns was used to identify
a set of constructs that would be used in this system. As part of this work, van der
Aalst identified a set of control flow patterns that can be used to sequence services in
a workflow. From this set of patterns, the five ‘basic’ control flow patterns have been
identified as providing the necessary functionality for this system. Table 4.1 provides an
overview of the 5 basic control flow patterns that will be supported by this system, namely:

Sequence, Parallel Split, Synchronisation, Exclusive Choice and Simple Merge.

76

Pattern Description

Pattern
Representation

The Sequence Pattern consists of a consecutive series of tasks
with a task only being executed after the execution of the
preceding task has been completed. As such it forms the
basic structure of an activity composition.

The Parallel Split Pattern allows a thread of execution to
branch into two or more parallel threads. This is, it allows
two or more tasks to be run concurrently. This pattern is
also referred to as an ‘AND split’.

L~

The Synchronisation Pattern allows two or more threads
of execution to converge at a point into a single thread
of execution. This pattern is essentially an ‘OR join’,
therefore only one of the incoming threads needs to reach
the synchronisation point in order for execution to proceed
on the outgoing thread.

IR

The Exclusive Choice Pattern allows the execution flow to
pass from one thread to a subsequent thread based on the
outcome of the preceding task. As can be seen in the
diagram, a single thread of execution reaches a decision point
where a choice is made as to which outgoing path to take.
This pattern is also known as an ‘XOR split’.

ol g

The Simple Merge Pattern, or ‘XOR’ join, is similar to
the Synchronisation Pattern as it facilitates the merging
of threads of execution. The difference is that the
Simple Merge does not require synchronisation. When
an incoming thread of execution reaches the merge point,
the flow of control passes to the outgoing thread even if
another incoming thread has previously reached that point.
Essentially, this pattern allows parts that are common to
multiple parallel threads of execution to be defined efficiently
without the need for repetition.

Table 4.1: Control Flow Constructs

7

4.4.2 Learner Model

The learner model provides the system with information about the learner so that the
system can personalise the activity to the needs of the individual learner. When adaptively
composing activities, there are many different aspects of the learner to which the system
can adapt. The information needed is dependent on the specific requirements of the
adaptive composition carried out by the system. This is one of the reasons why it is
important for the system to be flexible in its support for model structures. Some examples
of the types of information that the learner model can be required to contain include prior
knowledge about concepts within a domain, information about the role of the learner or

the educational goal of the learner.

Within the set of four basic models used to adaptively compose an activity, the Learner

Model is the primary source of information upon which the narrative will operate.

4.4.3 Content Model

The Content Model describes all of the content that is known to the system and so available
for selection in order to produce a personalised activity. The Content Model facilitates the
selection process by providing the system with information about the content that can be
used to identify appropriate content and to differentiate between similar pieces of content.
The primary use of this model in the adaptation process is to facilitate the selection of

appropriate content to satisfy the requirements of the narrative for a specific concept.

As with the Learner Model, the information that the Content Model is required to
represent about the available content is influenced by the specific adaptive application.
This is because some of the information is based on the actual features of the content.
Some basic types of information are commonly used by this system to compose activities,
This includes information about the ‘physical’ attributes of the content (file name, size,
location, media type, etc). Information about the purpose of the content is commonly used
as a means of selecting appropriate content based on the concepts covered by the content
or the educational usage of the content, for example, whether the content is appropriate
for a novice or an advanced learner in the subject domain. Irrespective of the information
captured in the Content Model, it should be described using a vocabulary that it shares

with the other metadata models.

78

Unlike the learner model, the content model is a composite model in which each individual
piece of content has its own corresponding piece of metadata. As part of the adaptation
process, the sum of these metadata models can be considered as one model since they
share a common information model. As such, they are treated as a single information
source by the adaptive system when searching the content model for information. This
approach allows content to be added or removed from the system by adding or removing
the appropriate metadata instance. Similarly, the metadata for an individual content
resource can be updated without affecting the rest of the Content Model. The system will
automatically be aware of the changes and make use of the updated content model for

subsequent activity compositions.

4.4.4 Service Model

As is the case for content, the system is designed to operate in a ‘closed world” with respect
to services. This means that the system must know about the services that are available
to it before they can be selected for inclusion in a PWE. The Service Model provides
metadata descriptions of the available services, which provide information to the system
that facilitates the system in identifying appropriate services based on the functionality
that they provide. There are two aspects to the problem of describing the services to the
system, first the system must be able to identify the core functionality of the service, for
example, in the case of a ‘chat’ service that the service allows the user to communicate
with others. In addition to this, the system must be able to differentiate between different
services with the same core functionality. For example, both a chat service and a forum
service provide the same core functionality since they are both communication services,
but they have additional non-functional properties that differentiate them. A chat service
can be considered as a synchronous communication service that is appropriate when all
the users are online together where as a forum service is asynchronous, suitable for long

term communication or where all of the users are not online at the same time.

Furthermore, the service model should also allow the system to execute the services at

run time by providing the information necessary to invoke the service

79

4.4.5 PWE Model

This model represents a PWE that has been adapted to meet the needs of the user. PWE
Models are generated by the AE as the result of the adaptation process. As such, it
must be capable of describing the sequencing of the services and content that have been
selected. Unlike the narrative model, which describes the PWE using abstract terms such
as ‘concepts’ and ‘tasks’, the activity model references the actual content resources and

services that will be delivered to the user.

As outlined in section 4.3 of this chapter, the generation of this model by the AE allows
for the personalisation phase of the systems execution to be decoupled from the delivery
of the PWE through the User Portal. The PWE Model allows an individual Learner’s
PWE to remain consistent across multiple sessions of interaction with the User Portal,

only changing in response to the explicit actions of the Learner.

4.5 Use Case Scenario

This section presents a use case scenario in order to illustrate how the architecture
presented in this chapter can be used to generate a PWE and how the metadata models
described in the previous section are utilised in that process. This scenario is based on
the generation of a ‘peer review’ PWE in which the learner is presented with an activity
that requires them to write a report based on a subject for which appropriate content is
provided. Upon completion, this report must then be submitted for review. The activity
proceeds with a review task in which the learner reviews another learners report. This
activity, illustrated in figure 4.2, is designed to be applied in two different educational

domains, one of which requires the learners to discuss their reports following the review
task.

Discussion
Write Submit .
.—)[Content Ganart H Fepsr H Review }—’

Figure 4.2: Sequencing of tasks in a Peer Review Activity

The structure of this activity, as illustrated in the diagram, is described in the Narrative

Model along with the adaptation rules that describe how the concepts and tasks can be

80

selected and sequenced for an individual learner within the constraints of the design of the
activity. In this scenario, the adaptation rules are designed to allow the sequencing of the
tasks that make up the peer review activity to be adapted while maintaining the essential

structure of the activity.

The Narrative Model is executed by the Adaptive Engine in order to generate a PWE. As
the narrative is executed, the Adaptive Engine uses information retrieved from the Learner
Model to adapt the sequencing of the concepts in the PWE, for example, the concepts
provided to the user in the Peer Review activity could be selected based on the learner’s
interests or prior knowledge. To instantiate these concepts, appropriate content needs to
be selected, this can be done using various different adaptive strategies, for example based

on the learner’s prior knowledge in the concept.

As with the content sequencing, the task sequencing is achieved by reconciling the
properties in the Learner Model with the rules defined by the narrative author. To
instantiate the tasks with executable services that the learner can interact with, the
Adaptive Engine makes a request to the Service Composer. This request provides the
Service Composer with the requirements for the selection, what the selected service should
be able to do, and information about the services that are available for selection, which
the Adaptive Engine retrieves from the Service Model. In the case of the authoring service
required to instantiate the first task in the peer review activity, the desired outcome could
be to select a service that allows a report to be authored using a rich interface (high
bandwidth). This set of requirements provides the system with a primary functional
requirement, to produce a report, and a non-functional requirement that the system can

use to differentiate between available services.

4.6 Supporting Adaptive Activities

4.6.1 Adaptive Behaviour

As mentioned previously in section 4.3, the Narrative Model is the embodiment of the
strategy that underpins the activity. It allows the activity designer to have control over
the sequencing of content and services ensuring that the activity remains educationally

sound. Through the narrative. the activity designer also has influence over the adaptive

81

behaviour of the system.

When authoring an adaptive activity, the designer can choose which parts of the activity
can be adaptively selected as well as which metrics influence the selection process.
Similarly, the designer can identify, as part of the narrative, the metrics that influence

the adaptive selection of content and services.

Adaptive Sequencing

The narrative, as the embodiment of strategy, describes the activity in terms of concepts
that the activity covers and the tasks that should be completed by the learner. It is with
these constructs (concepts and tasks) that the activity designer defines the sequencing of

the activity to meet the educational requirements.

Adaptive behaviour can be interwoven into the structure of the activity by wrapping
specific constructs or groups of coustructs with conditional rules. These rules allow specific
parts of the activity to be adaptively turned on or off depending on the criteria defined by
the narrative author. In order to satisfy the conditions specified in an adaptation rule, the
engine makes use of the available metadata models in order to reconcile the rule conditions
with the information available to the engine about the learner and the available content

and services.

The purpose of an adaptation rule is to reconcile specific properties of the available
metadata models with each other or alternatively with an expected value. If the condition

is met then the related parts of the activity will be included.

For example, a narrative could consist of a sequence of concepts, each of which is associated
with a rule that determines if the learner has the required prerequisite knowledge in order
to be presented with the concept. In this case it would be necessary to compare the set
of all of the concepts that the learner has covered with the known requirements for the
concept in question. To do this, the engine would retrieve the appropriate values from the

learner model and compare them against the known values.

82

Adaptive Selection

As discussed previously, an adaptive activity is defined in terms of the concepts that should
be covered and the tasks that are to be made available. Both of these basic constructs are
defined in the narrative using abstract terms based on a vocabulary that is shared with
the Content and Service Models. This means that the content that covers a specific topic
and the services that are used to carry out a task need to be selected in order to create an
activity that can be delivered to a user. As with the adaptive sequencing of the activity,
the narrative guides the reconciliation of models in order to select the most appropriate

content and services.

4.6.2 Service Selection and Dynamic Composition

A simple approach to the adaptive selection of services would be to apply the same
techniques as those used for the adaptive selection of content. Each service would be
described using a metadata model that the AE, through the execution of the narrative,
would use to identify appropriate services for inclusion in an activity. Candidacy could

also be used as part of the selection process.

However, there would be several shortcomings with this approach. First of all, it would
rely on an overly simplified view of a service. It does not take into account the possibility
that a service could require parameterisation in order to be executed. Even if the simple
approach could provide the service with the appropriate parameters, these parameters
would need to be defined statically in the metadata and could not be changed by the
system. Without the ability to modify the parameters passed to a service, the system
would not be able to influence the behaviour of the selected service. The second limitation
of this simple approach is that it assumes that an appropriate service will always exist to
meet the selection requirements for a given task. If a task defines a set of requirements
that are not satisfied by an existing service or if they can only be satisfied by more than

one service then the composition of the activity could not be completed.

A better solution to the problem of adaptively selecting services would address both of
these issues. It would be capable not only of dynamically selecting a service but also of
selecting the appropriate parameters to provide to the service. In this way the behaviour

of the service could be influenced, essentially providing the system with support for an

83

additional adaptive behaviour, Adaptive Parameterisation. In order to allow the system to
deal with scenarios where a service does not exist to meet the composition requirements,
the system should be able to dynamically compose services from the existing services. The
ability to dynamically compose new services to satisfy the requirements of a specific task
with respect to an individual user also allows the narrative author a level of freedom when
designing the narrative. If a task requires several services to be made available to the user
but the order in which they are provided is not important then the narrative author can
define the task as a ‘black box’ without the need to explicitly define the sequencing of the

services within the task.

To support this more advanced approach to the adaptive selection of services, the selection
of services is offloaded from the AE to a dedicated service selection component. The
Service Composer provides a range of capabilities, in simple scenarios, it can select a
single appropriate service from the available services. It can also be used to dynamically
generate a simple composition of services to carry out a functionality that is required by

the Learner to complete a task but which is not provided by any of the available services.

The Service Composer is initialised by the AE by providing it with information about the
services that are available. This information is obtained from the Service Model, discussed
in section 4.4. The Service Composer uses this information to build an internal model of
the service domain. Once the Service Composer has been initialised it can be used by the
AE as a Selector to instantiate tasks with an appropriate service or with a new service
composition. The AE requests a selection from the planning component by invoking it
with the rules/conditions that the narrative defines for the task. In this way, the AE can
influence the selection process not only through the specification of the requirements for
the selection/composition but also by controlling the set of services made available to the
Service Composer. For example, in scenarios where there is a large number of services
available for selection/composition, it could be beneficial to cluster the services based on
functionality in order to reduce the complexity of the selection/composition process. This
could be considered as a candidacy group similar to that used for content in the APeLS

Adaptive Hypermedia System.

84

4.7 Interactive Service Control Flow

The delivery of personalised activities not only requires that the system is capable of
sequencing tasks during the composition of an activity but that it must also be able to
maintain the integrity of the task sequencing when delivering the activity to the user. In
order to do so, the system must be able to identify the specific task that the user is taking
part in at any given time so that only the appropriate services are provided to the learner,
as required by the activity sequencing. In addition to this, the system must be able to
support the control flow patterns, used in the narrative to sequence the tasks, during this

delivery stage.

Section 3.2 discussed the state of the art in the composition of services using workflow
techniques. An appropriate workflow engine and corresponding workflow language will be

used to support the required control flow between interactive services.

4.8 Adaptive Engine Design

The Adaptive Engine (AE) is the main component of the system architecture as its
role is to control the adaptive composition of activities. To support this process, the
AE is required to provide three main functionalities; the execution of the narrative, to
provide access to the necessary metadata models and the retrieval of metadata models

from persistent storage.

As shown in figure 4.3, the AE architecture consists of three sub systems. Each of these
sub systems corresponds to one of the functional requirements of the AE. The execution of
the narrative is controlled by the EngineManager with access to metadata models provided
by the ModelManager. The DataManager allows the system to retrieve models from data

repositories.

In addition to the three main sub systems, the AE also provides an interface through
which the system can be configured and controlled. This interface is used to simplify the
use of the engine by abstracting some of the interactions between the main sub systems
into operations that are commonly used to build an adaptive system on top of the AE.
The AE also provides a collection of utilities that can be used during the execution of the

narrative to provide non standard functionalities that are useful when building adaptive

85

systems using the AE.

EngineManager

Model
Repository

ModelManager DataManager Model

Repository

Figure 4.3: Logical Architecture diagram of the Adaptive Engine component

4.8.1 Engine Management

The EngineManager acts as a wrapper for the rule/scripting engine that executes the
narrative. It provides a common interface through which other AE components can
interact with the rule/scripting engine. As such, it supports tasks such as the initialisation
of new scripting engine instances and the control of their execution, for example to start
or stop the execution of an engine. In addition to this, the EngineManager provides
extensions that are ‘hooked’ into the scripting/rule engine. These extensions add support
to the scripting/rule engine language for functionalities that are specific to the execution
of a narrative. Such functionalities include providing access to models by enabling the
engine to search the models that are available to the AE. The extensions also allow the

scripting/rule engine to directly manipulate the structure of a model.

The ability to search models is key to the adaptation process as it allows the adaptive
behaviour described by the narrative to be informed by the metadata models, discussed
previously in section 4.6. The ability to manipulate the structure of metadata models
allows the engine to dynamically generate new models. This is used, for example, when

dynamically generating a personalised course model.

86

4.8.2 Model Management

At any one time the execution of a narrative can require that AE to have access to
many different models both for the purpose of acquiring information and to facilitate the
generation of an output to the adaptation process. This means that the ModelManager,
as the subsystem responsible for providing access to models, must be capable of accessing

many models at the same time.

As discussed in section 4.4, the adaptive composition of an activity is informed by at least
three different types of model, each of which will have a different structure. Therefore,
the ModelManager must be capable of storing and providing access to models in an open
manner that does not restrict the complexity of the models. In addition, the number of
models used in the adaptation process is not limited to the three model types discussed
previously. This means that the ModelManager must also be able to provide access to an

arbitrary number of models.

The ModelManager serves two purposes. First it acts as a store for all of the models that
the AE loads into memory, providing mechanisms to support the addition and removal
of models from the system as well as supporting the creation of new models. The second
function of the ModelManager is to act as an interface to the models that it stores. This
allows other AE sub systems, such as the scripting/rule engine, to interact with the models

stored in the ModelManager.

As mentioned previously, it is necessary for the ModelManager to be able to store an
arbitrary number of models in order to provide flexibility to the designer of the adaptive
system. The ModelManager does this by storing each model in memory and proving access
to that model using a unique identifier. The unique identifier is assigned to a specific model
by the author of the adaptive system built on the AE. This means that the identifier can
be meaningful to the designer and simplifies the authoring of narratives as models can be

accessed casily by referring to them by their unique identifier.

The ModelManager must also deal with different types of models that have different
structures. It would be very inflexible for the ModelManager to restrict the models that it
can handle to a specific structure or set of structures. Instead the ModelManager supports
the use of models with arbitrary structures. As each model is stored individually, models

with different structures can be handled by the ModelManager at the same time.

87

4.8.3 Data Management

The DataManager provides the Adaptive Engine with the ability to access models that
are stored in some form of permanent storage. This allows the AE to load the models
required to execute a narrative from their persistent storage location. The two common
types of storage that the AE needs to have access to are the local file system and remote
databases.

The DataManager can maintain multiple connections to different storage repositories at
the same time. This is desirable since different types of models can be stored in different

locations. For example the content metadata could be stored in a content repository while

the narrative and learner models are stored in a separate repository.

The DataManager provides an interface through which the other AE sub systems can
avail of the connections that it maintains. This allows the underlying storage systems to
be abstracted so as to provide a common interface that supports simple actions such as

loading a model from a repository and storing a model to a repository.

4.8.4 Additional Functionality

In addition to the core functionalities required for the Narrative to interact with the
available models, it is also necessary to make additional functionalities available to the
Narrative. For example, in order to the AE to function as a component in the architecture
described in this chapter, it is necessary for the AE to be able to invoke other components
in order to carry out its role. It is necessary to make such functionalities available to the
Narrative as their use is dependent on information needs and functional requirements that

arise during the execution of the narrative.

4.8.5 Adaptive Engine Execution

When executing a narrative, the different AE subsystems need to interact with each other.
This process begins with a new instance of the AE being created and initialised. The
initialisation of the AE requires that each of the three main subsystems are configured

and primed so that the AE is ready to execute the narrative.

The first step in the initialisation is to set up the data repository connections that will be

88

used to load the necessary metadata models. Once the connections have been created the
models can be loaded from the respective repositories and stored in the ModelManager.
It is during this step that the narrative is loaded into the AE. The next step is to create
a new rule/scripting engine and to associate the narrative model with that engine so that

when the scripting/rule engine is started it has a narrative to execute.

Having done this, the AE is ready to start the execution of the narrative. As the AE
executes the narrative, the scripting/rule engine will need to access information contained
in the metadata models. This is achieved through the calling of a ‘custom function’
that exposes the search functionality of the ModelManager to the scripting/rule engine.

Through this mechanism, the scripting/rule engine has access to all of the available models.

During a typical narrative execution, a new model will be built in order to act as a
persistent representation of the personalised activity that the engine generates. This
model is built according to the rules in the narrative using the model manipulation
custom functions that integrate the ModelManagers functionality with the scripting/rule
engine. When narrative execution has completed and a new narrative model has been
generated it is then stored in an appropriate data repository using the connections that

the DataManager provides.

4.9 Delivery of User Oriented Services

In abstract terms a service can be considered to be something that provides value or meets
a need. This definition encompasses a wide range of software on the internet. Commonly
the term ‘service’ is used interchangably with the term ‘Web Service’, which in fact is a
specific web technology that can be used to implement a service, while the term service is

a more abstract concept.

As part of this research the term service is used more in the context of ‘software as a
service’. The term ‘software as a service’ or SaaS for short is used to mean an application
that is made available to the user via the web. Such applications are commonly graphical
in nature and intended to be used by end users through direct interaction. This differs from
the more functional definition of a service that applies when talking about Web Services,
which are not intended for users to interact with directly. The SaaS based interpretation

of a service is more useful in the context of an eLearning application as the aim of activity

89

based learning is to engage the learner in the learnign experience. In order to achieve this,
the learner needs to be provided with tools that allow them to complete the required task.
These tools could include, for example, email clients, rich text editors, instant messaging

applications, etc.

A wide range of technologies can be used to implement such tools, for example web based
technologies such as HTML and Javascript. However, although these technologies support
service like features such as parameterisation they do not fit well with existing service
orchestration technologies such as WSBPEL. For this system, the WSRP technology has
been identified as an appropriate solution for the delivery of services. As a portlet based
technology it meets the requirement for user centric, interactive services. It is also a Web
Service based API and therefore compatible with existing WSBPEL workflow engines. As
a WS based technology it has the benefit of allowing services to be hosted anywhere on

the internet while still being available to be used as part of a personalised composition.

4.10 Unified User Interface

The delivery of a PWE to the user requires a user interface that is capable of providing
access to both multimedia content and services. The environment provided by this
interface must also allow the user to move between accessing content and interacting
with services in a way that makes both content and services feel like parts of a single
application. In addition to the core functionalities of content and service delivery, the
user interface must also provide mechanisms that allow the user to affect and control the

personalisation process.

In order to make the system easily accessible, the interface will be a web based application,
allowing users to interact with the system using a standard web browser. This approach
will minimise the prerequisite requirements that a user would have to meet in order to make
use of the system and allow for greater use of the system in comparison to a standalone
application.

The user interface ‘portal’, shown in figure 4.4, will be capable of retrieving an individual
user’'s PWE model from a central repository and parsing it to generate a visual navigation
structure for the PWE. The interface will also be capable of presenting content to the user

that is stored both locally and on remote servers. The delivery of services to the user will

90

be achieved through a portlet based approach and will require the portal to interact with
a workflow engine that hosts the individual user’s service compositions. This approach
will allow services to be presented to the user using a window based paradigm within a
single web page. This will allow the user to interact with both content and services as

they require.

- User Worfklow
W Portal Eagie

Metadata
Store

Figure 4.4: Architecture of the User Portal

Although services are visually presented as portlets, the underlying communication
mechanism will be the WSRP specification. In order to deliver such services to the user,
it is necessary for the portal to not only provide support for the portlet paradigm but also
that it can handle the mapping between the user’s interactions with the portlets and the

appropriate WSRP web service calls.

4.11 Component Interaction

To better illustrate how PWEs can be delivered using the architecture presented in this
chapter, the interactions between the components at run time are discussed in this section.
To facilitate a clearer description of how the architecture can achieve the goal of delivering
a PWE, the execution of the system has been broken down into two phases. The first of
these phases is the personalisation phase, which is responsible for the generation of a PWE
while the second phase, the experience phase, is concerned with the delivery of that PWE
to the user. Figures 4.5 and 4.6 illustrate these two phases of execution respectively using

UML component diagrams.

91

4.11.1 Personalisation Phase

In order to facilitate the discussion of how the various architecture components interact
with each other during the personalisation phase, Figure 4.5 provides a component diagram

that has been annotated so that the interactions between components are numbered.

Workflow
Engine

(11)
Y

(1)

User (4) Adaptive (9) Service
Portal Engine Composer

User

(2)

(5)(6)(7)((8)] (10)

(3) Metadata
Repository

Figure 4.5: Component diagram illustrating the interaction of components during the
personalisation phase

When a new user accesses the PWE Portal (1), they are presented with a form (2) that is
used by the system to elicit a model of the user. The Portal then stores the newly acquired
user model in a central repository for persistant storage (3). Once an appropriate model
of the user is available to the system, it is then possible to generate a PWE for that user.
The Portal invokes the Adaptive Engine in order to initiate this process (4). To carry out
the personalisation process, the Adaptive Engine must first load the narrative model (5),
which provides the adaptation rules that guide the generation of a PWE. The Adaptive
Engine must also retrieve the user’s learner model from a central repository (6) so that it

can be used to influence the personalisation process.

When the necessary models (narrative and learner) are loaded into the Adaptive Engine,
the narrative can be executed. As the Adaptive Engine creates the personalised sequencing
of concepts and tasks in the PWE, it uses information from the learner model in order
to satisfy the conditions associated with the sequencing rules from the narrative. The
selection of appropriate content that instantiates the concepts in the PWE requires that
the Adaptive Engine can not only reconcile the narrative rules with the learner model but
also with the content model, which provides metadata about the content that is available
to the system. This requires the Adaptive Engine to query the content model stored in

the central metadata repository (7). Similarly, the selection of appropriate services to

92

instantiate the tasks in the PWE requires that the Adaptive Engine retrieves information

about the available services from the metadata repository (8).

Unlike the content selection process, which is carried out by the Adaptive Engine through
the execution of the narrative, the selection of appropriate services is carried out by the
service composer component. When an appropriate service is required by the Adaptive
Engine to instantiate a task, it makes a request to the Service Composer (9). As part of this
request, the Adaptive Engine provides the service composer with information about the
available services as well as appropriate information about the user, which can be used
to influence the selection process. As discussed previously in section 4.6.2, this allows
the Adaptive Engine to influence the selection and composition carried out by the Service
Composer not only by setting the requirements for the composition but also by controlling
the set of services that the Service Composer is aware of. In this way the Adaptive Engine

can implement a form of candidacy.

Once the Adaptive Engine has completed the sequencing of the PWE and selected
appropriate content and services to instantiate the concepts and tasks that make up the
PWE, the PWE is stored in the repository (10) for later retrieval and execution. In
addition to storing the PWE, the Adaptive Engine also deploys the service composition
aspect of the PWE to a workflow engine (11) in order to make the composition executable

during the experience phase of execution.

4.11.2 Experience Phase

When an appropriate PWE has been composed, the Learner is then able to engage in
that experience by logging into the Portal, which provides an integrated environment in
which the user can interact with the personalised content and services that instantiate

their PWE.

As for the Personalisation Phase, an annotated component diagram of the Experience
Phase is provided in figure 4.6. When a user logs into the Portal (1), the Portal must
first retrieve the model of the user’s instantiated PWE from the repository (2) before it
can provide the user with their PWE. This provides the Portal with details of the PWEs
structure and references to the content that should be presented to the user. The delivery

of content to the user requires that the Portal retrieve the necessary content resources from

93

the server(s)! that host it (3). When the user interacts with a service, the Portal presents
them with a graphical, web based interface. To fill this interface with the appropriate
service, the Portal requests the service from the workflow engine that hosts the service
component of the PWE as discussed previously (4). The workflow engine in turn retrieves
the appropriate service from a service provider based on the user’s current progress through
the PWE (5). The retrieved service is then returned to the User Portal in response to the
orignal request, which makes the service available to the user so that they can interact

with it as part of the PWE.

Workflow (5) Portlet
Engine ~1 Provider
(4)
Uiar (1) User (2) Metadata
Portal Repository]
(3)
Content
Repository)|

Figure 4.6: Component diagram illustrating the interaction of components during the
experience phase

4.12 Summary

In this chapter, an approach capable of combining the adaptive selection and sequencing
of multimedia content with the adaptive selection and sequencing of services in a unified
manner in order to deliver personalised web based experiences has been outlined. This
approach is influenced by the state of the art as discussed in chapters 2 and 3, which

together have led to the definition of a set of functional and technical requirements.

Based on the defined requirements, the design of a system capable of delivering PWEs was
outlined and the individual components of the design described in detail and their role in
the delivery of PWEs was discussed. Finally, an outline of how the various components

in the design would interoperate with each other at run time was presented.

!Content for one PWE can be retrieved from many different locations but for the sake of simplicity
only one content server is considered in this discussion.

94

Chapter 5

Implementation

5.1 Introduction

In the previous chapter, the design of a system capable of delivering web based
experiences that combine adaptively selected and sequenced multimedia content with
adaptive composed services was outlined. This design was based on a set of technical
and educational requirements. This chapter describes how this design were realised as a

technical implementation.

This chapter is structured as follows, an overview of the technical realisation of the
architecture is presented followed by detailed descriptions of how each of the components
was implemented. Details of the data models used by the implemented system are also
provided. An example, based on a real world scenario, of how the system operates in the
delivery of a PWE is also presented in order to provide a clearer understanding of how

the system operates

5.2 System Implementation

5.2.1 Overview

Figure 5.1 provides a component based view of the architecture for the PWE system
as implemented. This differs from the architecture overview presented in section 4.3 of

the previous chapter in that additional components, required to realise the design, are

incorporated in this view of the architecture.

Metadata
Store

Adaptive | | Service
Engine | | Composer

Learner

%_,

/
Composition
Mapper

!

Workflow| Service
Engine Provider(s)

User Portal

Figure 5.1: Detailed view of the system architecture

To satisfy the requirements outlined in the previous chapter for user centric, graphical
services that support interactive tasks, a portlet based approach has been adopted as the
basis for the implementation of the services composed by the system. The use of portlets
alone is not sufficient for the implementation of services in this architecture. It should be
possible for the adaptively generated PWE to contain services that are deployed remotely.
To achieve this, the WSRP specification, which provides support for the delivery of portlets

using a WS based protocol, has been incorporated into the system architecture.

The component through which the user will interact with the system is the User Portal,
this is a web based interface that allows the user to engage in their PWE. The User Portal
also carries out additional tasks within the system. It is responsible for eliciting models
of the user and for initiating the adaptation process. In order to realise the User Portal,
several existing technologies are leveraged to provide the necessary portlet functionality
and WS support. The User Portal is built on top of the Apache Pluto portal engine
[plu 11], which allows the User Portal to deliver portlets to the user. The functionality
of the Apache Pluto system is extended to support for the WSRP specification by the
addition of the WSRP4J Portlet Consumer.

When initiating the adaptation process, the User Portal interacts with the Adaptive
Engine, a custom developed Java component that facilitates the adaptation process by
providing an execution environment for the Narrative Model. The Adaptive Engine

provides the Narrative Model with access to the necessary metadata models and other

96

additional functionalities necessary to carry out the adaptation process. To support the
data storage requirements of the various components in the architecture, a XML database
is made available. This serves as a metadata repository for the different metadata models

used in the adaptation process, e.g. the Learner Model, Content Model and Service Model.

During the adaptation process, the Adaptive Engine takes advantage of a special purpose
component for the selection of appropriate services to satisfy the requirements of the
user in accordance with the narrative. This component leverages Al Planning techniques
to adaptively select an appropriate service or services. The services selected by the Al

Planner are then incorporated into the PWE by the Adaptive Engine.

To make PWEs available to the user at run time, it is necessary to make the service
composition component of the PWE available as an executable workflow. This is due to
the complex nature of the control flow between composed services relative to that present
in content compositions. To achieve this, the service composition component of the PWE
is instantiated as a WSBPEL workflow and deployed to the ActiveBPEL workflow engine.
The mapping of the XML description of the composition, generated by the Adaptive
Engine during the adaptation process to a run time executable WSBPEL workflow
is carried out by the Compositon2BPEL component. This component is responsible
for generating a valid WSBPEL process that instantiates the compositions of services
that were selected and sequenced for the user. Furthermore, the Composition2BPEL
component also handles the deployment of the WSBPEL workflow to the ActiveBPEL
workflow engine. An additional task carried out by the Composition2BPEL component is
to register the newly deployed workflow with Pluto so that the workflow will be accessible

to the user through the User Portal.

5.2.2 Adaptive Engine

As discussed in section 4.8 of the design chapter, the role of the Adaptive Engine (AE)
is to execute the rules that guide the adaptation process in order to produce a PWE. To
do so, the engine must not only provide an execution environment for an appropriate rule
language but must also provide access from the environment to the metadata models that

are used by the AE to inform the adaptation process.

Figure 5.2 provides a component based view of the Adaptive Engine architecture. As

97

EngineManager

Model
Repository

ModelManager DataManager Model

Repository

Figure 5.2: Component view of the Adaptive Engine (AE) Architecture

can be seen from the diagram, the AE consists of three primary subsystems, the
EngineManager, ModelManager and DataManager. In addition to these components,
the Adaptive Engine contains a set of utilities that provide functionalities required by the

narrative.

5.2.2.1 AdaptiveEngine

The AdaptiveEngine component provides client applications that interact with the
Adaptive Engine with a single point through which the functionality of the system can
be accessed. It provides an API consisting of a set of functions that support the high
level tasks that are necessary to configure and run the Adaptive Engine, for example
creating data connections, loading models, initiating the execution of a narrative, etc.
The AdaptiveEngine component is also responsible for the initialisation of the other

components, such as the EngineManger, ModelManager and DataManager.

5.2.2.2 EngineManager

The AE must be able to execute a Narrative Model consisting of a set of sequencing rules
that allow a PWE to be dynamically composed based on the information available to the
AE from the metadata models that it has access to. These sequencing rules could be in
the form of a rule base or alternatively a script consisting of if-else statements. The choice

between these two approaches depends on the manner in which the adaptive behaviour of

98

the system will be exposed to the user.

The generation of a PWE is carried out in an a priori manner that results in a
complete PWE being composed in advance of the user’s interaction with the personalised
composition. This is in contrast to a just in time approach in which the next step in the
composition is selected just as it is required by the user. The approach taken means that
the AE can take into account all aspects of the activity during the personalisation process.
For example, it removes the need to make assumptions about the availability of services
to complete later tasks in the activity as would be the case using a just in time approach.
Such assumptions could prove incorrect and could result in a learning being offered an

activity that the system cannot fully realise.

The a priori nature of the adaptation process used to generate a PWE means that a
scripting language is an appropriate means of defining a narrative model in this case. A
rule-based narrative would be more suited when the adaptation is carried out at run time
using a just in time selection mechanism where the state of the rule base changes between
interactions with the system. The adaptive behaviour captured by the narrative model
requires that the narrative is capable of handling various different types of data as well as

supporting the functionalities described in section 5.3.4.

A further requirement is that the language used by the AE can be extended in order to add
functionality that is specific to the use of the language to define narratives. Functionality
is required that will enable the scripting engine to access the information that the AE has
available to it in the form of metadata models. The narrative also needs to be able to
manipulate the contents of the metadata models and to create new models. In addition
to these core functionalities, it is necessary to be able to add additional functionalities to

the narrative language that allow the AE to interact with external systems.

Based on the requirements and functionalities discussed, the Jatha [Hewett 07] scripting
engine was selected as the basis for the execution environment for the Narrative Model.
Jatha is a pure Java implementation of a Lisp interpreter, allowing the execution of
Lisp programs. The use of Lisp to define narratives is a relatively low level approach,
however it has the benefit of allowing a wide range of adaptive behaviours to be defined
as well as providing features that are useful in narratives, for example functions, loosely
typed variables useful APIs for manipulating strings, etc. The architecture of the Jatha

interpreter also provides a straightforward mechanism for adding new functions, which can

99

be accessed from the Lisp programs that it executes. New ‘custom functions’ can be added
by writing a Java class that implements the appropriate Jatha interface and provides the
necessary functionality. This class is then registered with the Jatha engine. Using this
approach, a set of custom functions were developed and added to the Lisp interpreter to
make it into a suitable narrative execution environment. These custom functions provide
direct access from the narrative to the models that are loaded into the AE as well as

providing additional functionalities, such as the ability to invoke Web Services.

5.2.2.3 Modelling

As discussed in section 4.8.2 of the Design chapter, the AE must satisfy two main
requirements with respect to the handling of metadata models. It must be able to support
the use of semantically rich metadata while allowing flexibility in the structure of that
metadata. The AE must also be capable of interacting with multiple metadata models at

the same time.

Section 4.4 described how XML will be used to capture and store the metadata necessary
for the delivery of PWEs. This will allow the metadata schemas used in the various
different metadata models to be flexible. In order for the AE to be able to access these
models at run time, they are read from the persistent metadata repository where they are
stored and parsed so that they can be stored in memory by the AE, ready to be accessed

by the other AE subsystems.

This approach is taken so that it is possible for the AE to create/modify the XML models
irrespective of the underlying data storage mechanism. XML query technologies do not
yet have good support for modifying documents. XPath is only intended to support
querying while the W3C are still working on an extension to XQuery that would support
updates!. Similar functionality is provided by a limited number of tools but no common
implementation is available. In scenarios where it is not desirable to load all of the
necessary metadata, for example to search across the entire Content Model, it is still
possible to run queries remotely using the narrative custom functions providing that the

metadata store supports this functionality.

The XML data that is retrieved from the persistent storage is parsed using the native Java

'The initial working draft of this proposal was published in 2006 [?] but only became a W3C
Recommendation in March 2011 [W3C 11]

100

XML parser and the output used to create a JDOM [JDOM Project 07 object. JDOM is
a Java library that allows XML data to be represented using a Document Object Model
(DOM) data structure. This allows the metadata models to be created, updated, modified
and queried in memory. JDOM is a widely used library that can handle very large XML
documents (several megabytes) that are far bigger than the documents that the AE is
required to handle when accessing metadata models. In order to abstract away some of
the complexity of the JDOM API and to provide a more convenient programming interface,

the JDOM object is wrapped in a custom Model object.

The Model object provides an API that allows the system to create, update and search
metadata models without the need to deal with the underlying implementation (JDOM).
The Model object also provides an important functionality that is not present in JDOM, it
provides a pointer to the current node in the DOM tree so that task such as retrieving data
from the model or updating the structure of the model are simplified. This functionality
allows the narrative to refer to models without the need to keep track of where in the
model they were accessing previously. This is important not only because it reduces the
complexity of the narrative syntax but also because a narrative could be accessing many
different models at the same time. Tasks such as the handling of XML namespaces are
also simplified by the Model object. The ability to create, access and query XML that
contains multiple namespaces is important as without it, the AE would be restricted to
only operating with custom model schemas that only used XML in a very simple way. It
would not be possible for the AE to access information stored in models that confirm to

standards such as IMS LIP or ADL SCORM.

As mentioned previously, the execution of a narrative can require access to many different
models at the same time, therefore it is necessary for the AE to support this requirement.
This is handled by the ModelManager component, this component uses a HashMap to
store as many Model objects as are required by the AE. Each model is stored using a

unique identifier that is used by the system to access that model.

5.2.2.4 DataManager

The DataManager is responsible for managing access to data sources through which
metadata models are accessed. Its main tasks are the creation and management of data

connections and the writing and reading of data to and from open data connections.

101

Other AE components can request that a new data connection is opened by making the
appropriate function call and passing the URI for the connection as a parameter. The
URI is used by the DataManager to identify the correct type of data connection to create.
The current implementation supports the creation of connections to file system based
data sources and network data sources that support XMLDB [The XML:DB Initiative 03]
based communication. The URIs used to identify these two types of data source begin with
the prefixes file:// and xmldb:// respectively. Once a data connection has been created
it is stored in a HashMap using a human readable unique identifier, which is provided as a
parameter when creating the connection. This allows multiple connections to be managed
by the DataManager while making it easy for the developer to manage the connections

since it is possible to give them meaningful names.

The connections created by the DataManager provide a simple set of functionalities,

allowing the reading and writing of files/resources from an open connection.

To support the creation of XMLDB connections to a network based data source, the
DataManager uses the XMLDB API along with the implementation of that API which is

provided by the underlying implementation.

5.2.2.5 Custom Functions

As discussed, the Jatha Lisp engine was extended to provide additional functionality
that was not provided by the standard Lisp functions supported by the engine. These
custom functions turn the Lisp language supported by Jatha into a narrative language
by integrating the scripting capabilities of the Jatha engine with the modeling and
data components of the Adaptive Engine, allowing narratives to the key task of model

reconciliation in order to adaptively instantiate the PWE.

The custom functions added to the Jatha engine fall into three categories, modeling, search
and utility. The modeling functions allow the narrative to access information stored in
the models that have been loaded into the Adaptive Engine as well as to manipulate the
structure of those models. The search functions provide advanced search functionality
to the narrative, allowing models to be searched using XPath or XQuery. In the case of
XPath and XQuery the actual functionality is provided by existing libraries. In addition,

the utility functions expose additional functionalities to the narrative language that are

102

useful when building adaptive systems but that are not fundamental behaviours of the

Adaptive Engine.

Modeling Functions

e load-model Load a model from an existing, open data connection

e store-model Write a model to an existing, open data connection

e create-model Create a new empty model

e remove-model Remove a currently loaded model from the AE

e update-model Add a new element/node to an open model

e search-model Carry out a simple node based search of an open model

e get-text Return the text data stored in the current element of a model

e cd Navigate the specified model using

e get-attribute Return the value of the specified attribute in the current element
e add-attribute Add an attribute to the current element of a model

e model-to-string Return the entire model as an XML string

Search Functions

e xpath-query-model Carry out a XPath query on a loaded model
e xpath-query-collection Carry out a XPath query on a set of models

e remote-xquery-model Carry out a XQuery on a model using the storage mediums
underlying query support

e remote-xquery-collection Carry out a XQuery query on a collection of models
using the storage mediums underlying query mechanisms

Utility Functions

e transform-model Carry out an XSLT transform

e call-webservice Make a SOAP based web service call

103

5.2.3 Data Storage

As discussed previously, the metadata models that drive the process of generating a PWE
use XML to encode the infor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>