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Summary

Carbon is arguably the most versatile of chemical elements. For the last 25 years 

research on carbon nanostrutures has been one of the most active areas of science. 

Carbon-based nanoelectronics is the most promising alternative to replace the age­

ing silicon-based technologies. In particular, carbon nanotubes present remarkable 

physical properties such as very low electrical resistance and very high mechanical 

strength. These characteristics have led to the development of nanotube compos­

ites w’hich in turn led to the fabrication of nanotube network films. Films produced 

by deposition of carbon nanotubes show extraordinary electric conductance and 

mechanical resistance, making them excellent candidates for the development of 

fiexilrle electronic devices. A nanotube film contains a complex interconnected 

network of randomly distributed nanotubes and bundles. The electronic transport 

characteristics of nanotube networks is defined by a combination of intrinsic nan­

otube transport properties with the morphology of the random network. Electrons 

can travel along a single nanotube with very low resistance, but have to tunnel 

through junctions between individual tubes. The junction resistance is consider­

ably higher than the intrinsic resistance along a typical carbon nanotube. The 

production of transparent electrodes to be utilised in novel flexible displays re­

quires very high electrical conductivities. Chemical treatments can be applied to 

lower the junctions resistance but the morphology of the network itself plays a 

significant role in the resistivity of nanotube Aims.

This work is focused on modelling the electronic transport properties of carbon 

nanotube films. We have aimed at developing a computationally efficient frame­

work capable of modelling electronic transport on disordered nanotube networks. 

The approach developed consists of tackling the problem from two different length 

scales. On a macroscopic level, carbon nanotubes are modelled as rigid rods of



specified length and diameter. Disordered networks are generated by randomly 

distributing rods inside a containing volume representing the film. Within this 

approach it has been found that the connectivity of the networks scales univer­

sally with the volume fraction of the films, as well as with the aspect ratio of 

the rods. Meanwhile, in a microscopic level, nanotubes are described within an 

atomistic semi-empirical Hamiltonian. With the application of Green function 

methods, networks consisting of thousands of nanotubes have been simulated, and 

their conductance calculated. The combination of both length scales leads to a 

multiscale model of electronic transport through carbon nanotube networks. The­

oretical predictions were compared and combined with experimental results provid­

ing an estimate for the average inter-tube resistance, which is in accordance with 

independent experimental stndies. Furthermore, by considering a purely ballistic 

transport regime we have been able to estimate an upper bound for the conductiv­

ity of carbon nanotube films. The maximum conductivity calculated was found to 

scale universally with the density of the network, as well as the average length and 

diameter of the nanotulies and bundles in the film. When compared to the best 

experimental values reported our results indicate that nanotnbe films are reaching 

their conductivity limit. Furthermore, our simulations lead to the conclusion that 

metallic nanowire films (other than nanotnbes) are better suited for applications in 

flexible displays. As an extension of the developed models we have considered two 

further applications. First, it was found that, in spite of their good electronic con­

ductance, nanowire networks are not suitable as a medium to facilitate magnetic 

coupling. Finally, by considering a capacitive network model, we have been able to 

reproduce the onset of local electric activation observed in experiments with silver 

nanowire films.
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Chapter 1

Introduction

1.1 A Brief History of Carbon Nanostructures

The research on carbon fibres began in the 19^^ century stimulated by the need for 

materials with special properties. After World War II, on the primordial days of 

jet-planes and space exploration, the need for strong, stiff, and lightweight com­

posite materials with superior mechanical and elastic properties was responsible 

for a revolution on carbon fibres research. Carbon fibres are the predecessors and 

macroscopic analogues of microscopic carbon nanostructures, such as fullerenes, 

nanotubes and graphene.

With the discovery of fullerenes by Kroto et al. [1] in 1985\ the study of carbon 

filaments of very small diameters (~ 1 nm) became more systematic, and attracted 

the attention of several research groups worldwide. A new era in carbon research 

began with the first reported experimental observation of carbon nanotubes, per­

formed by Sumio lijima [2] in 1991, using transmission electron microscopy (TEM). 

In the following year Saito et al. [3] calculated the band structure for single-walled 

nanotubes using a tight binding method based on the zone folding of graphene’s 

band structure. Their calculations showed that some of those nanotubes could be

^R. F. Curl, Sir H.W. Kroto and R. E. Smalley were awarded the Nobel Prize in Chemistry 
1996 “for their discovery of fullerenes”.
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CHAPTER 1. INTRODUCTION

metallic, which was confirmed experimentally [4] a few years later. The carbon 

nanostructure revolution continued when Geim and Novoselov [5] reported the iso­

lation of free standing graphene flakes in 2004^. Isolated graphene sheets were, 

until then, regarded as being structurally unstable.

It did not take long for the scientific community around the world to realise 

that carbon nanostructures, due to their remarkable physical properties, present 

promising applicability in a range of areas. High performance, ultra-small elec­

tronic devices; drug delivery systems for disease treatment; and bullet proof vests 

are just three examples in a plethora of possible applications. Since their inception, 

the study of carbon nanostructures has only increased, and has arguably become 

one of the most active topics of scientific research today [6, 7, 8, 9, 10].

1.2 Carbon Nanotubes

Carbon nanotubes can generally be divided in two broad categories. Multi-walled 

nanotubes (MWNT) can be roughly described as a series of graphene sheets rolled 

in the form of concentric cylinders. The first observation reported by lijima [2] 

included only nanotubes of this type. MWNTs can have diameters from 2 to 100 

inn and lengths extending up to a micrometer. Single-walled nanotubes (SWNT) 

are formed by a single cylindrically rolled sheet of graphene, with a typical diameter 

of 1 nm. SWNTs were successfully observed in isolation shortly after their multi- 

walled counterparts [11, 12].

1.2.1 Geometry of Carbon Nanotubes

The structure of carbon nanotubes can be described in terms of the atomic ar­

rangement present in a graphene sheet. Graphene is an infinite plane of carbon 

atoms arranged in a honeycomb lattice. Graphite is formed by several sheets of

^A. K. Geiin and K. S. Novoselov were awarded the Nobel Prize in Physics 2010 “for ground­
breaking experiments regarding the two-dimensional material graphene”.



1.2. CARBON NANOTUBES

graphene stacked on top of each other. Adjacent graphene layers interact with 

each other through weak van der Waals forces, and are only loosely bound. The 

same van der Waals forces, however, are responsible for holding carbon nanotubes 

together in the form of bundles.

Carbon is possibly the most versatile of the chemical elements, for it can form 

pure structures in OD (fullerenes), ID (nanotubes), 2D (graphene), and 3D (dia­

mond and graphite). This versatility of carbon is due to the many ways in which its 

four valence electrons can combine to form chemical bonds. In the case of graphene 

and graphite, three of the valence electrons will combine to form cr-bonds in the 

form of in-plane sp^ hybridised orbitals. These are very strong covalent bonds, 

and are responsible for the mechanical strength of the derived carbon structures. 

The remaining valence electron occupies a 7r-bonded orbital, which is oriented per­

pendicular to the plane of graphene. In graphite, the interaction between adjacent 

planes is due to these 7r-bonds, which are usually weaker than cr-bonds. The small 

strength of these inter-plane 7r-bonds is one of the factors responsible for the lubri­

cating properties of graphite. It is also possible for the valence electrons of carbon 

atoms to form sp^ hybridised bonds. The strong sp^ bonds, as well as the three- 

dimensional lattice structure, are directly responsible for the mechanical strength 

of diamond.

Figure 1.1 presents the honeycomb arrangement of atoms on the graphene lat­

tice. The structure can be viewed as a triangular lattice with two carbon atoms per 

unit cell. This lattice is usually defined by the primitive vectors ai and a2 shown. 

The graphene lattice parameter a, is defined in terms of the distance between two 

adjacent carbon atoms as a = |ai| = |a2| = ac-cV^ = 2.46 A, where the distance 

between carbon atoms is oc-c = 1-44 A.

On figure 1.1 it is also illustrated how a graphene sheet can be rolled-up to 

form a nanotube by connecting equivalent atoms located at points O and A, and 

B and B', respectively. A nanotube is uniquely defined by its chiral vector Ch,
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Figure 1.1: Schematic representation of a sheet of graphene. A nanotube structure is 
formed by rolling up the sheet to connect points O to A, and B to B’, respectively.

given by

Ch = nail + '<n.aL2 = (n, m), (1.1)

where n and m are integer numbers, and are the so-called chiral indices of the 

nanotube. The vector T is the translational vector of the nanotube, and it is 

perpendicular to C/,, and parallel to the nanotube axis. The unit cell of the 

nanotube is represented by the area enclosed in the rectangle OBB'A. The chiral 

angle 6 is defined as the angle between C/j and ai, and can assume values in the 

range 0° < \6\ < 30°, which specifies the spiral symmetry of the nanotube.

Carbon nanotubes can be classified in two broad categories according to their 

symmetry: achiral and chiral. A nanotube is said to be achiral if it possesses 

inversion symmetry, and chiral otherwise. Achiral nanotubes can be further divided 

in two types with respect to their chiral indices: if n = m it is said to be an 

armchair tube; if n 0 and m = 0 it is a zigzag tube. Figure 1.2 displays 

the three possible geometric structures described. In the case of (n, n) armchair
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Figure 1.2: Geometric structure of three different carbon nanotubes. (5,5) is an armchair, 
(10,0) a zigzag, and (6,4) a chiral nanotube.

nanotubes, the unit cell is a single ring with 4n carbon atoms around the tube 

circumference. Meanwhile, in a (n, 0) zigzag nanotube the unit cell is defined by 

two adjacent rings, each with 2n carbon atoms, resulting in a total of 4n atoms on 

the unit cell. Because of their spiralling structure, chiral nanotubes do not display 

inversion symmetry, and their unit cell is typically much larger than the ones for 

achiral nanotubes. Finally, the diameter of a generic (n, m) nanotube is given by

D = |C/i| 27rr a ----------=----- = —Vn^ + m"' + nm.
TT TT TT

(1.2)

In the next section some of the superior physical qualities of carbon nanotubes 

will be introduced. These remarkable electronic, thermal and mechanical proper­

ties are directly related to the geometrical structure of nanotubes, which have just 

been described.
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1.2.2 Physical Properties

Research on carbon nanotubes is primarily instigated by their outstanding elec­

tronic, thermal, and mechanical properties. Even though real-world nanotubes 

are seldom defect-free, it has been shown theoretically and experimentally that 

even defected structures present exceptional intrinsic properties. The amount of 

defects in a nanotube is essentially determined by the synthesis process, the most 

traditional ones being laser ablation, arc-discharge and chemical vapour deposi­

tion (CVD). Currently, CVD growth is the most widespread fabrication technique 

and the most promising to provide industrial-scale deposition. Some of the advan­

tages of CVD over other methods are its lower cost, and the capability of growing 

nanotubes directly on a desired substrate.

The work presented in this thesis is exclusively focused on the electronic proper­

ties of carbon nanotubes and network films. In the following subsections we intro­

duce the electronic properties of nanotubes, followed by a very brief description of 

other physical properties, concluding with a brief discussion on nanotube-polymer 

composites.

Electronic Properties

The imposition of boundary conditions along the circumferential direction defined 

by the chiral vector quantises the component of the electronic momentum in 

this direction. Meanwhile the momentum component along the tube axis remains 

continuous for a nanotube of infinite length. In essence, the energy bands of a nan­

otube are a set of one-dimension energy dispersion relations which are obtained 

by slicing up the 2D band structure of graphene. In the graphene lattice, a and 

7r electronic orbitals are decoupled by symmetry, leading to a convenient simplifi­

cation. The a energy bands are located far from the Fermi energy, whereas the tt 

bands are close to the Fermi energy.

The electronic properties of carbon nanotubes are very sensitive to the wrapping
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Figure 1.3: Calculated local density of states of a (7,0) semiconducting zigzag carbon 
nanotube; a (9,0) metallic zigzag nanotube; and a (7, 7) armchair nanotube. The spikes 
are van-Hove singularities, a characteristic signature of ID systems. Energy in units of 
7o, defined as the electronic hopping parameter in chapter 2.

direction, and are essentially determined by the nanotube chiral indices (n,m). 

This sensitivity is a direct consequence of the momentum quantisation. If the 

situation is such that the Fermi surface of graphene is intersected by quantisation 

lines then the respective nanotube is metallic. In general, single-walled nanotubes 

are metallic if n = m.; semiconducting with a very small energy band gap if {n — m) 

mod 3 = 0; and semiconducting with a gap that depends on the diameter of the 

nanotube otherwise [3]. All armchair nanotubes {n = m) are metallic, whereas 

some zigzag nanotubes behave as metallic and others as semiconductors. About 

2/3 of SWNTs are semiconductors and 1/3 are metallic.

Figure 1.3 shows the calculated density of states (DOS) of one armchair and 

two zigzag nanotubes. The DOS were obtained with the Green function methods 

introduced in chapter 2. As expected for 1-dimensional systems, pronounced van- 

Hove singularities are present in the form of spikes in the local density of states. At 

the centre of the band, it is possible to observe a plateau, whose width decreases 

with the diameter of the nanotube. It has been confirmed experimentally that the 

number of states in the plateau is inversely proportional to the diameter of the



Figure 1.4: Band structure of carbon nanotubes. The (7,0) zigzag nanotube shows a 
clear energy band gap, while (9,0) is a zero gap semiconductor. The metallic structure 
of (7,7) has two energy bands crossing the Fermi energy at E{k) = O.O7O) where 70 is 
defined in chapter 2 as the tight binding hopping parameter. See also figure 2.3.

nanotube [4].

The calculated vr band structure of armchair and zigzag nanotubes is shown 

in figure 1.4. The electronic structure is calculated from the tight binding model 

Hamiltonian and 70 is the electronic hopping parameter, as described in chapter 2. 

The zigzag (7, 0) nanotube, shows a clear energy band gap. If at least one energy 

band crosses the Fermi energy the sj^stem is metallic, as it is shown for the (7, 7) 

nanotube. Observe the particular case of the (9, 0) zigzag nanotube, which is a 

zero-band gap semiconducting system.

Carbon nanotubes are extremely conductive. Because of their 1-dimensional 

nature, electronic transport along nanotubes is essentially ballistic [13]. The ab­

sence of decoherent scattering causes their electrical resistivity to be very low, 

and allows nanotubes to carry very high currents. Because of this ballistic trans­

port behaviour, it is expected that the resistance in a nanotube-based electronic 

device should come primarily from contacts with electrodes and possibly other 

nanotubes. Figure 1.5 shows the conductance of nanotubes as a function of the 

electronic energy, calculated with the Kubo formula to be introduced in chapter
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Figure 1.5: Conductance spectrum of carbon nanotubes. Metallic tubes have two con­
ductance channels at the Fermi energy Ep = O.O70, where 70 is the electronic hopping 
parameter defined in chapter 2. See also figure 2.6.

2. The number of bands available at a specific energy equals the total number of 

conducting channels at that energy. Each conductance channel accounts for one 

quantum of conductance, defined as Fq = 2e^/h. In the case of metallic nanotubes 

there are two bands crossing the Fermi level at E = O.Oqo, and so the conductance 

along the tube equals 2ro at the Fermi energy.

External factors such as the presence of an electrostatic gate or specific dopants 

can alter the conductance of nanotube in a controlled fashion. By exploring this 

property, proof-of-concept devices based on SWNTs have been demonstrated ex­

perimentally. Chemical sensors [7, 14] and field effect transistors [15, 16, 17] are 

among the different nanotube-based devices that explore these unique electronic 

transport properties.

Thermal Properties

Carbon-based materials present excellent thermal conductivity properties. This is 

mainly due to the strength of sp^ and sp^ bonds carbon atoms can form. In fact, 

it has been known for a number of years that graphite and diamond are excellent 

heat conductors.
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Carbon nanotubes are also expected to be very conductive for phonons and to 

show a high thermal conductivity because of its sp^ bonds. Theoretical calculations 

predict a thermal conductivity as high as 6600W/mK for isolated SWNT at room 

temperature [18]. Meanwhile, experiments have measured thermal conductivities 

in excess of 2000 W/rnK for SWNT [19] and 3000 W/mK for MWNT [20]. These 

values are comparable to the thermal conductivity of diamond, which is one of the 

best heat conductors available. The superior thermal conductivity of nanotubes 

has led to the proposal of using them in connectors between high temperature 

devices and heat sinks.

Mechanical Properties

Carbon nanotubes are believed to be the strongest and stiffest materials known 

to date, in terms of tensile strength (the stress at which a material breaks or be­

comes permanently deformed) and elastic modulus (or Young’s modulus, defined 

as the ratio of stress to strain in the elastic deformation regime). This impressive 

strength is, again, a result of the covalent bonds present between carbon atoms 

in these structures. Under excessive tensile strain, nanotubes will undergo plastic 

deformation, becoming permanently deformed, before breaking. Under compres­

sion nanotubes are not so strong, and because of their hollow structure and high 

aspect ratio (length/diameter), will undergo buckling or kinking under compres­

sive or bending stress, possibly returning to its initial form (without deformation) 

once the stress is released [21]. Theoretical and experimental techniques have been 

used to investigate the effects of mechanical deformation on the electronic .structure 

of CNTs [22, 23]. It was found that, in general, mechanical deformations affect 

the electronic structure of CNTs such that there is an increase in the electrical 

resistance of along the nanotubes.

It is generally believed that even though a macroscopic structure made of CNTs 

will not be as resilient to compression as individual nanotubes, the larger structures
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will nonetheless retain some of the restoration properties. It should be no surprise 

that several studies have been performed to analyse and enhance the reinforcement 

of materials through introduction of carbon nanotubes, as it is presented next.

1.2.3 Composites

As previously described, carbon nanotubes possess superior physical qualities. 

Some of these properties could be utilised to improve the performance of other 

materials, by integrating nanotubes with them, in order to form composite struc­

tures. The collective behaviour of nanostructures can provide unique physical 

properties and enhanced device performance. One of the major advantages of the 

integration of nanoscale materials is the statistical averaging, which provides better 

reproducibility over a range of different samples.

In fact, a particularly promising type of integration are nanotube-polymer com­

posites. A polymer is a macromolecule, formed by covalently bonded elementary 

units (monomers) forming a chain, which gets tangled due to interactions between 

different monomers. Experimental studies have shown that polymers readily form 

composites with carbon nanotubes [24], and typically just a few percent by volume 

of nanotubes is added to a polymer matrix with the objective of enhancing its 

physical properties. For example, the addition of a small quantity of nanotubes 

can increase the conductivity of ordinary polymers, known as poor electrical con­

ductors, and form a conductive nanotube-polymer composite [25, 26]. Another 

example is the mechanical reinforcement of polymers by addition of carbon nan­

otubes. It has been shown that the addition of small quantities of nanotubes by 

volume to a polymer can greatly improve the mechanical properties of the compos­

ite material [27, 28, 29, 30]. It is important to work only with small quantities of 

nanotubes on the composite materials, so that the useful properties of the polymer 

are not destroyed. The extensive knowledge on polymer composites provides a 

huge advantage to this line of research, and the development of nanotube-polymer
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composites with superior physical qualities led to the development of materials 

based solely on carbon nanotubes.

1.3 Carbon Nanotube Network Films

Films made solely of carbon nanotubes can be produced by chemical processing 

or directly grown on a substrate. In these films, individual nanotubes and bun­

dles are randomly distributed forming a complex interconnected network. Carbon 

nanotuhe network fiJms (also CNT films or CNT networks) can be regarded as a 

novel wonder material whose general physical qualities are defined Iry the collective 

behaviour of the ensemble of nanotubes in the film. Figure 1.6 shows a typical nan­

otube network film produced by deposition of commercially available SWNTs. The 

scanning electron micrographs have different resolution, as indicated in the figure. 

In general, individual nanotubes and bundles will tend to align in layers parallel to 

the surface of the substrate with an arbitrary orientation. However, because of the 

flexibility of nanotubes, many of these layers are interpenetrating. The thickness 

of the films can be controlled during fabrication and films become more isotropic as 

their thickness increases. It is also possible to control the longitudinal orientation 

of the nanotubes during the fabrication of the films [31, 32, 33, 34, 35, 36], although 

this is only advantageous to some of the possible applications. Carbon nanotube 

films present remarkable promise on the construction of flexible electronic devices 

such as transistors [34, 37, 38, 39], organic light emitting diodes [40, 41], and trans­

parent electrodes [42]. Electronic transport across such films takes place through 

tunnelling between individual nanotubes, and their overall resistance is controlled 

by the quality of the inter-tube junctions throughout the network [31, 42].

Network films are made of a mixture of metallic and semiconducting nanotubes, 

and show a semiconductor-metal transition as the films thickness is increased. The 

range of possible application of the films depends on their thickness. For example.
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Figure 1.6: Scanning electron micrographs of a typical nanotube network film. The 
network was produced by deposition of commercially available nanotubes. The resolution 
in (b) is higher than in (a), as indicated in the scale bars. Images courtesy of Prof. 
Coleman’s research group, Trinity College Dublin.

thin films with density close to the percolation threshold behave as semiconductors 

and can be used in thin film transistors [34, 35, 36, 37, 38, 39, 43]. Films with 

thickness in the range of 10 — 100 nm show high optical transparency and elec­

trical conductivity and can be used as a replacement for indiuni-tin-oxide (ITO) 

electrodes [40, 41, 44, 45, 46, 47, 48]. The geometric model introduced in chap­

ter 3 is particularly focused on this thickness range, and as it will be shown is 

capable of accounting for the network structure found in this situation. Finally, 

CNT films about a micron thick are nanoporous and can be used as electrodes for 

supercapacitors [49], fuel cells [50], and battery applications [51].

Fabrication of Ncinotube Films

Carbon nanotube network films can be produced by a variety of different methods. 

Similar to individual CNTs, network films can be directly grown by CVD. This 

technique can produce networks with aligned nanotubes as well as randomly ori­

ented ones. In practice, networks with random orientations of CNTs are preferred 

for reproducibility and applications [37], but other techniques have also been de­

veloped to produce aligned arrays of nanotubes [31, 33, 34]. CVD can be used to 

provide macroscopic quantities of CNTs, and it produces films with individually
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separated nanotubes, with few defects and good inter-tube contacts. Major dis­

advantages of the CVD method include the requirement of high vacuum and high 

temperatures.

Solution-based deposition methods are currently a popular alternative to direct 

growth techniques. A solution-based process can be carried out at room temper­

ature; does not require high vacuum, is compatible with plastic substrates, and 

can be done at high speeds. Overall, solution-based deposition has a lower cost 

when compared to CVD. In a solution-based method, nanotubes first have to be 

dispersed in a solvent which will promote separation of the bundles [52, 53]. The 

resulting solution is then filtered or deposited on a substrate, and the system is let 

to dry in a controlled fashion. Another popular solution-based method is by inkjet 

printing. In this case the film is printed directly on the substrate and networks 

with very uniform density can be produced [54].

Mechanical Properties

The superior mechanical properties of individual carbon nanotubes are also present 

in films made of disordered CNT networks. Nanotube films show unprecedented 

mechanical flexibility, an extremely useful property for the fabrication of flexible 

electronic displays. In particular, nanotube films are being heavily explored as 

a possible replacement to the expensive ITO in electronic displays [48, 55]. ITO 

is brittle, and films based on this material experience large increase in electrical 

resistance after being bent a few times. CNT films retain their structure and 

electronic transport properties after several cycles of bending down to a very small 

radius [38, 39, 56]. For that reason, large sums are being invested to find a suitable 

replacement for ITO, and nanotube films appear as a strong contender.
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Electronic Transport Properties

The first studies on the electronic properties of carbon nanotube films were reported 

a few years after lijima’s original observation of individual CNTs [2], In one of 

these pioneering studies, de Heer et al. produced CNT films approximately 1 pm 

thick, in which nanotubes were aligned parallel or perpendicular to the substrate 

[31]. In the case of parallel alignment, de Heer et al. observed a strong anisotropy 

in the measured electrical resistance, such that it was much larger on the direction 

perpendicular to the nanotube alignment than on the longitudinal direction. The 

films produced in this study where small, such that the length of the film was 

comparable to the length of the bundles. Therefore, in the longitudinal direction 

the electronic transport took place along individual CNTs and bundles, with little 

inter-tube hopping. On the other hand, when the transport took place along the 

direction perpendicular to the nanotube alignment, the electrons had to tunnel 

through several CNT junctions before reaching the opposite electrode, considerably 

increasing the electrical resistance measured. Similar results were reported more 

than a decade later by Pint et al. [57], where much thinner films were considered.

The effect of temperature ou the electronic transport jrroperties of carbon nan­

otube films has also been investigated by experimental groups. The dependence of 

the film resistivity with the temperature was first reported by de Heer et al. [31] 

and Omel’Yanovskii et al. [58], which have shown how the film resistivity decreases 

as the temperature is increased. The decrease in resistivity with temperature, a 

typically nonmetallic behaviour, has been explained in terms of temperature in­

duced hopping, in accordance with the variable-range hopping theory of Mott [59]. 

Similar results for thinner films were also reported by Pint et al. [57].

A pioneering work on the application of nanotube films as thiu-fihn transistors 

was reported by Snow et al. in 2003 [37]. In this work, networks with randomly 

oriented CNTs were placed between metallic source and drain electrodes and the 

resistance of the devices was measured as a function of the channel length. The
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authors found that the device resistance shows a power law dependence on the 

channel length, and that the respective exponent depends on the density of the 

network. Through current-voltage measurements Snow et al. have shown that 

high on-off current ratios could be obtained for devices with low network den­

sities. Devices fabricated with high density networks show a low on-off current 

ratio, due to the presence of charge carrying paths formed by metallic CNTs. In 

this case, the authors argued that a method proposed by Collins et al. [60] could 

be used burn the parasitic metallic paths by the application of a high bias voltage 

through the network. Shortly after, Bradley et al. reported on the production 

of flexible nanotube network transistors [38], in which a film with randomly dis­

tributed CNTs was deposited over a polymer substrate. In this work the authors 

demonstrated the production of flexil)le field-effect transistors with high on-off 

current ratios, and whose performance was not heavily affected by bending of the 

device, as confirmed by current-voltage measurements. In a further development, 

Takenobu et al. demonstrated the fabrication of transparent and flexible CNT 

network transistors, whose high-performance was also not affected by l)ending of 

the film [39]. The authors presented data clearly indicates that their devices are 

capable of operating on a high on-off current ratio while bent down to very small 

radii.

In 2005, Kumar et al. presented the first computational study of nanotube 

network transistors, capable of reproducing some of the experimental results re­

ported in the literature [61]. Through the investigation of percolating 2D random 

networks of sticks with a given length and diameter, Kumar et al. developed a com­

putational framework capable of reproducing some of the measurements presented 

by Snow et al. [37] for devices with long channel length. Furthermore, the work of 

Kumar et al. also presents an analytical treatment for devices with short channel 

length, in a ballistic or diffusive transport regime. Finally, this work provided the 

first clear evidence that the electronic transport properties of nanotube networks
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could be understood in terms of finite-sized rigid-rods percolation and inter-tube 

coupling strength. Further developments of the theory, which include networks 

with a mixture of metallic and semiconducting carbon nanotubes, were presented 

by Kumar et al. in 2006 [62], A follow-up work by Pimparkar et al. presented 

an alternative analytical theory to explain the current-voltage characteristics of 

CNT network transistors where the networks are below the percolation limit [63]. 

The theory developed by Pimparkar et al. presents an excellent agreement with 

measurements of on- and off-current as a function of the device channel length, as 

well as an estimation of the voltage bias pulse required to burn metallic nanotubes 

[60] in terms of the transistor device parameters. Topinka et al. have presented 

results of experiments and computer simulations on networks with varying frac­

tion of metallic tubes [64]. In this work, the authors argue how it is possible to 

calculate the optimum ratio between metallic and semiconducting tubes in order 

to maximise the on-off ratio of CNT network transistors.

Experimental and theoretical studies reported by Kobacas et al. [35], and 

computer simulations reported by Behnam et al. [65] and White et al. [66] have 

investigated the effect of nanotube alignment on the performance of CNT thin films. 

These studies show that when the film is much longer the length of individual 

nanotubes, films with perfectly aligned CNTs have a larger measured electrical 

resistance than a film in which nanotubes are allowed to form a small angle with 

the longitudinal direction of the film. This result is not surprising, and can be easily 

understood by taking into consideration that the average number of neighbours per 

tube is smaller in the aligned films than in a film with randomly oriented CNTs. 

Consequently, there are fewer current carrying paths on aligned carbon nanotube 

films than on films with a small degree of misalignment.

On a very recent work reported by Jack et al. [67], computational modelling and 

experiments have been performed to study electrical conductivity in densely packed 

carbon nanotube networks. An almost comprehensive stochastic model has been
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developed to reproduce distributions in length, diameter, orientation, and contact 

resistance found in real nanotulre networks films. The authors apply their model 

to calculate the dependence of the film conductivity with average nanotube length 

and diameter and find results in excellent agreement with experimental results. 

Furthermore, the model also reproduces qualitative features on the effect of a 

magnetic field on the conductivity of CNT films. .lack et al. also compare results 

obtained with the stochastic model, where nanotube length and diameter follow 

a given distribution, to results obtained in corresponding simulations where all 

the nanotnbes in the film are identical (same length an diameter). The calculated 

conductivity in the presence of a magnetic field differs by less than 10% between 

the stochastic model and the simpler model, which clearly indicates that having 

a realistic distribution of length and diameter is not of such importance for CNT 

networks simulations.

All of the results discussed above show that nanotube network films present 

electronic transport properties which are a combination of individual nanotube 

transport and tunnelling at inter-tube junctions. Transport on single nanotube 

devices can be heavily affected by the quality of the contacts with metallic elec­

trodes, and contact resistance depends considerably on the metal in the electrode 

[68]. Ti, Pd, Pt, Cu, Au, and Ag are some of the metals that provide low con­

tact resistances with CNTs. In the case of CNT films, the contact resistance with 

metallic electrodes is still under investigation [69, 70, 71].

CNT films contain a mixture of metallic and semiconducting species, and the 

electronic transport process can be extremely complex. However, because of CNTs 

remarkable ballistic conductance, the contact resistance between individual tubes 

is the single largest contribution to the resistance of network films [31, 42]. The 

junction resistance depends heavily on the type of nanotubes involved as well as 

their diameter [72, 73, 74, 75, 76].

Since the inter-tube resistance is much larger than the intrinsic nanotube resis-
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tance, electrons will tend to travel as far as possible along the tube before hopping 

onto one of its neighbours. In the case of bundles, the electrons tend to propagate 

along the external tubes. The transport properties of CNT films depend on the 

average length and diameter of nanotubes and bundles in the film [37, 46, 67]. 

Networks with a higher density of nanotubes present more current carrying paths 

and the overall resistance of the films is also very sensitive to this factor [61, 63]. 

Finally, because of the high aspect ratio of CNTs, networks of carbon nanotubes 

have very low percolation thresholds. Even for modest surface coverage, nanotubes 

can form several conducting paths across the film. Percolation issues are very im­

portant for the application of CNT networks as transparent, fiexible transistors 

[37, 61, 77, 78, 79]. In general, solution-based methods can be used to control the 

nanotube density in network films [77].

1.4 Optoelectronics: CNT Networks as Trans­

parent Electrodes

One of the very the first investigations into the o];)toelectronic properties of random 

nanotube networks, with the objective of producing transparent electrodes was re­

ported by Wu et al. [80]. In this work, the authors describe the production of thin, 

transparent and conductive carbon nanotube films and the transfer of these films 

to different substrates. The films were produced by filtration of a solution contain­

ing suspended nanotubes, and the film thickness was controlled by the nanotube 

concentration and the volume of solution filtered. The films produced present an 

optical transmittance comparable to ITO in the visible spectrum, being as high 

as 70% with a sheet resistance of about 30fi. An an example application, Wu et 

al. used the CNT films to construct an electric field-activated optical modulator, 

which constitutes an optical analog of the nanotube network field-effect transistor. 

In 2006, Aguirre et al. reported on the production of organic light-emitting diodes
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based on transjiarent carbon nanotnbe films [41], Tlie films were produced follow­

ing the method described by Wu et al. [80] and consisted of networks made of 

randomly oriented CNTs. The organic light-emitting diodes produced by Aguirre 

et al. show a performance comparable to standard devices based on ITO, with the 

additional advantages of being flexible and easier to process.

The transparency of a thin film is intimately connected to its conductance. In 

particular, the relationship between optical transmittance T and sheet resistance 

Bs of a thin metallic film (suspended in air) is approximately described by [81]

T = 1 p
Bs ddc

T -2

;l3)

where Gop is the optical conductivity of the film, and cr^c hs electrical conductivity. 

Equation (1.3) is only valid when the absorption of the material is much smaller 

than its reflectance, and when the film thickness is much less than the wavelength of 

interest. In general, CNT network films can be prepared to satisfy these conditions.

For applications in transparent electrodes a material is required to have high 

electrical conductivity and low optical absorbance [40]. Flexible displays require 

high transparency in the visible spectrum coupled with low film resistance [82]. 

Minimum industry standards (based on knowledge from ITO-based devices) require 

materials with sheet resistance B.g < lOOfl, and optical transmittance T > 90%, 

at a wavelength of 550 nm [56]. From equation (1.3), it is possible to evaluate that 

this condition may be satisfied if the electrical conductivity is much larger than the 

optical conductivity, such that the ratio a^doop is large. In particular, industrial 

recpiirements can be satisfied only if Gddciop > 35. Along the development of CNT 

film fabrication, this ratio has been improved, but the best results reported for 

nanotube films so far have only achieved Gdc/^Top = 13 — 16 [56, 76, 83].

The optical conductivity depends on the chirality of individual nanotubes, and 

cannot be jn’ecisely controlled on CNT films. However, due to the mixture of
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different types of nanotubes in a network film, aop is found to be approximately 

constant across a variety of nanotube films [84], and has been measured as 1.7 x 10^ 

S/m [5C, 85]. On the other hand, the electrical conductivity adc, depends on a 

number of factors, including the degree of purity of the nanotubes; the doping 

level; the average bundle length; and the average bundle diameter. A number of 

strategies have been developed to control these factors. Attempting to increase adc 

by lowering the tube-tube junction resistance seems to be the most accessible way 

of improving the performance of conductive films [76, 83, 86].

The lowest acceptable value of electrical conductivity to meet industry stan­

dards can be calculated at adc = 6 x 10® S/m. This level of conductivity has been 

achieved before, but for dense thick films which do not satisfy the transparency 

requirements [80]. Much work has been done on possible ways to improve adc with­

out compromising the film transj^arency. As things stand today, the best reported 

results for carbon nanotube networks is adc = 6 x 10® S/m with T = 76% [76], 

and it is still unclear if the required combination of Rg and T is indeed feasible 

[48, 55]. In fact, this is one of the major issues addressed in the present work, and 

we show that the limiting conductivity for carbon nanotube films is adc = 9 x 10® 

S/m, which corresponds to a transmittance as high as 99% at a sheet resistance 

Rg = 90fl, through equation (1.3). Even though these results do not exclude nari- 

otube network films as a possible replacement for ITO transparent electrodes, it 

shows that the best available experimental results are already very close to the 

theoretical upper limit, and that other materials might be better suited to this 

particular application.

1.5 Layout of Thesis

The work presented in this thesis is focused on the investigation of electronic trans­

port on disordered carbon nanotube networks. A multiscale modelling approach
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has Ijeen developed in order to describe network films from their morphological 

characteristics and down to the quantum tunnelling taking place at nanotube 

junctions. Even though major focus has been given to carbon nanotnbe films, 

the methodology developed can be easily generalised to network films of other ma­

terials such as metallic nanowires and perhaps graphene flakes. All the theoretical 

techniques applied throughout this work are aimed at describing the systems in the 

most transparent and lightweight manner, but ensuring that a complete physical 

picture of all relevant matters is correctly described.

This thesis comprises six chapters. In chapter 2 the general theoretical frame­

work will be introduced. First, the single-band tight binding approximation will 

be presented. It will be shown that a Tr-band Hamiltonian is well suited to de­

scribe all relevant electronic properties of carbon nanotubes. Secondly, the single 

particle Green function methodology will be introduced. Green functions are cal­

culated directly from the chosen Hamiltonian, and give direct access to the density 

of states of a physical system. Next, the Kubo formalism for electronic transport 

calculations will be introduced. It will be shown how the conductance of pure and 

doped structures is calculated from the Kubo formula written in terms of Green 

functions. The chapter concludes with a brief description of how the usual Kubo 

formalism can be applied to tripartite systems, composed of two leads and a central 

scattering region.

Ghapter 3 is concerned with modelling the macroscopic properties of nanotube 

networks. A geometric description based on randomly distributed rods will be 

introduced as a model to CNT networks. The connectivity of disordered ensembles 

will be examined in terms of basic parameters such as the density of the networks 

and the aspect ratio of individual rods. Resistive networks will be introduced as 

a simple representation to nanotnbe films. Existing methods for calculating the 

equivalent resistance in regular networks will be reviewed, and a method suitable 

for resistance calculations in random structures will be introduced. The chapter
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concludes with the application of the developed methodology to analyse random 

resistive networks of rods. Simulation results will be compared and combined with 

experiments, and the average junction resistance in a real CNT network film will 

be estimated.

In chapter 4 the focus is on microscopic modelling. The electronic structure 

methods of chapter 2 will be applied to provide an atomistic description of carbon 

nanotubes and idealised nanowires. It will be shown how the Green function of an 

ensemble of nanoscopic elements can be written in a convenient form. The Kubo 

formula for the conductance will be directly applied to networks, following a com­

putationally efficient framework. In conjunction with the geometrical modelling 

of chapter 3, a multiscale computational model will be developed, which relates 

theoretical models to real network films. Considering a fully ballistic transport 

regime, the upper bound for the electrical conductivity of nanotube networks will 

be estimated. This is an important quantity that tells us how much room for 

improvement there is in enhancing the conductivity of nanotufje network films. 

Furthermore, this result can be used to assess if nanotube network films are indeed 

the most suitable material for the production of flexible electronic displays.

Chapter 5 presents two extensions of the methodologies developed in chapters 

3 and 4. In the first half of the fifth chapter, the application of nanowire films as 

a non-magnetic spacing between magnetic moments will be considered. Indirect 

exchange coupling is known to be mediated by conduction electrons of the non­

magnetic spacing material. The nanowire network model developed in chapter 4 

can be directly applied and the coupling will be calculated from specific Green 

functions elements of the network. In the second half of the chapter, a capacitive 

network model will be applied to investigate the onset of local electrical activa­

tion on silver nanowire films. Very recent experimental measurements show that 

certain regions of Ag nanowire films can be activated by the application of a volt­

age difference Iretween an electrode and the tip of an atomic force microscope.
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Experimental current-voltage curves show a hysteresis-like behaviour and it has 

been hypothesised that this is caused by impurities located at nanowire junctions. 

When the voltage applied is high enough, an electric field causes a breakdown of 

the impurity, much like a capacitor under high voltage bias. It will be shown how 

the resistive network model developed in chapter 3 can be elfortlessly modified to 

investigate the local activation observed in silver nanowire networks. The results 

can be directly compared with existing experimental measurements, and utilised 

to understand the phenomenology involved.

The thesis concludes with chapter 6, which contains a summary of the main re­

sults presented in each chapter, along with a brief description of possible extensions 

to this work.



Chapter 2

General Theory

In this chapter we present a description of the general methodology applied through­

out this work. The Tight Binding model is introduced and applied to describe the 

electronic structure of carbon nanotubes. This is a relatively simple model, which 

nonetheless is capable of capturing all the relevant features of the band structure 

of carbon nanotubes. In the sequence, the Green function formalism is introduced 

along with some basic properties and applications. Green functions are calculated 

directly from the Hamiltonian and are intrinsically related to the density of states 

of a physical system. The effect of a perturbation on the electronic structure of a 

physical system can be calculated with Dyson’s equation. The Green function of 

the perturbed system is obtained directly from that of the unperturbed system, 

without the need to diagonalise a new Hamiltonian. The perturbation might for 

example be the introduction of an impurity on the material, or even an interaction 

with another system. Based on Dyson’s equation it is possible to calculate the 

Green function of very large systems with the recursive method. Galculating the 

Green functions recursively, very large periodic and non-periodic systems can be 

tackled in a very efficient fashion. The Kubo transport formalism is introduced 

as our method of choice for electronic transport calculations. The Kubo formula 

provides a direct expression for the conductance of a system in terms of specific

25
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Green function elements. Finally, we show how the Green functions of a tripartite 

system can be calculated, such that the Kubo formula can be directly applied to 

calculate the conductance in carbon nanotube networks.

2.1 Electronic Structure: Tight Binding Model

The tight binding (TB) model provides a relatively simple description of the elec­

tronic structure of a physical system. A solid is described as a lattice formed by 

independent atoms separated by the lattice constant. The electronic wavefunction 

is written as a combination of localised atomic orbitals, one for each atom in the 

system. The precision of the tight binding approximation for a specific material 

depends on the length of the independent wavefunctions relative to the lattice con­

stant, more s]3ecifically, it depends on the overlap between the wavefunctions of 

neighbouring atoms. If the overlap is small enough the approximation can be quite 

accurate, providing results in good agreement with more complex electronic struc­

ture methods or experimental measurements. The tight binding approach can also 

serve as a basis for more complex electronic structure methods, which are naturally 

not so computationally inexpensive. The eigenfunctions of the solid can be written 

as a Linear Combination of Atomic Orbitals (LCAO), similar to the molecular or­

bital approach. Even though the method can be applied to non-crystalline solids, 

its most common application is in systems with translational symmetry, where the 

atomic orbitals satisfy Bloch’s theorem.

For sp^ hybridised carbon materials the TB approximation considering only n 

valence electrons provides very good results for general electronic properties. This 

is because three of the valence electrons form in-plane covalent bonds, while the 

71 orbital is perpendicular to the plane, being therefore completely decoupled from 

the others. The covalent cr-bonds have energies far from the Fermi level, and the 

only relevant electronic states in this region are the tt orbitals.
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Figure 2.1: Schematic representation of an infinite linear chain. The distance between 
adjacent atoms is given by the lattice parameter a. The tight binding parameters are 
the on-site energy cq and the nearest neighbour hopping integral -70•

In general, the tight binding method does not account for electron-electron 

interactions, but because of its simplicity and computational efhcieiicy, allowed for 

great development on the study of materials (including carbon nanotubes) within 

its limits of application. Some systems do require the inclusion of more complex 

interactions, and thus should be treated by appropriate theoretical methods. High 

precision electronic structure methods are usually limited to periodic systems of 

sizes up to hundreds of atoms, and are therefore not suitable for a description of 

heavily disordered environments, such as the carbon nanotube networks considered 

in this work.

The following sections present some applications of the tight binding method, 

from the linear monatomic chain to graphene and carbon nanotubes. It will be 

shown how the TB approximation can be applied to calculate the band structure of 

graphene considering a single orbital tight binding Hamiltonian. In the sequence, 

it will be shown how to obtain the band structure of achiral nanotubes by imposing 

appropriate quantisation of the wave vector.

2.1.1 A Simple Application: The Linear Chain

The simplest system to which one can apply the tight binding electronic structure 

method is the infinite atomic chain. Figure 2.1 illustrates the atomic arrangement 

of a monatomic chain. In spite of its simplicity, the problem illustrates all the 

important features of the tight binding method and it is included here as a brief 

preparation to the application in graphene and carbon nanotubes.
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Using Bloch’s theorem we can write the electronic eigenfunctions as a linear 

combination of localised atomic orbitals in the form

(2J)

where k is the wave vector, r specifies the atomic sites and is a normalisation 

factor. Since we are dealing with a l-dirnensional system we can write k = A;. 

The electronic states of the system, can be found by solving the time-independent 

Schrodinger equation

HM = £kH'k), (2.2)

and the energy eigenvalues are calculated through a secular equation, written in 

the form

det H -ES = 0, (2.3)

where S is the overlap matrix, which represents the mixture between atomic or- 

Iritals in different sites. Assuming a fully orthogonal Irasis set, we can write 

Sk,k' ~ ^k,k'i where 6 is the Kronecker delta, such that there is no overlap be­

tween orbitals in different atoms. The Hamiltonian matrix elements are given 

by Affc fc/ = (V^/c'I'^IVa)- III fliG tight binding approximation, each atom interacts 

only with its nearest neighbours, and the Hamiltonian can be written in terms of 

parameters defined as

(VvI^IVa) = ^0,
)0)

k' = k 

k' = k E a

where cq is the on-site potential energy and 70 is the nearest neighbour hopping. In 

its essence, 70 is intimately related to the probability of an electron hopping from 

a given atom to one of its neighbours. The parameters of a specific tight binding 

Hamiltonian can be calculated by fitting the results to experimental measurements
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or high precision ab-initio calculations at specific high symmetry points, as first 

introduced by Slater and Koster [87].

Solving the secular equation for the energy eigenvalues, we obtain the energy 

dispersion relation for the band structure of an infinite linear monatomic chain

ek = eo + 27oCos(/ca). (2.4)

This simple one band picture can be straightforwardly generalised to the case where 

the solid has more than one atom (or orbital) per unit cell. In the next sections 

we apply it for graphene and carbon nanotubes.

2.1.2 Band Structure of Graphene

The unit cell of graphene is made of two unequivalent carbon atoms (any two 

adjacent atoms in figure 1.1), thus two Bloch functions are needed to form its 

basis functions, which can be written as

(2.5)
r s=l,2

where r = Ciai -I- 0282 is the position of a unit cell, |(/)r, s) is the atomic orbital of 

atom s in the unit cell located at r, and is a normalisation factor.

Calculating the appropriate Hamiltonian matrix elements and the over­

lap matrix 5k,ks and using the secular equation we obtain the eigenvalues of 

graphene. Adopting a zero overlap matrix, we obtain symmetric tt and tt* bands, 

given by

= eo ± |7o|\/3 + 2cos(k • ai) -I- 2cos(k • a2) -I- 2cos(k • (ai — 32)). (2.6)

Expressing the lattice vectors explicitly as ai = ay and a2 = a\/3/2x -|- a/2y, and
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(a) (b)

Figure 2.2: (a)Tiglit binding band strncture of graphene. (b)Representation of the Fermi 
surface of graphene, and three high symmetry points of its first Brillouin zone.

the wave vector as k = + kyy, we obtain

= eo ± |7o|\/l + 4cos( Vikx , ki,a, , k-ijCL.
-)cos(^) + 4cos2(-^). (2.7)

In the case of graphene and carbon nanotubes, the nearest neighbour hopping 

integral has been calculated from first principle methods to be 70 = 2.7 eV [88].

Figure 2.2(a) illustrates the band structure of graphene, generated by plotting 

equation (2.7). Since we neglected all overlap terms beyond nearest neighbours, 

symmetric valence and conduction bands are obtained. In 2.2(b) we present an 

schematic illustration of the Fermi surface of graphene, composed of the six points 

in the hexagon shown. Also shown are three high-symmetry points of the first 

Brillouin zone of graphene, F, K and M.

2.1.3 Band Structure of Carbon Nanotubes

The band structure of a single wall carbon nanotube can be obtained from that 

of graphene by imposing the appropriate boundary conditions. The wave vector
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associated with the direction becomes quantised, while the wave vector in the 

direction of the translational vector remains continuous for a nanotube of infinite 

length. The quantisation of the wave vector is given by

C/i • k = 2'Kq, q integer. (2.8)

As a result the energy bands of a nanotube are a set of one-dimensional energy 

dispersion relations obtained by slicing up the 2D band structure of graphene in 

the circumferential direction.

For a (n, n) armchair nanotube the graphene sheet is rolled up along the x 

direction, and the allowed wave vectors along this direction are given bj^

271 q
k.r n = —(9 = 1, 2n),i\/^n

(2.9)

and thus, the energy dispersion relation for an armchair nanotube is given by

-9 _ ,q'K ka. . ka.
to ± |7o| V 1 ± 4cos(—) cos(y) + 4cos2(-y), 

(—TT < ka < tt), {q = 1,..., 2n).

(2.10)

Analogously, for a (n, 0) zigzag nanotube the rolling up takes place along the 

y direction. The allowed wave vectors are

271 q
ky q [q 1) •••) 2n),a n (2.11)

and the energy dispersion relation for a zigzag nanotube is

4 = eo ± |7oh/1 ± 4cos( VSk ,q7i ^ ,qTi,)cos{^) + icosH^), In n
(-^<Am<^), (g = l,...,2n).

(2.12)



Figure 2.3: Energy dispersion relations for zigzag and armchair nanotubes. The zigzag 
(7,0) presents a clear defined energy gap, whereas (9,0) behaves as a metallic nanotube. 
The (7, 7) armchair nanotube is metallic. Notice the two bands crossing the Fermi energy 
at Ep = O.O70 (dashed line).

A nanotube is metallic when any of the quantisation lines cross the Fermi surface 

of graphene shown in figure 2.2(b), and semiconducting otherwise.

On Fig. 2.3 we plot the band structure of three different nanotubes, obtained 

with the above expressions, along the direction connecting the high symmetry 

points r and X. The F point is at the centre of the first Brillouin zone and 

corresponds to /c = 0, whereas the X point corresponds to A: = ±7r/a for armchair 

nanotubes, and k = ETr/s/Sa for zigzag ones. (7,0) is a semiconducting zigzag 

nanotube, and the energy band gap is quite clear. The other zigzag nanotube, 

(9, 0) has a metallic character, as the linear bands near the F point indicate. The 

metallic (7, 7) armchair nanotube has two energy bands crossing the Fermi level, 

located at Ep = O.O70.

An alternative and intrinsically related way of analysing the electronic structure 

of a material is by looking at its density of states. This quantity can be calculated
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with the aid of Green functions. These mathematical structures are extremely 

useful in the study of several branches of theoretical physics, including, but not 

limited to condensed matter. In the next section, it will be shown how Green 

functions can be calculated directly from a Hamiltonian, and how they are related 

to the density of states. A simple formalism to estimate the effects of perturbations 

on the Green function of a system is also introduced with Dyson’s equation. In the 

sequence, we move on to show how the conductance of a system can be written in 

terms of Green functions, which is a basis for the study of electronic transport in 

diverse materials.

2.2 Green Functions

Green function methods are arguably one of the most important and versatile items 

in the toolbox of a theoretical physicist. Green functions (GFs) are extremely useful 

in the study of meso- and nanoscopic physics [89]. In mathematics, the Green 

function provides a calcnlational tool to find the solution of a linear differential 

equation. This solution generally relates a response function with its source. In 

physics, the linear differential equation is usually the Schrodinger equation, which 

describes the electronic energy states of a system.

In typical solid state physics problems, the Green function of a system provides 

direct access to its density of states, which is an experimentally observable quan­

tity. Theoretical predictions can be directly compared with experiments through, 

for example, scanning tunnelling microscopy [90]. Moreover, because the Green 

function can describe the propagation of electrons through a conducting system, 

a number of electronic transport methods have been developed based on direct 

application of Green functions [91, 92, 93, 94, 95].

Throughout this work we do not consider electron-electron interaction terms in 

the Hamiltonian, such that electrons interact only with the lattice potential. The
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associated Green functions are often referred as single particle Green functions, 

and these are the focus of what follows.

The Green function associated with a given Hamiltonian can be defined as

= lim
7)—>0 .

(E ± Z7])i — H
1 -1

(2.13)

where H is the Hamiltonian chosen to describe the system, 1 is the identity oper­

ator, and the energy E ^ E Eirj has acquired an infinitesimal imaginary part rj. 

The small imaginary part added to the energy is necessary to avoid singularities 

on the Green function around eigenvalues of the Hamiltonian. The presence of a 

non-zero imaginary part destroys the Hermiticity of the operator and consequently 

the Green Function is not an observable. The limit can be taken in a positive 

(retarded) or negative (advanced) sense, which is denoted by ±. The physical 

meaning of each limit is that the retarded Green function describes propagation 

away from the source, while the advanced Green function describes propagation 

towards the source. This distinction is particularly relevant when Green functions 

are used to calculate electronic transport on materials. For now, we can choose to 

work only with the retarded propagator.

The relation between the Green function and the density of states can be ex­

plicitly shown. Writing the Hamiltonian in a basis set of its eigenvectors |'0a) we 

have

H = (2.14)
A

Inserting this into equation (2.13), we obtain

g — lirn \iJu)---------------
E + tr] - ex

A • (2,15)
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In terms of a localised basis set |j), we can write the Green function as

{j\G\f) =
r?—^0 ^

1
E + 17] - ex

(2.16)

E + 17] - ex
exY + (V-’aI/

Setting j = j' and taking the imaginary part we are left with

-lm{j\g\j) = lim ^
+ 7] 2 •

(2.17)

(2.18)

Comparing the above expression with the definition of the Dirac delta function

d[x) = — hm
TT a-»o

(2.19)

we can write

■-lm(jl^lj) = \{j\7j7x)\‘̂d{E - ex),
TT

(2.20)

which is exactly the definition of the local density of states at site j. Furthermore, 

it is also possible to express the density of states explicitly as

p(i?) = -llm|Tr[e(£')]},
(2.21)

where Tr represents the trace of the operator. From the density of states, several 

physical quantities can be calculated such as the number of particles, total energy, 

specific heat, conductivity, among others.

2.3 Dyson’s Equation

Once we know the Green function g, associated with a given Hamiltonian ffg, we 

might want to calculate the Green function G, associated with a different Hamil-
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tonian given by Hq + V. One option is to diagonalise the new Hamiltonian, and 

use the definition of the Green function. However, there is a simpler method from 

the calculation point of view provided by Dyson’s equation. Replacing the new 

Hamiltonian into equation (2.13), we obtain

G = {E+ 11^)1-{Ho ^V) 
1

1 -1

7-1 V

1 - gv1 -1
g.

(2.22)

(2.23)

(2.24)

Which can be multiplied from the left by (i — gV), to give Dyson’s equation in its 

most common form

G = g + gVG. (2.25)

With direct application of equation (2.25) we can calculate the propagators of 

a perturbed system from those of the corresponding unperturbed system. This 

avoids the complication of having to diagonalise a new Hamiltonian. However, 

Dyson’s equation in the above form still presents an inconvenience, which is the 

presence of G on the right hand side of the equation. If the perturbation V is 

weak, then we can expand (2.25) and keep only lower order terms, such that

G = g + gvg + gvgvg (2.26)

Notice that the expansion is valid independent of the magnitude of V, but only if 

the perturbation is small we can discard the higher order terms. With this sim­

plification, the perturbed (or dressed) Green function G can be calculated directly 

from the unperturbed (or bare) Green function g, which is already known, and the 

small perturbation V.



2.3. DYSON’S EQUATION 37

Alternatively, it is also possible to solve equation (2.25) for G, as

{i-gv)G - g

G = {i-gv)-^g,

(2.27)

(2.28)

which can be replaced back in equation (2.25) such that

G = g + gv{i-gv)-^g, 

G = g + gfg,

(2.29)

(2.30)

where the scattering matrix was defined as T = y(i — gV)~^. Notice that, in 

general, even if V is energy independent, T is not necessarily so. Equation (2.30) 

also allows for the direct calculation of the dressed Green function associated with 

Hamiltonian Hq + V, from the bare Green function associated with Hq, and the 

perturbation V. Furthermore, this approach does not require the perturbation to 

be small. Several systems can be treated by combining the use of Green functions 

and Dyson’s equation. The perturbation can be, for example, an adsorbed atom 

on the system, a substitutional impurity, some sort of magnetic moment, or even 

a junction of the system with another one.

One apparent limitation of the GFs method is that the dimensions of the prob­

lem grow quickly with the number of particles involved. Consider a linear chain of 

identical atoms within a nearest neighbour tight binding Hamiltonian for example. 

For a finite chain, we can write the Hamiltonian matrix H and then numerically 

calculate its Green function g. The same is not true for an infinite system, since 

an infinite matrix cannot be defined for a numerical routine. One possible solution 

would be to consider very large finite matrices, but the problem would still be very 

computationally demanding. A solution for this problem is to apply the so-called 

recursive Green functions method. The method consists of considering the system
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Figure 2.4: The recursive method can be applied to calculate the Green function of 
a layered structure as illustrated. Each layer is defined by its Hamiltonian Hi and 
respective GF Qa. After a sufficient number of iterations the surface Green function of 
the semi-infinite structure is obtained.

as a layered structure, such that the whole iiifiuite system can be l)uilt by adding 

layer over layer, one at a time [96]. In the next section we describe the method for 

a general system and apply it to carbon nanotubes.

2.3.1 The Recursive Method

The recursive Green function method can be applied to calculate the GF of a 

large system by considering it as a layered structure. Starting from a completely 

disconnected set of layers, Dyson’s equation can be applied to connect adjacent 

layers one by one, by updating the Green function of the last connected element. 

The layers do not have to be identical, neither have the same size. All that is 

necessary is to write the appropriate Hamiltonians connecting each layer.

Gonsider a system as the one shown in figure 2.4, which is formed by an ensem­

ble of disconnected layers, each one described by a Hamiltonian Hi. The hopping 

matrices between adjacent layers is given by and the respective adjoint 

Since the Hamiltonian of the system is Hermitian we have t|i+i = A+i,i- The Green
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1 -1
function of each individual layer is given by Qu = El — H, . The propagators 

between the initial disconnected layers is naturally zero, thus Gi^i+i = Gi+i,i = 0. 

Using D5^son’s equation to connect a layer labelled i to its neighbour i + 1 we obtain

(2.31)

in a similar way we can write, with the aid of Dyson’s equation

(2.32)

which replaced in the previous expression yields

G.i-\-1 jZ-j-1 1 Gi+l,i+lti+l,iGi,iii,i+l
1 -1

(2.33)

In a similar construction, it is possible to connect layer i to its neighbour i — 1. 

The Green function of the added layer will be given by

1 -1
G'i—l,x—1 1 Gi—l,i—lti—l,iGi,iti,i—l Gi—l^i—1- (2.34)

Equations (2.33) and (2.34) correspond to adding extra layers to the right hand 

side and to the left hand side of the original layer labelled i, respectively. Moreover, 

each equation gives the Green function of the element at the end, or surface, of 

the growing structure. With this interpretation in mind, after n layers have been 

added we can re-cast both equations as

= i “ GoilRS^itRL
1 -1 Go, (2.35)

and
Cn + l __

—
i “ GotRLS^ilR

-1
Go, (2.36)
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where Qq is the Green function of a single isolated layer. Equations (2.35) and 

(2.36) are recursive relations for the surface Green function of a structure grown 

by connecting independent layers. In the limit surface Green

fnnctions converge to that of a semi-infinite structure. These relations are par­

ticularly useful in electronic transport calculations where it is necessary to have 

semi-infinite electrodes which mimic particle reservoirs.

Using the recursive method, and once again Dyson’s equation, it is also possible 

to calculate the Green fnnctions of an infinite structure. All that is necessary is to 

nse Dyson’s equation to connect two semi-infinite surface Green functions Sl and 

Sa- The resulting expression for the propagator of the infinite structure is

Gii — 1 — SutRiSitlR
-i -1 ,S. (2.37)

As an illustration of the power of the recursive method, we apply it to calcu­

late the Green function of pristine and doped carbon nanotubcs, in the following 

section.

2.3.2 Application to Carbon Nanotubes

Applying the recursive Green function approach, we can calculate the Green func­

tion of infinite carbon nanotubes. Starting with a unit cell with 4n atoms, it is 

possible to write the unit cell Hamiltonian Hq as a 4n x 4n matrix, from which 

the Green function matrix is calculated directly. The hopping matrices between 

adjacent unit cells connect the appropriate atoms in each side, and can also be 

written as 4n x 4n matrices. Equations (2.35) and (2.36) are applied until each 

one converges to the semi-infinite nanotube propagators. Finally, the Green func­

tion of the infinite carbon nanotube is calculated from equation (2.37). Besides 

having the on-site propagators for each of the 4n carbon atoms in one unit cell, the 

calculated Green function also provides the propagators between any two atoms in
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Figure 2.5: Green functions of pristine nanotubes calculated with the recursive method. 
Real and imaginary parts show singularities at specific energy values. The height of 
the spikes is inversely proportional to the small imaginary part rj. For clarity we set
T? = 10-^.

the same unit cell.

Figure 2.5 shows the energy dependence for real and imaginary parts of the 

on-site propagators for an armchair (5, 5) nanotube and a (6, 0) zigzag nanotube. 

Real and imaginary parts of the propagators show a series of singularities at specific 

energies. The spikes in the imaginary part are directly related to the Van Hove 

singularities characteristic of the density of states of ID systems.

It is also possible to apply the recursive method to calculate the Green function 

of non-pristine carbon nanotubes. For example, some unit cells could contain 

different types of impurities adsorbed to one or more carbon atoms, and even have 

carbon atoms replaced by foreign elements. The recursive procedure described 

above is still applicable, as long as one can write the Green function of each unit 

cell, and the appropriate hopping terms between adjacent cells. In this fashion it 

is possible to study electronic transport across heterogeneous systems, with any 

concentration of impurities desired. The conductance is calculated from specific
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Green function elements by direct application of the Kubo formula, as described 

in the next section.

2.4 Kubo Formula for Conductance

The frequency-dependent conductance of a system at zero temperature can be 

obtained, within linear response theory, from the Kubo formalism [97], Specifically, 

the Kubo formula for the conductance is given by the expression [98]

r(cu) = - / dE J]] \{k\I\k')fd{E + hu;-e{k'))S{E-e{k)), (2.38)
e{k)<EF<e{k’)

UJ

where / is the current operator, uj is the frequency, and E is the energy. The sum 

over k, k' is restricted to the eigenstates satisfying e{k) < Ep < ^{k'), where Ep is 

the Fermi energy. In order to perforin actual calculations, r(ct;) can be expressed 

in terms of Green functions. Following the approach of Mathon et ah [99], it is 

possible to write the current operator I as the rate of charge crossing a surface S 

enclosing an arbitrary volume V. From Heisenberg’s equation we can write

(2.39)
iev j^v

where the sum over i extends over all sites enclosed by S and the sum over j 

extends over all the sites outside the region.

Let us assume the volume V includes a semi-infinite part of a system, extending 

from the left as far as plane 0. The rest of the system then extends from plane 1 

to infinite on the right. In this way, there is an imaginary “cleavage plane” located 

between planes 0 and 1 of the system. This cleavage plane does not necessarily 

correspond to a physical separation of the infinite system. It is just a convenient 

way to define a surface through which charge will flow. Assuming that each plane
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only interacts with its nearest neighbours, we can write the current operator as

N
^ X] ^ 1^’ “) ^1 - |1> a)tia,O6(0, b\ } , (2.40)

a,6=1

where |0, a) represents an arbitrary atom a in plane 0, and |1, b) an equally arbitrary 

atom b in plane 1. The sum is over the total number of atoms in each plane, N.

Once we have defined the current operator, it is desirable to remove the restric­

tion in the sum over eigenstates in equation (2.38). This can be accomplished with 

the aid of the Heaviside step function, defined as

e{x)
X < 0

0, X > 0

We can then write

^ ^ |(fc|/>')te(c-(i) - Ef) (1 - 0{e(k') -Ef + fia.)l,
k,k'-Ak)<EF<e{k') k,k'

(2.41)

Furthermore, using equation (2.40) we can expand the term with the current op­

erator as

mm\^ =

X
N

N

.a,6=l

{k'\0, c)toc,id(l, d\k) - (/c'|l, c)tic,od(0, d\k)
,c,d=l

(2.42)

Expanding the product we obtain

2 ^
mf\k')\^ = -^ mO,a)to^^,,{lJ,\k'){k'\0,c)tocM{^,d\k)

a,b,c,d=l

- (/.'|0, a)toa,ib{l, b\k'){k'\l, c)tic,od{0, d\k)

— (A;|l, a)tia,o6(0, 6|A:')(A:'|0, c)toc,id(l) d\k)
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+ (/i:|l, a)^ia,ob(0, b\k') (fc^ll, c)iic,orf(05 <^|^)] (2.43)

We can now address the delta functions in equation (2.38). It has been shown in 

section 2.2 that the imaginary part of the on-site Green function is a delta function. 

Considering the advanced and the retarded Green functions, we can write

G- -G+ = 2tr]G^G-. (2.44)

From equations (2.13) and (2.15), we get

G“-G+ =
E - £(A'))’ - 17^ 

2ir,'^\k)6(E ~ 4k)){k\,

{k\ (2.45)

(2.46)

and we can define

= Tv^{t\k)S{E - e{k)){k\j).

(2.47)

(2.48)

Replacing equations (2.43) and (2.41) into (2.38), and using the relation in

(2.48), we get

r(.) = M- 'W j J dE e(e{k) - )11 - e(£(k) -Ef + M
OU \ ^

X Tr[G'io(£’)toiG'io(-E’ + hu;)toi — Goo(£^)^oiG'ii(£’ +

— Gii{E)tioGoQ{E + fku')toi + Goi{E)tioGoi{E + fku)tiQ] (2.49)

The trace extends over all intra-plane degrees of freedom, and includes individual 

atoms, atomic orbitals, spin states, and any other degrees of freedom present in 

the system. Because of the presence of the Heaviside functions, the integration is
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straightforward. In the limit a; ^ 0 we obtain the DC conductance as

r((x; — 0) — G-io{Eir)tQiGio{Ep)to-i — Goo{EF)toiGniEF)tio

— Gu{EF)t-ioGoo{EF)toi + Go-i{Ef)tioGoj{EF)tio], (2.50)

which can be further simplified to read [99]

4e2r(cu — 0) — Re |Tr[ Goo(£'F)foiGii(£'F)tio ^ foiG’io(£'F)foiG'io(-E’F) ]| (2-51)

Equation (2.51) expresses the Kubo formula in terms of Green functions of adjacent 

layers of a generic system. The choice of adjacent layers is arbitrary, and in general, 

they are chosen far from major scattering regions. Fisher and Lee [100] have 

shown that in the DC limit, the Kubo formula and the Landauer-Blittiker formulas 

are equivalent, by relating the Transmission Matrix of the later with the Green 

functions in equation (2.51). Finally, it is worth emphasising that equation (2.51) 

is quite general and can be applied to calculate the zero-bias conductance along 

several types of systems, including carbon nanotubes. In the following section we 

describe the procedure for the case of pristine and doped carbon nanotubes.

2.4.1 Application to Carbon Nanotubes

As we have mentioned in chapter 1, pristine metallic carbon nanotubes are ballistic 

conductors, suggesting that typical values for the mean free path of the conduction 

electrons are larger than the length of the system. These conduction electrons 

travel along the nanotubes being weakly scattered, and the material has a very low 

resistivity. It is possible to illustrate the use of the Kubo formula by applying it to 

calculate the conductance spectrum of pristine and even doped carbon nanotubes.

First, the recursive method is applied to calculate the advanced and retarded 

surface Green functions of pristine infinite nanotubes. The surface Green functions
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are denoted by 5^ and S^. Next, using Dyson’s equation to connect both sides, 

we get the connected system Green functions

Gt

G%

GL

= ( 1 SiiLES^tRL^
L 1

i-s^UsthRY Si,
= S] lipL 1 - SfiiRSitRL ) sf = SitRiGl

-1
(2.52)

The terms and G^ are the Green functions of an infinite carbon nanotube, 

corresponding to adjacent unit cells separated by an imaginary “cleavage” plane. 

The last equation in (2.52) gives the advanced and retarded propagators between 

the adjacent planes. Finally, we obtain the conductance of the system by applying 

the Kubo formula in the form

r(B)= (^)Re{Tr G l^lrG RtRL — tiRGnitifiGiiL (2.53)

where we recall the auxiliary Green functions are defined as

G = 2^ G- -G^ (2.54)

To calculate the conductance along a non-pristine carbon nanotube it is still 

possible to follow the same procedure, albeit at least one extra step is required. 

Once si and S^ have been calculated for pristine semi-infinite structures, we can 

use the add layer procedure, developed from Dyson’s equation in the recursive 

method section, to include non-pristine unit cells in one (or both) sides. After all 

the defective sections have been added to the nanotube, and the surface Green 

functions updated, we resume to the applications of (2.52) and (2.53). In general, 

a few more pristine unit cells are added after the surface before calculating 

such that the conductance is calculated far from the major scattering region.

Following the above description the conductance along pristine and doped car-
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Figure 2.6; Zero-bias conductance along pure (black) and doped (red) metallic carbon 
nanotubes calculated using the Kubo formula. Pristine metallic tubes present two con­
ducting channels at the Fermi level Ejr = O.O70, which corresponds to a conductance of 

The presence of a single adsorbed atom can reduce the conductance along the 
nanotube on a wide range of energies, as shown by the red solid line.

bon nanotubes is calculated. The doped nanotube has an impurity adsorbed to one 

of the carbon atoms on its surface. Figure 2.6 shows the conductance spectrum for 

the pristine and doped nanotubes considered. The presence of impurities or defects 

in nanotubes can affect the conductance dramatically. Vacancies or substitutional 

impurities are seen by conduction electrons as scattering centres, reducing the con­

ductivity of the nanotubes [101]. Adsorbed impurities (single atoms or polymer 

chains) change the hybridisation of the carbon atom to which they are attached 

from the usual sp^ to sp^, which causes them to interfere with travelling electrons, 

particularly at resonance energies of the adsorbed structure [102]. The considered 

adatoms have an on-site energy e = O.hyo, being above the Fermi level of the nan­

otubes by the same amount. It can be noticed that, for these metallic tubes, the 

adatom can reduce the conductance by one quantum (Fq) near the Fermi energy of 

the nanotube, leaving only one ballistic conducting channel available for electronic
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Figure 2.7: Schematic representation a physical system divided in left and right leads 
{L, R), and a central scattering region (C). The conductance through the system can be 
calculated with the Kubo formula.

transport. This phenomenon has led to the proposal of using carbon nanotubes 

as gas sensors, since certain molecules could easily be adsorbed at the nanotube 

surface [103].

Finally, the Kubo formula can be used to calculate the conductance of systems 

other than long layered structures. Since we are particularly interested in studying 

charge transport across disordered nanotube networks, we have to adapt the Kubo 

formalism to these systems. In the next section we show how the conductance 

of a tripartite system can be calculated directly from the Kubo formula, with an 

appropriate choice of Green functions.

2.5 General Method for Conductance

The Kubo formula can also be used to calculate the conductance of a tripartite 

system. In this case, a system is divided into semi-infinite leads and a central 

scattering region. The advantage of separating the system in three parts is that 

two of these - the leads - can in general be treated in a simpler way than the third 

one - the central scattering region. This is the standard construction implemented 

today in electronic transport calculation methods applied to meso- and nanoscopic 

systems. This general formalism was first introduced by Caroli, Comberscot and 

collaborators in a series of elegant papers in the 1970’s [104, 105, 106, 107].

Figure 2.7 shows a schematic representation of a tripartite physical system com­

posed of semi-infinite leads (L,R) and a central scattering region (C). In general.
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the central region might be a single atom; a molecule; a portion of a carbon nan­

otube or a nanowire; or even a complex device such as an array of molecules or 

carbon nanotubes. The general procedure consists of starting from a completely 

disconnected system and work with some type of Dyson’s equation to connect each 

part.

In order to calculate the conductance of the system shown in figure 2.7 with 

the Kubo formula, it is necessary to have the Green functions of the connected 

system on each side of the interfaces between L and C, or C and R. Starting from 

a completely disconnected system, we can write the Green functions as a block 

matrix
^ h 0 0 ^

(2.55)0 0 

y 0 0 gn J

where each term in g is a matrix itself. These terms represent the Green functions 

of each of the three parts of the system, when disconnected from each other. Typ­

ically, ql and gn are surface Green functions of a semi-infinite structure, which 

physically represents an electrode or lead, and is calculated with the recursive 

method.

The connections between separate parts of the system are introduced through 

hopping matrices connecting adjacent parts. The connecting Hamiltonian can be 

written as

V =

(

\

0 Vlc 0
vie %C 

0 ^CR 0

(2.56)

/

where again each term is a matrix itself. The matrix Vec accounts for the possi­

bility of the central scattering region being composed of individual objects, as is 

the case in nanotube and nanowire networks.

The Green function of the whole interconnected system is calculated with
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Dyson’s equation, as G = (1
-1

g, and yields

G =

(

\

Gl Glc 0 

Gcl Gc Gcr 

0 Grc Gr j

(2.57)

The above described procedure has to be done for retard and advanced Green 

functions. Finally, the conductance can be directly calculated from the Kubo 

formula by using the respective Green functions of the fullj^ connected system. 

Similarly to the case of a single carbon nanotube, the conductance of the tripartite 

system, in terms of Green functions is also given by

r(£’) = ( ^ 1 Re <! Tr G LtLRGRtRi — tiRGRitiRGai (2.58)

where
1 TaG- - G^ (2.59)

The procedure described in this section is analogOTis to the one usually im­

plemented in conjunction with the Landauer-Biitiker formula [91, 108]. However, 

the methodology presented here has one advantage over the later because it does 

not require the calculation of the central region’s Green function directly from the 

Hamiltonian. This advantage will become particularly clear in chapter 4 when 

we show how the Green function of an interconnected array of nanotubes can be 

written from just a few elements of an individual nanotube’s propagators.

2.6 Summary of the Chapter

The general theoretical formalism applied throughout this thesis work has been 

introduced. The electronic structure of individual carbon nanotubes is described
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within a single orbital tight binding Hamiltonian. In spite of its simplicity, this 

semi-empirical method is capable of capturing all the relevant information regard­

ing the electronic band structure of nanotubes. The Green functions formalism was 

also introduced, which provides a direct and transparent way to treat a plethora of 

meso- and nanoscopic systems. In combination with Dyson’s equation, the recur­

sive Green function method was introduced, and applied to calculate the propaga­

tors of infinitely long carbon nanotubes. The Kubo transport formalism was also 

introduced and an expression for the conductance in terms of Green functions was 

derived. The conductance spectrum of pristine and doped carbon nanotubes was 

calculated by a combination of the recursive GF method with the Kubo formula. 

Finally, the chapter concluded with a simple generalisation of the Kubo formula, 

such that it can be directly applied to tripartite systems. This hnal development is 

a fundamental part of the investigation of electronic transport in carbon nanotube 

networks, presented in chapter 4.
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Chapter 3

Macroscopic Modelling of Carbon 

Nanotube Networks

3.1 Introduction

Carbon nanotubes (CNTs) have a typical diameter of « 1 nin, while their length 

is roughly 1 /rm. Because of their high aspect ratio, defined as the length-to- 

diameter ratio, CNTs are generally considered as one-dimensional conductors. The 

high aspect ratio of individual carbon nanotubes is also present in CNT bundles, 

which are held together by van der Waals interactions, and can extend in length to 

« 1 cm. Films made of carbon nanotube networks can be produced by deposition 

of solutions containing dispersed CNT bundles [54, 84]. A typical film produced by 

this technique is shown in figure 3.1, from which one can observe the small diameter 

of nanotubes and bundles, as well as the complex topology of the networks formed. 

The conductivity of CNT films can be measured by depositing metallic electrodes 

on the sides of the films, and employing a usual two probe method.

Modelling a complex structure such as carbon nanotube network films is a 

huge challenge. First, a successful model needs to account for the disordered na­

ture of the arrays formed by individual nanotubes and bundles. Moreover, it is

53
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Figure 3.1: Micrograph of a typical carbon nanotube film produced by deposition of a 
solution containing dispersed nanotube bundles. Image is courtesy of J. N. Coleman’s 
research group, ’Frinity College Dublin.

also necessary to account for the electronic coupling between individual nanoscopic 

components throughout the films. The geometrical aspects of individual CNTs and 

bundles call for the development of a model where each component is mimicked by 

a finite rigid rod. Furthermore, the disordered arrangements observed in the mi­

croscopy image of figure 3.1, is a perfect candidate to the application of percolation 

theory, among other methods developed for the study of complex systems.

Nanotube films can be modelled with the aid of standard stick percolation 

models, where rods of finite length and specified aspect ratio represent individual 

CNTs and bundles. This approach is very well suited to investigate the formation 

of interconnected paths along the networks, and this process can be analysed in 

detail. The study of percolation models by far predates the current interest on 

nanoscale systems, as well as nanotechnology itself. Carbon nanotube network 

models benefit from well established percolation studies, which can be extended 

and adapted to the particular case of interest.

Besides the geometrical structure of carbon nanotube network films, it is also 

necessary to understand how electronic transport takes place across the networks.
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Since their first reported observation [2], carbon nanotnbes have attracted much 

attention from the scientific commnnity. One of the reasons for the huge interest on 

CNTs comes from their remarkable electronic transport properties, namely the fact 

that electrons can move along the length of an individual nanotube with very low 

resistance [6, 88, 109]. The remarkable ballistic transport characteristic of CNTs 

has almost instantaneously made them a wonder material for nanoscale electronic 

applications [9, 14, 15, 16, 110, 111].

However, large scale devices based on carbon nanotubes, such as CNT-based 

flexible electronic displays, cannot rely on ballistic charge transport alone. Despite 

the advances on fabrication methods for CNTs, the length of individual nanotubes 

and small diameter bundles is still limited to about 1 cm. Moreover, the production 

of pristine carbon nanotubes is extremely difficult to achieve, and the presence 

of impurities can have severe adverse effects on the conductance of nanotubes 

[6, 22, 88, 101, 112].

Electronic transport between individual nanotubes has been studied by exper­

imental [73] and theoretical [75] works. It has been found that the resistance at 

CNT junctions is considerably higher than the intrinsic resistance along individ­

ual nanotubes. This is caused by the low probability of electrons tunnelling from 

one nanotube to another, which is a direct consequence of the weak interaction 

between CNTs through van der Waals forces. It is not hard to extrapolate the 

junction dominated resistance from a situation involving a single crossing to the 

case of a disordered network comprised of several thousand junctions per unit vol­

ume. This is precisely the case for carbon nanotube films. Even though it is 

possible to use high quality, high purity CNTs to produce thin films, the overall 

network resistance is dominated by the tunnelling barriers located at the junctions 

formed by nanotubes and bundles.

From a macroscopic point of view, it is possible to model the tunnelling barrier 

at junctions as Ohmic resistances. In practice, both the tunnelling barrier and the
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resistor have the effertive function of opposing the flux of electrons at that specific 

point. Therefore, a carbon naiiotnbe film can be modelled as a disordered network 

of resistances, also known as a resistive network. In these networks, nodes represent 

perfect conductors and vertices are represented by Ohmic resistors. The resistance 

between arbitrary nodes of regular (as opposed to complex) resistive networks has 

been investigated by many authors over the years [113, 114, 115, 116, 117, 118, 119], 

and different methodologies have been developed to address the problem. However, 

resistive networks with a complex structure, such as scale-free or random graphs 

[120] for example, have not received the same degree of attention.

In this chapter we present our contribution to the study of electronic transport 

on carbon nanotnlje network films, which is a coml)ination of rigid rod percola­

tion models with the methods developed for the study of resistive networks. We 

begin by investigating how the density of the network is related to the junctions 

between individual rods, as well as the connections with the metallic electrodes, in 

section 3.2. The relation between network connectivity and concentration of con­

ducting rods is very useful in the analysis of how the network morphology affects 

the conductance of nanotube films. In section 3.3 we review previous methods de­

veloped to calculate the equivalent resistance between arbitrary nodes of resistive 

networks, and present our own method, along with some applications on regular 

square lattices. Finalty, in section 3.4, we apply our equivalent resistance calcu­

lation procedure to complex disordered networks of conducting rigid rods. The 

simulation results presented in section 3.4 are compared with experimental results, 

and present a remarkable qualitative agreement with studies of resistance on real 

carbon nanotube films. This chapter concludes with a brief summary in section 

3.5.
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3.2 Random Networks of Finite Rods

The complex disordered structure of carbon nanotube films can be modelled by 

standard geometric percolation models. Single nanotubes and small diameter bun­

dles are modelled by finite-sized rigid rods of specific length and diameter. The 

structure of the film itself can be represented by a 3D box, which encloses the 

disordered array of rigid rods. It is important to defined a box with appropriate 

dimensions, such that most rods are located inside the box. Also, it is important to 

attempt to reproduce other aspects present on the real systems we aim to simulate, 

such as the placement of metallic electrodes on the sides of the films for electrical 

resistance measurements.

Once the aspect ratio of the rods, defined as length-to-diameter ratio, and the 

dimensions of the enclosing box are defined, it is also necessary to specify the total 

number of rods inside the box, i.e. the number of nanotubes in the film. The 

total number of rods considered, as well as the dimensions of the box, determine 

the density of the film. The density of a specific CNT network film can also be 

expressed in terms of its volumetric fraction occupied by nanotubes. The volume 

fraction of a typical laboratory produced carbon nanotube film is related to the 

concentration of CNTs in the solution used to produce the film, and to the volume 

of solution used. In the laboratory, the volume fraction can be calculated directly 

from the known density of carbon nanotubes and the measured density of the 

film. In our simulations, the volume fraction depends on the total number of rods 

distributed inside the box, and can be directly computed for each configuration of 

rods generated.

In our computer simulations, each rod is placed in a random location inside 

the box, and is oriented in a random direction defined in a 3D space. By choosing 

random orientations for the rods we aim to compensate, at least partially, for their 

lack of flexibility, as mentioned in chapter 1. Individual rods are allowed to overlap
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with other rods, and each rod might also have part of its volume located outside 

the box. Each ensemble of randomly positioned rigid rods gives rise to a random 

complex network of interconnected 1-dimensional elements, capable of capturing 

the most important morphological features found on carbon nanotube films. Figure 

3.2 shows a typical configuration generated with N = 300 identical rigid rods of 

length-to-diameter ratio equal to 20.

Figure 3.2: Illustrative representation of rigid rods randomly placed inside a rectangular 
box. There is a total of = 300 identical rods inside the box, each with aspect ratio 
e/D = 20.

It is possible to map the interconnections between rods throughout the network 

by considering the centre-to-centre distance between each pair of rods, illustrated 

in figure 3.3. The centre-to-centre distance is first calculated at the end point of 

the rods, and then it is minimised through a numerical procedure. If the smallest 

centre-to-centre distance between a given pair of rods is smaller than their diameter, 

then this pair is said to be connected. By calculating the distance between each 

possible pair of rods in the network we map all the connections present in the 

network. Furthermore, following this procedure we obtain the list of contacting 

“neighbours” of each rod. In general, each rod will have an arbitrary number of 

such neighbours, whereas the number of connections (neighbours) per rod follows
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some probability distribution with a well defined mean. The average number of 

connections per node defines the connectivity of the network. Networks with a low 

density of rods, i.e. a small volume fraction, are expected to have low connectivities, 

while networks with a large volume fraction will have high connectivities. In other 

words, the density of junctions in a network film depends directly on its volume 

fraction.

Figure 3.3: Schematic representation of the centre-to-centre distance between two rigid 
rods, dec- Starting from the centre-to-centre distance at the end of the rods, the distance 
is minimised though a numerical procedure. If the minimum value of dec is smaller than 
the diameter of the rods, than these rods are deemed connected.

Since we are interested in simulating electronic transport across random net­

work of conducting rods, we have to include the placement of metallic electrodes in 

our model films. Contacts to electrodes are crucial to electronic transport studies, 

and we aim to address this issue as accurately as possible. In general experimental 

realisations, metallic electrodes are placed at opposing ends of a film, and the re­

sistance is measured between these electrodes in a usual two probe method. In our 

model, the electrodes are modelled by two opposing faces of the 3D box. In other 

words, we consider metallic electrodes to be located on two opposing faces. Any 

rod crossing one of the designated electrode faces is considered to be in contact 

with that specific electrode, and we map which of the rods in the network are in 

this situation.
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3.2.1 Simulation Details

In the simulations, individual carbon nanotubes are represented by rigid rods of 

length i and diameter D, with a well defined aspect ratio given by ^/D. The 

geometry of the film itself is mimicked by a rectangular cuboid, whose dimensions 

are defined in terms of the rod length i. In all the results reported here, we have 

considered the box to have dimensions given by 2ix2lxFor each rod, a random 

position for one of its ends is generated inside the box, while the position of the 

other end is determined by the orientation of the rod. The total number of rods 

considered in each film is N^ and along with i and D, these are the parameters of 

the computer simulations.

We consider network films where the orientation of the rods is chosen at ran­

dom from all the possible directions in a 3D space. The volume fraction of each 

configuration is calculated by summing up the volume occupied by all rods. A 

particular rod can have one of its endings located outside the box, and the portion 

located outside of the film is not considered when calculating the volume fraction. 

Rods are allowed to overlap with other rods, which might lead to an overestimation 

of the volume fraction, especially in the case of very dense networks. However, this 

possible overestimation of the volume fraction does not affect the morphology of 

the resulting networks.

Electrodes are located on the 21 x 2^ faces of the box, and rods crossing one of 

those faces are considered to be connected to that electrode. The box is defined 

with a separation large enough to avoid an individual rod being connected to both 

electrodes. Furthermore, we choose the box dimension such that the minimum path 

between the electrodes requires visiting at least 4 individual rods. This particular 

length was chosen in order to prevent short circuits between the electrodes.

For a fixed number of rods, and a box of fixed dimensions, a very large number 

of configurations can be generated by randomly distributing the rods. Therefore, 

a large number of independent configurations must be considered, and a careful
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statistical analysis of the results must be carried out. All the results reported in the 

next section are obtained by averaging a large number of independent realisations, 

without discarding any configuration.

In order to determine which pairs of rods are connected we have to calculate 

the minimum distance between each rod and all the rods around it. Furthermore, 

identifying which rods cross the electrode faces also requires testing the criteria 

for all the rods close to the respective faces. Both procedures can be very time 

consuming from the computational point of view, and the computation time grows 

very rapidly with the total number of rods considered. In all of our simulations we 

have considered networks with a maximum of 1800 individual rods.

3.2.2 Results

In this section we present results for the dependence of the film volume fraction, V}, 

as well as the average connectivity per rod, (a), and the number of rods connected 

to the electrodes (per unit area), {de), with the parameters of the model: N, £ 

and D. In general, the calculated quantities are expected to depend on the specific 

value of the parameters, however, whenever possible we intend to obtain universal 

relations for the network properties. Such universal scaling relations will provide 

a way to directly compare simulation results with experimental measurements, as 

well as combining both, in order to estimate quantities that cannot be directly 

measured in a laboratory.

We begin by analysing the relation between the total number of rods and the 

volume fraction of the resulting networks. As previously mentioned, nanotube 

network films can be produced by filtration of a solution containing dispersed 

CNTs. Experimental studies have found a direct relation between the volume of 

solution applied to the filter and the density (volume fraction) of the resulting
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Figure 3.4: Dependence of the volume fraction on the total number of rods. Solid lines 
are given by equation (3.2), and data points are simulation results. Error bars are smaller 
than symbol sizes.

network [77]. The volume fraction can be directly calculated from its definition,

ktii5es ^'^tube
Vj =

film Vfifilm
(3.1)

where Vtubes is the total volume occupied by nanotubes, N is the number of tubes, 

Vtube is the volume occupied by a single nanotube, and VfUm is the total volume 

of the film. Notice that by taking Vtubes = Nvtube we neglect any overlap between 

individual tubes and assume that all nanotubes lie within the volume of the film. 

In terms of the simulation parameters Vtube = /A and VfUm = 16£^, such that 

the volume fraction can be written as

V,= L(L\ N, 
^ 6A\D (3.2)

Figure 3.4 shows the relationship between the volume fraction and the total number 

of rods randomly placed inside the film. The data is shown for rods of different 

aspect ratio, which is controlled by adjusting the diameter of the rods. The solid
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lines are given by equation (3.2), for the respective aspect ratio, while each data 

point is an average over several independent configurations simulated, with error 

bars smaller than symbol sizes. The difference between the analytical expression 

represented by the solid lines and the simulation data is a consequence of the 

assumptions made by setting Vtubes = Nvtube on the derivation of equation (3.2), 

while on the simulations Vtubes is directly computed by summing up the volume 

occupied by each cylinder inside the box representing the film and ignoring any 

portions of a rod laying outside of the film, ff two rods overlap at some region inside 

the film, the overlapping volume is taken into account twice at the calculation of 

Vtubes in the simulations, but this double counting is only significant at very high 

densities. The simulation data shows a clear linear dependence of Vf with N, 

in accordance with the analytical derivation. This is an intuitive result from a 

geometrical point of view. Nonetheless, it is also in agreement with experimental 

observations [77], where the number of nanotube in the film is controlled by the 

volume of solution filtered.

Since we increase the aspect ratio of the rods by decreasing the diameter while 

not changing the length, rods of higher aspect ratio have a smaller individual 

volume when compared to rods of lower aspect ratio. Because of this, a larger 

number of rods of higher aspect ratio is required to obtain a network with the same 

volume fraction one would get with a smaller number of lower aspect ratio rods, as 

can also be seen in figure 3.4. The existence of such a direct relation between the 

total number of rods and the volume fraction of the networks, provides a direct way 

of comparing and combining simulation results with experimental measurements. 

On a real CNT film there are several thousand individual nanotubes, whereas 

computational resources limit simulations to only a few hundreds of rods. However, 

as we shall demonstrate, morphological properties of the networks, such as the 

connectivity and the density of junctions, are directly related to the volume fraction 

of the films, which connects experiment and simulation at least on a qualitative
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Figure 3.5: Top: Average network connectivity as a function of volume fraction. Bottom: 
Universal scaling of the connectivity with Vj x i/D. Error bars are smaller than symbol 
sizes.

level.

We now proceed to analyse how the connectivity of the network depends on the 

concentration of rods. For a film of fixed dimensions, containing rods of identical 

aspect ratio, it is natural to expect that the average connectivity will increase 

with the volume fraction. There are more rods inside a finite volume, therefore 

more rods will be in contact. On the upper panel of figure 3.5 it is shown how 

the average connectivity per rod (a), increases with the volumie fraction V}, for 

each aspect ratio considered. From the figure it is also clear that at a fixed volume
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fraction, networks composed of higher aspect ratio rods have a higher connectivity. 

This is also in accordance with experimental observations that hhns made of high 

aspect ratio bundles have lower overall resistivity [84] due to a higher number of 

connections throughout the network. We return to this point in section 3.4, when 

we discuss the electrical conductivity of disordered resistive networks.

Based on a rod percolation model similar to the one considered here, a purely 

geometric argument has been used to propose that the mean number of junctions 

per nanotube (or bundle) is expected to behave as [121]

(a) = (3 X V, {oy (3.3)

where /? is a constant independent of the nanotube (or bundle) diameter and length. 

Also, Vf is the volume of the film occupied by nanotubes, {£) is the average bundle 

length, and (D) is the average bundle diameter. In order to verify if our model 

satisfies this hypothesis, we plot the calculated average connectivity as a function 

of the scaled variable Vf x (./D, in the bottom panel of figure 3.5. Remarkably, 

our results agree very well with the predicted relation, for all the aspect ratios 

considered. Besides providing a direct verification of equation (3.3), we extract 

from the linear least-square fit on the bottom panel of figure 3.5 the value of the 

constant /? = 2.14 ±0.03, which is independent of the other factors in the equation.

From the average connectivity (a), and the volume of a film it is possible to 

define the density of junctions Iry

N.j = {a)N 1 (3.4)

which is just the total number of connections in the network, divided by the total 

volume of the film. The factor of 2 in the equation accounts for double counting 

of connections. By using the calculated value of p it is possible to estimate the 

density of junctions of real films, which in turn provides valuable information
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relating to electrical conductance in network films. This information can be used, 

for example, to predict the resistivity of films made with nanotnbes provided by 

dilferent commercial suppliers and different processing methods [76, 122]. We shall 

return to the relation between junction density and network conductance in section

3.4.

It is also instructive to analyse the probability distribution of connections per 

rod in the network. Figure 3.6 presents the distribution for the probability that an 

arbitrary rod wall have a connections. The data is obtained by considering several 

random configurations with rods of aspect ratio IjD = 10. The vertical solid lines 

indicate the calculated average connectivity (a) for each volume fraction specified. 

From the data it can be seen that the average number of connections per rod 

increases as the concentration of the network is increased, while the probability 

distribution becomes broader. The broadening of the distribution indicates that 

as the density of the networks increases, they actually become less homogeneous.

Another important factor to be extracted from our computer simulations is the 

number of elements connected to the electrodes. In figure 3.7 (upper panel) we 

show how the total number of rods crossing the electrode faces increases with the 

volume fraction of the film. Similar to the average connectivity of the network, the 

actual increase of (o^) with Vf depends on the aspect ratio of the rods, albeit in 

this case the dependence is more pronounced. In order to be of use when compared 

to experimental data, it is desirable to find a universal scaling dependence for (aE) 

in terms of the parameters Vf, I and D, similar to the one in equation (3.3). 

Following an empirical approach, we find that the relation

(as) — /?£ X C/ f—j , (3.5)

provides an excellent collapse of the data on a straight line, as showm on the 

bottom panel of figure 3.7. Moreover, the proportionality constant is found to be
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Figure 3.6: Connectivity probability distribution for random networks of finite rods with 
aspect ratio i/D = 10, and indicated volume fraction. Vertical solid lines indicate the 
calculated average connectivity. Each data point is an average over 100 independent 
configurations.

f3E = 1.35 ±0.07.

In practice, equations (3.3) and (3.5) can be used to provide numerical values 

for the connectivity of random networks of rigid rods, as well as the number of con­

nections to electrodes, for any set of parameters chosen. The expressions provided 

for (a) and (a^) can be used in combination with experimental data in order to es­

timate physical properties of real carbon nanotube films. For example, the density 

of junctions of a laboratory produced film can be estimated, providing valuable 

information about the inter-tube connections. Finally, equations (3.3) and (3.5) 

can also be coupled with electronic transport models to provide calculations for 

electrical resistance (or conductance) in random network films. In the next sec­

tion we present a methodology to calculate the resistance of a network composed 

of Ohmic resistors. This methodology is later coupled with the results presented 

above, to provide calculations for the resistance of nanotube films from a purely
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Figure 3.7: Top: Number of rods connected to electrodes as a function of the volume 
fraction. Bottom: Universal scaling of the electrodes connectivity with Vf x

classical point of view in section 3.4. In chapter 4, the results presented in this 

section are coupled with a quantum transport model, providing a more realistic 

microscopic picture of electronic transport across nanotube network films.

3.3 Resistive Networks

In the particular case of films made of carbon nanotubes, the resistance of the 

nanotubes itself is negligible when compared to the resistance at the junctions. 

In this case, it is possible to model carbon nanotube films as networks of perfect



3.3. RESISTIVE NETWORKS 69

—Wr-
0,1+1)

—

—VA^
0-1,1) 0,1) 0+1,1)

>VA^>-^VA—

—VAr- -AV^ ^^VAr- -AW—

A^V- -A^V- ^VA—
R

L

Figure 3.8: Schematic representation oi a Lx L square lattice with resistors Rq between 
adjacent sites.

conductors connected by Ohmic resistors. Before considering truly disordered net­

works, it is instructive to start by studying the case of regular resistive networks. 

Although this is a much simpler system, it has some similarities with the case we 

are focused on. We begin this section by presenting two methodologies used to 

calculate the resistance between arbitrary nodes of regular resistive networks, i.e. 

regular lattices. We then introduce our own method, which has the advantage of 

being easily extendable to the study of non-regular (random) resistive networks.

Calculating the resistance between arbitrary nodes on a lattice of resistors has 

been a problem of scientific interest for several years [114, 115, 116, 123]. Consider 

for example a square resistive lattice as illustrated in figure 3.8, where each vertex 

contains a resistance Rq, and there is a total of L x L resistors in the lattice. 

What is the value of the equivalent electrical resistance between two arbitrary 

sites? Besides its applicability on the study of electrical resistance on conductive 

films, this problem also presents great potential as a teaching instrument with 

easy laboratory confirmation. Tw'o independent approaches have been developed 

to tackle the problem in recent decades, and both can be applied to elucidate many 

features of this resistance problem.
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The first approach, proposed by Venezian [117], introduced a method to cal­

culate the resistance between two adjacent nodes on an infinite square grid of 

identical resistors. This method is based on a superposition of potentials and cur­

rents of two one-terminal configurations, in each of which a current from outside 

the lattice enters or exits through one single node. A few years later, Atkinson and 

van Steenwijk [118] generalised the original method to 3D and higher-dimensions, 

as well as other 2-dimensional lattices. Furthermore, these theoretical results were 

confirmed experimentally soon after by Denardo et al. [124], who explored the 

problem as an interesting laboratory demonstration.

The second independent approach has been developed by Cserti and collab­

orators, and relies on the application of lattice Green functions to calculate the 

equivalent resistance between arbitrary sites of a lattice [119, 125]. Lattice Green 

functions have been heavily studied by theoretical condensed matter physicists 

(see for example reference [89]), and the techniques developed by the community 

can be readily applied to this problem. Cserti derives an expression for the resis­

tance between two arbitrary nodes of an infinite resistive lattice in terms of specific 

lattice Green function elements, which can in general be calculated analytically. 

Moreover, Cserti et al extend this methodology to account for perturbations in the 

networks, such as the removal of one or more resistors. In this case, the resistance 

between nodes is calculated from a perturbed Green function, obtained by the 

so-called Dyson’s equation [125], which was introduced in chapter 2.

Both of the methods mentioned above provide analytic expressions for the 

total resistance between arbitrary nodes on 2D, 3D and higher-dimensional infinite 

regular lattices. In particular, the asymptotic behaviour of the equivalent resistance 

between two nodes as the distance becomes large was calculated independently by 

Venezian and Cserti, and can be expressed as

R{d) = —
IT

ln(8)
-1- 7 + ln(d) (3.6)
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where the distance d is large enough, and 7 ~ 0.5722 is the Euler-Mascheroni 

constant (not to be confused with the electronic hopping parameters in chapter 

4). This result implies a logarithmic divergence for the resistance between distant 

sites on an infinite square lattice of resistors.

Building on the methodology developed by Cserti, we propose yet another 

approach to this problem, specifically aimed at dealing with finite networks of 

resistors. Our methodology consists on the direct application of Ohm’s law as 

well as Kirchoff’s circuit laws to finite resistive networks. Similar do Venezian’s 

construction, a current can be injected in an arbitrary node and extracted from 

another arbitrary site. The resistance between these arbitrary sites can then be 

calculated from the usual circuit laws. An equivalent approach to the one proposed 

here has been independently developed by Li and Chou [126] for the identification 

of backbones in standard percolation theory applications ^.

Considering the network represented on figure 3.8, the current that can be 

extracted from a site denoted by indices (j, /) is given by the net current from its 

nearest neighbours, which can be written as

O = w K'j.' - WO + iW - WO + (V}j - v,,,0 + (v,i - , (3.7)

hi - 1
/To

(3.8)

where Vj^i is the electrical potential on site {j,l). In order to keep the notation 

as light as possible, we introduce collective site indices which allow us to rewrite 

equation (3.8) as

IA =
1

%

OiA
(OaVa — ^ Va+s (3.9)

where 5 represents the nearest neighbours of site A, and is the total number of

^This work was brought to my attention by Prof. Alain Rochefort, during the viva voice 
examination.



72 CHAPTER 3. MACROSCOPIC MODELLING OF CARBON NANOTUBE NETWORKS

neighbours. In matrix notation, it can be written in a compact form as

1I = —MV.
Rq

(3.10)

Only two elements of I are non-zero, the ones corresponding to the injection and 

extraction of current, being one positive and one negative. The matrix denoted by 

M has the general form

/

M =

Qi —1 0 0

-1 a'2 -1 0

0 —1 cts — 1

V

(3.11)

where a a is again the number of nearest neighbours of site A, and Ma,b = ~1 

if A and B are neighbours or zero otherwise. Notice that for a true finite lattice, 

boundary sites will have less connections than bulk sites. Moreover, with this 

approach it is also possible to consider perturbed networks, from which one or 

more resistors could have been removed, without having to apply Dyson’s equation 

|125|.

At this point, we can invert the matrix equation (3.10) to read

V = HoM-^ (3.12)

By performing the calculation above, we obtain the value of the electrostatic po­

tential in each and every node of the network. Moreover, from V we can calculate 

the potential difference across every resistor in the network, which provides a direct 

way of calculating the equivalent resistance between any two arbitrary points of 

the network. Furthermore, by constructing the appropriate matrix M, it is possi­

ble to calculate the resistance between arbitrary nodes of any resistive structure.
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including perturbed regular lattices and complex networks. All that is required is 

to describe the matrix M according to the specific network connectivity.

To calculate the resistance between two arbitrary sites A and B, we take

Ba.b =
VA~ViB (3.13)

Which can finally be expressed in terms of specific elements of the inverse of M as

f^A.B = Ro {[AI + [AI ^]b,b — [A/ ^]a.b — [A1 • (3.14)

In this way we can calculate the resistance between two arbitrary points in any 

type of lattice, as long as we know the number of connections, and which sites 

are interconnected. It is not hard to generalise this result for the case where the 

resistance between nearest neighbours is not the same, or even for a distribution of 

different resistances. In order to do so, the ~ term in equation (3.7) would have 

to be replaced by the specific resistance connecting the corresponding sites, and 

could be absorbed into the definition of M.

We now proceed to show the application of the method for two simiple cases. 

First, we calculate the resistance between sites along specific directions of a 2D 

square lattice as a function of the distance between the sites. In the sequence, 

we introduce a simple generalisation of the method described above in order to 

allow for multiple entry or exit points for the electrical current, and calculate the 

resistance between a group of sites and a single site. Finally, in the following 

section we couple this generalised methodology with the results of the previous 

section, and calculate the conductivity of stick percolation networks.
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Figure 3.9: (Top) Resistance as function of distance between sites on a square resistive 
lattice. (Bottom) Resistance diverges logarithmically with the distance.

3.3.1 Results

On the upper panel of figure 3.9, we present the calculated equivalent resistance 

between two nodes on a square lattice network. The figure shows the dependence of 

the resistance as a function of the distance along a straight line, for square resistive 

lattices of dimensions L = 25, 50 and 100. For adjacent sites, where the distance 

d = 1, we recover the usual result of ~ i?o/2 [117, 119]. As the site from which the 

current is extracted approaches the borders of the lattice, finite size effects get more 

pronounced and we see an increase in the resistance. The logarithmic divergence 

of the resistance is clear from the bottom panel of the figure. In this case, the
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Figure 3.10: Schematic representation of a resistive lattice with multiple current injection 
points (red). Resistance is calculated between electrode and single extraction node (blue).

asymptotic limit for the resistance extracted from our calculations is found to be

Hid) = Ro [0.497 + 0.451 ln(d)]. (3.15)

In spite of the finiteness of the networks considered, our method recovers the 

logarithmic divergence of the resistance as the distance between the insertion and 

extraction nodes gets large.

Our framework can be easily generalised to the case where there are multiple in­

jection and/or extraction points for the electrical current. In this case, the current 

has to be divided among the injection/extraction sites, such that the total current 

injected equals the extracted current. For example, if a current I is injected in 

10 sites, then each injection node receives a current //lO, and the total extracted 

current is I. Figure 3.10 illustrates a square lattice with L x L nodes, where the 

injected current is equally divided among w sites and extracted from a single site a 

distance d from the injection point. The distance d is defined as the perpendicular 

distance from the line of injection nodes to the extraction node, as indicated in 

figure 3.10. We investigate this particular arrangement, with view of considering
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Figure 3.11: Resistance as a function of distance between sites on a square resistive 
lattice with multiple current injection points. The resistance is calculated between the 
multiple injection nodes and the single extraction point.

the presence of an electrode on the network. In the case illustrated, the equiva­

lent resistance calculated is between the electrode and the single extraction node. 

Figure 3.11 shows the resistance between a group of w nodes forming an electrode 

and a single node located a distance d apart. It is observed that the resistance 

still increases with the distance approximately logarithmically. The data shows 

that the wider the electrode, the lower the resistance, with a minimum when the 

electrode spans the whole side of the lattice, i.e. w = L. This is not surprising 

because there are more paths between the injection and extraction points in this 

case, which will inevitably lower the equivalent resistance.

Finally, in the following section we proceed to present results for the resistance 

of complex resistive networks, obtained by combining the methodology described 

above, with the geometric modelling introduced in section 3.2.
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3.4 Resistive Complex Networks

In this section, we finally return to our main objective, presented at the beginning 

of this chapter: to calculate the conductance across a disordered network of carbon 

nanotubes. Our methodology is based on the stick percolation model of section 3.2 

in conjunction with the tools developed for the calculation of equivalent resistance 

between arbitrary nodes of a resistive network, presented in section 3.3.

In almost all situations of practical interest, with view of applications in elec­

tronic devices, nanotube films are produced such that the intrinsic resistance of 

CNTs is negligible when compared to the resistance of the inter-tube junctions. 

In this situation, the network of nanotubes in the film behaves very much like a 

network of Ohmic resistors, such as the ones introduced in the previous section. 

However, in a CNT film there is no ordered arrangement of sites, i.e., the networks 

formed by nanotubes are completely random and present an extremely complex 

topological structure. The traditional methods developed by Venezian [117] and 

Cserti [119] for calculating the resistance between arbitrary sites of a resistive net­

work, are very successful in dealing with a plethora of regular networks but lack 

the flexibility to handle complex disordered structures such as the ones present 

on nanotube network films. This limitation has led us to develop a methodology 

analogous to the traditional ones, which is suited to tackle random networks, as 

well as regular arrangements of resistors.

In what follows we proceed to merge the results presented in the two previous 

sections. First, a random array of nanotubes (represented by finite-length rigid 

rods) is generated inside a containing box of specified dimensions. Then the volu­

metric fraction of the box occupied by rods is calculated. The junctions between 

rods in close proximity are mapped, and a list of neighbours of each rod is con­

structed. Similarly, rods that cross the electrode faces are identified, and that 

specific electrode is added to the list of neighbours. The inter-tube junction resis-
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Figure 3.12; Schematic representation of the model used to calculate the resistance 
of carbon nanotube network films. Individual CNTs and bundles are represented by 
rods of finite length. Ohmic resistors Rq are place at each nanotube junction. Total 
resistance across the film is calculated as the resistance between electrodes (shaded lateral 
rectangles).

tance experienced by conduction electrons are represented by Ohmic resistors (/?o) 

placed between every two rods in contact. Finally, the total resistance between 

the electrodes is calculated, and for the purpose of analysis, it is converted into 

conductance by taking its inverse.

Figure 3.12 illustrates in a schematic way the set up used in our calculations. 

Keeping in mind the practical motivations of our model, we analyse conductance 

results in terms of experimentally accessible quantities, such as the volume fraction 

of the networks, the density of junctions in the films, and the aspect ratio of the 

rods. In this case, the aspect ratio is an approximation to the ratio between average 

length and average diameter of carbon nanotube bundles, which can be obtained 

from microscopic analysis.

The calculation procedure is as follow:
1. Select N, £ and D;

2. Generate a random configuration of rods;
3. Construct matrix M, and calculate V following description of section 3.3;
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4. Calculate resistance between electrodes;

5. Repeat for several configurations and average results.

As previously mentioned, nanotube films are commonly produced from filtra­

tion of solutions containing dispersed CNTs. The disordered network is formed 

on the surface of the filter, and its density (and volume fraction) is directly pro­

portional to the volume of solution filtered. For a fixed volume, a solution with 

low concentration of nanotubes will produce networks with small volume fraction, 

and a sparse structure. In this low concentration circumstances, there will be few 

percolating paths for the charge to move from one electrode to the other. In this 

case, films with high resistivity will be produced. On the other hand, if one starts 

with solutions presenting a high concentration of carbon nanotubes, it is expected 

that the films produced will have a low overall resistance, since there will be several 

percolating paths for the conduction electrons to move across the network.

It is more convenient to express the charge transport results in terms of the 

inverse resistance, i.e. conductance, defined simply as F = l/R. Percolation theory 

predicts that for small values of Vj, the conductance behaves approximately as

(Vf - K)\ (3.16)

where 14 is the critical value of the volume fraction. The critical exponent t, 

depends only on the dimensionality of the embedding space. In our model the 

rods are randomly oriented in a 3D space, and for this case, the theory predicts 

t = 1.94 [127]. Beyond the percolation threshold, i.e. for networks with a volume 

fraction considerably larger than the critical value 14, the conductance is found to 

increase linearly with Vf [128, 129].

Figure 3.13 shows how the network conductance increases with the volume 

fraction of the film, for three different values of aspect ratio of the rods. From the 

data it can be seen that for small values of Vf the conductance is very small or even
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Figure 3.13: Inverse network resistance as a function of volume fraction. Simulating 
dense networks with high aspect ratio rods is too computationally demanding, but for 
small i/D it is possible to achieve the linear dependence region. Dashed line is a linear 
fit to data.

vanishing, in perfect agreement with theoretical predictions. Simulating networks 

of large volume fraction for rods with high aspect ratio is very computationally 

demanding, and this issue has somewhat limited us in our calculations. However, it 

is possible to observe a crossover of the conductance from the percolation transition 

into a linear regime, as expected for dense networks. Besides being in accordance 

with theoretical predictions, our simulation results present a remarkable qualitative 

agreement with experimental measurements reported by Hu et al [77], reproduced 

here in figure 3.14.

The behaviour of F in the percolation region can be analysed in more detail 

in order to verify the agreement with the standard theory. In figure 3.15, we fit 

equation (3.16) with the expected scaling exponent t = 1.94, to our data near 

the percolation region. The agreement with theory is remarkable, and from the 

fit we also extract the value of the critical volume fraction for each aspect ratio 

considered. The calculated values of 14 are inversely proportional to ^/D, which
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Volume (mL) of NT in Chloroform solution where Cs0.^g/L

Figure 3.14: Conductance versus volume of CNT solution. Inset shows the power law fit 
in the percolation region, with a critical exponent f = 1.5. Figure reproduced from Hu 
et al. [77].

is an intuitive result and is also in agreement with previous theoretical predictions 

[128, 130, 131].

In section 3.2 we have shown how the connectivity of a random network of rods 

scales linearly with the product of the volume fraction with the aspect ratio of the 

individual rods. It is natural to expect the conductivity of the network to increase 

with its connectivity, which is indirectly demonstrated by the dependence of the 

conductance with the volume fraction (see figure 3.13). Moreover, it is also possible 

to analyse the dependence of the film conductance with the density of junctions, 

which has been defined in terms of the network connectivity as

Nj = {a)N 1
2 y’

(3.17)

where N is the total number of rods inside the box of volume V. On figure 3.16 

we plot the conductance as a function of {a)N = 2NjV on a log-log scale, and 

on a linear scale on the inset, for three different aspect ratios. Once again our
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Figure 3.15: Network conductance as a function of the volume fraction near the perco­
lation region. Solid lines are a fit of equation (3.16) with the appropriate 3D exponent 
t = 1.94.

calculations are limited by the computational resources required for simulations 

with the rods of large aspect ratio. However, it is possible to infer from the log-log 

plot that, at least for high enough concentrations of junctions, the conductance 

seem to converge to the linear dependence represented by the dashed straight line. 

Furthermore, in the inset we show the excellent collapse of all the data to the same 

straight line in a linear scale r/= m x 2NjV. In both scales used in figure 

3.16, the dashed line has a slope m « 8 x 10“"^.

We now turn to experiments, and combine our simulation results with labora­

tory measurements in order to estimate the actual value of the inter-tube resistance 

Rq. In figure 3.17 we present the conductivity of nanotube films versus the junction 

density on a log-log scale, as obtained by our collaborators at Prof. J.N. Coleman’s 

group in TCD. Different symbols correspond to films prepared with different types 

of commercially available carbon nanotubes, as well as different solvents for the 

preparation of CNT solutions. Motivated by the linear dependence shown in the 

simulation results of figure 3.16, the dashed lines represent tentative linear least-
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< a > N

Figure 3.16; Film conductance increases linearly with density of connections for large 
enough densities. Log-log plot shows convergence to linear regime.

square fits to the data. Let us concentrate on the most conductive films, which 

seem to satisfy cr = 4 x Nj.

Using the information about the geometry of the box representing the film in the 

simulations, we can transform the calculated conductance into film conductivity, 

in order to estimate the average value for the junction resistance Rq. We begin 

with the linear relation derived from the simulation data, which can be written as

F = m X
2NjV

i?0
(3.18)

The simulated films have a volume V = 2i x 2i x Ai = 16^^, thus

32eNjr = m X
Rq

(3.19)

The relation between conductance and conductivity is given by

(3.20)
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Figure 3.17: Approximate scaling of conductivity with density of inter-nanotube junc­
tions. Dashed lines illustrate teirtative linear fits to the different data sets as indicated 
by the equations. Legends label the respective supplier of nanotubes and the solvents 
used on the preparation of the films.

where L = Ai is the length of the device and A = is the cross sectional area. 

Replacing this information in the above equation we end up with

a = m X
32^2 TV,

-Ro
(3.21)

Finally, we can write

Rq = m X
32fN, (3.22)

and replacing m = 8 x 10 ^ and cr = 4 x 10 ^^Nj, results in

Ro = 64xlO^'’r (infl/m^). (3.23)

A microscopic analysis of the CNI-DMF films estimate the average bundle length 

to be ~ 1 fim. Replacing i = 1 /xm and ^ = 10 /xm in the above expression for
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the inter-bundle resistance results in Rq = 64 KQ and Rq = 6400 KQ respectively. 

This result is in good agreement with experimental measurements available in the 

literature. For example, Fuhrer et al. measured the resistance on single junctions 

of carbon nanotubes, considering metallic and semiconducting nanotubes [73]. The 

resistance at a junction between two metallic nanotubes was measured to be in the 

range 100 KQ < Rmm ^ 300 KQ, whereas the junction resistance between two 

semiconducting nanotulres was measured in the range 430 KQ ^ Rss ^ 2300 KQ. 

Recent results from Nirmalraj et al. have found that the average junction resistance 

depends coirsiderably on the diameter of the nanotubes and bundles in the junction, 

and can vary widely depending on the chirality of the nanotubes involved as well 

as the diameter of the bundles [76]. Nonetheless, junction resistances in the range 

98 KQ < Rj < 2700 KQ have been measured in thin films made of pristine CNTs.

It is important to point out that if one were in possession of reliable values 

for the junction resistance in terms of the tubes type these values could be easily 

incorporated into our proposed model. By including the actual value of the junction 

resistance between two metallic tubes, two semiconducting tubes, and a metallic 

and a semiconducting tube, into our model it should be possible to obtain predictive 

results. Furthermore, taking into consideration that one third of CNTs are metallic, 

it is straightforward to generate networks with a distribution of CNT junctions 

which corresponds to the ones found in real films. The calculated conductance of 

these model networks should be quantitatively comparable to experimental values. 

Unfortunately, an exact determination of these contact resistances by experimental 

methods is still an open problem.

3.5 Chapter Summary

In this chapter we have shown how a relatively simple procedure can be applied 

to model the complex features present in the morphological structure of carbon
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nanotube network films. Individual nanotulres and bundles are mimicked by rigid 

rods of finite length and diameter, while the film is represented by a rectangular 

box of dimensions defined in terms of nanotnl‘)e length.

The volumetric fraction of the film occupied by rods was found to be linearly 

dependent on the number of rigid rods in the network. The average number of 

connections per rod in a random network was found to scale universally with a 

combined variable given by the product of the volume fraction with the aspect 

ratio of the individual rods considered. Similarly, the number of rods connected to 

electrodes placed in opposing faces of the film was found to scale with the volume 

fraction times the square of the aspect ratio.

We have also presented a method, based on previously developed methodolo­

gies, to calculate the equivalent resistance between arbitrary points on a network 

of resistors. We have shown how the resistance between two nodes of a network 

increases with the logarithm of the distance between them, in agreement with 

analytic results.

Finally, we have combined the rigid rods percolation model with resistance cal­

culations in order to obtain the conductance of model carbon nanotube network 

films. We have shown how our results are in perfect agreement with standard 

percolation theory, and how the conductance of nauotube films is affected by the 

morphology of the networks. Direct comparison of simulation results with exper­

imental measurements are found to be in good agreement, and provide estimates 

for the junction resistance in real carbon nauotul)e films. These estimates are 

compatible with independent measurements reported in the literature.

The results presented in this chapter have been published in Reference [122].



Chapter 4

Microscopic Modelling of Carbon 

Nanotube Networks

4.1 Introduction

Individual carbon nanotubes (CNTs) present outstanding physical qualities such as 

remarkable mechanical strength, unique electronic structure, and ballistic charge 

transport [88]. With so many outstanding features it is not surprising that nan­

otubes are being mixed with other materials in order to improve some of their 

physical properties. Carbon nanotube-polymer composites have been investigated 

due to their promising applications in mechanical reinforcement of materials and 

on the production of conductive transparent electrodes [26, 29]. As a matter of 

fact, carbon nanotube network films have been attracting much attention from 

the scientific community thanks to their applicability in a range of future elec­

tronic devices [84]. Applications of CNT thin films include fiexible transistors 

[34, 37, 38, 43, 45, 111, 132], transparent electrodes [80, 111, 133], and even loud­

speakers [134]. CNT thin film transistors can be used in the development of novel 

chemical and biological sensors [9, 135, 136, 137, 138]. Transparent electrodes 

made of CNT thin films can be applied to the production of solar cells [133, 139]

87
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and flexilde electronic displays [43, 80, 140, 141]. In other recent reports, silver 

nanowires (NWs) [82] and graphene [55, 142] have been proposed as base materi­

als for the production of transparent, flexible, and conductive thiu flhn electrodes. 

Flexibility is a natural quality of carbon nanotubes and graphene, as well as of 

noble metal nanowires, which naturally extends to thin films produced with them.

The transparency of a thin film is intrinsically connected to its conductance. In 

particular, the relationship between optical transparency T and electrical resistance 

R of a thin metallic film (suspended in air) is approximately described by [81]

T = 2 ^ / Ho Hop

2/? y 6q (Tfio

-I -2
(4.1)

where /xq and cq are the permeability and permittivity of vacuum, respectively; agp 

is the optical conductivity of the film, and adc its electrical conductivity. Equation 

(4.1) is only valid when the absorption of the material is much smaller than its re­

flectance, and when the film thickness is much less than the wavelength of interest. 

In general, CNT films as well as nanowire films satisfy these conditions. For appli­

cations in flexible displays and transparent electrodes, a high transparency in the 

visible spectrum (usually measured at a wavelength of 550 nm) must be coupled 

with low film resistance. From the equation above, it is possible to evaluate that 

this condition may be satisfied if the electrical conductivity is much larger than 

the optical conductivity, such that the ratio Hop jade is small.

The optical conductivity depends on the chirality of individual nanotubes, and 

cannot be precisely controlled on CNT films. However, due to the mixture of 

different types of nanotnbes in a network film, agp is generally found to be approx­

imately constant across a variety of nanotube films [84]. On the other hand, the 

electrical conductivity adc, depends on a number of factors including the degree 

of purity of the nanotubes, the doping level, as well as the average bundle length 

and diameter. A number of strategies have been developed to control these fac-
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Figure 4.1: Scanning Electron Microscopy image of disordered complex networks on a) 
Carbon nanotube film, and b) Silver nanowire film. Images courtesy of J.N. Coleman’s 
group, Trinity College Dublin.

tors, and attempting to increase Cdc is the most accessible way of controlling the 

performance of conductive films.

As we have already discussed in previous chapters, the electronic transport 

in disordered network films takes place through electronic tunnelling across the 

entire film. Figure 4.1 displays microscopy images of a typical CNT film (a), and 

a Silver NW film (b). Among all the factors controlling the conductivity of thin 

films, the resistance at tunnel junctions between individual components of the 

network plays a dominant role. Recent studies have reported enhancements in the 

film conductivity as a result of improvements in the inter-tube contacts by means 

of chemical treatments [76, 86]. However, the highest electrical conductivities 

reported so far seem to be on the lower limit of the values needed for application 

on flexible displays, namely adc ~ 6 x 10^ S/m [55, 56, 122]. Moreover, it is not 

clear if CNT films can indeed provide the electrical conductivities required. In 

particular, the structure of the networks formed in the films might play a role 

in limiting the electronic conductivity of CNT films. This means that no matter 

how much progress is made in lowering the junction resistance, there should be a 

maximum value for the conductivity, which is regulated by the network topology. 

To find this maximum value is our main goal in this chapter.
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In chapter 3 we have shown how the morphology of the disordered CNT net­

works affects the electronic transport properties of the resulting films. In the 

present chapter we combine the macroscopic properties of CNT networks with an 

atomistic description of carbon nanotubes based on quantum electronic structure 

methods. We apply the resulting multiscale model to estimate an upper limit for 

the electrical conductivity of CNT films. In order to do so, we shall focus on bal­

listic electronic transport and disregard any source of decoherence that may affect 

the charge carriers.

The sequence adopted in this chapter is as follows. In section 4.2 we describe 

our theoretical approach to model the electronic structure of individual carbon 

nanotubes and idealised nanowires. We apply a general methodology based on 

semi-empirical tight binding Hamiltonians and the respective single particle Green 

functions, introduced in chapter 2. The choice of computationally inexpensive elec­

tronic structure method allows us to treat heavily disordered environments such as 

network films. Moreover, because our methodology is based on Green functions, 

it is easily transferable to account for networks made of GNTs, NWs and possibly 

graphene. In section 4.3 we show how the Kubo formnla for electronic conductance 

can be applied to disordered networks. In the same section, we also argue how the 

network Green function can be described in a computationally efficient manner, 

which allows for the treatment of films with thousands of individual components. 

We begin section 4.4 by applying our computationally efficient methodology to cal­

culate the conductance of random networks of idealised monatomic wires. These 

basic results are used to analyse the general features of the model. In the sequence, 

the multiscale methodology is applied to the specific case of carbon nanotube net­

works. We argue how the ensuing results can be used to estimate a limiting value 

for the conductivity of CNT networks in terms of properties of the films such as 

volume fraction and average bundle length and diameter. In the conclusion of this 

chapter, we describe how a comparison of the experimentally measured conductiv-
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ities with the corresponding theoretical upper value provides a reasonable estimate 

of how much room there is for improvement. Finally, we describe how this valuable 

piece of information has been used, for instance, to establish that the best mea­

sured values of conductivities for nanotube-based films are too close to the upper 

limit predicted, which suggests that further improvements in their transport prop­

erties are unlikely. Furthermore, this conclusion indicates that metallic nanowires 

other than CNTs are the most likely candidates to be used in flexible displays.

4.2 Model

From a theoretical perspective, the description of electronic transport on carbon 

nanotube films involves the flow of charge through a percolating network of finite­

sized elements connected to source and drain electrodes (see figure 3.12). Com­

putational studies of this problem tend to concentrate on analysing the system in 

two very different length scales. The first approach, presented in detail in chapter 

3, analyses the system in a macroscopic scale. Individual CNTs are modelled as 

perfectly conducting rigid rods of finite length-to-diameter ratio. Tunnel barriers 

at nanotube junctions are mimicked Iry Ohmic resistors. The film resistance is 

calculated as the resistance between opposing electrodes separated by a disordered 

network of identical resistors. As we have shown, this method provides results 

in reasonably good agreement with experiments. However, it is enlightening to 

explicitly consider the influence of the electronic structure of individual nanotubes 

on the transport properties of CNT networks. In particular, this approach can be 

applied to obtain an estimate for the maximum conductivity of CNT films, which 

can clearly indicate if nanotube networks are indeed the appropriate choice for the 

development of flexible electronic displays.

It is also possible to approach electronic transport problems from an atom­

istic viewpoint, most notably by means of ab-initio density functional theory cal-
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culations (DFT) coupled with non-equilibrium Green function methods [94, 95]. 

However, the computational cost of these calculations can be considerably high. 

Moreover, all current DFT implementations require at least some degree of pe­

riodicity in order to handle large systems (~ 10^ atoms), which unfortunately is 

clearly not present in disordered CNT networks. Nonetheless, ab-initio methods 

have been used to investigate electrical resistance at single wall nanotube (SWNT) 

junctions [75], and more recent studies have extended these results considering the 

presence of O2 and N2 molecules [143] near the junction. The irse of first principles 

methods for obtaining the quantum conductance between individual nanotubes is 

able to shed some light on the quality of the junction, but it is unable to repro­

duce the general observed features in network films because it is not capable of 

including disorder effects to the scale required. The alternative of carrying out 

a fully atomistic transport calculation within a heavily di.sordered environment is 

very desirable but it is currently too computationally demanding. It is therefore 

necessary to compromise if one wishes to combine the two features.

One possible approach consists of using computationally inexpensive semi- 

empirical methods to describe the electronic structure of carbon nanotubes. Tight 

binding model Hamiltonians are a very efficient and convenient way to describe the 

electronic structure of materials. As we have seen in chapter 2, the tight binding 

approximation provides very good results for the electronic properties of CNTs. 

Moreover, it is possible to obtain system-specific parameters from high precision 

ab-initio calculations [144, 145]. By describing the electronic structure of individ­

ual nanotubes with a simplistic model Hamiltonian, we can afford to account for 

disorder effects by considering hundreds, if not thousands, of CNTs, and several 

possible configurations for the structure of the random tunnelling networks formed 

in the films. Furthermore, cpiantitative results for the conductance of CNT films 

can be obtained when a precise parametrisation of the hopping terms and on-site 

energies is obtained from first principle methods, as mentioned above.



4.2. MODEL 93

4.2.1 Tight Binding Hamiltonian and Green Functions

In general, the electronic structure of an individual wire (carbon nanotube or 

nanowire) is described by a semi-empirical tight binding Hamiltonian of the form

» (*'J>

(4.2)

where |(5, i) represents an electron on atom z of a wire labelled by S, cq is the on-site 

energy, 70 is the hopping integral parameter, and the sum (z, j) is over nearest- 

neighbouring atoms. This general form can describe several types of nanostruc­

tures, depending on the choice of atomic structure and on the orbital degrees of 

freedom represented by the states |z). Moreover, as we have already shown, the 

tight binding approximation provides excellent results when used to describe the 

electronic structure of CNTs.

Associated with the Hamiltonian there are the retarded(-i-) and advanced( —) 

single-particle Green functions, defined in chapter 2 as

g± ^ [E^- _ ns] -1 (4.3)

where = E ± tr], with 7 being a small positive imaginary part added to the 

electron energy E in order to avoid singularities. The above are also known as 

bare or undressed Green functions, and are automatically dehned by the choice of 

Hamiltonian.

When the wires considered are monatomic linear chains, it is possible to solve 

Equation (4.3) analytically, and write an explicit expression for individual elements 

of the Green function. In this case, the (q^O-th matrix element of the GF of a 

finite monatomic chain with L atoms described by the Hamiltonian in Eq.(4.2) is 

given by [89]
2^ sm(,f|t)sm(j^)
i„t'i£'*-h + 27ocos(far)]'

(4.4)
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which can be used to calculate any matrix elements of the GF, as needed. Equation 

(4.4) becomes identical to the Green function of an infinite linear chain in the limit 

L ^ oo. Furthermore, it is also possible to write an analytical expression for the 

surface element of the GF for a semi-infinite monatomic chain, which is written as

[146]
(E* - f„) ± [(E* - tor - 4|7olf. 

■S T) --------------------- -------------------------- , (4.5)

It is worth mentioning that the use of semi-infinite linear chains will become clear 

shortly when we address the issue of wires contacted to electrodes. The above 

expressions provide a way to directly calculate any Green function matrix elements 

as needed, which is a huge computational advantage when compared to calculating 

the whole GF.

For the case of finite carbon nanotnbes, however, matters are not as simple. 

Even though it is possible to write an analytical expression for the Green function’s 

matrix elements of infinite and semi-infinite nanotubes [147, 148] (both armchair 

and zigzag), it is not straightforward to do so for finite nanotubes. Therefore, 

we rely on a direct calculation of the whole Green function using Equation (4.3). 

Notice that this requires the numerical inversion of matrices with dimensions equal 

to the number of atoms in the particular nanotube.

As we have described in chapter 2, electronic transport calculations typically 

require the presence of particle reservoirs, which represent source and drain for 

the conduction electrons. In the case of transport simulations of carbon nanotube 

networks, semi-infinite nanotubes are employed to mimic the presence of parti­

cle reservoirs. These semi-infinite CNTs are solely described by the GF elements 

relative to the atoms on its final unit cell. In order to calculate surface GF ele­

ments of semi-infinite nanotnbes, we apply efficient recursion methods, which are 

numerically stable and computationally inexpensive.
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4.2.2 Network Green Functions

Once we have introduced how we calculate the electronic structure of individual 

wires, we move on to describe the electronic properties of a disordered network 

of interconnected wires. Following the general method described in chapter 2, 

we divide our system in three parts: two leads and a central region. The major 

difference between our particular approach and the usual one is that each one of 

the three parts of the system are themselves composed of several wires. The leads 

are represented by a number of semi-infinite wires, which act as particle reservoirs. 

Meanwhile, the central region of the system consists of the disordered network 

itself, represented by an ensemble of finite-sized wires. Mh begin by constructing 

the Green function matrices of a completely disconnected system. The inter-wire 

junctions are introduced in the form of electronic hopping terms between wires in 

the network, and between the network and the electrodes. Finallj^, we use Dyson’s 

equation to calculate the GF of a fully connected network of wires which represents 

the disordered films.

Beginning from a disconnected tripartite system, we can write the complete 

Green function as a super matrix of the form

/ n 0

9 =

\

V

9l 0 

0 9^ 0

0 ^ 9r J
(4.6)

where are the GF matrix of the left and right electrodes, and Qq is the GF 

of the central scattering region. At this stage, the network is an ensemble of 

non-interacting wires.

In this initial description of the disconnected system, each of the matrices in 

are in block diagonal form, with one block for each individual wire. The electrodes 

act as charge reservoirs which will be here represented by semi-infinite uanowires.
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In other words, whenever a wires is contacted to either electrode we will represent it 

by a semi-infinite object. Therefore, there are (as) diagonal blocks given by surface 

Green function elements of semi-infinite monatomic chains or carbon nanotubes. 

In general, the electrode GFs can be written as

at.RiE) =

S^{E) 0 0

0 S^{E) 0

0 0 S^{E)

\

\

(4.7)

where S^(E) are advanced (or retarded) Green functions of the surface elements 

of semi-infinite wires, which mimic the particle reservoirs.

Similarly, the GF of the central scattering region consisting of a disconnected 

network with N wires is represented by a block diagonal matrix with N blocks, 

and it is written as

9ciE) =

g^{E) 0 0

0 g^{E) 0

0 0 g^{E)

\

\

(4.8)

where we recall that ^"*"(£’) is the Green function of a finite-sized pristine monatomic 

linear chain or carbon nanotube. In general, each diagonal block ^*(F') is a matrix 

whose dimension equals the total number of atoms on the individual wires.

It is now simple to connect individual wires throughout the network by intro­

ducing a perturbing potential bridging any two wires that should be in contact. 

This inter-wire coupling appears in the form of an electronic hopping term 7' in 

the Hamiltonian of the complete system, and is given by

Vs.s' = (4.9)
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where (5 and 8' label the connecting wires, and j and f identify the atoms in each 

one. Notice that h and 5' must be different while j and / are allowed to have the 

same value. These individual hopping terms can be grouped together in the form 

of a general perturbation potential written as

V =

(

\

0 tTc 0

^LC VcR

0 IdCR 0 /

(4.10)

where once again each term represents a matrix itself.

On the construction of the perturbing potential we assume that semi-infinite 

wires in the same electrode do not interact with each other. Furthermore, we 

assume that the central scattering region is large enough, such that there can be 

no direct hopping terms between semi-infinite wires located on different electrodes. 

The first assumption can be easily relaxed, and it should not have any significant 

effects on the results. The second assumption, however, should not be relaxed. 

The physical meaning of the second constraint, i.e., [Tlk] = [Vrl] = [0], is to avoid 

short circuits on the system, which could manifest as spuriously high values for 

the conductance, and significantly affect the results.

The term Vcc is by far the most significant one, and also the one that lies 

at the heart of our methodology. In our model, [Vcc] is a matrix constructed 

from a random network, generated from an ensemble of nodes with a given average 

number of connections per node. Equivalently, a random graph can also be defined 

by its total number of sites N, and the total number of connections on the graph 

{a)N/2. The process to construct [Vcc] is as follows:

1. Select two unconnected wires at random: 6,6' ;

2. Select one random atom in each wire to carry on the interaction: j,j' ;

3. Make {6,j\Vcc\S',f) = i ;

4. Repeat until total number of connections equals {a)Nj2.



98 CHAPTER 4. MICROSCOPIC MODELLING OF CARBON NANOTUBE NETWORKS

A similar procedure is also applied to construct [Vlc] and [Vc/?], where the 

interaction of the electrodes with the finite-sized wires is chosen by a randomised 

process. The inter-wire hopping term, represented as 7' is defined in analogy with 

the usual tight binding hopping integral parameter 70, and roughly represents the 

coupling between individual atoms in interconnected wires.

Remember that Equations (4.7) and (4.8) describe the GF of the completely 

disconnected network. The Green function of the interconnected disordered sys­

tems can be calculated with Dyson’s equation,

= [i - g^V]-\^

(4.11)

and it can be written in matrix form as

G* = ^CL

\ 0

Gtc

Grc

Gcr (4.12)

R )

We now have the Green function of the whole interconnected network, including 

left- and right-hand side electrodes, central scattering region, and propagators 

between these three regions. Therefore, G* provides all necessary information 

with respect to the electronic structure of the disordered network, be it formed by 

linear monatomic chains or carbon nanotubes, and can be used to calculate the 

electronic conductance of the system.

As shown in the next section, choosing to represent the Green function of the 

network in the above described manner simplifies the calculation of the conduc­

tance, which can be computed directly from specific GF elements by using the 

Kubo formula.
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Figure 4.2: Schematic representation of the system, divided in left and right leads (L,R), 
and a central scattering region (C). The cleavage plane is placed between C and R.

4.3 Kubo Formula Applied to Networks

The zero-bias conductance of the system is calculated with the Kubo formula, 

introduced in chapter 2. The Kubo formalism provides a simple expression for 

the conductance by calculating the net electronic current across a reference plane 

in the system, often referred to as the cleavage plane, which is located between 

any two adjacent parts of the system. The current is expressed in terms of a few 

Green function matrix elements of the system, and the calculation becomes simple 

enough.

In analogy to the standard formalism first introduced by Caroli et al. [104], the 

system is divided in three parts. The location of the cleavage plane is arbitrary 

and can be chosen in the most convenient location for the case in question. Here 

it is placed between the central region and the right lead, as illustrated in Figure 

4.2. Translating Figure 4.2 into words, regions L and R contain (qe) semi-infinite 

wires and region C contains a disordered array of N finite wires, forming a random 

network with an average number of connections per wire given by (a). Having 

placed the cleavage plane between the regions C and R, the Kubo formula for the 

zero-bias conductance is written as [99, 149]

r(i?F) — ( ^ GcVcRGnV^f^ — VcrGrcVcrGrc |, (4.13)
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where all the GFs are calculated at the Fermi energy Ep, and G{E) are the causal 

GFs, defined as

(4.14)G(£) = -[G-(E)-G+(E)]

4.3.1 Reducing Green Function Matrices

Even though it is possible to write an explicit expression for the Green function 

of the interconnected network as in equation (4.12), from which the matrix ele­

ments required by the Kubo formula in equation (4.13) can be obtained, it is an 

extremely challenging task. The difficulty arises from the size of the matrices in­

volved. Gonsider for example, a network with N = 100 wires, where each wires 

has L = 1000 atoms. In this case, is a matrix of (TV x L)^ = 10^° elements, and 

[Fee] is a matrix of same dimension. Storing matrices of this size on the memory of 

computer clusters becomes a demanding computational task in itself, and inverting 

matrices of this dimension takes a considerable time, even if one applies advanced 

linear algebra routines. The solution to this conundrum presents itself in a most 

elegant way, and it relies on the fact that is block diagonal and that V is a 

sparse matrix. Therefore, the product on Equation (4.11) is also sparse, or at 

least has many vanishing terms that will not affect G^, i.e., several of the matrix 

elements in G"^ do not depend on the perturbation, whenever the corresponding 

element vanishes.

Let us consider an illustrative example, in which the matrix Vec may look 

something like

Fee —

0 0 0 0 Fi,5

0 0 0 F2^4 F2^5

0 0 0 0 0

0 F4,2 0 0 0

V F5,i F5,2 0 0 0 /

(4.15)
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indicating that wire 1 has a single connection to wire 5; wire 2 is connected to 

wires 4 and 5; wire 4 is linked only with wire 2, and wire 5 is connected with wires 

1 and 2. Note that in this pictorial representation wire 3 is not connected to any 

of its counterparts, a fact that fills the third row and third column of the matrix 

V with zero block matrices. In practical terms, the corresponding row/column 

in the matrix Gq will not involve any I^-dependent terms and is simply given by 

It is easy to conclude that similar behaviour arises in terms of the intra-wire 

indices, that is, a connection between atom j of wire 5 and atom j' of wire S' 

will only involve the corresponding matrix elements of the ^-matrix. Therefore, 

if a given NW is connected to three neighbours at intra-wire sites z, j and k, the 

matrix elements Gf^k, Gf^k the respective adjoint elements)

are the only matrix elements appearing in the expression for the network GF of 

ecjuation (4.11). This can be an enormous simplification when compared with the 

full diagonalisation method. Rather than inverting enormous matrices of dimension 

oi N X L, this technique allows us to express the network GF in terms of inverse 

operations of much smaller matrices, and whose sizes are defined by the total 

number of connections in the system, i.e. matrices of order N x {a).

Therefore, because of the particular structure in Dyson’s equation, it is pos­

sible to reduce the Green function matrices, such that only the elements affected 

by the perturbation V are stored. Consider, for example, a CNT with a couple 

thousand atoms. If only 10 of these atoms interact with neighbouring nanotubes, 

then only the elements corresponding to these atoms and the propagators between 

them need to be stored, since only these will be affected by the perturbation. We 

take advantage of this property from the very beginning of our calculations. For 

instance, when constructing we only store the matrix elements corresponding 

to atoms affected by the inter-wire electronic hopping. Naturally, V has the same 

dimension as and we can perform calculations up to a thousand wires, each 

with a few thousand atoms.
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4.4 Results and Discussion

We first apply our method to calculate the couductaiice of random networks of ideal 

nanowires, which here are modelled by monatomic linear chains. As we have al­

ready mentioned, it is possible to write analytic expressions for the Green functions 

of finite linear chains, therefore providing an opportunity to explore the features 

of our methodology with relatively small computational resources. Following these 

general results, we present calculations for the conductance of single walled carbon 

nanotube networks in a fully ballistic regime. The electronic transmission is anal­

ysed in terms of the network volume fraction and total number of junctions. We 

conclude this section by estimating an upper limit for the conductivity of carbon 

nanotube network films, which is directly extracted from our model, and compared 

with the best conductive films reported so far.

4.4.1 Ideal Nanowire Networks

Let us begin by analysing the conductance spectrum for an array of ideal monatomic 

wires. Figure 4.3(a) presents the conductance as a function of electronic energy 

for random networks with N = 100 wires with L = 1000 atoms each, and average 

connectivity (Q^) = 6 and (a^) = 1. For each energy value, 100 independent con­

figurations were considered, and the data presented is an average considering all 

realisations. It is known from the properties of random networks (See Ref. [120], 

for example) that (a) = 6 is above the percolation limit, which means that almost 

all the nodes are interconnected. Following the description in the previous section, 

each electrode is composed of a single semi-infinite wire, and thus the maximum 

theoretical value for the conductance of each configuration is limited by the elec­

trodes to F = Fo = 2e^//?,. Another feature that can be observed in the graph is 

that since we chose 7' = 7o, the bandwidth of the network equals that of individual 

wires, which is 470. The series of peaks and valleys on the conductance is caused
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Figure 4.3: Conductance spectrnm for networks with N = 100, L = 1000, and (a) (a) = 6, 
(as) = 1; (b)(Q) = 4,8,16, («£;) = 5. The vertical dashed lines at = O.570, indicate 
the fixed energy value at which the network conductance will be calculated in order to 
avoid the special situation arising due to resonance effects at E = O.O70.

by the finiteness of the wires, which present themselves as discrete energies in the 

spectrum. Whenever the electronic energy matches one of the eigenvalues of the 

finite chain’s tight binding Hamiltonian we see a peak in the conductance, whereas 

a lower value for F is produced when there is a mismatch between the electronic 

energy and the Hamiltonian’s eigenvalues.

On figure 4.3(b) we show how the connectivity of the network directly affects 

the conductance spectrum. We consider networks with N = 100, L = 1000, and
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(a) = 4,8,16. It is clear that the average conductance increases with (a), as it 

should since higher networks with larger connectivities present a larger number 

of conduction paths. In this case, we have fixed (q^) = 5, which translates into 

a theoretical maximum conductance of F = SFo = lOe^/h. Once again there 

is a clear dispersion on the average conductance, however, it seems to decrease 

as {a) is increased. This is expected since for higher connectivities independent 

configurations become more similar.

In both panels of figure 4.3 there is a clear drop on the average conductance 

at E = O.O70. These low conductance values are mainly caused by groups of 

atoms “dangling” from the conduction path. Atoms or molecules adsorbed on the 

external surface of nanotubes and nanowires affect the conductance along the lon­

gitudinal axis. In a tight binding description, it is possible to observe that lower 

conductance values arise when the energy of the conduction electrons matches one 

of the eigenvalues of the adsorbed structure [102]. In other words, when conduc­

tion electrons are in resonance with the eigenvalues of an adsorbed structure, the 

electrons tend to be heavily scattered, lowering the overall conductance along the 

axis of the wire. In the case of monatomic wire networks, each conduction path 

can be thought of as a long chain connecting source and drain electrodes, along 

which finite wire segments are attached. In this case, conduction electrons are 

heavily scattered when their energy matches one of the eigenvalues of the attached 

segment. The tight binding energy spectrum of a finite wire with L atoms is given 

by [150]

£m = eo + 270 cos
niTT

L + 1
1 < m < L, (4.16)

where the on-site energy cq is set to zero. The eigenvalue Sm = O.O70 corresponds 

to cos[m7r/(L -t- 1)] = 0, which is only satisfied for L = 2m — 1 in equation (4.16). 

Therefore, E = O.O70 is always an energy eigenvalue of wire segments with an odd 

number of atoms. This particular feature makes E = O.O70 a special case, and
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since we are interested in general features of network conductivity we should avoid 

it. To that end, it is necessary to consider an energy value that does not present 

any particular feature like the one just mentioned, therefore we set E — O.570 as 

the fixed value of the electronic energy in our calculations. The dashed vertical 

lines in figure 4.3 indicate the chosen energy.

In order to better understand the role of each controllable parameter on the elec­

tronic transport across disordered networks, we investigate the effects of (a) and 

(oe) independently. First we analyse how the connectivity between wires affects 

the conductance of the whole network. For general Erdbs and Renyi random graphs 

[151], if the number of connections per node is too small, i.e. 1 < {a) < 2, isolated 

islands tend to form instead of a connected percolating network and the conduc­

tance of the system is expected to vanish in the thermodynamic limit {N —>■ oc). 

On the other hand, for (a) = 2 approximately 80% of the wires are interconnected, 

and a percolating cluster is always formed for (a) > 2. However, the electrodes 

must be connected to this largest cluster in order to form a conducting system. 

In particular, for (a) = 2, there is a 20% chance that any electrode wire will be 

connected to one of the smaller isolated islands, and will thus not contribute to 

the electronic transport across the network. For comparison, we state that on an 

Erdos and Renyi random graph with {a) = 4 the fraction of interconnected nodes 

is 98%, whereas for a graph characterised by (a) = 6 this fraction becomes 99.5% 

[120].

Figure 4.4 shows the dependence of the conductance at E = O.hyo as a function 

of the connectivity of the network. We consider networks with three different 

sizes N = 100, 500,1000. The data was obtained considering wires of fixed length 

L = 1000 atoms, and the number of wires connected to each electrode (semi-infinite 

wires) is fixed at (as) = 6. The curves emphasise the influence of the network 

connectivity on the conductance, as the former is increased from its lower limit 

(a) = 1, up to values well beyond the percolation limit. Each data point is an
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Figure 4.4; Conductance at £’ = 0.670 as a function of the connectivity of the network. 
Electronic transmission increases as more conducting paths become available. Legends 
indicate total number of wires. The length of the wires is fixed at L = 1000, and 
there are (q^) = 6 connections to each electrode. Data averaged over 1000 independent 
configurations.

average over 1000 independent configurations, and all realisations were considered 

in the averaging procedure. The increase in conductance is caused by an increase 

in the number of available conducting paths for the electronic transport across 

the network. The saturation observed in the conductance of the networks as the 

connectivity is increased well beyond the percolation limit can be understood as a 

situation where the wires are fully interconnected. In this limit, the additions of 

extra possible paths for the electronic current will not have any noticeable effect 

on the conductance of the network. Furthermore, the increment in conductance 

with the number of wires N seen in figure 4.4, is also caused by the expansion of 

conducting paths, since the total number of unique connections in the network is 

given by {a)N/2.

Another major factor on the electronic transport of random nanowire networks 

is the number of wires connected to the electrodes. It is important to remember 

that each wire connected to an electrode provides a charge reservoir from where 

electrons come, and to where they finally go. Moreover, each one of these electrode
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wires supports only one quantum of conductance, which can introduce a bottleneck 

effect on the system. For example, if (a^) = 1, no matter how many conducting 

paths are present on the network, only one conduction channel is available for 

electrons moving from the network towards the drain electrode, and the maxi­

mum conductance is therefore limited to one quantum of conductance Fq = 2e^/h. 

On the other hand, for any connectivity beyond the percolation limit several con­

duction paths will be available on the network. Therefore, increasing (a^) will 

certainly improve the conductance of the network.

Figure 4.5 presents the direct effect of (af;) on the network conductance, for 

different values of (a). The conductance of the whole network depends linearly 

on the number of connections to semi-infinite wires, with a slope that varies with 

the connectivity of the random network. The dashed lines are linear least-square 

fits to the data. As (q^;) is increased the response in conductance is quite consid­

erable, which indicates that once a percolating network is in place, the system’s 

conductance is limited only by (a^). In any electronic device the quality of the 

electrode connections is crucial to the overall performance. In our model, as de­

scribed above, the electrodes can act as a bottle neck to the electronic conductance, 

and as expected have a considerable influence on the overall conductance of the 

networks. On the inset, we show the variation of dT/d{aE) with the connectivity 

(a), obtained from the slope of the linear-fitted lines. The slope reaches a max­

imum value for large enough connectivities, when an increase in the number of 

conducting paths available to the electrons does not alter the conductance of the 

network any further.

Finally, the conductance of random nanowire networks is expected to be strongly 

dependent on the probability of electrons to hop between neighbouring wires. This 

is directly related to the inter-wire hopping parameter. The inter-wire hopping is 

defined in analogy to the intra-wire hopping integral 70, and is denoted by 7'. 

In the tight binding model, the hopping integral represents the strength of the
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Figure 4.5: Network conductance as a function of the number of connections to electrodes, 
(oe). Inset: slope of the linear-fitted lines increases with the network connectivity {a), 
towards a saturation point. Data is for N = 100, and L = 1000, averaged over at least 
200 independent configurations.

bond between two atoms in a molecule or solid, therefore a higher value indicates 

a stronger coupling. In metallic nanowire and carbon nanotube films, the resis­

tance arises mostly from inter-wire electron tunnelling, and thus, films with better 

coupled elements have lower overall resistance.

The inter-atornic (intra-wire) hopping is the only parameter in the tight binding 

model considered here, and so it is only natural that we choose to define the inter­

wire hopping in terms of this parameter. That is to say, we analyse the influence 

of the ratio 7'/7o on the conductance of the network. If the ratio is too small 

il'/lo << 1) or too large (7V70 >> 1) the mismatch between the couplings 

causes an adverse effect on the electronic transport through the system, lowering 

the conductance from its maximum possible value. In particular, considering only 

two semi-infinite wires connected to each other at the surface by a hopping 7' 

(forming an infinite linear chain), we can see on the upper panel of figure 4.6 that 

the maximum conductance occurs when the inter-/intra-wire couplings are equal 

to each other, i.e., 7V70 = 1- This is not surprising if we bear in mind that
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any contrast in the Hamiltonian parameters is a source of additional scattering. 

On the bottom panel of figure 4.6 we show the results for network conductance 

as a function of 7V70 for networks with N = 100, (a) = 8, {as) = 6, and 

L = 1000. In this case, it can be observed that the maximum conductance occurs 

for a ratio slightly larger than 1. This deviation from the unity ratio is caused 

by two independent factors. First, when an atom or molecule is adsorbed on the 

side of a nanowire or carbon nanotube, charge transfer effects can cause slight 

changes on the hopping parameters and on-site energies of atoms on the vicinity 

of the adsorption point. This correction can be calculated self-consistently in the 

so-called efficient screening approximation [145], but this correction is not taken 

into account in our calculations. Another factor interfering with the optimum 

hopping ratio has to do with the dangling clusters formed along the electronic 

current path. These can also affect the electronic transport by causing additional 

electronic scattering along the wires [102]. We have also observed that the actual 

maximum value of F and the ratio at which it occurs depends slightly on the fixed 

value chosen for the electronic energy.

So far we have presented results illustrating general properties of our com­

putational framework applied to modelling the conductance of monatomic chain 

networks. It has been shown how the network parameters influence the electronic 

transport across the idealised films, and how the inter-wire hopping directly af­

fects the films conductance. In the next section, this general methodology will be 

combined with the geometrical properties of carbon nanotube films, presented in 

chapter 3, in order to calculate the upper limit for the maximum conductivity of 

CNT films.

4.4.2 Application to Carbon Nanotube Networks

The results from the geometrical modelling presented in chapter 3 can now be com­

bined with our quantum transport model, providing a multiscale approach to the
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YAo
Figure 4.6: Top: Conductance of two semi-infinite chains connected by a hopping 7'. Bot­
tom: Network conductance as a function of inter-wire/intra-wire coupling ratio. Max­
imum conductance is obtained around 'y'/'yo = 115. N = 100, (a) = 8, (aE) = 6, 
T = 1000, and 1000 independent configurations.

study of electronic transport in films containing networks of 1-dimensional conduc­

tors, namely carbon nanotubes. In chapter 3, section 3.2, we have presented results 

for the connectivity of disordered networks of rods. The results provide universal 

relations for the dependence of the network connectivity with experimentally ac­

cessible quantities such as the volume fraction of the films and the aspect ratio of 

individual wires, which also happen to be the parameters of our geometric perco­

lation model. In particular, we have found that for a random network of rods with 

individual length £ and diameter D, inside a rectangular cuboid film of dimensions
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given by 2i x 2£ x 4£, the average connectivity per rod is given by

(a) = (2,14±0.03)xl/,^. (417)

Furthermore, by considering that metallic electrodes are located on the opposing 

square faces of the film, and that any rod crossing these surfaces is taken to be in 

contact to that specific electrode, we found that the number of rods crossing each 

electrode can be written as

{as) = (1.35 ±0.07) x Vj (4.18)

Therefore, once the aspect ratio of the wires and the volume fraction of the film 

are chosen, (cv) and (oe) are automatically defined. These parameters are then fed 

into the general quantum transport model presented in the previous section, which 

yields the conductance for a network with the specified geometrical properties. 

Finally, since we have considered disordered networks to be defined inside a film 

of specified geometry, it is then possible to convert the network conductance into 

film conductivity. A result which can be directly compared with experimental 

measurements.

In the case of CNT films, the charge reservoirs are represented by semi-infinite 

nanotubes of same chirality of those in the network. Notice that this particular 

choice for the particle reservoirs is in complete accordance with our methodology. 

In practice, it accounts for the fact that each nanotube connected to an electrode 

serves as source or drain for the electron current. Once again, it is important to 

make sure that there are no short-circuits in the films.

We begin by investigating the conductance of networks made of (5, 5) carbon 

nanotubes, which are classified as armchair CNTs and have a metallic band struc­

ture. The diameter of a (5, 5) CNT is ~ 0.68 nm, while the length depends on the 

number of unit cells considered. In a (5, 5) SWNT, each unit cell has 4 x 5 = 20
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atoms. We consider nanotubes of aspect ratio equal to 11,16.5,22,27.4, which 

correspond to lengths of 7.5 nin, 11.2 nm, 14.9 nm, 18.6 nm, respectively. For each 

of these aspect ratios, it is possible to vary the total number of carbon nanotubes 

in the films, such that the network volume fraction ranges from 0.065 up to 0.325. 

Moreover, through equations (4.17) and (4.18), the combinations of l/D with V} 

provide networks with (q) in the range 3.6 — 7.5, and (a^) = 27 — 77.

In figure 4.7 it is shown how the network conductance depends on the vol­

ume fraction for the respective aspect ratios considered. Each data point is an 

average over at least 50 independent configurations, and the error bars represent 

the statistical error in the ensemble. Similarly to the resistive network results 

presented in chapter 3, there is a clear improvement in the conductance with a 

higher concentration of nanotubes. Moreover, we can also observe that higher 

network conductance values are achieved when the film is composed of nanotubes 

with larger aspect ratios. The dependence of the film conductance on the aspect 

ratio of individual nanotubes is in agreement with previous experimental studies 

[46, 152]. One possible way to account for this trend is to consider that, on av­

erage, a longer nanotube will have a larger distance between its junctions with 

other tubes. Therefore, on nanotubes with higher i/D ratio the electrons will, on 

average, travel a longer distance along the tubes before experience heavy scattering 

caused by the inter-tube junctions.

It is also possible to analyse how the conductance depends on the total number 

of junctions in a network film of volume V, which was defined in chapter 3 as NjV = 

{a)N/2. Figure 4.8 shows the averaged network conductance as a function of the 

total number of junctions in simulated films. We again see an increase in the overall 

film conductance as the aspect ratio of individual nanotubes is increased. Moreover, 

our model reproduce the approximate linear trend observed in experimental reports 

[122], which were also shown in the previous chapter.

Converting calculated values of network conductance into film conductivity can
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Figure 4.7; Conductance versus volume fraction for networks of (5,5) armchair SWNTs. 
The legends indicate the aspect ratio of each data set. Higher aspect ratio CNTs provide 
better conductance, in accordance with experiments [46].
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Figure 4.8: Averaged film conductance as a function of total number of nanotube junc­
tions. Dashed straight lines are least-square linear fits to simulation data, in accordance 
with experimental results of ref. [122].
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be done by considering the geometry of the films. Employing the usual relation 

between conductance and conductivity, it is possible to write

r.L r
~ 1'

(4.19)

At this point, it is important to remember that E represents the conductance 

of an idealised network of finite-sized carbon nanotubes in a ballistic electronic 

transport regime. In the calculation of the conductance, we do not consider a 

series of decoherence-inducing factors which nonetheless are certainly present in 

experimental realisations. Therefore, the conductance we calculate is believed to 

be the upper limit for the conductance of a real film made of similar 1-dimensional 

conductors. Similarly, the conductivity calculated from our results, cr, represents 

an upper bound for the maximum electrical conductivity of real nanotube network 

films.

Based on an empirical analysis of the conductivity data, we find that it scales 

with a combined variable of the parameters V/, (. and D. This dependence allows 

for a direct comparison of experimental data against our superior limit estimate. 

A comparison between experimental and simulation results, through the difference 

between the respective values, provides a direct indication of how much it is possible 

to further improve the transport performance of the laboratory produced films. 

Defining a scaled variable x = VfXl/D"^, we plot in figure 4.9 the dependence of the 

him conductivity (in units of siemens per meter) with x for nanotubes of varying 

aspect ratio. The data corresponding to networks of hnite-sized (5,5) SWNTs 

shows considerable dispersion, even after averaging over several conhgurations. 

Nonetheless, it is possible to identify a general trend on the data which stresses 

the linear dependence of the conductivity with x, represented by the least-squares 

linear ht indicated by the dashed (black) line. The dispersion on the data for CNTs 

is a direct consequence of the hnite-length of the nanotubes considered. Since
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Figure 4.9: Maximum conductivity of carbon nanotube films as a function of scaled 
variable x = Vf x £fD^.

the Green function of independent nanotubes is calculated numerically, it quickly 

becomes too computationally demanding to increase the length of the nanotubes 

much further.

In order to overcome this computational limitation, we return to the case of 

linear monatomic chains, and investigate the conductance of networks made of 

idealised nanowires, represented by said linear monatomic chains. In order to 

compare the results with carbon nanotubes, we introduce an orbital degeneracy 

on the monatomic chain Hamiltonian and consider chains with two independent 

conducting channels. These monatomic chains present a maximum conductance of 

4e^//i at the Fermi energy, just like carbon nanotubes. Since we have an analytic 

expression for the Green function of linear chains (equation (4.4) ), the computa­

tional limitations can be avoided, and we can consider very long chains. In order 

to minimise the finite-size effects on the local density of states, we study chains 

with L — 16000 atoms. Also shown in figure 4.9, is data obtained for the conduc-
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tivity of networks composed of ideal nanowires, with varying vohnne fraction and 

aspect ratio. In this case we can see a much smaller dispersion on the calculated 

conductivity. Furthermore, by fitting a straight line to the nanowire conductivity 

we find

au = M X 4.25 x 10 ^ x Vf— (in S/m), (4.20)

where the factor M accounts for the number of conduction channels in the wires. 

For the case considered here, we have defined M = 2. Because of all the ide­

alisations applied to our calculations of the conductivity, the expression above is 

deemed to be the upper limit for the conductivity of random network films.

It is instructive to test the expression in equation (4.20) for typical SWNT 

values, namely £ = 1/mi and d = 1.2 nm. For Vf = 30%, the predicted upper bound 

would be cr„ = 1.8 X 10^ S/m if CNTs of these dimensions could be fully dispersed 

to form the network. However, carbon nanotubes are known to bundle together, 

which means that in reality wire diameters are considerably larger. On the other 

hand, larger-diameter bundles have more nanotubes on the surface leading to more 

current-carrying channels per wire. Taking all this into consideration, we can 

compare our expression with the highest-conductivity case reported so far {Vf = 

30%, £ = 5/.im,d = 20 nm) [56, 86, 80]. Our prediction of cr„ = 9 x 10® S/m is only 

one order of magnitude superior to the measured value of cr = 6 x 10® S/m. Bearing 

in mind that the upper bound here obtained assumes a number of ideal conditions 

that are experimentally unavoidable, this might be a clear indication that we are 

approaching a saturation point in the conductivity of nanotube network films. It 

is interesting to notice that the calculated upper limit yields a ratio Odc/cop ~ 530 

which, through equation (4.1), corresponds to a transmittance as high as 99% with 

a sheet resistance R = 9014.

Finally, although our focus has been on disordered networks comprised of car­

bon nanotubes, we can extend our results to deal with other wires. This could
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represent the case of networks made of other conducting materials, such as noble- 

metal nanowires, for instance. In this case the number of conducting channels M 

depends linearly on the wire diameter and the overall conductivity of the network 

is likely to scale inversely with D, with a proportionality constant that depends on 

the specifics of the material in question. If the conductivity of CNT network films 

is approaching its saturation point, it is likely that nanowires other than nanotubes 

may occupy the post of ideal components for disordered network films. Indeed, it 

has been shown recently [76] that silver nanowire network thin films might be a 

strong contender in the race for the next generation of transparent electrodes.

4.5 Summary and Conclusions

In this chapter we have shown how a quantum description of the electronic struc­

ture of individual carbon nanotubes nanotubes can be successfully coupled with 

the geometric features of rigid rod networks presented in the previous chapter. 

The resulting multiscale theoretical model provides a calculational tool capable of 

treating quantum electronic transport on disordered networks of generic nanoscale 

1-dimensional conductors. The electrical conductivity of network films is fun­

damentally important for their performance as transparent electrodes, since this 

specific application requires a high ratio between the electrical conductivity and 

the optical conductivity.

We have shown that an electronic structure description based on semi-empirical 

tight binding Hamiltonians is capable of accounting for the heavily disordered 

environments found on nanotube networks. Based on this parametrised description 

we have developed a methodology based on single particle Green functions, which 

is general enough to account for a variety of nanostructured conductive networks. 

It has also been shown that it is possible to significantly reduce the computational 

resources required for the description of the problem, by selecting a convenient
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way to express the Green function matrices of the system, and exploring a basic 

feature of sparse matrix products.

The general methodology developed has first been ajiplied to idealised nanowire 

networks, and it has been shown how the connectivity of the wires, as well as the 

number of connections to the electrodes, control the conductance throughout the 

networks. In conjunction with results from the geometrical percolation model 

introduced in chapter 3, we have presented simulation results for the conductance 

of single-walled carbon nanotube networks.

Finally, by considering a fully ballistic transport regime on films of ideal nanowires, 

and comparing the ensuing results with typical experimental evaluations v.^e have 

shown that carbon nanotube network films might be approaching their performance 

limit, and that perhaps metallic nanowires represent a more promising alternative 

to future developments.

The results presented in this chapter have been published in Refs. [153, 154].



Chapter 5

Further Applications

The methods developed in chapters 3 and 4 can be modified to tackle related prob­

lems involving network films. In the present chapter, two such related problems 

are considered. First, the possibility of utilising nanowire networks as a mediat­

ing spacer for magnetic coupling is investigated. Also known as Indirect Exchange 

Coupling, the interaction between magnetic moments separated by a non-rnagnetic 

material is known to be facilitated by conduction electrons in the non-magnetic 

spacer. As previously shown, nanowire networks present remarkable electronic 

conductance. The possibility of using network films in magneto-electronic devices, 

coupled with the computational tools we have developed to describe electronic 

transport in these networks, is a strong motivation to investigate networks as a 

magnetic coupling material.

The second extension of our methodology considered in this chapter is related 

to very recent experiments with silver nanowire films. Investigating the electronic 

transport characteristics of Ag NW films, by measuring I — V curves, researchers 

found that a minimum voltage is required before a current can flow through the 

network. As the voltage bias is increased beyond this triggering voltage, the cur­

rent eventually saturates. Decreasing the voltage from its maximum value down 

to zero, experimentalists have observed a hysteresis-like behaviour in the I — V

II9
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curves. It has been hypothesised that this hysteresis behaviour is caused by im­

purities reminiscent of the growth of Ag nanowires, or of the deposition process. 

These impurities are known to preferably locate themselves near junctions between 

nanowires. When the voltage is high enough the charge build-up will put the im­

purities under a high electric filed, which might cause an electrical breakdown. 

The impurities located at junctions behave like capacitors and a model capacitive 

network can be applied to study the onset of electrical activation in silver nanowire 

networks.

5.1 Magnetic Interactions Mediated by Random 

Networks

The interaction between magnetic moments has been a topic of study for several 

years. On the atomic scale, the exchange interaction between nuclear magnetic 

moments embedded in metallic systems has been investigated in detail, mainly due 

to its vast array of applications. Direct exchange interaction takes place when there 

is an overlap of the wavefunctions surrounding the respective magnetic moments, 

which decays rapidly as the distance separating the magnetic objects is increased. 

However, on the atomic scale, an indirect exchange interaction between nuclear 

magnetic moments embedded in metallic systems has also been observed. This 

indirect exchange coupling has been explained as being facilitated by conduction 

electrons in the metal. Unlike the direct interaction which decays rapidly and 

monotonically with the distance between the magnetic objects, indirect exchange 

coupling presents a characteristic oscillatory decay and can behave as a very long 

ranged interaction.

Theoretical approaches to indirect exchange coupling (lEC) were originally con­

centrated on understanding the behaviour of the coupling between magnetic impu­

rities embedded in metallic structures [155]. Years later, theories were developed to
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explain experimental observations of coupling between physically separated mag­

netic layers. In these experiments, two (or more) layers of a magnetic material are 

separated by layers of non-magnetic materials. It was clear from the beginning that 

the observed magnetic couplings could not be accounted for by direct exchange, 

and therefore should be a manifestation of lEC. The research on exchange coupling 

on magnetic multiplayers led to the discovery of the effect know as giant magneto 

resistance, which is the standard technology on current magnetic data storage de­

vices [156, 157, 158]. The massive advancement of nanotechnology in recent years 

naturally led to the study of magnetic exchange coupling on nanometric systems. 

Carbon nanotubes present very low electronic spin-orbit coupling [159], and are 

believed to be a class of material which could present very long range magnetic 

interactions [147, 160]

Because lEC is mediated by the conduction electrons of a non-magnetic spac­

ing material between magnetic moments, and since electronic transport on disor­

dered networks is the major focus of this thesis, we decided to investigate if an 

indirect coupling mediated by random networks would arise. Previous theoreti­

cal approaches have been developed to provide a way of calculating the magnetic 

coupling from the Green function of the mediating system. In chapter 4 a general 

formalism was developed to express the Green function of a disordered network in 

a computationaly efficient fashion. Our approach to the problem of lEG mediated 

by networks aims at coupling the well established theoretical tools with our newly 

developed techniques. In what follows we introduce the general picture used to 

investigate lEG, and proceed to apply it to disordered networks. Our major moti­

vation is to test whether nanowire networks can also be used to transmit magnetic 

information.
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Figure 5.1: Indirect exchange coupling between magnetic moments located at A and B 
is mediated by the conduction electrons of the host structure, represented here as an 
infinite linear chain. The sign of the coupling changes with the distance D.

5.1.1 Indirect Exchange Coupling

A simple description of magnetic coupling in a multilayer system can be obtained 

within a one-dimensional picture. In figure 5.1, a one dimensional structure is 

represented by an infinite linear chain of atoms. There are two magnetic moments 

located at sites A and 5, separated by a number of inter-atomic spaces given by D. 

Within a simple description, the magnetic moments can only be oriented parallel 

or anti-parallel to each other. The magnetic coupling between these two moments 

is given by the difference between the total energy of each configuration. Using 

the parallel configuration as reference, the coupling is given by

J{D) = - E.Ti T > (5.1)

where f and J, represent the spin orientation of each moment. Rather than calcu­

lating the total energy of each configuration, it is possible to calculate the energy 

difference directly with the use of Lloyd’s formula [161, 162, 163, 164]. In its 

essence, the Lloyd formula gives the change in the density of states of a system 

caused by a given perturbation without having to diagonalise two different Hamil­

tonians. The Lloyd formula method is related to Dyson’s equation, which was 

presented in chapter 2.

Using Lloyd’s formula, it is possible to show that the indirect exchange coupling
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between two magnetic moments, separated by a distance D, is given by [146, 165]

J{D) = - 1
TT

dEf(E)lm J 1.1 1 + W^G\b{E, D)G‘bAE. D) (5.2)

where /(£’) is the Fermi function, 14 is the spin split potential, A and B specify 

the site or layer in which the moments are located, and ^re the propagators 

for spin-up and spin-down electrons between the magnetic moments in the parallel 

configuration. The spin split potential lifts the degeneracy in the magnetic mo­

ment of conduction electrons, by giving a different on-site potential to each spin 

orientation in the impurity sites.

The spin-dependent propagators can be calculated directly from Dyson’s equa­

tion, and are given by

= g + gv^G\ (5.3)

where the propagator between A and B is given by

^ gAA QaB ^

GbA gBB

and the spin-dependent potential is written as

1/'" -
^ 0 ^
V 0 A'" /

(5.4)

(5.5)

with = —14 and A^ = 14- Conduction electrons propagating along the linear 

chain feel a different on-site energy at sites A and B, which depends on the spin 

of the conduction electrons.

For a typical 3D layered structure the indirect exchange coupling decays with 

distance as 1/D^. However, for one-dimensional systems the coupling is long ranged 

and decays as 1/D. Furthermore, the coupling shows a characteristic oscillatory
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Figure 5.2: Indirect exchange coupling between magnetic moments embeded in a linear 
chain. The period of oscillation is determined by the Fermi energy of the host, in this 
case Ep = O.Oyo- The solid line is a guide to the eye.

behaviour as the separation between the magnetic moments is increased. Figure 

5.2 shows the oscilatory decay of J(D) on a monatomic linear chain, with magnetic 

impurities located at site A and B, a distance D apart. The period of oscillation is 

defined by the Fermi energy of the host material, in this case the linear chain. In 

the figure, the Fermi energy was set at Ep = O.O70. When the coupling is positive, 

the magnetic moments will be aligned in the anti-parallel configuration, whereas 

when J < 0 the coupling is ferromagnetic and the moments are aligned parallel 

to each other. In the figure shown, the period of oscillation is one atomic plane, 

such that the coupling oscillates between positive and negative as the separation is 

increased one plane at a time. In any crystalline system the distance will always be 

an integer number given by some lattice parameter, however, using an analytical 

expression it is possible to calculate the coupling at non-integer distance, as it is 

shown by the solid line in figure 5.2.

Since indirect exchange coupling is mediated by conduction electrons of the 

spacer system, it would be interesting to investigate the possibility of calculating 

the coupling between magnetic moments separated by a conductive random net-
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Figure 5.3; Schematic representation of the setup used for calculating the indirect mag­
netic coupling mediated by conduction electrons of a disordered network. The central 
rectangular area contains a network of N finite wires with average connectivity (a).

work. Similarly to the construction used to study the conductivity of nanotube 

networks, the magnetic moments are placed at the end of semi-infinite structures, 

which are then connected to finite wires in the random network. Figure 5.3 illus­

trates in a schematic way the setup of the system. The magnetic coupling can 

be calculated directly from equation (5.2), where the network Green functions are 

calculated in the efficient numerical fashion described in chapter 4.

5.1.2 Results

A random network with N = 100 finite linear chains of length L = 1000 atoms each, 

and with an average connectivity equal to (a) was used as spacing between two 

magnetic moments. Several samples are required to obtain statistically significant 

results, and figure 5.4 shows the histogram of couplings calculated for networks 

with increasing connectivities. Because of the disordered nature of the networks, 

the magnetic coupling is expected to be very small. However, a more important 

issue is apparent from the histograms. The calculated couplings are approximatelly 

equally distributed around zero. Depending on the connections throughout the 

network, the magnetic moments might couple parallel or anti-parallel to each other, 

whith almost equal probability. It is very hard to control the “distance” between 

the magnetic atoms on this system, and the statistical character of the networks 

causes the average coupling to vanish.

On a multilayer system, the period of oscillation of the indirect exchange cou­

pling is controlled by the Fermi energy of the material hosting the magnetic mo-
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Figure 5.4: Histogram of the calculated values for the magnetic coupling mediated by 
random networks. As the connectivity of the network increases, the histograms become 
broader, but are approximatelly equaly distributed around J = 0.0.

ments. Furthermore, commensurability effects might suppress the characteristic 

oscillatory behaviour of J [166, 167], or even cause the coupling to vanish. It is 

therefore interesting to analyse the possible influence of the Fermi energy on the 

coupling mediated by a network. The indirect exchange coupling between two 

magnetic moments separated bj^ a random network of idealised nanowires is shown 

in figure 5.5. For systems with three different values of the Fermi energy, networks 

of increasing connectivity were considered. Each data point is an average over at 

least 3000 samples. The dashed line indicates the location of J = 0. In spite of the 

large number of independent configurations generated, the error bars in each data 

point are still significant. Furthermore, almost all points lie within the dashed line 

J = 0 when error bars are considered. These preliminary results are an indication 

that unfortunately there is no magnetic coupling mediated by conduction electrons 

through the network. However, it is also possible that the vanishing average cou­

pling is a consequence of the very own disordered nature of the network, which 

couples the moments parallel and anti-parallel with equal probability.
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Figure 5.5: Indirect exchange coupling as a function of network connectivity. The Fermi 
energy of the mediating material controls the period of oscillation of the coupling. Within 
error bars, almost all points agree with the dashed line representing a vanishing coupling.

It is possible to show that the size of a random network is related to its to­

tal number of nodes. In a further attempt to observe indirect exchange coupling 

mediated by networks, systems with a increasing number of wires have been inves­

tigated. The results obtained do not show any sign of dependence with the size 

of the network considered, which is taken as further indication that the average 

coupling is in fact vanishingly small. It would be interesting to have experimental 

measurements performed in these systems in order to prove or disprove our pre­

dictions. To the best of our knowledge, this topic has not yet been considered by 

the experimental community.

Unfortunately, in the first application shown in this chapter we have obtained 

negative results. However, in the next section we consider yet another application 

of the methodologies developed in this thesis work. This time we consider recent 

experimental results and our model achieves considerable success.
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5.2 Silver Nanowire Films as Capacitive Networks

Thin films fabricated by deposition of silver nanowire solutions can also be used as 

flexible transparent electrodes. As a matter of fact, based on the theoretical calcu­

lations of the upper limit for the conductivity of carbon nanotube films, presented 

in chapter 4, we have found that metallic nanowires present an excellent alterna­

tive to nanotubes in the production of network films. The number of conducting 

channels on a nanowire scales with its diameter, while for nanotubes the number 

of channels is limited to a maximum of two. Recent experiments have shown that 

silver nanowire thin films are indeed capable of achieving the minimum conduc­

tivity required for application in flexible displays [76]. Figure 5.6(A) shows a 3D 

micrograph of a typical silver nanowire film. The image was obtained with an 

Atomic Force Microscope (AFM) and shows the topographical structure of a silver 

nanowire film. The colour scale to the right of the micrograph indicates the height 

of each point in the image.

Very recent (yet unpublished) experiments performed by Nirmalraj et al. to 

address the transport properties of silver nanowire networks have shown intriguing 

results. Using atomic force microscopy to measure the electrical resistance between 

the AFM tip and an electrode deposited on one end of the film, it was found that 

a minimum voltage bias is required to “activate” current pathways in the network. 

Increasing the bias voltage between the AFM tip and the electrode it was found 

that it is possible to activate specific clusters of nanowires without affecting the 

whole film. Figure 5.6(B)-(F) shows current maps obtained at different voltage 

biases, with an electrode located on the right hand side of the images. In 5.6(B), 

a well connected current map was obtained by applying a voltage bias of 6 V. 

Analysing the same area of the film after electrical activation under lower bias 

conditions of 100 mV, 1 V, 2 V and 4 V results in well resolved current maps as 

shown in panels (C), (D), (E) and (F), respectively. Based on the AFM current
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Figure 5.6: AFM analysis of electrical activation of silver nanowire networks. (A) To­
pography of a region of sparse Ag nanowire networks. A step wise increase in the applied 
bias voltage from 10 mV up to 5.5 V showed a threshold voltage at « 6 V. After applying 
a 6 V bias the current pathways are triggered across the network and a well connected 
current map is obtained (B). The electrode is on the right hand side of the image. There 
is no obvious gradient across the current map, which is indicative of excellent electrical 
connectivity in the network. Analysis of the same area after electrical activation under 
lower bias conditions of 100 mV, 1 V, 2 V and 4 V provides well resolved current maps 
as shown in (C), (D), (E) and (F), respectively. Experimental measurements performed 
by P.N. Nirmalraj, Trinity College Dublin.

maps it is possible to infer that once a current pathway has been activated by a 

high enough voltage bias, it continues to conduct at lower biases.

Current-voltage curves measured at different tip-electrode distances show a 

hysteresis-like behaviour. Starting from low voltages, it was found that current 

only flows through the network for bias voltages higher than a triggering voltage, 

which activates specific current paths in the film. Retracing the measurement start­

ing from high voltages, it was found that the 1 — V curve is not the same. Figure 

5.7 shows the current-voltage behaviour of silver nanowire networks, measured at 

increasing electrode-tip distance. Each set of data clearly shows that a minimum 

voltage is required to obtain an electrical current through the network. Further­

more, the measurements also show that the minimum voltage required to activate
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Figure 5.7: Local current voltage behaviour of Ag nanowire networks as a function of 
distance from electrode. Current is monitored as a function of an applied steady bias. A 
certain magnitude of voltage is required to activate current pathways, and the magnitude 
depends on the distance to electrode. Once a pathway has been activated it remains in 
place even at very low bias. Experimental measurements performed by P.N. Nirmalraj, 
Trinity College Dublin.

the current pathways, defined above as the triggering voltage, increases with the 

electrode-AFM tip distance. The hysteresis behaviour of the cur rent-volt age maps 

shown in figure 5.7 has led to the hypothesis that impurities reminiscent from the 

film fabrication process block the current at nanowire junctions, up to the point 

when the charge build up is enough to cause an electrical breakdown of the impu­

rity. In other words, impurities located at nanowire junctions suppress the current 

up to the point when the voltage is high enough to remove the impurities. Once 

the impurities have been removed, the current pathways are free to conduct down 

to very low bias voltages, as shown in figure 5.7 and figure 5.6(C)-(F).

Measuring current-voltage curves at increasing electrode-AFM tip distance
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Figure 5.8: Magnitude of the triggering voltage as a function of the distance from the 
AFM tip to the electrode. Triggering voltage increases with the distance from the elec­
trode up to a saturation point. Measurements also performed by P.N. Nirmalraj, Trinity 
College Dublin.

makes it possible to investigate the exact dependence of the triggering voltage with 

distance, as shown in Figure 5.8. The triggering voltage increases sharply at small 

distances, and saturates when the tip-electrode distance is large enough. For small 

distances, the charge build up will be concentrated on a few nanowire junctions, 

and a lower bias voltage will be enough to cause an electrical breakdown of the 

impurities. At larger distances much more junctions are involved in the charge 

build up, and a higher bias voltage will be required. Once an electrical breakdown 

occurs at a specific junction, it quickly expands to neighbouring junctions in a type 

of avalanche-like chain reaction. Silver nanowire networks are similar to nanotube 

networks, as shown by micrographs in figure 4.1. A model similar to the resistive 

networks developed to investigate electrical resistance in nanotube films might 

be able to shed some light on the phenomenon of local electrical activation in 

silver nanowire films. In particular, a simple model can be developed to test the 

hypothesis raised by the analysis of the experimental data for Ag network films.
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Figure 5.9: Schematic representation of the charge build up at a junction between two 
nanowires, represented by rods. A capacitor Cq represents the impurities blocking the 
electrical current at the junction. A bias voltage is applied between the nanowires when 
one is connected to the electrode and the other one is in contact with the AFM tip.

5.2.1 Capacitive Network Model

The resistive network model was applied in chapter 3 to study the electronic trans­

port on a nanotube network, where the onset of a triggering voltage is not observed. 

A modification of the model, where Ohmic resistors are replaced by capacitors, 

should be able to capture the onset of activation of electrical paths shown in the 

silver NW films. In essence, the hypothesis raised indicates that impurities are 

located at nanowire junctions such that direct contact between nanowires is physi­

cally blocked. By applying a voltage difference between the electrode and the AFM 

tip a charge build-up will occur at the junctions, as illustrated in figure 5.9. When 

the voltage bias is high enough, the impurities will be under a high electric field, 

and will eventually cause a breakdown. A similar behaviour is known to happen 

to capacitors, where an electrical breakdown is caused by high voltages.

In order to test the hypothesis, we have designed a model based on a capacitive 

network. The network consists of nodes connected by capacitors, such that the 

voltage difference between two adjacent nodes equals the voltage difference on the 

terminals of the respective capacitor. In analogy to equation (3.10) in chapter 

three, the voltage on every node of the network can be mapped through a matrix
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equation written as

V = —M-iQ, 
V'O

(5.6)

where Cq is the capacitance of each capacitor, and M is exactly the same matrix 

as defined in chapter 3. The matrix Q represents the charge in each capacitor 

in the network, and is proportional to the bias voltage applied. The electrode is 

placed along the nodes on the top edge of the network, and the AFM tip can be 

represented by any other node in the network. The application of a bias voltage 

between the electrode and the AFM tip induces a positive charge distributed along 

the line of nodes representing the electrode, and an equal but negative charge is 

induced in the node representing the AFM tip, located a distance d from the top 

edge. Figure 5.10 illustrates the capacitive network, as well as the parameters of 

the model. In the experimental setup, the induced charge is controlled by the bias 

voltage between the electrode and the AFM tip. In our model, by varying the 

total charge induced it is possible to calculate the voltage across each capacitor 

in the network. When the voltage difference on the terminals of a given capacitor 

is larger than the maximum it can sustain, the capacitor breaks down, and that 

current path is now activated. As soon as one of the capacitors breaks down it 

starts a chain reaction throughout the network, and more and more capacitors 

connected to the original one also experience this electrical breakdown. A current 

pathway is formed when the first capacitor in the electrode breaks down. The 

respective voltage at which this occurs is defined as the triggering voltage.

For the sake of simplicity, we consider first a finite square lattice with identical 

capacitors located in each vertex. For each specified distance between the electrode 

and the AFM tip, we vary the total charge induced on the electrode and the node 

representing the AFM tip, and calculate the voltage difference on the terminals 

of each capacitor using equation (5.6). It is convenient to remind the reader that 

equation (5.6) is also valid for non-regular networks, as long as the appropriate
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Figure 5.10; Schematic representation of a square capacitive network. A capacitor Cq is 
placed between every two adjacent nodes. A bias voltage is applied between the nodes 
located on the top edge of the network and a node located a distance d away.

matrix M is written accordingly, and it can also be applied to analyse electrical 

breakdown on networks with a complex structure. The numerical value of the 

breakdown voltage Vbreak is chosen somewhat arbitrarily, and the triggering voltage 

is defined as the voltage at which the first capacitor in the electrode breaks down. 

The specific value of the triggering voltage will naturally depend on Hreafc, but 

the qualitative dependence of the triggering voltage with the distance from the 

electrode should not. In fact, this is all that is needed in order to verify the 

original hypothesis.

5.2.2 Results

We consider the square capacitive network of figure 5.10 with a lateral dimension 

L = 80 nodes. The vertical distance between the electrode and the AFM tip d, is 

measured as the number of capacitors between the two. Finally, the voltage bias 

between the electrode and the tip is proportional to the total charge induced on 

the electrode (positive) and the AFM tip (negative), and in our model is defined 

as having arbitrary units. Throughout this section we set the breakdown voltage
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Figure 5.11: Colour plot of the voltage difference across capacitors in the network. Only 
capacitors above breakdown voltage are shown. Darker spots represent higher voltages. 
The electrode is located on the top of each panel, as indicated in figure 5.10.

Hreafc = 0.1, also In arbitrary units. As mentioned above, changes in this value 

bring no qualitative differences to our results.

Let us begin by submiting the system to a fixed bias voltage Vbias = 7.9. Solving 

equation (5.6) we obtain the electric potential in each node of the network. Figure 

5.11 shows the cluster of capacitors whose voltage difference along the distance 

d is higher than Vbreak = 0.1. The voltage across each capacitor is proportional 

to the colour of each point. Darker spots mean higher voltages. The breakdown
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cloud starts from the node representing the AFM tip, because this is the spot that 

concentrates the highest amount of induced charge in the whole network. The 

electrode is located on the top of each individual panel, as illustrated in figure 5.10. 

As the distance from the electrode is increased the shape of the breakdown cluster 

expands, and the number of capacitors subjected to a voltage difference higher 

than Vhreak increases. If the cloud reaches the electrode, then a direct current 

pathway to the AFM tip has been activated. For d = 10,20,30, the cloud clearly 

extends up to the electrode. As the distance reaches d = 40, the cloud does not 

touch the electrode anymore. At this point, the are no current pathways leading 

from the AFM tip to the electrode. The situation is the same for d = 50,60, at 

this bias voltage. This preliminary analysis is in agreement with the experimental 

data, which shows a clear increase in the triggering voltage with the distance d, as 

in figure 5.7.

In figure 5.12 the distance from the AFM tip to the electrode is fixed at d = 70, 

while the bias voltage is slowly increased. Starting from Vi^ias = 5, it is possible to 

observe how the breakdown cloud expands as the voltage is increased, up to the 

point where it reaches the electrode. The transition from no current pathway, to 

fully formed current pathway is very sharp, and for the case shown, it happens 

between Vbias = 7.9 and Vbias = 8.0. The sharpness of this transition, allows us 

to determine the triggering voltage with very high precision. Once the breakdown 

cloud reaches the electrode, it quickly expands to all capacitors connected to the 

electrode, as shown in the figure for Vbias = 8.02, and Vbias = 8.1. The transi­

tion from the non-conducting state to the conducting one becomes sharper as the 

electrode-AFM tip distance increases. Preliminary studies of networks with dif­

ferent size have shown a similar qualitative behaviour near the transition, but a 

systematic study of size-dependent effects on the transition is not yet available.

Figure 5.13 is a plot of the fraction of capacitors in the network subject to 

a voltage difference higher than the breakdown voltage. As the bias voltage is
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Figure 5.12: Breakdown cloud similar to figure 5.12, with electrode-AFM tip distance 
fixed at d = 70. Figure 5.10 shows a diagram of the underlying capacitive network. 
Triggering voltage for the network is defined as the bias voltage necessary to breakdown
one of the capacitors connected to the electrode. In this case, 7.9 < Vttrigger < 8.0.

increased the fraction shows a sharp increase. The corresponding voltage bias is 

a very good indication of the location of the triggering voltage. In this particular 

case, we see it is very close to V^as = 8.0. The exact determination of Vtrigger 

is done by finding the bias voltage at which the first capacitor connected to the 

electrode breaks down. The determination of Vtrigger for each value of d can be

done with very high precision, and it is shown in figure 5.14. For a network of
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1.0:

Figure 5.13: Fraction of capacitors in the network taking part on the breakdown cloud 
as a function of the bias voltage. The fraction increases sharply at the triggering voltage.

size L = 80, the triggering voltage saturates around d = 40. The model results 

clearly agree with the experimental data, shown in figure 5.8. This is a strong 

indication that the hypothesis formulated stating that current is initially blocked 

by impurities located at the junctions between nanowires is, in fact correct.

Networks generated by a random distribution of finite-sized rods in a two- 

dimensional plane have also been investigated. In this case, between every two 

rods in contact, a capacitor Cq is placed. Once again the matrix M is constructed, 

and equation (5.6) is solved for V. One of the edges of the two-dimensional area 

is chosen to represent the electrode, and rod crossing this specific edge are taken 

to be in contact with the electrode. A random rod a distance d from the elec­

trode is chosen to represent the nanowire in contact with the AFM tip. Finally, 

the triggering voltage is calculated for that specific network. Several independent 

configurations are required in order to achieve good statistical averages, but the 

general behaviour of Vtrigger with the distance from the electrode shown in figure 

5.14 was also observed. Due to its simplicity and computational inexpensive na­

ture, the regular network case is preferred because it shows the same qualitative 

behaviour with much less computer power required.
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Figure 5.14: Triggering voltage as a function of the electrode-AFM tip distance d, for a 
sqnare capacitive network with L = 80. Qualitative behaviour shows excellent agreement 
with experimental results in figure 5.8.

In this section, it has been shown how a simple model can be used to account 

for the onset of local electrical activation observed in silver nanowire networks. 

The modelling results validate the hypothesis that a triggering voltage is required 

in order to clear off impurities located at nanowire junctions. These impurities 

might have been leftover from the nanowire growth process, or from the deposition 

on the plastic substrate. In a similar fashion used to estimate the average junction 

resistance in carbon nanotube films, presented in chapter 3, it might be possible to 

calculate an average capacitance in silver nanowire films. The calculated average 

capacitance could be used to obtain information about the nature of the impurities, 

and the energy scales required to cause an electrical breakdown. This work is 

currently in progress.

5.3 Summary and Conclusions of the Chapter

The general methodology developed for the study of electronic transport on carbon 

nanotube networks has been applied to two related problems. First, the possibility
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of using nanowire networks as a non-magnetic spacer between magnetic moments 

was considered. In typical magneticmron-magnetic-magnetic layered systems, the 

interaction between magnetic layers is facilitated by conduction electrons of the 

non-magnetic spacer. The indirect exchange coupling between magnetic moments 

can be calculated through the Lloyd formula method, expressed in terms of specific 

Green function elements. In the case of magnetic impnrities separated by nanowire 

networks, computer simulation results indicate that positive and negative couplings 

arise with approximately equal probability. When averaged over thousands of 

independent configurations, the calculated indirect coupling vanishes within error 

bars. Simulations with networks of increasing connectivity and increasing total 

number of wires return similar negative results.

On the second half of the chapter, the resistive network model presented in 

chapter 3 has been modified to account for hysteresis-type behaviour observed in 

cnrrent-voltage curves measured on silver nanowire networks. It has been hypoth­

esised that a minimum voltage bias is required to remove impurities located at 

nanowire junctions. Once the triggering voltage is applied and the junctions are 

clean, the network conducts currents down to very low values of the bias voltage. 

The proposed modification in the model consists of considering a capacitive net­

work, where every two adjacent nodes are connected by a capacitor Cq. A bias 

voltage is applied between one edge of the network and a single node, representing 

an electrode and an AFM tip respectively. Solving the linear equation to obtain 

the voltage at every node of the network, makes it possible to map the voltage dif­

ference on the terminals of each capacitor. A breakdown voltage for the capacitors 

is defined, such that any capacitor subject to a voltage higher than this one breaks 

down and becomes a conductor. It has been shown how the breakdown cloud ex­

pands on the networks as the electrode-AFM tip distance is varied, as well as the 

bias voltage. It was also shown that this simple model is capable of reproducing 

the experimentally observed behaviour of the triggering voltage increasing with the
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distance. The agreement between experiment and simulation is a strong indication 

that the hypothesis originally raised is in fact correct, and impurities left over from 

the fabrication process block the conductance at nanowire junctions. The simula­

tion results, in conjunction with experimental measurements, are currently under 

preparation for publication.



142 CHAPTER 5. FURTHER APPLICATIONS



Chapter 6

Conclusions

Throughout the development of this work we have aimed at contributing to the 

understanding of electronic transport on carbon nanotube networks by means of 

computational models. A diligent effort has been made in order to design models 

capable of capturing all important features of the real physical systems, and which 

provide results in agreement with experimental studies. The computational mod­

els developed were explicitly designed to be combined with experimental results 

whenever possible in order to provide reliable estimates to quantities unavailable 

to experimental techniques, and to guide further experimental investigations on 

the development of highly conductive network hlins.

In chapter 1, carbon nanotubes were introduced along with their remarkable 

physical properties. Because of their mechanical strength and high electrical con­

ductivity, carbon nanotubes appear as the natural material of choice for the devel­

opment of flexible electronics. In particular, nanotube network Aims can be used 

to replace ITO in electronic displays, enabling the production of novel flexible de­

vices. This particular application requires transparent CNT Aims with very high 

electrical conductivity, which has been very difficult to achieve in spite of the best 

efforts by research groups worldwide. The conductivity of CNT films is limited 

by the resistance at nanotube junctions and by the complex morphology of the
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network. Chemical treatments can be applied to lower the junction resistance, but 

the role played by the network morphology needed to be clarified. Identifying a 

possible upper limit to the conductivity of nanotnbe films imposed by the network 

morphology was one of the major objectives of our work.

Chapter 2 introduced the tight binding method, which was chosen to describe 

the electronic structure of carbon nanotubes due to its low computational cost 

and suitability to carbon based materials. A tight binding Hamiltonian with one 

orbital per atom is sufficient to provide a good description of the electronic states 

near the Fermi energy of carbon based materials, which are the states responsible 

for the electronic transport properties. The Green function of a system was defined 

in terms of its Hamiltonian, and we have shown how it is related to the density 

of states of the system. The Kubo formula was derived in terms of specific Green 

function elements, and we have shown how it can be cast in a convenient form to 

calculate the conductance on nanotube networks. The theoretical tools presented 

in this chapter form the base of the microscopic electronic transport calculations 

presented in chapter 4.

A macroscopic model of nanotube networks was introduced in chapter 3. Our 

model is based on random networks of rigid rods and it can be applied to describe 

inter-tube connections on network films, as well as to describe the connections of 

nanotubes to metallic electrodes. We have found that the network connectivity 

scales universally with the volumetric fraction of the film occupied by rods, and 

with the aspect ratio of the rods. In spite of its simplicity, and not taking into 

account the bending and curling of nanotubes and bundles in real films, the model 

provides a good description of nanotube films within the range of interest. These 

findings are also important for the development of the microscopic transport simu­

lations presented in chapter 4. By modelling nanotube films as resistive networks, 

we have shown how the conductance of the network scales with its volume fraction 

and with its density of junctions. Moreover, the percolation behaviour shown by



145

the network conductance is in agreement with independent experimental results 

reported by Hu et al. [77]. Comparing the conductance of model resistive net­

works with experimental measurements on nanotuhe films, we have estimated the 

average junction resistance, which was also found to be in agreement with inde­

pendent measurements [73, 76]. Even though experiments show a large variation 

in the measured junction resistance, which depends on the diameter and chirality 

of nanotubes involved, the agreement between our results and the experiments is 

remarkable. The major results presented in this chapter have been published and 

can be found in reference [122].

The results of chapter 3 show how the network morphology affects the elec­

tronic transport properties of carbon nanotube films. However, in order to identify 

the existence of an upper limit to the conductivity of CNT networks, a micro­

scopic investigation of nanotube films was required. On chapter 4, a microscopic 

model for quantum transport on carbon nanotnbe networks was presented, where 

individual nanotubes are described by a semi-empirical tight binding Hamiltonian, 

as introduced in chapter 2. In this model, a random network of tunnelling junc­

tions is constructed by introducing electronic hopping terms connecting individual 

nanotubes, and the network conductance is calculated with the Kubo formula. A 

computationally efficient technique has been used to reduce the size of the Green 

function matrices, which allows for simulations with thousands of nanotubes, way 

beyond the reach of first principle calculations. Random networks are generated 

from the connectivities provided by the macroscopic model introduced in chapter 

3, and both approaches (macroscopic and microscopic) are coupled into a single 

multiscale approach. This multiscale model was applied to networks in a ballis­

tic transport regime, and by neglecting decoherence inducing scattering events, the 

upper bound for the conductivity of nanotube films was calculated. We have found 

that the maximum conductivity of a nanotnbe film scales universally with the den­

sity of the network, as well as with the average length and diameter of nanotubes in
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the film. The best experimental results reported for the conductivity of nanotube 

films are only one order of magnitude lower than our theoretical prediction, and 

this is a clear indication that experiments are getting close to the limit of nanotube 

films conductivity. Our simulations show that metallic nanowire films might be 

better suited for applications in flexible displays, since the number of conducting 

channels in a nanowire increases with its diameter. The results presented in this 

chapter were published in references [153] and [154].

Chapter 5 presented further applications of the models presented in chapters 3 

and 4. First, the microscopic approach of chapter 4 was applied to investigate if 

nanowire networks are capable of mediating magnetic coupling through their con­

duction electrons. Unfortunately, we have found that nanowire networks are not 

a good facilitating media for indirect exchange coupling. This negative result is 

probably caused by the very disordered nature of the networks. In the second part 

of the chapter, more successful results were obtained by modelling silver nanowire 

Aims as capacitive networks. Recent experiments have found that a minimum bias 

voltage is required to activate current pathways on newly produced silver nanowire 

Aims, and that once a region has been activated it continues to conduct electricity 

down to very low voltage biases. This hysteresis-like behaviour on current-voltage 

curves has led to the hypothesis that impurities located at nanowire junctions pre­

vent electronic tunnelling, up to the point when charge build up at the junction 

causes an electric breakdown and burns the impurities. Motivated by these exper­

imental results, the resistive network model of chapter 3 was used as a basis to 

develop a capacitive network model. Calculating the electrical potential at each 

node of the network, a complete mapping of the voltage difference across the ca­

pacitive network was produced. Defining a breakdown voltage for the capacitors 

in the network, we have shown that the voltage bias needed to activate current 

pathways in the network increases with the distance between the electrode and 

the AFM tip up to a saturation point, in good agreement with experiments. Our
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results indicate that the original hypothesis is indeed valid, and are currently being 

prepared for publication, in conjunction with experimental data.

6.1 Possible Extensions of this Work

The models and results presented in this work are not meant to be the final word 

on the study of CNT network films. Instead, in many cases they are somewhat 

simple idealisations which are nonetheless capable of capturing the correct physical 

picture of each situation studied. The next few paragraphs outline some possible 

extensions which could be considered in order to guide further developments on 

the topics considered.

Modelling carbon nanotubes as interpenetrating rigid rods can be a very crude 

approximation, specially in cases where the volume fraction is high. The maximum 

volume fraction occupied by real objects inside a containing 3D space is limited 

to values smaller than the total volume of the enclosing space. The fact that 

real objects cannot freely overlap imposes constraints on the allowed positions of 

each new object added to the packing, which is neglected in our rigid rods model. 

Furthermore, carbon nanotubes are extended objects of very high aspect ratio and 

mechanical flexibility, which mean they can bend an curl in order to accommodate 

around certain constraints imposed by other nanotubes. The most realistic way to 

treat these features present in CNT Aims would be to consider the packing of non­

interpenetrating flexible chain-like segments, similar to coarse-grained methods 

used in molecular dynamics simulations of polymeric systems and protein folding. 

This improvement could provide a more realistic description of how CNTs arrange 

in Aims of high volume fraction, but it is not expected to significantly improve the 

description of films with lower volume fraction.

In the introductory chapter of this thesis, it was argued how carbon nanotube 

films of dilferent thickness can be applied to different types of electronic devices.
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Very thin films can be used as transparent flexiltle transistors, films of intermediate 

thickness can be used as transparent electrodes on flexible electronic displays, and 

thick nanotube films can be used in energy storage devices. On very thin films, 

carbon nanotiibes tend to align in layers parallel to the surface of the film, and 

each layer interacts mostly with the adjacent ones. In thicker films, layers are 

more interpenetrating and interactions between non-adjacent layers become more 

important. It would be interesting to perform a systematic theoretical study of the 

role played by the film thickness on its electronic transport properties. This study 

could be done considering the macroscopic model where the junction resistance is 

modelled by Ohmic resistors, and the microscopic one where the network connec­

tivity is used to generate a random network of electronic hopping terms between 

individual nanotubes.

A recent study by Hicks et al. [168] has investigated electronic transport on 

graphene-based nanocomposites by employing a model similar to the ones used 

for carbon nanotube films. Instead of having sticks or rods representing CNTs, 

Hicks et al. have used sheets of varying aspect ratio to represent graphene flakes. 

It would be interesting to investigate if our method for calculating the resistance 

of disordered networks, introduced in chapter 3, would yield similar results to 

the ones obtained by Hicks et al. Furthermore, there have been indications in 

the recent literature that films made of a mixture of graphene flakes and carbon 

nanotubes would show better electrical conductivity than pure graphene films [169]. 

Building a macroscopic model capable of reproducing the geometric arrangement 

of nanotubes and flakes in such films would be an interesting way to theoretically 

investigate the performance of CNT-graphene mixed films.

A further aspect that would be of interest to consider, specially if one is inter­

ested in utilising nanotube films as flexible transistors, would be the investigation 

of electronic transport on networks composed of mixtures of metallic and semi­

conducting nanotubes [64]. In this case, the electronic hopping between different
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species of carbon nanotubes would depend on the type of the tubes involved. In 

this situation, the presence of Schottky barriers at junctions between metallic and 

semiconducting nanotubes might play a significant role in the transport character­

istics of the devices, and taking such effects into account in the simulations might 

prove a very challenging task.

On the development of the microscopic model presented in chapter 4, a very 

simple approach has been used to model the inter-tube electronic hopping, which 

considers only one carbon atom on each nanotube. The model could be further 

refined by including different types of hopping terms, possibly including more than 

one atom in each tube. Another way of accounting for more realistic inter-tube 

hopping terms would be to include parameters obtained from high precision ab- 

initio simulations in the tight binding Hamiltonian used. Performing such high- 

precision first principles calculations would be very time consuming, but the extra 

degree of sophistication introduced in the model should be capable of providing 

more realistic conductivity values, as opposed to concentrating on the upper limit 

as it was done in our work. This methodology presents an advantage over the 

one presented in chapter 3 because the electronic structure of individual CNTs is 

considered explicitly, rather than modelling CNTs as perfect conductors.

Even though an efficient computational method was developed in chapter 4, 

the final simulations with carbon nanotube networks were still limited with regard 

to the length of the nanotubes that composed the network. The Green function 

of finite nanotubes was calculated by a brute force numerical method, and even 

though efficient liner algebra libraries have been applied to this task, the size 

of the matrices involved is limited by the amount of memory available in the 

computers used. The existence of an analytical, or semi-analytical, expression for 

the Green function of finite carbon nanotubes would allow for the simulation of 

networks with much longer carbon nanotubes. These simulations could be used 

to independently verify the upper bound for the conductivity found in chapter 4



150 CHAPTER 6. CONCLUSIONS

considering nanotubes of length comparable to the ones found in real experiments.

Finally, with regard to the capacitive networks studied in chapter 5, it is very 

desirable to perform systematic studies of finite-size effects on the transition from 

the non-conducting regime to the fully conducting one. Another natural extension 

of the model presented in chapter 5 is to consider fully disordered nanowire net­

works, generated by a macroscopic model similar to the one presented in chapter 

3. A representation of the breakdown cloud obtained from a fully random model 

could, in principle, be compared directly with the AFM images obtained by exper­

iments, and verify that this simple capacitive network model does capture all the 

important features present in real silver nanowire films.

Throughout this work we have made a diligent effort in order to develop the 

simplest models capable of capturing the correct physical picture in the systems 

considered. In many physical systems this approach would just be the usual search 

for the minimum effort method. In the case of the carbon nanotube networks con­

sidered in this thesis work, the approach through simple models is a fundamental 

requirement. Being in possession of a working model which reproduces, at least 

qualitatively, the observed behaviour of the system one can always introduce more 

levels of sophistication. Besides the suggestions outlined above, it is expected that 

the models presented in this thesis work can be further extend in a variety of ways. 

Each extension of the models could provide more accurate results, and perhaps 

show a better agreement with experimental data. However, to some extent at 

least, these would be refinements of the work presented here.
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