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Suininary

Grai)heiie is a two-dimensional carbon material that until its recent discov­
ery was assumed not to exist in the free state. Graphene-related materials 
have been in the scientific limelight since then due to scweral key discoveries 
regarding their jiroduction and properties. There are numerous technological 
applications envisaged for them. Besides the huge potential for aj)i)licability, 
one key feature that makes graphene particularly poi)ular is the siui{)licity 
with which many of its [)hysical propert ies can be described, primarily due to 
the siuii)le dispersion relation for its electrons. In this thesis a number of dif­
ferent toi)ics relating to graphene systems, and in particular those doped with 
impurities, are investigated using a combination of analytical and numerical 
methods. We consider both graphene sheets and quasi-one-dimensional strips 
of graphene that are called ‘nanoribbons’.

The electronic properties of materials can be engineered by doping, biit in 
the case of graphene nanoribbons the introduction of two symmetry-breaking 
edges introduces an additional dependence on the location of an inii)urity 
across the width of the ribbon. This dependence has been noted previously 
ill electronic transport calculations, but in this work we extend the discussion 
to the binding energy of the impurity and also to the magnetic moment that is 
formed if the impurity is magnetic. The results of simple model calculations 
are found to match those of more sophisticated ah iniUo calculations.

Magnetically-doix'd graphene systems are potential candidates for appli­
cation in future spintronic devices. A key step is to understand the pairwise 
interactions that occur between magnetic impurities embedded in graphene
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that are mediated by the grajihene conduction electrons. In this thesis we 
examine interactions between such impurities using a Green function for­
malism. By developing an analytical expression for the Green function in 
graphene, we are able to explore the distance dependence of these interac­
tions in a mathematically transparent fashion. We also demonstrate that 
ab initio calculations may yield spurious results if the effects of this inter­
action are neglected. The (piick decay with separation of the interaction in 
graphene, rei)orted by many authors, is often seen as a major obstacle for the 
spintronic application of these systems. However, in this work we report that 
a signihcant augmentation of the interaction is possible when the inii)urity 
moments are set to j^recess. An experimental setup to probe this dynamic 
form of the magnetic interaction in graphene is also suggested.
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CHAPTER

ONE

Introduction

The historical narrative of technological evolution is inextricably entwined 
with the discovery and exploitation of carbon-based materials. Charcoal, an 
impure form of carbon obtained by burning wood in the absence of oxygen, 
was used by the ancient Egyptians and Snmerians for the reduction of metal 
ores in the manufacture of bronze [1]. The superlative physical and optical 
I)roi)erties of diamonds have led to their use in a wide variety of fields - scien­
tific, industrial and aesthetic. The immense chemical family of hydrocarbons, 
componnds made of carbon and hydrogen atoms, has long been plundered 
for the materials that compose the majority of man-made objects and for 
the energy that fuels modern life. Graphite, the most stable and common 
of the naturally forming carbon allotropes, is familiar to even schoolchildren 
as the “lead” in their j)encils [2]. However, graphite has also a wealth of in­
dustrial applications, with end uses in high-temperature lubricants and fuel 
cells, amongst others [3]. The study of nanoscale carbon materials related to 
graphite has led to major advances in recent years and is predicted to beget 
many of the technologies of the future [4 -8].

Graphite is composed of stacked layers of carbon atoms, with the atoms 
on each layer arranged in a hexagonal, or honeycomb, lattice. A single layer 
of carbon atoms arranged in this way is called graphene. The hexagonal 
lattice can also be interpreted as two intersecting triangular sublattices. A
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b)

Figure 1.1; a) A single graphene sheet is the building block for a nuinber of 
related materials, including b) graphite stacks, c) fnllerenes and d) carbon 
nanotubes. Figure adapted from Ref. [9].

unit cell containing two neighbouring atoms, one from each sublattice, can 
by translation generate the entire graphene lattice. The individual graphene 
layers in a graphite stack are held together by weak van der Waals forces, 
which allows them to separate with relative ease. It is this process that 
occurs everytime a pencil is used. A single layer of graphene can be thought 
of as the building block for not just graphite, but for a number of other 
related materials as shown in Fig. 1.1. Spherical molecules of carbon atoms, 
called fnllerenes, can be obtained from a graphene by introducing pentagons 
into the lattice which create curvature effects. These ciuasi-zero-dimensional 
objects were discovered in 1985 [10] and heralded in a new era of carbon- 
based nanoscience. Six years later, the discovery [11] (or possibly rediscovery 
[12,13]) of cylindrical fnllerenes, dubbed carbon nanotubes, marked another 
exciting breakthrough in the field. They can be thought of as sheets of 
graphene that have been “rolled up” along a particular direction. These 
quasi-one-diniensional systems displayed an unexpected array of fascinating 
and potentially useful physical and electronic properties [8,14]. Aj^art from 
their extraordinary strength and stiffness [8], nanotubes also display sensitive 
and tunable electronic properties [8,14,15]. Nanotnbes can be either metallic 
or semiconducting, depending on the direction in which they are rolled up. 
Importantly, metallic nanotubes are stable against the Peierls distortion [15], 
which usually destroys metallicity in one-dimensional systems and they have 
been shown experimentally to behave as ballistic conductors [16].

Despite the many successes in synthesising and investigating the proper-



1.1. GRAPHENE : DISCOVERY AND PROPERTIES 3

ties of these graphene-based materials, graphene itself was not isolated until 
2004 [17,18]. Before this, graphene was not even predicted to exist in the 
free state [4,19,20], even though it is possible that small cjuantities of it are 
produced every time a pencil is used. We will now summarise the discov­
ery and production of graphene samples before discussing some of the many 
interesting properties it possesses. The doping of graphene with impurity 
atoms and its potential for application in spintronics will be introduced as 
a means of broaching the topics investigated in this thesis. The topics of 
magnetic interaction and spin dynamics will be introduced to provide con­
text and motivation for the remainder of the thesis. A quick summary of the 
research in the thesis is then given.

1.1 Graphene : discovery and properties

The first monolayers of graphene large enough to be studied using con­
ventional techniciues were j)rodnced in 2004 by the so-called “Scotch-tape” 
method [17]. This techniciue, also known as micromechanical cleavage, in­
volves removing the top layer of a high-ciuality graphite crystal using adhesive 
tape and then transferring it onto a substrate. Amazingly, despite the sim­
plicity of the procedure, extremely high quality graphene crystals can be 
produced, as shown in Fig. 1.2. Since then graphene samples have been 
produced using other methods also, for example, chemical exfoliation by dis­
persion in organic solvents [21,22].

The experimental and theoretical interest in graphene has increased dra­
matically since its discovery. An abundance of interesting and unique phys­
ical properties have been postulated and probed. A wide range of possible 
applications have been suggested. Its discoverers have been acknowledged 
for their identification and subsequent investigations into the properties of 
graphene with the 2010 Nobel Prize for Physics [7,23]. Besides being the first 
two-dimensional atomic crystal, graphene is also the thinnest and strongest 
material ever obtained, with a breaking strength 200 times greater than 
steel [7,24]. It is found to be an extremely effective electrical [25] and ther­
mal [26] conductor. Graphene has extraordinary elastic properties, and can
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Figure 1.2: An atom force microscopy (AFM) image of graphene on a SiOj 
surface. The dark brown background is the Si02 surface whilst the other 
regions consist of grai)hene flakes of varying thickness. The large brown-red 
central region has height O.Siini and the lighter regions are slightly thicker. 
This figure is taken from Ref. [17].

be stretched by more than 20%, which is more than any other crystal [24], 
Fnrtherniore, for such a thin material it is impermeable to molecules and 
gases [27]. However, it is perhaps the electronic properties of graphene that 
have garnered the most attention and have been the subject of the most stud­
ies since its discovery [G]. Despite its relatively recent discovery, much of the 
electronic theory of graphene had been formulated long before [28 30] and 
us('d as the starting point for calculating the electronic propert ies of graphite 
and later, carbon nanotnbes [14,15]. Graj^hene is fonnd to be a zero-bandgai) 
semi-metal whose valence and conduction bands touch at two discrete points 
of the Brillouin zone, labelled the K points or Dirac points. In Chapter 3 we 
will exjjlore this calculation in more detail, but in brief the orbitals from 
the carbon atoms in the lattice hybridise to form n and tt* bands which cross 
at the K points. The electronic band structure of graphene for energies near 
the Fermi energy, where these bands cross, is found to be linear. This is in 
contrast to the more standard parabolic bands found in other materials. As 
a consequence of the linear bands, electrons at these energies lose their effec­
tive mass and behave more like relativistic particles than normal electrons. 
Their behaviour can even be described using a Dirac-like equation instead of 
the standard Schroedinger equation, and in fact the behaviour of these elec-
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trons ininiics the physics of quantum electrodynamics (QED) for massless 
fermions [5,6,18]. As such, graphene can be used to test some of the pre­
dictions of QED in a simpler laboratory environment than would be feasible 
for truly relativistic systems. An example of this kind of behaviour is Klein 
tunnelling [31], where a relativistic particle has an enhanced tunnelling prob­
ability through a potential barrier, due to a suppression of backscattering, 
that even approaches unity for completely massless particles. Such behaviour 
has been described theoretically [32] and observed experimentally [33,34] for 
Dirac fermions in graphene. Another consequence of the massless nature of 
the electrons in graphene is that they can propagate without scattering over 
large distances and this has been conhrmed experimentally at the microm­
eter scale [17]. Graphene also j)resents a different (piantum Hall response 
to that of other systems. The presence of a quantised level at zero energy 
that is shared by electrons and holes gives rise to an anomalous sequence of 
“half-integer” Landau levels and hence Hall conductance i)lateans [18,35]. 
Due to the high Fermi velocity, the sei)aration between the zeroth and first 
Landau levels is unusually large, making it possible to observe the (piantnin 
Hall effect even at room temperatures [36].

1.2 Graphene-based materials

The exploration and analysis has not just been confined to simple graphene 
sheets. A number of other materials related to or composed from graphene 
have been postulated and examined. Multilayer sheets of graphene, not thick 
enough to be considered “graphite” or to display its physical properties, but 
yet fundamentally different to monolayers have been investigated. Systems 
with two (graphene bilayers) or more layers of graphene are found to have 
a wealth of properties that depend not only on the number of layers but 
also on the order of their stacking [37,38]. Apart from stacking graphene 
layers, new materials can be formed from a single graphene sheet by “cut­
ting” a narrow strip from it to form a (piasi-one-dirnensional object called a 
graphene nanortbbon. Their dimensionality suggests a comparison with the 
previous mentioned carbon nanotubes. Much in the same way that the ])rop-
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erties of nanotubes depended on the rolling direction and circumference of 
the tube, the properties of ribbons depend strongly on their edge geometry 
and width [39-44], Experimentally, graphene nanoribbons can be produced 
in a number of ways, including lithography [45,46], etching [47], bottom- 
up chemical methods [48] or even by “unzipping” carbon nanotubes [49] as 
shown schematically in Fig. 1.3. Two principle nanoribbon edge geometries, 
armchair and zigzag, are generally studied and are found to have radically 
different electronic properties. Zigzag edges in i)articular are nnusual in that 
they can sustain localised edge states, which give rise to a range of {jroperties 
not seen in armchair-edged ribbons or in graphene sheets [40 42]. The forma­
tion of localised states near the Fermi energy may lead to spin-polarised edge 
states when electron-electron interactions are taken into account. Although 
some signatures of these edge states have been found experimentally [50], 
there are concerns about their stability and any resulting magnetic prop­
erties are not predicted to be particularly robust under the introduction of 
edge disorder [51]. Unlike nanotubes which can be either metallic or semicon­
ducting, nanoribbons are pr('dict('d to always bo semiconducting [52] due to 
electron-electron interactions or edge deformations which destroy the metal- 
licity that simple models predict. However there was still a large discrepancy 
between exi)erimentally measured bandgaps [53 55] and those predicted by 
theory. The theory that emerged is that this discrepancy arose from the dif- 
hculty in achieving pristine edges exi)erinientally. Extended edge defects in

Figure 1.3: “Unzipi)ing” a carbon nanotnbe to form a graphene nanoribbon. 
This hgure is adapted from Ref. [49].
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the form of vacancies or other deformations were investigated by a nnmber of 
authors [56 64] and a broad consensus from these studies is that the presence 
of edge-disorder induces Anderson-type localisation [65 67] in the ribbons, 
cansing the suppression of conductive paths through the ribbons for certain 
energies.

1.3 Impurities in graphene

The edge disorder that was investigated in the studies mentioned above arises 
due to the difficulties in engineering atomically precise edges for the ribbons. 
However, the deliberate introduction of disorder into graphene systems, ei­
ther in the form of vacancies or impurity atoms, is another subject that has 
received much attention in the literature, particularly in the fields of trans­
port and magnetism [68 75]. This is because the doping of a material can be 
an effective way to tailor or tune its ])roi)erties. How'ever there is a crucial 
difference between the case of a graj)hene sheet and that of a nanoribbon. 
This is the existence of two symmetry-breaking edges, which are expected 
to make some of the i)hysical properties of the nanoribbon dependent on the 
imi)nrity position. This dependence has been noted in a nnmber of studies 
which examined the conductance through a nanoribbon system when the ini- 
I)urity location or distribution was varied [56,57,70 72,75]. Another aspect 
t hat is often overlooked is that a similar dei)endence should arise also in other 
properties of the system, for example, in the energetics of the doping process. 
In other words, the binding energy of a dojjant should depend on its location 
across the width of a ribbon. Bearing in mind that impurity segregation is 
known to occur at symmetry-breaking interfaces between two materials due 
to quantum interference effects [76,77], it should come as no surprise that the 
edges of a nanoribbon are caj)able of inducing similar segregational features 
in the impurity distribution. What is surprising in the case of nanoribbons 
is that the segregation may be controllable by external factors, which opens 
the possibility of manipulating the impurity distribution within a ribbon and 
hence engineering some of the related physical properties of the ribbon. This 
topic is studied in some detail in Chapter 4.
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1.4 Graphene applications

1.4.1 General application

Due to the multitude of interesting physical and electronic properties that 
graphene has been found to exhibit, a large number of possible technological 
api)lications have been proposed [4 7]. As an immensely strong material, 
graphene seems ideally j)ositioned for a])plication as a reinforcement in high- 
performance composites [78]. Here its thinness is also a great advantage as 
it cannot cleave, thus giving it the maximnm possible strength in the out-of- 
plane direction. Another advantage is that the strain in a graphene sample 
can be monitored using its Raman spectrnm [79 81], which allows mechanical 
distortions of even a fraction of a percent to be detected. Much of the current 
interest in graphene focuses on its potential ai)i)lication in comi)uter electron­
ics. Promising results for graphene held eflec't transistors suggest that these 
devices may be suitable for high-fre(iuency a])phcations [17,82,83]. Graphene- 
based integrated circuits are however more troublesome. These recpiire the 
conducting channel to be completely closc'd in the off state, which is difficult 
to achieve with the gapless spectrum found in graphene. However, as dis­
cussed previously, bandgaps are i)resent in nanoribbons and indeed nanorib­
bon transistors with large on/off' ratios have been demonstrated [54,55,84]. 
Graphene has also been suggested as a support material for transmission 
electron microscopy (TEM) where its thinness, strength and low atomic mass 
offer benefits such as rigidity and high contrast when examining biological 
or other samples [85,86]. Graphene has also emerged as a viable candidate 
in the field of optoelectronics and graphene coatings have been suggested 
for use in i)roducts like solar cells and LCD displays [87-89]. However the 
resistivity found in graphene films with the required transparency is to date 
much higher than that of the industry standard, indium tin oxide (ITO). 
If the resistivity can be reduced sufficiently, graphene coatings could offer 
advantages like flexibility to such products.
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1.4.2 Spintronics

Another field where graphene-based materials have been mooted for appli­
cation is in the held of spintronics [90]. This held is projected to play a 
major role in the evolution of the electronic industry as it allows informa­
tion storage, processing and communication at faster speeds and with lower 
energy consxnnption than is currently possible with conventional electron­
ics [9T 94], The jnincipal idea of spintronics is to exploit not only the charge 
of an electron, but also the spin degree of freedom associated with its intrinsic 
angular momentum. Currently, all the magnetic materials used for modern 
technology belong to either the d or /-blocks of the periodic table. Despite 
the wide range of diverse structures that carbon is able to form, it is not 
in itself magnetic. However, graphene-based spintronics may be achievable 
when we consider that many of its derivative materials and nanostructures 
display various scenarios of magnetism [90] and also that graphene has many 
properties that suggest its possible use as a carrier of si)in information. These 
include weak spin-orbit and hyi)erhne couplings which are the main sources 
of relaxation and decoherence of electron sj)in [95 101].

Many of the proposed graphene-based spintronic devices are nnderpinned 
by the si)in-polarised edge states, mentioned above, that are predicted to 
occur when a graphene sheet is cut to have a zigzag edge geometry. Partic­
ular focus has been j)aid to zigzag-edged graphene nanoribbons, with paral­
lel zigzag edges that are predicted to display opposite spin orientations as 
shown in Fig. 1.4 a). Such a system may allow a possibility of tuning its spin- 
transport properties [39 42,102,103]. For example, the prospect of triggering 
a half-metallic^ state using external electric fields in zigzag-edged nanorib­
bons has been suggested [41]. The realisation of such a device would allow 
efficient electronic control of spin transport, a very useful proj)erty in spin­
tronics and something that is difficult to achieve in other materials. Despite 
theoretical advances in the study of nanoribbons, experimental verification 
of their properties has so far been inconclusive, due in part to the difficulty 
in patterning the edge geometries required for these effects to be observed.

'This means the system is metallic only for electrons of one spin orientation.
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Figure 1.4: a) Seheniatic adapted from Ref. [90] showing the i)ossible .setup 
of achieving half-metallicity in a zigzag edged graphene naiioribbon using 
external electric helds, as suggested by Ref. [41] b) Two magnetic impurity 
moments embedded in a graphene sheet. Understanding the interaction be­
tween moments in such a setup is necessary if magnetically-doped graphene 
systems are to be used in future si)intronic devices. Of particular interest in 
this thesis is how the range of the interaction varies if one of the moments is 
set to process.

Furthermore, the spin-polarised edge state for zigzag edges is jjredicted to 
be highly dependent on the edge geometry and not i)articularly robust under 
the introduction of edge disorder [51]. These factors present major obsta­
cles in the path of utilising the intrinsic magnetic edge states of graphene 
in experimentally realisable devices. In Chapter 4 we consider the features 
of nanoribbons doped with magnetic impurities. The position dependence 
of the resulting magnetic moments is considered in a similar fashion to the 
energetics previously mentioned. However, we also hnd that the magnetic 
properties of such systems are robust under the introduction of edge disorder 
and argTie that magnetically doped nanoribbons may provide an alterna­
tive route to applications {previously envisaged for nanoribbons with intrinsic 
magnetic ordering.

Another {possibility that has been {pro{Po.sed for gra{phene-ba,sed spintronics 
is the ex{ploitation of defect-driven magnetic moments that arise in graphene 
[73,74]. Magnetic moments have been {predicted to form around vacancies 
and other defects in the gra{phene lattice and the possibility of engineering 
a ferromagnetic state in gra{phene from such moments has been suggested. 
However, such a claim would seem to be restricted by the implications of the
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Lieb theorem [104], which states that any sneh magnetic moments arise from 
a disparity between the two snblattices of graphene. Large-scale, randomised 
disorder would tend to minimise such a disparity and prevent the formation 
of a ferromagnetic state. However, recent experimental evidence suggests the 
possibly of engineering such a state through partial hydrogenation [105]. The 
existence of such a state may then be accessible through magnetoresistance 
measurements [106].

A third possibility for incorporating graphene in spintronic devices, and 
one that we shall focus on in this work, is through the doping of graphene 
with magnetic impurity atoms, as shown in Fig. 1.4 b). We have already 
touched on this topic above for the case of nanoribbons. This approach takes 
advantage of the indirect exchange coupling [107 110], often referred to as 
the Rndernian-Kittel-Kasuya-Yosida (RKKY) interaction [111 115], between 
magnetic impurities in a grai)hene system which is mediated by the conduc­
tion electrons of the graphene host. A long-ranged interaction of this type 
allows impurity moments on graphene to feel each other’s presence and re­
spond to magnetic perturbations or excitations at other impurity sites. The 
usual manifestation of this interaction is through the lowering of the total 
energy of the system when the moments adoj^t certain favourable alignments. 
In this way the interaction can dictate any magnetic ordering that arises be­
tween the moments. Studies in carbon nanotubes have found the presence 
of a long-ranged interaction whose amplitude decays as D~^, where D is the 
distance between the magnetic impurities [116]. Unique features arising from 
the i)eculiar electronic structure of grajiliene were also found that affected 
the sign of the interaction and its decay rate for certain impurity configura­
tions [117 119]. Signatures of a magnetic interaction between impurities in 
carbon nanotubes have also been detected experimentally [120]. Whilst the 
studies to date of the interaction in carbon nanotnbes have been promising, 
the outlook is less clear in the case of graphene sheets. A large number of 
studies [121 133] have been performed, with the consensus that the interac­
tion decays at least as fast as D~'^ for undoped graphene. In Chapter 5, the 
indirect exchange coupling in graphene is examined in detail and we examine 
the effects it can have in ah initio calculations that use periodic boundary
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conditions. Regarding si)intronic application, it seems that a decay rate this 
fast would limit the prospects for devices consisting of magnetically-doped 
graphene systems.

It has been suggested that the range of RKKY-like interactions can be 
augmented if the magnetic moments are set in motion, for example, if they 
are set to process by the application of a suitable time-dependent magnetic 
field [134,135]. Such an interaction is driven by non-equilibrium spin currents 
emanating from the precessing moments. The magnitude of the interaction 
can be measured by a (piantity calk'd the dynamic spin susceptibility, which 
describes the response of the magnetism of the system to a dynamic magnetic 
perturbation. Investigation of this (luantity in carbon nanotubes [136] has 
revealed a decay rate slower than that of the static coupling. Further studies 
of spin dynamics in graphene systems have suggested the use of these materi­
als as spin waveguides [137], spiu-puuiping transistors [138] and spin current 
lenses [139]. These reports, together with recent exi)erimental evidence sug­
gesting i)ossible long-range spin current Ix'haviour in graphene [140], moti­
vate a comprehensive study of flit' dynamic magnetic interaction in gra])hene 
within a fully (luantum-mechanical framework. In Chapter 6, we examine the 
spin susceptibility in graphene as a dynamic analogue of the static RKKY 
coupling, with a particular focus on the separation dependence of the in­
teraction. We find an augmentation of the interaction range that suggests 
magnetically-doi)ed graphene systems may be suitable for si)intronic applica­
tion when spin dynamics is taken into account. Furthermore, by relating the 
dynamic interaction studied to the lifetimes of magnetic excitations, measure­
ments of which are currently achievable using inelastic scanning tunnelling 
spectroscopy [141-144], we suggest how this interaction may be probed ex­
perimentally.

1.5 Thesis Layout

This thesis uses a combination of analytical and computational methods to 
study many of the topics discussed above. It is organised as follows:
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Chapter 2 introduces the bulk of the methods to be used throughout 
the thesis. In particular, the calculation and manipulation of Green 
functions is discussed. These cpiantities underpin the majority of the 
calculations performed. A brief introduction is also given to electron- 
electron interactions as accounted for using the Hubbard model and 
Hartree-Fock approximation. The methods discussed in this chapter 
are not specific to graphene and a broad overview of their general usage 
is given.

• The electronic band structure of graphene, calculated using the nearest- 
neighbour tight-binding approximation, is discussed in Cha])ter 3. The 
difficulties involved in calculating the corresponding Green function 
matrix elements for graphene sheets are mentioned. An original ap­
proach to performing the necessary integrals analytically using certain 
apj)roximations is presented. The results of this method are shown 
to be in excellent agreement with numerically calculated results. Fi­
nally the recursive method used to calculate the Green fnnctions for 
nanoribbon systems is demonstrated.

• Chapter 4 focu.ses on graphene nanoribbons, and in particular on how 
their physical properties depend on the location of an introduced im­
purity. A discussion of previous studies examining the conductance in 
snch systems is illustrated with a simple model of our own. This is 
followed with an analysis of our results for how the binding energies 
and magnetic moments of impurities depend on their location. Com­
parisons are made between simple model and full ab initio calculations 
and a range of ribbon geometries and impurity configurations are con­
sidered. The possible applications of these results are discussed for 
both the energy and magnetic moment calculations.

• The static magnetic interaction between impurity atoms embedded in 
graphene is considered in Chapter 5. Different approaches to calculat­
ing the coupling are introduced and compared. The Green functions 
derived in Chapter 3 are applied to determine the separation depen-
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deuce of the interaction and this is compared with results from previ­
ous studies. By treating the interaction in a more complete fashion, 
we hnd effects that are not predicted by the standard approach and 
discuss some of the i)ossible implications of these. Finally, we show the 
effect that the magnetic interaction can have on ah initio calculations 
using periodic boundary conditions. Failing to account for these effects 
can lead to the spurious suppression of magnetic moments.

• Chapter 6 extends the discussion of the magnetic interaction between 
inii)urities in graphene to the case of precessing moments. The spin 
susceptibility formalism is introduced and a dynamic analogue of the 
BKKY interaction is suggested. The distance dependence of such an in­
teraction is examined thoroughly using analytical and numerical meth­
ods. The range of the interaction is found to increase signihcantly in 
the dynamic case. The interaction studied is related to the lifetimes 
of magnetic excitations in such systems, and a i)ossible experimental 
setup to probe the decay of the interaction is suggested.

• The results and conclusions of the thesis are summarised in Cha])ter 7, 
where possible extensions of the work are also discussed.



CHAPTER

TWO

Mathematical methods

2.1 Introduction

This chaj)ter will introduce the inajority of the inatheniatical methods that 
will be used throughout the thesis. Most of the techui(iues that will be 
discussed are uuderpiimed by a ciuaiitity called the Green f'lmcAion [145] and 
the uiajority of the chapter deals with calculations involving these functions. 
The final section of the chapter features a discussion on the Hubbard model 
which is used in later chapters to model systems with magnetic moments.

2.2 Green Functions

Fundamentally, Green functions are solutions to differential equations that 
are used to relate a response function to a source term. Within the realm 
of condensed matter physics, the differential equation in (piestion is almost 
always the Schroedinger equation, which describes the ciuantum states of 
system of interest. The Green function acts as a correlation function that 
relates the resi)onse of this system to a perturbation. For this reason, they are 
useful in calculating the properties of disordered systems. Green functions 
also describe the propagation of electrons in conducting systems and are thus 
commonly utilised in transport calculations also. As we shall see below, the

15
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Green function is also intrinsically linked to the density of states (DOS), a 
fundamental quantity used to describe the electronic structure of a system 
in solid state physics.

The Green function corresponding to the Schrodinger eciuation is defined 
as

q = liin {E ± i,})i - n
1 -1

(2.1)

where Ti is the Hamiltonian describing the system, / is the identity operator 
and E is the energy, r/ is a small, positive imaginary {)art added to the energy 
to ensure that the Green function is well defined around the eigenvalues of 
the Hamiltonian. The limit can lie taken with + or a —, corresponding to 
the cases of the retarded and advanced Green functions resjiectively. The 
retarded Green function describes projiagation away from the site of the 
Iierturbation, whereas the advanced Green function describes propagation 
towards it. In this work, the term ‘Green function’ will generally refer to the 
retarded case, however the distinction only becomes imiiortant later when we 
consider transport or spin dynamic calculat ions where bot h types are needed. 
It is iniiiortant to note that at this stage the form of the Hamiltonian used 
to describe the system has not yet been sjoecified. The discussion to date has 
been general, however the Green function o])erator will dciiend on the form of 
H, which dejiending on the level of complexity recpiired can be a free electron, 
tight-binding or more complete ab initio Hamiltonian. In the next chajiter, 
we shall introduce the tight-binding Hamiltonian that is sufficient to describe 
the electronic properties of graphene and which will be used throughout the 
rest of this thesis. Consequently, the results of this chapter will be shown 
for Hamiltonians expressed in terms of linear combinations of atomic orbitals 
(LCAO).

Relation to the Density of States

The Density of States (DOS) is an important (piantity in Solid State Physics. 
It describes the number of energy states (per energy interval) that are avail­
able to be occupied at a particular energy. One of the major advantages of 
working within the Green function formalism is the ease with which the DOS
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can be calculated. To begin with, if H has eigenvalues and eigenstates |To) 
then we can write

W = X! • (2.2)
a

Substituting this into the definition of the Green function, Eq. (2.1), yields

^ (2-3)?;^o E + til —
a

Assuming a LCAO-type Hamiltonian, we can describe H by a basis of lo­
calised orbitals |j), centered on site j. Projecting onto orbitals \j) and |/) 
gives

fjji = {J\9 = lim
7/—‘OO '

1
E + iq- ea (^alO- (2.4)

Multiplying above and below by {E ~ irj — to) gives

the imaginary part of which is given by

(2.5)

{E - ea)2 -H 7]'^
(2.6)

Setting I = j and availing of the definition of the Dirac Delta function

^(x) = — lim
TT a^o -f

(2.7)

allows us to write

- b™(&) = - £„).
(2.8)

However, this is exactly the definition of the Local Density Of States (LDOS) 
at site J, Pj{E). This is a very useful (piantity that can be used to calculate 
physical quantities like the occupation number and energy changes. Summing 
over all sites in the system results in the total density of states. Alternatively,
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this can be written as a trace over the Green function matrix:

Ptotai{E) = y]pj{E) = --Iin Tr (ry) .
* ^ TT

(2.9)

2.3 The Dyson Equation

As we have seen above, the DOS of a system under investigation is very 
closely linked to the Green function describing the system. However, in the 
derivation above we have assumed knowledge of the eigenstates of the system, 
I'I'a). If the system displays translational invariance then the eigenvectors can 
be calculated using Bloch’s Theorem, as we shall demonstrate for the case 
of graphene in the following chapter. However when translational invariance 
is broken, for example by the introduction of an impurity, then the Bloch 
wavevectors are no longer eigenvectors of the system. It is in situations 
like this that the power of the Green function approach is fully revealed. 
The Dyson eciuation allows us to write the Green fnnetion of the perturbed 
system in terms of the Green function of the unperturbed system and the 
api)lied perturbation, without the need to calculate the eigenvectors of the 
perturbed system. This process allows hn' easy calculation of the relevant 
j)hysical j)roperties, such as the DOS, of the perturbed system.

2.3.1 Derivation

The Dyson equation can be derived (juite easily from the dehnition of the 
Green function in Eq. (2.1). If G is the Green function associated with a 
Hamiltonian H = ELo + V, where G is a perturbation potential, then we can 
write it in terms of the Green function g associated with the unperturbed 
Hamiltonian Ho as follows:

G = {E + tn)i-{no + v)
-1r-v

I - gV
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1 -1
Multiplying across from the left by I — gV 
in its usual form

G = g + gVG.

results in the Dyson equation

(2.10)

Another common form of the Dyson eqiiation is in terms of the T-matrix, 
dehnod as

T = V
.-1-1

I-gV

which allows ns to write
G = g + gfg.

(2.11)

(2.12)

This form of the ef|uation is often preferable as it collects all the contribu­
tions from the perturbation into one term, namely T, which describes the 
scattering caused by the introduced {lerturbation.

Now that the Dyson equation has been introduced, we shall demonstrate 
its usefulness with a few examjiles. The iiriniary use we will find for the Dyson 
('qnation is for investigating the properties of jierturbed systems when those 
of the nnperturbed system are known or can be easily calculated. Within 
this work this will usually consist of introducing an iinjmrity atom into a 
graphene system and investigating how the properties of the system change. 
However, the Dyson equation can also be used to connect two larger systems 
and when apiilied recursively, can be used to build up a large system from 
many small

2.4 Perturbations and Disorder

Within the tight-binding Hamiltonians that we will use throughout this work, 
the majority of the perturbations encountered will consist of changes to either 
the on-site energy terms or the hopping potentials connecting atomic orbitals 
in a lattice, or to both. Perturbations of these kinds can be used to represent 
substitutional or adsorbed imj)nrities introduced into the host system, as we 
shall demonstrate explicitly below. The change in the on-site energy term 
rei)resents the fact that the relevant energy orbital on the impurity atom will 
differ from that of the orbitals on the graphene host. Similarly the hopping



2U CHAPTER 2. MATHEMATICAL METHODS

parameters which account for the overlap between orbitals on neighbouring 
sites will vary depending on whether the sites contain two carbon atoms, or 
one carbon and one impurity atom. We will now demonstrate how the Green 
functions for the cases of a single sul)stitutional atom and a single adsorbed 
atom (adatom) attached to host can be calculated. In the examples below, 
the host system is represented by a simple linear atomic chain.

2.4.1 Substitutional Atom

The sini])lest type of imjmrity involves rei)lacing a carbon atom in the lattice 
with an atom of another element. To model such an impurity we need to 
change the onsite energy terni(s) describing the relevant orbital(s) at this 
lattice site, and also the hopping parameters describing the overlap between 
these orbitals and those on the neighbouring carbon atoms. In the simplest 
possible case, we can consider only a single orbital on the impurity atom 
and neglect changes to the hopping parameters. In this case, the perturbing 
I)otential is written

G = |ri)i)„(n|, (2.13)

where n labels the perturbation site and Sn = — eo, the difference between
the onsite energies of the impurity atom and the lattice atom it replaced. 
For the sinii)le case we are considering here, many of the (piantities involved 
are sinii)ly scalars. When extending the results here to more complicated 
models care must be taken as these now become matrices. To calculate a 
general matrix element, Gtj, of the Green function for the perturbed system 
we aj)ply the Dyson equation to the uni)erturbed Green function and this 
potential as follows

Gy (Jij + yin^nGnj j (2-14)

o-o-o-o-o
n

Figure 2.1: A substitutional impurity at site n is modelled by a shift in the 
onsite energy at this site
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and then apply it again to the term Gnj

Gnj f]nj Qnn^nGnj
_ 9n]

1 Qnn^n

Snbstitutiiig this expression for Gnj back into (2.14) yields

Qin^nDnj
Gij (]ij "h

1 9nn^n

~ 9ij "b 9inTnn9nj i
(2.15)

where
Tn (2.16)

1 9nn^n

is the T’-niatrix element describing the scattering caused by the i)erturbation. 
For this simi)le perturbation it is the only non-zero term in the T-matrix 
given by Ecj. (2.11). Examining the form of Gy in more detail gives an 
insight into the physical meaning of the expression. Recall that this term 
is describing electron propagation between lattice sites i and j. The final 
form of the expression consists of two terms, which can be thought of as the 
summation of propagation along two different paths. The hrst of these, 
obviously corresponds to direct propagation between sites i and j without any 
contribution from the introduced perturbation and is identical to propagation 
in the pristine system. The other term, 9inTnn9nj, corresi)onds to indirect 
I)ro})agation between i and j via the perturbation site n, where the scattering 
that occurs at this site introduces a factor of r„„.

If we want to investigate the LDOS at the impurity site the quantity 
of interest to us is the diagonal element of the Green function at that site, 
which we find by setting i = j = n in Eq. (2.15). Simplifying the resulting 
expression gives

Gnn —
9nn

1 9nn^n
However, we can also investigate properties of the system away from the site 
of the impurity. Supposing we are interested in a site i ^ n, we can calculate
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the Green function at this site by setting i = j ^ n and we hnd

Gn (Jii "b
9iiDnn9ni 

1 9nn^n

Ill these derivations the importance of the off-diagonal matrix elements of 
the Green function - terms of the form gi„ and Gni - is noted. These terms 
act as correlation functions between the different sites of the lattice, and 
are used to calculate the response of a system at one point to a perturbation 
elsewhere. We will come across these terms repeatedly thronghoiit this work, 
and they underpin many of the results in the upcoming chapters. In the next 
chapter we shall examine in detail the functional form of these terms in a 
graphene lattice in order to predict the distance dependence of interactions 
mediated by the coiKliiction electrons of graphene.

2.4.2 Adsorbed Atom

In this section another type of impurity will be disc'ussed. This is an ad­
sorbed atom, or adatom,, and occurs when an impurity spec’ies bonds to 
atoms w'ithin the host lattice, rather than replacing one, as was previously 
seen with substitutional impurities. For simplicity, we again consider only 
a single atomic orbital on the impurity atom, although a generalisation to 
a mnlti-orbital atom follows an identical i)rocednre to that outliiKnl below. 
We label the relevant orbital on the impurity atom o- and assume for sim- 

that it connects to a single site n on the host material. That is, the

Qa
I

0-0-6-0-0
n

Figure 2.2: An adsorbed atom impurity is modelled using a perturbation 
potential to connect an orbital on the impurity atom, a, with one located at 
site n on the host system.
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only nonzero hopping parameters between the host and the impurity atom 
are those connecting sites a and n. Before the impurity is introduced, we 
consider a pristine host material with a Green fnnction matrix gij where i 
and j run over all the orbital sites of the system. We also consider the Green 
function relating to the impurity atom, g^a, which disconnected from the 
rest of the system is simply a scalar. From Eq. (2.1), we find

1
E + ig - ea

where is the onsite energy of the impurity.

(2.17)

This type of impurity is different to the substitutional case in that the 
Dyson ecpiation will be used to connect two parts of the system which were 
previously separate. This is perhaps one of the simi)lest cases in which the 
Dyson equation connects tw'o systems, but more complex cases shall be ex­
amined shortly when recursive methods are considered in Section 2.5. Here, 
the i)erturbation i)otential that is applied does not alter the onsite potentials 
at any of the lattice sites, but rather ‘turns on’ a connecting potential be­
tween them. This is achieved by changing the relevant off-diagonal matrix 
elements of the Hamiltonian from zero. For a single adatom, the perturbing 
potential is given by

V = \n)Vna{a\ + |a)V;„(n| (2.18)

Note that the two terms are complex conjugates of each other (14a = f4n ^ 
M), which ensures that the Hamiltonian describing the perturbed system is 
hermitian. In matrix form, the disconnected Green function for the entire
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system, and the perturbing potential are

\^ gn ■
• gin ■ • giN 0

gm ■ gnn ■ griN 0
9 =

9n\ • ■ gNn ■ ■ gNN 0
0 . .. 0 ■ ■ 0 gaa

and
(o . ■ 0 • •• 0 0

y =
0 • ■ 0 • 0 Tnn

0 ■ • 0 • •• 0 0

^an •• 0 0

\

Applying the Dyson ecpiation, we hnd

~ Uij d~ fJinPjiaGaj d" Uia^anGnj ■

We note that if z = a, the term gmVnaGaj vanishes since g^n = 0 for the 
disconnected system. Similarly, if i a the term giaVcmGnj vanishes for 
similar reasons. Thus for any Green function element we want to calculate 
we need only consider one of these terms.

The Green fnnction between two sites on the host lattice after the impu­
rity atom is connected, corresponding to i,j ^ a, is given by

Gp gij T girAnaGaj i

where using the usual approach we also hnd

Gaj gaa^anGjij and Gnj gnj T gnvMnaGaj i
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yielding

and

_ fjna Tan fjnj
^3 1 T T /"

9aa ^an 9nn *ni

9ij
9in Tjia 9aa Tom 9nj

(2^19)
1 9aa Ton 9nn Tio

The diagonal Green function corresponding to the impurity site is easily 
calcnlated and is given by

G OO 9aa

1 9aa Ton 9nn T^o
(2.20)

The T-matrix elements for this type of impurity are found from the definition 
in E(i. (2.11). The only non-zero matrix elements are those corresponding 
to sites n and a. The T-matrix relating to these two sites is given by

T =
1

1 9aa bfvn 9nn Ton9nn Tn.
(2.21)

If we are concerned with sites in the host system, and not the impurity atom 
itself, the only matrix element of interest is

T =■L nn

Tno 9aa To

1 9aa Ton 9nn Tn,
(2.22)

All Green fnnetion matrix elements within the host system can be ealenlated 
from

Gij 9ij T 9inTnn9nj • (2.23)

We note the similarity between this expression and that for a substitutional 
imparity, given by Ecp (2.15). In fact, by eonii)aring the T matrix elements 
for snbstitntional and adsorbed impurities in Eqs. (2.16) and (2.22), we 
can exj)ress the effect of an adsorbed impurity on the system as an energy 
dependent perturbation potential applied to the site to which the imi)urity 
adsorbs. In other words, by api)lying an onsite potential S„„(E') at site n, 
we take into account the effects of an adsorbed impurity at this site. This
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potential, called a self energy, is given by

^nafjaa^n- (2.24)

Using a self energy term to account for an external effect is a very common 
method in condensed matter physics. The important jroint is that the self 
energy rei)resents the potential felt by the electrons in the host material 
due to the introduction of the adsorbed impurity. Unlike the substitutional 
impurity, the potential felt by the electrons due to an adatom is not constant, 
and electrons of different energy experience a different potential. This is 
due to the presence of the Qaa term in the expression for E„„. The energy 
dependence of g„a ks clear from Ecj. (2.17). In fact, when the energy of 
electrons in the host ecpials the onsite energy of the adsorbc'd impurity, the 
potential felt by electrons in the host diverges, while for large energies the 
l)otential becomes increasingly small and the adsorbed impurity is essentially 
invisible to them.

2.4.3 Multiple impurities

We shall now extend our discussion to the case of more than one impurity 
in a system and see how the expressions derived earlier are affected. We 
consider substitutional inii)urities of the kind described in the section 2.4.1. 
If we have two impurities, located at sites rn and n on the lattice, then the 
potential describing the perturbation is given by

V = \m)Sm{m\ + |n)4("| (2.25)

For an ensemble, Ni, of such impurities, we have

U = ^ |a)4a(r (2.26)
aeNi
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From the Dyson equation, Eq. (2.10),

Gij — (jij + E fJia^aGaj
aeNi

Expanding tlie Gaj term as before,

Gaj 9aj ^ ^ fJab^bGhj

b^a&Ni

and substituting the result back in gives

(2.27)

Gij fjij + ^ ^ yia^afjaj + EE 9ia^a9ab^hGbj ■

a€Ni a€:Nj b^a

We now must repeat this process for the term Gbj and so on, for each of 
the scatterers until we have an expression in terms of only the unperturbed 
I)ropagators and then we begin the backsubstitution process. This method 
increases in complexity very quickly with the number of impurities consid­
ered. It soon becomes more convenient to solve this type by inverting the
matrix (/ — cjV) numerically and solving for G I -yV

-1
9-

We can get a better understanding of the form of the Green function of 
a system with many scatterers by examining the T-matrix describing the

.. n -1
scattering. Recall that it is given by T = E I -yV . Expanding the

term I-yV as a i)ower series we hnd

T = V + VyV + VyVyV + (2.28)

Rewriting in terms of single-impurity T-matrices G, where

ia k^)Ga(®| 1

where taa = [1 - (JaaSa] \ we hiicl

^=E'- + EE Lyh + EEE tayhyic +
a€.Ni aENi b^a (lENi b^a c^b

(2.29)
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Thus, we can write the Green function in the form

^ij 9ij T E 9iat aa 9aj + EE 9iat aa 9aHbb9bj T
a&Ni b^a

+ EEE 9iat aa 9ab^bb9bctcc9cj “H ' ' ' •

a&Ni b^a c^b

(2.30)

By writing the expressions for the T and Green function matrix elements 
in terms of the single-scatterer T-niatrix elements, Ga, we can clearly see 
that the effect of multiple scatterers is not merely a summation of the effects 
of single scatterers, but consists of higher order interference terms also, as 
should be expected. These higher order terms corresi)ond to inoi^agation 
pathways connecting sites i and j via a iinmber of scattering sites. With 
more than one scattercr in the system, we open uj) the possibility of a path­
way visiting the same site multiple times and thus there are now an infinite 
number of possible paths between the two sites. It is important to note that 
although we used a i)ower series in onr analysis of these expressions, the 
Dyson ecpiation, as given in Ecp (2.10) and solved using matrix inversion 
or the exact substitution method illustrated earlier, gives the exact Green 
function of the perturbed system, and not merely an approximation to it. 
If it is too difficult or time-consuming to solve using these methods, we can 
truncate the power series given in E([. (2.30) after a hnite number of terms 
to give an approximation to it. If we are dealing with an inhnite number 
of randomly located scatterers, methods such as the Coherent Potential Ap­
proximation [146,147] can be used to yield a conhgurational average for the 
T-matrix and hence the Green function itself.

Perhaps the most common Green function matrix element to appear in 
this work will be the off-diagonal matrix element between two sites con­
taining impurities. This term plays a major role in the magnetic coupling 
calculations that will be discussed at length later in this work, and it is in­
structive to examine it now. We wish to calculate the matrix element Gmn 
when the perturbation potential for two impurities, given in Eq. (2.25) has
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been applied. With two impurities, Ecj. (2.27) becomes

Gmn 9mn E 9mm\^mmGmn “h 9mnVnnGnn •

Using the substitution process, we can use the Dyson equation again to 
write Grin ill tnrnis of Gmn- Substituting the resulting expression back in and 
reorganising terms gives

Gm.n, 9mn
(1 9inm ^7T() (1 9nn ) 9rnn^n9nrn^ii

(2.31)

The equivalent expression for the Green function between two adsorbed 
impurities adsorbed onto sites rn, and n, like those discussed in Section 2.4.2, 
is given by

Gal3 —

9aa UvrM .9mn Ui/3 909

(1 9ocn^nm9m.m\ mn )(i 900^nn9nriVrifj) 9acxVam9mnVn0900 ^07\9nm\^m

(2.32)

2.5 Recursive Methods

The definition of the Green function, given in Ecp (2.1), suggests an obvi­
ous method for their calculation - namely a direct inversion of the quantity 

{E + IT])I — H using matrix techniciues. This amounts to inverting a ma­
trix whose dimension is the total number of orbitals considered in describing 
the system. As the size of the system in question increases, the matrices 
involved become unwieldy and alternative methods must be exploited. For 
periodic systems, we can introduce Bloch functions and reduce the problem 
to an integration in A:-space. This method shall be illustrated explicitly for 
graphene in the next chapter. For the case of disordered systems, or other 
cases when the Bloch function method is not viable, recursive methods can 
be used.

Recursive methods involve building a system in a piecewise fashion, and 
updating the necessary Green function matrix elements at each stage. The
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advantage of tliis kind of approach becomes clear when only a liinitcd nnniber 
of Green function matrix elements are required to calculate the quantity of 
interest. This is the case for the majority of calculations. In this case, 
the only Green function elements that need to be calculated or stored are 
those required to connect the piece of the system being added at the current 
iteration and those corresponding to the lattice sites of interest or required 
for their calculation at later iterations. This can greatly reduce the size of 
the matrices involved and thus increase the speed of the calculation.

Each piece, or cell, added to the system need not be the same, and so a 
recursive approach is often used when building a system in which disorder is 
present. However, if each cell is the same, a recursive approach can still offer 
advantages over Bloch function methods as more advanced techniques, like 
the Rubio-Sancho method outlined below, can be availed of.

2.5.1 Standard recursive approach

We consider a general case where the Green function of a system composed of 
N individual cells, each consisting of rii orbital sites, is required. We assume 
that the Green function matrices for each of the individual components, ga, 
are known. Note that here (ja is not a single matrix element, but rather a 
111 X matrix containing all the Green function matrix elements describing 
the T*’ unit cell disconnected from the rest of the system. For conii)lete 
generality, we do not restrict the unit cells to being identical, or even to 
having the same number of sites. We now introduce a set of connection 
matrices, Vi^i+i and describing the hopping parameters that are ‘turned
on’ to connect the cells i and z + 1. The matrix G,i+i has dimension n-i x rij+i, 
so is not necessarily sejuare.

We begin by considering the case when the Green function of interest is 
that of the last cell of the fully connected system, This is a common
scenario in transport calculations, where the surface green function of a lead 
is recpiired. In this case, we start at the hrst cell, i = 0, and connect the cells 
individually until we have added the last cell. At each stage we only need to 
store the Green function of the last unit cell added. This is clear from the
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Vi-U

i-1
I I__j '__ j

i+1 i+i;

91:.,,.1 9u

Figure 2.3: Before and after the connection of the cell to the system.

Dyson eciuation used to connect any given unit cell to the system. Dehning 
9“ to be the Green function matrix of the system after the a*"*' cell has been 
added, then the Green function of cell i after it is connected is given by

9ii 9n 3” 9ii ^^,2-1 9i-l,i i (2.33)

where all (juantities are matrices, and

9l-ui = 9l-li-i^-Ui 9li,

to give

9
a 9ii^i,i-i .9.-1,i-1 ^2-1,2 ^ 9ii (2.34)

Here we have calculated the surface Green function matrix of the system 
after i iterations in terms of that for i — 1 iterations and the Green function 
matrix describing the C' disconnected cell, as shown in Fig. 2.3. Ecj. (2.34) 
thus dehnes an iterative algorithm to calculate the Green function required 
at the far edge of the fully connected system. We simply repeat the process 
for each z = 0,..., A^.

We now consider a more general case, where the Green function required 
is not that at the final edge of the system, but at an arbitrary cell k in the 
system. We hnd that the procedure followed is very similar to the previous 
case, but with a slightly more advanced algorithm to update the required 
Green function at each iteration. For i < k, we follow the exact same proce­
dure as before to calculate - the surface Green function after k iterations 
when the cell of interest is currently at the edge. For each cell that is added
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after this, k < i < N , we must update not only the Green fuuctioii matrix 
of the edge cell, but also g].f. and any additional Green function matrices 
that are needed to calculate it. The edge cell is updated as before using Ecp 
(2.34). The matrix g^f,, at each i > k, is found using

9lk — 9\k + 9k.i-\ 9ik- (2.35)

Note that to update gh^ at each iteration we recpiire and g\j^ - off-
diagonal Green function matrices between the cell of interest and the edge 
cell, from the previous and current iterations respectively. We can thus define 
an algorithm to update all the necessary Green functions at each iteration.

9\i = {J - Ki-i .G-ui-i ^i-Ui ) -1
On

9\k

9kk
9li

9l^ V^-i gtlk
9k~k^ + 9u'-i 9\k

9k.i-\ ^^1-1.i 9a ■

(2.36)

Note that in each iteration the (piantities above should be calculated in the 
order shown, as many depend on the (juantities calculated before them in the 
same iteration. Furthermore, although we have calculated the Green function 
here for a cell within the system, it is easy to adapt the procedure here to 
any set of sites within the system. Once the cell containing a site of interest 
has been added to the system we simj)ly update the relevant Green functions 
on each iteration; i.e. the matrix element of interest and the off-diagonal 
elements linking it to the current edge cell. An analogous algorithm to Ecjs. 
(2.36) is then followed until the system is complete.

A common use for recursive techniques is to calculate the surface Green 
function of a semi-inhnite lead. This quantity is often required in transport 
calculations where a device region is connected to a semi-inhnite lead at either 
side. Similarly, by connecting two semi-inhnite leads the Green function in 
an inhnite lead can be calculated. For this sort of calculation it is usually 
the case that each cell in the system is identical and we shall make this 
assumption here also. Thus to simplify notation, we dehne gc to be the Green
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Figure 2.4: Two senii-infiiiite leads can be connected using the Dyson equa­
tion to calculate the Green function of an infinite system

function of an individual cell, and (V/^h) to be the hopi)ing matrix used to 
connect it to the cell to the left (right). The general approach is to recursively 
add cells to the system until the addition of an extra cell does not change 
the Green function elements of the edge cell. When ~ .9/v-i v-il < 
for some suitably small e, electrons in cell N do not feel the presence of the 
opposite edge and so acts as the surface Green function of a semi-infinite 
lead. Note that it is possible to build a lead by adding cells either to the 
left or to the right of the starting cell, and that the surface Green functions 
for these two cases are not necessarily equivalent. We distinguish between
these two cases by introducing the notation S^^^^ to denote the surface Green 
function of a system of N cells that has been built from the left / right. The 
superscript is dropped to denote the surface Green function of a semi-infinite 
lead. We can now rewrite the recursive algorithms for these surface Green 
functions as

[I-gcVai ) gc

S]i = (j — gc Vlr S]^^ Vrl ^ gc

(2.37)

(2.38)

When convergence has been reached, the two leads can be joined to give the
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Green function of the infinite system, as shown schematically in Fig. 2.4. 
The Green function matrix for a cell in the infinite system, Gc, is found 
using the Dyson equation

Gc= I- SjVlhSrVj Sr (2.39)

Off-diagonal Green function matrix elements between sites in different 
cells in an infinite lead system can be found by combining the techniques 
discussed above. Firstly, a semi-infinite lead from the left is constructed, 
with a surface Green function S[a- Then the required distance between the 
sites of interest is formed by the connection of single cells added recursively. 
As these cells are added, the Green function at the old edge, LI, and those 
connecting it with the new edge, are updated using Eq. (2.38). When the 
required number of cells are added, the surface Green function of the second 
site, S[^2 is connected to a semi-infinite lead to the right, and the required 
Green function Giaj/2 is calculated by updating the relevant Green functions 
as before.

2.5.2 Rubio-Sancho Method

In the previous section, a simple recursive method to calculate the surface 
Green function of a semi-infinite lead was discussed. The efficiency of this 
method is of order N, where N is the number of cells that innst be added 
to the system before the surface of the system acts as the surface of a senii- 
inhiiite lead. It should be noted that this number is dependent on the energy 
at which the Green function is being calculated and can increase dramatically 
near singularities. We will now outline an alternative method of calculating 
the surface Green function which has an efficiency of order 2^. This is the 
so-called Rubio-Sancho method [148].^

We shall show the full form of this method below, which is written in 
terms of transfer matrices. However the fundamental concei)t is quite simple

^We note that both methods depend not only on the number of unit cells, N, added to 
the system but also on the number of sites considered in each unit cell, M. Both methods 
are of order AP, i.e. the number of matrix elements used to describe the unit cell
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2L.1

Figure 2.5: At each iteration in the Rnbio-Sancho method the lengtli of the 
lead approximating a semi-infinite system is doubled.

and the method is equivalent to the following. At each iteration, we update 
not only the Green fnnction matrix corresponding to one edge, bnt to both 
edges and also to the off-diagonal Green functions connecting them. At the 
next iteration this allows ns to add not just one cell to the system, bnt to 
double the length of the system as shown in Fig. 2.5. If we have a system 
of L connected cells 1, 2,..., L and have calculated the Green functions gij, 

.9i.l and .<7l,i of this connected system, then the corresponding Green 
functions for a system twice this size can be calculated by joining the right 
edge of this system to the left edge of an identical system, whose cells we 
denote L E l,...,2L. The Green function for the new edge cell, 
is found, after using the Dyson equation for intermediate terms Gl,2l and 
Gl+\.‘2L, to be

1 -1
G2L,2L — fj2L,2L + P2L,L+1 Vul I — Ql.L Vir .9l+1,L+1 Vri

9LL VlH f)L+l,2L
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where as before (Clr) connects a cell to the neighbouring cell on the 
left (right). Since the system composed of cells 1,..., L is ecpiivalent to that 
composed of cells L + 1,..., 2L, we can rewrite this expression in terms of 
the Green functions with indices 1,..., L as follows

G2l:2L — 9l.l + 9l,i ViRL i — 9l.l Vlr 91,1 Vi
1 -1

RL 9ll Clr 9i, (2.40)

This expression updates the surface term on each iteration, and we see (juite 
clearly that it relies on the diagonal Green function matrices for the two 
edge cells and the off-diagonal matrices connecting them. These must also 
be u{)dated at each iteration and we can dehne an algorithm similar to that 
discussed in Ecj. (2.36) to do this. However, we shall instead use an alterna­
tive algorithm to perform this calculation.

We consider a semi-inhnite lead, with a surface cell labelled 0, whose 
surface Green function to wish to calculate. This term. Goo may be written 
in terms of the Green function of the disconnected cell f}oo and the snrfac'e 
Green function, cjw, of another semi-inhnite chain that terminates at cell 1 
in the usual manner

Goo = i — 900 VlR 911 ^RL 9oo ■ (2.41)

and in the calculation of which we make use of the Dyson eciuation expression 
for Gui-

Gio = 9ii ^RL Goo • (2.42)

Since all the cells in this system are eciuivalent, we introduce the notation 
(jc to refer to the Green function matrix of a disconnected cell. We also 
note that Gqo = 9ii since both represent the surface Green function of the 
semi-inhnite lead system. We thus rewrite Eqs (2.41 - 2.42) as

Goo — I-9cVlrT 9oo ■

and
G,o = TG,00

(2.43)

(2.44)



2.5. RECURSIVE METHODS 37

where we have also introduced the transfer matrix T = Goo Vm. This term 
can also be written in a self-consistent form

^i+l _ I-QcVlrT V,RL

Solving for T in this manner and then substituting back into Eq. (2.43) is 
ecjiiivalent to calculating the surface Green function using the simple method 
discussed in the previous section.

The Rnbio-Sancho method instead makes use of a different api)roach. 
First we consider an off-diagonal term, G/voi connecting the surface to a cell 
within the lead. Consider disconnecting cell N from the system, and then 
reconnecting it with the appropriate connection potentials. Using the Dyson 
eciuation, this sc-enario allows us to write the following expression

Gno — 9c Vri G/v-qo + ,9c Vm G/v+no 

= to Gyv-1,0 + '^0 Giv+1,0

where
to — .9c Vri and — Qc ViR .

(2.45)

(2.46)

Ecj. (2.45) allows us to rewrite an off-diagonal Green function element be­
tween the surface and a cell N within the system in terms of those between 
the surface and the cells neighbouring N. Applying it in turn to the terms 
Gyv-1,0 and Gat+i.o, for N >2, yields

Gno — to to Gn-2,0 + ^0 Gn^o So to Gn o + So GAr_|_2,o

= tl Gn-2,0 + Si GN+2,0

where

tl = I to So — Soto
-1

and sd = I — toSo — Soto
1 -1

Repeating this process we hnd (for N > 2^)

Gno — tl Gn-2\o + Sj Gn+2\o (2.47)
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U =

—

/ — ti-iSi-i —

I ~ t'i-lSi-l — Si-iti-\

T -1

1 -1

z—1

■’z-1 •
(2.48)

(2.49)

Letting N = T' in Ecj. (2.47) results in a secjnence of eciuations

^10 = ^oG'oO + S[)G20 

G'iO = tiGoo + ■Slf?40

^2‘0 — LG'oo + S^G2^^ iQ •

Starting at the final equation, backsnbstitntion yields

Gio — [b) + 'b)fi + + • ■ • + .so-^'i • • • Goo + •biG'i’ + io ■ (2.50)

This process is repeated until the terms 52"+1 are satisfactorily small
snc‘h that G'2«+io ~ b, and the first term in Ecp (2.50) gives a suitable 
approximation for Gio. Com])arison with Eq. (2.44) yields an expansion for
f,

T = i{) + s^i] + soS]f2 + • • • + '§0^1 • • • Si-\ii, (2.51)

that can in turn be substituted into E([. (2.43) to obtain an expression for 
the surface Green function.

Equations (2.46), (2.48), (2.51) and (2.43) provide an easy-to-implement 
algorithm for calculating the surface Green function of a system with a sig­
nificant increase in efficiency over the simple method discussed earlier. Once 
calculated, these surface Green functions can be used as before to calculate 
other quantities of interest.
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2.6 The Lloyd Formula Method

39

In the previous few sections we have shown how Green functions can be cal­
culated for a number of different systems using Dyson equation methods. In 
Section 2.4, we showed how to calculate the Green function of a system when 
a number of different perturbations were introduced. Now we will introduce 
a method to examine how the total energy of a system changes under such 
perturbations. The total change in energy, AE, is the difference between the 
energies of the i)erturbed and pristine systems, E and E^ respectively,

AE = E- Ea (2.52)

Snell a (luantity is often of interest as it tells us if a perturbation is ener­
getically favourable. By varying the exact nature of the perturbation, it 
can also be used to examine under what conditions a perturbation is most 
favourable. This (iiiantity will be examined in detail later to determine pref­
erential inquirity locations and magnetic moment orientations. The most 
obvious approach to calculating such a quantity is a direction calculation 
of E and Eq. However for large systems and perturbations only involving 
a few orbital sites, AE will be very small compared to either quantity and 
cancellation errors may occur. The Lloyd Formula [149] allows for a more 
convenient aj)proach, as it gives an expression for the total change in energy 
without reciuiring the total energy of either system to be calculated. Instead, 
the total energy is expressed in terms of the Green function of the pristine 
system and the perturbing potential.

The total energy difference can be expressed in terms of the change in the 
density of states, and hence in terms of the Green functions of the pristine
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and perturbed systems, g and G respectively, using Eq. (2.9)

AE =
/■Ep

I 'J —oo
dE E ip{E) - p„{E))

I dE E (Gjj(E) - g,,(E)) (2.53)

J

1— Ini ^ / dEEAG{E).
.} —r>r\

From the T-matrix form of the Dyson equation, Ecj. (2.12), the term AG =
Gjj — Qjj can be written

AG 'y ^ gjji 1 nm 9mj 

jjn,n

= 9mj 9jn j Ti

= X] {9 ),nn '

since the orbitals indexed by j form a complete set. Furthermore, from the 
definition of the operator g in Eq. (2.1) we find

dE

Using this result, dehning ^ [f/ab] and rewriting f {l - gV^ ,

we find that
AG = -Tr g'V [i-gV)

-1

Assuming that the perturbation potential V is energy-independent, then 
^ 5 U) = -g'V, and

Tr

_

i-iiv) (f-gv

Tr hi (/ -gv) ,

-1

(2.54)
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where we have used the identity Tr(hiy4)' = Tr[/l'/4]. The change in the 
density of states, Ap{E), is then given by

Ap{E) =----Iin AG
TT

(2.55)

(I-gV) .

Using the identity Tr In/l = IndetA, we arrive at the canonical form of the 
Lloyd formula

Ap{E) = Im ^ In (det(/ - giE)V)^ (2.56)

An expression of this form for the change in the density of states is very 
convenient. The order of the matrix whose determinant must be taken is 
simj)ly the number of orbital sites j)erturbed by V. Furthermore, the energy 
derivative simplihes the calculation of many properties which involve an in­
tegration of the density of states over energy as the Fundamental Theorem of 
Calculus can be applied. For example, the change in the occupation number, 
A A', is given by

AN{Ef)
1‘Ef 

J—oo
dE Ap{E)

Im In
TT

(det(/ - (
(2.57)

Ef

Finally, we calculate the total change in the energy of the system when a 
perturbation is introduced. From Eqs. (2.53) and (2.54), we get

AE {Ep) = - - Im / dE E^\n(det(/ - 
TT J_^ dE V

Integrating by parts yields

AE (Ep) = Ep AN{Ep) + ^ Im J \iE E In (deX{i - g(E)V)^
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We note that the total charge should not change as a result of connecting 
two systems, and so the hrst term above vanishes. It should be noted that 
the condition AN{Ef) — 0 is not automatically satisfied, and can be viewed 
as a constraint to find a suitable parameterisation. Alternatively, it may be 
necessary to allow a small unphysical change in the Fermi energy to acconnt 
for it [150 152]. Thus, the final expression for the change in the energy of a 
system when a perturbation V is introduced is given by

AE{E,.-) = - Ini
TT

f clE In fdet(/ - g{E}V)] . (2.58)
J—oo ^ '

This form of the Lloyd formula will be used repeatedly throughout this thesis. 
In the next section, the details of how the sort of integral contained within 
this expression can be calculated are discussed.

2.7 Integrating over Green functions

In many of the calculations in this t hesis, an integral over (uiergy of a function 
containing Green functions is required. This scenario arises in exiiressions 
resulting from the use of the Lloyd formula, Ecp (2.58), but also in other 
cases. A simple example is the calculation of the occupation of an orbital. 
The Lloyd formula was used earlier to calculate the total change in this 
quantity over all orbitals, Imt in some calculations it is necessary to calculate 
the occupation at a single site. It is given by an integral over the LDOS at 
this site as follows

LEp 2

dE Pi{E) —----lim Ini
— oo TT

r-Ep 

J —OO

dE Gn{E + ir]) (2.59)

Performing this integration as shown along the real energy axis can present 
a number of difficulties. Firstly, low dimensional systems can exhibit Van 
Hove singularities at certain energies. The inclusion of a non-zero imaginary 
energy component, tj, in the Green function definition prevents these from 
lying on the axis of integration, but they can still present problems for a 
numerical integration in the form of sharp, narrow peaks in the integrand.
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Another concern is that the DOS of perturbed systems often contain sharp 
5)eaks, corresponding to bound states, outside the energy band of the bulk 
system. This can lead to difficulty in the selection of a suitable lower bound 
for the integral in Eq. (2.59).

These difficulties can be overcome by observing that the retarded Green 
function is analytic in the Upper Half Energy Plane, that is, the function 
G {z) where z is a point in the complex energy plane z — E + iy, has no 
singularities for y > 0. We also note that the function G[z) is much smoother, 
and more easily integrable, along the imaginary than the real axis. Consider 
the integration contour, C, in the complex energy plane shown in Fig. 2.6. 
By Cauchy’s theorem [153], the integral of G{z) around this contour is zero, 
since C encloses no singular points. The contour C can be split into three 
component parts

r - A line parallel to the real axis, from Ef,' — R to Ey, with constant 
imaginary part r/.

• z - A line parallel to the imaginary axis, from iy to iR, with constant 
real part Ep,

• c - An arc of radius R connecting the top of i with the end of r.

Note that the integral we recpiire in Ecp (2.59) corresponds to the R ^ oo 
limit of E, the integral along r. Now

Ic — A + A + /c — b

E E E •
(2.60)

In the limit R ^ oc and G(z) ~ -. Thus the integrand vanishes along the
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Im[zl
A

Figure 2.6: The integration contour C and its three coinponent parts r, i 
and c.

arc c. However, the integral over the arc is not necessarily zero:

liin L = lini 
/i—>00 fi—>oo

lim
R—^oo

r7\

h

dz - 
z

pIT

W)
2

dOt
(2.6i;

Thus the contribution to the integrand from R is not zero. However, if 
the integrand vanishes as ~ ^ or faster in the limit R oc, then the 
contribution over the arc does vanish. This scenario ocenrs if the integrand 
contains a product of Green functions, rather than the single Green function
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in the integrand here. From Eqs. (2.59) and (2.60), we can now write

n-i —----Ini
TT

—i lini
TJ—>0 fJ I)

AiiGii{EpTiy) -
?.7r

1 1 /■°°= - + - lim / dy Re [Gu{Ef + iy)] 
2 TT

= - + lim ------ / dt — Re
2 r,^0 TT y„ E

(2.62)

GiiiEp + z(---------j--------^))

where in the last of the above equations we have made the variable snbstitn- 
tion y = to make the limits of the integration more manageable. The
integration over the real axis in Eq. (2.59) has been replaced by one over the 
imaginary axis, where the fnnction is in general far smoother and easier to 
integrate.

A similar method can be used for more conqilicated integrands. The aim 
in general is to write a real axis integration in terms of one over the imaginary 
axis, whilst taking care to account for any contributions arising from the 
third part of the contour. As discussed above, when the integrand involves a 
[irodnct of Green functions these contributions vanish. We shall now briefly 
consider another case where these contributions do not necessarily vanish - 
the Lloyd formnla integral (2.58) describing the total change in energy of a 
system when a perturbation V is applied. The integral we need to solve here 
is of the form

pEf 

J —oo
dE In det(/ - g{E) V).

Once again we use the contour shown in Eig 2.6 and can write G = —/j — G- 
We will focus now on the contribution from G- Using the identity Tr In A = 
In det A, we can write

Ic= dz In det (/ - g{z) V) 
J C

= [dz Tr In (7 - g{z) V)I
= In (7- y U)

7 as 7? ^ oo .
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For large R, the In term in the integral becomes

. I . V
In(I--V)--------.

2: 2

So, tlie integral becomes

pT\
dd Tr iRe iO V

7?^
— iO

(W Tr -iV

iix Tr V

We see tliat there will only be a contribution from this term wlien the trace of 
tlie perturbation potential is nonzero, corresponding to pert urinations wliere 
file onsite energy of sites are changed. Sninstitiitional impnrities, as discussed 
in Section 2.4.1, are an example of sncli a perturbation.

2.8 Electron - electron interactions

in the next cliapter w(' will introduce a single-lnociy, tiglit-ininding type Hamil­
tonian to descriine the electronic structure of graphene. While such a model 
is sufficient for many of the calculations within this work, it does not take 
into account electron-electron interactions which are needed to describe mag­
netic materials. To account for these interactions it is necessary to include 
an additional many body term to the Hamiltonian. In this section, we will 
detail the general method to include such a term using the Hubbard Model 
approach, and also how the resulting Hamiltonian can be simplihed using a 
self-consistent procedure within the Mean Field Approximation (MFA) [154].

2.8.1 Hubbard Model

In this section we shall move from the bra-ket notation to that of the creation 
and annihilation ojjerators of the second quantisation. Consider a simple
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tight-binding Hamiltonian of the form

Htb = I*) 01 (2.63)

where i and j index orbital sites on the lattice, and jij = 0 except for 
i = j, when it corresponds to onsite energy terms and for neighbouring ds 
and j’s when it takes the value of the hopping integral between them. This 
Hamiltonian can be rewritten, incorporating the spin degree of freedom a, 
using creation (c^) and annihilation (cia) operators which respectively create 
or annihilate an electron in state i with spin state a, as

Htb - lij cja 0(7 ■ (2.64)

It is clear from the si)in degeneracy of this Hamiltonian that it cannot lead to 
the formation of magnetic moments. Magnetic moments in materials result 
from an exchange term arising from the Coulomb repulsion between elec­
trons. This term breaks the degeneracy between uj) and down spin electrons 
and thus potentially leads to the formation of a moment. The Coulomb 
interaction, in a system of N electrons, is given by

N

(2.65)

and each term is a function of the positions of two electrons. The general 
form of such a term can be written in operator form as

1 ^ ,

= X / ^ ( b .
Tab

(2.66)
a,a'

where (f, J i — | ^5 0 expectation value of the Coulomb term, which
^ab

is given by

TO
Tab

k,l)= f dfa f drt,'ilj*{ra)^p*{rb)— ^pk{rb)'ipi{fa), (2.67)
J J Tab
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where ipi is the localised wavefiinctioii centred around site i. In the Hubbard 
model, it is assumed that screening restricts the interaction to one site and 
only the term corresponding to i = j = k — I need be considered. This 
term corresj^onds to the Coulomb repulsion between electrons sharing the 
same orbital, which by the Pauli exclusion principle imposes the constraint 
a 7^ a'. The Hubbard Hamiltonian can thus be written as

kluub 2 ^ ^ hi(7

i,(7

(2.68)

where U is the diagonal Coulomb integral and the number operator hit, — 
c\^Cia gives the occupation of the state at site i with si)iTi rr. In addition 
to exploring magnetic i)roperties of materials, the Hubbard model in this 
form can be used to investigate a group of materials known as Mott Hubbard 
'insulators. These are materials that are predicted to be conducting by models 
not including electron-electron interactions. However, a competition between 
the electron repulsion term and the hopping integral term can lead to a 
transition from conductor to insulator as the distances and angles between 
neighbouring atoms are varied, for example by heating. This is because 
the hopping integral is strongly dependent on these variables, whereas the 
purely onsite electron repulsion is not. The Hubbard Hamiltonian given in 
Ecj. (2.68) is still a many-body Hamiltonian and we cannot yet avail of the 
methods discussed earlier in the Chaj)ter. In the next section, a method to 
treat this interaction as a single particle effect will be explored.

2.8.2 Hartree Fock approximation

Combining the Hubbard and tight-binding components into a single Hamil­
tonian, we get

(2.69)

Within this work, we shall always consider the Hubbard term within the 
Hartree-Fock Approximation (HFA). This is a mean held approximation and
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aiiK)uiits to making the substitution

4“ {Ria i

which is trivially true, and neglecting any terms of order (n — (n))^. Here 
(uin-) is the expectation value of the occupation number. We can now write

Eia ~ (^'Z<t) 4“ fl'iCT (^icr) (^icr) :

noting that we have written the many-body term from the Hamiltonian as a 
sum of single particle terms. The final term above applies spin-independent 
shift to the band centre of the magnetic atoms.

Defining the average occupation at site i

n^ = (n,|) -h {n^l)

and the (dimensionless) magnetic moment at site i

(2.70)

mi = (uit) - (n^i) (2.71)

allows us to rewrite the interaction term in the Hamiltonian as

Uy" ( ^ {ni T m.i) - U {ni„){nia) (2.72)

where the choice of sign in the the first term is — for a ="( and -f for a =[.

Within the Hartree-Fock approximation, the electron-electron interaction 
is accounted for by the inclusion of an on-site potential applied at the site 
of the magnetic moment. Furthermore, we observe that this potential can 
be divided into two components by separating the spin dependent and in­
dependent contributions. The spin-independent contribution, 5, gives the 
bandcentre shift, for the magnetic site

(2.73)
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Ef

Figure 2.7; Sclieiiiatic densities of states of up and down spin bands. The 
bandeentre, d', and exchange splitting, A, can be calculated within the 
Hartree-Fock approximation using a self consistent procedure.

The spin-dependent contribution meanwhile consists of half the exchange 
splitting, A, between the up- and down-spin bands, where

A,; = U JUi . (2.74)

These two contributions are illustrated schematically in Fig. 2.7. The si)lit- 
ting. A, between the bands leads to a greater occupation of up (majority) 
spin electrons and hence to the formation of a magnetic moment. The local 
onsite potential applied at magnetic sites to account for the electron-electron 
interactions can be written in terms of the bandeentre shift and splitting as

Vn=^T
A 
¥ ’ (2.75)

with once more the choice of sign determined by the spin orientation.
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2.8.3 Self consistent procedure

The Hartree-Fock approximation above allows us to calculate the Green func­
tion of a system containing magnetic moments by applying a spin dependent 
perturbation at the magnetic sites using the Dyson equation. We note that 
since the potential to be applied is spin dependent, the Green function de­
scribing the electrons of the system is no longer spin degenerate. The per­
turbation is written above in terms of A and S - the splitting and bandcentre 
of the magnetic orbitals. Within a simple model, arbitrary values of these 
parameters can be used to ascertain the behaviour of a system with a mag­
netic impurity. However, in many cases it is necessary to parameterise the 
magnetic moment more carefully, particularly if we want to investigate how 
the moment itself changes under different conditions. Within the study of 
graphene, electron-electron interactions generally need to be accounted for 
in two cases. The hrst of these is to investigate the formation of magnetic 
moments in graphene in the ])resence of edges or vacancies. In this case the 
moment arises due to the formation of kx'alised states induced by the particu­
lar geometry of the system, and the carbon atoms in the graphene themselves 
obtain magnetic moments. The other case is when the graphene system is 
doped with objects which already i)ossess a magnetic moment themselves, for 
example ri-band transition metals. This is the scenario that will be encoun­
tered frecpiently in this work. In both these cases, rather than arbitrarily 
selecting values of the bandcentre and splitting, we can calculate them us­
ing a self-consistent procedure that assumes knowledge of the occupation, 
Uj, of the relevant orbitals. For undoi)ed graphene systems the orbital 
is half-full, corresponding to Uj = 1, where each orbital can hold at most 
two electrons - one of each spin orientation. For transition metal atoms, the 
relevant band occupation can be found by comparison with ab initio calcula­
tions or can be varied over a range of values to examine the effects of different 
magnetic dopants on the system. In both cases, the following procedure is 
implemented to calculate

1. Initial guesses for the magnetic moments, 777°, and bandcentres, 11°, are 
taken and used to calculate the onsite potentials.
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2. The occupation of the up and down spin bauds, ni and n|, are obtained 
by integrating the densities of states, calculated by applying the onsite 
potentials to the Green function.

3. New estimates for the l)andcentres, are found by adjusting them 
until the constraint Uj = riij {S^) + rijj is satisfied at each site.

4. New estimates for the magnetic moments are calculated at each site
from m' = (5^) — Ujj

5. Steps 1 to 4 are repeated until convergence.

In this way we can calculate the bandcentre and the moment (and hence the 
band splitting) associated with each magnetic site. These are used to calcu­
late the spin-dependent potential, , and Green function, from which 
the reciuired properties of the system can be calculated using the methods 
described earlier in this Chapter.

2.9 Summary of chapter

This chapter has introduced us to the conce])t of Green functions and briefly 
discussed how they may be calculated and nianii)nlated for use in condensed 
matter physics calculations. The discussion to date has been very general and 
not restricted to a i)articnlar material or Hamiltonian. The simple examples 
used to illustrate the various methods can be straightforwardly extended to 
more complex systems.

The Green function was defined and its relationship to the density of 
states (DOS) shown in section 2.1. The advantages of the Green function 
formalism for describing perturbed and disordered systems were highlighted 
by the use of the Dyson equation to connect the Green functions of perturbed 
and uni)ertnrbed systems in section 2.3, before specific examples of its use for 
simple cases were examined in section 2.4. Methods for calculating the Green 
function for a large system in a piecewise, or recursive, fashion were detailed 
in section 2.5. A description of the Lloyd formula method for calculating the 
change in various properties of the system when a perturbation is applied, and
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details on perforining integrals involving the Green fnnction, completed our 
introduction to Green function methods in sections 2.6 and 2.7 resi)ectively.

Finally, a brief introduction to the Hubbard model and its treatment 
within the mean-field approximation was given in section 2.8. The steps of a 
self-consistent procedure to include magnetic moments within the formalism 
developed earlier in the chai)ter were described.

In the next chapter, the focus will shift away from the general approach 
taken to date and towards graphene and related materials. The electronic 
structure of graphene will be calculated, and various methods of calculating 
its Green functions discussed. The recursive methods introduced in this 
chapter will be demonstrated for the specihc case of graphene nanoribbons.
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CHAPTER

THREE

Electronic structure and Green functions of Gra})liene

3.1 Introduction

In this chapter we ealcnlate the electronic band structure of grai)hene within 
the nearest neighbonr tight binding (NNTB) approximation and show how it 
can be used to ealcnlate the corresponding Green function - a quantity dis­
cussed at length in the j)revious chapter. The band structure of graphene is 
conipar('d to that of related materials, namely carbon nanotubes (CNTs) and 
graphene nanoribbons (GNR,s). The Green function calculation for graphene 
can be tackled in a number of ways. Despite the simplicity of the tight- 
binding descrii)tion of the graphene band structure, the corresponding Green 
functions are often calculated numerically or by availing of a linear approx­
imation. In this chapter we attempt to simplify the calculation by showing 
how to derive it in a mathematically transj)arent form. We demonstrate that 
by moving to reciprocal space, the calculation becomes a two dimensional 
integration, the first of which can be i)erformed completely analytically. For 
special cases, we propose a method to tackle the second integration using 
the Stationary Phase approximation (SPA). This approach takes advantage 
of the highly oscillatory nature of the integrand and yields an excellent ap­
proximation to the true Green function across almost the entire energy band. 
The resultant analytical results offer mathematical transi)arency when calcu-
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lating physical properties that can be exi)ressed in terms of Green functions. 
In particular the distance dej)endence of the Green function clearly emerges 
from our derivation. Finally, the recursive methods introduced in the i)revi- 
ons chapter are illustrated in the case of GNRs.

3.2 Electronic structure of graphene

Graj)hene consists of a i)lanar sheet of carbon atoms arranged in a hexagonal, 
or hoiifiycomb lattice, as dej^icted in Fig. 3.1. This atomic arrangement is 
particularly stable due to the strength of the a bonds formed between sp^ 
hybridised orbitals on neighbouring carbon atoms. Three hybridised orbitals 
are formed per carbon atom from the 26’ together with the 2px and 2py 
orbitals and each of these hybridised orbitals bonds with another on one 
of the three neighbouring carbon atoms. These bonding orbitals are each 
occupied Iw two electrons, one of each spin orientation, leaving one electron 
per carbon atom remaining in the 2p^ orbital. These orbitals stick out of 
the plane and form tt bonds with other p^ orbitals on neighbouring lattice 
sites. This leads to the energy bands near the Fermi energy which control 
the electronic properties of graphene, and which we shall study using the 
tight-binding approximation. For most purposes it is sufficient to neglect the 
other energy bands, which are far enough away from the Fermi energy to not 
play a major role in our cak'ulations.

3.2.1 Tight binding approach

Throughout this work, we shall employ a nearest-neighbour tight-binding 
(NNTB) approximation to describe the electronic band structure of graphene. 
.\s discussed above, the electronic properties of graphene are prc^dominantly 
determined by the Pz orbitals. In fact, by restricting the Hamiltonian de­
scribing the system to these orbitals and the electron hopping probabilities 
to those between orbitals at neighbouring sites, an excellent approximation 
to the band structure of graphene is recovered. This is the essence of the
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ai a(^x+ iy)

a2 = a(^x - ly)

Figure 3.1: A section of the honeycomb graphene lattice with sites from the 
two intersecting triangular sublattices represented by filled or hollow symbols 
at the lattice sites. The dashed rectangle encloses a unit cell containing one 
site from each sublattice. The primitive lattice vectors ai and a2 are also 
shown. The large, coloured arrows highlight the important armchair (A) and 
zigzag (Z) directions in the lattice.

NNTB model, where the Hamiltonian describing the system is of the form

^ = ’ (3.1)

where |z) represents an atomic orbital centred at lattice site i, Cj is the onsite 
energy at that site, 7^^ is the hopping integral between the orbitals centred at 
sites i and j and the sum is restricted to sites which are nearest neighbours.

The band structure is then found by finding the eigenvalue solutions of 
the Schroedinger equation. This is generally a matrix equation where the 
matrices involved have a dimension equal to the number of orbitals used 
to describe the system. This approach suffices for small molecules, but for 
larger, extended systems a different method must be used. Usually this 
involves taking advantage of periodicity within the system. If the full system 
can be generated by the translation of a hnite cell under a set of vectors, 
then we can exi)ress the problem in a more easily solveable form. First, we
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define a Bloch function, |k), composed of atomic orbitals with coefficients 0**

I'') = 7f E (3.2)

where Rj is the position vector of lattice site j. The next step is to substitute 
this expression into the Schroedinger equation

n\k) = c(k)|k)

=>c(k)
j j

and then to project onto (/| to get the so-called secular eciuation

m = {l\n\j). (3.3)

If we assume that the basis set of atomic orbitals is orthogonal, then the 
overlap matrix elements simplify to {l\j) = Sij and we hnd

(3.4)

which can usually be solved quite easily for eigenvalues e(k) and eigenstates 
|k) using standard matrix methods.

3.2.2 Band structure of graphene

A cursory glance at the structure of graphene makes clear that it is a pe­
riodic system. Furthermore, although commonly regarded as a hexagonal, 
or honeycomb, lattice of carbon atom sites, it ('an also be regarded as two 
intersecting triangular sublattices of sites, represented schematically in Fig. 
3.1 by hlled or hollow circles. It is this bipartite nature of graphene that 
leads to many of its intriguing proi)erties. The unit cell which constructs 
the entire lattice by translation consists of two neighbouring sites, one from 
each of the sublattices. We choose the primitive lattice vectors ai and sl2- 
Any unit cell in the graphene lattice can be located by a linear combination
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of these vectors with integer coefficients, r = mai + na2. The orbital basis 
set used to calculate the electronic structure is denoted by |r,n), where r 
gives the location of the unit cell and n = 1,2, for filled and hollow sites 
respectively, denotes the site within the unit cell that the orbital is centred 
around. Switching to reciprocal space, we define the basis set of Bloch waves

1 e‘'‘''|r,n) (3.5)

Each atom on the lattice has three nearest neighbours, and the hopping 
integral for nearest neighbours in graphene is known to be 7jj = —t ^ —2.7eV 
[155]. The magnitude of this quantity, t, will be used as a unit of energy 
throughout this work. The onsite energy, eo, is the same at each lattice 
site and defines the centre of the energy bands, and is set to zero in these 
calculations. The Hamiltonian matrix has become a 2 x 2 diagonal matrix 
under the transformation in Ecj. (3.5) and is of the form

n =
0 t/(k)

tr{k) 0
(3.6)

where /(k) (/*(k)) is calculated by summing over the phase terms coming 
from each nearest neighbour of an atom on a filled (hollow) site. For the 
filled site case the relevant sites and vectors are illustrated in Fig. 3.2, and 
we hnd

/(k) = E c'"*'
i=l
ikjL

= e ^ + e
i(-kxa I if
T 2v/3 + 2 j I 2v/3 2 )

e + 2 cos(-^) e

+ e

2^3

(3.7)

The eigenvalues e(k) are found by solving

0 - e(k) tf{k) 
tr(k) ()-e(k)

= 0, (3.8)
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Figure 3.2: The nearest neighbours of a filled lattice site in graphene, as used 
in the calculation in Eq. (3.7).

which gives 

f±(k) = ±(

= l/(k)| = ±t\ 1 + 4 cos^ ( 
k̂yi

2
+ 4 c(rs

kya
cos

y/^kx

(3.9)

with corresponding eigenstates 

1
k, ±) = (|r, 1) ± 2)) , where = r(k)

i/(k)r
(3.10)

The energy band structure described by Ec^. (3.9) is plotted in Fig. 3.3 as 
a function of k^ and ky, and also along some of the important high symmetry 
points of the Brillouin Zone (BZ). The density of states for this system is 
also shown. We note that since the Pz orbitals in carbon contain one electron 
each, then the band is half full and the Fermi energy of the undoped system 
is Ep = 0. This is exactly the point where the two bands, called tt and tt* 
and given by and respectively, touch and the DOS vanishes. Graphene 
is thus a zero-bandgap semiconductor, or a serni-metal. The resultant Fermi 
surface consists of six discrete ])oints, only two of which are unicpie, lying
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Figure 3.3: The top panel plots the nearest-neighbour tight-binding band 
structure of graphene as a function of and ky. The Fermi surface consists 
of six discrete points at i? = 0 where the upper and lower bands touch. The 
hrst Brillouin Zone (BZ) of graphene is a hexagon described by these six 
I)oints, and marked in bine on the projection below showing the constant 
energy surfaces of the band structure ecpiation. The dashed red path is 
between the high symmetry points of the hrst BZ, and the bands along this 
path are shown by the bottom left panel. The bottom right panel shows the 
corresj)onding density of states.
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at the vertices, or K points, of the first Brillouin Zone illustrated by the 
blue hexagon in Fig. 3.3. These are often referred to as Dirac points. The 
degeneracy of the tt and tt* bands at these points is general to the one-electron 
description of graphene and persists even when the symmetry of the bands 
around E[.' — 0 is broken. Many of the interesting properties belonging to 
graphene arise due to the shape of the bands near the Fermi energy. Unlike 
in conventional semicondiictors where the bands are parabolic, the band 
structure of graphene is linear near Ep. This results in electrons or holes 
near the Dirac points having zero effective mass and behaving like relativistic 
I)articles which can be described using the Dirac equation from Quantum 
Electrodynamics (QED). Graphene can thus be investigated using standard 
condensed matter techniques, but can also act as a medium for exploring the 
methods and i)redictions of QED in a laboratory environment [4,18]. This 
thesis will not focus on the latter methodology, but it is worth investigating 
briefly how graphene electrons are approximated in the linear regime and the 
range of energy values over which the approximation is valid.

Linear dispersion regime

The part of the gra])hene spectrum around Ep = i) can be approximated 
linearly to simplify the calculation of physical properties and to allow the 
use of QED methodology. To do this, we expand the equation for the band 
structure around one of the K points. Without loss of generality, we choose 
that located at K = (0, in reciprocal space. We now recalculate the term 
/(k) as in Eq. (3.7) for a point in reciprocal space near the Dirac point, 
k = K -f- (5k, and find

/(k) = ^
2=1

1 + (-- -I- ^ ^)(1 + «(5k • R2) -t- (-- - i ^)(1 + f (5k • R3)

\/3 ( I (5k I ehf-D
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where 0 is the angle from the plane. To calculate the band structure, 
we only need the modulus of this quantity, where the additional phase term 
ehf) vanishes. However this term, called the Berry phase, has a marked 
effect on other properties of graphene and in particular its Quantum Hall 
response [35].

Using the above approximation for /(k), the band structure equation 
becomes

\/3at
e± (|5k|) == ±- |5k| (3.11)

This is most commonly written in terms of the Fermi velocity of graphene.
as

e± (|5k|) = Ekv!? |()'k| (3.12)

In Fig. 3.4 we compare the linear approximation of the band structure 
with that calculated previously. It is seen to be a very good approximation 
in the region surrounding E — 0, but loses accuracy (juickly outside this 
regime. The approximation returns the correct band structure (to within 
1%) for a region covering less than 5% of the bandwidth. However, since it is 
inaccurate over large parts of the band, difficulties arise when it is necessary 
to calculate quantities involving energies outside the linear dispersion regime 
or when an integral over energy is required. Later in this chapter we will 
introduce a technique that removes these shortcomings when calculating the 
Green function matrix elements of graphene.

3.2.3 Quasi-one-dimensional graphene systems

The electronic band structure of graphene, given in Eq. (3.9), had been 
calculated long before [28 30] the experimental discovery of graphene in 2004 
117|. It was used initially as a starting point to calculate the electronic 
properties of graphite, which consists of multiple stacked layers of graphene 
weakly connected by a van der Waals interaction. More recently it has been 
used to calculate those of Carbon Nanotubes (CNTs) - quasi one-dimensional 
materials consisted of rolled up graphene sheets [8,14]. It is also the starting
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Figure 3.4: Band structure of graphene along the important high symmetry 
points calculated using the full tight-binding (solid) and linear approximation 
(dashed) methods.

point for investigating another one-dimensional allotrope of carbon - narrow 
strips of graphene called graphene nanoribbons (GNRs) [39]. We will now 
show how the electronic structure of CNTs emerges from that of graphene 
with iteriodic boundary conditions apitlied, and how difficulties arise when 
a similar approach, with hard edge boundary conditions, is attempted for 
GNRs.

Carbon Nanotubes

Carbon nanotubes are characterised by their circumferential, or chiral, vector 
which determines their diameter and the direction in which they are rolled. 
This vector is given in terms of the primitive lattice vectors of graphene 
as R,/, = max + na2 and nanotubes are generally labelled according to 
this vector using the notation {m,n). Nanotubes of the form and
(rn, m) have corresponding chiral vectors in the special zigzag and armchair 
directions respectively. These are called achiral nanotubes, and we shall 
examine their band structure here.

The band structure of these systems can be fotmd by applying periodic 
boundary conditions to the graphene electronic wavevectors in Eq. (3.10). To
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ensure tlie continuity of the electron wavefunction we enforce the constraint

|k,±)(r) = |k, ±)(r+

> k • Hf ii = 27ra

(3.13)

where a = 0,1) 2, • • • .

For zigzag chiral vectors this constraint becomes ky — ^ and for arm­
chair chiral vectors, rolling up a sheet of graphene into a
nanotnbe has the effect of quantising the Fspace vector component in the 
circumferential direction. There are now only m allowed values of this vec­
tor component, corresponding to the cases a — 0,1, • • ■ ,rn — 1. Replacing 
ky {kj.) with the above quantised versions in the equation for the graphene 
band structure gives the recpiired band structure for an armchair (zigzag) 
nanotnbe. Although graphene is a zero bandgap semiconductor, nanotubes 
can be either metallic or semiconducting depending on their rolling vector. 
This is determined by the ([uantisation conditions given above, which corre­
spond to lines of allowed k values. If one of these lines passes through one of 
the discrete points forming the graphene Fermi surface, then the corresi)ond- 
ing nanotnbe is metallic. It is easy to show that this occurs for nanotubes 
whose indices obey the constraint {rn — n) mod 3 = 0. Therefore one third 
of nanotubes are metallic, including all nanotubcs with an armchair chiral 
vector. The band structures of sample armchair and zigzag nanotubes are 
shown in Fig 3.5 a) and b).

Graphene Nanoribbons

An analogous approach to that taken for nanotubes is not as satisfactory for 
the case of nanoribbons. Such an approach, outlined in detail in Ref. [43], 
essentially consists of replacing the i)eriodic boundary conditions used above 
for nanotubes with ‘hard wall’ boundary conditions |k, ±)(redge) = d that 
the wavefunction goes to zero bt^yond the edge of the nanoribbon.

Taking this approach for zigzag nanoribbons (ZGNRs) breaks the sublat- 
tiee symmetry since one edge of the ribbon consists solely of black sites and 
the other of white sites. The net effect of this is that a quantisation condition
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DOS
Figure 3.5: Band structure and density of states of a selection of quasi- 
one-diniensional graphene structures: a) (5, —5) ZCNT, b) (5, 5) ACNT, c) 
G-AGNR and d) 4-ZGNR. The dashed lines in the nanoribbon plots corre­
spond to corrections to the sinq)le tight-binding model to account for edge 
deformations in AGNRs and electron-electron effects in ZGNRs.
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similar to that in Eq. 3.13 does not yield all the states of the system. The 
remaining state can be found from the solution of a transcendental equation 
which yields a complex value for the quantised wavevector [43,44]- This cor­
responds to the well-known states localised at the edge of the ribbon which 
contribute a large peak to the density of states at the Fermi energy. Indeed, 
when electron-electron interactions are included, as described in Chapter 2, 
spin polarised edges are found which decay towards the ribbon centre, with 
the ground state of the system having the two edges with opposite polari­
sation [40]. Alternatively, the band structure can be calculated numerically 
with or without electron-electron interactions by considering a unit cell con­
taining lattice sites across the width of the ribbon. Then the standard Bloch 
function method can be applied by taking advantage of translational symme­
try along the length of the ribbon. The band structure of a ZGNR is shown in 
Fig 3.5 d). The solid curves refer to a calculation neglecting electron-electron 
interactions whilst the dashed curves reveal the changes to the band struc­
ture when a Hubbard term U = 1.33t is introduced. This value corresponds 
closely to results from experiment [156] and from ab irutio calculations [157].

For armchair edged ribbons (AGNRs), an apj)lication of hard wall bound­
ary conditions is more successful and reproduces the expected band structure 
for the tight-binding model. We note that the imposition of such boundary 
conditions in this case docs not break the sublattice symmetry. However, the 
simple tight-binding description of armchair iianoribbons does not agree with 
the results of more sophisticated calculations, which suggest that a small de­
formation at the edge of the ribbon needs to be taken into account [52]. This 
can be included in the tight-binding calculations by changing the hopping 
parameter at the edge of the ribbon to Gdge = 1.12t. The unaltered tight- 
binding band structure finds that one third of AGNRs are metallic. However 
the alteration opens up a small band gap in these cases with the result 
that all AGNRs are found to be semiconducting, in agreement with Density 
Functional Theory predictions. In a similar manner to the zigzag case, the 
AGNR band structure can be calculated numerically with a larger unit cell. 
The band structure for a 6-AGNR. without (solid) and with (dashed) the 
edge correction is shown in Fig 3.5 c).
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For both of the principal nanoribbon geometries, we have seen that com­
plications arise which iH’event the calculation of their band structures using 
the application of simple boundary conditions to that of a graphene sheet. 
Since our principle recinirement for calculating energy bands is to use them 
to calculate Green functions using Eq. 2.1, it may be more convenient to 
consider an alternative method to calculate the Green functions of such sys­
tems. We have considered such methods in Section 2.5 and in Section 3.4 
we will illustrate how recursive methods can be used to calculate the Green 
functions of nanoribbons directly, without the need to calculate their band 
structure as an interim step.

3.3 Graphene green functions

Recall from the previous chapter that the matrix elements of the pristine 
Green function arc given by an expression of the form

fiji = 5^01'I'a) 1
E-e,

■i'i’all)- (3.14)

where ('Fq) denotes the eigenvalues (eigenvectors) of the system, |j) is 
the orbital wavevector located at site j and the sum is taken over all the 
eigenstates of system.

For graphene, we have derived the eigensystem in terms of Bloch functions 
in reciprocal space, so the corresponding Green function expression consists 
of an integral over the first Brillonin Zone in place of the sum over discrete 
eigenstates above. The hrst BZ of graphene consists of a hexagon with ver­
tices corresponding to the discrete Fermi surface of graphene, as shown in 
Fig. 3.6 a). For convenience, we can instead integrate over a rectangu­
lar area consisting of segments drawn from multiple neighbouring Brillonin 
zones whose area equals that of the hexagonal BZ. By translating the various 
segments outside the hexagon back into it, we can see that these rectangular 
BZs are equivalent. A few possibilities for the limits of integration are shown 
in Fig. 3.6 a) and b).
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a) b)

Figure 3.6; The shaded areas highlight three different choices of Brillouin 
Zones that can be used when performing the integrations in this chapter. The 
contours represent constant energy surfaces of the graphene band structure.

The Green function expression becomes

= (G- I 9{E) I ni)

where

a a x/3
27r 47r

dA.y J" dA;] N{E)
E^-H\fikW'

(3.15)

N{E) = E if 

A/(k) 
tnk)

Uj = ni

n.j = l,n/ = 2

77,j = 2, n/ = 1 .

This integration can be approached in a nnmber of ways. The most obvious is 
a two-dimensional numerical integration - however this can be prohibitively 
expensive if the Green function is required for many site indices or energy 
valnes. As we shall now demonstrate, one of the two integrals in this expres­
sion can be solved analytically, which reduces the nnmerical computation 
recpiired to a one-dimensional integral. Furthermore, we shall show that for 
certain cases, the second integration can be approximated and solved with a
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great deal of accuracy for the majority of energy values across the bandwidth.

3.3.1 First Integral

To simplify the resultant expressions, we rewrite the integral in terms of 
dimensionless wavevectors

(ikx 
If A = —^ kz =

y/3ah\
(3.16)

where the subscripts refer to the armchair and zigzag directions of these 
vectors, so that Eq. (3.15) becomes

1 /•7r/2 fir N{E}ei(kz(m-n)+kA (m+n))

E'^ {I + 4cos^{kz) + 4cos(A:2) cos(A-^)) ’
(3.17)

where we have rewritten the separation vector in terms of the lattice vectors.

ri — Tj = rn ai + n aj .

We now have a choice of which variable, kz or ky\ to integrate over hrst. 
This choice is not inqjortant if we wish to perform the remaining integral 
nmnerically, but later we shall see that for other methods, or for calculating 
the Green functions of nanotubes analytically, the choice of first integration 
variable is important. With this in mind, we now illustrate how the first 
integral can be performed in both cases.

Armchair direction

Choosing to integrate over k-A first, we choose the Brillouin zone in Fig 3.6 
b) and the integral that nc^eds to be solved is

Ia = / dA.q
N{E) e^il^z{m-n')+kA(m+n))

E‘^ — t?{l + 4cos‘^{kz) + 4cos{kz) cos(A;/i))
(3.18)

This will be solved by transposing the problem to the complex plane and 
using the methods of contour integration, specifically the residue theorem
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Im[k a]

Re[kA]

Figure 3.7: Integration contour in the complex kA plane containing a pole q. 
The contour is closed in the upper half plane for m + n > 0.

[116,153] . For m + n> 0, we consider the contour in the complex Ha plane 
shown in Fig 3.7. In the upj)er half jdane, where 1111(^:4) > 0, the integrand 
vanishes as Ini(A'^) 00, so that no contribution arises from the top section 
of the contour. Furthermore, we note that the net contribution from the left 
and right contours is also zero due to the integrands i)eriodicity. Thus the 
integration we require is equivalent to the integral over the entire contour, 
which in turn reduces to a sum of the residues at the poles of the integrand. 
The poles, q, correspond to the zeroes of the denominator, and are given by

f-l-4c.os^(A:z) 
4cos(A:z)

cos[q] = (3.19)

Note that this equation does not define the j)ole unicpiely as there are two 
possible solutions arising from a choice of sign when the inverse cosine is 
taken. The sign of the pole must be selected carefully to ensure that it lies 
within the integration contour, i.e., that Ini(g) > 0. The residue of a function

whereof the form f{z) = at a pole zq is given by Res(/(2:)) = 
h'{z) = Thus the integral becomes

IA = StTZ
/ N{E)
\ 4:E cos{kz)sm{q)

(3.20)
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and the Green fnnction can be written

N{E) U^>^z{m-n)+q{m+n)),ni _ i f -
47rt^

dk,
cos{kz) sin((/)

(3.21)

Zigzag direction

To perforin the kz integration hrst, we follow a similar approach to the 
previous case, but using the Brillouin zone shown in Fig 3.6 c). We again 
move to the complex plane and make use of the residue theorem, and consider 
a similar contour in the complex kz plane when rn—n > 0. Again the solution 
reduces to a sum of the residues of poles, which are given this time by

cos(('/) = ( cos{kA) ± - sin'^(A-^) (3.22)

This time there are two poles inside the contour, arising from the choice 
of sign inside the brackets. Each of these poles must also have its overall 
sign chosen carefully as before to ensure it lies within the contour. The 
residues are calculated in a similar manner to before, and the reiinired integral 
becomes

271-/ N{E) ed^d'^-0+i^A(m.+n))
AP ^ sin(2g) + sin((/) cos(A:^)

Thus the expression for the Green fnnction in this case liecomes

N{E) eh<?(™-")+A;^('«+«))

(3.23)

Hi,Hi

= 4nP J —1

(lAp sin(2q') + sm{q) cos(A-4)
(3.24)

Analytic expressions for nanotubes

As we have seen in section 3.2.3, the electronic band structure of achiral 
carbon nanotnbes can be accurately found by imposing periodic boundary 
conditions on that of a graphene sheet. This has the effect of restricting the 
values that can be taken by electron wavevectors in either the armchair or 
zigzag direction. This allows ns to replace one of the integrals in Eq. (3.15) 
with a sum over these allowed values. The remaining integral can then be
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solved using the contour integration methods discussed above. A detailed 
account of this method for nanotubes can be found in Ref [116].

3.3.2 Second Integral

We have shown how the first integral in the calculation of the Green func­
tion can be performed in both the armchair and zigzag directions. We have 
also seen how the full analytical Green functions for certain one dimensional 
graphene systems follow from these calculations since one of the A^-space 
integrals can Im replaced with a sum over the finite A: values imposed by 
quantisation. The remaining integral for two-dimensional grai)hene is not 
easily solveable in its current form, however it can be solved numerically 
with a lot less effort than the two-dimensional integral we started with. We 
shall now examine the remaining integral, and in particular the form of its 
integrand, to see if there are any cases when we can make approximations to 
solve it using analytical methods.

Fig. 3.8 plots the integrand (as a function of the integration variable) that 
api)ears in Eqs. (3.21) and (3.24) for a number of different cases. We note 
that the integrand corresponding to the off-diagonal Green fnnction between 
two distant sites is cither zero, or oscillates rapidly around zero over much 
of the integration range. This behaviour is easily understood from the exi)o- 
nential terms in the integrands which for large values of sei)aration oscillate 
rapidly. This oscillatory behaviour is the key to performing the remaining in­
tegrals for large separations, as the contributions from the oscillatory sections 
of the integrand do not contribute significantly to the integral.

3.3.3 Stationary phase approximation

Gonsider a function of the form

= j f{y) (3.25)

For large, positive values of x, the exponential term will oscillate with a vary­
ing phase, (f){y) for large sections of the integrand. These oscillatory sections.
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Figure 3.8: The integrand of the remaining integral for a) separation of 
2()v/3« in the armchair direction for E = ().3|t|, b) separation of 3()\/3a in 
the armchair direction for E = 1.4|/|, c) sei)aration of 4()a in the zigzag 
direction for E = ().8|t|.

having different phase, will largely cancel each other out when an integration 
over y is performed. The only regions that will contribute signihcantly to the 
integral are those whose contributions add together coherently. These cor­
respond to values of y near where the phase is stationary. The main idea of 
the Stationary Phase Approximation (SPA) [158] is to replace the integrand 
in Ecj. (3.25) with a Taylor expansion around its stationary points, y^ - the 
values of y for which the phase term is stationary and which are given by

d(p
dy

= 0, (3.26)

The i)hase term becomes

Hy) ~ ■>(!*) + 2 (» - y"f + (3.27)
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where the first order expansion term (not shown) is zero by the definition 
of the stationary points. Assuming that the function f{y) is slowly varying 
about yo, then each stationary point y” has a corresponding contribution 
given by

Iyo{x) = j dy /(yo) E[‘t>Go)x+\,l>"(y°)iy-vA^x\

= f{yo) / clye*^i h <P''{y°) {y-y°f x
(3.28)

= f{yo) e i4>(yo)x 2 in

where the final integral has been performed using the well known Gaussian 
integral identity.

In the next two sections, we will apply this method to the integrals that 
ai)i)ear in the expressions for the graphene Green functions. We note that the 
phase term in these expressions depends on the direc'tion of the separation 
vector between the two sites. We shall calculate in detail the Green function 
between sites on the same graphene sublattice separated by vectors in the 
armchair and zigzag directions, and then briefly describe how the method 
can be generalised to other directions and cases. The two cases we discuss 
are the most frecpiently investigated in graphene lattices, and an analytic 
expression for the Green function in these directions will be extremely useful 
in calculating distance-dependent properties in graphene, as we shall see 
later.

Armchair Direction

The first case we shall examine is the Green function between two sites on 
the same sublattice separated by a vector in the armchair direction, corre­
sponding to m = n and shown schematically in Fig. 3.1. In this case we 
shall use the Green function expression calculated by first integrating over
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A’/i, given by Eq. (3.21), which now becomes

lE
4nP L dk, q (m+n)

cos{kz) sm{q) '
(3.29)

Note that the choices of separation and contour integration directions have 
led to a simple functional form for the phase term. Here it is simply the pole 
of the contour integral, given by E(i. (3.19). A idot of the pole as a function 
of kz at a certain energy is e(juivalent to the constant energy plot of the band 
structure of graphene at that energy, which i)rovides a useful visualisation of 
the stationary points, A:|. These points are found from Eq. (3.19) using the 

= 0, which gives the following solutionscondition Akz k%

A’2 = 0 , ± cos
- E‘^ 

2t (3.30)

We note that although both solutions are valid thronghont the entire energy 
spectrum, there are regions in the spectrum where one or the other gives 
rise to complex values for the pole q. With these evanescent solutions, the 
integrand in Eq. (3.29) tends to vanish for any sizeable value of separation 
ni + n. Consequently, we need only consider stationary solutions that yield 
real-valued solutions for q. For separations in the armchair direction this 
allows the energy spectrum to be divided into two distinct regimes

if \E\ < 
if \E\ >

(3.31)

Only for energy values near to E = ±f. innst we consider contributions 
from both stationary points. We can understand these regimes by examining 
the constant energy surfaces in reciprocal sjiace, shown in Fig. 3.9a). The 
shaded area is the Brillouin Zone that we are integrating over in this case. 
Constant energy plots are shown for a nnniber of different energies. At E=0, 
the surface is simply six discrete points. As the energy is increased, these 
jioints become roughly circular in shape and then triangular. A topologi-
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Figure 3.9: Constant energy plots, Brillouin zones (shaded areas) and sta­
tionary points for calculations in the a) armchair and b) zigzag direction. The 
thicker lines correspond to the energies 0.7t and 1.8t and the corresponding 
stationary wave vectors for these energies are highlighted with arrows.

cal change occurs at E = t, when the six shapes merge to form a single, 
large, hexagonal contour which shrinks and becomes roughly circular again 
as the energy increases further. Stationary values of the phase here corre­
spond to flat regions of contour parallel to the y-axis. For E < |f|, there is 
one stationary point on each of the contours enclosing a Dirac point, whose 
corresponding value of is energy dependent. Although there are four such 
points inside the chosen Brillouin Zone, only two obey the necessary sign 
convention for a j)ole of the contour integral and the contribution from each 
of these is easily shown to be identical. These stationary points and corre­
sponding energy contours, are shown using solid, bold arrows and curves, for 
E = 0.7|f| in the energy contour plot. For E > \tl there is only one station­
ary solution for the pole, which is fixed at A:| = 0. This point corresponds 
to the top of the central contour formed for this energy range and again its 
sign must be chosen to ensure the stationary value for the pole lies within
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the first integration contour. This type of stationary point and contour are 
illustrated for E = 1.8|f| using dash(;d arrows and curves in Fig 3.9a).

Now that we have identified the relevant stationary i)oints, we proceed 
with the SPA approach outlined above. The wavevector q, when expanded 
in a Taylor series around a stationary point A:^ has no linear component and 
is ai)proxiniated, ujj to second order, l)y

q{kz)-Q{E) + mE) {kz-k^zY. (3.32)

where

Q{E) =
± cos

± cos"

-.-1 -a/1- f

1^ 4t2

and

W{E) =
^ EG:it

±

if \E\ < |f| 

if |£;| > \t\

if i^l < \t\

(3.33)

(3.34)

The sign of Q{E) must be chosen as before to ensure that it lies within the 
integration contour. In addition to this, the correct sign of W{E) must be 
determined by its correspondence to the curvature of q at the stationary 
point.

Substituting the expression q, Eq. (3.32), into the integral in Ec^. (3.29) 
yields a nmch-simjilihed expression for the Green function

UQiO {m+n)

cos(A:|)sin(Q(E;)) J_.I: dA:^ (m+n)

lE
477-/2 2-^

ITX giQ(/?) {m+n)
(3.35)

}V{E){m- + n) cos(A:2) sin(Q(E')) ’

where the number of stationary points, k^ to be summed over is determined 
by the energy regime discussed above. By using the definitions of Q{E) 
and W{E) above we can rewrite a more complete analytic expression for the
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Green function in the two distinct energy regimes. For E > 0, we find

fJjiiE)

X

1
in Vm + n E'^ + 3E)Vt'^ - E^

X

— i\fE {m+n) ifIBI < |t|

(£'2-9f2)3
^^iQ{E){m+n) if|F;|>

(3.36)

Panels (a) and (b) of Fig. 3.10 compare the real and imaginary parts of 
the Green function for the case of m + n= 10, calculated using both the an­
alytical expressions derived above and a numerical evaluation of the integral. 
V\e note that at this separation there is an excellent agreement between the 
two methods over the entire band. The contributions from the individual 
stationary points are illustrated in panels (c) and (d) to verify the splitting 
of the band into two energy regimes and we can clearly see that one of the 
stationary j)oints dominates in each of these regions. To test how good an 
a{)proxiniation Ecj. (3.35) is, we plot, as a function of sej)aration, the fraction 
of the bandwidth Ei% for which the relative error between the mimerical and 
analytical evaluations is less than 1% in Fig 3.11. The arinehair direction 
corresponds to the plot with circular points and we see that even for small 
separations (f« 10a), the energy range for which the Green functions are very 
accurately described exceeds 90% of the bandwidth. In other words, there 
is only a very narrow energy range for which the disagreement exceeds 1%, 
and this range decreases rapidly as the separation is increased.

Zigzag Direction

We now turn our attention to the case of separation vectors along the zigzag 
direction, for which the procedure followed is almost identical to that for the 
armchair direction. From Eq. (3.24), the Green function integral we need to 
solve is

fJji
lE

Ant? ^ 
<1
/J —7

dAp
^iq(m—n)

sin(2g) -|- sin(g) eos(A’4)
(3.37)



80 CHAPTER 3. ELECTRONIC STRUCTURE OE GRAPHENE

O
s

0.1

0

(U
OC -0.1

-0.2

- -

-

1

l| 1

1 V' • H;

^ 1
-2

E(|t|)

Figure 3.10: a) Real and b) imaginary parts of the Green function between 
two sites sej)arated by m + n = 20 in the armchair direction calculated 
using the SPA method (solid lines) and numerical integration (symbols). The 
bottom two panels show the contributions to the real (green) and imaginary 
(blue) SPA Green function arising from the two different stationary points. 
It is clear that the energy band can be divided between them as discussed in 
the text.
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Figure 3.11: Percent of the band with less than 1% difference between the 
imnierical and SPA Green functions in the armchair (circle) and zigzag (tri­
angle) directions

In this equation the phase term is the pole arising from the contour inte­
gration over h'z and the stationary points are the values of k'A where this is 
stationary. Recall that the contour integral in this case has two poles and 
the c'ontributions from these must be summed to give the total result. The
stationary points, for each pole are found from the condition 

which gives only one stationary point inside the Brillouin Zone,
A-O

= 0

=0. (3.38)

Unlike the stationary points calcvdated for the armchair direction, the zigzag 
direction stationary points are independent of energy. This fact is evident 
when the constant energy plots shown in Fig 3.9 are examined from the 
perspective of stationary values of k-A. The separation of the energy band into 
two separate regions is not necessary in this case as the stationary jAoints for 
both regions occur for the same value of k.A. The wavevector q is now Taylor 
expanded as before and we hnd expressions for Q{E) and W{E) analogous 
to Eqs. (3.33) and (3.34), except now we have to acconnt for two jAoles rather
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than one. This gives

Q+ = ± cos”^ 

Q~ = ± cos

-t-E 
2t

-1 I T E

and

W'

W

= ± —

2t

t + E

(3.39)

= ±

2E y/{St + E){t-E) 
t t — E
^ ,/{3t-E){t^)

(3.40)

where the superscript sign in the expressions for Q and W refer to tlie sign 
choice in the pole dehnition, Ecj. (3.22). Using these expressions the integral 
again reduces to a Gaussian integral whose solution gives

lE '<7r e“(K){m-n)

47rf'^ sin(2Q«(£;)) + sin(Q'‘(£;)) cos(A:")
(3.41)

Using Ecis 3.39 and 3.40 we can once more write a more complete analytic 
exi^ression for the Green function. For E > 0, this becomes

9ji{E) =
1

2z7r(m — n)

^iQ^(E)Oi-n)

\t\{t + E) [(St + E){t ~ E))-^
f,iQ~ [E)(m-n)

\t\{t - E) [{St - E){t + E))'^

(3.42)

Fig. 3.12 c‘onipares the Green function calculated analytically with that 
from a numerical calculation for a seizaration of rn — n = 20 and again we note 
an excellent agreement across the band. The plot with triangular symbols 
in Fig. 3.11 shows the discrepancy between the numerical and analytical 
results as a function of distance. As in the armchair direction case, we find 
that beyond a couple of lattice spacings there is only a very narrow energy
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Figure 3.12: a) Real and b) imaginary parts of the Green function between 
two sites separated by m — r? = 20 in the zigzag direction calculated using 
the SPA method (solid lines) and numerical integration (symbols).

range in which the disagreement exceeds 1%.

Other directions

Having presented the derivation of the Green function for the separation 
vector along the armchair and zigzag directions, it is straightforward to gen­
eralise it to other cases. For arbitrary directions, although the procedure is 
similar, we shall see that the identification of the poles or stationary solu­
tions may result from high order polynomial equations that are not always 
analytically solvable.

In the armchair (zigzag) case, the expression for the stationary point is 
given by an easily solvable expression of the form dq/dk — 0. This expression 
arises from the decision to take the contour integral along the /i:-space direc­
tion i)arallel to the separation vector, which results in a i)hase term equal 
to the pole of the contour integral. Since the expressions for the poles in 
the armchair and zigzag directions, Eqs.(3.19) and (3.22) respectively, are 
easily found from Eq. (3.9) , the calculation of all the necessary quantities
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is quite straightforward. To extend this approach to an arbitrary separation 
vector, we must hrst rewrite Eq. (3.9) in terms of A:-space vectors A:|| and 
which are parallel and perpendicular respectively to the required .sei)aration 
vector. Following this, we must perform the contour integral over A’|[ to get 
an expression for the Green function analogous to Eqs. (3.21) and (3.24). 
However, the expression for the poles of this contour integral will depend 
strongly on the separation vector chosen and will usually result from a high 
order polynomial equation that may need to be solved numerically. It is im­
portant to note that this eciuation will only dei)end on the direction, and not 
the length, of the separation vector, so that once the Green function for a 
particular direction has been constructed it is valid for any required distance 
across the graphene lattice in that direction.

A similar methodology holds for the case of Green functions between sites 
on the different sublattices of graphene. In this case Ecj. 3.15 must be altered 
slightly to read

12 on
y/i - - -

____^

27r 47r jdki, / dA:.,
tf{k)

(3.43)

The integral can now be split into two j^arts with different phase terms coming 
from the two components of /(A:). These can then be solved individually using 
the approach described above to give the recjuired Green function.

3.3.4 Application of SPA Green functions

The usefulness of having an analytical expression for the real space Green 
function, valid throughout the entire electronic energy band, becomes obvi­
ous when i)hysicaf properties of graphene involving energy scales outside the 
linear dispersion region are investigated. This is particularly advantageous 
when such i)roperties carry size or position dependence because in this case 
Ecj. (3.35) for the armchair direction, or Eq. (3.41) for the zigzag direction, 
can be more concisely expressed in the form

GAiE) =
AiE)e iQ{E)A

s/K (3.44)
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where A rej)resents the separation between sites, so that the E- and A- 
dei)endences are clearly distingnished. Furthermore, even in the case when 
the functional form of the coefficient AiE) is not particularly simple, the 
exi)ressions in Eqs. (3.35) and (3.41) can be used to expand the Green 
function in a polynomial series, which is undoubtedly far simpler and more 
treatable than the original expression in Ecp 3.15. The ability to clearly 
isolate the distance dependence in the Green function clearly allows a more 
transparent treatment of some of the more eagerly investigated properties of 
graidiene.

This approach will be shown more clearly in later chai)ters when onr for­
malism is used to investigate the interaction between magnetic moments in 
graphene. This type of interaction is perfectly suited for investigation using 
our approach since it is mediated by the conduction electrons of the grai)hene 
host. We will consider the case of static moments (Chapter 5) and precessing 
moments (Chapter 6) using this formalism. However, there are many other 
interesting physical properties that can be explored. A topic that lends itself 
to onr api)roa(4i is the effect of disorder [68] and in particular, the effect of an 
impurity, on the properties of graphene. Friedel oscillations, occurring in the 
local density of states as a ftmetion of distance from an introduced impurity, 
have been studied within the linear dispersion regime using a Green function 
formalism [159]. Although the local density of states is associated with the 
diagonal term of the Green function, the distance dependence of the oscil­
lations will be determined solely by the off-diagonal term calculated here. 
Similarly, the signatures of magnetic adatoms in graphene when probed by 
scanning tunnelling spectroscopy have also been investigated using a theo­
retical approach [160]. This method again avails of Green function methods 
within the linear dispersion regime. We anticipate that the SPA approach 
may allow for an extension of such studies to energies beyond the linear 
dispersion regime.
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3.4 Recursive Methods

III Section 3.2.3, we outlined reasons why the fully analytic aiiproach to cal­
culating Green functions can run into difficulties when applied to the case of 
graphene nanoribbons. Either the forniation of edge states in zigzag ribbons 
or the edge hojiping-paraineter variation needed to return the correct proper­
ties of armchair edged ribbons render the application of hard-edge boundary 
conditions to the band structure of a graphene sheet inapprojiriate. Instead, 
we demonstrate here how the recursive methods introduced in the previous 
chapter provide an alternative method to calculate Green functions in these 
systems. The method involves hrst calculating the Green function matrix 
for one unit cell of the nanoribbon in question and then using this with left 
and right hopping matrices in the simple recursive or Rubio-Sancho methods 
outlined jireviously.

3.4.1 AGNRs

For armchair-edgi'd GNRs the repeated unit cell consists of two linear chains 
connected at every second atom, as shown schematically for an 6-AGNR in 
Fig 3.13. In Section 3.2.3, we used this unit cell to calculate the Hamiltonian 
and electronic band structure of AGNRs. In the simplest tight-binding ap­
proach every hopping element is ecpial to that in a grai)hene sheet and a third 
of all AGNRs are found to be metallic. As discussed earlier, this does not 
agree with ab imtio results that predict all AGNRs to be semiconducting [52]. 
The discrepancy can be explained by a contraction of the tt bond at the edge 
of the ribbon. The relevant bonds are shown in red in Fig 3.13. The contrac­
tion of these bonds leads to a 12% increase in the value of the corresponding 
hop])ing parameter. When this is taken into account, the tight-binding re­
sults once more agree with those from more detailed calculations and the 
band structure shown in Fig. 3.5 is found.

To calculate the Greens function for this system, we must construct the 
Green function for a disconnected unit cell of the system, goo. This is found 
by inverting the matrix El — Tioo, where the Hamiltonian matrix for the unit
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Figure 3.13: Unit cell and connection matrices (dashed lines) for a 6-AGNR. 
The red lines correspond to contracted bonds in the unit cell and connection 
matrices.

cell (for the example case of a 6-AGNR) is given by
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where we set Cq = 0 and use t — —2.7eG as onr energy unit. To calculate 
Green functions of the system using recursive methods we also need the 
connection matrices and containing hopping parameters between a
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unit cell and its neighbours to the right and left resj)ectively. These matrices 
are quite sparse and for the G-AGNR considered here the only non-zero matrix 
elements are

V„f = 1.12fVjf = L12(

^8,2 “ ‘ 
yin - f
*^10,4 — ‘■

V^f = t

= t

where the matrix indices correspond to the atoms as labelled in Fig 3.13. 
Having constructed these matrices, we can now use them in the algorithms 
discussed in Chapter 2. Fig 3.14 shows the surface Green function as a 
function of energy for 6-AGNRS with 1, IG and 25G cells compared to that 
for a semi-infinite system calculatc'd using the Rubio-Sancho method. The 
inset plot for the semi-infiiiite case shows the number of iterations needed 
for convergence of the algorithm as a function of energy. The Irottom panel 
shows the Green function of an infinite ribbon constructed by joining together 
two semi-infinite ribf)on leads.

3.4.2 ZGNRs

To calculate the Green functions of zigzag edged ribbons using recursive tech- 
niciues we follow a similar approach to that outlined above for AGNRs. The 
repeated unit cell in this case is a single atomic chain shown schematically 
for a 4-ZGNR in Fig 3.15. The Green function matrix for the disctomiected 
unit cell is again found from poo = (El — 7doo)~^ where
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E(t)
Figure 3.14: Real (black) and imaginary (red) components of the surface 
Green fnnction for 6-AGNRs with lengths of a) 1, b) 16 and c) 256 unit cell(s). 
Panels d) and e) show the senii-inhnite and infinite ribbon Green functions 
calculated within the Rnbio-Sancho scheme. The inset shows the number of 
steps, n, in the Rubio-Sancho scheme needed to achieve convergence.
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VRL V LR

Figure 3.15: Unit cell and connection matrices (dashed lines) for a 4-ZGNR.

and the matrices connecting the unit ceil to its neighbours on the right and 
left are given by

/ 0 f 0 0 0 0 0 0 \

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 f 0 0 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 t 0

yUl ^ and V liL _ yLR t

/
When dealing with a non magnetic zigzag ribbon with U = 0 we set Cj = 0. 

However, if we want to construct the Green functions of a magnetic ribbon, 
the degeneracy is broken between the Green functions for up-spin and down- 
spin electrons and the onsite potentials are calculated using the self-consistent 
procedure described in Section 2.8. We can now use these matrices in the 
recursive Green function algorithms to calculate the necessary quantities. 
Fig 3.16 shows the resulting Green function at edge (a) and central (b) sites 
in an infinite nonmagnetic 4-ZGNR. The insets show the number of unit
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Figure 3.16: Green function matrix elements calculated at the edge (a) and 
central (b) sites in an infinite nonmagnetic 4-ZGNR, where the inset shows 
the number of steps in the Rubio-Sancho scheme needed to achieve con­
vergence. The bottom panels show the Green functions for both majority 
(bold) and minority (dashed) spin electrons at the edge (c) and centre (d) of 
a magnetic ribbon.
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cells recjuired for convergence of the senii-infinite Green function used in 
its construction. A large peak in the imaginary part of the Green function 
for the edge site is noted corresponding to a large density of states at the 
Fermi energy arising from the localised band formation. This feature is not 
present in the Green fnnction for the central site. The bottom panels show 
the Green functions for both majority (bold) and minority (dashed) si)in 
electrons^ taken at edge (c) and central (d) sites for a magnetic ribbon with 
U = 1.33t, corresponding to the band structure shown in Fig. 3.5. We note 
that the edge peak previously present at the Fermi energy has split into two 
parts - a majority-spin peak below the Fermi energy and a minority-spin 
above it, in agreement with the results of ah mitio calculations.

3.5 Summary of Chapter

In this chapter we shifted our attention from the general description of Green 
functions given in Chapter 2 to a specihc discussion of their calculation in the 
case of graphene and related materials. In section 3.2 the electronic struc­
ture of grai)hene was calculated within the nearest-neighbour tight-binding 
api)roximation which will be used throughout this thesis. The resnltiiig band 
structure was analysed and a brief discussion of the i^opular linear approxi­
mation often used for small Fermi energies was given. The band structures 
of oiie-dimensional graphene systems, namely nanotubes and nanoribbons, 
were presented and their calculation related to that of graphene sheets.

Section 3.3 focused on calculating the Green function matrix elements for 
graphene sheets. The calculation was hrst of all reduced to a one dimensional 
integral using contour integration, allowing for much more efficient numerical 
calculation. Furthermore, we showed that in certain cases the remaining 
integral could be approximated analytically with great accuracy using the 
Stationary Phase Approximation. A detailed descrii)tion of this calculation 
for the two principal high-symmetry directions in graphene and an outline

^The terms ’majority’ and ‘minority’ spin are used here loosely, as the imbalance is 
localised to the edge. If, say, the spin-up is the majority-spin orientation at one edge it 
will be the minority-spin orientation at the opposite edge.
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of its iiupleinentation in more general cases was given. The existence of an 
analytical expression for the Green function allows for the behaviour of many 
I)hysical properties which can be calculated in terms of Green functions to 
be explored in a mathematically transparent fashion. It underpins many of 
the analytical calculations performed in Ghapters 5 and 6 and has a wide 
range of applicability.

Finally, the recursive methods introduced in the previous chapter were 
demonstrated explicitly for the case of graphene nanoribbons in section 3.4. 
The unit cells and overlap matrices needed for such calculations were shown 
and it was demonstrated that these methods can be used to easily account for 
('dge-distortions or electron-electron interactions that render other methods 
of calculation more difficult.

In the following chapters, the Green functions calculated here will be used 
repeatedly. In Ghapter 4 the dependence of a range of nanoribbon properties 
on the location of an iminirity will be investigated using recursive methods. 
In the following chapters, onr attention will shift to the interaction between 
magnetic moments embedded into graphene sheets. Our understanding of 
sndi interactions is assisted by a comi)lementary approach using both nn- 
merical and analytic calculation of the graphene Green functions.

The derivation of the Green function for graphene using the Stationary 
Phase Aj)proxiniation presented in this chapter was published as part of 
“Elecdronic structure of graphene beyond the linear dispersion regime” (Phys. 
Rev. B 83, 155432).
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CHAPTER

FOUR

Position (Ppendent properties in Graphene Nanoribbons

4.1 Introduction

III this chapter we w’ill focus our attention on some of the physical projierties 
of graphene narioribbons (GNRs). These one-dimensional strijis of graphene 
have received much attention in the literature since the discovery of graphene 
and applications for these materials in the fields of nanoeleetronics and si)in- 
tronies, amongst others, have been postulated. The eleetronic structure and 
Green functions for these materials were calculated in Chapter 3, where the 
characterisation of GNRs in terms of their width and edge geometry was 
also introduced. We will focus on the two jirincipal edge geometries, namely 
those corresponding to the armchair and zigzag directions. The ribbon width 
is denoted by the number of dimer pairs (for AGNRs) or zigzag chains (for 
ZGNRs) across the ribbon width. Schematic examples are shown in Fig 4.1.

Since doping with impurity species is an effective way of tailoring the elec­
tronic properties of a material, niueli investigation of graphene and related 
materials with introduced impurities has taken place [69,161,162]. A crucial 
difference between GNRs and the bulk case or carbon nanotubes is the ex­
istence of two symmetry-breaking edges. Introducing edges into a graphene 
sheet breaks the equivalency of the sites on the lattice which are now charac-

95
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Figure 4.1: Schematic representation of a4-ZGNR (left) and 7-AGNR (right), 
with the two graphene snblattices represented by hlled and hollow symbols. 
The i)Ossible sites for substitutional (centre-adsorbed) impurities are labelled 
with Arabic (Roman) numerals. The arrow's refer to the periodicity direction.

terised by their distance from either edge of the ribbon. We thus expect that 
the i^hysical properties of a GNR w'ith an impurity becomes dependent on 
the position of that imi)urity across the width of the ribbon. Indeed previous 
studies have investigat('d how' the electronic conductance of GNRs depends 
on the location of imi)urities [57,70,71]. The principal findings of these stud­
ies w'ill be discussed and illustrated with a simj^le model of our own in Section 
4.2.

In addition to the conductance of the GNR, this distance dependence also 
arises in the energetics of the doping process. In other words, the binding 
energy of a dopant depends on its position across the ribbon. In Section 4.3 
we introduce a simple model based on the Lloyd formula to investigate this 
dependence and compare our results to those obtained from a full ah imtio 
calculation. Furthermore we investigate how the impurity segregation intro­
duced by the position dependence of the binding energy can be controlled 
by external factors, in this case a gate voltage applied to the system. This 
opens the road to manipulating the impurity distribution w'ithin a ribbon 
which we argue might be a possible route to engineering some of the physical 
properties of GNRs.

Finally, in Section 4.4 we switch our attention to the case of magnetic 
dopants. This study is motivated by the potential for graphene-based spin-
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tronic devices. GNRs have been at tlie forefront of research in this area, pri­
marily dne to the existence of spin polarised edge states in ZGNRs [40,41]. 
However, these states are predicted to be highly dependent on the edge geom­
etry of the ribbon and not particularly robust under the introduction of edge 
disorder [51]. Another possibility for incorporating graphene in spintronic 
devices lies in the doping of GNRs with magnetic impurity atoms. Similarly 
to the conductance and binding energy, the magnetic moment of such an im­
purity should also depend on the impurity position. Using the self-consistent 
model introduced in Ghapter 2, we show how the magnetic moment for var­
ious impurity conhgurations varies across the ribbon width. Once more a 
comparison is made with ah initio calculations to verify the (pialitative fea­
tures of our hndings. The robustness of the magnetic moments introduced is 
then illustrated by examining the effect of an introduced edge defect on the 
magnetic moment prohle.

The work presented in this chapter illustrates the importance of i)osition 
dej)endent effects in three areas of nanoribbon research. It also highlights 
how these effects can be exi)loited to the advantage of future graphene based 
devices. The additional degree of freedom afforded by the introdnction of 
edges into a graphene lattice thus opens up new opportunities for engineering 
the physical properties of disordered graphene-based systems.

4.2 Transport

In this section we examine the effects of impurity i)osition on the electronic 
transport proj^erties of a ribbon system. The Garoli formalism for calculating 
conductance is briefly introduced and used to calculate the conductance of 
a sample of i)ristine ribbons. Following this the effect of a single impurity 
at various locations across the width of ribbons with armchair and zigzag 
geometry is investigated. Finally, we move from a single impurity to discuss 
extended disorder in the form of a disordered length of ribbon with a cer­
tain concentration of impurities. The effects of ribbon type and also of the 
impurity type and distribution are discussed.
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4.2.1 Caroli Formalism

To calculate the electronic conductance, T, through a system we make use of 
the Caroli formalism. An expression for the conductance can be derived in 
terms of Green functions as

r (E,^) = ^ Tr IGu{Ef) G, G,j{Ef) V,, - V', Gj^{Ef-) G, ,

(4.1)
wliere Gij = A and G^^ is tlie retarded (advanced) Green
function [163]. Here we liave used i and j to denote two adjacent layers of 
tlie system, tlie clioice of whicli is arl)itrary. Equivalent expressions for the 
conductance can be derived using tlie Kuiio or Landauer-Buttiker formalisms
|1G4].

W'lien calculating conductances of systems consisting of senii-inhnite left- 
and right-hand side leads and a hnite central device region, as illustrated 
schematically in Fig 4.2, the approach taken is as follows

• the left- and right-hand side leads are built recursively using the meth­
ods of Ghapter 2 to yield the surface Green functions (ju^ and g^fi

• the central device region is added layer by layer to the left hand side 
lead to give a new surface Green function, goo

• the two sides of the system are connected using the Dyson ecpiatioii, 
yielding the connected Green function G

• the conductance is evaluated using Ecj. (4.1) where we set i = D and

Figure 4.2: The left lead (L), central device (D) and right lead (R) sections of 
a system used in typical conductance calculations, using the Caroli Formula 
method.
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j^R.

Using this algorithm we can calculate conductances for a wide variety of 
nanoribbon systems. Fig 4.3 shows the conductance as a function of Fermi 
energy through pristine armchair and zigzag nanoribbons. For pristine rib­
bons, we are in the ballistic transport regime and each additional snbband 
contributes an additional quantum of conductance (y). This is clear from 
the density of states (shaded plot) in the background of each of these graphs. 
We shall now use this formalism to calculate the conductances of nanoribbons 
with impurities.

4.2.2 Single Impurity

The doj)ing of nanoribbons is expected to allow much modification of their 
characteristics. It is predicted that the introduction of various elements, 
fmictional groiqjs or vacancies into a ribbon system w'ill lead to a wide array 
of possible j)roi)erties, inclnding but not limited to semiconducting with wide 
range of j)ossible band gaps, metallic, ferromagnetic, antiferromagnetic, half- 
metallic and half-semicondncting [165]. The numerons i)ossibilities for fine- 
timing such properties suggest a wide range of possible applications for these 
materials. One of the properties that is of particular interest is how the 
t ransport through a nanoribbon is affected by the introduction of imiiurities. 
A large number of works have focused on various facets of this tojiic [56-64, 
70 72,75,165]. Unlike carbon nanotubes, a similar material whose jiroperties 
when dojicd have long been studied [8], nanoribbons have an extra degree 
of freedom when it conies to doping as the possible sites across the ribbon 
width where impurities may form are not equivalent. In this section we shall 
examine how the conductance of armchair- and zigzag-edged ribbons depends 
on the location of a single impurity before considering the effects of extended 
edge or bulk tyjie impurity distributions in the next section.

The position dependence of transport properties for doped materials has 
been the subject of a few recent works. Usually this consists of an ah initio 
study of a ribbon with a specific impurity species considered at different 
locations across it [70 72]. Some work has also been performed on the effect
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Figure 4.3: Conductaiiee, through a pristine 6-AGNR (toj)) and 4-
ZGNR (bottom) shown by r('d, solid line. The density of states for each 
ribbon is shown by the grey shaded area in each plot.

of vacancy defects on the conductance through ril)bons. A tight-binding 
study reports that vacancies near the centre of a wide ZGNR have a more 
detrimental effect on the conductance than those near the edge [75]. However, 
much of the study of vacancy defects has focused on edge vacancies due to 
the importance of extended edge disorder that we shall discuss in the next 
section. Li and Lu [56] begin a comprehensive study of edge disorder in GNRs 
with a demonstration of the effects of two impurity types on the conductance 
of both armchair and zigzag-edged GNRs. The impurity types considered are 
vacancies and weak scatterers which can represent local lattice distortions, or 
adsorbed or substitutional impurities. Both tyi)es of impurities are accounted 
for in a tight-binding description of the ribbons by a change in the onsite 
I^otential, Cj at the impurity site. For a vacancy defect this quantity is set to 
infinity and for a weak scatterer a small value (< 2eV) is chosen. We shall 
now consider impurities of these types to examine the position dependence 
of the conductance. Fig 4.4 shows the conductance for Fermi energies in
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the region around Ep — 0 through a 11-AGNR (top panels) and 6-ZGNR 
(bottom panels) for three different impurity locations between the edge and 
centre of the ribbon, as shown in the schematics. Both vacancy (left panels) 
and weak scatterers (with Cj = 0.7t, right panels) are considered.

For both defect and both ribbon types, the results for edge impurities (the 
red dashed curves) agree with those of Li and Lu [56], with the exception 
that we have included the edge correction required for AGNRs [52], so that 
our i)ristine AGNR is semiconducting and not metallic. For vacancies in 
AGNRs (top, left) we observe that edge j)ositions (red, green) have the largest 
effect on the conductance in the region around Ep = 0 with a wide dip in 
the conductance throughout the first plateau. In contrast, a vacancy at 
the ribbon centre (blue, dash-dotted) has only a mild broadening effect on 
the bandgap. For ZGNRs, a different i)icture emerges. In all cases the 
vacancy induces dips in the conductance in the region of the hrst i)lateau. 
However, for edge vacancies these are cpiite narrow and towards the band 
edge. However, as the vacancy moves towards the ribbon centre these dips 
become broader and migrate towards Ep = 0. This is the general trend 
noted in Ref. [75] for the position dependence of vacancy defects in ZGNRs. 
A single weak scatterer (right panels) has, in general, a very small effect on 
the conductance of either ribbon. The only exception is the case of an edge 
scatterer in ZGNRs. Li and Lu account for this by considering the group 
velocity of electrons near Ep = 0 in graphene. As the bands are partially 
flat in this region, as we have seen in Ghapter 3, the group velocity of these 
electrons is close to zero and so even a very weak scatterer can produce a 
quasi-localised state near the Fermi energy causing a dip in conductance. 
Another consideration is the localisation of the edge states at Ep = 0, which 
makes them particularly susceptible to scattering by a weak edge defect. As 
the strength of the scatterer is increased, the conductance dip broadens and 
shifts away from Ep = 0. As it is increased further it splits into two dips 
at either side of Ep — 0 which in the limiting case of a vacancy defect are 
located at the band edges, as seen in the red curve of the bottom left panel.
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Figure 4.4; The conductance through an 11-AGNR (top panels) and a G- 
ZGNR (bottom j^anels) for the pristine case (solid, black lines) or with a 
single vacancy (left) or weak scatterer (right) located at one of flirt* different 
locations between the edge (red) and centre (blue) of the ribbon, as shown 
by the schematic diagrams for each case.

4.2.3 Extended disorder

Much of the investigation into extended disorder in GNRs has focused on 
edge defects and vacancies [56 64]. This work was principally motivated 
by the discrepancy between the band gaps of GNRs estimated by exper­
iment [53-55] and those predicted theoretically for pristine ribbons using 
either tight-binding models (Refs [39,40,52], and Chapter 3) or ab imtio 
methods. A broad consensus from the study of edge-disordered GNRs is that 
the iiresence of edge-disorder induces Anderson-type localisation [65-67] in 
the ribbons, causing enhancement of the density of states at the ribbon edges 
and a blocking of conductive jiatlis through the ribbons. The conductance of 
a ribbon with a finite length, L, of disorder is expected to decay exponentially 
due to this localisation, so that

r = Fo e-
L

^0 (4.2)
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where Fq is the pristine conductance and Lq is the localisation length which 
is found to increase with ribbon width [56 58]. For both ribbon geometries, 
the introduction of edge vacancies leads to conductance suppression and the 
oi)ening of a bandgap around the Fermi energy.* However the gap is less 
pronounced for ZGNRs [57] - a hnding easily reconciled with the single va­
cancy results in Fig 4.4. Vacancies at the ribbon edge were shown here to 
have a more severe effect in the case of AGNRs. An extended ensemble of 
weak edge scatterers was found however to have a different effect [56] - a gap 
opening was reported for ZGNRs but the effects of localisation were found 
to be signihcantly weaker for the armchair case where no bandgap was found 
due to a very long localisation length. Again this is in agreement with what 
can be predicted from the single weak-scatterer conductances in Fig. 4.4.

In their study, Mucciolo et al [57] supplement the standard discussion by 
considering also the effects of an extended bulk disorder on the conductance 
of the ribbon. In this case the impurities are uniformly distributed across the 
ribbon and not localised to the edge as before. They note some imi)ortant 
contrasts between the signatures of edge and bulk disorder. Firstly, moderate 
bulk disorder is found to have a lesser effect on AGNRs, where the current 
carrying states are concentrated near the ribbon edge. This is again consis­
tent with the single-impurity findings in Fig. 4.4, where ini[)urities towards 
the centre of the ribbon were shown to have a minimal effect on the ribbon 
conductance around Ep = 0. The opposite situtation is reported in ZGNRs 
where bulk disorder significantly suppresses the conductance. The findings 
for bulk disorder are roughly the opposite to those reported for edge vacan­
cies. Furthermore, this study finds contrasting signatures for edge and bulk 
disorders in the shape of the conductance plateaux. Weak edge disorder is 
found to lower the conductance steps without changing the energies at which 
they occur. However bulk disorder has the effect of smearing the plateaux 
without shifting their conductance values.

In summary, the conductances of ribbon systems with edge- and bulk-type 
disorders are found to display quite different behaviour. The conductance 
features are found to depend strongly not only on the ribbon geometry, but

The stiuiies cited here use metallic iianoribbons in their models.



104 CHAPTER 4. POSITION DEPENDENT PROPERTIES IN GNUS

on the nature and distribution of the disorder. Tlie degree to which the 
conductance depends on the impurity distribution suggests that selective 
doj)ing of nanoribbons may be an effective method to tailor their electronic 
transport for specific device applications.

4.3 Impurity segregation

In the previous section we examined how the conductance of a GNR was ef­
fected by the introduction of an impurity into the system and noted that the 
position of the impurity across the width of the GNR played an important 
role in determining the characteristics of the electronic transport through 
the system. One crucial aspect that seems to be often overlooked howtwer is 
that the dependence noted for the conductance also arises in the energetics 
of the doi)ing j)rocess. As a result, by examining how' the binding energy 
for an impurity varies across the ribbon width we can identify energetically 
favourable locations for impurities, leading to a degree of spatial segregation 
in the impurity concentration. Bearing in mind that impurity segregation 
is know'll to occur at symmetry-breaking interfaces between two materials 
fine to ciuantiim interference effects [76,77], it should come as no surprise 
that the proximity of the two edges of a GNR is capable of inducing similar 
segregational features in the impurity distribution. What is surprising in the 
case of GNRs is that the segregation may be easily controllable by external 
factors, which may in turn allow some manipulation of the iinjnirity flistribu- 
tion within a ribbon. This suggests a possible route to engineering some of 
the physical properties of GNRs which depend on the impurity distribution, 
including the conductance, as illustrated in Section 4.2.

4.3.1 Impurity Types

To account for the position dependence of the binding energy we must first 
define the geometry of the host ribbon and the types of impurities considered. 
We consider GNRs of infinite length and finite width with either the zigzag 
or armchair edge geometries. We consider three different types of iminirity
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b) p)

Figure 4.5: The three types of impurity configuration considered: a) substi­
tutional atom, b) top-adsorbed atom and c) centre-adsorbed atom

atom, shown schematically in Fig. 4.5. The hrst of these is a substitutional 
atom impurity, where a single carbon atom from the graphene lattice is re­
placed with an atom of a different species. We also consider top-adsorbed 
impurities, where the imi)urity atom adsorbs to an atom from the lattice in­
stead of re])lacing it. Finally we consider the centre-adsorbed type imj)urity, 
where the impurity atom sits at the centre of a hexagon and connects to 
each of the surrounding six carbon atoms. In Chapter 2, we demonstrated 
how the Green functions of systems with substitutional and top-adsorbed 
impurities could be calculated in terms of the pristine system Green func­
tions and the perturbation potentials describing the impurities. The case 
of centre-adsorbed impurities follows an identical i)rocedure to that for top- 
adsorbed atoms except that the connecting potential describes connections 
to six lattice sites instead of just one.

Tight-binding pararneterisation

Throughont this thesis we are studying a range of phenomena involving im­
purities in graphene. However, in most of these cases, the important features 
of the interaction emerge from the electronic properties of graphene and not 
from the particular proi)erties of the chosen impurity. For this reason, we 
choose an arbitrary set of tight-binding j)aranieters to use with the formu­
las in Chapter 2 for calculating the necessary perturbed Green functions. 
The parameters in question are the onsite energy of the inii)urity, e, and
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the irnpurity-carboii hopping term t'. Throughout this work we write these 
terms in units of the carbon-carbon hopping t. For substitutional impurities 
we generally set e = t and t' = t. However, in this and the next chapter 
we examine some of the effects of changing t' on the properties of magnetic 
impurities in graphene. For adsorbed impurities, the default parameters used 
are e = 0 and t' = t. However, we note that in both cases when we consider 
magnetic impurities the onsite energy terms are calculated self-consistently 
within the mean field approximation discussed in Chapter 2. We note that 
the qualitative features discussed later in this work are quite general, and 
in most cases the location or separation dependences we are interested in 
do not vary strongly as the impurity species is changed. If a more cpiantita- 
tive analysis is required, the tight-binding parameters for a i)articular atomic 
species hybridising with graphene can be calculated. This is usually done by 
a comparison with a full Density Functional Theory calcidation, where the 
relevant tight-binding parameters are varied so that agreement is reached be­
tween either the bandstructure [IGC, 167], total energy results [151,152,168] 
or magnetic moments [118] of both calculations. Table 4.3.1 shows a range 
of values calculated for different impurity species in both grai)hene and nan- 
otube (NT) systems where the parameterisation is expected to be similar. 
We note that the parameters we have chosen, although arbitrary, do not dif­
fer significantly from those calculated for a range of impurity tyj^es. This 
suggests that our results should not be altered to a large extent if a full 
j)arameterisation is i)erformed.

Impurity species Type e{t) t'{t) Reference
B substitutional -0.56 0.54 [169]
Ni substitutional (NT) -1.82 0.23 [118]
Mil substitutional (NT) -1.17 0.36 [118]
H top-adsorbed -0.04 2.22 [170]
In centre-adsorbed 0.67 0.74 1171]

Mn centre-adsorbed (NT) -0.79 0.61 [118]

Table 4.1: Tight-binding parameters for a range of impurity species. Results 
marked with ‘NT’ are based on a nanotube-impurity system.
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4,3.2 Segregation energy function

The quantity of interest is the difference between the total energies of two 
distinct configurations: one in which the GNR and impurity are connected 
and another in which they are far apart. This can be summarised by evaluat­
ing the total-energy variation due to the perturbation ap])hed to the system 
when an impurity is introduced. We can write the total energy of a system as 
the electronic structure contribution added to a repulsive energy term [172] 
in which the latter has been given a formal correspondence with modern Den­
sity Functional Theory (DFT) [173]. This latter contribution, not expected 
to carry a major position dependence, should play only a minor role in the 
segregation features. Therefore, the bandstructure contribution to the total- 
energy variation becomes the most relevant quantity to be calculated. Recall 
that in Chapter 2, we illustrated how the Lloyd formula could be used to 
calculate the total energy difference without the need to calculate the Green 
functions of the perturbed system. From Eep 2.58, we have

AE = - Ini
TT

pEf.'

J -00
dE \ndct{i -gV), (4.3)

where V is the perturbation potential describing the considered impurity, 
g is the Green function associated with the unperturbed system and E[.- is 
the Fermi energy. The segregation is now studied by selecting the type of 
impurity and its position within the GNR, calculating the relevant matrix 
elements of g and finally evaluating the integral in Eq. (4.3). This integral is 
[lerformed in the complex plane using the methods described in Section 2.7. 
To simplify the comparison between the various cases and with ab initio cal­
culations we introduce a renornialised energy scale. The segregation energy 
function (SEF) is defined as

P =
AE - AEr

\AEr
(4.4)

where AEc is the electronic contribution to the total-energy variation eval­
uated at the centre of the GNR and which is taken as a reference energy.
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Tills diinensioiiless quantity describes the percentage deviation of the energy 
variation with respect to its value at the central position.

We consider hrst the case of substitutional impurities in a 6-ZGNR. The 
scpiare symbols in Fig. 4.6 represent the values of /? for all positions across the 
width of a 6-ZGNR with substitutional impurities and points to a scenario 
in which they prefer to occupy the edges of a GNR with an energy variation 
that is predicted to be 30% lower than at the centre. This preference for edge 
sites is also true for adatoms, as we shall see shortly, and is also reported by 
other studies [56,70 -72,174]. What is remarkable in our results is the way in 
which p varies when the impurity position moves to the central region of the 
GNR. Rather than simply vanishing, it does so in a non-monotoiiic fashion 
liointing to the existence of a few local minima separating the lowest value 
at the edges from the central zero.

To test whether such a non-monotonicity in the position dependence of 
the binding energy could be an artifact of our simple model, DFT calcula­
tions were {ierformed in which a similar 6-ZGNR was substitutionally doped 
with Ti atoms located at different positions across the ribbon‘d. The results of 
these calculations are shown by the circular symbols in Fig. 4.6 and disi)lay 
similar behaviour for 3 as those from our simple model, shown by scpiare 
symbols, including excellent agreement at the ribbon edges. The existence of 
local minima was also reproduced at the same locations, albeit with slightly 
different values for p. Such an excellent agreement with DFT results reas­
sures us that our simple model contains the essential ingredients to describe 
the effect of impurity segregation in GNRs. With this model we can consider 
ribbons of all sizes and geometries as well as include an arbitrary number of 
impurities, if necessar}’.

^These calculations were carried out using the SIESTA [175] code with a 98-atoin su­
percell. Double zeta basis set plus polarisation functions were employed and the exchange-
correlation function was adjusted using the generalised gradient approximation according 
to the paranieterisation proposed by Perdew. Burke and Ernzenhof [176]. To represent 
the charge density, a cutoff of 170 Ry for the grid integration in real space was used. The 
interactions between the ionic cores and the valence electrons were described with norm- 
conserving TVoullier-Martins pseudopotentials [177]. The structural optimisations were 
performed with the conjugate gradient approximation [175] until the residual forces were 
smaller than 0.05 eV/A.
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Figure 4.6: Segregation function fl for substitutional impurities on different 
locations of a G-ZGNR. Red scjuares indicate the results for the model calcula­
tions; black circles those for DFT calculations for Ti atoms. Hollow and filled 
symbols indicate which sub-lattice contains the substitutional replacement. 
Lines are guide to the eyes only.

CQ.
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Figure 4.7; Segregation function (3 for toi)-adsorbed atoms on a 30-ZGNR 
(left) and 35-AGNR, (right). The hlled (blue) and unfilled (red) circles repre­
sent adsorption sites from the two distinct sublattices. The solid and dashed 
lines connect sites within a given sublattice.
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Figure 4.8: Segregation function (3 for centre-adsorbed atoms on a 35-ZGNR. 
The snblattice dependence present for top-adsorbed or substitutional impu­
rities has been averaged out. The dashed line is a guide to eye.

A point worth raising is that the location of substitutional impurities 
nsnally follows the existence of defects and vacancies, often induced by ionic 
irradiation [178-180]. In this scenario, impurities will occupy the sites snr- 
ronnding the defects, which means that edge-induced impurity segregation 
will play a minor role in the doping process. However, for adsorbed atoms the 
situation is very different. In this case the impurities will adsorb at the most 
energetically convenient sites. Thus the position dependence of the binding 
energy is a key factor in determining where the imi^nrities will be adsorbed. 
As previously anticipated, there is very little qualitative difference in our 
model between the substitutional and adsorbed cases, which suggests similar 
non-nionotonic variations in the segregation function across the ribbon. This 
is shown in Fig. 4.7 where the SEF for adsorbed impurities in a 30-ZGNR 
(35-AGNR) is displayed on the left (right) panel. Filled (blue) and hollow 
(red) symbols indicate above which sub-lattice the impurities are located. 
The left panel shows that the segregation function for ZGNR alternates be­
tween positive and negative depending on which sub-lattice the impurity is 
above, similar to the case for substitutional impurities. There is a clear dis­
tinction between the filled and hollow points, in the sense that on the left half
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of the riliboii the former are energetically more favonrable as adsorption sites 
for the impurities, whereas the latter becomes preferable on the right half of 
the GNR. A solid (dashed) line linking the values of /3 for hollow (filled) sites 
is also shown. Both lines intersect at the centre of the GNR, where P = 0, 
confirming that the preferential location for impurities changes from one sub­
lattice to another precisely at this location. The sublattice dependence in 
the segregational features can be understood by examining the geometry of 
ZGNRs. Introducing zigzag edges breaks the symmetry between the sub­
lattices across the ribbon width with the opposing edges composed entirely 
of atoms from opposite sublattices. This is clearly seen in the schematic 
ZGNR shown in Fig 4.1. Although similar non-monotonicities in the SEF 
are also found for AGNR, shown on the right panels of Fig. 4.7, in this 
case there is no obvious distinction between the two sub-lattices in regard to 
the most energetically favourable position. A cursory inspection of AGNR 
geometry reveals that armchair edges do not break the symmetry between 
the two sublattices. For both edge geometries we find that the impurities are 
foTind to attach much more readily to edge atoms than to central atoms. The 
edge value of |/?| is much larger in the zigzag case, which can be reconciled 
with the existence of localised edge states at the (half-hlling) Fermi energy 
in these ribbons [39]. In Fig. 4.8 we show a similar plot, but for the case 
of centre-adsorbed impurities. The sublattice dependent non-monotonicity 
disai)pears in this case, as the adatoms connect to carbon atoms from both 
sublattices and the effect is averaged out. However, a marked preference for 
edge sites with a decay towards the centre is still present.

As in the case of substitutional impurities, we performed DFT calcula­
tions for adsorbed Ti atoms on a 6-ZGNR. It was found that on each side 
of the ribbon one of the sublattices was dominant. When an adatom was 
released above a site belonging to this sublattice it would remain there. How­
ever, adatoms released over sites from the other sublattice tended to migrate 
either to sites above the dominant sublattice or to more complex intermedi­
ary sites. The other sublattice was found to assume the dominant role on 
the opposite side of the ribbon. The migration behaviour described makes it 
difficult to make a direct comparison with the sinii)le model SEF, as we did
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for the substitutional case. However, the existence of this type of behaviour 
conhrins qualitatively the results of our simple model, which predicts sites 
from a single sublattice to be favoured on either side of the ribbon, as seen 
in the top left panel of Fig 4.7. Once again, the agreement between the re­
sults based on our simple model and those obtained by DFT calculations are 
encouraging and suggest that this model can be used to shed some light in 
situations where ab-mitio calculations are unable to do so.

4.3.3 Control through gating and applications

The ease with which the Fermi level, Ep, of grai)hene-based structures can be 
manipulated with external gate voltage's [4] adds an extra ingredient to the 
study of impurity segregation in GNR. Fig. 4.9 plots the SEF for adsorbed 
impurities of the 30-ZGNR (35-AGNR) considered earlier in Fig. 4.7 for two 
distinct cases. For clarity, Fig. 4.9 focuses on the central regions of the rib­
bons. The top panels show the ungated case considered earlier, where for 
each sublattice we observe a monotonic increase in the SEF from the domi­
nant edge of the ribbon to the opposite edge. The bottom panels of Fig. 4.9 
shows the SEF for both ribbons when the Fermi energy is shifted away from 
half-filling by a mere 3% of the grai)hene bandwidth. The solid and dasluxl 
lines used to distinguish between the two different sub-lattices are clearly 
modihed as Ep is changed and an oscillatory feature is introduced. Whereas 
the AGNR remains without any clear favourites for the most energetically 
preferred locations, there is a striking effect on the ZGNR. In this case the 
two lines intersect not one bnt hve times indicating that the energetically 
favourable location for the adsorption of impurities changes periodically be­
tween the two sub-lattices forming a striped pattern across the ribbon width. 
This oscillatory feature is also present for the centre-adsorbed conhguration, 
but once more without a sublattice dependence.

It is inij)ortant to note the general nature of the model for the SEF we 
have constructed and used in this work. We have made no assumptions 
about the atomic species used as the impurity. Although it is possible to ht 
our tight-binding parameters to DFT calculations, this is not necessary to
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Figure 4.9: Segregation function [3 for adsorbed atoms on a 30-ZGNR (left 
panels) and 35-AGNR (right panels) for Ep = O.Ot (top panels) and Ep = 
0.2t (bottom panels). The filled (blue) and unfilled (red) circles reirresent 
adsorption sites from the two distinct sublattices. The solid and dashed lines 
connect sites within a given sublattice. Here we have focused on the central 
region of both ribbons, but the edge sites are the most favourable adsorption 
sites.

Figure 4.10; The segregation function at the edge of a ribbon, Pedge, reveals 
how favourable the edge adsorption site of a ribbon is relative to the central 
site. When Ep — 0, the edge site is far more favourable for both a 10-ZGNR 
(black, solid line) and 11-AGNR (red, dashed line). However by shifting Ep, 
the edge and central sites become more equally favourable, particularly in 
ZGNRs. Also shown is the case of a centre-adsorbed atom on a 30-ZGNR 
(blue, dot-dashed line), where a similar trend is noted.
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recover the cjualitative features of the results shown above. Indeed, our re­
sults for substitutional atoms with arbitrary tight-binding parameters match 
the results of a full ab initio calculation for Ti atoms to a high degree of 
accuracy (Fig 4.6). This suggests that the non-nionotonic behaviour of (3 
displayed in the above results is independent of the impurity species chosen, 
and depends only on underlying graphene lattice and how the impurity is 
embedded into it. This is evident from the form of Ecj. (4.3), where the po­
sition dependence arises solely in the Green function matrix element of the 
host ribbon. Therefore similar behaviour can be expected if the impurities 
considered j^ossess a magnetic moment. Recent works have established that 
a long range magnetic coupling c^aii exist between magnetic atoms embeddcxl 
in graphene-related materials [116-118,136]. In the next chapter we shall 
examine some of the properties of this coupling in graphene. It is found that 
certain magnetic doi)ants adsorbed onto sites within the same sublattice pre­
fer to align ferromagnetically, whereas those on opposite sublattices prefer an 
antiferromagnetic alignment [73,119,123,124,181]. Thus, if in a given region 
of a ribbon a majority of the magnetic dopants adsorb onto one of the snl)- 
lattices, it follows that these doj)ants may prefer to align ferromagnetically, 
resulting in a net magnetic moment in this region. Similarly, a net magnetic 
moment with oi)posite sign should form in regions where the other sublattic'e 
is preferential. By controlling the Fermi energy, it may therefore be possi­
ble to manipulate the width of magnetic domains across the ribbon. In this 
manner, it may be possible to engineer doped GNRs with magnetic prop­
erties determined by the application of an electric field during the impurity 
adsorj)tion phase.

In the previous section we demonstrated how the transport proi)erties of 
a grai)hene nanoribbon have been shown to be dependent on the position 
of an impurity. A comparison [57] between the effects of edge and bulk 
disorders in GNRs reveals a marked difference between these two cases. For 
example, mild edge disorder produces only a small effect in the conductance 
of ZGNRs, whereas bulk disorder can lead to a more dramatic suppression 
of the conductance, with roughly the opposite effect observed for AGNRs. 
The difference between edge and bulk disorder suggests that controlling the
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iiiipurity distribution across a ribbon may be a viable method of engineering 
its transport properties. Fig. 4.10 shows [ipdge^ value of (4 at the edge of 
a ribbon, as a function of Ep for a 10-ZGNR and 11-AGNR, and also for a 
centre adsorbed atom on a 30-ZGNR. When this quantity approaches zero, 
the edge and central sites are equally favourable. We see from Fig. 4.10 that 
as Ep is increased from tialf-hlhng, for ZGNRs at least, the j)reference for 
adsori)tion at edge sites is decreased continually until edge and central sites 
are almost equivalent. This suggests it may be possible to engineer ribbons 
with the transport properties associated with edge disorder, bulk disorder 
or any intermediate position on the contimium between these two. This 
presents itself as a possible method for fine-tuning the resistance properties 
of a ribbon device.

4.4 Magnetic moment profile

In the i)revious section we noted the generality of the model used to calculate 
the segregation energy function describing the variation in binding energy of 
an impurity j)laced at different locations across a GNR. This suggested the 
behaviour noted was independent of the atomic species chosen and should 
also be found if a magnetic impurity is chosen. However in the case of 
magnetic imi)urity atoms, the position dependence noted should arise not 
only in the binding energy, but in the magnetic moment itself, as the impurity 
location is varic'd.

A position dependence in the magnetic moments arising in pristine ZGNRs 
due to localised edge states has previously been noted and motivates much of 
the research being performed investigating magnetism in graphene [39-42]. 
This feature can be found within the mean-field Hubbard model described 
in Ghapter 2 by the inclusion of a non-zero Coulomb repulsion term U at 
each lattice site. For a wide range of U values, the ground state consists 
of large moments on the edge sites, where moments along one side of the 
ribbon align parallel to each other and anti-parallel to those on the opposite 
edge. The moments are found to decay non-monotonically towards the cen­
tre of the ribbon, as shown in Fig. 4.11. The pattern formed here is again
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Figure 4.11: a) The inagnetic inonient profile across a pristine magnetic 8- 
ZGNR calculated with the self-consistent method with U = 1.33h b)The 
bandstructnre and c) density of states of the same system.

a sublattice effect - moments on opposite sublattices are found to prefer an 
anti-parallel alignment. In fact, by focusing on a single sublattice we note a 
monotonic change in the value of the magnetic moment over the width of the 
ribbon. Another interesting feature that arises in the electronic properties 
of the ribbon, when the band structure is calculated in this model, is that a 
bandgap opens up, causing a splitting of the peak in the density of states at 
the Fermi energy. In contrast, if all the moments on the ribbon are forced to 
align parallel this band gap does not open. Several magnetoresistance devices 
exploiting this feature have been suggested [41,102,103]. However, despite 
theoretical advances in the study of GNRs, experimental validation of their 
properties has so far been inconclusive, due to the difficulty in patterning the 
edge geometries required for these effects to be observed. Fiirthermore, the 
spin-polarised edge states in ZGNRs are predicted to be highly dependent 
on the edge geometry and not particularly robust under the introduction of 
edge disorder in the form of vacancy defects or impurity atoms [51]. These 
factors i)resent major obstacles in the path of utilising the intrinsic magnetic 
edge states of graphene in experimentally realisable devices.

In this section, we will focus hrstly on the position dependence of the 
magnetic moments of substitutional and centre-adsorbed atoms on zigzag and
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armchair GNRs and examine the features of the moment profiles calculated. 
Following this we will examine the robustness of these features when an edge 
disorder in the form of a vacancy defect is introduced. We find that the edge 
vacancy only has a significant effect on moments located on neighbouring sites 
and that the moment profile quickly returns to that of the pristine ribbon 
as we move away from the defect. This suggests that the moments arising 
throngh the doping of graphene ribbons with magnetic iinpnrity atoms may 
be a viable alternative to those formed intrinsically when devising graphene- 
based spintronic devices.

4.4.1 Moment profiles

The magnetic moment on an impurity in graphene is calculated using a com­
bination of the methods discussed previously. The Green function at the 
impurity site is found from the recursively calculated Green function of the 
pristine ribbon using the Dy.son equation and the i)erturbation potential as­
sociated with the particular impurity type. This is then used in the self con­
sistent i)rocedure for the Hartree Fock ai)proximation to the Hubbard model 
described in Chapter 2. The magnetic impurities are described by a five-fold 
degenerate d band with occupation to represent a tyi)ical transition-metal 
magnetic atom. The hopping parameter between the carbon atom and the 
magnetic inij)urity atom will depend on the iinpvirity atom chosen and can be 
calculated in a number of ways. While a smaller value of this parameter will 
in general amplify the value of the magnetic moment returned, it does not 
have a significant (jualitative effect on the moment profile across the width of 
the ribbon and is taken within this study to be ecjual to the carbon-carbon 
hopping parameter qcc- The moment profiles calculated using this model 
are compared to those calculated from a full ah initio approach with Mn 
impurities.'^

We present results for two magnetic impurity configurations - firstly the 
case of a substitutional atom and then for a centre-adsorbed impurity, shown

^The.se ab initio calculatioii.s were performed similarly to those outlined in the i)revious 
.section, but this time taking spin polarisation into account. An 84-atom supercell was 
used for the 8-ZGNR and an 88-atom supercell for the 11-AGNR case.
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earlier in panels a) and c) of Fig. 4.5. The impurity is moved across the finite 
widtli of file ribbon and tlie self-consistent value for m is calculated at eacli 
site. To enable a simpler comparison with the ab imtio results the (luan- 
tity of interest is the fluctuation of the magnitude of the moment relative 
to its value at the centre of the ribbon, nic- This is given by — = ,
a quantity analogous to the SEF in the i)revious section. By examining the 
relative fluctuations we can directly compare the results of the simple param­
eter tight-binding model with full ab initio calculations. This is esjiecially 
convenient considering that the mean-field approximation is sometimes found 
to overestimate the value of the magnetic moment [182].

Substitutional atoms

Fig 4.12 shows the magnetic moment hnetuation as function of impurity 
location for substitutional impurities across the width of a G-ZGNR and a 
11-ANGR. For the case of zigzag ribbons, we hrst note an excellent quali­
tative; match between the simple model and the full DFT cak'ulation, from 
which we infer that the underlying mechanism for the variation in the mag­
netic moments across the ribbon width is the electronic structure of the 
nanoribbon. The position dependence arises from quantum interference ef­
fects caused by the boundary conditions imposed on the electronic structure 
of graphene in the form of the edges of the nanoribbons. Furthermore, we 
note that the jjaranieters 7c’a/, nd and U which characterise the magnetic 
species in onr sinij)le model can be altered to achieve a better numerical fit, 
but do not affect the qualitative form of this plot. The pattern observed is 
a jagged, sawtooth style curve, characteristic of properties measured across 
the width of zigzag ribbons and a similar feature was seen in the previous 
section for the binding energies of impurities. [183] This feature is a sublat­
tice effect which arises from the degeneracy breaking that occurs between the 
two sublattices of graphene when a zigzag edge is formed. The sublattices 
are represented schematically in Fig. 4.1 by black or white circles. Each 
edge of the ribbon is occupied by sites entirely from one of the sublattices, 
and that snblattice is “dominant” on that half of the ribbon. For the case
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Figure 4.12: Tlie magnetic moment profile across a 6-ZGNR (top i)anel) and 
11-AGNR (l)ottom panel) for a substitutional impurity, calculated using the 
self-consistent Hubbard model discussed in the text (red scpiares) and also a 
full DFT treatment with Mn atoms (black circles).

of impurity magnetic moments on zigzag ribbons, this effect manifests itself 
in creating larger moments on impurities located on the dominant sublattice 
on either side of the ribbon. In other words, impurity atoms on a black site 
on the side of the ribbon with black edge sites will have larger moments than 
their neighbouring white sites. Focusing on a single sublattice, we find that 
the trend across the ribbon width is for the largest moment to arise on the 
dominant edge site for that sublattice, to decrease as the imj)urity is moved 
towards the centre of the ribbon and to reach its minimum value at the sites 
neighbouring the opposite edge. We note that all the features discussed here 
arise in both the simple model and the DFT results, confirming that this is 
not simply an artifact of our simple model.

The corresponding i)lots for the armchair case do not agree with each 
other as convincingly. The tight-binding model is found to underestimate 
the value of the edge moment found by the DFT calculation. This is because
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the tight-binding calculation does not take into account the distortions in the 
honeycomb lattice that arise when a substitutional impurity is introduced 
near the edge of an AGNR. The relaxed structnres for the two impxirity sites 
nearest the ribbon edge are found to be considerably i)erturbed compared to 
the irristine ribbon and also to the relaxed structures corresponding to the 
other impurity sites. The shape of the tight-binding plot for AGNRs is also 
found to be more dependent on the parameterisation of the impnrity than 
in the zigzag case. This issue will be explored further in the case of centre- 
adsorbed impurities. This suggests that the moment i)rohle across AGNRs 
is not as robust as that observed in the ZGNR case, and will vary some­
what according to the magnetic species chosen. However, both tight-binding 
and DFT models hnd that the edge impnrity sites lead to larger magnetic 
moments than the central ones. Fig. 4.12 also reveals that the sublattice 
effect noted in zigzag-edged ribbons is absent in the case of armchair edges. 
This is explained from a cursory inspection of Fig. 4.1 where it is obvious 
that the degeneracy between black and white lattice sites is unbroken by the 
imposition of armchair edges. The value of the magnetic moment ai)proaches 
rtic much (piicker for AGNRs, and only minor deviations from it are observed 
away from the edges of the ribbon, whereas in ZGNRS signihcant deviations 
are still i)resent deeper into the ribbon.

The dramatic increase observed in the magnetic moment in impurities 
near the edge of zigzag ribbons is consistent with the presence of a localised 
edge state at the Fermi energy. This state results in a large peak in the density 
of states at the Fermi energy. Such a peak jjrovides favourable conditions for 
moment formation under the Stoner Griterion [184], and indeed if an intrinsic 
electron-electron interaction is considered in an undoped ZGNR, will lead to 
the formation of the spin i)olarised edges as discirssed j)reviously.

Centre-adsorbed atoms

Fig. 4.13 shows the magnetic moment hnctuation for a centre-adsorbed im­
purity at various sites across a GNR, calculated again using both the simple 
model and a full DFT approach (black circles). Within the simple model
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Figure 4.13: The magnetic moment profile across a 8-ZGNR (top panel) 
and 11-AGNR (bottom i)anel) for a centre-adsorbed impurity impurity. The 
black circles show the results from a full DFT treatment with Mn atoms, 
whereas the red squares and blue triangles show the results from the self- 
c‘onsistent Hubbard model with -ycM = Icc and O.l^cc respectively. We 
note this j)arameter does not affect the {lualitative features of the moment 
profile across the ZGNR, but alters that across the AGNR significantly.

approach we consider two values of 7ca/, the hopping parameter between 
the impurity atom and surrounding lattice sites. The values considered are 
IcM = Icc (red squares) and = 0.77cc (blue triangles). For the case 
of ZGNRs (top i)anel), we note the impressive qualitative match between 
the models. Furthermore we note that the change in hopping parameter 
does not effect the qualitative shape of the plot, but can be used to yield a 
better fit. We also note that, unlike the substitutional impurity considered 
earlier, the sublattice effect is no longer present. This is because the impu­
rity is no longer strongly associated with a particular sublattice, but instead 
binds to three carbon atoms from each, which has the effect of averaging 
out any sublattice dependent effects. The general trend of a monotonic in­
crease in the magnetic moment of the Mn impurity is noted as it is moved
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towards the centre of the ribbon. This is in stark contrast to the result for 
substitutional impurities, where the largest nioment is observed at the edge 
and, for the dominant sublattice, the moment decreases as the impurity is 
moved towards the centre of the ribbon. The discrepancy can be explained 
by the fact that the centre-adsorbed Mn imi)urity induces fluctuations in 
the magnetic moments on nearby sites in the graphene lattice. Edge atoms 
are particularly susceptible to magnetic moments due to the localised state 
discussed before, and thus have larger induced deviations in their moments 
than the others. Consequently, centre-adsorbed impurities atoms at the edge 
of a ZGNR tend to induce large nioment deviations on the edge sites, re­
sulting in a smaller moment on the impurity atom itself. This is verihed 
by examining the spin-density jilots from the DFT calculation for the case 
of cent re-adsorbed impurities near the edge of a ZGNR. Fig 4.14 shows the 
siiin-density plots corresponding to an impurity on the I'dge hexagon (left) 
and next-to-edgc hexagon (right). It is clear that the centre-adsorbed impu­
rity nearest the edge introduces a much larger disturbance to the values of 
the magnetic moments on surrounding sites than the more centrally located 
imjmrity. In fact the magnetic edge states are seen to be essentially uniier- 
turbed by the latter. In contrast to these DFT calculations, the simple model 
does not account for the intrinsic magnetic edge states on ZGNRs. However 
a similar moment prohle is recovered as the magnetic iminirity atom induces 
moments, rather than fluctuations of existing moments, on the surrounding 
lattice sites and these are found to be significantly larger for the case of the 
centre-adsorbed impurity nearest the ribbon edge.

However, in zigzag ribbons there is an additional type of adsorption site 
which consists of an impurity atom bound to two edge sites and the site be­
tween them. This conhguration, which we shall label “edge-adsorbed” (FA), 
is illustrated schematically in Fig. 4.15. It can be viewed as an impurity 
atom connecting to half a hexagon of the graphene lattice. As this site only 
occurs at the edge, we cannot study the position dependence of it. How­
ever, DFT calculations reveal that a larger moment arises here than for the 
centre-adsorbed atom located nearest the ribbon edge and furthermore that 
the edge-adsorbed configuration is also more energetically favourable than
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Figure 4.14: Spin density plots showing up (blue) and down (red) spin densi­
ties near a centre adsorbed impurity on the edge hexagon (left) and next-to- 
edge hexagon (right) on a 8-ZGNR. The isosurface used was 0.001 e/Bohr^.
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Figure 4.15: The edge adsorbed impurity discussed in the text, shown 
schematically in the top left panel. The spin density plot for this config­
uration on a 8-ZGNR is shown in the bottom left panel. The right hand side 
panels show the moment fluctuation (top) and segregation energy function 
(bottom) for this configuration calculated using the DFT approach, com­
pared to those for the centre-adsorbed locations across the width of a 8- 
ZGNR.
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any of centre-adsorbed sites. This is clear from the right-hand side panels of 
Fig. 4.15. The upper panel shows the moment huctnation for the EA case 
compared with those of the centre adsorbed locations across a 8-ZGNR. The

t-,Q
—, for the samelE'hlbottom panel plots the segregation energy fnnction, (3 = 

cases. This quantity, introduced in the previous section, plots the relative 
deviation of the binding energy of an impurity on a GNR, A/j, around its 
value at the centre of the ribbon, £1^. The edge-adsorbed case is found to 
be the most energetically favourable. A spin density plot for this type of 
impurity is shown in the bottom left panel of Fig. 4.15 and reveals that this 
impurity conhguration has a less dramatic effect on the moments of nearby 
edge sites than the centre-adsorbed case on the edge hexagon, consistent with 
larger moment found for the EA conhguration.

In the results for adsorbed Mn impurities on an AGNR in the bottom 
})anel of Fig. 4.13 we notice that for the DFT result, and the simple model 
calculation with ')cm = Icc: tlie edge hexagonal site has a smaller moment 
on it than the other sites. However the deviation in the value of the edge 
moment, and indec'd of the moment at any site, from vie E far smaller than 
in the ZGNR case. The moment prohle in this case is essentially hat, with 
only minor deviations from rUc across the width of the ribbon. Examining 
the case of 7ca/ = O.Tycr; reveals that the shape of the prohle across the 
ribbon is less robust than the zigzag case as the edge moment here is found 
to be slightly larger than vie- Of the cases examined, the effect is weakest 
here and does not appear to be very robust. Thus the position dependence 
of magnetic impurities is smallest for adsorbed impurities on AGNRs and 
cannot be deemed a signiheant effect.

4.4.2 Effect of edge disorder

In this section the robustness of the features discussed in the previous section 
will be examined in the presence of edge vacancy defects. This is an impor­
tant point to consider when comparing impurity-driven magnetic moments 
in GNRs to those arising intrinsically due the edge states, which have been 
shown to be particularly vulnerable to edge disorder. [51] For each of the
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cas(!s cliscussed in the previous section we examine the effect of a single edge 
vacancy on the magnitnde of a nearby moment, calculated with the mean- 
field Hubbard model approach. The distance between the magnetic impurity 
and the edge vacancy is varied to examine the range of this effect.

Fig. 4.16 shows the effect of an edge vacancy on the magnetic moments 
of substitutional impurities in a 6-ZGNR (left) and an 11-AGNR (right). To 
show the range of the effect we plot the relative change in the moment when 
an edge vacancy is introduced as a function of distance between the edge 
vacancy and the unit cell containing the magnetic impurity atom. Note that 
in this case we are plotting the fluctuation of each moment relative to its 
value at its current position in a system without edge defects, not relative 
to its value at the centre of the ribbon as was shown previously. This plot 
is shown for a nninber of j)ossible sites for the magnetic impurity across the 
width of the ribbon, namely the edge atom on the same side as the vacancy, 
the site next to the edge, a site at the centre of the ribbon and a site at the 
oi)j)osite edge, as shown schematically in the upper panels.

For the ZGNR, the first point to note is that the only sites that show a 
considerable change in their moments are the first two cases. The edge site 
has a slight reduction in the value of its moment, whereas the site next to the 
edge and belonging to the opposite sublattice to the edge has a significant 
increase in magnetic moment. However, the first point in this curve corre­
sponds to a site neighbouring the edge vacancy. Excluding this, the largest 
deviation in magnetic moment does not exceed 5%. However, for all posi­
tions, the moment reverts very quickly back to its value without the vacancy 
when it is moved further away down the ribbon. This suggests that a single 
edge vacancy will have very little effect on the moments of magnetic impuri­
ties located more than a lattice spacing or two away. The AGNR case is quite 
similar. Moving away from the vacancy the deviations in the moments again 
become very small. It is clear that significant deviations in the moments of 
substitutional inii)urities are not seen outside the immediate vicinity of the 
edge vacancy in either ribbon geometry. Similar results are shown for the 
adsorbed cases in Fig. 4.17. The effect here is even smaller than for the sub­
stitutional case, with fluctuations of less than 2% at distances greater than
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Figure 4.16: The toj) panels show schematically the edge vacancy and the 
possible sites for magnetic impurities across the width of the ribbons, a 6- 
ZGNR (left) and 11-AGNR (right) . For each ribbon we consider sites at the 
(xlge (black, circle), next to the edge (red, square), centre (green, triangle) 
and opposite edge (blue, inverted triangle) of the ribbon. The j)lots under­
neath show the hnctuation in the magnetic moment at each site nnder the 
introduction of an edge vacancy, relative to the moment the impurity would 
have in the absence of the edge vacancy. This is plotted as a function of the 
distance between the edge vacancy and the unit cell containing the magnetic 
impurity, given in number of unit cells. The shaded area in each of the ribbon 
schematics contains one unit cell of that ribbon.
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Figure 4.17: The effect of an edge vacancy on the magnetic moment of centre- 
adsorbed magnetic impurity atoms on an 8-ZGNR and 11-AGNR. The nota­
tion in the schematics and graphs is the same as for Fig. 4.1G. For the zigzag 
case, the result for an edge-adsorbed im])urity (star, purple) is also shown.

two unit cells away from the edge vacancy for all impurity types considered, 
including the edge-adsorbed case in ZGNRs.

A single edge vacancy has been shown not to have a significant effect on 
the magnetic moments of transition metal impurities in a GNR,s. In fact, even 
the introduction of an extended edge defect, consisting of a length of ribbon 
to either side of the magnetic impurity with a certain concentration of edge 
vacancies, does not considerably affect the impurity moments unless there 
is an edge vacancy in their immediate vicinity. We conclude that magnetic 
moments introduced into GNRs by transition metal doping are particularly 
stable and robust in the presence of edge disorder. In particular, the striking 
moment profiles seen for magnetic imi)urities in ZGNRs will not be signifi­
cantly perturbed by the introduction of a reasonably strong extended edge 
disorder. This point is illustrated quite clearly in Fig. 4.18 for the case of 
substitutional impurities on a 6-ZGNR,, the same case considered in the up-
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Figure 4.18: Scheinatic showing region of G-ZGNR witli a inagiietic iiiipu- 
rity and edge disorder consisting of atoms removed randomly from the edge 
zigzag chain of the ribbon (top panel) and the the resulting moment fluc­
tuations (bottom j)anel). The red scpiares indicate the position dependent 
moment fluctuations in a ribbon without edge disorder, whilst the black 
squares correspond to the average fluctuations taken over fifty edge-disorder 
configurations, with the standard deviation shown by the error bars.

per panel of Fig. 4.12. The moment profile for the pristine case is shown as 
calculated with the mean-field Hubbard approach (red squares). Also shown 
is the moment profile for a system with a disordered region with a length of 
100 unit cells to either side of the magnetic impurity (black circles). Within 
this disordered region, carbon atoms from the edge zigzag chain at cither 
edge of the ribbon are removed with a probability of 10%. This plot shows 
the result of an average over 50 such configurations, with the error bars on 
each point indicating the standard deviation. The moment profile is seen to 
not vary significantly from that of pristine case, demonstrating clearly the



4.5. SUMMARY OF CHAPTER 129

robustness of the inoiiieut profile.

4.5 Summary of Chapter

In this chai)ter we used the Green function methods introduced in previous 
chapters to examine some position dependent features in graphene nanorib­
bons doi)ed with impurity atoms. We first considered the effect of impurity 
location on the electronic transport through a ribbon and demonstrated how 
such calculations can be performed with the Caroli formula. The results and 
trends of previous studies of such systems were discussed - in particular the 
presence of a cpialit ative difference between the transi)ort through ribbons 
with uniform rlisorder or disorder localised principally at the ribbon edge.

Next we examined how the binding energy of such impurities depends 
on their location and how the resulting behaviour may result in a degree 
of spatial segregation in the impurity distribution across the ribbon. In 
the case of ZGNRs a non-rnonotonic feature found was connected to the 
sublattices of the graphene atomic structure. A sinii)le theoretical model for 
calculating how the energy variation changes across a ribbon was developed 
and found to be in agreement with the results of DFT calculations. We 
postulated that control of the adsorbed impurity segregation within a ribbon 
is possible by adjusting the Fermi energy. We thus argued that, due to 
the sublattice dependence of magnetic interactions and the defect i)osition 
dependence of transport within graphene, the magnetic prohle and electronic 
properties of a GNR may be engineered by exploiting this control of the 
impurity segregation.

Finally, we considered the case of magnetic impurity atoms and consid­
ered how the impurity magnetic moment depended on the impurity i)osi- 
tion. For ZGNRs we found an excellent agreement between the simple self- 
consistent Hubbard model and a more complete ab initio treatment. Fur­
thermore the qualitative features of the resulting moment prohle remained 
constant for different i)aranieterisations describing the magnetic impurity, 
suggesting that they hold for a wide range of magnetic species. For substi­
tutional impurities, a nonmonotonic behaviour connected to the sublattices
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of the graphene atomic structure was ideiitihed. For this type of impurity, a 
larger luomeut was found on impurities located oil the edge site of a ZGNR. 
For imimrities adsorbed onto the centre of a hexagon of the graphene lattice, 
a mouotouic increase of the moment magnitude as the impurity was moved 
towards the centre of the ribbon was found. However an additional imjiurity 
type, consisting of an impurity atom connecting to three edge atoms at a 
zigzag edge was found to have a larger moment than one connected to the 
edge hexagon. It was also noted to be more energetically favourable. For 
armcbair-edged nanoribbons, the moment prohle features were noted to be 
less robust than for the zigzag case. However the fluctuations of the mo­
ment value around that at the ribbon centre were also found to be smaller. 
For both edge geometries and im])urity conligurations, we showed that an 
('dge vacancy did not have a signihcant effect on the moment of a magnetic 
impurity located more than one or two lattice spacings away. Furthermore, 
we demonstrated that the distinctive moment profile for substitutional im­
purities on a zigzag-edged ribbon was robust in the presence of an extended 
('dge disorder. In light of these hndings, we argue that magnetically-doped 
nanoribbons may provide a route to applications previously envisaged for 
nanoribbons with intrinsic magnetic ordering, which is less stable in the pres­
ence of experimentally imposed constraints such as imperfect edge geometry.

The work presented in this Chapter was performed in collaboration with 
V. M. de Menezes (Departamento de Fi'sica, Universidade Federal de Santa. 
Maria, Brazil) and S. B. Fagan (Area de Ciencias Tecnologicas, Centro Uni- 
versitario Franeiscano, Brazil) who contributed the Density Functional The­
ory results present('d throughout this chapter. The work presented in Section 
4.3 was published as “Model of impurity segregation in graphene nanorib­
bons” (Phys. Rev. B 80, 235424). The work in Section 4.4 has imblished as 
“Magnetization profile for imimrities in graphene nanoribbons” (Phys. Rev. 
B 84, 195431).



CHAPTER

FIVE

Static inagiietic interaction in gra])liene

5.1 Introduction

Ill this chapter we begin our study of the interaction between inagnetic ino- 
nients in graphene. In the previous chajiter we introduced single magnetic 
impurities into a graphene system and examined liow geometry considera­
tions affected the magnitude of the moment formed. We now consider more 
than one magnetic object embedded into a graphene system and investigate 
how the interaction between them deiiends on their separation. The cou­
pling between two moments in such a system determines the relative orienta­
tion of their magnetic moments and thus the magnetic ordering in a system 
with many such magnetic objects. An understanding of the couiiling be­
tween magnetic moments is an essential step in the effort to exjiloit graphene 
for spintronic applications as it underpins magnetic properties including the 
magnetic ordering and magnetoresistance of a magnetically-doped graphene 
device. This interaction, called the Indirect exchange coupling (lEC), be­
tween dilute magnetic moments within a conducting non-niagnetic material 
is mediated by the conduction electrons of the host material [107-110]. It is 
often calculated using the Ruderman-Kittel-Kasuya-Yosida (RKKY) approx-
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iniation and indeed the interaction itself often takes this moniker' [111-115]. 
We will hrst introduce the approach used to calculate the lEC using the 
Lloyd formula and then relate this to the more commonly known RKKY 
approach. Previous hndings for the interaction in graphene and related ma­
terials will be discussed, before the basic results of the RKKY approach in 
graphene are demonstrated using the Green function expressions calculated 
in Chai)ter 3. We shall then demonstrate how a more complete description 
of the interaction leads to findings not predicted by the RKKY approach and 
discuss some of the possible implications of these.

Finally, motivated by recent studies [181,185] reporting the formation of 
localised magnetic moments in doped graphene, we investigate the energetic 
cost of spin polarising impurities embedded in graphene. We consider the 
effect that the interaction may have on calculations that make use of periodic 
boundary conditions to calculate the proi)erties of grai)hene systems with 
magnetic impurities. This constraint is very common in Density Functional 
Theory calculations. Furthermore we hnd that neglecting the effect of the 
interaction between magnetic atoms in neighbouring unit cells can lead to 
the spurious sui)pression of the magnetic moment on thes(' atoms. A strategy 
to avoid such issues is outlined. The existence of a criterion to determine 
whether or not a magnetic moment is likely to arise within graphene will be 
instrumental in helping to predict the ideal materials for future carbon-based 
spintronic applications.

5.2 Indirect exchange coupling

The indirect exchange coupling between two magnetic ob jects is distinct from 
the direct exchange coupling between the objects in that it is mediated solely 
by the conduction electrons of the host material into which the magnetic ob­
jects are embedded. The direct exchange, in contrast, depends on an overlap

'Throughout tills chapter “RKKY” refers to the apiiroximation to the interaction and 
“lEC” to the interaction itself. The meaning of “RKKY” elsewhere in the thesis is context 
deiiendent and will in general refer to a conduction-elecdron mediated interaction between 
magnetic objects.
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of the electron orbitals and decays very abruptly. Initially investigated in 
ninltilayer systems, the oscillatory indirect coupling between magnetic layers 
as a function of their separation led to the discovery of the Giant Magne- 
toresistance Effect (GMR), which is now exploited in most modern memory 
devices [186,187]. The lEC is dehned as the energy difference between the 
parallel and antiparallel alignments of the magnetic moments on the objects, 
as shown schematically in Fig. 5.1 for a simple linear chain system. In this 
section we show how this (luantity can be calculated using the Lloyd formula 
method discussed in Chapter 2, allowing us to calculate the lEC in terms of 
the Green functions of the system and the spin-dependent potentials arising 
from the description of the magnetic objects using the mean-field Hubbard 
model.

5.2.1 Lloyd Formula / Quantum well method

The spin-dependent potentials recjuired to describe the magnetic objects are 
an integral part of the (pliant mn Well model of the lEC first i)roposed by 
Edwards et al [109,110]. In this model, the introduction of sj)in-dependent 
potentials means that the electrons in the system are subject to a different 
I)otential in the magnetic regions than elsewhere as is evident in Fig. 5.1. The 
presence of these potential wells (or barriers) quantises^ the allowed electron 
energies in the system. Furthermore, changing the separation between the 
wells by moving the magnetic objects shifts the allowed energies relative 
to the Fermi energy of the system giving rise to an oscillatory coupling. 
The coupling can be calculated by summing over all the levels below the 
Fermi energy and taking the difference between the cases with spin potentials 
corresponding to moments aligned parallel or anti-parallel. In this manner, 
the calculation of the indirect exchange coupling reduces to the calculation 
of an energy difference between two distinct conhgurations. We recall from 
Chapter 2 that such a calculation can be simplified using the Lloyd formula, 
which allows the calculation of the energy difference directly without the

•^Tlie allowed electron energies are quantised in one-diniensional or multilayer systems. 
In higher dimensions the allowed energies are modihed by the wells, but are not strictly 
(juantised.



134 CHAPTER 5. STATIC MAGNETIC INTERACTION

a)

A
(|)-0-0-0-^

v^
B

8 + Vex 
8 - Vex

i<)

Ac>-o-o-o-c>B

Figure 5.1: Scheinatic representation of the spin-split potentials at the mag­
netic sites for the parallel (a) and antiparallel (b) aligiiinents of the mag­
netic moments. The red (blue) curves show the potential experienced by 
up-spin (down-spin) electrons as a function of position. For simplicity the 
host medium is represented by a one-dimensional linear chain.
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need to calculate the total energy of either configuration.

The Lloyd formula expression to calculate the total change in the energy 
of a system is given by Eq (2.58) as

AE(Ef^) = - Im
TT

dE f{E) ln(^det{i-g{E)V)) , (5.1)

where g is the Green function describing the unperturbed system, V is the 
applied perturbation potential and f{E) is the Fermi function. To calculate 
an expression for the lEC, we consider the following case. The unperturbed 
system consists of two moments embedded in a host material at sites A and 
/?, which are aligned parallel along the z-direction so that the angle between 
them, 0 = 0. This setup is shown schematically in the top i)anel of Fig. 
5.1. The Green function matrix for such a system can be calculated easily 
from the i)ristine Green functions of the host and the Dyson equation to add 
the magnetic objects to the system with spin de])endent onsite potentials 
determined by the bandcentre {6) and exchange splitting {Vex = y ~ 
from the mean-field Hubbard model. We now introduce a spin j)erturbation 
which rotates the magnetic moment at B by an angle 0 with respect to that 
at A. This perturbation is given by

V(0) = —Vex [(cos 6* — 1) (T^ -h sin6^(j^]

cos 0—1 sin 0 
sin 0 1 — cos 0

= -Ve.
(5.2)

where Vex = ^ is the exchange splitting and and dx are the relevant 
Pauli matrices. Since the magnetic moments break the spin degeneracy of 
the electrons, the Green function of the moment to be rotated, gsB, must be 
written in terms of its up- and down-spin components. In the initial collinear 
conhguration there is no mixing between the spin bands and gsB is diagonal
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in spin space. Focusing on the deterininant in Eq. (5.1) we can write

(let I-gBB{E)V{e)

1 » Uj, <Jb., 0
0 iT [ 0 .'/h

COS 0—1 sin 9 
sin 6 1 — cos 0

= 1 + Kt {Q^bB ~ Obb) {^'OsO — 1) +2 VexO^BBOsB 6^ — 1

Using the Dyson ('(piation, we hnd

Obb — Obb + 2 Vex [Oba Oab + Obb 9bb)r d .3

.so that

(5.3)

(let I - 9b«(£) V(0) = 1 - 2pi g\,_^ (yia (cos 0 - 1) (5.4)

Taking 0 = ti, ccrrresponding to an antiparallel alignment of the moments we 
hnd, for zero temperature, that

Jba = -^E{0 = tt) = -1 Im P dE 1„ (l + 4 Pi hUE) g\„{E)) ,

(5.5)
where we have chosen the sign convention that a negative value of the cou­
pling, J, corresponds to a preferential i^arallel alignment of the moments and 
a positive value to a preferential antiparallel alignment. When i)erforniing 
the integral in E(i. (5.5) numerically we employ the methods outlined in 
Chapter 2 to rewrite the integral over the imaginary axis where the inte­
grand tends to be smoother and easier to integrate. With an imaginary axis 
integration, the expression for the coupling becomes

JBA
_ 1 r

TT Jr, dy In 1 + 4 Kx + ’^y) OABi^F + w) (5.6)

We note that in these expressions the distance dei)endence is entirely con­
tained within the imoduct of off-diagonal Greens function elements for the 
up-spin or down-spin cases. Using the Dyson equation these can be writ-
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ten in terms of the Green fnnctions of the pristine host system and the 
potentials used to describe the magnetic impurities. The exact functional 
form of this expression will dei)end on the nature of the connection between 
the imi)urity and the host, as we have seen in Section 2.4. Ultimately the 
only distancevdependent term entering into the expression is the off-diagonal 
Green function of the host system and the behaviour of this term will dictate 
the behaviour of the interaction as the se])aration between the moments is 
varied.

5.2.2 RKKY approximation

An alternative approach to account for the coupling between magnetic ob­
jects embedded in a metallic' host avails of the Ruderman-Kittel-Kasnya- 
Yosida formalism, initially developed to describe the coui)ling mechanism of 
nuclear magnetic moments [111], then expanded to describe a wider range of 
indirect cou])ling plumomena [112,113] and generalised to provide a model 
capable of reproducing experimental observations [114,115]. This treats the 
coupling as a consequence of the si)in polarisation of the condnction electrons 
of the host by the magnetic objects. Under this api)roach, the coupling is 
written as an effective direct coui)ling, Jba between the two moments,
where the coupling strength is given by

Jba — Xba (5.7)

where A is an adjustable j)aranieter representing the magnitude of the cou­
pling between localised spins and condnction electrons and x the static 
magnetic susceptibility which relates the response of the host magnetisation 
to a static magnetic held.

Expanding the logarithm in Ecj. (5.5) to second order in aosB and then 
to hrst order in Vpx gives

jRKKY __ O T/-^
'BA = -2 Ui X“8A . (5.8)
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where

Xba =
TT

j dE f{E) \in[gBA{E) (]ab{E)] (5.9)

is the non-interacting static-susceptibility c'alculated without any exchange 
splitting. Note that it is written in terms of the pristine, spin-indej)endent 
Green functions. This is essentially the RKKY result which is obtained 
in the limit of small exchange splitting. Thus the RKKY approach can 
be considered a second-order i)erturbational approximation to the lEC and 
provides a good description at large separations when the coupling is quite 
small [188 190]. An imi)ortant contrast between the Lloyd formula approach 
to the Quantum Well model and the RKKY approach is the choice of Green 
function used. The former approach avails of the si)in dependent Green 
functions in the ferromagnetic ccmfiguration, and g\^^ whereas the lat­
ter approach generally uses their pristine, si)in-inde])endent counterparts. An 
intermediate approach can be taken by using the s])in-dependent Green func­
tions with an RKKY-like expansion of the logarithm in the lEG expression.

5.3 Magnetic interaction in graphene

Many of the initial investigations into RKKY-like interactions were based 
on magnetic multilayer devices, with both quantum well and RKKY studies 
finding a separation dependence of 1/where D is the separation between 
the magnetic layers. However, this decay rate was further predicted to de­
pend on the dimensionality of the system and in one-dimensional metals 
was irredicted to be as slow as l/D, which would give rise to a particularly 
long-ranged decay. With the discovery of Garbon Nanotubes (GNTs), the 
possibility of 1-D metals became realistic and the study of magnetic inter­
actions in graphene-based systems began in earnest. Of particular interest 
was the study of magnetic interactions in magnetically doped GNTs, partic­
ularly as many transition metal atoms were already used as catalyst particles 
during the growth of GNTs [191].

Studies of the lEG in GNTs revealed an unusual range of features not 
seen in other materials and arising from the uniciue electronic structure of
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the uiKlerlying graphene lattice. In uncloped nanotnbes, the oscillatory fea­
ture seen in other systems was not present [116]. This feature arises from 
the peculiar Fermi surface of graphene, consisting of six discrete points, as 
discussed in Chapter 3. It can be shown that the wavevectors defining the 
period with which the coupling oscillates are necessarily commensurate with 
the hexagonal lattice. In other words, the oscillations are perfectly commen­
surate with the underlying structure and are not seen due to aliasing. It 
was also found that the sign of the coupling was intrinsically linked to the 
sublattices composing the graphene atomic structure. The sign of the cou­
pling between sites on the same sublattice was predicted to be the opposite 
of that between sites on opposite sublattices. In general, the cou])ling be­
tween sites on the same sublattice was predicted to be ferromagnetic and on 
different sublattices antiferromagnetic. However, depending on the atomic 
species chosen the opposite could be found [119]. The decay rate of 1/D 
predicted for 1-D metals by the Quantum Well theory was found for substi­
tutional and top-adsorbed magnetic impurities in CNTs. However, further 
work demonstrated that the coupling decay rate depended crucially on the 
si)ecific nature of the impurity and how it bonded to the host nanotube [117]. 
In particular, cent re-adsorbed imi)urities were found to have a decay rate of 
1/D^, a far more rapid decay than predicted. This feature was shown to 
arise by reproducing a symmetry in the graphene lattice causing lower order 
terms to vanish.

The experimental discovery of two-dimensional graphene prompted simi­
lar studies of the lEC in this material [121-133]. Much of this study was per­
formed using the RKKY approach and availing of the linear dispersion regime 
to simplify calculations. When the linear dispersion approximation is used, a 
cut-off function is required to prevent the result diverging due to high energy 
contributions. There has been some delrate about the effect of the cutoff func­
tion chosen on the resultant interaction calculated [123,124,127]. Other ap­
proaches to circumvent this i)roblem involve numerical calculations [127,128] 
which can lack the transparency of an analytical solution. The non-oscillatory 
behaviour found for nanotubes again arises in graphene sheets. However, the 
rate at which the coupling decays displays unusual behaviour. The l/D^
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dependence predicted for 2-D systems is not fonnd in nndoped graphene and 
instead a faster decay rate of l/D'^ is reported. However when the system is 
doped away from E[,' — 0 the expected decay rate is recovered. This discrep­
ancy is due to the pecularity of the graphene electronic structure at Ep = 0 
where the density of states vanishes. The RKKY approximation also finds a 
strong sublattice effect in the sign of the coupling for the nndoped case. Im­
purities situated on the same sublattice are predicted to have a ferromagnetic 
alignment, whereas those on opposite sublattices have an antiferroniagnetic 
alignment. A similar effect to that noted earlier for centre-adsorbed impu­
rities in CNTs [117] is also noted in graphene sheets [129]. In this case, the 
coupling decays not as 1/79^, but as 1/D^. The use of either the linear- 
disi)ersion approximation or of brute-force numerical methofls to calculate 
the coupling arises from the difficulty in calculating the Green functions of 
graphene, or of 2D materials generally, using analytical methods. Although 
a full analytical expression for the Green function, similar to that for nan­
otubes, is not available for graphene, we demonstrated in Ghapter 3 that 
an excellent approximation to it can be realised using the stationary i)hasc 
api)roxiniation (SPA). In the next section we will avail of the expressions 
calculated earlier to derive the principal features of the magnetic interaction 
in graphene.

5.3.1 RKKY calculation with SPA

We have seen that the exchange energy, J, within the RKKY approximation 
can be expressed in terms of the Green functions of the pristine host system 
via the static susceptibility, allowing us to write

I dEf{E) Kx ^BA (E) (5.10)

for two moments occupying like-sites in the graphene lattice separated by a 
distance D, where f{E) is the Fermi function. Recall from Eq. (3.44) that
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we can write the off-diagonal Green function element as

A{E)

so that

Gba{E) =

Jba ~ Ini dE

v/D ’

(5.11)D J 1 -|- ’

where B{E) = A?{E), f5 = T being the temperature and ks the Boltz­
mann constant. The integral in Ecj (5.11) can be solved by replacing it with 
a contour integral in the energy npi^er-half plane. In this case the poles 
are given by the zeroes of the denominator of the Fermi fmiction, namely 
the Matsnbara frequencies, Ep — Ep -)- i{2p -|- l)7rA:/jT where p is an integer 
labelling the poles.

V'7 * ex^BA ~ - Im Ini ResD

Kx T
D

B{E)e‘^^ Q(i7)/?
1 -I- (.piE-Ep)

E=E„

We now write the coefficient B[E) as a Taylor series, and the wavevector 
Q[E) as a hrst order exi)ansion, around the Fermi energy so that

1B{E) = Yp^^HE-EFy
(5.12)

Q{E) = [E - E,(1)

using the notation B'^^^ to denote the Ith derivative of B (Q) evaluated
at the Fermi energy. The expression for the coupling now becomes

,7BA
VI T 

D

V^^ksT

Im ^ Ye^^^'''V:r.-Er)D^Ep-E,

D
Im J] d'

(2zQd))^ d77 7 E ^2iQ(^HEp-Ef)D
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where

,2iQ(^^{Ep-Ei..)D _ -2Q(^\2p+\)'RkBTD^2iQ(^HEr,-EB)0 = ^ p

_ ^-2Q^^GkBTD

g-2Q(‘)7rA:art)

X _ g-4QO)7rfcBTD 

1
2 smh(2Q(i)7rA:BrD) ’

so that

1 d' kBT
{2'iQWy dD‘ [2 sinh {2 Qd)nkBTD) } ’

which in the low temperature limit, T 0, becomes

•^BA
1/2 

e x
D

1 (h
(2-iQ(dy (ID' \4Qd)7rD

X/2 g2,Q(«)o j y__ __________
'^ex^ (2Q0))'+1 D‘+‘̂

(5.13)

In this form the oscillation i)eriod and decay rate of the interaction at dif­
ferent Fermi energies can be easily extracted. The decay rate in the asymi)- 
totic limit [117] is determined by the leading term in Eq (5.13), namely I = 0, 
suggesting that, in general, J ^ D~^. The oscillation period is determined 
by the term i.e. by the Fermi wavevector. However, as we have
stated previously, the RKKY coupling in graphene at Ep = 0 is found to be 
non-oscillatory^ and decay as J ~ D~'^. This result can be reconciled with 
our expression by considering the analytic form of the expressions for 
and We will focus on those for separations in the armchair direction,
but a similar analysis holds for separations in the zigzag or other directions. 
Using the results for the Green functions calculated within the SPA from

^By ‘iioii-oscillatory” here we mean that coupling has no sigri-changing oscillations as 
a function of D.
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Ecjs. (3.34) and (3.33), we find for separations in liie arinciiair direction tiiat 
for lEf'l < Id,

0(0) (E) = - E

aiifi

= ±

{E'^ + 3E)VE - 02 

-VE - E'^'
cos

t

in the iiniit £ —»• 0, vanishes and Q*”) —> TT as can be seen from Fig 3.9 in
Chapter 3. Tiie vanishing of 0(o) at Ep = 0 means tiiat tiie decay rate of the 
conpiing is now determined by the first surviving term, / = 1, in Eq. (5.13) 
resniting in a ciecay rate of J ~ D~'^, as reported eisewhere [123,124,127,128]. 
It is also clear that since D can only take integer values, the term ^
at Ep = 0. Tims the oscillation period of the coupling is commensurate with 
the grapliene lattice spacings and tiie oscillations are masked. Wtien Ep ^ 0, 
tiie leading term does not vanisli, and tiie oscillation period is no longer 
commensurate witli the lattice spacing, leading to tiie oliserved oscillatory 
interaction [124] tiiat decays as J ~ D~^. Note tiiat tliese conclusions are 
reached for values of Ep regardless of wlietiier or not tliey lie witliin tiie linear 
dispersion regime. Tiie correct decay rate and oscillatory lieliavioiir for the 
RKKY interaction in graiiliene have emergi'd naturally and in a matliernat- 
icaily transparent fasliion from the SPA Green function formalism, witlioiit 
the need to resort to tiie linear response apiiroximation or a cut-off function.

In Fig. 5.2 we plot the interaction calculated numerically for botli the 
undoped (top panel) and doped (iiottom panel) cases for separations in the 
armchair direction. The caicniations were performed with a half-filled d-band 
for the magnetic atom and keejiing tiie Iiopiiing parameters equal to those of 
graphene. Such a conhgiiration yields only a splitting, and not a bandcentre 
shift, wlien treated witliin the self-consistent Hiiiibard model and so a close 
agreement is expected between the Lloyd formula equation (5.5) and the 
RKKY approximation (5.8) of the interaction. The black (red) curves show 
tiie results for substitutional atoms on tiie same (different) snblattice(s). The 
jiredicted and decay rates for the undoped and doped cases respectively 
are clear from the log-log plots in the insets. For the undoped case we also
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Figure 5.2: The magnetic coupling betwt'en two substitutional impurities as 
a function of their separation in the armchair direction for both the nndoped 
[Ey = 0.0, top) and doped {Ey = 0.2t, bottom) cases. The black (red) 
curves correspond to impurities on the same (different) sublattices. The rate 
of decays are clear from the slope of the log-log i)lots shown in the insets.

note that the sign of the coupling does not change as a function of distance, 
but that the sign of the coupling is determined by whether the sites reside 
on the same or opposite sublattices. We note that a ferromagnetic alignment 
is energetically favourable for moments on the same sublattice, with an anti­
ferromagnetic alignment favoTirable for the case of different sublattices. This 
result has been frecpiently reported in studies exaniining the RKKY inter­
action in graphene using a variety of approaches, as discussed earlier. From 
the analytic discussion above we note that, in the undoped case, any sign 
changing oscillations in the interaction as a function of distance are ruled out 
by a comniensurability effect. Thus the sign of the interaction depends solely 
on the energy-dependent coefficient which is independent of distance.
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5.4 Beyond the RKKY approximation

In the previous section, the decay rates and oscillatory behaviour of the In­
direct Exchange Coupling were investigated. A number of approximations 
were made in order to calculate these properties analytically. These included 
the use of the RKKY approximation instead of the full lEC integral. An­
other approximation was the use of the Stationary Phase Green functions 
for the pristine system rather than nnmerically calcnlated Green functions 
incorporating the perturbation potentials describing the magnetic atoms. In 
this section we shall expand the descrij)tion of the interaction to include 
these potentials. The effect of the magnetic moment pararneterisation on the 
interaction will be investigated and we demonstrate how the nature of the 
coui)ling depends on the impurity species and its connection to the graphene 
lattice.

5.4.1 Effect of impurity pararneterisation

As we have noted above, the RKKY approximation to the lEC does not 
account properly for the local spin dependent i)otentiaIs describing the mag­
netic moments. In fact, the pararneterisation of the magnetic impurity is 
generally neglected through the usage of the pristine Green functions. In 
this section we consider the effect of three parameters that can be nsed to 
characterise the magnetic impurities. In addition to the magnetic moment 
(m) and band-centre shift (^) that emerge from the self-consistent mean- 
field calculations, we also consider the hopping potential between the lattice 
carbon sites and the impurity site (f/) which should differ from the carbon- 
carbon hoj)ping. This approach is similar to the Anderson model describing 
localised magnetic impurity states in metals [192]. These parameters will 
vary between the different magnetic species that can be chosen as the em­
bedded impurities. In Fig 5.3 we plot the coupling between like sites, 
calculated using the full integral and numerical Green functions for substi­
tutional impurities, as a function of sei)aration along the armchair direction 
for three different parameter sets The first of these (0.6,0.0, t)
closely rei)licates the results of the RKKY approach as it considers only a
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Figure 5.3: The niagnetie eoui)liiig between two magnetic sites on the same 
sublattiee as a function of their sei)aration, D, along the armchair direction 
for three different impurity parameterisations: a) {ni = 0.6, 6 = 0.0, t' = t), 
b) (m = 0.6, 6 = 5.Of, t' = 0.81) and c) (m = 0.6, 6 = 8.01, 1' = 0.61). Tlie 
insets show log-log plots where a sign change in the c’oupling is evident from 
a dip feature.

band-splitting, has no band-centre shift and uses the carbon-carbon hopping 
value. The middle and bottom i)lots use the parameters (0.6, 5.0, 0.81) and 
(0.6, 8.0, 0.61) respectively. In these plots we see the formation of an unusual 
feature not predicted by the RKKY approximation. For quite a large range 
of distances we note a preferential (mtiferromagnetic alignment between the 
moments before the sign flips and the standard ferromagnetic coupling with 
a. I/D^ decay is recovered. A similar sign-changing behaviour has been re- 
j)orted in nanotubes [119] and also by ah initio calculations attempting to 
probe the interaction in graphene [193]. It is worth examining further how 
this feature depends on the paranieterisation of the magnetic moments. In 
Fig 5.4 we present a number of i)hase diagrams showing the sign and strength 
of the coupling for different values of these parameters. Each diagram rep­
resents an area of {ni, d) phase space with ferromagnetic (antiferromagnetic)
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t’ = t t’ = 0.8t t’ = 0.4t

D = loVTa

D = 40V^a

Figure 5.4: {rn,d) phase-space (liagranis for sei)arations of lOy^ (top row) 
and 4()v^ (bottom row) for three different values of the impurity-carbon 
hopping parameter t'. The sign of the coui)ling is indicated by the colour 
(bine for FM and red for AFM) and the strength of the coni)ling by the 
degree of shading.

coui) lings given by a blue (red) shading that is darker for larger magnitude
couj) lings. The diagrams on the top row corresi)ond to a separation of 10-\/n 
between the magnetic moments and from left to right show the cases of 
t' = l.Ot, 0-8t, 0-4h The bottom panels show the same cases for a larger sep­
aration of 40\Ai. By examining the border between the blue and red regions 
in these plots we can infer under what circumstances the sign-change be­
haviour described above occurs. In all cases the border position varies only 
weakly with the magnetic moment {m) or hence the band-splitting (A). A 
stronger dependence is found on the band-centre shift {6) and we hnd that, in 
general, an anti-ferromagnetic alignment is found above a critical value of 6. 
The band-centre shift is found using the recursive mean-field approach and is 
strongly dependent on the occupation of the magnetic orbital. For a bipar-
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tite lattice like graphene a substitutional impurity with a half-filled orbital 
gives zero band-centre shift when t' = t. As we move away from half-hlling 
a larger band-centre shift is recpiired to return the correct band occupation. 
For smaller values of t' we note that the border between the blue and red 
regions shifts towards the left, meaning that smaller band-centre shifts will 
lead to an AFM alignment. Increasing the distance between the impurities 
reduces the phase-space area corresi)onding to an AFM alignment l)y shifting 
the border to the right and requiring larger band-centre shifts. This finding 
agrees with the plots in the distance-dependent plots in Fig. 5.3 for fixed 
parameters which show that in the asymi^totic limit the coui^ling changes 
sign and returns the FM alignment i)redicted by the RKKY approximation. 
However, as in the bottom i)anel of Fig. 5.3, the magnitude of the coupling 
has essentially decayed to zero before the sign change occurs so the only sig- 
nihcant coui)hng between two such impurities is antiferromagnetic. We have 
seen that, deijending on the moment i)aranieterisation, a strong antii)arallel 
alignment between two substitutional magnetic impurities in graphene may 
persist to considerable separations. This result contradicts the predictions 
of the RKKY theory and we demonstrate' in the next section that such a 
coui)hng can lead to unforeseen difficulties in calculations involving periodic 
boundary conditions.

5.5 Emergence of magnetic moments on im­
purity atoms in graphene

We now turn our attention to the energy cost required to spin i)olarise iso­
lated impurities embedded in grai)hene. We will see that this topic is very 
closely related to the interaction between magnetic moments discussed in 
the previous sections. By applying a criterion for the formation of local mag­
netic moments in metals to graphene we are able to predict the existence 
of magnetic moments in cases that are in clear contrast to previously re­
ported Density Functional Theory (DFT) results. These calculations often 
consider single impurities added to a unit cell with periodic boundary con-



5.5. EMERGENCE OF MAGNETIC MOMENTS IN GRAPHENE 149

clitions, under the assumption that the cells are sufficiently large and that 
impurities are not able to interact with their neighbouring counterparts. By 
generalising the criterion to i)eriodically repeated impurities, we find that 
th(' energy balance involved in such calculations contains unavoidable contri­
butions from long-ranged pairwise magnetic interactions between the impu­
rities. This raises the (piestion of whether representing independent particles 
by single impurity unit cells is a valid assumption in the case of magnetic 
doi)ants in graphene-based materials. We show that these problems can be 
circumvented if more than one im{)urity per unit cell is considered, in which 
case the DFT results agree perfectly well with the criterion-based predictions 
for the onset of localised magnetic moments in graphene.

5.5.1 Unexpected DFT findings

The assumption of rei)resenting independent particles by single impurity unit 
cells is frecinently made in the case of magnetic objects in gra])hene-related 
materials. A recent study has comprehensively investigated the magnetic 
pro])erties of a range of transition-metal atoms embedded in a graphene 
sheet [185] indicating comjrlex magnetic behaviour as one moves across the 
periodic table. A remarkable finding in this survey is the absence of a mag­
netic moment when one Fe atom substitntionally rejilaces a single carbon 
atom in the graphene sheet. Of all the transition metal atoms, it is i)ar- 
ticularly surprising that an iconic magnetic element like Fe seems unable to 
develop a magnetic moment when immersed in graj)hene. Another study 
rej)orts an unexpected dependence of the magnetic moment formed on the 
dimension of the unit cell considered [181]. Because the aforementioned DFT 
assumption of independent unit cells is nsed in the referred survey as well as in 
other studies of magnetic dopants in carbon-based structures [174,194-196], 
it is instructive to ask whether the intrinsic long-ranged interaction that arises 
between magnetic moments in low-dimensional metals might be responsible 
for interfering with some of the results recently reported. If so, this inter­
ference may cause a spurious supi)ression of magnetic moments where they 
should actually exist.
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5.5.2 Magnetic moment formation in graphene

Lieb’s tlieoreni [104] is often quoted to explain the magnetic properties of 
graphene. It shows that a net magnetisation arises when there is an imbal­
ance between the two sub-lattices composing the bipartite lattice of graphene. 
While this is a perfectly sound explanation for graphene flakes and ribbons, 
as well as for graphene sheets containing vacancies [197], it is not directly 
ai)plicable to substitutionally doped impurities since Lieb’s theorem assumes 
a homogeneous electron-electron interaction throughout the system. In par­
ticular, the considerably narrower d-band associated with transition-metal 
impurities makes the electronic interaction highly non-homogeneous, and 
another explanation for the origin of magnetic moments in doi)ed graphene- 
related materials is required. The formation of a single local moment in a 
non-magnetic system has been generally addressed by several authors, and 
a criterion for its existence has been previously derived in different con­
texts [192, 198], including a recent work considering the specihe case of 
graphene as the non-magnetic host [199]. Here we develop an alternative 
derivation of this criterion, and generalise it to a i)air of impurities in order 
to clarify the role i)layed by the long range interaction between magnetic mo­
ments in low-dimensional systems. Furthermore, we show how this may affect 
hrst-principles calculations which artihcially assume, for conii)utational pur- 
I)oses only, that the system is translationally invariant. Although our focus is 
on doped grai)hene sheets, our conclusions result essentially from the hexag­
onal symmetry of the underlying lattice and are valid to graphene ribbons 
and flakes as well as nanotubes.

Single magnetic impurity in graphene

We start by considering a single transition metal atom embedded in a non­
magnetic host, which in our case is a pristine hexagonal lattice, as shown in 
Fig. 5.5. The electronic structure of the system is described by a Hubbard­
like Hamiltonian with the assumption that the on-site interaction only occurs 
between electrons occupying the d orbitals of the transition metal impurity. 
For simplicity we shall assume that the onsite effective exchange integrals
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Figure 5.5: A single substitutional transition-nietal atom embedded in a 
graphene host.

U are the same for all the d orbitals. To derive a local moment criterion 
we examine the stability of the non-magnetic state when a small exchange 
si)litting, A, is activated. The energy cost involved in the formation of a local 
magnetic moment at the impurity site, A^i, consists of two components. 
The first of these, Af/, is the reduction of the effective electron-electron 
interaction due to the appearance of a local spin imbalance at the impurity 
site. This is given by

AU = U{AN^){AN^), (5.14)

where AN'^ is the change in the occupation nninber of electrons with spin 
a on the impurity orbital. Assuming AN^ + AN^ = 0 and using the Lloyd 
formnla expression for the change in occupation under the introduction of a 
perturbation i)otential given in Eq. (2.57), we find

AU = -U{AN^)‘̂

-U{Tv I dEApl (5.15)

1 2

where goo{E) is the Green function for an electron with energy E at the 
inii)nrity site, = — y is the perturbation potential for t-spin electrons dne 
to the magnetic moment at the impurity site and the trace operator is over
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the orbital degrees of freedom which in this case can be limited to the five 
d-orbitals.

The second contribution, AK, to ATi accounts for the change in the 
electronic kinetic energy of both and J,-spin electrons due to the presence 
of the moment,

AK = AA'T + AA'*

= ' E T'- J <!£' Ii‘ (> - (5 jg)
(T

= ilm Tr j dE In {1 - g^,^{E)\^'^).

The energy cost involved in the formation of a local magnetic moment at the 
impurity site is thus given by

A£i = -U { Ini Tr
TT

+

/“^I
1 I dElm hi(l

A(g)A’
~ yi.)(){E)M :5.i7)

The sign of A£\ determines whether or not the non-magiK'tic state is unstable 
to a local magnetic moment formation. To derive a criterion for such an 
instability it is sufficient to expand Eci.(5.17) in powers of A to lowest order, 
which simplihes to

A£, = {-U^\Ei.) +^(A;,.)} {A/2)\ (5.18)

where
1^{E,) = - /
^ J—oo

(iAIniTr [fyoo(-E')]'' (5.19)

is the local susceptibility. The formation of a local magnetic moment at the 
impurity is then energetically favonrable when A£i < 0, be., when

1(Bf) > i . (5.20)

This ineciuality sets the condition for the sjiontaneons formation of a sin-
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gle localised magnetic moment in a noii-magnetic host. Written in terms of 
single-particle Green functions, it is model-independent and can be evalu­
ated once the Hamiltonian is fully specihed. The same criterion has been 
I^reviously derived in other circumstances [198], but here we have obtained 
it by total energy balance considerations because it provides an easier way 
to analyse the effect of more inij)urities.

Multiple impurities

Let us now imagine that a second transition-metal impurity is added to the 
system at site m, as illustrated in Fig. 5.6. Similar steps to those outlined in 
Eqs. (5.14) - (5.17) above can be followed to derive the following expression 
for the energy cost involved in the formation of local magnetic moments at 
the two sites

AT2 = 2 ATi + — I 

= 2 ATi -|- 77o,m •

47r

Er
(IE Ini In 1

(1 - .hoof )^ (5.21)

The energy cost AT2 is not simi)ly twice as large as A£i due to the inter­
ference between the two impurities. This is evident in the second term of 
Eq.(5.21), which contains Green function i)ropagators between sites 0 and m. 
Most remarkably, the interference term, 37o which arises naturally when we 
calculate the energy cost for the formation of two separate magnetie moments

Figure 5.6: Two substitutional transition-metal atoms embedded in a 
grai)heue host in neighbouring unit cells.
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can be identified witli the Indirect Excliange Coupling between magnetic im­
purities, which is given in Eep 5.5. Bearing in mind that this coupling is 
negative (positive) when the magnetic moments are parallel (antiparallel) 
and that it can decay slowly with impurity separation in low dimensional 
systems, this additional interference term may have striking conseciuences to 
the criterion presented above.

Consider for instance a hypothetical impurity that meets the inecpiality 
of E([.(5.20), that is, an impurity that j)ossesses a magnetic moment when 
immersed in the graphene lattice. Suppose that we add a second impurity 
of the same type to the system with the imposed constraint that both mo­
ments must be parallel to each other. The energy cost that was negative 
for a single iinpnrity may become positive if the lEC favours an antiparallel 
alignment betw'een the magnetic moments, as demonstrated in Section 5.4. 
In this case, A£2 may become positive even though A^i < 0. If this occurs, 
the two magnetic imi)urities whose moments are forced to remain j)arallel 
may adopt an altogether non-niagnetic conhgtiration rather than the most 
favourable antij^arallel alignment. This is a clear indication that the artiheial 
imi)osition of parallel alignment may introduce spurious effects as far as the 
determination of the true ground state configuration is concerned.

DET-based calculations that consider a single magnetic impurity per pe­
riodically repeated unit cell implicitly impose that their magnetic moments, 
should they exist, must be mutually parallel. Because of the i)eriodic bound­
ary conditions, the energy cost (per impurity) AS^/N for inducing the spin 
splitting of N equally spaced ini{)urities becomes

A£N

N
1 ^

A£] + — Jo,jm ■ (5.22)

In this case the correction to the single-impurity contribution ATi, which 
once again is assumed to be negative, is a sum of terms proportional to the 
pairwise magnetic interactions that may be positive and sufficiently large 
to reverse the sign of AEi^/N. One could argue that the magnetic interac­
tion, being traditionally oscillatory as a function of separation, will alternate
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between negative and positive terms in the snin that appears in E(i.(5.22), 
which will then average out and never be able to reverse the sign imposed 
by NE\. While this may be true in general, we have seen throughout this 
chapter that for graphene-based materials the underlying hexagonal atomic 
structure introduces a peculiar feature in the RKKY-like coupling that will 
seldom vanish the sum in the second term of E(i.(5.22). The magnetic cou­
pling between imi)nrities embedded in graphene-related materials tends not 
to exhibit sign-changing oscillations as the separation between the impurities 
is increased. Therefore, if the magnetic coupling between two sites favours 
the anti-parallel alignment between moments, the summation in E(i.(5.22) 
may be j)ositive, and may converge to a sufficiently large value capable of 
overturning the satisfied criterion for single impurities. In the case of one- 
diniensional graphene systems, the conseciuences of neglecting the coui)ling 
between moments in neighbouring cells can be even more severe. Since t he 
coupling magnitude tends to decay rather slowly as l/D [116], the second 
term in E(i.(5.22) may diverge if the coupling is antiferroniagnetic, leading 
to a guaranteed supi)ression of the magnetic moment.

5.5.3 DFT results for Fe and Mn

A striking imi)hcation of this mathematical analysis is that spurious nonmag­
netic solutions may be olrtained if existing magnetic moments are artificially 
constrained to adopt a parallel alignment when they would spontaneously 
prefer to be antiparallel. This raises the question whether the reported ab­
sence of magnet ic moments for Fe in graphene could be one such case [185]. 
If so, this would be a convincing indication of the inadequacy of the assump­
tion of independent unit cells that is commonly used in DFT-calcnlations 
dealing with magnetic doj)ants in graphene. A simple way of testing if the 
moment sui)pression is the result of the artificial constraint imposed by the 
periodic boundary conditions of the DFT scheme is to include more than 
one magnetic impurity jjer unit cell and allow them to adopt both parallel



15G CHAPTER 5. STATIC MAGNETIC INTERACTION

and anti-i)arallel alignments. In what follows we present DFT results'^ for 
calculations conij^rising two impurities per unit cell and compare those with 
the results for a single impurity. The calculations were made using peri­
odic boundary conditions and supercells comprising 4x4 and 7x7 graphene 
primitive cells. In these cases, one carbon atom of the graphene lattice was 
substituted by a single Fe atom impurity. The distance between an impurity 
and its image in the adjacent unit cell is 9.98 and 17.47 A for the 4x4 and 7x7 
supercells, respectively. UnsuriH'isingly, the results are very similar to those 
previously reported [185]. We find that, when relaxed, the metal impurities 
are displaced outwards from the graphene surface by 1.14 A and that no 
magnetic moment is observed.

The results are conii)letely different, however, when two impurities per 
unit cell are considered. To maintain the same impurity separation as be­
fore, the unit cells are duidicated along one direction (4x8 and 7x14 primitive 
cells). W’ith two Fe impurities per unit cxdl, we have the freedom to start 
these calculations with magnetic moments in the anti-parallel configuration. 
Such an antiferromagnetic alignment between the Fe moments is stable and 
energetically favourable, by 9.03 eV, when compared to the non-niagnetic 
solution, which can be obtained by relaxing the si)in-polarisation. Remark­
ably, the substitutional Fe inii)urity has a magnetic moment that is as large 
as 0.99 fi/i. The energetics of the system in the conhguration in which the 
Fe moments are parallel is also calculated. In this case the total energy is 
considerably higher than the antiferromagnetic conhguration.

Table I shows the total energy values obtained for Fe as well as Mn impuri­
ties in the ferromagnetic (FM), spin-unpolarised (SU) and antiferromagnetic 
(AF) conhgurations. For Fe, the total energies in descending order are (FM, 
SU, AF). Because the AF conhguration is impossible to obtain with the 
single-impurity unit cell, the system adoj)ts the next possible conhguration, 
which shows no spin polarisation. Alternatively, one can understand this in 
terms of Eq.(5.22), which means that the magnetic-coupling correction that

“^Our DFT-calculatioiis have been been made with the generalised gradient api)roxi- 
mation [17G] for the exchange-correlation term. lYoullier-Martins pseudo-potentials [177] 
and double-zeta polarisation atomic orbitals [175] have been used.
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arises ilue to the periodic- boundary eonditions is able to revert the sign ini- 
[)osed by ASx leading to a suppression of the existing Fe magnetic moments. 
The suppression of the magnetic moment is a spurious feature that results 
from the artificial imposition of a ferromagnetic alignment -when the system 
naturally prefers to adopt a different alignment.

Fe Mn
FM 0.14 0.04
SU 0.03 1.80

Table 5.1: Total energies, in eV, of the FM and SU configurations, for Fe 
and Mn imijurities in graphene. All cpiantities are exi)ressed relatively to 
the total energy of the AF configuration, which is the most energetically 
favourable for both impurities.

Also shown in Table I are the values for Mn impurities, for which the 
total energies in descending ordc^r are (SU, FM, AF). Another interesting 
result, not considercxi in Ref. [185], is that the AF is the most energetically 
favourable configuration. Once again, this is easily understood by the single- 
impnrity unit cell constraint that is unable to account for the AF alignment 
of the magnetic moments. In this case, the next i)ossible confignration is 
the FM alignment, which again explains the results of Ref. [185]. In terms 
of Ecp(5.22), the magnetic-coupling correction for Mn impurities is not suffi­
cient to overturn the sign determined by A£\, which means that ASjsi/N is 
still negative, justifying the si)litting of the spin-polarised bands into a FM 
coiffiguration.

The residts discussed above illustrate the potential problems that may 
arise when dealing with magnetic impurities in graphene-based structures 
through the standard DFT scheme of single-impurity unit cells. Further­
more, it is a clear indication of the relevance of the coupling between mag­
netic impurities in graphene-related materials. When this coupling is positive 
and sufficiently large to reverse the sign imposed by A<f^i, the artificial con­
straints inii)osed by the periodic boundary conditions spuriously suppresses 
the magnetic moment that would si)ontaneously exist in isolation. In DFT 
calculations of doped grai)hene-related materials, it is therefore of paramonnt
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iinportaiice to consider more than a single iinpnrity per unit cell and study 
the energetics of all possible conlignrations, namely, f’M, SU and AF.

5.5.4 Strategy to avoid moment suppression

Finally, regarding the condition for the formation of a localised magnetic 
moment expressed by the inequality of E(p(5.2()), we can test its predictive 
pcwer by applying it to the cases considered above. Written in terms of 
single-i)article Green functions, the susceptibility £{Ef-) can be further sim­
plified in the case of small spin-splittings (A <C 1) to I{Ei.’) ^ po(-£'f)i where 
f\){Ei,') is the spin-unpolarised local density of states (LDOS) at the impurity 
site evalnat('d at the Fermi level Ey. The value of U ~ leV, being primarily 
an atomic projjerty, is fairly constant for all transition metal elements [200]. 
Therefore, we can use the LDOS obtaiiu'd from the SU calculations and test 
whether the inecinality of Eq.(5.20) is satisfic'd. Rc'assuringly. Uf)(){Ey) > 1 
for both Fe and Mn, indicating that both elements favour the formation of a 
magnetic moment when embeddc'd within graphene. Further tests wc're car- 
ric’d out with Ni inijjnritic's. In this case, the low value found for ()^){Ey) does 
not mc'et our criterion, suggesting that Ni atoms within gra])hene will not 
develop a magnetic moment. In fact, this is what is found for DFT calcula­
tions with two Ni impurities per unit cell, which also agrees with j)revionsly 
reportc'd results [181,185]. Such a good agrecmicnt with the predictions based 
on Ecp(5.2()) indicates that SU calculations, which are considerably less time 
consuming than spin-polarised ones, can be carried out hrst to test whether 
a localised magnetic moment is likely to arise. If so, further spin-j)olarised 
calculations are rcHpiired in which all possible configurations must be consid­
ered.

5.6 Summary of Chapter

In this chapter we introduced the concept of an indirect magnetic coupling 
between magnetic imj)urities embedded in a host system. Such a coiq^ling 
has previously been investigated in a range of systems and has been tech-
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nologically exploited in magnetic memory devices. A general api)roacli, the 
so-called (Jnantnm Well method, to calcnlating such a (piantity was formu­
lated in Section 5.2.1 using a combination of the methods previously outlined 
in Chapter 2. This approach was comi)arod to the more commonly known 
RKKY method, which was shown to be a second-order perturbative approx­
imation to the coupling.

In Section 5.3 the discussion shifted to the specific case of the magnetic 
interaction between moments in a graphene system. We reported on the 
progress to date in this field and summarised the methods and results of 
numerous studies on the toi)ic. The difficulties with performing a fully ana­
lytic treatment of the interaction were observed. Using the Stationary Phase 
Green functions introduced in Chapter 3 we were able to calculate the princi­
pal features of the interaction in gra])hene within the RKKY approximation 
for a wide range of energies. This method avoids the potential pitfalls of a 
‘cutoff function’ that is reciuired by previous studies attempting an analytic 
.solution of the interaction using the linear-dispersion approximation for the 
electronic band-structure of graphene. The distance-dependent properties of 
the interaction, namely the decay rate and oscillation period, were found to 
emerge in a mathematically transparent fashion from our results and agree 
with both our own numerical calculations and the expected result s from the 
literature.

Following this, we used numerical methods in Section 5.4 to j)robe the 
magnetic interaction beyond the standard RKKY model. By varying the 
parameterisation of the magnetic impurities considered, we demonstrated a 
range of features that may occur by selecting a different magnetic species 
as onr impurity. We found that a preferential anti-ferromagnetic alignment 
may persist to large separations between magnetic moments located on the 
same sublattice. Such a finding is in direct contradiction to the predictions 
of the RKKY theory reported throughout the literature, which state that 
the coupling between such impurities is always ferromagnetic. Thus a richer 
range of magnetic coupling features is i)resent in graphene than had been 
previously anticipated.

Finally, we showed in Section 5.5 that the magnetic coupling di.scussed
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to date may play a significant role in ex])laining some nnnsnal ab imt'io re­
sults occurring in the literature. These include the unexpected absence of a 
magnetic moment on an Fe atom embeddcxl in a graphene sheet [185]. We 
demonstrated that the use of single-inii)nrity-doi)ed unit cells in DFT cal­
culations is highly inappropriate to describe magnetically doired graphene 
and that it may lead to fundamentally erroneous results as a consecpience 
of the magnetic interaction between imj)urities in neighbouring unit cells. 
Such an interaction makes the hypothesis of indej)endent unit cells in such 
systems invalid. A mathematically transparent criterion for the formation of 
magnetic moments in graphene is developed and tested in a number of cases. 
The existence of a simple criterion that can tell whether or not a magnetic 
moment will arise when impurities arc* introduced to gTaphene-related mate­
rials is a valuable tool to predict which of these structures may be useful for 
spintronic ai)plications.

The treatment of the RKKY interaction using Stationary Phase Green 
functions, presented in Section 5.3, was published as part of “Electronic 
structure of grai)hene beyond the linear disi)ersion regime” (Phys. Rev. B 
83, f55432). The work in Section 5.5 was i)nblished as “Emergence of local 
magnetic moments in doped graphene-related materials” (Phys. Rev. B 
8()R, 24f413). The Density Functional Theory calculations in this section 
were performed by Dr. Pedro Venezuela (Instituto de Ffsica, Universidade 
Federal Fhnninense,
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SIX

Dynamic magnetic interaction in graphene

6.1 Introduction

In the i)revi(nis chajjter we examined many facets of the indirect exchange 
coupling in graphene systems. The underlying motivation for such studies is 
the potential for magnetically-doped grai)hene systems to play a significant 
role in future spintronic technologies. The incorporation of these systems 
into potential devices is dependent on a long ranged interaction between the 
magnetic doi)ants to facilitate magnetic ordering or the transfer of informa­
tion between different i)arts of the device. A long-ranged interaction has 
been predicted in Carbon Nanotnbes [116-119] and signatures of such an 
interaction have been detected experimentally [120]. However, progress to 
date in graphene sheets has been hampered by the faster decay rates which 
arise from the i^eculiar electronic structure of graphene and which were ex­
amined in the i)revions chapter. Such rapid decay rates present an obstacle 
to the experimental veriheation of the interaction and to its technological 
application.

In this chapter we investigate the possibility of augmenting the range of 
the interaction by setting the magnetic moments to precess. The notion of 
a “dynamic RKKY” has been proposed by Simanek and Heinrich [134] who 
generalised the concept of electron-mediated interaction between magnetic

161
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inoinents to the case when these inoinents are no longer in static ecinilil)- 
riuin. Fnrtlier senii-classical investigation reveals tlie emergence of a long- 
ranged dynamic interaction in tlie case of ferromagnetic hlins sei)arated l)y 
non-magnetic metal si)acers [135], Such an interaction is driven by non- 
('ciuilibrium spin currents emanating from tlie precessing moments. The mag­
nitude of the interaction can be measured by a quantity called tlie dynamic 
spin suscejitibility, which descriiies the response of tlie magnetism of tlie 
system to a dynamic magnetic perturbation, in tlie next section we shall 
demonstrate liow a full (luantiim mechanical description of this ciuantity can 
be derived.

A long spin-relaxation length and relatively weak spin-orbit coupling 
[95 98] make graphene an ideal candidate for the study of long ranged spin 
dynamic effects. Investigation of the dynamic suscejitibility in carbon nan­
otubes [136] has revealed an augmentation of the decay rate beyond that of 
the static coujiling. Further studies of sjiiii dynamics in grajihene systems 
have suggested the use of these materials as sjiiii waveguides [137], sjiiii- 
Iiuinjiing transistors [138] and spin current lenses [139]. However to date 
there has not been a conijirehensive study of the dynamic conjiling between 
magnetic objects embeddi'd in grajihene sheets or how this is mediated by 
sjiiii currents - a tojiical subject due to recent exjieriniental rejiorts of unusual 
sjiin current behaviour in grajihene [140]. In this chajiter we investigate the 
dynamic coujiling in dejitli using the dynamic suscejitibility formalism devel- 
ojied ill the next section. Using the stationary jiliase ajijiroximation for the 
grajihene Green functions, we demonstrate analytically how a long-ranged 
interaction arises and how the decay rate for the static case is recovered as 
the jirecession freijiiency is set to zero. We find a transition from the very 
fast decay predicted for the static coupling to a much longer ranged decay. 
We determine how this behaviour is manifested in the sjiiii current emanat­
ing from a single jirecessing moment in grajihene. Furthermore, we suggest 
a jiossible exjierinient to probe the dynamic RKKY interaction in grajihene 
systems using the sensitive teclmiijiie of inelastic scanning timiiclhng sjiec- 
troscojiy (ISTS) [144] and model the signatures of the interaction that may 
be detected.
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6.2 Dynamic susceptibility

In this section we introduce the methods used to calculate the dynamic sus­
ceptibility and show how the calculations required can be performed in terms 
of the single-particle Green function operators describing the system and with 
which we are well acquainted from previous chapters.

6.2.1 Magnetic Hamiltonian and time-dependent re­
sponse

To describe the electronic structure of the system we use a Hublrard-like 
Hamiltonian of the form

n
i.j.cr

ifj G'ct +
a,a

(a naa + y n„ r j + [JPbHo ^ 5a ,

' n

(G.l)

wliere the first term contains the relevant hopping terms included to describe 
the electronic band structure of the host system and the magnetic object. 
For our purposes it is sufficient to use the nearest-neighbour tight-binding 
model for graphene outlined in Chapter 3 to describe the host system. The 
magnetic objects we consider will consist of simple substitutional or adsorbed 
magnetic impurity atoms, whose description we have encountered previously 
in section 2.4. The sum over a in the second term is over the number of 
magnetic objects in the system, where is the atomic energy level of the 
magnetic site and [/„ represents the effective onsite interaction between two 
electrons on the magnetic site and which is neglected elsewhere as before. 
The final term represents a local Zeeman interaction which defines the i-axis 
as the eciuilibrinm direction of the magnetisation. The value of the Zeeman 
held is arbitrarily chosen so that a free electron processing in it would have 
an energy of O.Olt, where t once more is the magnitude of the carbon-carbon 
hopping.

We now consider the introduction of a small harmonic, oscillatory mag-
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h,(t)

Figure 6.1: A small transverse field, hx{f), is introduced which drives a pre­
cession of the magnetic moment aronnd the equilibrium (z) direction dehned 
by a static held H^z.

netic held, hi, shown schematically in Fig. 6.1, of the form 

hi = ho [cos{ujt) X - sin(cnt) y] , (6.2)

that drives a precession with frecjuency u at one of the magnetic sites, a = 0. 
The interaction between the magnetic held described by Ecj. (6.2) and the 
spin at site 0, Sq, is accounted for by a Hamiltonian term

gfishi ■ So = (jfiBho [cos(a;t) Aq - S^]

+ e—‘5,7] ,
(6.3)

2

where we have used the relation = 5^ ± iS^ and (Aj ) is the spin 
raising (lowering) operator at site i.

Using linear response theory, the response of the spin component associ­
ated with site i of the system to the applied held can be calculated^ This is

‘The limits of integration for the following derivations have been omitted for clarity. 
All intr^grals are on the interval [—oo, cxd] unless otherwise noted.
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given by Refs [201,202]

s(stm = ^ I lit' - f') + - t') (6.4)

where the susceptibility terms xti^ xto given by

xy(<) = -^©('){[y(*),s„-(u)i>
and

(6.5)

and the scjuare brackets denote a commutator, the angle brackets represent 
the thermodynamical average reducing to the ground-state expectation value 
at zero temperature, and 0(t) is the stej) function given by

0(t) =
0 if t < 0
1 if t > 0

(6.6)

Since the Hamiltonian is invariant to spin rotations around the i-axis the 
spin component S^ is conserved. Thus terms of the form {[S^{t), {{))])
vanish and the susceptibility term is zero. Now Ecp (6.4) becomes

Hs^t)) =
g L b ho I dt\ —i u) t' —xtit -1'). (6.7)

The term xto (0 time-dependent transverse spin susceptibility in real
si)ace. The Fourier transform of this quantity

Xto H = J 6^' A LU t' . H— / J.I
(6.8)

is the frequency-dependent transverse spin susceptibility which tells us the 
resiroiise of the system to excitations of a given frecpiency. We can relate the
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time-dependent spin disturbance at site i to this term as follows

e'

6{S+{t)) =
(6.9)

It is clear that the frequency-dependent suscei)tibility contains a lot of 
information about the response of the system to the aj)plied magnetic held. 
From it we can extract information about the si)in excitations in the system. 
These can be classihed as single-particle spin-hip (Stoner) excitations or as 
collective modes (spin waves). In the next section we demonstrate how this 
quantity can be calculated within the random jrhase approximation.

6.2.2 Calculating xtj (‘^)

We begin by dehning a generalised time-dependent susceptibility similar to

xtj (f) given by

= ([5+(t),5,:,(0)]). (6.10)

Clearly the element of interest to us is xtiijW ~ xtj~W- Extending the 
standard dehnition of spin raising and lowering oi)erators in terms of creation 
and annihilation oj)erators we write

StjW = and

StiW = •

xtjkii^) e>beys the equation of motion given by

(6.11)

ih <^xtjkiit)
(it = 3T{eW ((s«W.5«(o)l>}(it 

dC-) (t) 
(It

+ <d(<) 5^:;(())|) (e-n)

= m (is;(<).5h(0)I) (<) ([ |5S(‘). w|. s„(o) 1)
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where H is the Hubbard-type Harniltoniaii given by Ecp (6.1) and S{t) is the 
Dirae delta function. We now examine the two terms on the right hand side 
of the final exi)ression for the eciuation of motion individually. For the first 
of these, we can write

s{t) {[sr,{t),s;:M) = m {[sr,{o),s^M)
= (Cp C/T Cl ^^l) ■

(6.13)

Using the Hamiltonian from Eq. (6.1) allows us to write the commutator in 
the second term as

~ ^ ^ (Un C„| 7„j C.hi Cl) + (Uj 4 Cji - U, 4 Cl .
(6.14)

The ecpiation of motion for becomes

^jk - 4i Cl ^^l)

~ I 4t(^) ^"l(0 - 7m 4t(^) Cli^)^
n

+ ^ W ([ {Uj c]^{t) Cjiit) cj^(f) Cjiit)

- Uicl^{t)cji{t)c\^{t)c^i{t)^ , s;;,{{))]j .
(6.15)

From the definition of the time-dependent susceptibility xtjkiM) E(i.(6.10), 
terms like —^ (-) (t) {[Xjn Cii'(f) '^/('/(O)]) in Eq. (6.15) above can be writ­
ten as time-dependent suscei)tibilities xtnicii^)- The appearance of higher- 
order terms in the expression above leads to an infinite chain of coupled 
eciuations for xtCM) general are not possible to solve.

To decouple these equations we make use of the Random Phase Approxi­
mation (RPA). This approximation limits the theory developed so far to low 
temi)erature as it neglects magnon-magnon interactions, as well as certain 
magnon-electron interactions and electron-electron interactions [203-207].



168 CHAPTER 6. DYNAMIC MAGNETIC INTERACTION

The decoupling scheme introduced by the RPA consists of replacing

c\ Cj 4 G ~ (4 Cj )4 Q - (4 Cl )4. Cj + (4 Cl )c{ Cj - (c[. 4 )4 q , (6.16)

where the expectation values are evaluated in the Hartree-Fock ground state, 
where the dynamics of the two spin projections are treated independently. 
Thus expectation values of the sort (4| Cji) “ Eq. (6.15), the terms
we require are

d s \d 1 r.. . d ;; \d

and
4t GI ~ ^A - (4t )4t
4t oi 4i Cl ~ (4i )4t Gi - (4i Gi )4t Gi •

Within the RPA the equation of motion for xtjkii^) becomes

ih (4t G] ^jk - 4| ^^l)

+ ~ ^jnhm) Xmnkli^^
m,n

+ ^ " ^irn^jn ^ii^ii) ) X,njikli^')
mji

+ ^mnUm ^<^im(4|.4t) ”4^(414?)) ^rnnkli^') ‘

(6.17)

(6.18)

To simplify proceedings we introduce the four-index matrices given by 

Dijki = (4t 7/t Sjt; — 4q ^il)
Hijkl ^ik Ijl ^jlXki 

•^ijkl ^ ^ik^jl ~ 7/j(hj|) )

Jijkl = ^kl Uk ~

(6.19)

where the product of two such matrices is given by {AB)iju. = A,j,nnB,nnki, 
so that Eq. (6.18) can be written in matricial form as

•</>dr-(<) = <s(*)o+ (a' + ./' +j) p-(f)
(6.20)
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Using the Fourier transformations

1

1G9

(6.21)

we get an equation for the frequency-dependent transverse susceptibility

hiux^-{u;) = f)+ (A' + J' + j) . (6.22)

RPA and Hartree-Fock susceptibilities

In order to calculate x'*’~(to’) from Eq. (6.22), we will first derive an expression 
connecting the RPA susceptibility to the non-interacting, or Hartree-Fock 
(HF) susceptibility, x'^(ci;). This is calculated within one-electron theory 
and so is incapable of describing collective excitations such as spin waves. 
However it carries useful information about single-particle excitations, such 
as spin-Hii) (Stoner) excitations. Such information is useful as the lifetime of 
collective excitations in the absence of other forms of dissipation, like spin- 
orbit coupling, is determined by their decay into single-particle excitations. 
We have seen in Section 2.8 that, within the Hartree-Fock approximation, 
we make the substitution

nnn)nn

ill the interacting term of the Hamiltonian in Eq. (6.1). Following a similar 
routine to that outlined to calculate the equation of motion and resultant 
equations for the full Hamiltonian from Ecj (6.12) onwards, we arrive at 
analogous expressions to Eqs. (6.20) and (6.22) for the reduced Hartree- 
Fock Hamiltonian:

th2f(t) = s(t)b+C + J') qw (6.23)
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and
hu}l\uj) = b + + J') ■ (6.24)

Rearranging Eq. (6.22), we find 

(liuji- k - J') jk-{uj) = D +

<k~[uj) = (}iuji-k~j

Sk~{^) = (yhuji - K ~~ J'^ .1 x"~{^) + .

where we have performed a similar rearrangement witli Eq. (6.24) to yield

-1

f{uj)={hujI-K-J') D.
-1

Dehning a matrix P such that D P = j allows ns to write

x'*' i^) — + \'^(^) k x~^ (uj). (6.25)

From the dehnition of P above and those of D and J in Eq (6.19) we can 
write

Hijkikik'ikjk ~ ~ ~Hk^ki ~

=> Pjki = —Hk ^ki Sji ^ik ■ (6.26)

Using this definition of P in Eq. (6.25) yields

Xtjkli^) = xlklH - Y1 Xl„un{<^) Um Xtknkli^) ■ (^'27)

m

For the matrix elements xtri‘^) ~ Xu7ii‘^) we are interested in we can
write

or

Xtj H ^ Xli^^’) - Xlni^) Um Xtj i'^) (6.28)

(^) = x“(^^) - x“(^) U (u), (6.29)

where Umn = UnGrin- Tliis leaves us with a simple matrix equation relating
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the random phase approximation and Hartree-Fock susceptibilities 

X+-(a;)= \i + f{u;)u]~'f{u;). (6.30)

It is worth considering the various types of excitations that can be de­
scribed by this expression. For simplicity we suppose that the external mag­
netic held couples to the magnetic moment of the atom at site 0. Using Eq. 
(6.30) to examine the excitations arising from spin j)reoessions due to this 
disturbance we write

Xho H =
1 + Uo Xoo('^)

(6.31)

The imaginary part of Xoo which is related to the si)in excitations, is 
given by

till (X'do (^)) = Iiii(Xoo(t^))
[1 + f/oRe(x[)o(u;))] -f [t/olni(xgo(^))]'

(6.32)

Two types of excitation are represented by Eq. (6.32), corresponding to u 
ranges where Im 7^ The hrst type correspond to particle exci­
tations where the numerator does not vanish, i.e., where Im(xoo(^^')) 7^ 
Under the Hartree-Fock approximation electrons with opposite si)in orien­
tations are independent. Therefore these excitations, called Stoner modes, 
do not involve correlations between i)articles of opposite spin. Instead they 
correspond to spin-hip excitations around the Fermi energy.

The other type of excitation correspond to lo values where Im (Xoo(<^)) = ^ 
but where the term 1 -|- t/oRe(xoo(‘^)) cancels. These are excitations 
which explicitly involve the effective Coulomb interaction between electrons 
which is responsible for the correlation between the dynamics of spin-ui) and 
spin-down electrons. These are collective excitations, or spin waves.

Calculating the HE Susceptibilities

Now that we have reduced the calculation of the RPA susceptibility to Eq. 
(6.30), the rest of the calculation boils down to deriving an expression for the
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Hartree-Fock susceptibilities Xij iii terms of the usual single particle Green 
function operators we are familiar with. The dehnition of the generalised 
time-dependent susceptibility, in Ecj. (6.10), can be rewritten under the 
Hartree-Fock approximation as

xlkM = [(GVt)Qt) (gt4w)

(6.33)

where we have used the anticommutator {a, b} = ab + ba. Using the standard 
dehnition [145] of the time-dependent single-i)article retarded Green function 
operator

(6.34)Gmnii) = (-) (0 ({Gna(0^ 4a}) .
we can write

x'iw(0 = (4t(0 Gt) + (4i Gi(0) Gl*{t)y]*l (6.35)

Dehning

and &') = i^LCait))

the Green function in Ecj. (6.34) can be written

(6.36)

GS(() = -^e(i) {jr,{t) + Jm}
Using the identity

0 (t) = lim
V 27rzy/ du;-

LO -h IT]

(fi.37)

(e.38)
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allows us to calculate the Fourier transforms of the quantities dehned in Eq. 

(6.36), yielding

and
(6.39)

The fluctuation-dissipation theorem, relating the absorption or dissipation 

of energy of a system perturbed by an external field with fluctuations (and 

correlations) in the unperturbed system [208], allows us to write Jfi(cj) =
.. — Bhu) JaJ^i and t o rewrite the retarded Green function as

= i f
-hJ

du/' e —iujt 1
2TTh ri-*0+

- I do^e—‘Gr,(a;)

/lim / diU2 Jii{uJ2)
^ph.uJ2 _|_

u — u>2 + ir] (6.40)

wIktc

Guiuj'. = lim [
27rn »?^o* J

duj2 JuiuJ2)
^phuJ2 _j_

(6.41)
UJ — UJ2 + ITj

A similar analysis can be performed for the advanced Green function, 

to find expressions for the time- and frequency-dependent advanced Green 

fnnetions analogons to Eqs (6.37) and (6.41):

and

G.rw = -^e(-*) {jm + jm}
1 f = + 1Gr{u;) = — hm J du2JU^2)

2'JTh r;^0+ UJ — U)2 — IT)

(6.42)

(6.43)
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From E(is (6.41) and (6.43) we find the difference between the retarded Green 
functions to be

G;(u.) - ^ /'d‘^2 K'*™ + 1] X

X liin
r;^0+

1 1
LU — UJ2 “1“ IT] UJ — U)2 — if)

(6.44)

Using the relation [145]

lini -------- = U( —) ^ inSix)11^0 * X ± irj ^ X

thin becomes

1 /■G;(u<) - G.7"(u,) = ^ / du.2 + 1] |-2,r,i'(a, - ..,2)1

= [<,«■'+ 1] ,

which, rearranged, gives

(6.45)

=‘'‘^svrrr M]

= [G;M-G.rM].
(6.4(i)

where /{uj) is tlie Fermi function, from Ecjs (6.36) - (6.46) we find

(4 «,.(*)> = ^ / e-“‘/(x-) [GIM - G,r(u,)] . (6.47)

Using the cyclical property

(4 G.(*)) = <4 e'”‘c,„e-«‘) = (e-'^‘cl e«‘c,,) = (4(-J) q,) (6.48)

and setting t —t in Ecp (6.47) gives

(4{*) ^ /<“') b?.(x') - or (A ■ (6-49)
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Substituting the identities in Ecjs. (6.47) and (6.49) into the expression for 
the generalised Hartree-Fock susceptibility given by Eq. (6.35) and the Green 
function identity G*,‘^(t) = GjT{t)^ yields

GlW) - G,-'(u.)J G‘t(()

i (, A -i /

'll

(6.50)

Taking the Fourier transform

X^JklW) = Xijkiit)

d c.,q= ’̂ {f [G;,(w')-G,-'(a.')] f d(e«“+“'l'G]t(«)

+ y.W'/M [g‘,M-G-,,‘M] |d(e«“-“'"G,-*(-«)

(e.5i;

and using the following identities

+ u,') = I d(e«“+“')‘Gj,(t) (6.52)

G;,'(u>'-u,)= j d(e'<“'-“>‘G,-'(() ‘=-‘ j dfe-l“-“''>‘G,-'{-«) (6,53)

we arrive at a hnal expression for the generalised Hartree-Fock susceptibility 
in terms of the single-particle Green functions

G\f.{uj + io')

+ {uj') - Gj^^{u’) Gi^^io' - n;)| ,
(6.54)

or for the two-index susceptibility

XiA^) - TZ [ dcn'/(u;')| - Gj^\ui') Glj{uj + uj')
J —OO ^ ^ ^27r

-f

(6.55)
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Ecjs (6.30) and (6.55) are the two key results from the rather lengthy deriva­
tion presented to date in this chapter. The hrst of these connects the interact­
ing and non-interacting susceptibilities allowing us to calculate the properties 
of collective excitations arising from the i)recession of the magnetic moment. 
The second result presents a method to calculate the non-interacting sus­
ceptibility in terms of the spin-dependent single-particle Green function, a 
quantity whose calculation has been described at length in Chapters 2 and 3. 
Within the Green function formalism we can easily account for the magnetic 
impurities using the methods discussed in j)revious chapters.

Splitting the integral

The calculation of the Hartree-Fock susceptibility as presented in Eqs. (6.54) 
and (6.55) involves an integral over energy of a convolution of retarded and 
advanced Green function matrix elements. In Section 2.7, we examined how 
integrals involving Green functions are in general easier to perform over the 
imaginary axis. A similar method, outlined by Muniz and Mills [206], will 
be used for the integration of the Hartree-Fock susceptibility ecpiation. This 
approach is slightly more complicated due to the i)resence of both retarded 
and advanced Green functions, whose poles occur on opposite sides of the 
real axis. To simplify the numerical integration of this equation, we si)ht the 
integral into three components. The hrst of these is a product of the retarded 
Green functions, the second a product of the advanced Green functions. The 
remaining cross terms are then contained in the hnal term. Splitting the 
integral in such a fashion will also prove useful later in this chapter when 
we turn to examining the separation dependence of the dynamic magnetic 
interaction in graphene. To begin, we expand out the bracketed terms in Eq. 
(6.54) and segregate the resultant terms by the ty])es of Green functions they
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c'ontain.

? h r°° (
X%kl{^) ^ ^ J fi^') - G-f}{u!') G;. \u' - Lo)

Gjk{‘^')Gii\uj' -uj) - Gi^\uj')Gjf.{u; + a;') |+

= A +12 + G )

(6.56)

where
h =

h =

?■ h r°°
^ J (6.57)

7/7 7°°- j du'f{u;')G-,^{u;')G;,Hu'-u) (6.58)

and

ih 7°° r
Is = — I duj'f{uj') Gjf.{^')Gn\uj'- u) - GfG(uj')GjGu; + uj')

(6.59)
The integrand in /i consists of a i)rodnct of two retarded Green functions. 
At T = 0 it can be rewritten over the imaginary axis using a straightforward 
application of the method described in Section 2.7 and availing of the contour 
illustrated previously in Fig 2.6. The method is identical to that followed for 
the integral for the static lEC in Ecj. (5.6) and we hnd

27r
/i — — / dy G\^{ujf + iy)G\^.{up + a; + iy). (6.60)

An analogous approach can be followed for G, but since it contains a product 
of advanced Green functions the contour should be closed in the lower half 
plane. This gives

T /h r°°^2 = — dy GJf^^ [up - iy) G;“ ^ujp-u- iy), (6.61)
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and using the identity = G*n^{z*) becomes

h
/2 — — y dy G\.^{u}f + iy) G\i{u)f — uj + iy)>T (6.62)

The third term cannot be solved using the same i)rocedure as it contains 
products of retarded and advanced Green functions, which are analytic func­
tions of id' in opposite halves of the complex plane. However, we can simplify 
the expression for G given in Ecp (6.59) by making the transformation of 
variables lj' ^ u’ + iO in the hrst term, so that

ih
I-i — — / dcu' [f{u' -Hu;) - G^ {J)G^G^ -H J) . (6.63)

J —OO

At T = 0 the Fermi functions have the effect of limiting the range of the 
integral such that

ill da.'' G^■ ^(u.’')G]^.(a; -H J). (6.64)
> UJf' —UJ

It is important to note that in terms of sei)aration dependence, the func­
tional forms of /] and are almost identical to that for the static' coupling. 
However, the third term has a different form and it makes no contribution 
to any of the static i)roperties of the system. This can be seen cjuite clearly 
as, when uj = 0, the range of the integral vanishes and so = 0) = 0.

6.2.3 Spin disturbance, dynamic coupling and spin cur­
rent

We now demonstrate how the spin susceptibilities we have derived can be 
used to calculate other useful quantities in the system . The spin disturbance 
at a site is the amplitude of the spin precession at that site induccKl by the 
I)recessing moment. It is clear from Ecj. (6.9) that the absolute value of 
the response function IXiu”!) proportional to the magnitude of the spin 
disturbance at site i due to the application of the oscillating held applied at 
site 0. The spin disturbance at i due to multiple ])recessing moments, either
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from a larger magnetic object consisting of multiple magnetic atoms or from 
a distribution of magnetic atoms, is given by

=
9 Pb h (6.65)

wiiere the sum is over tlie sites where the oscillating held is applied. The 
(piantity |x^~(w)|, where there are magnetic atoms at both sites a and 6, can 
be viewed as a dynamic analogue of the RKKY coupling in that it rei)resents 
an interaction between two magnetic objects mediated by the conduction 
electrons of the host medium. Whereas the static interaction corresponds 
to the energy difference between parallel and antiparallel alignment of the 
moments, the dynamic interaction re;)resents the magnitude of the precession 
induced on one moment by that of another. Since we are looking at the 
absolute value in the dynamic case, we are not extracting any information 
from the sign of the (piantity calculated.

A precessing moment on a magnetic object generates a spin current which 
carries transverse angular momentum away from the site of inecession {spin 
pmnping). In systems with a long spin diffusion length and a small spin-orbit 
coui)ling effect, this spin current can travel signiheant distances in the host 
medium and excite a second magnetic moment elsewhere {spin torque). Such 
a mechanism has tremendous potential for application in spintronics devices. 
The spin current emanating from a precessing moment can be calculated in 
terms of the transverse spin-susceptibility in a manner outlined in Ref [209]. 
The total sj)in current, Ig, flowing out of a volume V containing many spins 
is found to be

It = 7jz - lij Sto (6.66)

iev iev

where 7,:^ represents the tight-binding hoi)ping parameters from the Hamil­
tonian in Ecj. (6.1) and Stj is the generalised spin raising operator dehned in 
E(i. (6.11). It is apparent that that contributions to 1^ from j E V vanish 
and so the sum over j can be restricted to j ^ V. The ami)litude of the spin
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current i)uinped out of V by the precessing moineiit is

Kh)i = \/iai>r+i(h>t- ((i.67)

Following a similar method to that outlined for S{S'^){t) earlier we can calcu­
late the change in the expectation value of the spin current upon application 
of the magnetic held h±{t) described by Eq. (6.2). We note that in this case 

~ (-^s)(^) since there is no net spin current how in the unperturbed 
system. The spin current generated by the oscillating held is found to be

I g hb ho ^ ^ e [-yij Xtjooi^) - IjiXjiooi^)] ^ 
iev j^v

where xtjooi'-^) is fiic generalised transverse susceptibility within the RPA. 
Since we are using a nearest-neighbour tight-binding model to describe the 
electronic structure of the host medium the sums over i and j are restricted 
to nearest-neighbour pairs {i,j) where i € V and j ^ V. In essence we 
are slimming over the tight-binding connections crossing a surface which 
dehnes the edge of the volume V out of which the sjiin current is howing.

6.3 Dynamic RKKY in graphene

Earlier in this i;haj)ter we introduced the quantity which gives the
amplitude of the precession induced on a magnetic moment at site b due to 
a precession of frequency u> at site a. We stated that this iinantity can be 
viewed as a dynamic analogue of the RKKY-like coupling that occurs be­
tween two static magnetic objects embedded in a conducting host. When a 
(static) magnetic impurity is placed in the host, it induces a spin polarisation 
of the conduction electrons. This is generally oscillatory in nature, although 
we have seen in Chapter 5 that in nndoped graphene such oscillations can be 
masked by a commensurability effect. When a second moment is introduced, 
the energetically favourable alignment between the moments dejiends on the 
local polarisation. The spin polarisation is described by the static spin sus­
ceptibility introduced in Eep 5.9. Within the RKKY picture, the decay rate
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of the magnetic conpling is completely cletcnmined by the off-diagonal static 
susceptibility. As such, it is sufficient to consider how the induced si)in po­
larisation caused by a single magnetic impurity is spread in space. In moving 
from the static magnetic coupling to a “dynamic RKKY” we will begin with 
the case of a single processing moment in a graphene sheet. Using the expres­
sions introduced earlier in this chapter in conjunction with the analytic Green 
functions for graphene, we will determine the separation dependent proper­
ties of the dynamic spin susceptibility. For simplicity we will consider the 
magnetic imj)urity throughout to be a substitutional atom. This condition 
can be relaxed to consider more general magnetic objects without significant 
affecting the results obtained. The analytical work is complemented with 
fully numerical calculations which confirm the behaviour predicted.

6.3.1 Distance dependence of x^o (‘^)

From Eq. (6.30), the dynamic spin suscei)tibility element Xmoi rei^resenting 
the spin disturl)ance at an arbitrary site m by the precession of a moment 
at the magnetic site 0 is given by

XmO ~ + x[)()U) XmO- (6.69)

The only term in this expression that contains a distance dependence is Xmo- 
Thus as far as the distance-dependent properties of the spin susceptibility 
is concerned, it is sufficient to examine those of the relevant non-interacting 
susceptibility matrix element. We recall from Eq. (6.55) that this is written 
in terms of the Green function operators as

ih f r 1X%(‘^) = ^ / dn;'/(a;')| - Gf,J,{uj') GI^q{u) + u;')

-H G'mo(^0 “ G'om(a;' - u;)|
(6.70)

To simplify proceedings further we can now take a similar approach to that 
taken for the static RKKY interaction and replace the Green function matrix 
elements, G^, that appear in this expression with their spin-independent,
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pristine counterparts, gij. We note that this replacement is justihed since we 
are concerned principally with the distance dependence of the interaction, 
which is underpinned by the off-diagonal Green function elements of bulk 
graphene. Following this, we can split the integral above into three parts as 
demonstrated in Ecjs. (6.5G) - (6.64), so that^

Xmoi^) ~ + -^2(1^) + (6.71)

where

lAu)

/oc
dE' f{E')gorn{E')gME' + tiw)

•00

i 7°°= --y dE'f{E')g;JE^)g-„,{E'-hu;)

and
t /

Jep n

(6.72)

(6.73)

(6.74)h{u;) = I dE'g;;„^{E')gUE' + hm).
' Efr -hiD

We note that R and I2 are of similar form and involve the convolution of two 
retarded or advanced Green functions, whereas I^ involves one of each tyi)e.

We begin our analysis of the separation dependence by examining R. 
We note that its functional form is very similar to that of the static RKKY 
integral given by Ecj. (5.9). The only difference is that now the product 
in the integral contains Green functions evaluated at different energy values. 
Following the same approach as was taken for the static case in Section 5.3.1, 
we write the matrix elements of the off-diagonal pristine Green function in 
grai)hene calculated using the Stationary Phase Approximation as

ffm,o(E') 9u,rn(-^)
A{E)

7d
(6.75)

where D is the separation between sites 0 and m. The functional forms 
of A{E) and Q{E) depend on the direction of the separation. Assuming a

■^To allow a simpler comparison with the treatment of the static coupling in the previous 
chapter, we have rewritten the integrals in terms of energies (£') instead of frequencies 
(w).
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separation in the armchair direction as before allows us to write

Aiz) = -^ W — V {z^ + 3C)Vt^^
(6.76)

and
Q(z) = mr' [j) .

where z is a comj)lex energy. Using these identities we can rewrite R in a 
similar manner to the static coupling as

/,(-) = ~ /
_oo D (l + e/5(i5-£F))

where
BiE',u) = AiE') A(E' Yhu;).

(6.77)

(6.78)

Moving to the complex plane, the integral can be solved by rei)lacing it with 
a contour integral in the upper half plane, where the relevant poles are once 
more given by the Matsubara frequencies Ep = Ep — i{2p + where
p is an integer which labels the poles. The integral then becomes a sum of 
the residues over these poles.

k^T ,i{Q{Ep) + Q(Ep^hw)) D (6.79)

Proceeding as before we expand B{Ep,uj) in a Taylor series

(6.80)

where B^^^ is the l-th order derivative of the function B{E,{)) evaluated at 
Ep. Here we have assumed that the function B{Ep,uj) varies only weakly 
with u around uj = 0. Similarly, Q{E) is expanded to first order around Ep 
and written

Q{E) = {E - E, (6.81)
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where is the l-th order derivative of Q evaluated at Ep. With these 
expansions, /] becomes

h{oj)

(G.82)
D ^l\i

which can be rewritten in the low temperature limit as

^ ~ 27r ' ^ (2zQ(»)'+i D'+2 (6.83)

using the same steps taken for the static couj)ling in 5.3.1. It is clear that 
the sei)aration dependence for R is identical to that found for the static 
coupling. For Ep ^ 0, the leading term, I = 0, dictates the decay rate so that 
/] ~ However, as before the I = 0 term vanishes in the nndoped case so 
that the decay rate is determined by the hrst surviving term and T ~
A similar analysis can be performed with 1-2 by closing the c’ontour in the 
lower half plane. However, we not(’ that the functional forms of R and I2 are 
identical and that therefore both will contribute to the sihn suscejitibility 
with the same separation dei)endence, i.e., D~'^ for the undoped case and 
D~^ otherwise.

Moving onto l-s, we note hrst of all that this integral is over a hnite 
frequency range along the real axis:

h{u2) = r dE'g-{E')g,,iE' + fu^). (6.84)

Furthermore, in the static case this term clearly vanishes as the lower and 
upper integration limits converge when cc = 0. Therefore I3 is a j)nrely 
dynamic contribution to the susceptibility, whereas in the static limit it is 
easy to see by comparison that R +12 is essentially the static susceptibility. 
It is therefore unsurprising that the distance dependence of R + R is the 
same as that found for the static case. Since the integration in Ecj. (6.84) 
is generally i)erfornied over a small energy range we can make the following
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approxiniations,

and

Then Ecj. (6.84) becomes

A{z) ^ -i \ ^
V ^7^

Q{z) ^ ±-.

(6.85)

(6.86)

h{uj) ^ -
2nD

pEp
/ dE' 

J Ep — hjj
2 s/W 
Ttt 1/^

2 y/E' + hul ..±6^0

1 pEp
/ dE' ^/-E'{E' + huj) 

J Ep — hu
(6.87)

We note that the remaining integral has no D dependence. In fact, an equa­
tion of the form y = hy/—x{x -f a) can be rewritten

x+l
+

(I) (fr
1 (6.88)

which represents an ellipse centred at x = — |, y = 0 with resi)eetive semi­
axes I and ~ and an area Retnrning to the integral in Eq. (6.87) and 
noting that

a — hw and h = --
1

it is easy to sec that the ellipse is confined between E' — —huj and E' — 0. 
If Ef = 0 then the integral in Eq. (6.87) ecpials half the area of the ellipse

..EiN-D
24tvD t?

(6.89)

In Fig. 6.2 the real (top) and imaginary (bottom) components of the 1^ 
integrand are plotted for a separation of 5()\/3n in the armchair direction 
for the undopcd case. Each case shows the integrand ealcnlated in three 
different ways. The small square symbols show the integrand calculated 
with numerical pristine Green functions, whereas the larger circular symbols
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-0.08 -0.06 -0.04 -0.02

Figure 6.2: The real (top) and imaginary (bottom) })arts of the I3 integrand 
calcnlated using fully numerical pristine Green functions (large circles), the 
SPA Green functions (small sciuares) and the elliptic-al aj)proximation of Ecp 
(6.87) (red, dashed curve). A good agreement is noted between the thre^e 
calculations.

represent a calculation using the SPA Green functions. We note that the 
SPA overestimates the amplitude of the real part, however the overall match 
between the two is still good. The red, dashed line in each case represents the 
approximation for the integrand given by Ecp (6.87), the integral over which 
is given exactly by Ecp (6.89). It is clear from Fig. 6.2 that the approach 
taken in this section returns an excellent estimate for I^ from which we can 
extract useful analytical information. The distance dependence of the p term 
is particularly interesting. We note that this term decays as D~'^, presenting 
a much slower decay rate than was calculated for the other terms in the 
susceptibility. The presence of the term in Ecp (6.89) confirms once more 
that this term vanishes in the static case and is a purely dynamic contribution 
to the susceptibility. To confirm the decay rates predicted by this analysis, 
Eig 6.3 plots the different contributions to the suscei)tibility as a function 
of separation for undoped grajrhene. These calculations are performed using
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Figure 6.3: Decay rates of the different contributions to the dynamic sus­
ceptibility. The log-log plots in the inset reveal the power law exponents of 
11 d-12 and /'s to agree with those predicted in the text.

the numerically calculated pristine Green functions. The log-log plots in the 
inset are in good agreement with our j)redictions that I\ + p ^ D~^ and 
E D-\

We have now fully determined the decay rates which emerge from the con­
stituent components of the non-interacting off-diagonal susceptibility, calcu­
lated using the pristine Green functions. We have found that the components 
consisting of a convolution of two retarded or advanced Green functions con­
tribute a decay rate equal to that found for the static susceptibility and 
indirect exchange coupling. However the final component, consisting of the 
convolution of retarded and advanced Green functions, contributes a slower 
decay rate, namely which from Eq. (6.87) should hold for both the
doi)ed and undoped casesb At the start of this section we predicted that 
the distance dependence of the interacting susceptibility, should be
entirely described by the decay rates which emerge from the non-interacting 
susceptibility we have examined thus far. We can now test this prediction by 
calculating the interacting suscei)tibility numerically and scrutinising how it

^We note that the I3 term also adds an oscillatory component that is independent of 
the Fermi energy. This is generally a low frequency oscillation compared to that induced 
by the Fermi wavevector in terms R and I2, but traces of it may be seen in undoped 
results, particularly by sweeping over large seiraration ranges.
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varies with the separation between the magnetic moment and the site we are 
I)robing. Finally, we can include a second magnetic moment at the i)robe 
site to ensure that the behaviour holds not just for the spin polarisation 
caused by the jirecessing moment, but for the full dynamic analogue of the 
RKKY interaction. Before showing the distance dependence, we must hrst 
hx the freciuency of the excitation. If we examine the functional form of the 
diagonal term of the RPA susceptibility, as given for a single impurity in 
Ecj. (6.32), we note that collective excitations should appear as peaks. The 
height of these j)eaks correspond to the amplitude of the excitation, whereas 
the width of the peaks are inversely i)roportional to the excitation lifetime. 
In the absence of dissipative features, such as spin-orbit effects, which are ne­
glected in our model, the lifetimes of the excitations are generally determined 
by their decay into Stoner modes. For one magnetic impurity, the excitation 
spectrum contains a single peak at a resonance frecpiency corresi)onding to 
the normal mode of the system. Systems with additional magnetic moments 
contain peaks at frequencies corresponding to each normal mode of the sy.s- 
tem. However, as some of these [jeaks may occur at the same, or nearby, 
frecpiencies it may not be possible to resolve all of the i)eaks separately. Sim­
ilar peaks occur in the off-diagonal matrix elements of the suscejjtibility that 
we examine to determine the decay rate. In Fig. 6.4, we plot the absolute 
value of the off-diagonal susceptibility, |, evaluateH at both u = 0 and at 
the resonance frecpiency, lor , as a function of separation. The calculations 
are performed for both the undoped and doi)ed cases. For u = 0, we note 
that we hnd the decay rates predicted before for the static susceptibility. 
However, in the dynamic case the decay rate converges to D~^ in both the 
doped and undoped systems, conhrniing the expectations of our analysis in 
this section. Furthermore, the exact same decay rate behaviour is noted in 
the insets, which correspond to calculations performed with two magnetic 
impurities. We can thus conclude that the dynamic RKKY interaction in 
graphene has a much longer range than its static counterpart.
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Figure 6.4: Log-log plots of the off-diagonal susceptibility as a function of 
separation. The main plots show the results for the static {u = 0, top panels) 
and dynamic {u = cUff, bottom i)anels) susceptibilities for both undoped (left) 
and doped (right) systems, calculated with one magnetic impurity. The red 
curves with ‘X’s are the numerical results, whereas the black, dashed lines 
correspond to the iiiflicated decay rates, as predicted in the text. We note 
that the static suscei)tibility behaves as before, but the dynamic results show 
a convergence to a longer ranged {D~^) decay rate. The exact same decay 
rate behaviour is shown in the insets for calculations with two magnetic 
impurities.
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6.3.2 Spin current from a precessing moment in graphene

A related topic to the dynamic magnetic interaction considered in the pre­
vious section is that of the spin current that emanates from a precessing 
moment out into the graphene host. It is this current that can be thought of 
as mediating the interaction between multiple moments. We will now exam­
ine the spin current that flows from a single precessing moment embedded in 
a graphene sheet. In section G.2.3, we showed that the spin current flowing 
out of a volume V could be written in terms of the spin susceptibility as

(4)(0 = ■i g l^i^B hp 
2

^ \lii 7j! Xjioo('^)] ’ (6.90)
i€V' j^V

where the sums over i and j amount to summing over the tight-binding con­
nections between i G V and j ^ V that cross the boundary of the volume. 
This is shown schematically for a small circular vohnnc (shaded area) in the 
left panel of Fig. 6.5. To examine the distance dei)endence of the spin cur­
rent, i.e., its dependence on the radius, /?, of the circular volume shown in 
the schematic, we can look at the xtjoo t(-rnis in the above exi)ression. Their 
distance dependence is entirely contained in the equivalent Hartree-Fock sus­
ceptibilities, Xpooi which can be written as a sum of integrals T + I2 + Is 
as before. The functional form of these is very similar to the corresponding 
t erms for the case we studied in the previous section. We should there­
fore expect the same decay behaviour with distance, namely that the xtjoo 
terms should api)roach a R~^ decay as the radius is increased. However, as 
the radius is increased the number of connections crossing the boundary in­
creases also and is proi)ortional to the circumference, and hence radius, of the 
volume. Therefore we shoidd expect the overall spin current measured out 
of a circular volume not to vary strongly with the radius. This expectation 
is conhrmcd by a numerical calculation of the magnitude of the spin current, 
evaluated at the resonance freciuency, as a function of radius as shown in the 
right panel of Fig. 6.5. Here we see that as the radius is increased, the spin 
current magnitude approaches a constant value. Such a result is consistent 
with the absence of dissipation terms like spin-orbit coui)ling in this model,
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Figure 6.5: The schematic on the left shows the connections between atoms 
inside (green) and outside (purple) the circular volume that must be summed 
over when calculating the spin current. The plot on the right shows the 
magnitnde of the spin current flowing from a circular area as a function of 
the radius. It is seen to approach a constant value as the radius increases.

and also with recent experimental results which suggest the propagation of 
spin current over a long range in graphene samples [140].

6.4 Detecting the dynamic RKKY in exper­

iment

To date it has been very difficult to probe the RKKY interaction in graphene 
experimentally. It is understandable that with a decay rate as fast as D~^ it is 
difficult to probe the interaction for any reasonable separation. The presence 
of magnetism in disordered graphene systems may indicate the presence of an 
exchange coupling between magnetic moments formed around defects. Nu­
clear magnetic resonance experiments reveal that these defects have indeed 
magnetic moments, since they coni)le to inij)lanted Fe atoms [210]. However, 
whether or not these moments couple with each other, or with the graphene 
lattice, to form a ferromagnetic state is a controversial subject and many of 
the results in this area have proved difficult to reproduce [90]. However, there 
has been significant i)rogress recently in probing the spin dynamic proi)erties 
of isolated magnetic impurities on the atomic scale. The method of inelastic 
scanning tunnelling spectroscopy (fSTS) [141 144] can be used to probe the
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magnetic excitations of the system. The spin excitation spectrum of an indi­
vidual atom adsorbed onto a surface is measured by positioning the tip above 
the relevant atom and varying the bias. Above a certain threshold voltage, 
electrons tunnel between the tip and the surface, registering a current. For 
the case considered here, t unnelling electrons are able to transfer energy to 
the magnetic excitations of the system. A differentiation of the standard 
^ curve from such a measurement corresi)onds to the density of magnetic 
excitations. This quantity is intrinsically connected with the diagonal term 
of the spin susceptibility that we have been investigating throughout this 
chapter.

In the previous section, we determined how the off-diagonal suscejitibility, 
Xmo^ varied as the separation between two magnetic moments was increased. 
We found a longer ranged decay than was predicted for the static analogue 
of the interaction. However it is very difficult to probe the off-diagonal ele­
ment experimentally. What we can investigate instead is the diagonal ma­
trix element of the susceptibility, X(V» which as we have noted above can be 
I)robed by sensitive experimental technicpies. This matrix element, plotted 
as a function of frequency u, tells us how strongly the system responds to a 
time-dependent magnetic excitation. In j)articular, peaks in the freciuency- 
dependent susceptibility reflect the existence of resonant frequencies whereas 
their inverse widths characterise the lifetimes of the associat('d spin excita­
tions. In the top (A) jjanel of Fig. G.6, the diagonal susceptibility is shown 
as a function of excitation frecjnency for a single magnetic impurity (at site 
0) and a single peak is identified. The linewidth Wi of this peak is high­
lighted. Adding a second impurity at a separation D from the first one will 
maintain the peaked features of the susceptibility but the linewidths and 
peak heights should now develop a D dependence. We have seen clearly how 
the interaction between precessing moments manifests itself in the separation 
dependence of the off-diagonal term. It is now worth investigating how the 
diagonal term is affected. We should expect that as the moments are moved 
further apart they become essentially independent and that their excitation 
linewidths should approach those found for the single impurity case. We be­
gin by considering the expression for the RPA suscej)tibility in terms of the
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Figure 6.6: (A) Diagonal susceptibility for a single magnetic impurity as a 
function of excitation frequency. A single peak with linewidth, Wi, is iden­
tified. (B) The relative fluctuations of the excitation linewidth, , for
two magnetic impurities as a function of their separation in the armchair di­
rection is show by the solid blue curve. The shaded area delimits the region 
spanned by the two impurity result if all possible separation directions are 
considered. The scattered red dots correspond to the relative linewidth fluc­
tuations of the diagonal susceptibilities Xm^ calculated at different sites rn 
in a disordered array of magnetic impurities embedded in graphene, as illus­
trated by the schematic exami)le in the inset, plotted against their respective 
nearest neighbour distances.
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non-interacting susceptibility, given by Ecp (6.29), which for two magnetic 
impurities at sites 0 and m allows us to write

xdo — Xoo Xoo ^ Xoo Xom ^ xdo

+ Xoo (XoO “ Xom ^ XmO )

= (i + xSi,r)"‘ (xS„-xlUr (i + xl„c7)-' Wno-xlt/xir))
»=(i + x!!„r)-‘ (x?,, - (i + x?„.,.c)-'xl!.„(/xl

(c.yi)

The hrst term on the right hand side of the above ecpiation corresponds to 
the diagonal snscei)tibihty in the case of a single magnetic impurity. The 
diagonal susceptibility for two impurities can therefore be written in terms 
of the one-impnrity case as a series expansion in ])owers of Yo„j and xdio- 
recall that these terms individually decay as D~^ as the separation between 
the moments is increased. The lowest order correction to the diagonal suscep­
tibility when a second magnetic moment is introduced is given by the second 
term in the equation above. This term contains a product of off-diagonal 
susceptibilities, Xo;riXr,io» should then'fore expect that it decays with
separation as D~'^. The bine, solid curve in Fig. 6.6(B) plots the ffuctnation 
of the excitation linewidth relative to the result for the single impurity case as 
a function of the moment separation in the armchair direction. We note that 
the linewidth ffnetuates around the one impurity value and its rate of decay 
is in good agreement with the D~^ rate predicted above and indicated in 
the figure by the shaded area enveloi)ing the two-inij)urity curve. It is worth 
noting that a change in direction will lead to only a phase shift or additional 
oscillatory features in the solid blue curve so that if all i)ossible directions 
were considered the resultant data points would generate the shaded area.

Rather than just having one or two isolated impurities along a given di­
rection, a more realistic scenario is that depicted in the inset of Fig. 6.6(B), 
namely several magnetic moments randomly located across a graphene sheet. 
To model such a setup, we may consider several disordered configurations of 
multiple moments and obtain the linewidth of each. By plotting these as a
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function of their respective nearest neighbour distance we should be able to 
conhrni the j)r(Klicted decay rate. The scattered red points in Fig. 6.6(B) 
rei)resent the linewidth fluctuations fonnd from 25 randomly generated con­
figurations of five magnetic impurities as a function of the nearest neighbour 
distance. The calculated linewidths all fall within the shaded area containing 
the two-impurity linewidth oscillations, confirming that the dynamic interac­
tion between nearest neighbour impurities tends to dominate and determine 
the lifetime of the s])in excitations in these disordered configurations. The 
important trend to note is that the amplitude of the fiuctuations around the 
one-impnrity linewidth, Bfi, decays as D~^ with the nearest neighbour sepa­
ration. Bearing in mind that the average nearest-neighbour distance between 
two iniT)urities scales as -7=, where p is the impurity concentration, we can 
predict that the standard deviation {aw) of the experimental measurements 
of spin-excitation linewidths will scale with the magnetic impurity concen­
tration as aw ~ p- Evidence of this scaling wonld be a clear indication of 
the RKKY interaction in its dynamic form.

Experimental considerations

The inset of Fig. 6.6(B) matches cpiite closely the experimental setiij) of 
R(’f. [144], which measured the spin-excitation lifetimes of Fe atoms ran­
domly dispersed on Cu surfaces using ISTS teclmicpies. In fact, because 
C atoms have smaller spin-orbit coupling than Cu, these features should 
be more pronounced in graphene and thus easier to probe. However, there 
are some further factors that need to be taken into account when consider­
ing how our results could be compared to those from an ISTS experiment. 
In particular, detecting experimental signatures of the dynamic RKKY in­
teraction involves measuring flnetnations in the ISTS magnetic excitation 
linewidths. From Fig. 6.6(B), we observe that flnetnations in the linewidth 
of 5% or greater are present up to separations of ai)proxiniately 80 n (200 A), 
whereas the linewidth for the single impurity case is approximately 0.02 eV. 
However, the linewidth and resonance energy depend strongly on the value 
of the static Zeeman field entering into the Hamiltonian in Eq. (6.1). The
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value we have chosen corresponds to a niagnetic field of approximately 100 T. 
This is significantly larger than any experimentally realisable static, honio- 
geiKions field, but is necessary to allow onr numerical study. Since the peak 
positions and widths scale linearly with the field strength in this freqnency 
regime [207,211], we can extrapolate our findings to more feasible field val­
ues of ~ lOT. Here we estimate that the fluctuations in Fig. 6.G(B) in the 
distance range 70 — 200 A are of the order 10“^ — 10““* eV. Comparing this 
with the energy resolution of 1.5 x 10““* eV reported in Ref. [144], we see that 
we are very near the limit of what may be feasible experimentally. However, 
there is another degree of freedom available to us in controlling the widths 
of suc'h features, namely the choice of niagnetic impurity. In this work, we 
have considered a very generic iiaranieterisation of the magnetic impurity. 
When a more complete paranieterisation is considered, for example by com­
parison with ah initio results, the choice of magnetic species can play a large 
role. The width of resonance features is controlled liy the local density of 
states at the impurity sites, and in particular if the impurity spin levels cross 
the Fermi energy a much broader jieak feature is expected [211,212]. A re­
cent study examining a range of substitutional 3d transition metal impurities 
in graphene suggests that such a property may be present for Cu, Zn and 
V [195]. Thus careful selection of the tyjie of niagnetic impurity considered 
may enhance the predicted signatures of the dynamic RKKY interaction, 
and make them more accessible to exiierimental verification. Another rele­
vant consideration for experiment or device application is the temperature 
to which such interactions persist. The long-ranged dynamic contribution 
emerges from the I3 term, which contains an integral over a short energy 
interval defined by the resonance frequency of the excitation. At finite tem­
peratures, the introduction of the relevant Fermi functions into Eq. (6.74) 
will lead to a smearing, or averaging out, of these contributions, especially 
when the thermal energy approaches that of the resonance. For the moment 
paranieterisation considered in Fig 6.6(A), adjusted for realistic held values, 
we hnd that the excitation energy corresponds to ~ 200A'. This is a very 
basic approximation and we further note that the resonance energy can be 
altered by changing the magnetic species considered as discussed earlier for
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the peak width. Another point to note is that impurity elements with larger 
spin-orbit splittings, such as 5d transition metal atoms, should tend to in­
crease the excitation energy due to their intrinsic magnetic anisotropy [213]. 
The study of graphene doped with such imi^urities may lead to room temper­
ature spintronic devices utilising the dynamic interactions considered here.

6.5 Summary of Chapter

In this chapter we extended the discussion of magnetic interaction between 
inij)urities embedded in a graphene sheet to the dynamic case where the 
moments are set to i)recess. This work was motivated by the fast decay rates 
found for the static, or RKKY-like, interaction to date in graphene systems. 
Such (piick decay rates are an obstacle for the implementation of magnetically 
doi)ed graphene systems in sjrintronic devices, as it limits the region over 
which magnetic moments can feel each other’s presence. A longer ranged 
interaction is essential for manipulating the properties of a system or for the 
transfer of information between different locations in a potential device.

In section 6.2, we introduced the theory necessary to describe the response 
of the system to a dynamic magnetic excitation. The dynamic spin suscep­
tibility was calculated using the RPA approximation. By connecting this 
suscei)tibility to the non-interacting snscei)tibility, we demonstrated how the 
full calculation could be written in terms of the single-particle Green func­
tion propagators that have been used rei)eatedly throughout this work. A 
dynamic analogue to the static RKKY-like interaction was suggested in the 
form of the off-diagonal matrix element of the dynamic susceptibility, which 
gives the dynamic resi)onse of a magnetic moment to an induced magnetic 
precession elsewhere in the system. The relationship between the suscepti­
bility and the flow of spin current was revealed.

To fully explore the concept of a dynamic RKKY interaction between 
magnetic moments in graphene, in section 6.3 we extended the methods 
develoj)ed in Chai)ters 3 and 5 to examine the separation dependence of the 
interaction. By splitting the integral used to calculate the susceptibility, we 
discovered a term not found in the static case that contributes a decay rate of
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a significantly longer-ranged decay than the rate i)redicted for the 
static moments. An excellent agreement was found between the analytical 
treatment and full numerical calculations of the dynamic interaction. The 
behaviour observed here was connectf'd to the spin current flow from a single 
precessing moment in graphene.

Finally, in section 6.4 we argued that the difficulty in experimentally 
probing the RKKY interaction in graphene-related materials may be over­
come by simply exciting the magnetisation of the magnetic objects in contact 
with graphene, something that is currently achievable and has been recently 
reported using inelastic scanning tunnelling spectroscopy. We demonstrated 
how deviations in the excitation lifetimes probed by this method were re­
lated to the dynamic interaction studied in this chapter. We suggest that 
the behaviour of these measurements as a fnnction of separation, or of ini- 
I)urity concentration, provides a clear signature of the dynamic magnetic 
interaction in graphene.

The work presented in this chapter on the dynamic magnetic interaction 
in grai)hene has been submitted under the title “Dynamic RKKY interaction 
in graphene”.



CHAPTER

SEVEN

Coiicliisioiis and Fiirtlier Work

7.1 Summary of thesis

This thesis has considered a number of different topics relating to graphene 
systems, and in particular those doped with impurities. A strong focus 
was placed on the interactions between magnetic impurities embedded into 
graphene. Understanding how such impurities interact is a vital step in 
preparing magnetically-doped graphene systems for use in spintronic appli­
cations. The work in this thesis has combined theoretical and numerical 
approaches to examine several issues that arise in this field. In this section, 
the princii)al methods and findings of the thesis will be summarised before 
suggestions for possible extentions to the work presented here are made.

Chapter 2 reviewed the concept of Green functions and how they can be 
calculated and manipulated for use in the sort of calculations found through­
out the thesis. Simple examples were used to illustrate the various methods. 
The Green function formalism was shown to be useful for describing per­
turbed and disordered systems where the Dyson equation could be used. 
Methods for calculating the Green function for a large system in a recursive 
fashion were demonstrated. A description of the Lloyd formula method for 
caknilating the change in various properties of the system when a pertur­
bation is ai)plied, and details on performing integrals involving the Green

199
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function were ontliiied. Finally, a brief introduction to the Hnbbard model 
and its treatment within the mean-held approximation was given. The steps 
of a self-consistent procedure to include magnetic moments within the for­
malism developed earlier in the chapter were described.

Chapter 3 focused on the electronic properties of graphene materials and 
how these could be calculated within the nearest-neighbour tight-binding ap­
proximation. The resulting band structure was analysed and a brief discussion 
of the popular linear approximation often used for small Fermi energies was 
given. The band strnctures of one-dimensional graphene systems, namely 
nanotnbes and nanoribbons, were presented and their calculation related to 
that of graphene sheets. A large part of this chapter was devoted to calcu­
lating the Green function matrix elements for graphene sheets. Using the 
Stationary Phase Api)roxiniation we derived an analytical expression for the 
off-diagonal Green function that was extremely accurate over a wide energy 
range. A detailed description of this calculation for the two principal high- 
symmetry directions in graphene and an outline of its inii)lenientation in 
more general cases was given. The existence of an analytical expression for 
the Green fnnction allows for the behaviour of many physical properties to 
be explored in a inathematically transparent fashion. It also offers advan­
tages over existing technicpies like the linear dispersion approximation which 
is only accurate in a narrow energy range and numerical methods which 
can lack transparency. Our expression found repeated use in later chap­
ters. Finally, the recursive methods introduced in the previous chapter were 
demonstrated exj^licitly for the case of graphene nanoribbons.

In Chapter 4 we examined some position dependent features in graphene 
nanoribbons doped with impurity atoms. The effect of imj)urity location on 
the conductance through a ribbon was discussed with reference to the litera­
ture and a simple model calculation. The presence of a qualitative difference 
between the transport through ribbons with uniform disorder or disorder lo­
calised principally at the ribbon edge was emphasised. We then examined 
how the binding energy of such impurities depends on their location and how 
the resulting behaviour may result in a degree of spatial segregation in their 
distribution across a ribbon. In the case of zigzag-edged nanoribbons a non-
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nionotonic feature observed was connected to the sublattices of the graphene 
atomic structure. A simple theoretical model for calculating how the energy 
variation changes across a ribbon was developed and found to be in agree­
ment with the results of DFT calculations. We postulated that control of 
the adsorbed impurity segregation within a ribbon is possible by adjusting 
the Fermi energy and that this may allow tuning of the magnetic profile and 
electronic properties of a ribbon. For the case of magnetic impurity atoms, 
we then considered how the magnetic moment depended on the impurity 
position. A variety of impurity conhgurations were considered with robust 
features especially noted for magnetic impurities on zigzag-edged ribbons. 
For both edge geometries and imi)urity configurations, edge vacancies were 
introduced to test the robustness of the features against structural disorder. 
We showed that an edge vacancy did not have a signihcant effect on the mo­
ment of a magnetic imj)urity located more than one or two lattice spacings 
away. Furthermore, we demonstrated that the distinctive moment prohle on a 
zigzag-edged ribbon was robust in the presence of an extended edge disorder. 
In light of these hndings, we argued that magnetically-doped nanoribbons 
may provide a route to applications previously envisaged for nanoribbons 
with intrinsic magnetic ordering, which is less stable in the presence of ex­
perimentally imi)osed constraints such as imperfect edge geometry.

Chapter 5 began our investigation of coupling between magnetic impu­
rities in graphene. The concept of an indirect exchange coupling mediated 
by the conduction electrons of the host was introduced. The Quantum Well 
method of calculating the coupling was formulated and compared to the more 
commonly known RKKY method, which was shown to be a second-order 
perturbative approximation to the coupling. The results in the literature 
regarding such interactions in graphene systems were discussed before an an­
alytical treatment of the RKKY coui)hng in graphene was performed using 
the Stationary Phase Green functions. We were able to calculate the prin­
cipal features of the interaction without resorting to a ‘cutoff function’ that 
is recpiired by previous analytical studies. The distance-dependent i)roper- 
ties of the interaction were found to emerge in a mathematically transparent 
fashion from our results and agree with both our numerical calculations and
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the expected results from the literature. In particular we coiihrined the very 
fast D~^ decay rate predicted for the interaction in undoped graphene, where 
D is the distance between the impurities. Numerical methods were used to 
I)robe the magnetic interaction beyond the standard RKKY model by vary­
ing the parameterisation of the magnetic impurities considered. We found 
that a i)referential anti-ferromagnetic alignment may persist to large sepa­
rations between magnetic moments located on the same sublattice. Such a 
finding contradicts the expected RKKY result. We conclude that a richer 
range of magnetic coupling features is present in graphene than had been 
I)reviously anticipated. Finally, we demonstrated that the magnetic coupling 
discnssed to date may play a signihcant role in explaining some unusual ab 
'imtio results occurring in the literature, including the unexpected absence 
of a magnetic moment on an iron atom embedded in a graphene sheet. The 
use of single-impurity-doped unit cells in DFT calcnlations was shown to 
be highly inappropriate to describe magnetically doi-'ed graphene and may 
lead to fundamentally erroneous results as a conseciuence of the magnetic 
interaction between impurities in neighbouring unit cells. A mathematically 
transparent criterion for the formation of magnetic moments in graphene was 
developed and tested in a number of cases. Such a tool is useful for predict­
ing impurity atoms that may play a role in future graphene-based spintronic 
devices.

In Chapter G we extended the discussion to the dynamic case where the 
impurity moments are set to process. The fast decay rates noted in the pre­
vious chapter for the static interaction may prove an obstacle for the imple­
mentation of magnetically-doped graphene systems in spintronics. However, 
longer range interactions have been predicted for dynamic systems. The 
theory necessary to describe the response of a magnetically-doped gra])hene 
system to a dynamic magnetic excitation was introduced. A dynamic ana­
logue to the static RKKY-like interaction was suggested in the form of the 
off-diagonal matrix element of the dynamic spin susceptibility, a ([uantity 
which gives the response of a magnetic moment to a magnetic precession 
induced elsewhere in the system. A decay rate of D~^, signihcantly longer- 
ranged than the D~^ static rate, was predicted using an analytic approach
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and an excellent agreement was found with full numerical calculations. The 
behaviour observed was related to the spin current flow from a single pre- 
cessing moment in graphene. Furthermore, we argued that the interaction 
studied can be linked to the lifetimes of magnetic excitations in such systems. 
Recent experimental progress in measuring such cpiantities using inelastic 
scanning tunnelling spectroscopy suggest a method of probing the interac­
tion in graphene. We predict that the behaviour of such measurements as a 
function of separation, or of impurity concentration, should provide a clear 
signature of the dynamic magnetic interaction in graphene.

7.2 Further work and possible extensions

The methods used and results obtained in this thesis suggest many i)ossible 
extensions beyond what has been presented here. Many are natural contin­
uations to the work [)resented, whereas others avail of some of the methods 
and techniciues used to address currently open questions in graphene .science.

In Chapter 4 we addressed position dependent effects in grai)hene nanorib­
bons. As part of this topic, we examined magnetic imi)urities and how 
their properties were affected by the impurity location and by edge disor­
der. This work was partly motivated by the prospect of magnetically-doped 
nanoribbons providing an alternative route to spintronic devices proposed 
for uanoribbous with intrinsic magnetic ordering. Among the suggestions 
for such systems are magnetoresistance devices [102,103]. Given that these 
devices in general rely on pristine edge geometries that may be difficult to 
achieve experimentally [51] and that magnetoresistance effects have been 
previously reported in doped carbon nanotubes [119], we believe it is pru­
dent to investigate the possibility of magnetoresistance in doped nanoribbon 
systems. Such a study would combine the nanoribbon Green function and 
transi)ort calculations of Ghapters 3 and 4 with the magnetic coupling fea­
tures discussed in Chapters 5.

The exploration of static and dynamic magnetic interactions in Chapters 
5 and 6 focused on simple impurities in graphene sheets. A natural extension 
of this work is to explore these interactions for more general impurity types
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and for other graphene systems like nanoribbons or multilayers. In nanorib­
bons in particular the i)resence of edges introduces interesting features that 
may affect the interaction. Furthermore, one dimensional systems in general 
tend to have slower decay rates and so may be more suitable for spintronic 
applications. A range of devices have been suggested with properties that 
depend on spin current flow in graphene systems [137 139]. Using the formal­
ism developed in Chapter 6 the feasibility of similar devices in nanoribbons 
in the presence of edge disorder can be easily investigated.

Apart from these natural extensions to the work described in the thesis, 
a range of other systems and proi)erties can be investigated using similar 
methods. Within the tight-binding descrii)tion we employ to describe the 
electronic structure of graphene, it is quite simple to include, for example, 
externally applied magnetic fields [14,214] or the effect of strain [215,216]. 
Both these features can be accountc'd for by corrections to the hopping pa­
rameters in the tight-binding Hamiltonian. Inclusion of magnetic fields allows 
the investigation of the C^nantum Hall Effect and other features in graphene 
systems, whereas strain effects in graphene are currently a {)opular topic due 
to the i)ossibility of using strain to tune or alter physical properties of the sys­
tem. The effect of strain on the transport i)roi)erties or magnetic interactions 
found in graphene could have interesting potential applications.

The examples listed here are just a sami^le of the possible studies that 
could be undertaken using the methods set out in this thesis. The com­
bination of analytical and nnmerical methods allows for a mathematically 
transj)arent description of the features investigated whilst also permitting, 
for example, the study of larger systems or configurational averaging over 
disordered saniides. The beauty of graphene physics is that a wide variety of 
unicpie and interesting features can be explored using pen-and-paper or rel­
atively lightweight numerical techni(pies. We hope that the work presented 
in this thesis has given a flavour of what is possible using such approaches.
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