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Summary

Graphene is a two-dimensional carbon material that until its recent discov-
ery was assumed not to exist in the free state. Graphene-related materials
have been in the scientific limelight since then due to several key discoveries
regarding their production and properties. There are numerous technological
applications envisaged for them. Besides the huge potential for applicability,
one key feature that makes graphene particularly popular is the simplicity
with which many of its physical properties can be described, primarily due to
the simple dispersion relation for its electrons. In this thesis a number of dif-
ferent topics relating to graphene systems, and in particular those doped with
impurities, are investigated using a combination of analytical and numerical
methods. We consider both graphene sheets and quasi-one-dimensional strips
of graphene that are called ‘nanoribbons’.

The electronic properties of materials can be engineered by doping, but in
the case of graphene nanoribbons the introduction of two symmetry-breaking
edges introduces an additional dependence on the location of an impurity
across the width of the ribbon. This dependence has been noted previously
in electronic transport calculations, but in this work we extend the discussion
to the binding energy of the impurity and also to the magnetic moment that is
formed if the impurity is magnetic. The results of simple model calculations
are found to match those of more sophisticated ab initio calculations.

Magnetically-doped graphene systems are potential candidates for appli-
cation in future spintronic devices. A key step is to understand the pairwise

interactions that occur between magnetic impurities embedded in graphene

i



that are mediated by the graphene conduction electrons. In this thesis we
examine interactions between such impurities using a Green function for-
malism. By developing an analytical expression for the Green function in
graphene, we are able to explore the distance dependence of these interac-
tions in a mathematically transparent fashion. We also demonstrate that
ab initio calculations may yield spurious results if the effects of this inter-
action are neglected. The quick decay with separation of the interaction in
graphene, reported by many authors, is often seen as a major obstacle for the
spintronic application of these systems. However, in this work we report that
a significant augmentation of the interaction is possible when the impurity
moments are set to precess. An experimental setup to probe this dynamic

form of the magnetic interaction in graphene is also suggested.



Acknowledgements

Over the last four years | have received an incalculable amount of support,
assistance and encouragement from a number of sources, without which this
thesis would not have been written.

Firstly, I'd like to thank Dr. Mauro Ferreira for his patient, enthusias-
tic and active supervision of the project. Mauro was always available to
discuss any difficulty I stumbled across during my studies around his much
overburdened whiteboard.

I would like to acknowledge the financial support this project received
from the Irish Research Council for Science, Engineering and Technology
under the EMBARK initiative and also from the School of Physics, Trinity
College Dublin.

I'm grateful for the many fruitful collaborations I have had the oppor-
tunity to engage in. For their friendly, keen and lively participation in our
shared projects I am indebted to Dr. Antonio Costa, Dr. Roberto Bechara
Muniz, Dr. Filipe Guimaraes, Dr. Pedro Venezuela, Dr. Solange Fagan, Dr.
Stefan Hansel, Vivian de Menezes and Dr. Vojislav Krstic. I must give a
special thanks to Filipe and Marina for their generous hospitality during my
stays in Brazil. Valeu!

[ am grateful to all my office colleagues over the years for providing such
an enjoyable and productive working environment. In particular I would like
to thank Drs. Andrew Wall, Claudia da Rocha, David Kirwan and Luiz
Felipe Pereira - all former members of Mauro’s group, for assistance during

the earlier years of my studies. I would also like to thank Dr. Tom Archer for



vi

the technical assistance that really wasn’t his job, and the staff at TCHPC,
who fixed anything Tom couldn’t.

[ am lucky to have made some excellent friends over the years, who pro-
vided marvellous company in the office, at lunch, at home in Tramore, in
various apartments and houses we shared in Dublin, over drinks, on trips
abroad, over a hand of bridge, up mountains, at sea, but most importantly,
at tea. For the sake of brevity, and the fear of accidental omission, I can’t
thank them all by name. However, [ would like to offer all of them my
sincerest gratitude for their friendship, except Steve.!

On a personal note, I am especially thankful to my family for their unwa-
vering support and belief over the years. For their continuing commitment to
someone who still hasn’t a real job, I thank my parents, Mike and Noeleen,
and my sister, Corey. I would like to acknowledge and remember the kind-
nesses [ received over many years from Ellen and Dick Butler and Joan and
Phillip Corish. This thesis is dedicated to their memory.

Finally I'd like to thank Nuala for her love and friendship throughout.

I'd say more but I promised not to embarrass her.

IThis is a Steve-joke.



CONTENTS

Summary iii
Acknowledgements \%
Publications xi
1 Introduction i
1.1 Graphene : discovery and properties . . . . . . . . ... ... 3

1.2 Graphene-based materials . . . . . . .. ... ... ... ... 5
1.3 Impurities in graphene . . . . . .. ... .. ... .. ..... 7
1.4 Graphene applications . . . . ... ... .. ... ....... 8
1.4.1 General application . . . . . . .. .. .. ... ..... 8

1.4.2 Spintronics . . . . . .. ... 9

1.5 Thesis Layout . . . .. .. ... ... ... ... ... ..... 12

2 Mathematical methods 15
2.1 Introduction . . . . . . . ... 15
2.2 Green Functions . . . . . . ... ... 15
2.3 The Dyson Equation . . . . . .. .. .. ... .. ....... 18
2.3.1 Derivation . . . . ... ... 18

2.4 Perturbations and Disorder . . . . ... ... ... ... ... 19
2.4.1 Substitutional Atom . . . .. .. ... ... 20

2.4.2 Adsorbed Atom . . . . . ... ... L. 22

2.4.3 Multiple impurities . . . . . ... ... 26

Vil



Vil

CONTENTS

2.5 Reeursive Methods . « « - « s« « v o5 s smwas damwssas
2.5.1 Standard recursive approach . . . .. . ... ... ...
2.5.2  Rubio-Sancho Method . . . . . ... ... ... ...,

2.6 The Lloyd Formula Method . . ... ... ...........

2.7 Integrating over Green functions . . . . . ... ... ... ...

2.8 Electron - electron interactions . . . . . ... ... ... ...
281 HubbardModel » - « » s 6 5 5+ c o5 5 s 566 55 5 s
2.8.2 Hartree Fock approximation . . . . . . .. .. .. ...
2.8.3 Self consistent procedure . . . . ... ...

2.9 Summary of chapter . . . .. ... 0L

Electronic structure of graphene

3.1 Introduction . . . . . . .. ...
3.2 Electronic structure of graphene . . . . . ... .. .......
3.2.1 Tight binding approach . . . . . . .. . ... ... ...
3.2.2 Band structure of graphene . . ... ..........
3.2.3  Quasi-one-dimensional graphene systems . . . . . . ..
3.3 Graphene green functions . . . . ... ... ... ... ...,
3.3.1 First Integral . . . . . ... ... ... ... ... ...
332 OecondIntegral . . . . . o « ¢ ¢ s i m s E s s s
3.3.3 Stationary phase approximation . . . . . . ... .. ..
3.3.4 Application of SPA Green functions . . . . . . ... ..
3.4 Recursive Methods . . . . . ... ... ... ... ...
341 AGNRs .. .. . . . e e
342 ZGNHS . - o o« 56 on 2 65 st sl Sdsin 5 00805 e T
3.5 Summary of Chapter . . . . . ... ... ... ... ......

Position dependent properties in GNRs

4] ITodUCHION . o w ok v 5w o o e R e w Bl koA E B
ot TIBIBDOEE o a2 : v 5 0 24 6 & 5 % 0 5 G ol 68 §_5 & S -
4.2.1 Caroli Formalism . . . .. ... ... .. .. ......
4.2.2 Single Impurity . . . . ... ..o

4.2.3 Extended disorder . . . . .. ... ...

70
73
73
34
86
86
88
92



CONTENTS ix

4.3 Impurity segregabion . . . . « v s s @ 5 % 5 « w5 % 55 5w 9 104
4.3.1 Impurity Types . . . . . . . .. ... ... ... .... 104
4.3.2 Segregation energy function # . . . . .. ... ... .. 107
4.3.3 Control through gating and applications . . . . . . .. 112

4.4 Magnetic moment profile . . . . . .. .. ... ... ... 115
44.1 Moment profiles . . . . ... ... .. ... ... .... 117
4142 FEffect of edpe disorder . . . « <« « 5 o « w5 ¢ 45w o 124

4.5 Summary of Chapter . . . o v v o v s v s va % o5 s s sh s o 129

5 Static magnetic interaction 131

Bl THedUetion . & < v ke b mr e e il s b e 131

5.2 Indirect exchange coupling . . . . . ... ... ... ...... 132
5.2.1 Lloyd Formula / Quantum well method . . . . . . . .. 133
5:2.2 REKY approximation . . .. « « s ¢ = =« 5 5w s 55 137

5.3 Magnetic interaction in graphene . . . . . . . ... ... ... 138
5.3.1 RKKY calculation with SPA . . . . . ... ....... 140

5.4 Beyond the RKKY approximation . . . . . . .. .. ... ... 145
5.4.1 Effect of impurity parameterisation . . . . . . . . . .. 145

5.5 Emergence of magnetic moments in graphene . . . . . . . .. 148
5.5.1 Unexpected DFT findings . . .. ... ... ... ... 149
5.5.2  Magnetic moment formation in graphene . . . . . . . . 150
5.5.3 DFT results for Feand Mn . . . . .. ... ... ... 155
5.5.4 Strategy to avoid moment suppression . . . . . .. .. 158

5.6 Summary of Chapter . . . . . ... ... ... ... ... ... 158

6 Dynamic magnetic interaction 161

6.1 Introduction . . . . .. ..o 161

6.2 Dynamicsuseeptibility - . « o s « ¢ « 6 5 65 5 55 6@ w5 w5 163
6.2.1 Magnetic Hamiltonian and time-dependent response . . 163
6.2.2 Calculating x5 (w) - . . . . ... 166
6.2.3 Spin disturbance, dynamic coupling and spin current . 178

6.3 Dynamic RKKY in graphene . . . . . . . ... ... ... ... 180

6.3.1 Distance dependence of xyto(w) . . . ... ... 181



X CONTENTS

6.3.2 Spin current from a precessing moment in graphene . . 190

6.4 Detecting the dynamic RKKY in experiment . . . . . . . . .. 191
6.5 Summary of Chapter . . . . . . ... ... ... ... ..... 197

7 Conclusions and Further Work 199
7.1 Summary of thesis . . . . . ... ... ... ... ... ..., 199
7.2 Further work and possible extensions . . . ... ... ... .. 203

Bibliography 205



List of peer-reviewed publications resulting from this

work

¢ S. R. Power, V. M. de Menezes, S. B. Fagan, and M. S. Ferreira. Model
of impurity segregation in graphene nanoribbons. Physical Review B
80, 235424 (2009).

e P. Venezuela, R. B. Muniz, A. T. Costa, D. M. Edwards, S. R. Power,
and M. S. Ferreira. Emergence of local magnetic moments in doped
graphene-related materials. Physical Review B 80, 241413 (2009).

¢ S. R. Power and M. S. Ferreira. Electronic structure of graphene beyond
the linear dispersion regime. Physical Review B 83, 155432 (2011).

e S. R. Power, V. M. de Menezes, S. B. Fagan, and M. S. Ferreira. Magne-
tization profile for impurities in graphene nanoribbons. Physical Review
B 84, 195431 (2011).

e S. R. Power, F. S. M. Guimaraes, A. T. Costa, R. B. Muniz and M. S.

Ferreira. Dynamic RKKY interaction in graphene. submitted (2011).

bl



Xii

CONTENTS



CHAPTER

ONE

[ntroduction

The historical narrative of technological evolution is inextricably entwined
with the discovery and exploitation of carbon-based materials. Charcoal, an
impure form of carbon obtained by burning wood in the absence of oxygen,
was used by the ancient Egyptians and Sumerians for the reduction of metal
ores in the manufacture of bronze [1]. The superlative physical and optical
properties of diamonds have led to their use in a wide variety of fields - scien-
tific, industrial and aesthetic. The immense chemical family of hydrocarbons,
compounds made of carbon and hydrogen atoms, has long been plundered
for the materials that compose the majority of man-made objects and for
the energy that fuels modern life. Graphite, the most stable and common
of the naturally forming carbon allotropes, is familiar to even schoolchildren
as the “lead” in their pencils [2]. However, graphite has also a wealth of in-
dustrial applications, with end uses in high-temperature lubricants and fuel
cells, amongst others [3]. The study of nanoscale carbon materials related to
graphite has led to major advances in recent years and is predicted to beget
many of the technologies of the future [4-8].

Graphite is composed of stacked layers of carbon atoms, with the atoms
on each layer arranged in a hexagonal, or honeycomb, lattice. A single layer
of carbon atoms arranged in this way is called graphene. The hexagonal

lattice can also be interpreted as two intersecting triangular sublattices. A
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d)

Figure 1.1: a) A single graphene sheet is the building block for a number of
related materials, including b) graphite stacks, c) fullerenes and d) carbon
nanotubes. Figure adapted from Ref. [9].

unit cell containing two neighbouring atoms, one from each sublattice, can
by translation generate the entire graphene lattice. The individual graphene
layers in a graphite stack are held together by weak van der Waals forces,
which allows them to separate with relative ease. It is this process that
occurs everytime a pencil is used. A single layer of graphene can be thought
of as the building block for not just graphite, but for a number of other
related materials as shown in Fig. 1.1. Spherical molecules of carbon atoms,
called fullerenes, can be obtained from a graphene by introducing pentagons
into the lattice which create curvature effects. These quasi-zero-dimensional
objects were discovered in 1985 [10] and heralded in a new era of carbon-
based nanoscience. Six years later, the discovery [11] (or possibly rediscovery
[12,13]) of cylindrical fullerenes, dubbed carbon nanotubes, marked another
exciting breakthrough in the field. They can be thought of as sheets of
graphene that have been “rolled up” along a particular direction. These
quasi-one-dimensional systems displayed an unexpected array of fascinating
and potentially useful physical and electronic properties [8,14]. Apart from
their extraordinary strength and stiffness [8], nanotubes also display sensitive
and tunable electronic properties [8,14,15]. Nanotubes can be either metallic
or semiconducting, depending on the direction in which they are rolled up.
Importantly, metallic nanotubes are stable against the Peierls distortion [15],
which usually destroys metallicity in one-dimensional systems and they have

been shown experimentally to behave as ballistic conductors [16].

Despite the many successes in synthesising and investigating the proper-
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ties of these graphene-based materials, graphene itself was not isolated until
2004 [17,18]. Before this, graphene was not even predicted to exist in the
free state [4,19,20], even though it is possible that small quantities of it are
produced every time a pencil is used. We will now summarise the discov-
ery and production of graphene samples before discussing some of the many
interesting properties it possesses. The doping of graphene with impurity
atoms and its potential for application in spintronics will be introduced as
a means of broaching the topics investigated in this thesis. The topics of
magnetic interaction and spin dynamics will be introduced to provide con-
text and motivation for the remainder of the thesis. A quick summary of the

research in the thesis is then given.

1.1 Graphene : discovery and properties

The first monolayers of graphene large enough to be studied using con-
ventional techniques were produced in 2004 by the so-called “Scotch-tape”
method [17]. This technique, also known as micromechanical cleavage, in-
volves removing the top layer of a high-quality graphite crystal using adhesive
tape and then transferring it onto a substrate. Amazingly, despite the sim-
plicity of the procedure, extremely high quality graphene crystals can be
produced, as shown in Fig. 1.2. Since then graphene samples have been
produced using other methods also, for example, chemical exfoliation by dis-
persion in organic solvents [21,22].

The experimental and theoretical interest in graphene has increased dra-
matically since its discovery. An abundance of interesting and unique phys-
ical properties have been postulated and probed. A wide range of possible
applications have been suggested. Its discoverers have been acknowledged
for their identification and subsequent investigations into the properties of
graphene with the 2010 Nobel Prize for Physics [7,23]. Besides being the first
two-dimensional atomic crystal, graphene is also the thinnest and strongest
material ever obtained, with a breaking strength 200 times greater than
steel [7,24]. It is found to be an extremely effective electrical [25] and ther-

mal [26] conductor. Graphene has extraordinary elastic properties, and can
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Figure 1.2: An atom force microscopy (AFM) image of graphene on a SiOs
surface. The dark brown background is the SiO, surface whilst the other
regions consist of graphene flakes of varying thickness. The large brown-red
central region has height 0.8nm and the lighter regions are slightly thicker.
This figure is taken from Ref. [17].

be stretched by more than 20%, which is more than any other crystal [24].
Furthermore, for such a thin material it is impermeable to molecules and
gases [27]. However, it is perhaps the electronic properties of graphene that
have garnered the most attention and have been the subject of the most stud-
ies since its discovery [6]. Despite its relatively recent discovery, much of the
electronic theory of graphene had been formulated long before [28-30] and
used as the starting point for calculating the electronic properties of graphite
and later, carbon nanotubes [14,15]. Graphene is found to be a zero-bandgap
semi-metal whose valence and conduction bands touch at two discrete points
of the Brillouin zone, labelled the K points or Dirac points. In Chapter 3 we
will explore this calculation in more detail, but in brief the p, orbitals from
the carbon atoms in the lattice hybridise to form 7 and 7* bands which cross
at the K points. The electronic band structure of graphene for energies near
the Fermi energy, where these bands cross, is found to be linear. This is in
contrast to the more standard parabolic bands found in other materials. As
a consequence of the linear bands, electrons at these energies lose their effec-
tive mass and behave more like relativistic particles than normal electrons.
Their behaviour can even be described using a Dirac-like equation instead of

the standard Schroedinger equation, and in fact the behaviour of these elec-
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trons mimics the physics of quantum electrodynamics (QED) for massless
fermions [5,6,18]. As such, graphene can be used to test some of the pre-
dictions of QED in a simpler laboratory environment than would be feasible
for truly relativistic systems. An example of this kind of behaviour is Klein
tunnelling [31], where a relativistic particle has an enhanced tunnelling prob-
ability through a potential barrier, due to a suppression of backscattering,
that even approaches unity for completely massless particles. Such behaviour
has been described theoretically [32] and observed experimentally [33,34] for
Dirac fermions in graphene. Another consequence of the massless nature of
the electrons in graphene is that they can propagate without scattering over
large distances and this has been confirmed experimentally at the microm-
eter scale [17]. Graphene also presents a different quantum Hall response
to that of other systems. The presence of a quantised level at zero energy
that is shared by electrons and holes gives rise to an anomalous sequence of
“half-integer” Landau levels and hence Hall conductance plateaus [18, 35].
Due to the high Fermi velocity, the separation between the zeroth and first
Landau levels is unusually large, making it possible to observe the quantum

Hall effect even at room temperatures [36].

1.2 Graphene-based materials

The exploration and analysis has not just been confined to simple graphene
sheets. A number of other materials related to or composed from graphene
have been postulated and examined. Multilayer sheets of graphene, not thick
enough to be considered “graphite” or to display its physical properties, but
vet fundamentally different to monolayers have been investigated. Systems
with two (graphene bilayers) or more layers of graphene are found to have
a wealth of properties that depend not only on the number of layers but
also on the order of their stacking [37,38]. Apart from stacking graphene
layers, new materials can be formed from a single graphene sheet by “cut-
ting” a narrow strip from it to form a quasi-one-dimensional object called a
graphene nanoribbon. Their dimensionality suggests a comparison with the

previous mentioned carbon nanotubes. Much in the same way that the prop-
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erties of nanotubes depended on the rolling direction and circumference of
the tube, the properties of ribbons depend strongly on their edge geometry
and width [39-44]. Experimentally, graphene nanoribbons can be produced
in a number of ways, including lithography [45, 46], etching [47], bottom-
up chemical methods [48] or even by “unzipping” carbon nanotubes [49] as
shown schematically in Fig. 1.3. Two principle nanoribbon edge geometries,
armchair and zigzag, are generally studied and are found to have radically
different electronic properties. Zigzag edges in particular are unusual in that
they can sustain localised edge states, which give rise to a range of properties
not seen in armchair-edged ribbons or in graphene sheets [40-42]. The forma-
tion of localised states near the Fermi energy may lead to spin-polarised edge
states when electron-electron interactions are taken into account. Although
some signatures of these edge states have been found experimentally [50],
there are concerns about their stability and any resulting magnetic prop-
erties are not predicted to be particularly robust under the introduction of
edge disorder [51]. Unlike nanotubes which can be either metallic or semicon-
ducting, nanoribbons are predicted to always be semiconducting [52] due to
electron-electron interactions or edge deformations which destroy the metal-
licity that simple models predict. However there was still a large discrepancy
between experimentally measured bandgaps [53-55] and those predicted by
theory. The theory that emerged is that this discrepancy arose from the dif-

ficulty in achieving pristine edges experimentally. Extended edge defects in

AN

Figure 1.3: “Unzipping” a carbon nanotube to form a graphene nanoribbon.
This figure is adapted from Ref. [49].
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the form of vacancies or other deformations were investigated by a number of
authors [56-64] and a broad consensus from these studies is that the presence
of edge-disorder induces Anderson-type localisation [65-67] in the ribbons,
causing the suppression of conductive paths through the ribbons for certain

energies.

1.3 Impurities in graphene

The edge disorder that was investigated in the studies mentioned above arises
due to the difficulties in engineering atomically precise edges for the ribbons.
However, the deliberate introduction of disorder into graphene systems, ei-
ther in the form of vacancies or impurity atoms, is another subject that has
received much attention in the literature, particularly in the fields of trans-
port and magnetism [68-75]. This is because the doping of a material can be
an effective way to tailor or tune its properties. However there is a crucial
difference between the case of a graphene sheet and that of a nanoribbon.
This is the existence of two symmetry-breaking edges, which are expected
to make some of the physical properties of the nanoribbon dependent on the
impurity position. This dependence has been noted in a number of studies
which examined the conductance through a nanoribbon system when the im-
purity location or distribution was varied [56,57,70-72,75]. Another aspect
that is often overlooked is that a similar dependence should arise also in other
properties of the system, for example, in the energetics of the doping process.
In other words, the binding energy of a dopant should depend on its location
across the width of a ribbon. Bearing in mind that impurity segregation is
known to occur at symmetry-breaking interfaces between two materials due
to quantum interference effects [76,77], it should come as no surprise that the
edges of a nanoribbon are capable of inducing similar segregational features
in the impurity distribution. What is surprising in the case of nanoribbons
is that the segregation may be controllable by external factors, which opens
the possibility of manipulating the impurity distribution within a ribbon and
hence engineering some of the related physical properties of the ribbon. This

topic is studied in some detail in Chapter 4.
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1.4 Graphene applications

1.4.1 General application

Due to the multitude of interesting physical and electronic properties that
graphene has been found to exhibit, a large number of possible technological
applications have been proposed [4-7]. As an immensely strong material,
graphene seems ideally positioned for application as a reinforcement in high-
performance composites [78]. Here its thinness is also a great advantage as
it cannot cleave, thus giving it the maximum possible strength in the out-of-
plane direction. Another advantage is that the strain in a graphene sample
can be monitored using its Raman spectrum [79- 81|, which allows mechanical
distortions of even a fraction of a percent to be detected. Much of the current
interest in graphene focuses on its potential application in computer electron-
ics. Promising results for graphene field effect transistors suggest that these
devices may be suitable for high-frequency applications [17,82,83]. Graphene-
based integrated circuits are however more troublesome. These require the
conducting channel to be completely closed in the off state, which is difficult
to achieve with the gapless spectrum found in graphene. However, as dis-
cussed previously, bandgaps are present in nanoribbons and indeed nanorib-
bon transistors with large on/off ratios have been demonstrated [54,55,84].
Graphene has also been suggested as a support material for transmission
electron microscopy (TEM) where its thinness, strength and low atomic mass
offer benefits such as rigidity and high contrast when examining biological
or other samples [85,86]. Graphene has also emerged as a viable candidate
in the field of optoelectronics and graphene coatings have been suggested
for use in products like solar cells and LCD displays [87-89]. However the
resistivity found in graphene films with the required transparency is to date
much higher than that of the industry standard, indium tin oxide (ITO).
If the resistivity can be reduced sufficiently, graphene coatings could offer

advantages like flexibility to such products.
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1.4.2 Spintronics

Another field where graphene-based materials have been mooted for appli-
cation is in the field of spintronics [90]. This field is projected to play a
major role in the evolution of the electronic industry as it allows informa-
tion storage, processing and communication at faster speeds and with lower
energy consumption than is currently possible with conventional electron-
ics [91-94]. The principal idea of spintronics is to exploit not only the charge
of an electron, but also the spin degree of freedom associated with its intrinsic
angular momentum. Currently, all the magnetic materials used for modern
technology belong to either the d or f-blocks of the periodic table. Despite
the wide range of diverse structures that carbon is able to form, it is not
in itself magnetic. However, graphene-based spintronics may be achievable
when we consider that many of its derivative materials and nanostructures
display various scenarios of magnetism [90] and also that graphene has many
properties that suggest its possible use as a carrier of spin information. These
include weak spin-orbit and hyperfine couplings which are the main sources
of relaxation and decoherence of electron spin [95-101].

Many of the proposed graphene-based spintronic devices are underpinned
by the spin-polarised edge states, mentioned above, that are predicted to
occur when a graphene sheet is cut to have a zigzag edge geometry. Partic-
ular focus has been paid to zigzag-edged graphene nanoribbons, with paral-
lel zigzag edges that are predicted to display opposite spin orientations as
shown in Fig. 1.4 a). Such a system may allow a possibility of tuning its spin-
transport properties [39-42,102,103]. For example, the prospect of triggering
a half-metallic! state using external electric fields in zigzag-edged nanorib-
bons has been suggested [41]. The realisation of such a device would allow
efficient electronic control of spin transport, a very useful property in spin-
tronics and something that is difficult to achieve in other materials. Despite
theoretical advances in the study of nanoribbons, experimental verification
of their properties has so far been inconclusive, due in part to the difficulty

in patterning the edge geometries required for these effects to be observed.

'"This means the system is metallic only for electrons of one spin orientation.
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Figure 1.4: a) Schematic adapted from Ref. [90] showing the possible setup
of achieving half-metallicity in a zigzag edged graphene nanoribbon using
external electric fields, as suggested by Ref. [41] b) Two magnetic impurity
moments embedded in a graphene sheet. Understanding the interaction be-
tween moments in such a setup is necessary if magnetically-doped graphene
systems are to be used in future spintronic devices. Of particular interest in
this thesis is how the range of the interaction varies if one of the moments is
set to precess.

Furthermore, the spin-polarised edge state for zigzag edges is predicted to
be highly dependent on the edge geometry and not particularly robust under
the introduction of edge disorder [51]. These factors present major obsta-
cles in the path of utilising the intrinsic magnetic edge states of graphene
in experimentally realisable devices. In Chapter 4 we consider the features
of nanoribbons doped with magnetic impurities. The position dependence
of the resulting magnetic moments is considered in a similar fashion to the
energetics previously mentioned. However, we also find that the magnetic
properties of such systems are robust under the introduction of edge disorder
and argue that magnetically doped nanoribbons may provide an alterna-
tive route to applications previously envisaged for nanoribbons with intrinsic
magnetic ordering.

Another possibility that has been proposed for graphene-based spintronics
is the exploitation of defect-driven magnetic moments that arise in graphene
[73,74]. Magnetic moments have been predicted to form around vacancies
and other defects in the graphene lattice and the possibility of engineering
a ferromagnetic state in graphene from such moments has been suggested.

However, such a claim would seem to be restricted by the implications of the
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Lieb theorem [104], which states that any such magnetic moments arise from
a disparity between the two sublattices of graphene. Large-scale, randomised
disorder would tend to minimise such a disparity and prevent the formation
of a ferromagnetic state. However, recent experimental evidence suggests the
possibly of engineering such a state through partial hydrogenation [105]. The
existence of such a state may then be accessible through magnetoresistance

measurements [106].

A third possibility for incorporating graphene in spintronic devices, and
one that we shall focus on in this work, is through the doping of graphene
with magnetic impurity atoms, as shown in Fig. 1.4 b). We have already
touched on this topic above for the case of nanoribbons. This approach takes
advantage of the indirect exchange coupling [107-110], often referred to as
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [111-115], between
magnetic impurities in a graphene system which is mediated by the conduc-
tion electrons of the graphene host. A long-ranged interaction of this type
allows impurity moments on graphene to feel each other’s presence and re-
spond to magnetic perturbations or excitations at other impurity sites. The
usual manifestation of this interaction is through the lowering of the total
energy of the system when the moments adopt certain favourable alignments.
In this way the interaction can dictate any magnetic ordering that arises be-
tween the moments. Studies in carbon nanotubes have found the presence
of a long-ranged interaction whose amplitude decays as D~!, where D is the
distance between the magnetic impurities [116]. Unique features arising from
the peculiar electronic structure of graphene were also found that affected
the sign of the interaction and its decay rate for certain impurity configura-
tions [117-119]. Signatures of a magnetic interaction between impurities in
carbon nanotubes have also been detected experimentally [120]. Whilst the
studies to date of the interaction in carbon nanotubes have been promising,
the outlook is less clear in the case of graphene sheets. A large number of
studies [121-133] have been performed, with the consensus that the interac-
tion decays at least as fast as D=3 for undoped graphene. In Chapter 5, the
indirect exchange coupling in graphene is examined in detail and we examine

the effects it can have in ab initio calculations that use periodic boundary
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conditions. Regarding spintronic application, it seems that a decay rate this
fast would limit the prospects for devices consisting of magnetically-doped
graphene systems.

It has been suggested that the range of RKKY-like interactions can be
augmented if the magnetic moments are set in motion, for example, if they
are set to precess by the application of a suitable time-dependent magnetic
field [134,135]. Such an interaction is driven by non-equilibrium spin currents
emanating from the precessing moments. The magnitude of the interaction
can be measured by a quantity called the dynamic spin susceptibility, which
describes the response of the magnetism of the system to a dynamic magnetic
perturbation. Investigation of this quantity in carbon nanotubes [136] has
revealed a decay rate slower than that of the static coupling. Further studies
of spin dynamics in graphene systems have suggested the use of these materi-
als as spin waveguides [137], spin-pumping transistors [138] and spin current
lenses [139]. These reports, together with recent experimental evidence sug-
gesting possible long-range spin current behaviour in graphene [140], moti-
vate a comprehensive study of the dynamic magnetic interaction in graphene
within a fully quantum-mechanical framework. In Chapter 6, we examine the
spin susceptibility in graphene as a dynamic analogue of the static RKKY
coupling, with a particular focus on the separation dependence of the in-
teraction. We find an augmentation of the interaction range that suggests
magnetically-doped graphene systems may be suitable for spintronic applica-
tion when spin dynamics is taken into account. Furthermore, by relating the
dynamic interaction studied to the lifetimes of magnetic excitations, measure-
ments of which are currently achievable using inelastic scanning tunnelling
spectroscopy [141-144], we suggest how this interaction may be probed ex-

perimentally.

1.5 Thesis Layout

This thesis uses a combination of analytical and computational methods to

study many of the topics discussed above. It is organised as follows:
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Chapter 2 introduces the bulk of the methods to be used throughout
the thesis. In particular, the calculation and manipulation of Green
functions is discussed. These quantities underpin the majority of the
calculations performed. A brief introduction is also given to electron-
electron interactions as accounted for using the Hubbard model and
Hartree-Fock approximation. The methods discussed in this chapter
are not specific to graphene and a broad overview of their general usage

Is given.

The electronic band structure of graphene, calculated using the nearest-
neighbour tight-binding approximation, is discussed in Chapter 3. The
difficulties involved in calculating the corresponding Green function
matrix elements for graphene sheets are mentioned. An original ap-
proach to performing the necessary integrals analytically using certain
approximations is presented. The results of this method are shown
to be in excellent agreement with numerically calculated results. Fi-
nally the recursive method used to calculate the Green functions for

nanoribbon systems is demonstrated.

Chapter 4 focuses on graphene nanoribbons, and in particular on how
their physical properties depend on the location of an introduced im-
purity. A discussion of previous studies examining the conductance in
such systems is illustrated with a simple model of our own. This is
followed with an analysis of our results for how the binding energies
and magnetic moments of impurities depend on their location. Com-
parisons are made between simple model and full ab initio calculations
and a range of ribbon geometries and impurity configurations are con-
sidered. The possible applications of these results are discussed for

both the energy and magnetic moment calculations.

The static magnetic interaction between impurity atoms embedded in
graphene is considered in Chapter 5. Different approaches to calculat-
ing the coupling are introduced and compared. The Green functions

derived in Chapter 3 are applied to determine the separation depen-
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dence of the interaction and this is compared with results from previ-
ous studies. By treating the interaction in a more complete fashion,
we find effects that are not predicted by the standard approach and
discuss some of the possible implications of these. Finally, we show the
effect that the magnetic interaction can have on ab initio calculations
using periodic boundary conditions. Failing to account for these effects

can lead to the spurious suppression of magnetic moments.

Chapter 6 extends the discussion of the magnetic interaction between
impurities in graphene to the case of precessing moments. The spin
susceptibility formalism is introduced and a dynamic analogue of the
RKKY interaction is suggested. The distance dependence of such an in-
teraction is examined thoroughly using analytical and numerical meth-
ods. The range of the interaction is found to increase significantly in
the dynamic case. The interaction studied is related to the lifetimes
of magnetic excitations in such systems, and a possible experimental

setup to probe the decay of the interaction is suggested.

The results and conclusions of the thesis are summarised in Chapter 7,

where possible extensions of the work are also discussed.



CHAPTER
TWO

Mathematical methods

2.1 Introduction

This chapter will introduce the majority of the mathematical methods that
will be used throughout the thesis. Most of the techniques that will be
discussed are underpinned by a quantity called the Green function [145] and
the majority of the chapter deals with calculations involving these functions.
The final section of the chapter features a discussion on the Hubbard model

which is used in later chapters to model systems with magnetic moments.

2.2 Green Functions

Fundamentally, Green functions are solutions to differential equations that
are used to relate a response function to a source term. Within the realm
of condensed matter physics, the differential equation in question is almost
always the Schroedinger equation, which describes the quantum states of
system of interest. The Green function acts as a correlation function that
relates the response of this system to a perturbation. For this reason, they are
useful in calculating the properties of disordered systems. Green functions
also describe the propagation of electrons in conducting systems and are thus

commonly utilised in transport calculations also. As we shall see below, the
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Green function is also intrinsically linked to the density of states (DOS), a
fundamental quantity used to describe the electronic structure of a system
in solid state physics.

The Green function corresponding to the Schrodinger equation is defined

as

. 4
g = lim [(E + e}l — H] . (2.1)

n—0

where H is the Hamiltonian describing the system, I is the identity operator
and F is the energy. 7 is a small, positive imaginary part added to the energy
to ensure that the Green function is well defined around the eigenvalues of
the Hamiltonian. The limit can be taken with + or a —, corresponding to
the cases of the retarded and advanced Green functions respectively. The
retarded Green function describes propagation away from the site of the
perturbation, whereas the advanced Green function describes propagation
towards it. In this work, the term ‘Green function’ will generally refer to the
retarded case, however the distinction only becomes important later when we
consider transport or spin dynamic calculations where both types are needed.
It is important to note that at this stage the form of the Hamiltonian used
to describe the system has not yet been specified. The discussion to date has
been general, however the Green function operator will depend on the form of
‘H, which depending on the level of complexity required can be a free electron,
tight-binding or more complete ab initio Hamiltonian. In the next chapter,
we shall introduce the tight-binding Hamiltonian that is sufficient to describe
the electronic properties of graphene and which will be used throughout the
rest of this thesis. Consequently, the results of this chapter will be shown
for Hamiltonians expressed in terms of linear combinations of atomic orbitals

(LCAO).

Relation to the Density of States

The Density of States (DOS) is an important quantity in Solid State Physics.
It describes the number of energy states (per energy interval) that are avail-
able to be occupied at a particular energy. One of the major advantages of

working within the Green function formalism is the ease with which the DOS
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can be calculated. To begin with, if H has eigenvalues ¢, and eigenstates |W,)

then we can write

H = [Ta)ea(Tal. (2.2)

Substituting this into the definition of the Green function, Eq. (2.1), yields

1
§=1 W) (W, 2.3
’13(1)2| Vi (l (2.3)

Assuming a LCAO-type Hamiltonian, we can describe H by a basis of lo-

calised orbitals [j), centered on site j. Projecting onto orbitals |7) and |)

gives
git = (gt} = lim ;(Jl‘l’dmwam- (2.4)
Multiplying above and below by (E — in — €,) gives
. , E—in—e,
gt = 71]12(1)2(1:<‘}’\IJ">(E— €0)2+n2 (‘Ijalw* (25)
the imaginary part of which is given by
i
m(g;1) = lim Xajm\v VE ez el (2.6)

Setting [ = j and availing of the definition of the Dirac Delta function

. 1 a
o) = e T e 20
allows us to write
- —Im (955) Z |GG W) PO(E — €,). (2.8)

However, this is exactly the definition of the Local Density Of States (LDOS)
at site j, p;(£). This is a very useful quantity that can be used to calculate
physical quantities like the occupation number and energy changes. Summing

over all sites in the system results in the total density of states. Alternatively,
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this can be written as a trace over the Green function matrix:

Protal(E) = Z/)j(E) = —%Im Tr (g) . (2.9)

2.3 The Dyson Equation

As we have seen above, the DOS of a system under investigation is very
closely linked to the Green function describing the system. However, in the
derivation above we have assumed knowledge of the eigenstates of the system,
|W,). If the system displays translational invariance then the eigenvectors can
be calculated using Bloch’s Theorem, as we shall demonstrate for the case
of graphene in the following chapter. However when translational invariance
is broken, for example by the introduction of an impurity, then the Bloch
wavevectors are no longer eigenvectors of the system. It is in situations
like this that the power of the Green function approach is fully revealed.
The Dyson equation allows us to write the Green function of the perturbed
system in terms of the Green function of the unperturbed system and the
applied perturbation, without the need to calculate the eigenvectors of the
perturbed system. This process allows for easy calculation of the relevant

physical properties, such as the DOS, of the perturbed system.

2.3.1 Derivation

The Dyson equation can be derived quite easily from the definition of the
Green function in Eq. (2.1). If G is the Green function associated with a
Hamiltonian H = Hy 4 V, where V is a perturbation potential, then we can
write it in terms of the Green function ¢ associated with the unperturbed

Hamiltonian H, as follows:

G = |(E+ini - (Ho+ f/)] -

- 'f—l—v}_'
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" -1
Multiplying across from the left by [[ — QV] results in the Dyson equation
in its usual form
G=g+g§Va. (2.10)
Another common form of the Dyson equation is in terms of the T-matrix,
defined as :
T:V[i—gf/] (2.11)
which allows us to write
G=g+qTg. (2.12)

This form of the equation is often preferable as it collects all the contribu-
tions from the perturbation into one term, namely T, which describes the
scattering caused by the introduced perturbation.

Now that the Dyson equation has been introduced, we shall demonstrate
its usefulness with a few examples. The primary use we will find for the Dyson
equation is for investigating the properties of perturbed systems when those
of the unperturbed system are known or can be easily calculated. Within
this work this will usually consist of introducing an impurity atom into a
graphene system and investigating how the properties of the system change.
However, the Dyson equation can also be used to connect two larger systems
and when applied recursively, can be used to build up a large system from

many small parts.

2.4 Perturbations and Disorder

Within the tight-binding Hamiltonians that we will use throughout this work,
the majority of the perturbations encountered will consist of changes to either
the on-site energy terms or the hopping potentials connecting atomic orbitals
in a lattice, or to both. Perturbations of these kinds can be used to represent
substitutional or adsorbed impurities introduced into the host system, as we
shall demonstrate explicitly below. The change in the on-site energy term
represents the fact that the relevant energy orbital on the impurity atom will

differ from that of the orbitals on the graphene host. Similarly the hopping
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parameters which account for the overlap between orbitals on neighbouring
sites will vary depending on whether the sites contain two carbon atoms, or
one carbon and one impurity atom. We will now demonstrate how the Green
functions for the cases of a single substitutional atom and a single adsorbed
atom (adatom) attached to host can be calculated. In the examples below,

the host system is represented by a simple linear atomic chain.

2.4.1 Substitutional Atom

The simplest type of impurity involves replacing a carbon atom in the lattice
with an atom of another element. To model such an impurity we need to
change the onsite energy term(s) describing the relevant orbital(s) at this
lattice site, and also the hopping parameters describing the overlap between
these orbitals and those on the neighbouring carbon atoms. In the simplest
possible case, we can consider only a single orbital on the impurity atom
and neglect changes to the hopping parameters. In this case, the perturbing
potential is written

V = |n)dn(n|, (2.13)

where n labels the perturbation site and 9,, = €,, — €y, the difference between
the onsite energies of the impurity atom and the lattice atom it replaced.
For the simple case we are considering here, many of the quantities involved
are simply scalars. When extending the results here to more complicated
models care must be taken as these now become matrices. To calculate a

general matrix element, GG;;, of the Green function for the perturbed system

YK
we apply the Dyson equation to the unperturbed Green function and this

potential as follows
G = 9 + Gi600Gnij 5 (2.14)

Figure 2.1: A substitutional impurity at site n is modelled by a shift in the
onsite energy at this site




2.4. PERTURBATIONS AND DISORDER 21
and then apply it again to the term G

an = Onj =f gnndnGn]’
— gnj
1 = gnn(sn

Substituting this expression for Gy,; back into (2.14) yields
gin(sngnj

1= gnn(Sn (215)
= Gij + ginTnngnj )

Gij = gij +

where

On

B 2.16
= gn.n(sn ( )

nn —

is the T-matrix element describing the scattering caused by the perturbation.
For this simple perturbation it is the only non-zero term in the T-matrix
given by Eq. (2.11). Examining the form of G;; in more detail gives an
insight into the physical meaning of the expression. Recall that this term
is describing electron propagation between lattice sites ¢ and j. The final
form of the expression consists of two terms, which can be thought of as the
summation of propagation along two different paths. The first of these, g;;
obviously corresponds to direct propagation between sites 7 and j without any
contribution from the introduced perturbation and is identical to propagation
in the pristine system. The other term, ¢;,7Ty,0n;, corresponds to indirect
propagation between 7 and j via the perturbation site n, where the scattering

that occurs at this site introduces a factor of T},.

If we want to investigate the LDOS at the impurity site the quantity
of interest to us is the diagonal element of the Green function at that site,
which we find by setting i = j = n in Eq. (2.15). Simplifying the resulting

expression gives
nn

Gppn = ———.
: I - gnnon

However, we can also investigate properties of the system away from the site

of the impurity. Supposing we are interested in a site ¢ # n, we can calculate
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the Green function at this site by setting i = j # n and we find

Jin (Bnn Gni

Gii = gu + :
" - 1— gn'n()n

In these derivations the importance of the off-diagonal matrix elements of
the Green function - terms of the form g¢;, and G,; - is noted. These terms
act as correlation functions between the different sites of the lattice, and
are used to calculate the response of a system at one point to a perturbation
elsewhere. We will come across these terms repeatedly throughout this work,
and they underpin many of the results in the upcoming chapters. In the next
chapter we shall examine in detail the functional form of these terms in a
graphene lattice in order to predict the distance dependence of interactions

mediated by the conduction electrons of graphene.

2.4.2 Adsorbed Atom

In this section another type of impurity will be discussed. This is an ad-
sorbed atom, or adatom, and occurs when an impurity species bonds to
atoms within the host lattice, rather than replacing one, as was previously
seen with substitutional impurities. For simplicity, we again consider only
a single atomic orbital on the impurity atom, although a generalisation to
a multi-orbital atom follows an identical procedure to that outlined below.
We label the relevant orbital on the impurity atom « and assume for sim-

plicity that it connects to a single site n on the host material. That is, the
1
1

n

Figure 2.2: An adsorbed atom impurity is modelled using a perturbation
potential to connect an orbital on the impurity atom, «, with one located at
site n on the host system.
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only nonzero hopping parameters between the host and the impurity atom
are those connecting sites o and n. Before the impurity is introduced, we
consider a pristine host material with a Green function matrix g;; where ¢
and j run over all the orbital sites of the system. We also consider the Green
function relating to the impurity atom, g,,, which disconnected from the

rest of the system is simply a scalar. From Eq. (2.1), we find

1

= = 2.17
E+in—e¢, ( )

Yoao(E)

where €, is the onsite energy of the impurity.

This type of impurity is different to the substitutional case in that the
Dyson equation will be used to connect two parts of the system which were
previously separate. This is perhaps one of the simplest cases in which the
Dyson equation connects two systems, but more complex cases shall be ex-
amined shortly when recursive methods are considered in Section 2.5. Here,
the perturbation potential that is applied does not alter the onsite potentials
at any of the lattice sites, but rather ‘turns on’ a connecting potential be-
tween them. This is achieved by changing the relevant off-diagonal matrix
elements of the Hamiltonian from zero. For a single adatom, the perturbing

potential is given by
V = |n)Viala| + |a)Van(n] . (2.18)

Note that the two terms are complex conjugates of each other (V,,, = Vi, €
R), which ensures that the Hamiltonian describing the perturbed system is

hermitian. In matrix form, the disconnected Green function for the entire
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system, and the perturbing potential are

( guu - Gim - giv | 0
b In1 *** Onn t gnN 0
g= . . . )
gni  gnn v gnn | O
\ 4y, S, 1% - [ gm/
and
0 0 o 0 )
o Brase 0. =s» OG{%p
o - 0 ~--- 0] 0
0 - Vo --- 0] 0

Applying the Dyson equation, we find
Gij = Ggij + Gin ‘/HQGﬂj + gin‘/(man .

We note that if i = o, the term g;,VhaGo; vanishes since go, = 0 for the
disconnected system. Similarly, if ¢ # «a the term g¢;,V,n,Gpj vanishes for
similar reasons. Thus for any Green function element we want to calculate

we need only consider one of these terms.

The Green function between two sites on the host lattice after the impu-

rity atom is connected, corresponding to i, j # «, is given by
7
Gy = i + 90 VaaGaj 5
where using the usual approach we also find

Gaj = gaavunan and an = Gnj + g'nnV"naGaj )
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yielding
G i Jaa Van gnj
aj —
1 — Jaa Van 9nn Vna
and - 7
Gij _ gij + Jin Vna Jaa Van gnj (219)

L= Jaa Vom 9nn ‘/na .
The diagonal Green function corresponding to the impurity site is easily

calculated and is given by

Joa
(o, = 3 2.20
1B Joa Van Inn Vna ( )

The T-matrix elements for this type of impurity are found from the definition
in Eq. (2.11). The only non-zero matrix elements are those corresponding

to sites n and «. The T-matrix relating to these two sites is given by

2 1 ‘/Il(l (IOV()TI ‘/71(1/
7= ( 4 ) . (2.21)

= Jaa V(m Gnn V;I(Y Vrm Van Ynn Vnn

If we are concerned with sites in the host system, and not the impurity atom

itself, the only matrix element of interest is

VTl(I g(!(l ‘/(m

. (2.22)
L Jaa Vom Inn ‘/na

nn —

All Green function matrix elements within the host system can be calculated
from
Gij =gij + ginTnngnj . (223)

We note the similarity between this expression and that for a substitutional
impurity, given by Eq. (2.15). In fact, by comparing the T matrix elements
for substitutional and adsorbed impurities in Eqs. (2.16) and (2.22), we
can express the effect of an adsorbed impurity on the system as an energy
dependent perturbation potential applied to the site to which the impurity
adsorbs. In other words, by applying an onsite potential ¥,,(E) at site n,

we take into account the effects of an adsorbed impurity at this site. This
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potential, called a self energy, is given by
En.n(E‘) — an,agaaV;m . (224)

Using a self energy term to account for an external effect is a very common
method in condensed matter physics. The important point is that the self
energy represents the potential felt by the electrons in the host material
due to the introduction of the adsorbed impurity. Unlike the substitutional
impurity, the potential felt by the electrons due to an adatom is not constant,
and electrons of different energy experience a different potential. This is
due to the presence of the g,, term in the expression for ¥,,,. The energy
dependence of g,, is clear from Eq. (2.17). In fact, when the energy of
electrons in the host equals the onsite energy of the adsorbed impurity, the
potential felt by electrons in the host diverges, while for large energies the
potential becomes increasingly small and the adsorbed impurity is essentially

invisible to them.

2.4.3 Multiple impurities

We shall now extend our discussion to the case of more than one impurity
in a system and see how the expressions derived earlier are affected. We
consider substitutional impurities of the kind described in the section 2.4.1.
If we have two impurities, located at sites m and n on the lattice, then the

potential describing the perturbation is given by
V = |m)dm(m| + |n)d,(n]| . (2.25)
For an ensemble, N;, of such impurities, we have

V= Z la)da(al . (2.26)

a€eN;
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From the Dyson equation, Eq. (2.10),

Gij = gij + Z i RN (2.27)

(IGN,'

Expanding the G,; term as before,

Goj = Gaj + Z GabOpG;

b#aeN;

and substituting the result back in gives

Gij = gij + Y GiadaGoj + D D _ GiaOagarOsGy; -

a€N; a€N; b#a

We now must repeat this process for the term Gp; and so on, for each of
the scatterers until we have an expression in terms of only the unperturbed
propagators and then we begin the backsubstitution process. This method
increases in complexity very quickly with the number of impurities consid-
ered. It soon becomes more convenient to solve this type by inverting the

R . . E -1
matrix (I — ¢gV') numerically and solving for G = [I — f]\/] g.

We can get a better understanding of the form of the Green function of
a system with many scatterers by examining the T-matrix describing the

X % A & =1
scattering. Recall that it is given by T = V [I - _("]V] . Expanding the

term [I — @V] o as a power series we find
T=V4+VGgV+ViVgv+.... (2.28)
Rewriting in terms of single-impurity T-matrices t,, where
ty = |a)tealal

where tg, = 64 [1 — g,,_ada]_l, we find

T= tat D> D tablo+ Y D Y faglogle+---. (2:29)

a€EN; aeN; b#a a€N; b#a c#b
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Thus, we can write the Green function Gj; in the form

Gij = YGij o+ Z giat(mgaj 2 Z Zgiatuagabtbbgbj_"

a€EN; a€eN; b#a

-+ Z Z Z GiataaGabtibGoctecGes + =~

a€N; b#a c#b

(2.30)

By writing the expressions for the T and Green function matrix elements
in terms of the single-scatterer T-matrix elements, t,,, we can clearly see
that the effect of multiple scatterers is not merely a summation of the effects
of single scatterers, but consists of higher order interference terms also, as
should be expected. These higher order terms correspond to propagation
pathways connecting sites 7 and j via a number of scattering sites. With
more than one scatterer in the system, we open up the possibility of a path-
way visiting the same site multiple times and thus there are now an infinite
number of possible paths between the two sites. It is important to note that
although we used a power series in our analysis of these expressions, the
Dyson equation, as given in Eq. (2.10) and solved using matrix inversion
or the exact substitution method illustrated earlier, gives the exact Green
function of the perturbed system, and not merely an approximation to it.
If it is too difficult or time-consuming to solve using these methods, we can
truncate the power series given in Eq. (2.30) after a finite number of terms
to give an approximation to it. If we are dealing with an infinite number
of randomly located scatterers, methods such as the Coherent Potential Ap-
proximation [146,147] can be used to yield a configurational average for the

T-matrix and hence the Green function itself.

Perhaps the most common Green function matrix element to appear in
this work will be the off-diagonal matrix element between two sites con-
taining impurities. This term plays a major role in the magnetic coupling
calculations that will be discussed at length later in this work, and it is in-
structive to examine it now. We wish to calculate the matrix element G,,,

when the perturbation potential for two impurities, given in Eq. (2.25) has
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been applied. With two impurities, Eq. (2.27) becomes

GTI”L T gmn + gmm ‘/mm Gmn + gmn ‘/n'nGnn J

Using the substitution process, we can use the Dyson equation again to
write G, in terms of (,,,,,. Substituting the resulting expression back in and

reorganising terms gives

Imn
G~ — . 2.31)
" (1 s gvrz.nl5nz)(1 - g‘nn(sn) — Gmn ()ngnmom (

The equivalent expression for the Green function between two adsorbed
impurities adsorbed onto sites m and n, like those discussed in Section 2.4.2,

is given by

Gm'i =
Jao ‘/mn Gmn V;u'i gsp

(1 — Gou ‘/mn.(]mm an)(l - gl‘i{i‘/nn.(/nn ‘/mi) o guavmn.(/mn ‘/nﬂ.(/d,d‘/m:gmn ‘/mn
(2.32)

2.5 Recursive Methods

The definition of the Green function, given in Eq. (2.1), suggests an obvi-
ous method for their calculation - namely a direct inversion of the quantity
[(E = m)] - H] using matrix techniques. This amounts to inverting a ma-
trix whose dimension is the total number of orbitals considered in describing
the system. As the size of the system in question increases, the matrices
involved become unwieldy and alternative methods must be exploited. For
periodic systems, we can introduce Bloch functions and reduce the problem
to an integration in k-space. This method shall be illustrated explicitly for
graphene in the next chapter. For the case of disordered systems, or other
cases when the Bloch function method is not viable, recursive methods can
be used.

Recursive methods involve building a system in a piecewise fashion, and

updating the necessary Green function matrix elements at each stage. The
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advantage of this kind of approach becomes clear when only a limited number
of Green function matrix elements are required to calculate the quantity of
interest. This is the case for the majority of calculations. In this case,
the only Green function elements that need to be calculated or stored are
those required to connect the piece of the system being added at the current
iteration and those corresponding to the lattice sites of interest or required
for their calculation at later iterations. This can greatly reduce the size of
the matrices involved and thus increase the speed of the calculation.

Each piece, or cell, added to the system need not be the same, and so a
recursive approach is often used when building a system in which disorder is
present. However, if each cell is the same, a recursive approach can still offer
advantages over Bloch function methods as more advanced techniques, like

the Rubio-Sancho method outlined below, can be availed of.

2.5.1 Standard recursive approach

We consider a general case where the Green function of a system composed of
N individual cells, each consisting of n; orbital sites, is required. We assume
that the Green function matrices for each of the individual components, g;;,
are known. Note that here g;; is not a single matrix element, but rather a
n; x n; matrix containing all the Green function matrix elements describing
the '" unit cell disconnected from the rest of the system. For complete
generality, we do not restrict the unit cells to being identical, or even to
having the same number of sites. We now introduce a set of connection
matrices, \A/“'Jr 1 and VHU, describing the hopping parameters that are ‘turned
on’ to connect the cells 7 and i+ 1. The matrix f/l-,iﬂ has dimension n; X n; 1,
S0 is not necessarily square.

We begin by considering the case when the Green function of interest is
that of the last cell of the fully connected system, CA}’,”,,. This is a common
scenario in transport calculations, where the surface green function of a lead
is required. In this case, we start at the first cell, 2 = 0, and connect the cells
individually until we have added the last cell. At each stage we only need to

store the Green function of the last unit cell added. This is clear from the
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Figure 2.3: Before and after the connection of the i*" cell to the system.

Dyson equation used to connect any given unit cell to the system. Defining
gij to be the Green function matrix of the system after the a'™ cell has been

added, then the Green function of cell 7 after it is connected is given by

3t = G + 5u Vg1 8145 (2.33)

where all quantities are matrices, and

~d i r A
Gi—1,i = Gi—1-1 Yi-1,i Gis »

to give
_ A . _ . =]
95 = ([ = gy Visa 92:11,1-_1 V;—l,i) Gii - (2.34)

Here we have calculated the surface Green function matrix of the system
after 7 iterations in terms of that for i — 1 iterations and the Green function
matrix describing the i disconnected cell, as shown in Fig. 2.3. Eq. (2.34)
thus defines an iterative algorithm to calculate the Green function required
at the far edge of the fully connected system. We simply repeat the process
foreachi=0,..., N.

We now consider a more general case, where the Green function required
is not that at the final edge of the system, but at an arbitrary cell k£ in the
system. We find that the procedure followed is very similar to the previous
case, but with a slightly more advanced algorithm to update the required
Green function at each iteration. For i < k, we follow the exact same proce-
dure as before to calculate gf, - the surface Green function after £ iterations

when the cell of interest is currently at the edge. For each cell that is added
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after this, k < i < N | we must update not only the Green function matrix
of the edge cell, but also gi, and any additional Green function matrices
that are needed to calculate it. The edge cell is updated as before using Eq.

(2.34). The matrix gi,, at each i > k, is found using

S RPY A ENPY N B ~i ar

Gk = Gk T Gi—1 Vi1 Gig- (2.35)

. ate A at each iterati . NPT N
Note that to update g;, at each iteration we require g, ", and g;. - off
diagonal Green function matrices between the cell of interest and the edge
cell, from the previous and current iterations respectively. We can thus define

an algorithm to update all the necessary Green functions at each iteration.

, . ‘ -1
Ji; = (1 — Git Viie1 G714 Vz‘-l,i) Jii

n N i1
9ik = 9ii Vii-1 9" 14 (2.36)
Gee = Gin + 931 Vieri 04

ki = Gt Viera Gl -
Note that in each iteration the quantities above should be calculated in the
order shown, as many depend on the quantities calculated before them in the
same iteration. Furthermore, although we have calculated the Green function
here for a cell within the system, it is easy to adapt the procedure here to
any set of sites within the system. Once the cell containing a site of interest
has been added to the system we simply update the relevant Green functions
on each iteration; i.e. the matrix element of interest and the off-diagonal
elements linking it to the current edge cell. An analogous algorithm to Egs.

(2.36) is then followed until the system is complete.

A common use for recursive techniques is to calculate the surface Green
function of a semi-infinite lead. This quantity is often required in transport
calculations where a device region is connected to a semi-infinite lead at either
side. Similarly, by connecting two semi-infinite leads the Green function in
an infinite lead can be calculated. For this sort of calculation it is usually
the case that each cell in the system is identical and we shall make this

assumption here also. Thus to simplify notation, we define g¢ to be the Green
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Figure 2.4: Two semi-infinite leads can be connected using the Dyson equa-
tion to calculate the Green function of an infinite system

function of an individual cell, and Vg, (V7,r) to be the hopping matrix used to
connect it to the cell to the left (right). The general approach is to recursively
add cells to the system until the addition of an extra cell does not change
the Green function elements of the edge cell. When [g, — ﬁx:}‘,\_ll < €,
for some suitably small €, electrons in cell N do not feel the presence of the
opposite edge and so g¥ v acts as the surface Green function of a semi-infinite
lead. Note that it is possible to build a lead by adding cells either to the
left or to the right of the starting cell, and that the surface Green functions
for these two cases are not necessarily equivalent. We distinguish between
these two cases by introducing the notation S 2’/ r to denote the surface Green
function of a system of N cells that has been built from the left / right. The
superscript is dropped to denote the surface Green function of a semi-infinite
lead. We can now rewrite the recursive algorithms for these surface Green

functions as

Ao = E . ~ —1

L= (1= g0 Vi S5 Vir) g (2.37)
s A 5 s 2 =

R= ([ —go Vir Sy VRL) Jc - (2.38)

When convergence has been reached, the two leads can be joined to give the
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Green function of the infinite system, as shown schematically in Fig. 2.4.
The Green function matrix for a cell in the infinite system, G¢, is found

using the Dyson equation
i s 5 % P =1 ks
Go = (1= 5 VnSrVi) St (2.39)

Off-diagonal Green function matrix elements between sites in different
cells in an infinite lead system can be found by combining the techniques
discussed above. Firstly, a semi-infinite lead from the left is constructed,
with a surface Green function S r1- Then the required distance between the
sites of interest is formed by the connection of single cells added recursively.
As these cells are added, the Green function at the old edge, L1, and those
connecting it with the new edge, are updated using Eq. (2.38). When the
required number of cells are added, the surface Green function of the second
site, S 12 1s connected to a semi-infinite lead to the right, and the required
Green function @ 1112 18 calculated by updating the relevant Green functions

as before.

2.5.2 Rubio-Sancho Method

In the previous section, a simple recursive method to calculate the surface
Green function of a semi-infinite lead was discussed. The efficiency of this
method is of order N, where N is the number of cells that must be added
to the system before the surface of the system acts as the surface of a semi-
infinite lead. It should be noted that this number is dependent on the energy
at which the Green function is being calculated and can increase dramatically
near singularities. We will now outline an alternative method of calculating
the surface Green function which has an efficiency of order 2. This is the
so-called Rubio-Sancho method [148].!

We shall show the full form of this method below, which is written in

terms of transfer matrices. However the fundamental concept is quite simple

"We note that both methods depend not only on the number of unit cells, N, added to
the system but also on the number of sites considered in each unit cell, M. Both methods
are of order M2, i.e. the number of matrix elements used to describe the unit cell
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Figure 2.5: At each iteration in the Rubio-Sancho method the length of the
lead approximating a semi-infinite system is doubled.

and the method is equivalent to the following. At each iteration, we update
not only the Green function matrix corresponding to one edge, but to both
edges and also to the off-diagonal Green functions connecting them. At the
next iteration this allows us to add not just one cell to the system, but to
double the length of the system as shown in Fig. 2.5. If we have a system
of L connected cells 1,2, ..., L and have calculated the Green functions ¢, 1,
Jr.1, 1. and gp 1 of this connected system, then the corresponding Green
functions for a system twice this size can be calculated by joining the right
edge of this system to the left edge of an identical system, whose cells we
denote L + 1,...,2L. The Green function for the new edge cell, GA'QLVQL
is found, after using the Dyson equation for intermediate terms e Lor and

G191, to be

R ) ) ) R |
G'z/,‘zn = Gor21 + 92,141 VRL [1 — 95, VLR §14+1,L41 V}?L]

grr Vir 9r+1.2L
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where as before VRL (VLR) connects a cell to the neighbouring cell on the
left (right). Since the system composed of cells 1,..., L is equivalent to that
composed of cells L +1,...,2L, we can rewrite this expression in terms of

the Green functions with indices 1, ..., L as follows

" ~ A A 5 =1 %
G‘ZL.‘zL - .(:IL,L + gL,l VI{L [[ - .(}L.L VLR g1, VRL] QLL VI,R gl,L @ (240)

This expression updates the surface term on each iteration, and we see quite
clearly that it relies on the diagonal Green function matrices for the two
edge cells and the off-diagonal matrices connecting them. These must also
be updated at each iteration and we can define an algorithm similar to that
discussed in Eq. (2.36) to do this. However, we shall instead use an alterna-

tive algorithm to perform this calculation.

We consider a semi-infinite lead, with a surface cell labelled 0, whose
surface Green function to wish to calculate. This term, C()U may be written
in terms of the Green function of the disconnected cell goy and the surface
Green function, gy;, of another semi-infinite chain that terminates at cell 1

in the usual manner
5 P
Goo = [-’ — goo Vir 911 Vm,] Joo (2'41)

and in the calculation of which we make use of the Dyson equation expression
for Gl()l
Gro = 911 Ve Goo - (2.42)

Since all the cells in this system are equivalent, we introduce the notation
gc to refer to the Green function matrix of a disconnected cell. We also
note that Ggy = g11 since both represent the surface Green function of the

semi-infinite lead system. We thus rewrite Eqs (2.41 - 2.42) as

2 5 = —1
Goo = [T = e Vir ] doo, (2:43)

and
Gio =T G, (2.44)
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where we have also introduced the transfer matriz T = Goo VRL. This term

can also be written in a self-consistent form

. . DU T S

T = 1= go Vin 7] Vi

Solving for T' in this manner and then substituting back into Eq. (2.43) is
equivalent to calculating the surface Green function using the simple method

discussed in the previous section.

The Rubio-Sancho method instead makes use of a different approach.
First we consider an off-diagonal term, G ~o, connecting the surface to a cell
within the lead. Consider disconnecting cell N from the system, and then
reconnecting it with the appropriate connection potentials. Using the Dyson

equation, this scenario allows us to write the following expression

Gno = gc Ve Gn-10+ §c Vir G410

=toGn_10+ S0 GNt10

where
£y =g Var and $0=Gc Vir . (2.46)

Eq. (2.45) allows us to rewrite an off-diagonal Green function element be-
tween the surface and a cell N within the system in terms of those between
the surface and the cells neighbouring N. Applying it in turn to the terms
CA}'N_I,O and GA'NH,O, for N > 2, yields

GNO =t I:i() Gst,o + S0 GN,O] + So [fo GN,O + 30 GN+2,O]

t1 GN—20+ 81 Gny20

where
% £ 2 217 e - 217t .2
tl = [I - t()S() = 80t0:| tO and S1 = I:I — t()So — Soto] So -

Repeating this process we find (for N > 2¢)

GNO =4 GAN—?HO == 85 G’N+21,0 (2.47)
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and

~ 2 ™ A o~ Ay ! Y
1= [] — Ty 8=y = Si—lti—]] tiz—l

A 1 (2.48)
5 = [1 = b8 — 377—11‘1'—1] & ;.
Letting N = 2" in Eq. (2.47) results in a sequence of equations
G1o = tGoo + 50Gao
Gao = t1Goo + 861G
(2.49)

Gaig = t;Goo + 8:Gait1g -
Starting at the final equation, backsubstitution yields

Gio = [fn + oty 4 So81ly 4+ -+ + 808 - - v‘:‘i—lfi] Goo + 5nGoivrg. (2.5

This process is repeated until the terms toir1, S9i+1 are satisfactorily small
such that Ggis1g ~ 0, and the first term in Eq. (2.50) gives a suitable
approximation for Go. Comparison with Eq. (2.44) yields an expansion for

T,
T = to + 8oby + 081ty + -+ - + 8081+ - - Biati (2.51)

that can in turn be substituted into Eq. (2.43) to obtain an expression for

the surface Green function.

Equations (2.46), (2.48), (2.51) and (2.43) provide an easy-to-implement
algorithm for calculating the surface Green function of a system with a sig-
nificant increase in efficiency over the simple method discussed earlier. Once
calculated, these surface Green functions can be used as before to calculate

other quantities of interest.
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2.6 The Lloyd Formula Method

In the previous few sections we have shown how Green functions can be cal-
culated for a number of different systems using Dyson equation methods. In
Section 2.4, we showed how to calculate the Green function of a system when
a number of different perturbations were introduced. Now we will introduce
a method to examine how the total energy of a system changes under such
perturbations. The total change in energy, AF, is the difference between the

energies of the perturbed and pristine systems, E and E, respectively,
AE=F — E,. (2.52)

Such a quantity is often of interest as it tells us if a perturbation is ener-
getically favourable. By varying the exact nature of the perturbation, it
can also be used to examine under what conditions a perturbation is most
favourable. This quantity will be examined in detail later to determine pref-
erential impurity locations and magnetic moment orientations. The most
obvious approach to calculating such a quantity is a direction calculation
of F and Ey. However for large systems and perturbations only involving
a few orbital sites, AF will be very small compared to either quantity and
cancellation errors may occur. The Lloyd Formula [149] allows for a more
convenient approach, as it gives an expression for the total change in energy
without requiring the total energy of either system to be calculated. Instead,
the total energy is expressed in terms of the Green function of the pristine

system and the perturbing potential.

The total energy difference can be expressed in terms of the change in the

density of states, and hence in terms of the Green functions of the pristine
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and perturbed systems, § and G respectively, using Eq. (2.9)

Ep
AE = / AE E (o(E) - po(E))

oo

——ImZ/ dE E AG(E).

From the T-matrix form of the Dyson equation, Eq. (2.12), the term AG =

v .
G; — g;; can be written

G= Z 9ijn Y;UTI 9mj

jmmnm

— Z (Z 9mj § J]n) i

m,n

Z mn nm 3

m,n

since the orbitals indexed by j form a complete set. Furthermore, from the
definition of the operator g in Eq. (2.1) we find

§? = (Ei—ﬂ)Qz—%g.

1

Using this result, defining [¢),] = <% [ga] and rewriting T=V (1 gV) ;
we find that

AG = —Tr [gv (i - gv)"] |

Assuming that the perturbation potential Vois energy-independent, then
d‘—}j (I — g V) = —§'V, and

AG = Tv [(i- v (i_gv)”]

(2.54)



2.6. THE LLOYD FORMULA METHOD 41

where we have used the identity Tr(InA)’ = Tr[A’A]. The change in the
density of states, Ap(FE), is then given by

AplE) = i 2 Im AG
T
(2.55)

1 d . .
———Im—Trln (-5V).
—Im — Trln g
Using the identity Tr In A = Indet A, we arrive at the canonical form of the

Lloyd formula

Ap(E) = -2 Tm L In (det(f = g(E)f/)) . (2.56)
m dE

An expression of this form for the change in the density of states is very
convenient. The order of the matrix whose determinant must be taken is
simply the number of orbital sites perturbed by V. Furthermore, the energy
derivative simplifies the calculation of many properties which involve an in-
tegration of the density of states over energy as the Fundamental Theorem of
Calculus can be applied. For example, the change in the occupation number,
AN, is given by

Er

AN(EF):/ dE Ap(E) i
. 2.57

= " Im In (det(f — @(E)V))

™

By

Finally, we calculate the total change in the energy of the system when a

perturbation is introduced. From Eqs. (2.53) and (2.54), we get

AE (Ep) = -

™

Er d R )
Im /m dEE — In (det(I - g(E)V)) .
Integrating by parts yields

AE (Ep) = Ep AN(Ep) + % Im /EF dE E In (det.(i - g(E)V)) .
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We note that the total charge should not change as a result of connecting
two systems, and so the first term above vanishes. It should be noted that
the condition AN(Er) = 0 is not automatically satisfied, and can be viewed
as a constraint to find a suitable parameterisation. Alternatively, it may be
necessary to allow a small unphysical change in the Fermi energy to account
for it [150-152]. Thus, the final expression for the change in the energy of a
system when a perturbation V is introduced is given by
1 o A )

AB (Br) = —Im /Oo dE In (det(l . g(E)V)) . (2.58)
This form of the Lloyd formula will be used repeatedly throughout this thesis.
In the next section, the details of how the sort of integral contained within

this expression can be calculated are discussed.

2.7 Integrating over Green functions

In many of the calculations in this thesis, an integral over energy of a function
containing Green functions is required. This scenario arises in expressions
resulting from the use of the Lloyd formula, Eq. (2.58), but also in other
cases. A simple example is the calculation of the occupation of an orbital.
The Lloyd formula was used earlier to calculate the total change in this
quantity over all orbitals, but in some calculations it is necessary to calculate
the occupation at a single site. It is given by an integral over the LDOS at

this site as follows

Ep 1 B
n; = / dE p;(FE) = —— lim Im {/ dE G;(E +1in)| . (2.59)

foe) m™ 1—0 1o’

Performing this integration as shown along the real energy axis can present
a number of difficulties. Firstly, low dimensional systems can exhibit Van
Hove singularities at certain energies. The inclusion of a non-zero imaginary
energy component, 7, in the Green function definition prevents these from
lying on the axis of integration, but they can still present problems for a

numerical integration in the form of sharp, narrow peaks in the integrand.
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Another concern is that the DOS of perturbed systems often contain sharp
peaks, corresponding to bound states, outside the energy band of the bulk
system. This can lead to difficulty in the selection of a suitable lower bound
for the integral in Eq. (2.59).

These difficulties can be overcome by observing that the retarded Green
function is analytic in the Upper Half Energy Plane, that is, the function
G (z) where 2 is a point in the complex energy plane z = F + iy, has no
singularities for y > 0. We also note that the function G(z) is much smoother,
and more easily integrable, along the imaginary than the real axis. Consider
the integration contour, C'; in the complex energy plane shown in Fig. 2.6.
By Cauchy’s theorem [153], the integral of G(z) around this contour is zero,
since C' encloses no singular points. The contour C' can be split into three

component parts

e 7 - A line parallel to the real axis, from Fr — R to Ep, with constant

imaginary part 7,

e i - A line parallel to the imaginary axis, from in to iR, with constant

real part Ep,

e ¢ - An arc of radius R connecting the top of i with the end of 7.

Note that the integral we require in Eq. (2.59) corresponds to the R — oo

limit of .., the integral along r. Now

Ioc=L+L+1,=0
(2.60)
= I,=-I—1I.

In the limit R — oo and G(z) ~ 1. Thus the integrand vanishes along the
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Im(z]
A

Figure 2.6: The integration contour C' and its three component parts r, i
and c.

arc ¢. However, the integral over the arc is not necessarily zero:

lim /., = lim dz
R—o0 R—oo s

- _ |
£ lim/ (iRe?df) —

R—oo R()I()

0| =

(2.61)

1

do ¢

I
0| § =

Thus the contribution to the integrand from [. is not zero. However, if
the integrand vanishes as ~ # or faster in the limit R — oo, then the
contribution over the arc does vanish. This scenario occurs if the integrand

contains a product of Green functions, rather than the single Green function
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in the integrand here. From Eqs. (2.59) and (2.60), we can now write

1 i ¢
= —— Im {—2’ 7171_1?(1) /n dy Gi(Er +1iy) — %}
1+11. /Ood Re [Gui(Er + iy)] 2.62
= _ 4 — lim e |Gy ¢ ’
2 w0 J, ¢ B ( :
e e i
- _2_ + ,III_I,I(I) - /O dt f_2 Re |:Gii(EF + l(—_t———)) )

where in the last of the above equations we have made the variable substitu-
tion y = I—J’—:L’ to make the limits of the integration more manageable. The
integration over the real axis in Eq. (2.59) has been replaced by one over the
imaginary axis, where the function is in general far smoother and easier to

integrate.

A similar method can be used for more complicated integrands. The aim
in general is to write a real axis integration in terms of one over the imaginary
axis, whilst taking care to account for any contributions arising from the
third part of the contour. As discussed above, when the integrand involves a
product of Green functions these contributions vanish. We shall now briefly
consider another case where these contributions do not necessarily vanish -
the Lloyd formula integral (2.58) describing the total change in energy of a
system when a perturbation V is applied. The integral we need to solve here

is of the form

Ep X A
/ dE In det(I — g(E) V).

o0
Once again we use the contour shown in Fig 2.6 and can write [, = —I; — I...
We will focus now on the contribution from I.. Using the identity Tr In A=

In det A, we can write

I, = /dz In det (I —g(z) V)

c

= /dz Tr In (I — g(2) V)

c

V) as R — o00.

I | ~

= /dzTr I

c
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For large R, the In term in the integral becomes

V)N—?

N |~

In (I —

So, the integral becomes
df TriRe? [ ——e %
R

40 Tr [—zf/]

imTr 'V
5
We see that there will only be a contribution from this term when the trace of
the perturbation potential is nonzero, corresponding to perturbations where
the onsite energy of sites are changed. Substitutional impurities, as discussed

in Section 2.4.1, are an example of such a perturbation.

2.8 Electron - electron interactions

In the next chapter we will introduce a single-body, tight-binding type Hamil-
tonian to describe the electronic structure of graphene. While such a model
is sufficient for many of the calculations within this work, it does not take
into account electron-electron interactions which are needed to describe mag-
netic materials. To account for these interactions it is necessary to include
an additional many body term to the Hamiltonian. In this section, we will
detail the general method to include such a term using the Hubbard Model
approach, and also how the resulting Hamiltonian can be simplified using a

self-consistent procedure within the Mean Field Approximation (MFA) [154].

2.8.1 Hubbard Model

In this section we shall move from the bra-ket notation to that of the creation

and annihilation operators of the second quantisation. Consider a simple
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tight-binding Hamiltonian of the form

Hrp = Z |4) i (4 (2.63)
4J
where ¢ and j index orbital sites on the lattice, and 7;; = 0 except for

i = 7, when it corresponds to onsite energy terms and for neighbouring i’s

and j’s when it takes the value of the hopping integral between them. This

Hamiltonian can be rewritten, incorporating the spin degree of freedom o,
i

using creation (¢, ) and annihilation (¢é;,) operators which respectively create

or annihilate an electron in state 2 with spin state o, as

Hre =, Yijtly i (2.64)

1,0

It is clear from the spin degeneracy of this Hamiltonian that it cannot lead to
the formation of magnetic moments. Magnetic moments in materials result
from an exchange term arising from the Coulomb repulsion between elec-
trons. This term breaks the degeneracy between up and down spin electrons
and thus potentially leads to the formation of a moment. The Coulomb

interaction, in a system of N electrons, is given by

N 5
e
Vo= 2.65
3 i,j=1 |73 = 75 / !

and each term is a function of the positions of two electrons. The general

form of such a term can be written in operator form as

1 e s b "B " s
V;zb - 5 Z <7'~,.] | 7'_ab | kJ)ZCIU C}(r’ Cko' Clo (266)

135Kl a0’

where (14,7 | % | k,1) is the expectation value of the Coulomb term, which

is given by

2 2
(4,7 :—b | k1) = /dfa/dfb 'd)f(Fa)w}(Fb)%’wk(fb) Di(Ta),  (2.67)
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where 1); is the localised wavefunction centred around site 7. In the Hubbard
model, it is assumed that screening restricts the interaction to one site and
only the term corresponding to ¢ = j = k = [ need be considered. This
term corresponds to the Coulomb repulsion between electrons sharing the
same orbital, which by the Pauli exclusion principle imposes the constraint

o # o'. The Hubbard Hamiltonian can thus be written as

Huw = — flig iz (2.68)

where U is the diagonal Coulomb integral and the number operator n;,, =
6Ia€i0 gives the occupation of the state at site 7 with spin ¢. In addition
to exploring magnetic properties of materials, the Hubbard model in this
form can be used to investigate a group of materials known as Mott Hubbard
insulators. These are materials that are predicted to be conducting by models
not including electron-electron interactions. However, a competition between
the electron repulsion term and the hopping integral term can lead to a
transition from conductor to insulator as the distances and angles between
neighbouring atoms are varied, for example by heating. This is because
the hopping integral is strongly dependent on these variables, whereas the
purely onsite electron repulsion is not. The Hubbard Hamiltonian given in
Eq. (2.68) is still a many-body Hamiltonian and we cannot yet avail of the
methods discussed earlier in the Chapter. In the next section, a method to

treat this interaction as a single particle effect will be explored.

2.8.2 Hartree Fock approximation

Combining the Hubbard and tight-binding components into a single Hamil-

tonian, we get
U
—E oAt a4 _2:/‘_ - C
H= Vi Cjo Cig + 9 Nig Nig - (2(’).))

1,7,0 1,0
Within this work, we shall always consider the Hubbard term within the

Hartree-Fock Approximation (HFA). This is a mean field approximation and
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amounts to making the substitution

fic = (Nig) + (Ric — (Nio)) ,

2

which is trivially true, and neglecting any terms of order (n — (n))°. Here

(niy) is the expectation value of the occupation number. We can now write
Nio Niz = Nig(Niz) + Mig(Nie) — (Nig) (Nia) ,

noting that we have written the many-body term from the Hamiltonian as a
sum of single particle terms. The final term above applies spin-independent

shift to the band centre of the magnetic atoms.
Defining the average occupation at site ¢
n; = (nip) + (niy) (2.70)
and the (dimensionless) magnetic moment at site ¢
m; = (nir) — (nqy) (2.71)

allows us to rewrite the interaction term in the Hamiltonian as

U

b3 (5 (i Fmi) — U (%)(nm)) Rig (2.72)

i

where the choice of sign in the the first term is — for ¢ =1 and + for o =|.

Within the Hartree-Fock approximation, the electron-electron interaction
is accounted for by the inclusion of an on-site potential applied at the site
of the magnetic moment. Furthermore, we observe that this potential can
be divided into two components by separating the spin dependent and in-
dependent contributions. The spin-independent contribution, d, gives the

bandcentre shift for the magnetic site

n;

6 =U (5 - <ni0><ni(r>) . (2.73)
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Figure 2.7: Schematic densities of states of up and down spin bands. The
bandcentre, §, and exchange splitting, A, can be calculated within the
Hartree-Fock approximation using a self consistent procedure.

The spin-dependent contribution meanwhile consists of half the exchange

splitting, A, between the up- and down-spin bands, where
By =T .. (2.74)

These two contributions are illustrated schematically in Fig. 2.7. The split-
ting, A, between the bands leads to a greater occupation of up (majority)
spin electrons and hence to the formation of a magnetic moment. The local
onsite potential applied at magnetic sites to account for the electron-electron
interactions can be written in terms of the bandcentre shift and splitting as

Ve =6 T (2.75)

o | >

with once more the choice of sign determined by the spin orientation.
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2.8.3 Self consistent procedure

The Hartree-Fock approximation above allows us to calculate the Green func-
tion of a system containing magnetic moments by applying a spin dependent
perturbation at the magnetic sites using the Dyson equation. We note that
since the potential to be applied is spin dependent, the Green function de-
scribing the electrons of the system is no longer spin degenerate. The per-
turbation is written above in terms of A and ¢ - the splitting and bandcentre
of the magnetic orbitals. Within a simple model, arbitrary values of these
parameters can be used to ascertain the behaviour of a system with a mag-
netic impurity. However, in many cases it is necessary to parameterise the
magnetic moment more carefully, particularly if we want to investigate how
the moment itself changes under different conditions. Within the study of
graphene, electron-electron interactions generally need to be accounted for
in two cases. The first of these is to investigate the formation of magnetic
moments in graphene in the presence of edges or vacancies. In this case the
moment arises due to the formation of localised states induced by the particu-
lar geometry of the system, and the carbon atoms in the graphene themselves
obtain magnetic moments. The other case is when the graphene system is
doped with objects which already possess a magnetic moment themselves, for
example d-band transition metals. This is the scenario that will be encoun-
tered frequently in this work. In both these cases, rather than arbitrarily
selecting values of the bandcentre and splitting, we can calculate them us-
ing a self-consistent procedure that assumes knowledge of the occupation,
n;, of the relevant orbitals. For undoped graphene systems the p, orbital
is half-full, corresponding to n; = 1, where each orbital can hold at most
two electrons - one of each spin orientation. For transition metal atoms, the
relevant band occupation can be found by comparison with ab initio calcula-
tions or can be varied over a range of values to examine the effects of different
magnetic dopants on the system. In both cases, the following procedure is

implemented to calculate V¢ :

1. Initial guesses for the magnetic moments, 73, and bandcentres, 6°, are

taken and used to calculate the onsite potentials.
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2. The occupation of the up and down spin bands, 7i; and 77|, are obtained
by integrating the densities of states, calculated by applying the onsite

potentials to the Green function.

3. New estimates for the bandcentres, 61, are found by adjusting them

until the constraint n; = n;; (8Y) + n; | (8") is satisfied at each site.

4. New estimates for the magnetic moments are calculated at each site

from m; = n;; (8') — nyy (8Y).
5. Steps 1 to 4 are repeated until convergence.

In this way we can calculate the bandcentre and the moment (and hence the
band splitting) associated with each magnetic site. These are used to calcu-
late the spin-dependent potential, V7, and Green function, G, from which
the required properties of the system can be calculated using the methods

described earlier in this Chapter.

2.9 Summary of chapter

This chapter has introduced us to the concept of Green functions and briefly
discussed how they may be calculated and manipulated for use in condensed
matter physics calculations. The discussion to date has been very general and
not restricted to a particular material or Hamiltonian. The simple examples
used to illustrate the various methods can be straightforwardly extended to
more complex systems.

The Green function was defined and its relationship to the density of
states (DOS) shown in section 2.1. The advantages of the Green function
formalism for describing perturbed and disordered systems were highlighted
by the use of the Dyson equation to connect the Green functions of perturbed
and unperturbed systems in section 2.3, before specific examples of its use for
simple cases were examined in section 2.4. Methods for calculating the Green
function for a large system in a piecewise, or recursive, fashion were detailed
in section 2.5. A description of the Lloyd formula method for calculating the

change in various properties of the system when a perturbation is applied, and
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details on performing integrals involving the Green function, completed our
introduction to Green function methods in sections 2.6 and 2.7 respectively.

Finally, a brief introduction to the Hubbard model and its treatment
within the mean-field approximation was given in section 2.8. The steps of a
self-consistent procedure to include magnetic moments within the formalism
developed earlier in the chapter were described.

In the next chapter, the focus will shift away from the general approach
taken to date and towards graphene and related materials. The electronic
structure of graphene will be calculated, and various methods of calculating
its Green functions discussed. The recursive methods introduced in this

chapter will be demonstrated for the specific case of graphene nanoribbons.
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Electronic structure and Green functions of Graphene

3.1 Introduction

In this chapter we calculate the electronic band structure of graphene within
the nearest neighbour tight binding (NNTB) approximation and show how it
can be used to calculate the corresponding Green function - a quantity dis-
cussed at length in the previous chapter. The band structure of graphene is
compared to that of related materials, namely carbon nanotubes (CNTs) and
graphene nanoribbons (GNRs). The Green function calculation for graphene
can be tackled in a number of ways. Despite the simplicity of the tight-
binding description of the graphene band structure, the corresponding Green
functions are often calculated numerically or by availing of a linear approx-
imation. In this chapter we attempt to simplify the calculation by showing
how to derive it in a mathematically transparent form. We demonstrate that
by moving to reciprocal space, the calculation becomes a two dimensional
integration, the first of which can be performed completely analytically. For
special cases, we propose a method to tackle the second integration using
the Stationary Phase approximation (SPA). This approach takes advantage
of the highly oscillatory nature of the integrand and yields an excellent ap-
proximation to the true Green function across almost the entire energy band.

The resultant analytical results offer mathematical transparency when calcu-

o5



56 CHAPTER 3. ELECTRONIC STRUCTURE OF GRAPHENE

lating physical properties that can be expressed in terms of Green functions.
[n particular the distance dependence of the Green function clearly emerges
from our derivation. Finally, the recursive methods introduced in the previ-

ous chapter are illustrated in the case of GNRs.

3.2 Electronic structure of graphene

Graphene consists of a planar sheet of carbon atoms arranged in a hexagonal,
or honeycomb lattice, as depicted in Fig. 3.1. This atomic arrangement is
particularly stable due to the strength of the ¢ bonds formed between sp?
hybridised orbitals on neighbouring carbon atoms. Three hybridised orbitals
are formed per carbon atom from the 2s together with the 2p, and 2p,
orbitals and each of these hybridised orbitals bonds with another on one
of the three neighbouring carbon atoms. These bonding orbitals are each
occupied by two electrons, one of each spin orientation, leaving one electron
per carbon atom remaining in the 2p, orbital. These orbitals stick out of
the plane and form 7 bonds with other p. orbitals on neighbouring lattice
sites. This leads to the energy bands near the Fermi energy which control
the electronic properties of graphene, and which we shall study using the
tight-binding approximation. For most purposes it is sufficient to neglect the
other energy bands, which are far enough away from the Fermi energy to not

play a major role in our calculations.

3.2.1 Tight binding approach

Throughout this work, we shall employ a nearest-neighbour tight-binding
' NNTB) approximation to describe the electronic band structure of graphene.
As discussed above, the electronic properties of graphene are predominantly
determined by the p, orbitals. In fact, by restricting the Hamiltonian de-
scribing the system to these orbitals and the electron hopping probabilities
to those between orbitals at neighbouring sites, an excellent approximation

to the band structure of graphene is recovered. This is the essence of the
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Figure 3.1: A section of the honeycomb graphene lattice with sites from the
two intersecting triangular sublattices represented by filled or hollow symbols
at the lattice sites. The dashed rectangle encloses a unit cell containing one
site from each sublattice. The primitive lattice vectors a; and a, are also
shown. The large, coloured arrows highlight the important armchair (A) and
zigzag (7) directions in the lattice.

NNTB model, where the Hamiltonian describing the system is of the form

HIZVWiM"‘ZU%ﬁJ 41 (3.1)

(i.3)

where |i) represents an atomic orbital centred at lattice site i, €; is the onsite
energy at that site, 7;; is the hopping integral between the orbitals centred at

sites 7 and 7 and the sum is restricted to sites which are nearest neighbours.

The band structure is then found by finding the eigenvalue solutions of
the Schroedinger equation. This is generally a matrix equation where the
matrices involved have a dimension equal to the number of orbitals used
to describe the system. This approach suffices for small molecules, but for
larger, extended systems a different method must be used. Usually this
involves taking advantage of periodicity within the system. If the full system
can be generated by the translation of a finite cell under a set of vectors,

then we can express the problem in a more easily solveable form. First, we
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k), composed of atomic orbitals with coefficients ¢¥

define a Bloch function,
1 )
k) = —= ) etk Ragkyj), (32)
N 2

where R; is the position vector of lattice site j. The next step is to substitute

this expression into the Schroedinger equation

Hlk) = e(k) |k)
= e(k) Z e etk B |5y = Z Pk etk B H|j)

and then to project onto ({| to get the so-called secular equation
(k) Y ke R llg) = 3 @il g) (33)
J J

If we assume that the basis set of atomic orbitals is orthogonal, then the

overlap matrix elements simplify to (/|7) = d;; and we find

e(k) g =Y et BRI (11K |j) (3.4)

J

which can usually be solved quite easily for eigenvalues €(k) and eigenstates

|k) using standard matrix methods.

3.2.2 Band structure of graphene

A cursory glance at the structure of graphene makes clear that it is a pe-
riodic system. Furthermore, although commonly regarded as a hexagonal,
or honeycomb, lattice of carbon atom sites, it can also be regarded as two
intersecting triangular sublattices of sites, represented schematically in Fig.
3.1 by filled or hollow circles. It is this bipartite nature of graphene that
leads to many of its intriguing properties. The unit cell which constructs
the entire lattice by translation consists of two neighbouring sites, one from
each of the sublattices. We choose the primitive lattice vectors a; and as.

Any unit cell in the graphene lattice can be located by a linear combination
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of these vectors with integer coefficients, r = ma; 4+ nas. The orbital basis
set used to calculate the electronic structure is denoted by |r,n), where r
gives the location of the unit cell and n = 1,2, for filled and hollow sites
respectively, denotes the site within the unit cell that the orbital is centred

around. Switching to reciprocal space, we define the basis set of Bloch waves

_ ! ik-r -

ik, @) = i Zr: e |r,n) . (3.5)
Each atom on the lattice has three nearest neighbours, and the hopping
integral for nearest neighbours in graphene is known to be v;; = —t ~ —2.7eV
[155]. The magnitude of this quantity, ¢, will be used as a unit of energy
throughout this work. The onsite energy, €, is the same at each lattice
site and defines the centre of the energy bands, and is set to zero in these
calculations. The Hamiltonian matrix has become a 2 x 2 diagonal matrix

under the transformation in Eq. (3.5) and is of the form

H = ( S ) ; (3.6)
tf (k) 0

where f(k) (f*(k)) is calculated by summing over the phase terms coming
from each nearest neighbour of an atom on a filled (hollow) site. For the
filled site case the relevant sites and vectors are illustrated in Fig. 3.2, and

we find

3
flk) =) el

#

1
= el%/ziﬂ -+ (3i(:2%+ﬁgi) + ei(_Tk\%ﬂAEy) (37)
= eii\% + 2(’05(%) e_i%.

The eigenvalues €(k) are found by solving

0—e(k) tf(k)

=0, 3.8
(o) (3.8)
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Figure 3.2: The nearest neighbours of a filled lattice site in graphene, as used
in the calculation in Eq. (3.7).

which gives

e+(k) = £t

; k, k 3k,
= |f(k)| = *t,| 1 +4cos? ( ;;”> + 4 cos (%) Cos (\/_2 ”>

with corresponding eigenstates

1

e+ = ——

o . i i k
Z etk (il' 1) + e~ W), 2>) ., where e ) — f( ) .
(3.10)

The energy band structure described by Eq. (3.9) is plotted in Fig. 3.3 as
a function of k, and k,, and also along some of the important high symmetry
points of the Brillouin Zone (BZ). The density of states for this system is
also shown. We note that since the p, orbitals in carbon contain one electron
each, then the band is half full and the Fermi energy of the undoped system
is K = 0. This is exactly the point where the two bands, called 7 and 7*
and given by e_ and e, respectively, touch and the DOS vanishes. Graphene
is thus a zero-bandgap semiconductor, or a semi-metal. The resultant Fermi

surface consists of six discrete points, only two of which are unique, lying
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Figure 3.3: The top panel plots the nearest-neighbour tight-binding band
structure of graphene as a function of £, and k,. The Fermi surface consists
of six discrete points at ' = 0 where the upper and lower bands touch. The
first Brillouin Zone (BZ) of graphene is a hexagon described by these six
points, and marked in blue on the projection below showing the constant
energy surfaces of the band structure equation. The dashed red path is
between the high symmetry points of the first BZ, and the bands along this
path are shown by the bottom left panel. The bottom right panel shows the
corresponding density of states.
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at the vertices, or K points, of the first Brillouin Zone illustrated by the
blue hexagon in Fig. 3.3. These are often referred to as Dirac points. The
degeneracy of the m and 7* bands at these points is general to the one-electron
description of graphene and persists even when the symmetry of the bands
around Ep = 0 is broken. Many of the interesting properties belonging to
graphene arise due to the shape of the bands near the Fermi energy. Unlike
in conventional semiconductors where the bands are parabolic, the band
structure of graphene is linear near Er. This results in electrons or holes
near the Dirac points having zero effective mass and behaving like relativistic
particles which can be described using the Dirac equation from Quantum
Electrodynamics (QED). Graphene can thus be investigated using standard
condensed matter techniques, but can also act as a medium for exploring the
methods and predictions of QED in a laboratory environment [4, 18]. This
thesis will not focus on the latter methodology, but it is worth investigating
briefly how graphene electrons are approximated in the linear regime and the

range of energy values over which the approximation is valid.

Linear dispersion regime

The part of the graphene spectrum around Er = 0 can be approximated
linearly to simplify the calculation of physical properties and to allow the
use of QED methodology. To do this, we expand the equation for the band
structure around one of the K points. Without loss of generality, we choose
that located at K = (0, ilh—’:) in reciprocal space. We now recalculate the term
f(k) as in Eq. (3.7) for a point in reciprocal space near the Dirac point,
k = K + ¢k, and find

f(k) . Z eiK-R1 eidk-Ri
V3 1 V3

I " iy
N1+(—§+z7)(1+mk‘R2)+(—§—27)(1+zok-R3)
%\/gawk

w

(i(5-9)
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where 6 is the angle from the k, plane. To calculate the band structure,
we only need the modulus of this quantity, where the additional phase term
¢'(2) vanishes. However this term, called the Berry phase, has a marked
effect on other properties of graphene and in particular its Quantum Hall
response [35].

Using the above approximation for f(k), the band structure equation

becomes /i
3at
e+ (|ok]) = £ 5 |0k| . (3.11)
This is most commonly written in terms of the Fermi velocity of graphene,
vp = }—1‘3——5 ~10°ms™1, as
e+ (|0k|) = £hop|ok|. (3.12)

In Fig. 3.4 we compare the linear approximation of the band structure
with that calculated previously. It is seen to be a very good approximation
in the region surrounding E = 0, but loses accuracy quickly outside this
regime. The approximation returns the correct band structure (to within
1%) for a region covering less than 5% of the bandwidth. However, since it is
inaccurate over large parts of the band, difficulties arise when it is necessary
to calculate quantities involving energies outside the linear dispersion regime
or when an integral over energy is required. Later in this chapter we will
introduce a technique that removes these shortcomings when calculating the

Green function matrix elements of graphene.

3.2.3 Quasi-one-dimensional graphene systems

The electronic band structure of graphene, given in Eq. (3.9), had been
calculated long before [28-30] the experimental discovery of graphene in 2004
[17]. It was used initially as a starting point to calculate the electronic
properties of graphite, which consists of multiple stacked layers of graphene
weakly connected by a van der Waals interaction. More recently it has been
used to calculate those of Carbon Nanotubes (CNTs) - quasi one-dimensional

materials consisted of rolled up graphene sheets [8,14]. It is also the starting
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Figure 3.4: Band structure of graphene along the important high symmetry
points calculated using the full tight-binding (solid) and linear approximation
(dashed) methods.

point for investigating another one-dimensional allotrope of carbon - narrow
strips of graphene called graphene nanoribbons (GNRs) [39]. We will now
show how the electronic structure of CNTs emerges from that of graphene
with periodic boundary conditions applied, and how difficulties arise when
a similar approach, with hard edge boundary conditions, is attempted for

GNRs.

Carbon Nanotubes

Carbon nanotubes are characterised by their circumferential, or chiral, vector
which determines their diameter and the direction in which they are rolled.
This vector is given in terms of the primitive lattice vectors of graphene
as R., = ma; + nay; and nanotubes are generally labelled according to
this vector using the notation (m,n). Nanotubes of the form (m, —m) and
(m,m) have corresponding chiral vectors in the special zigzag and armchair
directions respectively. These are called achiral nanotubes, and we shall
examine their band structure here.

The band structure of these systems can be found by applying periodic

boundary conditions to the graphene electronic wavevectors in Eq. (3.10). To
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ensure the continuity of the electron wavefunction we enforce the constraint

Ik, +)(r) = |k, £)(r + Re)
— etkRen — ] (3.13)

— k- R = 2na where o =0,1,2,---.

For zigzag chiral vectors this constraint becomes k, = % and for arm-

chair chiral vectors, k, = \/Z%rrza Thus rolling up a sheet of graphene into a

nanotube has the effect of quantising the k-space vector component in the
circumferential direction. There are now only m allowed values of this vec-
tor component, corresponding to the cases @ = 0,1,--- ,m — 1. Replacing
k, (k) with the above quantised versions in the equation for the graphene
band structure gives the required band structure for an armchair (zigzag)
nanotube. Although graphene is a zero bandgap semiconductor, nanotubes
can be either metallic or semiconducting depending on their rolling vector.
This is determined by the quantisation conditions given above, which corre-
spond to lines of allowed k values. If one of these lines passes through one of
the discrete points forming the graphene Fermi surface, then the correspond-
ing nanotube is metallic. It is easy to show that this occurs for nanotubes
whose indices obey the constraint (m — n) mod 3 = 0. Therefore one third
of nanotubes are metallic, including all nanotubes with an armchair chiral
vector. The band structures of sample armchair and zigzag nanotubes are

shown in Fig 3.5 a) and b).

Graphene Nanoribbons

An analogous approach to that taken for nanotubes is not as satisfactory for
the case of nanoribbons. Such an approach, outlined in detail in Ref. [43],
essentially consists of replacing the periodic boundary conditions used above
k, £)(redge) = 0 so that

the wavefunction goes to zero beyond the edge of the nanoribbon.

for nanotubes with ‘hard wall” boundary conditions

Taking this approach for zigzag nanoribbons (ZGNRs) breaks the sublat-
tice symmetry since one edge of the ribbon consists solely of black sites and

the other of white sites. The net effect of this is that a quantisation condition
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k DOS

Figure 3.5: Band structure and density of states of a selection of quasi-
one-dimensional graphene structures: a) (5, —5) ZCNT, b) (5,5) ACNT, c¢)
6-AGNR and d) 4-ZGNR. The dashed lines in the nanoribbon plots corre-
spond to corrections to the simple tight-binding model to account for edge
deformations in AGNRs and electron-electron effects in ZGNRs.
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similar to that in Eq. 3.13 does not yield all the states of the system. The
remaining state can be found from the solution of a transcendental equation
which yields a complex value for the quantised wavevector [43,44]. This cor-
responds to the well-known states localised at the edge of the ribbon which
contribute a large peak to the density of states at the Fermi energy. Indeed,
when electron-electron interactions are included, as described in Chapter 2,
spin polarised edges are found which decay towards the ribbon centre, with
the ground state of the system having the two edges with opposite polari-
sation [40]. Alternatively, the band structure can be calculated numerically
with or without electron-electron interactions by considering a unit cell con-
taining lattice sites across the width of the ribbon. Then the standard Bloch
function method can be applied by taking advantage of translational symme-
try along the length of the ribbon. The band structure of a ZGNR is shown in
Fig 3.5 d). The solid curves refer to a calculation neglecting electron-electron
interactions whilst the dashed curves reveal the changes to the band struc-
ture when a Hubbard term U = 1.33t is introduced. This value corresponds

closely to results from experiment [156] and from ab initio calculations [157].

For armchair edged ribbons (AGNRs), an application of hard wall bound-
ary conditions is more successful and reproduces the expected band structure
for the tight-binding model. We note that the imposition of such boundary
conditions in this case does not break the sublattice symmetry. However, the
simple tight-binding description of armchair nanoribbons does not agree with
the results of more sophisticated calculations, which suggest that a small de-
formation at the edge of the ribbon needs to be taken into account [52]. This
can be included in the tight-binding calculations by changing the hopping
parameter at the edge of the ribbon to t.40e = 1.12¢. The unaltered tight-
binding band structure finds that one third of AGNRs are metallic. However
the alteration opens up a small band gap in these cases with the result
that all AGNRs are found to be semiconducting, in agreement with Density
Functional Theory predictions. In a similar manner to the zigzag case, the
AGNR band structure can be calculated numerically with a larger unit cell.
The band structure for a 6-AGNR without (solid) and with (dashed) the

edge correction is shown in Fig 3.5 ¢).



68 CHAPTER 3. ELECTRONIC STRUCTURE OF GRAPHENE

For both of the principal nanoribbon geometries, we have seen that com-
plications arise which prevent the calculation of their band structures using
the application of simple boundary conditions to that of a graphene sheet.
Since our principle requirement for calculating energy bands is to use them
to calculate Green functions using Eq. 2.1, it may be more convenient to
consider an alternative method to calculate the Green functions of such sys-
tems. We have considered such methods in Section 2.5 and in Section 3.4
we will illustrate how recursive methods can be used to calculate the Green
functions of nanoribbons directly, without the need to calculate their band

structure as an interim step.

3.3 Graphene green functions

Recall from the previous chapter that the matrix elements of the pristine

Green function are given by an expression of the form

= 3} (Wl (3.1

= &a
a

where €, (¥,) denotes the eigenvalues (eigenvectors) of the system, [j) is
the orbital wavevector located at site j and the sum is taken over all the
eigenstates of system.

For graphene, we have derived the eigensystem in terms of Bloch functions
in reciprocal space, so the corresponding Green function expression consists
of an integral over the first Brillouin Zone in place of the sum over discrete
eigenstates above. The first BZ of graphene consists of a hexagon with ver-
tices corresponding to the discrete Fermi surface of graphene, as shown in
Fig. 3.6 a). For convenience, we can instead integrate over a rectangu-
lar area consisting of segments drawn from multiple neighbouring Brillouin
zones whose area equals that of the hexagonal BZ. By translating the various
segments outside the hexagon back into it, we can see that these rectangular
BZs are equivalent. A few possibilities for the limits of integration are shown
in Fig. 3.6 a) and b).
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Figure 3.6: The shaded areas highlight three different choices of Brillouin
Zones that can be used when performing the integrations in this chapter. The
contours represent constant energy surfaces of the graphene band structure.

The Green function expression becomes

.(];'lfm = (rj,n; | §(E) | vy, i)
etk (ri— rj) (315)
R /dk :
o BT

where

N(E)= E if By =y
ff(k) n; = 1,71,[ =2
tf*(k) =2, y=1.

This integration can be approached in a number of ways. The most obvious is
a two-dimensional numerical integration - however this can be prohibitively
expensive if the Green function is required for many site indices or energy
values. As we shall now demonstrate, one of the two integrals in this expres-
sion can be solved analytically, which reduces the numerical computation
required to a one-dimensional integral. Furthermore, we shall show that for

certain cases, the second integration can be approximated and solved with a
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great deal of accuracy for the majority of energy values across the bandwidth.

3.3.1 First Integral

To simplify the resultant expressions, we rewrite the integral in terms of
dimensionless wavevectors

ak, B V3a ky

ka == : ky . (3.16)

where the subscripts refer to the armchair and zigzag directions of these

vectors, so that Eq. (3.15) becomes

— L v /2 " /-7r n N(E){,i(kz("l—'l)+k_4(m+'l))
it 212 | o 72TV E? —2(1 + 4 cos?(ky) + 4 cos(ky) cos(ka))
(3.17)

where we have rewritten the separation vector in terms of the lattice vectors,
r—rj=ma;+nas.

We now have a choice of which variable, k; or k4 to integrate over first.
This choice is not important if we wish to perform the remaining integral
numerically, but later we shall see that for other methods, or for calculating
the Green functions of nanotubes analytically, the choice of first integration
variable is important. With this in mind, we now illustrate how the first

integral can be performed in both cases.

Armchair direction

Choosing to integrate over k4 first, we choose the Brillouin zone in Fig 3.6

b) and the integral that needs to be solved is

(3.18)

T i N(E) ez(kz(m—n')+k.4(m+'n))
In= .
4 [ 5 E? — t2(1 4+ 4 cos?(ky) + 4 cos(kz) cos(ka))

™

This will be solved by transposing the problem to the complex plane and

using the methods of contour integration, specifically the residue theorem
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Figure 3.7: Integration contour in the complex k4 plane containing a pole g.
The contour is closed in the upper half plane for m +n > 0.

[116,153] . For m +n > 0, we consider the contour in the complex k4 plane
shown in Fig 3.7. In the upper half plane, where Im(k,4) > 0, the integrand
vanishes as Im(k,) — 00, so that no contribution arises from the top section
of the contour. Furthermore, we note that the net contribution from the left
and right contours is also zero due to the integrands periodicity. Thus the
integration we require is equivalent to the integral over the entire contour,
which in turn reduces to a sum of the residues at the poles of the integrand.

The poles, q, correspond to the zeroes of the denominator, and are given by

B —1—4cos’(kz)
4cos(ky)

cos(g) = (3.19)

Note that this equation does not define the pole uniquely as there are two

possible solutions arising from a choice of sign when the inverse cosine is

taken. The sign of the pole must be selected carefully to ensure that it lies

within the integration contour, i.e., that Im(g) > 0. The residue of a function
9(20)

of the form f(z) = % at a pole zy is given by Res(f(z)) = enk where

iz} = ?1_2 Thus the integral becomes

, N(E) (’,i(kZ(m_”)‘FQ(m-f-n))
e 3.20
; " ( 412 cos(kz) sin(q) (3.20)
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and the Green function can be written

nyn_ /) ] k N(E’) eilkz(m—n)+q(m+n))
%t nt? | - g cos(kz) sin(q)

(3.21)

Zigzag direction

To perform the k; integration first, we follow a similar approach to the
previous case, but using the Brillouin zone shown in Fig 3.6 ¢). We again
move to the complex plane and make use of the residue theorem, and consider
a similar contour in the complex k; plane when m—n > 0. Again the solution

reduces to a sum of the residues of poles, which are given this time by

Il
cos(q) = - cos(A — —sin®(ky4) | . (3.22)
This time there are two poles inside the contour, arising from the choice
of sign inside the brackets. Each of these poles must also have its overall
sign chosen carefully as before to ensure it lies within the contour. The
residues are calculated in a similar manner to before, and the required integral

becomes _
) ]V(E) ()z(q(m~n)+k,\(m+n))

], = *
27 g2 ; sin(2q) + sin(q) cos(ka)

(3.23)

Thus the expression for the Green function in this case becomes

- % i N(E Ji(g(m—n)+ka(m+n))
g,,J"l — ;‘ 5 / dkA ‘.( ) € . — ) (324)
plt sin(2q) + sin(q) cos(ka)

Analytic expressions for nanotubes

As we have seen in section 3.2.3, the electronic band structure of achiral
carbon nanotubes can be accurately found by imposing periodic boundary
conditions on that of a graphene sheet. This has the effect of restricting the
values that can be taken by electron wavevectors in either the armchair or
zigzag direction. This allows us to replace one of the integrals in Eq. (3.15)

with a sum over these allowed values. The remaining integral can then be
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solved using the contour integration methods discussed above. A detailed

account of this method for nanotubes can be found in Ref [116].

3.3.2 Second Integral

We have shown how the first integral in the calculation of the Green func-
tion can be performed in both the armchair and zigzag directions. We have
also seen how the full analytical Green functions for certain one dimensional
graphene systems follow from these calculations since one of the k-space
integrals can be replaced with a sum over the finite & values imposed by
quantisation. The remaining integral for two-dimensional graphene is not
easily solveable in its current form, however it can be solved numerically
with a lot less effort than the two-dimensional integral we started with. We
shall now examine the remaining integral, and in particular the form of its
integrand, to see if there are any cases when we can make approximations to
solve it using analytical methods.

Fig. 3.8 plots the integrand (as a function of the integration variable) that
appears in Eqs. (3.21) and (3.24) for a number of different cases. We note
that the integrand corresponding to the off-diagonal Green function between
two distant sites is either zero, or oscillates rapidly around zero over much
of the integration range. This behaviour is easily understood from the expo-
nential terms in the integrands which for large values of separation oscillate
rapidly. This oscillatory behaviour is the key to performing the remaining in-
tegrals for large separations, as the contributions from the oscillatory sections

of the integrand do not contribute significantly to the integral.

3.3.3 Stationary phase approximation

Consider a function of the form
I(z) = /dy flg) e s, (3.25)

For large, positive values of x, the exponential term will oscillate with a vary-

ing phase, ¢(y) for large sections of the integrand. These oscillatory sections,
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Figure 3.8: The integrand of the remaining integral for a) separation of
20v/3a in the armchair direction for £ = 0.3[t|, b) separation of 30v/3a in
the armchair direction for £ = 1.4[t|, ¢) separation of 40a in the zigzag
direction for £ = 0.8]t|.

having different phase, will largely cancel each other out when an integration
over y is performed. The only regions that will contribute significantly to the
integral are those whose contributions add together coherently. These cor-
respond to values of y near where the phase is stationary. The main idea of
the Stationary Phase Approximation (SPA) [158] is to replace the integrand
in Eq. (3.25) with a Taylor expansion around its stationary points, y° - the

values of y for which the phase term is stationary and which are given by

d
s = I, (3.26)
dy "
The phase term becomes
1 d%¢ e
Bly) ~ Y [9’5(2/0)'*‘— a2 (y—y°>2+---] : (3.27)
y° v
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where the first order expansion term (not shown) is zero by the definition
of the stationary points. Assuming that the function f(y) is slowly varying
about yy, then each stationary point y° has a corresponding contribution

given by

Iy(z) = /dy f(yo) € [$(yo) o+ ¢"(4°) (y—y°) «]

: x c 1 prf..0 ) 2‘
— Flyo) et /dy 5900 W) 508

: 29T
— flya) i)z |
f(yO) € ¢//(y0) T’

where the final integral has been performed using the well known Gaussian

integral identity.

In the next two sections, we will apply this method to the integrals that
appear in the expressions for the graphene Green functions. We note that the
phase term in these expressions depends on the direction of the separation
vector between the two sites. We shall calculate in detail the Green function
between sites on the same graphene sublattice separated by vectors in the
armchair and zigzag directions, and then briefly describe how the method
can be generalised to other directions and cases. The two cases we discuss
are the most frequently investigated in graphene lattices, and an analytic
expression for the Green function in these directions will be extremely useful
in calculating distance-dependent properties in graphene, as we shall see

later.

Armchair Direction

The first case we shall examine is the Green function between two sites on
the same sublattice separated by a vector in the armchair direction, corre-
sponding to m = n and shown schematically in Fig. 3.1. In this case we

shall use the Green function expression calculated by first integrating over
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k4, given by Eq. (3.21), which now becomes

B 3 et a(m+n)
gii(E) = o /_% dky v (3.29)
Note that the choices of separation and contour integration directions have
led to a simple functional form for the phase term. Here it is simply the pole
of the contour integral, given by Eq. (3.19). A plot of the pole as a function
of k7 at a certain energy is equivalent to the constant energy plot of the band
structure of graphene at that energy, which provides a useful visualisation of
the stationary points, k%. These points are found from Eq. (3.19) using the
condition 94| =0, which gives the following solutions

dkz |,.
)

kz =0, £cos™ ( (3.30)

2t

We note that although both solutions are valid throughout the entire energy
spectrum, there are regions in the spectrum where one or the other gives
rise to complex values for the pole . With these evanescent solutions, the
integrand in Eq. (3.29) tends to vanish for any sizeable value of separation
m + n. Consequently, we need only consider stationary solutions that yield
real-valued solutions for ¢q. For separations in the armchair direction this
allows the energy spectrum to be divided into two distinct regimes

10 { + o8t (—”2_“> if |E| < |¢|

2t

(3.31)
0 if B > |t

Only for energy values near to F = 4t must we consider contributions
from both stationary points. We can understand these regimes by examining
the constant energy surfaces in reciprocal space, shown in Fig. 3.9a). The
shaded area is the Brillouin Zone that we are integrating over in this case.
Constant energy plots are shown for a number of different energies. At E=0,
the surface is simply six discrete points. As the energy is increased, these

points become roughly circular in shape and then triangular. A topologi-
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Figure 3.9: Constant energy plots, Brillouin zones (shaded areas) and sta-
tionary points for calculations in the a) armchair and b) zigzag direction. The
thicker lines correspond to the energies 0.7t and 1.8t and the corresponding
stationary wave vectors for these energies are highlighted with arrows.

cal change occurs at £ = t, when the six shapes merge to form a single,
large, hexagonal contour which shrinks and becomes roughly circular again
as the energy increases further. Stationary values of the phase here corre-
spond to flat regions of contour parallel to the y-axis. For E < [t], there is
one stationary point on each of the contours enclosing a Dirac point, whose
corresponding value of £ is energy dependent. Although there are four such
points inside the chosen Brillouin Zone, only two obey the necessary sign
convention for a pole of the contour integral and the contribution from each
of these is easily shown to be identical. These stationary points and corre-
sponding energy contours, are shown using solid, bold arrows and curves, for
E = 0.7]t| in the energy contour plot. For E > [t|, there is only one station-
ary solution for the pole, which is fixed at k% = 0. This point corresponds
to the top of the central contour formed for this energy range and again its

sign must be chosen to ensure the stationary value for the pole lies within
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the first integration contour. This type of stationary point and contour are

illustrated for £ = 1.8]¢| using dashed arrows and curves in Fig 3.9a).

Now that we have identified the relevant stationary points, we proceed
with the SPA approach outlined above. The wavevector ¢, when expanded
in a Taylor series around a stationary point &% has no linear component and

is approximated, up to second order, by

q(kz) = Q(E) + W(E) (kz — k2)?, (3.32)
where
+ cos™? (— 1-— ’f—; > if |E| < |t|
QE) = o (3.33)
+ cos™! (1'4,1;;' ) it |E| > |t]
and
4 _E%243t%2 if | E| |/|
o T EVE-_E? L B = o
W(E) = E243¢2 if |E] > 1 (3.34)

2,/(2—E2)(E2-9t2)
The sign of Q(£) must be chosen as before to ensure that it lies within the
integration contour. In addition to this, the correct sign of W(FE) must be
determined by its correspondence to the curvature of ¢ at the stationary

point.

Substituting the expression ¢, Eq. (3.32), into the integral in Eq. (3.29)
yields a much-simplified expression for the Green function

™

. iQ(E) (m+n "2
iE Z eiQ(E) (m+n) /2 dk’? ( E) (kz—k%)? (m+n)
42 mn cos(kY)sin(Q(E)) J_

eiQ(E) (m+4n)
47rt2 Z (m+mn) cos(k})sin(Q(E))’

where the number of stationary points, k% to be summed over is determined

gi(E) =

¥i4
2

(3.35)

by the energy regime discussed above. By using the definitions of Q(F)

and W(FE) above we can rewrite a more complete analytic expression for the
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Green function in the two distinct energy regimes. For E > 0, we find

| L
!]jt(E) =\ 3
iTy/m+n \/(E2 + 312)V/t2 — E?
| (3.36)
_iVE ¢iQE) (m+n) if |E| < |¢]
X B QB i) f || > [t
(Ezkgtl)z

Panels (a) and (b) of Fig. 3.10 compare the real and imaginary parts of
the Green function for the case of m +n = 10, calculated using both the an-
alytical expressions derived above and a numerical evaluation of the integral.
We note that at this separation there is an excellent agreement between the
two methods over the entire band. The contributions from the individual
stationary points are illustrated in panels (c¢) and (d) to verify the splitting
of the band into two energy regimes and we can clearly see that one of the
stationary points dominates in each of these regions. To test how good an
approximation Eq. (3.35) is, we plot, as a function of separation, the fraction
of the bandwidth F ¢ for which the relative error between the numerical and
analytical evaluations is less than 1% in Fig 3.11. The armchair direction
corresponds to the plot with circular points and we see that even for small
separations (= 10a), the energy range for which the Green functions are very
accurately described exceeds 90% of the bandwidth. In other words, there
is only a very narrow energy range for which the disagreement exceeds 1%,

and this range decreases rapidly as the separation is increased.

Zigzag Direction

We now turn our attention to the case of separation vectors along the zigzag
direction, for which the procedure followed is almost identical to that for the
armchair direction. From Eq. (3.24), the Green function integral we need to

solve is
eiq(m—n)

1B N
= — dk . 3.0
L z(l:/_7r A sin(2q) + sin(q) cos(ka) i
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Figure 3.10: a) Real and b) imaginary parts of the Green function between
two sites separated by m +n = 20 in the armchair direction calculated
using the SPA method (solid lines) and numerical integration (symbols). The
bottom two panels show the contributions to the real (green) and imaginary
(blue) SPA Green function arising from the two different stationary points.
It is clear that the energy band can be divided between them as discussed in
the text.
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Figure 3.11: Percent of the band with less than 1% difference between the
numerical and SPA Green functions in the armchair (circle) and zigzag (tri-

angle) directions

In this equation the phase term is the pole arising from the contour inte-
gration over k; and the stationary points are the values of k4 where this is
stationary. Recall that the contour integral in this case has two poles and

the contributions from these must be summed to give the total result. The
dg

stationary points, £, for each pole are found from the condition Bl =
k
A

which gives only one stationary point inside the Brillouin Zone,

b =1 (3.38)
Unlike the stationary points calculated for the armchair direction, the zigzag
direction stationary points are independent of energy. This fact is evident
when the constant energy plots shown in Fig 3.9 are examined from the
perspective of stationary values of k4. The separation of the energy band into
two separate regions is not necessary in this case as the stationary points for
both regions occur for the same value of k4. The wavevector ¢ is now Taylor
expanded as before and we find expressions for Q(£) and W(FE) analogous

to Egs. (3.33) and (3.34), except now we have to account for two poles rather
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than one. This gives

Ot =+ cos™! <_t — E)
2t

—t+ F
. ::i: . l
Q cos o7 >
and
. t+E
2E \/(3t+E)(t—E) .
; i B , (3.40)
W =4+—

2E \/(3t—E)(t+E)

where the superscript sign in the expressions for @ and W refer to the sign
choice in the pole definition, Eq. (3.22). Using these expressions the integral

again reduces to a Gaussian integral whose solution gives

. LQ“( )(m—n)
gu(E w Z Wa ( m—n) 5in(2Q(E)) + sin(Q*(E)) cos(k})
(3.41)

Using Eqs 3.39 and 3.40 we can once more write a more complete analytic

expression for the Green function. For E > 0, this becomes

lQ* (m—n)
9 (E) m<m 3t + E)(t — E))a
(3.42)

t](t ((3t— E t+E))%) '

Fig. 3.12 compares the Green function calculated analytically with that
from a numerical calculation for a separation of m—n = 20 and again we note
an excellent agreement across the band. The plot with triangular symbols
in Fig. 3.11 shows the discrepancy between the numerical and analytical
results as a function of distance. As in the armchair direction case, we find

that beyond a couple of lattice spacings there is only a very narrow energy
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Figure 3.12: a) Real and b) imaginary parts of the Green function between
two sites separated by m — n = 20 in the zigzag direction calculated using
the SPA method (solid lines) and numerical integration (symbols).

range in which the disagreement exceeds 1%.

Other directions

Having presented the derivation of the Green function for the separation
vector along the armchair and zigzag directions, it is straightforward to gen-
eralise it to other cases. For arbitrary directions, although the procedure is
similar, we shall see that the identification of the poles or stationary solu-
tions may result from high order polynomial equations that are not always
analytically solvable.

In the armchair (zigzag) case, the expression for the stationary point is
given by an easily solvable expression of the form dq/dk = 0. This expression
arises from the decision to take the contour integral along the k-space direc-
tion parallel to the separation vector, which results in a phase term equal
to the pole of the contour integral. Since the expressions for the poles in
the armchair and zigzag directions, Eqs.(3.19) and (3.22) respectively, are

easily found from Eq. (3.9) , the calculation of all the necessary quantities
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is quite straightforward. To extend this approach to an arbitrary separation
vector, we must first rewrite Eq. (3.9) in terms of k-space vectors kj and &
which are parallel and perpendicular respectively to the required separation
vector. Following this, we must perform the contour integral over k| to get
an expression for the Green function analogous to Egs. (3.21) and (3.24).
However, the expression for the poles of this contour integral will depend
strongly on the separation vector chosen and will usually result from a high
order polynomial equation that may need to be solved numerically. It is im-
portant to note that this equation will only depend on the direction, and not
the length, of the separation vector, so that once the Green function for a
particular direction has been constructed it is valid for any required distance
across the graphene lattice in that direction.

A similar methodology holds for the case of Green functions between sites
on the different sublattices of graphene. In this case Eq. 3.15 must be altered

slightly to read

“(r1—rj)

P a (1\/_ I‘J /? L
g = / dk, /dA ,z| R (3.43)

The integral can now be split into two parts with different phase terms coming
from the two components of f(k). These can then be solved individually using

the approach described above to give the required Green function.

3.3.4 Application of SPA Green functions

The usefulness of having an analytical expression for the real space Green
function, valid throughout the entire electronic energy band, becomes obvi-
ous when physical properties of graphene involving energy scales outside the
linear dispersion region are investigated. This is particularly advantageous
when such properties carry size or position dependence because in this case
Eq. (3.35) for the armchair direction, or Eq. (3.41) for the zigzag direction,

can be more concisely expressed in the form

Ga(E) = (3.44)

b

A(E) ¢i9BA
VA
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where A represents the separation between sites, so that the E- and A-
dependences are clearly distinguished. Furthermore, even in the case when
the functional form of the coefficient A(FE) is not particularly simple, the
expressions in Eqs. (3.35) and (3.41) can be used to expand the Green
function in a polynomial series, which is undoubtedly far simpler and more
treatable than the original expression in Eq. 3.15. The ability to clearly
isolate the distance dependence in the Green function clearly allows a more
transparent treatment of some of the more eagerly investigated properties of

graphene.

This approach will be shown more clearly in later chapters when our for-
malism is used to investigate the interaction between magnetic moments in
graphene. This type of interaction is perfectly suited for investigation using
our approach since it is mediated by the conduction electrons of the graphene
host. We will consider the case of static moments (Chapter 5) and precessing
moments (Chapter 6) using this formalism. However, there are many other
interesting physical properties that can be explored. A topic that lends itself
to our approach is the effect of disorder [68] and in particular, the effect of an
impurity, on the properties of graphene. Friedel oscillations, occurring in the
local density of states as a function of distance from an introduced impurity,
have been studied within the linear dispersion regime using a Green function
formalism [159]. Although the local density of states is associated with the
diagonal term of the Green function, the distance dependence of the oscil-
lations will be determined solely by the off-diagonal term calculated here.
Similarly, the signatures of magnetic adatoms in graphene when probed by
scanning tunnelling spectroscopy have also been investigated using a theo-
retical approach [160]. This method again avails of Green function methods
within the linear dispersion regime. We anticipate that the SPA approach
may allow for an extension of such studies to energies beyond the linear

dispersion regime.
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3.4 Recursive Methods

In Section 3.2.3, we outlined reasons why the fully analytic approach to cal-
culating Green functions can run into difficulties when applied to the case of
graphene nanoribbons. Either the formation of edge states in zigzag ribbons
or the edge hopping-parameter variation needed to return the correct proper-
ties of armchair edged ribbons render the application of hard-edge boundary
conditions to the band structure of a graphene sheet inappropriate. Instead,
we demonstrate here how the recursive methods introduced in the previous
chapter provide an alternative method to calculate Green functions in these
systems. The method involves first calculating the Green function matrix
for one unit cell of the nanoribbon in question and then using this with left
and right hopping matrices in the simple recursive or Rubio-Sancho methods

outlined previously.

3.4.1 AGNRs

For armchair-edged GNRs the repeated unit cell consists of two linear chains
connected at every second atom, as shown schematically for an 6-AGNR in
Fig 3.13. In Section 3.2.3, we used this unit cell to calculate the Hamiltonian
and electronic band structure of AGNRs. In the simplest tight-binding ap-
proach every hopping element is equal to that in a graphene sheet and a third
of all AGNRs are found to be metallic. As discussed earlier, this does not
agree with ab initio results that predict all AGNRs to be semiconducting [52].
The discrepancy can be explained by a contraction of the 7 bond at the edge
of the ribbon. The relevant bonds are shown in red in Fig 3.13. The contrac-
tion of these bonds leads to a 12% increase in the value of the corresponding
hopping parameter. When this is taken into account, the tight-binding re-
sults once more agree with those from more detailed calculations and the
band structure shown in Fig. 3.5 is found.

To calculate the Greens function for this system, we must construct the
Green function for a disconnected unit cell of the system, goo. This is found

by inverting the matrix £ [ —Hyo, where the Hamiltonian matrix for the unit
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Figure 3.13: Unit cell and connection matrices (dashed lines) for a 6-AGNR.
The red lines correspond to contracted bonds in the unit cell and connection
matrices.

cell (for the example case of a 6-AGNR) is given by

e t 000 0 0 0 0 0 O 0
t e t 0 0 0 0O ¢t 0 0 0 0
0t e ¢t O 0O 0 0 0 0 0 0
0 0 t e t 0O 0 0 0 t 0 0
0 0 0 t e t 0O 0 0 0 O 0
0O 00 0t € 0O 0 0O 0 0 1.12t
H()() = -
0000 0 0 e ¢t 0 0 0 0
0Ot 0 0 0 0 t ¢ t 0 0 O
0O 0 0 0 0 0 0 t e t 0 0
000 ¢t 0 0 0 0 t € t 0
0O 0 0o 00 0 0 0 0 t € t
0 00 0 0 11220 0 0 0 0 t €
where we set ¢ = 0 and use t = —2.7¢V as our energy unit. To calculate

Green functions of the system using recursive methods we also need the

connection matrices V® and VA containing hopping parameters between a
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unit cell and its neighbours to the right and left respectively. These matrices
are quite sparse and for the 6-AGNR considered here the only non-zero matrix

elements are

e = L3 Vor = L%
LR RL
Vs,z =1 Vz,s =1 )
RL
Vlﬁ'i =1 V4,10 =1

where the matrix indices correspond to the atoms as labelled in Fig 3.13.
Having constructed these matrices, we can now use them in the algorithms
discussed in Chapter 2. Fig 3.14 shows the surface Green function as a
function of energy for 6-AGNRS with 1, 16 and 256 cells compared to that
for a semi-infinite system calculated using the Rubio-Sancho method. The
inset plot for the semi-infinite case shows the number of iterations needed
for convergence of the algorithm as a function of energy. The bottom panel
shows the Green function of an infinite ribbon constructed by joining together

two semi-infinite ribbon leads.

3.4.2 7ZGNRs

To calculate the Green functions of zigzag edged ribbons using recursive tech-
niques we follow a similar approach to that outlined above for AGNRs. The
repeated unit cell in this case is a single atomic chain shown schematically
for a 4-ZGNR in Fig 3.15. The Green function matrix for the disconnected

unit cell is again found from goy = (EI — Hgo) !, where
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Figure 3.14: Real (black) and imaginary (red) components of the surface
Green function for 6-AGNRs with lengths of a) 1, b) 16 and ¢) 256 unit cell(s).
Panels d) and e) show the semi-infinite and infinite ribbon Green functions
calculated within the Rubio-Sancho scheme. The inset shows the number of
steps, n, in the Rubio-Sancho scheme needed to achieve convergence.
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Figure 3.15: Unit cell and connection matrices (dashed lines) for a 4-ZGNR.

and the matrices connecting the unit cell to its neighbours on the right and

left are given by

0t 000000
00000000
00000000
00t 00000 VRL _ LRt

VER = and
0O 0 0 0 0 ¢t 00

When dealing with a non magnetic zigzag ribbon with U = 0 we set ¢; = 0.
However, if we want to construct the Green functions of a magnetic ribbon,
the degeneracy is broken between the Green functions for up-spin and down-
spin electrons and the onsite potentials are calculated using the self-consistent
procedure described in Section 2.8. We can now use these matrices in the
recursive Green function algorithms to calculate the necessary quantities.
Fig 3.16 shows the resulting Green function at edge (a) and central (b) sites

in an infinite nonmagnetic 4-ZGNR. The insets show the number of unit
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0
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Figure 3.16: Green function matrix elements calculated at the edge (a) and
central (b) sites in an infinite nonmagnetic 4-ZGNR, where the inset shows
the number of steps in the Rubio-Sancho scheme needed to achieve con-
vergence. The bottom panels show the Green functions for both majority
(bold) and minority (dashed) spin electrons at the edge (c¢) and centre (d) of
a magnetic ribbon.
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cells required for convergence of the semi-infinite Green function used in
its construction. A large peak in the imaginary part of the Green function
for the edge site is noted corresponding to a large density of states at the
Fermi energy arising from the localised band formation. This feature is not
present in the Green function for the central site. The bottom panels show
the Green functions for both majority (bold) and minority (dashed) spin
electrons' taken at edge (c) and central (d) sites for a magnetic ribbon with
U = 1.33t, corresponding to the band structure shown in Fig. 3.5. We note
that the edge peak previously present at the Fermi energy has split into two
parts - a majority-spin peak below the Fermi energy and a minority-spin

above it, in agreement with the results of ab nitio calculations.

3.5 Summary of Chapter

In this chapter we shifted our attention from the general description of Green
functions given in Chapter 2 to a specific discussion of their calculation in the
case of graphene and related materials. In section 3.2 the electronic struc-
ture of graphene was calculated within the nearest-neighbour tight-binding
approximation which will be used throughout this thesis. The resulting band
structure was analysed and a brief discussion of the popular linear approxi-
mation often used for small Fermi energies was given. The band structures
of one-dimensional graphene systems, namely nanotubes and nanoribbons,
were presented and their calculation related to that of graphene sheets.
Section 3.3 focused on calculating the Green function matrix elements for
graphene sheets. The calculation was first of all reduced to a one dimensional
integral using contour integration, allowing for much more efficient numerical
calculation. Furthermore, we showed that in certain cases the remaining
integral could be approximated analytically with great accuracy using the
Stationary Phase Approximation. A detailed description of this calculation

for the two principal high-symmetry directions in graphene and an outline

!The terms ‘majority’ and ‘minority’ spin are used here loosely, as the imbalance is
localised to the edge. If, say, the spin-up is the majority-spin orientation at one edge it
will be the minority-spin orientation at the opposite edge.
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of its implementation in more general cases was given. The existence of an
analytical expression for the Green function allows for the behaviour of many
physical properties which can be calculated in terms of Green functions to
be explored in a mathematically transparent fashion. It underpins many of
the analytical calculations performed in Chapters 5 and 6 and has a wide
range of applicability.

Finally, the recursive methods introduced in the previous chapter were
demonstrated explicitly for the case of graphene nanoribbons in section 3.4.
The unit cells and overlap matrices needed for such calculations were shown
and it was demonstrated that these methods can be used to easily account for
edge-distortions or electron-electron interactions that render other methods
of calculation more difficult.

In the following chapters, the Green functions calculated here will be used
repeatedly. In Chapter 4 the dependence of a range of nanoribbon properties
on the location of an impurity will be investigated using recursive methods.
In the following chapters, our attention will shift to the interaction between
magnetic moments embedded into graphene sheets. Our understanding of
such interactions is assisted by a complementary approach using both nu-
merical and analytic calculation of the graphene Green functions.

The derivation of the Green function for graphene using the Stationary
Phase Approximation presented in this chapter was published as part of
“Electronic structure of graphene beyond the linear dispersion regime” (Phys.
Rev. B 83, 155432).
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CHAPTER
FOUR

Position dependent properties in Graphene Nanoribbons

4.1 Introduction

In this chapter we will focus our attention on some of the physical properties
of graphene nanoribbons (GNRs). These one-dimensional strips of graphene
have received much attention in the literature since the discovery of graphene
and applications for these materials in the fields of nanoelectronics and spin-
tronics, amongst others, have been postulated. The electronic structure and
Green functions for these materials were calculated in Chapter 3, where the
characterisation of GNRs in terms of their width and edge geometry was
also introduced. We will focus on the two principal edge geometries, namely
those corresponding to the armchair and zigzag directions. The ribbon width
is denoted by the number of dimer pairs (for AGNRs) or zigzag chains (for

ZGNRs) across the ribbon width. Schematic examples are shown in Fig 4.1.

Since doping with impurity species is an effective way of tailoring the elec-
tronic properties of a material, much investigation of graphene and related
materials with introduced impurities has taken place [69,161,162]. A crucial
difference between GNRs and the bulk case or carbon nanotubes is the ex-
istence of two symmetry-breaking edges. Introducing edges into a graphene

sheet breaks the equivalency of the sites on the lattice which are now charac-
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Figure 4.1: Schematic representation of a 4-ZGNR (left) and 7-AGNR (right),
with the two graphene sublattices represented by filled and hollow symbols.
The possible sites for substitutional (centre-adsorbed) impurities are labelled
with Arabic (Roman) numerals. The arrows refer to the periodicity direction.

terised by their distance from either edge of the ribbon. We thus expect that
the physical properties of a GNR with an impurity becomes dependent on
the position of that impurity across the width of the ribbon. Indeed previous
studies have investigated how the electronic conductance of GNRs depends
on the location of impurities [57,70,71]. The principal findings of these stud-
ies will be discussed and illustrated with a simple model of our own in Section
4.2.

In addition to the conductance of the GNR, this distance dependence also
arises in the energetics of the doping process. In other words, the binding
energy of a dopant depends on its position across the ribbon. In Section 4.3
we introduce a simple model based on the Lloyd formula to investigate this
dependence and compare our results to those obtained from a full ab initio
calculation. Furthermore we investigate how the impurity segregation intro-
duced by the position dependence of the binding energy can be controlled
by external factors, in this case a gate voltage applied to the system. This
opens the road to manipulating the impurity distribution within a ribbon
which we argue might be a possible route to engineering some of the physical

properties of GNRs.

Finally, in Section 4.4 we switch our attention to the case of magnetic

dopants. This study is motivated by the potential for graphene-based spin-
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tronic devices. GNRs have been at the forefront of research in this area, pri-
marily due to the existence of spin polarised edge states in ZGNRs [40,41].
However, these states are predicted to be highly dependent on the edge geom-
etry of the ribbon and not particularly robust under the introduction of edge
disorder [51]. Another possibility for incorporating graphene in spintronic
devices lies in the doping of GNRs with magnetic impurity atoms. Similarly
to the conductance and binding energy, the magnetic moment of such an im-
purity should also depend on the impurity position. Using the self-consistent
model introduced in Chapter 2, we show how the magnetic moment for var-
ious impurity configurations varies across the ribbon width. Once more a
comparison is made with ab initio calculations to verify the qualitative fea-
tures of our findings. The robustness of the magnetic moments introduced is
then illustrated by examining the effect of an introduced edge defect on the
magnetic moment profile.

The work presented in this chapter illustrates the importance of position
dependent effects in three areas of nanoribbon research. It also highlights
how these effects can be exploited to the advantage of future graphene based
devices. The additional degree of freedom afforded by the introduction of
edges into a graphene lattice thus opens up new opportunities for engineering

the physical properties of disordered graphene-based systems.

4.2 Transport

In this section we examine the effects of impurity position on the electronic
transport properties of a ribbon system. The Caroli formalism for calculating
conductance is briefly introduced and used to calculate the conductance of
a sample of pristine ribbons. Following this the effect of a single impurity
at various locations across the width of ribbons with armchair and zigzag
geometry is investigated. Finally, we move from a single impurity to discuss
extended disorder in the form of a disordered length of ribbon with a cer-
tain concentration of impurities. The effects of ribbon type and also of the

impurity type and distribution are discussed.
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4.2.1 Caroli Formalism

To calculate the electronic conductance, I', through a system we make use of
the Caroli formalism. An expression for the conductance can be derived in

terms of Green functions as

2

I (EF) == 4—;2— Tr (Gii(EF) Vij éjj(EF) Vji = VLj sz’(E!v’) Vij éji(EI-‘)) )
(4.1)
where Gj; = L+ (GFE—G{) and G" (G?) is the retarded (advanced) Green
function [163]. Here we have used 7 and j to denote two adjacent layers of
the system, the choice of which is arbitrary. Equivalent expressions for the
conductance can be derived using the Kubo or Landauer-Buttiker formalisms

[164].

When calculating conductances of systems consisting of semi-infinite left-
and right-hand side leads and a finite central device region, as illustrated

schematically in Fig 4.2, the approach taken is as follows

e the left- and right-hand side leads are built recursively using the meth-

ods of Chapter 2 to yield the surface Green functions g;;, and gggr

e the central device region is added layer by layer to the left hand side

lead to give a new surface Green function, gpp

e the two sides of the system are connected using the Dyson equation,

yielding the connected Green function G

e the conductance is evaluated using Eq. (4.1) where we set ¢ = D and

L o gu_ R

Figure 4.2: The left lead (L), central device (D) and right lead (R) sections of
a system used in typical conductance calculations. using the Caroli Formula
method.
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j=R.

Using this algorithm we can calculate conductances for a wide variety of
nanoribbon systems. Fig 4.3 shows the conductance as a function of Fermi
energy through pristine armchair and zigzag nanoribbons. For pristine rib-
bons, we are in the ballistic transport regime and each additional subband
contributes an additional quantum of conductance (%) This is clear from
the density of states (shaded plot) in the background of each of these graphs.
We shall now use this formalism to calculate the conductances of nanoribbons

with impurities.

4.2.2 Single Impurity

The doping of nanoribbons is expected to allow much modification of their
characteristics. It is predicted that the introduction of various elements,
functional groups or vacancies into a ribbon system will lead to a wide array
of possible properties, including but not limited to semiconducting with wide
range of possible band gaps, metallic, ferromagnetic, antiferromagnetic, half-
metallic and half-semiconducting [165]. The numerous possibilities for fine-
tuning such properties suggest a wide range of possible applications for these
materials. One of the properties that is of particular interest is how the
transport through a nanoribbon is affected by the introduction of impurities.
A large number of works have focused on various facets of this topic [56-64,
70-72,75,165]. Unlike carbon nanotubes, a similar material whose properties
when doped have long been studied [8], nanoribbons have an extra degree
of freedom when it comes to doping as the possible sites across the ribbon
width where impurities may form are not equivalent. In this section we shall
examine how the conductance of armchair- and zigzag-edged ribbons depends
on the location of a single impurity before considering the effects of extended
edge or bulk type impurity distributions in the next section.

The position dependence of transport properties for doped materials has
been the subject of a few recent works. Usually this consists of an ab initio
study of a ribbon with a specific impurity species considered at different

locations across it [70-72]. Some work has also been performed on the effect
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Figure 4.3: Conductance, I'(Er), through a pristine 6-AGNR (top) and 4-
ZGNR (bottom) shown by red, solid line. The density of states for each
ribbon is shown by the grey shaded area in each plot.

of vacancy defects on the conductance through ribbons. A tight-binding
study reports that vacancies near the centre of a wide ZGNR have a more
detrimental effect on the conductance than those near the edge [75]. However,
much of the study of vacancy defects has focused on edge vacancies due to
the importance of extended edge disorder that we shall discuss in the next
section. Liand Lu [56] begin a comprehensive study of edge disorder in GNRs
with a demonstration of the effects of two impurity types on the conductance
of both armchair and zigzag-edged GNRs. The impurity types considered are
vacancies and weak scatterers which can represent local lattice distortions, or
adsorbed or substitutional impurities. Both types of impurities are accounted
for in a tight-binding description of the ribbons by a change in the onsite
potential, ¢; at the impurity site. For a vacancy defect this quantity is set to
infinity and for a weak scatterer a small value (< 2eV) is chosen. We shall
now consider impurities of these types to examine the position dependence

of the conductance. Fig 4.4 shows the conductance for Fermi energies in
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the region around Er = 0 through a 11-AGNR (top panels) and 6-ZGNR
(bottom panels) for three different impurity locations between the edge and
centre of the ribbon, as shown in the schematics. Both vacancy (left panels)

and weak scatterers (with €; = 0.7¢, right panels) are considered.

For both defect and both ribbon types, the results for edge impurities (the
red dashed curves) agree with those of Li and Lu [56], with the exception
that we have included the edge correction required for AGNRs [52], so that
our pristine AGNR is semiconducting and not metallic. For vacancies in
AGNRs (top, left) we observe that edge positions (red, green) have the largest
effect on the conductance in the region around Ep = 0 with a wide dip in
the conductance throughout the first plateau. In contrast, a vacancy at
the ribbon centre (blue, dash-dotted) has only a mild broadening effect on
the bandgap. For ZGNRs, a different picture emerges. In all cases the
vacancy induces dips in the conductance in the region of the first plateau.
However, for edge vacancies these are quite narrow and towards the band
edge. However, as the vacancy moves towards the ribbon centre these dips
become broader and migrate towards Fr = 0. This is the general trend
noted in Ref. [75] for the position dependence of vacancy defects in ZGNRs.
A single weak scatterer (right panels) has, in general, a very small effect on
the conductance of either ribbon. The only exception is the case of an edge
scatterer in ZGNRs. Li and Lu account for this by considering the group
velocity of electrons near Er = 0 in graphene. As the bands are partially
flat in this region, as we have seen in Chapter 3, the group velocity of these
electrons is close to zero and so even a very weak scatterer can produce a
quasi-localised state near the Fermi energy causing a dip in conductance.
Another consideration is the localisation of the edge states at Er = 0, which
makes them particularly susceptible to scattering by a weak edge defect. As
the strength of the scatterer is increased, the conductance dip broadens and
shifts away from Epr = 0. As it is increased further it splits into two dips
at either side of £ = 0 which in the limiting case of a vacancy defect are

located at the band edges, as seen in the red curve of the bottom left panel.
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Figure 4.4: The conductance through an 11-AGNR (top panels) and a 6-
ZGNR (bottom panels) for the pristine case (solid, black lines) or with a
single vacancy (left) or weak scatterer (right) located at one of three different
locations between the edge (red) and centre (blue) of the ribbon, as shown
by the schematic diagrams for each case.

4.2.3 Extended disorder

Much of the investigation into extended disorder in GNRs has focused on
edge defects and vacancies [56-64]. This work was principally motivated
by the discrepancy between the band gaps of GNRs estimated by exper-
iment [53-55] and those predicted theoretically for pristine ribbons using
either tight-binding models (Refs [39, 40, 52], and Chapter 3) or ab initio
methods. A broad consensus from the study of edge-disordered GNRs is that
the presence of edge-disorder induces Anderson-type localisation [65-67] in
the ribbons, causing enhancement of the density of states at the ribbon edges
and a blocking of conductive paths through the ribbons. The conductance of
aribbon with a finite length, L, of disorder is expected to decay exponentially

due to this localisation, so that

r=r, e*ﬁ ) (4.2)
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where I’y is the pristine conductance and L is the localisation length which
is found to increase with ribbon width [56-58]. For both ribbon geometries,
the introduction of edge vacancies leads to conductance suppression and the
opening of a bandgap around the Fermi energy.! However the gap is less
pronounced for ZGNRs [57] - a finding easily reconciled with the single va-
cancy results in Fig 4.4. Vacancies at the ribbon edge were shown here to
have a more severe effect in the case of AGNRs. An extended ensemble of
weak edge scatterers was found however to have a different effect [56] - a gap
opening was reported for ZGNRs but the effects of localisation were found
to be significantly weaker for the armchair case where no bandgap was found
due to a very long localisation length. Again this is in agreement with what
can be predicted from the single weak-scatterer conductances in Fig. 4.4.

In their study, Mucciolo et al [57] supplement the standard discussion by
considering also the effects of an extended bulk disorder on the conductance
of the ribbon. In this case the impurities are uniformly distributed across the
ribbon and not localised to the edge as before. They note some important
contrasts between the signatures of edge and bulk disorder. Firstly, moderate
bulk disorder is found to have a lesser effect on AGNRs, where the current
carrying states are concentrated near the ribbon edge. This is again consis-
tent with the single-impurity findings in Fig. 4.4, where impurities towards
the centre of the ribbon were shown to have a minimal effect on the ribbon
conductance around Er = 0. The opposite situtation is reported in ZGNRs
where bulk disorder significantly suppresses the conductance. The findings
for bulk disorder are roughly the opposite to those reported for edge vacan-
cies. Furthermore, this study finds contrasting signatures for edge and bulk
disorders in the shape of the conductance plateaux. Weak edge disorder is
found to lower the conductance steps without changing the energies at which
they occur. However bulk disorder has the effect of smearing the plateaux
without shifting their conductance values.

In summary, the conductances of ribbon systems with edge- and bulk-type
disorders are found to display quite different behaviour. The conductance

features are found to depend strongly not only on the ribbon geometry, but

IThe studies cited here use metallic nanoribbons in their models.
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on the nature and distribution of the disorder. The degree to which the
conductance depends on the impurity distribution suggests that selective
doping of nanoribbons may be an effective method to tailor their electronic

transport for specific device applications.

4.3 Impurity segregation

In the previous section we examined how the conductance of a GNR was ef-
fected by the introduction of an impurity into the system and noted that the
position of the impurity across the width of the GNR played an important
role in determining the characteristics of the electronic transport through
the system. One crucial aspect that seems to be often overlooked however is
that the dependence noted for the conductance also arises in the energetics
of the doping process. As a result, by examining how the binding energy
for an impurity varies across the ribbon width we can identify energetically
favourable locations for impurities, leading to a degree of spatial segregation
in the impurity concentration. Bearing in mind that impurity segregation
is known to occur at symmetry-breaking interfaces between two materials
due to quantum interference effects [76, 77], it should come as no surprise
that the proximity of the two edges of a GNR is capable of inducing similar
segregational features in the impurity distribution. What is surprising in the
case of GNRs is that the segregation may be easily controllable by external
factors, which may in turn allow some manipulation of the impurity distribu-
tion within a ribbon. This suggests a possible route to engineering some of
the physical properties of GNRs which depend on the impurity distribution,

including the conductance, as illustrated in Section 4.2.

4.3.1 Impurity Types

To account for the position dependence of the binding energy we must first
define the geometry of the host ribbon and the types of impurities considered.
We consider GNRs of infinite length and finite width with either the zigzag

or armchair edge geometries. We consider three different types of impurity
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a) b) c)

Figure 4.5: The three types of impurity configuration considered: a) substi-
tutional atom, b) top-adsorbed atom and ¢) centre-adsorbed atom

atom, shown schematically in Fig. 4.5. The first of these is a substitutional
atom impurity, where a single carbon atom from the graphene lattice is re-
placed with an atom of a different species. We also consider top-adsorbed
impurities, where the impurity atom adsorbs to an atom from the lattice in-
stead of replacing it. Finally we consider the centre-adsorbed type impurity,
where the impurity atom sits at the centre of a hexagon and connects to
each of the surrounding six carbon atoms. In Chapter 2, we demonstrated
how the Green functions of systems with substitutional and top-adsorbed
impurities could be calculated in terms of the pristine system Green func-
tions and the perturbation potentials describing the impurities. The case
of centre-adsorbed impurities follows an identical procedure to that for top-
adsorbed atoms except that the connecting potential describes connections

to six lattice sites instead of just one.

Tight-binding parameterisation

Throughout this thesis we are studying a range of phenomena involving im-
purities in graphene. However, in most of these cases, the important features
of the interaction emerge from the electronic properties of graphene and not
from the particular properties of the chosen impurity. For this reason, we
choose an arbitrary set of tight-binding parameters to use with the formu-
las in Chapter 2 for calculating the necessary perturbed Green functions.

The parameters in question are the onsite energy of the impurity, €, and
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the impurity-carbon hopping term t’. Throughout this work we write these
terms in units of the carbon-carbon hopping t. For substitutional impurities
we generally set € = t and t' = t. However, in this and the next chapter
we examine some of the effects of changing ¢’ on the properties of magnetic
impurities in graphene. For adsorbed impurities, the default parameters used
are € = 0 and ' = t. However, we note that in both cases when we consider
magnetic impurities the onsite energy terms are calculated self-consistently
within the mean field approximation discussed in Chapter 2. We note that
the qualitative features discussed later in this work are quite general, and
in most cases the location or separation dependences we are interested in
do not vary strongly as the impurity species is changed. If a more quantita-
tive analysis is required, the tight-binding parameters for a particular atomic
species hybridising with graphene can be calculated. This is usually done by
a comparison with a full Density Functional Theory calculation, where the
relevant tight-binding parameters are varied so that agreement is reached be-
tween either the bandstructure [166, 167], total energy results [151, 152, 168]
or magnetic moments [118] of both calculations. Table 4.3.1 shows a range
of values calculated for different impurity species in both graphene and nan-
otube (NT) systems where the parameterisation is expected to be similar.
We note that the parameters we have chosen, although arbitrary, do not dif-
fer significantly from those calculated for a range of impurity types. This
suggests that our results should not be altered to a large extent if a full

parameterisation is performed.

Impurity species Type e(t) | t'(t) | Reference
B substitutional -0.56 | 0.54 [169]
Ni substitutional (NT) | -1.82 | 0.23 [118]
Mn substitutional (NT) | -1.17 | 0.36 [118]
H top-adsorbed -0.04 | 2.22 [170]
In centre-adsorbed 0.67 | 0.74 [171]
Mn centre-adsorbed (NT) | -0.79 | 0.61 [118]

Table 4.1: Tight-binding parameters for a range of impurity species. Results
marked with ‘N'T” are based on a nanotube-impurity system.
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4.3.2 Segregation energy function [

The quantity of interest is the difference between the total energies of two
distinct configurations: one in which the GNR and impurity are connected
and another in which they are far apart. This can be summarised by evaluat-
ing the total-energy variation due to the perturbation applied to the system
when an impurity is introduced. We can write the total energy of a system as
the electronic structure contribution added to a repulsive energy term [172]
in which the latter has been given a formal correspondence with modern Den-
sity Functional Theory (DFT) [173]. This latter contribution, not expected
to carry a major position dependence, should play only a minor role in the
segregation features. Therefore, the bandstructure contribution to the total-
energy variation becomes the most relevant quantity to be calculated. Recall
that in Chapter 2, we illustrated how the Lloyd formula could be used to
calculate the total energy difference without the need to calculate the Green

functions of the perturbed system. From Eq. 2.58, we have

Ep X A
Al = ! Im / dE Indet(I —gV), (4.3)

T o0
where V is the perturbation potential describing the considered impurity,
g is the Green function associated with the unperturbed system and Ep is
the Fermi energy. The segregation is now studied by selecting the type of
impurity and its position within the GNR, calculating the relevant matrix
elements of g and finally evaluating the integral in Eq. (4.3). This integral is
performed in the complex plane using the methods described in Section 2.7.
To simplify the comparison between the various cases and with ab initio cal-

culations we introduce a renormalised energy scale. The segregation energy
function (SEF) is defined as

_ AE-AE,

g= —TW ; (4.4)

where AF, is the electronic contribution to the total-energy variation eval-

uated at the centre of the GNR and which is taken as a reference energy.
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This dimensionless quantity describes the percentage deviation of the energy
variation with respect to its value at the central position.

We consider first the case of substitutional impurities in a 6-ZGNR. The
square symbols in Fig. 4.6 represent the values of /3 for all positions across the
width of a 6-ZGNR with substitutional impurities and points to a scenario
in which they prefer to occupy the edges of a GNR with an energy variation
that is predicted to be 30% lower than at the centre. This preference for edge
sites is also true for adatoms, as we shall see shortly, and is also reported by
other studies [56,70-72,174]. What is remarkable in our results is the way in
which [ varies when the impurity position moves to the central region of the
GNR. Rather than simply vanishing, it does so in a non-monotonic fashion
pointing to the existence of a few local minima separating the lowest value
at the edges from the central zero.

To test whether such a non-monotonicity in the position dependence of
the binding energy could be an artifact of our simple model, DFT calcula-
tions were performed in which a similar 6-ZGNR was substitutionally doped
with Ti atoms located at different positions across the ribbon?. The results of
these calculations are shown by the circular symbols in Fig. 4.6 and display
similar behaviour for 7 as those from our simple model, shown by square
symbols, including excellent agreement at the ribbon edges. The existence of
local minima was also reproduced at the same locations, albeit with slightly
different values for 3. Such an excellent agreement with DFT results reas-
sures us that our simple model contains the essential ingredients to describe
the effect of impurity segregation in GNRs. With this model we can consider
ribbons of all sizes and geometries as well as include an arbitrary number of

impurities, if necessary.

2These calculations were carried out using the SIESTA [175] code with a 98-atom su-
percell. Double zeta basis set plus polarisation functions were employed and the exchange-
correlation function was adjusted using the generalised gradient approximation according
to the parameterisation proposed by Perdew, Burke and Ernzenhof [176]. To represent
the charge density, a cutoff of 170 Ry for the grid integration in real space was used. The
interactions between the ionic cores and the valence electrons were described with norm-
conserving Troullier-Martins pseudopotentials [177]. The structural optimisations were
performed with the conjugate gradient approximation [175] until the residual forces were
smaller than 0.05 eV/A.
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Figure 4.6: Segregation function [ for substitutional impurities on different
locations of a 6-ZGNR. Red squares indicate the results for the model calcula-
tions; black circles those for DFT calculations for Ti atoms. Hollow and filled

symbols indicate which sub-lattice contains the substitutional replacement.
Lines are guide to the eyes only.
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Figure 4.7: Segregation function [ for top-adsorbed atoms on a 30-ZGNR
(left) and 35-AGNR (right). The filled (blue) and unfilled (red) circles repre-

sent adsorption sites from the two distinct sublattices. The solid and dashed
lines connect sites within a given sublattice.
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Figure 4.8: Segregation function /3 for centre-adsorbed atoms on a 35-ZGNR.
The sublattice dependence present for top-adsorbed or substitutional impu-
rities has been averaged out. The dashed line is a guide to eye.

A point worth raising is that the location of substitutional impurities
usually follows the existence of defects and vacancies, often induced by ionic
irradiation [178-180]. In this scenario, impurities will occupy the sites sur-
rounding the defects, which means that edge-induced impurity segregation
will play a minor role in the doping process. However, for adsorbed atoms the
situation is very different. In this case the impurities will adsorb at the most
energetically convenient sites. Thus the position dependence of the binding
energy is a key factor in determining where the impurities will be adsorbed.
As previously anticipated, there is very little qualitative difference in our
model between the substitutional and adsorbed cases, which suggests similar
non-monotonic variations in the segregation function across the ribbon. This
is shown in Fig. 4.7 where the SEF for adsorbed impurities in a 30-ZGNR
(35-AGNR) is displayed on the left (right) panel. Filled (blue) and hollow
(red) symbols indicate above which sub-lattice the impurities are located.
The left panel shows that the segregation function for ZGNR alternates be-
tween positive and negative depending on which sub-lattice the impurity is
above, similar to the case for substitutional impurities. There is a clear dis-

tinction between the filled and hollow points, in the sense that on the left half
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of the ribbon the former are energetically more favourable as adsorption sites
for the impurities, whereas the latter becomes preferable on the right half of
the GNR. A solid (dashed) line linking the values of 3 for hollow (filled) sites
is also shown. Both lines intersect at the centre of the GNR, where § = 0,
confirming that the preferential location for impurities changes from one sub-
lattice to another precisely at this location. The sublattice dependence in
the segregational features can be understood by examining the geometry of
ZGNRs. Introducing zigzag edges breaks the symmetry between the sub-
lattices across the ribbon width with the opposing edges composed entirely
of atoms from opposite sublattices. This is clearly seen in the schematic
ZGNR shown in Fig 4.1. Although similar non-monotonicities in the SEF
are also found for AGNR, shown on the right panels of Fig. 4.7, in this
case there is no obvious distinction between the two sub-lattices in regard to
the most energetically favourable position. A cursory inspection of AGNR
geometry reveals that armchair edges do not break the symmetry between
the two sublattices. For both edge geometries we find that the impurities are
found to attach much more readily to edge atoms than to central atoms. The
edge value of || is much larger in the zigzag case, which can be reconciled
with the existence of localised edge states at the (half-filling) Fermi energy
in these ribbons [39]. In Fig. 4.8 we show a similar plot, but for the case
of centre-adsorbed impurities. The sublattice dependent non-monotonicity
disappears in this case, as the adatoms connect to carbon atoms from both
sublattices and the effect is averaged out. However, a marked preference for

edge sites with a decay towards the centre is still present.

As in the case of substitutional impurities, we performed DFT calcula-
tions for adsorbed Ti atoms on a 6-ZGNR. It was found that on each side
of the ribbon one of the sublattices was dominant. When an adatom was
released above a site belonging to this sublattice it would remain there. How-
ever, adatoms released over sites from the other sublattice tended to migrate
either to sites above the dominant sublattice or to more complex intermedi-
ary sites. The other sublattice was found to assume the dominant role on
the opposite side of the ribbon. The migration behaviour described makes it

difficult to make a direct comparison with the simple model SEF, as we did
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for the substitutional case. However, the existence of this type of behaviour
confirms qualitatively the results of our simple model, which predicts sites
from a single sublattice to be favoured on either side of the ribbon, as seen
in the top left panel of Fig 4.7. Once again, the agreement between the re-
sults based on our simple model and those obtained by DFT calculations are
encouraging and suggest that this model can be used to shed some light in

situations where ab-initio calculations are unable to do so.

4.3.3 Control through gating and applications

The ease with which the Fermi level, Ep, of graphene-based structures can be
manipulated with external gate voltages [4] adds an extra ingredient to the
study of impurity segregation in GNR. Fig. 4.9 plots the SEF for adsorbed
impurities of the 30-ZGNR (35-AGNR) considered earlier in Fig. 4.7 for two
distinct cases. For clarity, Fig. 4.9 focuses on the central regions of the rib-
bons. The top panels show the ungated case considered earlier, where for
each sublattice we observe a monotonic increase in the SEF from the domi-
nant edge of the ribbon to the opposite edge. The bottom panels of Fig. 4.9
shows the SEF for both ribbons when the Fermi energy is shifted away from
half-filling by a mere 3% of the graphene bandwidth. The solid and dashed
lines used to distinguish between the two different sub-lattices are clearly
modified as Ep is changed and an oscillatory feature is introduced. Whereas
the AGNR remains without any clear favourites for the most energetically
preferred locations, there is a striking effect on the ZGNR. In this case the
two lines intersect not one but five times indicating that the energetically
favourable location for the adsorption of impurities changes periodically be-
tween the two sub-lattices forming a striped pattern across the ribbon width.
This oscillatory feature is also present for the centre-adsorbed configuration,
but once more without a sublattice dependence.

It is important to note the general nature of the model for the SEF we
have constructed and used in this work. We have made no assumptions
about the atomic species used as the impurity. Although it is possible to fit

our tight-binding parameters to DFT calculations, this is not necessary to
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Figure 4.9: Segregation function [ for adsorbed atoms on a 30-ZGNR (left
panels) and 35-AGNR (right panels) for Er = 0.0t (top panels) and Ep =
0.2t (bottom panels). The filled (blue) and unfilled (red) circles represent
adsorption sites from the two distinct sublattices. The solid and dashed lines
connect sites within a given sublattice. Here we have focused on the central
region of both ribbons, but the edge sites are the most favourable adsorption
sites.
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Figure 4.10: The segregation function at the edge of a ribbon, (.44, reveals
how favourable the edge adsorption site of a ribbon is relative to the central
site. When Epr = 0, the edge site is far more favourable for both a 10-ZGNR
(black, solid line) and 11-AGNR (red, dashed line). However by shifting Ep,
the edge and central sites become more equally favourable, particularly in
ZGNRs. Also shown is the case of a centre-adsorbed atom on a 30-ZGNR
(blue, dot-dashed line), where a similar trend is noted.
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recover the qualitative features of the results shown above. Indeed, our re-
sults for substitutional atoms with arbitrary tight-binding parameters match
the results of a full ab initio calculation for Ti atoms to a high degree of
accuracy (Fig 4.6). This suggests that the non-monotonic behaviour of /3
displayed in the above results is independent of the impurity species chosen,
and depends only on underlying graphene lattice and how the impurity is
embedded into it. This is evident from the form of Eq. (4.3), where the po-
sition dependence arises solely in the Green function matrix element of the
host ribbon. Therefore similar behaviour can be expected if the impurities
considered possess a magnetic moment. Recent works have established that
a long range magnetic coupling can exist between magnetic atoms embedded
in graphene-related materials [116-118,136]. In the next chapter we shall
examine some of the properties of this coupling in graphene. It is found that
certain magnetic dopants adsorbed onto sites within the same sublattice pre-
fer to align ferromagnetically, whereas those on opposite sublattices prefer an
antiferromagnetic alignment [73,119,123,124,181]. Thus, if in a given region
of a ribbon a majority of the magnetic dopants adsorb onto one of the sub-
lattices, it follows that these dopants may prefer to align ferromagnetically,
resulting in a net magnetic moment in this region. Similarly, a net magnetic
moment with opposite sign should form in regions where the other sublattice
is preferential. By controlling the Fermi energy, it may therefore be possi-
ble to manipulate the width of magnetic domains across the ribbon. In this
manner, it may be possible to engineer doped GNRs with magnetic prop-
erties determined by the application of an electric field during the impurity

adsorption phase.

In the previous section we demonstrated how the transport properties of
a graphene nanoribbon have been shown to be dependent on the position
of an impurity. A comparison [57] between the effects of edge and bulk
disorders in GNRs reveals a marked difference between these two cases. For
example, mild edge disorder produces only a small effect in the conductance
of ZGNRs, whereas bulk disorder can lead to a more dramatic suppression
of the conductance, with roughly the opposite effect observed for AGNRs.

The difference between edge and bulk disorder suggests that controlling the
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impurity distribution across a ribbon may be a viable method of engineering
its transport properties. Fig. 4.10 shows g4, the value of 3 at the edge of
a ribbon, as a function of Er for a 10-ZGNR and 11-AGNR, and also for a
centre adsorbed atom on a 30-ZGNR. When this quantity approaches zero,
the edge and central sites are equally favourable. We see from Fig. 4.10 that
as Ep is increased from half-filling, for ZGNRs at least, the preference for
adsorption at edge sites is decreased continually until edge and central sites
are almost equivalent. This suggests it may be possible to engineer ribbons
with the transport properties associated with edge disorder, bulk disorder
or any intermediate position on the continuum between these two. This
presents itself as a possible method for fine-tuning the resistance properties

of a ribbon device.

4.4 Magnetic moment profile

In the previous section we noted the generality of the model used to calculate
the segregation energy function describing the variation in binding energy of
an impurity placed at different locations across a GNR. This suggested the
behaviour noted was independent of the atomic species chosen and should
also be found if a magnetic impurity is chosen. However in the case of
magnetic impurity atoms, the position dependence noted should arise not
only in the binding energy, but in the magnetic moment itself, as the impurity
location is varied.

A position dependence in the magnetic moments arising in pristine ZGNRs
due to localised edge states has previously been noted and motivates much of
the research being performed investigating magnetism in graphene [39-42].
This feature can be found within the mean-field Hubbard model described
in Chapter 2 by the inclusion of a non-zero Coulomb repulsion term U at
each lattice site. For a wide range of U values, the ground state consists
of large moments on the edge sites, where moments along one side of the
ribbon align parallel to each other and anti-parallel to those on the opposite
edge. The moments are found to decay non-monotonically towards the cen-

tre of the ribbon, as shown in Fig. 4.11. The pattern formed here is again
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Figure 4.11: a) The magnetic moment profile across a pristine magnetic 8-
ZGNR calculated with the self-consistent method with U = 1.33t. b)The
bandstructure and c¢) density of states of the same system.

a sublattice effect - moments on opposite sublattices are found to prefer an
anti-parallel alignment. In fact, by focusing on a single sublattice we note a
monotonic change in the value of the magnetic moment over the width of the
ribbon. Another interesting feature that arises in the electronic properties
of the ribbon, when the band structure is calculated in this model, is that a
bandgap opens up, causing a splitting of the peak in the density of states at
the Fermi energy. In contrast, if all the moments on the ribbon are forced to
align parallel this band gap does not open. Several magnetoresistance devices
exploiting this feature have been suggested [41,102,103]. However, despite
theoretical advances in the study of GNRs, experimental validation of their
properties has so far been inconclusive, due to the difficulty in patterning the
edge geometries required for these effects to be observed. Furthermore, the
spin-polarised edge states in ZGNRs are predicted to be highly dependent
on the edge geometry and not particularly robust under the introduction of
edge disorder in the form of vacancy defects or impurity atoms [51]. These
factors present major obstacles in the path of utilising the intrinsic magnetic
edge states of graphene in experimentally realisable devices.

In this section, we will focus firstly on the position dependence of the

magnetic moments of substitutional and centre-adsorbed atoms on zigzag and
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armchair GNRs and examine the features of the moment profiles calculated.
Following this we will examine the robustness of these features when an edge
disorder in the form of a vacancy defect is introduced. We find that the edge
vacancy only has a significant effect on moments located on neighbouring sites
and that the moment profile quickly returns to that of the pristine ribbon
as we move away from the defect. This suggests that the moments arising
through the doping of graphene ribbons with magnetic impurity atoms may
be a viable alternative to those formed intrinsically when devising graphene-

based spintronic devices.

4.4.1 Moment profiles

The magnetic moment on an impurity in graphene is calculated using a com-
bination of the methods discussed previously. The Green function at the
impurity site is found from the recursively calculated Green function of the
pristine ribbon using the Dyson equation and the perturbation potential as-
sociated with the particular impurity type. This is then used in the self con-
sistent procedure for the Hartree Fock approximation to the Hubbard model
described in Chapter 2. The magnetic impurities are described by a five-fold
degenerate d band with occupation ny to represent a typical transition-metal
magnetic atom. The hopping parameter between the carbon atom and the
magnetic impurity atom will depend on the impurity atom chosen and can be
calculated in a number of ways. While a smaller value of this parameter will
in general amplify the value of the magnetic moment returned, it does not
have a significant qualitative effect on the moment profile across the width of
the ribbon and is taken within this study to be equal to the carbon-carbon
hopping parameter vcc. The moment profiles calculated using this model
are compared to those calculated from a full ab initio approach with Mn
impurities.?

We present results for two magnetic impurity configurations - firstly the

case of a substitutional atom and then for a centre-adsorbed impurity, shown

3These ab initio calculations were performed similarly to those outlined in the previous
section, but this time taking spin polarisation into account. An 84-atom supercell was
used for the 8-ZGNR and an 88-atom supercell for the 11-AGNR case.



118 CHAPTER 4. POSITION DEPENDENT PROPERTIES IN GNRS

earlier in panels a) and ¢) of Fig. 4.5. The impurity is moved across the finite
width of the ribbon and the self-consistent value for m is calculated at each
site. To enable a simpler comparison with the ab initio results the quan-

tity of interest is the fluctuation of the magnitude of the moment relative

Am _ m—me

to its value at the centre of the ribbon, m.. This is given by =

a quantity analogous to the SEF in the previous section. By examining the
relative fluctuations we can directly compare the results of the simple param-
eter tight-binding model with full ab initio calculations. This is especially
convenient considering that the mean-field approximation is sometimes found

to overestimate the value of the magnetic moment [182].

Substitutional atoms

Fig 4.12 shows the magnetic moment fluctuation as function of impurity
location for substitutional impurities across the width of a 6-ZGNR and a
11-ANGR. For the case of zigzag ribbons, we first note an excellent quali-
tative match between the simple model and the full DF'T calculation, from
which we infer that the underlying mechanism for the variation in the mag-
netic moments across the ribbon width is the electronic structure of the
nanoribbon. The position dependence arises from quantum interference ef-
fects caused by the boundary conditions imposed on the electronic structure
of graphene in the form of the edges of the nanoribbons. Furthermore, we
note that the parameters vycp, ng and U which characterise the magnetic
species in our simple model can be altered to achieve a better numerical fit,
but do not affect the qualitative form of this plot. The pattern observed is
a jagged, sawtooth style curve, characteristic of properties measured across
the width of zigzag ribbons and a similar feature was seen in the previous
section for the binding energies of impurities. [183] This feature is a sublat-
tice effect which arises from the degeneracy breaking that occurs between the
two sublattices of graphene when a zigzag edge is formed. The sublattices
are represented schematically in Fig. 4.1 by black or white circles. Each
edge of the ribbon is occupied by sites entirely from one of the sublattices,

and that sublattice is “dominant” on that half of the ribbon. For the case
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Figure 4.12: The magnetic moment profile across a 6-ZGNR (top panel) and
11-AGNR (bottom panel) for a substitutional impurity, calculated using the
self-consistent Hubbard model discussed in the text (red squares) and also a
full DFT treatment with Mn atoms (black circles).

of impurity magnetic moments on zigzag ribbons, this effect manifests itself
in creating larger moments on impurities located on the dominant sublattice
on either side of the ribbon. In other words, impurity atoms on a black site
on the side of the ribbon with black edge sites will have larger moments than
their neighbouring white sites. Focusing on a single sublattice, we find that
the trend across the ribbon width is for the largest moment to arise on the
dominant edge site for that sublattice, to decrease as the impurity is moved
towards the centre of the ribbon and to reach its minimum value at the sites
neighbouring the opposite edge. We note that all the features discussed here
arise in both the simple model and the DFT results, confirming that this is

not simply an artifact of our simple model.

The corresponding plots for the armchair case do not agree with each
other as convincingly. The tight-binding model is found to underestimate

the value of the edge moment found by the DFT calculation. This is because
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the tight-binding calculation does not take into account the distortions in the
honeycomb lattice that arise when a substitutional impurity is introduced
near the edge of an AGNR. The relaxed structures for the two impurity sites
nearest the ribbon edge are found to be considerably perturbed compared to
the pristine ribbon and also to the relaxed structures corresponding to the
other impurity sites. The shape of the tight-binding plot for AGNRs is also
found to be more dependent on the parameterisation of the impurity than
in the zigzag case. This issue will be explored further in the case of centre-
adsorbed impurities. This suggests that the moment profile across AGNRs
is not as robust as that observed in the ZGNR case, and will vary some-
what according to the magnetic species chosen. However, both tight-binding
and DFT models find that the edge impurity sites lead to larger magnetic
moments than the central ones. Fig. 4.12 also reveals that the sublattice
effect noted in zigzag-edged ribbons is absent in the case of armchair edges.
This is explained from a cursory inspection of Fig. 4.1 where it is obvious
that the degeneracy between black and white lattice sites is unbroken by the
imposition of armchair edges. The value of the magnetic moment approaches
m. much quicker for AGNRs, and only minor deviations from it are observed
away from the edges of the ribbon, whereas in ZGNRS significant deviations
are still present deeper into the ribbon.

The dramatic increase observed in the magnetic moment in impurities
near the edge of zigzag ribbons is consistent with the presence of a localised
edge state at the Fermi energy. This state results in a large peak in the density
of states at the Fermi energy. Such a peak provides favourable conditions for
moment formation under the Stoner Criterion [184], and indeed if an intrinsic
electron-electron interaction is considered in an undoped ZGNR, will lead to

the formation of the spin polarised edges as discussed previously.

Centre-adsorbed atoms

Fig. 4.13 shows the magnetic moment fluctuation for a centre-adsorbed im-
purity at various sites across a GNR, calculated again using both the simple

model and a full DFT approach (black circles). Within the simple model
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Figure 4.13: The magnetic moment profile across a 8-ZGNR (top panel)
and 11-AGNR (bottom panel) for a centre-adsorbed impurity impurity. The
black circles show the results from a full DFT treatment with Mn atoms,
whereas the red squares and blue triangles show the results from the self-
consistent Hubbard model with v = Yoo and 0.7vc¢ respectively. We
note this parameter does not affect the qualitative features of the moment
profile across the ZGNR, but alters that across the AGNR significantly.

approach we consider two values of v, the hopping parameter between
the impurity atom and surrounding lattice sites. The values considered are
Yom = Yoo (red squares) and yon = 0.7yc¢ (blue triangles). For the case
of ZGNRs (top panel), we note the impressive qualitative match between
the models. Furthermore we note that the change in hopping parameter
does not effect the qualitative shape of the plot, but can be used to yield a
better fit. We also note that, unlike the substitutional impurity considered
earlier, the sublattice effect is no longer present. This is because the impu-
rity is no longer strongly associated with a particular sublattice, but instead
binds to three carbon atoms from each, which has the effect of averaging
out any sublattice dependent effects. The general trend of a monotonic in-

crease in the magnetic moment of the Mn impurity is noted as it is moved
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towards the centre of the ribbon. This is in stark contrast to the result for
substitutional impurities, where the largest moment is observed at the edge
and, for the dominant sublattice, the moment decreases as the impurity is
moved towards the centre of the ribbon. The discrepancy can be explained
by the fact that the centre-adsorbed Mn impurity induces fluctuations in
the magnetic moments on nearby sites in the graphene lattice. Edge atoms
are particularly susceptible to magnetic moments due to the localised state
discussed before, and thus have larger induced deviations in their moments
than the others. Consequently, centre-adsorbed impurities atoms at the edge
of a ZGNR tend to induce large moment deviations on the edge sites, re-
sulting in a smaller moment on the impurity atom itself. This is verified
by examining the spin-density plots from the DFT calculation for the case
of centre-adsorbed impurities near the edge of a ZGNR. Fig 4.14 shows the
spin-density plots corresponding to an impurity on the edge hexagon (left)
and next-to-edge hexagon (right). It is clear that the centre-adsorbed impu-
rity nearest the edge introduces a much larger disturbance to the values of
the magnetic moments on surrounding sites than the more centrally located
impurity. In fact the magnetic edge states are seen to be essentially unper-
turbed by the latter. In contrast to these DFT calculations, the simple model
does not account for the intrinsic magnetic edge states on ZGNRs. However
a similar moment profile is recovered as the magnetic impurity atom induces
moments, rather than fluctuations of existing moments, on the surrounding
lattice sites and these are found to be significantly larger for the case of the

centre-adsorbed impurity nearest the ribbon edge.

However, in zigzag ribbons there is an additional type of adsorption site
which consists of an impurity atom bound to two edge sites and the site be-
tween them. This configuration, which we shall label “edge-adsorbed” (EA),
is illustrated schematically in Fig. 4.15. It can be viewed as an impurity
atom connecting to half a hexagon of the graphene lattice. As this site only
occurs at the edge, we cannot study the position dependence of it. How-
ever, DF'T calculations reveal that a larger moment arises here than for the
centre-adsorbed atom located nearest the ribbon edge and furthermore that

the edge-adsorbed configuration is also more energetically favourable than
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Figure 4.14: Spin density plots showing up (blue) and down (red) spin densi-
ties near a centre adsorbed impurity on the edge hexagon (left) and next-to-
edge hexagon (right) on a 8-ZGNR. The isosurface used was 0.001 ¢/Bohr®.
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Figure 4.15: The edge adsorbed impurity discussed in the text, shown
schematically in the top left panel. The spin density plot for this config-
uration on a 8-ZGNR is shown in the bottom left panel. The right hand side
panels show the moment fluctuation (top) and segregation energy function
(bottom) for this configuration calculated using the DFT approach, com-
pared to those for the centre-adsorbed locations across the width of a 8-
ZGNR.
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any of centre-adsorbed sites. This is clear from the right-hand side panels of
Fig. 4.15. The upper panel shows the moment fluctuation for the EA case
compared with those of the centre adsorbed locations across a 8-ZGNR. The
bottom panel plots the segregation energy function, 3 = %‘1 for the same
cases. This quantity, introduced in the previous section, plots the relative
deviation of the binding energy of an impurity on a GNR, Epg, around its
value at the centre of the ribbon, Ef;. The edge-adsorbed case is found to
be the most energetically favourable. A spin density plot for this type of
impurity is shown in the bottom left panel of Fig. 4.15 and reveals that this
impurity configuration has a less dramatic effect on the moments of nearby
edge sites than the centre-adsorbed case on the edge hexagon, consistent with
larger moment found for the EA configuration.

In the results for adsorbed Mn impurities on an AGNR in the bottom
panel of Fig. 4.13 we notice that for the DFT result, and the simple model
calculation with yoa = Yo the edge hexagonal site has a smaller moment
on it than the other sites. However the deviation in the value of the edge
moment, and indeed of the moment at any site, from m, is far smaller than
in the ZGNR case. The moment profile in this case is essentially flat, with
only minor deviations from m, across the width of the ribbon. Examining
the case of oy = 0.7ycc reveals that the shape of the profile across the
ribbon is less robust than the zigzag case as the edge moment here is found
to be slightly larger than m,. Of the cases examined, the effect is weakest
here and does not appear to be very robust. Thus the position dependence
of magnetic impurities is smallest for adsorbed impurities on AGNRs and

cannot be deemed a significant effect.

4.4.2 Effect of edge disorder

In this section the robustness of the features discussed in the previous section
will be examined in the presence of edge vacancy defects. This is an impor-
tant point to consider when comparing impurity-driven magnetic moments
in GNRs to those arising intrinsically due the edge states, which have been

shown to be particularly vulnerable to edge disorder. [51] For each of the
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cases discussed in the previous section we examine the effect of a single edge
vacancy on the magnitude of a nearby moment, calculated with the mean-
field Hubbard model approach. The distance between the magnetic impurity

and the edge vacancy is varied to examine the range of this effect.

Fig. 4.16 shows the effect of an edge vacancy on the magnetic moments
of substitutional impurities in a 6-ZGNR (left) and an 11-AGNR (right). To
show the range of the effect we plot the relative change in the moment when
an edge vacancy is introduced as a function of distance between the edge
vacancy and the unit cell containing the magnetic impurity atom. Note that
in this case we are plotting the fluctuation of each moment relative to its
value at its current position in a system without edge defects, not relative
to its value at the centre of the ribbon as was shown previously. This plot
is shown for a number of possible sites for the magnetic impurity across the
width of the ribbon, namely the edge atom on the same side as the vacancy,
the site next to the edge, a site at the centre of the ribbon and a site at the
opposite edge, as shown schematically in the upper panels.

For the ZGNR, the first point to note is that the only sites that show a
considerable change in their moments are the first two cases. The edge site
has a slight reduction in the value of its moment, whereas the site next to the
edge and belonging to the opposite sublattice to the edge has a significant
increase in magnetic moment. However, the first point in this curve corre-
sponds to a site neighbouring the edge vacancy. Excluding this, the largest
deviation in magnetic moment does not exceed 5%. However, for all posi-
tions, the moment reverts very quickly back to its value without the vacancy
when it is moved further away down the ribbon. This suggests that a single
edge vacancy will have very little effect on the moments of magnetic impuri-
ties located more than a lattice spacing or two away. The AGNR case is quite
similar. Moving away from the vacancy the deviations in the moments again
become very small. It is clear that significant deviations in the moments of
substitutional impurities are not seen outside the immediate vicinity of the
edge vacancy in either ribbon geometry. Similar results are shown for the
adsorbed cases in Fig. 4.17. The effect here is even smaller than for the sub-

stitutional case, with fluctuations of less than 2% at distances greater than
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Figure 4.16: The top panels show schematically the edge vacancy and the
possible sites for magnetic impurities across the width of the ribbons, a 6-
ZGNR (left) and 11-AGNR (right) . For each ribbon we consider sites at the
edge (black, circle), next to the edge (red, square), centre (green, triangle)
and opposite edge (blue, inverted triangle) of the ribbon. The plots under-
neath show the fluctuation in the magnetic moment at each site under the
introduction of an edge vacancy, relative to the moment the impurity would
have in the absence of the edge vacancy. This is plotted as a function of the
distance between the edge vacancy and the unit cell containing the magnetic
impurity, given in number of unit cells. The shaded area in each of the ribbon
schematics contains one unit cell of that ribbon.
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Figure 4.17: The effect of an edge vacancy on the magnetic moment of centre-
adsorbed magnetic impurity atoms on an 8ZGNR and 11-AGNR. The nota-
tion in the schematics and graphs is the same as for Fig. 4.16. For the zigzag
case, the result for an edge-adsorbed impurity (star, purple) is also shown.

two unit cells away from the edge vacancy for all impurity types considered,

including the edge-adsorbed case in ZGNRs.

A single edge vacancy has been shown not to have a significant effect on
the magnetic moments of transition metal impurities in a GNRs. In fact, even
the introduction of an extended edge defect, consisting of a length of ribbon
to either side of the magnetic impurity with a certain concentration of edge
vacancies, does not considerably affect the impurity moments unless there
is an edge vacancy in their immediate vicinity. We conclude that magnetic
moments introduced into GNRs by transition metal doping are particularly
stable and robust in the presence of edge disorder. In particular, the striking
moment profiles seen for magnetic impurities in ZGNRs will not be signifi-
cantly perturbed by the introduction of a reasonably strong extended edge
disorder. This point is illustrated quite clearly in Fig. 4.18 for the case of

substitutional impurities on a 6-ZGNR, the same case considered in the up-
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Figure 4.18: Schematic showing region of 6-ZGNR with a magnetic impu-
rity and edge disorder consisting of atoms removed randomly from the edge
zigzag chain of the ribbon (top panel) and the the resulting moment fluc-
tuations (bottom panel). The red squares indicate the position dependent
moment fluctuations in a ribbon without edge disorder, whilst the black
squares correspond to the average fluctuations taken over fifty edge-disorder
configurations, with the standard deviation shown by the error bars.

per panel of Fig. 4.12. The moment profile for the pristine case is shown as
calculated with the mean-field Hubbard approach (red squares). Also shown
is the moment profile for a system with a disordered region with a length of
100 unit cells to either side of the magnetic impurity (black circles). Within
this disordered region, carbon atoms from the edge zigzag chain at cither
edge of the ribbon are removed with a probability of 10%. This plot shows
the result of an average over 50 such configurations, with the error bars on
each point indicating the standard deviation. The moment profile is seen to

not vary significantly from that of pristine case, demonstrating clearly the
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robustness of the moment profile.

4.5 Summary of Chapter

In this chapter we used the Green function methods introduced in previous
chapters to examine some position dependent features in graphene nanorib-
bons doped with impurity atoms. We first considered the effect of impurity
location on the electronic transport through a ribbon and demonstrated how
such calculations can be performed with the Caroli formula. The results and
trends of previous studies of such systems were discussed - in particular the
presence of a qualitative difference between the transport through ribbons
with uniform disorder or disorder localised principally at the ribbon edge.

Next we examined how the binding energy of such impurities depends
on their location and how the resulting behaviour may result in a degree
of spatial segregation in the impurity distribution across the ribbon. In
the case of ZGNRs a non-monotonic feature found was connected to the
sublattices of the graphene atomic structure. A simple theoretical model for
calculating how the energy variation changes across a ribbon was developed
and found to be in agreement with the results of DFT calculations. We
postulated that control of the adsorbed impurity segregation within a ribbon
is possible by adjusting the Fermi energy. We thus argued that, due to
the sublattice dependence of magnetic interactions and the defect position
dependence of transport within graphene, the magnetic profile and electronic
properties of a GNR may be engineered by exploiting this control of the
impurity segregation.

Finally, we considered the case of magnetic impurity atoms and consid-
ered how the impurity magnetic moment depended on the impurity posi-
tion. For ZGNRs we found an excellent agreement between the simple self-
consistent Hubbard model and a more complete ab initio treatment. Fur-
thermore the qualitative features of the resulting moment profile remained
constant for different parameterisations describing the magnetic impurity,
suggesting that they hold for a wide range of magnetic species. For substi-

tutional impurities, a nonmonotonic behaviour connected to the sublattices
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of the graphene atomic structure was identified. For this type of impurity, a
larger moment was found on impurities located on the edge site of a ZGNR.
For impurities adsorbed onto the centre of a hexagon of the graphene lattice,
a monotonic increase of the moment magnitude as the impurity was moved
towards the centre of the ribbon was found. However an additional impurity
type, consisting of an impurity atom connecting to three edge atoms at a
zigzag edge was found to have a larger moment than one connected to the
edge hexagon. It was also noted to be more energetically favourable. For
armchair-edged nanoribbons, the moment profile features were noted to be
less robust than for the zigzag case. However the fluctuations of the mo-
ment value around that at the ribbon centre were also found to be smaller.
For both edge geometries and impurity configurations, we showed that an
edge vacancy did not have a significant effect on the moment of a magnetic
impurity located more than one or two lattice spacings away. Furthermore,
we demonstrated that the distinctive moment profile for substitutional im-
purities on a zigzag-edged ribbon was robust in the presence of an extended
edge disorder. In light of these findings, we argue that magnetically-doped
nanoribbons may provide a route to applications previously envisaged for
nanoribbons with intrinsic magnetic ordering, which is less stable in the pres-
ence of experimentally imposed constraints such as imperfect edge geometry.

The work presented in this Chapter was performed in collaboration with
V. M. de Menezes (Departamento de Fisica, Universidade Federal de Santa
Maria, Brazil) and S. B. Fagan (Area de Ciéncias Tecnoldgicas, Centro Uni-
versitario Franciscano, Brazil) who contributed the Density Functional The-
ory results presented throughout this chapter. The work presented in Section
4.3 was published as “Model of impurity segregation in graphene nanorib-
bons” (Phys. Rev. B 80, 235424). The work in Section 4.4 has published as
“Magnetization profile for impurities in graphene nanoribbons” (Phys. Rev.
B 84, 195431).
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FIVE

Static magnetic interaction in graphene

5.1 Introduction

In this chapter we begin our study of the interaction between magnetic mo-
ments in graphene. In the previous chapter we introduced single magnetic
impurities into a graphene system and examined how geometry considera-
tions affected the magnitude of the moment formed. We now consider more
than one magnetic object embedded into a graphene system and investigate
how the interaction between them depends on their separation. The cou-
pling between two moments in such a system determines the relative orienta-
tion of their magnetic moments and thus the magnetic ordering in a system
with many such magnetic objects. An understanding of the coupling be-
tween magnetic moments is an essential step in the effort to exploit graphene
for spintronic applications as it underpins magnetic properties including the
magnetic ordering and magnetoresistance of a magnetically-doped graphene
device. This interaction, called the Indirect exchange coupling (IEC), be-
tween dilute magnetic moments within a conducting non-magnetic material
is mediated by the conduction electrons of the host material [107-110]. It is

often calculated using the Ruderman-Kittel-Kasuya-Yosida (RKKY) approx-
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imation and indeed the interaction itself often takes this moniker! [111-115].
We will first introduce the approach used to calculate the IEC using the
Lloyd formula and then relate this to the more commonly known RKKY
approach. Previous findings for the interaction in graphene and related ma-
terials will be discussed, before the basic results of the RKKY approach in
graphene are demonstrated using the Green function expressions calculated
in Chapter 3. We shall then demonstrate how a more complete description
of the interaction leads to findings not predicted by the RKKY approach and
discuss some of the possible implications of these.

Finally, motivated by recent studies [181,185] reporting the formation of
localised magnetic moments in doped graphene, we investigate the energetic
cost of spin polarising impurities embedded in graphene. We consider the
effect that the interaction may have on calculations that make use of periodic
boundary conditions to calculate the properties of graphene systems with
magnetic impurities. This constraint is very common in Density Functional
Theory calculations. Furthermore we find that neglecting the effect of the
interaction between magnetic atoms in neighbouring unit cells can lead to
the spurious suppression of the magnetic moment on these atoms. A strategy
to avoid such issues is outlined. The existence of a criterion to determine
whether or not a magnetic moment is likely to arise within graphene will be
instrumental in helping to predict the ideal materials for future carbon-based

spintronic applications.

5.2 Indirect exchange coupling

The indirect exchange coupling between two magnetic objects is distinct from
the direct exchange coupling between the objects in that it is mediated solely
by the conduction electrons of the host material into which the magnetic ob-

jects are embedded. The direct exchange, in contrast, depends on an overlap

"Throughout this chapter “RKKY” refers to the approximation to the interaction and
“IEC” to the interaction itself. The meaning of “RKKY” elsewhere in the thesis is context
dependent and will in general refer to a conduction-electron mediated interaction between
magnetic objects.
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of the electron orbitals and decays very abruptly. Initially investigated in
multilayer systems, the oscillatory indirect coupling between magnetic layers
as a function of their separation led to the discovery of the Giant Magne-
toresistance Effect (GMR), which is now exploited in most modern memory
devices [186,187]. The IEC is defined as the energy difference between the
parallel and antiparallel alignments of the magnetic moments on the objects,
as shown schematically in Fig. 5.1 for a simple linear chain system. In this
section we show how this quantity can be calculated using the Lloyd formula
method discussed in Chapter 2, allowing us to calculate the IEC in terms of
the Green functions of the system and the spin-dependent potentials arising
from the description of the magnetic objects using the mean-field Hubbard

model.

5.2.1 Lloyd Formula / Quantum well method

The spin-dependent potentials required to describe the magnetic objects are
an integral part of the Quantum Well model of the TEC first proposed by
Edwards et al [109,110]. In this model, the introduction of spin-dependent
potentials means that the electrons in the system are subject to a different
potential in the magnetic regions than elsewhere as is evident in Fig. 5.1. The
presence of these potential wells (or barriers) quantises? the allowed electron
energies in the system. Furthermore, changing the separation between the
wells by moving the magnetic objects shifts the allowed energies relative
to the Fermi energy of the system giving rise to an oscillatory coupling.
The coupling can be calculated by summing over all the levels below the
Fermi energy and taking the difference between the cases with spin potentials
corresponding to moments aligned parallel or anti-parallel. In this manner,
the calculation of the indirect exchange coupling reduces to the calculation
of an energy difference between two distinct configurations. We recall from
Chapter 2 that such a calculation can be simplified using the Lloyd formula,

which allows the calculation of the energy difference directly without the

2The allowed electron energies are quantised in one-dimensional or multilayer systems.
In higher dimensions the allowed energies are modified by the wells, but are not strictly
quantised.
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Figure 5.1: Schematic representation of the spin-split potentials at the mag-
netic sites for the parallel (a) and antiparallel (b) alignments of the mag-
netic moments. The red (blue) curves show the potential experienced by
up-spin (down-spin) electrons as a function of position. For simplicity the
host medium is represented by a one-dimensional linear chain.
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need to calculate the total energy of either configuration.

The Lloyd formula expression to calculate the total change in the energy

of a system is given by Eq (2.58) as
1 N
AE (Ep) = = Im / dE f(E) In (det([—g(E)V)) , (5.1)
0y

where ¢ is the Green function describing the unperturbed system, V is the
applied perturbation potential and f(FE) is the Fermi function. To calculate
an expression for the IEC, we consider the following case. The unperturbed
system consists of two moments embedded in a host material at sites A and
B, which are aligned parallel along the z-direction so that the angle between
them, # = 0. This setup is shown schematically in the top panel of Fig.
5.1. The Green function matrix for such a system can be calculated easily
from the pristine Green functions of the host and the Dyson equation to add
the magnetic objects to the system with spin dependent onsite potentials
determined by the bandcentre (0) and exchange splitting (V., = % = (_/212)
from the mean-field Hubbard model. We now introduce a spin perturbation
which rotates the magnetic moment at B by an angle 6 with respect to that

at A. This perturbation is given by

V(0) = —Vep [(cos@ — 1) G, + sin 6 6]

v cosf — 1 sin ¢/ (5.2)
o sin 6 1 —cosf |’
where V., = ”T’" is the exchange splitting and . and &, are the relevant

Pauli matrices. Since the magnetic moments break the spin degeneracy of
the electrons, the Green function of the moment to be rotated, ggp, must be
written in terms of its up- and down-spin components. In the initial collinear

configuration there is no mixing between the spin bands and ggp is diagonal
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in spin space. Focusing on the determinant in Eq. (5.1) we can write

det [[ — gpB(E) VEH)]

10 s @ cosf —1  sinf :
3 ‘/;.1 i ! . (‘)3)
01 0 9pp sinff 1 —cosf

= 14 Viz (955 — 9pp) (cos8 — 1) +2V3ghpgpp (cosd —1).

Using the Dyson equation, we find

| | 7 l 1 !
95 = 9 +2Ver (9pa 948 + I8 9IBB)

so that

det |7 — gpp(E) V(e)] =1-2V2 gL, g4y (cosO—1).  (5.4)

Taking # = 7, corresponding to an antiparallel alignment of the moments we

find, for zero temperature, that

1 By ’
Jpa=—-AE@ =m) = - Im / dE In (1 +4V2 g,TM(E) g‘lM,(E)> ,
(5.5)

where we have chosen the sign convention that a negative value of the cou-

—0Q0

pling, .J, corresponds to a preferential parallel alignment of the moments and
a positive value to a preferential antiparallel alignment. When performing
the integral in Eq. (5.5) numerically we employ the methods outlined in
Chapter 2 to rewrite the integral over the imaginary axis where the inte-
grand tends to be smoother and easier to integrate. With an imaginary axis

integration, the expression for the coupling becomes

I , _ :
Jga= - / dy In ‘1 +4V2 gLA(Ep + 1) gLB(EF +iy)| . (5.6)
n
We note that in these expressions the distance dependence is entirely con-
tained within the product of off-diagonal Greens function elements for the

up-spin or down-spin cases. Using the Dyson equation these can be writ-
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ten in terms of the Green functions of the pristine host system and the
potentials used to describe the magnetic impurities. The exact functional
form of this expression will depend on the nature of the connection between
the impurity and the host, as we have seen in Section 2.4. Ultimately the
only distance-dependent term entering into the expression is the off-diagonal
Green function of the host system and the behaviour of this term will dictate
the behaviour of the interaction as the separation between the moments is

varied.

5.2.2 RKKY approximation

An alternative approach to account for the coupling between magnetic ob-
jects embedded in a metallic host avails of the Ruderman-Kittel-Kasuya-
Yosida formalism, initially developed to describe the coupling mechanism of
nuclear magnetic moments [111], then expanded to describe a wider range of
indirect coupling phenomena [112,113] and generalised to provide a model
capable of reproducing experimental observations [114,115]. This treats the
coupling as a consequence of the spin polarisation of the conduction electrons
of the host by the magnetic objects. Under this approach, the coupling is
written as an effective direct coupling, Jga sp-sa, between the two moments,

where the coupling strength is given by

¥R
JBa = — < 1 ) XBA - (5-7)

where A is an adjustable parameter representing the magnitude of the cou-
pling between localised spins and conduction electrons and y is the static
magnetic susceptibility which relates the response of the host magnetisation

to a static magnetic field.

Expanding the logarithm in Eq. (5.5) to second order in cos and then

to first order in V,, gives

RKKY __ 2 0 E
JBA = =2V, XBa > (5.8)
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where

Xha=== [ dE J(E) n(gaa(E) gan(E) (5.9)
is the non-interacting static-susceptibility calculated without any exchange
splitting. Note that it is written in terms of the pristine, spin-independent
Green functions. This is essentially the RKKY result which is obtained
in the limit of small exchange splitting. Thus the RKKY approach can
be considered a second-order perturbational approximation to the IEC and
provides a good description at large separations when the coupling is quite
small [188-190]. An important contrast between the Lloyd formula approach
to the Quantum Well model and the RKKY approach is the choice of Green
function used. The former approach avails of the spin dependent Green
functions in the ferromagnetic configuration, .‘1}3,1 and g}m whereas the lat-
ter approach generally uses their pristine, spin-independent counterparts. An
intermediate approach can be taken by using the spin-dependent Green func-

tions with an RKKY-like expansion of the logarithm in the IEC expression.

5.3 Magnetic interaction in graphene

Many of the initial investigations into RKKY-like interactions were based
on magnetic multilayer devices, with both quantum well and RKKY studies
finding a separation dependence of 1/D? where D is the separation between
the magnetic layers. However, this decay rate was further predicted to de-
pend on the dimensionality of the system and in one-dimensional metals
was predicted to be as slow as 1/D, which would give rise to a particularly
long-ranged decay. With the discovery of Carbon Nanotubes (CNTs), the
possibility of 1-D metals became realistic and the study of magnetic inter-
actions in graphene-based systems began in earnest. Of particular interest
was the study of magnetic interactions in magnetically doped CNT's, partic-
ularly as many transition metal atoms were already used as catalyst particles
during the growth of CNTs [191].

Studies of the IEC in CNTs revealed an unusual range of features not

seen in other materials and arising from the unique electronic structure of
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the underlying graphene lattice. In undoped nanotubes, the oscillatory fea-
ture seen in other systems was not present [116]. This feature arises from
the peculiar Fermi surface of graphene, consisting of six discrete points, as
discussed in Chapter 3. It can be shown that the wavevectors defining the
period with which the coupling oscillates are necessarily commensurate with
the hexagonal lattice. In other words, the oscillations are perfectly commen-
surate with the underlying structure and are not seen due to aliasing. It
was also found that the sign of the coupling was intrinsically linked to the
sublattices composing the graphene atomic structure. The sign of the cou-
pling between sites on the same sublattice was predicted to be the opposite
of that between sites on opposite sublattices. In general, the coupling be-
tween sites on the same sublattice was predicted to be ferromagnetic and on
different sublattices antiferromagnetic. However, depending on the atomic
species chosen the opposite could be found [119]. The decay rate of 1/D
predicted for 1-D metals by the Quantum Well theory was found for substi-
tutional and top-adsorbed magnetic impurities in CNTs. However, further
work demonstrated that the coupling decay rate depended crucially on the
specific nature of the impurity and how it bonded to the host nanotube [117].
In particular, centre-adsorbed impurities were found to have a decay rate of
1/D®, a far more rapid decay than predicted. This feature was shown to
arise by reproducing a symmetry in the graphene lattice causing lower order

terms to vanish.

The experimental discovery of two-dimensional graphene prompted simi-
lar studies of the IEC in this material [121-133]. Much of this study was per-
formed using the RKKY approach and availing of the linear dispersion regime
to simplify calculations. When the linear dispersion approximation is used, a
cut-off function is required to prevent the result diverging due to high energy
contributions. There has been some debate about the effect of the cutoff func-
tion chosen on the resultant interaction calculated [123,124,127]. Other ap-
proaches to circumvent this problem involve numerical calculations [127,128]
which can lack the transparency of an analytical solution. The non-oscillatory
behaviour found for nanotubes again arises in graphene sheets. However, the

rate at which the coupling decays displays unusual behaviour. The 1/D?



140 CHAPTER 5. STATIC MAGNETIC INTERACTION

dependence predicted for 2-D systems is not found in undoped graphene and
instead a faster decay rate of 1/D? is reported. However when the system is
doped away from Ep = 0 the expected decay rate is recovered. This discrep-
ancy is due to the pecularity of the graphene electronic structure at Ep = 0
where the density of states vanishes. The RKKY approximation also finds a
strong sublattice effect in the sign of the coupling for the undoped case. Im-
purities situated on the same sublattice are predicted to have a ferromagnetic
alignment, whereas those on opposite sublattices have an antiferromagnetic
alignment. A similar effect to that noted earlier for centre-adsorbed impu-
rities in CNTs [117] is also noted in graphene sheets [129]. In this case, the
coupling decays not as 1/D3, but as 1/D". The use of either the linear-
dispersion approximation or of brute-force numerical methods to calculate
the coupling arises from the difficulty in calculating the Green functions of
graphene, or of 2D materials generally, using analytical methods. Although
a full analytical expression for the Green function, similar to that for nan-
otubes, is not available for graphene, we demonstrated in Chapter 3 that
an excellent approximation to it can be realised using the stationary phase
approximation (SPA). In the next section we will avail of the expressions
calculated earlier to derive the principal features of the magnetic interaction

in graphene.

5.3.1 RKKY calculation with SPA

We have seen that the exchange energy, J, within the RKKY approximation
can be expressed in terms of the Green functions of the pristine host system

via the static susceptibility, allowing us to write
Jpa(Ep) ~ Im / dE f(E) V2 G2.(E) (5.10)

for two moments occupying like-sites in the graphene lattice separated by a
distance D, where f(F) is the Fermi function. Recall from Eq. (3.44) that
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we can write the off-diagonal Green function element as

A(E) 190D
Goa(B) = AP
vD
so that , B(E)e 2B D
.]BAN D Im /dE—l—m, (511)

where B(E) = A*(E), B = 15, T being the temperature and kp the Boltz-
mann constant. The integral in Eq (5.11) can be solved by replacing it with
a contour integral in the energy upper-half plane. In this case the poles
are given by the zeroes of the denominator of the Fermi function, namely
the Matsubara frequencies, E, = Ep + ¢(2p + 1)7kpT where p is an integer
labelling the poles.
r2 ,2i Q(E) D
Jpa ~ % Im 27 Resz {%}

P

E=FE,

2
~ M Im Z [1 B(Ep) (721- Q(l‘;p)n]

P

We now write the coefficient B(FE) as a Taylor series, and the wavevector

Q(F) as a first order expansion, around the Fermi energy so that

B(E) = %HWE—EH’
r (5.12)

Q(E) = Q9 + QW (E — EF)

using the notation BY (QW) to denote the [th derivative of B (Q) evaluated

at the Fermi energy. The expression for the coupling now becomes

Ve kT i - . ik
ex VB Tew 2 BW 2 0O p ZPZlQ(”(E,p-Lp)D (E,, B EF)I

Jpa ~
BA D : I

P

« » " I
- szr kpT Im Z iB(z) 029D 1 d Z 021 Q" (Bp—Ep)D
D [ [! (2: QW) dD! . ’ '
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where

Z 21 QW (Ep—Ep)D _ Z e—29V@p+1)7kp T D
p p

— o—29W kg T D Z (6—4 ank,;TD)p

P
e—2 QW nkpT D

1 — 490 nksTD
B 1
~ 2sinh(2QW kg T D)’

so that

Jpa ~ Ves Im L BW (220D 1 d! ke T
” D [ I (2 QM) dD! | 2 sinh (2QW kT D) [
which in the low temperature limit, 7" — 0, becomes
‘//2. ] 55 5(0) l d[ 1
Jga ~ =21 - BW (2D
BA 7 [ I g (2i OW)l dD! | 4 QW 7D
(5.13)

(-1)' BY
(QQ(I))/H D+2

¢ 9i 0(0)
~V2e® 27D Im _;_
!

In this form the oscillation period and decay rate of the interaction at dif-
ferent Fermi energies can be easily extracted. The decay rate in the asymp-
totic limit [117] is determined by the leading term in Eq (5.13), namely [ = 0,
suggesting that, in general, J ~ D=2, The oscillation period is determined
by the term e 2i Q%D , i.e. by the Fermi wavevector. However, as we have
stated previously, the RKKY coupling in graphene at Er = 0 is found to be
non-oscillatory® and decay as J ~ D~3. This result can be reconciled with
our expression by considering the analytic form of the expressions for B
and Q). We will focus on those for separations in the armchair direction,
but a similar analysis holds for separations in the zigzag or other directions.

Using the results for the Green functions calculated within the SPA from

3By ‘non-oscillatory” here we mean that coupling has no sign-changing oscillations as
a function of D.
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Egs. (3.34) and (3.33), we find for separations in the armchair direction that

for |[Ep| < |t],
2 E

im (B2 + 32V — E°
—\/t2 — E2>

BO(E) =

and

QO(E) = +cos ( -

In the limit £ — 0, B vanishes and Q® — 7 as can be seen from Fig 3.9 in
Chapter 3. The vanishing of B at Er = 0 means that the decay rate of the
coupling is now determined by the first surviving term, [ = 1, in Eq. (5.13)
resulting in a decay rate of J ~ D3, as reported elsewhere [123,124,127,128].
It is also clear that since D can only take integer values, the term e%2”'P = 1
at Er = 0. Thus the oscillation period of the coupling is commensurate with
the graphene lattice spacings and the oscillations are masked. When Ej # 0,
the leading term does not vanish, and the oscillation period is no longer
commensurate with the lattice spacing, leading to the observed oscillatory
interaction [124] that decays as J ~ D~ ?. Note that these conclusions are
reached for values of Er regardless of whether or not they lie within the linear
dispersion regime. The correct decay rate and oscillatory behaviour for the
RKKY interaction in graphene have emerged naturally and in a mathemat-
ically transparent fashion from the SPA Green function formalism, without

the need to resort to the linear response approximation or a cut-off function.

In Fig. 5.2 we plot the interaction calculated numerically for both the
undoped (top panel) and doped (bottom panel) cases for separations in the
armchair direction. The calculations were performed with a half-filled d-band
for the magnetic atom and keeping the hopping parameters equal to those of
graphene. Such a configuration yields only a splitting, and not a bandcentre
shift, when treated within the self-consistent Hubbard model and so a close
agreement is expected between the Lloyd formula equation (5.5) and the
RKKY approximation (5.8) of the interaction. The black (red) curves show
the results for substitutional atoms on the same (different) sublattice(s). The
predicted % and # decay rates for the undoped and doped cases respectively

are clear from the log-log plots in the insets. For the undoped case we also
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Figure 5.2: The magnetic coupling between two substitutional impurities as
a function of their separation in the armchair direction for both the undoped
(Er = 0.0, top) and doped (Er = 0.2t, bottom) cases. The black (red)
curves correspond to impurities on the same (different) sublattices. The rate
of decays are clear from the slope of the log-log plots shown in the insets.

note that the sign of the coupling does not change as a function of distance,
but that the sign of the coupling is determined by whether the sites reside
on the same or opposite sublattices. We note that a ferromagnetic alignment
is energetically favourable for moments on the same sublattice, with an anti-
ferromagnetic alignment favourable for the case of different sublattices. This
result has been frequently reported in studies examining the RKKY inter-
action in graphene using a variety of approaches, as discussed ecarlier. From
the analytic discussion above we note that, in the undoped case, any sign
changing oscillations in the interaction as a function of distance are ruled out
by a commensurability effect. Thus the sign of the interaction depends solely

on the energy-dependent coefficient BY | which is independent of distance.
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5.4 Beyond the RKKY approximation

In the previous section, the decay rates and oscillatory behaviour of the In-
direct Exchange Coupling were investigated. A number of approximations
were made in order to calculate these properties analytically. These included
the use of the RKKY approximation instead of the full IEC integral. An-
other approximation was the use of the Stationary Phase Green functions
for the pristine system rather than numerically calculated Green functions
incorporating the perturbation potentials describing the magnetic atoms. In
this section we shall expand the description of the interaction to include
these potentials. The effect of the magnetic moment parameterisation on the
interaction will be investigated and we demonstrate how the nature of the
coupling depends on the impurity species and its connection to the graphene

lattice.

5.4.1 Effect of impurity parameterisation

As we have noted above, the RKKY approximation to the IEC does not
account properly for the local spin dependent potentials describing the mag-
netic moments. In fact, the parameterisation of the magnetic impurity is
generally neglected through the usage of the pristine Green functions. In
this section we consider the effect of three parameters that can be used to
characterise the magnetic impurities. In addition to the magnetic moment
(m) and band-centre shift (§) that emerge from the self-consistent mean-
field calculations, we also consider the hopping potential between the lattice
carbon sites and the impurity site (¢') which should differ from the carbon-
carbon hopping. This approach is similar to the Anderson model describing
localised magnetic impurity states in metals [192]. These parameters will
vary between the different magnetic species that can be chosen as the em-
bedded impurities. In Fig 5.3 we plot the coupling between like sites,
calculated using the full integral and numerical Green functions for substi-
tutional impurities, as a function of separation along the armchair direction
for three different parameter sets (m,d,t'). The first of these (0.6,0.0,1)

closely replicates the results of the RKKY approach as it considers only a
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Figure 5.3: The magnetic coupling between two magnetic sites on the same
sublattice as a function of their separation, D, along the armchair direction
for three different impurity parameterisations: a) (m = 0.6, = 0.0, t' = t),
b) (m = 0.6, d = 5.0, t' = 0.8f) and ¢) (m =0.6, d = 8.0, t' = 0.6t). The
insets show log-log plots where a sign change in the coupling is evident from
a dip feature.

band-splitting, has no band-centre shift and uses the carbon-carbon hopping
value. The middle and bottom plots use the parameters (0.6,5.0,0.8¢) and
(0.6, 8.0, 0.6t) respectively. In these plots we see the formation of an unusual
feature not predicted by the RKKY approximation. For quite a large range
of distances we note a preferential antiferromagnetic alignment between the
moments before the sign flips and the standard ferromagnetic coupling with
a 1/D? decay is recovered. A similar sign-changing behaviour has been re-
ported in nanotubes [119] and also by ab initio calculations attempting to
probe the interaction in graphene [193]. It is worth examining further how
this feature depends on the parameterisation of the magnetic moments. In
Fig 5.4 we present a number of phase diagrams showing the sign and strength
of the coupling for different values of these parameters. Each diagram rep-

resents an area of (m, d) phase space with ferromagnetic (antiferromagnetic)
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Figure 5.4: (m,d) phase-space diagrams for separations of 10y/a (top row)
and 40v/a (bottom row) for three different values of the impurity-carbon
hopping parameter t'. The sign of the coupling is indicated by the colour

(blue for FM and red for AFM) and the strength of the coupling by the
degree of shading.

couplings given by a blue (red) shading that is darker for larger magnitude
couplings. The diagrams on the top row correspond to a separation of 10\/a
between the magnetic moments and from left to right show the cases of
t' = 1.0t,0.8t,0.4t. The bottom panels show the same cases for a larger sep-
aration of 40y/a. By examining the border between the blue and red regions
in these plots we can infer under what circumstances the sign-change be-
haviour described above occurs. In all cases the border position varies only
weakly with the magnetic moment (m) or hence the band-splitting (A). A
stronger dependence is found on the band-centre shift (9) and we find that, in
general, an anti-ferromagnetic alignment is found above a critical value of 4.
The band-centre shift is found using the recursive mean-field approach and is

strongly dependent on the occupation of the magnetic orbital. For a bipar-
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tite lattice like graphene a substitutional impurity with a half-filled orbital
gives zero band-centre shift when ¢ = t. As we move away from half-filling
a larger band-centre shift is required to return the correct band occupation.
For smaller values of ' we note that the border between the blue and red
regions shifts towards the left, meaning that smaller band-centre shifts will
lead to an AFM alignment. Increasing the distance between the impurities
reduces the phase-space area corresponding to an AFM alignment by shifting
the border to the right and requiring larger band-centre shifts. This finding
agrees with the plots in the distance-dependent plots in Fig. 5.3 for fixed
parameters which show that in the asymptotic limit the coupling changes
sign and returns the FM alignment predicted by the RKKY approximation.
However, as in the bottom panel of Fig. 5.3, the magnitude of the coupling
has essentially decayed to zero before the sign change occurs so the only sig-
nificant coupling between two such impurities is antiferromagnetic. We have
seen that, depending on the moment parameterisation, a strong antiparallel
alignment between two substitutional magnetic impurities in graphene may
persist to considerable separations. This result contradicts the predictions
of the RKKY theory and we demonstrate in the next section that such a
coupling can lead to unforeseen difficulties in calculations involving periodic

boundary conditions.

5.5 Emergence of magnetic moments on im-

purity atoms in graphene

We now turn our attention to the energy cost required to spin polarise iso-
lated impurities embedded in graphene. We will see that this topic is very
closely related to the interaction between magnetic moments discussed in
the previous sections. By applying a criterion for the formation of local mag-
netic moments in metals to graphene we are able to predict the existence
of magnetic moments in cases that are in clear contrast to previously re-
ported Density Functional Theory (DEFT) results. These calculations often

consider single impurities added to a unit cell with periodic boundary con-
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ditions, under the assumption that the cells are sufficiently large and that
impurities are not able to interact with their neighbouring counterparts. By
generalising the criterion to periodically repeated impurities, we find that
the energy balance involved in such calculations contains unavoidable contri-
butions from long-ranged pairwise magnetic interactions between the impu-
rities. This raises the question of whether representing independent particles
by single impurity unit cells is a valid assumption in the case of magnetic
dopants in graphene-based materials. We show that these problems can be
circumvented if more than one impurity per unit cell is considered, in which
case the DFT results agree perfectly well with the criterion-based predictions

for the onset of localised magnetic moments in graphene.

5.5.1 Unexpected DFT findings

The assumption of representing independent particles by single impurity unit
cells is frequently made in the case of magnetic objects in graphene-related
materials. A recent study has comprehensively investigated the magnetic
properties of a range of transition-metal atoms embedded in a graphene
sheet [185] indicating complex magnetic behaviour as one moves across the
periodic table. A remarkable finding in this survey is the absence of a mag-
netic moment when one Fe atom substitutionally replaces a single carbon
atom in the graphene sheet. Of all the transition metal atoms, it is par-
ticularly surprising that an iconic magnetic element like Fe seems unable to
develop a magnetic moment when immersed in graphene. Another study
reports an unexpected dependence of the magnetic moment formed on the
dimension of the unit cell considered [181]. Because the aforementioned DFT
assumption of independent unit cells is used in the referred survey as well as in
other studies of magnetic dopants in carbon-based structures [174,194-196],
it is instructive to ask whether the intrinsic long-ranged interaction that arises
between magnetic moments in low-dimensional metals might be responsible
for interfering with some of the results recently reported. If so, this inter-
ference may cause a spurious suppression of magnetic moments where they

should actually exist.
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5.5.2 Magnetic moment formation in graphene

Lieb’s theorem [104] is often quoted to explain the magnetic properties of
graphene. It shows that a net magnetisation arises when there is an imbal-
ance between the two sub-lattices composing the bipartite lattice of graphene.
While this is a perfectly sound explanation for graphene flakes and ribbons,
as well as for graphene sheets containing vacancies [197], it is not directly
applicable to substitutionally doped impurities since Lieb’s theorem assumes
a homogeneous electron-electron interaction throughout the system. In par-
ticular, the considerably narrower d-band associated with transition-metal
impurities makes the electronic interaction highly non-homogeneous, and
another explanation for the origin of magnetic moments in doped graphene-
related materials is required. The formation of a single local moment in a
non-magnetic system has been generally addressed by several authors, and
a criterion for its existence has been previously derived in different con-
texts [192,198], including a recent work considering the specific case of
graphene as the non-magnetic host [199]. Here we develop an alternative
derivation of this criterion, and generalise it to a pair of impurities in order
to clarify the role played by the long range interaction between magnetic mo-
ments in low-dimensional systems. Furthermore, we show how this may affect
first-principles calculations which artificially assume, for computational pur-
poses only, that the system is translationally invariant. Although our focus is
on doped graphene sheets, our conclusions result essentially from the hexag-
onal symmetry of the underlying lattice and are valid to graphene ribbons

and flakes as well as nanotubes.

Single magnetic impurity in graphene

We start by considering a single transition metal atom embedded in a non-
magnetic host, which in our case is a pristine hexagonal lattice, as shown in
Fig. 5.5. The electronic structure of the system is described by a Hubbard-
like Hamiltonian with the assumption that the on-site interaction only occurs
between electrons occupying the d orbitals of the transition metal impurity.

For simplicity we shall assume that the onsite effective exchange integrals
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Figure 5.5: A single substitutional transition-metal atom embedded in a
graphene host.

U are the same for all the d orbitals. To derive a local moment criterion
we examine the stability of the non-magnetic state when a small exchange
splitting, A, is activated. The energy cost involved in the formation of a local
magnetic moment at the impurity site, A&, consists of two components.
The first of these, AU, is the reduction of the effective electron-electron
interaction due to the appearance of a local spin imbalance at the impurity
site. This is given by

AU = U(AN") (ANY), (5.14)

where AN? is the change in the occupation number of electrons with spin
o on the impurity orbital. Assuming ANT + AN = 0 and using the Lloyd
formula expression for the change in occupation under the introduction of a

perturbation potential given in Eq. (2.57), we find

AU = —U(ANT)?

2
=-U <Tr /dEApJ)) (5.15)
2 i 2
= -U <—l Im Tr / dE M)
T . 1 — goo(E)AT
where goo(F) is the Green function for an electron with energy E at the

impurity site, Al = —% is the perturbation potential for T-spin electrons due

to the magnetic moment at the impurity site and the trace operator is over
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the orbital degrees of freedom which in this case can be limited to the five

d-orbitals.

The second contribution, AK, to A&, accounts for the change in the
electronic kinetic energy of both - and |-spin electrons due to the presence

of the moment,
AK = AK" + AK!
1 a
= Z Im Tr / dE In (1 — goo(E)N7) (5.16)

1 T
= —Im Tr / dE In(1 — g2, (E)AT?).
7r .

The energy cost involved in the formation of a local magnetic moment at the
impurity site is thus given by

2

: 2 (E)A1 \?
A& =-U (~l Im Tr / dE M)
m

L= gool E)A (5.17)

1 . ’
4= / dE Im In (1 — g3o(E)A'?).
7r .

The sign of A&, determines whether or not the non-magnetic state is unstable
to a local magnetic moment formation. To derive a criterion for such an
instability it is sufficient to expand Eq.(5.17) in powers of A to lowest order,

which simplifies to

A& = {-U(Er) + U(Ep)} (A)2)*, (5.18)
where
1 [Er ‘
U Ep) = - / dE Tm Tr [goo( E)]? (5.19)

is the local susceptibility. The formation of a local magnetic moment at the

impurity is then energetically favourable when A&, < 0, i.e., when

UEr) > % . (5.20)

This inequality sets the condition for the spontaneous formation of a sin-
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gle localised magnetic moment in a non-magnetic host. Written in terms of
single-particle Green functions, it is model-independent and can be evalu-
ated once the Hamiltonian is fully specified. The same criterion has been
previously derived in other circumstances [198], but here we have obtained
it by total energy balance considerations because it provides an easier way

to analyse the effect of more impurities.

Multiple impurities

Let us now imagine that a second transition-metal impurity is added to the
system at site m, as illustrated in Fig. 5.6. Similar steps to those outlined in
Eqgs. (5.14) - (5.17) above can be followed to derive the following expression
for the energy cost involved in the formation of local magnetic moments at

the two sites

" Jo.m ( E) .(/m.(l( E)
(i~ .(lnn%)2 (5.

AQ Ep
AE, = 2AE + = / dEIm In |1
i )

(@)
o}
—
~—

& 2Agl == j(l.m .

The energy cost A&, is not simply twice as large as A&, due to the inter-
ference between the two impurities. This is evident in the second term of
Eq.(5.21), which contains Green function propagators between sites 0 and m.
Most remarkably, the interference term, 7 ,,, which arises naturally when we

calculate the energy cost for the formation of two separate magnetic moments

Figure 5.6: Two substitutional transition-metal atoms embedded in a
graphene host in neighbouring unit cells.
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can be identified with the Indirect Exchange Coupling between magnetic im-
purities, which is given in Eq. 5.5. Bearing in mind that this coupling is
negative (positive) when the magnetic moments are parallel (antiparallel)
and that it can decay slowly with impurity separation in low dimensional
systems, this additional interference term may have striking consequences to

the criterion presented above.

Consider for instance a hypothetical impurity that meets the inequality
of Eq.(5.20), that is, an impurity that possesses a magnetic moment when
immersed in the graphene lattice. Suppose that we add a second impurity
of the same type to the system with the imposed constraint that both mo-
ments must be parallel to each other. The energy cost that was negative
for a single impurity may become positive if the IEC favours an antiparallel
alignment between the magnetic moments, as demonstrated in Section 5.4.
In this case, A&, may become positive even though A&, < 0. If this occurs,
the two magnetic impurities whose moments are forced to remain parallel
may adopt an altogether non-magnetic configuration rather than the most
favourable antiparallel alignment. This is a clear indication that the artificial
imposition of parallel alignment may introduce spurious effects as far as the

determination of the true ground state configuration is concerned.

DFT-based calculations that consider a single magnetic impurity per pe-
riodically repeated unit cell implicitly impose that their magnetic moments,
should they exist, must be mutually parallel. Because of the periodic bound-
ary conditions, the energy cost (per impurity) A€y /N for inducing the spin

splitting of N equally spaced impurities becomes

A€y ] 4
N = A& + N Z Jo,jm - (5.22)

J

In this case the correction to the single-impurity contribution A&, which
once again is assumed to be negative, is a sum of terms proportional to the
pairwise magnetic interactions that may be positive and sufficiently large
to reverse the sign of A€y/N. One could argue that the magnetic interac-

tion, being traditionally oscillatory as a function of separation, will alternate
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between negative and positive terms in the sum that appears in Eq.(5.22),
which will then average out and never be able to reverse the sign imposed
by A&;. While this may be true in general, we have seen throughout this
chapter that for graphene-based materials the underlying hexagonal atomic
structure introduces a peculiar feature in the RKKY-like coupling that will
seldom vanish the sum in the second term of Eq.(5.22). The magnetic cou-
pling between impurities embedded in graphene-related materials tends not
to exhibit sign-changing oscillations as the separation between the impurities
is increased. Therefore, if the magnetic coupling between two sites favours
the anti-parallel alignment between moments, the summation in Eq.(5.22)
may be positive, and may converge to a sufficiently large value capable of
overturning the satisfied criterion for single impurities. In the case of one-
dimensional graphene systems, the consequences of neglecting the coupling
between moments in neighbouring cells can be even more severe. Since the
coupling magnitude tends to decay rather slowly as 1/D [116], the second
term in Eq.(5.22) may diverge if the coupling is antiferromagnetic, leading

to a guaranteed suppression of the magnetic moment.

5.5.3 DFT results for Fe and Mn

A striking implication of this mathematical analysis is that spurious nonmag-
netic solutions may be obtained if existing magnetic moments are artificially
constrained to adopt a parallel alignment when they would spontaneously
prefer to be antiparallel. This raises the question whether the reported ab-
sence of magnetic moments for Fe in graphene could be one such case [185].
If so, this would be a convincing indication of the inadequacy of the assump-
tion of independent unit cells that is commonly used in DFT-calculations
dealing with magnetic dopants in graphene. A simple way of testing if the
moment suppression is the result of the artificial constraint imposed by the
periodic boundary conditions of the DFT scheme is to include more than

one magnetic impurity per unit cell and allow them to adopt both parallel
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and anti-parallel alignments. In what follows we present DFT results? for
calculations comprising two impurities per unit cell and compare those with
the results for a single impurity. The calculations were made using peri-
odic boundary conditions and supercells comprising 4x4 and 7x7 graphene
primitive cells. In these cases, one carbon atom of the graphene lattice was
substituted by a single Fe atom impurity. The distance between an impurity
and its image in the adjacent unit cell is 9.98 and 17.47 A for the 4x4 and 7x7
supercells, respectively. Unsurprisingly, the results are very similar to those
previously reported [185]. We find that, when relaxed, the metal impurities
are displaced outwards from the graphene surface by 1.14 A and that no
magnetic moment is observed.

The results are completely different, however, when two impurities per
unit cell are considered. To maintain the same impurity separation as be-
fore, the unit cells are duplicated along one direction (4x8 and 7x14 primitive
cells). With two Fe impurities per unit cell, we have the freedom to start
these calculations with magnetic moments in the anti-parallel configuration.
Such an antiferromagnetic alignment between the Fe moments is stable and
energetically favourable, by 0.03 eV, when compared to the non-magnetic
solution, which can be obtained by relaxing the spin-polarisation. Remark-
ably, the substitutional Fe impurity has a magnetic moment that is as large
as 0.99 pup. The energetics of the system in the configuration in which the
Fe moments are parallel is also calculated. In this case the total energy is
considerably higher than the antiferromagnetic configuration.

Table I shows the total energy values obtained for Fe as well as Mn impuri-
ties in the ferromagnetic (FM), spin-unpolarised (SU) and antiferromagnetic
(AF) configurations. For Fe, the total energies in descending order are (FM,
SU, AF). Because the AF configuration is impossible to obtain with the
single-impurity unit cell, the system adopts the next possible configuration,
which shows no spin polarisation. Alternatively, one can understand this in

terms of Eq.(5.22), which means that the magnetic-coupling correction that

40ur DFT-calculations have been been made with the generalised gradient approxi-
mation [176] for the exchange-correlation term. Troullier-Martins pseudo-potentials [177]
and double-zeta polarisation atomic orbitals [175] have been used.
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arises due to the periodic boundary conditions is able to revert the sign im-
posed by A&, leading to a suppression of the existing Fe magnetic moments.
The suppression of the magnetic moment is a spurious feature that results
from the artificial imposition of a ferromagnetic alignment when the system

naturally prefers to adopt a different alignment.

‘ Fe | Mn
FM | 0.14 | 0.04
SU | 0.03 | 1.80

Table 5.1: Total energies, in eV, of the FM and SU configurations, for Fe
and Mn impurities in graphene. All quantities are expressed relatively to
the total energy of the AF configuration, which is the most energetically
favourable for both impurities.

Also shown in Table I are the values for Mn impurities, for which the
total energies in descending order are (SU, FM, AF). Another interesting
result, not considered in Ref. [185], is that the AF is the most energetically
favourable configuration. Once again, this is easily understood by the single-
impurity unit cell constraint that is unable to account for the AF alignment
of the magnetic moments. In this case, the next possible configuration is
the FM alignment, which again explains the results of Ref. [185]. In terms
of Eq.(5.22), the magnetic-coupling correction for Mn impurities is not suffi-
cient to overturn the sign determined by A&, which means that A&y /N is
still negative, justifying the splitting of the spin-polarised bands into a FM
configuration.

The results discussed above illustrate the potential problems that may
arise when dealing with magnetic impurities in graphene-based structures
through the standard DFT scheme of single-impurity unit cells. Further-
more, it is a clear indication of the relevance of the coupling between mag-
netic impurities in graphene-related materials. When this coupling is positive
and sufficiently large to reverse the sign imposed by A&, the artificial con-
straints imposed by the periodic boundary conditions spuriously suppresses
the magnetic moment that would spontaneously exist in isolation. In DFT

calculations of doped graphene-related materials, it is therefore of paramount
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importance to consider more than a single impurity per unit cell and study

the energetics of all possible configurations, namely, FM, SU and AF.

5.5.4 Strategy to avoid moment suppression

Finally, regarding the condition for the formation of a localised magnetic
moment expressed by the inequality of Eq.(5.20), we can test its predictive
power by applying it to the cases considered above. Written in terms of
single-particle Green functions, the susceptibility ¢(Er) can be further sim-
plified in the case of small spin-splittings (A < 1) to {(Er) = po( Er), where
po( Er) is the spin-unpolarised local density of states (LDOS) at the impurity
site evaluated at the Fermi level Ep. The value of U =~ 1€V, being primarily
an atomic property, is fairly constant for all transition metal elements [200].
Therefore, we can use the LDOS obtained from the SU calculations and test
whether the inequality of Eq.(5.20) is satisfied. Reassuringly, Upo(Ep) > 1
for both Fe and Mn, indicating that both elements favour the formation of a
magnetic moment when embedded within graphene. Further tests were car-
ried out with Ni impurities. In this case, the low value found for po( Ep) does
not meet our criterion, suggesting that Ni atoms within graphene will not
develop a magnetic moment. In fact, this is what is found for DFT calcula-
tions with two Ni impurities per unit cell, which also agrees with previously
reported results [181,185]. Such a good agreement with the predictions based
on Eq.(5.20) indicates that SU calculations, which are considerably less time
consuming than spin-polarised ones, can be carried out first to test whether
a localised magnetic moment is likely to arise. If so, further spin-polarised
calculations are required in which all possible configurations must be consid-

ered.

5.6 Summary of Chapter

In this chapter we introduced the concept of an indirect magnetic coupling
between magnetic impurities embedded in a host system. Such a coupling

has previously been investigated in a range of systems and has been tech-
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nologically exploited in magnetic memory devices. A general approach, the
so-called Quantum Well method, to calculating such a quantity was formu-
lated in Section 5.2.1 using a combination of the methods previously outlined
in Chapter 2. This approach was compared to the more commonly known
RKKY method, which was shown to be a second-order perturbative approx-
imation to the coupling.

In Section 5.3 the discussion shifted to the specific case of the magnetic
interaction between moments in a graphene system. We reported on the
progress to date in this field and summarised the methods and results of
numerous studies on the topic. The difficulties with performing a fully ana-
lytic treatment of the interaction were observed. Using the Stationary Phase
Green functions introduced in Chapter 3 we were able to calculate the princi-
pal features of the interaction in graphene within the RKKY approximation
for a wide range of energies. This method avoids the potential pitfalls of a
‘cutoff function’ that is required by previous studies attempting an analytic
solution of the interaction using the linear-dispersion approximation for the
electronic band-structure of graphene. The distance-dependent properties of
the interaction, namely the decay rate and oscillation period, were found to
emerge in a mathematically transparent fashion from our results and agree
with both our own numerical calculations and the expected results from the
literature.

Following this, we used numerical methods in Section 5.4 to probe the
magnetic interaction beyond the standard RKKY model. By varying the
parameterisation of the magnetic impurities considered, we demonstrated a
range of features that may occur by selecting a different magnetic species
as our impurity. We found that a preferential anti-ferromagnetic alignment
may persist to large separations between magnetic moments located on the
same sublattice. Such a finding is in direct contradiction to the predictions
of the RKKY theory reported throughout the literature, which state that
the coupling between such impurities is always ferromagnetic. Thus a richer
range of magnetic coupling features is present in graphene than had been
previously anticipated.

Finally, we showed in Section 5.5 that the magnetic coupling discussed
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to date may play a significant role in explaining some unusual ab initio re-
sults occurring in the literature. These include the unexpected absence of a
magnetic moment on an Fe atom embedded in a graphene sheet [185]. We
demonstrated that the use of single-impurity-doped unit cells in DFT cal-
culations is highly inappropriate to describe magnetically doped graphene
and that it may lead to fundamentally erroneous results as a consequence
of the magnetic interaction between impurities in neighbouring unit cells.
Such an interaction makes the hypothesis of independent unit cells in such
systems invalid. A mathematically transparent criterion for the formation of
magnetic moments in graphene is developed and tested in a number of cases.
The existence of a simple criterion that can tell whether or not a magnetic
moment will arise when impurities are introduced to graphene-related mate-
rials is a valuable tool to predict which of these structures may be useful for
spintronic applications.

The treatment of the RKKY interaction using Stationary Phase Green
functions, presented in Section 5.3, was published as part of “Electronic
structure of graphene beyond the linear dispersion regime” (Phys. Rev. B
83, 155432). The work in Section 5.5 was published as “Emergence of local
magnetic moments in doped graphene-related materials” (Phys. Rev. B
80R, 241413). The Density Functional Theory calculations in this section
were performed by Dr. Pedro Venezuela (Instituto de Fisica, Universidade

Federal Fluminense, Brazil).



CHAPTER
SIX

Dynamic magnetic interaction in graphene

6.1 Introduction

In the previous chapter we examined many facets of the indirect exchange
coupling in graphene systems. The underlying motivation for such studies is
the potential for magnetically-doped graphene systems to play a significant
role in future spintronic technologies. The incorporation of these systems
into potential devices is dependent on a long ranged interaction between the
magnetic dopants to facilitate magnetic ordering or the transfer of informa-
tion between different parts of the device. A long-ranged interaction has
been predicted in Carbon Nanotubes [116-119] and signatures of such an
interaction have been detected experimentally [120]. However, progress to
date in graphene sheets has been hampered by the faster decay rates which
arise from the peculiar electronic structure of graphene and which were ex-
amined in the previous chapter. Such rapid decay rates present an obstacle
to the experimental verification of the interaction and to its technological
application.

In this chapter we investigate the possibility of augmenting the range of
the interaction by setting the magnetic moments to precess. The notion of
a “dynamic RKKY” has been proposed by Simanek and Heinrich [134] who

generalised the concept of electron-mediated interaction between magnetic
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moments to the case when these moments are no longer in static equilib-
rium. Further semi-classical investigation reveals the emergence of a long-
ranged dynamic interaction in the case of ferromagnetic films separated by
non-magnetic metal spacers [135]. Such an interaction is driven by non-
equilibrium spin currents emanating from the precessing moments. The mag-
nitude of the interaction can be measured by a quantity called the dynamic
spin susceptibility, which describes the response of the magnetism of the
system to a dynamic magnetic perturbation. In the next section we shall
demonstrate how a full quantum mechanical description of this quantity can
be derived.

A long spin-relaxation length and relatively weak spin-orbit coupling
[95-98] make graphene an ideal candidate for the study of long ranged spin
dynamic effects. Investigation of the dynamic susceptibility in carbon nan-
otubes [136] has revealed an augmentation of the decay rate beyond that of
the static coupling. Further studies of spin dynamics in graphene systems
have suggested the use of these materials as spin waveguides [137], spin-
pumping transistors [138] and spin current lenses [139]. However to date
there has not been a comprehensive study of the dynamic coupling between
magnetic objects embedded in graphene sheets or how this is mediated by
spin currents - a topical subject due to recent experimental reports of unusual
spin current behaviour in graphene [140]. In this chapter we investigate the
dynamic coupling in depth using the dynamic susceptibility formalism devel-
oped in the next section. Using the stationary phase approximation for the
graphene Green functions, we demonstrate analytically how a long-ranged
interaction arises and how the decay rate for the static case is recovered as
the precession frequency is set to zero. We find a transition from the very
fast decay predicted for the static coupling to a much longer ranged decay.
We determine how this behaviour is manifested in the spin current emanat-
ing from a single precessing moment in graphene. Furthermore, we suggest
a possible experiment to probe the dynamic RKKY interaction in graphene
systems using the sensitive technique of inelastic scanning tunnelling spec-
troscopy (ISTS) [144] and model the signatures of the interaction that may

be detected.
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6.2 Dynamic susceptibility

In this section we introduce the methods used to calculate the dynamic sus-
ceptibility and show how the calculations required can be performed in terms
of the single-particle Green function operators describing the system and with

which we are well acquainted from previous chapters.

6.2.1 Magnetic Hamiltonian and time-dependent re-

sponse

To describe the electronic structure of the system we use a Hubbard-like

Hamiltonian of the form

2 A A Ua i A N 5
H = Z Yig (‘;'” Cig + Z (6(, Nao + > Tao na(,> + gupHy Z Sz, (6.1)

1,],0 a,o

where the first term contains the relevant hopping terms included to describe
the electronic band structure of the host system and the magnetic object.
For our purposes it is sufficient to use the nearest-neighbour tight-binding
model for graphene outlined in Chapter 3 to describe the host system. The
magnetic objects we consider will consist of simple substitutional or adsorbed
magnetic impurity atoms, whose description we have encountered previously
in section 2.4. The sum over a in the second term is over the number of
magnetic objects in the system, where ¢, is the atomic energy level of the
magnetic site and U, represents the effective onsite interaction between two
electrons on the magnetic site and which is neglected elsewhere as before.
The final term represents a local Zeeman interaction which defines the z-axis
as the equilibrium direction of the magnetisation. The value of the Zeeman
field is arbitrarily chosen so that a free electron precessing in it would have
an energy of 0.01¢, where ¢ once more is the magnitude of the carbon-carbon

hopping.

We now consider the introduction of a small harmonic, oscillatory mag-
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Figure 6.1: A small transverse field, h (¢), is introduced which drives a pre-
cession of the magnetic moment around the equilibrium (z) direction defined
by a static field Hyz.

netic field, h, shown schematically in Fig. 6.1, of the form
h, = hy [cos(wt)x — sin(wt)y], (6.2)

that drives a precession with frequency w at one of the magnetic sites, a = 0.
The interaction between the magnetic field described by Eq. (6.2) and the

spin at site 0, Sy, is accounted for by a Hamiltonian term

guphy - So=gupho [cos(wt) Sy — sin(wt) 7]

tph : . (6.3)
:gl:[; 0 [(?IWlS(T + (.)7l,w1 (;] )

where we have used the relation S* = 5% +iSY and S;" (S;) is the spin

raising (lowering) operator at site 7.

Using linear response theory, the response of the spin component associ-

ated with site i of the system to the applied field can be calculated®. This is

IThe limits of integration for the following derivations have been omitted for clarity.
All integrals are on the interval [—o0, co] unless otherwise noted.
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given by Refs [201,202]

h: : / s ’
5(SH (1)) = %/dt' [ttt -t +e gt -)] (64

where the susceptibility terms x;;" and x}~ are given by

X () =~ O (OIS (O, S; O and

7: (6.5)
X (t) = —3© (O[S (), Sy (0)])

and the square brackets denote a commutator, the angle brackets represent
the thermodynamical average reducing to the ground-state expectation value

at zero temperature, and ©(¢) is the step function given by

. 0 ift <0
O(t) = ; 6.6
(*) {1 ift >0 L

Since the Hamiltonian is invariant to spin rotations around the z-axis the
spin component S, is conserved. Thus terms of the form ([S;"(t), S, (0)])
vanish and the susceptibility term x;;" is zero. Now Eq. (6.4) becomes

_9usho

8(S;"(t)) = : /dt’e—iwt'xjg)—(t—t’). (6.7)

The term x5, (¢) is the time-dependent transverse spin susceptibility in real

space. The Fourier transform of this quantity

) = / d' ¢ i () (6.8)

is the frequency-dependent transverse spin susceptibility which tells us the

response of the system to excitations of a given frequency. We can relate the
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time-dependent spin disturbance at site i to this term as follows

2
gmsho _

ho _; . ’
§(5 (1)) = gHBMO —iwt / dt’ e t) yk=(t — ¢')
(6.9)

—twit

(w) e

It is clear that the frequency-dependent susceptibility contains a lot of
information about the response of the system to the applied magnetic field.
From it we can extract information about the spin excitations in the system.
These can be classified as single-particle spin-flip (Stoner) excitations or as
collective modes (spin waves). In the next section we demonstrate how this

quantity can be calculated within the random phase approximation.

6.2.2 Calculating x;; (w)

We begin by defining a generalised time-dependent susceptibility similar to
X;; () and given by
. i B ‘
Xult) = ~ g ([555(£), S (0)]) - (6.10)

a1 &Y 1 A v 1@ = g— O i s s -
Clearly the element of interest to us is x;;;;(t) = x;; (¢). Extending the
standard definition of spin raising and lowering operators in terms of creation

and annihilation operators we write

S5(t) = ‘A':'r[(t) énlt} and

(6.11)
Sa(0) = ek, (0) & (0).

X;;;l(t) obeys the equation of motion given by

i 3 100 (S50, Sa(OD}
- ds+ ;
- 0 5500, 5300 + 00 (T2 sz (612
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where H is the Hubbard-type Hamiltonian given by Eq. (6.1) and 6(¢) is the
Dirac delta function. We now examine the two terms on the right hand side
of the final expression for the equation of motion individually. For the first

of these, we can write

8(t) {[S55 (1), S (0)]) = 6(2) ([Si5(0), S, (0)])

(6.13)
()(t) <(‘ ClT (S]k + Ckl (’Jl 511>

ll

Using the Hamiltonian from Eq. (6.1) allows us to write the commutator in

the second term as

+ 9 AR A af 4 At 4 af 4. At 4
[SUH] — Z <’7aniT C"l =3 ’Ym'(nT (_7'1) = (UJ (?J-T (jT (‘iT le o Ui (’.iT ('jl (il ('il) .
mn
(6.14)

The equation of motion for )(;S;I(f) now becomes

dx (1)

h
" dt

= 8(t) (el & Sk — ek, &5, 6u)
= 2 0(8) D {ln &1 (0) s (8) = s € () 51(2), S (O)])

n

. ;i,@ (t) <[ (U]- ety e (1) el (1) &1 (1)

- U0 e & a®) , Sao)) -
(6.15)

From the definition of the time-dependent susceptibility qu( ) in Eq.(6.10),
terms like —+ O (t) (jné! ¢i1(t) Eny(t), S (0)]) in Eq. (6.15) above can be writ-
ten as time-dependent susceptibilities x; ., (t). The appearance of higher-
order terms in the expression above leads to an infinite chain of coupled

equations for x; u( ) that in general are not possible to solve.

To decouple these equations we make use of the Random Phase Approxi-
mation (RPA). This approximation limits the theory developed so far to low
temperature as it neglects magnon-magnon interactions, as well as certain

magnon-electron interactions and electron-electron interactions [203-207].
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The decoupling scheme introduced by the RPA consists of replacing

deidle ~ (Elé)ele—(Ele)ele +elael e — @eele, (6.16)
where the expectation values are evaluated in the Hartree-Fock ground state,
where the dynamics of the two spin projections are treated independently.
Thus expectation values of the sort ((A*:.fT ¢;;) = 0. From Eq. (6.15), the terms

we require are

At A af A o oyal oA nat 4 I
Ci Gt Cip Gy = (€ 41 )8y &5y — (G3y 41 )65 G5

(6.17)
At A At A sl s KAl ox AN A Nal 2
and el el 6y~ (8 &) ek &y — (@ 85 )e 8y
Within the RPA the equation of motion for \*:;,:1(1‘,) becomes
. d/‘(tk_-l(t) . oA 8 = g
1h I:T = ()(f) <C2[T i ()jk = (’I,l Cj| dil>
I Z ((51'1” ’7]11 - (5jn7nu) \;;;k[(f)
m,n (() ]_8)
=+ Z (51"7716]71. (UJ'(’AIJ'T) - Ui<f'il> ) X::;I\I(f)
m,n
+ Z Omn Un ((Sim <(A‘:'rl€'jl> - (Sjm<é;rT(A'jT>) X:rm:“(f) .
m,n

To simplify proceedings we introduce the four-index matrices given by

Diji = (¢l én 651 — 511 &1 0q)
Kijkr = ik Vit — Oji ki
iljkl = S0z (Ul ) — Uy} )
Jijkt = Ok Uk, ((M(éhéﬂ) - (Sjk(éZTTéjT))

(6.19)

where the product of two such matrices is given by (AB Yijht = an A Bnats
so that Eq. (6.18) can be written in matricial form as
d

ih= X" (t) = 8(t) D+ (A +J+ j) ) (6.20)
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Using the Fourier transformations

1

= —/dw et gt (w)
2m

- I : :
o) = o /dw g

(6.21)

we get an equation for the frequency-dependent transverse susceptibility

hwit~(w) =D+ (1&' + 7+ j) P (W). (6.22)

RPA and Hartree-Fock susceptibilities

In order to calculate x*~ (w) from Eq. (6.22), we will first derive an expression
connecting the RPA susceptibility to the non-interacting, or Hartree-Fock
(HF) susceptibility, x(w). This is calculated within one-electron theory
and so is incapable of describing collective excitations such as spin waves.
However it carries useful information about single-particle excitations, such
as spin-flip (Stoner) excitations. Such information is useful as the lifetime of
collective excitations in the absence of other forms of dissipation, like spin-
orbit coupling, is determined by their decay into single-particle excitations.
We have seen in Section 2.8 that, within the Hartree-Fock approximation,

we make the substitution

E nrmnao =2 § Ua na(r na

a,o a,o

in the interacting term of the Hamiltonian in Eq. (6.1). Following a similar
routine to that outlined to calculate the equation of motion and resultant
equations for the full Hamiltonian from Eq (6.12) onwards, we arrive at
analogous expressions to Eqs. (6.20) and (6.22) for the reduced Hartree-

Fock Hamiltonian:

ih < R0(t) = 8(t) D + (K i) L) (6.23)
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and

hwi(w) =D+ (K + j') = (w). (6.24)
Rearranging Eq. (6.22), we find

(hwf ~ K- J') W=D+ Jx (W)
— (W)= (hol-& - j')“ J )+ (hwf- K- jf)‘l

= ) = (hol =K =) TR @) +0w).

where we have performed a similar rearrangement with Eq. (6.24) to yield
T
Llw) = (hwl _K- J') D.
Defining a matrix P such that D P = J allows us to write

(@) = @)+ X@) PR (@) s

From the definition of P above and those of D and J in Eq (6.19) we can
write
Pya{ehéndm — ek é5160) = —Uk 0 (ehréj105 — €,6510u)
=> Pijri = —Uy 01 61 0i. - (6.26)
Using this definition of P in Eq. (6.25) yields

X;;I:l( Xz_]kl Z ijmm "lxmmkl( ) (627)

m

For the matrix elements X;'j‘(w) = XL‘J(w) that we are interested in we can

write
X;E*(CJ XU u) Z sz m X;tl; ((.L)) (628)
or
X (w) = W) = W) U X" (w), (6.29)

where U,,, = U,,0,mn. This leaves us with a simple matrix equation relating
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the random phase approximation and Hartree-Fock susceptibilities

) = [[+ 2w 0] Pw). (6.30)

It is worth considering the various types of excitations that can be de-
scribed by this expression. For simplicity we suppose that the external mag-
netic field couples to the magnetic moment of the atom at site 0. Using Eq.
(6.30) to examine the excitations arising from spin precessions due to this

disturbance we write

Xgo(w)

= BN . 6.31
1+ Up x$o(w) ( )

+—(
Xoo (@)
The imaginary part of g, (w), which is related to the spin excitations, is
given by
0
Im(xg(w))

o 060 ) = f G Ret @) + Wolm(e@) .

Two types of excitation are represented by Eq. (6.32), corresponding to w
ranges where Im (x{;f (w)) # 0. The first type correspond to particle exci-
tations where the numerator does not vanish, i.e., where Im(xJ,(w)) # 0.
Under the Hartree-Fock approximation electrons with opposite spin orien-
tations are independent. Therefore these excitations, called Stoner modes,
do not involve correlations between particles of opposite spin. Instead they
correspond to spin-flip excitations around the Fermi energy.

The other type of excitation correspond to w values where Im (x5, (w)) = 0
but where the term 1 + UyRe(x{y(w)) also cancels. These are excitations
which explicitly involve the effective Coulomb interaction between electrons
which is responsible for the correlation between the dynamics of spin-up and

spin-down electrons. These are collective excitations, or spin waves.

Calculating the HF Susceptibilities

Now that we have reduced the calculation of the RPA susceptibility to Eq.

(6.30), the rest of the calculation boils down to deriving an expression for the
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Hartree-Fock susceptibilities X?j in terms of the usual single particle Green
function operators we are familiar with. The definition of the generalised
time-dependent susceptibility, in Eq. (6.10), can be rewritten under the

Hartree-Fock approximation as

Xawlf) = _%@( ) [< el (8) én) (e () &) = (eky E1(0) (e 5’§r(t)>]
= —5 00 [ 0)en) (0.6, 1) — (ehy 200} (02D

(6.33)

where we have used the anticommutator {a,b} = ab+ba. Using the standard

definition [145] of the time-dependent single-particle retarded Green function

operator ‘
Gonlt) = =+ © (1) ({emo (1), ) (6:34)
we can write
Yo (t) = (2l (8) &) Giy(8) + (&, €,(1) G (1) (6.35)
Defining
. lo L) = (A'ig t (’T‘7
(0 = (Go(®)2],) oo
and JZ(t) = (& s (1))
the Green function in Eq. (6.34) can be written
o(t) = —= o t) {J5) + J5(1)} . (6.37)

Using the identity

-1 ¥ e—iwt
O (t) = lim (- 6.3¢
Dl (27rz'> / s e (6.36)



6.2. DYNAMIC SUSCEPTIBILITY 173

allows us to calculate the Fourier transforms of the quantities defined in Eq.
(6.36), yielding

o 1 —iwt Jo
il(t)zﬁt/dwe t‘il(w)

) 1 -
ad () = 5 [dwe ).

L0

(6.39)

The fluctuation-dissipation theorem, relating the absorption or dissipation
of energy of a system perturbed by an external field with fluctuations (and
correlations) in the unperturbed system [208], allows us to write J(w) =

e P J¢ and to rewrite the retarded Green function as

0 = g favert o [ R S 40
= % | dw e™ ™ G9(w) |
where | r efhwr 4
9 (w) = P nhj(l)l’ / dws Jj} (w2) m (6.41)

A similar analysis can be performed for the advanced Green function, G
to find expressions for the time- and frequency-dependent advanced Green

functions analogous to Eqs (6.37) and (6.41):

G, ()= —— O t) {J7(t) + J5 (1)} (6.42)
and o
Y 1 = el vz ]
Gy’ (W) = orh ,,lir(l)l+ /dwz I (w2) PT—— (6.43)
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From Eqs (6.41) and (6.43) we find the difference between the retarded Green

functions to be

o —ia 1 To 3 hwa
Gi(w) — G °(w) = - /dw2 Ji(w2) [e”h 2 4 1] e
. l 1 1
X lim e — .
n—0t W —wy +1n W —wy—1n
(6.44)
Using the relation [145]
lim —— = P(-) F ird(z)
im = P(-) Find(x
n—ﬁlw T xin 4 T
this becomes
1 ] = 8 F y
qw)—G;°(w) = — | dws J(w2) [("‘”’“’2 + 1] [—2mid(w — wo)]
2mh .
i (6.45)
J0 B hw
=7 Jiw) [#" +1] |
which, rearranged, gives
Ji(w) = th g [Ch(w) — G37 ()]
L e/iflw + 1 t il (64())
= ih f(w) [GH(w) - Gy ()]
where f(w) is the Fermi function. From Egs (6.36) - (6.46) we find
S ith . —iwt o -0
., Brwll)) = oy e f(w) [ n(w) — Gy (w)] . (6.47)

Using the cyclical property

(Clo 1o (t)) = (&, €T a0 ™) = (7], eMy,) = (&, (—t) &) (6.48)

and setting t — —t in Eq. (6.47) gives

@ Oa) =5 [ 50) [Giw) - Gio@)] . (649)

T or
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Substituting the identities in Eqs. (6.47) and (6.49) into the expression for
the generalised Hartree-Fock susceptibility given by Eq. (6.35) and the Green
function identity G737 (t) = G,;?(t), yields

ih 20 .
) = 5 [ e 1) [Ghw) - 62" w)] Gl
T
i (6.50)
T —iwt if =1 =
to | e W) [Ghw) - GRW)] GRl(-b).
Taking the Fourier transform
X?jk/(w) = /dt e X?jki(t)
= { / dw' f(w') [Ghw!) - G5 (@)] / dt 7 Gy (1)
B 8 i o\ . : jk\"
# [ 1) [l - )] [areerari-n)
(6.51)
and using the following identities
Glplw+w) = / greer g ) (6.52)

Gl = w) = / dt '@ -t g 1(g) =" / dte Rl (—f)  (6.53)
we arrive at a final expression for the generalised Hartree-Fock susceptibility

in terms of the single-particle Green functions

W) = 3 [ @ 1) {[6hw) - 67 1w)] Ghatw+w) i

+ |[Gh) = GRHW)] Gi W - w)}
or for the two-index susceptibility
Zh - / / / = /5 /
) = o [ a5 {[6hw) - 65 @)] Ghtw+ o) .
oo .99
+[Gh) - G5t w)] Gl - w)} -

1) VA2
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Egs (6.30) and (6.55) are the two key results from the rather lengthy deriva-
tion presented to date in this chapter. The first of these connects the interact-
ing and non-interacting susceptibilities allowing us to calculate the properties
of collective excitations arising from the precession of the magnetic moment.
The second result presents a method to calculate the non-interacting sus-
ceptibility in terms of the spin-dependent single-particle Green function, a
quantity whose calculation has been described at length in Chapters 2 and 3.
Within the Green function formalism we can easily account for the magnetic

impurities using the methods discussed in previous chapters.

Splitting the integral

The calculation of the Hartree-Fock susceptibility as presented in Eqs. (6.54)
and (6.55) involves an integral over energy of a convolution of retarded and
advanced Green function matrix elements. In Section 2.7, we examined how
integrals involving Green functions are in general easier to perform over the
imaginary axis. A similar method, outlined by Muniz and Mills [206], will
be used for the integration of the Hartree-Fock susceptibility equation. This
approach is slightly more complicated due to the presence of both retarded
and advanced Green functions, whose poles occur on opposite sides of the
real axis. To simplify the numerical integration of this equation, we split the
integral into three components. The first of these is a product of the retarded
Green functions, the second a product of the advanced Green functions. The
remaining cross terms are then contained in the final term. Splitting the
integral in such a fashion will also prove useful later in this chapter when
we turn to examining the separation dependence of the dynamic magnetic
interaction in graphene. To begin, we expand out the bracketed terms in Eq.

(6.54) and segregate the resultant terms by the types of Green functions they
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contain.
Zh / / — / —— /
) = 57 [ 1) {GLGh + ) - G G 1w ~ )
[cjk(w )G (W - w) - G (@)Ghlw + )| }
= ]1 5= [2 == 13 y
(6.56)
where b oo
L= [ d f@)Gh)Ghlw+w) (6.57)
2 J_ o ! !
ih P
12—‘% dw’ f(w') (W) Gy (W' — w) (6.58)
and
By B ) [GLl)Gr (@ = w) = Gy | () Gly(w + )]
3 o pr jk i \*¥ 2 li jk :

(6.59)

The integrand in /; consists of a product of two retarded Green functions.

At T = 0 it can be rewritten over the imaginary axis using a straightforward

application of the method described in Section 2.7 and availing of the contour

illustrated previously in Fig 2.6. The method is identical to that followed for
the integral for the static IEC in Eq. (5.6) and we find

h

Iy = o /n dy GJ,(wr + 7U)ij(W1« +w+iy). (6.60)

An analogous approach can be followed for I,, but since it contains a product

of advanced Green functions the contour should be closed in the lower half

plane. This gives

— dgG’ )Gy T(wp —w —1y), (6.61)

n



178 CHAPTER 6. DYNAMIC MAGNETIC INTERACTION

and using the identity G, 7(2) = G}, (2*) becomes
h o | . 1 5 & D
Iy= 7 dy [ij (wr +1iy) G;)(wr —w + zy)] : (6.62)
n

The third term cannot be solved using the same procedure as it contains
products of retarded and advanced Green functions, which are analytic func-
tions of w" in opposite halves of the complex plane. However, we can simplify
the expression for I3 given in Eq. (6.59) by making the transformation of

variables w’ — w’ + w in the first term, so that

I; = LN B [f(w' +w) — f(w)] Gy ' (@)Gjplw + ). (6.63)

o

— 00

At T' = 0 the Fermi functions have the effect of limiting the range of the

integral such that

ih o ! =1 AVal / s
13 = _E ./\ dw Gli (w‘ )Gjlk(w' +w ) . (()()1)

wp—Ww

It is important to note that in terms of separation dependence, the func-
tional forms of I; and I, are almost identical to that for the static coupling.
However, the third term has a different form and it makes no contribution
to any of the static properties of the system. This can be seen quite clearly

as, when w = 0, the range of the integral vanishes and so I3(w = 0) = 0.

6.2.3 Spin disturbance, dynamic coupling and spin cur-

rent

We now demonstrate how the spin susceptibilities we have derived can be
used to calculate other useful quantities in the system . The spin disturbance
at a site is the amplitude of the spin precession at that site induced by the
precessing moment. It is clear from Eq. (6.9) that the absolute value of
the response function |x;57|, is proportional to the magnitude of the spin
disturbance at site 7 due to the application of the oscillating field applied at

site 0. The spin disturbance at 7 due to multiple precessing moments, either
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from a larger magnetic object consisting of multiple magnetic atoms or from

a distribution of magnetic atoms, is given by

6(5H ()] = L2200 1S st | (6.65)

a

where the sum is over the sites where the oscillating field is applied. The
quantity |x,.” (w)|, where there are magnetic atoms at both sites a and b, can
be viewed as a dynamic analogue of the RKKY coupling in that it represents
an interaction between two magnetic objects mediated by the conduction
electrons of the host medium. Whereas the static interaction corresponds
to the energy difference between parallel and antiparallel alignment of the
moments, the dynamic interaction represents the magnitude of the precession
induced on one moment by that of another. Since we are looking at the
absolute value in the dynamic case, we are not extracting any information

from the sign of the quantity calculated.

A precessing moment on a magnetic object generates a spin current which
carries transverse angular momentum away from the site of precession (spin
pumping). In systems with a long spin diffusion length and a small spin-orbit
coupling effect, this spin current can travel significant distances in the host
medium and excite a second magnetic moment elsewhere (spin torque). Such
a mechanism has tremendous potential for application in spintronics devices.
The spin current emanating from a precessing moment can be calculated in
terms of the transverse spin-susceptibility in a manner outlined in Ref [209].
The total spin current, I+ flowing out of a volume V' containing many spins

is found to be

=Y B =33 [mh— w5 (6.66)

i€V i€V j
where 7;; represents the tight-binding hopping parameters from the Hamil-
tonian in Eq. (6.1) and S; is the generalised spin raising operator defined in
Eq. (6.11). It is apparent that that contributions to I & from j € V vanish

and so the sum over j can be restricted to j ¢ V. The amplitude of the spin
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current pumped out of V' by the precessing moment is

(0 = VKB 2 + (2 2. (6.67)

Following a similar method to that outlined for ¢ (S ) (t) earlier we can calcu-
late the change in the expectation value of the spin current upon application
of the magnetic field h (f) described by Eq. (6.2). We note that in this case
S(IF)(t) = (IE)(t) since there is no net spin current flow in the unperturbed

system. The spin current generated by the oscillating field is found to be

- iguph iw - . s
<]:r>(f) s 9 : Z Z g ['71'] X:;oo(w) — Vji /\;_i()()(w)] ) (6.68)

i€V je¢v

where \';;&,(w) is the generalised transverse susceptibility within the RPA.
Since we are using a nearest-neighbour tight-binding model to describe the
electronic structure of the host medium the sums over 7 and j are restricted
to nearest-neighbour pairs (i, 7) where ¢ € V and j ¢ V. In essence we
are summing over the tight-binding connections crossing a surface 0V which

defines the edge of the volume V' out of which the spin current is flowing.

6.3 Dynamic RKKY in graphene

Earlier in this chapter we introduced the quantity |y, (w)|, which gives the
amplitude of the precession induced on a magnetic moment at site b due to
a precession of frequency w at site a. We stated that this quantity can be
viewed as a dynamic analogue of the RKKY-like coupling that occurs be-
tween two static magnetic objects embedded in a conducting host. When a
(static) magnetic impurity is placed in the host, it induces a spin polarisation
of the conduction electrons. This is generally oscillatory in nature, although
we have seen in Chapter 5 that in undoped graphene such oscillations can be
masked by a commensurability effect. When a second moment is introduced,
the energetically favourable alignment between the moments depends on the
local polarisation. The spin polarisation is described by the static spin sus-

ceptibility introduced in Eq. 5.9. Within the RKKY picture, the decay rate
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of the magnetic coupling is completely determined by the off-diagonal static
susceptibility. As such, it is sufficient to consider how the induced spin po-
larisation caused by a single magnetic impurity is spread in space. In moving
from the static magnetic coupling to a “dynamic RKKY” we will begin with
the case of a single precessing moment in a graphene sheet. Using the expres-
sions introduced earlier in this chapter in conjunction with the analytic Green
functions for graphene, we will determine the separation dependent proper-
ties of the dynamic spin susceptibility. For simplicity we will consider the
magnetic impurity throughout to be a substitutional atom. This condition
can be relaxed to consider more general magnetic objects without significant
affecting the results obtained. The analytical work is complemented with

fully numerical calculations which confirm the behaviour predicted.

6.3.1 Distance dependence of x, ,(w)

From Eq. (6.30), the dynamic spin susceptibility element y', representing
the spin disturbance at an arbitrary site m by the precession of a moment

at the magnetic site 0 is given by
. =
xio = (1+x0U) " Xomo- (6.69)

The only term in this expression that contains a distance dependence is x2 .
Thus as far as the distance-dependent properties of the spin susceptibility
is concerned, it is sufficient to examine those of the relevant non-interacting
susceptibility matrix element. We recall from Eq. (6.55) that this is written

in terms of the Green function operators as

Xoo(w) = % [ Z dw’ f(w") { [Gém(w') = Go (“")] Gl + ) (6.70)

+ |Gholw) = Grd(@)] Gan(w' —w)} -

To simplify proceedings further we can now take a similar approach to that
taken for the static RKKY interaction and replace the Green function matrix

elements, G7;, that appear in this expression with their spin-independent,
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pristine counterparts, g;;. We note that this replacement is justified since we
are concerned principally with the distance dependence of the interaction,
which is underpinned by the off-diagonal Green function elements of bulk
graphene. Following this, we can split the integral above into three parts as
demonstrated in Eqs. (6.56) - (6.64), so that?

Xmo(w) = Li(w) + L(w) + I3(w) (6.71)
where _ -
1) = 5= [ B HE ) gon (B gmol B+ 1) (6.72)
Z. = / !/ — / — / 3 b
hw) == [ dB ()l E) goul B~ ) (673
and ‘
i B
X T dE' go (E")gmol B + Hw) . (6.74)
27 JEp o

We note that I; and I, are of similar form and involve the convolution of two

retarded or advanced Green functions, whereas I3 involves one of each type.

We begin our analysis of the separation dependence by examining I;.
We note that its functional form is very similar to that of the static RKKY
integral given by Eq. (5.9). The only difference is that now the product
in the integral contains Green functions evaluated at different energy values.
Following the same approach as was taken for the static case in Section 5.3.1,
we write the matrix elements of the off-diagonal pristine Green function in

graphene calculated using the Stationary Phase Approximation as

.A(E) ez’Q(E)l)

.

where D is the separation between sites 0 and m. The functional forms

gm,()(E) = g(),m(E) = (675)

of A(F) and Q(F) depend on the direction of the separation. Assuming a

2To allow a simpler comparison with the treatment of the static coupling in the previous
chapter, we have rewritten the integrals in terms of energies (E) instead of frequencies

(@)



6.3. DYNAMIC RKKY IN GRAPHENE 183

separation in the armchair direction as before allows us to write

[ 2 z
~3 A} — 6.76
o \/(22 + 3t2)/t2 — 22 (6.76)

Q(z) = sin™* (%) .

where z is a complex energy. Using these identities we can rewrite I; in a

and

similar manner to the static coupling as

R - B(E',w) et (QAEN+Q(E +hw))
e / ]
s /_oo e D (1 + eP(E-Er)) ) (6.77)
where
B(E',w) = A(E') A(E' + hw). (6.78)

Moving to the complex plane, the integral can be solved by replacing it with
a contour integral in the upper half plane, where the relevant poles are once
more given by the Matsubara frequencies E, = Er —i(2p + 1)7kgT, where
p is an integer which labels the poles. The integral then becomes a sum of

the residues over these poles,

kT
Iifw) = -2 Z BBy, s} ¢ (S4B REyhul) D (6.79)

Proceeding as before we expand B(E,,w) in a Taylor series

1
B(Epw) =~y " BY(E, — Ep), (6.80)
—~ 1!

where BY is the [-th order derivative of the function B(E,0) evaluated at
Ep. Here we have assumed that the function B(E,,w) varies only weakly
with w around w = 0. Similarly, Q(F) is expanded to first order around Ep

and written

Q(E) = 09 + QW (E — Ep) (6.81)
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where QW is the [-th order derivative of Q evaluated at Ep. With these

expansions, I; becomes

ksT 1 o o
I] (w) - g 61(2Q(0)+Q(1)M)D Z - B([) Z GZzQU)(I;,,—b,;)I)<Ep - EF)[

D I
l p
(6.82)
which can be rewritten in the low temperature limit as
1 (000100 (—=1)+1i B0
) (225 +Q W hw)D >
Liw) ~ 5 ZI: 2 QT DI (6.83)

using the same steps taken for the static coupling in 5.3.1. It is clear that
the separation dependence for I is identical to that found for the static
coupling. For Ep # 0, the leading term, [ = 0, dictates the decay rate so that
I, ~ D72, However, as before the [ = 0 term vanishes in the undoped case so
that the decay rate is determined by the first surviving term and I; ~ D=3,
A similar analysis can be performed with I, by closing the contour in the
lower half plane. However, we note that the functional forms of Iy and I, are
identical and that therefore both will contribute to the spin susceptibility
with the same separation dependence, i.e., D=3 for the undoped case and

D~? otherwise.

Moving onto I3, we note first of all that this integral is over a finite
frequency range along the real axis:

7 Ep

L(w) = dE' g; (ENgjk(E" + hw) . (6.84)

27 Ep—hw

Furthermore, in the static case this term clearly vanishes as the lower and
upper integration limits converge when w = 0. Therefore I3 is a purely
dynamic contribution to the susceptibility, whereas in the static limit it is
easy to see by comparison that [, + [, is essentially the static susceptibility.
It is therefore unsurprising that the distance dependence of I} + I, is the
same as that found for the static case. Since the integration in Eq. (6.84)

is generally performed over a small energy range we can make the following
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approximations,

P
R,
¢
o
o

~ —74/ — 6.85
ir Tam (6.85)

and
Q(z2) ~ i% . (6.86)

Then Eq. (6.84) becomes

Ep

2

7 —

—i7r

i

VEl+h ihTuJD
2rD \/m

1 s hw EF Z
_eHT D / dE'\/—E'(E' + hw) .
JE

3TT2Dt3 r—hw

];;(u.)) ~ — dE’

Q

(6.87)

We note that the remaining integral has no D dependence. In fact, an equa-

tion of the form y = by/—xz(x + a) can be rewritten
%5 Yy :
2 4 5 = 1 (6.88)

(5" (%)

which represents an ellipse centred at * = —5 .,y = 0 with respective semi-

[l

axes % and “—;’ and an area 7”" °b,

noting that

Returning to the integral in Eq. (6.87) and

1 s hw
&= h and e it gD
3m2Dt3
it is easy to see that the ellipse is confined between E' = —hw and E’ = 0.

If Er = 0 then the integral in Eq. (6.87) equals half the area of the ellipse

2 2
h*w +ifw p

Llw)~ e ®

(6.89)
In Fig. 6.2 the real (top) and imaginary (bottom) components of the I3
integrand are plotted for a separation of 50v/3a in the armchair direction
for the undoped case. Each case shows the integrand calculated in three
different ways. The small square symbols show the integrand calculated

with numerical pristine Green functions, whereas the larger circular symbols
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Figure 6.2: The real (top) and imaginary (bottom) parts of the /3 integrand
calculated using fully numerical pristine Green functions (large circles), the
SPA Green functions (small squares) and the elliptical approximation of Eq.
(6.87) (red, dashed curve). A good agreement is noted between the three

calculations.

represent a calculation using the SPA Green functions. We note that the
SPA overestimates the amplitude of the real part, however the overall match
between the two is still good. The red, dashed line in each case represents the
approximation for the integrand given by Eq. (6.87), the integral over which
is given exactly by Eq. (6.89). It is clear from Fig. 6.2 that the approach
taken in this section returns an excellent estimate for I3 from which we can
extract useful analytical information. The distance dependence of the I3 term
is particularly interesting. We note that this term decays as D~!, presenting
a much slower decay rate than was calculated for the other terms in the
susceptibility. The presence of the w? term in Eq. (6.89) confirms once more
that this term vanishes in the static case and is a purely dynamic contribution
to the susceptibility. To confirm the decay rates predicted by this analysis,
Fig 6.3 plots the different contributions to the susceptibility as a function

of separation for undoped graphene. These calculations are performed using
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Figure 6.3: Decay rates of the different contributions to the dynamic sus-
ceptibility. The log-log plots in the inset reveal the power law exponents of
I, + I, and I3 to agree with those predicted in the text.

the numerically calculated pristine Green functions. The log-log plots in the
inset are in good agreement with our predictions that I, + I, ~ D% and
I3 ~ D71

We have now fully determined the decay rates which emerge from the con-
stituent components of the non-interacting off-diagonal susceptibility, calcu-
lated using the pristine Green functions. We have found that the components
consisting of a convolution of two retarded or advanced Green functions con-
tribute a decay rate equal to that found for the static susceptibility and
indirect exchange coupling. However the final component, consisting of the
convolution of retarded and advanced Green functions, contributes a slower
decay rate, namely D~!, which from Eq. (6.87) should hold for both the
doped and undoped cases®. At the start of this section we predicted that
the distance dependence of the interacting susceptibility, x.\g (w), should be
entirely described by the decay rates which emerge from the non-interacting
susceptibility we have examined thus far. We can now test this prediction by

calculating the interacting susceptibility numerically and scrutinising how it

3We note that the I3 term also adds an oscillatory component that is independent of
the Fermi energy. This is generally a low frequency oscillation compared to that induced
by the Fermi wavevector in terms I; and I, but traces of it may be seen in undoped
results, particularly by sweeping over large separation ranges.
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varies with the separation between the magnetic moment and the site we are
probing. Finally, we can include a second magnetic moment at the probe
site to ensure that the behaviour holds not just for the spin polarisation
caused by the precessing moment, but for the full dynamic analogue of the
RKKY interaction. Before showing the distance dependence, we must first
fix the frequency of the excitation. If we examine the functional form of the
diagonal term of the RPA susceptibility, as given for a single impurity in
Eq. (6.32), we note that collective excitations should appear as peaks. The
height of these peaks correspond to the amplitude of the excitation, whereas
the width of the peaks are inversely proportional to the excitation lifetime.
In the absence of dissipative features, such as spin-orbit effects, which are ne-
glected in our model, the lifetimes of the excitations are generally determined
by their decay into Stoner modes. For one magnetic impurity, the excitation
spectrum contains a single peak at a resonance frequency corresponding to
the normal mode of the system. Systems with additional magnetic moments
contain peaks at frequencies corresponding to each normal mode of the sys-
tem. However, as some of these peaks may occur at the same, or nearby,
frequencies it may not be possible to resolve all of the peaks separately. Sim-
ilar peaks occur in the off-diagonal matrix elements of the susceptibility that

we examine to determine the decay rate. In Fig. 6.4, we plot the absolute

value of the off-diagonal susceptibility, |x, |, evaluated at both w = 0 and at
the resonance frequency, wg , as a function of separation. The calculations
are performed for both the undoped and doped cases. For w = 0, we note
that we find the decay rates predicted before for the static susceptibility.
However, in the dynamic case the decay rate converges to D! in both the
doped and undoped systems, confirming the expectations of our analysis in
this section. Furthermore, the exact same decay rate behaviour is noted in
the insets, which correspond to calculations performed with two magnetic
impurities. We can thus conclude that the dynamic RKKY interaction in

graphene has a much longer range than its static counterpart.
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InD

Figure 6.4: Log-log plots of the off-diagonal susceptibility as a function of
separation. The main plots show the results for the static (w = 0, top panels)
and dynamic (w = wg, bottom panels) susceptibilities for both undoped (left)
and doped (right) systems, calculated with one magnetic impurity. The red
curves with ‘X’s are the numerical results, whereas the black, dashed lines
correspond to the indicated decay rates, as predicted in the text. We note
that the static susceptibility behaves as before, but the dynamic results show
a convergence to a longer ranged (D~!) decay rate. The exact same decay
rate behaviour is shown in the insets for calculations with two magnetic
impurities.
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6.3.2 Spin current from a precessing moment in graphene

A related topic to the dynamic magnetic interaction considered in the pre-
vious section is that of the spin current that emanates from a precessing
moment out into the graphene host. It is this current that can be thought of
as mediating the interaction between multiple moments. We will now exam-
ine the spin current that flows from a single precessing moment embedded in
a graphene sheet. In section 6.2.3, we showed that the spin current flowing

out of a volume V' could be written in terms of the spin susceptibility as

. tgpsh —iw - = -
(I5)(t) = —2—0 Z Z g e ["/ij ,\/;rj()o(w) — Yji ,X}Li()()(w)] ) (6.90)

eV j¢v

where the sums over 7 and j amount to summing over the tight-binding con-
nections between ¢ € V and j ¢ V that cross the boundary of the volume.
This is shown schematically for a small circular volume (shaded area) in the
left panel of Fig. 6.5. To examine the distance dependence of the spin cur-
rent, i.e., its dependence on the radius, R, of the circular volume shown in
the schematic, we can look at the ij&, terms in the above expression. Their
distance dependence is entirely contained in the equivalent Hartree-Fock sus-
ceptibilities, ng()o. which can be written as a sum of integrals I, + I, + I3
as before. The functional form of these is very similar to the corresponding
terms for the x,, case we studied in the previous section. We should there-
fore expect the same decay behaviour with distance, namely that the X{S‘&)
terms should approach a R~! decay as the radius is increased. However, as
the radius is increased the number of connections crossing the boundary in-
creases also and is proportional to the circumference, and hence radius, of the
volume. Therefore we should expect the overall spin current measured out
of a circular volume not to vary strongly with the radius. This expectation
is confirmed by a numerical calculation of the magnitude of the spin current,
evaluated at the resonance frequency, as a function of radius as shown in the
right panel of Fig. 6.5. Here we see that as the radius is increased, the spin
current magnitude approaches a constant value. Such a result is consistent

with the absence of dissipation terms like spin-orbit coupling in this model,
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Figure 6.5: The schematic on the left shows the connections between atoms
inside (green) and outside (purple) the circular volume that must be summed
over when calculating the spin current. The plot on the right shows the
magnitude of the spin current flowing from a circular area as a function of
the radius. It is seen to approach a constant value as the radius increases.

and also with recent experimental results which suggest the propagation of

spin current over a long range in graphene samples [140].

6.4 Detecting the dynamic RKKY in exper-

iment

To date it has been very difficult to probe the RKKY interaction in graphene
experimentally. It is understandable that with a decay rate as fast as D=3 it is
difficult to probe the interaction for any reasonable separation. The presence
of magnetism in disordered graphene systems may indicate the presence of an
exchange coupling between magnetic moments formed around defects. Nu-
clear magnetic resonance experiments reveal that these defects have indeed
magnetic moments, since they couple to implanted Fe atoms [210]. However,
whether or not these moments couple with each other, or with the graphene
lattice, to form a ferromagnetic state is a controversial subject and many of
the results in this area have proved difficult to reproduce [90]. However, there
has been significant progress recently in probing the spin dynamic properties
of isolated magnetic impurities on the atomic scale. The method of inelastic

scanning tunnelling spectroscopy (ISTS) [141-144] can be used to probe the
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magnetic excitations of the system. The spin excitation spectrum of an indi-
vidual atom adsorbed onto a surface is measured by positioning the tip above
the relevant atom and varying the bias. Above a certain threshold voltage,
electrons tunnel between the tip and the surface, registering a current. For
the case considered here, tunnelling electrons are able to transfer energy to
the magnetic excitations of the system. A differentiation of the standard
% curve from such a measurement corresponds to the density of magnetic
excitations. This quantity is intrinsically connected with the diagonal term
of the spin susceptibility that we have been investigating throughout this
chapter.

In the previous section, we determined how the off-diagonal susceptibility,
,,\,J;a, varied as the separation between two magnetic moments was increased.
We found a longer ranged decay than was predicted for the static analogue
of the interaction. However it is very difficult to probe the off-diagonal ele-
ment experimentally. What we can investigate instead is the diagonal ma-
trix element of the susceptibility, xJ, » which as we have noted above can be
probed by sensitive experimental techniques. This matrix element, plotted
as a function of frequency w, tells us how strongly the system responds to a
time-dependent magnetic excitation. In particular, peaks in the frequency-
dependent susceptibility reflect the existence of resonant frequencies whereas
their inverse widths characterise the lifetimes of the associated spin excita-
tions. In the top (A) panel of Fig. 6.6, the diagonal susceptibility is shown
as a function of excitation frequency for a single magnetic impurity (at site
0) and a single peak is identified. The linewidth W) of this peak is high-
lighted. Adding a second impurity at a separation D from the first one will
maintain the peaked features of the susceptibility but the linewidths and
peak heights should now develop a D dependence. We have seen clearly how
the interaction between precessing moments manifests itself in the separation
dependence of the off-diagonal term. It is now worth investigating how the
diagonal term is affected. We should expect that as the moments are moved
further apart they become essentially independent and that their excitation
linewidths should approach those found for the single impurity case. We be-

gin by considering the expression for the RPA susceptibility in terms of the
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Figure 6.6: (A) Diagonal susceptibility for a single magnetic impurity as a
function of excitation frequency. A single peak with linewidth, Wi, is iden-
tified. (B) The relative fluctuations of the excitation linewidth, Wv;,lwl, for
two magnetic impurities as a function of their separation in the armchair di-
rection is show by the solid blue curve. The shaded area delimits the region
spanned by the two impurity result if all possible separation directions are
considered. The scattered red dots correspond to the relative linewidth fluc-
tuations of the diagonal susceptibilities ;' calculated at different sites m
in a disordered array of magnetic impurities embedded in graphene, as illus-
trated by the schematic example in the inset, plotted against their respective
nearest neighbour distances.
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non-interacting susceptibility, given by Eq. (6.29), which for two magnetic

impurities at sites 0 and m allows us to write

X(-;)— = Xg() o Xg() U XS_O_ 5 X8m U X:LE
=1 =
= (1 T X80 U) (Xg() o Xgm U X:)O)
—1 —1 _
= (1 + X0 U) " (M= X U (1 + 2 U) ™ (65— %0 U x5 )

-1 -1
~ (14 xR U) " (Mo = (14 X0 U) " X8 Uno = =) -
(6.91)

The first term on the right hand side of the above equation corresponds to
the diagonal susceptibility in the case of a single magnetic impurity. The
diagonal susceptibility for two impurities can therefore be written in terms
of the one-impurity case as a series expansion in powers of (), and xy,,. We
recall that these terms individually decay as D~! as the separation between
the moments is increased. The lowest order correction to the diagonal suscep-
tibility when a second magnetic moment is introduced is given by the second
term in the equation above. This term contains a product of off-diagonal
susceptibilities, x§,,x20, 50 we should therefore expect that it decays with
separation as D2, The blue, solid curve in Fig. 6.6(B) plots the fluctuation
of the excitation linewidth relative to the result for the single impurity case as
a function of the moment separation in the armchair direction. We note that
the linewidth fluctuates around the one impurity value and its rate of decay
is in good agreement with the D=2 rate predicted above and indicated in
the figure by the shaded area enveloping the two-impurity curve. It is worth
noting that a change in direction will lead to only a phase shift or additional
oscillatory features in the solid blue curve so that if all possible directions

were considered the resultant data points would generate the shaded area.

Rather than just having one or two isolated impurities along a given di-
rection, a more realistic scenario is that depicted in the inset of Fig. 6.6(B),
namely several magnetic moments randomly located across a graphene sheet.
To model such a setup, we may consider several disordered configurations of

multiple moments and obtain the linewidth of each. By plotting these as a
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function of their respective nearest neighbour distance we should be able to
confirm the predicted decay rate. The scattered red points in Fig. 6.6(B)
represent the linewidth fluctuations found from 25 randomly generated con-
figurations of five magnetic impurities as a function of the nearest neighbour
distance. The calculated linewidths all fall within the shaded area containing
the two-impurity linewidth oscillations, confirming that the dynamic interac-
tion between nearest neighbour impurities tends to dominate and determine
the lifetime of the spin excitations in these disordered configurations. The
important trend to note is that the amplitude of the fluctuations around the
one-impurity linewidth, W;, decays as D2 with the nearest neighbour sepa-
ration. Bearing in mind that the average nearest-neighbour distance between
two impurities scales as % where p is the impurity concentration, we can
predict that the standard deviation (oy ) of the experimental measurements
of spin-excitation linewidths will scale with the magnetic impurity concen-
tration as oy ~ p. Evidence of this scaling would be a clear indication of

the RKKY interaction in its dynamic form.

Experimental considerations

The inset of Fig. 6.6(B) matches quite closely the experimental setup of
Ref. [144], which measured the spin-excitation lifetimes of Fe atoms ran-
domly dispersed on Cu surfaces using ISTS techniques. In fact, because
C atoms have smaller spin-orbit coupling than Cu, these features should
be more pronounced in graphene and thus easier to probe. However, there
are some further factors that need to be taken into account when consider-
ing how our results could be compared to those from an ISTS experiment.
In particular, detecting experimental signatures of the dynamic RKKY in-
teraction involves measuring fluctuations in the ISTS magnetic excitation
linewidths. From Fig. 6.6(B), we observe that fluctuations in the linewidth
of 5% or greater are present up to separations of approximately 80 a (200 A)
whereas the linewidth for the single impurity case is approximately 0.02 eV .
However, the linewidth and resonance energy depend strongly on the value

of the static Zeeman field entering into the Hamiltonian in Eq. (6.1). The



196 CHAPTER 6. DYNAMIC MAGNETIC INTERACTION

value we have chosen corresponds to a magnetic field of approximately 100 7.
This is significantly larger than any experimentally realisable static, homo-
geneous field, but is necessary to allow our numerical study. Since the peak
positions and widths scale linearly with the field strength in this frequency
regime [207,211], we can extrapolate our findings to more feasible field val-
ues of ~ 107". Here we estimate that the fluctuations in Fig. 6.6(B) in the
distance range 70 — 200 A are of the order 1072 — 10~* eV. Comparing this
with the energy resolution of 1.5 x 10~* eV reported in Ref. [144], we see that
we are very near the limit of what may be feasible experimentally. However,
there is another degree of freedom available to us in controlling the widths
of such features, namely the choice of magnetic impurity. In this work, we
have considered a very generic parameterisation of the magnetic impurity.
When a more complete parameterisation is considered, for example by com-
parison with ab wnitio results, the choice of magnetic species can play a large
role. The width of resonance features is controlled by the local density of
states at the impurity sites, and in particular if the impurity spin levels cross
the Fermi energy a much broader peak feature is expected [211,212]. A re-
cent study examining a range of substitutional 3d transition metal impurities
in graphene suggests that such a property may be present for Cu, Zn and
V [195]. Thus careful selection of the type of magnetic impurity considered
may enhance the predicted signatures of the dynamic RKKY interaction,
and make them more accessible to experimental verification. Another rele-
vant consideration for experiment or device application is the temperature
to which such interactions persist. The long-ranged dynamic contribution
emerges from the I3 term, which contains an integral over a short energy
interval defined by the resonance frequency of the excitation. At finite tem-
peratures, the introduction of the relevant Fermi functions into Eq. (6.74)
will lead to a smearing, or averaging out, of these contributions, especially
when the thermal energy approaches that of the resonance. For the moment
parameterisation considered in Fig 6.6(A), adjusted for realistic field values,
we find that the excitation energy corresponds to ~ 200K. This is a very
basic approximation and we further note that the resonance energy can be

altered by changing the magnetic species considered as discussed earlier for
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the peak width. Another point to note is that impurity elements with larger
spin-orbit splittings, such as 5d transition metal atoms, should tend to in-
crease the excitation energy due to their intrinsic magnetic anisotropy [213].
The study of graphene doped with such impurities may lead to room temper-

ature spintronic devices utilising the dynamic interactions considered here.

6.5 Summary of Chapter

In this chapter we extended the discussion of magnetic interaction between
impurities embedded in a graphene sheet to the dynamic case where the
moments are set to precess. This work was motivated by the fast decay rates
found for the static, or RKKY-like, interaction to date in graphene systems.
Such quick decay rates are an obstacle for the implementation of magnetically
doped graphene systems in spintronic devices, as it limits the region over
which magnetic moments can feel each other’s presence. A longer ranged
interaction is essential for manipulating the properties of a system or for the
transfer of information between different locations in a potential device.

In section 6.2, we introduced the theory necessary to describe the response
of the system to a dynamic magnetic excitation. The dynamic spin suscep-
tibility was calculated using the RPA approximation. By connecting this
susceptibility to the non-interacting susceptibility, we demonstrated how the
full calculation could be written in terms of the single-particle Green func-
tion propagators that have been used repeatedly throughout this work. A
dynamic analogue to the static RKKY-like interaction was suggested in the
form of the off-diagonal matrix element of the dynamic susceptibility, which
gives the dynamic response of a magnetic moment to an induced magnetic
precession elsewhere in the system. The relationship between the suscepti-
bility and the flow of spin current was revealed.

To fully explore the concept of a dynamic RKKY interaction between
magnetic moments in graphene, in section 6.3 we extended the methods
developed in Chapters 3 and 5 to examine the separation dependence of the
interaction. By splitting the integral used to calculate the susceptibility, we

discovered a term not found in the static case that contributes a decay rate of
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D!, a significantly longer-ranged decay than the D=3 rate predicted for the
static moments. An excellent agreement was found between the analytical
treatment and full numerical calculations of the dynamic interaction. The
behaviour observed here was connected to the spin current flow from a single
precessing moment in graphene.

Finally, in section 6.4 we argued that the difficulty in experimentally
probing the RKKY interaction in graphene-related materials may be over-
come by simply exciting the magnetisation of the magnetic objects in contact
with graphene, something that is currently achievable and has been recently
reported using inelastic scanning tunnelling spectroscopy. We demonstrated
how deviations in the excitation lifetimes probed by this method were re-
lated to the dynamic interaction studied in this chapter. We suggest that
the behaviour of these measurements as a function of separation, or of im-
purity concentration, provides a clear signature of the dynamic magnetic
interaction in graphene.

The work presented in this chapter on the dynamic magnetic interaction
in graphene has been submitted under the title “Dynamic RKKY interaction

in graphene”.



CHAPTER
SEVEN

Conclusions and Further Work

7.1 Summary of thesis

This thesis has considered a number of different topics relating to graphene
systems, and in particular those doped with impurities. A strong focus
was placed on the interactions between magnetic impurities embedded into
graphene. Understanding how such impurities interact is a vital step in
preparing magnetically-doped graphene systems for use in spintronic appli-
cations. The work in this thesis has combined theoretical and numerical
approaches to examine several issues that arise in this field. In this section,
the principal methods and findings of the thesis will be summarised before
suggestions for possible extentions to the work presented here are made.
Chapter 2 reviewed the concept of Green functions and how they can be
calculated and manipulated for use in the sort of calculations found through-
out the thesis. Simple examples were used to illustrate the various methods.
The Green function formalism was shown to be useful for describing per-
turbed and disordered systems where the Dyson equation could be used.
Methods for calculating the Green function for a large system in a recursive
fashion were demonstrated. A description of the Lloyd formula method for
calculating the change in various properties of the system when a pertur-

bation is applied, and details on performing integrals involving the Green
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function were outlined. Finally, a brief introduction to the Hubbard model
and its treatment within the mean-field approximation was given. The steps
of a self-consistent procedure to include magnetic moments within the for-

malism developed earlier in the chapter were described.

Chapter 3 focused on the electronic properties of graphene materials and
how these could be calculated within the nearest-neighbour tight-binding ap-
proximation.The resulting band structure was analysed and a brief discussion
of the popular linear approximation often used for small Fermi energies was
given. The band structures of one-dimensional graphene systems, namely
nanotubes and nanoribbons, were presented and their calculation related to
that of graphene sheets. A large part of this chapter was devoted to calcu-
lating the Green function matrix elements for graphene sheets. Using the
Stationary Phase Approximation we derived an analytical expression for the
off-diagonal Green function that was extremely accurate over a wide energy
range. A detailed description of this calculation for the two principal high-
symmetry directions in graphene and an outline of its implementation in
more general cases was given. The existence of an analytical expression for
the Green function allows for the behaviour of many physical properties to
be explored in a mathematically transparent fashion. It also offers advan-
tages over existing techniques like the linear dispersion approximation which
is only accurate in a narrow energy range and numerical methods which
can lack transparency. Our expression found repeated use in later chap-
ters. Finally, the recursive methods introduced in the previous chapter were
demonstrated explicitly for the case of graphene nanoribbons.

In Chapter 4 we examined some position dependent features in graphene
nanoribbons doped with impurity atoms. The effect of impurity location on
the conductance through a ribbon was discussed with reference to the litera-
ture and a simple model calculation. The presence of a qualitative difference
between the transport through ribbons with uniform disorder or disorder lo-
calised principally at the ribbon edge was emphasised. We then examined
how the binding energy of such impurities depends on their location and how
the resulting behaviour may result in a degree of spatial segregation in their

distribution across a ribbon. In the case of zigzag-edged nanoribbons a non-
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monotonic feature observed was connected to the sublattices of the graphene
atomic structure. A simple theoretical model for calculating how the energy
variation changes across a ribbon was developed and found to be in agree-
ment with the results of DFT calculations. We postulated that control of
the adsorbed impurity segregation within a ribbon is possible by adjusting
the Fermi energy and that this may allow tuning of the magnetic profile and
electronic properties of a ribbon. For the case of magnetic impurity atoms,
we then considered how the magnetic moment depended on the impurity
position. A variety of impurity configurations were considered with robust
features especially noted for magnetic impurities on zigzag-edged ribbons.
For both edge geometries and impurity configurations, edge vacancies were
introduced to test the robustness of the features against structural disorder.
We showed that an edge vacancy did not have a significant effect on the mo-
ment of a magnetic impurity located more than one or two lattice spacings
away. Furthermore, we demonstrated that the distinctive moment profile on a
zigzag-edged ribbon was robust in the presence of an extended edge disorder.
In light of these findings, we argued that magnetically-doped nanoribbons
may provide a route to applications previously envisaged for nanoribbons
with intrinsic magnetic ordering, which is less stable in the presence of ex-

perimentally imposed constraints such as imperfect edge geometry.

Chapter 5 began our investigation of coupling between magnetic impu-
rities in graphene. The concept of an indirect exchange coupling mediated
by the conduction electrons of the host was introduced. The Quantum Well
method of calculating the coupling was formulated and compared to the more
commonly known RKKY method, which was shown to be a second-order
perturbative approximation to the coupling. The results in the literature
regarding such interactions in graphene systems were discussed before an an-
alytical treatment of the RKKY coupling in graphene was performed using
the Stationary Phase Green functions. We were able to calculate the prin-
cipal features of the interaction without resorting to a ‘cutoff function’ that
is required by previous analytical studies. The distance-dependent proper-
ties of the interaction were found to emerge in a mathematically transparent

fashion from our results and agree with both our numerical calculations and
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the expected results from the literature. In particular we confirmed the very
fast D3 decay rate predicted for the interaction in undoped graphene, where
D is the distance between the impurities. Numerical methods were used to
probe the magnetic interaction beyond the standard RKKY model by vary-
ing the parameterisation of the magnetic impurities considered. We found
that a preferential anti-ferromagnetic alignment may persist to large sepa-
rations between magnetic moments located on the same sublattice. Such a
finding contradicts the expected RKKY result. We conclude that a richer
range of magnetic coupling features is present in graphene than had been
previously anticipated. Finally, we demonstrated that the magnetic coupling
discussed to date may play a significant role in explaining some unusual ab
initio results occurring in the literature, including the unexpected absence
of a magnetic moment on an iron atom embedded in a graphene sheet. The
use of single-impurity-doped unit cells in DFT calculations was shown to
be highly inappropriate to describe magnetically doped graphene and may
lead to fundamentally erroneous results as a consequence of the magnetic
interaction between impurities in neighbouring unit cells. A mathematically
transparent criterion for the formation of magnetic moments in graphene was
developed and tested in a number of cases. Such a tool is useful for predict-
ing impurity atoms that may play a role in future graphene-based spintronic
devices.

In Chapter 6 we extended the discussion to the dynamic case where the
impurity moments are set to precess. The fast decay rates noted in the pre-
vious chapter for the static interaction may prove an obstacle for the imple-
mentation of magnetically-doped graphene systems in spintronics. However,
longer range interactions have been predicted for dynamic systems. The
theory necessary to describe the response of a magnetically-doped graphene
system to a dynamic magnetic excitation was introduced. A dynamic ana-
logue to the static RKKY-like interaction was suggested in the form of the
off-diagonal matrix element of the dynamic spin susceptibility, a quantity
which gives the response of a magnetic moment to a magnetic precession
induced elsewhere in the system. A decay rate of D!, significantly longer-

ranged than the D2 static rate, was predicted using an analytic approach
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and an excellent agreement was found with full numerical calculations. The
behaviour observed was related to the spin current flow from a single pre-
cessing moment in graphene. Furthermore, we argued that the interaction
studied can be linked to the lifetimes of magnetic excitations in such systems.
Recent experimental progress in measuring such quantities using inelastic
scanning tunnelling spectroscopy suggest a method of probing the interac-
tion in graphene. We predict that the behaviour of such measurements as a
function of separation, or of impurity concentration, should provide a clear

signature of the dynamic magnetic interaction in graphene.

7.2 Further work and possible extensions

The methods used and results obtained in this thesis suggest many possible
extensions beyond what has been presented here. Many are natural contin-
uations to the work presented, whereas others avail of some of the methods
and techniques used to address currently open questions in graphene science.

In Chapter 4 we addressed position dependent effects in graphene nanorib-
bons. As part of this topic, we examined magnetic impurities and how
their properties were affected by the impurity location and by edge disor-
der. This work was partly motivated by the prospect of magnetically-doped
nanoribbons providing an alternative route to spintronic devices proposed
for nanoribbons with intrinsic magnetic ordering. Among the suggestions
for such systems are magnetoresistance devices [102,103]. Given that these
devices in general rely on pristine edge geometries that may be difficult to
achieve experimentally [51] and that magnetoresistance effects have been
previously reported in doped carbon nanotubes [119], we believe it is pru-
dent to investigate the possibility of magnetoresistance in doped nanoribbon
systems. Such a study would combine the nanoribbon Green function and
transport calculations of Chapters 3 and 4 with the magnetic coupling fea-
tures discussed in Chapters 5.

The exploration of static and dynamic magnetic interactions in Chapters
5 and 6 focused on simple impurities in graphene sheets. A natural extension

of this work is to explore these interactions for more general impurity types
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and for other graphene systems like nanoribbons or multilayers. In nanorib-
bons in particular the presence of edges introduces interesting features that
may affect the interaction. Furthermore, one dimensional systems in general
tend to have slower decay rates and so may be more suitable for spintronic
applications. A range of devices have been suggested with properties that
depend on spin current flow in graphene systems [137-139]. Using the formal-
ism developed in Chapter 6 the feasibility of similar devices in nanoribbons
in the presence of edge disorder can be easily investigated.

Apart from these natural extensions to the work described in the thesis,
a range of other systems and properties can be investigated using similar
methods. Within the tight-binding description we employ to describe the
electronic structure of graphene, it is quite simple to include, for example,
externally applied magnetic fields [14,214] or the effect of strain [215,216).
Both these features can be accounted for by corrections to the hopping pa-
rameters in the tight-binding Hamiltonian. Inclusion of magnetic fields allows
the investigation of the Quantum Hall Effect and other features in graphene
systems, whereas strain effects in graphene are currently a popular topic due
to the possibility of using strain to tune or alter physical properties of the sys-
tem. The effect of strain on the transport properties or magnetic interactions
found in graphene could have interesting potential applications.

The examples listed here are just a sample of the possible studies that
could be undertaken using the methods set out in this thesis. The com-
bination of analytical and numerical methods allows for a mathematically
transparent description of the features investigated whilst also permitting,
for example, the study of larger systems or configurational averaging over
disordered samples. The beauty of graphene physics is that a wide variety of
unique and interesting features can be explored using pen-and-paper or rel-
atively lightweight numerical techniques. We hope that the work presented

in this thesis has given a flavour of what is possible using such approaches.
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