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ABSTRACT

In the design of many building structures for ultimate states the use of interaction
equations is quite common. Despite this there is still a need for more advanced and
flexible equations which consider all forces in space. Steel |-section members are
often employed as beam and column elements for both structural and aesthetic
reasons. The purpose of this thesis is to develop, in principle, the interaction
equations for I-sections and verify it using experimental and finite element
techniques. Two types of interaction equations are developed. One is the
approximate approach in which single equation interaction equation is developed for
biaxial bending moment and bimoment. The yield surface developed based on this
approach fills the large gap in the previously developed yield surface. Second is the
exact solution in which interaction equations for biaxial bending, biaxial shear, axial
force, uniform torsion and bimoment are developed. This exact solution results in an
improved, closed, continuous and convexed yield surface for an I-section. These two
types of interaction equations are verified using a series of experiments and
numerically using finite element analysis using software LUSAS.

The development of the interaction equation using approximate approach provided
the opportunity for practical applicability of these equations using the available
British steel sections. In the development the variation in the yield surface was
explained by consideration of the governing equations and possible neutral-axis
patterns. Later the developed approximate approach was compared with a limited
previously published yield surface model and good correlation was found between
them. The developed approximate approach was verified and extended using finite
element analysis and simplified using a curve fitting technique.

The development of the interaction equation using exact solution was based on a
lower bound theorem of limit analysis. They were developed for biaxial bending,
biaxial shear, axial force, uniform torsion and warping torsion. In the development
both the direct stresses and shear stresses acting on the sections were treated
separately. A procedure is developed in which neutral-axis patterns were first
obtained and later used in the development of interaction equation, its yield surface
and a procedure to identify the formation of plastic hinge. The solution obtained by a
lower bound approach was verified using an upper bound approach. Both solutions
match each other which show that the equations satisfy the uniqueness theorem of
plasticity thereby fumishing the correct yield surface within the limits of validity of the
assumptions made.

The experimental program included in this research was designed to verify the yield
surfaces and included both beam flexural tests and torsional test for single forces
(which provided the necessary information on the capacities of sections). Two types
of tests were carried out when more than one force are considered. In the first case
biaxial bending and torsional loads are applied, whereas in the second case a
unique experiment in which axial force, biaxial bending and torsion are applied. The
test provided vital information on the response which helped to better understanding
the phenomena of bending and torsion when applied simultaneously. A special test
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rig was designed purposely to rotate beam sample up to a rotation of 180° to
observe the effects of torsion and other forces at such a large rotation.

The finite element analyses of the experiments were performed under a non-linear
monotonic loading condition. Following the pattern of the experiments, first forces
and then multidimensional forces were analysed. A special analysis was also
performed in whch biaxial bending and torsion was applied by attaching a cable at
the end of the beam sample. The purpose of the cable was to restrict the movement
of the beam sample and observe the tension developed in the cable and the change
in the behaviour of the beam sample due to the cable. Using the finite element
analysis developed interaction equations and experimental results ar3e verified.
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CHAPTER-1

INTRODUCTION

From the early days, structural engineers have been interested to determine the load
beyond the elastic limits so that elements of a structure can be designed based on

its ultimate capacity.

Structural elements can be subjected to various types of loading. The simplest case
is when members of a structure are subjected to axial forces only and such types of
structure are called plane or 3D trusses. There are cases when a structure can be
subjected to forces or moments applied in three directions. Whatever type of loading
acts on a member, a certain failure parameter is defined for the member based on
the shape, boundary conditions and material from which the member is built. This
failure parameter change may not govern the design, however the design may have
to be based on a serviceability requirement for the structure. For example a design
parameter can be set for members to remain elastic during its loading cycle or
members can be allowed to undergo non-linear behaviour during the loading cycle.
Non-linear behaviour can be determined by assuming the construction material as
elastic perfectly plastic, or based on nonlinearity considering strain hardening or, in
some cases, based on determining the ultimate load which a member can sustain.
One such failure parameter is the yield criterion for yielding of material of members.
This failure criterion relates the failure of a structure to yielding of material. Yielding
for example, can be determined for a certain cross sectional element so that a
kinematic mechanism forms in the structure or it can be due to the commencement
of yielding at any location of the structure. There can be several approaches to set
the yield criterion of the structure but two are most common, namely when it can be
set for yielding of an infinitesimal element of a member or it can be set for yielding of
the cross section of a member. Several criteria exist in both the cases. For example,
for yielding of an infinitesimal element, different criteria exist for both ductile and

brittle materials such as Von-Mises, Tresca, Mohr-Coulomb yield criterion and etc.



In the other cases a cross section which is yielded totally on the application of
different combination of forces so that it cannot take further load is called a
generalized plastic hinge. When yielding of a cross section is considered, the
formation of a generalized plastic hinge is determined by developing what can be
called an interaction equation, plastic limit envelope, yield locus, failure envelope,
yield surface or interaction curve. Different criteria have been developed for yielding
of a cross section based on load application, type of cross section and type of
material. The simplest case when more than one force acts on the section is when a
rectangular section is subjected to an axial force and bending moment
simultaneously. Advancements in computer technology offer the opportunity to
investigate the spatial nature of application of the yield criteria. This investigation is
required because of the three dimensional analysis which reveal high forces acts on
an element of structure in three dimensions. A structurai element such as column
can receive biaxial bending moments and axial force (due to gravity loads). In
addition it can receive large torsional load and biaxial shear forces due to the lateral
forces applied to the building which are seismic forces and wind forces. Also girders
of bridges can receive biaxial bending moment biaxial shear forces and torsion under
the combination of gravity and lateral loads, and receive large torsion especially
when the centroid of the deck slab do not coincide with the centroid of the beam.
Because of such nature of forces resisted by an element of structure, works on yield
criteria is needed to develop interaction equations for the case when forces and
moments are applied in three dimensions. One such effort will be performed in this
research when yield criterion for forces and moments in three directions are
developed. These forces are axial force, biaxial shear force, biaxial bending moment
and torsion. Several yield criteria for different types of cross sections for different
combination of three dimensional forces are already developed and are discussed in
Chapter-2. However, the three forces and the three moments are not considered

before for the development of yield criterion.

The problem this thesis will address is the development of interaction equations by
having two forms of solutions, one is the approximate approach and the other is the

exact approach. These will be for an I-section. A general form of an |-section with



local coordinates of the element, positive global coordinate system used,
direction of positive forces used and details of the I-section is given in Figure
y
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Figure 1.1 Local coordinates, elements of the section, positive coordinate
system with direction of positive forces

In the approximate approach single unifying equation for biaxial bending and
bimoment will be developed for available British steel sections (BS EN10056: 1999
sections). This single equation fills the gap which was present in the previously
developed yield surface, hence removing the discontinuity in the previous yield
surface. Apart from the approximate approach, a better exact approach will also be
developed in this work for biaxial bending moment, biaxial shear force, axial force,
uniform torsion and bimoment. Interaction equations, yield surfaces and a procedure
for the identification of the formation of plastic hinge are obtained in the exact
approach. This exact approach will be developed using the lower bound theorem of
limit analysis and verified using the upper bound theorem of limit analysis, hence

satisfying the uniqueness theorem of limit analysis. Presently the only solutions



which exist are those proposed by Yang and Fan (1988) who developed yield
surfaces based on axial force, biaxial bending moment, bimoment and uniform
torsion. However the solution was based on some approximations, due to which the
yield surfaces developed were not closed. In the exact approach yield surfaces will
be obtained by eliminating the approximations and obtaining a closed, continuous

and convexed yield surfaces.

Experiments will be performed firstly for sections subjected to single forces and
subsequently for sections subjected to multi-dimensional forces. These experiments
will be performed to verify the interaction equations developed by both the
approximate approach and exact approach, and to identify different behavior of an |-
section beam when it is under the influence of one force and combination of more
than one force. Especially for combination of more than one force when in one case
biaxial bending moment and bimoment is applied and in the other case a unique
approach in which axial force, biaxial bending moment and bimoment is applied to
the beam specimen. The behavior which will be observed during the experiments are
the load-deflection relationship, torsion rotation relationship, interaction between
horizontal and vertical movement of the beam, interaction between horizontal
movement and rotation, interaction between vertical movement and rotation and

strain developed as the load progressed.

Those experimental responses will be verified by finite element analysis using
London University Structural Analysis Software (LUSAS). Finite element analysis will
be performed to compare all the experimental results and different behaviors (as
discussed above) which will be observed during the experiment. In addition, an
intermediate analysis is performed to between two cases of biaxial bending moment
and torsion and axial force, biaxial bending moment and torsion. In the intermediate
analysis a passive cable was attached to the beam sample. This cable was used
only to restrict the movement of the beam without its use to apply the axial force.
Obtained results will be discussed and future work based on the finding of the results

will be recommended.



Initially in Chapter-2 a literature review of related works in the field will be presented.
Basic theories of thin walled bars and plasticity are discussed. Classification of
torsion problems applied to different cross section and different types of boundary
conditions are discussed. Theories related to multiaxial stress state and yield criteria
are discussed. Yield criteria for the different state of loadings are discussed for the
cases when a cross section is subjected to one, two or many forces. Both numerical
modeling and experimental work are discussed. The aim of this chapter is to provide
the reader with background knowledge which would be required for an interpretation
of the theory developed in later chapters for experimental results and their numerical

verification.

Chapter 3 considers a single equation yield surface which is developed for biaxial
bending moment and bi-moment. A yield surface varies for different sections and the
variation depends on various section properties. Section properties of British steel
sections were taken into account so that the developed equation can be shown to be
valid for a wide range of available sections (BS EN10056: 1999 sections). The
developed single equation was based on previous work by Yang et al. (1989) where
currently limitations exist in the yield surface. This limitation was later removed using
a finite element approach. Later using the finite element yield surfaces are verified

numerically.

A vyield criterion is developed in Chapter 4 in which axial force, biaxial bending,
biaxial shear, uniform torsion and bi-moment are considered. An equation is first
described to relate shear stress to the forces (biaxial shear and uniform torsion)
which causes shear stresses while forces (axial force, biaxial bending and bi-
moment) related to direct stress are considered and a unique closed yield surface is
obtained. The procedure to obtain the yield surface is outlined. Later a procedure is
developed for the identification of the formation of a plastic hinge based on the

developed yield surface.

Experimental results are presented in Chapter 5, comprising those experiments
when a beam sample is subjected to only one force. It is also required to determine

the material properties of the steel of the beam sample. These results are compared



with the theoretical development and the differences between the results of the

theoretical development and experiment are discussed

Chapter 6 presents the results of the second phase of the experiments in which
multiple stress resultants are applied simultaneously. Results in the form of
deflections, rotations and strain gauge readings are discussed. In addition
experimental results are compared with the developed yield surface. The developed
equations are verified in the linear and non linear phases of response with

discussions about the plastic and strain hardening phases.

A numerical study of the experimental response is presented in Chapter 7. The study
is performed by finite element analysis in LUSAS. Both of the sets of cases when
beam samples are subjected to single forces and to multiple forces are analysed.
Load-deflection and torsion-rotation responses are compared using the finite
element response. From the results it is concluded that finite element successfully
models the experimental behaviour of the samples and verifies the developed

interaction equations.

The final conclusions and suggestions for further work will be presented in Chapter
8.




CHAPTER-2
LITERATURE REVIEW

2.1 INTRODUCTION

The theory of thin walled bars constitutes a major section in the field of structural
mechanics especially when both static and dynamic analysis solutions are taken into
consideration. The development of a yield criterion has led to the use of it in the
theory of plasticity, the flexural behaviour of beam and the application to torsion

problems.

One of the more obvious structural applications is the development of yield criteria
under multidimensional forces for steel open sections. Studies have taken several
approaches in this regard. Yield surfaces for stress at a point for both ductile and
brittle materials have been developed. In another approach yield surfaces have been
developed for different steel sections. Both the upper bound and lower bound
theorems of plasticity are used to develop the yield surfaces. Sometimes it is
required to obtain the behaviour of steel sections when only one force is considered,

as for the case of pure flexural and pure torsional behaviour of a section.

Discussions about the different theories are presented here by nature of structure
and load application. Sections 2.1 and 2.2 discuss briefly the theory of thin walled
bars and the theory of plasticity. In the sub section of each section, different
assumptions and different terminologies are used relating them to their application in
structural engineering. Sections 2.3 and 2.4 discuss details about flexural behaviour
and torsional behaviour. In their sub sections, the response under different loading
conditions are discussed. The numerical and experimental approaches adopted to
these problems are also discussed. In Section 2.5, the yield criteria related to stress
at a point and for different steel sections are discussed. In addition, the use of the
curve fitting technique is also identified for dealing with yield criteria. The last section
discusses the study of different experimental and numerical approaches adopted

when a structure is subjected to multi-dimensional forces.



2.2 THEORY OF THIN WALLED BARS

In structural engineering, the types of elements of structures can be divided into four
classes according to the spatial characteristics of these elements (Vlasov, 1959).
These are 1) massive bodies 2) plates and shells 3) solid beams and 4) thin walled

beam. They are defined as follows:

Massive bodies: Massive bodies are those whose three dimensions are such that
any one dimension is not small as compare to the remaining two. For example, a
cube, a prism, an ellipsoid, a continuum filling all space or half space are all massive

bodies.

Plates and Shells: For this class of element, one dimension is small as compared to
the remaining two dimensions. Examples of such elements are slabs, shells and

plates of various shapes.

Solid Beams: For this class of element, two dimensions of the beam are small as

compared to the third dimensions and are called solid beams.

Thin walled beam: For this class of element, the shape is such that it has the form of
long prismatic shells. All three dimensions of the elements are of a different order of
magnitude. The thickness of the shell is small compared to the characteristic
dimension of cross-section and the cross-sectional dimensions are small as

compared to the length of the shell.

A thin walled open cross-section beam with a right hand coordinate system (x,y,z) is
depicted in Figure 2.1(a). In the figure the surface lying midway through the plates of
the beam is called the middle surface. Straight lines on the middle surface which are
parallel to the longitudinal axis of the beam are called generators of the beam. If a
section is cut through the middle surface such that it is perpendicular to the
longitudinal axis then it is called a contour of the cross-section of the bar. Sharp
corners and junctions in the contour are allowable and are called junctions. Part of

the contour lying between junctions of a contour or between a junction and end of a



contour is called a branch of the contour and part of the bar related to the branch is

called an element.
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Figure 2.1(b) Stress-strain relationship of elastic-perfectly plastic material
Figure 2.1 General form of an open thin walled section and stress-strain

relationship of elastic-plastic material

A right-handed coordinate system for the middle surface can be introduced as
depicted in the figure such that the axis » is always normal to the tangent drawn at
the point of the contour considered whereas s is perpendicular to n following the

contour. The wall thickness is taken to be constant in the longitudinal axis of the bar



which implies that wall thickness can vary with the s axis and can be written

mathematically as ;(s).

A thin walled beam consists of plates where each plate in the cross section is
between junctions or between junction and two ends of the contour. For example an

I-section consists of three plates. When thin walled elements satisfy the relations

1/ b,<0.1 and b,/1, <0.1, they can be classified as thin walled beams. where b, is

any characteristic dimension of the cross section and /, is the length of the beam

2.2.1 Kinematics of thin walled bars
There are three kinematic (i.e. strain, displacement etc) assumptions which are the
basis of the theory of torsion and flexure of thin walled bars (Gjelsvik, 1981). These

are

1. A contour can be considered as a rigid section i.e. no deformation takes
place in the contour in its own plane

2. Shear deformation (i.e. change in the angle of the middle surface) is zero in
each element.

3. Each element of the beam behaves as a thin shell, which means Kirchhoff’s
assumption of straight lines remaining normal to the middle surface during

deformation is valid.
Displacement in the longitudinal direction
Considering the theory of a thin walled elastic beam, axial displacement w at any

point on a cross-section parallel to the longitudinal axis of the bar is determined by

an equation (Gjelsvik, 1981) given by

w(x,v,2) =W(2)-U'(2)x=V'(2)y - D' (2)a(x, y) 2.1
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In the above equation W (z) represents an average axial displacement of the bar,

U' and V' are the slope component in the x and y direction respectively and @ is
the rotation about the positive z direction. The last term, w(x,y) in the equation is

the warping function obtained by Goodier (1941) and represents warping

deformation of the cross-section. Warping deformation is related to two types of
deformation, one is warping of the contour @ and the other is warping of the wall

relative to the contour @ . Mathematically it can be written as

® =0+ 2.2

Many authors, such as Timoshenko and Gere (1961), refer to @ as the warping

function and neglect . For sections where @ is much larger than o the approach
by Timoshenko and Gere is very convenient, however, in general this approach

could be misleading.

Strain in the longitudinal direction

Knowing the displacement at any point on a cross-section of the beam, longitudinal
elastic strain can be determined by differentiating Equation 2.1 with respect to the z-
axis (longitudinal axis) of the beam. Hence, a general equation (Gjelsvik, 1981) is

obtained for the axial strain, £_ as

£,=—=W'-U's-V"y-0"(2)o(x,y) o

ow
zz Z
where W' is the first derivative of W with respectto Zand U",V" and ®” are the

second derivatives with respect to Z of U,V and ® respectively. The above

equation determines the axial strain field of the beam. The diagram of the strain field

is obtained by superposing four diagrams, each of which is related to one term in the

above equation. The first term W' determines a uniform axial strain. The second

11



and third terms U”,V" determine the strain due to flexural action about the two
principal axes of the beam, which are perpendicular to each other. The fourth term

®" determines the strain due to warping of a section. Combining the four diagrams,

the strain field for the entire thin walled elastic beam is obtained.

Thin walled beam and non-linear behaviour

The basic assumption made to develop plastic theory is that the kinematics of the
elastic and plastic bar are the same. This means that equations which define the
displacement field or strain field in an elastic case will still be valid for plastic
behaviour. Therefore, Equation 2.3 for the direct strain will still be valid. This strain is
related to the stress by the theory of plastic potential (Prager, 1959). According to
this theory the increment of strain (or the strain rate vector) not the strain itself is
related to stress and the sign of the strain rate vector is considered to determine the

bar forces. Mathematically it can be related as
Gy = aySgn[g_u} 2.4

where &_ is the plastic strain rate vector in the z-direction. In the equation Sgr[a] is

the signum function (Gjelsvik, 1981) and is defined as

Sgnla]=1 when a >0 2.5(a)
Sgn[a]=~-1 when a <0 2.5(b)
Sgn[a]=0 when a =0 2.5(c)

Equation 2.5 can be well understood by having a elastic-perfectly plastic stress-
strain diagram as depicted in Figure 2.1(b). a in the equation is the plastic strain
rate. If the strain rate is more than and less than zero its results are 1 and -1, which

represent here a condition in which stress reach the yield stresso', whereas if a is

zero i.e. when there is no plastic strain rate means the case of stress when it is less

12



than o, In that case it will be elastic and between the limit of -1 and +1. Therefore,

for example, the plastic moment capacity, M, can be written as

M,=0, [l/fySgn{épildnds 2.6

=t/2

In the above equation £ » is the plastic strain rate vector, c represents the domain of

a branch of the contour, ¢ is the thickness which varies from —/2 to #/2.

Yielding of a section in the axial direction can be written as (Gjelsvik, 1981)

P =0, [,’/JzSgn{ép}dnds 2.7
-t/2

Here Pp is the plastic axial load in pure tension or compression. If deformation of the

beam is considered as a vector in a four dimensional space, having components

w', U", V" and ®” (Gjelsvik, 1981), the value of the plastic bar forces (for
example given here by Equations 2.6 and 2.7) depends on the direction of this
vector, not on its magnitude. Hence for example, it can result in a positive moment

for a negative curvature.

2.3 THEORY OF PLASTICITY
2.3.1 Plastic Admissibility

If the state of stress at a point in a material does not exceed the yield limits, it is

called a plastically admissible condition (Jirasek and Bazant, 2002). Considering the

same magnitude of yield stress (o) in compression and tension, the condition of

plastic admissibility of stress o for the uniaxial stress state can be defined as

-0,f0=Z0, 2.8
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When the conditions are applied to muiti-axial states then the yield limits are
replaced by yield functions (as discussed in Section 2.5). When forces in members
of a structure are considered then the condition of plastic admissibility can be written

in matrix notation as

-5 <s<s¢§ 2.9

where s is the matrix of internal forces and s, is the matrix of plastic capacities of

the sections of members on which forces are applied.

For the plastically admissible condition if inequalities are satisfied such that they will
always be less than or greater than internal forces then the state of internal forces

are said to be inside the elastic domain. Mathematically it can be written as

-5, <8§<S, 2.10

2.3.2 Static Admissibility

When any state which is plastically admissible and is in equilibrium with a certain
multiple of the reference loading (actual service load or design load) and satisfying
the yield condition, then the state is called a statically admissible state (Jirasek and
Bazant, 2002). If the load multiplier is defined as a factor which relates the reference

load applied to the factor then, for a structure in a statically admissible state, the load

multiplier p is called a statically admissible load multiplier. A statically admissible

state can be defined by a vector of internal forces, s, and by x, and satisfies the

plastic admissibility and equilibrium condition, it can be written as

By =t f 2314

Here B is the static matrix which is the transpose of the kinematic matrix B (which

can be extracted from kinematic equation which relate deformation of a member to

14



the displacement of the joint to which the member is connected), where B relates

the strain in a structure to displacement using

e=Bd 2.12

where e and d are the strain and displacement vector matrices. f is the reference

load vector.

2.3.3 Kinematic Admissibility

Any structure can become a kinematic mechanism when yielding of bars or hinge
formation of members exceeds the degree of static redundancy. There can be more
than one possible failure mechanism depending upon the structure type and the
number of degrees of freedom in the structure (Jirasek and Bazant, 2002).

When any potential failure mechanism for which external work done (which is the

product of the reference loading f and displacement rate d) is positive then the
state is expressed as a kinematically admissible state and the load multiplier x, is

called a kinematic admissible load multiplier. x, can be determined from the power

equality, where the power equality is when the external work done on the structure is

dissipated internally by a plastic process during yielding. A kinematically admissible
state can be described by vectors of both displacement rates, d , and the vector of

strain rates, é, written mathematically as:

e=Bd 213

for which

f d>0 2.14
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where the left hand side of Equation 2.14 has the meaning of external work done

obtained by the reference load f. The external work done at the formation of any

potential failure mechanism can be expressed as:

B

Wer=pu, f d 2.15

At the formation of a mechanism the structure is in equilibrium and the external work
done is dissipated by the plastic process in the yielding of a section of structure.
Then the external work done is equal to the rate of dissipation during yielding in a

plastic process and is written mathematically as
Wea =D, 2.16

where D, is the dissipation rate and can be defined as the product of the plastic
strain rate vector eand plastic capacity vector sor. Mathematically it can be written

as

D, =s"le 2.17
Comparing Equation 2.15, 2.16 and 2.17, u, can be determined as
510
My, =—F 2.18
fd
2.3.4 Postulate of Maximum Plastic Dissipation
If s, is any plastically admissible vector of internal forces such that
—so<SJ<s0 2.19

16



and e is any vector of generalized plastic strain rates, then the product of the
internal forces and the plastic strain rates must be less than or equal to the

dissipation rate. Mathematically it can be written as

sle<D, 2.20
Maximization of the product of the left hand side of Equation 2.20 can occur if
D, =maxs’ e 2.21

Then maximization of the product of the right hand side of Equation 2.21 is when the
internal force is a maximum (which is the yielding of the section). Therefore it can be
written as

=s'e 2.22

and the above obtained equation, which maximize the dissipation rate, can be stated

as
For given plastic strain rates, plastic dissipation rates are maximized by the actual

internal forces for all the plastically admissible internal forces (Jirasek and Bazant,
2002).

2.3.5 Fundamental Theorem of Limit Analysis
No statically admissible multiplier is larger than any kinematically admissible

multiplier, which can be written mathematically as (Jirasek and Bazant, 2002)

M, =, 2.23
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As the plastic limit state is both statically and kinematically admissible, if 4, is the

safety factor related to the plastic limit state, therefore it can be written that
Mo S, Sy 2.24

Therefore two theorems can be written based on the above equation for a plastic

limit state, as follows:-

Lower bound theorem
The statically admissible load multiplier is always less than or equal to the safety
factor for the plastic limit state and the safety factor is the largest statically

admissible load multiplier.

Upper bound theorem
The kinematically admissible load multiplier is always more than or equal to the
safety factor for the plastic limit state and the safety factor is the smallest

kinematically admissible load multiplier.

2.4 FLEXURAL BEHAVIOUR OF A BEAM

2.4.1 Elastic behaviour

Consider the behaviour of a generalized beam with a rectangular cross-section
which is subjected to a bending moment. This bending moment will produce stress
and strain variation which is assumed to be linear for the elastic phase. The section

will behave elastically up to the point when the outer fibre reaches the yield stress

o, (Englekirk, 1994). The bending moment M can be related to stress o at the

outer most fibre, by section modulus S by

M =oS 2.25

If o reaches o, at the outer most fibre of the section, then the moment is called the

yield moment M, and the above equation becomes

18



M =0_S 2.26

et 2.27

go=— 2.28

Here E is Young's modulus of elasticity and / is second moment of area about the
major axis of the section (Englekirk, 1994).

2.4.2 Inelastic behaviour
When the applied moment M for the cross-section exceeds My, a linear
relationship between M and ¢ no longer exists and behaviour is commonly referred

to as inelastic or nonlinear. In non linearity, the applied moment can be related to

curvature if it is assumed that beyond vyield strain £, there is plastic flow of the
material, as depicted in Figure 2.2 for a rectangular section. For the region of plastic
flow, stress will be a constant at O'yand the additional moment is now taken by the
inside region where strain is still less than &,. Now, in this case, the incremental

change in curvature A¢g becomes
AM

Ag = 2.29
/ El,

where I, is the reduced second moment of area of the section where the strain is

less than ¢, and AM is the change in moment beyond My. The resulting total
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moment can be calculated using the stress distribution given by Figure 2.2. In the
figure 0, is strain hardening stress and o, is the maximum stress considered. If
strain hardening is considered beyond plastic flow, then there can also be a region

where the stresses are more than o,. The distribution of stress for the strain

hardening region is described in Figure 2.3. Using this distribution of stress, a

moment and moment curvature relationship can be obtained.

0
Reglon of unconstrained Y
plastic flow Af

s e

Figure 2.2 Plastic flow and stress and strain variation (Englekirk, 1994).

2.4.3 Impact of residual stresses on flexural behaviour
Non-linear behaviour in a beam is affected by the presence of residual stresses,
which are locked into steel sections during the rolling process. Because of residual

stresses non-linear behaviour starts considerably earlier than the theoretical yield
moment My. During cooling of hot rolled sections, those portions of the beam which
have most exposure to air cool and shorten first. In the case of an I-section, flange
tips and the web cool first and compressive stresses develop in them, whereas mid
flange cools later and tensile residual stresses develop in that section. Residual
stress in a typical I-section is depicted in Figure 2.4. Residual stress affects the
flexural behaviour as reflected in Figure 2.5. The shaded portion in the figure

indicates that portion of the section which has reached g,. Therefore, due to the

variation in the distribution of stress, the change in curvature is significantly affected
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by residual stress. Though it affects the curvature, flexural strength of the section at
yield will not be affected because at the outer fibre a uniform stress o exists at
some curvature. Though not entirely accurate, the residual stresses given by Figure
2.4 give a reasonable relationship between stress and moment at yield (Englekirk,
1994).

Figure 2.3 Strain hardening phase when stress is more than the yield stress
(Englekirk, 1994)
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Residual web
stresses’
Compression

Compressive residual stressas
of between 12 & 20 ksi

Tension

Tensile residual stresses
of up to 12 ksl

Figure 2.4 Residual stresses for an I-beam section (lksi =0.006894kN /mm®)
(Englekirk, 1994)
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Figure 2.5 Shaded region indicates those regions which have reached o,

(Englekirk, 1994).

2.4.4 Lateral torsional buckling (LTB)

Lateral torsional buckling is a phenomenon which occurs with beams and girders.
Figure 2.6 shows a cantilever beam which buckles due to lateral torsional buckling
(Dowling et al. 1988). It happens with beams which do not have sufficient lateral
stiffness or lateral support and which experience local compression leading to lateral
torsional buckling. In that case, the beam may buckle out of plane of loading as
shown in the figure. Two mechanisms are possible; the first is when the beam
buckles by deflecting laterally and the second is twisting of the beam. Buckling of the
beam can be divided as elastic buckling and inelastic buckling. When the beam
remains in the elastic phase when it buckles, this type of buckling normally occurs
with long span beams. There are cases when a portion of the beam is inelastic when

it buckles, where this type of buckling normally occurs in short span beams. The

moment at which the beam buckles is called its critical moment M .. The buckling

depends on the loading type, support conditions and any lateral restraint. Various

solutions exist for different support type and boundary conditions (Trahair, 1993).
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Figure 2.6 Lateral torsional buckling of a cantilever beam (Dowling et al. 1988)

Elastic beams
There are many cases solved to determine the critical moment for lateral torsional

buckling. As an example the cantilever beam with load at the end is discussed here.

M, for a cantilever beam with a concentrated load applied at the end of the beam

acting at a distance below its centroid is given as (Trahair, 1993)
Yq

Ao =11{1+—1'2C }+4(K—2 e L2 2.30

JE1,GJ) Ji+122¢%) J+1.22(c-0.1)?)

where

EI
e=22 |22 g 2Bl /GI
LVas
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Here E is Young’s modulus of elasticity, ]y is second moment of area about the Y-

axis, G is the shear modulus, J is torsion section constant, 7 is warping section

w

constant and L is the length of the bar.

Inelastic beams

In short span beams, yielding occurs before the beam reaches its ultimate moment
capacity and it happens that some portion of the beam is inelastic when buckling
commences. For these cases, the equations for the elastic beam are not valid.
These cases are dealt in detail by Trahair and Bradford (1988), Nethercot and
Trahair (1976) and Trahair (1983) and are not discussed here as they are not

relevant to the current research.

Bracing effects on lateral torsional buckling

The purpose of providing bracing for the beam is to reduce the loss of strength
through instability. Bracing sub divides the original unbraced span into shorter
lengths restraining the compression flange against lateral torsional buckling. As the
beam is practically neither straight nor free from lateral deformations or twist, some
force will be induced in the bracing system. The force will normally be quite small but

it considerably increases with the load carrying capacity of the beam section.

2.5 THEORY OF TORSION
2.5.1 Elastic Analyses

Uniform Torsion

Circular cross-section
The basic theory of the torsion of prismatic sections is restricted to elements with a
circular cross-section (Johnson and Mellor, 1973). They referred to the theory which

was first presented by Coulomb in 1784 and comprises the following equations

T_co 2.31(a)
J
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e e 2.31(b)
r

where T is the applied torque, J the polar moment of area, G the shear modulus,
@ the angle of twist per unit length of the bar, 7 the shear stress on a transverse

section at a radius » from the longitudinal axis of the bar.

Rectangular cross-section members
In the case of uniform torsion of a rectangular member, the above equation is still
valid. The only difference is the J value which is a torsional constant which can be

evaluated using
bl 192(h) & 1 nnb
J=—l——| — —tanh— 2.32
3 [ : (bl Z n’ 2h]

In this equation, 4 and b are the cross-sectional dimensions of a rectangle and 4#>b.

I-Section members

An | section can be considered as composed of three rectangular plates. Therefore
Equation 2.32 can be used to determine the torsional constant. In this case the
torsional constant for both flanges and web are obtained separately using the
equation by treating them as rectangular sections and the torsional constant of the

three are summed to obtain the torsional constant of the entire section.

Similar exact solutions exist for elliptical and equilateral triangular cross-sections. For
complex cross-sections, the exact solutions are difficult to obtain and Prandtl’s
membrane analogy can be used to obtain the approximate solutions (Boresi and
Schmidt, 2003).

Prandtl’s membrane analogy
This method is known to be effective for complex cross-sections. It is based on the

similarity of the equilibrium equations related to membrane behaviour which is
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subjected to torsion and lateral pressure. This method is rarely used nowadays to
obtain the solution of torsion problems of different cross-sections, although the

details of the solution are given by Prandtl (1903).

St Venant’s torsion

St Venant presented the theory of uniform torsion for which he gave the solution of
the classical torsional problem and applied to different cross-sections (Boresi and
Schmidt, 2003) to obtain the shear stress distribution. For circular cross-sections it
results in Equation 2.31. For an I-section (details of the elements of I-section is given
in Figure 2.7(c)), the stress distribution for St Venant's torsion is depicted in Figure

2.7(a).

a) St Venant’s torsion shear stress distribution due to uniform torsion
(Yang and Fan 1988)

B
jE e ane )
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(a) Section (b) Flanges (c) Web

b) Mitre model shear stress distribution due to uniform torsion
(Billinghurst et al. 1992)
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Figure 2.7 Shear stress distribution due to uniform torsion for an I-section

Mitre model

Another solution exists for the uniform torsion of steel members as given by the mitre
model depicted in Figure 2.7(b). Both elastic and inelastic types of behaviour are
considered. In the solution, the shear strain distribution in steel members under
uniform torsion is considered by developing a mitre model for circular, rectangular
and I-sections (Billinghurst et al. 1992). The elastic torque/twist relationship is
predicted with high accuracy. The shear stress distribution for an I-section for the
mitre model is given in Figure 2.7(b). Considering the solution for an I-section

(details of the elements of I-section is given in Figure 2.7(c)) using the mitre model,

the maximum elastic flange stress 7, . and web stress ¢ are given as:

wmax

Trmx =0t 00, and ¢ = Gt Oa, where «, is defined below.

wmax

The torque stress resultant 7 is given as (Billinghurst et al. 1992)

1R [ T R
T T 4, 6

2.33

T:z.fmax

where
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J
[2p,2 i b-20.F " =gt fo-n 2 G -2 12k

2 3 + 6

a,

In the above, J is a torsional constant which is closely approximated by

L2t -2, ),
3 3

+28,(t, +12 /4, ) —0.42¢

where

2
B =—01 2| +0.03 2| for 01, /2, <06
i £

or

2
t t
B, =—0.25£?”—J +0.53[—WJ—0.175 for 0.6<1,/t, <1.0
t
S f

Non-Uniform Torsion

I-Section with one end restraint

An |-section tends to warp when subjected to a torque. When an I-section warps the
flanges bend in two different directions. However, if the I-section is restrained at one
end, torsional moment is resisted by the warping rigidity of the two flanges acting as
beams parallel to the xy plane (Figure 2.8) and is also resisted by the torsional
rigidity GJ of both web and flanges. At a small distance from the restrained end,
partial warping takes place and the twisting moment may be considered to be made

up of two parts (Boresi and Schmidt, 2003). One part is due to the twisting moment

T,, which produces warping on the section in the absence of end restraint. The
second part is a twisting moment 7 produced by lateral shear forces.

Mathematically the total twisting moment 7"’ can be written as the sum of both the

moments as (Boresi and Schmidt, 2003):
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T =T, +T 2.34

where 7, and T can be obtained as (Boresi and Schmidt, 2003)

_ cosh(L - x)/a] 2.35(a)

Fa=T1
cosh(L/a)

h [EL

2\ JG

where E is the Young’s modulus and 7, is the second moment of area about the Z-

axis (as indicated in the figure).

T = JG6 2.35(b)

Figure 2.8 Torsional behaviour of beam when one end is restrained (Boresi
and Schmidt, 2003)

When the flange is restricted against warping it will create a lateral bending moment

in the flanges, where the moment is a maximum at the restrained end and can be
obtained as (Boresi and Schmidt, 2003)
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Tatanh£ 2.36(a)

Zmax:‘; a

The maximum rotation S occurs at the free end and is given as (Boresi and

Schmidt, 2003):

T L

The maximum stress 7, is calculated as (Boresi and Schmidt, 2003)

r . =2Tb/J 2.36(c)

In the above equations L is the length of the beam, x is the distance from the

restrained end of the beam

I-section with both end restraint
There are cases when an |-section is restrained at both the ends, as depicted in
Figure 2.9(a). In that case, the maximum lateral bending moment and angle of twist

at one end can be obtained as (Boresi and Schmidt, 2003)

" g L T(

=—qtanh—, f=—
p JG

/4
il L -2 tanh —J 2.37
h 2a

2a

Figure 2.9(a) Beam subjected to torsional restraint at both ends (Boresi and
Schmidt, 2003)
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2.5.2 Non-linear Analyses

Uniform Torsion

The simplest solution in non-linear torsional analysis is given by Nadai (1950) called
the Sand Heap Analogy. In this method a roof of constant slope is obtained by
placing a heap of dry sand over the cross-section for which torsional capacity is
required. The constant slope represents the total shearing stress at a point and is
physically interpreted to be the maximum slope at a point in the membrane surface.
The torque is thus obtained by the product of the volume of sand heap and the slope
of sand heap which is the shear stress Sand heaps are useful especially when
section shapes are difficult to handle mathematically. For different sections, the

plastic torque obtained using the sand heap analogy are

: . 2 . . .
For a circular section, 7, = ;za%y, where a is the radius of circle.

2
For an equilateral triangle, 7}, = —Q—a3ry, where 2a is the side of the triangle.

(3b - a)
6

For a rectangular section, 7, =a’r, , where a and b are the dimensions of a

rectangle where b>a.

i i
| \K
y “h ) Vi
v
|
a
2a
!

/ 3 - -

R §

Figure 2.9(b) Constant slope roof indicating full plastic yielding across each

section in Sand Heap Analogy
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For an I-section, 7, can be obtained by considering it as composed of three
rectangles and using the formula for a rectangular section three times, from which its
T, can be determined. Based on the mitre model, inelastic uniform torsion of an |-

section can also be calculated as discussed in Billinghurst et al. 1992.

Non-Uniform Torsion

In both the approaches of the sand heap analogy and the mitre model it is assumed
that the section is free to warp. This situation is not always practical because any
element of a structure can be restrained at its end, especially I-sections where
members subjected to torsion may well be prevented from warping. Several

solutions exist for such problems where the end is restricted. The earliest such

solution is an expression for the torque 7, to cause full yielding of the section under

a warping restraint condition for a cantilever, given as

T,=T,+Mh/L 2.38

This expression was first proposed by Dinno and Merchant (1965) for cantilever

beams subjected to applied torque at the free end, as an upper bound value to 7. In

this equation 7, is the sand heap torque for the entire section, M, is the full
plastic bending moment in one flange about the Z-axis, 4 is the distance between

centroids of the |-section flanges and L is the length of the beam.

The above expression for the torque at the free end is assumed to be the sum of 7},

and a torque which is due to a differential bending mechanism. The net force in each

flange causes a plastic hinge at the restrained end of the beam. This equation

approaches the T, value as the length of the beam approaches infinity.

In the above approach to the torsion mechanism using the sand heap analogy,
torque and moment hinge formation in the flanges are assumed. In another

approach, it is considered that the web is only subjected to the sand heap torque
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whereas the flange is composed of an interaction of the sand heap torque,
transverse bending moment and shear force. This approach proposed by Augusti
(1966) is based on assumptions regarding the relationship between the torque
applied and the length and section dimensions. For this solution it is found that this

approach always gives a torque less than that given by the previous approach.

In another approach (Boulton, 1962) a solution was obtained for I-section beams
restrained at one or both the ends. In this approach, a system of stress distribution is
assumed which has resultants in equilibrium with the applied torque and bending
moment. The stress distribution was such that it does not violate the yield criterion at
any point of the section. The solution was obtained for the case when torsion is
applied in combination with bending about the majof axis. A particular solution for the
pure torsion case was obtained from the more general solution when major axis
bending was assumed to be zero. The equation which leads to the solution in the

pure torsion case is:

= 2.39(a)

where

P

24 ht
t1=cosﬂa( } y+1J 2.39(b)

In the above equations, / is the length of the beam, v = \/3/2 a factor derived for
Von Mises yield criterion (as discussed in the reference), M, is the plastic moment
capacity of the section about the X-axis, 7, is the yield value of shear stress,
h =bf +iE5¢,, t=T°T and cos B, =0.15¢. Using both these equations, a
theoretical curve is obtained as depicted in Figure 2.10 from which a value of ¢; can
be calculated.
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Figure 2.10(a) Pure torsion can be obtained based on a value of

(Boulton, 1962)
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Figure 2.10(b) Torsion against rotation for the beam specimen tested by Dinno

and Gill (1964)

Figure 2.10(c) Torsion against rotation for the beam specimen tested
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Figure 2.10(d) Wagner strains (Pi and Trahair, 1995)
Figure 2.10 Torsion experimental results, pure torsion graph by (Bouiton,

1962) and Wagner strains

The cases which have been discussed up to this point are those in which the section
is restrained at one or both the ends. There can be several other cases with different
boundary conditions for which the torsional response of structure is required. A
method has been developed (Pi and Trahair, 1995b) for plastic collapse analysis to
predict plastic torsional collapse loads for different boundary conditions. In this
method, a load factor at plastic collapse of a member in torsion is obtained.
Independent analyses are undertaken, that no interaction at plastic collapse is

assumed between uniform and warping torsion. In the analysis, the collapse load

factor for the uniform torsion factor lup and warping torsion factor iwp are obtained

separately and the actual plastic collapse load factor is approximated by the

following equation
A, =4, +4, 2.40

These factors are obtained as follows:

Uniform torsion plastic collapse
A mechanism is assumed for different boundary conditions in which the collapse
mechanism develops when a sufficient number of cross-sections of the member

become fully plastic. The locations of the fully plastic sections are usually where the

35



reaction torque acts i.e. at the support. Load factors for different boundary conditions
and loadings are given in Table 2.1. In the second column of the table, the diagrams
shows the collapse mechanism i.e the dashed line is the new position of the

remaining beam sample after hinge formation.

Warping torsion plastic collapse

When warping torsion is the only method of resisting the applied torque, it is
assumed that a collapse mechanism develops in which a sufficient number of
warping hinges form as a consequence of which the member turns into a
mechanism. Load factors for different boundary conditions and loadings are given in
Table 2.2.

Members and Loadings Collapse Mechanism Ay
=55 B — T
. .
=009 -—=- My
—
™ ¥
™ T T
R HefE—= -== My
okt
TA ™ *

Table 2.1 Cantilever with mechanism formed due to uniform torsion (Pi and
Trahair, 1995b)

In the table the load factor for warping torsion is related to M, , d, T and L where
M, is the flange plastic moment given as M, = a},b;tf /4, d=b,+1,, T is the

applied torque and L is the length of the member.
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Table 2.2 Cantilever with mechanism formed due to warping torsion (Pi and
Trahair, 1995b)

Numerical method for non-linear analysis of torsion

For an I-section, elastic-plastic torsional behaviour has been analysed numerically by
developing a finite element model (Chen and Trahair, 1992). For uniform torsion,
strain due to the mitre model was considered, whereas for non uniform torsion, the
effects of warping and Wagner (Direct strains in the longitudinal direction
perpendicular to the cross section, which appear at large rotations as depicted in
Figure 2.10(d)) are considered. The finite element results obtained were compared
with the result obtained by Merchant (as discussed above) for the cantilever case
and a good correlation is made between both the results. The modelling was
performed by Chen and Trahair (1992). However this model was improved later by

Pi and Trahair (1995) which included an axial shortening (AS) effect for the analysis
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keeping all the strains remain the same. The analysis shows good comparison with

the experimental work performed by Farwell and Galambos (1969).

Experimental verification

To obtain the response of an I|-section, two sets of experiments were performed
independently by Dinno and Gill (1964) and Farwell and Galambos (1969). The
difference between the experiments was the boundary conditions. The former
researchers performed experiments on nineteen I-sections specimens in pure torsion
to find the torsional carrying capacity. One of the results of the experimental result by
Dinno and Gill (1964) is depicted in Figure 2.10(b). For all the experiments warping
was restrainted at both the ends. It was found that the actual torsion at yield was
higher than the predicted sand heap value. In the second case Farwell and
Galambos (1969) performed five experiments to obtain the torsional carrying
capacity of beam samples which were subjected to simply supported conditions that
is the beams were restrained against rotation but free to warp at the end. All the
experiments were performed for large rotations and only in one case did failure occur
at a total angle of twist of about 200°. The torsion against rotation response when
Farwell and Galambos (1969) achieved 200° rotation is depicted in Figure 2.10(c). It
was concluded from the experiments that I-sections can sustain very large rotations
before failure occurs and the actual capacities of sections were more than the sand

heap value.

Warping effects of Torsion

In an |-section beam, torsion cause distortion of the plane section and it is called
warping of the section. The warping of the beam accompanied by longitudinal normal
stresses appearing in each flange of the beam (Viasov, 1959). This longitudinal
normal stresses is a system of mutually balancing longitudinal tension. This
generalized force is called bimoment of the beam. For an I-section it creates moment
in the flanges in two different direction and bimoment is the product of moment and
the centroidal distance between the flanges. As moment of the flanges is multiplied

by the centroidal distance of the beam, hence, its units are unit of moment multiplied

by the unit of length. Therefore in the current work its unit is kN.m>
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Secondary effects of Torsion

Two secondary effects which are the Wagner effects and axial shortening are
discussed. The Wagner effect causes direct positive strains and occurs at large
rotations. The distribution of Wagner strain for an I-section is depicted in Figure
2.10(d). Axial shortening causes shortening of a member in torsion and it develops

negative strains in a member.

2.6 INELASTIC MATERIAL BEHAVIOUR AND YIELD CRITERIA

2.6.1 Uniaxial Stress Strain Relationship
When a uniaxial tension test is performed, the change of response from linear elastic
to inelastic can be abrupt or gradual (Boresi and Schmidt, 2003). Ductile materials

like mild steel show an abrupt response when their elastic limit is reached. The

stress level at this point is called the yield stress o ,. The stress-strain diagram for

such a response is shown in Figure 2.11(a). Such stress strain curves are difficult to
use in the solution of complex problems, hence, an idealization of the response is

made. The idealized curve is shown in Figure 2.11(b).

There are materials, such as steel alloys, for which the response is not abrupt but a
relatively smooth decline of the slopes of the uniaxial stress strain diagram occurs as
depicted in Figure 2.12(a). Yield stresses for those cases are arbitrarily defined as
those stresses that correspond to a given permanent strain which remains upon
unloading. The unloading is a path given by BB’, parallel to AA’ as depicted in the
figure. Hence, such curves exhibit strain hardening in the initial plastic region. The
stress strain curve for such a material might be idealized with a bilinear curve as
shown in Figure 2.12(b).

There are cases when the deformation obtained for a material is so large that the
elastic strain is very small compared to the total strain. For those cases, such a
curve is modelled by a rigid perfectly plastic curve, as depicted in Figure 2.13(a). In

the case of hardening, such curves are idealized as depicted in Figure 2.13(b).
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Figure 2.11 Experimental and idealized stress strain curve for mild steel
(Boresi and Schmidt, 2003)
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Figure 2.12 Experimental and idealized stress strain curve for steel
alloys(Boresi and Schmidt, 2003).

2.6.2 Multiaxial stress state

Inelasticity can occur when a member is subjected to a multiaxial stress state. Under
a multiaxial stress state, yielding is initiated at values other than individual stress
components. All components of stress are combined into an effective uniaxial stress.
This effective stress is compared with a material property (assumed to be some
function of uniaxial yield stress) by a yield criterion to identify the commencement of

the inelastic response.
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Figure 2.13 Idealized curve for small elastic strain (Rigid perfectly plastic
curve) (Boresi and Schmidt, 2003).

Yield criterion

A vyield criterion can be any statement (usually in mathematical form) that defines the
conditions for yielding to occur. It can be expressed in terms of some specified
terms. For example, it can be expressed as the stress state, the strain state, a strain
energy quantity or other. In mathematical form, a yield criterion is usually expressed

by means of a yield function f, where

r=rlo.,.0,) 2.41
where f is a general form of yield function which express yield criterion in
mathematical form. o, ; defines the actual state of stress and o is the yield stress

in uniaxial tension (or compression). For a yield function, three conditions can be

defined; first is when the yield criterion is satisfied f (0' G'y)=0, the second

12
condition is when the stress state is elastic f (0',., j,ay)< 0 and the third condition is
undefined f(a,’j,ay)> 0. Unfortunately, no single yield criterion has been

developed that can predict yielding of brittle or ductile materials to such an accuracy
that it can be universally used. Different parameters are used to define yield criterion

of both ductile and brittle materials.
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The simplest approach adopted for yield criteria considers the maximum principal
stress criterion(Boresi and Schmidt, 2003). This criterion states that “yielding begins
for a material at a point when the maximum principal stress reaches a value equal to

the yield stress o in tension (compression)”. When a uniaxial stress state is
considered, yielding will occur when principal stress o, reaches a value equal to o,
. For biaxial stress states, it predicts yielding when &, = o, in spite of the fact that

other principal stresses &, also act at the point. This means that the criterion ignores

the effect of principal stresses from other directions. Hence, it can be defined as

,|0'3|)—0'y 2.42

f= max(]al |, |0'2

The yield surface for the maximum principal yield criterion is defined by the locus of
stress states, hence, satisfying the yield criterion; therefore the yield surface for the
criterion is defined by relations

oy=106,, 0, =10,, 0; =I0, 2.43

y?!

The yield surface for this criterion consists of six planes which are perpendicular to
the principal stress coordinate axes as depicted in Figure 2.14. This criterion was
first given by Rankine, as referred in Boresi and Schmidt (2003) and is known as
Rankine’s criterion. This criterion is applicable for brittle materials where materials

fail by brittle fracture.

The previous criterion was based on principal stress and was simple to apply. There
are certain criteria for brittle materials which depend on other different parameters,
such as the one which depends on the maximum principal strain. According to this
criterion, yielding begins when the maximum principal strain at a point reaches a

value equal to the yield strain. In uniaxial strain it is stated that yielding begins when

the maximum principal strain at a point reaches a value equal to ¢, = ¢, .
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Figure 2.14 Yield surface of maximum principal stress yield criterion (Boresi
and Schmidt, 2003)

Consider an isotropic material subjected to a biaxial stress condition; the maximum
principal strain can be related to the principal stress as ¢, =(cr,/E)—v(0'2 /E).
Although this criterion predicts yielding in the form of magnitudes of strain, its yield
function can be expressed in terms of stress. Assuming &, as the principal strain, it

can be related to principal stresses as (Boresi and Schmidt, 2003)
1
g = E(al -vo, — v0'3) 2.44

Equating ¢, to €,, the yield function can be obtained as:

i =|0'1 —-vo, —vo,|-0,=0 2.45
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If it is assumed that the principal strain g, is not always the largest, then the other
two principal strains &, and &, may have the largest magnitude and the additional

possibilities can be written as;
f2=|0'2—v0'1—v0'3—0'y=0,f3=|0'3—v0'1—v0'2|—0'y=0 2.46

This criterion as referred in Boresi and Schmidt (2003) is also called St Venant’s
criterion. The yield surface for the maximum principal strain criterion considering the

biaxial stress state is shown in Figure 2.15.

Another yield criterion proposed by Beltrami as referred to in Boresi and Schmidt,
(2003) states that yielding at a point commences when the strain energy density at
the point equals the strain energy density when yielding occurs in uniaxial tension (or

compression). In terms of principal stress, strain energy density can be defined as:

U, =?1£7[0-12 +cr§ +0'32 —21/(0'10'2 + 0,0, +O'2O'3)]> 0 2.47

If considering a uniaxial stress state, where o, =0 ,0, =0, =0 the above

equation reduces to

U, === 2.48

This criterion states that yielding is commenced when the strain energy density U
for any stress state equals U, . Therefore Equations 2.47 and 2.48 can be related

to derive the equation as

ol +0; +o; —2(o,0, + 0,0, +0,0,)-0 =0 2.49
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From the above equation it is evident that the yield surface for this criterion depends
on the Poisson’s ratio and its shape varies with the Poisson’s ratio. The yield surface

for the biaxial stress state for this criterion is depicted in Figure 2.16.

Figure 2.15 Yield surface of maximum principal strain yield criterion (Boresi
and Schmidt, 2003).

There are certain materials where metal crystals have slip planes which offer low
resistance to shear force. During to this, the yield criterion for such metals depends
on certain limits of shear stress. Two such criteria are common (Boresi and Schmidt,
2003). One states that yielding begins when the maximum shear stress at a point
reached a value equal to the maximum shear stress at yielding for a uniaxial tension
(or compression). The other criterion states that yielding begins when distortional
strain energy density at a point reached a value equal to the distortional strain
energy density at yielding for a uniaxial tension (or compression). Considering the

first criterion, also called the Tresca criterion for a multiaxial stress state, the

maximum shear stress is 7. =(0'max —O'min)/ 2 where o, and o, are the

maximum and minimum principal stress state respectively. The magnitude of
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maximum shear stress will be the maximum absolute value obtained from the

following three equations:

T :laz —0'3|/2, 7, =|0'3 —O']|/2 and 7, =|0'1 —0'2|/2 2.50

Figure 2.16 Yield surface of strain energy density yield criterion (Boresi and
Schmidt, 2003)

Yielding for any of the following conditions under the multiaxial state can occur.

o,-o0,=%0,, 0,-0,=%0, and 0, -0, =10 2.51

i ¥

Using the above equations, the yield surface for this criterion can be drawn in

principal stress space, as depicted by the hexagon in Figure 2.17.

Hydrostatic axis
o, =0, =03
Maximum shear-strass
criterion (Tresca)

ATn

7L

Figure 2.17 Yield surface in principal stress space for the Tresca and Von-
Mises yield criteria (Boresi and Schmidt, 2003)
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The other yield criterion attributes to Von Mises, often called the Von Mises yield
criterion. This criterion is related to distortional strain energy density at a point. In
terms of principal stress distortional strain energy density, it can be defined as:

U, = (0'1 -0, )2 +(O'21;;3 )2 +(03 — 0, )2 252

For a uniaxial stress state, o, = 0,0, =0, =0, if yielding takes place whence,

distortional strain energy density at yielding for the uniaxial state is defined as:
Up,=0,/6G 2.53

As the definition states, yielding occurs when distortional strain energy density at a
point reached a value equal to distortional strain energy density at yielding for a
uniaxial tension (or compression). Therefore Equations 2.52 and 2.53 can be
equated to obtain the yield function for the distortional strain energy density criterion

as:
1 ,
f=|J2|—§Gy 2.54
where
Jy == (0'1 _0'2)2 +(O'2 _0'3)2 "'(0'3 _61)2]

Using the above equation, the yield surface for the distortional strain energy density
criterion can be drawn which forms a cylinder that circumscribes the Tresca

hexagon, as depicted in Figure 2.17.

In terms of the local coordinate system, J, can be defined as
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1
7=l -0+, -0, +(n -0V |+l +ol +2)

Putting the value of J, in Equation 2.54 and, for plasticity with, f =0, gives the

equation as
i =%[(o-zz -o,) +(0,-0,) +(0, -0, )2]+ 3(0'225 +o0’ +0'22,,)—0'y2 =0 255

When a section is subjected to direct stress in one direction and a shear stress, then

c,~0, 0, ~0, ~0, ~0, ~0,which reduces the above equation to

f=0'fz+30'fs—0'j=0 2.56

Under condition of pure yielding in shear, o, can be replaced by the yield shear
stress 7, which can be related to uniaxial yield stress o and the above equation

reduces to

3r? = 2.57

3 y
2.6.3 Yield criteria for different sections

When a material is assumed to behave in a elastic-perfectly plastic manner, a plastic

hinge forms due to bending moment at the plastic moment capacity M, of a

section. When more than one force acts on a section, the resulting plasticized cross
section is known as a generalized plastic hinge. For example, considering the
simplest case when moment about one axis is acting on a section in combination
with an axial force, then there can be different combinations of values of moment
and axial force for which a hinge can form. The set of all such combinations of
values can be represented graphically and is called a yield surface. A yield criterion

for any section is first obtained normally, called the equation of the yield surface or
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interaction equation or equations. Yield criteria when any section is subjected to two

forces or more are discussed presently.

Interaction equations when sections are subjected to two forces

Interaction of bending moment, and axial force
The simplest of such equations is for a rectangular section subjected to a bending
moment M applied about a centroidal axis and axial force P. lts equation is given
as (Jirasek and Bazant, 2002):
2
[PL;] +M£P=1 2,58

Other axial force and bending moment solutions were also given by Kom and
Galambos (1968), Harung and Millar (1973) and Mrazik et al. (1987).

Several interaction equations have also been developed when combinations of two
other forces are considered for different sections. For example, the solution for an | —
section when biaxial bending moments are considered was given by Strelbitzkaya
(1958) who gives a solution, in which forces cause two different stresses namely
shear stresses and direct stresses. One such combination is that of the bending
moment causing direct stresses while the associated shear force causes shear

stresses. This combination is studied by many authors and is discussed presently.

Interaction of shear force and bending moment

Two approaches are adopted for the solution of an interaction equation of an I-
section when a shear force and bending moment act on a section. In the first
approach, only plasticisation of the web is considered, whereas the state of stress in
the flanges is not considered. In the second approach, plasticisation of the entire
cross section is considered, with the shear stress is only in the web or in both the

flanges and web.

One such solution, based on the first approach, is given by Broude (1953). In the

solution, a rectangular section is considered for the web, while shear stress in the
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flanges are ignored. An empirical equation of the solution for the interaction between

applied bending moment M , and applied shear force S, is given as:

ML s Y MmY(s,Y
M, Sxp My )\ Sy

. 29-2175

In which az————Tﬂ
3 1——ﬁ-
3

where 3 is the ratio of static moment of half the web area 4,, on one side of the

neutral-axis to the static moments of the entire cross sectional area Ag on the same

side. S,, is the plastic capacity in shear.

Another solution was obtained based on the first approach. Here it was assumed
that at a proportional increase of both types of stresses in the cross section, its
plasticisation spreads from the web edges inwards and also outwards from the mid
point. The point when both the domains are fully plasticized represent the boundary
of the stress distribution. This solution, given by Juhas (1975) is not related to the

current research and is not discussed further here.

Several solutions exist when the second approach is taken. The simplest solution is
when shear stresses are only considered in the web, where the distribution of shear
stresses and normal stresses in the web are assumed constant and are depicted in
Figure 2.18. This assumption was considered by Heyman and Dutton (1954),
Sobotka (1959) and Strelbitzkaya (1958). This assumption results in an interaction

equation given by:
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2
i + : ll= 1—[SX] =1 2.60
M, 1+4tfbfi Sxp

Several solutions were developed for rectangular cross-sections as given by Broude
(1953), Hodge (1959), Rzhanitzyn (1954), Snitko (1952) and by several other
authors such as Sobotka, Strelbitzkaya, Juhas, Bezukhov, Zhudin and Neal as
discussed in Mrazik et al (1987). Their solutions can be found in Mrazik et al (1987)
but are not discussed here as the solutions were not directly relevant to the scope of

the current research.

Interaction of bending moment and torsion

Bending and torsion actions on various sections has been studied by Gaydon and
Nutall (1957) while for circular and tubular sections, Hill and Siebel (1951, 1953)
presented solutions. Their solutions are not discussed further as they were not

relevant to the scope of the current research.

Interaction equations when sections are subjected to three forces

Interaction of bending moment, axial force and shear force

This case is different from the previous case of bending moment and shear force in
the sense that the neutral axis location now changes due to the addition of an axial
force. However, the approach adopted will be the same as it also involves direct

stress and shear stress.

In the case of an I-section both bending moment and shear force can be applied in
two different ways. One is when the bending moment is applied about the major axis
of the section and shear force is applied in the X direction: the second is when the
bending moment is applied about the minor axis of the section and the shear force is

applied in the Y direction. Both these cases will now be considered.
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Figure 2.18 Distribution of shear stresses and normal stresses considered by
Heyman and Dutton (1954), Sobotka (1959) and Strelbitzkaya (1958) to develop

the interaction equation considering bending moment and shear force

When the bending moment, My, is applied about the major axis of the section and
the shear force in the X-direction, in addition to an axial force being applied, the
solution depends on the assumption that the shear stress is confined to the web

only. Two cases can be arise:

a.) The neutral-axis passes through the web

b.) The neutral-axis passes through the flange

The distribution of normal and shear stress through the depth when the neutral-axis
passes through the web is depicted in Figure 2.19(a). The stress distribution in the
web consists of a constant direct stress and shear stress distribution in the web. The
distribution of stress in the flange is due to direct stress only. The direct stress and
shear stress are related by a distortional strain energy density yield criterion given by
Sobotka (1975), as follows:
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Here My is the bending moment applied about the Y-axis of the section and Myp is

the plastic moment capacity of the qectio_n about the Y-axis.

XX-Axis
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Top Flange Y Neutral-Axis
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a) Neutral-Axis intersects the web b) Neutral-Axis intersects the flange

Figure 2.19 An I-section subjected td bending about the Y-axis shear force and
axial force. Distribution of normal and shear stresses when neutral-axis

passes through the web and flange

The distribution of normal and shear stress through the flange when the neutral-axis
passes through the flange is depicted in Figure 2.19(b). The same distribution of
stress in both flanges and web will be valid except the neutral-axis is lying in the
flange as depicted in the figure. A similar approach is adopted as in the previous

case, to obtain the interaction equation, given as follows:
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P t. /b | P ¢
1+2| —(@1+28 )—1]+ L ”{—(st )—1}
M, +[ [PP 4 Su LPr XA

M t
» 1+4SXA[1 +bij

w

=1 2.62

where S, = 4, /[AW,/l—(SX /SX,,)z]

In the case when bending moment M, is applied about the minor axis of the section
and shear force in the Y-direction, in addition to an axial force, the solution depends
on the assumption that the shear stress is confined to the flanges only. Again two

cases can arise

a). The neutral-axis passes through the web

b). The neutral-axis passes through the flange

For the case when the neutral-axis passes through the web, the distribution of
normal and shear stresses through the depth is depicted in Figure 2.20(a). A
constant direct and shear stress distribution is assumed for the flange, whereas the
distribution of stress in the web is only due to direct stress. A similar approach by
Sobotka (1975) is adopted as in the previous case to obtain the interaction equation.

The relationship is given by:

2
ot
y _i;f_(l 2.})&] )
(o3
x4 —— = - (iJ =1 2.63

Mxp 1+2O-sfi O-sf i+2 pr e
c,b,)o,b, B

In the above equation
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S S
o, =0, 1—(S—X) , P, =0,tb, 1—(S—"’—) and Py, =0, 4,

XP XP

and here, M is the bending moment applied about the X-axis of the section and

M . IS the plastic moment capacity of the section about the X-axis.

For the case when the neutral-axis passes through the flange the distribution of
normal and shear stress through the depth is depicted in Figure 2.19(b). Similar
approach is adopted as adopted in the previous case to obtain the interaction

equation. The relationship is given as follows

2
[—P—(l+2 i ]2 —1} Oy ls
M. 1| P Py o, b
L4 = =] - e 2.64
M, 2 U_’fi+2[_1)’;f] &t_f+2[ﬁ_J
O-y bw PPW o._v bw PPW

Several equivalent solutions exist for the case of a rectangular section. The earliest
solution by Paltchevskiy (1948) is based on the stress distribution of normal and
shear stress, with further solutions given by Sobotka (1975) and Smirak (1967),
where they assume a different stress distribution as compared to Paltchevskiy. The
solution of all the three cases are not relevant to the current research and are

therefore not discussed further here.

In the case of an I|-section both bending moment and shear force can be applied in
two different ways. One is when the bending moment is applied about the major axis
of the section and shear force is applied in the X direction: the second is when the
bending moment is applied about the minor axis of the section and the shear force is

applied in the Y direction. Both these cases will now be considered.
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Figure 2.20 An I-section subjected to bending about the X-axis and to shear
force and axial force. Distribution of nhormal and shear stresses when the

neutral-axis passes through the web and flange

Interaction of biaxial bending and axial force

Three approaches were adopted to obtain the solution for a rectangular section, all
of which give exact solutions. In two of the approaches by Morris and Fenves (1969)
and by Santhadaporn and Chen (1970) three neutral-axis patterns are assumed, as
depicted in Figure 2.21. Based on these patterns, three equations are obtained from
which yield surfaces can be drawn. These equations are:
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For the first pattern depicted in the figure the interaction equation is

p’+m, +0.75m} =1 2.65(a)
valid for m, > (2/3)(1-p), m, <(2/3)(1-p)
For the second pattern

p’+m,+0.75m; =1 2.65(b)
valid for m, <(2/3)(1-p), m, 2(2/3)(1- p)

And for the third patten

9 m, _m, -
- ”7[1' 2(1—p)}[1 2(1—p)] 2 o

valid form, > (2/3)(1-p),m, 2 (2/3)1-p)

In these equations

P M, M,
p=—,m = and m, =
Pp MXP Myp

In the other approach, the position of the neutral-axis is defined by an angle and a
reference distance from the centroid of the section. For a series of these two
parameters a set of forces are obtained from which yield surfaces are drawn. Details
of the procedure are given by Chen and Atsuta (1977) and are not discussed here as

it is not relevant to the current research.
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Figure 2.21 Three neutral-axis patterns assumed for the solution of interaction
equations of a rectangular section when biaxial bending is applied with axial
force

Several approaches were adopted when the interaction relationship of an I-section
for biaxial bending in combination with an axial force was derived. Both approximate

and exact solutions exist, as shall now be discussed.

Two approaches were adopted for the approximate solutions, both of which are
based on a lower bound approach. A lesser number of neutral-axis patterns were
assumed as compared to the number of neutral-axis patterns required for the exact
solution. The solution given by Morris and Fenves (1969) has five neutral-axis
patterns, whereas the solution given by Santhadaporn and Chen (1970) has six
neutral-axis pattems. Based on these neutral-axis patterns, equations of yield
surfaces are obtained. These equations are not relevant to the current research and

are not discussed here.

To obtain the exact solution for an I-section, first the exact solution of a rectangular
section is obtained. To obtain the I-section yield surface, it is assumed that the
section is made up of three rectangular sections. The forces in each rectangle are
then determined for a given neutral-axis pattern. Then the forces are again
determined by varying the position of the neutral-axis. Using this procedure, a series
of sets of forces are obtained and the yield surface can be drawn (Chen and Atsuta,
1977). Detail of the procedure is not relevant to the current research and is not

discussed here.
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Yield surfaces of other sections, such as RHS and CHS may also be obtained both

approximate and exact (as given by Chen and Atsuta, (1977)).

Interaction equations when sections are subjected to four forces

Interaction of biaxial bending, axial force and St Venant’s torsion

In this approach the distribution of shear stress due to St Venant's torsion is taken as
constant over the entire cross section but the direction of stress in each plate is
opposite for each side of the plate as depicted in Figure 2.22. The full torque based

on the distribution of shear stress can be written as:

T=dl 2.66

In the above equation summation is carried out for all rectangular plate elements of

dimension b, x t,. Therefore, the fully plastic torque can be obtained as

- 2
Zbiti Ty
— _i=l

= 2.67

where 7, is the shearing yield stress and the magnitude of torsional moment can be

obtained by a term ¢ such that 1=T7/T, =7 /7 . Itis assumed that the distortional

strain energy density criterion relating direct stress (obtained due to biaxial bending
and axial force) and shear stress (obtained by torsion) is valid. As the section is
subjected to direct stress in one direction and a shear stress Equation 2.56 is still
valid and using the relation given by Equation 2.57, ignoring the subscripts in

Equation 2.56 and writing shear stress in the form of “7 ”’ it can be written as

o? +37? =0'f,(= 315) 2.68

59



Using the above relationships, the following can be obtained.

— =\1-t =t 2.69

To include the effect of St Venant's torsion on biaxial bending and axial force,
Equation 2.69 is replaced in the interaction equation developed by Morris and
Fenves (1969), thus:

p by pV1-t* , m by m_1-t* and m,by m,N1-t* . 2.70

The yield surface thus obtained on addition of St Venant'’s torsion is such that the
domain of yield surface of biaxial bending and axial force is reduced by a factor

2

1-¢° as depicted in Figure 2.23 This approach is applicable for an I|-section,

rectangular section, RHS and CHS.
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Figure 2.22 Shear stress distribution and neutral-axis pattern based on the

approach by Morris and Fenves (1969)

Interaction of bending moment, axial force, bimoment and St Venant’s torsion

The warping of the beam causes normal stresses to appear in the cross section in
addition to tangential stresses. These normal stresses form a system of mutually
balancing longitudinal tension and lead to a generalized force. This generalized force

is called the bimoment of the beam. For an I|-section the Bimoment consists of
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bending moments for the flanges of the beam which for any I-section have the same

magnitude for both the flanges but different directions.

Figure 2.23 Two yield surfaces one before application of St Venant’s torsion

and the other after its application

An interaction equation was developed (Strelbitzkaya, 1964) for an |-section subject

to an axial force, P, a bending moment about the Y-axis, M ,, a bimoment B and a
pure torsion, 7. Two neutral-axis patterns were assumed, one for direct stresses
which is caused by P, M, and B and the other for shear stress which is caused

by T. Two equations were obtained for the neutral-axis patterns which are then
combined into one interaction equation based on the distortional strain energy
density yield criterion. Details of this interaction equation are not related to current

research and are not discussed here.
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Figure 2.24 Neutral-axis pattern for the stress distribution for the case when P,

M,, M, and B act on the section (Mrazik et al. 1987)

Interaction of biaxial bending, axial force, and bimoment
An interaction equation has been developed for an I-section for P, M, M and

B by Strelbitzkaya (1964) based on the lower bound approach using the neutral-
axis pattern depicted in Figure 2.24. The interaction equation is

M t 2B .
st i M + Wy B e
M, 2M_ |’ d 20

xp

P-oc A
i il o i e (MX—MX ey 21
2M ot %02

Yy w

b
. . fos _ f 2
where in the above equation 4" =7,b, +¢,d and B, = O.SO'ytf(———-—uf]d

and U, and Uy are the positions of the neutral axis with respect to centroidal X and

Y axis.
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Intercation equations were developed for a Z-Section by Daddazio et al (1983) when
P, M, M, and B are considered. Different neutral-axis pattems were assumed and

interaction equations developed based on a lower bound approach.

Interaction equation when sections are subjected to five forces

Interaction of biaxial bending, axial force, bimoment and St Venant’s torsion

Yield surface equations are developed for biaxial bending, axial force, bimoment and
St Venant's torsion for an I-section (Yang and Fan, 1988). Three neutral-axis
patterns, as depicted in Figure 2.25 are assumed in order to develop the interaction

equations. The salient features of each pattern are as follows:

(i) (ii) (iii) (iv)
(i) Axial strain (ii) Flexural strain (XX-Axis) (iii) Flexural strain (YY-axis)

(iv) Warping strain

(a) Diagrams showing strain distributions due to different internal forces

{,(_‘_mb,___,{ -0¢€ 1——1+0

Pattern-1
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(b) Three neutral-axis patterns
Figure 2.25 Strain distribution and three neutral-axis patterns for the yield
surface for interaction of biaxial bending, axial force, bimoment and St

Venant’s torsion

From Figure 2.25 it can be inferred that the neutral-axis is not a straight line. The
reason is that in the presence of bimoment direct stresses developed in different
direction in both the flanges which causes a change in the pattern of neutral-axis and

result in a non-straight neutral-axis.

In the 1 pattern the neutral-axis is assumed to pass through both flanges and web,
as depicted in the figure. An important feature of this pattern is continuity of stress at
the junction of the plates. As the stress changes its sign within each plate, the axial

force acting on the web will always be less than its full plastic value in normalized

form p, ... - Mathematically it can be written as
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2] < P2 2.72(a)
where p, is the axial force in the normalized form in the web.

In the right hand diagram in Pattern-1 the extreme case representing the total axial

force in its normalized form p can be obtained as

p = pZmax _plmax 272(b)

This equation gives the maximum axial force in normalized form for this pattern.
When the axial force gets smaller, a region of compression will develop in the web
(as indicated by the arrow), and p will be less than that given by Equation 2.72(b).
Therefore, p will always be less than that obtained by the equation for this pattern

and thus the following inequality represents a sufficient condition for pattern-1

yielding to occur

12| < Pamax = Prmas 2.72(c)

One additional feature for this type of pattern is that the signs of the axial force in

both the flanges are different.

The 2™ pattern is a special case of yielding of the section where it is assumed that
the web remains elastic while the flanges have become fully plastic. Although it
violates the criterion of yielding because the web is elastic, it can be accepted as a

valid yielding pattern because the web offers no resistance to bending moment about

the minor-axis M and B(as assumed in the development of the yield surface

equations). Hence, for this case, both flanges can plasticize while the web remains

elastic.
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In the 3™ pattern it is assumed that the web is fully plasticized under the action of the
axial force P, and no moment acts on the web. The extreme case of pattern-1 can

also be taken as an extreme case for this pattern. Comparing Figure 2.25(1% pattern)
to that of Figure 2.25(3™ pattem) indicates that the axial force acting on each plate in
Figure 2.25(3" pattern) will always be greater than that of Figure 2.25(1° pattem).

Therefore, the relationship which was valid for the 1% pattern will be the direct

opposite limit for this pattern, that is, lp, > Pomax — Pimax 1S the necessary condition

for yielding to this pattern.

Yield Surface Equations
Interaction equations can be developed for each neutral axis pattern considered but

such an attempt to develop interaction equations is avoided here. Instead, it is
assumed that an [|-section consists of 3 plates, where each flange and the web
represent a plate. A stress resultant acting on each plate was considered as a
combination of compression (or tension) and uniaxial bending moment; hence, two
forces act on each plate. Therefore, yielding of each plate can be obtained by a two
dimensional yield curve and such a yield curve is called a component yield surface.
For the top flange, web and bottom flange interaction equations for the component

yield surfaces respectively are (Yang et al. 1989)

Sgn(m )21 m,)+ p>(2+c' | +1* =1 2.73(a)
4+c' - o 2+¢ 3 )
Sgn(m, | —— |¢m,+ p; ; +t° =1 2.73(b)
(& (&4
Sgn(m,)2tmy)+ p2(2+¢' | +1* =1 2.73(c)

where m,,m, and m, are the moments in normalized form applied to the top flange,

web and bottom flange respectively. In the same way p,,p, and p, are the axial

force in normalized form applied to the top flange, web and bottom flange
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respectively, Sgn(x)=sign of x as previously defined and ¢’ = A% . The above
!

equation is valid for the first yield pattern.

The stress resultants for the entire cross section can be related to moments m,,m,
and m, and axial force p,,p, and p, based on the equilibrium condition.

Mathematically, they can be written as

p=p +Dp,+p; 2.74(a)
m, =m, +m 2.74(b)
4+2c
m, = (P3 - P {—4—;6—/) +m, 2.74(c)
b=m,—m, 2.74(d)

In the above equation b is the bimoment in normalized form. p is the axial force in

normalized form. m,, m, and m, are the normalized major bending moment about

the local axis and ¢ is the torque in normalized form. The above equations can be
used to develop yield surfaces and identify formation of plasticisation. A procedure to
determine the formation of a hinge and the development of a yield surface is briefly

discussed in the next section.

In the procedure, yielding is first checked for the 2™ type of neutral-axis pattern. The
reason for first checking the 2™ type of procedure is that only two stress resultants

m, b are required to check the procedure (as both the forces exist when yielding

occurred for the second type) and this can be done by simply obtaining m, and m,

values. If yielding is not found a check is made for the 1 type of pattern. If the 1%
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type is not found then a check is made for the 3 type of pattern. Details of the

procedure are given in Yang et al. (1989).

For given values of p, m,, 1 and b using the yield checking procedure, the
allowable load m, can be determined. In this way, a series of m_ values can be
obtained for a series of values of p, m,, rand b. And two dimensional yield
surfaces can be drawn with m, and m_on the X and Y axes respectively, the

remaining stress resultants p, ¢ and b, are kept constant. The yield surface for a

standard steel W12 x 31 I-section is shown in Figure 2.26 as an example.
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Figure 2.26 Developed yield surface for a W12 x 31 I-section for the interaction
of biaxial bending, axial force, bimoment and St Venant’s torsion (=0)
Interaction of bending moment, shear force, bimoment pure torsion and

warping torsion
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