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ABSTRACT

In the design of many building structures for ultimate states the use of interaction 
equations is quite common. Despite this there is still a need for more advanced and 
flexible equations which consider all forces in space. Steel l-section members are 
often employed as beam and column elements for both structural and aesthetic 
reasons. The purpose of this thesis is to develop, in principle, the interaction 
equations for l-sections and verify it using experimental and finite element 
techniques. Two types of interaction equations are developed. One is the 
approximate approach in which single equation interaction equation is developed for 
biaxial bending moment and bimoment. The yield surface developed based on this 
approach fills the large gap in the previously developed yield surface. Second is the 
exact solution in which interaction equations for biaxial bending, biaxial shear, axial 
force, uniform torsion and bimoment are developed. This exact solution results in an 
improved, closed, continuous and convexed yield surface for an l-section. These two 
types of interaction equations are verified using a series of experiments and 
numerically using finite element analysis using software LUSAS.

The development of the interaction equation using approximate approach provided 
the opportunity for practical applicability of these equations using the available 
British steel sections. In the development the variation in the yield surface was 
explained by consideration of the governing equations and possible neutral-axis 
patterns. Later the developed approximate approach was compared with a limited 
previously published yield surface model and good correlation was found between 
them. The developed approximate approach was verified and extended using finite 
element analysis and simplified using a curve fitting technique.

The development of the interaction equation using exact solution was based on a 
lower bound theorem of limit analysis. They were developed for biaxial bending, 
biaxial shear, axial force, uniform torsion and warping torsion. In the development 
both the direct stresses and shear stresses acting on the sections were treated 
separately. A procedure is developed in which neutral-axis patterns were first 
obtained and later used in the development of interaction equation, its yield surface 
and a procedure to identify the formation of plastic hinge. The solution obtained by a 
lower bound approach was verified using an upper bound approach. Both solutions 
match each other which show that the equations satisfy the uniqueness theorem of 
plasticity thereby furnishing the correct yield surface within the limits of validity of the 
assumptions made.

The experimental program included in this research was designed to verify the yield 
surfaces and included both beam flexural tests and torsional test for single forces 
(which provided the necessary information on the capacities of sections). Two types 
of tests were carried out when more than one force are considered. In the first case 
biaxial bending and torsional loads are applied, whereas in the second case a 
unique experiment in which axial force, biaxial bending and torsion are applied. The 
test provided vital information on the response which helped to better understanding 
the phenomena of bending and torsion when applied simultaneously. A special test
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rig was designed purposely to rotate beam sample up to a rotation of 180° to 
observe the effects of torsion and other forces at such a large rotation.

The finite element analyses of the experiments were performed under a non-linear 
monotonic loading condition. Following the pattern of the experiments, first forces 
and then multidimensional forces were analysed. A special analysis was also 
performed in whch biaxial bending and torsion was applied by attaching a cable at 
the end of the beam sample. The purpose of the cable was to restrict the movement 
of the beam sample and observe the tension developed in the cable and the change 
in the behaviour of the beam sample due to the cable. Using the finite element 
analysis developed interaction equations and experimental results ar3e verified.
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CHAPTER-1

INTRODUCTION

From the early days, structural engineers have been interested to determine the load 

beyond the elastic limits so that elements of a structure can be designed based on 

its ultimate capacity.

Structural elements can be subjected to various types of loading. The simplest case 
is when members of a structure are subjected to axial forces only and such types of 

structure are called plane or 3D trusses. There are cases when a structure can be 
subjected to forces or moments applied in three directions. Whatever type of loading 
acts on a member, a certain failure parameter is defined for the member based on 
the shape, boundary conditions and material from which the member is built. This 
failure parameter change may not govern the design, however the design may have 
to be based on a serviceability requirement for the structure. For example a design 

parameter can be set for members to remain elastic during its loading cycle or 
members can be allowed to undergo non-linear behaviour during the loading cycle. 
Non-linear behaviour can be determined by assuming the construction material as 
elastic perfectly plastic, or based on nonlinearity considering strain hardening or, in 

some cases, based on determining the ultimate load which a member can sustain. 

One such failure parameter is the yield criterion for yielding of material of members. 

This failure criterion relates the failure of a structure to yielding of material. Yielding 

for example, can be determined for a certain cross sectional element so that a 

kinematic mechanism forms in the structure or it can be due to the commencement 

of yielding at any location of the structure. There can be several approaches to set 

the yield criterion of the structure but two are most common, namely when it can be 

set for yielding of an infinitesimal element of a member or it can be set for yielding of 

the cross section of a member. Several criteria exist in both the cases. For example, 

for yielding of an infinitesimal element, different criteria exist for both ductile and 

brittle materials such as Von-Mises, Tresca, Mohr-Coulomb yield criterion and etc.



In the other cases a cross section which is yielded totally on the application of 

different combination of forces so that it cannot take further load is called a 

generalized plastic hinge. When yielding of a cross section is considered, the 
formation of a generalized plastic hinge is determined by developing what can be 

called an interaction equation, plastic limit envelope, yield locus, failure envelope, 

yield surface or interaction curve. Different criteria have been developed for yielding 
of a cross section based on load application, type of cross section and type of 

material. The simplest case when more than one force acts on the section is when a 

rectangular section is subjected to an axial force and bending moment 

simultaneously. Advancements in computer technology offer the opportunity to 
investigate the spatial nature of application of the yield criteria. This investigation is 

required because of the three dimensional analysis which reveal high forces acts on 
an element of structure in three dimensions. A structurai element such as column 

can receive biaxial bending moments and axial force (due to gravity loads). In 
addition it can receive large torsional load and biaxial shear forces due to the lateral 
forces applied to the building which are seismic forces and wind forces. Also girders 
of bridges can receive biaxial bending moment biaxial shear forces and torsion under 
the combination of gravity and lateral loads, and receive large torsion especially 
when the centroid of the deck slab do not coincide with the centroid of the beam. 
Because of such nature of forces resisted by an element of structure, works on yield 

criteria is needed to develop interaction equations for the case when forces and 

moments are applied in three dimensions. One such effort will be performed in this 
research when yield criterion for forces and moments in three directions are 

developed. These forces are axial force, biaxial shear force, biaxial bending moment 

and torsion. Several yield criteria for different types of cross sections for different 

combination of three dimensional forces are already developed and are discussed in 

Chapter-2. However, the three forces and the three moments are not considered 

before for the development of yield criterion.

The problem this thesis will address is the development of interaction equations by 

having two forms of solutions, one is the approximate approach and the other is the 

exact approach. These will be for an l-section. A general form of an l-section with



local coordinates of the element, positive global coordinate system used, 

direction of positive forces used and details of the l-section is given in Figure 

1.1.

XX-Axis XX-Axis

(a) (b)

(a) Local coordinates and elements of the section (b) Direction of positive forces

Figure 1.1 Local coordinates, elements of the section, positive coordinate 

system with direction of positive forces

In the approximate approach single unifying equation for biaxial bending and 

bimoment will be developed for available British steel sections (BS EN10056: 1999 

sections). This single equation fills the gap which was present in the previously 

developed yield surface, hence removing the discontinuity in the previous yield 

surface. Apart from the approximate approach, a better exact approach will also be 

developed in this work for biaxial bending moment, biaxial shear force, axial force, 

uniform torsion and bimoment. Interaction equations, yield surfaces and a procedure 

for the identification of the formation of plastic hinge are obtained in the exact 

approach. This exact approach will be developed using the lower bound theorem of 

limit analysis and verified using the upper bound theorem of limit analysis, hence 

satisfying the uniqueness theorem of limit analysis. Presently the only solutions



which exist are those proposed by Yang and Fan (1988) who developed yield 

surfaces based on axial force, biaxial bending moment, bimoment and uniform 

torsion. However the solution was based on some approximations, due to which the 

yield surfaces developed were not closed. In the exact approach yield surfaces will 

be obtained by eliminating the approximations and obtaining a closed, continuous 

and convexed yield surfaces.

Experiments will be performed firstly for sections subjected to single forces and 

subsequently for sections subjected to multi-dimensional forces. These experiments 

will be performed to verify the interaction equations developed by both the 
approximate approach and exact approach, and to identify different behavior of an I- 

section beam when it is under the influence of one force and combination of more 
than one force. Especially for combination of more than one force when in one case 
biaxial bending moment and bimoment is applied and in the other case a unique 

approach in which axial force, biaxial bending moment and bimoment is applied to 
the beam specimen. The behavior which will be observed during the experiments are 
the load-deflection relationship, torsion rotation relationship, interaction between 
horizontal and vertical movement of the beam, interaction between horizontal 
movement and rotation, interaction between vertical movement and rotation and 

strain developed as the load progressed.

Those experimental responses will be verified by finite element analysis using 
London University Structural Analysis Software (LUSAS). Finite element analysis will 

be performed to compare all the experimental results and different behaviors (as 

discussed above) which will be observed during the experiment. In addition, an 

intermediate analysis is performed to between two cases of biaxial bending moment 

and torsion and axial force, biaxial bending moment and torsion. In the intermediate 

analysis a passive cable was attached to the beam sample. This cable was used 

only to restrict the movement of the beam without its use to apply the axial force. 

Obtained results will be discussed and future work based on the finding of the results 

will be recommended.



Initially in Chapter-2 a literature review of related works in the field will be presented. 

Basic theories of thin walled bars and plasticity are discussed. Classification of 

torsion problems applied to different cross section and different types of boundary 

conditions are discussed. Theories related to multiaxial stress state and yield criteria 

are discussed. Yield criteria for the different state of loadings are discussed for the 

cases when a cross section is subjected to one, two or many forces. Both numerical 
modeling and experimental work are discussed. The aim of this chapter is to provide 

the reader with background knowledge which would be required for an interpretation 

of the theory developed in later chapters for experimental results and their numerical 
verification.

Chapter 3 considers a single equation yield surface which is developed for biaxial 

bending moment and bi-moment. A yield surface varies for different sections and the 
variation depends on various section properties. Section properties of British steel 
sections were taken into account so that the developed equation can be shown to be 
valid for a wide range of available sections (BS EN10056: 1999 sections). The 
developed single equation was based on previous work by Yang et al. (1989) where 
currently limitations exist in the yield surface. This limitation was later removed using 
a finite element approach. Later using the finite element yield surfaces are verified 
numerically.

A yield criterion is developed in Chapter 4 in which axial force, biaxial bending, 

biaxial shear, uniform torsion and bi-moment are considered. An equation is first 

described to relate shear stress to the forces (biaxial shear and uniform torsion) 

which causes shear stresses while forces (axial force, biaxial bending and bi­

moment) related to direct stress are considered and a unique closed yield surface is 

obtained. The procedure to obtain the yield surface is outlined. Later a procedure is 

developed for the identification of the formation of a plastic hinge based on the 

developed yield surface.

Experimental results are presented in Chapter 5, comprising those experiments 

when a beam sample is subjected to only one force. It is also required to determine 

the material properties of the steel of the beam sample. These results are compared



with the theoretical development and the differences between the results of the 

theoretical development and experiment are discussed

Chapter 6 presents the results of the second phase of the experiments in which 

multiple stress resultants are applied simultaneously. Results in the form of 

deflections, rotations and strain gauge readings are discussed. In addition 
experimental results are compared with the developed yield surface. The developed 

equations are verified in the linear and non linear phases of response with 

discussions about the plastic and strain hardening phases.

A numerical study of the experimental response is presented in Chapter 7. The study 

is performed by finite element analysis in LUSAS. Both of the sets of cases when 
beam samples are subjected to single forces and to multiple forces are analysed. 
Load-deflection and torsion-rotation responses are compared using the finite 
element response. From the results it is concluded that finite element successfully 
models the experimental behaviour of the samples and verifies the developed 
interaction equations.

The final conclusions and suggestions for further work will be presented in Chapter 
8.



CHAPTER-2
LITERATURE REVIEW

2.1 INTRODUCTION
The theory of thin walled bars constitutes a major section in the field of structural 

mechanics especially when both static and dynamic analysis solutions are taken into 

consideration. The development of a yield criterion has led to the use of it in the 

theory of plasticity, the flexural behaviour of beam and the application to torsion 

problems.

One of the more obvious structural applications is the development of yield criteria 

under multidimensional forces for steel open sections. Studies have taken several 
approaches in this regard. Yield surfaces for stress at a point for both ductile and 
brittle materials have been developed. In another approach yield surfaces have been 
developed for different steel sections. Both the upper bound and lower bound 
theorems of plasticity are used to develop the yield surfaces. Sometimes it is 
required to obtain the behaviour of steel sections when only one force is considered, 
as for the case of pure flexural and pure torsional behaviour of a section.

Discussions about the different theories are presented here by nature of structure 

and load application. Sections 2.1 and 2.2 discuss briefly the theory of thin walled 

bars and the theory of plasticity. In the sub section of each section, different 

assumptions and different terminologies are used relating them to their application in 

structural engineering. Sections 2.3 and 2.4 discuss details about flexural behaviour 

and torsional behaviour. In their sub sections, the response under different loading 

conditions are discussed. The numerical and experimental approaches adopted to 

these problems are also discussed. In Section 2.5, the yield criteria related to stress 

at a point and for different steel sections are discussed. In addition, the use of the 

curve fitting technique is also identified for dealing with yield criteria. The last section 

discusses the study of different experimental and numerical approaches adopted 

when a structure is subjected to multi-dimensional forces.



2.2 THEORY OF THIN WALLED BARS
In structural engineering, the types of elements of structures can be divided into four 

classes according to the spatial characteristics of these elements (Vlasov, 1959). 

These are 1) massive bodies 2) plates and shells 3) solid beams and 4) thin walled 

beam. They are defined as follows:

Massive bodies: Massive bodies are those whose three dimensions are such that 

any one dimension is not small as compare to the remaining two. For example, a 
cube, a prism, an ellipsoid, a continuum filling all space or half space are all massive 

bodies.

Plates and Shells: For this class of element, one dimension is small as compared to 
the remaining two dimensions. Examples of such elements are slabs, shells and 

plates of various shapes.

Solid Beams: For this class of element, two dimensions of the beam are small as 
compared to the third dimensions and are called solid beams.

Thin wailed beam: For this class of element, the shape is such that it has the form of 
long prismatic shells. All three dimensions of the elements are of a different order of 
magnitude. The thickness of the shell is small compared to the characteristic 

dimension of cross-section and the cross-sectional dimensions are small as 

compared to the length of the shell.

A thin walled open cross-section beam with a right hand coordinate system (x,y,z) is 

depicted in Figure 2.1(a). In the figure the surface lying midway through the plates of 

the beam is called the middle surface. Straight lines on the middle surface which are 

parallel to the longitudinal axis of the beam are called generators of the beam. If a 

section is cut through the middle surface such that it is perpendicular to the 

longitudinal axis then it is called a contour of the cross-section of the bar. Sharp 

corners and junctions in the contour are allowable and are called junctions. Part of 

the contour lying between junctions of a contour or between a junction and end of a



contour is called a branch of the contour and part of the bar related to the branch is 

called an element.

Figure 2.1(a) General form of an open thin walled beam (Gjelsvik, 1981).

£

Figure 2.1(b) Stress-strain relationship of elastic-perfectly plastic material 

Figure 2.1 General form of an open thin walled section and stress-strain 

relationship of elastic-plastic material

A right-handed coordinate system for the middle surface can be introduced as 

depicted in the figure such that the axis n is always normal to the tangent drawn at 

the point of the contour considered whereas s is perpendicular to n following the 

contour. The wall thickness is taken to be constant in the longitudinal axis of the bar



which implies that wall thickness can vary with the s axis and can be written 

mathematically as t(s).

A thin walled beam consists of plates where each plate in the cross section is 
between junctions or between junction and two ends of the contour. For example an 

l-section consists of three plates. When thin walled elements satisfy the relations

t/b^ <0.1 and bjl^ < 0.1, they can be classified as thin walled beams, where b^ is

any characteristic dimension of the cross section and is the length of the beam

2.2.1 Kinematics of thin walled bars

There are three kinematic (i.e. strain, displacement etc) assumptions which are the 
basis of the theory of torsion and flexure of thin walled bars (Gjelsvik, 1981). These 

are

1. A contour can be considered as a rigid section i.e. no deformation takes 
place in the contour in its own plane

2. Shear deformation (i.e. change in the angle of the middle surface) is zero in 
each element.

3. Each element of the beam behaves as a thin shell, which means Kirchhoff’s 
assumption of straight lines remaining normal to the middle surface during 
deformation is valid.

Displacement in the longitudinal direction
Considering the theory of a thin walled elastic beam, axial displacement w at any 

point on a cross-section parallel to the longitudinal axis of the bar is determined by 

an equation (Gjelsvik, 1981) given by

w{x,y, z) = W{z)-U' {z)x - V' {z)y -(t>\z)(o{x,y) 2.1
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In the above equation W(z) represents an average axial displacement of the bar, 

U and V' are the slope component in the x and y direction respectively and <E> is 

the rotation about the positive z direction. The last term, o){x,y) in the equation is

the warping function obtained by Goodier (1941) and represents warping 

deformation of the cross-section. Warping deformation is related to two types of

deformation, one is warping of the contour o) and the other is warping of the wall

relative to the contour co . Mathematically it can be written as

CO = co+co 2.2

Many authors, such as Timoshenko and Gere (1961), refer to co as the warping

function and neglect co. For sections where co is much larger than co the approach 

by Timoshenko and Gere is very convenient, however, in general this approach 
could be misleading.

Strain in the longitudinal direction
Knowing the displacement at any point on a cross-section of the beam, longitudinal 
elastic strain can be determined by differentiating Equation 2.1 with respect to the z- 

axis (longitudinal axis) of the beam. Hence, a general equation (Gjelsvik, 1981) is 

obtained for the axial strain, e.. as

= — = W' -U"x-V"y-O"(z)(0(x,y) 
dz

2.3

where fV' is the first derivative of JF with respect to Z and and O ' are the

second derivatives with respect to Z of [/,V and O respectively. The above

equation determines the axial strain field of the beam. The diagram of the strain field 

is obtained by superposing four diagrams, each of which is related to one term in the 

above equation. The first term fV'’ determines a uniform axial strain. The second

11



and third terms U",V'' determine the strain due to flexural action about the two 

principal axes of the beam, which are perpendicular to each other. The fourth term 

determines the strain due to warping of a section. Combining the four diagrams, 

the strain field for the entire thin walled elastic beam is obtained.

Thin walled beam and non-linear behaviour
The basic assumption made to develop plastic theory is that the kinematics of the 

elastic and plastic bar are the same. This means that equations which define the 
displacement field or strain field in an elastic case will still be valid for plastic 

behaviour. Therefore, Equation 2.3 for the direct strain will still be valid. This strain is 
related to the stress by the theory of plastic potential (Prager, 1959). According to 

this theory the increment of strain (or the strain rate vector) not the strain itself is 
related to stress and the sign of the strain rate vector is considered to determine the 
bar forces. Mathematically it can be related as

2.4

where e.. is the plastic strain rate vector in the z-direction. In the equation is

the signum function (Gjelsvik, 1981) and is defined as

Sgwfa] = 1 when a > 0 2.5(a)

= -1 when a <0 2.5(b)

= 0 when a = 0 2.5(c)

Equation 2.5 can be well understood by having a elastic-perfectly plastic stress- 

strain diagram as depicted in Figure 2.1(b). a in the equation is the plastic strain 

rate. If the strain rate is more than and less than zero its results are 1 and -1, which 

represent here a condition in which stress reach the yield stress whereas if a is

zero i.e. when there is no plastic strain rate means the case of stress when it is less

12



than (7^ In that case it will be elastic and between the limit of -1 and +1. Therefore, 

for example, the plastic moment capacity, Mp, can be written as

1/2

^p=^y[ \ySSn
-t/l

Eb dnds 2.6

In the above equation Sp is the plastic strain rate vector, c represents the domain of 

a branch of the contour, t is the thickness which varies from -t/2 to t/2.

Yielding of a section in the axial direction can be written as (Gjelsvik, 1981)

Pp=^y[
-1/2

£ p dvids 2.7

Here is the plastic axial load in pure tension or compression. If deformation of the 

beam is considered as a vector in a four dimensional space, having components 

W', U", V" and (Gjelsvik, 1981), the value of the plastic bar forces (for 

example given here by Equations 2.6 and 2.7) depends on the direction of this 

vector, not on its magnitude. Hence for example, it can result in a positive moment 
for a negative curvature.

2.3 THEORY OF PLASTICITY
2.3.1 Plastic Admissibility
If the state of stress at a point in a material does not exceed the yield limits, it is 

called a plastically admissible condition (Jirasek and Bazant, 2002). Considering the 

same magnitude of yield stress (<7^) in compression and tension, the condition of 

plastic admissibility of stress o for the uniaxial stress state can be defined as

2.8
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When the conditions are applied to multi-axial states then the yield limits are 
replaced by yield functions (as discussed in Section 2.5). When forces in members 

of a structure are considered then the condition of plastic admissibility can be written 

in matrix notation as

-s^<s<s^ 2.9

where s is the matrix of internal forces and is the matrix of plastic capacities of 

the sections of members on which forces are applied.

For the plastically admissible condition if inequalities are satisfied such that they will 
always be less than or greater than internal forces then the state of internal forces 
are said to be inside the elastic domain. Mathematically it can be written as

-s„ <s <s„ 2.10

2.3.2 Static Admissibility
When any state which is plastically admissible and is in equilibrium with a certain 

multiple of the reference loading (actual service load or design load) and satisfying 
the yield condition, then the state is called a statically admissible state (Jirasek and 

Bazant, 2002). If the load multiplier is defined as a factor which relates the reference 

load applied to the factor then, for a structure in a statically admissible state, the load 

multiplier is called a statically admissible load multiplier. A statically admissible

state can be defined by a vector of internal forces, s, and by and satisfies the 

plastic admissibility and equilibrium condition, it can be written as

= ju^f 2.11

Here is the static matrix which is the transpose of the kinematic matrix B (which 

can be extracted from kinematic equation which relate deformation of a member to
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the displacement of the joint to which the member is connected), where B relates 

the strain in a structure to displacement using

e = Bd 2.12

where e and d are the strain and displacement vector matrices. / is the reference 

load vector.

2.3.3 Kinematic Admissibility
Any structure can become a kinematic mechanism when yielding of bars or hinge 

formation of members exceeds the degree of static redundancy. There can be more 

than one possible failure mechanism depending upon the structure type and the 
number of degrees of freedom in the structure (Jirasek and Bazant, 2002).

When any potential failure mechanism for which external work done (which is the

product of the reference loading f and displacement rate d) is positive then the

state is expressed as a kinematically admissible state and the load multiplier is

called a kinematic admissible load multiplier. can be determined from the power

equality, where the power equality is when the external work done on the structure is 

dissipated internally by a plastic process during yielding. A kinematically admissible

state can be described by vectors of both displacement rates, d, and the vector of

strain rates, e, written mathematically as;

e = Bd 2.13

for which

7 d>Q 2.14
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where the left hand side of Equation 2.14 has the meaning of external work done

obtained by the reference load /. The external work done at the formation of any 

potential failure mechanism can be expressed as:

2.15

At the formation of a mechanism the structure is in equilibrium and the external work 

done is dissipated by the plastic process in the yielding of a section of structure. 

Then the external work done is equal to the rate of dissipation during yielding in a 
plastic process and is written mathematically as

We.t = A, 2.16

where Z)|„, is the dissipation rate and can be defined as the product of the plastic 
strain rate vector eand plastic capacity vector si- Mathematically it can be written 
as

An. = K 2.17

Comparing Equation 2.15, 2.16 and 2.17, can be determined as

^k=-T

f d
2.18

2.3.4 Postulate of Maximum Plastic Dissipation

If is any plastically admissible vector of internal forces such that

-■^0 <■^5 2.19
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and e is any vector of generalized plastic strain rates, then the product of the 

internal forces and the plastic strain rates must be less than or equal to the 

dissipation rate. Mathematically it can be written as

5: e < 2.20

Maximization of the product of the left hand side of Equation 2.20 can occur if

An. =max5, e 2.21

Then maximization of the product of the right hand side of Equation 2.21 is when the 

internal force is a maximum (which is the yielding of the section). Therefore it can be 
written as

An. = ^ 2.22

and the above obtained equation, which maximize the dissipation rate, can be stated 

as

For given plastic strain rates, plastic dissipation rates are maximized by the actual 

Internal forces for all the plastically admissible internal forces (Jirasek and Bazant, 

2002).

2.3.5 Fundamental Theorem of Limit Analysis
No statically admissible multiplier is larger than any kinematically admissible 

multiplier, which can be written mathematically as (Jirasek and Bazant, 2002)

2.23
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As the plastic limit state is both statically and kinematically admissible, if is the 

safety factor related to the plastic limit state, therefore it can be written that

2.24

Therefore two theorems can be written based on the above equation for a plastic 

limit state, as follows:-

Lower bound theorem
The statically admissible load multiplier is always less than or equal to the safety 
factor for the plastic limit state and the safety factor is the largest statically 

admissible load multiplier.

Upper bound theorem
The kinematically admissible load multiplier is always more than or equal to the 
safety factor for the plastic limit state and the safety factor is the smallest 
kinematically admissible load multiplier.

2.4 FLEXURAL BEHAVIOUR OF A BEAM
2.4.1 Elastic behaviour

Consider the behaviour of a generalized beam with a rectangular cross-section 

which is subjected to a bending moment. This bending moment will produce stress 

and strain variation which is assumed to be linear for the elastic phase. The section 

will behave elastically up to the point when the outer fibre reaches the yield stress 

Gy (Englekirk, 1994). The bending moment Mean be related to stress g at the

outer most fibre, by section modulus S by

M = gS 2.25

If G reaches g^ at the outer most fibre of the section, then the moment is called the 

yield moment M and the above equation becomes

18



2.26

Similarly, curvature (zJcan also be related to moment as

El
2.27

and cuvature at yield (j) can be related to M as

El
2.28

Here E is Young’s modulus of elasticity and I is second moment of area about the 
major axis of the section (Englekirk, 1994).

2.4.2 Inelastic behaviour

When the applied moment M for the cross-section exceeds M^, a linear

relationship between M and ^ no longer exists and behaviour is commonly referred 

to as inelastic or nonlinear. In non linearity, the applied moment can be related to 

curvature if it is assumed that beyond yield strain there is plastic flow of the 

material, as depicted in Figure 2.2 for a rectangular section. For the region of plastic 

flow, stress will be a constant at <7^and the additional moment is now taken by the

inside region where strain is still less than . Now, in this case, the incremental 

change in curvature becomes

E(j) =
AM
Eh

2.29

where h 's the reduced second moment of area of the section where the strain is 

less than s and AM is the change in moment beyond M The resulting total
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moment can be calculated using the stress distribution given by Figure 2.2. In the 

figure <7^^ is strain hardening stress and is the maximum stress considered. If 

strain hardening is considered beyond plastic flow, then there can also be a region 

where the stresses are more than cr^. The distribution of stress for the strain

hardening region is described in Figure 2.3. Using this distribution of stress, a 

moment and moment curvature relationship can be obtained.

Region of unconstrained 
plastic flow

Figure 2.2 Plastic flow and stress and strain variation (Englekirk, 1994).

2.4.3 Impact of residual stresses on flexural behaviour
Non-linear behaviour in a beam is affected by the presence of residual stresses, 
which are locked into steel sections during the rolling process. Because of residual 

stresses non-linear behaviour starts considerably earlier than the theoretical yield 

moment My. During cooling of hot rolled sections, those portions of the beam which

have most exposure to air cool and shorten first. In the case of an l-section, flange 

tips and the web cool first and compressive stresses develop in them, whereas mid 

flange cools later and tensile residual stresses develop in that section. Residual 

stress in a typical l-section is depicted in Figure 2.4. Residual stress affects the 

flexural behaviour as reflected in Figure 2.5. The shaded portion in the figure 

indicates that portion of the section which has reached ay Therefore, due to the 

variation in the distribution of stress, the change in curvature is significantly affected
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by residual stress. Though it affects the curvature, flexural strength of the section at 
yield will not be affected because at the outer fibre a uniform stress cr exists at 

some curvature. Though not entirely accurate, the residual stresses given by Figure 

2.4 give a reasonable relationship between stress and moment at yield (Englekirk, 

1994).

£ =30£ ^sh *^max ^

Figure 2.3 Strain hardening phase when stress is more than the yield stress 

(Englekirk, 1994)

Compression

t

Figure 2.4 Residual stresses for an I-beam section (Iksi = 0.006894kN/mm^) 

(Englekirk, 1994)
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Figure 2.5 Shaded region indicates those regions which have reached 

(Englekirk, 1994).

2.4.4 Lateral torsional buckling (LTB)

Lateral torsional buckling is a phenomenon which occurs with beams and girders. 
Figure 2.6 shows a cantilever beam which buckles due to lateral torsional buckling 
(Dowling et al. 1988). It happens with beams which do not have sufficient lateral 

stiffness or lateral support and which experience local compression leading to lateral 
torsional buckling. In that case, the beam may buckle out of plane of loading as 
shown in the figure. Two mechanisms are possible; the first is when the beam 

buckles by deflecting laterally and the second is twisting of the beam. Buckling of the 
beam can be divided as elastic buckling and inelastic buckling. When the beam 

remains in the elastic phase when it buckles, this type of buckling normally occurs 

with long span beams. There are cases when a portion of the beam is inelastic when 

it buckles, where this type of buckling normally occurs in short span beams. The 

moment at which the beam buckles is called its critical moment M^. The buckling

depends on the loading type, support conditions and any lateral restraint. Various 

solutions exist for different support type and boundary conditions (Trahair, 1993).
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Figure 2.6 Lateral torsional buckling of a cantilever beam (Dowling et al. 1988)

Elastic beams
There are many cases solved to determine the critical moment for lateral torsional 
buckling. As an example the cantilever beam with load at the end is discussed here.

M^ for a cantilever beam with a concentrated load applied at the end of the beam 

acting at a distance below its centroid is given as (Trahair, 1993)

= 11^ 1 + 1.2c
V(l + 1.2'c')j^ A{K-2} 1 + 1.2(c-l)

V(l + 1.2'(c-0.l)')
^ 2.30

where
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Here E is Young’s modulus of elasticity, is second moment of area about the Y- 

axis, G is the shear modulus, J is torsion section constant, 1^ is warping section 

constant and L is the length of the bar.

Inelastic beams
In short span beams, yielding occurs before the beam reaches its ultimate moment 

capacity and it happens that some portion of the beam is inelastic when buckling 

commences. For these cases, the equations for the elastic beam are not valid. 
These cases are dealt in detail by Trahair and Bradford (1988), Nethercot and 

Trahair (1976) and Trahair (1983) and are not discussed here as they are not 
relevant to the current research.

Bracing effects on lateral torsional buckling
The purpose of providing bracing for the beam is to reduce the loss of strength 
through instability. Bracing sub divides the original unbraced span into shorter 
lengths restraining the compression flange against lateral torsional buckling. As the 
beam is practically neither straight nor free from lateral deformations or twist, some 

force will be induced in the bracing system. The force will normally be quite small but 
it considerably increases with the load carrying capacity of the beam section.

2.5 THEORY OF TORSION 
2.5.1 Elastic Analyses 
Uniform Torsion 

Circular cross-section

The basic theory of the torsion of prismatic sections is restricted to elements with a 

circular cross-section (Johnson and Mellor, 1973). They referred to the theory which 

was first presented by Coulomb in 1784 and comprises the following equations

T
- = G0 
J

2.31(a)
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- = Ge 2.31(b)

where T is the applied torque, J the polar moment of area, G the shear modulus, 

9 the angle of twist per unit length of the bar, r the shear stress on a transverse 

section at a radius r from the longitudinal axis of the bar.

Rectangular cross-section members
In the case of uniform torsion of a rectangular member, the above equation is still 

valid. The only difference is the J value which is a torsional constant which can be 

evaluated using

J =
h^b

1--
192 nnb 2.32

In this equation, h and b are the cross-sectional dimensions of a rectangle and h>b.

I-Section members
An I section can be considered as composed of three rectangular plates. Therefore 
Equation 2.32 can be used to determine the torsional constant. In this case the 

torsional constant for both flanges and web are obtained separately using the 

equation by treating them as rectangular sections and the torsional constant of the 

three are summed to obtain the torsional constant of the entire section.

Similar exact solutions exist for elliptical and equilateral triangular cross-sections. For 

complex cross-sections, the exact solutions are difficult to obtain and Prandtl’s 

membrane analogy can be used to obtain the approximate solutions (Boresi and 

Schmidt, 2003).

Prandtl’s membrane analogy
This method is known to be effective for complex cross-sections. It is based on the 

similarity of the equilibrium equations related to membrane behaviour which is
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subjected to torsion and lateral pressure. This method is rarely used nowadays to 

obtain the solution of torsion problems of different cross-sections, although the 

details of the solution are given by Prandtl (1903).

St Venant’s torsion
St Venant presented the theory of uniform torsion for which he gave the solution of 

the classical torsional problem and applied to different cross-sections (Boresi and 

Schmidt, 2003) to obtain the shear stress distribution. For circular cross-sections it 

results in Equation 2.31. For an l-section (details of the elements of l-section is given 
in Figure 2.7(c)), the stress distribution for St Venant’s torsion is depicted in Figure 

2.7(a).

a) St Venant’s torsion shear stress distribution due to uniform torsion 
(Yang and Fan 1988)

D

JT

i 1
(a) Section (b) Flanges (c) Web

b) Mitre model shear stress distribution due to uniform torsion 

(Billinghurst et al. 1992)
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XX-Axis XX-Axis

(c) Local coordinates, elements of l-section, positive coordinate system with 
direction of positive forces
Figure 2.7 Shear stress distribution due to uniform torsion for an l-section

Mitre model
Another solution exists for the uniform torsion of steel members as given by the mitre 

model depicted in Figure 2.7(b). Both elastic and inelastic types of behaviour are 
considered. In the solution, the shear strain distribution in steel members under 

uniform torsion is considered by developing a mitre model for circular, rectangular 
and l-sections (Billinghurst et al. 1992). The elastic torque/twist relationship is 
predicted with high accuracy. The shear stress distribution for an l-section for the 

mitre model is given in Figure 2.7(b). Considering the solution for an l-section 

(details of the elements of l-section is given in Figure 2.7(c)) using the mitre model, 

the maximum elastic flange stress and web stress are given as:

T/max = GtfOa^ and = Gt^Oa^ where or, is defined below.
»

The torque stress resultant Tis given as (Billinghurst et al. 1992)

T = rf max

2b,t] ^ ^ (t'f-tln)

3C 4C
2.33

where
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or, =
J

2b,t] ^ (D-2t,Y, ^
f

In the above, 7 is a torsional constant which is closely approximated by

J =
2b rtf'-f (D-2i,y.

+ ~0.42/

where

or

2
{t 10.1

Jf.
+ 0.03

Jf ^

2 f \
t

0.25
Jf y

+ 0.53
Jf >

for 0<t^/t^ < 0.6

-0.175 for 0.6<t^/tf <1.0

Non-Uniform Torsion 

l-Section with one end restraint
An l-section tends to warp when subjected to a torque. When an l-section warps the 
flanges bend in two different directions. However, if the l-section is restrained at one 

end, torsional moment is resisted by the warping rigidity of the two flanges acting as 

beams parallel to the xy plane (Figure 2.8) and is also resisted by the torsional 

rigidity GJ of both web and flanges. At a small distance from the restrained end, 

partial warping takes place and the twisting moment may be considered to be made 

up of two parts (Boresi and Schmidt, 2003). One part is due to the twisting moment 

which produces warping on the section in the absence of end restraint. The 

second part is a twisting moment T produced by lateral shear forces. 

Mathematically the total twisting moment T' can be written as the sum of both the 

moments as (Boresi and Schmidt, 2003):
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T' = T^+T 2.34

where and T can be obtained as (Boresi and Schmidt, 2003)

T = Tiw ■' 1-
cosh(L -x)/a 

cosh{L/ a)
2.35(a)

a =
h El,
2\JG

where E is the Young’s modulus and 4 is the second moment of area about the Z- 

axis (as indicated in the figure).

T = JG0 2.35(b)

Figure 2.8 Torsional behaviour of beam when one end is restrained (Boresi 
and Schmidt, 2003)

When the flange is restricted against warping it will create a lateral bending moment 

in the flanges, where the moment is a maximum at the restrained end and can be 

obtained as (Boresi and Schmidt, 2003)
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T L
^Zmax =-ataiih- 

h a
2.36(a)

The maximum rotation p occurs at the free end and is given as (Boresi and 

Schmidt, 2003):

JG
r , L\
L-a tanh —

a)
2.36(b)

The maximum stress r is calculated as (Boresi and Schmidt, 2003)

=2TblJ 2.36(c)

In the above equations L is the length of the beam, x is the distance from the 

restrained end of the beam

l-section with both end restraint
There are cases when an l-section is restrained at both the ends, as depicted in 

Figure 2.9(a). In that case, the maximum lateral bending moment and angle of twist 
at one end can be obtained as (Boresi and Schmidt, 2003)

= —crtanh—, P = — 
h 2a JG

\

L-2a tanh —
V 2a y

2.37

K-1

Figure 2.9(a) Beam subjected to torsional restraint at both ends (Boresi and 

Schmidt, 2003)
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2.5.2 Non-linear Analyses 

Uniform Torsion
The simplest solution in non-linear torsional analysis is given by Nadai (1950) called 

the Sand Heap Analogy. In this method a roof of constant slope is obtained by 

placing a heap of dry sand over the cross-section for which torsional capacity is 

required. The constant slope represents the total shearing stress at a point and is 

physically interpreted to be the maximum slope at a point in the membrane surface. 

The torque is thus obtained by the product of the volume of sand heap and the slope 
of sand heap which is the shear stress Sand heaps are useful especially when 

section shapes are difficult to handle mathematically. For different sections, the 

plastic torque obtained using the sand heap analogy are

For a circular section, Tp = —Tta^r^, where a is the radius of circle.

For an equilateral triangle, Tp = —a r^, where 2a is the side of the triangle.

For a rectangular section, Tp = -, where a and b are the dimensions of a

rectangle where b>a.

Figure 2.9(b) Constant slope roof indicating full plastic yielding across each 

section in Sand Heap Analogy
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For an l-section, Tp can be obtained by considering it as composed of three 

rectangles and using the formula for a rectangular section three times, from which its 

Tp can be determined. Based on the mitre model, inelastic uniform torsion of an I- 

section can also be calculated as discussed in Billinghurst et al. 1992.

Non-Uniform Torsion
In both the approaches of the sand heap analogy and the mitre model it is assumed 

that the section is free to warp. This situation is not always practical because any 
element of a structure can be restrained at its end, especially l-sections where 

members subjected to torsion may well be prevented from warping. Several 

solutions exist for such problems where the end is restricted. The earliest such 

solution is an expression for the torque to cause full yielding of the section under 

a warping restraint condition for a cantilever, given as

T„=Tp+M^hlL 2.38

This expression was first proposed by Dinno and Merchant (1965) for cantilever 

beams subjected to applied torque at the free end, as an upper bound value to T^. In

this equation Tp is the sand heap torque for the entire section, Mp is the full 

plastic bending moment in one flange about the Z-axis, h is the distance between 

centroids of the l-section flanges and L is the length of the beam.

The above expression for the torque at the free end is assumed to be the sum of Tp 

and a torque which is due to a differential bending mechanism. The net force in each 

flange causes a plastic hinge at the restrained end of the beam. This equation 

approaches the Tp value as the length of the beam approaches infinity.

In the above approach to the torsion mechanism using the sand heap analogy, 

torque and moment hinge formation in the flanges are assumed. In another 

approach, it is considered that the web is only subjected to the sand heap torque
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whereas the flange is composed of an interaction of the sand heap torque, 

transverse bending moment and shear force. This approach proposed by Augusti 

(1966) is based on assumptions regarding the relationship between the torque 

applied and the length and section dimensions. For this solution it is found that this 

approach always gives a torque less than that given by the previous approach.

In another approach (Boulton, 1962) a solution was obtained for l-section beams 

restrained at one or both the ends. In this approach, a system of stress distribution is 

assumed which has resultants in equilibrium with the applied torque and bending 

moment. The stress distribution was such that it does not violate the yield criterion at 
any point of the section. The solution was obtained for the case when torsion is 

applied in combination with bending about the major axis. A particular solution for the 

pure torsion case was obtained from the more general solution when major axis 
bending was assumed to be zero. The equation which leads to the solution in the 
pure torsion case is:

IT_ 2l

VT^M^^h
tan -1 2

r,-l
-Po 2.39(a)

where

f
r, =cosy9„

2 A., hr..
■ + 1 2.39(b)

In the above equations, / is the length of the beam, v = p3/2 a factor derived for 

Von Mises yield criterion (as discussed in the reference), is the plastic moment
capacity of the section about the X-axis, r is the yield value of shear stress,

T /h = bj-+0.5t/j cosy^^ = 0.15f. Using both these equations, a
/ p

theoretical curve is obtained as depicted in Figure 2.10 from which a value of tj can 
be calculated.
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Figure 2.10(a) Pure torsion can be obtained based on a value of

(Boulton, 1962)

IT„

vTyM^^h

Figure 2.10(b) Torsion against rotation for the beam specimen tested by Dinno 

and Gill (1964)

Figure 2.10(c) Torsion against rotation for the beam specimen tested by 

Farwell and Galambos (1969)
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Figure 2.10(d) Wagner strains (Pi and Trahair, 1995)
Figure 2.10 Torsion experimental results, pure torsion graph by (Boulton, 
1962) and Wagner strains

The cases which have been discussed up to this point are those in which the section 
is restrained at one or both the ends. There can be several other cases with different 
boundary conditions for which the torsional response of structure is required. A 
method has been developed (Pi and Trahair, 1995b) for plastic collapse analysis to 

predict plastic torsional collapse loads for different boundary conditions. In this 
method, a load factor at plastic collapse of a member in torsion is obtained. 

Independent analyses are undertaken, that no interaction at plastic collapse is 
assumed between uniform and warping torsion. In the analysis, the collapse load 

factor for the uniform torsion factor and warping torsion factor are obtained

separately and the actual plastic collapse load factor is approximated by the 

following equation

X — X ~i~ Xp up '^'-wp 2.40

These factors are obtained as follows:

Uniform torsion plastic collapse
A mechanism is assumed for different boundary conditions in which the collapse 

mechanism develops when a sufficient number of cross-sections of the member 

become fully plastic. The locations of the fully plastic sections are usually where the
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reaction torque acts i.e. at the support. Load factors for different boundary conditions 

and loadings are given in Table 2.1. In the second column of the table, the diagrams 

shows the collapse mechanism i.e the dashed line is the new position of the 

remaining beam sample after hinge formation.

Warping torsion plastic collapse
When warping torsion is the only method of resisting the applied torque, it is 

assumed that a collapse mechanism develops in which a sufficient number of 
warping hinges form as a consequence of which the member turns into a 

mechanism. Load factors for different boundary conditions and loadings are given in 

Table 2.2.

Membcn <ad Loadiap ColUptc Mechukum

T/t T/L

s—xr)00
T/L

T/L T/L T/L
T

----K I 000^----^
T/L T/L

T

Table 2.1 Cantilever with mechanism formed due to uniform torsion (Pi and 

Trahair, 1995b)

In the table the load factor for warping torsion is related to M, d, T and L where 

Mis the flange plastic moment given as M= (Tybjtf /4, d = b^+tj-, T is the 

applied torque and L is the length of the member.
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Meabcn and Loading* CoUajxe Mechasitm ■wp

TIL

T/L

2M^h
TL

T/L
2M^,h

TL

X-f)f)QX
T/L

SM^h
TL

TIL
]L66M(^b

TL

T/L

16M^h
TL

T/L
IL66M^b

TL

I OO'Ts:----K
TIL

16M^,h
TL

Table 2.2 Cantilever with mechanism formed due to warping torsion (Pi and 
Trahair, 1995b)

Numerical method for non-linear analysis of torsion
For an l-section, elastic-plastic torsional behaviour has been analysed numerically by 

developing a finite element model (Chen and Trahair, 1992). For uniform torsion, 

strain due to the mitre model was considered, whereas for non uniform torsion, the 

effects of warping and Wagner (Direct strains in the longitudinal direction 

perpendicular to the cross section, which appear at large rotations as depicted in 

Figure 2.10(d)) are considered. The finite element results obtained were compared 

with the result obtained by Merchant (as discussed above) for the cantilever case 

and a good correlation is made between both the results. The modelling was 

performed by Chen and Trahair (1992). However this model was improved later by 

Pi and Trahair (1995) which included an axial shortening (AS) effect for the analysis
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keeping all the strains remain the same. The analysis shows good comparison with 
the experimental work performed by Farwell and Galambos (1969).

Experimental verification
To obtain the response of an l-section, two sets of experiments were performed 

independently by Dinno and Gill (1964) and Farwell and Galambos (1969). The 

difference between the experiments was the boundary conditions. The former 

researchers performed experiments on nineteen l-sections specimens in pure torsion 

to find the torsional carrying capacity. One of the results of the experimental result by 
Dinno and Gill (1964) is depicted in Figure 2.10(b). For all the experiments warping 

was restrainted at both the ends. It was found that the actual torsion at yield was 

higher than the predicted sand heap value. In the second case Farwell and 
Galambos (1969) performed five experiments to obtain the torsional carrying 
capacity of beam samples which were subjected to simply supported conditions that 
is the beams were restrained against rotation but free to warp at the end. All the 
experiments were performed for large rotations and only in one case did failure occur 
at a total angle of twist of about 200°. The torsion against rotation response when 
Farwell and Galambos (1969) achieved 200° rotation is depicted in Figure 2.10(c). It 
was concluded from the experiments that l-sections can sustain very large rotations 

before failure occurs and the actual capacities of sections were more than the sand 

heap value.

Warping effects of Torsion
In an l-section beam, torsion cause distortion of the plane section and it is called 

warping of the section. The warping of the beam accompanied by longitudinal normal 

stresses appearing in each flange of the beam (Vlasov, 1959). This longitudinal 

normal stresses is a system of mutually balancing longitudinal tension. This 

generalized force is called bimoment of the beam. For an l-section it creates moment 

in the flanges in two different direction and bimoment is the product of moment and 

the centroidal distance between the flanges. As moment of the flanges is multiplied 

by the centroidal distance of the beam, hence, its units are unit of moment multiplied

by the unit of length. Therefore in the current work its unit is kN.m^
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Secondary effects of Torsion
Two secondary effects which are the Wagner effects and axial shortening are 

discussed. The Wagner effect causes direct positive strains and occurs at large 

rotations. The distribution of Wagner strain for an l-section is depicted in Figure 

2.10(d). Axial shortening causes shortening of a member in torsion and it develops 

negative strains in a member.

2.6 INELASTIC MATERIAL BEHAVIOUR AND YIELD CRITERIA
2.6.1 Uniaxial Stress Strain Relationship
When a uniaxial tension test is performed, the change of response from linear elastic 

to inelastic can be abrupt or gradual (Bores! and Schmidt, 2003). Ductile materials 

like mild steel show an abrupt response when their elastic limit is reached. The 

stress level at this point is called the yield stress cr^. The stress-strain diagram for

such a response is shown in Figure 2.11(a). Such stress strain curves are difficult to 
use in the solution of complex problems, hence, an idealization of the response is 

made. The idealized curve is shown in Figure 2.11(b).

There are materials, such as steel alloys, for which the response is not abrupt but a 
relatively smooth decline of the slopes of the uniaxial stress strain diagram occurs as 

depicted in Figure 2.12(a). Yield stresses for those cases are arbitrarily defined as 

those stresses that correspond to a given permanent strain which remains upon 
unloading. The unloading is a path given by BB’, parallel to AA’ as depicted in the 

figure. Hence, such curves exhibit strain hardening in the initial plastic region. The 

stress strain curve for such a material might be idealized with a bilinear curve as 

shown in Figure 2.12(b).

There are cases when the deformation obtained for a material is so large that the 

elastic strain is very small compared to the total strain. For those cases, such a 

curve is modelled by a rigid perfectly plastic curve, as depicted in Figure 2.13(a). In 

the case of hardening, such curves are idealized as depicted in Figure 2.13(b).

39



I oading Loading

(a) (b)
Figure 2.11 Experimental and idealized stress strain curve for mild steel 
(Boresi and Schmidt, 2003)

(a) (b)
Figure 2.12 Experimental and idealized stress strain curve for steel 
alloys(Boresi and Schmidt, 2003).

2.6.2 Multiaxial stress state
Inelasticity can occur when a member is subjected to a multiaxial stress state. Under 

a multiaxial stress state, yielding is initiated at values other than individual stress 

components. All components of stress are combined into an effective uniaxial stress. 

This effective stress is compared with a material property (assumed to be some 

function of uniaxial yield stress) by a yield criterion to identify the commencement of 

the inelastic response.
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Continued

Continued 
► loading 

(plastic)

(a) (b)
Figure 2.13 Idealized curve for small elastic strain (Rigid perfectly plastic 

curve) (Boresi and Schmidt, 2003).

Yield criterion

A yield criterion can be any statement (usually in mathematical form) that defines the 
conditions for yielding to occur. It can be expressed in terms of some specified 

terms. For example, it can be expressed as the stress state, the strain state, a strain 
energy quantity or other. In mathematical form, a yield criterion is usually expressed 

by means of a yield function f, where

/ = /k;.<^,) 2-41

where / is a general form of yield function which express yield criterion in 

mathematical form. cr. ^ defines the actual state of stress and o-^is the yield stress 

in uniaxial tension (or compression). For a yield function, three conditions can be 

defined: first is when the yield criterion is satisfied 0, the second

condition is when the stress state is elastic /(cr,.^)< 0 and the third condition is

undefined /(cr,. ^,cr^)> 0. Unfortunately, no single yield criterion has been

developed that can predict yielding of brittle or ductile materials to such an accuracy 

that it can be universally used. Different parameters are used to define yield criterion 

of both ductile and brittle materials.
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The simplest approach adopted for yield criteria considers the maximum principal 

stress criterion(Boresi and Schmidt, 2003). This criterion states that “yielding begins 

for a material at a point when the maximum principal stress reaches a value equal to 
the yield stress in tension (compression)”. When a uniaxial stress state is

considered, yielding will occur when principal stress <t, reaches a value equal to cr^

. For biaxial stress states, it predicts yielding when o-j = in spite of the fact that 

other principal stresses o-^ also act at the point. This means that the criterion ignores 

the effect of principal stresses from other directions. Hence, it can be defined as

/ = max(|o-,|,|cr2|,|cr3|)-o-^ 2.42

The yield surface for the maximum principal yield criterion is defined by the locus of 
stress states, hence, satisfying the yield criterion; therefore the yield surface for the 
criterion is defined by relations

0-, = ±(7, , 0-2 = ±Cr^ , (T, = ±CJ, 2.43

The yield surface for this criterion consists of six planes which are perpendicular to 

the principal stress coordinate axes as depicted in Figure 2.14. This criterion was 
first given by Rankine, as referred in Boresi and Schmidt (2003) and is known as 

Rankine’s criterion. This criterion is applicable for brittle materials where materials 

fail by brittle fracture.

The previous criterion was based on principal stress and was simple to apply. There 

are certain criteria for brittle materials which depend on other different parameters, 

such as the one which depends on the maximum principal strain. According to this 

criterion, yielding begins when the maximum principal strain at a point reaches a 

value equal to the yield strain. In uniaxial strain it is stated that yielding begins when 

the maximum principal strain at a point reaches a value equal to =Sy.
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Figure 2.14 Yield surface of maximum principal stress yield criterion (Boresi 
and Schmidt, 2003)

Consider an isotropic material subjected to a biaxial stress condition; the maximum 

principal strain can be related to the principal stress as = {a^le\ 

Although this criterion predicts yielding in the form of magnitudes of strain, its yield 

function can be expressed in terms of stress. Assuming e, as the principal strain, it 

can be related to principal stresses as (Boresi and Schmidt, 2003)

V(J2 -VCTj) 2.44

Equating to s , the yield function can be obtained as:

/i = |(Ti --vaJ-a =0 2.45
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If it is assumed that the principal strain e, is not always the largest, then the other 

two principal strains and may have the largest magnitude and the additional 

possibilities can be written as;

= ^2 - '"^1 - vfTjl - (j = 0, /j = lo-j - VO-, - va-2| - (T = 0 2.46

This criterion as referred in Boresi and Schmidt (2003) is also called St Venant’s 
criterion. The yield surface for the maximum principal strain criterion considering the 

biaxial stress state is shown in Figure 2.15.

Another yield criterion proposed by Beltrami as referred to in Boresi and Schmidt, 

(2003) states that yielding at a point commences when the strain energy density at 
the point equals the strain energy density when yielding occurs in uniaxial tension (or 
compression). In terms of principal stress, strain energy density can be defined as:

^ + ^2 + 0-3 - 2y{cT,a, + o-.o-j + (72(73)] > 0 2.47

If considering a uniaxial stress state, where <7, = (7^,<72 = <t^ =0 the above 

equation reduces to

U = — 
2E

2.48

This criterion states that yielding is commenced when the strain energy density 

for any stress state equals . Therefore Equations 2.47 and 2.48 can be related 

to derive the equation as

af + + 0-3 - 2v((7,(72 + (7i(73 + = 0 2.49
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From the above equation it is evident that the yield surface for this criterion depends 

on the Poisson’s ratio and its shape varies with the Poisson’s ratio. The yield surface 

for the biaxial stress state for this criterion is depicted in Figure 2.16.

Figure 2.15 Yield surface of maximum principal strain yield criterion (Boresi 
and Schmidt, 2003).

There are certain materials where metal crystals have slip planes which offer low 

resistance to shear force. During to this, the yield criterion for such metals depends 

on certain limits of shear stress. Two such criteria are common (Boresi and Schmidt, 
2003). One states that yielding begins when the maximum shear stress at a point 

reached a value equal to the maximum shear stress at yielding for a uniaxial tension 

(or compression). The other criterion states that yielding begins when distortional 

strain energy density at a point reached a value equal to the distortional strain 

energy density at yielding for a uniaxial tension (or compression). Considering the 

first criterion, also called the Tresca criterion for a multiaxial stress state, the 

maximum shear stress is = (cr„, -cr ■ )/2 where and tr • are the 

maximum and minimum principal stress state respectively. The magnitude of
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maximum shear stress will be the maximum absolute value obtained from the 

following three equations:

r, = CT, -0-3 /2, r, = 0-3-gAH and t. = kr, -gAH 2.50

Figure 2.16 Yield surface of strain energy density yield criterion (Boresi and 

Schmidt, 2003)

Yielding for any of the following conditions under the multiaxial state can occur.

(Jj - 0-3 = ±(T^, (J3 - CTj = and fTj - 0-2 = +cr^ 2.51

Using the above equations, the yield surface for this criterion can be drawn in 

principal stress space, as depicted by the hexagon in Figure 2.17.

{a, 3 rr, «

Maximum shear-strass '\ 
crrtenon (Treses)

• Distortional energy density 
criterion Mises)

Figure 2.17 Yield surface in principal stress space for the Tresca and Von- 
Mises yield criteria (Boresi and Schmidt, 2003)
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The other yield criterion attributes to Von Mises, often called the Von Mises yield 

criterion. This criterion is related to distortional strain energy density at a point. In 

terms of principal stress distortional strain energy density, it can be defined as:

Uo =
(o-i -o-;)' +(cr, -0-3)^ +(0-3 

\2G
2.52

For a uniaxial stress state, cTi = cr,ctj = 0-3 = 0, if yielding takes place whence, 

distortional strain energy density at yielding for the uniaxial state is defined as:

f/^=o-;/6G 2.53

As the definition states, yielding occurs when distortional strain energy density at a 

point reached a value equal to distortional strain energy density at yielding for a 

uniaxial tension (or compression). Therefore Equations 2.52 and 2.53 can be 

equated to obtain the yield function for the distortional strain energy density criterion 

as:

2.54

where

Ji = --^[(^1 -0-2)' + (^^2 -0-3)' + (0-3 -cr,)'

Using the above equation, the yield surface for the distortional strain energy density 

criterion can be drawn which forms a cylinder that circumscribes the Tresca 

hexagon, as depicted in Figure 2.17.

In terms of the local coordinate system, J, can be defined as
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A [(o-.. - (T,,)' + ((j„ - (T„„ y + (o-„„ - (7,^)' ]+ (cr^^ + + cri)

Putting the value of J2 in Equation 2.54 and, for plasticity with, / = 0, gives the 

equation as

/ = —[(<T -(7 y+((T —G y+(cr -a )^]++ (7^ + (7^ )—= 0 2.55
J 2 LV 2Z ss / \ ss nn / \ nn zz f \ \ zj sn zn ) y

When a section is subjected to direct stress in one direction and a shear stress, then 

C7 » C7„„ » (T^„ ~ ^, which reduces the above equation to

■o-;=o 2.56

Under condition of pure yielding in shear, cr„ can be replaced by the yield shear 

stress ty which can be related to uniaxial yield stress err and the above equation 

reduces to

3r; = a; 2.57

2.6.3 Yield criteria for different sections
When a material is assumed to behave in a elastic-perfectly plastic manner, a plastic 

hinge forms due to bending moment at the plastic moment capacity M^ of a

section. When more than one force acts on a section, the resulting plasticized cross 

section is known as a generalized plastic hinge. For example, considering the 

simplest case when moment about one axis is acting on a section in combination 

with an axial force, then there can be different combinations of values of moment 

and axial force for which a hinge can form. The set of all such combinations of 

values can be represented graphically and is called a yield surface. A yield criterion 

for any section is first obtained normally, called the equation of the yield surface or
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interaction equation or equations. Yield criteria when any section is subjected to two 

forces or more are discussed presently.

Interaction equations when sections are subjected to two forces
Interaction of bending moment, and axial force

The simplest of such equations is for a rectangular section subjected to a bending 

moment M applied about a centroidal axis and axial force P. Its equation is given 

as (Jirasek and Bazant, 2002):
\2^ M

J
+ •

M, = 1 2.58

Other axial force and bending moment solutions were also given by Korn and 
Galambos (1968), Harung and Millar (1973) and Mrazik et al. (1987).

Several interaction equations have also been developed when combinations of two 
other forces are considered for different sections. For example, the solution for an I - 
section when biaxial bending moments are considered was given by Strelbitzkaya 
(1958) who gives a solution, in which forces cause two different stresses namely 
shear stresses and direct stresses. One such combination is that of the bending 
moment causing direct stresses while the associated shear force causes shear 

stresses. This combination is studied by many authors and is discussed presently.

Interaction of shear force and bending moment
Two approaches are adopted for the solution of an interaction equation of an I- 

section when a shear force and bending moment act on a section. In the first 

approach, only plasticisation of the web is considered, whereas the state of stress in 

the flanges is not considered. In the second approach, plasticisation of the entire 

cross section is considered, with the shear stress is only in the web or in both the 

flanges and web.

One such solution, based on the first approach, is given by Broude (1953). In the 

solution, a rectangular section is considered for the web, while shear stress in the
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flanges are ignored. An empirical equation of the solution for the interaction between 

applied bending moment M^ and applied shear force is given as:

M
\Mp j

+
^ 5 
\^XP

-a
p j V ^ xp J

= 1 2.59

In which a
2.9-2.1 P

1- P

where /? is the ratio of static moment of half the web area A^y on one side of the 

neutral-axis to the static moments of the entire cross sectional area on the same 

side. is the plastic capacity in shear.

Another solution was obtained based on the first approach. Here it was assumed 
that at a proportional increase of both types of stresses in the cross section, its 
plasticisation spreads from the web edges inwards and also outwards from the mid 

point. The point when both the domains are fully plasticized represent the boundary 

of the stress distribution. This solution, given by Juhas (1975) is not related to the 

current research and is not discussed further here.

Several solutions exist when the second approach is taken. The simplest solution is 

when shear stresses are only considered in the web, where the distribution of shear 

stresses and normal stresses in the web are assumed constant and are depicted in 

Figure 2.18. This assumption was considered by Heyman and Dutton (1954), 

Sobotka (1959) and Strelbitzkaya (1958). This assumption results in an interaction 

equation given by:
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1 + 4
^f^f d
t b bw w w

1-Jl-
C

\^xp y
= 1 2.60

Several solutions were developed for rectangular cross-sections as given by Broude 

(1953), Hodge (1959), Rzhanitzyn (1954), Snitko (1952) and by several other 

authors such as Sobotka, Strelbitzkaya, Juhas, Bezukhov, Zhudin and Neal as 

discussed in Mrazik et al (1987). Their solutions can be found in Mrazik et al (1987) 

but are not discussed here as the solutions were not directly relevant to the scope of 
the current research.

Interaction of bending moment and torsion
Bending and torsion actions on various sections has been studied by Gaydon and 
Nutall (1957) while for circular and tubular sections. Hill and Siebel (1951, 1953) 

presented solutions. Their solutions are not discussed further as they were not 
relevant to the scope of the current research.

Interaction equations when sections are subjected to three forces
Interaction of bending moment, axial force and shear force
This case is different from the previous case of bending moment and shear force in 
the sense that the neutral axis location now changes due to the addition of an axial 

force. However, the approach adopted will be the same as it also involves direct 

stress and shear stress.

In the case of an l-section both bending moment and shear force can be applied in 

two different ways. One is when the bending moment is applied about the major axis 

of the section and shear force is applied in the X direction: the second is when the 

bending moment is applied about the minor axis of the section and the shear force is 

applied in the Y direction. Both these cases will now be considered.
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r < r.

Figure 2.18 Distribution of shear stresses and normal stresses considered by 
Heyman and Dutton (1954), Sobotka (1959) and Strelbitzkaya (1958) to develop 
the interaction equation considering bending moment and shear force

When the bending moment, My, is applied about the major axis of the section and 
the shear force in the X-direction, in addition to an axial force being applied, the 
solution depends on the assumption that the shear stress is confined to the web 
only. Two cases can be arise:

a. ) The neutral-axis passes through the web

b. ) The neutral-axis passes through the flange

The distribution of normal and shear stress through the depth when the neutral-axis 

passes through the web is depicted in Figure 2.19(a). The stress distribution in the 

web consists of a constant direct stress and shear stress distribution in the web. The 

distribution of stress in the flange is due to direct stress only. The direct stress and 

shear stress are related by a distortional strain energy density yield criterion given by 

Sobotka (1975), as follows:
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1 + ^

p
\^p J

= 1 2.61
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Here is the bending moment applied about the Y-axis of the section and is

the plastic moment capacity of the ^ection about the Y-axis.

XX-Axis

M

Neutral-Axis

P Sx

— O' (7
y y

a) Neutral-Axis intersects the web b) Neutral-Axis intersects the flange

Figure 2.19 An l-section subjected tJ bending about the Y-axis shear force and 

axial force. Distribution of normal and shear stresses when neutral-axis 

passes through the web and flange

The distribution of normal and shear stress through the flange when the neutral-axis 

passes through the flange is depicted in Figure 2.19(b). The same distribution of 

stress in both flanges and web will be valid except the neutral-axis is lying in the 

flange as depicted in the figure. A similar approach is adopted as in the previous 

case, to obtain the interaction equation, given as follows;
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M.
1 + 2 — (l + 25x.)-l tfiK

’ XA

-|2 ^
—(l + 25^)-l

M
= 1 2.62

yp 1 + 45XA
l + 2i- 

. Kj

where ^

In the case when bending moment is applied about the minor axis of the section 

and shear force in the Y-direction, in addition to an axial force, the solution depends 

on the assumption that the shear stress is confined to the flanges only. Again two 

cases can arise

a) . The neutral-axis passes through the web
b) . The neutral-axis passes through the flange

For the case when the neutral-axis passes through the web, the distribution of 
normal and shear stresses through the depth is depicted in Figure 2.20(a). A 
constant direct and shear stress distribution is assumed for the flange, whereas the 
distribution of stress in the web is only due to direct stress. A similar approach by 

Sobotka (1975) is adopted as in the previous case to obtain the interaction equation. 
The relationship is given by:

M.
M

• + ■

^Sf h

G b
y

1 + 2-
pf

pw y

In the above equation

f ^ f \ ̂sf ^ f
1 + 2

if
^ +2

(p ^^pf
2"

G hy w
P

PW J

P
\^p J

= 1 2.63
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and here, M^ is the bending moment applied about the X-axis of the section and 

is the plastic moment capacity of the section about the X-axis.

For the case when the neutral-axis passes through the flange the distribution of 

normal and shear stress through the depth is depicted in Figure 2.19(b). Similar 
approach is adopted as adopted in the previous case to obtain the interaction 

equation. The relationship is given as follows

M
+ -

1 + 2
P ^^pf

pw y

-12

-1

xp
+ 2

P ^
pV w y

K

^sf

K
+ 2 V

p
PW j

2.64

Several equivalent solutions exist for the case of a rectangular section. The earliest 
solution by Paltchevskiy (1948) is based on the stress distribution of normal and 

shear stress, with further solutions given by Sobotka (1975) and Smirak (1967), 

where they assume a different stress distribution as compared to Paltchevskiy. The 

solution of all the three cases are not relevant to the current research and are 

therefore not discussed further here.

In the case of an l-section both bending moment and shear force can be applied in 

two different ways. One is when the bending moment is applied about the major axis 

of the section and shear force is applied in the X direction: the second is when the 

bending moment is applied about the minor axis of the section and the shear force is 

applied in the Y direction. Both these cases will now be considered.
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Figure 2.20 An l-section subjected to bending about the X-axis and to shear 
force and axial force. Distribution of normal and shear stresses when the 

neutral-axis passes through the web and flange

Interaction of biaxial bending and axial force

Three approaches were adopted to obtain the solution for a rectangular section, all 

of which give exact solutions. In two of the approaches by Morris and Fenves (1969) 

and by Santhadaporn and Chen (1970) three neutral-axis patterns are assumed, as 

depicted in Figure 2.21. Based on these patterns, three equations are obtained from 

which yield surfaces can be drawn. These equations are:
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For the first pattern depicted in the figure the interaction equation is

+m^+ 0.15ml = 1 2.65(a)

valid for > (2 / 3)(1 - p), < (2 / 3)(1 - p)

For the second pattern

p^ + + O.lSml = 1 2.65(b)

valid for < (2 / 3)(1 -/?), w >(2/3)(l-p)

And for the third pattern

9
4

1--
m.

2(1-p)
1_.

2(1-p)
= 1 2.65(c)

valid form^ > (2/3)(l -p),m > (2/3)(l-p)

In these equations

p - - xp

—^ and ^
^ M

yp

In the other approach, the position of the neutral-axis is defined by an angle and a 

reference distance from the centroid of the section. For a series of these two 

parameters a set of forces are obtained from which yield surfaces are drawn. Details 

of the procedure are given by Chen and Atsuta (1977) and are not discussed here as 

it is not relevant to the current research.

57



Neutral Axis

1 St pattern 2nd pattern

Figure 2.21 Three neutral-axis patterns assumed for the solution of interaction 

equations of a rectangular section when biaxial bending is applied with axial 
force
Several approaches were adopted when the interaction relationship of an l-section 
for biaxial bending in combination with an axial force was derived. Both approximate 
and exact solutions exist, as shall now be discussed.

Two approaches were adopted for the approximate solutions, both of which are 
based on a lower bound approach. A lesser number of neutral-axis patterns were 
assumed as compared to the number of neutral-axis patterns required for the exact 
solution. The solution given by Morris and Fenves (1969) has five neutral-axis 

patterns, whereas the solution given by Santhadaporn and Chen (1970) has six 
neutral-axis patterns. Based on these neutral-axis patterns, equations of yield 

surfaces are obtained. These equations are not relevant to the current research and 

are not discussed here.

To obtain the exact solution for an l-section, first the exact solution of a rectangular 

section is obtained. To obtain the l-section yield surface, it is assumed that the 

section is made up of three rectangular sections. The forces in each rectangle are 

then determined for a given neutral-axis pattern. Then the forces are again 

determined by varying the position of the neutral-axis. Using this procedure, a series 

of sets of forces are obtained and the yield surface can be drawn (Chen and Atsuta, 

1977). Detail of the procedure is not relevant to the current research and is not 

discussed here.
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Yield surfaces of other sections, such as RHS and CHS may also be obtained both 

approximate and exact (as given by Chen and Atsuta, (1977)).

Interaction equations when sections are subjected to four forces
Interaction of biaxial bending, axial force and St Venant’s torsion

In this approach the distribution of shear stress due to St Venant’s torsion is taken as 
constant over the entire cross section but the direction of stress in each plate is 

opposite for each side of the plate as depicted in Figure 2.22. The full torque based 

on the distribution of shear stress can be written as;

N
Yjbit-r

’Y_ 1=1_____ 2.66

In the above equation summation is carried out for all rectangular plate elements of 

dimension x 1,. Therefore, the fully plastic torque can be obtained as

i=i 2.67

where is the shearing yield stress and the magnitude of torsional moment can be

obtained by a term t such that t = T Up = t It is assumed that the distortional

strain energy density criterion relating direct stress (obtained due to biaxial bending 

and axial force) and shear stress (obtained by torsion) is valid. As the section is 

subjected to direct stress in one direction and a shear stress Equation 2.56 is still 

valid and using the relation given by Equation 2.57, ignoring the subscripts in 

Equation 2.56 and writing shear stress in the form of “ T ” it can be written as

<T^+3r==c.;(=3r;) 2.68
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Using the above relationships, the following can be obtained.

— = =t
O',.

2.69

To include the effect of St Venant’s torsion on biaxial bending and axial force, 
Equation 2.69 is replaced in the interaction equation developed by Morris and 

Fenves (1969), thus:

p by , m^by and niyby 2.70

The yield surface thus obtained on addition of St Venant’s torsion is such that the 
domain of yield surface of biaxial bending and axial force is reduced by a factor

ViT t as depicted in Figure 2.23 This approach is applicable for an l-section.

rectangular section, RHS and CHS.

Assumed neutral 
axis crossing

Stress a

. .......

ah__^

Stress —a Shear stress r

yh j
sJ'Jcuiral axis
\ I

X
\

Figure 2.22 Shear stress distribution and neutral-axis pattern based on the 

approach by Morris and Fenves (1969)

Interaction of bending moment, axial force, bimoment and St Venant’s torsion
The warping of the beam causes normal stresses to appear in the cross section in 

addition to tangential stresses. These normal stresses form a system of mutually 

balancing longitudinal tension and lead to a generalized force. This generalized force 

is called the bimoment of the beam. For an l-section the Bimoment consists of
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bending moments for the flanges of the beam which for any l-section have the same 

magnitude for both the flanges but different directions.

ffl.

Figure 2.23 Two yield surfaces one before application of St Venant’s torsion 

and the other after its application

An interaction equation was developed (Strelbitzkaya, 1964) for an l-section subject 

to an axial force, P , a bending moment about the Y-axis, My, a bimoment B and a

pure torsion, T. Two neutral-axis patterns were assumed, one for direct stresses 

which is caused by P, and B and the other for shear stress which is caused 

by T. Two equations were obtained for the neutral-axis patterns which are then 

combined into one interaction equation based on the distortional strain energy 

density yield criterion. Details of this interaction equation are not related to current 

research and are not discussed here.
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Figure 2.24 Neutral-axis pattern for the stress distribution for the case when P, 

Mx, My and B act on the section (Mrazik et al. 1987)

Interaction of biaxial bending, axial force, and bimoment

An interaction equation has been developed for an l-section for P, M^, andX y

B by Strelbitzkaya (1964) based on the lower bound approach using the neutral- 

axis pattern depicted in Figure 2.24. The interaction equation is

M,

Mx,
M, IB.

2^// tf J

P-CJyA

IMxp
d+ d^--

(j ty “
Mx -Mx„ +X xp 2

Pd^
= \ 2.71

where in the above equation +t^d and = 0.5a / ..2
-U,

\

and Uw and Uf are the positions of the neutral axis with respect to centroidal X and 

Y axis.
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Intercation equations were developed for a Z-Section by Daddazio et al (1983) when 

P, MxMy and B are considered. Different neutral-axis patterns were assumed and 

interaction equations developed based on a lower bound approach.

Interaction equation when sections are subjected to five forces 

Interaction of biaxial bending, axial force, bimoment and St Venant’s torsion
Yield surface equations are developed for biaxial bending, axial force, bimoment and 
St Venant’s torsion for an l-section (Yang and Fan, 1988). Three neutral-axis 

patterns, as depicted in Figure 2.25 are assumed in order to develop the interaction 

equations. The salient features of each pattern are as follows:

(i) (ii)
(i) Axial strain (ii) Flexural strain (XX-Axis) (iii) Flexural strain (YY-axis) 
(iv) Warping strain
(a) Diagrams showing strain distributions due to different internal forces

Pattern-1

-cr

z «-

-a rv7:77

♦ a

□ »o-
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Pattern-2
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Pattern-3
(b) Three neutral-axis patterns
Figure 2.25 Strain distribution and three neutral-axis patterns for the yield 
surface for interaction of biaxial bending, axial force, bimoment and St 
Venant’s torsion

From Figure 2.25 it can be inferred that the neutral-axis is not a straight line. The 

reason is that in the presence of bimoment direct stresses developed in different 

direction in both the flanges which causes a change in the pattern of neutral-axis and 

result in a non-straight neutral-axis.

In the pattern the neutral-axis is assumed to pass through both flanges and web, 

as depicted in the figure. An important feature of this pattern is continuity of stress at 

the junction of the plates. As the stress changes its sign within each plate, the axial 

force acting on the web will always be less than its full plastic value in normalized 

form P2max • Mathematically it can be written as
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\P2\<P2. 2.72(a)

where pj is the axial force in the normalized form in the web.

In the right hand diagram in Pattern-1 the extreme case representing the total axial 

force in its normalized form p can be obtained as

P = P2r ■Pu 2.72(b)

This equation gives the maximum axial force in normalized form for this pattern. 

When the axial force gets smaller, a region of compression will develop in the web 
(as indicated by the arrow), and p will be less than that given by Equation 2.72(b). 

Therefore, p will always be less than that obtained by the equation for this pattern 

and thus the following inequality represents a sufficient condition for pattern-1 
yielding to occur

7^2 max -Pu 2.72(c)

One additional feature for this type of pattern is that the signs of the axial force in 

both the flanges are different.

The 2"'' pattern is a special case of yielding of the section where it is assumed that 

the web remains elastic while the flanges have become fully plastic. Although it 

violates the criterion of yielding because the web is elastic, it can be accepted as a 

valid yielding pattern because the web offers no resistance to bending moment about 

the minor-axis M^and 5 (as assumed in the development of the yield surface

equations). Hence, for this case, both flanges can plasticize while the web remains 

elastic.
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In the pattern it is assumed that the web is fully plasticized under the action of the 

axial force and no moment acts on the web. The extreme case of pattern-1 can 

also be taken as an extreme case for this pattern. Comparing Figure 2.25(1®’ pattern) 
to that of Figure 2.25(3'” pattern) indicates that the axial force acting on each plate in 

Figure 2.25(3'” pattern) will always be greater than that of Figure 2.25(1®’ pattern). 

Therefore, the relationship which was valid for the 1®’ pattern will be the direct

opposite limit for this pattern, that is, |/7| > /?2max “Amax ^^e necessary condition 

for yielding to this pattern.

Yield Surface Equations
Interaction equations can be developed for each neutral axis pattern considered but 

such an attempt to develop interaction equations is avoided here. Instead, it is 
assumed that an l-section consists of 3 plates, where each flange and the web 
represent a plate. A stress resultant acting on each plate was considered as a 
combination of compression (or tension) and uniaxial bending moment; hence, two 
forces act on each plate. Therefore, yielding of each plate can be obtained by a two 
dimensional yield curve and such a yield curve is called a component yield surface. 
For the top flange, web and bottom flange interaction equations for the component 
yield surfaces respectively are (Yang et al. 1989)

Sgn(m^ )(2r AM,) + pf (l + c^J +t^ =1 2.73(a)

Sgnim^)
V ^ y

tm2+ P2

, iV 2 + c

V c y
+ r =1 2.73(b)

Sgn{m2 )(2 tm2) + pI{i + c^ +r =1 2.73(c)

where m^,m2 and are the moments in normalized form applied to the top flange, 

web and bottom flange respectively. In the same way p^,P2 and p^, are the axial 

force in normalized form applied to the top flange, web and bottom flange
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respectively, 5'g«(x)=sign of x as previously defined and c = y, . The above/ Af

equation is valid for the first yield pattern.

The stress resultants for the entire cross section can be related to moments m^,m^ 

and Wj and axial force p-^,P2 and pj based on the equilibrium condition. 

Mathematically, they can be written as

P = Pi + Pi + Pi 2.74(a)

rriy =m^+ 2.74(b)

m. = {Pi- 4 +2c 
A Ac'

+ m-, 2.74(c)

b = 2.74(d)

In the above equation b is the bimoment in normalized form, p is the axial force in 

normalized form, m,, and m-^ are the normalized major bending moment about 

the local axis and t is the torque in normalized form. The above equations can be 

used to develop yield surfaces and identify formation of plasticisation. A procedure to 

determine the formation of a hinge and the development of a yield surface is briefly 
discussed in the next section.

In the procedure, yielding is first checked for the T'^ type of neutral-axis pattern. The 

reason for first checking the type of procedure is that only two stress resultants 

rtiy 6 are required to check the procedure (as both the forces exist when yielding

occurred for the second type) and this can be done by simply obtaining w, and 

values. If yielding is not found a check is made for the type of pattern. If the 1®*
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type is not found then a check is made for the 3^'' type of pattern. Details of the 

procedure are given in Yang et al. (1989).

For given values of p, , t and h using the yield checking procedure, the

allowable load can be determined. In this way, a series of values can be 

obtained for a series of values of p, m^, t and b. And two dimensional yield 

surfaces can be drawn with m^and m^on the X and Y axes respectively, the 

remaining stress resultants p , t and b, are kept constant. The yield surface for a 

standard steel W12 x 31 l-section is shown in Figure 2.26 as an example.

Figure 2.26 Developed yield surface for a W12 x 31 l-section for the interaction 

of biaxial bending, axial force, bimoment and St Venant’s torsion (=0) 
Interaction of bending moment, shear force, bimoment pure torsion and 

warping torsion

The interaction relationship for the l-section case when bending moment. My, shear 

force, , bimoment, B, pure twisting moment, and warping torsion, T^y, is now 

explored (Mrazik et al 1987). My and B cause normal stresses whereas S^, T 

and Ty. cause shear stresses The neutral-axis patterns assumed for normal stress
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and shear stress are depicted in Figure 2.27. Two equations are obtained, one for 
direct stress and the other for shear stress.

b)

ri(

— k

T

t '^P‘

.ji

T, 'l-i
T^t enlarged

11 ■p-t lint l;

C)

a) Neutral-axis pattern for direct stress b) Neutral-axis pattern for shear stress
Figure 2.27 Neutral axis pattern for the case when direct stress and shear 
stress act on an l-section for interaction of bending moment, shear force, 
bimoment, pure torsion and warping torsion

For direct stress, a quadratic equation is obtained as follows;
^ r ^

2 bftfd
<j----------- cr

t d

V

1 m:

K 4t^dK
= 0 2.75

2 J2

where K = 1-

follows:

tt.d
I6tjbj

. For shear stress, another quadratic equation is obtained as
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r'Z, -rT--
2d

= 0 2.76

where Z, = .bsilbj^tj +dtl)

Solving both the quadratic equations, normal stress and shear stress can be 
determined. These two stresses can then be related to each other by the maximum 

distortional energy density criterion for the case when one direct stress and other 

shear stress are considered as given by Equation 2.56.

Using a similar approach, equations for a channel section are obtained, as given in 
Mrazik et al. (1987). The equations are not relevant to the current research and are 

not discussed here.

Interaction equation when sections are subjected to six forces
Interaction relationship are obtained (Mohareb and Ozkan, 2004) for hollow 
structural square sections subjected to axial force, St Venant’s torsion, biaxial 
bending moments and biaxial shearing forces using a lower bound approach.

Similarly, interaction relationships are obtained for pipe sections subjected to axial 

force, biaxial bending moments, biaxial shear forces, St Venant’s torsion and internal 
or external pressure. Interaction equations are obtained based on a lower bound 

approach (Mohareb, 2002) and later confirmed by an upper bound approach 

(Mohareb, 2003).

2.6.4 Single Equation Yield Surfaces
A yield surface developed for any section can be based on many equations, where 

each equation represents a surface element of the yield surface. Based on the 

developed yield surfaces, mathematical equations can be obtained to fit the curves 

of yield surfaces (using a curve fitting technique). Curves thus obtained, have an 

equation and only one such equation which is used to fit the curve. The equation is 

called a single equation of the yield surface curves.
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The first such work has been generally for simple surfaces, such as in four 

dimensional parabolic and elliptic functions used by Wen and Farhoomand (1970). 

Unfortunately, for practical steel sections, such as the wide flange sections, such 

simplicity is not realistic.

Single equation yield surfaces are also developed for different sections for axial force 

and biaxial bending moments. For wide flange sections, the yield surface by Chen 

and Atsuta (1977) is used as a reference to obtain a single equation for the 

developed yield surface. The equation thus obtained by Oribison et al. (1982) using 
the curve fitting technique, is

+3.61 p^m], +3.6p^ml + =1 2.77

It was found during the study by Duan and Chen (1990) that analytical yield surfaces 
developed by Chen and Atsuta (1977) for different doubly symmetrical sections vary 
due to section properties. This variation was taken into account when a single 

equation was proposed for different wide flanges, thin walled circular tubes, thin 
walled boxes, rectangular and solid circular sections. A general single equation was 
thus proposed, using a curve fitting technique, which is valid for all the doubly 

symmetrical sections, thus;

(l - p^^ f" + (l - p^^ - (l - (l - = 0 2.78

In the above equation, parameters a^, a^, and depend on sectional shapes 

and area distribution. For example an l-section yields a =2, a=\.2 + 2p,X y r

P^ =1.3 and P^ =2 + \.2{a^ /^/)- For other sections, values of these parameters 

are given by Duan and Chen (1990).

In an attempt to develop yield surfaces for asymmetrical sections, Al-Bermani and 

Kitipomchai (1990) develop yield surfaces for angular sections. In the same work.
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single equation yield surfaces for circular hollow sections were also presented. Later 

Kitipomchai et al. (1991) developed single equation yield surfaces for 

monosymmetric and asymmetric sections.

2.7 EXPERIMENTAL AND NUMERICAL STUDIES FOR MULTI­
DIMENSIONAL FORCES
Several experiments were performed to determine the behaviour of cantilever I- 
sections and were compared with theory developed in the same research by 

Kolbrunner et al. (1978). In the experiments, loads were applied which imposed 

torsion and bending about the major axis. Theories were developed for elasto-plastic 
and perfectly plastic cases and the result were compared with the experiments. In 

the theory, for the elasto-plastic case, two possible distributions of normal stresses 
were assumed. In one case it was assumed that stresses at both ends of both the 
flanges reached yield stress whereas, in the second case, it is assumed that only 
one end of both the flanges reached the yield stress. It was found that in the elastic 
region the experiment and theory were in good agreement. It was also found that the 
hypothesis of linear distribution of strains both in the elastic and plastic region is 
valid. An ultimate limit load was calculated and it was found that the actual limit load 

was attained at a value of plastic strain five times that reached at the yield value. At 
loads more than the limit load significant changes in the geometry of the structure 

were obtained. It vjas also found that at high loads large rotations took place.

In another attempt a similar type of experiment was performed, where the beams 

were fixed at both ends (Kolbrunner et al., 1979). In the work the ultimate load was 

also predicted by two theoretical procedures. In the first procedure, it was assumed 

that the ratio between bending about the major axis and bimoment remained the 

same until the ultimate load of the beam was reached. In the second procedure, a 

step-by-step method was adopted in which gradation of loads were made at the 

formation of each plastic hinge, up to the point when it turned into a kinematic 

mechanism. Both the procedures are not directly relevant to the current research 

and are not discussed further here.
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Later the theoretical results were compared to the experimental results. It was found 

that in the elastic behaviour both theoretical and experimental responses matched 

each other very well. Ultimate loads obtained by the experiment showed good 

agreement with the step-by-step procedure. In this case, the distribution of strain 

was not linear in the elasto-plastic case. The beam showed a considerable amount 

of residual strain on unloading.

Six experiments on circular pipes were performed (Ozkan and Mohareb, 2003) to 

verify yield surfaces developed by Mohareb (2002). The load types applied in the 

experiments were shear force, bending and torsion. It was found from the 
experiments that the interaction equation developed by Mohareb (2002) gives a 

lower capacity than those obtained for the experiments. For diameter to thickness 

ratio less than 41 it was found that the interaction equations gave very good 
predictions. However, it is recommended in the conclusions that when the ratio is 
more than 41, more experimental work is required to be able to give conclusive 
design recommendations for use of the interaction equations for thinner pipes. Local 
buckling (LB) of the pipes was observed prior it reaching the peak load. It was found 
that local buckling is dependent on the ratios of bending, torsion and shear.

Elastic-plastic analysis of cantilever I-beams in bending and torsion were studied 

using finite element analysis by Bathe and Wiener (1983). Warping of the section 

was included in the analysis. Analyses were performed using the software ADINA. 

Different elements were used for the analysis and their capabilities to model 

accurately were compared. Elements used were rectangular cross section 2 noded 

Hermetian beam element, the 4 noded isoparametric beam element and the 9 noded 

isoparametric shell element. From the analysis it was concluded that 9 noded shell 

element yields more accurate stress distributions than the others. However, it was 

found that the isoparametric beam element can be used successfully to model an I- 

beam. Results were also compared for the torsion case with the Dinno and Merchant 

(1965) and the sand heap approach and good agreement was achieved between 

them and the analytical study.
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In an attempt to perform finite element analysis of an l-section subjected to biaxial 

bending and torsion, a finite element model was developed by Pi and Trahair 

(1994a). To develop the model fully, buckling and post-buckling were considered. In 

addition, an elastic-plastic constitutive matrix was formulated using Von Mises yield 

criterion, the associated flow rule and the hardening rule. Both uniform and 

nonuniform torsion in the inelastic range was considered. Using the procedure of 
finite elements, different analyses were undertaken which included large-deflection, 

in-plane, elastic and inelastic behaviour of columns and beam-columns; torsional 

behaviour of beams and beam-columns; the different nature of loading applied to 

beams; the effects of initial imperfections and twist on the lateral buckling strength of 
beams; and the flexural-torsional behaviour at post-buckling of beams (Pi and 

Trahair, 1994b). It was found from the study that the model developed gives good 
results for nonlinear analysis including post-buckling analyses.

Interaction equations for bending and torsion for an l-section were proposed based 
on a study of finite element analysis by Pi and Trahair (1994c). The effects of 
secondary bending about the minor axis which was caused by rotation of the beam 
sample is also taken into account. To develop the interaction equation effects of 

large deformations, material inelasticity, residual stresses and geometric 
imperfections are considered. Interaction equations are developed for an l-section, 

firstly for bending and free torsion and secondly for combined effects of flexural 

torsional buckling and destablizing torsion. It is found from the study that the 
interaction equation commonly called as circular (based on equation of a circle) for 

combined bending and torsion does not always give the lower bound solution when 

compared with current analysis.

A finite element model was developed by Hu et. al. (1996) for asymmetric cross- 

sections for coupled bending and torsion. The model developed can be used for both 

static and dynamic analysis.

Other studies have been performed in which both experiments are performed and 

are compared using finite element analysis. One such work was performed by 

Mohareb et al. (2001) for a pipe section. In this work seven experiments were
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performed to find out the deformational behaviour of full scale pipes subjected to 

axial load, bending and internal pressure. A finite element study was performed 

using the software ABAQUS to predict the behaviour of the pipe sample and to 

incorporate the effect of local buckling which was observed during the experiment.

2.8 CONCLUSION

In this chapter, three different approaches are adopted to the problem of non-linear 

behaviour of structures subjected to multi-dimensional forces. Firstly a theoretical 

development in which theories of thin walled bars and plasticity is presented. 

Secondly, flexural and torsional behaviour is discussed. Thirdly, yield criteria for 

structures subjected to different combination of forces are given.

From the study of torsion it is found that it is a complicated phenomenon which 
varies with different boundary condition and types of sections. Much theoretical and 
numerical study have been performed in this regard and the need is for more 
experimental work in this area for different boundary conditions. It is found that 
different modes of behaviour in the case of a beam subjected to flexure are studied 
in detail and are accepted widely in their application.

From the study of yield criteria of stress at a point, it can be concluded that the 
subject has been dealt with in detail for both ductile and brittle materials. When yield 
criteria for different steel sections are studied, it is found that their development is a 
complicated phenomenon. Different approaches were adopted to dealt with different 
section types. In addition, the complications are compounded when a section is 
subjected to multi-dimensional forces. Both the upper bound and lower bound 
theorems of plasticity were adopted. It has also been proposed by others that a yield 
surface can be represented by curve fitting technique. Useful and reasonably 
accurate equations can be developed based on this technique. It is concluded that 
this technique can also be used for other more complex yield surfaces to generate 
alternative single equations which can be a good representation of yield criteria.
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Considering a structure subjected to multidimensional forces, it was found that 
cantilever l-sections and other types of section have been used as case studies in 
numerical and experimental studies. From this, it is found that experiments when 
torsion is considered in combination with biaxial bending and axial force have not 
been performed and wide scope is available for research work in this area.

From the study of previous work it is found that there is need for extension of the 

previous work. These are:

a) . To develop a single equation yield surface for multidimensional forces including 
torsion for an l-sections for a large variety of cases.

b) . To develop the yield surface of an l-section for biaxial bending, biaxial shear 
force, axial force, bimoment and pure torsion.

c). To perform experiments for the case of biaxial bending and torsion in presence of 

axial force.

d). To establish the capability of the finite element method in modelling the 
exoeriment under multidimensional forces.
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CHAPTER-3

DEVELOPMENT OF A SINGLE EQUATION YIELD
SURFACE

3.1 INTRODUCTION
It has been shown in the previous chapter, that several yield surfaces have been 

developed by a lower bound approach and were verified by an upper bound 
solution. In this chapter, a single equation yield surface for biaxial bending and 

bimoment is developed using a curve fitting technique and is verified by a 

numerical method using finite element analysis. Different developed yield 

surfaces are also verified using the analysis. The verification process is also used 

to extend the single equation yield surface to fill the gaps which were present in 
the previously developed yield surface by Yang et al. (1989).

The development of the single equation is based on a curve fitting technique in 
which different types of mathematical equations are fitted to regressed yield 

surfaces developed by Yang et al. 1989. Firstly yield surfaces developed by Yang 
et al. are generated by writing a code in MATLAB. The group of sections 
considered for the development of the single equation are the Universal Beams 

listed in BS EN10056: 1999 sections. In the development of the single equation, 
the variations in the yield surfaces for the different l-sections are also considered.

A finite element study is performed using the popular software package LUSAS 

using four-noded isoparametric thick shell element (LUSAS Manual, 2001) for 

yield surface verification and extension. Single stress resultants are verified first 

followed by the verification of different combinations of stress resultants. The 

single stress resultants are verified to establish the capability of the finite element 

method in dealing with non-linear analysis, and to obtain a proper mesh size for 

the convergence criterion of the finite element model. In the case of yield surface 

verification, existing yield surface equations are verified for different combinations 

of stress resultants. Hence, an approach is developed to verify any yield surface 

using a numerical technique.
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Later the approach is used to verify and extend the developed yield surface The 
beam considered for the case study is a cantilever l-section beam with different 

dimensions and spans.

3.2 CODE IN MATLAB
MATLAB is both an environment and a programming language (Pratap, 2002) 

that allows development of programs and codes. MATLAB programs as either 

scripts or functions using data types, operators, expressions and statements, that 

is similar to programming languages such as C++. Object-orientated classes and 

objects can be created in MATLAB, or its built-in Java interface could be used to 

create and work with Java classes and objects.

Code in MATLAB is developed in order to generate yield surfaces and to check 

for yielding of cross sections.

3.2.1 Generation Of Yield Surfaces
Yield surface diagrams for different l-sections vary, and the variation is 
considered here in the development of a single equation. To investigate it, a 
series of yield surface diagrams are required, which is a difficult and time- 
consuming procedure. To generate a single point for a yield surface diagram, a 

detailed calculation is required, which includes use of different parameters and 
equations. Therefore, it was decided to use computational techniques for the 

development of the yield surfaces and a code in MATLAB is written to generate 

such yield surfaces. The code considers two types of yield surface equations: the 

equations by Yang et al. (1989) and the single equation developed in this work.

To develop the yield surface based on the procedure by Yang et al. (1989) a brief 

summary of the procedure on which code is written is given. In the code values of 

/7j, and Wj were first calculated using Equations 2.74(b) and 2.74(d). Using

Equations 2.73(a) and 2.73(b) and p.^ were calculated for obtained values of 

w, and Wj. Plus and minus signs assigned to the values of and p^, and

p^Bre calculated based on the equilibrium condition of the section using 

Equation 2.74(a). At this point the necessary condition for the first type of pattern 

is checked as discussed in the procedure by Yang et al. (1989). Based on the
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check using Equation 2.74(c) rriy is calculated. It is further checked as a 

sufficient condition for the first pattern and a necessary condition for the third 

pattern, and the positions of neutral-axes were finalised for the flanges. Now the 

possibility of a third pattern is checked and my is calculated using Equation 

2.74(c). This procedure used in the code given in detail by Yang et al. (1989) is 

used to calculate values of my for assumed values of b and m^. Using this

procedure a series of different values of niy b and are generated to develop 

yield surfaces for different l-sections.

Later the developed single equation was added to the code to compare the yield 
surfaces generated by the developed single equation with the yield surfaces 

generated by the work by Yang et al. for different l-sections.

3.2.2 Check for Yielding Of Section
The previously developed equations by Yang et al. (1989) and the now 
developed single equation are used in the code to check yielding of a cross- 
section. A cross-section will yield when, for any combination of stress resultants, 
it reaches a yield surface. If it does not reach a yield surface then the cross- 

section can be considered as elastic. If the combination crosses the yield 

surface, then the section can be said to be overstressed which is not deemed 
possible. The code for yielding of a section is developed so that it can be 

compared with the solution obtained by finite element analysis (as discussed 

later in this chapter). In addition, the procedure to determine yielding of a section 

can also be used for elastic-plastic analysis.

3.3 SINGLE EQUATION YIELD SURFACE FOR BIAXIAL 

BENDING AND BIMOMENT
A single equation yield surface considering biaxial bending and bimoment for an I 

section is developed for the Universal Beams in BS EN10056: 1999. The single 

equation developed in this work is developed to provide a better choice for the 

designer to use in the design of structural elements. There are two main 

advantages which it has over analytical approach. First it consists of single 

equation and the analytical equation consists of several equations, hence the 

matrix which identifies the formation of hinge in elasto-plastic analysis will have
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one column whereas the analytical approach has as many numbers of columns 

as the no of equations. This saves a lot of computational time. Secondly it can be 

useful because it provides tables for the design which can save time required to 

perform a rigorous calculation using analytical approach. In addition it can avoid 

chances of error in manual calculation which can occur during rigorous 

calculation.

The yield surface developed by Yang et al. (1989) is used for the development of 
the single equation. Using the computer code yield surfaces (developed by Yang 

et al. (1989)) were generated for several Universal Beam Sections. These yield 

surfaces were then curve fitted to obtain equations which represent the 

developed yield surfaces. Several types of equations were tried to best fit the 
yield surfaces and the equation which best fit the yield surfaces was taken to fit 

the curves of all the sections considered. The equation type which best fit the 
curves were used to curve fit all the sections to obtain one equation for each 
section. The obtain equations contained parameters each of which has a value 
for each section. All the values of each parameter were later linked by sectional 
properties and another equation is obtained to curve fit the parameters and link to 
the sectional properties. This procedure is repeated for yield surfaces for different 

values of bimoment. Another equation is curve fitted which links the parameters 

of previous curve fitted equations with the bimoment values. Yield surface graphs 
vary from section to section and this variation is considered here in the 

development of the single equation.

3.3.1 Yield Surface Variation
The variation of the yield surfaces of all the Universal Beams is studied. To 

illustrate the variation several yield surfaces are generated for minor moment

and major moment rtiy, depicted in Figure 3.1. In the figure moments in 

normalized form are given which start with a zero value to a maximum of 1. 

Values in normalised form are obtained by dividing the moments by their plastic 

moment capacities. From the figure it can be observed that yield surfaces are 

different for five different sections and this is termed a variation of the yield 

surface.
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Figure 3.1 Comparison of yieid surfaces of several i-sections under minor- 
axis and major-axis bending

Reasons for the Variation

It was observed previously (Duan and Chen, 1990) that the smaller the ratio of 

web area to flange area {A^/Aj^), the lower the yield surface. Hence, to

determine the reasons for the variation, different section properties are 

considered, to relate the yield surface variation with the sectional properties. Five 

ratios of the different sectional properties are considered. These are the ratio of 

web area to flange area (A^/ Aj-), the ratio of second moment of area about the

major and minor axes the ratio of polar moment of inertia to second

moment of area about the major axis the ratio of polar moment of

inertia to second moment of area about the minor axis (/„//^) and the ratio of 

first moment of area of the web about the major-axis to the first moment of area 

of the entire section about the major-axis It is found that the three

ratios of {A^/A^), and are closely related to the yield

surface pattern, whereas, the other two ratios are not significant. The ratios 

related to the pattern, for all the Universal Beam sections, are given in Table A.1 

in Appendix-A. In the table, sections are in sequential order of the pattern of yield 

surfaces, where the first section in the table has the upper yield surface, while the 

last section has the lowest yield surface. From the table, it is clear that the
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variation of the pattern exactly relates to the ratio of ), where a

decrease in the ratio is always related to a fall in the yield surface pattern. For the 

other two ratios of (A^/Aand (/^ //„) the pattern is not entirely related to the 

ratios, where on several occasions an increase in the ratio can be observed even 

for a fall in the pattern. The exact relation of the ratio with the yield

surface pattern is because of the relationship of the moments with the first 

moment of area. To calculate the moments, for and the first moment of

areas are calculated about the centroidal major and minor axes, and the resulting 

term is multiplied by a constant direct stress cr value to obtain the ultimate 

moments. For example to obtain the plastic capacities and Yang et al. 

(1989) use the following formulae:

yp

= (0.5A,b, + 0.25AJ.}^ , = (A,d + 0.25A,.b,)a 3.1

where d is the distance between the centroid of two flanges.

It can be observed in the formulae that the plastic capacities A^ and A^ are

multiplied by a distance (lever arm) to give the first moment of area, which is 

multiplied by direct stress to obtain the plastic capacities. The same procedure is 

adopted to obtain and values. In addition, bimoment is predominantly the

product of the first moment of area of the flange multiplied by the distance 

between the centre of the flanges and cr. Hence, for this reason, the 

dependency of a yield surface pattern is strongly related to the ratio of the first 

moment of area, thus the variation of the pattern of the yield surfaces is related to 

the ratio of

3.3.2 Curve Fitting Technique
A curve fitting tool available in MATLAB is used to develop the single equation. 

MATLAB has different curve fitting techniques (Pratap, 2002), which includes 

linear polynomial, quadratic polynomial, exponential type, Gaussian type, Fourier 

type, power type, rational type. Sine function, Weibull type and an option for the 

user to define a customized equation. A main equation is first selected, followed

82



by the selection of different equations to combine the various parameters of the 
main equation obtained for each of the sections considered.

Selection of the main equation

Different equations were tried to best fit m^,m^ yield surfaces for bimoment

values of 0.0, 0.2, 0.4, 0.6 and 0.8. The forms of different equations, which 

are selected for curve fitting analysis, are shown in Table 3.1(a) and the outcome 
of Root mean square error (RMSE) values are given for different values of 

bimoment in Table 3.1(b).

MATLAB gives an indication of the degree of fit of the curve in terms of RMSE, 

where a lower value of RMSE indicates a good fit (Pratap, 2002). Eleven 
Universal Beam sections of different section properties are randomly selected to 

obtain the best-fit equation for the single equation of the values of bimoment. 
RMSE values of different equations for all the eleven sections are obtained, and 
an average RMSE value is thus calculated for all the equations for the values of 
the bimoments, as shown in the table. From the table, it can be observed, that 
cubic polynomial and rational quadratic type have the least RMSE values (shown 

bold in the table) for different values of bimoments. However the rational 
quadratic type equation has lower RMSE values as compared to the cubic type 

for bimoment values of 0.2, 0.4, 0.6 and 0.8. Therefore, this equation type is 

selected as the main equation for the single equation yield surface.

This equation is modified by the term of (1 - b) to include the effects of 

bimoments. It is found that the addition of the term does not change the RMSE 

values.

The equation which is finalised for the single equation gives a very good fit for 

the curves considered and have very low values of RMSE. It can happen that for 

some curves it will not give a very good fit with high RMSE values but this format 

is also checked randomly after finalising the format and is reasonable and close 

enough for these curves also.

83



Equation Type Equation Format

1 Exponential /(x) = (3.exp(6x)

2 Exponential / (x) = a.exp(6x) + c.exp(<ir)

3 Fourier Type /(x) = - a, cos(xw) - sin(xw)

4 Gaussian Type /(x) = a,. exp(-((x - 61) / c, )^2)

5 Linear polynomial /(x) = /?iX + /?2

6 Quadratic polynomial /(x) = p^x'^l + P2X + P

7 Cubic polynomial fix) = p^x^3 + p^x^l + p^x + p,

8 Power-1 fix) = ax^b

9 Power-2 fix) = ax'^b + c

10 Rational-1 fix) = pfx + q)

11 Rational-2 fix) = plix^2 + q^x + q^)

12 Rational-3 fix) = jp/(x^2 + g',X^2-|-^2'^ + ^3)

13 Rational-4 fix)^iPxX + P2)lix + q)

14 Rational-5 fix) = ip^x + p^) /(x^2 + 9,x + ^2)

15 Sum of Sin functions /(x) = a, sin(Z7,x + c^)

16 Weibull fix) = aix^(6-l).exp(-ax^/j)

Table 3.1(a) Format of different types of equations tried to best fit the yield 

surfaces

The form of the modified equation is

= f{x) = {{p^x + P2) /(x^ + + ^2 ))0 - b) 3.2

In the above equation, x represents the normalized moment of a section about 

the major axis, whereas y represents the normalized moment of a section about

the minor-axis, and b is the bimoment of a section, while Px,P2-,<i\ 3nd are 

the parameters of the equation, which depend on the ratio of (5^^^!■
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Equation Type 6 = 0.0 6 = 0.2 6 = 0.4 6 = 0.6 6 = 0.8

Exponential 0.1298 0.107 0.1035 0.0696 0.0351

Exponential 0.0125 0.031 0.056 0.0184 0.0106

Fourier Type 0.0235 0.0464 0.0609 0.0429 0.0242

Gaussian Type 0.0517 0.056 0.0655 0.0414 0.0215

Linear polynomial 0.0631 0.0636 0.0765 0.0498 0.0251

Quadratic polynomial 0.0021 0.0332 0.0416 0.0244 0.0123

Cubic polynomial 0.0006 0.0306 0.0261 0.0157 0.0079

Power-1 0.1691 0.1244 0.1112 0.0739 0.0365

Power-2 0.1127 0.0853 0.089 0.0602 0.0316

Rational-1 0.1761 0.1405 0.1222 0.0835 0.0419

Rational-2 0.0915 0.0804 0.0828 0.0539 0.0271

Rational-3 0.058 0.0589 0.0646 0.0407 0.0205

Rational-4 0.0635 0.1163 0.0771 0.0501 0.0253

Rational-5 0.0025 0.0282 0.0131 0.0085 0.0043

Sum of Sin functions 0.0094 0.0667 0.0473 0.0259 0.0143

Weibull 0.1123 0.1033 0.0992 0.0675 0.0344

Table 3.1(b) Comparison of RMSE values for different equations

Parameters of the Yield surface for zero value of bimoment

Based on Equation 3.2, yield surfaces of moment about the major and minor 

axes for a zero value of bimoments are regressed for the sections given in Table 

A.1. For each of the resulting surfaces, different values of the parameters 

Pi,P2,(]\ and ^2 in Equation 3.2 are obtained. A relationship is developed 

between the parameters and the ratio S^). One of the graphs, depicted in 

Figure 3.2, is drawn to show the relationship between the parameter p^ and the 

ratio /5'„) for b=0.0 for all Universal Beams listed in BS EN10056: 1999

sections. Values of the constant parameters obtained from the curve fitting for 

each section are shown as a cross in the figure. Graphs of similar patterns are 

obtained for the other parameters of bimoment values of 0.0,

are shown in Figure A. 1(a).
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Figure 3.2 Constant parameter, f*, for b=0.00

These values of the parameters obtained are very strongly related to the 

ratio , using curve fitting on the equation in 3.2. Values of the

parameters p^,P2 and against are again regressed to obtain an

equation of the form .

y = /(x) = + a^x^ + a^x + a,. 3.3

In the above equation, x represents the ratio IS^), y represents the 

regressed values of parameters p,,/?2 <li while a,.are parameters, where 

/ = (l-4) for pj, / = (5-8) for p^ and / = (9-12) for q^. Therefore it results in 

five equations, one each for b= 0.0, 0.2, 0.4, 0.6 and 0.8 for p^,p2 and

Graphs showing the relationship between the parameters and the ratio 

/‘^«)for all the values of bimoment are shown in Figure A.1. For b=0.2,

0.4, 0.6 and 0.8 constant values of the parameter q^ are obtained for all the 

regressed yield surfaces for the sections selected. Efforts were made to obtain 

constant values of for b=0.0 but this was not possible for the yield surfaces
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regressed. Therefore, no graphs are required for the parameter for the 

bimoment values of 0.2, 0.4, 0.6 and 0.8 whereas for b=0.0 can be 

obtained by a linear equation given as

q, =0.3432jc-2.344 3.4

The constant values of q^ for values of b=0.2 , 0.4 , 0.6 and 0.8 are -3, -16, -16 

and -20 respectively.

The parameters of Equation 3.3 are further related by another equation, for all 
the values of bimoments. The equation which is used is a fourth order polynomial 

equation of the form.

T = /W = tux" + + /j,. 3.5

In the above equation, y represents the a. terms in Equation 3.3 for different 

p^,P2 and ^2 values whereas x represents the bimoment value, and 

are the constant parameters to be determined.

3.3.3 The Developed Single Equation
Repeatedly using the curve fitting technique discussed above, the developed 

single equation of the normalized bimoment h, and the normalized bending 

moments about the major and minor axes, and can be expressed as

(j>{h,m^,m^) = [ppn^^ p^-h)-mjqn] +q^m^ +^2)=^ 3-6

For all the four parameters. Equation 3.3 can be written as

Px = ISj^ ^)+^4)ai'“^2 3.7(a)

Pi ~ {^weh ^ ^xx ) ■*■ ^^6 {^web ^ ^ xx) + ^7 neb ^ ^xx)'^ )p2l ~ Pll 3.7(b)

87



^2 ~{^9{^weh ^ ^xx) ‘^wi^weh ^ ^xx) ‘^wi^web ^ ^ xx)'^^22 3.7(c)

Values of coefficients can be represented by Equation 3.5 and parameters as 

given in the table below

a,, +^4/^ + ^5/ 3.8

Values of p^^,P2i and ^21given in Table 3.2(a) while values of p^2^P22 

922are given in Table 3.2(b) for bimoment values of b=0.2, 0.4, 0.6 and 0.8, 

whereas for b=0.0 all the values of the parameters are one.

b=0.0 b=0.2 b=0.4 b=0.6 b=0.8

Pu 1 1.005 1.003787879 1.003933309 1.002291673

P21
1 0.994035785 0.990865756 0.990865756 0.987166831

^21 1 1.006183686 1.009072105 1.009072105 1.025

Table 3.2(a) Values of parameters p,pP2i ^21

b=0.2 b=0.4 b=0.6 b=0.8

Pn 0 0
(.07 *(.3669125-5..)) (.17 *(.3669125-5.))

0.2134811 0.2134811

P22 0 0
(.05062* (5. - .1534314)) 

0.2134811

(.14697* (5, - .1534314)) 

0.2134811

^22

(.011* (.3669125-(S'„)))

(.05*(5,-.261)) 

0.1054591

for ^0.261

for

5,, <0.261 = 0
(.17*(5.-.1534314)) (355*(5.-.1534314))

0.2134811 0.2134811 0.2134811

Table 3.2(b) Values of parameters P]2>P22 ^22 in which - ^web ! ^x

The constant parameters of Equation 3.8 are shown in Table 3.3.
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hi hi ^4i hi

5754 -9586 4605 -547.1 -3.658

«2 -7344 1.208e4 -5793 700.2 2.668

3542 -5781 2784 -350.4 2.292

a, -1652 2755 -1405 182.5 -2.87

-6481 1.04e4 -4974 599.3 3.393

7505 -1.204e4 5749 -699.9 -2.453

-3149 5071 -2413 304.8 -2.356

1400 -2345 1186 -154.2 2.88

«9 -1.131e4 1.762e4 -8141 977.5 3.338

^10 1.115e4 1.752e4 8170 -993.8 -.9956

-3635 5783 -2726 342.6 -2.767

«12 1380 -2305 1161 -150.4 2.813

Table 3.3 Parameters of Equation 3.8

Example
Consider a UB 762 x 267 x 147 section, where if b=0.0 parameters then aj to ai2 

can be found using Table 3.2 and Equation 3.8. When these parameters are 

known PpPj found using Equation 3.7, while ^,can be obtained

using Equation 3.4, based on the values obtained, which are

-1.96571, 1.968515, -2.23208 and 1.920563 respectively, yield surfaces can be 

drawn as depicted in Figure 3.3, compared to that of Yang et al (1989).

3.3.4 Yield surface diagrams
Using the single yield surfaces, prepared here for different l-sections, a 

comparison is made with the work of Yang et al. (1989). Yield surfaces of 

sections, which are considered, are shown in Figure 3.4. It can be observed in 

the figure, that yield surface diagrams obtained from Equation 3.6 are in good 

agreement with the previous solution (Yang et al. 1989).
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Equation 3.6 is a quadratic equation, is continuous, can be implemented, and it 

fulfils the criterion of convexity (Jirasek, Bazant, 2001). The equation can be 

easily implemented in an elasto-plastic analysis.

Figure 3.3 UB 762 x 267 x 147, single equation yield surface based on 

Equation 3.6 and yield surface developed by Yang et. al (1989)

3.4 YIELD SURFACE VERIFICATION
A procedure is developed to verify yield surfaces. Firstly single stress resultants 
are verified, then yield surfaces of biaxial bending and axial force, developed by 
Morris and Fenves (1969) and yield surfaces of biaxial bending, bimoment, axial 
force and uniform torsion by Yang et al. (1989) are verified. Later, using the 
verification procedure, the single equation developed in Section 3.3 is verified 

and extended to fill the gaps (for low niy values, as identified in Figure 3.4) which 

were present in the yield surfaces by Yang et al. (1989).

3.4.1 What is a Yield Surface Verification?

The procedure to identify a generalized plastic hinge used in elasto-plastic 
analysis is based on a beam-column finite element approach. In the analysis, 

yielding is assumed to occur in the element based on yield surface equations. In 

an elasto-plastic analysis the force and deformation relationship is related as 

(McGuire et al. 2000)

{rfF} = [[t,]+[*J{</A} 3.9
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where in the above equation, [A:^] is the elastic stiffness matrix, [A:^] is the plastic 

reduction matrix, and [£/A] = [c^aJ+ [c/aJ is a vector of incremental nodal point 

displacement, [^A^] is the elastic contribution to the incremental displacement, 

whereas [c^A^J is the plastic contribution to the incremental displacement. 

Further, for one node of a beam-column element represented as 1

K,j=^[c,] 3.10

where [G,] is the gradient to the yield surface at the point of yielding and A, is the 

magnitude of plastic deformation. [G,] can further be defined as

[Gj =

50
dF,
50
5M.

3.11

where, in the above equation, O is a stress resultant yield surface equation, Fi 

is the axial force at node 1 and M, is the moment at node 1.

In Equation 3.11, existing yield surface equations are used for elasto-plastic 

analysis, and are input in the equation to perform an elastic-plastic analysis for a 
beam-column element based on the input equations. Finite element analysis 
software, such as LUSAS or ANSYS, uses previously developed yield surface 

equations. For example, a cantilever beam made up of beam-column elements 

under the influence of stress resultants such as axial force and biaxial bending 

will form a hinge, based on the approach above, implemented by equations 

within the software.

If a yield surface equation is not described in the software then the beam analysis 

cannot use the equation for elasto-plastic analysis. Acknowledging this, a procedure 

is adopted in finite element analysis to verify yield surface equations whereby, for 

example, a cantilever beam is formed by the shell element. Forces are applied at the 

free end to produce different force actions at the fixed end. Hence, failure loads of 

the beam for different combination of forces can be determined. These forces or any 

combination of these forces at failure of a section are compared with the predictions
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of the single yield surface equation that is being considered for verification. In the 
verification process, the forces obtained by finite element analysis are used in the 

single equation (omitting any one stress resultant) to allow calculation of the value of 

the omitted force. Hence, the value of this omitted force is compared with the value 
calculated by the finite element analysis to verify yielding of a point on a yield 

surface. Using this procedure, yield surface equations of any type of section, such as 

L, Z, I or etc can in principle be verified.

Wv
rriv

(a)203 X133 x 25 (b) 305 X 165 X 40

ntx

niv
niv

(c) 254 X 146 X 37 (d) 127 X 76 X 13

Figure 3.4 Comparison of yield surfaces by Yang et al. (1989)] (shown in 

coloured) with Equation 3.6 (shown in black) From upper to lower curve 

different b values of 0.00,0.20,0.40,0.60,0.80 exist
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3.4.2 LUSAS and Finite Element Analysis
The finite element package employed for the verification is the London University 

Structural Analysis Software (LUSAS). This package, which is in worldwide use, 

is a large-scale multi-purpose finite element program for solving a variety of 

engineering problems. In LUSAS the model is a graphical representation, 

consisting of geometric features, which are points, lines, surfaces and volumes. 

The features in LUSAS form a hierarchy, where volumes are comprised of 

surfaces, which in turn are made up of lines, which are defined by points. 

Material properties, loading, support conditions and mesh size are assigned as 
attributes. Increasing the discretisation of the features usually results in an 

increase in accuracy of the solution, but with a corresponding increase in solution 

time and disk space required. All the analyses discussed in this chapter are 

performed in LUSAS. Advanced features of the LUSAS package are further 
discussed in Chapter-7, where experimental results are verified.

Different elements are available in LUSAS for modelling thin walled beams, but a 
4-noded isoparametric thick shell element is considered for three reasons. Firstly, 

it has an option in the analysis to consider both material and geometric non­
linearity. Secondly, this element adopts an assumed strain field for interpolation 

of the transverse shear strains, whose inclusion prevents the element from 'shear 
locking' when used as a thin shell element when the thickness of the element is 

considerably smaller than the other two dimensions. Thirdly, other elements in 
LUSAS require more nodes and degrees of freedom to achieve the two 

discussed objectives. For these reasons, this element is preferred to save time 

and cost of analysis.

For the non-linear analysis, the incremental/iterative procedure adopted for the 

analyses is a constant load level incrementation. A Newton-Raphson iteration 

procedure is adopted to obtain convergence of the solution at each load level. If 

loading fails to converge then a step reduction is allowed with a smaller 

increment in loading. The increment in load is applied automatically although a 

user-defined criterion that can be used to define an increment in loading for each 

load step. Termination criterion used for the analysis is based on a user-defined 

displacement.
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For the material non-linear analysis, the non-linear model used is a stress 

potential model applicable to a multi-dimensional axial stress state requiring the 

specification of yield stress in each direction of the stress state incorporating 

Von-Mises yield criteria (Reasons for the use of this criterion is given in Section 

4.4.7).

3.4.3 Finite Element Model Attributes 
Details of structures
Three cantilever l-section beams of spans4.39m , 5.00m and 1.24m are selected 

to verify yield surfaces for different combinations of active stress resultants. The 

section used for the 4.39m span is a 10UB29 beam, which was previously used 

by Pi and Trahair (1994) as shown in Figure 3.5(a), whereas for the 5.00m span, 

as shown in Figure 3.5(b), a sample section whose thickness is considerably less 

than the thickness of the 10UB29 beam is used. The third section used (which 
was tested in the experiments described in Chapters 5 and 6) is of lesser depth 
as compared to the other two, and is shown in Figure 3.5(c). Spans and 
dimensions of the beams are selected to fulfil the Vlasov’s (Vlasov, 1959) 
criterion of thin walled beams.

55 38nn

(a) 10UB29 Section (b) Sample section c) Experimental
section.

Figure 3.5 Details of cross sections of (a)10UB29 section, (b) Sample 

section and (c) Experimental section
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Mesh size and load application
For the analysis, an appropriate mesh size is required to meet the convergence 

criterion of finite element analysis. Different mesh sizes were examined, and a 

mesh size at which finite element results closely matched the theoretical plastic 

capacities of a section is selected for the verification. After several analyses of 

different stress resultants, it was decided to use a size of 0.01256m x 0.01463m 

for the 10UB29 section, 0.025m x 0.025m for the section, and 0.011m x 

0.0069m for the experimental section.

It was observed during the analysis that a reasonable distribution of load was 

necessary to avoid local failure at the point of application of load due to 

concentration of stress at the point. This is true especially in the case of 
application of an axial stress resultant, where large direct stresses are more likely 

to lead to local failure. Therefore, loadings applied were distributed uniformly by a 
trial and error procedure in which loads were applied to obtain failure of a fixed 

ended section. If failure was initiated at the point of application of the load instead 
of a section at the fixed end, then loads were further distributed uniformly. This 
procedure continued up to the point not when failure was initiated due to a local 
concentration of stresses at the load point, but due to failure of a cross section. 
Von Mises yield criterion, with an elastic-perfectly plastic material was used for 

the analysis.

3.4.4 Single Stress Resultants
Single stress resultant analyses are performed for three reasons. Firstly, to 

establish the capability of 4-noded isoparametric thick shell elements to 

adequately model material non-linearty. Secondly, to obtain the plastic capacities 

of the section and to compare them with theoretical values and previously 

obtained results. Thirdly, to use the obtained plastic values in order to obtain the 

normalized stress resultants in the process of yield surface verification.

Analyses are performed for all the active stress resultants. Plastic capacities for 

each stress resultant are obtained, and compared with theoretical values and 

with several published works in the case of torsion (Bathe and Weiner, 1983 and 

Dinno and Merchant, 1965).
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Results in the case of axial stress resultant vary by less than 2.0%, whereas 

variations for the cases of bending about the major and minor axes are between 

2.0% and 3.0%. The results are shown in Table 3.4. Variations for the cases of 

bending moments about both the axes are because of the element considered for 

the analysis, which has six degrees of freedom with local in plane bending of 

each element, transverse shear stress variation and out of plane bending, 

whereas while the theoretical plastic capacities are calculated based on the 
hypotheses of Euler-Bemoulli (Vlasov 1959), which states that plane section 

remains plane after bending and no out of plane bending and shear deformation 

was considered. Therefore, it can be said that the LUSAS result is more accurate 
than the plastic capacities because plastic capacities do not take into account out 

of plane bending, transverse shear variation. However the difference between 

both the results is not substantial.

Elastic-plastic small rotational torsional stress resultant
Torsional stress resultants are discussed separately due to the amount of 
previous work (Bathe and Weiner, 1983 and Dinno and Merchant 1965) in this 

area.
Elasto-plastic analysis for torsional stress resultants is a complicated 
phenomenon. Different researchers have dealt with it previously, but no exact 
analytical solution exists. In this work, analyses are compared with previous work 

to verify the capability of the element in dealing with torsional problems.

Different analyses results are summarized in Table 3.5. In the table, previous 

work by Pi and Trahair, 1995b, Bathe and Weiner, 1983, and Dinno and 

Merchant 1965 are compared with the current analyses. It can be observed that 

results for all the cases for different boundary conditions and spans largely match 

one another. A small difference in percentage terms between the finite element 

study by Pi and Trahair 1995b and the current analysis is observed. The last 

result in the table is that which was first analysed by Bathe and Weiner in 1983, 

and is reanalyzed in this study: the result obtained is seen to be near the 

previous result. The reason for the difference is the same as discussed 

previously that thick shell element take into account secondary deformations and 

variations of stress and is much more accurate.
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Stress resultants

Theoretical

result

Finite

element

analysis

Percentage

difference

Section

type

Axial force 1661.16kN 1678.55kN 1 UB29

Bending about major-axis 171.09kN-m 175.89kN-m 2.8 UB29

Bending about minor-axis 43.12kN-m 44.44kN-m 3.05 UB29

Axial force 1200kN 1217kN 1.42 Sample

Bending about major-axis 181.5kN-m 187.13kN-m 3.1 Sample

Bending about minor-axis 30.75kN-m 31.64kN-m 2.9 Sample

Axial force 316.152kN 322.45kN 2 Experimental

Bending about major-axis 12.10kN-m 12.35kN-m 2 Experimental

Bending about minor-axis 2.83kN-m 2.92kN-m 3 Experimental

Table 3.4 Comparison of theoretical plastic capacities with finite element 

analysis for axial force and biaxial bending

The differences in the results are because of the methodologies that are adopted 

for finite element analysis which include the selection of element, and selection of 
different non-linear analysis and iteration techniques.

The variation in the results when compared to the approximate approaches by 

Dinno and Merchant 1965 and Pi and Trahair, 1995b is due to the fact that in 

these approaches, warping was taken by the flanges whereas warping of the web 

was not considered. Warping of the flanges causes the two flanges to bend in 

different directions, and it has been mentioned previously that bending action 

causes a variation between 2.0% and 3.0%.

The results of torsional analyses using the thick shell element in LUSAS when 

compared with the analyses previously performed do not vary substantially. 

Therefore, it can be concluded that small rotational torsional analysis using the 

thick shell element in LUSAS can perform satisfactorily.
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S.No Type of Structure
Finite

element Previous work %age

analysis difference

kN.m kN.m

l-section, both ends

1 fixed of span 4.39m 16.8 16.1 (Pi and Trahair, 4.35

torsion applied at 1995b)

the centre

l-section, cantilever

2 beam of span 4.39m 4.85 5.2 (Dinno and 7

torsion applied at the Merchant, 1965)

free end.

l-section, torsionally

3 simply supported of 14.9 15.07 (Pi and Trahair, 1.15

span 1.93m, Loads 1995b)

applied at the centre

l-section, cantilever

4 beam of span 0.25m 34.91 36 (Bathe and Weiner, 3.1

torsion applied at the 1983)

free end

Table 3.5 Comparisson of torsional analysis of LUSAS with previous work.

3.4.5 Verification of 2-D yield surface using LUSAS
Different combinations of 2-D stress resultants for plasticization of a section have 

been verified using finite element analysis. Stress resultants considered are axial 

stress resultants P, bending about the minor axis bending about the

major axisM^^^. and bimoments B. For these four active stress resultants, there 

can be six combinations of graphs, which can be drawn for a 2-D yield surface.
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One such combination is a yield surface, where, pand are the

stress resultants in normalized form. This combination of yield surface is 

developed using finite element analysis and is verified with the theoretical yield 

surface developed by Morris and Fenves (1969). The section used is shown in 

Figure 3.5(b). The yield surface obtained in this study is developed from 23 

different combinations of P and stress resultants using material non-linear

analysis. Both the theoretical yield surface and that from finite element analysis 

are shown in Figure 3.6. In the graph on the X-axis is the normalized major 

moment , whereas on the Y-axis is the normalized axial load p at

plastification. From observing the graph, it can be concluded that the finite 

element analyses match the theoretical results very well.

Other stress resultant combinations are also verified. They are verified for the 

section that is used in the experiments as shown in Figure 3.5(c). Two different 

combinations of stress resultants are verified where two analyses for each of the 

different combinations of stress resultants are performed, namely for 

combinations of M. and , and P and M- .maj min ’ min

Using one of the LUSAS analyses results, theoretical values are calculated for 

the other value using the equations. Those calculated theoretical values are 

compared with the results obtained from LUSAS. The results compared in 

normalized form are shown in Table 3.6. It can be observed in the table that for 

the cases of and and P and results are very satisfactory.

Calculated theoretical values match well with the LUSAS results.

Figure 3.6 p-m^^j yield surface of the l-section.
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LUSAS Theory
S.No P my mz my mz

1 0.48 0.94 0.93
2 0.18 0.98 0.98
3 0.50 0.77 0.78
4 0.63 0.70 0.70

Table 3.6 Yield surface verification results for 2-D stress resultants 

3.4.6 Verification of 3-D yield surface

The approach, which was adopted previously, is extended to the verification of 

different combinations of three stress resultants. Yield surface equations, for 
which verification is sought are those by Morris and Fenves (1969). Satisfactory 

results are obtained, when full plasticization of a section for different 
combinations of two dimensional stress resultants are verified.

Axial force and biaxial bending stress resultants
In the case of axial force and bi-axial bending stress resultants, the section used 
for the verification is an idealized section of span 5.00m, as shown in Figure 

3.5(b). Results obtained are given in normalized stress resultant form in Table 

3.7. Results of p and obtained from the finite element analyses are used to 

calculate the theoretical values using the equations and are compared with 

the values obtained from LUSAS. Comparison of results indicates good 

agreement of theoretical values with the LUSAS results.

P "Jmin

^maj

LUSAS Morris and Fenves (1969)

0.51 0.85 0.35 0.32

0.33 0.86 0.46 0.45

0.16 0.95 0.46 0.42

0.08 0.62 0.74 0.72

Table 3.7 Comparison of yield surface by Morris and Fenves (1969) and 

LUSAS.
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Bimoment, axial force and major moment stress resultants

In the case of the combination of bimoment, axial force and moment about the 

major-axis, equations, which one seeks to verify, are from the approach by Yang 

et al. (1989). The experimental section in Figure 3.5(a) is used for the verification 

and details of the results are summarized in Table 3.8. It can be observed in the 

table that results obtained from LUSAS do vary somewhat. One reason for the 
variation was the assumption adopted by Yang in which bimoments are resisted 

only by the flanges, therefore the web doesn’t take part in the yielding and hence 
more major moment is required for the yielding of the web in LUSAS. Also the 

reason for the difference is the same as discussed previously.

p b
^maj m maj

LUSAS Yang et al. 1989

0.53 0.47 0.61 0.55

0.44 0.46 0.71 0.65

Table 3.8 Comparison of the yield surface by Yang et al. (1989) and LUSAS.

3.4.7 Verification of 4-Dimensional Yield Surface
The yield surface of an l-section by Yang et al. (1989) for biaxial bending and 

torsional stress resultants are to be verified. A summary of the results is shown in 
Table 3.9 for a sample section (Figure 3.5(b)), where a comparison is made with 

LUSAS results.

Finite element analyses in LUSAS are performed. These results show good 

agreements with theoretical yield surface and are well matching with the 

theoretical results.

3.4.8 Yield Surface verification procedure and the shell element
The use of the thick shell element (QTS4) for non-linear analysis was first verified 

for the simple cases. This element was then used to verify 2-D, 3-D yield 

surfaces and good results were obtained. Using it further, the 4-D yield surface of 

an l-section was verified and it was found that the parametric approach by Yang 

et al. (1989) is a good approximation.
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Different pre-existing theoretical yield surfaces are verified in LUSAS, and it 

appears that the FEA model reproduces with reasonable accuracy the theoretical 

predictions for a variety of sections and stress resultants types. It is concluded 

that 4-noded isoparametric elements can be used for material non-linear analysis 

and for verification of yield surface.

S.No P "^min b LUSAS
^maj Yang et al.

1989

1 -0.16 0.54 -0.29 -0.77 -0.76

2 -0.22 0.55 -0.34 -0.74 -0.73

3 -0.24 0.33 -0.30 -0.84 -0.83

4 -0.31 0.31 -0.26 -0.81 -0.80

5 -0.40 0.24 0.24 -0.77 -0.76

6 -0.43 0.46 0.41 -0.68 -0.67

7 -0.90 0.07 0.14 -0.14 -0.11

Table 3.9 Comparison of the yield surface by Yang et al. (1989) with finite
element results

3.5 EXTENSION AND VERIFICATION OF THE DEVELOPED 

SINGLE EQUATION YIELD SURFACE

3.5.1 Limitations at low rriy values
The yield surfaces developed by Yang et al. (1989) do not approach zero values 

for the moment about the major-axis rriy. The graph of the yield surface 

terminates before touching the YY-axis for maximum values of nix and a gap 

exists in the yield surfaces as indicated in Figure 3.4. This is due to the 

assumption, which was adopted by Yang et al. (1989) that the neutral-axis 

passes perpendicularly through the local longitudinal axis of both the flanges and 

web for the cases when neutral-axis passes through the web. When a 

perpendicular neutral-axis passes through any rectangular section (each flange 

itself is a rectangular plate) then the axial load contribution from the rectangular 

section remains the same for a fixed value of moment. This can be understood
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from the equation when moment and axial force acts on a rectangular section, as 

given by Equation 2.58, reproduced again here as

J

M
= 1 3.12

During to this, the contribution of the major moment from the flange remains 

constant (as it depends on the value of P which is constant). When an inclined 

neutral-axis is assumed for one flange, then the value of P varies for constant 

moment, as has been depicted in Figure 3.7 in which P varies for constant 

moment. Therefore, a series of P values can be obtained for constant moment 

and hence, this results in a series of different values of the component of major 
moment from the flange. This results in an ultimate value of major moment (when 
the contribution to the major moment from both flanges and web are added) such 

that it approaches a zero value for the major moment and results in a yield 

surface which does not have such gaps, as indicated by Figure 3.4. The P 

values of the flanges are summed to the P value of the web (which can be 

negative) and value of the other flange so that it results in a zero ultimate axial 
force.

Figure 3.7 Yield surface of a rectangular section for biaxial bending and 

axial force

3.5.2 Rise of curve if gap is filled

It emerges that the curve, if extended to fill the gap, will not rise even if the 

contribution of minor moment from the web is taken into account. To understand
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this consider the current approach by Yang et al. (1989) in which two equations, 

which are Equations 2.74(b) and 2.74(d), reproduce here, are used:

= /Mj + OT3 3.13(a)

Z) = m3 - m, 3.13(b)

The graph of Figure 3.4 is for a fixed value of b. Based on the fixed value it can 

be said that Equation 3.13(a) can have several values while Equation 3.13(b) can 

have only one value. Therefore m/ and m3 can vary but always satisfy Equation 

3.13(b). For example if b =0.2 is taken then whatever value m/ and m3 will have 

their difference must be 0.2. Therefore, now it is required to establish what 

values mi and m3 can have so that the maximum value of m^ can be obtained 

for the constant b value. The maximum contribution of mi and m3 can be 0.5 (as 

both flanges take half of the moment) for the case when a section is plasticised in 

the presence of m^ only. However as b =0.2 in that case the maximum m3 can 

be 0.5 and maximum mi can be 0.3.

Two possibilities can exist; firstly, when the minor moment contribution from the 

web is not taken into account. In that case m^ is obtained by Equation 3.13(a) 

keeping Equation 3.13(b). valid. As mx will be maximum as obtained by the 

equation and For example for constant b =0.2 it will be 0.8 based on mi=0.5 
and m3=0.3 so difference will give b=0.2 So it means for the case when web 

does not take minor moment into account the value of mx obtained by Equation 

3.13(a) is the maximum mx which can be achieved and gap is filled by a line of 

zero slope, if it is assumed that moment major moment will decrease.

A second possibility can arise when contribution of mx from web is considered. In 

that case Equation 3.13(b) will still be valid (because bimoment contribution is 

only from both flanges), whereas one component of web contribution to minor 

moment will add on the right side of Equation 3.13(a). The contribution to minor 

moment mx from the web is small (because of the small thickness of web) 

compared to the contribution from flanges to mx. Therefore the increase of mx
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when the minor moment is considered for the web is small compared to the case 

when the minor moment contribution from web is not considered. Therefore the 

gap will be filled with a curve with a slight increase of global nix value. This shows 

that when the gap is filled the increase of ntx value will not be substantial as 

compare to the case when the gap is not filled. This is further verified in finite 

element analysis as discussed in the next section.

3.5.3 Procedure to extend the yield surface

The purpose of the procedure will be to extend the graph given by Figure 3.4 to 

the edges (to fill the gap) based on the developed single equation and later verify 

the extended part of the graph using finite element analysis.

In the procedure, four Universal beam sections of BS EN10056: 1999 sections, 

which are 305 x 165 x 40, 254 x 146 x 37, 203 x 146 x 37 and 127 x 76 x 13, are 

selected randomly. The regions in the graphs of the yield surfaces for the 

sections where gaps exist is depicted in Figure 3.5. They can be extended using 

the values of niy in the region for a particular value of bimoment b.

Using Equation 3.6 graphs are extended as depicted in Figure 3.8. In the 

equation values of p^ and are calculated for constant values of b and 

all the obtained values are input in the equation. For low values of as for 

example in Figure 3.4(d) when = 0.2 the gap exists for all b values. 

Therefore, in the equation such low values of are input to obtain . In such

a way graphs are extended. From the figure it can be observed that on the 

extension of graphs to the edges of the YY-axis, it maintained a small slope 

indicating a very low rise in the values of rrix for the gap region. (This property 

was also observed when the developed equation was investigated for all the 

sections checked from the list of sections of BS EN10056: 1999 sections present 

in the graph. As discussed previously, when the gap is filled nix will not rise 

compared to the value when the gap is not filled and on that basis it can 

be said that the extension is reasonable, but this extension has to be 

verified. This extension is verified using finite element analysis and is 

discussed in the next section.
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3.5.4 Verification of the extended curves

The verification technique already discussed in the previous section is used to 
verify the extended part (which is extended based on the single equation 

developed). Several finite element analyses are performed for the extension. 

Values of the loading for the analysis are based on such a combination of 
bimoment and biaxial bending that the analysis will the yield values, which will lie 
in the extended region, that is, for low values of triy. If the results from the finite 

element analysis match the values of the extended part then the extension can 

be considered correct. The analysis is performed for all four sections.

Wv

(a)305 X165 x 40

1.0

0.8

0.6

0.4

0.2

0.0

(b) 254 X 146 X 37

rriv niv

(c) 203 X 133 X 25 (d) 127 X 76 X 13

Figure 3.8 Developed single equation yield surface (shown in black) after 

extension, compared with yield surfaces by Yang et al. 1989 (shown in 

colour). From the upper to lower curve the order of curve is for different b 

values of 0.0,0.2,0.4,0.6,0.8.
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Results obtained from the analysis for the extended region are given in Table 
3.10. Values of rriy obtained from Equation 3.6 and the finite element analysis are 

given. It can be observed in the table that both the results match each other 

excellently. Such an analysis is also performed for other sections and satisfactory 

results are obtained. However, yield surfaces of these four sections only are 

drawn, therefore only their results are summarized in the table.

Hence, it can be inferred from the results that the extension adopted for the yield 

surface curve is correct. Therefore, the single equation can be used even for low 
values of the major moment iVy hence filling the gap which was present in the 

previous approach by Yang et al. (1989).

Section type b my nix ntx Percentage

(LUSAS) Developed difference

equation

305 X 165 X 40 0.013 0.146 0.99 0.99 0.0

305 X 165 X 40 0.087 0.137 0.903 0.89 1.5

305x 165x40 0.212 0.119 0.777 0.78 0.4

305x 165x40 0.261 0.097 0.728 0.745 2.3

305 X 165 X 40 0.018 0.187 0.973 0.99 2.6

254 X 146x37 0.01 0.092 0.976 0.99 1.4

254x146x37 0.182 0.23 0.808 0.81 0.2

254x 146x37 0.074 0.208 0.916 0.93 1.5

254x 146x37 0.011 0.137 0.975 0.99 1.5

254x 146x37 0.028 0.164 0.968 0.98 1.2

254x146x37 0.097 0.17 0.893 0.91 1.9

203 X 133 X 25 0.024 0.29 0.99 0.97 2.1

203 X 133 X 25 0.023 0.17 0.99 0.99 0.0

203x 133x25 0.339 0.186 0.7 0.68 2.9

203 X 133 X 25 0.02 0.17 0.99 0.99 0.0

203 x 133x25 0.248 0.13 0.8 0.76 5.2

127 X 76 X 13 0.03 0.297 0.943 0.943 0.0

127 X 76 X 13 0.046 0.254 0.938 0.94 0.2

Table 3.10 Comparison of the yield surface of equation 3.6 and finite 

element analysis.
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Therefore, it can be concluded that the developed single equation and its 

extended portion can be considered as a single equation yield surface for 

bimoment and biaxial bending stress resultants. This equation, unlike the 

approach by Yang et al. (1989), is more complete and simple to adopt.

3.5.5 Verification of the yield surface

The developed yield surfaces and the yield surfaces by Yang et al. (1989) are 

verified using finite element analyses. The same sections are used for the 

verification as was used for the procedure to extend the yield surface. Details of 

the results are summarized in Table 3.11. It can be observed that the results 
obtained from LUSAS for all the analyses compare well with both the 

approaches.

Section type b nty nix nix nix Percentage

(LUSAS)

Yang et

al. (1989)
Developed
equation

LUSAS and
developed
equation

305x 165x40 0.022 0.63 0.68 0.68 0.675 0.7

305 X 165x40 0.672 0.287 0.535 0.53 0.52 2.9

305 X 165x40 0.026 0.541 0.741 0.74 0.74 0.1

305x 165x40 0.397 0.359 0.756 0.743 0.725 4.3

305x 165x40 0.499 0.331 0.696 0.68 0.669 4.0

254 X 146x37 0.018 0.933 0.359 0.39 0.38 5.8

254x 146x37 0.099 0.838 0.47 0.48 0.46 2.1

254x 146x37 0.021 0.803 0.537 0.54 0.53 1.3

254 X 146x37 0.039 0.685 0.635 0.64 0.629 1.0

203 X 133x25 0.031 0.47 0.802 0.78 0.784 2.2

203x 133x25 0.036 0.37 0.85 0.83 0.836 1.7

203 X 133 X 25 0.04 0.588 0.74 0.72 0.713 3.8

203 X 133x25 0.535 0.45 0.57 0.51 0.55 3.6

127 X 76 X 13 0.041 0.433 0.794 0.792 0.79 0.5

127x76x 13 0.036 0.33 0.846 0.847 0.844 0.2

Table 3.11 Comparison of the Single equation yield surface and the yield 

surface by Yang et al. 1989 with the finite element analysis.
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This verification process concludes that the developed single equation yield 

surface is a good representation of the yield surface for bimoment and biaxial 

bending of a thin walled l-section. The developed yield surface also fills the gap 

that was present in the previously published yield surfaces and it can be used for 

elasto-plastic analysis of structures.

3.6 CONCLUSION
In this chapter a single equation yield surface for biaxial bending and bimoment 

stress resultants has been developed for thin walled l-section of Universal Beams 

to BS EN 10056 (BSI, 1999). The development of the yield surface equation is 

divided into two parts. The first part is based on a curve fitting analysis technique, 

whereas the second part fills the gap which was present in the yield surface 
developed by Yang et al. 1989 using a numerical approach.

For the development of the single equation yield surface, a computer code was 
written to develop yield surfaces based on the previous approach by Yang et al. 
1989. Later the variation of the yield surface for different Universal Beams of BS 
EN 10056 (BSI, 1999) was investigated and a relationship was developed 
between the variation and the section property. The variation was considered in 
the development of the yield surface equation. The equation was developed 

using repeatedly a curve fitting technique with the parameters of the equations 
related to the variations.

In the second part of the chapter, a procedure is developed to verify the yield 

surface. Hence, authentification of the procedure and also the verification of the 

previously developed yield surface was accomplished. With the help of the 

verification procedure, the developed yield surface was extended to fill the gap 

which was present in the yield surface by Yang et al. (1989).

The developed yield surface is a single equation yield surface, therefore easy to 

apply without any discontinuity of slope for elasto-plastic analysis.
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CHAPTER-4

PLASTIC INTERACTION RELATIONSHIPS FOR 

GENERAL STRUCTURAL l-SECTIONS

4.1 INTRODUCTION
In the previous chapter single equation yield surface for biaxial bending and 

bimoment were developed using curve fitting technique and verified using finite 

element analysis. This chapter shall develop plastic interaction relationships for I- 
sections subjected to general combinations of axial force, biaxial bending moments, 

biaxial shearing forces, uniform torsion and bimoment. Axial force, biaxial bending 

moments and bimoment cause direct stress, whereas biaxial shear forces and 
uniform torsion cause shear stress. The interaction equations of both direct and 
shear stresses shall be developed separately using the lower bound theorem of limit 
analysis (Hodge, 1959). Later it shall be demonstrated that for an equilibrium 
condition on an infinitesimal element both the stresses can be related to each other 
using the maximum distortional energy density yield criterion.

To obtain the relationships in the case of direct stresses a study shall be performed 

to obtain different neutral-axis patterns in the presence of warping strain. These 

obtained neutral-axis patterns are used to derive interaction equations and a 

procedure shall be developed to identify the formation of a generalized plastic hinge 

and development of the yield surface. Using this procedure, yield surfaces shall be 

developed for a W12 x 31 steel section and compared with previously developed 

work.

Using the upper bound theorem of limit analysis, a relationship for direct stress for a 

particular case shall be obtained and compared with the lower bound solution.
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4.2 STATEMENT OF PROBLEM
Interaction relationships for structural l-sections subjected to the combined action of 

axial force, biaxial bending moments, biaxial shear forces, uniform torsion and 

bimoment are sought. To obtain the interaction equations it is assumed that fully 

plastic resistance of the cross section will be attained under the given forces. It 

should also be kept in mind that the equations are correct only for tension members 
without any secondary effects or for compression members with sufficient lateral 

bracing of members with negligible buckling effects. The formulation is based on the 

lower bound theorem of plasticity (Hodge, 1959).

An l-section, having geometry as depicted in Figure 4.1(a), is described by the 

following parameters: width of flanges bf, thickness of flanges tf, width of web bw, 

and thickness of web tw The section, having a yield strength cr^ in uniaxial tension

(or compression), is subjected to an axial force P, biaxial bending moments Mx and 

My, bimoment B, uniform torsion Tu and biaxial shear forces Sx and Sy applied along 

the principal centroidal axes XX and YY. The ZZ-axis is orientated along the 
centroidal axis of the member. It is required to determine whether or not the section 
can resist the applied combination of internal forces under the assumption that fully 

plastic resistance of the section is reached. Mathematically, this requirement means 

that a family of interaction relationships of the form

4.1

are required. It is convenient to formulate the relationships based on normalized 

force components, therefore, the arguments of functions f! in the normalized form 

is written as

(p, b, fia))= 0 4.2
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in which the normalized terms = MJM^„ and = MJM^^ are the ratios of

the applied bending moments about the XX and YY axes to the corresponding 

plastic moment capacities of the section; s^=S^/S^p and Sy=SylSyp are the

ratios of the applied shear forces to the assumed plastic shear capacity: p = PIPp

is that of the applied axial forces to the axial yield strength; b = BlBp is the ratio of

the developed bimoment to its plastic bimoment capacity and /r,,^ is the ratio

of the applied uniform torsion to its plastic torsional capacity. The plastic capacities 

for each applied internal force are those that fully plasticize the cross section in the 
absence of any other internal forces. The plastic capacities are (Mrazik et al. 1987)

Pp=(2Af+A„)(Ty, T^p=(Ty/S(A^ty+Aj^), Bp =0.25 AfbydcTy,

s., =A^CTylS. Syp=2A^aylS, M^p=[o.5A^b^^0.25Aj^)c7y,

are discussed in Section 4.6, whereas

procedures and assumptions made to obtain the remaining plastic capacities are 
discussed in the references and it is not relevant to go into the detail of it in this 

research. The parameter f{a) represents the function that is obtained due to the 

conversion of the section parameters by dividing it by other section parameters 

(which evolved when yield functions are developed) into its normalized form. It is 
found from the study by Mohareb and Ozkan (2004) that a yield function is 

applicable when well defined limits of applicability are met, which the author has 

obtained by studying probable positions of the neutral-axis for a warped section 

under different combinations of axial, bending and warping strains and are termed by 

the author as kinematic limits of applicability.

4.3 SIGN CONVENTION AND COORDINATE SYSTEM
If XX and YY axes are as depicted in Figure 4.1, they are assumed positive (having 

an origin of the coordinate system at the centroid of the section) using a right hand 

rule which can be applied to obtain the positive direction of the ZZ-axis, as depicted 

in the figure. The axial force P, is positive when it causes tension (acting along the 

positive Z-direction). Moments Mx, My and (causing twisting of the member) are
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positive when they induce moments about the positive XX, YY and ZZ axes following 

the right hand screw rule. Biaxial shear forces Sx, Sy are positive when acting along 

the positive directions of the XX and YY axes, respectively. Bimoment B is 

considered positive when it produces a twisting action in the positive Z direction. 

Positive directions of all the internal forces are depicted in the figure.

Considering axial force, biaxial bending moments and bimoment, each of which 

cause direct stress to the section, then there are sixteen quadrants for different 
combinations of positive and negative internal forces. The forces which cause shear 

stress are not considered when obtaining the number of quadrants. The reasons for 

not considering these forces are discussed in Section 4.6. Hence, a four dimensional 
yield surface is sought, where each dimension is related to one of the forces which 

causes direct stress. An internal force relationship is developed to represent all the 

quadrants based on the fundamental cases (discussed in Section 4.7.4). A local 

coordinate system {t, s and z) for the section is also shown in the figure. The 

direction along the contour is denoted by s, while the direction normal to the middle 

surface is n and along the generator of the plate is z.

XX-Axis XX-Axis

(a) Local coordinates and elements of the section (b) Direction of positive forces 

Figure 4.1 (Figure 2.7 reproduced here for discussion) Local coordinates, 
elements of the section, positive coordinate system with direction of positive 

forces
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4.4 ASSUMPTIONS
4.4.1 Stress-Strain Relationship

The stress-strain relationship is assumed to be bilinear elastic-perfectly plastic, 

where the maximum stress is given by the yield stress cr^. The bilinear stress-strain

diagram, depicted in Figure 4.2, has a uniform slope up to the yield stress beyond 

which it maintains a zero slope. The additional capacity of the material due to strain 

hardening is neglected; hence a conservative approach is adopted for the section’s 

non-linear resistance. It is assumed that the yield stress has the same magnitude in 
compression and tension, where it cannot exceed the tensile and compressive 

bounds given by yield stress +cr^, in tension and -cr^ in compression. These

stresses satisfy the condition of plastic admissibility, which is

-(jy<(j<<7y 4.3

No distinction is made between true stress and engineering stress and formulation is 
restricted to small strain, as no distinction is made between logarithmic strain and 

engineering strain.

Figure 4.2 Stress-strain relationship of elastic-perfectly plastic material 

4.4.2 Kinematics and neutral-axis patterns

It is assumed that the kinematics (i.e. strain, displacement etc) for the elastic and 

plastic cases are the same. Considering the kinematics, axial strain at any point on a
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cross section parallel to the longitudinal axis is given by Equation 2.3 (rewritten here) 

as (Gjelsvik, 1981)

= — = W^ -U"x-V"y-0'''(2)(o(x,y) 
dz

4.4

The above equation determines the strain field by superposing four diagrams, each 

of which is related to one term in the above equation, as depicted in Figure 4.3. 

Combining the four diagrams, the strain field for the entire section is obtained. Using 

Equation 4.4, different values of the four terms are derived to obtain different strain 

fields and a variety of possible neutral-axis patterns. Detailed procedures to obtain 
the patterns will be given in Section 4.7.

(a) (b) (c) (d)
(a) Axial strain (b) Flexural strain (XX-Axis) (c) Flexural strain (YY-axis) (d) Warping 

strain
Figure 4.3 Diagrams showing strain distributions due to different internal 
forces

4.4.3 Bimoment and cross section warping
The warping of the cross section is composed of the warping of the contour (the I- 

shape) and warping of the wall thickness relative to the contour. The thickness 

contribution was investigated (Gjelsvik, 1981) and found to be about 3% of the 

warping of the contour for the heaviest available hot rolled steel section. In addition, 

several authors, such as Timoshenko and Gere (1961), ignore the thickness 

contribution (as discussed in Section 2.1). Therefore, following the approach by
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Timoshenko and others, the warping of the wall thickness relative to the contour is 

not considered by the author. Hence, both flanges are assumed to behave as simple 

beams, where the flanges are bent in their own plane in two opposite directions, 
ignoring the web. For this case, the warping function, a, is assumed to be equal to

the contour warping function ^y and is written as

a =co 4.5

4.4.4 Residual stress
Standard manufactured l-sections are normally hot rolled sections. The effects of 

residual stress on the hot rolled sections are normally neglected (Mohareb and 
Ozkan, 2004). Therefore, in the development of the equations, sections are assumed 

to be free from any residual stress.

4.4.5 Developed stresses
Stresses of an infinitesimal element at a point in a solid body for a general three 
dimensional rectangular coordinate system x,y,z is defined by a stress tensor having 
nine components (Timoshenko and Goodier, 1987). Considering the local coordinate 

system of each plate of an l-section, as depicted in Figure 4.1(a), the tensor can be 

tabulated in array form as

rpCi _
o„.nn ns nz

O'.. o,. (^szsn ss

(^ns cr..
4.6

General l-sections normally used in Structural Engineering come under the class 

based on their spatial character, where all of its three dimensions are of different 

sizes as compared to each other (Vlasov, 1959). Therefore, most of the stresses out 

of the nine components have local effects and can be eliminated for forces applied.
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Direct stress in the direction of the middle surface is small as compared to the 

direct stress and can be neglected (Gjelsvik, 1981). Considering Kirchoff’s 

assumption for shell theory (see Section 2.1.1), in the absence of any traction 

on any face of the flanges and web can also be neglected. Based on the same 

assumption can also be neglected. Based on the first assumption (see Section

2.1.1) can also be neglected. Therefore the only direct stress considered is cr^^ 

which acts in the local z-axis, perpendicular to the cross section. Based on the 

symmetry condition, it can be written that = 0 ■ Therefore, the

remaining stresses are direct stress and shear stress for a plate in a local 

coordinate system-this is the normal structural engineering simplifying assumptions.

4.4.6 Yield criterion
The yield surface equations are applicable to ductile metals, where for the metals 
two yield criteria (the Tresca and Von Mises yield criteria) are commonly used 

(Boresi and Schmidt, 2003). The interaction relationships are developed based on 
Von Mises yield criterion, where the reasons for its preference are discussed in 
Section 4.4.7.
A general yield function for a plastic state is

4.7

In terms of a Cartesian component of stress (which in this case for the local 

coordinate system, as discussed in Section 4.3), the yield function is written as 

(Boresi and Schmidt, 2003)

/ = I [(o-zz - o-z.)' + f + - o-zz)' ] + )- crj = 0 4.8

'It was concluded in the previous section that a »cr 0.

Based on this for a given section at a fixed distance Zg in the direction of Z , the 

above equation reduces to
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f = C7^^{s,nf +3ct„(5,«)^ -(tI=0 4.9

4.4.7 Choice of yield criterion
A state of pure shear exists for a principal stress state. For this stress state yielding 

occurs when (t„ = = r and a,, = 0 which reduce the above equation to

4.10

Therefore,

4.11

For the same stress state based on the Tresca criterion, r,, is related to <j as

4.12

Therefore, this difference of approximately 15% means that the Von-Mises criterion 

predicts a greater pure shear yield stress than the Tresca criterion, which indicates 

that the Tresca criterion is on the conservative side and hence is not preferred 

(Boresi and Schmidt, 2003). The other reason is that yield surfaces drawn based on 

Von-Misses yield criterion are continuous and also convex, whereas yield surfaces 

developed based on Tresca criterion arfe not continuous.

4.5 EQUILIBRIUM CONDITION, YIELD CRITERION AND 

STRESS DISTRIBUTION
A relationship between the equilibrium condition, yield criterion and stress 

distribution has been developed (Mohareb and Ozkan, 2004), in which it was
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assumed that the variation of stresses across the thickness of the wall is constant. 

However, if the neutral-axis is inclined across the thickness (as will be obtained from 

the study in Section 4.7), then the thickness of wall must be considered in the 

theoretical development and a variation of stresses across the thickness cannot be 

avoided. Therefore, it is required to determine the nature of stress distribution of 

direct stress and shear stress which satisfies the equilibrium condition for the

entire cross section, in which the variation of the stresses across the wall thickness 

is considered, in addition to their variation along the contour of the middle surface.

The 3-D equilibrium condition of an infinitesimal element in the absence of body 

forces (Boresi and Schmidt, 2003) are

dcr.. 5r„. _
-----=- +----+-------- 2- = 0

dz ds dn
4.13(a)

dz ds dn

dr
1 sn+ +-----2£L = 0

dz ds dn

4.13(b)

4.13(c)

From the previous discussion it

^ss ~ ^nn ~ ^

equations to

IS assumed that

^ ^ ^zn ~^sn~^nz'^^ns~^' '^^ich results In the reduction of the above

dz
= 0 4.14(a)

da., dr^.—=^-l-—^ = 0 
dz ds

4.14(b)

The differential of Equation 4.14(a) leads to a zero value which shows that does 

not vary with respect to z. Thus, a possibility exists that the integral of the equation
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results in a shear stress distribution which can vary across the thickness and along 
the direction of the contour and can be written as

r„ =r(5,/2) 4.15

From Equation 4.14(b) it can be deduced that the differential of is not zero and a 

possibility exist that can vary with respect to z. The integration of the equation

with respect to z will therefore yield the direct stress which can also vary across the 
thickness and along the direction of the contour and can be written as

cr_._. (z,t,s) = -zT' (s,«) + y; (s, n) + (i') + /, («) 4.16

Differentiating the yield criterion given by Equation 4.9 with respect to both 5 and n, 

to obtain the gradient in both directions, the following expressions are obtained

+ 'iT.j' - 0 4.17(a)

= 0 4.17(b)

Here the prime denotes differentiation with respect to coordinate s while asterisk in 

the other equation denotes differentiation with respect to coordinate n. Putting the 

values of and in the above equations leads to an equation which fulfils both

the equilibrium condition and yield criterion. Therefore substituting Equation 4.15 and 

4.16 into Equation 4.17(a) leads to

(- zr'{s, n) + /i {s, n) + (5) + {n)\- zr" (s, n) + // {s, n) + fl {s))+

3T{s,n)r\s,n) = 0

Dependency of the parameters shown in parenthesis are not shown in the next step 

to decrease the length of the equation. Multiplying this out yields
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z^r't" -{x'fl +T'fi +rV. +/2^" + + fji +/,// + fji + fj! +

/3/;+3rT'=0 4.18

Similarly substituting Equation 4.15 and 4.16 into Equation 4.17(b) leads to

(- zt'{s, n) + /, {s,n) + (5) + /j {n)\- {s, n) + f* {s, n) + f*(«))

l)T{s,n)r* {s,n) = 0
+

Multiplying this out yields

z^r'r'* _(r7; +r7; +r'7. ^ ^ ffl ^ fJl ^ Ul ^ Ul ^ +

fj;+3TT=Q 4.19

In order to satisfy Equation 4.18 for an arbitrary value of z, the following conditions 

must be satisfied:

r'r" =0 and r'+t'+t"f, + f.r" + f,r" =0-/ r! ^ r! . -//

These two conditions are satisfied simultaneously when = 0 is met. Substituting 

this into Equation 4.17(a), the condition = 0 is recovered which indicates that

either (t^^=0 or (7^^=0. However, when an axial force, bending moments and 

bimoment act on the section, = 0 is not possible. Hence is a constant

piecewise function. Similarly, in the presence of biaxial shear forces and uniform 
torsion, r cannot be equal to zero from which it follows that r is a constant 

piecewise function. Therefore, it can be concluded that both and must be 

constant piecewise functions.

There is a possibility that r" =0. For that to occur, both fl{s,t) and /2(i')=0, 

Therefore, differentiating Equation 4.16 with respect to s gives
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(j' {z,n,s) = -zT”{s,n)-\- fl{s,n) + /2^(^) = 0 as = 0 from above.

Therefore a' {z,t,s) = ^ indicates that cr can be a function of z and n. By 

substituting the value of cr^ in Equation 4.17(a), r.^T'.^=Q is obtained, which 

indicates that cr and are also constant piecewise functions.

In order to satisfy Equation 4.19 for an arbitrary value of z, the following conditions 

must be satisfied.

r'r'* = 0 and r7,‘ + r'/; + r'*/; + f.r'* + f,r'' = 0

These two conditions are satisfied simultaneously when r' = 0 is met. Substituting 

the value in Equation 4.17(a) indicates that cr^^cr^^ =0. As cr^^ =0 is not possible 

(as discussed above), therefore, it can be concluded that both r„ and cr^, are 

piecewise constant functions.

There is a possibility that = 0. For that to occur, both f*{s,n) and f^{n) must 

equal to zero. Therefore, differentiating Equation 4.16 with respect to n gives 

a\. (z, t, s) = -zz'* {s, t) + f* {s, t) + fl (0 = 0

Therefore a* {z,t,s) = 0 indicates that cr can be a function of z and s. By 

substituting the value of cr* in Equation 4.17(b), r.„r*„ = 0 is obtained, which 

indicates that both a and z^^ are constant piecewise function.

From discussions of both Equation 4.18 and 4.19, it is concluded that both direct 

stress and shear stress have to assume a constant piecewise form when s and n 

axes are considered.

Therefore, it can be concluded that when variation of stress across the thickness and 

along the direction of contour is considered, the relationship between the direct
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stress and shear stress is such that both the stresses are assumed constant without 

variation of both the stresses in both the directions.

4.6 SHEAR STRESS AND THE INTERACTION EQUATION
Biaxial shear forces {Sx and Sy), uniform torsion Tu and warping torsion cause 

shear stress in the cross section. An interaction equation is developed for the shear 

stress considering Sx, Sy and r„., while is not considered in the development. 

Numerical analysis has shown that the effect of Tw is small in the elastic domain and 

was ignored (Mrazik et al. 1987) in developing interaction equation for B and Tu. 

Therefore, following the previous approach Th, is not considered in the development.

The pattern of the stress on the cross section due to biaxial shear forces and uniform 
torsion are different. Biaxial shear forces cause constant stresses across the 

thickness of the plates of the section, whereas the distribution due to Tu varies 

across the thickness according to a skew-symmetrical (triangular or combination of 
rectangular and triangular) diagram, for example as depicted as triangular in Figure 
4.4. As a consequence of the different patterns of stress due to the forces, different 
assumptions are made about the distribution of stress in the development of the 
interaction equation.

bf

Figure 4.4 Shear Stress distribution due to uniform torsion
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As discussed in Section 4.4.5, local stress on each plate can be ignored.

Therefore, shear force, Sx acting on the section is assumed to act on the web 

ignoring the flanges, and Sy is assumed to act on the flanges ignoring the web for the 

development. In addition, for the available steel structural l-sections (such as BS 

EN10056: 1999 sections) the shear stresses developed due to Sx in an elastic 

domain are extremely large in the web as compared to flanges. For example, a brief 

study is performed on many BS EN10056: 1999 sections (as given in Table B-1, 
Appendix-B) to determine the ratio of the stress developed between web and 

flanges. It is found that in almost every case, the stress in the web is more than ten 

times higher than the stress in the flanges. A same comparison is made between 

flange and web when Sy is applied to the section. It can be concluded that, again, 

most of the ratios are more than ten. It may be concluded that the application of both 

the shear forces can be assumed as acting on a rectangle, where it is applied to the 

web and flanges for Sx and Sy, respectively.

In the elastic case, the shear stress distribution has a parabolic distribution. When 
applied in the XX-direction, the approximate distribution is as depicted in Figure 4.5, 

which can be assumed as constant over the web because of the small variation as 

compared to its minimum value.

Assumed constant stress distribution

Figure 4.5 Parabolic and assumed constant stress distribution when S^ is 

applied

Similarly, the shear stress in the YY-direction has a parabolic distribution, where it is 

zero at the edges of the flanges and maximum at the centroid. Two approaches can 

be adopted to develop the interaction equation; either a parabolic distribution along 

the depth of the flange is assumed or a constant distribution along the depth is 

assumed. Previously both approaches have been adopted (as discussed in Section
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2.5.3) to develop the interaction equation. For example, a constant stress distribution 

for P,Mx and Sx for a rectangular section is assumed by Paltchevskiy (1948) and 

Sobotka (1975). Comparing the interaction curve as depicted in Figure 4.6 (as 

discussed in Section 2.5.3 ) showed that the constant stress distribution curves lie 

below the complicated solution given by Smirak (1967), hence can be called a lower 
bound solution. In addition, the distribution of constant shear stress is in agreement 

with established design procedures (AISC 1999; CSA 2001). To circumvent the 

complications involved for an exact approach, following the references and the 

design procedure, a constant distribution of shear stress is assumed when shear 

forces S and S are applied.

Therefore acts on the web only, and its plastic capacity in that direction will be 

S^p = and from Equation 4.10 it can be written as S^p = A^cTy /V3 . Similarly, 

Sy acts on the flanges, and its plastic capacity in that direction will be 

and from Equation 4.10 it can be written as S^p = '^A^a^ / Vs .

Figure 4.6 P,Mx and Sx curve (Mrazik et al. 1987) for the solution given by 

Paltchevskiy (1948)-dotted curves, Sobotka (1975)-full curves and Smirak 

(1967)-dashed curves
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4.6.1 Developed Interaction Equation
The resulting neutral-axis patterns when constant shear stresses (as discussed 

above) due to S^, Sy and variable shear stresses due to (as depicted in Figure

4.4) are jointly considered are depicted in Figure 4.7. In the figure 4”/ >s the distance 

from the contour line of both flanges to the neutral-axis, while is the distance 

from the contour line of the web to the neutral-axis.

Contour line

Figure 4.7 Neutral-Axis pattern for the case when S^, Sy and act on the 

section

Based on the neutral-axis pattern depicted in the figure both 5 , S'„are obtained asX y

(details are given in Section B.2, Appendix-B).

Sy =

4.20

4.21
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Similarly, the distribution of uniform torsion for the section is obtained for the top 

flange, bottom flange and web as (details are given in Section B.2, Appendix-B).

T — T T' 7^u topflange botflange web

'^topflange ~ (0.25 + byb^t^y + Ay^y ^yb y )r

= (^.25Ayty - byb^^y > Ay^y - ^}by ^

T„^,=(0.25Aj„-CX)r

4.22(a)

4.22(b)

4.22(c)

4.22(d)

Adding the terms result in the torsion for the entire section as

r. =[(0.5.4/, +0.25.4/, 4.23

Eliminating the parameters, and ^y from Equation 4.20, 4.21 and 4.23, the 

expression for the relationship between shear stress and the three shear forces

(4A}b, + 2Alb,y-ST,b,b.r-b,Sl-2b,Sl=0 4.24

is obtained. The above equation is quadratic in nature, and shear stress can be 

obtained from it.

4.7 KINEMATICS AND PLASTIC NEUTRAL-AXIS PATTERNS
It has been discussed in Section 4.4.2 that a diagram can be obtained of the 

longitudinal strain on a cross section at a fixed distance along the beam-axis by 

combining all the four diagrams obtained by the four terms of Equation 4.4. The 

diagram thus obtained gives the strain field, having regions of positive and negative 

strains, separated by a neutral-axis.
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A procedure is developed to add all the four diagrams, by assuming different values 

of the strains for the diagrams. For example for an l-section, if a strain field diagram 

is obtained by combining the first three diagrams (see Figure 4.3), ignoring warping 

of the section, and assuming the thicknesses of the plates as negligible as compared 

to their width, then there are five possibilities by which a neutral-axis may pass 

through the section, as depicted in Figure 4.8. The obtained diagram follows the 

Bernoulli-Navier hypothesis (Vlasov, 1959), having one radius of curvature for the 

entire section about the neutral-axis. These possibilities are

Neutral-axis passes through one flange. 

Neutral-axis passes through one flange and web. 

Neutral-axis passes through both flanges. 

Neutral-axis passes through both flanges and web. 

Neutral-axis passes through web.
XX-Axis

-ve Straig - 
YY-Axi^

-ve Strain
+ve Strain

+ve Strain

Figure 4.8(a) Figure 4.8(b)

-ve Stfc
-ve Strair -ve Strain

+ve Strain
+ve Strain

Figure 4.8(c) Figure 4.8(d) Figure 4.8(e)

Figure 4.8 Five possibilities of different neutral-axis patterns for an l-section 

when strains due to P, Mx and My are considered

Following the coordinate system given by Figure 4.1, the sign convention of the 

strain field given by Figure 4.8 is such that P is positive. The Y component of radius 

of curvature is in the positive YY direction, therefore My is positive. The X component 

of radius of curvature is in the negative XX direction, therefore Mx is negative. If 

warping is considered for the section, having a pole at the centroid, the positive and 

negative warping strain diagrams are obtained as depicted in Figure 4.9.
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To obtain different patterns which include strains due to P, My and the warping 

strains, the strain field of Figure 4.8 and Figure 4.9 are added to obtain different 

patterns (details are given in Appendix-B). Different values of the warping strain are 

assumed, based on a maximum unit value of the strain field diagram of Figure 4.8. 

Hence large and small values of the warping strain are assumed as compared to the 

maximum unit value.

Of the five patterns considered in Figure 4.8 three patterns intersect the web while 
the remaining two do not. Firstly those patterns in which the neutral-axis intersects 

the web are considered in conjunction with positive and negative warping strains.

A study is thus performed to determine different patterns based on various 
combinations of Figures 4.8 and Figure 4.9. In the study, fifteen neutral-axis patterns 

as depicted in Figure 4.10 of same type, as determined by Figure 4.8 are 
considered. The fifteen patterns are selected such that the neutral-axis passes 
through different possible positions of the section. For example it passes through the 
left edge of both flanges (Pattern 10-10), it passes near the centroid of web (Pattern 

6-6), it passes through the bottom of top flange and top of web (Pattern 8-8), etc. A 
summary of the results of the study is given below while details are given in 
Appendix-B.

(a) Negative bimoment (b) Positive bimoment 
Figure 4.9 Warping strains as a result of bimoment applied in positive and 

negative directions based on the assumed coordinate system (see Figure 4.1)

4.7.1 Development of Different Neutral-Axis patterns

Out of the fifteen patterns, a few extreme patterns are considered, while the 

remaining patterns are not discussed as they conclude same results to the others.
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Cases when the neutral-axis intersects the web are discussed first followed by the 

cases when it does not intersecting the web.

XX- Axis XX- Axis XX- Axis

Figure 4.10 Fifteen patterns describing the positions of the neutral-axis when 
P, Mx, and My are applied (divided into three figures for illustration only)

Neutral-axis patterns intersecting the web
Warping strain appiied in the negative sense
A procedure is adopted to obtain different patterns which include warping strain.

Two extreme cases in Figure 4.8(d) are possible, as depicted in Figure 4.11. 
Considering the cases, strains due to negative warping strain, given by Figure 4.9(a), 

are added to obtain the required patterns. Different values of maximum warping 
strains are assumed for the figure, keeping constant values of the strain field of 

Figure 4.11. For example if a maximum strain of one unit is assumed for a pattern 

(without any warping strain), as depicted for extreme case 1-1 (in Figure 4.11) in 

Figure 4.12, the values of strains at other points of the cross section can be obtained 

based on the position of the neutral-axis with reference to the coordinate system and 

trigonometric relationships (see Appendix-B for details).

t2 1

YY-Axis

1 2

Figure 4.11 Two extreme positions of the neutral-axis of Figure 4.8(d)
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Figure 4.12 Strain pattern, when P, Mx, and A//y only are considered

The assumed values of the warping strain are now added to the strain pattern of 
Figure 4.12. Five different values (selected randomly in the range of 0.005 to 3.5) of 

the warping strains have been used to obtain the patterns. The obtained strain 

patterns are depicted in Figure 4.13(a), which are shown as numbers in the figure, 
where the values of the warping strain are given in parenthesis for each obtained 

pattern. Numbers are shown for both the top and bottom flanges, values for the web 
are as in Figure 4.11 and do not change. For example number 1 for the top and 
bottom flanges is the neutral-axis pattern obtained when Figure 4.12 is added to 
Figure 4.9(a) having a maximum warping strain of 0.005 (Details given in Appendix- 
B, Section B.3). Other cases given by Figure 4.8(b & e) are also studied and are 
discussed in the Appendix.

From the study of the extreme cases of Figure 4.8(b, d and e), it is found that the 

movement of the neutral-axis on addition of the warping strain for the bottom flange 

is always towards the right of the flange (1-5 in Figure 4.13(a)), while for the top 

flange the neutral-axis moves towards the right (1-2), then out of the flange and 
shifts to the left of the flange on further addition of the strain (4-5) (see Appendix-B, 

Section B.3). The position of angles a _ p and y with respect to YY-axis and a, b & 

c intercept are given in Figure 4.13(c). Based on the movement of the neutral-axis 

for the top flange, the author has suggested two different patterns, while the phase 

when it was out of the top flange is considered as a transition phase. The obtained 

patterns and the parameters defining the position of the neutral-axis are depicted in 

Figure 4.14.
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(a) Obtained patterns by adding Figure 4.9(a) and Figure 4.12

XX -AXIS

YY-AXIS

(b) Angles and intercept showing the position of neutral-axis

Figure 4.13 Obtained patterns by adding Figure 4.9(a) and Figure 4.12 and 

position of neutral-axis
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XX-Axis XX- Axis XX- Axis

(a) First pattern (b) Second pattern (c) Transition phase

Figure 4.14 Patterns concluded based on the study in which Figures 4.8(b, d 

and e) are used with the warping strain (with bimoment applied in the negative 
direction)

First pattern

The first pattern is that in which the neutral-axis is on the right of the top flange and 

on the left of the bottom flange, as depicted in Figure 4.14(a). In the figure the 

position of the neutral-axis is defined by six parameters, which are a,P,y,a,b and 

c, where a,P,y are the slopes measured with reference to the point of intersection 

of the contour line and neutral-axis in each plate and YY-axis. The relationships 

between the parameters are given in the form of equations. For example, if [i is 

assumed to be the angle of the entire section before adding the warping strain, then 

after the addition, angle p for the top flange will rotate clockwise relative to the 

positive YY-axis, and the new angle is represented by a. For the bottom flange, it 

will rotate counter clockwise relative to the positive YY-axis and the new angle is 

represented by y. a, b and c are the positions of the neutral-axis as defined in the 

figure. Relationships between the parameters are given in the form of equations 

(details are given in Appendix-B Section B.3).

It is found that there is a relationship between a and /such that

a + y = 2P 4.25(a)
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It is also found that the change in the absolute values of a and / must be the same 

whereas the angle will be different for both the flanges (as discussed in Appendix-B). 

This will be valid throughout the study for all the obtained patterns. Therefore,

|Aa| = \^y\ 4.25(b)

A relationship for / is obtained as

90" </<180° - tan -1 4.25(c)

and the relationship for a is obtained as

90" <tan“'(a)<180" 4.25(d)

Second Pattern
The second pattern is that in which the neutral-axis for both the flanges are on the 
left hand side of the section, as depicted in Figure 4.14(b). The following 

relationships between the parameters for this pattern are (see Section B.3):

0" < tan"'(or) < 90" 4.26

In this case Equation 4.25(d) is not applicable, while Equations 4.25(a, b, and c) will 

be.

Transition phase
For the transition phase the neutral-axis is outside the top flange and on the left of 

the bottom flange as depicted in Figure 4.14(c). This phase is the intermediate phase 

from pattern-1 to pattern-2. Therefore, the pattern given by this phase is considered 

as a special case of both the first and second pattern with a value of greater than 

0.5*bf for a.
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Special cases
It is concluded in the previous discussion that the neutral-axis for the top flange first 

moves towards the right of the positive XX-axis then shifts left of the axis. There are 

two cases when movement of the neutral-axis is different from the above discussed 

movement and these are now considered separately.

If the original position of the neutral-axis without the addition of warping strain is as 

depicted in Figure 4.15(a), where the position of the neutral-axis for the top flange is 

on the left of the XX-axis of the flange. Warping strain due to negative bimoment has 
strain distribution in the top flange in such a way that it has positive strain on the left 

of the top flange and negative strain at its right. Therefore the addition of warping 
strain due to negative bimoment always causes the neutral-axis for the top flange to 

shift towards the left of the axis and results in a pattern as depicted in Figure 4.15(b) 
(Details of the procedure of obtaining the patterns are given in Appendix-B). Further 

addition of the warping strain shifts the neutral-axis for the top flange to the right of 
the axis (and it continues to move towards the left on addition of the warping strain) 
which results in the pattern as depicted in Figure 4.15(c) with the transition phase 
between them (not shown in the figure) of the same type as obtained before. The 
procedure to obtain the pattern is the same as obtained in the previous cases. All 
relationships as given by Equation 4.25 remain valid for the patterns of Figure 

4.15(b) whereas all relationships except Equation 4.25(d) remain valid for the pattern 

of Figure 4.15(c) where, instead of 4.25(d), Equation 4.26 is vaiid.

In case two, the initial position of the neutral-axis without the addition of warping 

strain is depicted in Figure 4.16(a), where the position of the neutral-axis for the top 

surface (for detail of lines see Figure B.1 Appendix-B) of the top flange is on the right 

of the positive XX-axis, while it is on the left of the axis for the bottom fibre of the top 

flange, as depicted in the figure. The addition of warping strain due to negative 

bimoment causes the point of the neutral-axis of the top line to move towards the 

right of the flange and the point of neutral-axis for the bottom line moves towards the 

left of the top flange, hence resulting in a pattern as given by Figure 4.16(b). Further 

addition of the strain shifts the neutral-axis point on the top line towards left while
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shifting of the point on the bottom line is towards right of the XX-axis, as depicted in 

Figure 4.16(c). No transition phase is obtained in this case as the shifting of neutral- 

axis pattern is directly from the pattern given by Figure 4.16(b) to Figure 4.16(c). All 

relationships as given by Equation 4.25 remain valid for the pattern of Figure 4.16(b) 

whereas all relationships except Equation 4.25(d) remains valid for the pattern of 

Figure 4.16(c) where, instead of 4.25(d), Equation 4.26 is valid.

XX- Axis XX- Axis XX- Axis

Figure 4.15 Original and obtained neutral-axis pattern of special case (First 
case)

YY- Axis YY- Axis YY- Axis

(a) (b) (c)

Figure 4.16 Original and obtained neutral-axis pattern of special case (Second 

case)

It can be concluded from the above study that the first pattern is as given by Figures 

4.14a, 4.15b and 4.16b. The similarity between all the three figures is that the
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direction of bending is the same in all three cases i.e. sagging moment cause 

positive strains below the neutral-axis in which Equation 4.25 is valid.

Figure 4.14b, 4.15c and 4.16c represent the second pattern. Similarities exist for the 

three figures for the top flange as discussed for the first pattern in which Equations 

4.25(a, b and c) and 4.26 are still valid.

Warping strain when bimoment is appiied in the positive direction
The movement of the neutral-axis is opposite to the previous case when warping 

strains due to positive bimoment is applied. The neutral-axis for the top flange is 

always to the right of the positive XX-axis, while for the bottom flange the neutral- 
axis shifts from the left of the XX-axis to the right of the axis, having a transition 

phase between them. Two neutral-axis patterns are suggested based on the 
movement of the neutral-axis of the bottom flange, as follows:

First Pattern
In this case, the neutral-axis is on the right of the top flange and the angle for the top 
flange decreases, whereas for the bottom flange the angle increases and it is on the 
left of the flange (see details in Section B.3). Only Figure 4.8(d) is involved in 

obtaining this pattern, whereas Figures 4.8(b and e) do not give this pattern on 
addition of the warping strain. The pattern is depicted in Figure 4.17(a) having the 

parameters a,P,y,a,b and c which define the position of the neutral-axis. It is 

found from the study that angle a must fulfill the relationship

90° < tan ’ (or) < 180° - tan 4.27(a)

For the bottom flange angle, y, the following relationship can be written

90° < tan-'(/) < 180° - tan-’(Z?,, / ) 4.27(b)

The relationships given by Equations 4.25(a) and (b) are still valid for this case.
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XX- Axis XX- Axis XX- Axis

(a) First Pattern 

phase
(c) Transition

Figure 4.17 Patterns concluded based on the study in which Figures 4.8(b, d 

and e) are used with the warping strain of Figure 4.9(b) (bimoment applied in a 
positive direction)

Second Pattern
The second pattern is that in which the neutral-axis for both the flanges are on the 

right hand side of the section, as depicted in Figure 4.17(b) (see Section B.3). It is 
found from the study that angle a must fulfill the relationship

90'’< tan’’(a) <180° 4.28(a)

For the bottom flange angle /, the following relationship can be written

tan”‘ [b^ lbf)< tan“’ {/) < 90° 4.28(b)

The relationships given by Equations 4.25(a and b) are still valid for this case.

A same transition phase is also obtained for this case, where the neutral-axis is out 

of the bottom flange, as depicted in Figure 4.17(c). To obtain the pattern for this 

phase, a value greater than 0.5*bf for c is assumed in the first and second pattern.
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Special cases
Considering the special cases given by Figure 4.15(a) and Figure 4.16(a), as 

previously, when positive bimoment is applied, the shifting of the neutral-axis is on 

the bottom flange in this case Therefore the movement of the neutral-axis for the top 

flange will not shift side of the XX-axis.

In the first case, the movement is on the right side of the top flange on the addition of 

warping strain, while the nature of movement of the bottom flange remains the same 

as that which occurred in the first and second pattern as discussed in the above 
section. Hence, this resulted in same first and second pattern and a transition phase. 

Equations 4.27, 4.28, 4.25(a) and (b) are all valid.

In the second case, the position of the neutral-axis for the top fibre of the top flange 
will move towards the left of its initial position whereas the bottom fibre of the top 

flange moves towards the right of its initial position on the addition of the warping 
strain. Hence the position of the neutral-axis remains the same for the top flange. 
However because of the same nature of movement for the bottom flange, this results 

in the first and second pattern and a transition phase same to that given by Figure 
4.17. Equations 4.27, 4.28, 4.25(a) and (b) are all valid.

Neutral-axis patterns not intersecting the web
Warping strain when bimoment is applied in the negative direction
Following the same procedure adopted for the cases when the neutral-axis passes 

through the web, movements of the neutral-axis are obtained for the case when the 

neutral-axis does not pass through the web.

Neutral-axis patterns of the type given by Figures 4.8(a) and (c) are added to Figure 

4.9(a) to obtain different patterns. In the case of the bottom flange, the neutral-axis 

will always be on the left of the flange on addition of the warping strain, whereas for 

the top flange the neutral axis shifts from one side of the flange to other (details are 

given in Appendix-B, Section B.3). Based on the movement of the top flange, two 

neutral-axis patterns and a transition phase are suggested. The obtained patterns 

are depicted in Figure 4.18 and are discussed as follows:
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XX- Axis XX- Axis XX- Axis

(a) Third pattern 

phase
Figure 4.18 Patterns conciuded based on the study in which Figures 4.8(a) and 

(c) are used with the warping strain (bimoment applied in the negative 

direction)

Third pattern
In this pattern the positive strain is towards the right of the flange below the neutral- 
axis. The neutral-axis for the bottom flange is to the left of XX-axis as depicted in the 
figure. Equation 4.28(a) is still valid for this pattern whereas the relationship for 
/valid for this pattern is:

90" <tan-’(/)<180"-tan‘'
^ h ^ 

^0.5b,j
4.29

Equations 4.25(a) and (b) are also valid for this pattern.

Fourth pattern
In this pattern, the positive strain is towards the left of the flange below the neutral- 

axis. The neutral-axis for the bottom flange is to the left of XX-axis as depicted in 

Figure 4.18(b). Equations 4.26, 4.29, 4.25(a) and (b) are valid for this pattern.

Transition phase
For this pattern the neutral-axis is on the left of the bottom flange and outside the top 

flange as depicted in Figure 4.18(c). By substituting a value greater than 0.5*bf for a 

for both the above patterns, this phase can be obtained as a special case.
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Warping strain when bimoment is appiied in the positive direction
Following the same procedure adopted in the previous cases, the movement of the 

neutral-axis is obtained for this case. Shifting of the neutral-axis is for the bottom 

flange as compared to the top flange in the previous case. Neutral-axis patterns of 

the type given by Figures 4.8(a) and (c) are added to Figure 4.9(b) to obtain different 

patterns.

In the case of the top flange, the neutral-axis will always be on the left of the positive 

XX axis, whereas in the case of the bottom flange, there is a shifting of the neutral 

axis from one side of the flange to the other (see Appendix-B, Section B.3). Based 

on the movement of the bottom flange, two neutral-axis patterns and a transition 
phase are suggested. The obtained patterns are depicted in Figure 4.19.

Third pattern
For this pattern, the neutral-axis is on the left of the top and bottom flanges, as 
depicted in Figure 4.19(a). This pattern is different from the third pattern in the 
previous case, when warping was applied in the negative direction. The reason is 
that the addition of any value of the positive warping strain to Figure 4.8(a) does not 

result in this pattern, whereas in the previous case both Figures 4.8(a) and (c) were 
involved in obtaining the pattern.

For the top flange, the angle will always decrease, whereas the angle for the bottom 

flange always increases if measured relative to the positive YY-direction. The 
relationships between the parameters for this pattern are

90° < tan ' (a, y) < 180° - tan -1

0.5b f V f J
4.30

Equations 4.25(a) and (b) are also valid for this pattern.

Fourth pattern
For this pattern the neutral-axis is on the right of the bottom flange and the neutral- 

axis for the top flange is such that it will create positive strain on the right below the
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neutral-axis, as depicted in Figure 4.19(b). The relationships between the 

parameters for this pattern are

90° < tan-'(a)< 180“, tan' ,0.56,, <tan-' ir)< 90° 4.31

Equations 4.25(a) and (b) are also valid for this pattern.

XX- Axis XX- Axis

(a) Third pattern 
phase

(b) Fourth pattern (c) Transition

Figure 4.19 Patterns concluded based on the study in which Figures 4.8(a) and 

(c) are used with the warping strain of Figure 4.9(b) (bimoment applied in the 

positive direction)

Transition phase
For this phase the neutral-axis will be on the left of the top flange and outside the 

bottom flange as depicted in Figure 4.19(c). By substituting a value greater than 

0.5*bf for c for both the above patterns, this pattern can be obtained as a special 

case of the above patterns.

Based on the study of Figure 4.8, four neutral-axis patterns evolved for both the 

positive and negative warping strains as discussed above. Parameters defining the 

new position of the neutral-axis for the obtained strain field are obtained.
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4.7.2 The finalised patterns
In the previous study it was found that the neutral-axes of the obtained patterns are 

not perpendicular to the longitudinal axis of each plate of the section. To develop 

interaction relationships for different patterns, it is extremely difficult to consider an 

inclined neutral-axis for ail the plates. Therefore, it was not possible to consider the 

obtained patterns directly to develop the relationships. Hence, assumptions are 

made for the position of neutral-axis on each plate to develop yield surfaces and 
interaction equations.

Warping applied in the positive direction
First Pattern
Assumptions are made to the first pattern and its special cases obtained previously 
to finalise the neutral-axis pattern for this case. For the top flange and the bottom 

flange an inclined neutral-axis is replaced by a perpendicular axis.

The reason for adopting a perpendicular neutral-axis for the top flange is that the 
maximum angle for this pattern is given by Equation 4.27(a), which is a steep angle. 

In addition, there is a further decrease of angle on addition of the warping strain. 
Therefore, it will not significantly effect the result when the inclined neutral-axis is 

replaced by a perpendicular neutral-axis at the same location on the flange.

For the bottom flange, there is an increase in the angle, during the movement of the 
neutral-axis towards the left of the flange. However, it is found (Appendix-B, Section 

B.3) that the maximum angle up to the point when the axis is inside the flange 

(during its movement towards the left) is always less than the maximum angle given 

by Equation 4.27(b). Therefore the inclined neutral-axis can be replaced by a 

perpendicular neutral-axis for the same reason as discussed above. The finalised 

pattern is depicted in Figure 4.20(a).

Second Pattern
Assumptions are made regarding the second pattern and its special cases obtained 

previously to finalise the neutral-axis pattern for this case, in the case of bottom 

flange the neutral-axis is on the right of the flange. The limit on the angle for this
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pattern is given by Equation 4.28(b) and will not change the result when an inclined 

neutral-axis is replaced by a perpendicular neutral-axis.

For the top flange an inclined neutral-axis is considered, because the maximum 

angle for this pattern is 180° as given by Equation 4.28(a), and cannot be 

reasonably replaced by a perpendicular neutral-axis.

XX- Axis XX- Axis XX- Axis XX- Axis

(a) First pattern (b) Second pattern (c) Third pattern (d)Fourth
pattern
Figure 4.20 Finalised patterns when bimoment applied in the positive direction 

Third pattern
Assumptions are made to the third pattern obtained previously to determine the 
position of the neutral-axis for this pattern. The maximum angle of both the flanges 
for this pattern is given by Equation 4.30 and can be replaced by a perpendicular 

neutral-axis because it will not make much difference to the results. The finalised 

pattern is depicted in figure 4.20(c).

Fourth pattern
Assumptions are made to the fourth pattern obtained previously to determine the 

position of the neutral-axis for this pattern. This pattern is obtained by combining 

Figures 4.8(a) and (c), where the slope of Figure 4.8(a) is such that it sometimes 

makes an angle approaching 180°. Therefore avoiding an angular neutral-axis 

pattern for the top flange can result in a gross error. For the bottom flange the angle 

given by Equation 4.31 can be replaced by a perpendicular neutral-axis because an 

inclined neutral-axis due to a small angle will not make much difference.
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Warping applied in the negative direction
First pattern
The first pattern obtained previously and the first pattern obtained for both the 

special cases as depicted in Figures 4.15(b) and 4.16(b) have positive strains to the 

right and below the neutral-axis, therefore the first pattern and two special cases can 

be summarized as first pattern. Assumptions are made to the first pattern to finalise 

the position of the neutral-axis. Considering the neutral-axis for the bottom flange, 
the maximum angle obtained was always less than that given by Equation 4.25(c). 

Therefore, an inclined neutral-axis is replaced by a perpendicular neutral-axis for the 

same reason as discussed above.

For the top flange, an inclined neutral-axis is inevitable and Equation 4.25(d) remains 

valid. The inclined neutral-axis for this case cannot be replaced by a perpendicular 
neutral-axis, especially for wide flange sections and those sections which have 
relatively greater thickness of flange can lead to a gross error. The finalised pattern 
is depicted in Figure 4.21(a).

XX- Axis
/N

XX- Axis

YY-^ls ^ I
jI.

XX- Axis
A A

® a,-

'J-

(a) First pattern 

pattern
(b) Second pattern (c) Third pattern (d) Fourth

Figure 4.21 Finalised pattern when warping is applied in the negative direction 

Second pattern
The second pattern obtained previously and the second pattern obtained for both the 

special cases as depicted in Figures 4.15(c) and 4.16(c) have positive strains to the 

left and below the neutral-axis, therefore all the three patterns can be summarized as
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the second pattern. A perpendicular neutral-axis for the bottom flange and an 

inclined neutral-axis for the top flange are suggested for this pattern, for the same 

reasons as discussed above for the previous pattern. The pattern is depicted in 

Figure 4.21(b).

Third pattern
A perpendicular neutral-axis pattern for the bottom flange and an inclined neutral- 

axis for the top flange are assumed for the same reasons as was assumed for the 

previous two patterns. Equation 4.28(a) remains valid for this pattern. The finalised 

pattern is depicted in Figure 4.21(c).

Fourth pattern
An inclined neutral-axis for the top flange and perpendicular neutral-axis for the 

bottom flange are assumed for the same reasons discussed above. The finalised 
pattern is depicted in Figure 4.21(d).

4.7.3 Kinematic limit of field for patterns when the neutral-axis does not 
intersect the web
When the neutral-axis pattern does not intersect the web, a kinematic limit, which is 
not described by the equations previously is essential for these types of patterns. 

The reason they are called kinematic limits by the author is because these patterns 

are not possible on study (as performed in Section 4.7.1) based on the assumption 

of kinematics as given in Section 4.4.2. Considering Figure 4.22(a), the neutral-axis 

pass through the left of XX axis for the bottom fibre of top flange and is not valid 

because the neutral-axis must pass to the right of XX-axis when intersecting the 

bottom fibre of the top flange, therefore any pattern given by Figure 4.22(a) is not a 

valid pattern. Considering Figure 4.22(b), the neutral-axis passes through the right of 

XX axis for the bottom fibre of top flange and is not valid because the neutral-axis 

must pass to the left of XX-axis when intersecting the bottom fibre of the top flange, 

therefore any pattern given by Figure 4.22(b) is not a valid pattern. The feature with 

this pattern is that discontinuity of stress occurs at two points; firstly at the neutral- 

axis and secondly at the junction of top flange and web.
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XX- Axis XX- Axis

Figure 4.22 Patterns which are not possible when Kinematic assumption of 
Section 4.4.2 are used to obtain the patterns

4.7.4 Different quadrants and finalised patterns
In the previous sections, two types of patterns are finalised, one each for both the 
negative and positive bimoment. It is required to determine what other types of 
patterns can be obtained when other sign combinations of strain vector related to the 
remaining fourteen quadrants (sixteen quadrants in total relate to the four forces) are 
used, for example, when the sign of all the strain vectors considered are positive or 

all are negative. Other types of patterns can be obtained for other sign combinations 
using the same procedure as given in Section 4.7.1. However it is found in the 
current research that only two types of pattern as obtained previously are possible 

for any combination of sign of strains used and the two types are based on the 

product of signs of the strains. For example in the study in Section 4.7.1 the strain 

field related to P and My were positive, while the strain field due to Mx was negative. 

If the negative warping strains are considered, the product of the sign of all four 

strains is +1. From a study same to Section 4.7.1, it is found that, if the product of 

the signs of all four strains are considered positive then it will give the same type of 

pattern as obtained previously by addition of negative warping strain. Similarly 

another type of pattern is when the product of signs is -1. It may be concluded that 

there are two types of pattern, irrespective of which quadrant is considered, one is 

when the product of the signs is +1 and the other when the product of signs is -1.
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As there are sixteen quadrants when four strain vectors are considered, therefore 

there are eight possibilities when the product of signs of all four strains are +1, and 

eight possibilities when the product of signs of all four strains are -1. Therefore, it can 

be said that one type of finalized pattern (Figure 4.21) can be obtained by using eight 

different combination of signs of four strains (having their products in all eight cases 

to +1). Similarly eight other sign combinations when the product of the four strains is 

-1 give only one type of finalised pattern (Figure 4.20).

4.7.5 Sign of internal forces and finalised patterns
Using the two types of finalised patterns (Figures 4.20 and 4.21), internal forces can 

be calculated. It is possible that any one or more signs of the internal forces 
calculated can be different from the signs of their strain vector. For example a 

constant tensile strain acting on the entire cross-section is added to the remaining 
three strain vector which are caused by bending in two different directions and 
warping of the section (using the procedure given in Section 4.7.1) to obtain a 

particular neutral-axis pattern. For that particular neutral-axis pattern it is possible 

that a compressive axial force is obtained when internal force P is calculated. This 

change of sign is also discussed in Section 2.2 as referred by Gjelsvik (1981). This 
change in signs of the forces compared to the strain vector was investigated to 
obtain any possible relationship between the finalised patterns and internal forces. 

For this a code in MATLAB was written which performed three functions; firstly it 

obtained different patterns (based on the procedure adopted in Section 4.7.1) for 

different values of warping strain; Secondly it calculated the forces based on the 

obtained patterns and thirdly it compared the sign of the forces with the sign of their 

strain vector. Patterns are obtained for both the positive and negative warping strain. 

As a case study, fifteen patterns same to those given by Figure 4.10 are investigated 

for which internal forces and their signs are calculated. Findings of the results 

obtained from the code are discussed below.

The above discussions lead to the conclusion that when the product of strain vectors 

is +1, a sign change can occur when internal forces are calculated, while when the 

product is -1, no change in sign occurs when internal forces are calculated.
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Use of Findings
These findings are helpful in the development of yield surfaces and to determine 

yielding of the section. For example when the product of the sign of internal forces 

for which a yield surface is required or (yielding is checked) is +1, then those 

patterns which are obtained from the product of strain vector as +1 are used to 
obtain the yield surfaces. On the other hand when the product of strain vector is -1 

then the internal forces calculated based on the strain pattern does not change sign, 

therefore will not result in such yield surfaces when the product of the forces of yield 

surface is +1. it means only one type of finalised strain pattern (see Figure 4.21) i.e. 

when the product of the signs of strain vector is +1 are required to develop yield 
surfaces, because other type of finalised pattern (Patterns when the product of their 
strain vectors are -1) does not change sign of calculated internal forces and never 

result in +1 for the product of signs of internal forces.

When the product of sign of internal forces for which yield surface is required (or 

yielding is checked) is -1, this means the finalized pattern (see Figure 4.20) when the 
product of signs of strain vector is -1 is used to calculate the internal forces (as no 
sign change of forces occur when it is calculated from the strain pattern). In addition 

the finalized pattern (Figure 4.21) when the product of signs of strain vector is +1 is 

also used because when internal forces are calculated it gives different sign at 
several occasions and result in the product of internal forces to -1.

Therefore, when the product of forces are +1 it implies only one type of finalised 

pattern can be used to obtain the yield surface and identify yielding of a section. 

When the product of forces is -1, it implies both types of finalised patterns can be 

used to obtain the yield surface and identify yielding. To determine which finalised 

pattern is required to develop the yield surface, a simple equation is proposed, thus :

TotalSign = Sign(M^)Sign(M )Sign{B)Sign{P) 4.32
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If the product of the internal forces is +1, it means it will use the finalised pattern 

given by Figure 4.21 to generate the yield surface and identify yielding of the section. 

Alternatively if the product is -1 it means both types of finalised patterns (Figures 

4.20 and 4.21) are used to generate the yield surface and identify yielding of the 

section.

4.8 INTERACTION RELATIONSHIP FOR NORMAL STRESS 

(LOWER BOUND SOLUTION)
General plastic interaction relationships for an l-section subjected to internal forces 

which cause normal stress to the section are developed. The forces are axial force, 
biaxial bending moments and bimoment. From the study in Section 4.7, it is found 

that an inclined neutral-axis is inevitable for one of the flanges for most of the cases, 
whereas an inclined neutral-axis is taken for the web and a perpendicular neutral- 

axis for the other flange. Four cases finalised before can be further generalised to 
two primary cases. The first is when neutral-axis does not pass through the web 
while the second is when it passes through the web. The number of parameters 
which define the position of the neutral-axis is different for both the cases. Therefore, 

different approaches are developed for both cases for yield surface development and 
identification of yielding (which is required before attempting an elasto-plastic 

analysis).

Following the lower bound approach, the four internal forces which are P, Mx, My and 

B are obtained by integrating the longitudinal stress, their respective moments and 

bimoment about the section centroid. In a normalised form they can be written as 

(Yang and Fan, 1988)

P = = — f <7dA
p M ^

P

4.33(a)

M.
m. =

Mxp xp

4.33(b)
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M,
m=- = —— f a^xdA

U Ja ^
4.33(c)

b = — = — f <7,0)dA 
R R M ^

P P

4.33(d)

4.8.1 A possible interaction relationship when the neutral-axis passes 

through web and both the flanges

Considering the first pattern given by Figure 4.21(a), the internal forces for the entire 

section can be obtained using Equation 4.33 as

P - + 2(7 Jj) + 2(7j tj-c 4.34(a)

=-(7f]^.25A^b^-t]l\2a^ -a^t^]-(T„{tlp 16)-7j[o.25Afbf 4.34(b)

M, = a,(t',l6a)*a,p\^ + aJ(>25AX -PXn2-et,]-^
4.34(c)

B = [-(7f(p).25Afb^ -c^t^)+7 f{0.25 A^b^-a^t] l\2-a^tj^^ 4.34(d)

In Equation 4.34, there are five neutral-axis parameters and four equations. 

However, using the relationships (Equations 4.25(a, b, c and d)) and by developing 

the relationship between the five parameters (the relationships between the 

parameters are developed later to generate yield surfaces) a closed form interaction 

relationship can be developed. However in the current work such an approach is 

circumvented. The reason is that there are many possible neutral-axis patterns, and 

it is not viable to consider all of them to obtain the closed form relationships. For 

example, nine equations are required to cover all the nine possible neutral-axis 

patterns generated by Figure 4.21(a). The nine possible patterns are illustrated in
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Figure 4.23. Similarly more equations will be required to develop the relationships for 

the finalised second, third and fourth patterns.

XX- Axis

No of possible patterns for section=3*3*1=9

Figure 4.23 Nine possible neutral-axis patterns for the pattern given by Figure 

4.20(a), three patterns are required for each rectangular plate (see Figure 2.21, 
Section 2.5 for patterns of rectangular section subjected to axial force and 
biaxial bending)

4.8.2 Element Yield Surface and Equilibrium Condition
Instead of going for a closed form solution, a parametric procedure is proposed 

herein for yield surface development and identification of yielding which can be used 

for both cases (i.e. when the neutral-axis intersects the web and when it does not). 

The procedure is based on a condition that equilibrium will be maintained throughout 

the elastic or plastic region. Terms in Equation 4.34 provide contributions to the 

internal forces from the top flange, web and bottom flange. They can be written 

individually as:

For the top flange

4.35(a)
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For the web

For the bottom flange

M,x =-(rj[o.25Afb^-t]l\2a^

M'yx =(7f[t]l6a)

a.

Pi = 2fj,r,6

aj(>25AJ,,- pVj'^^-bX]

Fj = 2(t ft jC

M^3 = crj^.25Ajbf

4.35(b)

4.35(c)

4.35(cl)

4.35(e)

4.35(f)

4.35(g)

4.35(h)

4.35(i)

My^=(^fP^\
4.350)

The terms F,-, Mxi and Myi (where i=1, 2, 3 are used for top flange, web and bottom 

flange respectively) are the contribution to F, M^, My and B from the top flange, web 

and bottom flange. Therefore, based on the condition of equilibrium, this can be 

written as

F = F,+F2+F3 4.36(a)
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=M^i +M^2 +^.3 4.36(b)

4.36(c)

b = (m„-mJ- 4.36(d)

It can be deduced that Equations 4.35(a), 4.35(b), 4.35(c) are the internal forces that 

are obtained by considering a rectangular section when axial force is applied in 

combination with biaxial bending having both the axes as the centroidal axes of the 
section (see Section 2.5 on Interaction equation of rectangular section subjected to 

axial force and biaxial bending). Similarly Equations 4.35(e), 4.35(f) and 4.35(g) are 

the internal forces that are obtained by considering a rectangular section when axial 
force is applied in combination with biaxial bending. Similarly from Equations 4.35(h) 
and 4.35(i), it can be deduced that they are related to a rectangular section having a 
neutral-axis assumed to pass perpendicularly through the longitudinal axis of the 
section (see Section 2.5 on the interaction equation of a rectangular section 

subjected to axial force and bending about the major axis). Therefore, it can be said 
that the contribution to the entire section is the same as obtained from three 
rectangular sections plus two terms as given by Equations 4.35(d) and 4.35(j). On 

this basis it is assumed in the procedure that both flanges and web are three 

elements of the section, fulfilling the equilibrium condition given by Equation 4.36. In 

the procedure, interaction relationships are developed for each element of the 

section, and the two terms are added to obtain the internal forces.

It has been finalised in Section 4.7, that for both the primary cases (as discussed in 

first Paragraph of Section 4.8), there are finalized patterns in which inclined neutral- 

axis pass through one flange. When inclined neutral-axis passes through any 

element (flange or web) for any primary case means contribution of three forces 

which are Mxi and Myi to the section. For example inclined neutral-axis passes 

through the top flange of Figure 4.21(a) which resulted in three terms as given by 

Equations 4.35(a), 4.35(b) and 4.35(c) which are related to three forces which are Pi,
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Mxi and Myi i.e. axial force and biaxial bending acting on the flange, while Equation 

4.35(d) comes when equilibrium of the entire section is considered. Another example 

of inclined neutral-axis is that when it passes through the web and three Equations 

which are related to the three forces are Equations 4.35(e), 4.35(f) and 4.35(g). 

When three forces are considered a three dimensional yield surface is required and 

are called in this work a 3D element yield surface

When a perpendicular neutral-axis passes through any element, for example the 

bottom flange of Figure 4.21(a) this means two forces which are Pi, Mxi act on the 

element and the two forces are given by Equations 4.35(h) and 4.35(i), while 

Equation 4.35(j) applies when equilibrium of the entire section is considered. When 
two forces are considered a two dimensional yield surface is required and is called in 

this work a 2D element yield surface.

Both the 2D element yield surface and 3D element yield surface, are discussed in 

the next section

Element yield surfaces
Two types of element yield surfaces are obtained for the two and three forces and 
are discussed as follows:

2D Element yield surface

Considering the neutral-axis pattern given by Figure 4.24, the two internal forces 

and Mxidire obtained by integrating the longitudinal stress and the moment about the 

XX-axis of the section. In a normalized form these are obtained (Details given in 

Appendix-B, B.4) using Equation 4.33 as (Following the neutral-axis pattern of Figure 

4.21(a), if it is assumed that forces are acting on the bottom flange then the subscript 

with the forces is 3):

^.Sb)-2c^]
4.37(a)
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where c =^y4 , =i2A. + a) and the parameter c gives the position of
/ Af

neutral-axis in the bottom flange

Eliminating the parameter c from the above equation to obtain a 2D element yield 

surface equation for the bottom flange:

pUs I +

a^Aj 4.37(b)

XX- Axis

YY- Axis<----

Figure 4.24. Bottom flange shown with the global X and Y coordinates showing 

the position of the neutral-axis when two forces /*, and M^i act on the flange

3D Element yield surfaces
It has been discussed in section 4.7 that an inclined neutral-axis can pass through a 

flange and web. When inclined neutral-axis pass through any plate, then it 
represents the case when a plate is subjected to axial force and biaxial bending as 

discussed in the previous section. When an inclined neutral-axis passes through any 

plate (as each plate is rectangular in shape) then there are three possible locations 

for the inclined neutral-axis, as depicted in Figure 2.21 reproduced here as Figure 

4.25.

In the following, two such 3D element yield surface equations are developed for the 

first and third pattern of the figure while equation of the second pattern will be the 

same as the first pattern with width replaced by the depth and vice-versa. Hence, it 

resulted in three equations related to the three patterns of the figure. If it is assumed 

that inclined neutral-axis passes through the top flange then the forces are 

considered to act on the top flange, therefore in the development of the equations,
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depth is taken as Zy and width is taken as tf, while the subscript use for the forces is 

1.

Those 3D element yield surface equations for the three patterns obtained for the top 

flange are discussed as follows:

1st pattern 2nd pattern 3rd pattern

Figure 4.25 Three possible patterns when rectangular section is considered 

3D element yield surface and pattern
Considering the first pattern in Figure 4.25, the three internal forces Mxi and Myi 

are obtained by integrating the longitudinal stress and the relative moments about 

the centroidal axes of the section. In a normalized form if they are considered for the 
top flange, and the two parameters of Figure 4.21(a) given as a and a then these 

are obtained (details are given in Appendix-B, B.4) using Equation 4.33 as

A =0-1

Itj-a 2cr, [o.25 Aj^bf - 0.0833a'^t^j- da'
> -i— 4.38(a)

6c,

where a' = \/a, c^ = Af[bf + 0.5c') and C2 = A f{d + 0.25b^c )

Eliminating the neutral-axis parameters, a and a from the above equation results 

in an equation given as

Pi
'Ad + mxl + m /2

= 1 4.38(b)
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The above equation has limit (Santhadaporn and Chen, 1970) which for the top 

flange can be written as

Myi 2
< — 

0.25Aytj- 3
1-^ <

Mx\

0.25Afbf
4.38(c)

3D element yield surface and 2"^ pattern

When the second pattern is considered, the same equation 4.38 will be used with tf 

replaced by bf and bf replaced by tf replaced by m’̂ and m' ^ replaced by

"J.i-

3D element yield surface and 3'^^' pattern
Similarly, considering the third pattern of Figure 4.25, redrawn in Figure 4.26 with 

suitable neutral-axis parameters, the three internal forces in a dimensionless form 
are obtained (details are given in Appendix-B, B.4) using Equation 4.33 as

A =^i

[Aj. - )

, = 2cr,
x,X2(o.5Zjy^ - 0.333x,) / (.5x,X2?y-- 0.333x,X2 )

4.39(a)

Figure 4.26 Neutral-Axis parameters for the third pattern

where the parameters x, and X2 are defined in the figure. Eliminating the neutral- 

axis parameters from the above equation results in an equation given by:

(m^,C2(T,-O.SC^r^CT, )(l.5C^6y-1.5w^,Ci)-i-0.333Cf =0 4.39(b)
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where = [(y,Af - p,A^).

The above equation has limits (Santhadaporn and Chen, 1970) which for the top 

flange can be written as

Mxl

0.25Aj-bf(7j
>1 1-. ^

A,afj
K

Q.lSAftfGf
• >2 !-■

Aj-(7f j
4.39(c)

Neutral-axis and web
Equations 4.38 and 4.39 obtained above are also valid for the three inclined neutral 

axis patterns of web as depicted in Figure 4.23. For both the equations tf\s replaced 

by tw and bf is replaced by bw In addition, is replaced by niy^, is replaced

by m^2 by <^2 •

In the above equations cr. ~ - ■=1-2,3, cr^ is the normal stress, which causes

all the three elements to yield in the presence of shear stress, while the subscript 

a = f,w,f are used for top flange, web and bottom flange respectively. The

subscripts 1, 2 and 3 in cr,. are used for top flange, web and bottom flange 

respectively.

For the web, = ct2A^ - A^p2

Based on the contribution from the web and flanges a general equilibrium equation in 

normalized form can be written as

m.

P = P,+ P2+ Pi

+ m^2 + "^.3
/ ( \ diA + 2c^)

+ my2

4.40(a)

4.40(b)

4.40(c)
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4.40(d)

4.8.3 Yield surface development and identification of the plastic hinge
The purpose of a yielding criterion is to develop its graphical presentation (yield 

surface) and to use it in elasto-plastic analysis to identify the yielding of a section. In 

this section a procedure is developed to obtain the graphs and to identify the 

yielding. The procedure is based on the element yield surfaces (developed in 

Section 4.8.2) and the equilibrium equations which satisfy the forces acting on the 

entire section.

To identify the yielding for a given set of forces, it is assumed that all the forces are 

known except any one force. The value of the unknown force is obtained using the 
element yield surfaces, equilibrium equations and the remaining forces developed in 
Section 4.8.2. If the obtained value of the unknown force is less than the given value 

then the section is elastic; if it is equal to the given value then the section is plastic 
and it is overstressed if more than 1. The cases when the neutral-axis does and 
does not intersect the web are discussed separately due to the number of 
parameters involved in determining the position of the neutral-axis.

Procedure to develop yield surface when the neutral-axis does not intersect
the web

Considering the seven forces which are P, Mx, My, B, Sx, Sy and Tu, it is assumed that 

My, is the unknown force and its value is calculated based on the remaining six 

forces to identify yielding. To obtain the yield surface the same procedure is 

repeated by varying the known forces to obtain many values for the unknown force 

on the graph. The procedure is as follows:

1. Using Equations 4.9 and 4.24 obtain the normal stress for both flanges and web.

2. Considering the sign of those forces which cause normal stress to the section, 

obtain the product of the signs using Equation 4.32 to identify the type of pattern.
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3. Check the given forces for the sufficient condition for the case when the neutral- 

axis is intersecting the web. The sufficient conditions are

A^(T^-AfCT,>\F\, |Mj>^(cr,+<73) and | >^(cr, + 0-3) 4.41

If any of the sufficient conditions is fulfilled, a pattern is considered in which the 

neutral-axis intersects the web, and yielding is determined in the next section. For 

the other case the procedure is continued in the next steps.

4. Obtain values of nixi and nixs called as mx].i and lUxs-i respectively using 

Equations 4.40(b) and 4.40(d) for given values of nix and b. mx2=0 as web is 

contributing to axial force only in this case.

5. Assuming a perpendicular neutral-axis for the bottom flange, p3 is calculated using 

Equation 4.37(b).

6. Obtain the value of/?/ by assuming /?2 = A^<72 IP and using Equation 4.40(a).

7. For the obtained values of nixi-i and pi, determine the type of element yield 

surface required to obtain m' using Equation 4.38(c) or 4.39(c). If Equations 4.38(c)

and 4.39(c) are not fulfilled is obtained based on the 2 pattern of 3D element 

yield surface.

8. Using Equation 4.40(c) obtain niy by considering my2=0 as web is contributing to 

axial force only in this case and compare with the given my to determine the yielding 

separately when the product is +1 and -1.

When the product is +1 and section has yielded go to the next step. When the 

product is -1 and section has yielded go to the next step. If the section has not 

yielded or section is overstressed the section is checked for the case when a
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perpendicular neutral-axis exists for the top flange, and the procedure from step-5 to 

step-8 is repeated. If found to have yielded the next step is continued. If the section 

has not yielded or overstressed the section is termed as elastic or overstressed 

respectively.

9. Obtain the parameters a or ex or x/ or X2 using Equation 4.38(a) or 4.39(a) 

respectively or a or er is obtained based on the pattern of 3D element yield 

surface, which ever is valid for the three values of Equation 4.38(a) and 4.39(a) or 
the 2"'^ pattern, and check the kinematic limit as discussed in Section 4.7.3.

When the product is +1 if it fulfills the kinematic limit, the process of yielding of the 
section is complete, otherwise check the forces for the case when it is intersecting 

the web.

When the product is -1 if it fulfils the limit, the process of yielding of the section is 
complete, otherwise the section is checked (if not already checked) for the case 
when a perpendicular neutral-axis can exist for the top flange and procedure 5-9 is 
repeated. If after yielding it does not fulfill the kinematic limit, the section is checked 
for the case when it intersects the web. If the section has not yielded or is 

overstressed the section is termed as elastic or overstressed respectively.

Procedure to develop a yield surface when the neutral-axis intersects the web

1. Constant values of p and b are assumed for which the yield surface is required.

2. It was concluded in Section 4.7.2 that the neutral-axis can assume to pass 

perpendicularly through at least any one of the flanges. If that flange is the bottom 

flange then the component of moment from the bottom flange is denoted as ,

a maximum and minimum value of can be obtained for the constant b based on 

Equation 4.40(d).
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To determine the minimum value of because the minimum value of in the 

graph is zero, therefore using Equation 4.40(b) and assuming = 0(a small value 

compared to flanges, hence ignored at this step), which shows that (From

Eq 4.40(b)). As is zero then is also zero, and from Equation 4.36(b) it can be 

concluded that Therefore using the relation B! =b and Equation

4.36(d), is obtained as *bjtf/4

In the case of establishing maximum contribution fromm^j, is required which

means Mx3-max must reach the full plastic capacity of one flange, therefore.

3. Generate a series of values of between and at any

assumed interval and obtain P3 and c for each using Equation 4.37(a) and 

relations ^3 -P^l Pp and 07^3 = I ■

4. For each value of M^3 obtain using Eq. 4.36(d), and obtain using the 

relation m,, =M^JM^p

5. If is assumed for the top flange, and it is discussed in Section 4.7.2 that a

non-perpendicular neutral-axis can exist for the other flange then there can be three 

possible patterns for the top flange when the neutral-axis is inclined as depicted in 

Figure 4.25. Assuming , a range of can be obtained using Equations 4.38(c)

and 4.39(c) for any possible neutral-axis pattern of this type. Therefore, values of 

are generated within the range by selecting a suitable interval. Hence, for one 

value, there is a series of values available from which one is to be obtained 

which is the correctp^.
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6. For each and constant m^^ calculate a,a , x^,X2 using Equations 4.38 and

4.39, Analyses are performed in two stages: in one stage it is based on a, a and in 

other stage it is based on x,, .

If the special case of Figure 4.16 is considered, then p^ Is obtained also for the the 

second pattern of Figure 4.25. In addition p^ Is also obtained based on Equations 

4.38(c) and 4.39(c). Now in this case p, is obtained by three patterns and analyses 

are performed in three stages; in one stage it is based on a, a and in the second 

stage it is based on x,,X2, whereas in the third stage it is based on the second 

pattern.

7. Obtain a series of p^ values for a series of p, values and a selected p^ using 

Equation 4.40(a). Now a series of p^ and p^ and one value of p^ are known.

8. At this stage, assume that the neutral-axis passes through the web based on the 

first pattern, as depicted in Figure 4.25. Calculate b' for the web using first equation

of Equation 4.38(a) by replacing a by b' and Pi by P2. Calculate the angle /? 

using the equation (derived in Appendix-B, Section B.5.1):

tan(l 80° - tan-' (/?)) =
lac

4.42

where L, = 0.5J - b and = 0.5d + b

9. It is assumed in step-8 that neutral-axis pass through the web based on the first 

pattern of Figure 4.25. Using the angle P (obtained in step-8) calculate a' where a' 

is defined in Figure B-13. If the value of a' >0.5t^ the assumption regarding the 

neutral-axis pattern is correct. If < 0.5t^ the assumption regarding the neutral-axis 

pattern is not correct. If the assumption is correct step-10 is ignored and go to step-
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11. If it is not correct angle /? is recalculated by assuming different patterns as 

follows (derived in Appendix-B, Section B.5);

10. If the first pattern is not obtained, it means there are two possibilities: either the 

second or third patterns can be obtained. The procedure to obtain (5 for both the 

alternative patterns is discussed as follows:

Assuming the third pattern, a' is calculated thus (derived in Appendix-B, Section 

B.5.2):

0.5*tfCa'^ -0.5*t faa'~ + a'^da + 2Ala' c + 0.5a^ t Jc - 2Ala' a - 0.5a't J^a + aUda + .l25tJ^c
J J /HW/H’

—. 125t + .25t\da = 4acAl 4.43

When a' is known ll^ is calculated as

-i-'i —

[a' + a't^+0.25* tl)
4.44

and p can be obtained using the relationship

tan(l80°-tan”'(/?))=^ 4.45

Assuming the second pattern, /? can be obtained using the relationship (derived in 

Appendix-B, Section B.5.3):

tanfl80°-tan'(/?))=—and L, = . .
' (c6„-a6„+2ac)

cdb„ + acd
4.46

where b = L2 -0.5d and b^ =Py,eb^^^w
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11. Based on the calculated P, a,b and c calculate the angle a„^. for the top 

flange using (derived in Appendix-B, Section B.5.4):

4.47

where and lb„^^ are as defined in Figure B-14 and the procedure to obtain

^b^new 3'’® given in the appendix.

12. Compare obtained with the a obtained in step-6. If both and a match 

each other to a certain tolerance, save the value and obtain w,, using 4.40(c), 

otherwise ignore the values.

13. Repeat the steps for other values of .

Developed yield surfaces
Yield surfaces are drawn based on the procedure discussed above. Surfaces are 
drawn for both the cases i.e. when the products of the signs of the forces as 
obtained by Equation 4.32 are +1 and -1. The curves are drawn for the W12 x 31 

section, where p and b are constant, while w^,and are x and y intercepts

respectively. Forces r„,5^,5^are assumed to be zero. Yield surfaces for both the 

product signs are discussed separately.

When the product of the signs of the forces is +1
Effect of axial force

The curves are shown in Figure 4.27-4.31. In all the figures, it can be observed that 
the presence of axial force shrinks the domain of the yield surfaces as the p value

increases from p = 0.0 - 0.8. Up to p = 0.4 the magnitude of the maximum 

value has not changed significantly for all the curves. For example for b = 0.2 it can 

be observed that the magnitudes for p = 0.0,0.2,0.4are 0.82, 0.81 and 0.79 

respectively. On further increase of the p value, the magnitude starts to decrease
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rapidly, where the values for p = 0.6 and 0.8 are 0.64 and 0.32 respectively. This 

shows that small increases of axial force do not affect considerably the capacity 

of the section. In the case of , there is a gradual decrease with an increasing 

axial force. For example for b = 0.2 the magnitudes of for

/7 = 0.0,0.2,0.4,0.6and0.8 are 0.92, 0.85, 0.73, 0.4 and 0.17 respectively. With 

the increase in axial force, the capacity of the section to resist rotation decreases. 

For example for p = 0.8 a bimoment of 6 = 0.6 cannot be applied.

Figure 4.27 Yield surface deveioped in this work and previous work by Yang et 

al. (1989) (shown as dashed red) for the case when p = Othe curve at the top is 

b=0.0 the next curve is b=0.2 and the rest foiiow a series as b=0.4, b=0.6 and 

b=0.8. Ellipse in the above figure represent that yieid surface for b=0.0 and 

b=0.2are ciose to each other

Effect of bimoment
The increase of bimoment value shrinks the domain of all the surfaces, as can be 

deduced from the figures. A reduction of both and rriy on the increase of b

value can be observed. The decrease of for an increase of sayO.2 in the value of
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b is approximately 0.2 for all the surfaces, as can be observed in the figure. This is 

because the bimoment causes both flanges to bend in opposite directions. 

Therefore, an increase of bimoment nearly equally decreases the value because

of the major contribution of the flanges to .

The decrease in the magnitude of with b may also be observed from all the 

figures. For example, in the case when /7 = 0.0for 6 = 0.0 and 0.2 (as noted as 

ellipse in Figure 4.27), there is a portion of the curve for which the shrinkage is small. 

This shows that a small increase of (low) bimoment values does not significantly 

affect curves for small values of This affect is not observed for larger values of

p , as can be observed for p = 0.2,0.4,0.6 and 0.8 in Figures 4.28-31.

Figure 4.28 Yield surface developed in this work and previous work by Yang et 

al. (1989) (shown as dashed red) for the case when p = 0.2 the curve at the top 

is b=0.0 the next curve is b=0.2 and the rest follow a series as b=0.4, b=0.6 and 

b=0.8. . Ellipse in the above figure represents that yield surface for b=0.0, 

b=0.2 and b=0.4 are close and intersect each other
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Figure 4.29 Yield surface developed in this work and previous work by Yang et 

al. (1989) (shown as dashed red) for the case when p = 0.4 the curve at the top 

is b=0.0 the next curve is b=0.2 and the rest follow a series as b=0.4, b=0.6BV\6 

b=0.8. Eilipse in the above figure represents that yield surface for b=0.0, b=0.2, 

b=0.4 and b=0.6 are close and intersect each other

Relationship between and /n_^,for pand b values

The relationship between and depends on the neutral-axis passing throughX y

the web. When the neutral-axis passes through the web, a constant plateau can be 

observed for low m^,. For example the curves obtained for p = 0.0 and 0.2 are the

cases when neutral-axis pass through the web. The reason is the low capacity of the 

web to resist m^. Beyond the constant plateau, there is a gradual decrease of on

the increase of up to the point when w, reaches a zero value.

When the neutral-axis does not pass through the web, there will be no constant 

plateau, as can be deduced from Figures 4.29-31. The decrease will be gradual from 

the peak magnitude of m to a zero value at the maximum m value.
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Figure 4.30 Yield surface developed in this work and previous work by Yang et 

al. (1989) (shown as dashed red) for the case when p = 0.6 the curve at the top 

is 6=0.0 the next curve is 6=0.2 and the rest follow a series as b=0.4, b=0.6 and 

b=0.8. Ellipse in the above figure represents that yield surface for b=0.0, b-0.2, 

b=0.4 and 6=0.6 are close and intersect each other

Comparison with the previous work
The comparative curves from the previous work by Yang et al. (1989) in so far as 

they exist are shown dashed in Figures 4.27 to 4.31. For small values of p the exact 

solution obtained in this work gives curves slightly below the curves developed 

previously by Yang et al. as can be observed from the curves obtained for 

/7 = 0.0 and 0.2 in Figures 4.27 and 4.28. This difference is more pronounced for 

small values of 6. The main reason for the difference is the assumption which was 

made in the previous work. In the previous work it was assumed that Neutral-axis 

pass perpendicular to the web and also perpendicular to the top flange. However, 

this assumption is not considered in the current research. To obtain an exact solution 

and fill the gap in the previous work, the original pattern of the neutral-axis in which 

neutral-axis pass inclined through both the top flange and web is considered. Two

170



main changes happen compared to the previous work. First that gap is filled, this is 

because of the inclined neutral-axis in the top flange. When inclined neutral axis is 

considered for the top flange, the contribution of major moment from the flange 

started to decrease and result in the reduction of major moment of the entire section 

and it reduce in such a way so that it nearly reach a zero value for major moment. 

During this process there is not much rise in the minor moment and result in nearly a 

constant plateau for the graph. Secondly, that neutral-axis pass inclined through 

web, it cause increase in the minor moment of the entire section and a reduction in 

the major moment component from the web. The decrease of the major moment 

component from the web was more than the increase of minor moment from the 

web, hence it shifts the curve towards the left and results in a curve below the Yang 
et al curve. Generally the web contribution to the major moment is large for an I 

section. Therefore, for sections where thickness of the web is larger or the depth of 

web is greater as compare to its flange dimensions, then the difference can become 
significant compared to the previous work of Yang et al. There are parts of the curve 

when the previous curve and current curve entirely match each other. This is due to 
the reason that in these cases neutral-axis passes perpendicularly to both flanges 
and web for the current research, as the assumption which was made previously. 
Therefore both the curves match at these points.

For the cases when p is larger i.e. when the neutral-axis does not pass through the 

web, the Yang et al curve is on the lower side for high values of minor moment, 
whereas for lower values of the minor moment, the current solution is on the upper 
side. The reason for this is the addition of component of major moment from the 

flange which is ignored in the previous case. This difference can become large if the 
flange considered has a large thickness.

Effect of shear and Torsion

Tu, Sv, and Sh cause shear stress on the section. Although shear stress is not 

considered in the development of the yield surface, their possible effects on the yield 

surface are discussed. Several possibilities exist when shear stress act on the 

section.
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First is when all the three forces are present. In that case shear stress is related to 

direct stress by Equation 4.9, and the domain of the yield surfaces will shrink 

keeping its existing shape.

In the second case, one of the forces is zero. In that case, the reduced direct 

stresses on the web and flanges are different. If there is no change in the direct 

stress in the flange, there is a decrease in the stress of web. The magnitude of

will decrease, whereas the magnitude of will nearly be the same because of the 

small contribution of the web to .

There can also be a case when the direct stress in the flange is less than the direct 

stress in the web, whereupon the magnitude of will decrease because of the

flange contribution to , whereas the magnitude of will depend on the depth of

the section. The m^. reduction will be more for higher values of depth of the section.

When the product of the signs of the forces are -1 

Effect of Axial Force

The overall effect of an axial force is to reduce the domain of yield surface. Up to a 

value of p = 0.4 the maximum moment value of has not changed. For example

for b = 0.2, the magnitudes of are 0.8 and 0.78 for p = 0.2 and 0.4 respectively. 

Beyond p = 0.4 there is a large reduction in the magnitude. The rotational capacity 

also decreases rapidly beyond this point. The magnitude of rriy decreases gradually 

with increasing p value. For p = 0.2 and 0.4 a decrease in the magnitude of 

is observed for a nearly constant magnitude of m^. It results in shifting of the yield 

surfaces to the right on increase of the p value.

Effect of Bimoment

For all the curves for different p values, shrinkage of curves can be observed on 

increase of the bimoment values except for portions of the curves highlighted with an
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oval in each figure. The reason for the change of curve as highlighted in the figures 
is that the bimoment is a self balancing moment where both the flanges warped in 

two different directions, hence giving a summation of zero minor moment. Therefore 

it can give a high value of for b = 0.4 as compared to the value for 6 = 0.2 . This

only happened to the curves when the product of forces is -1. The reason is that 

when the product of the forces is +1, only those neutral-axis pattern are required to 

generate yield surfaces, whose product of the strain vectors is also +1, whereas 

when the product of forces is -1, then those neutral-axis pattern are required whose 

product of their strain vector is both +1 and -1. This can be observed for 

p = 0.2,0.4,0.6 and 0.8. This also shows that warping can sometimes cause an 

increase in the plastic capacity of the section. This change of curve pattern as noted 

as ellipse in the figure for different b values or for two different values of for the

same curve is also due to the fact that in the theory of plasticity the solution is not 
unique (the Drucker postulate) (Drucker, 1956). Therefore there can be different 

failure points depending on the manner of loading of the entire member and the 
direction of the deformation vector for the yield surface.

Figure 4.31 Yield surface developed in this work and previous work by Yang et 

al. (1989) (shown as dashed red) for the case when p = 0.8 the curve at the top 

is 6=0.0 the next curve is 6=0.2 and the rest follow a series as 6=0.4, 6=0.6 and 

b=0.8. Ellipse in the above figure represents that yield surface for b=0.4, b=0.6 

and b=0.8 are close and intersect each other
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Relationship between and for p and b values

When the neutral-axis passes through the web, a constant plateau can be observed. 

The curves obtained for p = 0.2 and 0.4 are the cases when neutral-axis passes 

through the web, as can be deduced from Figures 4.28 and 4.29. The reason is the 

low capacity of the web to resist m^. For the cases when neutral-axis does not pass 

through the web, i.e. for p = 0.6 and 0.8 no constant plateau exist. For portion of all 

the curves, there is a gradual decrease of on the decrease of m^. This

happened to the portion of the curves generated based on the neutral-axis pattern 

when the product of the sign of strain vector was +1. As the interaction curves are 

not unique (Drucker, 1956), it can happen that due to bimoment a decrease of is

obtained for a decrease of .

Effect of shear and torsion
There will be the same effects due to the shear stress as discussed for the case 
when the product was +1.

Comparison with the previous work
When compared with previous curves (produced by Yang et al. (1989)) all the curves 

obtained by the current solution give curves marginally below the previous curves. 
The reason for the difference is the consideration of the minor moment in the web. In 

addition, two extensions to the existing curves can be observed. First, a constant 

plateau extension for p = 0.2 and 0.4 is now provided which is obtained by 

assuming an inclined neutral-axis for the web, which reduce the major moment of the 

section up to a zero value on a slight change of the minor moment. This slight 

change causes a decrease of the nty value when contribution to from the web is

also considered. For p = 0.6 and 0.8, it was assumed previously that an inclined 

neutral-axis can pass through one flange only. However, it is found in the current 

study in Section 4.7, that inclined neutral-axis can pass through both the flanges, 

which cause extension of the curves to the point when m reaches a zero value .
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Kinematic Mechanism and Comparison between the two yield surfaces 

Every point of the yield surface corresponds to a yield mechanism because, as shall 

be discussed in the next section the uniqueness theorem is satisfied. Observing all 

the graphs continuity between the cases when the product is +1 and -1 can be 

observed. This indicates that the yield surfaces are closed and continuous. 
Observing the domain of all the yield surface it can be deduced that all the curves 

are convex in nature. Hence it can be said that developed yield surface are closed 

and continuous (Morris and Fenves, 1970) and fulfill the criterion of convexity.

Yield surfaces, when P=0

From the study of neutral-axis patterns in section 4.7 a same pattern will be achieved 
for both positive and negative bimoment deformation. Therefore one obtains same 

curves for both positive and negative values, which shows that there will be 

symmetry, unlike for the cases when p>0 (see Figure 4.27)

Procedure to identify yielding of the section when the neutral-axis intersects
the web)
It is extremely difficult to identify yielding for the case when the neutral-axis passes 
through the web. The reason is that in the current work minor moment contribution to 

the web is considered, as compared to the previous case in which it is not 
considered. Because of this numbers of unknowns for the interaction equation 

exceeds number of equations. Therefore to identify yielding, the minor moment 

contribution to the web is not considered here.

From the developed yield surface, it is found that a portion of the yield surface when 

the neutral-axis passes through the web is almost a flat plateau, as identified by lines 

with arrows in Figures 4.27, 4.28 and 4.29 for the portion where there is a flat 

plateau. This is due to the fact that the minor moment contribution to web is very 

small (as discussed above). As the contribution of minor moment to web is small for 

available l-sections, a constant plateau can be assumed to identify yielding of a 

section.
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For the constant plateau it can be observed that if point A is marked on each curve 

then to the left of it is constant plateau for product =+1. When considering the curves 

when the product of forces is -1, in that case another point A is given to the right of 

which is constant plateau. Therefore to identify yielding it is first required to 

determine point A of each curve at which flat plateau commence.

Obtaining point A

From the developed yield surface it is found that the summation of the absolute 

values of and b reaches a value approximately equal to one for the region of the 

constant plateau. Therefore point A is the point where the summation equal to 1. 

Therefore three forces are known for point A, these being values of p , and b .

For example for p = Q.2 and 6 = 0.2 ,m^ used is 0.8. Therefore, only value of 

moment about major axis rtiy^ is required to obtain point A for each curve.

Using Equation 4.40(b and d) are obtained by assuming w^2=0(the

contribution from the web to is ignored). Therefore p^,Pi can be obtained by 

using Equation 4.37(b) by using appropriate parameters for a 2D element yield 

surface. Using Equation 4.40(a) p^ is thus obtained and therefore, using Equation 

4.37(b) for the web, be obtained. Therefore, can be obtained using

Equation 4.40(c) by assuming = 0. The value obtained using Equation 4.40(c) is 

the required value.

In this procedure it is first required to determine the value, because For example 

considering the curves when the product offerees is +1, then if value of m^is more 

than niy^ it means that at yield surface the summation of and b is less than one, 

whereas if value of w^is less than it means yield surface point lie on the flat 

plateau and the summation of m and b is nearly equal to one.
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Therefore, considering the product=+1, if is less than then the summation 

of and b are checked, if it is equal to 1, then the section is considered plastic, if 

it is less than 1 then it is elastic and it is over stressed if it is more than one.

If rriy is greater than , then the summation of and b are checked: if it is

equal to or more than one, then the section is considered over-stressed, while if it is 

less than 1 then the section is checked for plasticity as follows:

As above using Equation 4.40(b and d) are obtained by assuming

mx2 = 0(that is, the contribution from web to is ignored). Therefore Pi,P2 can be 

obtained by using Equation 4.37(b). The sign of are determined as

Pi = -sgn(/w )/?!, P2 = sgn(w );73 4.48

Using Equation 4.40(a) p^ is obtained. If the p^ obtained is more than p^^^ the 

section is considered to be over-stressed. If p^ < pjmss. ■ calculated using

Equation 4.40(c) by assuming m'y^ = 0.

If the obtained is less than the given niy section is considered elastic: if equal to 

the given the section is considered plastic, and if more than the given rriy, the 

section is considered over stressed.

4.9 INTERACTION RELATIONSHIP (UPPER BOUND 

SOLUTION)
The above finalised patterns are based on several assumptions and it is required to 

verify the patterns in the theory of plasticity. For the verification, a solution is 

obtained by an upper bound approach and compared with the lower bound solution. 

If both the solutions give the same results, then the solutions satisfy the uniqueness
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theorem of plasticity and equations obtained are termed as exact within the 

assumption made.

To obtain the upper bound solution, it is required that the deformation pattern (i.e. 

neutral-axis pattern) gives the minimum value of the forces. Considering the first 

pattern of Figure 4.21(a) the assumed strain rate field is specified by six variables

with a plastic strain rate £•,. at the centroid of each of the three plates and a plastic

curvature rate /c,. for the bending of the plates, where i=1,...,3. The subscripts 1, 2

and 3 are used for top flange, web and bottom flange respectively. Fulfilling the 

compatibility criterion, the strain rate in the flanges are related to web, and is written 
mathematically as

d

^2 - ^2 + 2

4.49(a)

4.49 (b)

where is the Y-component of the plastic curvature rate in the web.

To satisfy the equilibrium condition during a kinematic collapse mechanism, the work 

done by the external forces We must be equal to the internal work done (rate of 

dissipation of energy) during yielding Wi and is written as

Wi = We 4.50(a)

where the rate of dissipation across the section is

Wi = f
JA

dA 4.50(b)
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and the external work done to the section is

We=fe 4.50(c)

where, is the plastic strain rate, / is the generalized force vector and e is the

generalized plastic strain rate vector. Considering the entire section, the internal rate 

of dissipation for the section is given as

(■ \ ( . \ ( . \
Wi = Wi + Wi + Wi

1 J\ 2 7
4.50(d)

where the subscripts 1, 2 and 3 are used for top flange, web and bottom flange 
respectively.

Figure 4.32 Detail of curvature of each plate, strain rate at the centroid of each 

plate and definition of areas on each plate

When the forces and moments in each plate are given by and , where i

has the same meaning as before, the rate of work done by the external forces for the 

entire section can be written as
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We =p,e, + + P^ej + + M+ P^ e,„ + M4.50(e)

where, and /tr,„ are the components of /f,. in the global X and Y direction of the 

section.

Considering the top flange, the rate of dissipation is given as

/ \ 
Wi

V J\
= (7 AT] (2A^C^ + 2^jC2 + ^2^2 ) 4.51(a)

where A/, A2 and Aj are the areas of different parts of the section, c/, C2 and C3 are 

the perpendicular distance from the neutral-axis to the centroid of each area, as 
depicted in Figure 4.32.

From the figure, it is evident that

A^ = A^, C3 =2c2+c, and c, =a^^sma, +ay^cosa, -acosa/, C2 = a cos«4.51(b)

where a, is the angle, and are the centroidal distance of the area A^ with

respect to the global X and Y-axis respectively, as depicted in Figure 4.32 and a is 

the distance as given by Figure 4.21(a).

Substituting the values of Equation 4.51(b) into Equation 4.51(a) gives

Wi =(7yK^i^A^a^^sm.a + 2A^a^^cosa + A2acosa) 4.51(c)

The curvature a:, is resolved into two components along the XX and YY-axes, as 

a:^, and at^j respectively such that
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= a:, cos or, = /c, sin a 4.51(d)

Substituting the values of Equation 4.51(d) in Equation 4.51(c) gives

c A
Wi

V 1 V
4.51(e)

Similarly the rate of dissipation of energy for the web can be written as
r \
Wi 

V /
— cr^ K^2'^ ^-^4^x4 ^>'2 "^^5^2 4.51(f)

Whereas for the bottom flange it can be written as

( ^ (
Wi] =<T^ 2^7*^v8 ^8^3

V Ji y
4.51(g)

where (5 is the angle, and A^ are the areas of web and the bottom flange 

respectively and a^^and are the centroidal distance of the area, with 

respect to the global X and Y-axis respectively.

In the absence of warping strain the curvature of top flange and web remains the 

same (as discussed in Section 4.7). Therefore when the curvature is resolved into X 

and Y components these will be the same for the top flange and the web are same. 

When the curvature of warping strain which is also in the X-direction is considered, it 

will add to the X component of the curvature (in the absence of warping strain) of the 

top flange, where as Y-component of the top flange will not change. As no addition of 

warping strain in the web so its Y-component of the curvature is also be the same as 

for top flange. Therefore Y-components of curvature of the top flange and web 

remains the same even after addition of warping strain, therefore, it can be written as
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^y^=^y2=^y 4.52

Putting the expressions from Equations 4.50(d and e) and 4.51 (a, f, and g) and 

Equation 4.52 into Equation 4.50(a) gives

d
■AT,

y

/
+ + Myi Ky + + ><y + ^3

d

+ =(7y 2A,a^, K^+ lA,a^., k^+A^\ ^2 +

/ y
2^4«v4'^x2+2A«x4S+^5^2 + ^3' ^■^l^yi ^x3'*' A

V y
4.53(b)

writing the left term of the above equation after some rearrangement

We=P,S^+P,-Ky+M^, ^., + S+ ^2 ^2+^x2 ^x2 + ^^2 S+ ^3^3 + ^3 ^ +

^x3 ^x3

As P = P^+P2+P^

Therefore,

d ■ d
We=PS2+P,-Ky+ + M^2 '^xl + Myl + ^3 + ^x3 ^^^3 =

f r r/ "1 N y \
24«xi Ky + 2A,ay,K^ + A2\ S2--Ky

K V 2 ;
2^4 /f^2 + 2yf4^x4 S ■*■ ^5^2

/ V y

+ cr.
r ' cf

2^7 ^x3'*‘ ^8 ^2+-S
V V 2

4.54

Differentiating the above equation w.r.t. S2 gives

P = -cjyA2 +(JyA^ +o-yAg 4.55(a)
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Again differentiating the above equation w.r.t. /r gives

Px ys + +^y2+Pi^ = 2(T^A,a^, + cr^v42 Y + 2cT^A,a^, + a^Ag | 4.55(b)

But

Therefore,

4.55(c)

M=2a,.A,a,, + a-.A.— + 2(j,.A.a,. +a..A.—'y^4^x4 ' y^^S 4.55(d)

Differentiating Equation 4.54 w.r.t. x' ,, yf , and k . gives, respectively

M^^ =2<t A,a ,, =2cr^A^a^ and M=2cr A^a j 4.55(e)

Therefore,

+ M^3 = 2(7 ^A,a^^ + 2cr,,^,o,,, + 2a^A,a^, 4.55(f)

Bimoment is obtained as

4.55(g)

The above terms when compared with its lower bound solution (discussed in 

Appendix-B) gives same results, and the uniqueness theorem of plasticity is 

satisfied. Therefore, the solution is exact within the limits of the proposed theory and 

the assumption made. Similarly, using the upper bound solution of other patterns.
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one may also show that the upper bound solution of other patterns matches the 

lower bound solution.

4.10 CONCLUSION
In this chapter a seven dimensional plastic interaction relationship is developed 

using the lower bound approach. The lower bound solution is divided into two parts. 

In the first part the interaction equations for shear stresses are developed, while the 

second part deals with the direct stresses.

The interaction equation for the first part is developed using a lower bound approach 

by assuming a neutral-axis pattern in the case of shear stresses. The equation 

developed is quadratic by nature. Different options are discussed when one or more 
of the three forces are not present for the interaction equations.

For the second part, first a study is performed to obtain possible neutral-axis 
patterns. Two basic types of patterns are obtained namely when the neutral-axis 
intersects the web and when it does not intersect the web. Lower bound solutions of 

the obtained neutral-axis patterns are obtained and a procedure is developed which 
identifies the formation of plastic hinges and the development of the yield surface.

Using the procedure developed, yield surfaces for a typical steel (W12 x 31) section 

are developed and compared with previous solutions. The inaccuracies and gaps in 

the previous work are identified. It is also found that the developed yield surface 

fulfills the theory of plasticity.

The solution of the second part is verified using an upper bound solution, and is 

found to be exact which verifies the uniqueness theorem of plasticity. The developed 

theory can be used for the development of yield surfaces and in elasto-plastic 

analysis.
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CHAPTER-5

PRELIMINARY TEST AND SINGLE STRESS
RESULTANTS EXPERIMENT

5.1 INTRODUCTION
In the previous chapters, yield surfaces were developed. These developed yield 

surfaces and previously developed yield surfaces were verified by the numerical 

approach used in this research. To verify yield surfaces for different combinations of 
stress resultants experimentally, a testing program was been set up. Two 

combinations of stress resultants are investigated; firstly biaxial bending and torsional 
stress resultants and, secondly, axial force, biaxial bending and torsional stress 

resultants. The structure used throughout the programme for all the experiments is a 
cantilever thin-walled l-section beam. This chapter deals with the first part of the 
experimental program in which mechanical properties of the material and capacities 
of the section for single stress resultants are obtained. A numerical study was also 
performed to compare the experimental results with finite element simulations.

The mechanical properties of the material of the l-section, which is used in the 
experiments, were first obtained. Coupon samples were machined from a steel joist 
(as extracted from the l-section beam used for the main experiments) and tested in a 

uniaxial tension test at ambient temperature based on British standard BS EN 10002- 

1 (BSI, 2001).

Thin walled l-section beams were tested in bending separately about both principal 

axes to obtain the moment capacities and flexural behaviour of the beam. Cantilever 

beams were tested in bending about the major and minor axis. To obtain the 

torsional moment capacity and bimoment capacity of the section, two cantilever 

beams of equal dimensions were tested in torsion. A different test set-up was 

designed and used for the torsion experiments.

Results obtained from all the experiments of single stress resultants are compared 

with different theories and with experiments previously performed.
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5.2 COUPON TEST
To obtain the mechanical properties of l-sections at ambient temperature, for 

theoretical verification of the experimental results using different theoretical and 

numerical approaches, standard coupon tests were performed. Longitudinal 
specimens were tested in accordance with the European standard BS EN 10002-1 

(BSI, 2001) for mechanical properties of the specimens. Test pieces were obtained 

by machining samples from a \2m length of l-section used to obtain the specimens 

for several of the beam tests. Four samples were taken at different positions on the 

cross section, three from the web and one from the flange, as shown in Figure 5.1.

25

©

4,5 ®
C/L

Figure 5.1 Different locations of an l-section from which coupon samples were
taken

The locations of the samples were based on typical residual stress patterns 
(Erglekirk, 1994) for an l-section, as shown in Figure 5.2. Owing to an expected 

synmetrical residual stress pattern in the flanges, it was decided to machine one 

sample in such a way that the point of conta flexure lies at the centre of the sample, 

whie the bottom flange and right edge of the top flange were ignored, as depicted in 

Figure 5.1. For the web, it was decided to take the samples equidistant from the 

centre of web. Therefore, two samples (numbered 2 and 3, as shown in Figure 5.1), 

where there is a change from tensile to compressive residual stress, were taken, 

whIe one sample (numbered 4, as shown in the figure) was taken from the centre of 

the web where there is maximum compressive residual stress.
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Co.~:pressiv» reisidua)

Terailfi resicuaj stresses

Compression
A

i
Tension

Figure 5.2 Typical residual stress pattern of an l-section (Englekirk, 1994)

Non-proportional samples were used according to the European standard. All 

coupons of thickness, 5.86mm (for flanges) and 4.5mm (for web) had a 75mm 

parallel length (Z-^) of width 20mm (b), as depicted in Figure 5.3. The parallel length 

is connected to the grip ends by means of a transition curve with a radius of 20mm. 

The width of the ends (B ) is 25mm . The original gauge length (L^) of each sample

was 50mm , which was marked by scribed lines. The values of these dimensions for 

the specimens are given in Table 5.1. In the table t is the thickness of the sample 

before the test, is the cross sectional area of the sample before the test. 

and are the thickness, width and cross-sectional area of the sample after the test 

respectively.

Tensile test coupon

Li

Gripped ends

Figure 5.3 Tensile test coupon (Goggins, 2004)

The coupons were tested to failure in an INSTRON displacement controlled testing 

machine (with friction grips) at a displacement rate of 0.0833mm / sec. This is
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equivalent to a strain rate of 0.001665"' which is kept constant, as recommended by 

the standard. A calibrated extensometer of 5Qmm gauge length was used to measure 

the longitudinal strain. A data acquisition system was used to record the load and 

extension at regular intervals during the tests.

A typical load-extension graph for one of the specimen up to the point of failure is 

shown in Figure 5.4. A similar pattern was observed for the remainder of the three 

specimens, as shown in Figure C.1 in Appendix-C, Section C.1. In the figure, a large 

extension is observed indicating the ductility of the material. The material properties 

obtained from the coupon tests are summarized in Table 5.1 and 5.2.

Figure 5.4 Typical load deflection graph for a coupon test (taken from one of 
the specimens)

S.No Stress at 
peak

 ̂peak

Stress at 0.2% 
Yield
^0.2%

Stress at 0.5% 
Yield
^0.5%

Stress at lower 
yield stress

{MPa) {MPa) {MPa) {MPa)
1 438.33 314.58 306.35 312.65
2 468.10 331.80 334.88 334.06
3 484.48 361.17 360.37 358.26
4 467.10 337.80 335.91 329.90

Avg 464.50 336.34 334.38 333.72

Table 5.2 Stresses at different stages of the specimens obtained from Coupon 

test results.
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The upper yield strength 7?^^,, lower yield strength , tensile strength, 0.2%

proof strength (non-proportional extension) and 0.5% proof strength (total

extension) were obtained as given in the table, details of which are discussed in BS 

EN 10002-1 (BSI, 2001). It can be observed that peak loads for all the cases is 

nearly 30% more than the load at 0.2% yield strength {Rp02)> given in Table 5.2. 

The final gauge length after rupture, , given in the table, was determined using the 

total extension recorded in the testing machine. It was then used to determine the 

percentage elongation of 50mm gauge length, , after fracture. The percentage 

reduction in area, Z, was also determined and the percentage elongation at 

maximum force is given in the table.

5.2.1 Coupon test results
Yield stress determination of the constrained and unconstrained plastic flow, stresses 

at the strain hardening phase, peak stress and Young’s Modulus were all required 

from the coupon test results to facilitate theoretical calculations and finite element 

analysis in the numerical verification of the experimental results. Yield stress is 

normally obtained based on a line which is 0.2% strain offset parallel to the slope of 

the stress-strain diagram (Englekirk, 1994), but this only holds for stress-strain 

relationships where there is no well-defined plastic plateau. In the case of a well- 

defined plastic plateau, the yield stress depends on the lower yield stress value .

In Figure 5.5, load against extension is shown for specimen 1 for a extension of Imm 

which shows that the material has a well defined plastic plateau, and in these cases, 

the yield stress is defined using a lower yield stress, a,, of the section. In Figure C.2,

Appendix-C, Section C.1, similar graphs are shown for the remainder of the 

specimens. Therefore, the average value of all the lower yield stresses, which is

333.1 MPa, is taken as the yield stress of the section at a strain of 0.0017f , as 

shown in Table 5.2. A plastic plateau was observed up to a strain of approximately 

0.02 in Figure 5.6, and the first strain-hardening slope was observed at a strain of 

0.10 at a stress of A25.SMPa . The average peak stress is observed at a value of 

464.50AfPa and at a strain of 0.29. Young’s modulus obtained from the samples 

ranges from 189.1GPa to 208.8GFa with an average value of 201.7GPa. A stress- 

strain diagram, based on the average values, is plotted in Figure 5.6.
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Figure 5.5 Coupon test results of the first specimen up to a deflection of 1mm

Q15

Stial n(6)

strain (£r)

Figure 5.6 Average uni-axial stress-strain diagram

5.3 TESTING BEAM SECTIONS IN FLEXURE
5.3.1 Experimental set-up
Two types of experiments in bending were performed on an l-section, namely about 

the major and the minor axes using a cantilever arrangement (Figure 5.7(a)). Details 

of the section used for the experiments are given in Figure 3.5(c). Experiments were 

performed to establish the failure modes in flexure and the plastic moment capacity 

Mp of the section. These are compared with the theoretical flexural modes and the

theoretical plastic moment capacity, which were calculated (given in Appendix-C, 

Section C.2) based on a uni-axial stress-strain relationship (Englekirk, 1994). The 

uni-axial stress-strain relationship was obtained from the coupon test results as 

discussed in the previous section. Ultimate moment capacities, , for the section 

were also calculated using the uni-axial stress-strain relationship.

Beam specimen and internal reaction frame
Beams were orientated vertically and welded to a top base plate to create the fixity 

condition for a cantilever beam, depicted in Figure 5.7(a). There were two spans in
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the tests, which were 1.18m and 1.24m. They were used because for the first one, 

the top base plate was above three other base plates, as shown in Figure 5.7(b), 

which were used as packers because the tip of the beam as cut, depicted in Figure 
5.7(a) was below the height of the tip of the shaft of the actuator of the loading 

arrangement. The packing was required so that the load can be applied horizontally. 

In the other experiment, packers were removed and a single base plate was used 

which increased the span to 1.24mm. All base plates were fixed to a 3000kN 
capacity internal reaction frame, part of which is shown in Figure 5.7(a).

Tip of Load 

Tip of the Be
Hydraulic Valve 
Actuator

Figure 5.7(a) Experimental set-up for the cantiiever beam, bending about the 
major-axis Welded joint

Top base 
plate

The packer 
base plates

Figure 5.7(b) Beam weided to the base and connected to the internal reaction 

frame by nut and boit arrangement.
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Deflections, strain measurements and load control
The overall load-displacement responses, together with a measurement of strains at 

different locations were required in each test. Hence, a load cell, linear variable 

differential transformers (LVDT) and strain gauges were employed.

Deflections were measured at different locations: Deflection at the top was measured 

in each case by an internal LVDT contained in the hydraulic valve actuator, which is 

depicted in Figure 5.7(c). Deflections were measured at other locations using 

external LVDTs. The type of external LVDT used was an RDP electronic ACT200 

LVDT with a linear range of ±50mm and sensitivity of 2SA4mV/V Imm with 

5V(RMS) 5/-/Z energising supply.

RDP Load Ce
Hydraulic Valve 

tuator

Servo-valve 
control

Figure 5.7(c) Load cell and RDP actuator mounted horizontally to the frame.

For the initial test on a cantilever, with a span of 1.18m, deflections were measured 

at distances of 0.195m, 0.395m and 0.745m, from the top base plate, whereas for a 

span of 1.24m (in the second cantilever test to be described presently), they were 

measured at distances of 0.33m and 0.60m from the base plate.

Strain gauges were installed at those locations where displacements were measured 

and also near the fixed end of the beam to measure the peak flexural strain and the 

axial strain. Axial strain measurement was required to observe any secondary axial 

effects that can arise in a cantilever type bending behaviour under large deflections. 

Flexural strains were measured at the outer edges of flanges for bending of the beam 

about the major-axis in order to measure both the peak tensile and compressive 

strains. Alternatively, strains were measured at the outer edges of both flanges at the 

left and right corner of the flanges for monitoring the bending of the beam about the 

minor-axis. The locations of the strain gauges are shown in Figure 5.8.
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An RDP load cell of capacity lOOkN was attached to the hydraulic valve actuator, 

which was mounted horizontally to the frame (as depicted in Figure 5.7(c)) and had a 

deflection range of up to 100mm. The theoretical deflections obtained at the free end 

of the beam at plastic moment capacities about both the principal axes were less 

than this limitation of 100mm (Section C.2). Therefore, the restriction on the 

maximum deflection of the actuator was considered reasonable, as it should allow 

the beam to obtain its plastic moment capacities experimentally. The whole set-up for 
the bending of beams about the major and minor axes is shown in the foreground of 

Figure 5.7(a).

1®

(D

Figure 5.8 Location of strain gauges for cantilever beam, bending of beam 
about the major and minor-axes

Static monotonic loading was applied based on a deflection controlled loading 

method at a rate of no more than 0.02mm / sec. The loading rate was selected to 

ensure that the beam has enough time to equilibrate, and was not influenced by any 

dynamic or impact effects (Goggins, 2004).

Data transfer and storage devices
The System 5000's instrumentation hardware depicted in Figure 5.9 is designed to 

incorporate all the features required for precision strain measurement under static 

loading conditions, while maintaining flexibility and ease of use. System 5000
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components can easily be configured using Strain-Smart Software for each test 
requirement.

StrainSmart software, which works in the Windows environment, is used for 

acquiring, reducing, presenting and storing measurement data from strain gauges, 

strain-gauge-based transducers, thermocouples, temperature sensors, LVDTs, 

potentiometers, piezoelectric sensors, load cells and other commonly used 

transducers.

System 5000 Unit

Empty plastic box to support 
system 5^0

Figure 5.9 System 5000 unit and Personai Computer
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Test Control

The actuator command console, shown in Figure 5.10, generates the signal and 
passes it to the servo-valve control. An Amsier hydraulic valve pump (power pack) is 

also attached to the servo-valve control (as shown in Figure 5.11). Based on the 
signal generated by the actuator, the pump pushes the actuator, which opens, or 

closes, to move the actuator to the required position. The load cell measured the load 

based on the resistance provided by the specimen, when it is displaced by the 

actuator. Both the load cell and the internal LVDT send a return voltage to the 

command console. The voltage, Vret, from the displacement transducer is compared 

to the original voltage signal Vout- If the actuator has not reached the correct position, 

Vout is updated and sent to the serve-valve control. A flow chart of the process is 
shown in Figure 5.11.

Figure 5.10 Actuator command console

Hydraulic power pack 
(Wolpert Amsier)

Servo-Valve Control 

(RDP Hundem Group)

Servo-valve
Personnel Computer

Internal LVDT
RDP Load Cell 

Strain Gauges

Beam Specimen

External LVDT
System 5000

Figure 5.11 Flow chart of data processing and storage for experiments
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This is a continuous process and may be assumed to happen virtually 

instantaneously. During the process, signals from the internal LVDT and the load cell 

are received by the actuator command control. At the same time, signals from the 

load cell, external LVDTs and strain gauges were received by the System 5000.

All the signals received by the System 5000 were transferred to a data storage card 

installed in the computer and is synchronized by the software StrainSmart. The 

StrainSmart stores the data in the computer hard disk in ASCII-Code where it can be 

read in Microsoft Excel to allow interpretation of the experimental results.

5.3.2 Bending of beam about the major-axis

Bending of the beam about the major axis was performed for a cantilever. Two 

experiments were performed in total in major axis bending. The spans selected were 

1.1 8ot and 1.24/w .

Cantilever beam bending about the major axis. 1.18m span

An experiment was performed for a span of 1.18m to obtain the flexural capacity and 

to observe the failure mode of the beam. The load-deflection graph is shown in 

Figure 5.12. The load was applied to a maximum value of l6.3kN yielding a tip 

deflection of 31.3mm. In the load-deflection graph, non-linear behaviour was 

observed to commence at a load of approximately l.OkN, as shown in the figure. 

Fluctuations in loads can be observed around the peak-loading region between 

deflections of 20mm and 50mm. Failure of the weld in the base plate was observed 

during the loading. This fluctuation of loads in the peak-loading region indicated that 

the welded connection started to crack at that time and was one of the reasons for 

beam failure.

18

100
Displacement (mm)

Figure 5.12 Load-deflection behaviour of beam of span 1.18m
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There can be two principal reasons for failure; firstly partly due to the development of 
a weld crack, and secondly due to yielding of the section. To investigate the cause of 

failure, the maximum flexural strain, near the fixed-end at the tensile face was 
observed. A graph is drawn for the flexural strain against the flexural stress, which is 

obtained based on elastic theory, as shown in Figure 5.13. Linear behaviour can be 
observed in the graph up to the peak stress of approximately 0.5GPa. Significant 

fluctuations in the flexural stress with an overall stress release were also observed in 

the graph, indicating the failure of the weld. A fall in the stress without a 
commensurate decrease in the strain was observed (also because of weld failure). 

This cause of failure due to weld failure is supported by the stress-strain graph. A 

destressing of the beam, as seen by a reduction in stress (with a linear pattern of 

similar slope to the original) and reduction in strain is followed by evidence of an 
amount of residual plastic strain in the beam indicating that the section had yielded.

Strain(//j; )

Figure 5.13 Graph showing relationship between flexural stress and flexural 
strain.

Hence, it can be concluded that failure of the beam was a combination of weld 

failure, and yielding of the section. Uplifting of the base plate was measured to 

determine its effects on the failure but was found to be negligible.

Cantilever beam bending about the major axis, 1.24/n span

Owing to the failure of the 1.18/m cantilever beam because of the weld cracking, 

another experiment of a cantilever beam in bending about the major axis was 

performed in pursuit of information on the approximate plastic moment capacity of 

the section about the major-axis.

The number of base plates in this experiment was reduced to one, as compared to 
four in the previous cantilever beam experiment. Therefore, a longer beam length
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(1.24m) was required, due to the reduction in the number of base plates so that the 

tip of the beam, (depicted in Figure 5.7(a)) was able to coincide with the loading shaft 

of the actuator, which was kept horizontal during load application. To avoid welding 

failure, larger welding legs were provided. Deflections and strain gauges were 

measured at the locations discussed in Section 5.3.1.

The load-deflection graph is shown in Figure 5.14 in which a non-linear response is 

observed to commence at a load of approximately 7.0/cA/, which can be considered 

as the yield point. This decrease in slope of the load-deflection graph continues up to 

a load of approximately 11.3/c/V, producing a plastic moment capacity of ^3.9kN.m. 

During this stage, the beam was in the elastic-plastic phase. Beyond this, it 

maintained an increase in load with a more or less constant slope. The constant 

slope was maintained up to a maximum actuator deflection of lOOwm at which the 

maximum load of 13.4^iV, produced a moment of ^6.6kN.m. This stage of constant 

slope can be referred to as the strain-hardening phase. The graph shows a similar 

pattern to that observed for the bending of the beam in the previous experiment. 

Young’s modulus obtained in this experiment is approximately 178GPa. This value 

differ from the Young’s modulus obtained from the coupon’s test result and the 

difference is discussed in the next section.

Figure 5.14 Load-deflection curve of cantilever beam of span 1.24m

The constant slope region has a low gradient, which can be considered as the plastic 

phase with strain hardening of the material. The moment at the start of the phase, 

which is ^3.9kN.m (under a load of 11.3kN) can be considered as the plastic moment 

capacity of the section. The maximum moment of 16.6A:A^.m (under a load of ^3AkN) 

cannot be considered as the ultimate moment capacity because of the need to
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terminate the experiment due to the limitation of the maximum deflection of the 

actuator, and it was not possible to achieve its ultimate load because of the limited 

maximum deflection. However, the ultimate load was predicted theoretically based on 

the results of coupon test (Appendix-C) to be ^4.84kN, yielding a moment of 

^8AkN.m.

A comparison is made in percentage terms between the differences of strain at the 

extreme faces of the section for both the tensile and compressive flanges (Table 5.3.) 

In the table, the second and third columns present the percentage differences of 

strain between both the faces of the section located at distances of 0.06m and 

0.60/«from the base under increasing load.

For the cross section nearer to the fixed end, the differences are satisfactory up to 

the limit of linear behaviour of approximately 6kN. Beyond this limit, the difference in 

the strains of the two faces started to increase and is significant at a load of lO^A^. 

The difference in the strains is because the compressive strength of steel is 

practically higher than the tensile strength, in the strain hardening phase which 

resulted in further yielding at the tensile face without major increase of yielding at the 

compressive face. This is because that in tension the cross-sectional area decreases 

with increasing load, whereas in compression it increases with increasing load 

(Boresi and Schmidt, 2003). Hence, there was an increase in compressive stress, 

without an increase in stress at the tensile face. This was the major cause of 

differences in the strain results between the two faces in the non-linear region of 

behaviour. The other cause of the difference could have been axial strain due to 

secondary effects, but this was found to be insignificant.

For the cross section furthest from the fixed end results are stable, indicating no sign 

of local buckling.

Moment capacities and Young’s modulus
The plastic moment capacity of the section when tested about its major-axis obtained 

by the experiment was ^3.9kN.m. In contrast, the plastic moment capacity based on 

the uni-axial yield stress predicted from the coupon test results was obtained as 

^3.47kN.m. Therefore, the plastic moment capacity of the beam in flexure can be 

taken as an approximate average value obtained from both the experiments as 

^3.69kN.m.
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Load
% Variation at 0.06m from the base % Variation at 0.60m from the base

kN
2 2.30 2.00
3 2.30 1.81
4 2.70 2.12

5 3.10 2.17
6 3.86 1.96
8 6.80 1.87

10 14.71 1.70

Table 5.3 Percentage difference of strain between the compressive face and 

the tensile face of the beam at different locations

Owing to the restriction in the maximum deflection of the actuator, it was not possible 

to achieve the ultimate moment capacity. However, the maximum moment achieved 

was \Q.QkN.m. Using the coupon test results, the ultimate moment capacity 

calculated (discussed in Appendix-C) based on the procedure discussed by Englekirk 

(1994) was 17.97/tAf.w.

Young’s modulus was calculated based on the deflection obtained from both the 

cantilever experiments. The average value obtained was MQGPa. An average value 

obtained from the coupon tests result is 201.6GPa. There is a significant variation in 

the Young’s modulus between the two results and there are several possible reasons 

for this. Firstly, in a hot rolled section, curvature and, hence, deflection is significantly 

affected by residual stresses (Englekirk, 1994) which result in a higher deflection as 

compared to deflection based on elastic theory. Secondly, shear deformation can 

influence the bending deformation of the beam (Trahair and Bradford, 1988). Thirdly, 

modes of application of loads were different in all the three cases. In the case of the 

coupon test results, samples were machined and tested for the uni-axial stress state 

in tension, where a Young’s modulus is based on k = AEIL, which assumes a 

uniform distribution of stress on the cross section. Alternatively for the beam, when 

tested in flexural mode. Young’s modulus was calculated based on tip deflection of 

cantilever of A = PL^ /3EI, where these formulas are principally based on the Euler- 

Bernoulli hypothesis. This shows that machining the sample changes its mechanical 

properties. As discussed in Chapter 3, plastic moment capacities based on this 

assumption vary by 2-3%.
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5.3.3 Cantilever beam bending about the minor axis

In the case of minor axis bending, the same experimental set-up was used (with a 
1.24m span) as was used for the bending of the beam about the major-axis in the 

previous experiment. LVDT and strain gauges were used to monitor deflections and 

strains in the beam. Details about the locations of LVDT and strain gauges were 

given in Section 5.3.1.

The load-deflection graph is shown in Figure 5.15. In the figure, non-linearity, which 
can be considered as the first point of yielding, commenced at a load of 

approximately 1.7AiV(This load is obtained based on 0.0017 £■ i.e. this strain is the 

yield limit for strain and this load produce a moment of 1.49^iV.m), beyond which the 

beam showed a sharp decrease in slope of the load-deflection graph, up to a load of 
nearly 2.40/cA/, (which produced a moment of 2.98kN.m) during which, the beam was 

in the elastic-plastic phase. Beyond this load, it maintained an increase in load with 
more or less constant slope, which could be identified as the plastic phase with the 
influence of the material property of strain hardening. The constant slope was 
maintained up to a maximum load of 2.70kN, (which produced a moment of 

3.35kN.m) at the maximum actuator deflection of lOOmm.

Figure 5.15 Load-deflection graph of beam bending in minor direction

A similar comparison to the previous experiment, was made between the differences 

of the flexural strain at both the faces (Table 5.4). Strain gauges were installed at 

distances of 0.06/m and 0.6m from the base of the beam. It can be observed that the 

variation of strain for the left flange is 13.84% at a distance of 0.06/w from the base. 

At higher loads in the same column there is a decrease of percentage differences. 
The reason for higher values of difference is due to local buckling or due to bedding 

down of the specimen during the start of the experiment. The percentage differences
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at the other three sides were not more than 5.7%, which indicate that the beam 

behaviour was a typical flexural behaviour.

Load % Variation at 60mm from the base % Variation at 600mm from the base

kN Left flange Right flange Left flange Right flange
0.4 13.84 2.94 2.22 1.93
0.8 12.17 3.38 2.40 1.52
1.2 11.05 1.16 1.53 4.65
1.6 9.45 2.20 3.08 3.71
2 11.53 1.80 1.01 3.84

2.5 6.80 not possible 0.80 5.66

Table 5.4 Percentage variation of stress at the tensile face and at the 
compressive face of the beam

Moment capacities and Young’s modulus
Young’s modulus obtained from the load deflection relationship of the beam is 

approximately l^AGPa. The modulus was calculated by drawing a straight line on 

the linear part of the load-deflection graph. The value differs from the Young’s 
modulus obtained from the coupon tests result and the values of the modulus 
obtained in the previous experiment. The difference between the coupon’s test result 

and the experiment has been discussed previously.

The variation of difference between the experimental results for the two bending axis 

cases is 3.4% which is not substantial. Young’s moduli between both modes of the 

flexural bending of the experiments is slightly different for the section in the two 

different axes. It has been discussed that residual stresses change the curvature and 

ultimately the deflection of a beam, (Englekirk, 1994). Thus the residual stress 

pattern, depicted in Figure 5.2, can affect the deflection of the beam and, hence, the 

modulus. When the beam bends about the major axis, both web and flanges act in 

resisting the load and residual stress of the entire section affects the deflection. In 

contrast, bending about the minor axis is mainly resisted by flanges, hence the effect 

of residual stresses in the web is ignored. Hence residual stresses influence 

differently the deflection for both the cases and thus on the moduli which are 

measured.
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The moment at the start of the plastic phase, which is 2.98kN.m can be considered 

as the plastic moment capacity of the section whereas, a maximum moment of 
3.35kN.m occurred under a maximum deflection of 100mm. The theoretical plastic 

moment capacity, M^, and the theoretical ultimate moment capacity of the section

based on the coupon’s test results are 3AAkN.m and 3.9^kN.m respectively. Both 

the theoretical and experimental plastic moment capacities compare well to each 

other with a difference of only 5.7%.

5.4 TESTING BEAM SECTION IN TORSION 
5.4.1 Experimental Set-up 
Design of Test Rig

Owing to lack of availability of an experimental set-up in the Structural Laboratory for 
the application of a torsional load at the free end of a cantilever beam, a rig was 

designed ab initio for this load application. The rig was designed not only for torsional 
loading, but it also had to have the provision to perform other experiments (as 
discussed in chapter-6), in which torsion in combination with the other active stress 
resultants are applied to the section.

Procedure to design Rig
To apply pure torsion without any flexure, it was decided to use a cable wire system 

in which the free end of the beam is welded to a base plate, which was welded to a 
circular drum around which the cables were wrapped, as depicted in Figure 5.16 and 

5.17. Both the cables were parallel to each other throughout the load application, 

hence forming a pure couple or torsion to rotate the beam. Tension in the cable 

causes the drum and thus the beam to rotate. When other loadings were applied in 

combination with torsion, one of the two cables was removed to allow evaluation of 

the combined effects of bending and torsion (as discussed in Chapter-6). The 

position of the beam relative to the cable wire location is discussed later.

It was known that the force in the two cables had to be equal, if only pure torsion was 

to be applied. Therefore, an arrangement was finalized in which the cable was 

wrapped around the drum, guided by two pulleys, which were linked to the tip of the 

shaft of the actuator by another pulley, as depicted in Figure 5.16. Movement of the 

actuator shaft pulls the pulley, which causes the cables to move in the directions
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depicted in the figure, which cause the drum and ultimately the beam to rotate in pure 

torsion.

Pulley guiding the cable

Cable connected to the 
shaft of the Actuator by a

Pulley guiding the cable

Figure 5.16 Initial set-up for the application of torsion load

Arrows showing direction of movement
Plan showing cables wraped to the drum 

in opposite direction paraliel to each other

Figure 5.17 Cable-wire set-up used for pure torsion experiment

The movement of the shaft of the actuator is reflected in the movement of the cable, 

which causes rotation at the free end of the beam. Allowance must also be made for 

the extension of the cable as the tension develops with shaft movement.
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Further the extent of the beam rotation depends on the diameter of the drum used. 

The greater the diameter of the drum the greater will be its circumference, and the 

greater the cable movement which is required to obtain a given rotation. This is 

illustrated in Figure 5.18, where different radii R1 and R2 are required to deliver the 

same degree of rotation 0. Therefore, two different arc lengths A1 and A2 of the 

cable (for the two different radii) are required for this rotation. Hence, a smaller 

diameter of the drum will require less length of movement to give a rotation 6, as 

compared to a larger diameter of the drum for the same rotation. Therefore, it was 
decided to keep the diameter of the drum to its minimum.

However, a problem could arise with a smaller diameter in those experiments 

(discussed in Chapter-6) when only one side of the cable is used. If one side of the 

cable is used only then the smaller diameter could restrict the amount of bending 
component when other loads were applied in combination with torsion. Therefore, it 

was decided to use a diameter that can attain a reasonable component of bending 
and torsion for the other experiments. A minimum diameter of 0.174/t? was thus 

selected.

Figure 5.18 Different radii and arc/cable lengths for similar rotations

Given the selection of the diameter, it was required to calculate the corresponding 

amount of movement of the actuator shaft to induce pure torsional failure. The 

amount of movement in the shaft to achieve 180° rotation was deemed to be 

approximately 220mm (including cable extension), far beyond the actuator limit of 

100mm. Hence a new system of load application had to be devised, as shown in 

Figure 5.19. A fulcrum beam is used to amplify the actuator shaft movement (beam 

ABC in the figure). The shaft at C moves the pulley at point A rotating about the 

fulcrum in the figure. Movement of point A causes the cable to move to achieve the 

required rotation for the given diameter of the drum. In modifying the test rig set up
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(in detail in Figure 5.20) by the use of a lever arm arrangement, movement of the 

shaft at C will cause a greater movement at point A based on the ratios of distances 

(D1, D2) and (L1, L2), as depicted in Figure 5.20. With a maximum D1=100/m/w and a 

required D2 of a minimum of 220mm, the lever proportions were chosen as 

L1 =1.36m and L2=3m.

The Actuator connected to the 
internal reacton frame Pulley guiding the cable

Hydraulic Valve Actuator
Shaft of the Actuator

C

•B

Point of Rotation of the Beam 
producing lever arm action

l-Section 

Circular Drum

o
D

o
/

qa Pulley guiding the cabl^

Beam acting as lever arm for the shaft of the actuator

Figure 5.19 Final Set-up of the Experiments (Not to Scale)

L1 L2

Figure 5.20 Lever arm action to provide additional movement at point A

The cross section of the lever arm beam was selected to minimize the local elastic 

deflection A, which would arrive during load transfer from the shaft to point A. To this 

end a 200m7M x ^00mm x ^0mm hollow section was used.

The test cantilever I-beam was fixed vertically and welded to a base plate, which was 

connected to a larger base plate by a nut and bolt arrangement. The larger base
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plate was rigidly fixed to the internal reaction frame, depicted in Figure 5.21. At the 
free end of the beam, the details as discussed above can be seen in the figure.

Large base plate connected to the 
frame

Base pla

Base plate 

Guiding pulley

Fixed end of the 
beam

Free end of the 
beam

ig pulley

Circular drum

Figure 5.21 The beam failed in torsion fixed to the internal reaction frame

Mechanism of load application for torsional rotation of the beam 
The movement of the shaft causes movement at point C, as indicated in Figure 5.19. 
The movement of this point will cause point A to move pivoting about B, which would 

tension the continuous cable using the ‘frictionless’ pulley at point A. Hence the 
movement of the pulley at A, through tensioning around pulleys D and E, will cause 

the rotation of the beam through equal and opposite tensions in the parallel cables 

attached to the drum, as depicted in Figure 5.17. Other effects which will occur will 
be because of stretching of the cable during transfer of load. The stretching will be 

elastic (by specific design of the cable diameter) and will thus demand more 

movement of the pivot A to achieve a required rotation. Therefore, an adjustment 

factor is required when a relationship is determined between cable load, cable 

extension, torque and I-beam rotation. It was decided to use a cable diameter which 

minimizes the stretching under tension. Based on the amount of load calculated, as 

discussed in Appendix-C, it was decided to use a diameter of 8mm for the cable,
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which can have a maximum extension of less than 7mm under the anticipated cable 

maximum load.

Load control, rotation and strain measurements

Two experiments were performed for torsion. In the first experiment a lateral 

movement was noticed. However, the movement was not recorded. Therefore 

another torsion experiment was performed with the same setup but with the addition 

of a device for measuring horizontal movement. The overall torsion-rotation 

responses, together with a measurement of deflections (about major and minor axis) 

at the beam specimen end and strains at different locations along its length were 

required in each test. Rotation at the free end was measured using a AJkV 

potentiometer.

Loading was applied based on a deflection controlled loading method at a rate of 

0.02ww/sec. The same load cell that was used in the previous experiments was 

attached to the hydraulic valve actuator (Figure 5.7(c)), which was mounted 

horizontally to the frame. The whole set-up is depicted in Figure 5.22.

Hydraulic valve Actuator 
attached to the internal 
reaction frame horizontally

The beam fixed to the internal reaction frame.

Guiding
ulley

Lever arm 
beam

Pulley ‘A’

Figure 5.22 Pure torsion experimental set-up

uiding pulley 

Cable

Strain gauges were installed at two different locations. These are installed at 

distances of 75mm from the fixed end of the beam and at the mid span of the beam.
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Different positions of the strain gauges were selected for the two experiments to 

establish the torsional response. Details of the position of the strain gauges are 
depicted in Figure 5.23. All the strain gauges 1-13 were installed to measure the 
direct strain, except number 8, which was used to measure the shear strain. Strain 

gauge numbers 14, 15, 16, and 17 in the second experiment were installed to 

measure the rotational strain. Strain gauges used to measure rotational and shear 

strain were installed at an angle of 45 degrees. Locations of strain gauges were 
finalized based on the behaviour of the beam in torsion, where warping and rotation 

distortion were considered during the selection.

10 11

4 7 5 13 12

Near Support 
First Experiment.

At midspan

View-1 (iocation of strain gauges)
14 15

1 6 2 
8

View-2 (iocation of strain gauges)

14 15

2

16
10

17
11

16

10

17

11

4 7 5

View-1

Plan View
13 12

View-2

Plan View

Near Support 
Second Experiment.

At midspan

Figure 5.23 Position of the strain gauges for torsion experiments
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Measuring Deflection

Deflection at the tip of the actuator was measured in each case by an internal LVDT 

contained in the actuator. In the first experiment, only rotations and strains at 

different locations are measured, and no arrangements were made to measure the 

deflection at the free end of the beam. However, a significant horizontal flexural 

deflection was observed to occur in the latter stages of the first torsion experiment 

and a permanent deflection (arising from plastic behaviour) can be observed after the 

torsion test in the unloaded beam, depicted in Figure 5.21. Hence, it was decided to 

measure the deflection at the end of the beam in the second experiment.

Owing to the rotation of the beam, it was not convenient to measure directly the 

deflection of the beam using LVDTs. Therefore, an indirect method was adopted, in 

which high resolution video images were recorded in two perpendicular directions 

using camcorders to measure the deflection by recording high resolution videos of 

the movement of the beam and measuring the deflection using advance editing 

software (called Meazure) normally used for picture and film editing. The locations of 

the camcorders are identified in Figure 5.24. One of the camcorders is visible in the 

figure. The other camcorder, which was between the twin vertical columns of the 

internal reaction rig (where it was not possible to photograph its location), is not 

shown in the figure. The directions of images recorded by the camcorders are also 

shown, where they were positioned to record the movement of the beam with 

reference to two orthogonal grid boards (orientated with the flange/web axes), which 

were set-up so as to be visible in either one of the video images. A close view of the 

boards is depicted in Figure 5.25. Movement of the beam can be monitored in the 

video, where the amount of movement about either axis of the beam can be tracked 

after using the image processing software and the boards to measure lateral 

movement. To relate the deflection of the beam to the applied loads and applied 

deflection of the actuator, two odometers were installed (as seen in Figure 5.25), one 

of which shows the variation of load in terms of voltage on its screen and the other 

shows the deflection of the actuator in terms of voltage. Both were installed in the line 

of sight of the videos. The odometers were linked to the actuator command console 

box (depicted in Figure 5.10) where a change in the load and the deflection are 

related in terms of change in the voltage visible in the screen. Hence, changes of 

voltages were correlated to the loads and to the corresponding deflections of the tip 

of the beam in the horizontal plane.
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Beam SampI

Grid papers perpendicular to each other 

The other Camcorder

Line showing the direction of image 
recorded using camcorder

Line showing the direction of image 
recorded using camcorder

Figure 5.24 Position of the camcorders

Recording load in video image 
using Odometer

Recording load in video image Q^j^j papers 
using Odometer

Figure 5.25 Position of Odometers and Grid papers used to measure deflection 

Video processing and measuring images

212



Microsoft Windows Media Player 11 (Windows Media player, 2004) is a programme 

commonly used to play and organize digital media files on computer and on the 

Internet. In addition, the Player could be used to play, rip, and burn CDs, play DVDs 

and VCDs and synchronize music and videos.

Meazure is a program for measuring and capturing portions of the screen (Meazure 

Version: 2.0, 2004). It can perform measurements the size of a window on a 
computer screen, capturing an image of a video, determining the color of a pixel on 

the screen, and determining the screen size. Meazure provides different types of 

tools for measuring and capturing the screen such as cursor, point, line, angle and 

window tools. Line tool is used to measure a distance in an image. The line 

measurement tool allows one to position two crosshairs anywhere on the screen and 
measure the positions, distance, and other information for the line connecting them. 

In this way, the image of the beam movement relative to the background grid board 
can be translated into appropriate external deflections of the beam tip in that 
direction.

Using the Media Player and Meazure, deflections of the beam were related to the 
loads in the experiments. Every ten seconds, the video image in the player may be 
stopped and deflections are ascertained by measuring the movement of the edge of 
the beam with reference to any point on the grid paper. Images were first zoomed in 

on for accuracy. A calibration factor was calculated for the software to obtain the 

exact distances. Two grids on the board, whose grid spacing distance was known, 

were used to determine the value of distance obtained in Meazure and to calibrate its 
scale based on the known distance. When the scale of the software is calibrated, 

exact distances from the edge of the beam to one of the reference grid can be 

determined using the still images. Loads were related to the distance measured by 

noting the meter reading of the Odometers for every still image. Using this procedure, 

a series of tip deflections and their related loads were determined to monitor the 

(two) horizontal and the vertical deflections of the beam.

Data transfer, storage and test control
The procedure and equipment used for data transfer and storage are the same as 

was used in the pure flexure experiments. The same test control was adopted as in 

the experiments discussed in section 5.3.
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5.4.2 Torsion of the beam sample
Two tests of the cantilever l-section beam samples of span 1.24m were performed 

for torsional loading to obtain the plastic torsional capacity of the beam restraint to 

warping and to observe the failure mode at large rotations. Previously torsion 

experiments were performed as discussed in Section 2.5 but as torsion response 

changes with boundary conditions and length. Therefore it was necessary to perform 

a torsion experiment for the current sample so that it can help to compare the results 

when multi-dimensional forces are applied. Both the beams used were from the 
same steel joist as for the previous flexural tests to maintain consistency of the 

material properties. It was noticed by Dinno and Gill (1964) that creep can be present 

during torsional tests, especially after the limit of proportionality has been reached. 

Therefore rotational measurements were taken on a time basis.

Before the final test to failure, each beam was tested in a regime of elastic cyclic 
loading (a practice adopted before by Kolbrunner et al (1978)) to verify the correct 
functioning of the instruments, especially the strain gauges which could break during 
their installation or could have a problem of terminal disconnection. Four to five 
cycles of loading were performed in the elastic range having strains not exceeding 
the elastic limit. After the verification tests, beams were loaded to failure in torsion.

Torsion results discussion

Torsion-rotation response

The torsion-rotation graphs of the beam for both the samples are given in Figure 

5.26. It can be inferred from the graphs that a similar type of response was obtained 

from both the tests especially in the linear region where responses almost match 
each other identically up to a torque of O.GkN.m. Beyond this point, non-linearity was 

observed for the second test, whereas the response for the first test remained linear 
up to a torque of O.JkN.m. Rotations up to the maximum linear response in both the 

cases were approximately 16-18 degrees. A distinct change in both the graphs was 

observed between a torque of approximately O.lkN.m and 0.8kN.m for the first 

experiment and between 0.6kN.m and 0.8kN.m for the second experiment, after 

which they maintained a roughly constant (and substantially reduced) slope with 

decrease stiffness up to the end of the experiment. The region of the change in the 

slope of the graphs was observed to be between an angle of 20 degrees to 45 

degrees. At unloading, the slope of the graph (in the second experiment) follows the 

linear pattern much similar to the elastic linear pattern of the first phase, which 

resulted in a residual rotation in both the experiments.
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Rotation {G)

Figure 5.26 Torsion- rotation plots for the cantilever beams of span 1.24m.

The peak torque in the region of constant slope in the plastic phase (with a strain 

hardening property of the material) is O.QGkN.m for the first test and 0.84kN.m for the 

second test. The maximum rotation at the peak torque for the first test was unable to 

be determined because of the breaking of the support of the potentiometer. However, 

a maximum rotation of 140 degrees was recorded for the second test, beyond which 

it was not possible to further rotate the specimen due to lateral movement which 

brought the beam close to pivot E. At unloading, a residual rotation of 107 degrees 

and 113 degrees were measured for the first and the second tests respectively.

From the second experiment’s graph, it can be inferred that the slope of the non­

linear region after a transition phase (the phase in which the response changes from 

elastic to non-linear between angles of 20° and 45°) is nearly constant up to the peak 

load. Upon unloading all the other graphs follow a slope more or less the same as 

the slope in the linear elastic region of the graphs. Based on the similarity in the 

response in the second experiment, a tentative extension of the graph of the first 

experiment was made to observe the similarity in the response in both the 

experiment and is depicted in the figure.
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Measured Strains 
Strain at tip of flanges
Longitudinal strains were recorded at the tips of the flanges at a distance of 75mm 

from the end of the beam and at the mid span of the beam. Strain gauges installed to 

measure the strains were numbered 1, 2, 4 and 5 at the cross section near the fixed 
end and numbered 10, 11, 12 and 13 at the mid span. Precise details about the 

locations of the strain gauges are depicted in Figure 5.23. The applied torsion versus 

strain relationships at the tips of flanges for both the experiments are depicted in 
Figure 5.27 and Figure 5.28.

At the fixed end (Figure 5.27), strain numbers 1 and 5 were in tension, whereas 2 

and 4 were in compression. However, strains which were in compression, having 
negative values, have their sign changed in the figures for comparison. Considering 
the figures, it can be inferred that up to a torque of O.lkN.m for the first experiment, 
and O.BkN.m for the second experiment, a highly linear pattern can be observed, 
where at the verge of linearity, strain ranges between 1700jU£:-2000jU£. At the same 

torque values, the torque-rotation diagram depicted in Figure 5.26 also showed a 
linear response, which confirms that the torque-rotation and torque-strain diagrams 
have similar linear behaviour up to the torques at the verge of linearity. The similarity 
in the values of all the four strain gauges in both the experiments, up to a linear 
response, shows that the strain up to this point was mainly due to warping, where 
strains are equal in magnitude but opposite in directions at the flange tips, as 
expected. The other direct strains, which are due to axial shortening and Wagner 
effects (Section 2.4.2, Figure 2.10(d)) which appear significantly at larger rotations, 

were not significant at this stage.

At the end of the linear phase, three types of strains started to increase rapidly. 

Those were the Wagner and axial shortening strains, and the direct strain due to 

bending of the beam about the minor-axis. For strain gauge #-1, warping and 

Wagner effects cause direct tensile strains and axial shortening and the bending 
effect causes a compressive strain in both the experiments, the resultant of which 
was a tensile strain of nearly 4000/l/£ at maximum torque. The same nature of 

warping strains, which were present in strain gauge # 1, was also present in strain 
gauge #-5 but the bending of the beam caused a tensile strain for strain #-5, which 
resulted in an increase in the tensile strain and a strain of more than ^4000|J£, at 

maximum torque, in both the experiments. Although the same torsional strains must 
be present in both the strain gauges, due to the bending effect, the total strains as
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depicted in the figure have a considerably lower value for the first strain gauge as 
compared to the fifth strain gauge.

-Strain # 1 Strain # 2 Strain # 4 Strain # 5

(a) Experiment # 1

-Strain # 1 Strain # 2 Strain # 4 Strain # 5

(b) Experiment # 2

Figure 5.27 Strain at the fixed end at the tips of flanges for both the torsion 

experiments.
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The same nature of torsional strains must be present in strain #-2 and #-4, but due to 

the bending of the beam, which causes an increase in tensile strain at strain #-2, a 

decrease in strain #-4 occurs due to a compressive strain. Hence this resulted in a 

different strain pattern in both the strain gauges as depicted in the figures, where the 

strains in both the experiments are 2000/l/£: and 4000/7£: in strain #-2 and #-4 

respectively.

It is concluded that due to the secondary effects of minor-axis bending in the beam 

and Wagner strain (Section 2.4.2, Figure 2.10(d)) and axial shortening strains, which 

develop considerably more at large rotations, the patterns strains in the non-linear 

phase were quite different to the elastic phase and this is the reason for the complex 

patterns in both the graphs of the strain gauge readings.

At the mid span, where the effect of warping strains reduces substantially, the only 

strains effective are the Wagner and axial shortening effects, where all the strains are 

tensile, indicating domination of Wagner strains, as depicted in Figure 5.28. The 

effects of the bending strains were negligible at mid span, therefore a similar pattern 

can be observed in the figures for all the strain gauges.

Strain at centre of the web
Two strains, which are numbered 3 and 9, were installed at the centroid of the 

section to measure the axial shortening effects at the fixed end and mid span 

respectively. Graphs plotted for both the tests are given in Figures 5.29. It can be 

inferred that up to the linear response the amount of strain in both the strain gauges 

was not increasing rapidly, whereas the rate of increase becomes very high in the 

non-linear stage. This is because of the axial shortening strain that is substantial in 

the large rotational range. Strain #9 yields high strain compared to strain #3 because 

strain #9 was at a greater distance from the restrained end. The pattern in both the 

experiments gives similar results, indicating the repeatability of the experiments.

Strain at the edges of the web
Direct strains which occured on the cross section are due to warping strain, axial 

shortening, Wagner strain (Section 2.4.2, Figure 2.10(d)) and strain due to minor axis 

bending, which occurred in the last stage of the experiment. Warping and minor axis 

bending strains do not occur at the edges of web. Only Wagner strain and axial 

shortening strain occur at that point (Figure 5.30), and these increase considerably at
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large rotation. Therefore, in the linear phase, the strains are considerably smaller 

than in the non-linear phase, where the strains increase considerably.

Strain (//£•)

Strain # 10 Strain #11 Strain # 12 -Strain # 13

(a) Experiment # 1

-Strain # 10 Strain #11 Strain # 12 Strain # 13

(b) Experiment # 2

Figure 5.28 Strain at the mid span at the tips of flanges for torsion applied in 

the two experiments
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strain to monitor rotation

In the strain gauge # 14, 15, 16 and 17 were installed to monitor the rotation. These 

were installed at an angle of 45 degrees. They were installed in two different 

directions depicted in Figure 5.23. However, similarities were not observed in the 

results of strains #14 and 15 and between strains #16 and 17. and they do not give 

any satisfactorily results, therefore the results are not given here.

Strain {/^s)
-Strain #9 Strain # 3

(a) Experiment # 1

Strain (//g)

-strain # 9 Strain # 3

(b) Experiment # 2

Figure 5.29 Strains at the centre of web near the support and at mid span for 

both the torsion experiments
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-Strain # 6 Strain # 7

(a) Experiment # 1

Strain # 6 Strain # 7

(b) Experiment # 2

Figure 5.30 Strain at edges of the web for both the torsion experiments 

Failure of the beam samples in torsion

If failure in a test can be defined as a point where a significant decrease in the torque 

is noticed, then it can be inferred that the beams in experiment # 1 and # 2 did not fail 

even at a rotation of nearly 145 degrees. Considering the torsion-rotation diagram
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(Figure 5.26), it can be said that there continues to be a small increase of torsion 
without a drop of load near the end of the experiment. This shows that material has 

enough remaining strength which normally comes under strain hardening of the 
material. This is also confirmed when the strain diagrams at the support at the tips of 

the flanges (Figure 5.27) and in the web (Figures 5.29 and 5.30) are considered, 

where there is an increase of strain noticed without further loss of torsion at high 
strains, a pattern similar to that achieved when strains develop in the plastic phase 

with strain hardening of the material. Therefore it can be said that the beam 

specimen was in the plastic phase but did not fail during the experiments.

Although it can be argued that the rotation of 145 degrees is far beyond any rotation, 

which a member can expect to withstand practically in a structure, failure was not 

initiated due to the reasons discussed above. Globally the capacity of the beam to 
resist torque at such a large rotation is mainly due to two effects. Firstly, the helix 
effect (Dinno and Gill, 1964) in torsion that causes the beam to shorten axially and an 
additional stiffness (in addition to the torsional stiffness) exists for a beam to resist 
the torque. Secondly, the strain hardening property of the material has an effect of 
increasing the carrying capacity of the beam beyond its plastic capacity. As 
discussed in Section 5.2.1, based on coupon test, an average strain of 21800 ns, is 

required for the commencement of strain in the strain hardening phase for the steel 
joist, whereas measured strains in both the experiments were not more than the 
value of 15610/y£-. This shows that strain hardening property of the material was not 

utilized. It can be concluded that failure if termed, as ultimate capacity of the section 

in torsion was not reached but the section was able to achieve torsional plasticity.

Collapse mechanism and plastic hinge formation

The cantilever samples tested in torsion were restrained at the fixed end, where 

warping stresses are at a maximum. A plastic hinge will develop due to warping in 

the flanges at the fixed end. To identify the formation of the hinge, strains were 

monitored throughout near the fixed end.

At the commencement of non-linearity, at an approximate angle of 20° (Figure 5.26), 

the strains at all the tips of the flanges near the support were found to be between 
1519//£'and 1939//£', as depicted in Figure 5.27. As discussed in Section 5.2.1 

based on coupon test at an average strain of 1700 pe, the plastic phase commenced 

in the material of the beam. This gives evidence of the start of the formation of plastic
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hinges in both the flanges in both the experiments. Meanwhile the centroid of the 

web was still elastic, which means that although the web was elastic, hinges were 

about to form in the flanges.

Between an angle of 20° and 45° , similar patterns can be observed in the figures 

with an substantial increase of strain in the web (Figures 5.29 and 5.30) and 

decrease of strain at one of the tips of the section (Gauge #2 , in Figure 5.27) in both 

the experiments. This is because of the secondary effects which are Wagner strain 

(Section 2.4.2, Figure 2.10(d)), and axial shortening effects, which cause a strain in 

the opposite direction at the tip, whereas the strain for the remaining tips follow the 

same strain directions.

Observing the strains near the support at the peak load, and comparing the strains 

with the average strain obtained from the coupon tests, indicates that strains are in 

the plastic phase at locations 1, 3, 4, 5 and 7 for the first experiment and location no 

1, 3, 4, 5, 6 and 7 for the second experiment. Hence, plasticity had definitely formed 

in the bottom flange in both the experiments, where high values of strain could be 

observed (Figure 5.27). For the top flange (in the first Experiment) at one edge 

(Strain #1 in Figure 5.27(a)) where there is a tensile strain the material has yielded. 

Whereas, at the other edge(Strain #2 in Figure 5.27(a)), due to the strain caused by 

the bending action and Wagner effects, the strain do not increase much and has an 

elastic strain at the end of experiment. Observing the overall torsion-rotation graph 

(Figure 5.26) in the third phase, there is no sign of change in the response, which 

means that the strain #2 which is elastic at the end of experiment has only local 

effects, while not disturbing the overall behaviour of the beam. At the centroid of the 

web in both the experiments, the strain value is more than the average plastic strain 

indicating that the centroid of the web can be considered in the plastic phase.

Therefore, it can be concluded that yielding has occurred near the fixed end in both 

the experiments and the strain which is elastic at the end of experiment (Strain#2, 

Figure 5.27) in one of the experiments has local effects only. This point can be 

assured by the fact that in both the experiments, the torsion-rotation graph, the 

maximum torque achieved and residual rotation obtained have values and graphs 

matching each other. Hence, it can be concluded that the section in both the 

experiments have yielded and were in the plastic phase.
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Bending of the beam about the minor-axis
In both the experiments, bending of the beam about the minor-axis was also 

observed. The plot of horizontal movement versus applied torque for the second 

experiment is depicted in Figure 5.31, (horizontal movement was not recorded for the 

first experiment). Up to a torque of 0.2kN.m there is no graph, this is because the 

horizontal movement was measured using video images and no movement was 

observed by the image, theoretically there may be fraction of movement but it was 

not possible to physically measure it. From the torque of 0.2kN.m up to a torque of 

OAkN.m small movement was observed. However, the movement was recorded 

using a video image which can result in a difference of 1mm-2mm and result in such 

type of graph. However in the initial stage up to a torque of OAkN.m the behaviour 

was mainly elastic and the beam behaves in pure torsional mode without any 

secondary effects. Therefore, results in insignificant horizontal movement of the 

beam. From the torque of O.AkN.m up to a torque of O.OkN.m the movement started 

to increase indicating the influence of horizontal movement on torque in the non­

linear phase. It can be observed in the figure that the horizontal movement started to 

increase rapidly at a torque of O.QkN.m. Referring back to Figure 5.26, it can be 

inferred that the point at which this torque value occurred is the point of 

commencement of the non-linear phase, at an angle of nearly 20°. This shows that 

the horizontal movement started to increase rapidly at the commencement of non­

linear torsional phase.

Figure 5.31 Torsion-horizontal movement graph for the second experiment
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At this point of loading, there were two secondary effects which were active in the 

beam. One is a relatively small uniform bending moment on the entire beam because 

of bending due to a vertical distance (f of 0.1m between the cables, as depicted in 

Figure 5.17. At the commencement of the non-linear phase, the section, which has 

the least flexural stiffness in the entire beam length, is at the fixed end, where the 

bending of the beam about the minor-axis will be resisted practically by flanges, 

whereas the web will not resist the bending. Therefore, this uniform secondary 

moment will cause a deflection about the minor-axis in the beam.

The other secondary effect is the axial shortening effects, which also started to 

increase significantly at the commencement of non-linear phase, as can be observed 

in Figure 5.29. Axial shortening will cause the same effect, which is caused by a 
compressive load on a cantilever beam to produce deflection on one side which 

causes the beam to deflect about its weaker axis, and in this case it will cause the 
beam to deflect about the minor-axis.

During these two effects, which were not possible to avoid, a deflection about the 
minor-axis was observed in both the experiments.

The portion of the graph in Figure 5.31 circled i.e. where there is a seemingly random 
increase and decrease of deflection is due to the fact that cable wedge which 
clamped the two ends of the cable slipped at higher load and caused this response.

Comparison of torsion results
Experimental comparison
Torsion results obtained here are compared with the previous experimental results of 

Dinno and Gill (1964), in which torsional behaviour of l-sections restrained at their 

ends were investigated, and Farwell and Galambos (1969), in which torsion 

behaviour was investigated in which the sections were free to warp. The graphs of 

these results are given in Chapter-2 (Section 2.4). Comparing these two results with 

the results obtained in this work, the same general failure characteristics of the beam 

in torsional seen to exist. The overall response of torsion and rotation gives a similar 

trend in which a gradual change of phase was noticed after a smooth linear phase. 

Beyond the gradual change in the slope, a constant slope of lesser value indicates a 

reduction in the torsional stiffness with a clear contribution from strain hardening of 

the material. Comparing the paths of unloading in this work with the work by Farwell
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and Galambos (1969) also indicates a similar pattern, with the same slope as in the 

linear elastic phase, is observed.

Two conclusions can be drawn from all the experimental results; firstly, torsional 
behaviour of an l-section follows a typical response for a torsion-rotation graph; 

Secondly, the section has a high rotational capacity and failure is achieved at a very 

large rotation beyond any practical value which a structure needs to achieve.

Nadai’s Sand Heap Analogy
The value obtained for pure torsion of the section based on Nadai’s Sand Heap 
analogy (Johnson and Mellor, 1973) is 0.53kN.m. This value is 56% less than the 
maximum value of 0.86kN.m. Such a large difference is primarily due to three 

reasons:

The strain hardening property of the material has the effect of increasing the 

torsional capacity of the beam in the experiments, whereas it was assumed in 
the sand analogy that the material is elastic-perfectly plastic.

Two mechanisms are active in resisting torsion for sections subjected to 
warping restraints. One is a pure torsion mechanism which leads to St 
Venant’s torsion for the elastic case and the sand heap analogy for the plastic 
case. The second mechanism is the warping mechanism, which causes 

flanges to bend in two different directions and results in shear forces in the 
flanges causing torsion.

Thirdly, it does not take account of the secondary effects of Wagner strain 

(Section 2.4.2, Figure 2.10(d)) and helix effects, which cause axial shortening 

of a specimen.

The sand analogy does not take account of these three factors when calculating the 

plastic torsional capacity. Therefore, it resulted in a low value as compared to the 

experimental values.

Dinno and Merchant
The value obtained based on the formula given by Dinno and Merchant (1964) is 

0.65kN.m, which is 32% less than the peak experimental torque. There are two 

possible reasons for a lower value. Firstly, they do not take account of the strain
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hardening property of the material. Secxindly, they do not take account of the 
secondary effects, which are the Wagner and the axial shortening effects.

Plastic torsion capacity and bimoment value
It has been assumed that the strain in structural steel sections during plastic flow can 

be from five to ten times that of (Kollbrunner et al. 1978), denoted as , then the

relationship can be defined as £•„ = ns^ where n = 5 to 10. The load at which strain 

reaches a value of e,, anywhere in the section (where all other strains on the section 

as less than or equal to ) can be defined as the plastic limit load. The yield strain 

obtained in the coupon test (Section 5.2.1) is =1700//£-. Considering n=5, gives

= 8500//^, at which the torsion is 0.84l<N.m at an angle of 61° for the first

experiment and 0.82kN.m at an angle of 11^ for the second experiment. This 

torsion could therefore be proposed as the plastic torsion capacity although this 
clearly conflicts with the plasticity predicted by the strain readings.

In conclusion plastic torsional capacity obtained by the theories based on the yield 
stress obtained from the coupon tests results vary between a range of 0.6kN.m to a 
range of 0.65kN.m. This shows that experimental values are consistently higher than 

the predictions. Further, predicted values using the theoretical approaches described 
here range from 0.53 to 0.65KN.m. Despite this, the practical work suggest plasticity 

is achieved between 0.7 and 0.8 KN.m, based on the graphs discussed here.

5.5 CONCLUSION
In this chapter, experimental results for the first phase of the experimental program 

are presented and compared with previous theories and finite element models. The 

work was divided into two parts; the first part deals with establishing the material 

properties of an l-section beam, which was found by machining samples from the 

beam and testing them under uniaxial tension at ambient temperature, based on 

British standard BS EN 10002-1 (BSI, 2001) test. The second part of the work deals 

with obtaining the plastic capacities and failure modes for single stress resultants.

Standard coupon tests were extracted at different locations, based on the residual 

stress distribution in a hot rolled l-section. The mechanical properties obtained for 

different samples were as expected for steel with a well defined plastic plateau, but
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'have slight variations in the values because of residual stresses and because of the 

use of machined samples. The average values of the results were used in the 

theoretical study and finite element analysis.

The plastic flexural capacities of the section about both the principal axes were 

determined from experiments and found to be satisfactory when compared with 

theoretical values obtained using coupon test results. It was found that large 

deflections at the tip of the cantilever are required to achieve the ultimate moment 

capacity, which was not possible in the current set-up. It is also found that the 

method of loading could change mechanical properties to a small extent.

Torsional capacities of the sections were also obtained for the beam samples and 
yielding of the sections was identified. Results were compared with the previous 

theories and experimental results. It was found that the torsional capacities of the 
section were higher than the results predicted by different theories. Possible reasons 
for higher results were discussed. During the experiments, the beam experienced 
bending about the minor-axis the effects of which on the torsional results were 
discussed.
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CHAPTER-6

BEAM SAMPLE SUBJECTED TO MULTI­
DIMENSIONAL FORCES

6.1 INTRODUCTION
In the previous chapter results of the single stress resultant experiments were 

discussed. The purpose of the experiments describe in this chapter is to 

investigate the behaviour of the beam sample subjected to multi-dimensional 

forces and to compare the capacities of the beam sample to resist different 
combinations of forces with the yield criterion developed in Chapter 4. Two such 

combinations of forces are investigated. For the first combination, the forces 
applied at the end of the beam sample were biaxial bending moments and 

torsion, while axial force, biaxial bending moments and torsion were applied for 
the second combination of forces. The specimen details and experimental set-up 
for these tests were outlined in the previous chapter; only minor changes to the 
previous set-up were made in these experiments and these are described here.

Section 6.2 and 6.3 discuss details about the set-up, results and observations 

from the experiments of the first and second combination of forces respectively. 
In the sub-sections of each section, changes in the experimental set-up, load- 
deflection response, torsion-rotation response, interaction of displacement and 

rotation, strain measured and comparison of the results with the developed 

theory of Chapter 4 are made. Section 6.4 presents a comparison of results of all 

the experiments and observations from which conclusions are drawn.

6.2 BIAXIAL BENDING AND TORSION EXPERIMENTS
6.2.1 Experimental Set-up
The same test arrangement is used with only a slight modification from the 

experiments used previously for the torsion experiment. In the new set-up, one 

guiding pulley and cable is removed compared to the previous case, as was 

depicted in Figure 5.19. This removal causes both bending and twisting of the 

beam sample simultaneously as the load is applied through the single remaining
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cable. The new position of the cable and the guiding pulley is depicted in Figure 

6.1. Strain gauges are installed at the same locations as in the second 

experiment on torsion, as depicted in Figure 5.23. All other devices which were 

used in the previous experiment are re-employed here to collect and store data 

related to applied load, displacement, rotation and strain measurement.

Figure 6.1 Modified set-up for torsion-biaxial bending experiment

6.2.2 Experiments Performed
Two experiments are performed, the difference between them being the direction 
of load application with respect to the orientation of the cross-section of the 

sample. The direction of loading was at an angle of 8° from the principal axis of 

the beam. In the first case, the minor axis of the section was almost 
perpendicular (at an angle of 82°) to the direction of load application whereas in 

the second case, the major axis of the section was almost perpendicular to the 
direction of load application. The positions in both the cases are depicted in 

Figure 6.2. The principal reason for undertaking tests with two different starting 

arrangements was to alter the balance of stress contributions from torsion, major 

and minor axis bending, thereby examining different yield criteria. In all the 

experiments, application of torsion rotates the beam, where the rotation will be at 

a maximum at the free end. Owing to this, flexural stiffness of the beam varies as 

the beam rotates. This causes deflection of the beam different from that of a 

beam bending about the major axis or minor axis, hence a variation in the 

contributions from major axis bending and minor axis bending is generated.

6.2.3 Strains at two different locations at different stages of loading
The strains at two different locations along the beam at the fixed end and at the 

mid span are given in Table 6.1 for both beams. To identify the start of yielding.
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strains at several strain gauges are observed. If is defined as the strain at the

start of yielding anywhere on the cross section (for the current experiments, 

based on the coupon tests, this value is taken as 1700//f^) and strains at all

other location as less than then the load at which this occurs is defined as the

elastic limit load. For both the experiments, is reached at strain gauge # 2

and the strains at all other locations are less than s...

Directions in which distances were measured

Experiment-1 Experiment-2

Figure 6.2 Position of l-section with respect to the direction of load 

application for both the torsion-biaxial bending experiments.

The strain when it reaches a value of anywhere in the section (where all other

strains on the section as less than or equal to ) can be defined as the plastic

limit load (Section 5.4.2). The strain at which this maximum occurs is defined by 

the author as practical hinge formation. The load at which a practical hinge is 

deemed to have formed is given in the table for both Experiments 1 and 2. For 

Experiment-2 the practical hinge forms after the peak load, therefore the strain at 

the peak load is also given. Note that the result of strain #8 is not given in the 

table, where strain # 8 was used to obtain the shear strain but did not give any 

satisfactory results.

The values of strains as given in Table 6.1 are plotted on an l-section to observe 

the neutral-axis pattern at each relevant stage for the fixed end and the mid
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section (in Figures 6.3 and 6.4 for experiment 1 and 2 respectively). Strains are 

not drawn to one scale for reasons of clarity, therefore strains have different sizes 

for each case.

Load Torsion Remarks
Strain at fixed end

kN kN-m

Experiment-1 1 2 4 5 3 6

Strain at start of

1.78 0.155 yielding 1609 -1700 780 -780 74 -36

Strain at practical
3.24 0.28 hinge formation 17000 -14562 15418 -11781 633 -32

Experiment-2

Strain at start of
4.26 0.37 yielding 534 -1701 -126 1222 5.7 -595

8.72 0.76 Strain at Peak load 1342 -3266 196 6859 -465 2184

Strain at practical -
7.44 0.65 hinge formation 5983 -17000 972 8198 -839 4025

Strain at Mid span

Experiment-1 9 10 11 12 13

1.78 0.16
Strain at start of

yielding 46 720 -724 -714 736

3.24 0.28

Strain at practical

hinge formation 50 1115 1074 -1445 1573

Experiment-2

4.26 0.37

Strain at start of

yielding -64 -282 -312 323 325

8.72 0.76 Peak load -985 1924 1323 2225 496

7.44 0.65

Strain at practical

hinge formation -5557 4073 5878 12735 -1966

Table 6.1 Strains at different location along the beam for experiments 1 and 

2 in biaxial bending and torsion
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Considering Experiment-1 strain results at the fixed end, the strain pattern at the 

start of yielding shows positive strain on the left of both flanges, negative strains 

at the right of both the flanges, with small strains at the middle of both the 

flanges. Figure 6.3a indicates that bending in both the flanges has the same 

curvature as when it occurs in bending of a beam about its minor axis. This 

shows that deformation at the start of yielding was mainly flexural with a 
domination of minor axis bending. However, warping due to rotation and a minor 

component of major axis bending were also present, deduced because the four 
values at the extreme edges of the flanges do not match. The beam rotation at 

this point was still zero at the support due to the beam’s fixity. Hence also no 

significant major-axis bending exists.

The strain pattern at the formation of a practical hinge is also given in the figure. 

It shows a similar pattern as that which was obtained for the strain distribution at 
the start of yielding. It is similar though the left and right flange values are no 
longer equal nor is the strain at the centroid nearly equal to zero. This means that 
the primary effects of warping and the contribution from major axis bending and 
the secondary effects of Wagner (Section 2.4.2, Figure 2.10(d)) and axial 
shortening were developed at large rotation and large deflection. However, minor 

axis behaviour continued to dominate the behaviour as the strains are positive 
and negative at left and right of the beam section. Considering Experiment 1 at 
the mid span at the start of yielding (Figure 6.4(a)), the strain at two edges of 

both the flanges have nearly opposite values as normally appeared when beams 

bend about minor axis bending. This shows the domination of minor axis bending 

at the start of yielding.

Considering Experiment 1 at the mid span at the formation of practical hinge 

(Figure 6.4(b)), the strain at the two edges of both the flanges have nearly equal 

but opposite values. However, a significant difference exists between values at 

the top and the bottom flanges where the values of the top flange are lower. This 

happens because the mid section rotates and causes additional warping strains 

which results in a decrease of strains for top flange and an increase of strain for 

bottom flange. Hence it can be said that at mid span both rotation and minor axis 

bending was present due to which change in the strain patterns were observed.
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a) Strain at start of yielding b) Strain at practical hinge formation

Figure 6.3 Strain patterns for biaxial bending and torsion experiment 
(Experiment 1) at fixed end, where strain numbers are given in square 
boxes and strain readings in rectangular boxes.

a) Strain at start of yielding b) Strain at practical hinge formation

Figure 6.4 Strain patterns for biaxial bending and torsion experiment 
(Experiment 1) at mid span, where strain numbers are given in square 

boxes and strain readings in rectangular boxes.

Considering the strains in Experiment 2 at the fixed end as depicted in Figure 

6.5(a), strains on the left and right of the flanges have different signs at the start
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of yielding, whereas nearly equal strains exist at the middle of both the flanges 

with a very small value at the centre of the web. This suggests that the strain 

pattern was a combination of major axis bending (due to which two opposite 

strains of nearly equal magnitude were present at the web/flange junction) and 

rotation (due to the different signs for the flanges, which indicate warping of the 

section). Strains due to major axis bending also exist in the flanges and therefore 

the neutral-axes have different positions in the two flanges. In addition a small 

component of strain due to minor axis bending, Wagner strain (Section 2.4.2, 
Figure 2.10(d)) and axial shortening must be present (because the load is applied 

at 8° and the beam has not rotated at the support) but the strain distribution 

shows that the predominant effect was mainly due to a combination of major axis 

bending and rotation. These combined effects cause such a pattern that a non­

straight line for the neutral-axis results.

Considering the strains at the peak load (Figure 6.5(b)), the distribution largely 

matches the strain at the start of yielding i.e. in both cases the top and bottom 
flanges have the same direction of bending about the longitudinal axis, with the 
same sense of bending in the web about its longitudinal axis. The same type of 
pattern is obtained as in the previous case which is an indication of the 
domination of major axis bending and rotation (Wagner + warping strains). 

However, now at the centre of the web there are significant strains which show 
that some axial shortening was present. Significant axial shortening was not 

evident in Experiment 1 because rotations were much smaller at the tip due to 

the domination of minor axis bending in the failure mode. A similar pattern of 

strain is obtained for the strains at the formation of a practical hinge, which shows 

that the beam responded in the same way from the elastic limit load to the 

formation of practical hinge at the cantilever support.

In Figure 6.6 strain at mid span is given. At the start of yielding the strains at the 

two edges of both flanges are nearly equal, which shows again the dominance of 

major axis bending which causes a stress distribution similar to the case obtained 

in major axis bending in Chapter 5. As the load increases, the section at mid 

span rotates which causes a mixed behaviour and strain at the peak load is a 

combination due to strain caused by bending about both the axes and rotation 

(Wagner and warping strain) and large strains at the centre of web is an
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indication of axial shortening. Beyond this load at the formation of a practical 

hinge at the support, the mid span section rotates further which causes the load 

to act in such a way that the strain obtained is more likely to be dominated by 

minor axis bending, but different strains at the bottom flange indicate effects of 

warping strain, Wagner strain (Section 2.4.2, Figure 2.10(d)) and flexure strain 

due to major axis bending and rotation. High values of strain in the centre of the 

web is due to axial shortening which occur at large rotation.

c) Strain at practical hinge formation

Figure 6.5 Strain patterns for biaxial bending and torsion experiment 

(Experiment 2) at fixed end, where strain numbers are given in square 

boxes and strain readings in rectangular boxes.
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Comparing Figure 6.5(c) and 6.6(c) the different strain pattern is obvious in both 

the cases. The reason is that the section rotates at the mid span and is fixed at 

the support. Therefore both the sections are under different types of bending 

strain. However this was not the case when, in the first experiment, Figures 

6.3(b) and 6.4(b) are considered. In Experiment 1 both strain distribution at the 

mid section and at the support have a similar pattern. Rotation has a large 

influence in the second Experiment because the section was weaker in rotation 

as compared to bending and resulted in more rotation, hence resulting in different 

strain patterns for the second experiment. In the case of Experiment 1 the section 

was weaker in bending compared to rotation hence not much rotation took place 

and the behaviour was mainly dominated by bending, hence a similarity in the 
strain pattern can be observed.

6.2.4 Torsion rotation relationship
The relationships between torsion and rotation for Experiments 1 and 2 are 
depicted in Figures 6.7 and 6.8 respectively. Considering Experiment-1, the 

torsion at which yielding starts is OAbbkN.m as given in Table 6.1 and this 

occurs at a rotation of 4.6°. The torsion at which yielding starts can be defined as 
the elastic limit torsion. Up to the elastic limit torsion, the theoretical value 

(calculated in Appendix-D) coincides reasonably well with the experimental 
response, as can be deduced from the dashed line in the figure. However 
differences exist between both the experimental and theoretical response in the 

elastic range. There are potentially two main reasons for the difference; the first 

is the bedding down of the sample which takes place during load application. The 

second reason for the difference is that the theoretical value is based on a shear 

modulus which is obtained based on the Young’s modulus obtained from Coupon 

tests while a different shear modulus can exist for this more complex experiment 

as both the experiment and Coupon tests are based on different loading set-ups. 

Different values for both the experiment and Coupon tests were also obtained by 

Goggins (2004) in his research program.

Considering Table 6.1, and assuming n=10, the torsion at the formation of the 

practical hinge is 0.28kN.m at a rotation of 12.1°. Beyond this, the zone of strain 

hardening is assumed to start where, in this case, there was no rotation recorded 

because the potentiometer support broke during this experiment (the torsional
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moment at this point was 0.31 kN.m). When the load was subsequently removed 

a residual rotation was recorded of approximately 11°. When this graph is 

compared with the graph of the pure torsion experiment, as depicted in Figure 

5.26, it can be inferred that in the previous case linearity existed up to an angle of 

approximately 18°, whereas in this case it was at an angle of 3.7°. The low 

rotation in the linear phase in this case is an indication of the interaction of 

bending with torsion.

a) Strain at start of yielding b) Strain at peak load

c) Strain at practical hinge formation

Figure 6.6 Strain patterns for biaxial bending and torsion experiment 
(Experiment 2) at mid span, where strain numbers are given in the square 

boxes and strain readings in rectangular boxes.
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Rotation (Degrees)
--------- Experimental Response---------- Elastic Response

Figure 6.7 Torsion against rotation in the biaxial bending and torsion 

experiment when minor axis behaviour dominates (Experiment # 1)

Figure 6.8 Torsion against rotation in the biaxial bending and torsion 

experiment when major axis behaviour dominates (Experiment # 2)

Considering the results of Experiment-2, as depicted in Figure 6.8, with key data 

in Table 6.1, it can be deduced that the value of torsion at the elastic limit is 

0.37 kN.m at a rotation of 10.8°. Up to this point, the theoretical elastic torsion 

exhibits the same trend as does the experimental response as can be deduced 

from the figure. The rotation at the maximum torsion was not recorded due to the 

breaking of the support of the potentiometer as discussed previously. The peak 

value of torsion was 0.76 kN.m which was obtained based on the peak load
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recorded. However practical hinge formation occurs after the peak load at which 

the limiting torsion was 0.65 kN.m. The residual rotation on unloading was 

recorded and was approximately 48° considerably higher than for Experiment 1 
(11°)

A comparison of the torsion against rotation response of both experiments is 

given in Figure 6.9. From the figure it can be deduced that both the responses 
follow a similar trend up to a rotation of approximately 5°. However minor 

differences exist between the two up to this angle due partially to the difference in 
bedding down of the beam samples. Rotation at the elastic limit torsion for 

Experiment 1 was 3.7° whereas for Experiment 2 it was 7.5°, due to the flexural 

stiffness difference as explained previously. Beyond this angle of 5° the response 

of experiment 1 does not match the response of Experiment 2 due to the 

interaction of torsion with the flexural action. Therefore, it can be concluded that 
torsion is largely unaffected by flexure in the linear phase of the experiments 
whereas flexure does affect the torsional response in the non-linear phase of the 
experiments. Comparing the residual rotations for both the experiments (11° 
against 48°) the higher residual rotation obtained in the second experiment can 
be explained by the fact that in the first experiment the section was weak in minor 
axis bending compared to rotation, hence not much rotation takes place as failure 
is dominated by minor axis bending and this results in a lesser residual rotation. 
For the second experiment, the beam was stiffer against bending and relatively 
weaker in torsional stiffness compared to the bending. Owing to this more 
rotation takes place as the load to reach yielding is higher and this results in 
more residual rotation of the beam on unloading.

Figure 6.9 Comparison of torsion and rotation for Experiments 1 and 2 of 
biaxial bending and torsion experiments
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6.2.5 Load-Deflection Relationship

The load against deflection relationship for Experiments 1 and 2 are depicted in 

Figures 6.10 and 6.12 respectively where "load” is the applied load at the free 

end of the sample and the deflection is the vector magnitude resultant of 

deflections which were measured in two orthogonal directions (as depicted in 

Figure 6.2) at the free end of the beam.

Considering Experiment-1 (and Figure 6.10), the graph can be divided into three 

phases. The first phase is the elastic phase, whose elastic limit load (as given in 

Table 6.1) is M8kN (as indicated as point A in the figure), where the elastic limit 

load is the load at which is achieved anywhere on the beam sample by

definition. Beyond this point, some strains remain less than the value at the start 

of yielding, i.e. they are elastic strains, whilst others are more than the strain at 

the start of yielding. This phase (A to B) is termed as the elastic - plastic phase, 

which extends up to a load where the first practical hinge formed at 3.24 kN (as 

indicated as point B in the figure) as recorded in the table. Beyond this point can 

be termed as the plastic phase with a strain hardening property of the material in 

which a slight increase of load can be observed in the figure.

Figure 6.10 Load against deflection piot of the biaxial bending and torsion 

experiment when minor axis bending dominates (Experiment # 1)
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A large residual lateral deflection (92mm in X-direction and 6mm in Y-direction) 

can be observed on unloading of the beam (Figure 6.11). The large lateral 

deflection of the beam in the elasto-plastic and strain hardening phases is an 
indication of the strong influence of bending deformation in the "failure” mode, 

although a significant residual rotation is also evident (approximately 11°) on 

unloading.

Figure 6.11 Residual lateral displacement and rotation of the beam under 
biaxial bending and torsion experiment when minor axis bending 
dominates (Experiment# 1)

Considering Experiment-2, from the strain results given in Table 6.1, it can be 

inferred that the sample reached its elastic limit load at 4.26 (point A in Figure 

6.12). Beyond this point it reaches a peak load of 8.72 kN (as denoted as point B 

in the figure). At the peak load, strains have not reached the strain of 
17000 //£• (which is the assumed limit of plastic flow) as can be observed from the

table, where some strains are more than the elastic limit value but less than the 

ultimate strain at plastic flow. Figure 6.12 shows that the beam experienced a 
decrease in load capacity before the formation of the practical hinge. If one 

considers the strains at mid span at the peak load, they are less than which

shows that yielding started near the fixed end of the beam, not surprisingly. From 
the strain values given in the table, it can be inferred that the beam experienced 

a loss of stiffness in the elastic-plastic phase. The point when the beam reached 

the £•„ value is after reaching the peak load, at a load of 7.4 ^7V. This fall off in 

load is further discussed in Section 6.2.6. From an examination of the beam on
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unloading, as depicted in Figure 6.13 a large residual rotation of approximately 

48° can be observed to accompany the large lateral deflection (/Iwm in X- 

direction and 5mm in Y-direction). The large residual lateral deflection and 

rotation are an indication of the interaction of bending and torsional deformation 

in the plastic phase. Details about the failure of the beam are discussed in the 

next section.

Figure 6.12 Load against deflection of biaxial bending and torsion 
experiment when major axis behaviour dominates (Experiment # 2)

6.2.6 Failure of the beam samples

From the strains given in Table 6.1 it can be inferred that "failure” was initiated in 

the first experiment due to yielding on the formation of a practical hinge due 

principally to minor axis bending. The hinge formed in the sample but the 

capacity of the beam to take further load on hardening was not exhausted. This 

can be said because no buckling or tearing of flanges or web was observed 

during the experiment and also there was a constant but slow increase of 

response with time, which showed that the beam had not reached its ultimate 

capacity. The experiment was terminated when the actuator reached its 

maximum deflection of ^00mm. Under this condition, the maximum load applied 

was considerably more than the load at which a practical hinge was deemed to 

have formed, which confirms that the beam was in the strain hardening phase 

beyond the formation of a practical hinge.
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Considering Experiment-2, failure occurred due to a different behaviour mode of 

the beam sample. When the load was applied it was almost perpendicular to the 

major-axis of the section (see Figure 6.2). During the load application, significant 

rotation of the beam sample occurs which causes a change in the flexural 

stiffness of the beam resisting the load. Also, throughout the length of the beam, 

the bending moment varies, with a maximum at the fixed end and zero at the 

point of load application. Therefore two key parameters vary along the length of 

the sample, namely, the cross-section orientation (due to large rotations at the tip 

in torsion uniformly distributed over the length) and the moment applied. As the 

orientation of cross section changes, the overall stiffness of the beam decreases 

and results in the drop of the load capacity. Despite some torsional rotation along 

the beam, the second moment of area for the fixed end will remain the same, 

whereas for the mid section, the second moment of area changes about the axis 

of the applied load. Therefore, two mechanisms interacted at that time after the 

drop in load; firstly as the beam rotates, a combination of moment and such a 

value of second moment of area are reached where the beam can have a smaller 

radius of curvature at the mid span instead of rotating primarily in flexure at the 

fixed end which results in more bending distribution about the mid span, as is 

evident from Figure 6.13. Also high values of strains at the mid span confirms 

yielding of the mid section. However, during this process, torsional rotation 

continues (see Figure 6.8) which causes an increase of strain at the fixed end. 

Hence, at the end of the experiment, yielding has occurred both at the fixed end 

and at the mid span. This is evident from the strain readings both at the fixed end 

and at the mid span at the formation of practical hinge, where strains are in the 

state of plastic flow for most of the strain gauges. However practical hinge 

formation is taken at the fixed end because the strain value of 17000//£- is

reached at the fixed end and this strain is the basis of defining the point as a 

practical hinge.

6.2.7 Elastic limit load and yield surface
Considering Experiment-1, the elastic limit load and elastic limit torsion, as 

identified in the previous discussion, are M8kN and 0.155^A^-w respectively. 

These limit loads are based on the measured strain , where is the direct

strain measured in the longitudinal direction. In addition, the beam considered 

has dimensions such that it comes under the class of a thin walled beam
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(Vlasov’s 1959), where for thin walled beams shear deformation can be ignored. 

Therefore only three forces are considered to compare the given loads at failure 

with the yield surface developed in Chapter-4, while shear forces are ignored. 

Two of these forces are biaxial bending moments, which occurred at the fixed 

end due to the limit load and the third is the warping moment which occurred due 

to the limit torsion. For a cable induced load of I.ZSfcV, its component (if 

resolved in two orthogonal components based on a load direction of 8° with 

reference to the lateral directions (see Figure 6.2), are 1.76^A^ and 0.25 kN in 

the X and Y directions respectively. This gives moments My of 1.82fcV.m and Mx 

of 0.26kN.m respectively. The bimoment (defined in Section 2.4.2) obtained for 

the limit torsion condition is 0.046 (Appendix-D). The plastic capacities 

obtained in Chapter 5 are summarized in Table 6.2. Using the plastic capacities, 

the three obtained forces are converted into their normalized form and are given 

in the table. For the same values of b and ruy, is calculated (Appendix-D)

which is 0.45. As rnx,<m^^ and the summation of rriy and b are less than one this

suggests that the section has not yet reached the yield surface. Hence the 
section remains elastic at the elastic limit load, not surprisingly, as the elasto- 
plastic phase has yet to be crossed.

Similarly considering the elastic limit load and torsion in the case of Experiment- 

2, the two components of limit load of A.26kN are 0.50 kN and 4.21 kN in the X 

and Y directions respectively. This gives moments My of 0.61 kN.m and Mx of 

4.35 kN.m respectively. The bimoment obtained for the elastic limit torsion is 

O.IO^A^.w^ (Appendix-D). Their capacities in normalized form are summarized in 

the table. Using the procedure given in Chapter 4, these can be compared with 

the developed yield surface. For the same values of rrix, b and rriy, m^ is

calculated (Appendix-D) as 0.45. As mx,<m^ and the summation of rriy and b

are less than one again this implies that the section has not reached the yield 

surface. Hence, it can be concluded that the said applied load and torsion has 

not caused the yield point to be reached when compared with the theoretical 

yield surface.
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6.2.8 Practical hinge formation and yield surface
In Experiment-1 a practical hinge is assumed to form at a load of Z.2AkN for 

which strains are given in Table 6.1. The torsion at which this occurs is 

0.28kN.m. This load creates moments of 0.46kN.m and 3.3kN.m in the X and 

Y directions respectively. No procedure exists to obtain the exact equivalent 

bimoment (defined in Section 2.4.2) in the inelastic range when biaxial bending 
moments are applied to the section in combination with torsion. To obtain the 

bimoment value in the presence of biaxial bending moments in the inelastic 
range, a factor by which torsion has increased on the formation of a practical 

hinge compared with the elastic limit torsion is calculated. The bimoment value 

obtained at the elastic limit torsion is then multiplied by this factor to obtain an 
estimate of the bimoment at the formation of a practical hinge. The increase in 

the torsion from the elastic limit value to a value at the formation of a practical 

hinge is by a factor of 1.81. Therefore, multiplying the bimoment of the elastic 

case by 1.81 yields a bimoment of 0.089 kN.m^. This gives an approximate value 

for comparison with the yield surface. All the forces at the formation of a practical 
hinge are shown in normalized form in Table 6.2. It can be observed in the table 

that nty (at a load of 3.24kN) is 1.13, which is more than its plastic capacity, 

which shows that the load point at the formation of a practical hinge is actually 
outside the yield surface. As it is known that the load at practical hinge formation 

was subjectively selected based on n=10 (see Equation 6.1), then as the rriy 

value has already exceeded its plastic capacity at this load, it demonstrates that 

the load point at which it will reach the yield surface must have a smaller value of 

n (but more than n=1 as the yield surface was not reached for the elastic limit 
load). As the summation of the normalized my and b for the elastic limit load is 

0.94, therefore both these values are increased in the same proportion such that 

the summation of my and b equals to 1 and that load is used to compare with the 

yield surface. This load is calculated as ^.9kN, which is 1.06 times more than 

the elastic limit load. Based on this load, the moments which it produces are 

0.27kN.m and ^.94kN.m in the X and Y direction respectively, whereas torsion

at this load is O.^ObkN.m, which gives a bimoment of 0.049kN.m^. These forces 

are less than its load at practical hinge formation and are also shown in 

normalized form in the table. For the same values of mx, b and my, m^ is

calculated (Appendix-D) which is 0.455. As mx,<m^ and the summation of my
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and b is equal to one this suggests that the section has reached the yield 

surface. Hence it can be concluded that the applied load has caused the yield 

point to be reached as determined by the theoretical yield surface. However the 

value of ^.9kN cannot be said to be the true yield value because it is not based 

on any experimental evidence.

My B

Plastic capacities ^5.^5kN.m l.QZkN.m A44kN-m^

Experiment-1

Load=1.78kN 0.26 1.82 0.046

Load=1.78kN (Normalized) 0.018 0.62 0.32

Load=3.24kN 0.46 3.3 0.089

Load=3.24kN (Normalized) 0.03 1.13 0.62

Load=1.90kN 0.27 1.94 0.049

Load=1.90kN (Normalized) 0.018 0.66 0.34

Experiment-2

Load=4.26kN 4.35 0.61 0.1

Load=4.26kN (Normalized) 0.29 0.21 0.69

Load=8.72kN 9.5 1.33 0.2

Load=8.72kN (Normalized) 0.69 0.46 1.42

Load=4.73kN 4.82 0.68 0.11

Load=4.73kN (Normalized) 0.32 0.24 0.76

Table 6.2 Biaxial bending moment and bimoment for load and torsion 

applied in Experiment 1 and 2

Considering Table 6.1, the strain gauges which are in the plastic flow state are 

strain # 1, 2, 4 and 5. Considering the graph as depicted in Figure 6.14 it can be 

observed that plastic flow started in those four strain gauges at a value of 

approximately 3.1 kN. This shows that this load can be taken as a point of hinge 

formation (an increase of strain beyond this point is observed without much 

increase of load). Comparing with the load of 1.9^A^, it shows that the 

experimental load at which hinge forms is 1.63 times more than the theoretical 

load.
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Figure 6.13 Residual lateral displacement and rotation of beam in the 
biaxial bending and torsion experiment when major axis bending 

dominates (Experiment # 2)

As discussed previously, the peak load is achieved before the formation of the 
practical hinge in Experiment 2. This load is 2.04 times more than the elastic limit 

load. The moments which it produces are 9.50kN.m and ^.33kN.m in the X and 

Y directions respectively, whereas torsion at the peak load is 0.76 kN.m. 

Following the same basis as previously, the bimoment value, in the presence of 

biaxial bending moments in the inelastic range, is obtained by multiplying the 
bimoment value obtained for the elastic limit load by a factor of 2.04 which gives 

bimoment as 0.20 kN.m^. The obtained forces in normalized form are 

summarized in Table 6.2. It can be observed that the bimoment obtained (1.42) is 
more than the plastic bimoment capacity. Considering the maximum recorded 

strain at this load, which is 6859 (Table 6.1) at strain gauge # 5 and, based on 

Equation 6.1, n obtained for this strain is 4.03, which is less than the earlier 

assumption of n=5-10 for practical hinge formation. Therefore, as the bimoment 
capacity has already exceeded its plastic capacity at the peak load, it implies that
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the load point at which it will reach the yield surface must have a smaller value of 

n. Based on the procedure discussed in the previous section, the load is 

calculated as AlZkN which is 1.11 times more than the elastic limit load. Based 

on this load, the moments which it produces are A.b2kN.m and 0.68kN.m in the 

X and Y directions respectively, while the torsion at this load is 0.41 kN.m from 

which the bimoment obtained is 0.11 kN.m^. For the same values of tVx, b and 

iriy, is calculated as 0.45(Appendix-D). As mx,< and the summation of

my and b is equal to one it means the section has reached the yield surface. 

Comparing this with the hinge formation based on experimental evidence, it can 

be observed from Figure 6.15 that plastic flow occurs in strains # 1,2, 4 and 5 at 

a load of nearly 8.7 kN and this load can be taken as the point of hinge formation 

(an increase of strain beyond this point is observed without much increase of 

load). Comparing with the load at formation of the theoretical hinge this is 1.84 

times greater.

For both the experiments, the yield surface given by Chapter 4 predicted a much 

lower capacity than those obtained in the experiments. There are two main 

reasons for the large difference between theoretical yield surface and 

experimental evidence of hinge formation. First in the development of yield 

surface, an elastic perfectly plastic material is assumed, and the stress strain 

diagram has a maximum yield stress, and that yield stress is 1.39 times (based 

on average Coupon result of Section 5.2.1) more than the ultimate yield stress, 

whereas experiments are based on ultimate stress. The theoretical yield surface 

is based on the maximum yield stress and does not consider the additional 

strength of material. Second is that the torsional capacity of a section is high 

when Wagner strain (Section 2.4.2, Figure 2.10(d)) and axial shortening are 

considered. Owing to this more resistance is provided from the beam to the load 

and results in high loads, whereas in the theoretical yield surface it is based on 

only three strains (four in reality including strain due to axial force), whereas 

experiments are based on biaxial bending strain, warping strain, Wagner strain, 

axial shortening strains. Hence due to secondary torsional strain more resistance 

is provided by the beam and this is the second reason for such a high load.
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Figure 6.14 Strain # 1,2,4 and 5, Load against strain of biaxial bending and 

torsion experiment when minor axis behaviour dominates (Experiment # 1) 
at the fixed end of the beam

Figure 6.15 Strain # 1,2,4 and 5, Load against strain of biaxial bending and 

torsion experiment when major axis bending dominates (Experiment# 2) at 

the fixed end of the beam

6.2.9 Measured strain 
Experiment -1

The load against strain graphs may be plotted for strains at the fixed end and at 

the mid section of the beam. The location of these strain gauges is given in 
Figure 5.23. Consider the strains at the edges of the flanges near the fixed end,
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where their load against strain graphs is given in Figure 6.14. Strain #2 and strain 

#5 are in compression as indicated by their negative direct strains but for 

comparison they are shown positive in the figure.

Up to the elastic limit load, the response is largely linear. Strains 1 and 2 and 

strains 4 and 5 clearly match each other and comparison with Figure 6.3 shows 

the domination of minor-axis bending in the linear phase. Beyond this point, 

strain increases are non-linear but, again, match each other for most of the 

phase. All the strains almost reached the assumed limit of plastic flow 

(17000/7£:). Similar values of strains 1 and 2 and strains 4 and 5 indicate that 

minor-axis bending also dominates the non-linear phase of loading. This confirms 

that failure occurred mainly due to bending of the beam about the minor axis, 

with a influence from torsional rotation which causes warping of the section and 

Wagner and axial shortening at large rotation.

A load against strain plot for the web section near the fixed end is shown in 

Figure 6.16. Comparing Figure 6.14 and 6.16, it can be inferred that the strains in 

the web for all strain locations are less than the value and are all an order of

magnitude less than the strains at the edges of flanges. This shows that the web 

was under a small amount of strain and that bending about the major-axis was 

not dominating (where strains would develop in the web considerably). However, 

the failure was not solely a failure of bending of the beam in the minor direction. 

This is because in the case of pure minor axis bending failure, the amount of 

strain developed in strain #3, 6 and 7 would be significantly less than the values 

observed here. Rotation/torsion warping can cause the neutral-axis not to be a 

straight line (see Section 4.7) and some major axis bending for the section and 

axial shortening takes place in such a way that they create greater strain for 

strain #3 as compared to strains #6 and 7. In addition, the beam’s principal axes 

were not entirely perpendicular/parallel to the direction of load application at the 

support: hence, a small contribution of strain from the major axis bending 

component will have occurred.

It can thus be concluded that both the warping strain, and the strain from major- 

axis bending cause a non-straight neutral axis and results in more strain (also 

including axial shortening) for strain# 3 as compared to strains # 6 and 7. The
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irregular pattern in the sign of the strain in the figure is due to the fact that the 
interaction between rotation and bending changes throughout the experiment 

while warping strain dominates at the start of the experiment the strains are later 
dominated by the major axis bending component, axial shortening and Wagner 

strain (Section 2.4.2, Figure 2.10(d)), hence this results in sign change of some 

of the web strain gauges.

- Strain#3
Strain(micro strain)

------Strain#6 Strain#/

Figure 6.16 Strain # 3, 6 and 7, Load against strain of biaxial bending and 

torsion experiment when minor axis behaviour dominates (Experiment # 1) 
at the fixed end of the beam

Strains for the mid-section are shown in Figure 6.17. Strain # 11 and 12 are in 
compression and have a negative direct strain but for comparison they are shown 

positive. It can be deduced that all the strains are less than the elastic limit load 

strain (1700 /xe) which shows that the beam responded linearly at mid-section up 

to the end of the experiment. A difference exists between strains #10, 11, 12 and 

13 after a load of approximately ^.5kN. This difference is due to the warping 

effects, Wagner effects and the strain component of major axis bending 
developing (as discussed before). However, the difference is not in the early 

stages of the loading which suggests that the interaction of bending and rotation 

changes as the load progresses, where almost identical values of strain for the 
four strain gauges at the start of loading is an indication that minor axis bending
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was dominating strongly. Small values of strain for strain #9 was mainly due to 

axial shortening.

Figure 6.17 Load against strain of biaxial bending and torsion experiment 

when minor axis behaviour dominates (Experiment # 1) at the mid section 

of the beam

Experiment - 2

The load against strain relationship will be investigated at the fixed end and at the 

mid-section of the beam. The location of these strain gauges is given in Figures 

5.23, 6.4 and 6.5.

Consider the strains at the edges of the flange near the fixed end, as depicted in 

Figure 6.15. Strain #2 is in compression and has a negative direct strain but for 

comparison it is shown positive in the figure, whereas the remaining strains are 

positive. Almost up to the assumed elastic limit load of 4.26^^ the load-strain 

response is linear; beyond the elastic limit load, the response is non-linear up to 

the peak load. The responses of all the strain gauges show that it is not solely a 

major axis bending response (because in pure major axis bending response, 

strains #1 and 2 and strains # 4 and 5 would have similar signs because each 

flange will be either in compression or tension), whereas in the current 

distribution signs are different. Up to a load of approximately 7kN strains #2 and 

4 are negative whereas strains # 1 and 5 are positive. This shows that the strain
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pattern was affected by warping strains which occurs due to rotation and causes 
an irregular pattern and a non-straight line for the neutral-axis (as it can occur in 
the presence of warping strain, see Figure 6.4). In addition there will be minor 

components of strain from minor axis bending, Wagner strain (Section 2.4.2, 

Figure 2.10(d)) and axial shortening. If strains are plotted at a load of A.2QkN, as 

depicted in Figure 6.4, a non-straight neutral axis is evident. Between a load of 

7kN and the peak load only the sign of strain #2 is negative, demonstrating that 

the interaction of rotation and bending changes the behaviour and causes the 

strain to change at a different rate. This happens because the rotation causes a 
decrease in the flexural stiffness of the beam and so results in a different 

behavioural mode.

The strains in the middle of the flanges and the centre of the web near the fixed 
end are shown in Figure 6.18. Strain #3 and strain #6 are in compression and 
have negative direct strains but for comparison they are shown positive. Up to 

the elastic limit load {A.2QkN) the response is linear; beyond it the response 

became non-linear. Strain #6 and 7 have almost equal magnitude but opposite 
signs. This is because of the domination of major axis bending which causes two 

equal strains but of opposite signs for the middle of both the flanges, whereas at 
these locations warping strain has no effect. Strain #3 increases in the later stage 
of loading due to axial shortening effects caused by rotation, hence resulting in a 
considerable increase of strain after the peak load.

Strains for the mid section are shown in Figure 6.19. Strains # 9, 10 and 13 are in 
compression and have a negative direct strain but are shown as positive for 

comparison. Up to the peak load, all strains are within the elastic limit strain while 
beyond peak load, plastic flow occurs where the strains are considerably more 

than the elastic strain. Up to the elastic limit load strains #10 and 12 and strains 

#11 and 13 have similar magnitudes but different senses. This shows that the 
response is a combination of the domination of warping of the section due to 

rotation at the early stages and combined bending strain. Beyond this load up to 

the peak load the flexural stiffness starts to decrease, and the minor axis bending 
warping effect, Wagner effect (Section 2.4.2, Figure 2.10(d)) and axial shortening 

becomes more dominant. In this phase strains #11 and 13 do not match each 

other while strains #10 and 12 indicate the strains were affected by the described
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effects. This shows the change of interaction from one dominated by rotation 

towards a more even combination of bending and rotation effects. Beyond the 

peak load a change in the sign of strain #13 takes place because of the decrease 

of stiffness and the strain distribution is more like the strain distribution one gets 

for the minor axis bending case, as can be observed from Table 6.1 and Figure 

6.6 for a load of lAAkN. This happens due to the change of stiffness because of 

the large rotations which occur beyond the peak load. The increase in strain # 9 

beyond the peak load is an indication of axial shortening effects which increase 

at large rotations.

Figure 6.18 Strain # 3, 6, and 7 Load against strain of biaxial bending and 

torsion experiment when major axis bending dominates (Experiment # 2) at 
the fixed end of the beam

6.2.10 Displacement in two orthogonal directions

Figure 6.20 presents the cantilever tip displacement in two different directions for 

Experiment 1 where the directions are perpendicular to each other. The 

directions in which the displacements were measured are given in Figure 6.2 and 

the load-deflection plot is given in Figure 6.10. The displacement in the X- 

direction is large as compared to the displacement in the Y-direction, the reason 

being that the direction of load application was nearly parallel to the X-direction. 

The graph can be divided into three phases based on the variation of 

displacement in the Y-direction with respect to the X-direction. The phase 

distribution of this graph is different from the phase distribution of Figure 6.10. 

The first phase is from the origin to point A during which a gradual increase of 

displacement in the Y-direction can be observed. Comparing this with Figure
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6.10, it can be said that this phase is when the response seems to be 

approximately linear at a load of 3kN. In this phase, the increase of deflection in 

both the directions is such that it indicates a relation of uniform interaction 

between them. Although as the beam rotates slightly, this is a shift towards more 
Y-axis (major-axis movement). The second phase is from point A to point B 

where a large increase in the X-direction occurs for a relatively small increase in 

the Y-direction. Comparing this phase with Figure 6.10, it can be observed that 

the response was in the elasto-plastic phase where yielding takes place for a 
small increase of load. The large increase of displacement in the X-direction is an 

indication that yielding takes place mainly due to minor axis bending. Beyond 

point B up to the end of the experiment is the third phase of the graph in which a 
gradual increase of displacement in the Y-direction is an indication that deflection 
takes place for both the major and minor axis bending. This happens because of 

rotation of the beam with increasing torsion which causes a change in the flexural 
stiffness over the beam length and results in a greater interaction of bending 
about both the axes.

Figure 6.19 Strain # 9,10,11,12 and 13. Load against strain of biaxiai 
bending and torsion experiment when major axis bending dominate 

(Experiment # 2) at the mid span of the beam

Figure 6.21 presents the displacements in the two different directions for 

Experiment 2. The reason for the different value of X-displacement compared to 

the Y-displacement is as discussed in the previous section where now the load
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direction causes most of the bending to occur about the major-axis, although the 

small load component still causes significant deflection about the weaker axis. 

The graph can be divided into three phases (The phase distribution of this graph 

is different from the phase distribution of Figure 6.12). The first phase which is 

between the origin and point A, the response was broadly linear. From the load- 

deflection response given in Figure 6.12 it can be observed that this happens at a 

deflection of approximately 2Qmm (value calculated based on the X and Y values 

in Figure 6.21) at a load of 8.22A:A'^ beyond the elastic phase and before the peak 

load. Increase of displacement in both the directions indicates the trade off of 

load and stiffness in the interaction of bending in the X and Y directions. In the 

second phase which is between point A and B, as the deflection increases in the 

Y-direction a drop in the displacement in the X-direction can be observed. Point B 

of the figure when compared to Figure 6.12 lies at a displacement of 80mm as 

indicated as point C in the figure. It shows that there is a change in the interaction 

of both the displacements between point A and B of Figure 6.21 as compared to 

the first phase. Point A of the figure relates to loading near the peak load (near to 

Point B in Figure 6.12) and point B relate to the load at formation of practical 

hinge (near to point C in Figure 6.12). As the drop off of load is related to the 

decrease of stiffness of the section as a whole, a drop in the displacement of X 

direction will occur. This shows loss of stiffness in the X-direction takes place 

because of rotation of the beam and it continues up to the formation of practical 

hinge.

Beyond the practical hinge formation (beyond point B in Figure 6.21) a decrease 

in the deflection in X-direction compared to its initial position is observed. It can 

be argued that it is not possible that a value of X lesser than its initial value of 

zero can occur. However, the way beam failed it is possible. At the stage of Point 

C of Figure 6.12 the beam was not straight and bends more about the middle as 

can be observed from Figure 6.13. On further rotation, the beam deflects in such 

a way as to have a negative deflection in the X-direction. As now the beam was 

not rotating as a straight beam but as a highly distorted beam, this causes a 

negative deflection in X-direction.
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Figure 6.20 Displacement in two perpendicular directions of biaxial bending 

and torsion experiment when minor axis bending dominates (Experiment # 

1)

Owing to the bending flexibility of the beam in Experiment 1, not a large amount 
of rotation occurred before it reached a plastic flow in flexure; hence, deflections 
relative to rotation are high. However, in Experiment 2, the beam was flexurally 
much stiffer when bending about its major axis. Therefore, the rotations were 
much higher for a given total deflection until the beam had rotated sufficiently to 
develop plastic flow in torsion and minor axis bending.

Figure 6.21 Displacement in two perpendicular directions of biaxial bending 
and torsion experiment when major axis bending dominates (Experiment # 

2)
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6.2.11 Displacement in Y-direction and measured rotation

Figure 6.22 presents the displacement in the Y-direction and rotation of the beam 

for Experiment 1. A reasonably uniform response can be observed in the graph 

initially i.e. there is a slow but constant rise of displacement on the increase of 

rotation (both of which are caused by the same cable load). However, a sharp 

rise of displacement is observed for a small amount of rotation after an angle of 

12°. This shows that the interaction between displacement and rotation changes 

in the latter stages where the rise of displacement at the end of the stage is an 

indication of the decrease of flexural stiffness of the beam. At 12° rotation the Y - 

axis deflection is approximately 3mm which corresponds (in Figure 6.20) to an X- 

axis deflection of approximately 70mm. When this deflection is compared with 

Figure 6.10, it shows that the beam at this rotation was in the elasto-plastic 

phase. Therefore, at this stage, flexural plasticity took place giving rise to a sharp 

rise in the displacement without considerable increase of rotation.
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Figure 6.22 Displacement in Y-axis and rotation of biaxial bending and 

torsion experiment when minor axis bending dominates (Experiment # 1)

Figure 6.23 presents the displacement in the Y-direction and rotation of the beam 

sample for Experiment 2. Very little Y-axis movement is observed until about 8°. 

Beyond this point it can be observed that there is no change of response rate as 

the response is linear. This means that there is no change in the interaction of 

the response up to the point when rotation ceased to be measured. However, not
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much information can be derived from this graph due to not recording rotation 

beyond 35° due to faulty equipment.

6.2.12 Displacement in X-direction and measured rotation

Figure 6.24 presents the displacement in the X-direction against rotation for 

Experiment 1. The relationship is broadly linear up to a rotation of approximately 

11° after which a rapid development of X-displacement occured. A different 

nature of interaction between rotation and deflection was present at large 

deflections. Comparing the deflection of approximately bQmm, which occurred at 

11°, with the deflection in Figures 6.10 and 6.20 it can be inferred that this is the 

elasto-plastic phase for which increase of deflection takes place on flexural 
yielding. This is confirmed in Figure 6.24.

Figure 6.25 presents displacement in the X-direction against rotation for 
Experiment 2. Unlike the previous case (Figure 6.24), there was a linear 
response throughout. It shows that up to the point where the rotation ceased to 
be measured, the beam was in the elastic phase, where the relationship between 
the deflection and rotation was unchanged and nothing of significance can be 

gleaned.

Rotation (Degrees)

Figure 6.23 Dispiacement in Y-axis and rotation of biaxial bending and 
torsion experiment when major axis bending dominates (Experiment # 2)
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Figure 6.24 Displacement in X-axis and rotation of biaxial bending and 
torsion experiment when minor axis bending dominates (Experiment # 1)

Figure 6.25 Displacement in X-axis and rotation of biaxial bending and 

torsion experiment when major axis bending dominates (Experiment # 2)

6.3 AXIAL FORCE, BIAXIAL BENDING AND TORSION

EXPERIMENT
6.3.1 Experimental Set-up
To apply an axial load to the sample beam, an addition is made to the set-up of 

Experiments 1 and 2 (shown in Figure 6.1). The location of the prestressing 

tendon which delivers the axial load is on the longitudinal axis of the l-section, 

connected to the cantilever tip. In this direction a 30 tonne mechanical hydraulic
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jack was fixed with a calibrated RDP load cell (also of capacity 30 tonnes) 
attached which measures the force applied by the jack in tensioning to the beam 
sample. There is also a cross-beam connected to the internal reaction frame 

which resists the thrust from the hydraulic jack in applying the axial load. The 

whole assembly is depicted in Figure 6.26.

Axial load application

A 25mm prestressing strand was connected to the beam sample using a typical 
wedge block. This strand passed through a hole in the cross beam and the other 

end of the strand was anchored to the end of the hydraulic jack as indicated in 

Figure 6.26. The position shown in the figure is during assembly prior to the load 

being applied by hydraulic jack. When the load was applied, the upper end of the 
hydraulic jack, which was placed outside of the load cell, reacted against the 
soffit of the cross-beam, to provide resistance as depicted in Figure 6.27. The 
direction of load application and resistance also is depicted in the figure.

25mm 
Prestressing 
Strand 
connected to 
the beam 
sample above 
(not in figure)

Cross beam 
connected to 
the internal 
reaction 
frame

Gap when load is 
not applied

RDP load cell

Hydraulic Jack

Other end of the 
strand anchored 
at the end of 
hydraulic jack

Figure 6.26 Arrangement of applied axial load (with load cell and cross 

beam)
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Load measurement and data storage

Axial loading was applied by the hydraulic jack, where a load cell was attached to 

measure the actual loading. This load cell measured the load based on the 

resistance provided by the strand when it is extended during the pulling of the 

strand by the hydraulic jack. The load cell records the measured force in the 

cable including when further load is induced in the cell through subsequent 

displacement of the cantilever beam when subjected to biaxial bending and 

torsion loading. As previously, all the signals received by the System 5000 (data 

acquisition system) were transferred to a data storage card installed in a 

computer and is synchronized by the software "StrainSmart”. The StrainSmart 

stores the data on the computer hard disk in ASCII-Code where it can be read in 
software Microsoft Excel to allow interpretation of the experimental results.

Figure 6.27 Position of hydraulic jack and load cell during load application

Strains are measured at two different locations as previously, one at the fixed 

end of the beam and the other near the mid span of the beam. 15 strain gauges 

were installed at the fixed end and 15 at the mid span location. The location of
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strain gauges at the fixed end is shown in Figure 6.28. The same locations and 

numbering of strain gauges were used for the mid span of the beam.

6.3.2 Load application by two different means
Loads are applied to the sample in two directions. The axial force is applied 

vertically as depicted in Figure 6.26, while the lateral force is applied by a single 
cable in the same direction as was applied in the previous two experiments, as 

depicted in Figure 6.1.

15

17

15

17

18

Figure 6.28 Location of strain gauges near the fixed end of the beam, where 
the strain gauges numbers are shown in square box and all dimensions are 

in mm

Orientation of sample and horizontal load applied from the sample
There is an infinite variety of possible initial orientations of the welded section 

with respect to the direction of the applied lateral load, only two of which are 

depicted in Figure 6.2. The sample in this experiment is held in position as shown 

for Experiment 2 in Figure 6.2. The principal reason for this choice is to have the 

direction of load applied almost perpendicular to the major-axis of the section. 

This orientation is selected so that more resistance can be provided during 

bending (because of higher flexural stiffness in that direction). Owing to this, it 

allows the section to rotate considerably more for the same amount of lateral 

deflection because of the lower torsional stiffness of section compared to its 

flexural stiffness.
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Stages in which loads are applied

In the first stage of loading, an axial load of 35kN is applied (which is 10% of the 
axial yield strength of the l-section) using the prestressing tendon. Subsequently, 

in the second stage, the lateral load from the cable system developed previously 

is applied. Thus the beam rotates and moves laterally in the X and Y directions, 

as previously.

It emerged that with an increase of lateral load, an increase in the vertical tendon 

load arose. The development of the additional axial load in the tendon is depicted 

in Figure 6.29 in which it can be observed that there is no major increase of 

vertical load up to a horizontal load of approximately 5kN. Beyond this stage the 

tendon axial load started to increase gradually up to a load of 9kN, where upon it 

increased more rapidly as the experiment proceeded.
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Lateral load (kN)
10 12 14

Figure 6.29 Variation of induced vertical tendon force with applied 

horizontal load for the case when axial load is applied in combination with 

biaxial bending and torsion.

Up to a lateral load of 5kN (corresponding to a torsion of 0A35kN.m), the 

deflections and rotations were small and in the elastic range, as can be deduced 

from Figures 6.31 and 6.33 to follow. Beyond the load of 5kN both the lateral 

displacement and rotation of the beam started to increase considerably causing 

two phenomena to take place; a) axial shortening due to torsion and b) 

geometrical non-linear effects due to tip lateral displacements under flexure, as 

depicted in Figure 6.30. Both of these caused vertical (i.e. axial) strain in the
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beam during lateral load application. This movement caused the strand to exert 
extra force on the load cell (and hence the beam) as the tendon provides 

restraint to this movement.

^New position of beam sample 
after lateral load application

Tip of beam

Prestressing Strand

Vertical movement of beam 
during lateral load application

Direction of lateral load

New position of Prestressing Strand

Figure 6.30 New position of the prestressing strand and the part beam after 
lateral load application giving rise to flexure.

6.3.3 Strains at two different locations at different stages of loading 

for axial force, biaxial bending and torsion experiment

Strains at two different locations along the beam (at the fixed end and at the mid 
span) are given in Tables 6.3 and 6.4. Strains at two loadings are given, one at 

the assumed elastic limit load (at 4.55kN) and the other at the assumed formation 

of a practical hinge (at 8.9kN). From the strain results it can be deduced that 

failure was due to a plastic hinge developing at the fixed end because, for the 

mid section, at a load of 8.9kN, the strains are still less than .

The values of strain at the fixed end given in Table 6.3 are plotted on an l-section 
in Figure 6.31(a) to observe the neutral-axis pattern at both the indicated loads. 
The strains at the mid section are not plotted as failure occurred at the fixed end 

and results at this location only are of interest in the discussion of the failure.

Considering the strain pattern at the elastic limit load, as depicted in the figure, 
strains on the left of the top and bottom flanges have different signs which shows 

the significant influence of warping strain on the response (where in warping 

strain both flanges bend in different directions). The strain pattern in the web 
occurs when there is major axis bending acting on it, i.e. different signs at the top 

and bottom of the web with a neutral-axis in between them. In addition there must 

be a small component of minor axis bending strain and axial strain (as discussed
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later) included in it which also influences this strain pattern. The neutral-axis was 

approximately a straight line in this case, as can be deduced from the figure.

When strains at practical hinge formation are plotted (Figure 6.31(b)), a similar 

type of strain pattern is obtained. It clearly shows that both major axis bending 

and rotation of the beam sample dominated the behaviour, both at elastic limit 

load and at formation of a practical hinge. The neutral-axes in both the cases 

also match i.e. in both the cases, the neutral-axis intersects the web and bottom 
flange.

Also in Table 6.3, axial strains are given when a prestressing force of 35kN acts 

on the section. From the table it can be inferred that the pre-load axial strains 

developed at each location are different. This is due to the fact that load applied 
were not exactly at the centroid, and some eccentricity can cause variation of 

load. For example an eccentricity of 10mm, creates a moment of 0.35kN-m when 

this moment bends the beam about its minor axis which will cause a strain of 
200 at the flange tips. In addition residual stresses are locked in the section 

which can influence the strain. However, the average of all strain is calculated to 

be ^ 52 /J.S . Based on a load of 35kN Young’s Modulus is calculated for this value 

as 20dGPa, which is not much different from the value of Young’s modulus of 

20MGPa obtained from coupon tests. This shows that the average strain 

applied corresponds closely with the load applied but strains were not distributed 
uniformly.

When the load at practical hinge formation for the biaxial bending and torsion 

only experiment (Experiment 2 in Section 6.2 when major axis bending 

dominates) is compared with the practical hinge formation in this experiment, 

higher values of load are obtained in this case. Although an additional axial 

tensile load is applied in this case, the strain developed due to axial load is small 

compared to the strain of 17000 for practical hinge formation. Hence the axial

load has a small influence on the overall change in strain. However due to the 

presence of the prestressing strand, the beam’s tendency to bend decreases and 

results in more load at practical hinge formation.
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Comparing the neutral-axis pattern both at the start of yielding and at practical 

hinge formation it is found that the neutral-axis corresponds to the case in 

Chapter 4 with the second pattern, when the neutral axis intersects the web and 

bimoment dominates the behaviour.

LOAD Torsion FIXED END

(kN) kN.m

TOP FLANGE

STRAIN No 11 12 13 14 15

4.55 0.4 1407 1041 593 218 121

8.9 0.77 3061 2957 2139 884 75

Axial strain before the application of
lateral load -21 12 50 99 144

WEB

STRAIN No 6 7 8 9 10

4.55 0.4 -160 -44 70 257 450

8.9 0.77 -2629 -1864 -952 113 1031

Axial strain before the application of

lateral load 194 140 106 80 72

BOTTOM FLANGE

STRAIN No 1 2 3 4 5

4.55 0.4 -1700 -916 -432 447 1068

8.9 0.77 -17000 -6725 -3627 2011 7525

Axial strain before the application of

lateral load 54 185 260 401 493

Table 6.3 Measured strains at different loads near the fixed end 

6.3.4 Torsion-Rotation Response
The torsion-rotation graph of the beam is given in Figure 6.32. The graph can be 

divided into three phases. The first phase is the elastic phase (as determined by 

^max ~^y ~ 1700//f) which extends up to a torsion of OAkN.m (as indicated as

point A in the figure) where a rotation of about 11.8° was measured. During the 

elastic phase, theoretical predictions show a somewhat stiffer response as 

compared to the experimental response. The reasons for the difference of 

response are the same as discussed for Experiment 2 in Section 6.2.
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Beyond point A is the second phase which can be termed as the elasto-plastic 

phase a gradual change of the slope of the graph was observed. At a torsion of 

0.17kN.m (as indicated as point B in the figure) a practical hinge forms (as can 

be seen in Table 6.3) where a maximum strain at this torsion reaches a value of 

MOOO/us.

The third phase is beyond the formation of the practical hinge, up to the end of 

the experiment. However although this phase is categorized as the third phase, 
there is no substantial change in slope observed when compared to the second 

phase.

LOAD Torsion MID SECTION

(kN) kN.m
TOP FLANGE

STRAIN No 26 27 28 29 30

4.55 0.4 78 120 181 181 279

8.9 0.77 319 327 438 346 548

WEB

STRAIN No 21 22 23 24 25

4.55 0.4 16 14 78 137 152

8.9 0.77 -254 -398 -288 -124 222

BOTTOM FLANGE

STRAIN No 16 17 18 19 20

4.55 0.4 -120 -43 -36 6 96

8.9 0.77 488 334 -64 -331 -331

Table 6.4 Measured strains at different loads near the mid section

This graph when compared with the graphs of the pure torsion experiments as 

depicted in Figure 5.26 and the biaxial bending/torsion experiments (Figure 6.8) 

as superimposed here in Figure 6.33, indicates that both graphs approximately 

coincide up to a torsion of 0.3kN.m. Beyond this torque, a difference between 

the graphs can be observed indicating a difference in behaviour in the non-linear 

phase of this experiment. Higher torsion values can be observed in this 

experiment as compared to the case of pure torsion though at lower stiffness
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than the elastic region. The difference in torsional response between both the 

experiments is reflected in the different strains developed in both the cases. In 

the case of pure torsion strains develop in such a way as to reflect plastic 
torsional deformation and yielding. In the present experiment, both bending and 

axial stiffness have an influence on the strains developed. Therefore, as the 

torsion progresses the strains in the fibre of the section have a different pattern 

and do not show yielding of the section until much later and *resuK in higher 

torsional loads as compared to the pure torsion case.

a) Strain at start of yielding b) Strain at practical hinge formation

Figure 6.31 Strain patterns at the fixed end for axial force, biaxial bending 

and torsion experiment where strain numbers are given in a square box 

and strain readings in a rectangular box.

When the torsion in the cases when biaxial bending and torsion with and without 

axial force are compared, a similar type of response is obtained, as can be 

deduced from the figure. This shows that the axial force has less influence on the 

torsional response in the elastic and elasto-plastic phase, while near the end of 

the experiment the measured rotations show a slight difference in the response. 

This difference is due to the influence of the bending behaviour which changes in 

this case due to the presence of an axial force.
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Rotation (Degrees)
Excerimental resoonse ------ Elastic resDonse

Figure 6.32 Torsion against Rotation response for the case when axial load 

is applied in combination with biaxial bending and torsion.

When compared with the load-deflection graph of the corresponding Experiment- 

2 in Section 6.2 (without an axial load as also depicted in the figure) notable 

differences exist between the graphs. The graph for the case when axial load is 

induced shows an overall stiffer response as might have been expected. The 

reason is that due to the axial force and stiffness provided by the tendon more 

resistance is provided to the beam against the lateral load and results in a stiffer 

flexural response. A fall in the load carrying capacity was observed in the 

previous case (see Figure 6.34) which is not observed in this case. The reason is 

that even though the torsion causes similar rotations, the reduced lateral bending 

deflections arise due to the tendon lateral restraint in the non-linear phase 

despite the reduced flexural stiffness on rotation as the minor axis bending 

becomes more predominant.

6.3.5 Lateral Load against Deflection
The load-deflection graph of the sample is depicted in Figure 6.34. The graph 

can be divided into three phases. The first phase (as determined by 

^max ^^OO/zf) is the elastic phase for which the response is linear up to
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the elastic limit load of 4.55 for a deflection of 5.92/ww (as indicated by point 

A in the figure). A slight decrease of slope can be observed beyond the elastic 

limit load. The second phase is the elastic-plastic phase which goes up to the 

limit load of 8.90 kN where a practical hinge is deemed to have formed at a 

deflection of nearly 18.5/77/«(as indicated by point B in the figure). Beyond this 

phase there is a gradual decrease of slope which is the strain hardening phase of 

the sample. The decrease of slope is an indication of a reduction in stiffness of 

the beam sample. No peak or fall in the graph is observed during this phase and 

the continuing increase in load capacity as deflections become very large is an 

indication that the beam has not reached its ultimate load carrying capacity.

Rotation(thetha)
Pure Torsion Experiment-1 
Pure Torsion Experiment-2 
Biaxial bending -t-Torsion + Axial load 
Experiment 2 biaxial bending + Torsion

Figure 6.33 Comparison of Torsion against Rotation response for the case 

a) for pure torsion and b) torsion is appiied in the presence of biaxiai 
bending and axiai ioad.

6.3.6 Elastic limit load and yield surface

The elastic limit load and elastic limit torsion, as identified in the previous 

discussion, are 4.55 and 0.40 kN.m respectively, while the elastic limit axial
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load is 35.83 kN. Based on the assumption of thin walled beams (as discussed in 

Section 6.2.7) shear forces are ignored. Therefore, only four forces need to be 

considered to compare the given loads with the developed yield surface in 
Chapter 4, namely axial force, biaxial bending moments and bimoment (defined 

in Section 2.4.2). Resolving the elastic limit load of 4.55 into two components 

at the fixed end support gives loads 0.63 and 4.51 AA^ in the X and Y 

direction respectively which gives moments of 4.65 kN.m and My of 

0.65 kN.m respectively. The bimoment obtained for the elastic limit torsion is 

.11 AA^./w^ (details of this calculation are given in Appendix-D). Using the plastic 

capacities obtained in Chapter 5, these forces are converted into normalized form 

and are given in Table 6.5. Using the procedure given in Chapter 4, these are 

compared with the developed yield surface. For the same values of p, b and 

niy, is calculated as 0.49 (Appendix-D). As and the summation of

nty and b is not equal to one it means the section has not yet reached the yield 

surface. Hence, it can be concluded that for the applied load , the section is still 
elastic.

Deflection(mm)

biaxial bending. Torsion 

-biaxial bending, Torsion-i- Axiai force

Figure 6.34 Load against Deflection, for biaxial bending and torsion and for 

biaxial bending, torsion and axial load cases
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M, My P B

Plastic capacities ^8.^5kN.m 2.93 kN.m 352 kN .144 kN.m^

Load=4.55kN 4.65 0.65 35.83 0.11
Load=4.55kN (Normalized) 0.31 0.22 0.1 0.76

Load=4.64kN 4.82 0.67 37.11 0.113
Load=4.64kN (Normalized) 0.32 0.23 0.1 0.78

Load=8.90kN 9.07 1.28 40.01 0.21
Load=8.90kN (Normalized) 0.6 0.44 0.11 1.46

Table 6.5 Normalized biaxial bending moment, bimoment and axial load 

when biaxial bending, torsion and axial force are applied

6.3.7 Practical hinge and yield surface

In the experiment, it appears that a practical hinge forms at a load of 8.90 kN for 

which strains for the fixed end are given in Table 6.3. The torsion at which it 

occurs is 0.77kN.m and moments of 9.07kN.m and ^.28kN.m in the X and Y 

direction respectively. At this point the axial load has increased to 40.01 On 

the same basis (as discussed in Section 6.2.7) a bimoment (defined in Section 

2.4.2) value obtained for the elastic limit torsion is multiplied by a factor by which 

torsion has increased (from the elastic limit torsion to the formation of the 

practical hinge) giving a bimoment of 0.21 kN.rri^. These forces are shown in 

normalized form in Table 6.5. It can be seen in the table that the bimoment 

obtained (1.46) is more than the plastic moment capacity, which suggests that 

the load point at which it will reach the yield surface must have a smaller value of 

n. Using the same basis (as discussed in Section 6.2.7), such a load is calculated 

as 4.64which is 1.03 times more than the elastic limit load. Based on this 

load the moments which it produces are A.82kN.m and 0.87kN.m in the X and 

Y direction, while torsion at this load is 0.41 kN.m and the bimoment obtained is 

calculated as 0.^^8kN.m^. For the same values of m^, b and nriy, is 

calculated as 0.49 (Appendix-D). As and the summation of niy and b is

equal to one it means the section has reached the yield surface.
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However, the value of A.QAkN for the applied load is not based on experimental 

evidence. Considering the strain at the fixed end, two types of strain response 

are evident from Figures 6.35-37, one is when strain at some point in the section 

is elastic up to the end of the experiment and the other when strains are more 

than Ey. Only those strains which are more than are considered while the

strains which are elastic are not. To determine yielding of the entire section, each 

flange and web element is considered separately. Loads at which both flanges 

and web show plastic behaviour are considered to be the load at yielding (an 

assumption which was considered by Yang et. al. (1989) for development of his 

yield surfaces). Considering the top flange, all the strains show plastic flow. 

However at a load of 6 kN all the strains have not reached , whereas at a

load of ^kN strain #4 has just reached the value. However, at a load of 9^iV

all the strains are in a state of plastic flow. Therefore 9 kN can be considered as 

the load at which top flange showed complete yielding. Similarly consider those 

strains having values more than Sy for the web. Using a similar basis as that

used for the top flange the load when all the non-elastic strains reached plastic 

flow is 9.75 kN, while for the bottom flange it comes out to be approximately 

8.5kN. Hence complete yielding of the section can only be taken at 9.75kN 

where the strains in both the flanges and web were in a plastic flow state. When 

compared with the theoretical prediction it is 2.1 times more than the theoretical 

load at hinge formation. The reasons for low value of the load obtained by the 

theoretical yield surface is the same as discussed previously. In addition due to 

axial load more resistance is provided to the beam against the lateral load and 

this is the third reason in this case for low values of theoretical yield surface load.

6.3.8 Plot of strain against lateral load
The strains measured on the top flange are depicted in Figure 6.35. Strains #1, 

#2 and #3 are in compression and have negative direct strain but are shown as 

positive for comparison. All the strains do not start from zero strain because of 

the pre-applied axial force. However, when the axial force was applied, all the 

strains do not show similar readings as given in Table 6.3.
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All the strains are linear up to the elastic limit load of 4.55 Beyond this load 

some strains shows non-linearity while the remaining show non-linearity at 

relatively higher loads. Negative strains exist for gauges 1,2 and 3 and positive 
strains for 4 and 5, indicating that the neutral-axis was at the centre mid of the 

flange as can be observed in Figure 6.31 at the two loading levels. The fact that 

gauges #3 and 4 always have opposite signs, indicates that throughout the 
loading the neutral-axis always passes through the flange between these two 

points.

Figure 6.35 Measured strains for the top flange near the fixed end of the 
beam for the case when axial load is applied in combination with biaxial 
bending and torsion

c *

The strain measured in the web is depicted in Figure 6.36. Strains #6, #7 and #8 

are in compression and have negative direct strain but are shown as positive for 
comparison. All the strains do not start from zero for the reason discussed above. 

All the strains are linear up to the elastic limit load. Negative strains for gauges 

#6, 7 and 8 and positive strain for gauges #9 and 10 indicate bending of the web 

exists as can also be deduced from Figure 6.31 at the two loading levels. 
Observing the location of strain gauges in Figure 6.28 and the signs of the 

strains, it can be inferred that this patterns of strains occurs when the beam is 

subjected to major axis bending (which causes the web to bend in such a way
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that positive and negative strains develop at the two ends of the web). This 

indicates that major axis bending was one of the dominating effects in the 

behaviour of the beam. No change in the signs of all the five strain gauges during 

loading shows that the bending behaviour was the same up to the end of the 

experiment. However, all the five strains show slightly different trends as can be 

observed in the figure. This is due to the fact that the interaction of bending and 

torsion was not uniform (as discussed later) which causes a change in the 

pattern as appropriate.

Strain(micro strain)
■ StrainSB Strain^? — Strain#8 ■ Strain^© ■ slrain#10

Figure 6.36 Measured strains for the web near the fixed end of the beam for 

the case when axial load is applied in combination with biaxial bending and 

torsion.

The strain measured in the bottom flange is depicted in Figure 6.37. Strain #15 is 

in compression and has a negative direct strain, but is shown as positive for 

comparison. All the strains do not start from zero for the reason discussed above. 

All the strains are linear up to the elastic limit load. A negative strain for strain 

#15 and positive strain for all the other strains indicates additional minor axis 

bending of the flange. Most of the portion of strain #15 has negative strain which 

shows there must be a non straight line neutral-axis present because neutral- 

axes exist for both the web and bottom flange and axial strain are different in 

direction for the top flange (as compare to the bottom flange). From Figure 6.31 it
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can be inferred that bending of both the flanges are in different directions which 
shows the strong influence of warping strain in the response at both the loads.

-200 1 800 3800 5800 7800

Strain(micro strain)
9800 11800

• Strain#! 1 Strain#! 2 — Strain#! 3 ■Strain#! 4 ■ strain#! 5

Figure 6.37 Measured strains for the bottom flange near the fixed end of the 

beam for the case when axial load is applied in combination with biaxial 
bending and torsion

The strain in the top flange has reached high values i.e. strains of more than 

10,000 //£•. The reason is that warping due to torsion causes a positive curvature 

on the bottom flange while bending about the minor axis also causes a positive 

curvature, where both the curvatures accumulate. In addition, the major axis 
bending and Wagner strains (Section 2.4.2, Figure 2.10(d)) cause a positive 
strain on the top flange. All the actions add up and cause the maximum strains 

on the top flange. For the bottom flange, warping causes negative curvature 

whereas minor axis bending causes positive curvature, and Wagner causes 

positive strains, which reduces the strain and hence there are lower values of 
strains here compared to the top flange. The web is under the influence of 

curvature due to bending about the major axis, Wagner strain and axial 
shortening, whereas it is not influenced by warping action or bending about minor 

axis bending: hence it too has low values as compared to the top flange.
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Axial strains that develop due to the prestressing axial force have relatively small 

effect on the overall strain distribution because low values of strains are 

developed due to the magnitude of the axial force (as calculated an average axial 

strain is ^b2|U£ for a Z5kN axial load). However, due to the axial stiffness

provided by the tendon bending behaviour of beam changes which results in 

different strain distributions.

From Tables 6.3 and 6.4 it can be seen that strains for the fixed end reached the 

assumed limit of plastic strain whereas the mid section has not reached the 

plastic strain.

6.3.9 Displacement in two orthogonal directions
Figure 6.38 presents the cantilever tip displacement in the two perpendicular 

directions for the experiment. The graph can be divided into three phases. The 

first phase is from the origin to point A in which the response was broadly linear. 

The increase of displacement in both the directions indicates a consistent 

interaction of bending in both the directions. Beyond this is the second phase 

(which is between point A and B) where a decrease of displacement in the X- 

direction can be observed. A decrease of displacement in the X-direction occurs 

due to the rotation of the beam sample which causes a decrease of stiffness (as 

discussed in Section 6.2.9 for Experiment 2). Beyond this is the third phase 

(between point B and the end of the experiment) where broadly no further 

decrease of X-displacement occurred. An increase in displacement in the Y- 

direction without increase of displacement in the X-direction indicates a failure in 

bending mainly occurred in one direction.

When both the graphs of multi-dimensional force experiments are compared in 

the figure, a different response is evident in both the cases. This shows that the 

axial force has a significant influence on the interaction of displacement in both 

the orthogonal directions, where due to axial force the decrease of displacement 

in the X-direction is small. In the latter stage in the previous experiment the beam 

was not straight and bends more about the middle and was the reason for the 

decrease of displacement in the X-direction, whereas no bending of the beam 

about the middle was observed for the beam when axial force is applied, hence 

not much decrease in the X-displacement is observed.
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6.3.10 Displacement in Y-direction against rotation

Figure 6.39 presents the displacement in Y-direction against rotation. A 

reasonably uniform response can be observed when a rise of displacement on 

increase of rotation takes place. The response is broadly linear which shows that 
the interaction of bending and rotation were uniform and it continues up to the 

end of the experiment. This shows that the interaction of the displacement and 

rotation does not change up to the end of the experiment.

Figure 6.38 Displacement in two perpendicular directions for biaxial 
bending and torsion and for biaxial bending, torsion and axial load cases

6.3.11 Displacement in X-direction against rotation

Figure 6.40 presents displacement in the X-direction against rotation of the beam 

sample. The graph can be divided into three phases. The first phase is from the 
origin to point A in which the response was broadly linear. The gradual increase 

of displacement and rotation is an indication of the interaction of deflection and 

rotation. Beyond this is the second phase (which is between point A and B) 

where a decrease of displacement in the X-direction is due to the rotation of the 
beam sample. Rotation causes a change of stiffness of the beam (as discussed 

in Section 6.2.9 for Experiment 2) and results in decrease in the displacement in 

the X-direction. Beyond this is the third phase (between point B and the end of 
the experiment) where broadly no further decrease of X-displacement occurred 

on increase of rotation. This shows that the beam was weaker in rotation and
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was able to rotate whereas it get stiffer (due to rotation) in bending in the X- 

direction and not much displacement occurs in the X-direction.

Comparing the results of both the experiments in Figure 6.40, it can be seen that 

patterns match up to an X-displacement of 8/wm, beyond which the graphs 

bifurcate. The reason is that the beam bends more about the middle in the case 

of biaxial bending and torsion which results in a different response than the case 

of biaxial bending, torsion and axial force.

Figure 6.39 Displacement in Y-direction against rotation of axial load, 
biaxial bending and torsion experiment

6.3.12 Failure of the beam sample

The beam sample was under the influence of 4 possible types of loading actions. 

First an axial load was applied, then a lateral load was applied to the beam to 

produce biaxial bending and torsion actions. From the failed beam, as depicted in 

Figure 6.41, large residual rotation and a residual deflection of the section can be 

observed. A large residual rotation indicates that the beam was under plastic 

rotation when the peak load was applied to the beam sample, and the residual 

lateral deflection indicates that the beam was under plastic flexural deflection at 

the peak load. However the beam was also under the influence of an axial load 

(16 % of the plastic axial load) which had a significant effect on the response and
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this is evident when Figure 6.41 is compared with Figure 6.13 (biaxial bending 
and torsion experiment).

Figure 6.40 Displacement in X-direction against rotation of axial load, 
biaxial bending and torsion experiment

Figure 6.41 Failed beam experiment in which axial force is applied, residual 

rotation and deflection are visible in the beam
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6.3.13 Buckling of samples
In no case is there any visible sign of local or lateral torsional buckling during the 

testing. On the strain gauge readings, it can be deduced that no abrupt change in 

the strain was observed in any case indicating that no local buckling was present 

where the gauges were placed. Also no sign of local buckling of the flanges or 

web was observed during any of the experiments.

6.4 COMPARISON OF RESULTS OF ALL MULTI­
DIMENSIONAL FORCE EXPERIMENTS
It is found that the torsion against rotation response for all the three experiments 
do not match each other in the non-linear phase. This shows that the torsion 

behaviour is different depending to the interaction of bending (with axial load if 
any). Considering the response of Experiments 1 and 2 they do not match in the 

non-linearity stage which indicates that the orientation of the samples (which 
were different in both the experiments) was the cause for the change in 
response. When the response for Experiment 2 and Experiment 3 are compared, 
differences exist between them which show the significant effect of axial stiffness 
and axial load application. It is concluded that the torsion rotation response is 

influenced by both the orientation of the sample with respect to load application 
and due to the addition of other forces (such as an axial force in Experiment 3).

The load deflection responses in all the three cases were also quite different. 

Comparing the load deflection response of Experiments 1 and 2, a different trend 

is obtained in both the cases. In one case rotation causes a drop in the response 
in Experiment 2 whereas in the other case minor axis bending causes the failure 

at an early stage with low relative rotations. Comparing Experiment 2 and 3 the 

effect of the axial load is to have a significant reduction in the flexural response, 

and so despite small increase in axial load due to the tendon, less flexural stress 

is present due to lateral restraint, and torsional plasticity plays an increasing part.

At the elastic limit load the load point in all the three experiments has not reached 

the yield surface not surprisingly. However the load point reaches the yield 

surface at values slightly more than the elastic limit load. It is also found that load 

at “practical hinge formation” in all the three cases is considerably more than that
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required to reach the yield surface. This shows that the assumption of n=10 on 

which basis practical hinge is chosen is an unreasonably high value. Factors are 
given which compare the load at practical hinge formation (or peak load for 

Experiment 2) to the load at reaching the yield surface as given in Table 6.6. 

From the table it is evident that the factors are quite high as compared to the load 

at which it reaches the yield surface.

Elastic limit 
load

Practical hinge 
formation Peak load

/Load at yield 
surface /Load at yield surface

/Load at yield 
surface

Experiment-1 0.94 1.71 -

Experiment-2 0.90 - 1.84
Experiment-3 0.98 1.92 -

Table 6.6 Factors for elastic limit load/yield surface load, practical hinge 
formation/yield surface load and peak load/yield surface load.

6.5 CONCLUSION
In this chapter the results of the experiments, when the beam is subjected to 

multi-dimensional forces are discussed. The topic has been split into several 
distinct sections. The first section comprises when a beam is subjected to biaxial 
bending and torsion. The second section consists of a case of biaxial bending, 
torsion and axial force. It is found that different responses of the beam samples 

were obtained in all the three cases. The torsional response is affected by the 

interaction of other forces. Load against deflection response also shows that the 
response was affected by interaction with stiffness about both bending axes 

especially when non-linear rotation changes the stiffness of the beam sample 

which results in a significant change in the response. It is also found that the 

load-deflection response is significantly influenced by the axial stiffness and 

lower deflection and high load capacities were obtained in this case. 

Displacement and rotation do not have uniform relationships where it 

continuously changes at different loading stages i.e. it depends on the change of 

cross section due to rotation which causes a different relationship between the 

displacements in both directions and between displacement and rotation.
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It can be concluded that behaviour depends on the combination of forces and 

direction of load application. For the cases when axial force was not applied, the 

behaviour was different from the case when axial force was applied, load- 

deflection response, torsion-rotation response, interaction of displacement and 

rotation were all different between both the cases. Direction of load application 

also has an effect on the response. Considering Experiment-1 and 2 all the 

responses for both the cases were different.

The main purpose of performing the experiments was to compare the 

experimental results with the developed yield surface. It is found that the elastic 

limit loads in all the cases are always less than the value at which the section 
yielded by the criterion developed in Chapter 4. However the load point reaches 

the yield surface at slightly higher loads than the elastic limit load and the yield 

surface are verified. However in all the three cases it is found that the maximum 
load is considerably more than the yield surface value as discussed in the 
previous section.
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CHAPTER-7

FINITE ELEMENT ANALYSIS OF A BEAM UNDER
VARYING LOAD CONDITIONS

7.1 INTRODUCTION
The behaviour of the beam sample subjected to different loading conditions 

under monotonic loading is further examined through numerical analysis. A 

criterion is first set for the selection of a suitable software package and 

assumptions are made for modelling the experiments. Numerical analyses shall 

be initially performed on those cases when the beam is subjected to a load 

applied in one sense only. Later, other cases in which biaxial bending is applied 

in combination with torsion shall be modelled. The last case which shall be 

modelled is one in which the beam is subjected to axial loading, biaxial bending 

moments and torsion. Results, such as deformation and stress changes shall be 

studied for each case and compared with the experimental results obtained 

previously. In particular, the ability of finite element software to model primary 

and secondary effects will be investigated with a view to establishing the 

appropriateness of using finite element analysis in lieu of experimental work for 

these types of problems.

7.2 SELECTION OF PROGRAM
A finite element numerical model is developed using the LUSAS program in order 

to numerically determine the nonlinear response of the beam under different 

loading conditions. This program is selected because it possesses the following 

features:

An elasto-plastic isotropic hardening material model based on Von-Mises

Yield criterion (the reason for the selection of the Von-Mises Yield

criterion is discussed in Section 4.4.8).
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An option is available for applying a prestressed axial force which later 

experienced second order effects in subsequent loading steps in the non­

linear analysis.

Elements are available which can adequately model large rotation and 

large deflection analysis.

Accurate modelling of the relevant boundary conditions.

Post processing capabilities which allow the user to view the deformed 

configuration and contour lines for the various stresses developed.

7.3 AVAILABLE ELEMENTS
Two types of elements are supported by LUSAS to model the geometry of the 

beam sample, namely the two dimensional triangular/quadrilateral shell elements 

and the three dimensional brick element. In the case of two dimensional 

elements, there are elements which provide membrane action only or out-of­

plane action only, or there are shell elements which provide both of these actions. 

Owing to the nature of the response anticipated (that is including through 

thickness shear stress distribution in the case of uniform torsion, through 

thickness direct stress distribution in the case of biaxial bending), thick shell 

elements were selected because they can model through thickness shear and 

direct stresses. Therefore, in reality, only two types of elements were available; 

thick shell elements or brick elements, from which one type is selected for the 

analysis. The thick shell element provides in-plane and out-of-plane bending, 

shear and axial force, and through thickness shear and direct stress distributions 

and can consider bending and shear across the thickness of the element. It can 

provide, therefore, all the deformation modes which can occur when 3-D brick 

elements are used. Therefore, a thick shell element was selected for the 

analyses and brick elements are avoided firstly because the time which is 

required to analyse a brick element model is considerably more than the amount 

of time required to analyse the shell element and secondly there is easier 

interpretation of data in the case of shell elements as compared to the brick 

element.
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To model the prestressing tendon used in the last experiment, bar elements are 

used. The bar elements which are available are BAR2, BAR3, BRS2 and BRS3. 

BAR2 and BAR3 are used for two dimensional cases, BRS3 is used for curved 

geometries; As the cables were straight in the experiment, the BRS2 element 

was selected to model the cable. It has a capability to be prestressed prior to and 

independent of incremental monotonic loading.

7.4 MATERIAL MODEL IDEALIZATION
The measured average stress-strain characteristics derived from coupon tests 

performed in tension are given in Table 7.1. This is derived from Figure 5.6 which 

is used to model the constitutive behaviour of the beam sample. From that figure 

it can be seen that initial elastic behaviour is followed by a flat plateau which 

defines the plastic flow of the material. A hardening is observed later after the flat 

plateau, where there is a change in the slope of hardening which extends up to 

the peak load. The tensile coupons were extracted from the l-sectlon in the 

longitudinal direction (as discussed in Section 5.2). It is assumed in the finite 

element analysis that tensile stress-strain behaviour is identical in all directions. 

No attempts are made in the current model to establish different stress-strain 

relationships in different directions. Therefore, for this work, the material was 

assumed to be isotropic and follows the longitudinal tensile stress-strain curve 

given by the said figure. The material model was assumed to obey Von-Mises as 

discussed in Sections 2.5 and 4.4.

Stress Strain Remarks
(MPa)
333.7 0.001654 Yield stress
333.7 0.02 plastic plateau
425.8 0.1 strain hardening
464.5 0.29 strain hardening up to the peak load

Table 7.1 Stress-strain results obtained from coupon tests used in the finite 

element material model
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7.5 MODELLING THE EXPERIMENTS
In the experiments different loading set-ups were used which involved bending 

and torsion cases. The length of the beam for the bending cases was 1.24w, 

while the length was 1.03w for the cases which involve torsion. The thickness of 

the web (t-J) and flanges {tj) were AAmm and 5.68mm respectively, whereas the 

length of the web (bw) and width of the flanges (bf) were 90mm and 55mm 

respectively. Both of the setups are discussed in detail in Chapters 5 and 6.

To model numerically the pure bending case, a cantilever is assumed with a load 

applied laterally at the tip to each node on the end section. The model used for 

the analysis is depicted in Figure 7.1. The model is fixed in the three translational 

and rotational directions at the support. The fixed end is depicted on the left side 

of the figure. In the model two types of nodes are defined; one is the primary 

node and a further division between the primary nodes are secondary nodes. The 

cross sectional lines of the top and bottom flanges are divided into 4 parts and 

the cross sectional line of the web is divided into 7 parts based on primary nodes, 

as depicted in the figure. Meshing is further performed between primary nodes 

where each element formed by primary nodes is meshed into sixteen elements, 

as shown in the figure. Varying this sub grid, the total number of elements after 

meshing is 20640.

7.5.1 Finite Element Mesh refinement
It was shown after several analyses, that the results when using a coarse mesh 

are less accurate when compared to the finer mesh. The analyses are performed 

for different numbers of elements and the plastic moment capacity obtained in 

each case is compared with the theoretical value. The differences in the plastic 

moment capacities in percentage terms are given in Table 7.2. From the table it 

can be concluded that the model consisting of 20640 elements results in a 

variation of less than 1% between the numerical and exact plastic moment 

capacities. From the table It can also be seen that further mesh refinement did 

not yield any significantly different results from the mesh selected.
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7.5.2 Modelling torsion experiments
For the load cases which involve torsion, the end condition where the cable was 

wrapped around the circular drum is modelled differently, as follows:

In the experiments, a square plate was welded to the end of the beam sample to 

which was welded the circular drum. Two cables were wrapped around the 

circular drum in opposite and parallel directions for the pure torsion case. The 

axial cable loads were transferred from the cable to the circular drum to the 

square plate and thus to the entire beam sample. The whole assembly of the 

end-condition is depicted in Figure 7.2.

No of elements Afp(FEA) M|,(Theoretical) % change

kN-m kN-m

5160 13.846 13.456 2.91

11610 13.711 13.456 1.90

20640 13.531 13.456 0.55

25800 13.510 13.456 0.41

Table 7.2 Comparison of finite element results and the theoretical value for 

different numbers of elements

For the torsion experiments, loads were applied to the square plate in two 

opposite and parallel directions, where they were at an equal distance from the 

centroid of the section, as depicted in Figure 7.4. For the cases (in the 

experiments) when torsion was applied in combination with the other forces, the 

single cable used to apply the force was positioned to one side only, making an 

angle of 8° with reference to the principal axis of the plate, where the position of 

the cable in Figure 6.2 is the direction in which load was applied. To allow for the 

inclined position of the cable (as depicted in the figure) in the analysis, two 

components of force are applied at the plate edge in the finite element analysis, 

as depicted in Figure 7.5. The relation between the two components of force and 

its resultant inclined force is also depicted in the figure. The components give a 

resultant force which represents the inclined direction of the cable force, and this 

direction of force is maintained throughout the analysis, as was the case in the 

experiment.
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Figure 7.1 Model used for the pure bending anaiysis

Figure 7.2 End condition of beam sampie
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Figure 7.3 Model from Figure 7.1 developed with square end plate.

Figure 7.4 Loads applied to the square end plate for the case when pure 

torsion is applied

Figure 7.5 Loads applied to the square end plate for the case 

when torsion was applied in combination with other forces

Two components of forces 
applied (as depicted for ail 
the nodes at the edge on 
the plate on the left in FE 
model) and its inclined 
resultant
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7.5.3 Axial pre-stressing load and sequence of load applications

In the final experiment described in Chapter 6 an axial load of 35kN was first 

applied to the beam sample using a prestressing tendon and was locked off. 

Subsequently, an additional axial load developed in the sample during the non­

linear response to the lateral load application. Therefore, two types of axial load 

are required to be modelled in the beam sample, one before the application of 

the lateral load and another represents the increase of axial force during the 

application of the lateral load. Therefore a cable is attached to the tip of the 

cantilever along its centroidal axis to model the pre-stressing tendon. In the 

model, one end of the cable is connected to the end plate while the other end of 

the cable is supported by a new support which is pinned in all the three 

directions. The cable with its two ends attached to the beam and to the support is 

depicted in Figure 7.6.

The two types of axial force are modelled differently by the program. To model 

the effect of an axial (pre-stressing) load which is applied before the application 

of the lateral load, LUSAS provides a facility to impose an initial strain which can 

be applied to the cable. These strains are subsequently included into (but not 

changed by) the incremental solution scheme for the analysis of non-linear 

problems upon load application. The imposed strain value equivalent to the pre­

stressing load of 35kN was calculated based on the Young’s Modulus obtained 

from the coupon tests and as applied to the material properties of the elements of 

the cable. Owing to the strain in the cable, the beam sample also stretches and 

develops the appropriate pre-lateral load tensile axial force in the cable/beam 

assembly.

••• •
********^**

Figure 7.6 Cable attached to a pinned support and the beam end plate
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The second part of the axial load in the cable arose due to the stretching of the 

cable during lateral load application. This load is not applied in LUSAS but it 

arose in the cable due to non-linear second order geometrical changes in the 

beam due to the lateral and torsional loads. The development of this latter axial 

load in the cable was first investigated for the case when no initial strain is 

applied to the cable (i.e. a passive cable is attached to the beam). Subsequently 

in a second analysis, the development of the axial load was obtained for the case 

when an initial axial prestressing force (due to an initial strain) was applied to the 

cable.

7.6 FINITE ELEMENT RESULTS
In the current research, failure is not related to the collapse of the beam sample 

(where collapse is defined as the complete failure of the beam sample by, for 

example, fracture of the flanges or web or by buckling of the beam so that the 

beam cannot maintain any significant load). Failure here is the state where, in the 

analysis, the beam cross section anywhere over the entire length of the statically 

determinate beam reaches plastic yielding (where, in the current analysis, plastic 

yielding is defined as the point where deformation occurs without further 

substantial increase in load capacity). As in the experiments, the results of the 

analyses are focussed on reaching a point where it is certain that plastic yielding 

has occurred. With the current beam geometry, where the experiments are based 

on loading until the failure of a determinate structure, the state of plastic yielding 

for an l-section in flexure is normally considered to exist at the fixed end of the 

beam (where there is a maximum moment). To obtain the yield value (on the load 

deflection plot) two tangents are drawn, one from the initial linear response and 

the other from the linear portion of the plastic plateau. The point at which they 

intersect can be taken as the appropriate load at which yielding of the section is 

deemed to have taken place, as will be the case for every result of analyses here. 

Therefore, analyses are limited to the case, when plastic yielding is assumed 

deemed to have occurred and all primary modes of deformations (i.e. due to 

bending, twisting or axial force) are obtained during the analyses. The termination 

criterion in all the finite element analyses is set to the maximum deflection 

measured in the experiment, and the analyses are terminated at reaching the 

maximum deflection.
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7.6.1 Bending of the beam about the major-axis
Figure 7.7 shows a comparison between the finite element and experimental 

load-deflection relationship for the bending of the beam about its major axis. The 

analytical load-deflection graph exhibits the same trend as does the experimental 

response and reasonable agreement between analysis and experiments is 

obtained in this case. However, a difference exists in the linear phase between 

the two results, the reason being the different Young’s moduli for the two graphs. 

The numerical study is based on the Young’s modulus derived from the coupon 

tests {IQl.lGPa) whereas, as discussed in Chapter 5, a different Young’s 

modulus was obtained for the bending case (178.0GPa) as compared to the 

coupon tests. Different Young’s moduli for coupon tests and experimental results 

were also obtained by Coggins (2004) in his research program.

Another finite element analysis was performed with the modified Young’s 

modulus while the other properties of the material were kept constant. The result 

is also shown in the figure, from which it can be inferred that the difference 

between the responses in the linear phase has considerably decreased.

Comparing the responses now, a difference between the finite element and 

experimental responses can be observed during the transition from the linear to 

the non-linear phase. The difference is partly due to the residual stresses present 

in the steel section during the experiment. Residual stresses cause a change in 

the curvature (Englekirk, 1994), whereas residual stress is not considered by the 

finite element analysis. This is one of the major causes of the difference in the 

responses, the other being the formation of the plastic hinge in the elasto-plastic 

region. Therefore, due to these effects, yielding is reached in the analyses by a 

sharp change in the load-deflection curve whereas yielding is reached more 

gradually in the experiment. When the beam is in the non-linear phase, a similar 

type of response is observed for both cases, where the slope of the response of 

both the analysis and the experiment are very similar and almost constant. The 

higher values of load capacity in the experiment in the later stages are due to the 

fact that the finite element analysis is based on simple coupon tests results 

whereas the experiments are based on the actual loading set-up. Coggins (2004) 

also observed these differences between the coupon’s tests and experimental 

results.
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Drawing tangents from the linear phase and yield plateau, as depicted in the 

figure, the yield load in the analysis is found to be approximately! 1.5A:Af, which 

equates to a bending moment at yield of \A.26kN.m, which compares acceptably 

with the experimental value of \5.\5kN.m. The corresponding axial plastic 

capacity is 13.46^A^.ot based on the coupon’s test results.

Figure 7.7 Load deflection graph of bending of beam about the major-axis. 
Expreimental result produce here are also given in Figure 5.14

Figure 7.8 presents the contours of longitudinal stress extracted as a typical 

output from the incremental non-linear analysis. The analysis is at the stage 

when the beam was in the non-linear phase. The stress in the “SZ” direction 

represents the stresses in the middle of the shell element in the longitudinal Z- 

axis direction of the beam. It can be observed from the figure that the maximum 

stress is not surprisingly at the support (which is at the right hand side of the 

figure) and is more than the yield stress and its value is 378.5MPa, which 

indicates that stress at the support was near the strain hardening phase(see 

Table 7.1. The minimum stress is at the centroid of the section along the length of 

the beam. The same amount of stress on the tensile and compressive faces is an
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indication that the stress distribution is a pure bending stress distribution without 

any secondary axial effects.

Loedcssa 7

Title: Incremerf 7 Load Factor « 2.73006

Res(itsFie:0

Entity: Mid Stress

Componert: SZ

tmtm •84.iioiEe, 

0.0298023E-6 

84.1101E6 

« > K 16e.22E6

■
 2S2.33Ee 

336.441E6

Max 378.496E6 at Node 23 

Min *378 4g6E6 at Nkxle 69

Figure 7.8 Longitudinal stress contour of beam bending about the major- 
axis

It is clear, therefore, that the primary effect of flexural plastic behaviour observed 

in the experiments is predicted reasonably accurately by the finite element 

approach. During the equivalent experiment discussed in Chapter 5, no 

secondary effects, such as lateral torsional buckling (LTB), were observed, nor 

were they predicted by the finite element analysis. As shall be observed 

presently, this is always the case.

7.6.2 Bending of beam about the minor-axis
Figure 7.9 shows a comparison between the finite element and experimental 

load-deflection relationship for the pure bending of the beam about its minor axis. 

The analytical load-deflection graph exhibits the same trends as does the 

experimental response and, again, reasonable agreement between analysis and 

tests is obtained in this case. However, as in the previous case, a difference 

exists in the linear phase between the two results and again the principal reason 

is the different Young's moduli for both the graphs as discussed previously. The 

Young’s modulus obtained from the bending experiment was 184.0GPa whereas 

the Young's modulus obtained from the coupon tests estimated as 20\ JGPa, as
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given in the previous section. To study the difference which the Young’s modulus 

can have on the results, another finite element analysis is performed in which 

Young’s modulus is taken as that obtained in the experiment, while the other 

properties of the material are kept as given by Table 7.1. It can be observed in 

the figure that the analysis with this revised Young’s modulus yields very similar 

results, which shows the significant effect of the modulus choice on the linear 

analyses. In the non-linear phase, the response of both the finite element 

analyses and experiment are also very similar. The increase in load capacity as 

deflections become very large is an indication that the beam in both the finite 

element analysis and experiment, although in the non-linear phase, has not 

reached its ultimate load carrying capacity.

It should be noted by comparing Figures 7.7 and 7.9 that the development of a 

plastic hinge in the case of minor-axis bending is more gradual than in the former 

case, as might have been expected from the experimental work. This happens 

because in the minor case the two flanges were mainly resisting the moment and 

each flange itself is a rectangular section whose shape factor is 1.5, hence a 

gradual change occurs in reaching plasticity. For the major axis bending, 

resistance is provided by an l-section whose shape factor is 1.1-1.2 (Mrazik et. al. 

1987) and, due to this, relatively abrupt change to plasticity at the elastic limit 

occurs.

Drawing two tangents, one from the linear phase and the other from the plastic 

plateau in Figure 7.9, the yield load obtained is approximately 2.45^77, which 

gives a moment at yield equal to approximately i-OSkN-m which compares 

extremely well with the experimental value of 3.0kN.m and the plastic capacity of 

3.l5kN.m based on the coupon tests results.

Figure 7.10 presents the contour profile of the longitudinal stress extracted as a 

typical output in the middle of the thick shell elements in the longitudinal (SZ) 

direction of the beam from incremental non-linear analysis. The stress near the 

support (right hand side in the figure) is more than the yield stress having a value 

of Zll.lMPa. A high value of stress indicates that the beam was in the strain 

hardening phase (see Table 7.1) with the same values of maximum stress in both 

the compression and tensile faces, which indicates that the behaviour of the
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beam, as analysed by finite elements, shows it to be pure bending without any 

secondary effects. The minimum stress is at the centre of the cross section as 

indicated by the contour profile, as anticipated from the stress results in the 

experiment.

-Experimental Result 
Finite element analysis

- Finite element analysis(wlth revised Young's modulus)
---------Idealization of elasdc-plastic curve

Figure 7.9 Load deflection graph of bending of beam about the minor-axis. 
Expreimental result produce here are also given in Figure 5.15

Loadcase 6

Title: IrKTemart 6 Load Factor * 4.36004 

ResUts Fie; 0 

Entity; Mid Stress 

Componart: S

Max 377.68Ee at 1^ 4 

Mil -377.66E6 at Node 75

Figure 7.10 Longitudinal stress contour of beam bending about the minor- 

axis
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As in the previous case, other modes of failure may be possible, depending on 

the geometry. However, in this case the plastic flexural hinge formation 

dominates and neither the experiment nor the finite element analysis predicts 

other modes, such as local buckling (LB) of the flange in compression at the 

support.

7.6.3 Torsion applied to the section
Two identical torsion experiments were conducted simply to reproduce the 

observed phenomena. Figure 7.11 shows a comparison between these torsion 

experiments and the finite element result for the torsion against rotation 

relationship. The analytical relationship exhibits the same trend as the 

experimental responses and has reasonable agreement between them. This 

shows that the finite element model managed to model accurately the primary 

torsional response even at very high rotations.

Two figures demonstrating the rotation of the beam sample are shown. Figure 

7.12 views the beam sample along the longitudinal axis and shows the rotation of 

the rectangular plate. From this figure, a pure twisting of the plate can be 

observed indicating a solely torsional mode of deformation. Figure 7.13 views the 

beam sample in side elevation (in which it is confirmed that there is no lateral 

movement). The same amount of deformation above and below the undeformed 

model indicates that the predicted deformation was purely torsional without any 

secondary lateral (bending or second order) effects.

However, in the experiment, lateral movement was observed at an angle of 

nearly 140°, near the end of the experiment but this lateral movement was not 

replicated in the finite element analysis. This shows that finite element analysis 

was able to model accurately the torsional behaviour so far as the rotation in the 

experiment was considered but was unable to model the lateral movement which 

occurred near the end of the experiment arising from secondary effects. Lateral 

movement occurred in the experiment due to secondary moment which arose 

because both the cables were not in one plane, whereas in the finite element 

analysis the couple of forces were applied on the same end plate, that is at the 

same distance from the fixed end support.

300



To determine the appropriate yield value, two lines are drawn, one from the slope 

of the linear phase, the other from the plastic plateau (as depicted in Figure 7.11) 

from which the value of torsion is estimated to be 0.82kN.m which compares very 

well with the value of O.SO^A^.w in the experiment.

Rotation(thetha)
-ExperimenM 
- Experiment-2 
Finite element analysis 
Idealization of elastic-plastic curve

Figure 7.11 Torsion vs rotation response of the beam sample. Expreimental 
result produce here are also given in Figure 5.26

Figure 7.12 Rotation of the rectangular plate viewed along the longitudinal 
axis at an angle of rotation of 32°
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Figure 7.13 Deformation of the beam sample viewed from the lateral 

direction

Figure 7.14 depicts a plot of the maximum axial deflection against the applied 

torsion measured at the free end of the beam at the centre of the section. It can 

be seen from the figure that axial shortening (AS) increases significantly in the 

non-linear phase whereas only a small amount of axial shortening was observed 

in the linear phase. This shows that the finite element analysis managed to 

identify the secondary effects of axial shortening which arise substantially in the 

later stage of the analysis under large torsional rotations.

Figure 7.14 Torsion vs maximum axiai deflection of the beam sample

Figure 7.15 presents the contours of the stresses developed in the longitudinal 

(SZ) direction of the thick shell elements for a typical incremental analysis where 

the stress near the support was more than the yield stress, having a value of
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384.9Aff*a. It can be observed in the figure that the top flange at the support (on 

the right in the figure) has positive and negative stresses, whereas the direction 

of stress for the bottom flange is the opposite. The different directions of the 

stresses confirms the presence of warping stresses near the support, which are 

in different directions for both the top and bottom flanges, as would be expected. 

Higher values of stress than the yield stress indicate that stresses in some 

regions near the support were in the strain hardening phase (see Table 7.1). It 

can be seen that the stresses at both ends of the beam in the top flange have 

different signs and those stresses decrease as it reaches the mid span. At the 

mid-span, longitudinal stresses are at a minimum as depicted in the figure. 

Therefore a change of sign of stresses occur at the middle span, as indicated by 

the discrete change in the contours on the right and left of the mid-span part of 

the top flange (as depicted in the figure).

Loadcase: 6

rtde: increment 6 Load Factor • 7.73141 

Rasiits File: 0

Min -384.9SE6 at Node 1

Figure 7.15 Stress contour of beam applied in pure torsion

7.6.4 Biaxial bending and torsion case, with dominant minor-axis 

bending
The first experiment in which a number of different forces were applied is under 

torsion and biaxial bending, with bending initially primarily acting in the minor axis 

direction (see Figure 6.2). Figure 7.16 shows the load-deflection response in this 

case. The load referred to is the measured load in the direction of the cable (as 

depicted in Figure 6.2). The deflection given in Figure 7.16 is the resultant of 

deflections which were measured in two different directions perpendicular to each 

other (as depicted in Figure 6.2). The idealized elastic-plastic curve as shown in
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the figure is developed by drawing first line through the origin tangent to the 

linear portion of the experimental response. The second line is drawn by a 

tangent from the end of the curve up to the point when it intersects the first line. 

The finite element load-deflection curve exhibits the same trend as the 

experimental response although the results obtained from the finite element 

analysis are higher than the experimental results and there are several possible 

reasons for this. In the linear portion of the curves, a different modulus (as 

discussed in Section 7.6.1) is the main reason for the variation in the elastic 

response. In addition, finite element analysis does not take account of residual 

stresses which can increase the curvature and results in larger deflection.

Experimental Response 
Finite element analysis 

-Idealization of elastic-plastic curve

Figure 7.16 Load deflection curve for biaxial bending and torsion case, with 

dominant minor-axis bending. Expreimental result produce here are also 

given in Figure 6.10

The two orthogonal deflections are plotted against each other in Figure 7.17. 

The experimental response and finite element analysis shows that deflections in 

both the directions were not linear. Some variation from linearity in the predicted 

X-Y deflection is evident, reflecting the change in directional stiffness as the 

beam rotates under a torsional load. Considering the figure, it can be said that 

the finite element analysis and experimental results do not match each other
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particularly well. However, at the end of the experiment, the deflections predicted 

by finite element analysis are reasonably close to the deflection in the 

experiment. There are two possible reasons for the non-matching of these 

results. One reason is that the displacement in the Y-direction is small as 

compared to the displacement in the X-direction, therefore small differences are 

on a larger scale on one axis. The second reason is that displacements are not 

measured by any LVDT or electronic displacement measuring device but through 

video images with reference to grid paper measured manually (as discussed in 

Chapter 6) where there can be an error of 1 to 2 mm in the readings. There are 

clearly random variations in the experimental readings. It can be concluded that 

both the response do not match in the non-linear phase.

c E 
« c 
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0) '.S u u ra g>
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Q

Displacement in X-direction(mm)
------Experimental Response - Finite element analysis

Figure 7.17 Measured deflections in two different directions for biaxial 
bending and. torsion case, with dominant Minor-Axis bending. Expreimental 
result produce here are also given in Figure 6.20

Figure 7.18 shows the torsion-rotation response of the beam sample. As 

discussed in Chapter 6, it was not possible to measure the rotation right to the 

end of the experiment. However rotation close to the end of the experiment is 

predicted reasonably accurately by the finite element analysis and exhibits the 

same broad trend as in the experimental response both showing some softening 

of the response. However, only a small difference exists between the curves, 

where the curve in the experiment is on the upper side. There can be several
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reasons for this. Firstly, is the shear modulus (which is related to Young’s 

modulus by Poisson’s ratio) for the experiment and finite element analysis which 

are slightly different (as discussed in Section 7.6.1). Secondly geometric 

imperfections can occur during welding of the beam sample which can affect the 

straightness of the sample compared to the direction of the applied load and can 

make the system torsionally stiffer than that predicted by finite element analysis, 

in which a perfectly straight beam is modelled.

Rotation (Degrees)
- Experimental Response - Finite element analysis

Figure 7.18 Torsion rotation curve for biaxial bending and torsion case, 
with dominant minor-axis bending. Expreimental result produce here are 

also given in Figure 6.7

To observe the interaction of rotation and the deflection, comparisons are made 

in Figures 7.19 and 7.20. Considering the displacement in the X-direction, a 

similar trend is observed for both the finite element results and experimental 

response where, up to nearly 11 degrees, the responses match each other to a 

good degree. Beyond this a considerably lesser rotation was observed for a given 

deflection increment for both the responses. This shows that there is a change of 

interaction between the bending and torsional mechanisms as noted in Chapter 6 

and this change is confirmed by the finite element analysis in the graphs. The 

reason for the sudden change in the graph is that “failure” was essentially due to 

flexural plasticity where, in the figure, it can be observed that the change in the
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interaction occurs at a displacement of nearly 50mm in the X-direction deflection. 

This significant change in the response was also observed in Figure 7.16 where 

the response showed plastic behaviour after the said deflection. This implies that 

failure in both the cases is mainly due to flexure with a small interaction with 

rotation. This is practically evident in the finite element graph where the line 

becomes nearly vertical at the end, which also shows that the failure was in 

flexure, where displacement occurs without a significant change in the rotation. 

Considering the displacement in the Y-direction (Figure 7.20), a similar trend is 

obtained for both the experimental and finite element results. The different nature 

of interaction for both small and large rotations can be observed for both the 

results and the reason for the different nature is the same as in the previous 

case. It shows that finite element analysis was unable to predict as accurately the 

rotation-deflection response as obtained in the experiment, but did predict the 

behavioural change of response. The similarity between both the figures is that 

both the response does not match in the non-linear phase.

[ —— Experimental result ------Finite element analysis____ |

Figure 7.19 Measured deflection in X-direction and rotation of the beam 

sample for biaxial bending and torsion case, with dominant minor-axis 

bending. Expreimental result produce here are also given in Figure 6.24

The yield value is determined by drawing the slopes of the two lines, one line 

from the linear phase and the second line from the plastic plateau. The lines 

intersect (Figure 7.16) at a value of nearly 3.15^ which can be taken as the
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value at which the cross section yields under bending in two directions and 

torsion. Based on this value, stress resultants are calculated using the reaction 

obtained for each node at the support in the finite element analysis. The values 

obtained, given in their normalized form, are and b=0.073. A

value of more than one for rriy (and also the accompanying values of and b) 

shows that the section has yielded plastically as discussed in Chapter 4 which 

suggests that the yield surface developed in the chapter is a lower bound when 

compared with the numerical analysis.
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Figure 7.20 Measured deflection in Y-direction and rotation of the beam 

sampie for biaxial bending and torsion case, with dominant Minor-Axis 

bending. Expreimental result produce here are also given in Figure 6.22

Figure 7.21 shows the deflected square end plate viewed along the longitudinal 

axis of the beam. It can be observed that there are two modes of deformation of 

the plate, one is the rotational mode and the other is the lateral displacement 

mode. Considering Figure 7.22, a combined rotation and deformation pattern can 

be observed. This shows that the finite element model was capable of analysing 

the primary deformation patterns of the beam sample.
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Figure 7.21 Deformation of the beam viewed along the longitudinal axis for 

biaxial bending and torsion case, with dominant minor-axis bending

Figure 7.22 Deformation pattern of the beam for biaxial bending and torsion 

case, with dominant minor-axis bending

Figure 7.23 presents the contour of longitudinal stress extracted as a typical 

output from the middle of the thick shell from the incremental non-linear analysis
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for the case when the stress at the support is more than the yield stress having a 

value of of 382.6MPa. It can be observed in the figure that there is a relatively 

small amount of stress in the web, whereas at the support both the flanges 

reached values above the yield stress. This is due to the fact that, in this 

experiment, rotation and minor axis bending were the main deformation patterns, 

where, in both deformation patterns, the least stress is taken by the web.

Loadcase:5

Title: Increment S Load Factor = 5.76513 

Results File: 0 

EnUty: Mid Stress

Figure 7.23 Stress contours of beam biaxial bending and torsion for biaxial 
bending and torsion case, with dominant minor-axis bending

7.6.5 Biaxial bending and torsion case, with dominant major-axis 

bending

The first experiment in which torsion and biaxial bending occurred was with 

bending initially primarily acting about the minor axis direction (see Figure 6.2). 

Figure 7.24 shows the load-deflection response of the beam sample, when 

biaxial bending is applied in combination with torsion with bending primarily about 

the major axis (see Figure 6.2). The finite element load-deflection curve matches 

the experimental curve up to a load of nearly 8.6kN, well above the elastic limit 

load of 4.19 kN. The reason for the difference beyond this point is thought to be 

due to the mode by which failure occurred In the beam. Owing to rotation of the 

beam, the orientation of the cross-section with respect to the applied load varies 

over the entire length of the beam sample, which causes the stiffness of the 

beam to vary as the beam rotates progressively on application of the load. Owing
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to the decrease of stiffness (at some cross section throughout the length), the 

load which the beam can resist will decrease. This phenomenon is also modelled 

in the finite element analysis but the decrease of load is not as sharp as the 

decrease of load in the experiment. One possible reason is that the exact 

interaction between deflection and rotation was not modelled by finite element 

analysis such that the decrease of stiffness, which resists the load, is different 

when small variations in rotation take place, hence resulting in the differences in 

the curves. Secondly, the geometric imperfections (as discussed in the previous 

section) can also cause the variations in the result.

The measured deflection in the two different directions (as depicted in Figure 6.2) 

is plotted in Figure 7.25 and is in contrast to Figure 7.17. A broadly similar trend 

is observed for both the experimental result and finite element values i.e. there is 

a rise of displacement in X-direction initially and a subsequent decrease of value 

on plastic hinge formation. Good correspondence exists between the 

experimental and finite element values up to a deflection of 20mm in the Y- 

direction. At this point the resultant deflection as given by Figure 7.24 was 26mm. 

At this point the two graphs in Figure 7.24 diverge and the reasons for the 

difference between the variations in graphs of Figure 7.25 are similar to that 

explained above. This shows that the finite element analysis was unable to 

consider the secondary effects leading to the interaction of both the deflections 

beyond that deflection of 20mm for the reasons as discussed above. The drop in 

the displacement in the X direction as Y deflection increases substantially is due 

to the reduction in bending resistance as the beam rotates and results in a 

decrease of deflection in the X-direction, as supported by the finite element 

results.

Figure 7.26 shows the torsion-rotation behaviour of the beam sample. Rotation 

up to the end of the experiment was not possible (as explained previously), 

however, rotation up to the end of the experiment is predicted by the finite 

element analysis. The maximum rotation in the finite element analysis given in 

the figure is the rotation obtained at maximum deflection obtained in the 

experiment. Up to the point where rotation was measured, the finite element 

exhibits very similar trends as the experimental response. Differences which exist 

between both the results are minor, principally due to bedding down of the beam
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in the experiment at low force. At an angle of nearly 55° torsion drops, this 

happens due to the fact that the beam was in the elasto-plastic phase because of 

which rotation rates did not change during the decrease of load and results in a 

drop of torsion value.

. Experimental Response
---------Finite element analysis
-------- Idealization of elastic-piastic curve

Figure 7.24 Load deflection curve for biaxial bending and torsion case, with 

dominant major-axis bending. Expreimental result produce here are also 

given in Figure 6.12

Figure 7.25 Measured deflections in two different directions for biaxial 
bending and torsion case, with dominant Major-Axis bending. Expreimental 
result produce here are also given in Figure 6.21
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Figures 7.27 presents the curve of deflection in the Y-direction against rotation. 

Consideration of the graph shows a similar response can be observed for both 

the experimental results and finite element values up to the point when rotation 

ceased to be measured in the experiment. Beyond this point significant increase 

of deflection can be observed compared to rotation. A similar response is 

observed in the previous case in which at large deflections the beam sample 

failed more because of flexure with only a small interaction due to torsional 

rotation.

Figure 7.28 presents the curve of deflection in the X-direction against rotation. 

Above approximately 10° rotation a poor relation exists between the experimental 

and finite element response. Two possible reasons for the difference is the 

procedure adopted to measure the deflection and the small scale on the Y-axis 

as discussed in the previous section. Lastly differences in the interaction between 

finite element and experimental response can occur for the reasons discussed 

above. The rise and fall in the X-axis response is an indication of change of 

flexural stiffness as compared to torsional stiffness of the beam sample. This 

happens because of the decrease of stiffness of the beam sample due to rotation 

as a consequence of which displacement in the X-direction started to reduce.

Figure 7.26 Torsion Rotation curve for biaxiai bending and torsion case, 
with dominant major-axis bending. Expreimentai result produce here are 

also given in Figure 6.8
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Figure 7.27 Measured deflection in Y-direction and rotation of the beam 

sample for biaxial bending and torsion case, with dominant major-axis 

bending. Expreimental result produce here are also given in Figure 6.23

Figure 7.28 Measured deflection in X-direction and rotation of the beam 

sample for biaxial bending and torsion case, with dominant major-axis 

bending. Expreimental result produce here are also given in Figure 6.25

Three lines are drawn to determine the approximate yield value as depicted in 

Figure 7.24. The last line is taken horizontally from the peak load as a decrease 

in load was then observed in the analysis. Two points are identified by the three 

lines. The point which forms on intersection of the first line (which starts at the 

origin) and the second line is a point, beyond which the beam sample is quasi 

elastic and cannot be considered as the point of section yielding. The second
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point can be taken as the point for the yield value because at this point the 

section is assumed to be fully plasticized. Therefore, the value at which the 

second point is obtained (nearly 9kN) can be taken as the value of section 

yielding under both the bending and torsion mechanism. For this assumed value, 

stress resultants in normalized form are obtained as my=0.44, mz=0.60 and 

b=0.27 (Appendix-E). Keeping the values of w^and b constant, the nt; value is 

calculated based on the developed theory given in Chapter 4 which shows that 

values obtained are more than values at which a section yield plastically. Hence it 

can be concluded that yield surface developed in the chapter are lower bound 

values when compared with the numerical approach.

Figure 7.29 shows the deflected rectangular end plate viewed from the 

longitudinal axis of the beam. It can be observed from the figure that there are 

two modes of deformation of the plate; one is the rotational mode and the other is 

the lateral displacement mode. This shows that the analysis managed to model 

both of the primary modes of deformation i.e. bending and rotational deformation. 

Comparing this figure with Figure 7.21 shows that in this figure more rotation 

takes place for the square plate whereas more deflection is observed for the 

square plate in Figure 7.21.

Figure 7.30 presents the contour of longitudinal stress which is extracted as a 

typical output from the incremental non-linear analysis for one such case when 

the stress at the support is more than the yield stress having a value of 

389.7MPa. It can be observed in the figure that the stress pattern is irregular as 

compared to the more regular patterns for the individed bending and torsion 

cases, as depicted in Figures 7.8, 7.10 and 7.15. This shows that stresses 

developed due to the combined action of bending and torsion results in non- 

uniform stress pattern.

Figure 7.31(b) shows the deformed wire mesh of the beam sample, in which, a 

rotation and deformation pattern can be observed. When compared with the 

deformed beam of the experiment in Figure 7.31(a) (after removal of load), the 

figures demonstrate a similar type of rotational and bending response. However 

differences exist between both of them, where the finite element analysis is the 

result of load application whereas the experimental result is for residual rotation
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and deflection on unloading. Both the rotational mode and deflection modes of 

the displacements indicate that the finite element model was capable of 

predicting the correct primary deformation pattern of the beam sample. During 

the experiment, no secondary effects such as local buckling of the flanges or web 

or any other local failure were observed in the experiment nor were they 

predicted by the finite element analysis.
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Figure 7.29 Deformation of the beam viewed along the longitudinal axis for 
biaxial bending and torsion case, with dominant major-axis bending

Loadcase; 7

Tine. Increment 7 Load Factor * 11.3162 

Results File; 0 

Entity: Mid Stress 
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Figure 7.30 Stress contours of beam biaxial bending and torsion, Second 

Experiment (Primarily about major axis)
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(a) Experiment (b) Finite element Analysis

Figure 7.31 Deformation pattern of the beam for biaxial bending and torsion 

case, with dominant Major-Axis bending

7.6.6 Analysis of beam with a passive pre-stressing cable attached

In the previous analysis, an I-beam was modelled with a plate at its end, whereas 

in the next analysis, a steel cable is attached to the end plate and pretensioned 

to apply a pre loading axial force to the tip of the I-beam. In the current analysis 

however, a passive steel cable is attached, not to apply a limited axial force but to 

restrain the lateral movement of the beam geometrically. No experiment was 

performed for this analysis but it will enable an understanding to be developed of

317



the effects of the non-linear geometrical stiffness contribution of the cable. The 

whole model with cable attached is depicted in Figure 7.32.

Figure 7.32 Model from Figure 7.3 with cable attached at the end plate

Figure 7.33 shows the load-deflection graph for this analysis, compared with the 

previous analysis. From the two graphs the strong effect of the cable is evident. 

In the presence of the cable, the response is much stiffer at higher loads, than 

the case when the cable was not present. The response during the elastic phase 

is nearly the same for both cases. During the nonlinear analysis, torsion causes 

large axial shortening (as seen in Figure 7.14) which will now be resisted by the 

cable. Further, the lateral load causes the beam to displace more from Its original 

position (as compared to the position of the beam in linear phase) leading to non­

linear geometry. These two phenomena give rise to the development of an axial 

force in the cable, which is caused by lateral resistance to lateral movement of 

the beam. This result in a lesser amount of deflection for the same amount of 

load compared to the previous case in which no cable is attached. The presence 

of a cable increases the resistance of the beam to the lateral loading and results 

in a relatively higher value of load when compared with the previous case for the 

same amount of deflection.

During the process of lateral load application, an axial load developed in the 

cable, as shown in Figure 7.34. As the applied lateral load increases, axial 

shortening due to torsion and lateral displacement increase, hence it exerts more 

force to the cable in the latter stages of the analysis due to non-linearity. In the 

early stages of lateral load, only minor axial shortening occurs (see Figure 7.14)
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but non-linear shortening and geometry cause the rapid growth of axial load seen 

in Figure 7.34 as lateral load increases

The development of an axial load, which arose substantially due to secondary 

effects of axial shortening and large lateral displacements, shows that finite 

element analysis manages to pick up those secondary effects. Finite element 

analysis also manages to model the primary effects of bending and rotation which 

shows that the finite element method was able to model both the primary and 

secondary effects for this case.

Figure 7.34 Axial load in the cable in comparison with the lateral load for 
beam with a passive cable attached
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7.6.7 Axial force, biaxial bending and torsion experiment

Figure 7.35 shows a comparison between the load-deflection relationship for the 

experimental result and finite element analysis when all four forces are applied. 

An axial force of 35kN is first applied using an active tendon (as discussed in 

Section 7.5). Both the curves exhibit the same trends and very reasonable 

agreement between the experiment and analysis is obtained. However the finite 

element response is larger than the original response in the latter stage of the 

curves. One possible reason for this is the presence of residual stresses which 

can change the curvature for the same load applied as discussed in Section 

7.6.1.

Experimental Response 

- Finite element analysis

---------Idealized elastic plastic response

Figure 7.35 Load-deflection graph for the experiment where axial load 

applied using active tendon. Expreimental result produce here are also 

given in Figure 6.34

Figure 7.36 presents the relationship between the deflections in the two 

perpendicular directions. Although the curves are approximately equal at low and 

high displacement, the curves do not match each other in the middle of the 

graphs. However, the differences which exist between both the results are 

relatively minor; and the main experimental trends are reproduced by the model.
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One reason for the disparity is that displacements are measured manually (as 

discussed before) where errors of 1 to 2 mm are possible. This reason is valid 

because there is a maximum difference of 3.5mm between them at some places. 

A second possible reason is the interaction of secondary effects such as axial 

shortening and large lateral movement which can cause different interactions 

between the displacement in the experiment and finite element analysis.

Figure 7.37 shows the torsion against rotation response of the beam sample. The 

finite element response shows a very similar trend as the experimental response 

until a rotation of 50°. Finite element analysis shows a stiffer response after this 

angle. One reason for more torsion in the model is the presence of residual 

stresses. When rotation is applied warping action takes place, which is basically 

bending of both flanges in two different directions. As residual stresses cause 

increase of curvature (as discussed in Section 7.6.1) therefore a larger amount of 

warping can take place in the presence of residual stresses, (Vlasov, 1959) and 

results in higher rotations compared to the finite element analysis.
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Figure 7.36 Measured deflections in two different directions where axial 

load applied using active tendon. Expreimental result produce here are also 

given in Figure 6.38

Figure 7.38 presents graphs for the displacement in the Y-axis direction and 

rotation of the beam sample. However some differences exist between both the 

responses. The experimental response is largely linear whereas the finite
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element analysis is non-linear. Finite element shows that failure will be due to 

flexural plasticity in the later stages therefore resulting in an increase of 

displacement compared to rotation, whereas the experiment shows that failure is 

a combination of both flexural plasticity and torsional plasticity. It shows that finite 

element analysis does not fully consider the interaction between rotation and 

displacement as observed in the experiment.

Figure 7.37 Torsion-rotation response of the experiment where axial load 

applied using active tendon. Expreimentai resuit produce here are aiso 

given in Figure 6.32

■ Finite element analysis
Rotation (Degrees)

- Experimental response I

Figure 7.38 Measured deflection in Y-direction and rotation of the beam 

sampie where axial load applied using active tendon. Expreimentai result 

produce here are also given in Figure 6.39
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Figure 7.39 presents graphs for the displacement in the X-axis direction and the 

rotation of the beam sample. Both the graphs exhibit the same broad trends, 

however, differences exist between the graphs. Comparing the figure with Figure 

7.36 shows a similar trend. A possible reason for the difference is as discussed 

for the difference of the graphs in Figure 7.36.

Figure 7.40 shows the increase of axial load during lateral load application. Both 

the experimental result and finite element analysis show a very similar trend and 

match each other very well. It shows that the finite element analysis manages to 

model the primary effects of torsion and rotation and the secondary effects of 

axial shortening and large displacement at large loads as it did in the previous 

case with a passive pre-stressing cable. Hence, due to the correct modelling of 

these effects, finite element analysis manages to replicate the force developed in 

the cable as obtained in the experiment and so predicts accurately the lateral 

deflections and hence beam stresses.

Figure 7.39 Measured deflection in the X-direction and rotation of the beam 

sample when axial load is applied using active tendon

Figure 7.41 presents the deformed configurations for the beam sample. The 

figure consists of two parts. The first part is a photograph of the tested specimen 

in the permanently deformed configuration. The second part consists of a wire 

mesh view of the beam sample in the deformed configuration during loading as
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predicted by finite element analysis. Both the figures show a similar trend of 

rotation and bending.

To approximate the yield point, two lines are drawn as depicted in Figure 7.35, to 

determine the assumed value at which the section yields. The lines intersect at 

value of 7kN which can be considered as the yield value when biaxial bending 

and torsion are applied in combination with an axial force. For the given values, 

stress resultants in normalized form are obtained namely />=0.1, my=0AA, 

/Wz=0.60 and b=0.27. Keeping p, m^and b at those values /Wz is calculated based 

on the developed theory given in Chapter 4 the value obtained is 0.45 which 

shows that values obtained are greater than that at which a section yields 

plastically, which shows that the yield surface developed in the Chapter 4 is a 

lower bound compared to the numerical analysis.

In Figure 7.42 the deflections obtained under different lateral loads, for the three 

cases discussed in Section 7.6.5-7 are given. It can be observed that the addition 

of the cable increases the lateral load required on the beam for a given 

deflection, whereas the application of an axial force to the sample through the 

cable decreased the deflection under a given lateral load. This shows that 

resistance to lateral displacement provided by a cable increases the lateral load 

for a given deflection and that the provision of a pre-loading axial load further 

increases that lateral load.

6 8 

Lateral load (kN)
10 12 14

Figure 7.40 Increase of axial load during lateral load application and lateral 

load of the beam sample when axial load is applied using active tendon. 
Upper line is finite element result and lower is the experimental result. 
Expreimental result produce here are also given in Figure 6.29

324



J4i
Jii

i
,

(a) Experiment (b) Finite element Analysis

Figure 7.41 Deformation pattern of the beam when axial loads applied using 

active tendon

Figure 7.43 gives the graph of the increase of axial load during lateral load 

application against applied lateral load. For the passive case the rise in the graph 

is more than for the case when axial force is applied to the beam sample. This 

shows that the secondary effects of axial shortening and large displacement in 

the absence of an axial load has a significant influence on the development of 

axial force in the cable and the rise in the graph become steeper as both the 

secondary effects increase. Pre-loading the cable is therefore, significantly 

advantageous.
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Deflection(mm)
- Analysis without cable 
Analysis with cable (Passive case)

- Analysis with cable (Axial force applied)

Figure 7.42 Finite element response of lateral load against deflection for the 

cases discussed in section 7.6.5-7.

Lateral load (kN)
------Analysis with cabie (Axial force applied)
------Analysis with cabie (Passive case)

Figure 7.43 Finite element responses of axial load developed in the cable 

for the passive case and axial load applied.

7.7 CONCLUSION
The finite element analyses investigated the behaviour of the beam samples 

tested in the experimental program when subjected to different types of 

monotonically applied loading. Both the case types, that is when a single load or 

when more than one loading action was applied to the beam sample, were 

investigated for both primary and secondary effects, as observed in reality in 

experiments. It is found that finite element analysis can successfully analyse the 

primary mode of analysis, while secondary modes of analysis were also picked
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for the cases when it was identified in the experiments. Certain phenomena 

which are related to certain modes of deformation (such as LTB) were not picked 

up nor were they found in the experiments. The capability of the software in 

modelling such primary and secondary effects for each analysis is summarized in 

the following table:

Primary effects Secondary effects
Loading Action Plastic Plastic Axial Lateral

Bending Torsion effects LTB LB AS movement
Major-axis bending Yes N/A N/A No No N/A N/A

Minor-axis bending Yes N/A N/A No No N/A N/A

Torsion N/A Yes N/A N/A N/A Yes Yes

Combined loading
action

Biaxial bending+Torsion

(Primarily about minor
axis) Yes Yes N/A No No Yes N/A

Biaxial bending+Torsion

(Primarily about major
axis) Yes Yes N/A No No Yes N/A

Biaxial bending+Torsion
(Primarily about majo
axis

with passive cable) Yes Yes Yes No No Yes N/A

Axial force+ Biaxial
bending+ Torsion

(Primarily about major-
axis with axial load) Yes Yes Yes No No Yes N/A

Table 7.3 Comparison of the loading actions and the capability of finite 

element in predicting primary and secondary effects. The terminologies in 

the table are Local buckling (LB), Lateral torsional buckling (LTB) and 

Axial shortening (AS)
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From the table it can be deduced that finite element analysis can model all the 

primary modes of deformation, while other secondary modes of deformation, 

which may be possible in general, were not always observed in the experiment 

nor were they predicted by the finite element analysis. Comparing the interaction 

of one mode of deformation to the other mode, finite element analysis manages 

to analyse successfully the interaction of different modes of deformation. In 

addition, it also gives good corelation when compared with the developed yield 

surface for interaction of different combination of forces. Different responses such 

as load against deflection, torsion against rotation, deformed geometry and 

contours of stress developed were also modelled successfully by finite element 

analysis. However, differences were found between the experimental result and 

finite element In the later stages of the response. The reason is that the finite 

element was unable to model the behaviour at the end of experiment because it 

was unable to model the rotation as it occurred in the experiment. It can thus be 

concluded that for the current nature of experimental program, the finite element 

method can be a reasonable substitute for experimentation, despite the 

complications of the interactions which inevitably occur at large deflection and 

rotations.
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CHAPTER-8

CONCLUSION

8.1 SUMMARY
The overall objective of the research described in this thesis was to develop approximate 

and exact yield surfaces for an l-section and to verify the yield surface using 

experimental and numerical methods. To achieve this, yield surfaces were developed 

based on an approximate approach using a curve fitting technique, while a lower bound 

and an upper bound approaches are used to obtain the exact solution under the given 
assumptions. Experiments were performed for single forces and combination of forces. 
Owing to the lack of a facility in the laboratory to twist a specimen at high rotations, a 
test rig was designed specifically for that purpose. Using a numerical method, previously 

developed yield surfaces and approximate yield surfaces developed in this research 
were verified.

In the development of an approximate simplified yield surface equation, a curve fitting 
technique was used where surfaces for Universal Beams listed in BS EN10056: 1999 

were curve fitted for biaxial bending and bimoment. It was found that a yield surface 
changed predictably with cross sectional properties and this was considered in the 
development of the equation. In the same work different yield surfaces were verified 

using a numerical technique. This verification was later used to extend the developed 

yield surface curve to fill the gaps which were present in the previously published yield 

surfaces.

In the case of the development of an exact solution for the case when biaxial bending, 

biaxial shear, axial force, bimoment and uniform torsion are considered, the 

development was divided into two parts. In the first part those forces which produced 

shear stress on the section were considered and, based on a lower bound approach, an 

interaction equation is obtained for these cases. For the second part those forces which 

produce direct stresses to the section were considered to develop interaction 

relationships. When direct stresses were considered first neutral-axis patterns were
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obtained to derive the possible deformation patterns for the yield surface. Based on the 

neutral-axis patterns a parametric approach was developed to generate yield surfaces 

and identify yielding of the section. Two distinct cases were identified when neutral-axis 

patterns were obtained, namely when the neutral-axis passes through the web and when 

it does not pass through the web. Different approaches were taken for each case to 

develop yield surfaces and identify yielding of the section. The developed yield surfaces 

are compared with previously developed yield surfaces. The lower bound approach 
adopted to develop yield surfaces was also verified for one case using an upper bound 

solution.

Experiments were conducted in two sets to examine the behaviour of an l-section under 
realistic monotonic loadings. In the first set of experiments test specimens were 
manufactured from l-sections and tensile coupon tests were carried out to determine 

actual material properties. Great care was taken in manufacturing the specimens. Next 
three types of experiment were performed to obtain the plastic capacities of the section 
under the action of one force type. Experiments were performed for bending of a 
cantilever beam about the major and minor axes and were tested to failure of the beam 
in pure torsion. In the case of pure torsion a test rig was designed which has the 

property of being capable of rotating the sample to large rotations and this can be 
adopted when torsion needs to be applied with biaxial bending.

In the second set of experiments beam specimens were tested under biaxial bending 

and torsion in one case and biaxial bending, torsion and an axial force in other case. The 
same setup which was used for torsion was used here to apply bending in combination 

with torsion, and the response of the beam under the given forces was studied. In the 

axial force case, the axial force is pre-applied using a prestressing tendon and jack. 

Rotations, deflection and strains were monitored at critical locations and compared with 

the developed theory. Yield surfaces were also verified for the given set of loading 

combinations, to a reasonable level of confidence.

Numerical analyses were performed under monotonic loading for different loading 

conditions to verify the experimental results and the ability of the software to carry out 

such complex non-linear analysis in which different combination of loads can be applied. 

Following the same trend as was followed in the experiment, first analyses were
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performed for single stress resultants. Material properties used for the analysis were 

those obtained in the coupon’s test results. The results of the analysis under single 

stress resultants were then compared with experimental results. Later numerical 

analyses were performed for multidimensional stress resultants and results of the 

analysis are compared with experimental results. Results are also compared with the 

developed yield surfaces developed in previous and the current work.

8.2 CONCLUDING REMARKS
The experimental and theoretical work undertaken within the scope of this research 

leads to the following conclusions.

An approximate yield surface equation based on a suitable regression technique is a 

gO'Od alternative to the exact solution yield surface.

Yield surfaces of different Universal Beam sections were generated and it was found 
that approximate solutions compare well with the previously developed yield surfaces. 
The approach which was adopted to verify yield surfaces using finite element analysis 

gives reasonably accurate results.

Using the approach previously developed, the approximate yield surfaces were verified. 

Using this verification technique, yield surfaces were extended to fill the gap which was 

present in the previously developed yield surfaces. From the verification of the extended 
part it is found that the extension of the curves to matched with the finite element 

analysis, hence showing the extensions were valid.

Exact yield surfaces are obtained for seven stress resultants. Probable deformation 

patterns are obtained and on this basis yield surfaces are obtained. Those yield surfaces 

are closed, convex and exact and compare well to the previous case when yield 

surfaces were not exact and not closed. In addition these yield surfaces are successfully 

developed for seven forces as compared to the previous approach in which five forces 

are considered.
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These yield surfaces are also verified by an upper bound approach for one type of 

neutral-axis pattern and it compares exactly with its lower bound approach which shows 

that under the assumption made these yield surfaces are exact.

A procedure has been developed for the checking of hinge formation for this yield 

surface and two different approaches were adopted for the case when the neutral-axis 

intersects the web and when it does not intersect the web.

Experimental results of the coupon test show a typical result for mild steel where the 

stress-strain curve shows a well defined yield plateau. The Young’s modulus obtained 

from Coupon testing was 2Q^GPa. When Young’s moduli are obtained for bending of a 

beam about both its axes, then the result shows lower values of Young’s Modulus. The 

plastic capacities obtained in flexure, when compared with the plastic capacities 
obtained for the coupon test, show a close similarity in the results. When plastic torsion 
arises, it matches well with the theoretical results based on the coupon test results.

The experimental responses for the cases when a beam is subjected to more than one 
force are discussed. Three experiments were performed, the results of which for torsion 
against rotation compared well in the elastic range.

When torsion against rotation in the inelastic range is examined for the two experiments 
(one when minor-axis bending dominates and the second when major-axis bending 

dominates) the differences show the impact of the interaction of the forces. It is found 

that the value at which it is supposed previously that a hinge will form is too high and 
from the strain results it is evident that plastic behaviour occurs at a lesser load. This is 

also confirmed when based on the results at which a practical hinge is actually formed 

as compared with the developed yield surface of Chapter 4. It is found that the load at 

which it reaches the developed yield surface is far less than the load at which the 

practical hinge forms. It is also found that when in the third experiment axial load is 

applied in tension then the torsion-rotation diagram and load deflection diagram 

demonstrate a significant increase in the stiffness in the response. The strain diagrams 

also show that in the axial case the axial force started to increase the resistance to 

bending of the sections and the axial forces developed were high compared to the axial 

force applied initially by the prestressing tendons.
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Using a numerical method of analysis the behaviour of the beam samples tested under 

different loading conditions were analysed and compared with experimental and finite 

element analysis. It showed that the finite element software managed to identify the 

primary modes of deformation which are bending and torsion and secondary modes 

which were also present in some cases. Some of the secondary modes like LTB were 

not identified nor they were present in the experiments. Yield surfaces were also verified 

using the finite element results.

The purpose of this thesis is to establish both an exact and approximate form of yield 

surface equations and these were later verified using finite element analysis and other 

numerical techniques.

8.3 RECOMMENDATIONS FOR FUTURE WORKS
This research mainly focussed on yield surfaces, then the development and verification 
using an experimental and numerical method. Although an attempt has been made 
within the scope of the current research to shed more light on the yield surface there 
remains scope for further research. In particular it would be desirable to examine the 

following areas in more detail:

1) Approximate single equation yield surfaces can be extended for all types of BS 

EN10056: 1999 sections and for other available steel sections such as the 

American sections.

2) Axial force and uniform torsion can also be included with biaxial bending moment 

and bimoment to obtain a single equation when five forces are considered.

3) An l-section interaction equation can be developed for a channel section when 

biaxial bending, axial force, warping torsion and biaxial shear force are 

considered.

4) The equations developed were for l-section with equal flange width and 

thickness, work can be extended to cases when both flange widths can vary.
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5) A general procedure can be developed to generate yield surface for other open 

sections such as C sections and Z-sections.

6) The possibility of developing interaction equations for an L or T section when 

warping is considered. Equations exist for them but they do not take account of 

warping of the section.

7) An experimental development is required for the case when torsion is applied to 

the section. There needs to be more experimental research on torsion by varying 
three variables which are changing the boundary conditions, the size of cross 

section and by varying the length of the member.

8) Experiments should be performed for biaxial bending and torsion cases for 
different l-sections by varying the three parameters as discussed in the previous 
paragraph.

9) Experiments are performed when axial force, biaxial bending and torsion are 
applied. More axial force can be applied to obtain the behaviour of a beam under 

primarily axial force, hence obtaining different neutral-axis patterns. In addition 
they can be checked by varying the three parameters discussed above and also 
when axial force is applied in compression.

10) Using numerical techniques different cases can be studied by varying the 

parameters to arrive at a conclusion which can help to reduce the number of 

experiments.

11) Based on the experimental and numerical results interaction equations can be 

modified to take into account the practical differences which occur in the 

experimental and numerical results.
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APPENDIX-A

S.No Universal Beam ^web ! ^xx
AJA, Lx! IXX

1 305x 102x25 0.3669 2.3936 35.5750
2 1016x305x222 0.3644 2.3717 41.2637
3 914x305x201 0.3418 2.1511 34.0183
4 762 X 267 X 134 0.3400 2.1258 30.9394
5 838 X 292 X 176 0.3321 2.0599 31.0894
6 406 X 140 X 39 0.3282 2.0216 29.8335
7 762 X 267 X 147 0.3261 2.0089 30.4300
8 254x 102x22 0.3253 2.0015 23.3161
9 1016x305x249 0.3232 2.0037 39.7556
10 457 X 152 X 52 0.3231 1.9883 32.6090
11 305x 102x28 0.3212 1.9872 34.0149
12 914x305x224 0.3146 1.9221 33.0925
13 356 X 127 X 33 0.3130 1.8970 28.6731
14 838 X 292 X 194 0.3101 1.8796 30.4085
15 686 X 254 X 125 0.3101 1.8684 26.5228
16 610 X 229 X 101 0.3033 1.8129 25.6741
17 762 X 267 X 173 0.3023 1.8210 29.6260
18 533x210x82 0.2987 1.7732 23.3120
19 914x305x253 0.2977 1.7938 32.4774
20 305 X 102 X 33 0.2952 1.7874 33.1072
21 457x 152x60 0.2925 1.7462 31.6770
22 914x305x289 0.2917 1.7578 32.0821
23 254 X 102 X 25 0.2893 1.7188 22.5806
24 1016 X 305x393 0.2890 1.7742 38.8886
25 457x 152x67 0.2874 1.7165 31.3642
26 686 X 254 X 140 0.2874 1.6945 25.9616
27 1016 X 305x272 0.2849 1.6981 38.5529
28 762 X 267 X 197 0.2846 1.6926 29.0842
29 1016 X 305x314 0.2838 1.7057 38.8763
30 1016 X 305x437 0.2837 1.7474 38.4207
31 406 X 140x46 0.2831 1.6635 28.6339
32 838 X 292 X 226 0.2828 1.6740 29.6149
33 1016x305x487 0.2826 1.7545 37.9725
34 356x 127x39 0.2825 1.6654 27.8418
35 610 X 229 X 113 0.2811 1.6459 25.1587
36 1016 X 305x349 0.2798 1.6871 38.5009
37 686 X 254 X 152 0.2785 1.6328 25.7101
38 533x210x92 0.2735 1.5866 22.8096
39 457x 152XX74 0.2735 1.6195 30.9463
40 686 X 254 X 170 0.2713 1.5879 25.4562
41 406x 178x54 0.2690 1.5393 18.0561
42 610 X 229 X 125 0.2686 1.5600 24.8528
43 457x 152x82 0.2682 1.5912 30.6721
44 305 X 127 X 37 0.2682 1.5605 21.0035
45 457 X 191 X 67 0.2681 1.5381 19.9926
46 305 X 127x42 0.2652 1.5489 20.8199
47 533 X 210 X 101 0.2639 1.5225 22.5887
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48 254 X 102 X 28 0.2624 1.5275 22.1183
49 610 X 229 X 140 0.2621 1.5218 24.6290
50 533 X 210 X 109 0.2615 1.5112 22.4763
51 305 X 127x48 0.2570 1.5032 20.5709
52 356 X 171 x45 0.2538 1.4231 14.6043
53 533 X 210 X 122 0.2530 1.4606 22.2607
54 457 X 191 X 74 0.2523 1.4311 19.7346
55 457 X 191 X 82 0.2502 1.4238 19.6323
56 406 X 178 X 60 0.2422 1.3551 17.7169
57 457 X 191 X 89 0.2411 1.3676 19.4821
58 406 X x78 X 67 0.2400 1.3485 17.6275
59 457 X 191 X 98 0.2359 1.3407 19.3610
60 406 X 178 X 74 0.2321 1.3026 17.5025
61 356x171 x 51 0.2314 1.2765 14.3736
62 914 X 419 X 343 0.2283 1.2647 15.7846
63 356 X 171 X 57 0.2242 1.2367 14.2802
64 914 X 419 X 388 0.2203 1.2211 15.6740
65 610 X 305 X 149 0.2139 1.1571 13.3378
66 2x4 X 146 X 31 0.2124 1.1432 9.7259
67 610 X 305 X 179 0.2111 1.1517 13.2685
68 356x171 x67 0.2096 1.1552 14.1396
69 610x305x238 0.2035 1.1272 13.1370
70 203 X 102x23 0.2004 1.0974 12.6233
71 203 X 133x25 0.1981 1.0523 7.4802
72 305 X 165 X 40 0.1958 1.0389 10.9607
73 305 X 165 X 54 0.1891 1.0178 10.8931
74 305 X 165x46 0.1888 1.0047 10.9152
75 178 X 102 X 19 0.1882 1.0099 9.7079
76 203 X 133 X 30 0.1818 0.9659 7.4288
77 254 X 146 X 37 0.1809 0.9609 9.5973
78 254x146x43 0.1761 0.9437 9.5754
79 152 X 89 X 16 0.1760 0.9448 9.0680
80 127 X 76 X 13 0.1534 0.8241 8.2523

Table A.l Ratios of different section properties of Universal Beam sections.
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A.1 (a) Graph of Parameters p^,P2,q\ and vs ratio forb=0.0
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A.1(b) Graph of Parameters q.^ vs ratio /5Jforb=0.2
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A.1(c) Graph of Parameters p,,/?2 ^2 vs ratio /5„)forb=0.4
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A.1(d) Graph of Parameters Pi,P2 and vs ratio /5Jforb=0.6
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aweo/dxx

A.1(e) Graph of Parameters p^,p2 and vs ratio /S^)forb=0.8

Figure A-1 Graphs of parameters Py,P2,q\ and vs ratio /SJ for
bimoment values of 0.0, 0.2, 0.4, 0.6 and 0.8
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APPENDIX-B

B.1 TABLE SHOWING THE RATIO OF SHEAR STRESSES 

FOR THE WEB AND FLANGES
Universal Beam Shear Applied in Shear Applied in

X-direction, Sx Y-direction, Sy
Sx Sy

ratio between ratio between
stress in stress in

web to flange flange to web
1016x305x487 10.28 5.70
1016x305x437 11.35 6.23
1016x305x393 12.42 6.90
1016x305x349 14.31 7.55
1016x305x314 15.71 8.36
1016x305x272 18.18 9.68
1016x305x249 18.18 11.54
1016x305x222 18.75 14.22
914x419x388 19.65 11.49
914x419x343 21.57 13.08
914x305x289 15.78 9.62
914x305x253 17.66 10.95
914x305x224 19.13 12.72
914x305x201 20.09 15.01
838 X 292 X 226 18.25 10.96
838 X 292 X 194 19.89 13.47
838x292x176 20.84 15.52
762x267x197 17.18 10.55
762 X 267 X 173 18.65 12.35
762 X 267 X 147 20.72 15.15
762x267x134 22.03 17.06
686 X 254 X 170 17.64 10.79
686x254x152 19.28 12.12
686 X 254 X 140 20.46 13.35
686x254x125 21.62 15.62
610x305x238 16.92 9.92
610x305x179 21.78 13.01
610x305x149 25.83 15.47
610x229x140 17.57 10.42
610x229x125 19.24 11.68
610x229x113 20.56 13.19
610 X 229 X 101 21.68 15.38
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533 X 210 X 122 16.69 9.95
533 X 210 X 109 18.17 11.21
533x210x101 19.44 12.07
533x210x92 20.72 13.42
533x210x82 21.75 15.82
457 X 191 X 98 16.91 9.84
457 X 191 X 89 18.28 10.84
457 X 191 X 82 19.32 11.96
457 X 191 X 74 21.16 13.13
457 X 191 X 67 22.34 14.95
457x152x82 14.79 8.22
457x152x74 16.08 9.08
457x152x67 17.09 10.25
457x152x60 18.88 11.50
457x152x52 20.05 13.98
406x178x74 18.89 11.22
406 X 178x67 20.32 12.50
406x178x60 22.52 13.90
406x178x54 23.08 16.30
406 X 140 X 46 20.91 12.70
406 X 140x39 22.16 16.49
356 X 171 x67 19.03 11.03
356x171 x57 21.26 13.25
356 X 171 x51 23.18 14.91
356 X 171 x45 24.44 17.64
356 X 127 X 39 19.09 11.78
356x127x33 20.90 14.75
305x165x54 21.13 12.18
305 X 165x46 24.73 14.04
305 X 165x40 27.50 16.18
305x127x48 13.92 8.95
305 X 127 X 42 15.54 10.27
305x127x37 17.38 11.53
305x102x33 15.52 9.48
305x102x28 16.97 11.57
305 X 102x25 17.52 14.51
254 X 146x43 20.46 11.60
254 X 146x37 23.24 13.43
254 X 146 X 31 24.35 16.99
254x102x28 16.22 10.22
254x102x25 16.98 12.13
254x102x22 17.82 14.94
203x133x30 20.92 13.95
203x133x25 23.37 17.08
203x102x23 18.85 10.95
178x102x19 21.08 12.81
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152 X 89 X 16 19.71 11.52
127x76x13 19.00 10.00

Universal Column
356 X 406 X 634 8.91 5.51
356 X 406 X 551 9.94 6.20
356 X 406 X 467 11.51 7.11
356 X 406 X 393 13.30 8.27
356 X 406 X 340 15.15 9.39
356 X 406 X 287 17.65 10.93
356 X 406 X 235 21.46 13.07
356 X 368 X 202 22.71 13.88
356x368x177 25.88 15.66
356x368x153 30.12 17.90
356x368x129 35.44 21.06
305 X 305 X 283 12.02 7.31
305 X 305 X 240 13.84 8.45
305x305x198 16.47 10.02
305x305x158 19.70 12.45
305x305x137 22.41 14.25
305x305x118 25.62 16.44
305 X 305 X 97 30.84 19.82
254x254x167 13.81 8.37
254x254x132 17.08 10.33
254x254x107 20.22 12.62
254 X 254 X 89 24.88 14.82
254 X 254 X 73 29.60 17.93
203 X 203 X 86 16.46 10.20
203 X 203 X 71 20.64 11.93
203 X 203 X 60 21.89 14.49
203 X 203 X 52 25.86 16.34
203 X 203 X 46 28.28 18.51
152x152x37 19.30 13.43
152x152x30 23.52 16.27
152x152x23 26.24 22.38
Universal Piles
356x368x174 18.65 18.55
356x368x152 21.12 21.01
356x368x133 23.96 23.81
356x368x109 28.98 28.76
305 X 305 X 223 10.75 10.71
305x305x186 ' 12.58 12.54
305x305x149 15.34 15.27
305x305x126 17.88 17.78
305x305x110 20.31 20.18
305 X 305 X 95 23.21 23.21
305 X 305 X 88 24.82 25.02
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305 X 305 X 79 27.85 27.60
254 X 254 X 85 18.08 18.21
254 X 254 X 71 21.50 21.50
254 X 254 X 63 24.21 23.98
203 X 203 X 54 18.38 18.22
203 X 203 X 45 21.67 21.67

Table B.1 Ratio of shear stresses for the web and flanges when shear forces Sx 

and Sy are applied

B.2 DISTRIBUTION OF SHEAR STRESSES DUE TO Sx, AND

u

Biaxial shear stress distribution on the cross section due to the neutral-axis pattern 

given by Figure 4.7 is obtained as

Considering the stress distribution in one flange as acts in the flange only it can 

be written as

=
't, '•

rbj - rb,

Therefore results in

5, = l^ftbf

Therefore as the pattern is same for both the flanges therefore the following equation 

is obtained

5, = A^,Tb,

Considering the stress distribution in web as acts in the web only

B-1

ft ^ f

V 2 J V
-c VK

S =2C rb^ y w M B-2
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Calculation to obtain uniform torsion on the cross section (Figure 4.7)
Distribution of uniform torsion on the section can be obtained for the top flange, 

bottom flange and web separately as

For the top flange

= 1(0-54 +b,(fl0.SK +0.75// - 0.54 )r-1(0.54 -*/4)(0-54 +

Q.lStf -0.54'^ ) ]r

= ^0.25A^b„+Q.^15Aftf -O.lSA^C^+O.Sb^bXf +0.75A^^^ -Q.S^}bj.\ 

-^25A^b„+Q.\25Aft^ -0.25^^4'^ --0.25^^4'^ + )]r

T,,^. ={0.2SA,i, +b,bX,*A,(,-(jb,} B-3(a)

For the bottom flange
7»„/..„=-[(o.54-f44 XO-54+0.25//-/0.54 )lr-/1(0.54-44 XO-S*. +

0J5t^ +0.5Cf ) ]r

= -[(0.25 Aj^b^+0.25 A^^ ̂  +0.\25A^t ^ +0.5b^b^^^. +0.25 A^. + )]r

+ ^0.25 Ajb„+ 0.515 A ft ^ + 0.25 A^^f -0.5bfb^(^f -0.75/1^4'^ -0.54'^6^)]r

=(0.254// -5/6.4 -44 -44X B-3(b)

Similarly for the web
7„. = [(0.5.4. + 6.4X0.25/. - 0.54 )> -/ [(0.5.4. - 6.4X0.25/. + 0.54 )Jr 

= [(0.125.4./. -0.2544 +0-256./. -0.546. )+(0.125/l./. +0.25.4.4 “ 

0.256./,-0.546.]r

4,=(0.254/.-46,)r B-3(c)

Adding the terms result in the torsion for the entire section as

T = T +T +Tu topflange botflange web
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r, = (o.SJ/z - 2C,bf + 025AJ, - (X y B-4

Substituting the neutral-axis parameters and from Equation B-1 and B-2 into 

Equation B-4 gives

T. -0.5Art^T-0.25Aj... = —vv

7^, - 0.5Aj-tj-T - 0.25A= ■

Srby 4rb^

-b..,Si-2b,Si

Srbfb^

-ST^b,b„T + 4Alby -2Alb,T^ -bX -2bX =0

(aaX + 2AXy^-iTXK^-bJl -2bX = « B-5

B.3 DEVELOPMENT OF DIFFERENT NEUTRAL-AXiS 
PATTERNS
B.3.1 Neutral-Axis Patterns intersecting the web

Warping strain applied in the negative direction

Neutral-axis passes through both flanges and web.
To determine the change in the pattern on addition of cases of Figure 4.11 to Figure 
4.9(a), four lines are introduced as depicted in Figure B-1. Line-1 represents the 
outer edge of top flange, line-2 represents inner edge of the top flange, Line-3 

represents the inner edge of bottom flange and Line-4 represents the outer edge of 

bottom flange. If values of the strain at the end of each line are kno\A/n and there is a 

point in between each of them called A which represents the location of the neutral- 

axis, then the strain field, for example related to line-1, can be represented 

graphically as depicted in the left top figure (Figure B-2). Similarly strain fields due to 

line 2, 3 and 4 can be defined by similar figures.

The resulting strains for line-1 is obtained by combining the strain field of line 1 to the 

warping strain field of the figure, shown in the left top two figures in Figure B-2. The 

resulting strain fields for different values of the warping strain are depicted in the 

figure. In the figure, values of the resulting strains at both the ends of each line are 

given. In addition new positions of the neutral-axis are also indicated in the figure.
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Values of warping strain which are added to obtain the resulting strain fields are 

given in parenthesis. In a similar way the resulting strains for line-2 are given on the 

right hand side of the figure. In the middle figure, the resulting neutral-axis patterns 

are shown for the top flange with positive strain regions shown as black, in both the 

Appendix and the main text.

XX-Axis

N.B d~bw^tf

Figure B-1 Lines representation of an l-section
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Line #3 Line #4
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-0.129
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-0.82

.934
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-0.06

-0.18 ^

-0.76

-0.97

-3.56

1.005

1.12

1.70

1.91

4.50

Figure B-2. Obtained strain patterns for Line No 1, 2, 3 and 4.

For the top flange, it can be deduced from the figure that for the first two diagrams, 
the axis move towards the right of the flange. Further addition of the value moves it 

out of the flange, as for the third case. Further increase of the warping strain will shift 
the neutral-axis to the left of the top flange which results in the last two cases. These 

are shown as numbers having number one for the first value and fifth for the last 

value in Figure 4.13.

Similarly such a figure for the bottom flange can be obtained, as depicted in Figure 

B-2. For the bottom flange the addition of the warping strains always causes the 

neutral-axis to move towards the right of the flange and never cross the centre line 

as can be inferred from the figure.

Hence it can be concluded that for the top flange, the neutral-axis will first shift 

towards the right of its initial position, and then it will move outside the flange and
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then return to the left of its initial position, while movements of the axis for the bottom 

flange will always be on its left side. The two patterns, the transition phase and the 

parameters defining the position of the neutral-axis are shown in Figure 4.14. The 

relationships between those parameters are obtained as follows:

The neutral-axis patterns given by Figure 4.12 have one radius of curvature, 

therefore have one constant angle of curvature, hence the lines defined above in 
Figure B.1 must have the same slope for all of them. When the lines of the warping 

strain (Figure B-2), which has its own slope, is added to the bottom flange and 

subtracted from the top flange, it causes an increase of the slope for the neutral-axis 

in the bottom flange and a decrease of the slope for the neutral-axis in the top 
flange. Hence absolute values of the increase or decrease must be the same 

because the same amount of warping strains are added and subtracted from the 

bottom flange and top flange respectively. Therefore, the amount of the increase of 
a must be the same as the amount of decrease of y, (which can be deduced from 

Figure B-2) as compare to their previous values. This relationship will be valid for all 
the obtained patterns and is written as

|Aa| = \Ay\ B-6

As the increase and decrease of a and y are the same, therefore the following 

relationship can be written as

a + y = 2/3 B-7

Although the change in the slope of the neutral-axis is the same for both top and 

bottom flanges for all the patterns obtained (Equation B-6), the obtained angles will 
be different for both the flanges. The reason is that the tan'^ of the slopes will be 

different. For example the slope before addition of the warping strain is -1. 

Following Equation B-6, assuming an increase of 0.5, resulted in a = -0.5 and 

^ = -1.5, The tan'^ for these values are respectively 153.5°and 123.70° when
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measured relative to the positive YY-axis. Therefore a larger rotation for a exists as 

compared to y.

Consider the extreme pattern of Figure 4.8(d) which is given in Figure 4.11, the 

maximum angle for which can be obtained as = 180° - tan”'
\^f)

From Figure B-2 it can be deduced that y will always decrease and its angle will 

not decrease less than 90° .As / is always decreasing therefore its maximum 

angle will always be less than the maximum angle of . Therefore the following 

relationship for / can be written

90° </<180° - tan”'
\^f)

B-8

When the neutral-axis for the top flange is on the right of the flange, the angle a 

obtained will increase on addition of warping strain and the angle after the increase 

will be less than 180°, whereas, from the extreme pattern of Figure 4.8(d) given in 

Figure 4.11 (case 2-2), the minimum angle which can be obtained for p is 90°. As 

a is obtained on addition of warping strain, therefore, it will always increase, and 

therefore 90° is also the minimum angle for a. Therefore the following relationship 

for a can be written:

90° < tan”'(a) <180° B-9

From Figure B-2, it can be deduced that the neutral-axis has shifted to the left of the 

top flange (second pattern), but there are two differences as compared to its initial 

position; Firstly the strain at the left is positive, and secondly the angle at which the 

neutral-axis intersects the left side of the flange is less than 90°, but more than 0° 

As the neutral-axis approaches towards the centre line there will balways be an
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increase in the angle with a maximum angle always less than 90°. Therefore it can 

be written as

0° < tan-'(a) <90° B-10

When Neutral-Axis passes through the top flange and web
Figure 4.10 shows two extreme cases (cases 7-7, and 8-8) of Figure 4.8(b). It is 

concluded in the previous section that the movement of the neutral-axis for both the 

top and bottom flanges are different, which is also valid for this case. For example 

the movement of the neutral-axis for case 7-7 is given in Figure B-3. From the figure, 

it can be deduced that the movement of the neutral-axis results in the second pattern 

and a transition phase as obtained in the previous case. The relationships obtained 
previously are also valid for these types of patterns.
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Line #3 Line #4
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1.005
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Figure B-3 One flange and one web strain pattern for Line No 1, 2, 3 and 4

From the values of the obtained strain and the obtained position of the neutral-axis, it 

can be deduced that Equation B-6, B-7, B-8, and B-9 are still valid, whereas 
Equation B-10 is also valid for the second pattern obtained in this case.

Warping strain applied in the positive direction

Neutral-Axis passes through both flanges and web

In this case, the neutral- axis movement will be opposite to the previous case. For 

the top flange the neutral-axis is always to the right of the XX-axis, while for the 

bottom flange the neutral-axis shifts from the left to the right of the XX-axis, having a 

transition phase between them. Two neutral-axis patterns are suggested based on 

the movement of the neutral-axis of the bottom flange.

For the top flange the angle of the neutral-axis always decreases on addition of 

warping strain. As the angle of a always decrease the maximum angle for this case
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will be the maximum angle of Case 1-1 of Figure 4.11 which is 180" - tan

whereas the decrease in the angle for the top flange can be a minimum to 90". 

Therefore the following relationship can be written:

90" < tan ' {a) < 180" - tan ' {b^ /b^) B-11

For the bottom flange, when the neutral-axis is on the left of XX-axis, there will be an 

increase of the angle of /. Considering both the extreme cases, Case 1-1 and 2-2 

of Figure 4.11, it is concluded that the maximum angle for the bottom flange is: 

180"-tan”'/Z)^) while the minimum angle as given by case 2-2 is 90". 

Therefore, the following relationship can be written:

90" < tan ' (/) < 180" - tan '[b^/bf) B-12

For the bottom flange, when the neutral-axis is on the right of XX-axis, the minimum 
angle after considering both the cases of Figure 4.11, is tan~^[b^ /bj^) while the

maximum angle for the bottom flange is 90". Therefore, the following relationship 

can be written:

tan '[b^/bj^)<tan '(/)<90" B-13

The other relationships given by Equations B-6 and B-7 are still valid for this case.

Neutral-Axis passes through one flange and web

The extreme Case 8-8 of the pattern given by Figure 4.10 is used to determine the 

patterns and the relationship. It is found that movement of the neutral-axis for this 

case will not yield the first pattern, but the second pattern is obtained as depicted in 

Figure B.4. Equation B. 13 will also be valid for this case.
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For the top flange there is a decrease in the angle while the maximum angle is given 

by case 8-8, which is 180°. As there is a decrease of angle up to 90°, therefore 

Equation B-11 is modified for this case and is given as:

90° <tan"’(cr)<180° B-14

line #1

-0.1344 -0.05848

line #2
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0 02187
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0 9196

line #4

0 9240
10

1.7637

269(0.92)

-0 00035
1.8440 L—---- ----- ' 008

283 ( 0.92)

Figure B-4 Positive warping strain, one flange and web strain pattern
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Neutral-axis passes through the web only (both negative and positive warping 

strains)
When the neutral-axis pass through the web, the second pattern and transition 

phase are possible for both the positive and negative warping strains, while the first 

patterns are not possible. The relationships obtained for this case always fulfills the 

relationships obtained in the previous cases for both the warping strains and are not 

discussed here.

B.3.2 Neutral-axis patterns not intersecting the web

Warping applied in the negative direction

Neutral-axis passes through both flanges
Following the procedure discussed previously, the resulting patterns for the case 

when the neutral-axis does not intersect the web is determined by considering one of 
the extreme Cases (11-11) depicted in Figure 4.10. The movements of the neutral- 
axis for the top and bottom flanges are depicted in Figure B-5.
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Line #3 Line #4
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Figure B-5 Neutral-axis intersecting both flanges for Line No 1, 2, 3 and 4

For the top flange, it can be inferred from the figure that the neutral-axis moves 
towards the left of its initial position on addition of the warping strain and the X- 

component of the curvature of the top flange will be towards the negative XX-axis 
and is called the third pattern. During the movement there is an increase of angle 

which approaches up to an angle of 180°, while minimum angle for this case is 90° 

as can be deduced from Case 12-12 in Figure 4.10. For this case Equation B-14 will 

still be valid.

Further increase of the warping strain will shift the neutral-axis for the top flange out 

of the flange and into the transition phase. Further addition of warping strain will shift 

the neutral-axis to the right of the XX-axis and the X-component of the curvature of 

the flange will be towards the positive XX-axis and is called the fourth pattern. During 

the movement the neutral-axis intersects the flange at an angle nearly equal to 0°
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and the angle will increase on further addition of warping strain but will always be 

less than 90°, and Equation B-10 will still be valid.

In the case of the bottom flange, the neutral-axis movement will remain to the left of 

the XX-axis. On addition of warping strain it will move towards the right, but always 

on the left of the axis, as can be deduced from the figure.

For the bottom flange, it can be deduced from the figure that the angle will always 

decrease. Considering the pattern given by Figure 4.8(c), the maximum angle which 
this pattern can achieve considering any one of its extreme patterns, as depicted in

f
Figure 4.10 and the details of the section in Figure B-1, is 180° - tan -1

The angle for the bottom flange always decreases on addition of warping strain, and 

is always more than 90°. Therefore, based on the maximum angle, a relationship 

can be written :

90° < tan’'(/)< 180° - tan-
0.56f J

B-15

Neutral-axis passes through one flange
Considering the extreme Case 4-4 given by Figure 4.10, different patterns are 

obtained as depicted in Figure B-6. The movement of the neutral-axis for the top 

flange is the same as for the previous case when the neutral-axis passes through 

both flanges and results in the same patterns as can be deduced from the figure. In 

the case of the bottom flange, the nature of movement is the same as was observed 

in the previous case, as can be deduced from the figure.

Equations B-10 and B-14 are still valid for the top flange, whereas Equation B-15 is 

also valid for the pattern.
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Warping applied in the positive direction

Neutral-axis passes through both flanges
Considering the extreme Case 11-11 given by Figure 4.10, different patterns are 

obtained as depicted in Figure B-7.

For the case of the top flange, the neutral-axis will move towards the right of its initial 

position on addition of warping strain but remain on the left of XX axis as can be 

deduced from the figure. The maximum angle for the top flange is the angle which

Case 11-11 will make which is 180° - tan
0.5* b

. On addition of warping strain
f J

there is a decrease in the angle as can be deduced from the figure but the minimum 

angle will always less than 90°. Therefore the following reiationship can be written 

as

90° < tan ' {a) < 180° - tan‘ B-16
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Line #3 Line #4
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Figure B-6 Neutral-axis intersecting one flange for Line No 1, 2, 3 and 4.
The movement of neutral-axis for the bottom flange is such that first it moves 
towarids the left of the positive XX-axis on adciition of the strain and results in the 

third pattern. When the neutral-axis is on the left of the bottom flange, the angle will 
always increases on addition of the warping strain whereas the angle will always be 

less than the maximum angle given by Equation B-15. Equation B-15 is also valid for 

this case.

Further addition of the warping strain shifts the neutral-axis out of the bottom flange 

and result in the transition phase, and ultimately it is shifted towards the right of the 

flange on addition of the warping strain and result in the fourth pattern. When the 

neutral-axis shifts to the right of the bottom flange, it intersects the flange at an angle 

less than 90 degrees, as can be deduced from the figure. The minimum angle in this 
f , ^

case is tan' ,0.5*6/, whereas as the angle increases and it never reaches more

than 90" Therefore the following relationship can be written:
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Figure B-7 Neutral-axis intersecting both flanges for Line No 1, 2, 3 and 4.

tan -1 ^ b ^
w

^0.5*bfj
< tan*'(;)')< 90" B-17
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Figure B-8 Neutral-axis intersecting one flange for Line No 1, 2, 3 and 4 

Neutral-axis passes through one flange
Consi(dering the extreme Case 4-4 given by Figure 4.10, different patterns are 

obtained as depicted in Figure B-8.

In this case, the third pattern obtained in the previous case is not obtained as can be 

observed in the figure. Therefore, one neutral-axis pattern is suggested, i.e. the 

fourth pattern of the previous case and a transition phase before it.

The change of angle for the bottom flange will be the same as in the previous case 

as given by Equation B-16. For this type of pattern there are cases such as Cases 

13-13 and 14-14 when the angle for the top flange reaches a maximum of 180° as 

depicted in Figure 4.10, whereas on increase of warping strain angle for the top
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flange it can decrease down a minimum of 90° as can be deduced from Figure B-8. 

Therefore the following relationship can be written:

90° < tan-'(a) <180° B-18

B.4 ELEMENT YIELD SURFACE
B.4.1 2D- Element Yield Surface
Axial force acting on the bottom flange can be obtained as

Pj = la jtfC B-19(a)

Plastic axial yield load for the entire section is

P=(lA,*A,)p, B-19(b)

Dividing Equation B. 19(a) by B. 19(b) to obtain the yield axial force p^ \n the bottom 

flange in normalized form as:

P3 =
^ ^ 2aftfC

P, [2A,+A,'p,

Pi = a.
Itj-C

B-19(c)

where =(2^/ and ctj =

Moment acting in the X-direction of the bottom flange can be calculated based 

on Figure 4.24 as

B-20(a)
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Plastic moment capacity M^^for the entire section about the XX-axis (see Section 

4.2) is

B-20(b)

where c =/ A,.

f

Dividing Equation B.20(a) by B.20(b) to obtain the moment in the bottom flange 

in normalized form as

=

M^3 ^^(o.SZj)-2c^)

+0.5c'b^t„)= (T^ip.Sbj -2c^) B-20(c)

Substituting the value of c from Equation B. 19(c) in the above equation yields

2(7+0.5c'bj^t^)= (T^bjtj -p^A^

Dividing the above equation by cr^bjtj- and after rearrangement yields:

pUs I (bj + 0-5c't„bf) _ ^

a^.Aj bfCr^
B-21

B.4.2 3D- Element Yield Surface 
First Pattern

Axial force Pj acting on the top flange can be obtained as (Santhadaporn and Chen, 

1970)
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Pj = lOftfU B-22(a)

Dividing Equation B.22(a) by B. 19(b) to obtain the yield force in the top flange in 

normalized form as

Px =
 2(7ft

B-22(b)

Obtaining the value of a from the above equation gives

a = pA where ctj =

Moment acting in the local X-direction of the top flange can be calculated as 

(Santhadaporn and Chen, 1970)

= (o.25Afbf - 0.0833a'^r} -a^tf )cr^ B-23(a)

where =l/a

Dividing Equation B.23(a) by B.20(b) to obtain the moment in the top flange in 

normalized form as

"J.i =
2a^(0.25Afbf -0.0833Qr^^r}

B-23(b)

where c, = Af[bf +0.5c'r^)

Moment acting in the local Y-direction of the top flange can be calculated as 

(Santhadaporn and Chen, 1970)
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B-24(a)

Plastic moment capacity A/for the entire section about the YY-axis (see Section

4.2) is.

M^^=a^A^[d + 025Kc') B-24(b)

Dividing Equation B.24(a) by B.24(b) to obtain the moment m'j about the local Y axis 

in normalized form yields

^yl ~ fr

where c.^ = A^(d + 0.25b^c')

Obtaning the value of a' from the above equation gives

^ 6m^,,C2
a-/}

Putting the value of a' and a in equation B.23(b) yields

m^,Ci = 2cr, 0.25^/^ -0.0833
V J

<)-

B-24(c)

or

= Ajtjcr^ -\2m'y^cl -p^A^tj

Divide the above equation by Ajtj-cr^ and after some rearrangement gives

Pi
^ A^
AfAj

+ mxl

^ 2cdf ^
+ m

\2cl
= 1 B-25
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Third Pattern

Axial force acting on the top flange can be obtained based on Figure 4.26 as

- {a^ XjX2 'jcrj B-26(a)

Dividing Equation B.26(a) by B. 19(b) to obtain the yield force in the top flange in 
normalized form as

Px B-26(b)

Pi =
C7, (v4/ X^X2)

Obtaining the value of X2 from the above equation gives
(o-i4-PiA)

X2 =■

C„
X2 =

rTiXi

where Q =[a,A^-p,A^)

Moment acting in the local X-direction of the top flange can be calculated as:

Mxi =X|X2(o.56^ -0.333x, )cr^ B-27(a)

Dividing Equation B.27(a) by B.20(b) to obtain the moment in the top flange in 

normalized form as

=

2tT,x,X2 (o.56^ - 0.333x,)
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Putting the value of in the above equation yields

C
m c, =2cr]X,—^(o.56^-0.333xi) 

cr,X|

\.5C^bj^ -1.5w^,C]
X, =■

C

Moment acting in the local Y-direction of the top flange can be calculated as:

^ XjX2 ^

\ ^ J

f/
2 3

+ t/-X2)^,
v2 2 ,

+ X,X2

\ ^ J\

'^Jj}

3 2

which implies to

= cry^[o.5X(X2^y -0.333X1X2] B-28(a)

Dividing Equation B.28(a) by B.24(b) to obtain the moment about the local Y axis in 

normalized form as

=

! (T^[o.5x,X2?y-0.333X1X2]

M.
yp OyC^

Putting the value of x^ in the above equation yields

m^,iC2(TiXi = [o.5C^?y^(JiXi -0.333C^]

Putting the value of x; in the above equation gives

- -1.5m^iCi)+0.333C„^ = OB-29
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B.5 Obtaining tan p
B.5.1 Relationship between a,b' ,c and p

A straight line neutral-axis is taken when strain due to Mx, My and P are only 

considered and different possible patterns for the case is depicted in Figure 4.8. The 

initial positions for and of the neutral-axis, for a straight line neutral-

axis, are as defined in Figure A-1. If warping strain is added to the figure, the position 

of the neutral-axis will change only for flanges while it remains the same for the web. 

In the following a relationship is developed between new positionss of and

denoted as a and c respectively and between b' and p. Using this relationship 

P can be obtained W a , c and b^ are known.

Warping strain (like the pattern shown in Figure 4.9) is added to the strain field with 

rrij as the slope of the line of warping strain.

Top flange
Now consider the centre line of the top flange, as depicted in Figure A-1. The strain 
field in the YZ plane without the addition of warping strain is shown in Figure B-9

ZZ-Axis

Figure B-9 Strain field of the centre line of top flange before and after addition 

of warping strain
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The equation of the line in Figure B-9 can be written as

Z = -m2y-c[ B-30(a)

When Z = 0, y = -a^^^ 

Therefore,

m2 =

ong

Where Wj is the slope of line (in Figure B-9) of the strain field for the case when 

warping is not added to the figure, and from the figure it can be written as

m2 =
a + A^

On addition of the warping strain for the top flange a new line is obtained as depicted 

in the figure having slope m^ , The equation of the new line can be written as

Z = —m^y — c'^ B-30(b)

When Z = 0, y = -a 

Therefore,

/TZj =
a

The slope of the new line, m^ (shown in Figure B-9) is the summation of the slopes 

of the line of warping strain m, and slope of the original line /Mj. Mathematically it 

can be written as

m3 = m, -t- m2

B-30(c)

Putting the value of m2 and m^ in the above equation yields
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m, = •
c;Ai

j(a + Ai)
B-30(d)

Bottom flange
Now consider the centre line of bottom flange, as depicted in Figure A-1. The strain 

field in the YZ plane without addition of warping strain is shown in Figure B-10.

ZZ-Ax is

Zmid

Figure B-10 Strain field of the centre line of bottom flange before and after 
addition of warping strain

The equation of the line in Figure B-10 before addition of warping strain can be 
written as:

Z = -m^y + C2 B-31(a)

When Z = 0. y =

Therefore,

AW4 =
^orig

Where is the slope of line (in Figure B-10) of the strain field for the case when 

warping is not added to the figure, and from the figure it can be written as:
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m, =
c-A.

On addition of warping strain for the top flange a new line is obtained as depicted in 

the figure having slope Wj. The equation of the new line can be written as:

Z = -m^y + c'j B-31(b)

When Z = 0, y = c 

Therefore

m, =■

The slope of the new line, (shown in Figure B-10) is the summation of the slopes 

of the line of warping strain w, and slope of the original line m^. Mathematically it 

can be written as:

-m^ = —m^ B-31(c)

Putting the value of and in the above equation yield

m, = c'2^2

B-31(d)

Equating both the values of m, given by Eqs. B-30(d) and B-31(d) gives

cj'A, c'2^2

a(a + Aj) c(c-A2)
B-32
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It is known that Figure B-1 has a radius of curvature denoted as k then comparing 

Figure B-1, B-9 and B-10 c[ and c'^ can be related to k as

c[ =K**cos(tan '(y^)-90°) 

C2=k**cos(tan‘'{/3)-90°)

Replacing the above values in Equation B-32 results in

K * * cos(tan ' (yff) - 90° )a, k* * cos(tan '(/?)- 90° )a

a{a + Aj) :(c-aJ

From Figure B-9 and B-10 it is known that = a-hA; which

reduces the above equation to

^1 _ ^2 

a c
B-33

Comparing Figures B-9 and B-10 and if Zj and are as defined in Figure B-1 a 

relationship can be written as

Ltan(l80° - tan '(>^)) = -'x

a + A,

or

A. =
_ Z, -tan(l80° - tan

tan(l 80° -tan“' WiT

Similarly, from the figures, a relationship can be written as

Z,tan(l 80° - tan ’ (/5)) =
c - A,

or
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^ _ tan(l80° - tan '(/0))*c-L2 

^ tan(l80° -tan”‘(y5))

Putting the values of A, and Aj in equation B-33 gives

Z,, -tan(l80‘’ -tan“'(y5))*a _ tan(l80‘’ -tan"'(y5))*c-Z-2 ^ 

a

tan(l 80° - tan“’ (y^)) = c* Ly + a* L2

lac

B-34

where L, = O.SJ-h' and = 0.5<i + £>

B.5.2 Relationship between a,h,c and /3. and third neutral-axis pattern

Equation B-34 is valid for the first pattern (Figure 4.25) for the web but it is not 
applicable to the third pattern of the figure. Therefore certain changes are made to 

the above equation to obtain angle ^.

Consider Figure B.11, axial forces are related to the triangular shaded area AI as

XX-Axis

■D

in

■D

d

Figure B-11 Neutral-Axis passes through the web based on third pattern
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From the figure it can be said that

=^,v-2^1 B-35(a)

Obtaining

From the figure it can be said that

Assuming

(a' IJ, +0.5*Z; *r„)=2a'ytl

= 2^1
y

y
= 2^1

a'u; +a'Z;r„ +0.25*z; *r;: -2a'.41 = 0

2a'A\
(<i'+aX+0.25*(*)

tan(? = tan(l80‘’-tan '(/?)) 

Therefore Equation B-34 can be written as

cL +aLj
—!------^ = tan6>

lac

B-35(b)

B-35(c)

Comparing Figure B-1 and B-11 it can be said that

L, = +0.5tj- and Z-2 =d-l!^

Therefore putting the values of Z-y and L2 in Equation B-35(c) gives

(l( + 0.5r^ )c + (d-L'^- 0.5t^ )a

lac
= tan^
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From the Figure it can be said that tan^ = —, Therefore putting the value in the
a'

above equation gives

L(c + O-Sr^c + ad - al!^ - aO.Stj-

lac a

Putting the value of L[ from Equation B-35(b) into the above equation gives

la^Alc _ _ , nr 2a'Ala
7—---------------------------- :^ + 0.5tfC + ad-a0.5tf—r-,------- ^-------------------- r-r
(a +dt^+0.25*tl) ^^ [a +a t^+0.25*tl) _ 2a'A1 1

lac 0.25*tl)

2a'Alc+0.5tj^c{a' + a +(1.25*t^^+adp' +a'+0.25*1^^-a0.5tj^{a' +a'+0.25*2a'Ala

2a({a' +a't^. +0.25*r^,)

2a'A\ 1
[a' +a't^ + Q.25*tl) a'

2ci Ac+0.5^j-cia! +dt^+0.25*f^+adp! +a/r„+0.25*/^)-a0.5ry(a^ +dt^+(1.25*t^J\-2a'Ala

lac
= 2A1

O-S^tjcd^ -O.S^tjud^ +d^dal-lAdcA().5dtjtj:-lAcla-().5cltjtji+cl t^dahA 2f>^lp

-.125tj-tla + .25tl,da = 4acA B-36

In the above equation a' is the only unknown while other parameters are known 

parameters.

B.5.3 Relationship between a,b,c and J3. and second Neutral-Axis 

pattern
From Figure B-12 it can be said that

tan(9 = — 
b

B-37(a)
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where tan ^ = tan(l 80° - tan '(/5))and = L^-O.S* d

XX-Axis

Figure B-12 Neutral-Axis passes through the web based on second pattern

Therefore, equating Equations B-35(c) and B-37(c) and putting the value of L/(based

on Figure B-1) and can be written as

c{d -^2) + aLj Lj -0.5*d

lac

Solving the above equation for Lj gives

^ cdbg -H acd 
(cb^-ab^+lac)

B-37(b)

This Neutral-axis pattern is reciprocal of first pattern, and same formula will be valid 

for this case with length replaced by thickness. Therefore formula of p given in
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Equation 4.38(a) is also valid. In this case for the axial force for the web is , and 

a is replaced by bo and therefore b can be obtained as

K=P.ebl'^K
when Lj is known, b' can be determined as P2 +0.5<5f, when y is known (3 

can be determined by obtaining an equation based on Figure B-12 as

tan(l 80° - tan ' (y^)) = — B-38

B.5.4 Obtaining and lb„^^

From Figure B-13, following relationship can be concluded

^orig
0.5b„ + 0.5tf +y 

tan(l80° - tan~'

Oj = + 0.5bj * ^/^(l 80° - tan ' (y^))

^mid 0-5?/ * Cos{\. 80° - tan“' (y?))

In the absence of warping strain the section has one curvature, k . If it is assumed 

that curvature cause a unit strain in Z-direction related to its distance 02, then, 

flj * r = 1 can be written.

If strain for amid is considered as Zmid then *k = can be written. Therefore 

based on above two relationships following relationship can be written

V _ ^mid 
^mid ~

ai
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Following right hand rule and considering YY-ZZ plane centre line of bottom flange 

as drawn in Figure B-10 shows the strain of the mid bottom flange, Considering the 

above figure a relationship can be written as

Z *c/ _ ^mid ^orig
C2 =

c ■ +0.5bforig

XX-Axis

Figure B.13 Different dimensions of the beam to calculate and

This line will make a slope which can be related to other parameters of the figure 

and is written again as

=

orig
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When warping strain is added to the line of Figure B-10 another line is obtained 

having a slope Wj which is also shown in the figure, and following relationship is 

written again as

ms =

Now considering Figure B-13 following distances indicated in the figure can be 

related to (3 as

0.56 +tf - b'
lU] _ J______

tan(l 80^* - tan'’’ (/?))

fljg = 0.56^ + Ibl

a,3 = a,6 * 5m{l 80° - tan*' {j3))-(t^ * Cos(\ 80° - tan"' (y^))) 

a,! = a,g *5'/«(l80° - tan”'(;6)) 

ag = [b^ ~ )* 5'm(l80° - tan“'{/]))

a,g = ag + [ty * Cos{l 80° - tan"'

If strain related to ag,a,o,a,j,aj3 and a,g are Zg,Z,o,Z,j,Z,3 and Z,g, then they can 

be related to a2 as

7 -fL 7 7 7 and 7 -
a.

The difference of slope between and is the slope of warping strain m,, and

are related to each other by Equation B-31(c). The maximum value of warping strain 

can be obtained by its slope using the following relationship

=m,*0.5b^
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The maximum value of warping strain will be the same for both the flanges.

Therefore considering top flange on addition of warping strain, strains Zg,Z,o,Zj|,Zj3 

are change to new values of strains which are Zg„^,Z,o„^„„Z,,„^,„,Zi3„^„ respectively 

and can be defined as
^Snew ^warp ^8

Z =-r +7^\0new ^warp ^ ^\0

I new ~ ^warp ^11 

■^13 Hew ~ ^warp ^13

Therefore Neutral-Axis position before and after the addition of warping strain are 
shown in Figure B-14 below

Figure B-14 Position of Neutral-Axis in the top flange before and after addition 
of warping strain

Line#1 as indicated in the figure can be drawn in YY-ZZ plane as

Z8new

Figure B-15 Strain for line#1 after addition of warping strain
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Therefore a relationship can be written based on line #1

/W.
7 7-7^13/iew ^ISnew ^Snew

Similarly Line#2 as indicated in the figure can be drawn in plane as

ZtOnew

Figure B-16 Strain for line#2 after addition of warping strain

Therefore a relationship can be written based on line #2 as

lh„ h,
7 7-7^Unew ^l]new ^lOnew

^^new found based on the above relationship, Hence can be

obtained as

a ={lb\ —lb )/r,new V new new) f

388



APPENDIX-D

D.1 CALCULATING ROTATION FOR ELASTIC LIMIT LOAD
Experiment 1
Using Equation 2.37, rotation at the end p can be calculated and written again as

^ JG L-la tanh -
V la D.1

J can be calculated using Equation 2.32 for experimental section (details of which are 

given in Figure 3.5), therefore based on the dimension of the experimental section J 

worked out to be

J =9537.MSmrrP E=20\JGPa (From Section 5.2.1)

Therefore G, shear modulus can be obtained as

G =
2(1 + v)

having poisson’s ratio=0.25 , G = S0.6SGPa

h Ely
And as given from Equation 2.35(a) a = —P

L is the length of the sample which is 1.03m

2\ JG

h is the depth of beam centre to centre of flanges whose value is 96.76mm

Putting the given values will give a = 0.33

Putting the above values p obtained for an elastic limit torsion of 9.^55kN.m is

p = 9.91 rad =4.^
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Experiment 2

All the parameters will be the same as was in Experiment 1, Based on these parameters 

P obtained for an elastic limit torsion of O.ZlkN.m is

p = 0.n%rad= 10.^

Experiment 3

All the parameters will be the same as was in Experiment 1, Based on these parameters 

P obtained for an elastic limit torsion of QAQkN.m is

p = (i206rad =11.

D.2 CALCULATING BIMOMENT FOR ELASTIC LIMIT LOAD

Experiment 1

For an elastic limit torsion of Q.^5bkN.m using Equation 2.37 rewritten here as

T L
^7 max = —«tanh —Z niaX 7 r\h 2a D.2

All the values in the Equation are known, therefore will give

= 466.227V.m

which will give bimoment B as

B=.045kN-m2

Experiment 2

Similarly using Equation D.2 and the elastic limit load of 0.37kN.m bimoment 

obtained is
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B=A0kN-m2

Experiment 3

Similarly using Equation D.2 and the elastic limit load of 0.40 kN.m bimoment 

obtained is

B=MkN-m2

D.3 YIELD SURFACE VERIFICATION
D.3.1 Comparison theory (Chapter 4) with elastic limit load

Experiment 1
From Table 6.2 forces in normalized form can be written as 

6=0.32, m^=0.62, Wx=.018

To determine the point of formation of hinge, it is first required to determine mx/4,(as the 

Y-axis of Chapter 4 is X axis here)

Based on given 6=0.32 take /n^=0.68 so that their summation equal to 1

Using Equation 4.40(b) and (d) and not considering minor moment in the web gives

m_^i=0.50

m^;=0.18

From Equation 4.37(b) using the top flange

P3=0.0

Pt=0.243

Using Equation 4.40(a) P2 can be calculated as 

P2=-0.243

Therefore using Equation 4.37(b) for the web
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mx2=0A5

using Equation 4.40(c) ignoring mjj 

mxA=-45

Since mx< rrixA it means it is the case when loading if lie will be at the flat plateau. 

Therefore at this summation of my and b are considered. In this case it is less than one it 

means section is elastic.

Experiment 2
From Table 6.2 forces in normalized form can be written as 

6=0.69, my=0.22, mx=.29

To determine the point of formation of hinge, it is first required to determine mx>\,(as the 

Y-axis of Chapter 4 is X axis here). Using the procedure discussed above and using the 

equations described rrixA

Is calculated which is 0.43

Since mx< rrixA it means it is the case when yield surface if lie will be at the flat plateau. 

Therefore at this summation of my and b are considered. In this case it is less than one it 

means section is elastic.

Experiment 3
From Table 6.2 forces in normalized form can be written as 

6=0.76, my=0.22, mx=.3^ and p=0A

To determine the point of formation of hinge, it is first required to determine /r7x>^,(as the 

Y-axis of Chapter 4 is X axis here). Using the procedure discussed above and using the 

equations described itIxa is calculated which is 0.49
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Since mx< rrixA it means it is the case when yield surface if lie will be at the flat plateau. 

Therefore at this summation of niy and b are considered. In this case it is less than one it 

means section is elastic.

D.3.1 Comparison theory (Chapter 4) with non-linear load 

Experiment 1
As the load in the previous case were not reached the yield surface, therefore to 

determine the load which will lie in the flat plateau it is required that such a value of niy 

and b is required for which it reach the yield surface i.e. their summation equal to one. 

Therefore, the load calculated is ^.QkN, for this load values are

6=0.34, my=0.66, /n;c=..018

For these values using the same procedure m^A calculated which is 0.46

Since mx< iHxa and the summation of iriy and b are 1 it means load has reached the 

yield surface.

Experiment 2
Using the same procedure used in the previous section such load is calculated which will 

give summation of niy and b equal to one. Therefore, the load calculated is AlZhN, for 

this load values are

b=0.76, m^=0.24, mx=0.32

Using the same procedure described above rrixA calculated which is 0.41, Since mx< 

rrixA and the summation of rriy and b are 1 it means load has reached the yield surface.

Experiment 3
Using the same procedure used in the previous section such load is calculated which will 

give summation of niy and b equal to one. Therefore, the load calculated is 4.64 A:A^, for 

this load values are 

6=0.78, niy=0.22, nix=.^2 and jP=0.1

Using the same procedure described above rrixA calculated which is 0.49,
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Since mx< m^A and the summation of niy and b are 1 it means load has reached the 

yield surface.
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APPENDIX-E

E.3.1 Comparison theory (Chapter 4) with limit load 
Experiment 2
It is known that

b=0.5^, w_y=0.44, mz=0.60

To determine the point of formation of a hinge, it is first required to determine rrizA,- 

Using the procedure described in Appendix-D iVza calculated to be 0.45. As rVzA is less 
than rrjz therefore yielding is to be checked

Based on the given value of 6=0.51 take my=0A4 using Equations 4.40(b) and 4.40(d) 

and assuming minor moment in the web as zero, givesso that their summation equal to 
1.

Using Equation 4.40(b) and (d) and not considering minor moment in the web gives

mvi=0.475

myi=0.035

From Equation 4.37(b) now calculate

P3=0.068

Pt=0.295

Using Equation 4.40(a) P2 can be calculated as 

P2=-0.227

Therefore using Equation 4.37(b) for the web

mz2=0.15
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Using Equation 4.40(c) ignoring m/;, yield

Ar7z=.61

Since mz= rriz calculated it means the point has reached the yield surface.

Experiment 3

6=0.47, my=0..33, mz=A7, p=A

Using the same procedure calculated to be .76, which shows that the finite element has 

not reached the yield surface at that loading.
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