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Abstract

Computer systems that employ autonomous robots have been demonstrated in many areas including 

entertainment (e.g., robot soccer), defense (e.g., reconnaissance) and homeland security (e.g., disaster 

rescue). To ensure successful operation, autonomous robots in these applications must coordinate their 

behaviors towards achieving the goals of the system while respecting safety requirements. In a safety 

critical system, violations of the safety requirements might endanger human safety and possibly damage 

crucial or expensive infrastructure, therefore, the system must be reliable despite having unreliable com­

ponent,s (e.g., communication, sensors, or act.uat.ors). In addition, system scalability is difficult, to achieve 

because an increase in robot numbers results in a disproportionate increase in the required resources such 

as processing power, memory and communication bandwidth. Furthermore, mobile robots may be allowed 

to move in and out of the operational area (we term these robots ’dynamic participants’), resulting in 

the additional complexity of managing a varying number of robots in the environment. Indeed scalability 

problems are oft en t added by applicat ions resort ing t o using a fixed n\imber of robot s or assuming some 

upper bounds on robot numbers. These challenges of reliability (building a reliable system over unreliable 

communication and hardware), and scalability (varying robot numbers) have only been addressed jointly 

for specific problems.

This thesis presents Comheolai'ocht - a systematic approach to design coordination protocols for dy­

namic participants in real-time distributed systems allowing autonomous mobile robots to achieve their 

goals safely. In particular, the approach ensures that a system’s safety constraints are respected in the 

event of robot breakdown and imperfect communications, and in the presence of dynamic participants, 

allowing entities to move in and out of the operational area. The thesis presents an approach to the design 

and development, of multi-robot coordination protocols using thrtx’ systemat ic steps. The first step, system 

modeling, captures the system specification by recording the entitys’ parameters and behaviors, and any 

constraints that exist in the application. The step promotes reusablility by providing an abstraction for 

commonly seen constraints (e.g., the ’robots cannot perform some actions at the same time’ constraint is 

modeled by a shared resource problem abstraction). These abstractions allow the comparison and use of 

established resource sharing approaches (i.e., scheduling or mutual exclusion). The second step, system 

analysis, analyses the system specifications captured in the first step to obtain two results. Firstly, it de­

termines whether Comheolai'ocht can provide a reliable solntion to the multi-robot coordination system. 

Secondly, if a reliable solution exists, the analysis step outlines a coordination strategy that defines what 

entities can/cannot do in various situations so as to ensure safety in the system. These two results are



obtained by analyzing variables and behaviors whose impact might violate the system constraints, and 

whether the robot has control over these variables and behaviors. In particular, a coordination strategy 

for a reliable solution exists if the robot can deterministically control its variables such that it can avoid 

violating the constraints during the periods which the robot needs to coordinate with other robots. The 

third step, protocol derivation, derives the system's coordination protocols by integrating the coordination 

strategy from step two with our coordination pattern (CwoRIS). CwoRIS guarantees exclusive access to 

resources despite imperfect communication and contributes to the reliability non-functional requirement. 

The derived protocols support scalability by taking advantage of locality in space and time; only the 

necessary information is sent to the relevant parties.

Comheolai'ocht is evaluated on two fronts. Firstly, the thesis demonstrates that the resulting coordina­

tion protocols arc reliable; it shows that the derived protocols prevent deadlocks and live-locks and ensure 

exclusive access to shared resources despite communication errors. Secondly, we demonstrate a practical 

application with a simulation of an intelligent transportation system in which autonomous vehicles co­

ordinate by driving safely on a road. Results in the simulation reinforce the argument that the derived 

protocol is i) reliable as there arc no collisions, and ii) scalable as there is an upper bound on required 

resources.

The thesis shows that Comheolai'ocht can be used to develop protocols for multi-entity systems that 

are both reliable and scalable; and that arc not supported by existing coordination methods.
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Chapter 1

Introduction

This thesis presents Coinlieolai'ocht - a systematic approach to design coordination protocols for dynamic 

participants in real-time distributed systems allowing autonomous mobile robots to achieve their goals 

safely. Using Comheolai'ocht’s three steps, developers can develop reliable distributed coordination proto­

cols for multiple autonomous systems that are scalable with a varying number of mobile robots (entities). 

These developed protocols provide scalability by utilizing local communication and provisioning for enti­

ties’ arriving and leaving the local operational area; this thesis terms such entities ’dynamic participants’, 

the property 'dynamic participation’ (DP) describes a system with dynamic participants. These developed 

protocols also allow entities to reliably achieve their goals while ensuring system-wide safety constraints 

arc met, despite having only unreliable communications, sensors and actuators.

This chapter first describes the motivations for this work. After this, the chapter defines the concept 

of coordination and gives an overview of existing related work. Section 1.3 provides a categorization of 

coordination problems and formally introduces the set of problems that this thesis addresses. Section 

1.4 describes the challenges to be overcome and Section 1.5 describes the approach taken by this work. 

Section 1.6 presents the goals and contributions. Section 1.7 outlines the thesis scope, and issues that will 

not be covered. Finally, a road map of the thesis and a summary of the chapter are presented.

1.1 Motivation

Advances in robotics and mobile communication have enabled the development of autonomous mobile 

robot systems. Instead of using a single complex robot, the potential advantages of deploying multiple 

autonomous mobile robots are numerous (Dudek et al., 1996, Cao et al., 1995, Sotzing et al., 2007). A 

multi-entity system’s intrinsic parallelism provides robustness to single entity failures, and in many cases.



can guarantee belter time efficiency |Dudek el al., 1996|. In addition, some tasks may be inherently loo 

complex (or impossible) for a single robot to accomplish |Cao ct ah, 1995|.

As systems can either have centralized or distributed control. The issue of whether centralized or 

distributed methods are better is controversial. On one hand, centralized methods might suffer from 

single points of failure, create choke points when system load increases, and or require special equipment 

(e.g., for the centralized controller). On the other hand, centralized methods arc relatively simpler to 

implement and optimize, and provide a naturally centralized portal to track and control robots. In this 

thesis, a distributed controlled system is favored because the intended applications, multi-entity systems, 

are naturally distributed. Although there are multi-entity coordination solutions using a centralized 

approach (e.g., the intersection manager [Dresner, 2009]), such methods have the disadvantages outlined 

above.

Computer systems that employ multi-entity coordination have been demonstrated in many applications 

including intelligent transportation systems [Dresner and Stone, 2006a, Dao et al., 2008a, Qu ct ah. 2010], 

robotic soccer [Lau et ah, 2009, Mota ct ah, 2011]. multi-robot exploration [MacKenzie, 2003, Elizondo- 

Leal ct ah, 2008], and construction ]Wawerla ct ah, 2002, Wcrfcl and Nagpal, 2006], On one hand, each of 

these applications must achieve their own functional requirements such as scoring goals in robotic soccer or 

completing a construction. On the other hand, non-functional requirements like reliability and scalability 

arc just as important [Emmerich, 2000].

Most multi-enlily systems have their own specification of reliability. For instance, autonomous un­

derwater vehicles in a mine-countermeasure mission must find all the minc-like-objecls despite vehicles’ 

failures [Saricl ct ah, 2006a, Sotzing et ah, 2007], and autonomous vehicles in an intelligent transporta­

tion system must not crash [Bouroche, 2007, Dresner, 2009]. Such multi-entity systems may have some 

goals that must eventually be satisfied or some safety constraints that must be satisfied at all times. The 

autonomous underwater vehicles discovering all mine-like objects is an example of a system’s goal and 

vehicles not crashing is an example of a system’s safely constraint. The combination of many different 

entities may result in a complex system where the entities’ goals and safety constraints arc interdepen­

dent. To ensure successful operation, these autonomous robots must coordinate their behaviors towards 

achieving the goals while respecting the safety requirements. A categorization of the set of coordination 

problem goals and constraints is provided in Section 1.3.

In addition to being reliable, a multi-entity system may be required to scale in the number of entities 

deployed. For instance, users may want to deploy more autonomous underwater vehicles to search for the 

mine-likc-objects so as to complete the operation faster. In addition, some systems may require support 

for dynamic participation. For instance, users may want to introduce additional entities to an operational
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Figure 1.1: A typical robot architecture

system without restarting the system (thereby increasing efficiency), or failed robots can be removed for 

repair without stopping the whole system (thereby reducing system-down time).

1.2 Background

A multi-entity system is composed of many entities, where each entity itself can be considered a system. 

The first sub-section presents the different components within an entity and introduces the responsibilities 

of the coordination component. Section 1.2.2 then defines coordination in the context of this thesis. 

Finally, Section 1.2.3 provides an overview of existing work on coordination and shows that no existing 

generic protocols supports both reliability and dynamic participants.

1.2.1 Distributed multi-robot/agent systems

The typical components in a mobile entity arc sensors and actuators, perception, control, world repre­

sentation. deliberation, communication and coordination [Sotzing et al., 2007. Ren and Sorensen, 2008, 

Campbell et al., 2010]; a typical architecture with the common components for a robot is shown in Fig­

ure 1.1. A robot uses its sensors to read information, and fusion algorithms to combine the data into 

a common picture of the robot’s situation; together, the sensors and fusion algorithms form the robot’s 

perception system [Zhang et al., 2008, Broggi et al., 2008, Aragues et al., 2011). Information from the 

perception system could be stored in a common format at a centralized place, or could be transferred
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directly to the appropriate modules. Iiiforiiiatioii store at the centralized place forms the robot’s world 

representation. Some work implements the world representation using a real-time database (Sotzing et ah, 

2007, Lau et ah, 2009, Mota et ah, 2011|. Others define a common data format (Papp et ah |2008| world 

model) or ontology concepts [Tsai et ah, 2008, Hulsen et ah, 2011] describing information in the world 

representation. A robot’s actuators allow it to perform actions in the environment, while the robot's 

control component sends commands to the actuators to carry out the desired actions. The actuation 

component (control and actuators) is responsible for performing the actions accurately. A robot’s delib­

eration component plans the robots actions in order to achieve its goals; examples of such plans arc route 

planning |,Iagadeesh and Srikanthan, 2008) and learning [Panait and Luke, 2005, Bazzan, 2009, Aragues 

et ah, 2011]. Multi-robots systems usually include two more modules, communication and coordination. 

Communication can include many layers with each layer focusing on delivery capabilities like accessing 

physical communication devices, routing of messages and providing geo-casting capabilities. The robot’s 

coordinal ion layer lire in the middle (Section 1.2.2 formally defines the roh; of coordination). In summary, 

an informal description of each component is: the deliberation component tells a robot the tasks to be 

done, the perception component reads information from the environment and stores it in a common world 

representation, the coordination component takes the tasks from deliberation as input, reads the world 

representation of the current situation, uses the communication component to interact with other robots 

to find out when/whether each task may be performed, and tells the actuation component to perform the 

task at some particular time.

1.2.2 Coordination

There are many definitions of coordination [Omicini and Ossowski, 2003, Parunak et ah, 2003]. In order 

1.0 scope this work, this thesis adopts the definition by Bouroche |2007| which classifies coordination as:

“the management of interactions both amongst entities, and between entities and their envi­

ronment, towards the production of a result”.

and ’interaction’ is defined as:

“any action that may causally influence the action of other entities”.

’Result’ captures the goal of the system/entity.

1.2.3 Coordination protocols

While there are many real-time middleware systems (e.g., [Casimiro and Verissimo, 2002, Schemmer, 2004, 

Allouche and Daigle, 2006, Bouroche, 2007]) that support entity coordination, to the author’s knowledge,
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there are no generic coordination protocols that support dynamic participants, ensure entity safety in 

the presence of imperfect communication and entity failure, and ensure that there are no deadlocks or 

live-locks.

Section 1.2.3.1 defines the properties of a reliable mult i-entity system in t he context, of this work. 

Section 1.2.3.2 then defines real-time system and provides an overview of how Comheolai'ocht. specifies 

and implements the real-time requirements in a coordination system. Lastly, Section 1.2.3.3 describes the 

dynamic participants property.

1.2.3.1 Reliable multi-entity systems

A system’s reliability can be defined in terms of safety and liveness properties. The safety property as­

sets that nothing bad happens and the liveness property asserts that something good eventually happens 

[Kramer and McGee, 1999], The ISIS project [Birman et ah, 1984] is a high-level programming plat­

form for reliable distributed systems. ISIS strategically inserts checkpoints for transparent replication, 

these replications allows the developed distributed system to achieve forward progress and fault tolerance 

[Birman et ah, 1985],

A system’s safety constraints implement the safety property, it describe conditions that must be 

satisfied at all times. If a safety constraint is not satisfied, the system is considered to have failed; in a 

safety critical system such failures may cost human lives [Kopetz, 2011]. Many multi-entity coordination 

protocols support maintaining a system’s safety property despite communication failures [Casimiro and 

Verissimo, 2002, Schemmer, 2004, Bourochc et ah, 2006, Dresner and Stone, 2006a, Ven'ssimo, 2006]. 

While most protocols allow safety constraints to be specified, to our knowledge, only Bouroche [2007] 

and Schemmer and Nett [2003b] provide methods to ensure mutual exclusion (i.e., that entities will not 

access the same shared resources at the same time) in a multi-entity system with dynamic participants 

and imperfect communications. Although Schemmer and Nett [2003b] provide scheduling of exclusive use 

of resources, it requires a centralized entity and assumes that there are at most omission degree (OD) 

number of consecutive incorrect messages. To our knowledge, support for entity failure has only been 

seen in specific applications [Sariel et ah, 2006b, Yared et ah, 2007, Dresner and Stone, 2008a|; no generic 

protocols ensure system safety properties despite entity failure.

The liveness property ensures that the system’s and entities’ goals are achieved. This implies that the 

system should not have deadlocks or live-locks [Tai, 1994, Ho et ah, 2005, Padua, 2011[. Many mutual 

exclusion protocols have been shown to be free from deadlocks and live-locks [Ricart and Agrawala, 

1981, Mackawa, 1985, Agrawal and Abbadi, 1991]. However, few multi-entity coordination protocols arc 

evaluated against this requirement. To our knowledge, multi-entity coordination protocols that are proven
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deadlock and live-lock free only support, specific applicat ions (c.g., Yared et. al. 2007) or do not. support, 

dynamic participants [Allouche and Daigle, 2006].

1.2.3.2 Real-time Programs

Real-time programs must guarantee response within strict time constraints, these constraints arc ofteti 

referred to as deadlines [Bcn-Ari, 2006]. In Comheolai'ocht, the development of protocols for the coordi­

nation of real-time distributed systems follows three steps:

1. System’s constraints with respect to events happening sequence (time) are specified (See Chapter 3).

2. System’s model is analysed to determine whether the situations where real-time decisions arc re­

quired (See Chapter 4).

3. Deadlines are mapped into the physical space and exists in the form of decision points-, an entity 

must make some decisions before arriving at the decision point. (See Chapter 5).

1.2.3.3 Dynamic participation

A system where entities may join or leave the system is sometimes called an open system ]Bouroche, 

2007]. However the term is also used to describe computer systems that provide some combination of 

interoperability, portability, and open software standards ]Zimmcrmann, 1980. Garnd and Kumaraswamy, 

1993]. The term ’open system’ is also used in areas such as physics ]Von Bcrtalanfly et al., 1950], control 

theory ]Pritschow et al., 1993] and organizational behavior ]Pondy and Mitroff, 1979]. On the other 

hand, the terms dynamic participants and dynamic participation are seldom used, and the few uses also 

implies the property of entities entering and leaving the system. For instance, Chung et al. ]1994] describe 

dynamic participation in a conference as “participant to dynamically join and leave a computer-based 

conference that is already in progress”. Moreover, besides entities joining or leaving, allowing dynamic 

participants in this thesis admits a potentially high-rate of entities joining and leaving the system. Two 

properties of dynamic participation systems arc:

Simultaneous arrival Due to many entities arriving and leaving, entities joining the system at the same 

time is common.

Absence without notice Entities may (want to) leave the system at any time; they may not wait for 

the system to ’register’ their leaving before being absent. This implies that an entity cannot be 

depended upon to notify the system that it is leaving.

14



Most protocols support dynamic participants by requiring entities to go through a joining and leaving step 

[Murphy ct ah, 2001, Scheinmer and Nett. 2003b. Bouroche, 2007). The joining step is used to update new 

comers with information about the scenario: it is implemented cither by freezing everyone else [Murphy 

et ah, 2001 [, using a fixed eniity to send the update information [Schemmer and Nett, 2003b[ or waiting 

and list ening for a cert ain period [Cunningham and Cahill, 2002[. The usage of a fixed entity implies some 

form of centralized decision making that faces the problems discussed earlier (Section 1.1), and freezing 

everyone sacrifices efficiency especially when there could be many entities entering and leaving the system; 

as such, this work adopts the wait and listen method.

Most middleware systems detect entity absence by using time-outs, such that entities that arc not 

heard from for a period of time arc removed from the system [Schemmer and Nett, 2003b, Cunningham 

and Cahill, 2002[. However, a silent entity may cither have left the system or failed. Unlike an entity who 

left the system, a failed entity is still physically in the system’s environment and may cause harm to other 

entities. For instance, a broken down autonomous vehicle may stop suddenly, and crash with another 

vehicle. To the author’s knowledge, there are no protocols defining entity behaviors in preparation for 

and reaction to other entities failure. Comhcolai'ocht allows developers to specify an entity’s behavior 

when it fails, and makes allowanct^ aud defines cont ingency behaviors for ot her ent.itiits when a failure is 

detected. Note: undetected failures arc not in the scope of this work.

1.3 Coordination Problem Categorization

This section provides a categorization of coordination problems based on event ordering; an ’event’ in 

this context can be cither an entity performing some action, something happening in the environment or 

t he passage of t ime. The first subsect ion present s a classificat ion of event, ordering const raints. Folkjwing 

this, a classification of event ordering at a system-level is pnsented. The categorization gives an overview 

of which problems can be solved by using Comheolai'ocht and which other problems are not covered.

1.3.1 Events ordering constraints

This section provides a classification of coordination events based on their ordering constraints within a 

coordination problem. These ordering constraints will be used in Chapter 3 for modelling events occurance. 

Lamport [1978[ presented the happened before relation for specifying time in distributed systems, the 

relation consists of three conditions between two events a and b:
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1. If both a and b is in the same process and a comes before b tlien a ^ b,

2. If a is the sending of a message of a process and b is the receipt of the same message by another 

process, then a ^ b.

3. If a —> 6 and b c then a c.

Chapter 5 derives distributed coordination protocols using properties in the happened before relation 

[Lamport, I978j. However, the constraints specified in Chapter 3 and the classification of coordination 

problems below refers to the physical time. Let E represents the set of events in a coordination problem, 

two events, a, b G E, can be subject to one of the following constraints with respect to the physical time:

• bf(a,b): a must happen before b.

• st(a,6): a must happen at the same time as b.

• dt(a,6): a must not happen at the same time as b.

• nr (a, 6): a and b have no ordering requirements.

Based on these four constraints, this section provides a classification of coordination events.

1.3.1.1 Same-time events

Same-time events have the constraint st(a,b); the events, a and b, must happen at the same physical 

time. Entities who are required to perform events at the same time (c.g., multi-robot formation problems 

[Zavlanos and Pappas, 2007|, rendezvous problem [Kingston et ah, 2005. Munz et ah, 2008[ and flocking 

problem [Olfati-Saber, 2006, Ren and Sorensen, 2008, Munz et ah, 2008, Xiong et ah, 2010[), usually 

assume the consensus property [Fischer et ah, 1985, Ren et ah, 2005, Olfati-Saber et ah, 2007, Chocklcr 

et ah, 2008[. It has been shown that consensus cannot be solved deterministically in asynchronous dis­

tributed systems in the presence of failures [Fischer et ah, 1985, Lynch, 1996[. Furthermore, Chocklcr 

et ah [2005j show that knowledge of the total number of nodes is required to solve consensus in a syn­

chronous system even with the assumption of eventual collision free messages; this knowledge is not freely 

available in a system with dynamic participation.

The same-time event constraint is transitive and reflexive, i.e.,:

• Transitive: st(o, b) A st(b, c) => st(a, c)

• Reflexive: st(a,b) => st(b, o)
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Couihcolai'ocht focuses on systems with dynamic participants and does not assume perfect communica- 

tions. These propert ies make achieving consensus (which may be required by same-l ime events) difficult, 

if not impossible. As such, this work focuses on problems with different time events (Section 1.3.1.2) and 

sequential events (Section 1.3.1.3), and does not support problems with same-time event constraints.

1.3.1.2 Different-time events

Different-time events have the constraint dt(a.b). the events, a and b. must not happen at the same 

physical time. We define dt(o,6) as 'a must not happen at the same time as b’. (-ist(a,6) is ambiguous 

and is not used since it may also mean ‘not (a must happen at the same time as b)’, i.e., that there are no 

ordering constraints requiring that a and b must happen at the same time). An example of a different­

time event problem is collision avoidance [Ferlis, 2002, Yared et ah, 2007, Frese and Beyerer, 2011], where 

entities must not occupy the same space at the same time in the environment, otherwise the entities 

collide. Problems with different-time constraints can be abstracted as shared-resource problems, where 

the entities performing a and b require the same piece of shared resource. In this abstraction, entities 

cannot use the same shared resource at the same time (they must use it at different times). Exclusive 

access to shared resources can be ensured either by scheduling or by mutual exclusion. Scheduling involves 

allocating some time period for each entity to access the shared resource. Mutual exclusion protocols 

ensure that only one process (entity) can be within the critical section (using the shared-resource) at 

one time. Current centralized scheduling methods jPinedo, 2008], usually require that the system has a 

clear idea about resources usage patterns whereas distributed scheduling methods [Liu et ah, 2008, Zhou 

et ah, 2010, Sharma et al., 2010] seldom provide guarantees to exclusive allocations during communication 

failures. Mutual exclusion use either token- [Chang et al., 1990, Naumann et al., 2002] or permission- 

based [Maekawa, 1985, Wu et al., 2008, Borran et al., 2008a, Attiya et al., 2010] methods. Dynamic 

participation makes the management of tokens more challenging, while limited knowledge of the number 

of nodes prevents consensus in permission-based approaches.

The different-time event constraint is reflexive but it is not transitive;

• Reflexive: dt(a, 6) => dt((), a)

• Not transitive: dt(o, 5) Adt(5, c) ^ dt(a,c)

Comheolafocht focuses on solving different-lime events. As mentioned, dynamic participants and imperfect 

communication makes achieving consensus difficult if not impossible, therefore, protocols developed using 

the Condieolai'ocht approach do not assume consensus. Instead, these protocols use a concept introduced 

by Bourochc [2007] whereby:
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1. Entiljcs are responsible for respecting the different,-t,ime event, ordering constraints

2. An entity may sent a proposal to relevant entities announcing the entity’s intention to perform some 

actions that may violates a contraint(s)

3. Every entity that receives such a proposal implicitly agrees to the proposal and gives way to the 

sender

4. The entity may perform its actions only after it is certain that every entity has given way to it

A protocol implementing this concept does not require consensus; only the sender knows the outcome 

of its proposal (whether everyone has receives the proposal), a receiving entity only knows that it must 

respect the constraints.

1.3.1.3 Sequential events

Sequential events have the constraint bf(a,b), i.e., event a must happen before event b. Most problems 

with seriucntial constraints implement special rules for specific situations, making such solutions not easily 

reusable. An example of a problem exhibiting sequence constraints is the construction problem [Wawerla 

et ah, 2002, Wcrfel and Nagpal, 2006], where robots construct a building by placing objects in some order. 

The sequential event constraint is transitive but not reflexive:

• Transitive: bf(a, b) A bf(f), c) => bf(o, c)

• Not reflexive: bf(a,6) => -ibf(b, a)

Comhcolai'ocht supports problems with sequencing constraints using two tools: priority and preemption.

1.3.1.4 No time relation events

Two events may not have time constraints between them nr(a,b), however, this does not imply that the 

events are unrelated or that the problems are trivial. An example of a problem with no time relation 

is task allocation [Huang et ah, 2008, Gerkey and Mataric, 2004]. The task allocation problem involves 

matching robots to tasks so that certain parameters are optimized (e.g., completion time).

The no time relation event constraint is reflexive but not transitive:

• Reflexive: nr(a, 6) => nr(b, a)

• Not transitive: nr(a,6) Anr(6, c) ^ nr(a, c)

This work only focuses on reliability and scalability, it docs not provide support for the optimization of 

solutions.
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1.3.2 System event ordering

Tills section provides a characterization of coordination problems by the ordering constraints on the events 

produced. In particular, coordination problems are categorized as total-order, partial-order and no-order 

based on their requirements on event ordering.

In this section, let C represent the full set of ordering constraints of the problem; that is, C is the 

transitive closure and reflexive closure of the event, ordering constraints. The table below is a summary 

on t he reflexive and transit ive relations on event, ordering const raint.s.

Same-time Different-time Sqeuential No time relation

Transitive yes no yes no

Reflexive yes yes no yes

1.3.2.1 Total order

For a.b € E. let bf(o,ft) and st(a,h) represent the constraint that "a must happen before b’ and ‘a must 

happen at the same time as b’ respectively. A coordination problem is a member of the ‘total order’ group 

if and only if

Va, be E.a ^ b,C n {bf(a,b), bf(b. a), st(a, b)} / 0

That is, coordination problems in the total-order category are composed of events that occur in a fixed 

sequence; every event has a constraint of cither happening before, after or at the same time as another 

(different) event. An example of such a problem is for two robots (A, B) to pull a long pole out of the 

ground. In this scenario, each robot can perform one of the three actions of ‘grab’ (g), ‘pull’ (p) or ‘release’ 

(r). A fixed sequence to get the pole out of the ground is “g-A, p-A, g-B, r-.A, p-B, g-A, r-B, p-A ...” 

Note that the sequence of actions that robots can take is fixed; such that there does not exist two events 

in the sequence that can be swapped. Coordination problems with a total ordering have a unique event 

sequence, therefore this sequence can usually be calculated in advance to save online processing.

1.3.2.2 Partial order

The partial-order category features events with a constrained ordering relative to some other events but 

does not require a fixed sequence of all event s.

-itordlE) A 3a, 6 € E, o 7^ f), C n {bf{a, b), bf(b, a), st(a, b),dt(a, 6)} / 0
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That is, some events in a partial-order coordination problem have a constraint of either happening 

‘before’, ‘after’, ‘at the same time’ or a ‘different time’ as each other and these events do not, have a fixed 

ordering. An example of a partial-order problem is coordinating vehicles in a road intersection |Naumann 

et ah, 2002, Dresner, 2009]. At a road intersection, there are constraints such as 'vehicles in the same 

direction can move at, the same time with the vehicle in front moving first’ and ‘vehicles with paths that 

intersect each other must not cross the intersection at the same time’. Although partial-order problems 

have fewer constraints than total-order problems and look simpler, the partial-order problems are seldom 

provided with a predefined operating sequence. Therefore coordination methods have to discover the 

event sequences at run time that maintain the ordering constraints.

Comheolaiocht focuses on solving partial-order problems. However, only support for the bf and dt 

constraints arc implemented.

1.3.2.3 Non ordered

The category of non-ordered coordination problems docs not have any sequencing constraints between the 

events.

Va, b e E,a ^ h, nr(a, b)

These events can happen in any sequence and the problem is simpler with respect to event ordering. 

On the other hand, these problems are usually coupled with some other constraints. An example of this 

problem category is the exploration problem (Section 2.2.3), where a group of robots needs to search a 

fixed area opt imizing some paramct.er stich as minimal energy usage or fast.est complet ion t ime. Rerbots 

in the exploration problem can search their assigned areas without ordering constraints.

1.3.3 Summary

In summary, Comheolaiocht supports the definition and implementation of different-time ordering and se­

quence ordering constraints. Both mutual exclusion and scheduling versions are supported for implement­

ing different-time ordering constraints. Problems with sequence ordering constraints can be supported in 

Comheolaiocht using priority and preemption. As such, Comheolaiocht supports a sub-set of problems 

with partial-order events; the subset with same-time ordering constraints is not supported.
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1.4 Challenges

This section describes the challenges facing a coordination protocol for dynamic participants in a dis­

tributed real-time system. The section groups these challenges into three categories: scalability, safety, 

and progress.

1.4.1 Scalability and limited resources

In some systems, there may be many entities. However, an increase in entity numbers may result in a 

disproportionate increase in the required resources like processing power, memory and bandwidth.

When the number of entities increases, the total available processing power and memory available 

increases proportionally (linearly) while the available network bandwidth does not change (constant). 

However, if each entity needs to perform some calculation or record information about all other entities, 

then the total required processing power and memory increase rate is polynomial to the number of entities. 

The required communication depends on the coordination protocol, but even when every entity only sends 

one message there is still a linear increase in communication usage in limited constant bandwidth. This 

disproportionate increase in required resources and availability creates a barrier to the ability for a system 

to scale in entity numbers. Section 2.1.4.1 presents a more detailed analysis of this non-uniform scaling 

problem. However, in order to support scalability, a coordination protocol must ensure that the rate of 

increase in required resources is slower than or at least at the same degree as that of the available resources 

(i.e., constant for bandwidth, and linear for memory and processing power usage).

One approach is to exploit the observation that entities in mobile environment are typically interested 

in events produced by other entities in the vicinity [Meier and Cahill, 2002j and limiting coordination to 

the local context. However, this results in dynamic participation (with respect to the local context), i.e., 

entities may arrive simultaneously and becomes absent without notice. Entities entering the system at the 

same time (simultaneous arrival) compete for resources in two dimensions: the environmental resource of 

space and the computational resource of bandwidth, memory and processing power. This implies that 

the protocol needs to ensure that physical entities do not collide in the physical space while they try to 

acquire the computational resources (e.g., bandwidth) required for coordination.

In order to be scalable, Comheolai'ocht must ensure that usage growth is slower than or at the same 

degree as resource growth; to limit usage growth, protocols developed using Comheolai'ocht only sends and 

calculates relevant information. The utilization of geographic relevance to preserve resources results in 

distributed computation and dynamic participants: protocols developed using Comheolai'ocht must handle 

both simultaneous arrival and the absence without notice properties.
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1.4.2 Reliability: safety and errors

Figure 1.1 shows the coordination component lying at the center of perception, actuation, deliberation 

and communication. This implies that the coordination component has to overcome the limitations of the 

components it is using (perception, actuation and communication) to support the deliberation component. 

The challenge is to support a deliberation layer with safety-critical requirements using components that 

might exhibit failures.

Comheolai'ocht aids coordination protocols design that take into consideration of errors, the handled 

errors includes 1) entities’ inaccurate localization and control, 2) entity breakdowns and 3) imperfect com­

munications. Inaccuracies in the perception and actuation components (c.g., GPS, control) arc handled 

by prediction algorithms [Dao et al., 2008b, Dao, 2008| and fusing information from multiple overlapping 

sensors [Broggi et al., 2008, Ferguson et ah, 2008. Campbell et ah, 2010). Current research shows that 

such localization and control is not perfect. In Comheolai'ocht, inaccuracy bounds (i.c., localization and 

other sensory inputs) may be specified. Because entities may breakdown due to disturbances from the 

environment or wear and tear, coordination protocols developed using Comheolai'ocht must handle situa­

tions where entity (or components within an entity) breakdown, the method allows the specification of the 

entity’s actions during a breakdown and a time iipperbound for detection of the component breakdown. 

By treating an entity (or component) breakdown as actions, Comheolai'ocht is able to reuse tools for the 

analysis of entity’s behaviour; however, Comheolaiocht must therefore handle actions that may be invoked 

non-intentionally. In addition, mobile entities typically communicate over a wireless network where mes­

sage collisions are hard to detect, causing unpredictable latency or missing messages; this implies that 

communication is highly unreliable (Gaertner and Cahill, 2004, Hughes et al., 2004).

Entities in a system usually have some objectives to satisfy (Section 2.1.2.4). Safety constraints 

specify a condition that must be true at all times. In particular, the violation of the safety constraint 

is unacceptable in safety critical systems as the failure may cost human lives (Section 2.1.2.2). Systems 

that provide safety guarantees even when sub-systems fail are called fault-tolerant systems. Fault-tolerant 

systems can be designed by incorporating additional components and algorithms which attempt to ensure 

that occurrences of erroneous states do not result in later system failures |Randell et al., 1978). Dealing 

with faults usually involves three steps: detection, isolation and recovery |Li and Ramaswami, 1997).

One of the challenges in failure detection is that entities cannot distinguish between deficient commu­

nication and the absence of other entities [Bouroche, 2007). Another challenge in a multi-entity system is 

that the failure of a single entity might propagate and cause other entities to fail; the coordination sys­

tem must isolate the fault. For instance, Dresner and Stone [2008a] describe a situation where a vehicle
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failure in a cross junction may resnlt in many vehicles colliding. Although their protocol for ’preventing 

catastrophic failures’ lowers the number of chained collisions, it does not totally prevent chain-collisions, 

causing the implementation to be unsuitable in the real environment where human lives are at stake.

In order to be reliable, protocol developed using Comheolaiocht must ensure that the safety constraints 

are satisfied at all times despite inaccuracies in both the f)erccpt.ion and actuation components. Delays 

and losses of messages in the communication component must also be considered. In order to prevent 

system failures, Comheolaiocht guides the allocation of allowances for detecting, isolating and recovery 

from faults.

1.4.3 Reliability: progress, live-locks and deadlocks

A system should be reliable not only in ensuring that the safety constraints are never violated, it should 

also allows the entities to progress toward their goals. The undesirable properties that may impede 

progress in a coordination protocol include deadlocks and live-locks |Tai, 1994, Ho et ah, 2005|. The 

former refer to processes that block each other, thus preventing either from executing. The latter refer 

to processes that prevent each other from progressing, but do not actually block the execution. Another 

undesirable property is starvation, where some entity never gets a chance to progress; unlike a live-lock, 

other entities do progress.

In a multi-entity system, entities having physical bodies implies that the problem of deadlock, live-lock 

and starvation may occur both in the physical environment and the computational internal representations. 

For example a simple deadlock can happen between two vehicles, x and t/, on a road. If vehicle x is 

physically in-front of vehicle ?y, vehicle y cannot move until x moves. If a protocol does not consider the 

physical environment and allocates y to move first (x waits for y to move), this results in a deadlock where 

both X and y wait for each other.

In essence, a reliable protocol must not oidy ensures that the safety constraints will never be violated, 

it must also allow the entities to eventually achieve their goals, such a protocol must not has a deadlock 

or live-lock.

1.5 Approach

This thesis presents an approach for designing and developing a multi-robot coordination system using 

three systematic steps (an overview of the steps is shown in figure 1.2).

The first step, system modeling, captures the system specification by recording the entity’s parameters 

and behaviors, and any constraints that exist in the application. This step promotes reusablility by
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Figure 1.2: Overview of Comhcolaiocht’s 3-steps

providing an abstraction for commonly seen constraints. In particular, different-time event ordering 

constraints that describe situations where entities cannot perform some events at the same time are 

modeled as shared resource problems. These abstractions promote reusability and allow the comparison 

and use of established resource sharing approaches (i.e., scheduling and mutual exclusion).

The second step, System analysis, analyses the system specifications captured in the first step to obtain 

two results. Firstly, it determines whether Comheolaiocht can provide a reliable solution to the multi­

entity coordination system. The reliable solution needs to i) ensure that entities can be safe (respect all 

constraints) in spite of the errors demonstrated by the perception (e.g., GPS inaccuracies) and actuation 

(e.g., entity breakdowns) components, and ii) ensure that entities can achieve progress (satisfies their 

goal). Secondly, if a reliable solution exists, the analysis step outlines a coordination strategy that defines 

what entities can/camiot do in various situations so as to ensure safety in the system. These two results 

arc obtained by analyzing variables and behaviors whose impact might violate the system constraints, and 

whether the entity has control over these variables and behaviors. In particular, a coordination strategy 

for a reliable solution exists if the entity can deterministically control its variables such that it can avoid 

violating the constraints during the periods when the entity needs to coordinate with other entities.

The third step, protocol derivation, derives the system’s coordination protocols by integrating the 

coordination strategy from stop two with our coordination pattern - Contract without Response with 

Inference and Score (CwoRIS, [Sin et al., 2011]). The CwoRIS pattern is designed to operate on top of 

a (1) gcocast protocol that provides (2) ordered delivery of messages, (3) bounded message latency and 

(4) real-time feedback, Section 5.1 describe the assumed underlying communication protocol in detail. 

CwoRIS guarantees exclusive access to resources despite imperfect communication and contributes to the 

reliability non-functional requirement. The derived protocols support scalability by taking advantage of 

locality in space and time; only the necessary information is sent to the interested parties.
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1.6 Goal and Contributions

As motivated by Section 1.1, tiie goal of this thesis is to develop an approach to the design of coordination 

protocols for dynamic participants in real-time distributed systems allowing the entities achieve their goals 

while respecting the safety constraints. Since this work is built with Bouroche’s thesis [Bouroche, 2007], 

this section highlights only the contributions and goals added to this baseline. The contributions of this 

thesis are fivefold:

1. A taxonomy on coordination problems classifying what constitutes ’hard’ coordination problems; 

the taxonomy defines which properties make a coordination problem more difficult to solve.

2. The application of scheduling concepts to constraint satisfaction for distributed coordination.

3. A coordination pattern, CwoRIS, that provides distributed scheduling and mutual exclusion for 

dynamic participants ensuring exclusive access to resources despite imperfect communication.

4. A systematic process that allows developers to derive a protocol for a multi-entity coordination 

problem focusing on reliability (not violating the safety constraints and eventually satisfying the 

goals) and scalability (support for dynamic participants and local coordination).

5. A distributed coordination protocol for autonomous vehicles crossing an intersection developed using 

Comheolai'ocht.

1.7 Scope

This thesis defines Comheolai'ocht’s three step process to design protocols for multi-entity coordination. 

The work also describes CwoRIS, a coordination pattern that ensures entities’ exclusive access to shared 

resources.

This thesis focuses on the coordination component of a multi-entity system which helps entities to de­

cide whether to perforin some tasks and when to perform them. It is assumed that the higher deliberation 

layer that tells an entity what tasks to perform are implemented. The thesis also assumes that there are 

supporting lower layers providing perception, actuation, world representation and communication (Sec­

tion 1.2.1). In addition, this work focuses on problems involving different-time and sequential ordering 

constraints (Section 1.3.1).

Entities in the system are assumed to be physical, mobile, utilize imperfect wireless communications 

and the system is assumed to be safety critical. In order to support such a system, the derived protocols

25



must allow entities to act/react while ensuring that its constraints are not violated even when con.mu- 

nication is lossy. In addition, protocols developed using Comheolaiocht do not rely on any ccntrajzed 

component thereby avoiding the problem of a centralized point of failure.

Comheolaiocht’s support for dynamic participants with local coordination addresses the scalalility 

requirement. Support, for t he reliability requirement is addressed by ensuring t hat t he specified sfiety 

constraints arc not violated, and that entities using derived protocols will not be involved in deadlocks or 

live-locks. Protocols derived using Comheolaiocht is assumed to run on a real-time operating system vith 

local timers (e.g., Real-time Linux) and use a communication protocol that supports (1) geo-casting (2) 

ordered delivery, (3) bounded message latency and (4) real-time feedback (e.g., Hughes [200Cj, Slot ct al. 

I2010j; See Chapter 5.1 for a detail description of these requirements).

Comheolaiocht’s steps arc able to identify entity coordination that cannot be supported, and the 

reasons for which no support is possible are made known to the developer. However, it is up to the 

developer to (re)design an entity that can be implemented.

Th(! dt^finil.ion and use of Comheolaiocht is illustrated wit h a number of examples from t he int.idfijent, 

transportation system domain (ITS). ITS, however, is not the subject of this thesis. The intelligent 

transportation system example is implemented using the C— programming language and operates using 

the Player/Stage simulator |Gcrkcy et ah, 2003| on top of the Real-time Linux (Sec Chapter 6.4).

This work assumes that entities comply with the developed protocols. Note that issues of trust and 

security arc not considered in this thesis.

1.8 Road-map

The remainder of this thesis is organized as follows. Chapter 2 reviews the state of the art in multi- 

entity coordination. The next three chapters present the Comhcolaloch systematic steps for dcrivung 

a coordination system. Chapter 3 presents the steps for modeling the multi-entity system. Chapter 4 

presents the steps for analyzing the system model with regard to safety and progress. Chapter 5 presents 

the derivation of protocols and CwoRIS - our real-time distributed coordination pattern. Chapter 6 

proves that developed protocols are scalable and reliable. This evaluation also presents simulation results 

to reinforce the scalability and reliability proves. Finally, Chapter 7 concludes this thesis and outlines 

possible future work.
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1.9 Summary

This chapter outlines the goals and scope of this thesis. In particular, the chapter presented a cate­

gorization of coordination problems and described the thesis focus on the set of coordination problems 

with different-time constraints. The chapter began by presenting the main motivation of this thesis; that 

distributed multi-robot coordination should be scalable and reliable. The main challenges for providing a 

scalable, and reliable system that ensures progress of the entities are presented. The chapter also provides 

a brief overview of existing work and showed that existing work on multi-entity coordination does not 

tackle dynamic participation and ensure safety when the components on which it relies are imperfect. The 

approach of this work is then described along with its goal and contributions.
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Chapter 2

Related work

This thesis deals with the coordination of dynamic participants in safety critical real-time distributed 

systems. As explained in the introductory chapter, the problem that this thesis addresses is the design of 

a systematic approach for the development of coordination protocols for autonomous mobile entities. Two 

requirements of this work are reliability and scalability, Figure 2.1 shows a summary of the properties to 

be evaluated in this work (i.e., both in this related work chapter, and the evaluation chapter). In order for 

a system to be reliable, its safely constraints must be satisfied at all times and its goals must eventually 

be satisfied. This must hold even despite potential communication and entity faults. Mobile entities may 

move in and out of the operation area, providing a system with dynamic participants where entities may 

arrive simultaneously or leave without notification, therefore, a scalable protocol must be able to handle 

changes in entity numbers during operation.

Coordination of mobile autonomous entities has been studied mainly by researchers from the robotics, 

control and computer science fields. This chapter reviews existing work on coordination from the different 

communities focusing on the computer science domain.

To our knowledge, no recent work has been done on analyzing complexity parameters in multi-entity 

coordination, Section 2.1 provides such an analysis by characterizing complex coordination problems, 

and describes the difficulties in developing coordination protocols for scalable and reliable multi-entity 

systems. After this, Section 2.2 reviews multi-robot applications focusing on application specific multi­

robot coordination protocols. The section shows that while many applications reqnire the set of constraints 

supported by Comheolafocht, only specific protocols for multi-robot application supports both scalability 

and reliability.

Section 2.3 surveys multi-entity systems based on their organizational structures [Horling and Lesser, 

2004] and evaluates how these organizations contributes to the scalability of the system. Section 2.4
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Figure 2.1: Evaluation properties

then reviews existing coordination protocols supporting event ordering safety constraints, in particular, 

the section focuses on the different-time and sequence constraints that this thesis addresses. Section 

2.5 reviews protocols that support the coordination of mobile entities in real-time. Finally, Section 2.6 

provides a comparison of Comheolai'ocht with other protocols and shows that there are no generic protocols 

that supports the same set of properties.

2.1 A Taxonomy of Coordination Problems

This section presents a taxonomy of multi-entity coordination problems. This taxonomy differentiates 

parameters that make a coordination problem more complex; complex coordination problems have more 

difficulties due to various factors (e g., unknowns, failures, computation speed) in achieving its required 

properties (i.e., safety and goal constraints). While there are many other taxonomies of multi-entity 

coordination, not many of them characterise complex problems. Our taxonomy serves three purposes: 

firstly, it provides a common definition of the terms used in this work. Secondly, the taxonomy helps a 

developer to better understand and categorize a coordination problem; such an understanding allows a 

developer to consider the different characteristics of his problem, and thirdly, ideas from work provides 

solutions addressing these parameters arc highlighted; such ideas may be adopted by a developer.
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The first, subsect,ion presents related work on taxonomies of entities coordination. The following 

section presents our coordination taxonomy and discusses the parameters that make a problem complex. 

Section 2.1.4 summarizes the coordination challenges under two categories: scalability and reliability.

2.1.1 Previous Taxonomies

There are many surveys and taxonomies of multi-robot systems. The most notable early work is from 

Dudek et al. [1996] and Cao et al. [1995]. Dudek et al. [1996] provide a taxonomy of multi-agent robotics 

focusing on the agents’ communication capabilities (range, topology and bandwidth), processing capability 

and reconfigurability. Cao et al. [1995] surveyed cooperative robotics focusing on group architecture: cen­

tralized/decentralized, robot differentiation, communication structure and whether a robot model other 

robots’ behavior. The authors listed research efforts in addressing resource conflicts, learning and geomet­

ric problems. These early papers contributed to shaping current research. However, being early papers, 

the challenges identified are either solved or are currently being investigated by various groups.

A more recent paper by Farinelli et al. [2004] classifies coordination problems according to whether 

the agents are aware of each other, whether the agents follow a set of pre-defined rules, and whether the 

agents follow some leader or think for themselves. The paper further classifies coordination systems by the 

way in which the agents communicate, the team composition, whether they are reactive or deliberative, 

and the team size. Parker [2008] presented three axes of distributed intelligence in multi-robot systems: 

goals, awareness of others and whether actions advance the goals of others. Parker uses combination 

values from these three axes to define various research areas like collective, cooperative, collaborative and 

coordinative systems. The paper further classifies approaches to distributed intelligence in mobile robotics 

as bio-inspired, organizational and social, and knowledge-based systems. The author differentiates between 

the various multi-agent coordination terminologies using these three axes and provides an overview of the 

research being done. However, none of this work highlights what makes a coordination problem difficult.

Grabowski and Christiansen [2005] measure the complexity in the ability of a robot to share infor­

mation, coordinate actions, or convey intentions using their simplified taxonomy. They position robot 

coordination along a single spectrum according to the degree of cooperation of the robots. The lower end 

of the spectrum includes robot systems that rely on an external medium to coordinate actions and manage 

conflict. The middle of the spectrum includes systems that coordinate indirectly through a third party 

or shared resource (e.g., centralized controller). The upper end of the spectrum covers robot teams that 

model their environment and neighbors to predict the effects of interaction. While the single spectrum 

is simple to understand, the authors’ focus is on the complexity of robot coordination solutions (how the
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entities coordinate), and not on the complexity of the nndcrlying coordination problems.

Gerkcy and Mataric |2004] provide a formal analysis and taxonomy of task allocation. Their analysis 

characterizes task allocation by robot-task capability (whether the robot is capable of handling more than 

a single task), task-robot requirement (whether a task requires a single or multiple robots to complete) 

and assignment period (instantaneous or time-extended). For each combination of characteristics, their 

analysis provides the computational and communication complexity. An equally authoritative survey 

by Dias et al. |2006| evaluates various algorithms according to their planning (sub-divided into task 

allocation, decomposition and execution), solution quality (in terms of their optimality guarantees) and 

scalability characteristics. Both papers provide an excellent description of the scaling complexities with 

regard to computation and communication. However they focus only on task allocation and not on general 

coordination problems.

2.1.2 Taxonomy

Based on the definition of coordination (Section 1.2.2) as ‘the management of interactions both amongst 

entities, and between entities and their environment, towards the production of a result”, five axes de­

scribing a coordination problem are identified. The first two axes, entity and environment, are directly 

mentioned in the definition. The third axis specifies the relationship between entities, which forms the 

basis for entity interaction in the definition. The fourth axis, objective, captures the definition’s ’produc­

tion of a result’ and the fifth axis, communication protocol, addresses the ’management of interactions’. 

In this section, unless otherwise specified, the complexity comparison assumes that all other properties 

are kept constant.

In the classification below, properties supported by Comheolafocht are underlined.

2.1.2.1 Entity

Entities arc the main actors in a coordination problem. This section describes parameters of an entity in 

a coordination problem.

• Physical / virtual

Entities can either be physical (have a body) or virtual (exist only in a computer world).

Coordination amongst physical entities usually deals with more complex environment parameters 

(Section 2.1.2.2) while virtual entities coordination usually focuses more on complex relationship 

parameters (Section 2.1.2.3).
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• Participation

The participation axis captures the number of entities in the system.

Constant Under constant participation, entities do not leave the system and no new entity enters 

the system. These systems usually assume that every entity knows the total number of entities. 

Since knowledge of the total number of entities is required to arrive at consensus in a distributed 

synchronous system [Chockler et al., 2005|. coordination problems with constant participation 

problems are less complex.

Dynamic Under dynamic participation, entities may leave the system and now entities may join 

the system. Some ways of handling dynamic participants include

— Enforce constant

One approach is to disallow the number of entities to change when a coordination protocol 

is in progress. Attiya et al. |2010| enforce a constant number of entities by using a set of 

’doors’ to (uisure that, the current, set of nodes participating is fixed before performing tluar 

mutual exclusion protocol.

— Membership

Membership has been used for recording the population of entities within the system, 

Meier and Cahill |2002] and Schemmer and Nett |2003b) provide membership information 

by requiring that every entity registers/announces their joining leaving. Slot et al. [2010| 

use sensors and communication to calculate the set of entities that might be within an 

area.

— Upper lower-bounds

Another approach is to specifying upper lower bounds on entity numbers performing coor­

dination, for instance, Borran et al. |2008a] assumes that the number of nodes is between 

an upper bound, n, and a lower bound, for their quorum based Last Voting algorithm.

Infinite/unknown Under infmite/unknown participation, the number of entities are either un­

countable or not known to the other entities. An example application area where there are 

infinite number of entities are swarm-based systems. Swarm systems [Bonabeau et al., 1999, 

Peleg, 2005, Cornejo et al., 2009] usually do not require knowledge of the number of entities 

to coordinate; the systems could coordinate by manipulating the environnient (e.g., loannidis 

et al. [2011]).

In Cornheolafocht, the whole system may have an infinite/unknown number of participants, 

however, the system is modeled as having dynamic participants local to some area.
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• Differentiation

Ent ity different,ialion captures whet,her t here are more than one type of entity in t,hc system |Cao 

ct ah, 1995, Farinclli et ah, 2004, Grabowski and Christiansen, 2005|; w'hether a system has homo­

geneous or heterogeneous entities.

Homogeneous Entities with the same behavior and physical characteristics.

Heterogeneous Entities wdth different behaviors and physical characteristics.

Heterogeneous entities arc generally more complex because the many entity-types might imply that 

each has a different objective (Section 2.1.2.4).

• Knowledge

The knowledge axis records what an entity knows. The meta-data includes:

Subject Who or what, the knowledge is ab(5ul. Three values are identified: self, other entities and 

enviromnent. As its name implies, knowledge of self describes what an entity knows about itself. 

Knowledge of other entities describes what the entity knows about entities: such knowledge 

could cither be pre-programmed, obtained from sensors or through communication. An entity’s 

knowledge of the enviromnent describes what it knows about the environment.

State/Model State describes the current situation of the subject; for example, an entity’s self 

state may capture its current position and speed. Model describes knowledge about how an 

entity acts/reacts. For example, a RoboCup [Kitano et al., 1997] entity’s knowledge of the 

environment’s model may include the soccer ball’s trajectory (reaction) when it is kicked.

Quality Defines whet her t he knowledge is complet e and accurat e. A piece of knowledge is complet e 

if all information that is required on a subjeet’s state/model is available. The knowledge is 

accurate if there is no discrepancy between the actual value and the perceived information.

Additional knowledge usually results in a problem being less complex. In fact, a system where every 

entity is an oracle and knows everything would just need to calculate everyone’s behavior (assuming 

deterministic behavior) in order to coordinate (e.g., [Schermerhorn and Scheutz, 2006]).
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2.1.2.2 Environment

The eiivironincnt axis captures parameters about the system in which the entities operates. 

• Failure

A failure is an event t hat, denotes a deviat ion bet ween t he act ual service and t he specified or int ended 

service, occurring at a particular point in real time [Kopetz, 2011],

Perception Failures can be consistent or inconsistent [Kopetz, 2011|. In a consistent failure sce­

nario, all entities see the same (possibly wrong) results. In an inconsistent failure situation, 

different users may perceive different false results.

Effect Depending on t he effect a failure has on t he environment. failures can be classified as eit her 

benign, or safety-critical. Benign faihrre classifies syst.ems where t he advantage of t he syst.em 

outweighs the failure cost. Safety-critical failure cla.ssifies systems where failure may cause 

failure cost that arc orders of magnitude higher than the normal utility of a system (e.g, where 

system failure may result in the loss of human lives).

• Static/Dynamic

An environment may be static or dynamic (Russell and Norvig, 2()1()|. A static environment remains 

unchanged between entities’ actions while a dynamic environment may change while an entity is 

deliberating its next move. Dealing with a dynamic environment is more complex.

• Discrete / Continuous

An environment could be discrete or continuous (Russell and Norvig, 2010(; for example, a light- 

swit,t:h has the discrete valutts of ’im’ and ’off’, while the speed of a vehicle has continuous values. 

The continuous environment is more complex; a common method is to discretize a continuous envi­

ronment. For instance Dresner (2009) represents an intersection (a continuous real-world location) 

as a set of grids.

2.1.2.3 Relationship

The relationship axis captures how an entity acts when towards other entities in the system.

• Honest/dishonest

A dishonest entity could lie in order to gain an advantage in an interaction (Fullam ct al.. 2005). 

Systems with lying entities are more complex.
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• Selfish / selfless

An entity can either be selfish or selfless. A selfish entity only performs actions to forward its own 

goal. A selfless entity may act to advance a group or global goal even at the expense of its own goal. 

Selfish entities are usually less complex since they only need to consider their own goal, however, 

selfish entities could be dishonest making a coordination problem more complex.

• Rational/Irrational

A rational entity will always act to optimize cither its own, a group or global goal [Russell and Norvig, 

2010]. A rational entity deterministically selects the best action based on some (internal and or 

external) state. In contrast, an irrational entity may perform behaviors without any particular 

purpose (e.g., random). Coordination of rational entities in a multi-entity system is less complex 

because an entity can predict another entity’s behavior.

Note: Entities with learning may perform some random actions, however, these entities perform 

these actions with a purpose (i.c., to learn), therefore, they are considered as rational.

Note: Although a rational entity deterministically take actions based on some state, such actions 

may have non-deterministic results; such non-dcterministic results can be recorded in an entity’s 

knowledge of the model (Section 2.1.2.1).

• Team/Coalition/None

Entities banding together in a group can either form a team or coalition [Horling and Lesser, 2004]. 

Coalitions arc short-term groups that happen when entities with similar goals decide to act together 

in order to better achieve their individual goals. Members in a coalition often leave once their goals 

are achieved and their obligations paid. Teams arc more persistent; a team is usually created by 

design. Entities within a team cither have common goals or share a global goal. An example of 

a coalition is vehicle platooning [Stankovic et ah, 2000] and a team example might be entities in 

the RoboCup competition [Kitano et ah, 1997]. Coalitions are more complex than teams due to 

membership management issues such as managing entities joining and leaving. Comheolai'ocht docs 

not support groups.

• Aware/Not aware of others

An entity may either be aware_or not aware of the presence of other entities. Awareness in this 

context refers to entities who reason about other entities’ actions and intentions. Entities who are 

not aware may sense other entities’ and react to them, but may otherwise perform no reasoning to 

understand their intent or future plans [Parker, 2008].
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In order t,o limit the scope of this work, only simpler parameters (honest,, selfish and rational ent-lt,ies that 

do not participate in groups) arc supported in this work,

2.1.2.4 Objective

The objective axis of a coordination problem describes what an entity (or the coordination system) is 

attempting to achieve.

• Safety constraint

The safety constraint axis in a coordination objective captures conditions that must always be true.

• Goal

The goal objective describes what conditions the entity/system wants to make true.

• Optimization

The objective of some coordination systems is to achieve a goal with some parameters maximized 

or minimized. This work does not provide support for optimization objectives.

2.1.2.5 Communication protocol

The communication protocol axis describes how entities pass information.

• Direct/indirect

— Direct

Direct communication (as opposed to indirect communication) is based on message passing.

— Indirect

Indirect communication is performed through the environment (e.g., by being present or de­

positing pheromones).

Indirect communication has the potential to communicate with some unknown entities that 

arc not currently present. However, communication through the environment can be limited 

by the sensitivity of sensors and actuators. Indirect communication is usually designed in a 

way that is specific to an apj)lication and is difiicult to reuse.
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• Semantic

The sciiiaiitic of a comiminication protocol captures the messages’ meaning. Such meaning can 

generally be grouped under three categories:

— Command

In this case, the message content involves telling another entity what to do. When an entity 

sends a command to another entity, it expects the other entity to carry out its actions based 

on the message contents. Commands arc usually seen in centralized systems where there is a 

central leader making decisions for other entities.

— Request negotiation

In request or negotiation message, an entity asks proposes to another entity (or group of 

entities) if it can do something in the future. In most cases, the receiving entity has the power 

to reject a proposal. In a negotiation protocol, a rejected proposal may be followed by a counter 

proposal.

— Status report

In a status report, an entity tells other entities about its current situation.

Of the three forms, requests are the most complex for entity coordination because of the multiple 

rounds of messaging and ambiguity on whether a request is accepted. Status reporting is complex 

when entities do not know what other entities may do (in the future) based on the current status 

report; for example, in a system with irrational entities.

2.1.3 Supported multi-entity systems

To summarize, the requirements on systems supported by Comheolai'ocht for reliable and scalable coor­

dination arc the following (each criteria is listed followed by a list of possible values - the required value 

is in bold):

Entity

• Physical virtual

• Participation: constant dynamic (infinite/unkuown)

• Differentiation: homogeneous/heterogeneous
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Environment

• Failure

— Perception: consistent inconsistent 

— Effect: benign/safety-critical

• Static dynamic

• Discrete continuous

Relationship

• Honest dishonest

• Selfish/selfless

• Rational not-rational

• Group: none/teain/coalition

• Relation with other entities

— Awareness of others: aware 'not aware 

— Intention towards others: good neutral bad 

— Type of goals: individual/shared.

Objective

• Safety constraint goal optimization

Communication protocol

• Direct indirect

• Semantic: command request negotiation/status report

Comheolai'ocht supports the more complex parameters from the entity, environment (except inconsistent 

failures), objective (except optimizations) and communication protocol axis. Inconsistent failures are 

only partially supported with communication and entity failures. The more complex parameters in the 

ralationship axis and optimizations are not supported in Comheolafocht because although these parameters 

affects coordination, these issues are usually addressed in the deliberation higher-layer.
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2.1.4 Complex multi-entity coordination

The taxonomy above considers tiic complexity of each property in isolation, this section provides an 

analysis of the complexity when these properties are considered together. In particular, the section 

focuses on the complexity of achieving a scalable and reliable system.

2.1.4.1 Scalability: participation, limited resources and organization

Many multi-entity solutions work on a limited number of robots. A reason for this may be the lack of 

funds coupled with the logistics involved in operating many robots. However, an unexplored issue is the 

scalability of many of those solutions.

Multi-entity systems have limited computational power, memory and communication bandwidth. In­

creasing the number of entities in a system increases the total available computational power and memory. 

Assuming that there are n robots in the system, then the system has n times the total amount of memory 

and computation power than a system with only one robot. Essentially, total processing power and mem­

ory increases linearly with the increase in entity numbers - 0{n). However, bandwidth does not grow with 

innnber of entities - 0(1). With the exception of entities in embarrassingly parallel systems (Foster, 1995], 

coordinating entities need to exchange information (reqtiiring bandwidth), remember these information 

(requires memory), and perform some calculations (requires computation power).

Using a brute force method where every entity communicates with every other entity, point-to-point 

communication requires messages and broadcast communication requires n messages. If every entity 

remembers some facts about every other entity, the memory required per agent increases linearly with the 

number of entities - 0{v?) in the whole system. Compared to the resource growth, linear in computation 

power, linear in memory and constant in bandwidth, the growth of resource usage is much faster. With 

this brute force method, the bottleneck to scaling up a multi-entity system is the limitation in bandwidth.

Due to the limited bandwidth, many coordination methods organize agents into teams, hierarchies 

or federations [Horling and Lesser, 2004]. Such organization controls the communication that an entity 

makes with other entities. For example, by limiting communication to a graph-based structure (e.g., 

hierarchical) the number of eomniunicating pairs decreases to n — 1, i.c., linear in the number of agents. 

Dividing the agents into teams and controlling the maximum number of entities in each team reduces intra- 

team communication to a ‘constant’. Inter-team communications, represented by the team’s spokesperson, 

can be built using other organizational structures.

With bandwidth out of the way, the remaining bottlenecks arc computation and memory. Organization 

structures also include methods to distribute (and reduce) calculations. An example is the hierarchical
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inodel; each leaf in the tree sends information to its parent while the parents fuse the received information 

before forwarding it to the grandparents. With information fusion, all nodes only process data from their 

immediate children and do not need to consider values from other nodes. The hierarchical organization 

distributes calculation such that each node performs a constant amount of calculation; the tree structure 

reduces the overall computation requirement to linear growth. Therefore, the hierarchical fusion method 

is scalable with regards to processing requirement and agent population growth. However the hierarchical 

fusion method pays the price of reduced accuracy; information from the individual nodes is lost during the 

fusion process. Auctions serve as a second example of the distribution of computations. A simple auction 

mechanism requires every agent to calculate its own utility and send its bid to a central auctioneer. The 

auctioneer then selects the best valued bid and announces the results. This market mechanism is known 

to allow heterogeneous entities to coordinate (Dias ct ah, 2006, Zlot and Stentz, 2006|. Market methods 

distribute the complex utility calculation, while the central auctioneer only deals with numbers. However, 

clearance (i.e., deciding the winner) for a simple auction has a complexity of 0{n) at the auctioneer and 

the complexity for auction clearance increases with more complex combinatorial auctions [Dias et ah, 

2006].

The differimcts in l.he rat.e of growth bet.w<5en resoure.e availability and requirenumt. is one of the main 

factors driving researchers to search for better organizational methods. Meier and Cahill |2002] observe 

that entities in the mobile environment are typically interested in events produced by other entities 

in their vicinity. Since embodied entities take up physical space, there is a natural upper bound on 

the maximum number of entities that could possibly be in an area. However, the use of geography to 

create a resource-usage upper-bound among mobile entities gives rise to an environment with dynamic 

participants. Combining these observations, this work provides scalability by focusing on supporting 

dynamic participants and coordination with entities within geographic relevance.

2.1.4.2 Reliability: objectives, failure cost and errors

Entities in a system usually have some objectives to satisfy (Section 2.1.2.4). The safety constraint 

specifies a condition that must be true at all times and violation of this constraint implies that the system 

has failed. System failure in a safety-critical system is unacceptable as it may cost human lives (Section 

2.1.2.2). In addition, components, entities and communication are imperfect. Traditionally, fault-tolerant 

systems can be designed by incorporating additional components and algorithms that attempt to ensure 

that the occurrences of erroneous states does not result in later system failures [Randell ct ah, 1978). 

Dealing with faults usually involves two steps: detection and repair.

Failure detection in the communication subsystem has been reported by many papers. Chocklcr et al.
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|2008] described failure detectors in wireless networks, which can be utilized for achieving consensus when 

the connnunication channel is imperfect (Chocklcr ct ah, 2005]. SEAR [Hughes, 2006, Hughes and Cahill, 

2009] implements real-time geo-cast and provides feedback on the area a message is delivered to. Whereas 

many other protocols use acknowledgment and timeout ]Kato et ah, 2002, Chaimowicz et ah, 2004, Lau 

et ah, 2009] to detect communication failure. In order to repair a failure, applications that do not require 

real-time communication usually resend the messages, and real-time systems may require the entities to 

adapt to the degradation of communication quality [Verissimo et ah, 2000, Bouroche, 2007].

Inaccuracies at the component level (e.g., GPS, sensors) can be alleviated by using prediction models 

]Dao et ah, 2008b, Dao, 2008] and information fusion from multiple sensors [Broggi ct ah, 2008, Ferguson 

et ah, 2008, Campbell et ah, 2010]. Even so, it is not practical to assume that sensor readings are perfect. 

For instance. Dresner [2009] provides allowances for vehicle position error by representing each vehicle 

with a boundary, thereby making the vehicle representation bigger. Other than position errors, Yared 

ct ah [2007] handle errors in turning angle and travel distance by having robots reserve a cone-shaped 

area. While Comheolai'ocht does not handle component-level errors, the protocol allows inaccuracies to 

be addressed by having each entity specify the resources it requires. The advantage is that this method 

supports heterogeneous entities - for instance, a small entity (physically) or an entity with good sensors 

and actuators may request less resources.

Handling of entity-level failure has also been considered in many systems. For instance, the DARPA 

Grand Challenge 2005 and DARPA Urban Challenge 2007 required that each vehicle has a remote con­

trol emergency stop button that the officials held during the competition [Campbell et ah, 2010]. Task 

allocation systems for mine sweeping autonomous underwater vehicles [Saricl ct ah, 2006b, Sotzing ct ah, 

2007, Fallon et ah, 2010] detect failures by having each autonomous underwater vehicle send heartbeats 

messages, failure is detected by timeouts (after missing heartbeats for a certain period). Dresner and 

Stone ]2008a] handle vehicle breakdown in a junction by flooding emergency messages. Their method 

only mitigates catastrophic disaster by lowering the number of collisions; it does not guarantee that no 

collision will happen in the event of a breakdown. Comheolai'ocht assumes that entity failures can be 

detected by some other systems with an upper time bound; our protocol uses this constant time with 

the entity’s attributes (e.g., breaking distance) to calculate and allocate allowances in the event of an 

entity breakdown. The method trades efficiency (delay) for safety; such trade-offs are intentional because 

Comheolai'ocht targets safety-critical applications.
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2.2 Multi-Robot Systems

A number of projects have investigated the coordination of robots in multi-entity systems. This section 

surveys multi-robot systems, lists the properties that they need and shows that most applications require 

the properties supported by Comheolai'ocht (Figure 2.1). Although the majority of these work demonstrate 

the same set of properties, the solutions are specific to the application scenarios and could not be easily 

reused. The following sub-section reviews related work in the intelligent transportation systems domain 

and especially the intersection collision avoidance scenario as this scenario serves as the running example 

of this thesis. Section 2.2.2 presents systems participating in robotic soccer competitions, and Section 2.2.3 

presents systems for multi-entity exploration. Section 2.2.4 describes some other multi-entity applications. 

Finally, Section 2.2.5 provides an analysis of the systems surveyed.

2.2.1 Intelligent Transportation System

Owing to increasing road congestion and the large number of accidents and fatalities on the road, the 

United States, Europe and Japan are looking into building intelligent infrastructures to manage roads and 

vehicles. In the United States, the Federal Highway Administration (FHWA) presented an update of the 

benefits and costs of their intelligent transportation system |Marcubbin et. ah, 2()03|. The Intelligent Car 

Initiative^ (2006) is a policy framework set up by the European Commission to consolidate all activities 

relating to intelligent automobiles. Its objective is to improve road safety in the European Union, and in 

particular to reduce the annual 40 thousand road fatalities and 1.2 million road accidents, to decrease the 

number of traffic jams, and t.o reduce fuel consumption and road transportation’s CO2 emissions. The 

Intelligent transportation systems are not just about autonomous vehicles. Project groups participating 

in the Intelligent Car Initiative include PReVENT [Schulze et ah, 2008] and the CVIS^. The PReVENT 

project is developing safety-related applications, using advanced sensors and communication devices inte­

grated into on-board systems for driver assistance. The CVIS project is designing, developing and testing 

new technologies for vehicular communications.

Autonomous vehicles have been demonstrated in a number of situations. The DARPA Grand Challenge 

2005 and DARPA Urban Challenge (DUC) 2007 show autonomous vehicles crossing the dessert and 

navigating in an urban environment with other vehicles [Broggi et ah, 2008, Ferguson et ah, 2008, Campbell 

et ah, 2010]. For instance, the vehicle which came first in the DUC, ‘Boss’ [Ferguson el ah, 2008], uses 

three main components; detection, prediction and avoidance, r Campbell et ah [2010] describe the state 

of art, share experience of the DUC, and present the challenges for autonomous driving. Since the focus

^http://ec.europa. eu/informat ion_ society/activities/intelligentcar/index_en.htm 
^http://www.cvisproject.org/
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of the DUC is on single vehicles, these papers provided designs concentrating on the implementation of a 

single vehicle and do not tackle cooperation among vehicles. However, lessons learned from these physical 

implementations are relevant to our work; for instance, the paper by Campbell et al. |2010| describes an 

error in Caltech’s vehicle, Alice: when Alice’s intersection handling logic was active, another part of the 

higher-level logic planner switched into a new state when it detected a nearby vehicle, this de-activated the 

intersection handling logic causing Alice to execute some (as the paper describes it) ’very unsafe behavior’. 

In order not to repeat Alice’s mistakes, Comheolai'ocht provides steps for defining and combining different, 

scenarios so that, entities may have different behaviors in different scenarios and yet. are able to ensure 

their integrity when transiting into another scenario.

Autonomous vehicles that coordinate to achieve road safety have been demonstrated in multiple situa- 

tions. As early as year 2000, Kato et al. |2002| demonstrated five autonomous vehicle driving in a platoon, 

doing maneuvers of lane changing, lane merging, and leaving the platoon. In another experiment, two 

INRIA vehicles were demonstrated to perform road lane following, overtaking, signalized intersection 

crossing, leader following and obstacle avoidance [Baber et ah, 2005].

2.2.1.1 Intersection

According to the U.S. National Agenda for Intersection Safety [Stollof and Kalla, 2002], in the year 

2000, there were more than 2.8 million intersection-related crashes representing 44 percent of all reported 

crashes. Approximately 8,500 fatalities (23 pereent of total fatalities) and almost one million injury 

crashes occurred at or within an intersection. The cost to society for those intersection-related crashes is 

approximately $40 billion every year. The U.S. project group CICAS^ and the European project group 

INTERSAFE"* focus on avoiding collision in intersections.

Traffic lights are typically used at intersections to reduce the risk of accidents; they are optimized to 

minimize a vehicle’s wait in an intersection. For instance, a blackboard-based architecture can be used 

between several intersection agents to adapt and respond to traffic conditions in real-time [Roozemond, 

1999). Traffic lights can be coordinated at multiple junctions to optimize either the north-south or east- 

west traffic flow [de Oliveira et ah, 2005]. The total waiting time can also be minimized by distributing 

credits to vehicles and allowing the side with most credits the green light [Balan and Luke, 2006]. While 

these methods optimize vehicle waiting time in a junction, they do not prevent collisions completely.

Autonomous vehicles in intersections A system addressing the intersection collision avoidance sce­

nario should be decentralized, support dynamic participants, handle imperfect communication and ensures

^http:/ '‘www.its.dot.gov/cicas/index.htm
http://prevent.ertico.webhouse.net/en/prevent_subprojects/ intersect ion _safety/intersafe/
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Decentralized DP Imperfect communication No deadlock starvation
Naumann et ah yes no no no

Yared et ah yes yes no yes
Dresner and Stone no yes yes no

VanMiddlesworth et ah yes yes no no
Schemmer and Nett no yes yes no

Bouroche et ah yes yes yes no

Table 2.T. Intersection collision avoidance

no deadlock or starvation. Although centralized solutions are easier to optimize than decentralized so­

lutions, they are vulnerable to single points of failure and require dedicated infrastructure, which might 

be expensive. Vehicles could arrive and leave the intersection at any time, providing a natural dynamic 

participation environment. As mentioned, mobile entities typically communicate over unreliable wire­

less networks, therefore an implementation of the intersection collision avoidance scenario must addresses 

imperfect communication as such failures may cost human lives. A protocol with dcadlock/starvation 

implies that some vehicles may never get to cross the intersection, which is undesirable in practice. Table 

2.1 provides an overview of the systems that provide coordination of autonomous vehicles crossing an 

intersection. None of these solutions support all the properties of decentralization, handling dynamic 

participants, handling imperfect perception, actuation and communication, and ensuring no deadlock or 

starvation.

Some collision avoidance protocols do not support unreliable communications [Naumann et ah, 2002, Li 

and Wang, 2005, Yared et ah, 2007|. Naumann et ah |2002| were the first to propose using communication 

to coordinate autonomous vehicles crossing a junction. They suggested passing a token between the 

vehicles with the vehicle holding the token being allowed to cross. The protocol is demonstrated with 

three robots. Token-based approaches arc susceptible to the lost token problem and arc not suitable for a 

system with dynamic participants (Section 2.4.3.1). Li and Wang |2005] describe cooperative driving by 

comparing vehicles’ trajectories. Based on the assumption of intcr-vchicular communication and trajectory 

planning using control systems, they presented a centralized algorithm that calculates the set of vehicles 

that may cross the junct.ion at the same time. Similarly, their protocol did not consider the effect,s of 

imperfect communication and vehicle control. Yared et ah |2007] provided a coordination algorithm for 

generic multiple robot collision avoidance; the robots do not necessarily cross an intersection. Their work 

is interesting because it handles robot actuation errors (i.e., position, translation and rotation errors) 

and supports deadlock prevention; each robot internally models a wait-for graph to prevent deadlocks in 

reservations. Robots in their work communicate using broadcast to reserve areas in which the vehicle 

might be traveling; communication failures are not considered in their algorithm.
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Approaches for centralized intersection collision avoidance include [Dresner and Stone, 2004, 2005, 

200Cb. 2007. 2008a.b, Dresner, 2009] and Scheinmer et al. [2001].

Dresner and Stone presented multiple papers describing a multi-agent approach for coordinating au­

tonomous vehicles driving through an intersection. Their protocol handles imperfect perception, actuation 

and communication, however the protocol is centralized and is not shown to be free of deadlock or starva­

tion [Dresner and Stone, 2004, 2005, 2006b, 2007. 2008a,b, Dresner, 2009]. In their system, each junction 

is divided into grids that are managed by an intersection manager agent. A vehicle approaching the 

intersection sends a message to the intersection manager to request a space-time slot to cross the intersec­

tion. The intersection manager then simulates the vehicle traveling through the junction, calculates the 

resources that it requires, reserves the required space-time if it is not being used and informs the vehicle 

of the outcome [Dresner and Stone, 2004]. The protocol ensures that vehicles arc safe despite message 

losses as a vehicle will not cross the intersection until it receives the outcome of the reservation [Dresner 

and Stone, 2005]. An advantage of the system is that it can be programmed with policies that allow 

human driven and autonomous vehicles to use the road at the same time [Dresner and Stone, 2006b|, 

moreover such policies can be switched at runtime [Dresner and Stone, 2007]. Dresner’s system can miti­

gate catastrophic failure in the intersection when a vehicle breaks down in the junction by i) redricing the 

number of crashes by stopping other vehicles from crossing and ii) reducing the impact of vehicle collision 

by engaging the on-board collision routine [Dresner and Stone, 2008a[. In their system, a broken vehicle 

sends out a distress message to the intersection manager and the intersection manager floods an emergency 

channel with breakdown messages. Any vehicle that hears the breakdown message and does not have a 

reservation stops and vehicles with a reservation switch on their on-board collision avoidance routine. In 

addition, Dresner’s PhD thesis [Dresner, 2009] provides a protocol to address vehicles just after crossing 

the junction and entering the connecting road. This is done by having vehicles reserve driving space on 

the connected road from the intersection manager. A vehicle informs the intersection manager that it is 

leaving the road and in the event that a vehicle does not inform the intersection manager, the intersection 

manager polls the vehicle and the absence of a reply implies that the vehicle has left. The method of 

polling and time-outs to detect vehicles leaving the system implies that the system is not completely 

immune to imperfect communication. Consider the situation where polls from the intersection manager 

are dropped due to communication errors, and a vehicle is still in the system after the time-out period, 

the intersection manager may then allow other vehicles to cross the junction and enter a road that is 

occupied. Dresner and Stone’s work is the only previous work that handles vehicles exiting a junction. In 

contrast, this thesis models this problem as an enter-road constraint for reusability (See Section 3.4.5.1).

Scheinmer et al. [2001] presented a method for autonomous vehicles to schedule their crossing an inter-
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section. The method is built on top of their real-time reliable group communication protocol |Schemmer 

and Nett, 2003b]. The group communication protocol uses a centralized access point (AP) for coordi­

nation and assumes that there is a constant number, called the omission degree (OD), that bonnds the 

number of message losses affecting any information transfer between the vehicles and the AP (i.e., at least, 

one message will be delivered when OD —1 messages are sent).

An extension to Dresner’s system allows autonomous vehicles to request a crossing slot without a 

centralized intersection manager [VanMiddlesworth et al., 2008]. The method assumes that at least one 

message is delivered when a vehicle sends its request multiple times is similar to the OD assumption, 

which might not always hold.

Bouroche et al. |2006] describe the intersection crossing problem using a safety constraint to ensure 

that there is at most one vehicle crossing the intersection at a time. The protocol is distributed and 

handles communication failures. It does not allow multiple vehicles to cross the intersection at the same 

time, and no proof of deadlock freedom and starvation freedom are available.

A common observation in these papers is that the intersection collision avoidance scenario is modeled 

as a resource-reservation problem. Nauniann et al. |2002| represent the whole junction as a single resource 

and only the token holding vehicle may proceed to cross the junction. Yarcd et al. [2007] design their robots 

to communicate and reserve convex-hull shapes based on a continuous geometrical plane. Dresner [2009] 

divides the junction into grid and each vehicle specifies its arrival lime, speed and desired destination to the 

intersection manager to reserve a crossing slot. Schemmer et al. [2001] schedule the intersection access and 

Bouroche et al. [2006] solve the intersection problem as a distributed mutual exclusion problem. Learning 

from these designs, this thesis describes the intersection collision problem as a shared resource problem 

and provides distributed scheduling and mutual exclusion protocols for vehicles to cross an intersection 

safely.

2.2.2 Robotic soccer

RoboCup is an international initiative to promote artificial intelligence and robotics research by provid­

ing a common task for its evaluation [Kitano et al., 1997]. The range of technologies involved in the 

competition includes autonomous agents, multi-agent collaboration, strategy acquisition, real-time rea­

soning and planning, intelligent robotics, and sensor fusion. RoboCup is designed to exhibit real-world 

complexities: a dynamic environment, incomplete sensor information, distributed computation and the 

need for real-time reaction. Similarly, Comheolai'ocht targets dynamic environments, incomplete sensor 

information, distributed computation and requires real-time reaction. However, robotic soccer is different
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from Conihoolai'ocht in t.hreo aspect,s: first,ly, robot,ic soccer involves a known and fixed number of robots 

while Comheolaiocht supports dynamic participation. Secondly, the cost of a robotics soccer team’s fail­

ure is benign, whereas Comheolaiocht deals with safety critical-systems. Thirdly, Comheolaiocht’s entities 

are selfish while robotic soccer demonstrates both cooperation among team mates and competition with 

another team.

Simulated robots in the UvA Trilearn team |Kok et ah, 2005], who won the Padova, Italy 2003 Simu­

lated Robot RoboCup, coordinate only amongst robots that are close together using a coordination graph 

representation [Guestriu et ah, 2001). Robots in the team use wireless communication whenever possible, 

however, when communication fails, the robots perform role (e.g., forward, defender) assignments using 

local context with approximations. Similar to UvA Trilearn, Comheolaiocht also coordinates only with 

robots that are physically close, and has a strategy for handling communication failures.

The C AMD ADA team [Azevedo et ah, 2007] was ranked first and third in the middle-size RoboCup 

competition in 2008 and 2009 respectively. Robots in CAMBADA coordinate by sharing their world 

model with other players [Lau ct ah, 2009]; the world represented in the real-time database is updated 

and replicated on all robots in real-time. Robots then deliberate on their role and behavior based on the 

world model. Commonly used in many tciam sports su(^i as soccer, rugby and basketball, a set play defines 

some predetermim^d st.tps for each player to follow in specific situations. The use of set, plays is one of 

CAMBADA’s winning strategics ]Lau et ah, 2009, Mota ct ah, 2011], CAMBADA implements set play 

as hard-coded scries of steps and alternative paths amongst multiple robot roles. During the execution of 

a set play, roles arc assigned to the robots to act out the predefined steps, in the process, robots may act 

on an alternative path if the original steps are no longer feasible (e.g., an opponent blocking a pass). Set 

plays requires messages to be exchanged between the players for synchronization. In Comheolafocht, set 

plays can be modeled as sets of sequential constraints where an action is follow by another.

2.2.3 Exploration

Another area for multi-robot coordination is multi-robot exploration ]MacKenzie, 2003, Lemaire et ah, 

2004, Schermerhorn and Scheutz, 2006, Elizondo-Leal et ah, 2008], In multi-robot exploration, robots 

are ta^sked to search a particular area and possibly respond to some findings. The exploration task 

usually involves a large area, imperfect communications and entities may join or leave the system. In 

contrast to Comheolafocht, where different-time ordering constraint problems are mapped to shared- 

resource problems, exploration problems are usually mapped to task-allocation problems. In a shared- 

resource problem, many entities want to access the same resource, and a protocol must ensure that the
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entities access the resource at different times (the different-tfme ordering constraint). Conversely, the 

task-allocation problem involves many entities mapping to many tasks, and a protocol must ensure that 

each task is mapped to at least one entity while optimizing some parameters; the time at which an entity 

performs the allocated task is non-essential (the no-time relation constraint). Therefore, this section only 

surveys specific applications from multi-robot, exploration that require more than task allocation.

Simultaneous auctions Lemaire et al. |2004| present an auction-based protocol [Smith, 1980, Dias 

et ah, 2006] to allocate way points for UAVs performing surveillance. In their paper, identical entities are 

launched at the same place, have the same internal state and start off at the same time. The authors 

explain that this is a more probable case than multiple machines being launched at different places. Since 

all entities start off with the same internal state, the entities could initiate the contract net protocol at the 

same time for the same tasks, which results in chaos. The authors layer a token-based protocol (Section 

2,4.3.1) on top of the auction protocol so that only the entity holding the token can initiate the protocol.

Exploration acquired tasks As mentioned, robots in multi-robot exploration search some area and 

may respond to some findings. Such findings become new tasks, and the operation on tasks acquired 

after the exploration phase might be different, in each system. Examples of these systems includes search 

and track jPavone et al., 2009, How et al., 2009], search and destroy [Sotzing et al., 2007, Sotzing and 

Lane, 2010, Sariel and Balch, 2006. Sariel et al., 2006b], and search and rescue [Jones et al., 2011]. While 

most existing work applies the same auction protocol for both allocating entities for exploration and 

response, such response-tasks might involve constraints that require other properties; some of which may 

be provided by Coniheolai'ocht.

An example of a search and destroy mission is mine counter measure (MCM) missions. In the U.S 

Navy unmanned underwater vehicle Master Plan [Fletcher, 2000], underwater mines are identified as one 

of the most challenging problems. For this reason, multiple papers describe the deployment of autonomous 

underwater vehicles (AUV) to detect and neutralize underwater mines [Sotzing et ah, 2007, Sotzing and 

Lane, 2010, Sariel and Balch, 2006, Sariel et ah, 2006b|. MCM missions using AUVs are complex because 

underwater acoustic communications arc highly unreliable, limited in range and bandwidth [Sotzing and 

Lane, 2010]. These missions usually include two different types of AUVs - searchers and neutralizers 

[Sotzing et ah, 2007, Sotzing and Lane, 2010, Sariel and Balch, 2006, Sariel et ah, 2006b]. The searcher 

AUVs explore the sea-bed to find mine-like objects (MLO). When a searcher AUV finds a MLO, it must 

employ the help of a neutralizer AUV to identify the MLO, and neutralize it if t,he object is confirmed 

to be an underwater mine. The danger of mine neutralization coupled with the imperfect navigation and
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Failure Cost Require DP System ordering Event ordering
Intersection Safety critical yes Partial ordered Different /Sequential
RoboCup Benign no Partial ordered Different/Sequential

Exploration Depends 
on application

maybe Non-ordered/ 
Partial ordered

No time relation

MCM Safety critical maybe Partial ordered Different/No time relation
Construction Depends 

on application
no Total ordered/ 

Partial ordered
Different/

Sequential/Same
Air traffic control Safety critical yes Partial ordered Different/Sequential

Table 2.2: Multi-entity system properties

communication results in ensuring only one neutralizer AUV is assigned to the identification and neutral­

ization of each MLO. Such a system requires the different-time ordering event constraint (in ensuring that 

only one neutralizer AUV is allocated), and ensures that the task is carried out despite communication 

and entity failures.

2.2.4 Others

There are many other systems that require multi-entity coordination; these include the area of robotics 

construction where mnltiplc robots coordinate to build a structure [Wawcrla et ah, 2002, Werfcl and 

Nagpal, 2006|, air traffic control where planes coordinate to avoid collision |Dolev et ah, 2000, Brown, 

2007], entity localization where ground vehicles use UAV (Chaimowicz et ah, 2004], and underwater 

vehicles use surface craft ]Fallon et ah, 2010] for navigation. Each of these application areas could involve 

multiple constraints that can be classified as same-time, different-time, sequential and no-time. For 

instance, air traffic control requires that planes must not take the same route at the same time ]Brown, 

2007] - a different-time constraint.

2.2.5 Analysis

Table 2.2 shows the different types of multi-entity applications and their properties. Amongst the surveyed 

applications, intersection collision avoidance and air traffic control problems are safety critical, require 

dynamic participants, and must ensure different-time and sequential event ordering constraints; which are 

properties provided by Comheolafocht.

The failure cost for exploration applications depends on the actual environment for which the protocol 

is used, for instance, a MCM mission is safety-critical because imperfect coverage could miss finding a 

mine, which may damages ships and lives. In another instance, robot exploration for vacuuming a floor is 

benign. Exploration tsisks may require dynamic participants as the area to be explore could be large and 

entities’ presence conld be dynamic with respect to the local environment. While exploration tasks do
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not require different,-I,ime or sequence const raint,s, applicat,ions \vit,h explorat ion may face complicat ions 

like simultaneous auctions or require responses to acquired tasks.

Similar to exploration applications, RoboCup and construction applications may seem unlikely candi­

date for Coinlicolafocht where dynamic participants may not be required and the task is not safety critical. 

However, there may be complications or opportunities that require properties provided by Comheolai'ocht, 

for instance - set play in RobuCup.

2.3 Generic Coordination Protocols - Scalability Focus

As mentioned in Section 2.1.4.1, many coordination methods organize agents into teams, hierarchies, and 

federations so as to support scalability. The organization of a multi-entity system is the collection of roles, 

relationships, and authority structures that govern entities’ behaviors [Horling and Lesser, 2004]. Such 

an organization guides how members of the population interact with one another. Horling and Lesser 

provide a survey of interaction organizations like hierarchies, coalitions, teams, societies etc. The survey 

describes t he benefits and drawbacks of each organization, provides example applications implement ing 

the organization and discusses the formation/maintenance of these organizations. This section reviews 

the organizations classified by Horling and Lesser |2004| with respect, to system scalability.

2.3.1 Hierarchy and Matrix

Hierarchical organization has been used in many early multi-entity systems [Agrawal and Abbadi, 1991, 

Ferber, 1999]. Hierarchical organizations are scalable because the number of interactions is small relative 

to the total population. However, the use of hierarchy implies a centralized protocol with a potentially 

central point of failure.

Matrix organizations relax the one entity/one manager restriction in hierarchical organizations; entities 

may have more than one parent, thereby forming a lattice graph interaction structure. Both hierarchical 

and matrix organizations have fixed interaction patterns that do not support dynamic participants.

2.3.2 Federation

Another commonly seen interaction organization is federation. In federations, a group of entities come 

together and have ceded some amount of autonomy to a single delegate that represents the group. An 

example of a federation implementation is Space Elastic Adaptive Routing jHughes, 2006], the protocol 

divides the environment into cells and communication with entities across cells must be sent through an 

elected gateway. Another use of federation is the virtual stationary automata ]Dolev et al., 2006] in which
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ail operating area is divided into segments and a virtual leader is always present in the segment to perform 

centralized calculations.

In general, federations provide an excellent way of scaling a huge system as each group of entities 

only needs to coordinate amongst themselves, and only the representatives need to coordinate across 

groups. However, federation can be complex in a system with dynamic participants as entities may need 

to enter or leave a federation to join another. Another complexity is that entities cannot distinguish 

between deficient communication and the absence of other entities |Bouroche. 20()7|. While Brown |2007| 

presented an air traffic control system using the virtual stationary automata |Dolev et ah, 2006|, the 

implementation assumes perfect communication; while the author showed that perfect communication is 

attainable in air traffic control, the same assumption may not be applicable in other systems.

2.3.3 Societies

Societies are inherently open systems; entities may come and go at will while the society persists [Horling 

and Lesser, 2004]. Entities within the society follow a set of constraints that arc commonly known as social 

laws, norms or conventions - the set of rules or guidelines on entities’ behaviors to facilitate coexistence. 

An example of a society organization is the use of contracts in Comhordu jBouroche, 2007]. Another 

example are swarm-based systems where entities coordinate by following some common rules jWerfel 

ct ah, 2008, Parker and Zhang, 2009, loannidis et ah, 2011).

Society organizations naturally support dynamic participants. However, there are no structure defined 

for entity interaction; communication between entities is based on the set of social rules, which might be 

different between applications. This means that the scalability of societies with regards to communication 

bandwidth, memory and computational resources cannot be determined unless the actual set of social 

rules are evaluated.

2.3.4 Market

Market-based organizations have entities that take up roles as sellers and buyers [Horling and Lesser, 

2004]. Buying entities may request or place bids for items such as resources or tasks. Selling entities 

(auctioneers) are responsible for processing bids and determining winners [Gerkey and MatariC, 2004, 

Dias et ah, 2006, Zlot and Stentz, 2006]. Market-based organizations have been applied to areas like 

robotic soccer [Mota et ah, 2011], exploration [Lcmaire et ah, 2004] and mine countermeasures [Sariel 

et ah, 2006b, Sotzing et ah, 2007] to perform optimal role assignments [Kok ct ah, 2005, Mota ct ah, 

2011], resource allocations [Huang et ah, 2008] and task allocations [MacKenzie, 2003, Sariel and Balch,

51



2006]. Gerkcy and Mataric [2004] and Dias ct al. |2006| provided a good survey paper on market-based 

organizations.

It is common to have market-based organizations operate as open systems, allowing entities to take 

part as long as it respect the systenrs rules; as such market-based organizations can be quite similar to 

societies. Market-based organizations, like societies, are scalable. However, the existence of auctioneers 

are similar to federated systems where a distinguished entity is (or a group of entities are) responsible 

for coordinating other entities. Therefore, market-based organizations also have the same problems as 

federations in the management of the auctioneers (e.g., handing over when auctioneer wants to leave the 

system, or coordinating between multiple simultaneous auctioneers [Lemaire et al., 2004]).

2.3.5 Coalition, Team, Holarchy and Congregate

As mentioned in Section 2.1.2.3, Comheolaiocht does not support entity grouping, therefore, coalition, 

team, holarchy and congregate arc not in the scope of this work.

2.3.6 Analysis

Not all system organizations fit into a single category; a system architecture may include characteristics 

of different styles of organization. For instance, Comhordii [Bouroche, 2007] implements a society-based 

architecture for entities coordination which is built on top of Space Elastic Adaptive Routing iHughes, 

2006] - a federation-based architecture for communication.

Of the organizations surveyed, societies and markets support open systems by having a set of rules 

governing entities’ behaviors; markets and federations have a distinguished entity for directing other 

entities; and hierarchies and matrices has lesser interactions with respect to the number of entities. In 

view of the requirement for dynamic participants, hierarchies and matrices are not suitable in this work. 

Similarly, dynamic participants complicate the management of the distinguished entity in markets and 

federations.

This work chooses to use the contracts defined in Comhordii ]Bouroche, 2007] for entities coordination; 

a society-based organization where entities are expected to follow the protocol. As mentioned, society 

inherently supports dynamic participants, but entity interaction structure are not defined. This work 

include social rules for entity interaction and provides scalability in entity numbers.
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2.4 Generic Coordination Protocols - Reliability focus

A reliable protocol must ensure that safety constraints are satisfied at all times despite failures. Comhe- 

olai'ocht supports two of the four classes of constraints for specifying safety (i.e., sequential and different­

time), this section surveys the coordination protocols supporting these two classes of constraints. As 

most coordination protocols use the consensus property, this section first surveys the consensus problem, 

and shows why a consensus-based protocol is not suitable in Comheolai'ocht. Following this, the section 

reviews coordination protocols supporting the sequential and different-time event ordering constraints.

2.4.1 Consensus

Consensus cannot be solved deterministically in asynchronous distributed systems in the presence of 

failures [Fischer et ah, 1985, Lynch, 1996). In the synchronous case, a solution referred to as the ’Byzantine 

Generals’ [Lamport et ah, 1982[ is known. Under a synchronous system, Chockler ct al. [2005[ show that 

consensus cannot be solved even with the assumption of eventual collision free messages without knowledge 

of the total number of nodes. The authors show that under a network partition, if the total number of 

nodes is unknown, each part may arrive at their own consensus result.

Charron-Bost and Schiper [2007[ claim that most consensus protocols exhibit three harmful dogmas, 

and introduce the heard-Of (HO) model, which is free from these dogmas. The HO model’s computation 

consists of rounds, and assumes that a message that is sent and not received within the same round is 

lost; mc'ssage delays ai-e considtned faults. I’his handles the first dogma: most papers distinguish between 

message delays and faults. In each round, the HO model only records the nodes from which a node received 

messages; there is no diffi’rent iation in the IIO model bet ween prerecss and link failurre, which addresses 

the second dogma. Instead of having “every correct/good process eventually decides”, the IIO model does 

not label a single process as ’incorrect’ or ’not good’ but instead requires two-thirds of the entities to 

agree on the same value for consensus; this addresses the third dogma. The Paxos/LastVoting protocol 

[Lamport, 2001[ is extended with the HO model to provide consensus for wireless ad hoc networks [Borran 

ct ah, 2008a[. There are two reasons why these protocols are not suitable for an application with dynamic 

participants. Firstly, both the HO model and the LastVoting protocol extension require multiple rounds 

to reach consensus, and neither of these protocols address the problem of entities entering or leaving when 

the protocol is in progress. Secondly, the HO model terminates when two-thirds of the entities agree and 

the Paxos LastVoting decides when half of the entities agree, implying that both models need to know 

the total number of nodes.
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Ren et al. [2005] and Olfati-Saber ct al. [2007] surveyed tlie consensus problem in multi-agent coop­

erative control systems. In the surveys, Ren et al. [2005] model the world as a graph G = (V,E) and 

Olfati-Saber et al. [2007] model the world as a dynamic graph G{t) = {V,E{t)) in which V is the set of 

vertices representing entities/nodes and E is the sot of edges representing entities who can communicate 

with each other. In the Olfati-Saber et al. model, the set of edges, E{t) arc time varying; entities’ com­

munication ability with each other changes with time. The models, described in both papers arc only 

besl-effort, use a fixed V and therefore do not support dynamic participants.

Parker and Zhang [2009] propose a solution to the decentralized best-of-N decision problem in which 

a decentralized multi-robot system must unanimously select one of N alternatives. Unlike the other 

consensus algorithms, this swarm-based approach to consensus docs not require an entity to know the 

number of entities. However, the protocol docs not consider the case of a network partition and is based 

on besl-effort:. Moreover, the protocol requires many communication rounds to reach consensus.

The protocols reviewed take multiple rounds to reach consensus and do not consider changes in entity 

participation during execution. Moreover, these protocols cither assume that the total number of entities 

is fixed [Ren et. ah, 2005, Olfati-Saber et ah, 2007] or that there is an upper-bound on the number of 

entities [Charron-Bost and Schiper, 2007, Borran ct ah, 2008a[. Such proto(-ols arc not applicable in the 

dynamic participant environment where entities could enter or leave the system at any time (i.e., when a 

consensus protocol is on-going).

In contrast, Comhcolai'ocht does not rely on consensus, however, it requires a multicast protocol that 

provides ordered delivery, bounded message latency and real-time feedback (Section 5.1 provides more 

details on these requirements and shows that the requirements can be achieved in a system with dynamic 

participants).

2.4.2 Sequential Ordering

Problems with the sequential ordering constraint require that events happen one before another. There 

are two types of sequence problems: dependency constraints and priority constraints. Two events, x and 

y, have the dependency constraint, when event x must happen before event y can be executed. The same 

two events have the priority constraint, such that if events x and y are to happen, then x should happen 

before y, in this case, event y can be executed without event x. An example of a dependency constraint 

problem is the set of producer-consumer problems [Ben-Ari, 2006]. Other examples of dependencies can 

be seen in applications like construction [Wawerla et al., 2002, Wcrfel and Nagpal, 2006] and robot soccer’s 

set play [Lau et ah, 2009, Mota et ah, 2011]. An example of an application with priority constraints is a
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transportation system where normal vehicles are to give way to higher-priority emergency vehicles (Dresner 

and Stone. 2006b, Senart et ah, 2008). Most solutions providing sequence ordering involve applying special 

rules for some specific situations, which means that they cannot be easily reused.

To our knowledge, only Aland et al. [1998] and Werfcl and Nagpal [2006] consider the possibility of a 

deadlock that may result from the dependency constraints. However, Werfcl and Nagpals’ protocol uses 

specific rules to prevent deadlocks, and Alami et al. proposed coordination protocol is based on plan 

sharing, which uses t he consensus property and involves only a fixed number of robots.

2.4.3 Different-time Ordering

Problems with the different-time ordering constraint ensure that events do not happen at the same time; 

entities must ensure exclusive execution of the events. Existing solutions for different-time ordering 

constraints can be grouped under two categories: mutual exclusion or scheduling.

2.4.3.1 Mutual exclusion

Current implementations of mutual exclusion use either token-based or permission-based methods.

Token-based approaches In token-based mutual exclusion, a token is passed among the participants 

and the entity holding the token can have exclusive access to the critical section. While token-based mutual 

exclusion has been implemented in robots crossing an intersection [Nauniann et ah, 2002], and may tolerate 

communication failures (Chang et ah, 1990], to our knowledge, there arc no token-based mutual exclusion 

protocols that support dynamic participation; for example Naumann et ahs’ demonstration consists of 

three robots.

Permission-based approaches Permission-based approaches involve an entity sending a request to 

someone (or everyone), which will reply with their agreement on whether the entity can access the critical 

section. Mutual exclusion based on permission can be sub-categorized into quorum-based or consensus- 

based. In quorum-based approaches (Maekawa, 1985, Agrawal and Abbadi, 1991] a node acquires per­

mission from a predetermined sub-set of all nodes to enter a critical section. Maekawa (1985] describes 

an approach whereby a node only needs 0{\/n) (where n is the number of nodes) messages to gain entry 

into a critical section. Their method, however, is not tolerant to nodes leaving the system (e.g., node 

failures) without proper handing over of responsibilities. Agrawal and Abbadi (1991] describe a tree-based 

method to obtain mutual exclusion that is tolerant of node failures; this algorithm, however, assumes a 

fixed number of nodes. Solutions based on quorum assume that nodes are static so as to pre-calculate the
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particular sub-set from which to request permission. The static-nodes assumption makes qnorum-based 

approaches unsuitable for scenarios with dynamic participation.

In consensus-based approaches, a node requests permission from all nodes to enter the critical section 

[Ricart and Agrawala, 1981, Wu et ah, 2008, Attiya et ah, 2010|. Properties of consensus-based mutual 

exclusion are derived from the consensus problem in distributed systems [Lynch, 1996] and inherit the 

same impossibility results [Fischer et ah, 1985, Chockler et ah, 2005]. Due to these impossibilities, work 

on consensus-based mutual exclusion assumes synchronous systems with knowledge of the total number of 

nodes. Ricart and Agrawala [1981] were t he first to provide mut ual exclusion using t he consensus approach, 

their algorithm uses only 2 * (n — 1) messages (where n is the number of nodes). In the algorithm, a node 

attempting to enter the critical section sends a request to all other nodes. A node receiving a request 

replies to the request if it does not want to enter the critical section or has a lower priority. In the case 

where the receiver wants to enter the critical section and has higher priority, it delays replying until it 

leaves the critical section. The requester enters the critical section only when it receives a reply from 

every node. Wu et al. [2008] revisited Ricart and Agrawalas’ algorithm and extended it to mobile ad hoc 

networks by handling links and nodes’ transient failure; a node could be moving to another part of the 

environment and becomes disconnected for a while. The authors assume that the node or link will recover 

within a time-out period, therefore the requester has to resend its request after the time-out period. Ricart 

and Agrawala’s, and Wu et al. assumption of a known total number of nodes and eventual recovery of 

node and link failures arc not suitable for dynamic participation scenarios. Borran et al. |2008a] extended 

the LastVoting algorithm [Lamport, 2001] to provide consensus in wireless ad hoc networks, where the 

algorithm works by gathering a majority of votes. In the LastVoting algorithm, the number of nodes 

must be between an upper bound, n, and a lower bound. Moreover, the LastVoting algorithm takes 

four rounds to reach a consensus and changes in participants within the four rounds are not considered. 

Attiya et al. [2010] provide mutual exclusion in mobile ad hoc networks by first using a set of ’doors’ to 

ensure that the current set of nodes participating becomes static before using an implementation of the 

Ricart and Agrawala algorithm on the static group to obtain mutual exclusion. The set of ’doors’ works 

by excluding nodes that are not present when the protocol starts from the ’current set’ and nodes within 

the ’current set’ must announce their departure. Their algorithm does not cater for network partitions.

2.4.3.2 Scheduling

There is a lot of work done onr centralized scheduling [Liu and Layland, 1973, Maniniaran and Murthy, 

1998, Kutanoglu and Wu, 1999, Pinedo, 2008], especially in processors where there is a job queue. Pinedo 

[2008] provides a taxonomy of scheduling problems, Section 3.4.3.2 in this thesis uses Pinedo’s taxonomy
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to specify resource scheduling constraints in Coinheolafocht.

Current distributed scheduling protocols are usually used for the allocation of resources for wireless 

networks |Zhou ct ah, 2010, Sharnia et ah, 2010, Liu et ah, 2008, Gupta et ah, 2009]. These papers 

either do not consider imperfect communication or do not ensure exclusive access to resources. Zhou 

et ah [2010] formulate the scheduling of video streams over multi-channel, multi-radio, multi-hop wireless 

networks as a convex optimization problem and propose a distributed solution by jointly considering 

channel assignment, rate allocation and routing. Sharma et ah [2010] propose two randomized distributed 

algorithms for maximal scheduling policy to control congestion under the 1-hop and 2-hop interference 

models. Liu ct ah [2008] propose a distributed scheduling algorithm to organize the resources in the 

physical and MAC layers to increase network goodput, decrease end-to-end packet delay, and achieve less 

QoS outage probability. Gupta et ah [2009] propose two algorithms for scheduling resources in wireless 

ad hoc networks.

To onr knowledge, the only distributed scheduling protocol that considers imperfect communication 

and ensures exclusive access to resources is by Schemmer ct ah |2001]. Their protocol schedules au­

tonomous vehicles access to intersections by building on top of their real-time reliable group commu­

nication protocol [Schemmer and Nett, 2003b]. However, their group communication protocol uses a 

centralized access point (AP) and provides consensus on the assumption that at least one message will be 

delivered when a given number, OD — 1, of messages arc sent. The algorithm is therefore not suitable in 

situations where there may be an extended period of communication breakdown.

Scheduling in real-time environments by using a worst case execution time analysis was first described 

by Liu and Layland [1973]. Fault-tolerant real-time scheduling has also been implemented for processes 

(e.g., sensor fusion) within a robot [Becker ct ah, 2005].

2.4.4 Analysis

This section surveyed coordination protocols based on their event ordering constraints. Gurrent consensus 

protocols take multiple rounds to reach consensus and assume either fixed [Ren et ah, 2005, Olfati-Saber 

et ah, 2007] or an upper-bound on the number of entities [Charron-Bost and Schiper, 2007, Borran ct ah, 

2008a]. Such protocols are not applicable in the dynamic participation environment where entities can 

enter or leave the system at any time (i.e., when a consensus protocol is on-going).

Most solutions for sequence-ordering problems apply specific rules to a specific situation, therefore such 

implementations are not easily reusable. Moreover, problems with dependency constraints might encounter 

deadlock. While Alami et ah [1998] handle both the generic case, and detect and resolve deadlocks, their
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method uses consensus and is not suitable in a dynaniie participants scenario. While Senart et al.s' |2008] 

solution is distributed, handles dynamic participants and safety-critical requirements, their solution is 

specific to emergency vehicles on t he road and is difficult, t,o reuse in ot her problems involving dependency 

and priorit.y. In contrast, Comheolafocht, allows the specificat.ion of sequence constraints and priorit.ies. 

and ensures that the developed protocol docs not have live-locks or deadlocks.

Different,-time ordering constraints can be modeled as exclusive access to shared resources. Access 

to shared resources can be controlled by schedules or mutual exclusion. Current distributed scheduling 

methods usually do not consider communication failures or do not ensure exclusive allocation; these meth­

ods cannot be applied to a situation with safety-critical requirements. Distributed mutual exclusion is 

implemented using either token-based or permission-based methods. Dynamic participat,ion amplifies the 

lost token problem in token-based approaches, while limited knowledge of the nnmber of nodes makes ob­

taining quora and consensus in permission-based approaches impossible, rendering both mutual exclusion 

implementations impractical. In contrast, Comheolafocht provides distributed real-time scheduling and 

mutual exclusion without relying on consensus. Our protocol is able to ensure exclusive allocations even 

with dynamic participation and imperfect communication.

2.5 Real-time Coordination Middleware

The main function of a middleware system is to facilitate the communication and coordination of compo­

nents distributed across several networked hosts, it should enable application engineers to abstract from 

the low-level details of network communication, coordination, reliability, scalability and heterogeneity 

lEmmerich, 2000]. The challenges of middleware for mobile ad hoc networks (MANET) arc heterogeneity, 

scalability, limited resources, context awareness, mobility and dynamic network topology [Hadiin ct al., 

2006]. Hadim ct al. [2006] survey nine middleware systems, and only two: LIME [Murphy ct al., 2001] 

and STEAM [Meier and Cahill, 2002] support scalability, mobility and heterogeneity.

This section presents a survey of middleware that supports the coordination of real-time mobile entities. 

The section evaluates each of the presented middleware by its ability to support dynamic participants, 

ability to specify and ensure ordering constraints, and provision for communication and entity failure.

2.5.1 LIME

Linda in Mobile Environment (LIME) [Murphy et al., 2001], is built on top of Linda [Gelerntcr, 1985]. 

Where Linda shares information through a central tuple storage, LIME supports the physical mobility 

of hosts and logical mobility of entities by having each entity maintain its own interface tuple space.
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Connected entities share their tuple spaces as a single federated tuple space. When an entity arrives into 

coninmnication range of a group, a message is sent to all entities in the group to freeze their operations 

and synchronize tuples in the federated tuple space. The freeze is lifted only after all the tuples are 

synchronized. A similar freeze and un-freeze step happens when an entity leaves the communication area, 

where the tuples of the leaving entity are removed from the federated tuple space. Reactions in LIME 

allow developers to program entities to run specific code when a certain tuple appears. Strong reactions 

arc executed atomically whenever the tuple appears but they only match tuples that arc on the same host 

as the reaction code. Weak reactions do not execute atomically, but react to tuples matched in the federate 

tuple space. LIME’s assumptions that the network is not highly dynamic, can sustain a connection during 

a transaction, and having to freeze every entity whenever there is an entry or an exit is not practical in 

an environment with dynamic participants. While strong reactions allow an entity to react in real-time to 

local events, LIME provides no real-time guarantees with respect to events on a remote host. In addition, 

the virtual federated space is implemented by replication on every hosts, which could cause problems in 

a host with limited storage space especially when the number of connected entities are large.

Linione [Fok et ah, 2004| extends LIME with context management thereby allowing entities to discover 

neighbors and to selectively duplicate tuples depending on the application requirements and network 

settings. The selective duplication conserves bandwidth and memory, which arc limited resources in 

multi-entity systems. In addition, Linione does not assume connectedness throughout a transaction and 

uses timeouts to prevent deadlock due to packet loss or disconnection.

TinyLIME [Curino et ah, 2005] extends LIME for sensor networks by focusing on the synchronization 

and reaction in LIME. It defines ‘ rime-Epochs’, defined as the minimum unit of lime, to synchronize the 

distributed sensors. Sensor data is defined in terms of n-epochs freshness. When some process requests 

some data, fresh data (epochs < n) is returned and stale data (epochs > n) is replaced. Reactions are 

redefined so that they can be fired every n-epoch. TeenyLIME [Costa et ah, 2006, 2007] also extends LIME 

for sensor networks, targeting nodes with limited resources. TeenyLIME is designed for sensor nodes that 

do not have lots of intelligence or memory; sensor nodes must be connected to a master agent. Instead of 

replicating everything, resources can be saved by limiting replication in the federated tuple space through 

a replication profile. Although TinyLIME allows belter definition of reactions and TeenyLIME conserves 

memory and bandwidth resources, both extensions are targeted for sensor networks and are still unable 

to address dynamic participants or provide real-time guarantees for remote events.

The CAST coordination model extends LIME to provide primitives that allow entities to coordinate 

even when the entities are not connected in space and time [Roman et ah, 2006]. CAST achieves this 

functionality by allowing mobile entities to store a message when the destination is not connected; when
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an entity’s niovcincnt brings it to the message’s destination, the stored message is tlien forwarded. In 

addit ion, spatio-temporal operations are defined for operations to execute at. speeifie locat ions in space 

and at certain points in time. TNM extends CAST to support real-time coordination |Hackmann et al., 

2005|. TNM offers primitives that, allow agents to negotiate timed and untimed sequences of actions. 

However, neither CAST nor TNM redefines the procedure for an entity entering and leaving a federation 

in LIME; implying that all other entities need to freeze their actions when the federated tuple space is 

synchronized. The freeze operation is not practical in a dynamic participation environment where entities 

may enter and leave at a high rate. Since an entity knows the total number of entities in the federation, 

entity negotiation in TNM may use consensus-based coordination for handling event-ordering constraints. 

Assuming that Limone |Fok et al., 2004] is integrated with CAST or TNM, then communication errors are 

addressed using timeouts on remote transactions. However, nothing is mentioned about handling entity 

failure.

2.5.2 STEAM, TBMAC, SEAR and Comhordu

STEAM [Meier and Cahill, 2002] is an event-based middleware service designed specificallj' for mobile 

environments. The middleware builds on the observation that entities in a mobile environment are typi­

cally interested in events produced by other entities within a certain geographical area. For this reason, 

STEAM supports proximity filters in addition to the normal subject and content filters. Subject and 

proximity filters help address the scalability problem; the filters are applied at the publisher side to limit 

forwarding of event messages thereby reducing consumption of communication and computation resource.

A real-time version of STEAM is proposed by Hughes et al. [2004] and is implemented as space elastic 

adaptive routing, SEAR [Hughes, 2006, Hughes and Cahill, 2009[. SEAR provides real-time routing and 

feedback based on the TBMAC protocol [Cunningham and Cahill, 2002]. TBMAC proposes to divide 

the application environment into cells such that adjacent cells use different transmission frequencies. A 

node joining a cell has to observe one TDMA cycle before making a request for an empty slot during the 

TDMA contention period in the following cycle. Messages sent during the contention period may collide, 

resulting in the entity waiting for another cycle - providing no guarantee of the time with which an entity 

may join a cell. In addition, there is no mention of real-time hand-off when an entity is about to move 

to another cell (e.g., by reserving a channel for the target cell in advance). A node leaving the cell either 

broadcasts its intention to leave during its allocated sending slot, or the slot can be reclaimed when other 

entities have not heard any information during the allocated period.

SEAR is a real-time routing protocol that guarantees transmission and adaptation notification latency
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supporting space-clastic applications. The sot, of space-elastic applications are defined as programs t.hat, 

require real-time communication to a certain area (desired coverage); in cases where the desired coverage 

cannot be achieved, the routing protocol will adapt the desired coverage to a smaller area (actual coverage) 

and feedback to the program within a fixed time (i.e., the adaptation notification latency). The space- 

elastic application can then decide on its reaction to the smaller actual coverage.

Comhordu [Bouroche, 2007j provides real-time coordination of mobile entities by using the real-time 

feedback in SEAR |Hughes, 2006, Ibighes and Cahill, 2009|. Comhordti’s protocol coordinates by first 

allocating responsibilities to entities; such that to each specified system-level safety-constraint, a responsi­

ble ent ity is specified. When a request for other entit ies to change behavior fails (i.e., the act ual coverage 

is less than the desired coverage), the responsible entity must ensure that the safety constraint is not 

violated either by changing its behavior, delaying its action or requesting other entities to change their 

behavior. Comhordu defines a parameter, present, measuring the time for which an entity listens on the 

communication channel before starting coordinating (this step is termed lurking). Since the required time 

for an i-nt it.y t,o join a cell and start, sending messages may not, be bounded in I'BMAC, it might, be difficult 

to choose a value for present. In Comhordu, however since an entity who is unable to send a message acts 

responsibly, so entities’ safety is still ensured.

The Comhordti-SEAR-TBMAC combination supports dynamic participants in that a joining entity 

may receive messages and a leaving entity is not required to announce its intention. However, support for 

dynamic participation is limited by the possible break in communication whenever a node moves across 

cells. Comhordu addresses different-time event ordering through its cardinality constraint, however it 

only provides a mutual exclusion solution. The protocol docs not support the same-time and sequential 

ordering constraints. Comhordu can guarantee entities’ safety even when communication fails, however, 

entity failure is not supported.

2.5.3 TicTac

TicTac [Allouche and Daigle, 2006] is a real-time coordination framework designed for the coordination 

of multiple entities in command and control (C2) operations. In TicTac, a temporal plan is built using a 

set of temporal constraints for specifying events that have the same time, bcforc/after, and independence 

ordering. The framework allows a developer to perform offline planning and cheek the consistency of 

temporal plans. TicTac can be nsed to define three types of coordination: dependent, compete and help. 

The dependent relation exists when an entity cannot execute an action but another entity can. TicTac 

coordinates dependent relation by having the entity who can perform the action send a message to the
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other entity when the action is completed. Compete relations exist when either of two entities is able to 

execute an action. TicTac handles this type of relations by having the entities negotiate and the entity 

with the lightest workload is to perform the action. The help relation exists when two events cannot 

happen at the same time; help relations are coordinated by having an entity send a message to the other 

entities both when it starts and stops executing the action.

TicTac does not support dynamic participation; the number of entities and their respective actions are 

specified offline using the temporal plans. The framework supports events ordering. Sequence and different 

time ordering events are supported through TicTac’s dependent and help relation, however, coordination 

is only among the fixed entit ies specified in t he temporal plan, and there is no mention of how t he protocol 

addresses race conditions. There is no mention of communication or entity failure in the framework.

2.5.4 A middleware for cooperating mobile embedded systems

Schemmer et al. |2001| and Schemmer (2004] presented a middleware for developing mobile autonomous 

systems with real-time cooperation. The middleware provided three main contributions: local real-time 

task scheduling, real-time group communication and distributed scheduling.

Schemmer and Nett |2003a| presented a method for local real-time task scheduling (e.g., sensor fusion) 

in the CPU and Becker et al. |2005| provided an analysis of the algorithm. They argued that the usage of 

worse case execution time to schedule processes with large execution time variances is wasteful on CPU 

resources, and proposed to schedule CPU resources using expected case execution time. In order to work 

with expected-case execution times and still achieve predictable timing behavior, their algorithm defines 

an exception part to be executed when the main part is about to miss its deadline.

Their second contribution, a real-time group communication protocol, provides real-time atomic broad­

cast (Nett et al., 2001] and a real-time membership service (Nett and Schemmer, 2003. Schemmer and 

Nett, 2003b]. The protocols exhibit properties of validity, agreement, integrity, total order and timeliness 

based on three assumptions: the access point (AP) does not have crash failures, there is an upper bound 

on team-size, and there exists an omission degree (OD) defining an upper-bound on the number of message 

losses affecting any information transferred between an AP and the station.

Their third contribution, the distributed scheduling protocol uses the real-time group communication 

protocol, to maintain a globally consistent view among distributed vehicles (Schemmer et ah, 2001]. The 

global view is kept consistent by informing every newcomer of the current view, and having each entity 

calculate the new view based on the messages received. While the protocol allows nodes to be subjected 

to crash failures, the crashed nodes are only detected and are removed from the membership after OD—1
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polling messages.

The middleware can handle dynamic participants (np to an \ipper-boimd), perform event ordering by 

scheduling, allow message failures (at most OD messages lost in OD—1 attempts) and entity failures (by 

removing them from the system). However, the middleware relies on centralized points in the network 

(i.e., the AP) and there is no mention of other entities’ reaction to entity failure.

2.5.5 Timely computing b^lse and wormhole

Ven'ssimo [2006] presented the use of hybrid (v.s. homogeneous) models, where there are different syn­

chrony levels in a system, to overcome some of the difficulties faced when asynclnonous models meet 

timing specifications. The author describes the Wormhole model which can maintain some strong proper­

ties (c.g., synchrony) whilst preserving the niodcl’s weak abstractions. The idea of a Wormhole is similar 

to the Timely Computing Base (TCB) [Ven'ssimo and Casimiro, 2002]. The TCB is a component within 

the system that is assumed to have known upper bounds on processing delays, rate of local clock drifts, 

and message delivery delays. These assumptions allow the TCB to provide other components (which might 

be asynchronous) with timely execution, duration measurement and timing failure detection. A payload 

system of any degree of asynchrony can be transformed into a synchronous sribsystem using the TCB 

[Verissimo et al., 20()0|. The authors also discuss the implementation of the TCB in the class of fail-safe 

applications which exhibit correct behavior or else stop in a fail-safe state. Casimiro and Verissimo [2001| 

showed the usage of TCB in implementing a class of time-elastic applications; where time bounds can 

increase or decrease dynamically. Casimiro and Verissimo [2002| introduce a paradigm for generic timing 

fault tolerance with replicated state machines based on the existence of services provided by the TCB. 

More recently, Casimiro et al. [2009] discuss the use of hybrid models to deal with the intrinsic uncertain­

ties of wireless and mobile environments in the design of distributed embedded systems. Their system 

applies the wormhole hybrid model to provide fault handling operations for safety purposes. Generic asyn­

chronous payloads use a wormhole which provides a Timely Timing Failure Detection (TTFD) service, to 

detect timing failures in the payload part or in the payload-wormhole interactions.

The TCB model relies on the assumption that synchronous properties, such as known bounds on 

processing and message delivery delays are achievable and maintained. Although Casimiro et al. [2009] 

discuss the usage of the wormhole in the mobile wireless environment, the paper target an environment 

with a fixed number of entities where it might be possible to satisfy these assumptions. Therefore, it is not 

clear whether these synchrony properties can be assumed in an environment with dynamic participants 

using wireless communication.
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Entities
joining

Entities
leaving

Ordering Communication
failure

Entity failure

CAST & 
TNM

freeze
transactions

freeze
transactions

no information handled no support

SEAR & 
Comhordu

wait & listen 
(lurking)

aiiiiouiice/
time-out

different time handled no support

TicTac no support no support same time, 
different time, 

sequential

no support no support

Schemmer
(2004(

leader update announce/
time-out

different time, 
no information

< omission 
degree (OD)

remove from
team

TCB & 
Wormhole

no information no information no information detected by the 
TCB

detected by 
the TCB

Table 2.3: Summary of the evaluation of real-time coordination middleware

2.5.6 Analysis

Table 2.3 shows a summary of real time coordination middleware systems and how they support dynamic 

participants joining (DP - Join) and leaving (DP - Leave), event ordering constraints, communication 

failure and entity failure.

Middleware that supports dynamic participants require that entities to go through a joining and 

leaving step. The joining step involves allowing the newcomer to obtain updated information either by 

freezing every transaction (Murphy et ah, 2001], waiting and listening for a certain period (Cunningham 

and Cahill, 2002( or having a fixed entity to send the update information (Schomnier and Nett, 2003b(. 

Comheolai'ocht uses the same idea as Cunningham and Cahill (2002( where entities joining the system have 

to wait for a certain period. The method is chosen because the waiting only affects the entity joining.

Support for different-time event ordering is supported by Comhordu, TicTac and Schemmer (2004(. 

However, Comhordu only provides mutual exclusion and TicTac assumes that the constraints are pre­

computed. Only Schemmer provides exclusive access through scheduling thereby allowing entities to plan 

ahead. Support for same-time ordering events can be found in TicTac, whereas Schennner and TCB 

might be able to support same-time ordering because these middleware systems rely on consensus. In 

contrast, Comheolafocht only supports different-time and sequence ordering constraints, this is because 

Comheolai'ocht’s coordination model (similar to Comhordu) is not based on consensus.

Except for TicTac, all other middleware systems surveyed support communication failures. However, 

Schemmer (2004) only supports up to OD consecutive failures. CAST & TNM (assuming Limone is 

integrated) supports communication failures by providing roll-back of transactions. Only Wormhole & 

TCB and SEAR supports real-time mobile entities by providing detection of communication failures using 

time-outs, and allows entities to adapt their behaviors to the failure. Like Comhordu, Comheolai'ocht also
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assumes a prot.ocol that, provides real-t ime feedback on communication failures, and defines ent it.y behavior 

adaption in the event of such a failure.

Wormhole is able to detect entity failure and Schcnmier’s middleware can remove a failed entity from 

the system. Comheolai'ocht brings t.he handling of entity failure a step further and considers the effects 

of an entity failure on other entities in the vicinity; it provides a protocol that ensures enough allowance 

is made for reaction to an entity failure.

2.6 Analysis

This section first present,s a summary of t he comparisons made in this chapter. The section then concludes 

t he chapter by listing some of t he work ( hat influences this work.

2.6.1 Comparison Summary

This chapter evaluates related work based on two parameters: reliability and scalability (Figure 2.1 

provides a representation of the evaluated properties).

2.6.1.1 Reliability

In the evaluation of system reliability, support for safety and liveness properties are evaluated. With re­

gards to safety properties, each work is evaluated on its support for the different time and sequential event 

ordering constraints to support safety constraints, and if these constraints can be ensured despite commu­

nication and entity failures. With regards to liveness properties, systems are evaluated for any guarantees 

of a system’s goal being eventually achieved, in particular, whether the system handles deadlocks and 

live-locks, which might be present due to interleaving constraints.

Safety Most existing systems provide different-time and sequential-ordering constraints based on con­

sensus, However, current consensus protocols do not support environments with dynamic participants. 

In addition, most current solutions supporting sequential-ordering constraints are only applicable to a 

specific application. Generic support for different-time ordering constraints can be modeled as scheduling 

or mutual exclusion problems. However, current distributed scheduling methods usually do not consider 

communication failures or do not ensure exclusive allocation. Distributed mutual exclusion is implemented 

using either token-based or permission-based methods. Token-based approaches do not support dynamic 

participants, while permission-based approaches require knowledge on the number of nodes, rendering 

both mutual exclusion implementations impractical.
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Coiiiheolai'ocht provides an approach for developing distributed real-time scheduling and mutual ex­

clusion protocols using a permission-based approach without relying on consensus. In place of consensus, 

it is based on a communication protocol that provides ordered delivery, bounded message latency and 

real-time feedback. Ordered delivery provides the necessary conditions for ensuring that the any entities 

that make a decision, decide on the same things, and bounded message latency and real-time feedback 

ensures termination; that entities eventually makes a decision. Chapter 5 describes the derivation of the 

coordination protocol and Section 5.1 provides details on the communication protocol requirements, the 

same section also shows that the requirements can be achieved in a system with dynamic participants.

Liveness While many mutual exclusion protocols are proven to be free from deadlock and live-lock, 

those protocols are based on centralized systems. To our knowledge, distributed protocols that are shown 

to be free from deadlock and live-lock only support specific applications (e.g., [Yared et al., 2007)) or do 

not support dynamic participants [Allouche and Daigle, 2006).

In contrast, the protocols that Comheolaiocht generates are free from both live-locks and deadlocks.

2.6.1.2 Scalability

In this work, the evaluation of a system’s s\ipport for scalability focuses on its capability to handle 

dynamic participants. A system’s organization defines the entities’ roles, rclationshii)s, and authority 

structures that govern entities’ behavior. Systems based on federation, market or social organizations 

support dynamic participants by maintaining information about entity membership. Federation and 

market organizations implement membership with a centralized disting\iishcd entity which can cither be 

statically specified or dynamically elecicd at runtime. The static centralized entity might be costly to 

install and maintain and the dynamic elected leader is more complex due to election, and the handing 

and taking over of responsibilities whenever the elected leader leaves the system. Moreover, both methods 

involve a central entity which might introduce a bottleneck and a centralized point of failure. Social 

organizations do not have distinguished entities; membership in social organizations is maintained by 

having entities go through joining and leaving steps. The joining step is implemented using two methods: 

freezing transactions or lurking. The freezing transactions method sacrifices the efficiency of every entity 

in the system whenever an entity enters, while the lurking method may result in an unbounded time 

before the entity may enter the system.

Comheolaiocht uses social organization with entities lurking before coordination. It assumes that 

membership is supplied by the underlying communication protocol (e.g., STEAM [Meier and Cahill, 2002], 

Vertigo [Slot et. al., 2010)), allowing the developer to choose implement, different, membership methods
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based on the system’s requirements. In order to keep the connection between the coordination protocol 

(developed by Comheolaiocht) and the chosen membership protocol simple, this work only requires to know 

the identities of participating cnt.it.ies at. a fixed instant, instead of requiring membership information for 

the period of the transaction.

2.6.1.3 Applications and middleware

The previous sections describe the parameters and complexities in a real-time multi-entity coordination 

system. A summary of this classification is shown in Table 2.4. This table lists only the most significant 

systems in each community. In addition, these systems are ranked only according to the following criteria: 

support for dynamic participants, local coordination, safety constraints, liveness, and event ordering 

constraints. The first four criteria are rated using a number of stars, a system suitable for the problem 

that we arc tackling needs to have a rating of two stars in each criteria; this corresponds to supporting 

dynamic participation, supporting local real-time coordination, and ensuring safety and goals constraints 

despite failures. The last criteria, event ordering constraints, represents support for different-time {dt), 

same-time (sf), before (bf) and no-time (nr) event ordering. In addition, different-time event ordering can 

have a superscript dt” to denote support for scheduling. This work supports the set of {dt^,bf} ordering 

constraints.

2.6.2 Influential work

Comheolaiocht is largely motivated by Comhordu [Bourochc, 2007]. Therefore, most of the concepts 

like responsibility, lurking time, sending area, safe mode and contract without feedback arc either taken 

straight from Comhordu or adapted to this work. These concepts and their modifications will be intro­

duced when used.

Besides Comhordu, some systems that influenced Comheolaiocht include intersection manager [Dres­

ner, 2009], scheduling [Pinedo, 2008], auctions [Gcrkey and Matarid, 2004, Dias ct al., 2006, Zlot and 

Stentz, 2006] and fully-observcrablc systems [Schermerhorn and Scheutz, 2006, Elizondo-Leal et al., 2008].

The problem of autonomous vehicles crossing an intersection and its various requirements (e.g., vehicle 

breakdown, exiting intersection) are adapted from Dresner’s work. In this work, especially during the 

implementation of specific requirements, Dresner’s concept is used as a baseline for comparison.

Comheolaiocht models the dilferent-time event ordering constraints as a mutual exclusion and schedul­

ing problem. This work uses the characterization of scheduling problems by Pinedo [2008] for the specifi­

cation and modeling of a multi-entity coordination problem.

67



System Dyamnic
partici­
pants

Local co­
ordination

Safety Liveness Event
ordering

constraints
Intelligent Transportation Systems

Collision prevention platform for a dynamic 
group of asynchronous cooperative mobile 
robots. [Yared et al., 2007]

★ ★ ★ ★ ★ dt

Autonomous Intersection Management 
[Dresner and Stone, 2006b| ... [Dresner, 2009]

★ ★ ★ ★ ★ - dt

Other applications (RoboCup, 
exploration, MCM)

CAMBADA [Azevedo et al., 2007, Lau et al., 
2009]

- ★ - - dt, bf, nr

Multi-robot exploration and mapping using 
self-biddings [Elizondo-Leal et al., 2008]

★ ★ ★ - - nr

DEMiR-CF [Sariel et al., 2006b[ - - ★ ★ ★ ★ bf, nr

DELPHIS [Sotzing et al., 2007] - - ★ ★ ★ ★ bf, nr

Coordination protocols

A fault tolerant mutual exclusion algorithm 
for mobile ad hoc networks [Wu ct al., 2008]

★ - ★ ★ ★ ★ dt

Extending Paxos/Last Voting [Borraii ct al., 
2008a[

- - ★ ★ ★ ★ dt

Local Mutual Exclusion [Attiya et al., 2010] ★ - ★ ★ ★ ★ dt

Real-time coordination middleware

LIME & extensions [Roman ct al., 2006, 
Hackmann et al., 2005]

★ - ★ - -

TBMAC, SEAR & Comhordti [Hughes, 2006, 
Bouroche, 2007]

★ ★ ★ ★ ★ - dt, bf, nr

A middleware for cooperating mobile 
autonomous systems [Schemmer et al., 2001]

★ ★ ★ ★ ★ - dt-

TCB & Wormhole [Verissimo and Casimiro, 
2002, Verissimo, 2006]

- ★ ★ ★ ★ - -

Legend:
DP: — not supported; ★ supported affect others (e.g., freeze everyone);
★ ★ supported do not affect others
Local coordination: — not supported; ★ supported non-realtime;^^ supported real-time
Safety, liveness: — not supported; ★ supported, assumes perfect communications or entity;
★ ★ supported, do not assumes perfect communication and entity
Event ordering constraints: - no information; st same time; dt different time with mutual 
exclusion, dt^ different time with scheduling; bf sequential; nr no time relation

Table 2.4: Comparison Summary 
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The idea of market-based organization [Horling and Lesser, 2004| and auctions |Gcrkey and Mataric, 

2004. Dias et al., 2006, Zlot and Stcntz, 2006] is to use an utility value for determining the optimal 

allocation of tasks or resources. Comheolai'ocht’s CwoRIS pattern is adapted from Bouroche’s |2007| 

cont ract without feedback protocol which allocat es shared resources based on a first-come first-served 

basis. In addition, CwoRIS’s usage of a score (utility) for breaking deadlocks, determining race winner, 

and preforming preemptions is inspired by auctions.

Various multi-robot coordination techniques assume that entities have access to every attributes in 

the system [Schermerhorn and Scheutz, 2006, Elizondo-Leal et ah, 2008]. With some similarity, this work 

builds on the fact that entities can listen in on wireless communication and gather some understanding 

about the system’s current state. In contrast to these work, Comhcolaiocht does not assume that the 

information thus gathered is perfect due to imperfect communication.

2.7 Summary

I’his chapt er first present ed a t axonomy of mult i-ent,ity coordinat ion and charact erizos t he complex prolv 

lems, in particular, it, investigates the diflriculties in developing coordination protocols for scalable and 

reliable multi-entity systems. The chapter then reviewed work in multi-robot applications, generic coor­

dination protocols and middleware. A number of criteria with regards to scalability and reliability arc 

used to classify the work mentioned. This demonstrated that none of the existing work provides a generic 

protocol that addresses the challenges addressed in this thesis. Finally, we have shown how the design of 

Comheolai'ocht, was influenced by s(rmc of the work presented.
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Chapter 3

System Modeling and Specification

System modeling is the first, of Comheolaiocht.’s three steps in designing a solution for a coordination 

problem. This stage involves stejj-by-step modeling and specification of the system by describing the 

different participants and their behaviors, the environment, and the constraints between them. This step 

is designed to capture the relevant parameters and hide the unnecessary details.

A multi-entity system can be described by parameters along five axes: entity, environment, relation­

ship, objective and communication (Section 2.1.2.1). Comheolai'ocht supports the development of selfish, 

rational and honest entities that do not work in a team, are aware of other entities and have neutral 

intentions, which fixes all the parameters in the relationship axis. This system modeling and specification 

step captures parameters from the entity, environment and objective axes, while Coinheolai'ocht outputs 

a protocol for the communication axis.

The following section describes the distinction between entities and elements, in particular, it defines 

a developer’s sphere of influence and further scopes this work to handle only entities that are within a 

developer sphere of influence. Section 3.2 then defines entities’ behaviors and describes similar behaviors 

modeled as behavior types. Similarly, Section 3.3 describes similar entities modeled as entity types. 

Behavior types and entity types can be use to promote modularity by encapsulating the differences 

between similar entities and behaviors. This modeling captures parameters from the entity axis.

Section 3.4 then model a system environment by partitioning the physical space of the environment 

into non-overlapping scenarios and grouping similar scenarios into scenario types. For each scenario-type, 

entity coordination constraints and objectives are defined. This modeling captures parameters from the 

environment and the objective axes. The partitioned system provides a separation of concerns across the 

parts thereby allowing sub-systems to be developed in parallel. Such a partition makes the system design 

process less complex by considering only sub-problems with less interleaving constraints.
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3.1 Entities and Passive Elements

All cnviroiiiiiciit can be iiiodeled as a collection of elements such that passive elements refer to elements 

that are not within the application developer’s sphere of control and entities refer to elements within an 

application developer’s sphere of control [Bouroche, 2007|. An application developer’s sphere of control 

over an element can be defined by whether the developer can modify the element’s behaviour. For 

instance a traffic light can perform actions (change lights) and has an actuator (displaying the lights). If 

a developer cannot make the traffic lights change color, the traffic light is modeled as a passive element. 

Since passive elements arc not within the control of application developers, safety between passive elements 

will not be considered in this work. Coordination between entities and passive elements may be performed 

using a contract without transfer whereby an entity senses the presence of passive elements by indirect 

communication and gives way to the passive elements |Bourochc, 2007|. Using the contract without 

transfer implies that entities must give way to passive elements, putting the entities in a lower-priority 

position.

Consider a situation where application developers know an element’s deterministic reaction to some 

stimulus, then the element’s actions can be indirectly influenced by the generation of such a stimulus; this 

means that such an entity could f)e indirectly included in a developer’s sphere of influence. For instance, 

if pedestrians will not cross a junction during a red light, an emergency vehicle entity could ensure that 

no pedestrians are crossing the junction by communicating with the traffic lights in advance, thereby 

changing all pedestrian crossing lights to red, and influencing all pedestrians not to cross the road. The 

knowlerige of pedestrians’ deterministic reactions allow the emergency vehicle to influence their ftehaviors 

(through a traffic light proxy and indirect communication). In this example, pedestrians are considered 

to be under tlie ’sphere of control’ of application developers and are entities.

As such this work redefines a developer’s sphere of influence to include those elements that: a developer 

can either i) directly control via their actions (which arc not required to be deterministic) or ii) indirectly 

control via their deterministic reactions by providing the required stimulus for some reaction. In the event 

that the developer cannot be entirely sure whether an element’s reaction is deterministic, it should be 

assumed that it is not. Continuing the pedestrian example, some pedestrians (e.g., in Ireland) may cross 

tlie road while the pedestrian fight is red, meaning that not all entities of the pedestrian type (cf.. Section 

3.3) have deterministic reactions and therefore pedestrians should be modeled as passive elements.

The first step for the modeling a coordination system is to identify the passive elements and entities.
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3.2 Behavior Behavior Types

The second step in modeling a coordination system is to identify the entities’ behaviors. Entities’ behaviors 

and behavior types arc subsequently analyzed (see Chapter 4: Model Analysis) for the entity’s capability 

to act safely and achieve the system’s goal. We defined a behavior as an action/stimulus-reaction or a 

series of actions/stimuli-reactions that an entity may perform to generate some observable effects. Two 

concepts need to be clarified in this definition, series of actions/stimulus-reactions and observable effects.

An entity may sense the environment to obtain some stimuli (i.e., sensor inputs, received messages) 

to which the entity reacts (i.e., via actuator or sending a message). A stimulus-reaction pair models an 

entity performing some action (i.e., reaction) when it detects some properties in the environment (i.e., 

stimulus). An example for a stimulus-reaction is when a vehicle senses an obstacle (stimulus), and changes 

it trajectory (reaction). A series of actions/stimuli-reactions can be used to model complex behaviors. 

For example, a vehicle performing an overtaking action has the stimnli of a leading slow vehicle and no 

vehicles on an adjacent lane, and the actions of vehicle changing lane and accelerating. Defining behavior 

using a series of actions/stimulus-rcactions abstracts away the details of low-level actions.

Observable effects of a behavior refer to the outputs of actions that can be detected by other entities. 

Such observable effects may be in the form of receiving a message, changing the entity’s physical state 

or changing the environment. The requirement, for behavior to jtroduce observable effects means that all 

actions that cannot be detected by other entities (e.g., sensing, deliberating, learning) arc hidden and not 

considered as behavior. Defining behavior only via observable effects abstracts away all other actions that 

arc not visible to other entities.

A behavior type defines the parameters that describe a behavior. Behaviors belonging to the same 

behavior type have the same set of stimuli and observable effects; two behaviors with different series of 

actions/stimuli-reactions belong to the same behavior type as long as their set of stimuli and observable 

effects are the same. This definition of behavior type groups seemingly heterogeneous behaviors under 

a single type based on their injtuts (stimuli) and outputs (observable effects). The following suit-section 

describes the input and output of a behavior-type in detail and section 3.2.2 provides a summary of the 

parameters for specifying an entity’s behavior.

3.2.1 Behavior inputs/outputs

The parameters used to differentiate between two behaviors are their inputs (stimuli) and outputs (ob­

servable effects). This section describes the inputs and outputs of a behavior type.
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• Inputs (stimuli)

The inputs of a behavior, also called the stimuli of a behavior, refer to conditions that make an 

entity perform that behavior. Behaviors are further classified as

— Controllable: an entity can choose to perform the behavior.

An example of a controllable behavior is an autonomous vehicle gets impatient and decides to 

perform an overtaking behavior.

— Uncontrollable: the entity cannot choose to perform the behavior or not.

An example of an uncontrollable behavior is when the autonomous vehicle breaks down.

An entity with uncontrollable behaviors may perform unsafe actions. Section 4.2.6 analyses whether 

a model can be solved by Comhcolai'ocht by checking whether an entity’s behaviors allow it to achieve 

the system goals while respecting the safety constraints.

• Out puts (observable effects)

The output, of a behavior is differentiated by its (observable effects. If other entit.ios are not able 

(or are not required) t(0 differentiate between two sequence of observable effects, then any observing 

entities may perceive that, these effects are generated by the same behavior (the entities need not be 

concerned that, the effects are produced by different, behaviors). Consecjuent.ly, behaviors with non- 

det.erminist.ic observable effects, may be split into multiple behaviors depending on whether other 

ent.it ies need t o different iat.e bet ween t he effect s. For example, if a robot may avoid an obst acle by 

t aking eit her a left or right, side st ep and if ot her ent it ies need t o different iat.e whet her t he robot, 

performed a left or right maneuver, then the obstacle avoidance behavior can be modeled by two 

behaviors: ’avoid obstacle left’ and ’avoid obstacle right’.

In addition, an entity could have an ’inact ion’ behavior with obst'rvable effects. An example is an 

autonomous vehicle parked on the road, while parking does not involve performing any actions, 

such inaction is observable to other autonomous vehicles. Therefore, parking can be modeled as a 

behavior wit h t he observable effect of a st at ionary vehicle.

3.2.2 Behavior parameters

In summary, a behavior’s parameters are its inputs and outputs. As this work is only concerned about 

how entities influence each others’ behaviors, only observable effects are required to be recorded. The 

parameters describing a behavior are:
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• Name: unique name for the behavior.

• Controllability: whether the behavior is controllable or uncontrollable.

• Stimulus: the condition that makes the entity perform behavior.

— A behavior can be controllable or uncontrollable.

• Observable effects: what, ot her entities can detect and arc concerned about..

3.3 Entity types

Entity types group entities with the same set of behaviors (inputs-outputs) and abstract away the non- 

relevant parameters (e.g., different physical characteristics that may result in different robot control). 

This abstraction allows more entities to be grouped under the same entity type, thereby resulting in 

fewer entity types and lowering the system complexity by considering fewer types of different entities. 

For example, different makes and models of vehicles (e.g., trucks, bases, cars) might not be differentiated 

because all vehicle entities have the same behaviors.

This section describes the design of entity types in detail. The following sul)-sect,ion first, describes an 

entity-type’s knowledge. Next, the parameters needed to specify an entity-type are presented.

3.3.1 Knowledge

An entity’s knowledge can be described by the subject, state and model (Section 2.1.2).

An entity type’s knowledge of its own model (i.e., subject = self) is captured by its set of behaviors. 

The entity type’s knowledge of its own state is recorded by its set of local variables. These variables 

include the inputs of the entities’ behaviors.

In this work, we assume that an entity knows that other entities will adhere to the same protocol 

developed by Comheolai'ocht.

3.3.2 Entity-type parameters

In summary, the parameters to specify an entity-type are:

• Name: an unique name for an entity-type

• Set of behaviors

• Set of local state variables
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Figure 3.1; Intersection crossing

3.4 Environment, Scenario and Scenario Types

An environment is partitioned into multiple scenarios in order to provide separation of concerns and allow 

developers to work independently on the scenarios. It is expected that entities’ constraints within each 

scenario are less complex when compared to tackling the system ais a whole due to less interleaving of 

constraints.

A scenario is a partition (non-overlapping and non-empty) of the physical space in the environment, 

such that each scenario involves a minimal (non-zero) number of entity types and each entity type has 

a minimal (non-zero) number of applicable behaviors in the scenario. In addition, the set of scenario 

partitions are collectively exhaustive; the union of all partitions defines the whole environment. This 

section uses the intersection collision avoidance environment as an example (Figure 3.1). A scenario 

breakdown would first identify each of the pedestrian crossings as a stand alone scenario; firstly, because 

pedestrian entities and the vehicle entity’s avoid-pcdcstrian behavior do not occur anywhere else in the 

environment and secondly, because a pedestrian crossing scenario does not have a smaller physical partition 

where a dilTerent set of entity types and behavior types is observed. The two ot her scenarios in this example 

are road and junction (see Section 6.3 for the modeling of the intersection collision avoidance scenario).

Scenario types group scenarios with the same set of entity types and behavior types together. For 

instance the four pedestrian crossings in the above example are of the same pedestrian-crossing scenario 

type. Each scenario type can be analyzed independently so as to achieve niodularity and rcusablility 

across the environment; interactions between scenarios are specified in the constraints (Section 3.4.5), and 

will be examined in the scenario composition step (Section 4.4).

The following sub-section provides an overview of the constraints for a scenario type.
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3.4.1 Constraint overview

This thesis defines five types of eonst.raints: seenario abstraet ion, seenario setting, ent rance, safety and 

goal. Each of these constraints is related to some aspects of a scenario.

• Scenario abstraction

Coordination problems with different, time event ordering can be rej>resent.ed as a resource sharing 

problem. The scenario abstraction step maps scenario parameters (e.g., location) into resources. 

Section 3.4.2 presents the scenario abstraction step,

• Scenario setting

Coordination problems with sequence event ordering (before; after) can be modeled in the scenario 

setting step. The scenario setting step records two properties: i) the order in which resources arc 

used by the entities, and ii) the priorities between the entities. Section 3.4.3 presents the scenario 

setting step.

• Entrance (pre-condition)

The enl ranee const rainl. may also be referred t o as t he pre-condit ion required to be sat isfied when 

an entity joins a scenario. This constraint records two properties: i) the location where the entity 

enters the scenario, and ii) a constraint to ensure that an entity who has just entered a scenario is 

not in a behavior that will inevitably violate the safety constraint. For example, a vehicle entity 

that is about to enter a road scenario must have enough breaking space between itself and the last 

vehicle on the road.

• Safety (invariant)

Safety constraints arc introduced in Bouroche’s thesis [Bouroche, 2007|. The safety constraint may 

als(} be referred to as the invariant of the scenario. It descTibcs ((mditions that must be satisfied 

at all times; violation of the safety constraint may lead to the failure of the system. Section 3.4.4 

presents the modeling of safety constraints.

• Goal (post-condition)

The goal constraint may also be referred to as the post-condition of the scenario. It is the condition 

that must be satisfied just before an entity leaves the scenario. Section 3.4..5 presents the modeling 

of a scenario’s entrance and goal constraints.
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3.4.2 Scenario abstraction; different time constraints

'this section presents t he steps to abstract and specify coordination problems with different-time event­

ordering constraints (Section 1.3). The first subsection shows that such coordination problems can be 

modeled as resource sharing problems. This modeling provides two advantages: firstly, established algo­

rithms for coordinating access to shared resources can be reused, and, secondly, the modeling provides 

a standard way to approach problems exhibiting similar constraints. Section 3.4.2.2 then defines the 

syntax for specifying an entity’s use and reservation of resources and Section 3.4.2.3 presents the syntax 

and semantics for representing resourctvusage conflic:ts; i.e., risourctvusage violating the different-time 

property. Section 3.4.2.4 summarizes this section and pre^sents the syntax for defining the different-time 

events ordering constraints.

3.4.2.1 Modeling different-time event ordering problems as resource sharing problems

Different-time event ordering constraints describe situations where events must not happen at the same 

time (Section 1.3). Problems with such constraints can be modeled as resource-sharing problems. In 

resource-sharing problems, there is a pool of shared resources that entities may use, and the entities 

must be ensured exclusive resource usage at any time [Ricart and Agrawala, 1981, Agrawal and Abbadi, 

1991, Pinedo, 2008). This exclusive resource usage property is similar to the different-time event ordering 

constraint - the only difference is the absence of shared resources in some problems with different-time 

event ordering constraints. For example, a commonly seen different time event ordering constraint is 

where robots must not be in the same place at the same time; i.e., space is a shared resource.

In essence, there are many ways to define a physical area. Similarly, problems with different-time 

event ordering could be mapped to a virtual space. For instance, in the robot-soccer scenario, in order 

to maintain a formation, different robots are required to take up different roles (e.g., left-striker, right- 

defender); these unique roles can be mapped as resources. The main idea is to map different-time event 

ordering constraints into resource sharing problems by identifying the ’space’ for which entities must be 

ensured exclusive access, such ’space’ could either be physical or a virtual abstraction with a unique name.

Note: Specific steps for modeling constraints into shared-resources in not in the scope of this work.

Multiple instances of resources One relaxation of ( he different -t ime event, ordering const raint is t he 

not-more-than-n condition specifying that not more than n events may happen at the same time. The 

corresponding resource specificat ion is:
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• Single instance of resource with identifier i, Cj

Defines and specifies a single resource with its unique identifier.

• n mult iple ident ical instances of resources sharing t he identifier i, r"

— To specify a specific instance riQj 

— To specify more than one, specific instances rjQ[jjt,...l 

— To specify any instance 

— To specify m (non-specific) instances

The definition of multiple instances of identical resources allows multiple entities to use some re­

sources at the same time, or an entity to use more than one instance of the resource at the same 

time. For example, multiple vehicles may board a barge to cross a river, since the barge can carry a 

maximum capacity. The problem can be abstracted as the barge having multiple identical instances 

of resources and each vehicle must obtain such a resource in order to board the barge.

• n multiple near-ident ical instances sharing identifier i and differentiated by a parameter,

For specialized treatment of events, resources may carry some parameters to allow entities to reason 

about the characteristics of the resources they require.

For instance, a road can be modeled as lanes, where each lane is nearly identical to another lane 

except, for its location - which is used t.o define neighboring lanes. An abstraction f<ir resources on a 

road can be specified as where ’i’ refers to the identity of the road, lanes specifies

the number of lanes (resource unit.s) on the road, and each resource has a parameter specified 

by lancNumber. When an autonomous vehicle travels on the road, it reserves and uses the road 

resources model. Using the laneNumber parameter, an autonomous vehicle’s lane changing behavior 

could be specified that it requires a laneNumber that is to the left (-1) or to the right ( t 1) of the 

current lane,

3.4.2.2 Resource usage

The previous section shows that problems with different time event ordering constraints can be abstracted 

as shared resource problems. This section shows that event (i.e., entity performing an action, time passing, 

something happened in the environment) occurrence can also be abstracted as resource use.
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• Resource use:< rj,is,^e >

The use of a resource, or the occurrence of an event., can be described by the resource identifier (rj), 

and the start (fj) and end (tg) time. The CwoRIS pattern (Section 5) can implement resource use 

as scheduling or mutual exclusion. Scheduling of resources requires a start and a end time to be 

specified whereas resource mutual exclusion just requires the resource use start time; t.hc end time 

(fe) for mutually exclusive resource use is not predefined.

• Basket of resources usage: R = < ri,ts,tg >,...

The basket of resources abstraction has been used, for example in the literature for combinatorial 

auctions [Kutanoglu and Wu. 1999] where entities require a whole set of resources or none. Our 

work represents resources basket, tise as a set of resotirce use ttrplcs. I’he resource basket specifies 

that the entity needs all the resources in the basket or none.

An entity may use a resource only if it holds exclusive rights to it. As mentioned in Section 2.1.2, 

Comheolai'ocht coordinates by having entities send requests, therefore, an entity may request the right 

to use the resources it requires. There is no ambiguity when an entity requests or holds a resource of 

which there is only a single instance of the resource. In the case where there are nmltiple instances of a 

resource, an entity might want to request for any/many instances of the resource and to hold exclusive 

rights to some sptxdfic' instance's of the rc'source. The syntax for d{*c:ribing an entity reequesting and 

holding exclusive rights to resources arc:

• Resource requests:

— Single instance of the rcsonrcc: r-j

— Mnltiple instances of resources, requesting for any single instance: r-j©?

— Mnltiple instances of resources, requesting for m instances: ViQfm

Multiple instances of resource differentiated by a parameter: condition
iQ7m

As an illust rat ion, in the previous example where a road is specified as request

for an adjacent lane could be rianeNumber=currentLane+ivcurrentLane-i^ currcntLaiie is the entity’s

current lane number.
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• Resource usage (held):

— Single instance of the resource: ri

— Multiple instances of resources, holding exclusive rights to a single instance identified by fc:

nek

— Multiple instances of resources, holding exclusive rights to multiple instances: j

Note that an entity only can hold specific instances of a resource, holding unspecified instances (i.e., 

TiQ7m) is not defined.

3.4.2.3 Resource comparison

This section presents the syntax for comparing two baskets of resources. In particular, the conflict relation 

is used to check whether two resource sets violate the different-time condition by comparing whether they 

require the same resources at the same time. These definitions will be used in Chapter 5.

Two sets of resources, Ra and Rh, are in conflict when some resources exist in both sets and their 

usage time overlaps.

Ra ^ ^ 0 .= 3 (rj, ffil, tgl) ^ ^a ^ (ft, ^s2i ^e2) ^ Rb*

^sl ^ ^e2 ^ 

fs2 ^el

We further define the intersection between two sets of resources by: a resource reservation is in the 

intersection set, Ra n Rb, if the resource appears in both sets such that their usage times overlap. The 

resource reservation/use time of the resource in the intersection set is defined as the period for which their 

times overlap.
RanRb= {(ri,max(fsi,ts2),nfin(fei,<e2)> :

^ Ra^

(fi,fs2ife2) ^ Rb^

tsl < te2 A ts2 < tel}
Note that Chapter -5 only requires the definition for conflict comparisons between two resources {Ra n 

Rb ^ tty, the intersection set {Ra n Rb) is presented because it will be used for defining other relations.

Multiple instances When there are multiple instances of resources, the comparison between two re­

source sets for conflicts is straight forward if both sets use specific instance. The conflict definition is 

extended to handle multiple instances of resources:
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• Specific instance

There is a conflict, only if both sets refer t-o the same instance (i.e., = y-riQj)

Ra ^ 7^ 0 3 1 ^el) ^ Ra 1 {'b'ioyj T^s2Re2) ^ Rb*

tsl < te2 A 

^s2 ^el
Comparisons between two resource baskets to detect conflicts when cither set, specifies any resource 

instance (rjQ? and riQ?^) is not defined.

• Any one

In order to define the conflict relat ion for resources involving non-specific instances, it is necessary 

t o define some support,ing const ruct s:

— Intersection between two sets of resource tuples

Ra<^Rb= {(n0j,max(t3i,ts2),mh»(^ei,ie2)) ;

( (^10? ^ Ra ^ i^iQj i i ^el) ^ Ra ) ^

( (^tO?) ^.s2) ^e2) ^ Rb'^ {'^iQji^s2^^e2') ^ Rb) ^ 

tsl < te.2 t\ ts2 < tel
The above definition extends the previous definit,ion of the intersection between two sets of 

resources, Ra and Rt,. In this definition, both Ra and Rh use the non-specific (any-one) resource 

specification (ciQ?). Note: in the above definition, when both resources are specified as ’any 

one’ instances, (rj©?), the result of the intersection is also an ’any-one’ specification.

— Intersection with the whole system

The set of all reservations/uses of resources in the whole system is denoted by the universe 

{U). The intersection of a resource set with the universe is defined as the union of all pair-wise 

intersections of Ra with every reservation/use in the universe. nW = U{vnt6W,Han/it)

— Union between two sets

The union between two sets of resource reservations, Ra and Rb, is defined by: if a resource, 

ViQj, is in one set but not in the other set, then resource ViQj with its original reservation time 

is in the union, moreover, if resource ViQj is in both sets, then the union uses the earlier start 

time and later end time (effectively filling any gaps between the use times).
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Lcta = ,6 = {riQj,ts2,te2) ,a(Bb = (rioj, mm(f,,i, f,,2), max(tei, te2)) in

R„U Rb= {c :

(a e /?„ A 6 ̂  Ri, => c = o) A

{a ^ Ra /\ b € Rb => c = b) A

{a € Ra A b e Rb => c = a © 6)}

— Resource request conflict (any single copy)

Conflict: Brig? e Ra, |{ri0i,CiOn} nW| > n

The definition can be read as: if there exist a resource. rj(.)? in request Ra- that requires any 

instance of the resource to be available, such that every copy of the resource has already been 

taken up, ...,ri0n} tlU\ > n, then the request is in conflict.

— Resource request conflict (any multiple copies)

Conflict: 3ri0?m e Ra, |{ri0i,..., r.0„} n W| >n-m

When more than one instance of a resource is required, the universe must have at least the 

required number of resources available; a conflict happens when there are not enough resources 

available.

Parametrized instance

The request for a parametrized instance, c'^07m‘'°'’, includes a condition to be matched against the 

parameter in the specification, Requests for a parametrized instance arc required only

when rcqtiesting any instances; request for specific instances do not need to check the condition 

parameter.

Let R^ = {r : rP“‘‘’- e ,..., } A condition(paraJ} in
Conflict:

3j.condition e nf.fl > |i?,|

Where condition{para) refers to the request’s condition applied to the parameter, which evaluates 

to true when a resource with the parameter can be a match for the request, /f, represents the set 

of resources in the universe that satisfy the condition. |f?,| counts the number of possible matches 

and |/f, r\U\ counts the number of matched resources reserved in the system. The definition can 

be read as: if there exist a request Ra for any resource with a condition, such that every

instance of the resource that satisfies the condition {Ri) has already been taken up, \RiC\U\ > 
then the request is in conflict.

This definition is an adaption from the resource request conflict (any single copy) definition. The 

parametrized copy definition checks whether there is an available copy in the universe. A conflict
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is registered wlicn all the resources that satisfy the condition arc reserved or when tiicre arc no 

resources that satisfy the condition (for w'hich case j/?; nW| = 0 and = 0).

3.4.2.4 Syntax

This section presents the syntax for scenario abstraction using EBNF [ISO, 1996|.

A scenario abstraction is a representation for the shared resources and any constraints on tiie use of 

the resources.

scenario_abstraction := resource definition_list, ”; ”, resourcc_constraint_list

resource_dofinition_list := resource_definition, ”; ”, resource_definition_lisl |” NULL"

resource_definition := resourcc_nainc, ” = ”, some_resource

I resource_naine", ” =”, some_resources
I n(parameter) « «I resource_name , = ,sonie_resources

y'NULL"

resource constraint list = resource constraint,”;”,rcsource_constraint_list|”A^[/LL”

rcsourcc_constraint := resource_name,” fl ”,resource_name

The resource constraint list is used to define static conflicts among the resources. Static resource 

conflicts are used to specify that two resource names refer to the same physical resource. Such specifications 

are useful for hierarchical resource abstraction; for instance, a junction can be modeled as a grid, set of 

lanes or as a single resource (Figure 3.2). A hierarchical abstraction includes all three abstractions and 

the static resource conflict records that lane, grid and the single junction resources refer to the same 

resource. An entity may use any of the lanes or grid-square abstractions to specify a resource, since some 

grid square and lanes refer to the same space (resource), a vehicle using a lane must have exclusive use of 

both the lane and the corresponding grid square.
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Figure 3.2: Intersection resource abstraction: grid and lanes

3.4.3 Scenario setting; sequence constraint

While t he previous sect ion present ed t he modeling and specificat ion of different-t ime event ordering eon- 

straint.s. t his sect ion present s t he modeling and specification of sequence event ordering const raint s.

The following subsect ion describes t he modeling of t he sequence coordinat ion problems and defines t he 

basic constructs for specifying sequence constraints. Section 3.4.3.2 describes constraints that limit the 

iLse of resources in part icular sequences and links t hese sequence definit ions t o t he t radit ional scheduling 

problem classification [Pinedo, 20f)8|. Section 3.4.3.3 then presents the syntax for defining the scenario 

setting and summarizes this section.

3.4.3.1 Sequence constraints

Coordination problems with sequence event ordering constraints have constraints on events happening 

one after another. This section presents a method for modeling the problem, and describes the scope of 

this work.

Section 3.4.2 presented a model that uses resources to represent different-time constraints, this section 

reuses the same resource abstraction; an event is abstracted as an entity request use of resources. Using 

this abstraction, sequence constraints can be classified under three categories:

1. Same entity, different resources

This category groups problems where an entity must perform some actions (use different resources) 

in sequence. An example problem mapping to this abstraction is the specification for an autonomous 

vehicle to drive in a single direction on the road; each end of the road is represented by a resource 

and the resource usage sequence constraint limits vehicles to use the resources in sequence (i.e., they 

must drive from one end to the other end).
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Vi ► Tj ]' (^(^T j ^ tgj j t^j) € H 'i' {Vi^tgi^tgi) G FlAtsi ^ ^sj)

Using the ► operator, the relation above defines the sequence constraint “same entity different 

resources”. In the relation, the resource usage of a single entity is captured by the resource basket 

R. It specifies that: if the resource, Vj, is being used by an entity, then the entity must also use Vi 

and it must start using r; before Vj (as denoted by t^i < tsj). Note: the sequence constraint only 

limits the start time; the times for resources use may overlap.

• Chain; r; ► vj ►

The sequence operator may be chained; in this case event cannot start unless both r-j and 

Vj have started, and, Vj cannot start unless r, has started.

2. Different entities, same resource

This category groups problems where different entities must perform the same action in sequence; 

that is, an entity must perform an action first before another entity may perform the same action.

Dependency Comheolai'ocht defines that two entit.es, ei and 62, has a dependency constraint (i.e., 

ei depends on 62), when ei can only use some resources rj after 62 completed using its resources

r2-

• These two entities is said to have a natural dependency when ri = r2-

• An entity is said to have no dependency constraint if it is not dependent on any entity.

An example for this constraint is where a vehicle e\ must allow another vehicle 62 in front of it, on 

the same lane, to move away first, (i.e., ei is dependent on 62).

Dependency may be handled in Comheolai'ocht using priority and a preemption constraint. An 

entity’s priority is defined for each entity based on a developer’s understanding of which events are 

more important. Priority in Comheolai'ocht can be use for preemption, handling races (Chapter 

5) and the prevention of starvation (Chapter 6). Note: defining which entity should have higher 

priority is not in the scope of this work.

Comheolai'ocht maps the scheduling of entities and resources to the scheduling of jobs and machines 

[Pinedo, 2008|; (i.e., jobs as entities and resources as machines). In machine-job scheduling, pre­

emption implies that the scheduler is allowed to interrupt the processing of a job (preempt) at any 

point in time and put a different job on the machine instead. There are two main differences in 

resource-ent ity scheduling: the definition of when an entity starts using a rc'source and the absence 

of the scheduler. We define preemption in resourcc'-entity scheduling as:
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Preemption implies that it is not necessary that an entity completes its resource use even though 

it has acquired exclusive access to it. A higher-priority entity may request (preempt) the 

resources, and the lower priority entity must give up the resource.

In the definition, an entity completing using its resources means that it docs not require to use the 

resource anymore; being preempted means that it has to give way to the higher-priority entity by 

releasing the resources before the end of its usage.

Since traditional scheduling systems are centralized, preemption was denoted as a system constraint; 

that is. if the system allows preemption, it is assumed that every machine is capable of handling 

the preemption of a job by another. Comhcolai'ocht uses resources as an abstraction for roles, tasks 

and act.icms. Resources may be different and distributed, as such, an ent it.y may only preempt some 

resources (i.c., other resources cannot be preempted). Following traditional scheduling, this method­

ology uses the term prmp to means preemption; the syntax is extended to allow the specification of 

the subset of resources supporting preemption;

prmp{ri, ...,rk) denotes that the resources in the set ri,...,rk allow entities with higher priority to 

preempt usage by another entity.

3.4.3.2 Resource usage order

A scheduling problem can be described usitig three parameters: q|/3|7 |Pinedo, 2008|. The a parameter 

describes the resource usage environment and contains just one entry. This section describes Comheo- 

lai'ocht’s adaption to the resource usage (q parameter) and links our representation of resource use ordering 

with traditional scheduling. The ^ field provides details of processing characteristics and constraints and 

may contain zero to multiple entries. This section also describes the constraints (/3 parameter) that can 

be used in distributed entity coordination and provides some examples of usage. The q field describes the 

objective to bo minimized; 7 optimizations arc not supported in this work.

a-constraint In traditional scheduling, the a constraint is used to specify the resources and their usage 

sequence [Pinedo, 2008]. This section shows the modeling of three of the o constraints: the flow shop, 

flexible flow shop and job shop. Although the other a constraints (e.g., flexible jol>-shop. machines in 

parallel with different speeds) can also be modeled, however, they are removed from the scope of this 

thesis as there are no ready examples to demonstrate their application.
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• Flow shop; F'"

There are m resources and each entity has to use the m resources in sequence. Let’s assume that the 

identity of the resources arc the sequence of resource usage for each entity is ri ► r2 ► ■ • • ►

An example of t he flow-shop abstraction is autonomous vehicles traveling on a single-lane road. A 

single-lane road can be modeled as a flow-shop by dividing it int o segments such t.hat. each segment is 

represented by a resource, an autonomous vehicle must travel on every segment (use every resource) 

in sequence.

Entities in the flow-shop has a dependency constraint such that an entity holding resource rj is 

dependent on an entity holding rj if i < j.

• Flexible flow shop: FF‘= ::

The flexible flow shop is a generalizat ion of t he flow shop. There are c stages in sequence, each stage 

has rii identical resources; each entity follows the usage sequence of ri©? ► r2Q? ► ■ • ► Tc©? (i.e., 

each entity uses one of the identical instances of resources in each stage in sequence).

Similar to the single-lane road’s flow-shop abstraction, a multiple-lane road can be modeled as a 

flexible flow-shop. On the m>iltiple-lane rcrad, each lane is divided into segments where segments on 

adjacent lanes belong to resources in the same stage. An autonomous vehicle needs to travel from 

one stage to another in sequence in order to traverse the road. In addition, the vehicle may change 

lane (use an adjacent segment of the lane) while traveling on the road.

• Job-shop; J’"

There are m unique resources in the scenario and each entity has its own predetermined sequence 

of resources to use. This work defines t he job-e lass se-quence eonst.raint whereby ent it ies performing 

the same job-class use the same predetermined resource sequence.

— job-class sequence constraint: J, = (cq ► r;, ► ■ ■ ■); 1 < a, 6 < m

— Set of all job-class sequence constraints: J = {Jp(ra ► Cb ► • • •) 

a,b,c,d < m

,Jq{rc ► Cd ► ■••)},1 <

An example of a scenario that can be modeled with the job-shop is the intersection collision avoidance 

scenario. In the scenario, vehicles crossing from the same (direction, lane) source to the same 

(direction, lane) destination belong to the same job-class and use the same set of resources in 

sequence (Section 6.3 illustrates the modeling of the junction scenario as a job-shop).
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/3-constraints The /3-constraints on a scenario arc used to describe its resource usage. This section 

describes these constraints and their representations.

• Sequence dependent and job-family setup time; Ra Hsetup Rb

There are times where a buffer must be introduced between entities accessing same resource. In 

traditional machine-job scheduling, the setup time provides the necessary time for preparing a ma­

chine to accept the next job; in the resource abstraction, setup time may also be used to provide 

buffers between resource access. For instance, int.er-vehicular distance must be kept, between travel­

ing vehicles so that vehicles can react in time in the event of breakdowns and errors in positioning 

and control (Section 5.4.3.6 illustrates the use of setup times for collision prevention in the event 

of breakdowns). In an abstraction, the inter-vehicular distance can be converted into time (i.e., 

using the vehicle’s speed) and setup time constraints can be utilized for describing inter-vehicular 

distance.

The sequence dependent setup time, Sxy, is the time required to prepare a resource between the 

processing of entities x and y. If the setup time between entities x and y depends on the resource 

r, then the subscript is included, i.e., Sriy

Srxy '■= setup time required for entity y to access resource r, after entity x has accessed r.

Ill job-family setup time constraints, entities in the system belong to one of the F different job 

families. Entities from the same family may use a resource one after another without requiring any 

setup time in between. However, if the entity switches over from one family to another, say from 

family g to family h, then a setup, Sgh, is required. If the setup time depends on the resource, then 

the subscript is included, i.e., Sigh-

^setup Rb ^ 9 '■= 3x e Ra, y € Rh*

x.r = y.rA

i^x.tg Sxyx') ^ y-^eR

(l/.fs ^rxy') ^ X.fg

Conflict constraints (Section 3.4.2.3) describe the condition that entities cannot access resources 

at the same time. Setup-time conflict constraints extend the conflict constraint by including the 

required setup time in the calculation (Section 5.4.3.6 presents the use of job-family setup times to 

allocate allowances for vehicle breakdowns).

• Preemption; prmp(ri,..., r*;) , prmp(R)

Preemption allows an entity with higher priority to replace another lower priority entity in the use of
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sonic resource. This iJ-const.raint, was presented in the diffcrent.-entit.ies-same-resourcc abstraction. 

(Section 3.4.3.1).

• Blocking; block(ri, ...,rk), block{R)

When the blocking constraint is present, an entity who has finished using the resources may still 

hold the resource, thereby preventing (i.e., blocking) another entity from using the same resource. 

A road leading into the junction is an example of a blocking resource: when a front vehicle cannot 

cross the junction, it has to wait on the road, thereby preventing (blocking) other vehicles behind 

it from using the resource it occupies (the segment of the road it is on) and also preventing other 

vehicles from accessing the junction.

• No-wait; nowait

A schedule exhibits the no-wait requirement when an entity is not allowed to wait between access 

to two successive resources. Using the intersection crossing scenario as an example, a vehicle is not 

allowed to stop between the access to two grid squares (resources) within the junction (i.e., a vehicle 

must always be on at least on of the squares).

• Breakdown; brkdown

Resource breakdowns imply that a resource may not be continuously available. The breakdown 

abstraction can be used to denote the fact that resources may become unavailable for some reason. 

For instance, in the intelligent transportation system, a broken vehicle may exceeds its allocated 

resource usage, resulting in the road not being accessible to other vehicles. The unavailable segment 

of the road can be abstracted as a resource breakdown.

This section presented the a and (3 constraints of traditional scheduling systems and adapted them to 

distributed entity coordination. The section also presented some examples of entity coordination using 

resource abstractions with various constraints. Since Condieolafocht only provides access to resources on 

a first-come/first-served basis, this section did not present any y-optimization parameters.

3.4.3.3 Syntax

This section presents the syntax to model the q and /3 constraints.

sctting_constraint := Qusage, ,0constraint_list

The scenario setting constraint consists of two parts, the q usage sequence and the list of /3 usage 

constraints.
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Qusagc := F™

I J"", job_constraint_list

The Qusage constraint could be flow shop, flexible flow shop or job shop. As mentioned, the syntax 

may also be used to specify other a constraints, but they arc not in the scope of this thesis.

job_constraint_list := job_name = (rcsourcc_scqucncc), job_cl8iss_constraint_list 

I job_name = (resourcc_seqtience)

Note that the job-shop constraint list must have at least one job constraint.

resource_sequence := rcsource_name ► resource_sequence 

I rcsourcc_namc

The resource sequence can specify more than one resource in a chain, there must be at least one 

resource in a sequence.

/:iconstraiut_list := /jeonstraint,/jconstraint_list| A^t/LL

/^constraint := risetupl” family_name,...]| 

prmp{ri, ...,rfc)| 

block{ri,...,rk)\ 

nowait(ri,r^)] 

brkdown{ri,..., r^)

The ^constraint list is a potentially empty list of constraints applicable to the scenario. The setup 

time /Scoiistraint may include the list of family names needed to specify job-family setup time. The 

actual time allocated for the sequence dependent setup time may be implemented in different ways (e.g., 

a function based on the resource and entity parameter) and will not be recorded in the specifleatiou. The 

preemption, block, no wait and breakdown constraints arc applied to some set of resources, (e.g., if the 

nowait constraint is specified, entities must release the resources after their use is completed).

90



3.4.4 Safety constraint

The safel y const raint specifies a condit ion that must, be sat isfied at all t imes in the scenario; t he safety 

constraint is the equivalent of a scenario’s invariant. Some examples of safety constraints arc: autonomous 

vehicles do not travel too close to each other on the road, vehicles do not cross an intersection on a collision 

path at the same time and (at a higher-level of description) vehicles do not collide.

The following sub-section presents Bouroche’s definition of a safety constraint [Bouroche, 2007| and 

how these constraints can be specified in Comheolai'ocht.. The next sub-section then presents the syntax 

for Coiidieolaiocht’s safety constraints.

3.4.4.1 Bouroche’s safety constraint

In Bouroche’s thesis, a safety constraint can be defined as [Bouroche, 2007]:

incompatibility := (incompatibility,” A ”, incompatibility)

I (incompatibility,” V’’incompatibility)

I (entity-type, ”.”, state-variable, rel-operator, value)

I (entity-type, ”.”, state-variable, rel-operator, entity-type,".",state-variable)

I (”distancc(",position,",",position,")", rel-operator, value)

I (”!", entity-type,".",state-variable, rel-operator, value,"]",rel-operator, value)

rel-operator = ” < ” | | | | | ”

In Comheolai'ocht, the distance() function and cardinality function, ]...], arc replaced by other abstrac­

tions. For instance, maintaining a distance between two entities can be abstracted as the time difference 

between two entities accessing a resource (setui>time). The use of time in place of separation difference 

provides two advantages: firstly, distance can be distorted by non-straight roads and secondly, time incor­

porates the difference between vehicles’ speed (i.e., faster vehicles with the same time-separation result 

in a larger distance separation, which is consistent with vehicles’ reaction). The cardinality operator is 

replaced by the number of resources, in particular, ’value’ in the cardinality constraint can be mapped 

directly to a resource quantity in
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3.4.4.2 Comheolaiocht’s safety constraint

A scenario’s safety constraint, is defined as a conjunction disjunction of resource usage constraints and 

other entity conditions.

safety_constraint := (safety_constraint, ” A ”, safcty_constraint)

I (safety_constraiiit, ” V ”, safety_constraint)

I resource_ usage 

I entity_condition

The ’entity-condition’ is eitlicr a limitation of tlie values in state variables or entity behaviors. Note 

that in the syntax, entity-type.entity-behavior_ID is short hand for (entity-type.behavior_ID=entity- 

bchavior lD) and ^entity-type.entity-behavior_ID is short hand for (entity-type.bchavior lD^i^entity- 

behavior_ID).

entity_condition := entity-type, ”.”, state-variable, rcl-opcrator, value 

I entity-type,".",entity-bchavior_ID 

I "'entity-type,''.'' ,entity-behavior_ ID

The resource usage constraint links entity’s state and behavior with resource usage.

resourcc_usage := entity_condition => /iofds(rcsource_naine,j^jg^„pj^])

While the scenario abstraction and scenario setting constraints describe the constraints regarding resources 

usage, the resource usage syntax above specifies that entities are responsible for acquiring the relevant 

resources in order to perform some conditions. Note that acquiring a resource does not imply that the 

entity must fulfill the specific set of conditions; therefore, the imply (=>) operator is used instead of the 

equality (=) operator. For example, a vehicle performing the crossing junction behavior implies that it is 

holding the resources for crossing the junction, but a vehicle holding on to the resources is not required 

to be crossing the junction.

For brevity, time is omitted in the specification: the actual, longer form for the resource usage syntax 

should be:

resource_usage_long := cntity_conditiou A time = to =>

/io/ds(<resource_namej^jg^ppp],ts,te >) A fj < to < te
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The longer form of the constraint captures the fact that an entity can only execute some behavior (at 

time to) only if it is holding the relevant resource and the resource has been allocated to the entity for a 

period that includes to-

An example of a safety constraint definition for the int.erseetion collision avoidance scenario is;

(vehicle.crossing holds{rgrid)) V (vehicle.breakdown A (vehicle.location is in intersection))

The above safety constraint states that vehicles can execute the behavior crossing only if it holds the 

relevant resources, a vehicle may however be in the intersection without holding the resources if it is broken 

down. The condition to specify vehicle’s location is in the junction can be expressed as a conjunction of 

inequalities on the x and y position values.

3.4.5 Entrance &: goal constraints

The entrance and goal constraints form the pro- and post-conditions of a scenario respectively. The 

entrance constraints must be satisfied when an entity physically enters a scenario; the goal constraint 

must be satisfied just before the entity physically leaves the scenario.

Note that since the safety constraint (the invariant) must be true at all times; the safety constraint 

is naturally included in both the entrance and goal constraints; therefore, there is no need to reiterate 

conditions of the safety constraint in the entrance and goal constraints. Entrance and goal constraints are 

specified in order to expose the requirements (entrance constraints) and commitments (goal constraints) 

during the scenario composition step (see Section 4.4).

This section presents an example of exiting a junction as a motivation for entrance and goal constraints 

(Section 3.4.5.1) before presenting the syntax for the two constraints (Section 3.4.5.2 and Section 3.4.5.3).

3.4.5.1 Exiting a junction example

A vehicle exiting an intersection and driving on to a road may involve a number of potential threats:

1. If there is no space on the adjoining road for the crossing vehicle to leave the intersection, a crossing 

vehicle has to stop in the intersection, thereby violating the no-wait constraint (as introduced in 

Section 3.4.3.2). This situation is commonly seen on busy intersections where a driver either dis­

regards the yellow box or miscalculates the speed of vehicles on the exiting road. Vehicles forced 

to stopped in the intersection lower the intersection’s throughput as it prevents other vehicles from 

crossing. In the worst case, vehicles stopped in the intersection could be involved in accidents.
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2. When a vehicle exits the junction too fast, its speed when entering tlie adjoining road could be much 

higher than the speed of the previous vehicle on the road. A collision may occur if the newly arrived 

vehicle cannot decelerate in time to maintain a safe inter-vehicular distance.

3. A vehicle that changes lane just after it crosses the junction (e.g., it needs to turn a corner on the 

next junction) could crash into another vehicle exiting the junction.

Dresner addresses the problem of vehicles exiting the junction with an admission control zone (ACZ), 

managed by the intersection manager installed at each intersection [Dresner. 2009). Vehicles exiting the 

junction (and entering the ACZ) arc required to reserve a space proportional to their length on the 

lane in the ACZ. Each lane in the ACZ has a limited fixed capacity and admissions arc stopped when 

the capacity is exhausted. A vehicle changing lanes or leaving is required to make its request to the 

intersection manager.

Comhcolai'ocht views the exit-intersection problem as a requirement on vehicles entering a road; not as 

a problem of vehicles exiting a j\mction. It is observed that the three problems stated above arc common 

to vehicles entering a road (i.e., whether from exiting a highway or a round-abont). Using this view, the 

road scenario must, havi? a pre-condit ion t liat specifics;

1. Vehicles must ensure that there is enough space before they are committed to entering the road.

2. Vehicles must ensure that they do not enter the road (exit the junction) too fast - the speed at 

which vehicles enter the road must not be greater than a proportion of the speed and distance to 

the vehicle in front.

This constraint on vehicles entering a road describes the same constraints that vehicles exiting a junction 

(and thus entering the road); that both the nf>spacc‘ (first, problem) and the exit-too-fast (second problem) 

problems do not occur. The third problem of vehicles changing lanes is a problem intrinsic to the road 

scenario, and should not be exposed to other scenarios. This distribution of responsibilities provides the 

advantage that scenarios (in this case the road scenario) can be reused in other situations (e.g., exiting a 

roundabout), thereby providing better modularity.

3.4.5.2 Entrance (pre-condition)

Syntactically,

entrance_constraint := safety_constraint

Syntax wise, the entrance constraint is the same as the safety constraint; the difference is only in the 

semantics. An entrance constraint should record two pieces of information. Firstly, the possible locations
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and stales of an entity when it physically ont.ers t.he scenario should be specified; for example, the enl,ranee 

location constraint for a road might capture the fact that vehicles only enter the road from the incoming 

end. Secondly, the entrance constraint should specify the conditions for entities entering the scenario to 

be compatible with i) entities that are already in the scenario and ii) entities who might be entering the 

scenario at the same time.

3.4.5.3 Goal (post-condition)

Syntactically,

goal constraiiit := entity condition

Using the nntity_condition’ syntax, the goal constraint records the location/state of entities just 

before leaving the scenario. No other conditions are recorded since entities are not required to coordinate 

to leave a scenario. Note that, entities may be required to coordinate before entering the next scenario 

and therefore may not leave the current scenario until they have done so. Section 4.4 presents these cross 

scenario issues in more detail.

3.5 Summary

This section presented a step-by-step guide to specifying a system of distributed entities. System modeling 

is designed to handle heterogeneous entities in a coordination system: the behavior-type, and entity-type 

grouping focuses on recording only relevant parameters, thereby lowering the tminber of heterogeneous 

types. The scenario-type partition of physical space provides a separation of concerns between the physical 

spaces. In addition, each scenario-type abstracts entity coordination constraints into resources. The sepa­

ration of concerns and the common abstraction on entity coordination constraints provides less intertwined 

constraints during the development of a heterogeneous entity system.

As discussed, the steps for the modeling and specification of a coordination system are

1. Identifying the passive elements and entities.

2. Identifying the entities’ behaviors. Only behaviors that produce observable effects are recorded.

3. Grouping behaviors into behavior types.

4. Grouping entities into entity types.

5. Partitioning the environment into scenarios and grouping similar scenarios into scenario types. For 

each scenario type:
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(a) Scenario abstraction models the different-time event ordering constraints as resources, and t,o 

specify that entities do not access some resources at the same time.

(b) Scenario setting models the sequence event, ordering constraint. Speeification of the sequence 

event, ordering const.raint reuses specifications from traditional scheduling; the o constraint is 

used to specify a resource usage sequence and the 0 constraint is used to specify characteristics 

in resource usage like preemption, setup time and nowait.

(c) The safety constraint specifics the invariant of a scenario: a condition that must, be satisfied at 

all times.

(d) The entrance constraint specifies the condition of an entity just before it physically enters the 

scenario.

(e) The goal constraint, specifies the condition of an entity just, before it. physically leaves the 

scenario.
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Chapter 4

System Analysis

Coinhcolai'ocht’s second stage, system analysis, analyses the specifications captured in the first step to 

obtain two results: firstly, it determines whether Comheolai'ocht can provide a reliable solution to the 

specified multi-entity coordination system, and secondly, if a reliable solution exists, the step provides a 

coordination strategy that ensures the safety in the system.

The following section provides an overview of the steps in system analysis. Section 4.2 introduces 

the concept of modes, and provides some guidelines for the design of modes. Section 4.3 then presents 

some methods for reasoning about the evolution of entities’ states, analyzing whether the scenario is 

solvable in Comheolai'ocht, and deriving a coordination strategy. Finally, Section 4.4 presents methods 

for combining individual scenarios into the application environment by defining the entities behavior for 

transiting between scenarios.

4.1 Overview

Modes were first introduced by Bouroche [2007]. In Bouroche’s thesis, modes serve the purpose of rea­

soning about the evolution of entities’ states, and are used to analyse entities’ safety throughout the 

evolution. While Bouroche defines modes as representing an entity’s possible actions (actuation, sensing, 

sending messages or signals, processing), there is no mention of how to represent different entity’s actions 

as modes.

The following section formally defines modes in Comheolai'ocht; it provides a step-by-step guide for i) 

defining modes in a multi-entity system, and ii) defining mode transitions for analysing entities’ behaviors. 

The section extends Bouroche’s modes to handle entities’ inactions that might lead to safety constraints 

violation and errors in entities’ perception. Bouroche’s mode transitions are also extended to handle
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non-dctcniiiiiistic transitions.

Modes and mode transitions can be represented using a graph (sec Figure 4.1 on page 109 for an 

example), named a mode transition diagram [Bouroche, 2007|. Comhcolai'ocht uses the mode transition 

diagram to analyse each scenario for solvability; a scenario is solvable only if the system’s safety is 

maintained and progress can be achieved. The mode transition diagram is analyzed for the safety property 

by making sure that entities have control over their transitions into modes that might violate the safety 

constraints. System progress can be achieved if every entities' mode transition diagrams have a path that 

allows entities to achieve their goals. When the system is solvable, the analysis outlines a coordination 

strategy that defines what entities can cannot do in various situations so as to ensure safety in the system.

As defined in Section 3.4, a scenario is a partition (non-overlapping and non-empty) of the physical 

space in the environment, therefore, entities moving in the physical space may cross scenarios. Coinheo- 

lai'ocht terms scenarios that are physically connected (i.e., between which entities may move) simply as 

connected scenarios.

In addition to analyzing a single scenario for solvability, this chapter presents the composition of 

connected scenarios. This composition step analyzes the scenarios’ pre- and post-conditions and any 

safety constraints that cannot be ensured within a scenario; these constraints arc said to be exposed; 

exposed constraints must be handled before entities enter the scenario. The composite scenario can then 

be analyzed for solvability by applying the same analysis steps as for analyzing a single scenario; the 

analysis checks that entities moving between the scenarios respect the exposed constraints.

4.2 Modes

In Bouroche’s thesis, modes represent an element’s possible actions (actuation, sensing, sending messages 

or signals, processing, sec Table 4.1 on page 106 for an example). In Comhcolai'ocht, the set of entities’ 

possible actions is captured by entities’ behavior (Section 3.2) which model entities’ actions based on the 

developer’s perspective. In contrast, modes are designed with the sole purpose of modeling entities' safety 

in a scenario. Thus:

An entity’s mode is a disjoint subset of the entity’s states. An entity’s state defines the 

situation of an entity at a given time; the entity’s state can be described by the values of its 

set of variables.

A mode transition from a mode x, to another mode, y, happens when an entity’s state changes 

states from sq to si, such that sq £ a; and si £ y. An entity’s mode transition diagram describes 

all modes and possible mode transitions.
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This sect ion defines t he eoneepts for mode design, and presents a st ei)-by-st,ep guide t o designing inodes and 

identifying mode transitions, which will be used in the next section for analyzing a scenario’s solvability. 

The following sub-section introduces the concept of participation variables to be used in mode design. 

Section 4.2.2 then presents the definitions of fail-safe and non-fail-safe modes. Section 4.2.3 then presents 

long-lasting fail-safe modes. Section 4.2.4 provides an overview of error handling in Comheolai'ocht; in 

particular the section shows how modes can be used to handle some of these errors. Finally, Section 4.2.5 

and Section 4.2.6 provide a step-by-step guide to designing modes and identifying mode transitions.

4.2.1 Participation variables

Two properties of modes are defined by Bouroche [2007): i) an entity is always in one of its mode, and 

ii) the transitions between modes are instantaneous. This section introduces participation variables and 

describes the basic construction of modes. It then demonstrates that these two properties hold. We 

defines:

The set of participation variables is a subset of an entity’s state variables such that a mode is 

a partition (non-overlapping and non-empty) of the range of these variables. The union of all 

participating variables’ values over all the modes is the range of all possible values (i.e., the 

partitioned modes are collectively exhaustive).

Consider an example using a vehicle entity with three modes: stopped, decelerating and accelerating. 

The stopped mode groups all the states with a velocity, u = 0, the accelerating mode groups all the 

states with a positive acceleration, a > 0, and the decelerating mode groups all the states with a negative 

acceleration, o < 0. In this case, the set of participationg variables are {o, u}. However, not all values in 

the participating variables’ range are defined in this example; the values, u > 0 and a = 0 are not mapped 

to any modes; this is not acceptable. For simplicity sake, this example assumes that the range of velocity 

is positive, w > 0.

Modifying the example, a developer could define another mode called ’constant speed’ with the values: 

w > 0 and a = 0; exactly the ones that arc not mapped. Alternatively, the developer may group ’constant 

speed’ and ’accelerating’ under one mode - ’traveling’ with the partition having v > 0 and a > 0. The 

two possible partitions for vehicle’s modes where PV = {a,v} are: 

constant speed : a = 0, u > 0

stopped : a € range{a), t; = 0
i)

accelerating : o > 0,v G range{v) 

decelerating : a < 0,v G range(v)

travelling 

and ii) stopped

decelerating

a > 0,v > 0 

a G range(a), v = 0 

a < 0,v e range(v)
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Since all values of the participation variables must be mapped to a inode, it follows that an entity is 

always in only one of its modes. In addition, transitions between modes arc instantaneous (see Section 

4.2.6).

4.2.2 Fail-safe mode

In Bouroche’s thesis [2007], safety constraints are defined to involve two entities (see Section 3.4.4). 

Therefore, Bouroche’s definition of fail-safe modes are defined in relation to the modes of other entities.

In contrast, Comheolai'ocht’s safety constraint are defined with respect to an entity’s use of shared 

resources. The definition of fail-safe mode reflects this difference:

A mode m of an entity x is said to be a fail-safe mode if and only if all of the states in m 

respect the safety constraints.

A mode that is not fail-safe is refered to as a non-fail-safe mode.

4.2.3 Long-lasting fail-safe mode

The definition of fail-safe mode reflects a snapshot of t ime and does not consider the implication of what 

may happen in the future. Consider the case where the developer defines a mode MovingBeforeJunc­

tion. In this mode a vehicle is approaching the junction at some positive speed. Since the safety constraint 

is only defined for vehicles in the junction, an entity is not required to hold any resource to be in the 

MovingBeforeJunction mode at some instant in time, therefore, the MovingBeforeJunction mode 

is a ’fail-safe’ mode. However, the positive speed constraint in MovingBeforeJunction mode implies 

that the vehicle may only remain in this mode for some finite period before it transitions into another 

mode, for example, entering the junction and possibly becoming unsafe. While it is sufficient for an entity 

to remain in a fail-safe mode so as to ensure that it does not violates the safty constraints, it may not be 

possible for the entity to remain in a fail-safe mode forever.

A fail-safe mode is a long-lasting fail-safe mode (LLFSM) if the entity can remain in that

mode for a long enough period such that the entity is guaranteed successful coordination.

In the definition, successful coordination means that the entity has obtained exclusive access to the shared 

resources that it requires. Successful coordination is required to ensure that the entity does not violate 

the safety constraint when it leaves the LLFSM and enters a non-fail-safe mode. The duration required 

to achieve successful coordination is dependent on various parameters such as the coordination protocol.
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number of entities involved and the lower-level communication guarantees available. An alternative in­

terpretation of ’long enough’ is that the entity must take some deliberate action to transition out of a 

LLFSM; that is, an entity is able to stay in a LLFSM for an infinitely long period and will not automati­

cally transition out of the mode when time passes.

4.2.4 Errors

Errors can happen at the entity level (e.g., breakdown) or at the component level (e.g., sensor failure). 

Errors in actuator components and entity-level errors can be represented as uncontrollable behavior (see 

Section 4.2.6). Errors in communication components can be handled at the communication protocol level 

(Section 5). Sensor component errors are reflected in the state variables. In particular, Condieolafocht’s 

modes support two types of errors in variables: inaccuracy and omission. If a participation variable 

exhibits:

Inaccuracy the values might not reflect the actual information that the variable represents.

When such inaccuracy can be bounded (e.g., a:±5), the error can be handled by allocating allowances. 

There arc two methods for handling inaccuracy errors in Comheolai'ocht: encapsulate at mode design 

level or expose to resource reservation. In order to encapsulate inaccuracy in a participation variable 

at mode design, the boundaries of modes that arc rclativly more dangerous are increased by the error 

bounds. Section 4.2.5.2 presents the steps for encapsulating inaccuracies in modes. Alternatively, 

inaccuracies can be exposed to the entities by having each entity reserve the resources they require 

with allowance for inaccuracies.

In general, exposing inaccuracies to entities is more suitable in a system with heterogeneous entities 

because each entity may have different accuracy parameters.

Omission there may not be a value available during execution.

When a participating variable exhibits an omission error, the value ’unknown’ is included in the 

variable’s range. Since all participating variable values must be mapped to some modes, this implies 

that the modes containing the value ’unknown’ must be associated with the corresponding behavior 

for handling the situation. Section 4.2.5.2 presents the steps for encoding omission errors into modes.

4.2.5 Mode design

This section provides a step-by-step guide for designing modes. This design considers both safety and sen­

sor component errors in the selection of participation variables and the partition of physical environment.
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The first suit-section focuses on i he choice of pan icipal.ion variables and part.il,ions’ boundaries based on 

the safety constraints and the second sub-section shows how to modify the partitions to handle errors in 

the participation variables.

4.2.5.1 Safety

Modes can be designed by analyzing the variables associated with the safety constraints and events that 

affect those variables. The steps for designing modes are:

1. Constraint violation

This step looks for participation variables specified directly in the safety constraints. The state space 

is then partitioned to differentiate those that might violate the safety constraints and those states 

that would not violate the safety constraints. The modes that might violate the safety constraint 

arc non-fail-safc modes.

Illustrating using the intersection collision avoidance scenario as an example, the safety constraint 

was specified in Section 3.4.4.2 and repeated here for convenience:

(vehicle.crossing => holds{rgrid)) V (vehicle.breakdown A (vehicle.location is in intersection))

The only state variable specified in the safety constraint, is vehicle.local ion; vehichrerossing and 

vehicle.breakdown are entity’s actions. Thered'ore this first step creat.es partitions based on whether 

the vehicle’s location is in the intersection. The modes arc:

Modes location

in junction in the intersection

not in junction not in the intersection

Safety constraints in Comheolafocht are only defined in terms of resources and contraints on entities’ 

state variables. For simplicity, the intersection scenario illustration in this section includes the roads 

leading into the intersection. They are actually two different scenarios, they will be shown in detail 

in Chapter 6.

2. Time passing leading to constraint violation

The second step is to partition the state space to differentiate between the states that might and the 

states that will not automatically transition into states in a non-fail-safc mode when time passes. 

This step chooses participation valuables from the set of variables that are both i) affected by changes 

in time and ii) might affects the values of variables in the safety constraint. A variable that is affected 

by change in time may changes values wdthout the entity performing any action as time passes.
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Continuing with the intersection collision avoidance scenario illustration:

(a) Assuming that the vehicle has variables of {acceleration, velocity, steering, heading, location}. 

As shown previously, location is in the safety constraint, therefore it direct,ly affect,s the values 

of variables in the safety contraint. In addition, the variables heading and velocity affect, 

the vehicle’s location. Therefore, both variables also indirectly affect, the safety constraint,. 

Furthermore, acceleration affects velocity and steering affects heading, which ultimately changes 

the vehicle’s position. Therefore all t hese variables might affect, t he values of variables in t he 

safety constraint.

(b) Assuming that vehicles are controlled by changing their acceleration and steering, these two 

variables are not affected when t ime passes; since the passing of t ime docs not change t heir 

values. Velocity is a function of the vehicle’s acceleration and time, it is affected by time. 

Similarly, heading is a function of vehicle’s steering and time, and vehicle’s location is a function 

of heading, velocity and time. I’herefore, the variables affect,ed by time are {velocity, heading, 

location}.

(c) Variables that are both affected by time and could affect the values of the safety constraint are 

thus {velocity, heading, location}.

When a vehicle’s velocity is positive and time passes, the vehicle travels forward, this might cause 

the vehicle to transition from the not_injunction mode to the in_junction mode. Although a 

vehicle’s heading affects position, it cannot be used to determine transitions from not_in_junction 

to in junction because it is assumed that the vehicle will follow driving rules and they stay on 

the road (i.e., the vehicle cannot change steering to avoid driving into the junction). In addition, 

a not_in_junction vehicle could have already crossed the junction. Unlike a vehicle traveling 

before the junction, a vehicle that has crossed the junction would not travel into the junction as 

time passes. Therefore, a vehicle’s location is partitioned once more, the modes are;

Modes location velocity

in Junction in the intersection any

after Junction after the junction any

stopped before Junction before the intersection 0

traveling before Junction before the intersection > 0

103



3. Reactions that may cause safety constraint violation

An entity’s outputs may cause other entities to perform some actions that may violate the safety 

constraints. For example, in a pedestrian crossing scenario, the pedestrians arc passive elements 

who are sensed by traffic lights (i.e., pedestrians push a button to signal they want to cross). As 

usual, traffic light,s with the color of green, amber and red are used to control vehicles crossing the 

pedestrian crossing, where vehicles may cross the pedestrian crossing on green, must stop if possible 

on amber and must not cross on red. I'herefore, green traffic lights cause vehicle entities to cross 

the pedestrian crossing, which may violate the safety constraint.

If (i) an entity’s behavior may violate the safety constraints, and (ii) the inputs of this behavior (the 

conditions that causes the entity to perform the behavior) are caused by another entity’s output, 

then both entities state variables must be partitioned:

(a) Outputs that may cause other entities to violate the safety constraints

The first part of third step is to create mode partitions to differentiate between outputs that 

may and that will not cause other entities to react and possibly violate the safety contraint. 

The step looks at an entity, x, that modifies some variables in the environment, E, such that 

another entity, y, might sense E, resulting in y performing some actions that may result in the 

violation of the safety constraints.

In the illustration above, the traffic lights entity is the entity x who modifies the environment., 

t he modes of t he t raffic light, ent ity are:

Modes color

red red

green amber or green

(b) Actions that may violate the safety constraint due to other entities’ output

The second part of the third step is to create partitions to differentiate between entity’s reactions 

that might and that will not lead to the violation of the safety constraint. The step looks at 

the entities’ sensor inputs and its behaviors.

For illustration, assuming that vehicle entities in the pedestrian crossing scenario have modes 

{after_crossing, in_crossing, traveling_before_crossing, stopped_before_crossing} 

that are similar to the intersection crossing scenario’s illustration in step 1 and 2. Therefore 

the vehicle entity’s modes in the pedestrian crossing scenario are:
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Modes location velocity traffic lights

after crossing after junction any any

in crossing in junction any any

traveling before crossing red before junction > 0 red

traveling before crossing green before junction > 0 amber or green

stopped before crossing red before junction 0 red

stopped before crossing green before junction 0 amber or green

These three steps create partitions which can be categorised into non-fail-safe/fail-safe (step 1), possibly 

LLFSM and fail-safe (step 2) and partitions that either affect or are affected by the environment and 

other entities (step 3).

4.2.5.2 Errors

As presented in the overview of error handling (Section 4.2.4), some errors can be handled by modes. 

These include some entity-level and actuator component errors, sensor-component inaccuracies and sensor- 

component omission errors.

1. Entity-level and actuator component errors.

When the error is at the entity level or there is an actuator error, the entity may lose control and 

perform some unplanned actions (e.g., a vehicle entity may break down). When such unplanned 

actions may violate the safety contraint, an additional variable and corresponding mode partitions 

should be created to represent the entity’s loss of control. Unplanned actions are not unexpected 

actions, that is, errors are expected to occur but they were not in the entity’s plan.

Illustrating using the intersection collision avoidance scenario, in normal circumstances, a vehicle 

may only use the resources it has reserved. However, a vehicle may breakdown halfway through the 

crossing and use resources for longer than allocated. Partitioning the breakdown case, the final set 

of modes for the intersection collision avoidance scenario with their participating variable’s ranges 

are shown in table 4.1.

A vehicle breakdown in the intersection violates the safety constraint, therefore an additional parti­

tion is created. In contrast, vehicle breakdown on a road (before or after the intersection) may stop 

the vehicle on the road, which does not violate the safety constraint, therefore vehicle breakdown 

on the road can be encapsulated in the stopped_before_junction mode.
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Modes location velocity breakdown
in junction traveling in the intersection any no

in junction breakdown in the intersection any yes
after junction after the intersection any any

stopped before junction before the intersection 0 any
traveling before junction before the intersection > 0 any

Table 4.1: A vehicle entity mode in the intersection collision avoidance scenario

2. Sensor components inaccuracies.

When the inaccuracy is bounded (e.g., i±5), the error can be handled by extending the boundaries of 

modes that might violate the safty constraints. The extension causes entities that might experience 

errors to always act conservatively. As a guide, an entity’s non-fail-safe modes (Step 1 from Section 

4.2.5.1) are extended first, followed by the modes affected by time passing and other entities’ outputs. 

For instance, if the vehicle’s position is inaccurate (i.e.. it has a bounded error of ±(S) then the bounds 

of the location variable ’in the intersection’ is extended by ±<5 and the values ’before the intersection’ 

and ’after the intersection’ arc reduced by ±5. If such an extension results in a modes’ range being 

undefined (i.e., there are no possible values in range), then the mode is removed. For example, if the 

vehicles’ velocity is inaccurate, then the traveling_before_junction mode is extended and the 

stopped_before_junction mode is removed (because the entity cannot be sure that its velocity 

is zero). Note that, in such cases, there may not be a solution to this scenario.

3. Sensor components omission errors.

As mentioned, when a sensor component cannot return a value due to an omission error, the value 

unknown’ is returned. This ’unknown’ value must be mapped to some niodc(s) and the entity 

encoded with the corresponding behavior for handling the situation.

Extending the vehicle entity in the pedestrian crossing illustration, assume that there arc in­

stances where the vehicles cannot observe the traffic lights because another entity bloeks their 

view. In this case, the vehicle entity’s representation of the traffic light variable exhibits omis­

sion error and the value ’unknown’ is included to its range. As vehicle entities act in a safe be­

havior by not crossing the pedestrian crossing in the ’traveling_before_crossing_red’ and 

’stopped_before_crossing_red’ modes, these modes are extended to include the ’unknown’ 

value of traffic lights color.

The set of modes for the pedestrian crossing scenario with their participating variables range are 

shown in Table 4.2:
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Modes location velocity traffic fights
after crossing after junction any any

in crossing in junction any any
traveling before crossing red before junction > 0 red/unknown

traveling before crossing green before junction > 0 amber/green
stopped before crossing red before junction 0 red/unknown

stopped before crossing green before junction 0 amber/green

Table 4.2: A vehicle entity mode in the pedestrian crossing scenario

4.2.6 Mode transition

This section describes a manual method for identifying mode transitions. Using a graph representation, a 

mode is represented by a vertex, m (see Figure 4.1 on page 109 for an example). A transition from mj to 

m2 describes that some events (e.g., an entity performing a behavior, time passing) that change the values 

of its participating variables from some states in mi to some states in m2. The transition from mode mi 

to m2 is represented by a directed edge, (mi, m2). In addition, the events that cause the transition are 

labelled on the edge.

Comheolai'ocht uses a straight-forward method that examines every pair of modes; for each pair of 

modes,

1. Check whether any behaviors or external factors may result in an entity transition between the 

modes

2. If there is a transition, label the pair of adjacent modes with an edge and the transition cause; 

otherwise, there is no edge between the pair. Causes for mode transitions are categorised into three 

groups based on the entity’s ability to control the cause, the groups are:

Controlled mode transitions are caused by the entity’s deliberate actions; that is, the entity can 

choose not to perform the actions. For example, a vehicle can decide to apply the breaks to 

transition from the mode ’traveling_before_junction’ to ’stopped_before_junction’ 

(Table 4.1), and to apply the accelerator to transit from ’stopped_before_junction’ back 

to ’traveling_before_junction’.

Although controllable mode transitions are caused by entities performing deliberate actions 

and mode transitions are instantanous, an entity’s actions may not result in instantanous 

mode transition. In fact, an entity may not be able to decide when the transition will take 

place. For example, a vehicle applying the breaks in the ’traveling_before_junction’ mode 

may only result in a transition ’stopped_before_junction’ mode some time later.
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Category Transition causes Entity knows when transition happens
Controlled deliberative actions Yes (w’ith clock)

Uncontrolled events the entity cannot control No
Timed time passing Yes (with clock)

Table 4.3: Category of mode transition causes

Uncontrolled mode transitions may also be initiated by the entity, however, some events may 

happen that cause the transition without check. For example, in the pedestrian crossinj sce­

nario, the vehicle-entity’s mode transitions from ’traveling_before_crossing_green’ to 

'traveling_before_crosslng_red’ (Table 4.2), the vehicle does not have control ov(r the 

color of the traffic light. Another example is vehicle breakdown causing the entity to tiansit 

from ’in junction traveling’ to 'in_junction_breakdown’ (Table 4.1).

Timed mode transitions are a special subset of uncontrolled mode transitions that are caused by 

time passing. Mode transitions in this sub-group are special because although an entitj may 

predict when the transition will occur (assuming that the entity has an internal clock), the entity 

cannot prevent the transition unless it can take some action to prevent it. For example, the 

mode transition from ’traveling_before_Junction' to ’in_junction_traveling’ (Fable 

4.1) happens with the passing of time if the entity maintains its traveling action.

Table 4.3 shows a summary of the categories of mode transition causes.

Example Figure 4.1 shows the completed mode transition diagram of the intersection collision avoidance 

scenario with the causes (edges) entered. The diagram shows that not every pair of modes have transi lons. 

In the diagram, most transitions are unidirectional. For example, the transitions from before-junction 

to in-junction to after-junction is unidirectional because the scenario does not allow the vehicle to 

reverse out of the junction. An example of bi-directional transitions can be seen between the traveling 

and stopped modes, as a vehicle that is traveling may apply the breaks to stop and it can accelcrtte to 

resume traveling.

In addition, the mode transition diagram highlights the entity’s modes for entering and leaving tin sce­

nario (entrance and exit modes). In this scenario, the entity must be moving and located ’before the junc­

tion’ to enter the scenario (velocity > 0), therefore its entrance mode is ■travelling_before_junction’ 

(i.e., could not have entered the scenario when it is stopped nor can it enters the scenario ’after the 

junction’). Similarily, a vehicle entity leaves the intersection collision avoidance scenario when it is after 

junction or after it has broken down in the junction (we assume some engineers clear the vehicle oJ the 

road after some time). These value limitations on entities entering and leaving a scenario are recorded
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Figure 4.2: Mode transition diagram of the Pedestrian Crossing scenario

under the scenario’s entrance and goal conditions (Section 3.4.5.2 and Section 3.4.5.3).

Figure 4.2 shows the mode transition diagram for the pedestrian crossing scenario, the scenario is more 

complex due to the addition of the traffic lights. In this scenario, the transitions between the traffic lights 

arc not within the control of the entity (uncontrolled).

4.3 Solvability in Comheolaiocht

This section presents a method of analysis of a mode transitions diagram to evaluate whether a scenario is 

solvable in Comheolaiocht: by following the Comheolaiocht approach, a developer can define coordination 

protocols ensuring safety and allowing progress. In particular, the following section analyses which modes 

are LLFSMs and Section 4.3.2 presents an analysis of whether an entity may transition into a mode
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deterministically. Finally, Section 4.3.3 presents an analysis for calculating the coordination strategy: what 

entities can cannot do in various situations so as to ensure that they do not violate a safety constraint.

4.3.1 Identifying long-lasting fail-safe modes

As previously defined, a LLFSM is a fail-safe mode in which an entity can stay long enough to guarantee 

successful coordination (Section 4.2.3). LLFSMs can be identified using the mode-transition diagram as 

follows:

4.3.1.1 Simple long-lasting fail-safe modes

A fail-safe mode is a simple LLFSM if it has no out edges with uncontrollable (including timed) causes; 

that is, either the fail-safe mode has no out edge or all its out edges arc controllable. A mode without an 

out edge is a sink such that an entity who reaches that mode never leaves it. Since the entity may stay 

in that mode forever, it can indeed stay long enough to guarantee successful coordination. Therefore, a 

fail-safe mode that is a sink is a LLFSM. If all the out edges of a mode are controllable, then the entity 

can choose when to transition out of the mode, therefore the entity can also choose to stay within the 

mode for as long as reejuired l.o perform successful coordinat ion - t he condit ion required for t he definil ion 

of long-lasting.

Illustrating using the intersection collision avoidance scenario (Figure 4.1): the vehiele entity has fail­

safe modes of {after_junction, traveling_before_junction, stopped before_junction}. In this 

scenario, ’after Junction’ is a sink LLFSM as it has no out edges, and 'stopped_before_junction‘ 

mode is another LLFSM because its only out edge has a controllable behavior (i.e., aceelerate).

4.3.1.2 Composite long-lasting fail-safe modes

'l\vo or more fail-safe modes can be combined to achieve the effects of a LLFSM. Such composite LLFSMs 

are formed by a group of fail-safe modes such that all out edges from the group have controllable causes; 

there can be any number and type of transitions between members within the group. An example of a 

composite LLFSM can be seen from the pedestrian crossing scenario example (Figure 4.2). The set of fail­

safe modes in the pedestrian crossing scenario are {after_crossing, traveling_before_crossing_red, 

traveling_before_crossing_green, stopped_before_crossing_red, stopped_before_ cross- 

ing_green}. In this scenario, the ‘after_crossing’ mode is a simple LLFSM as it is a fail-safe mode 

without an out edge. The modes ’stopped_before_crossing_red’ and ’stopped_before_crossing_gre 

form a composite LLFSM; all out edges of the set are controlled (the two accelerate edges), even though 

there are uncontrolled edges (lights color changes) between the two modes.
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4.3.1.3 Time required for successful coordination

Both simple and eomposile LLFSMs arc identified based on the assumption that successful coordination 

may require an infinite period of time. However, some protocols may require a less than infinite period of 

time based on some assumptions (e.g., Schemmer [2004] assumes that there arc at most OD consecutive 

message losses). When using such coordination protocols, the period of time that ensures successful 

coordination, t.success, be defined. Taking such finite periods into consideration, simple and composite 

LLFSM can be relaxed to include modes with timed out edges as long as the entity can remain in those 

mode(s) to perform coordination for at least tsuccess-

Illustrating using the intersection collision avoidance example: if the entity can perform the coordi­

nation protocol for tsuccess ensuring successful coordination while in the ’traveling_before junction’ 

mode, then the 'traveling_before_Junction’ mode is a simple LLFSM.

As mentioned, successful coordination means that the entity has obtained exclusive access to the 

shared resources it requires. It does not mean successful communication to convey some message to other 

entities.

4.3.2 Non-determinism

Entities’ actuators may be inaccurate or faulty. Inaccuracies and faults in the actuators can be modelled 

as uncontrollable transitions in Comheolai'ocht. This section presents a method of analysis to determine 

whether an entity can perform a mode transition deterministically, the result of this analysis is applied in 

analysing a systems’ progress and safety in Section 4.3.3.

The following section presents the motivation for analyzing whether entities’ may perform transitions 

deterministically, the next section then presents the analysis.

4.3.2.1 Motivation

By definition, the system’s safety in ensured if the safety constraints are not violated. The two tools that 

Comheolai'ocht uses to ensure that no violation of the safety constraints occur are:

1. A coordination pattern (Chapter 5) for the entities to coordinate and ensure that the safety con­

straints are respected when they transition into a non-fail-safe mode. However, the entities must 

have enough time to engage in the pattern, i.e., it requires a long-enough period to ensure successful 

coordination.

2. LLFSMs, which are designed for the entity to be in a safe state long-enough in order to ensure 

successful coordination.
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Therefore, in order to ensure successful coordination, the entity must be able to transition into a LLFSM 

deterministically so as to engage the coordination protocol before its transition into a non-fail-safc mode. 

Besides the two obvious cases where there arc no LLFSMs or that the entity must access a non-fail-safe 

mode to reach a LLFSM, another reason for entities not being able to access a LLFSM is the possibility 

of uncontrollable transitions. Uncontrollable transitions could make an entity perform some unintended 

behaviors which make its transition into a LLFSM non-dctcrministic.

For example, assume that the intersection collision scenario includes a possible error where the entity’s 

breaks fail and it cannot decelerate. In order to represent this condition, a mode ’failed_breaks’ is 

created, the resultant mode transition diagram is shown in Figure 4.3. In the diagram, an uncontrollable 

transition from ■traveling_before_junction' leads into the ‘failed_breaks’ mode representing the 

situation of a breaking failure being discovered when the vehicle tries to decelerate. A timed transition 

from the ’failed-breaks’ mode leads into the ’in_junction_traveling’ non-fail-safc mode, which shows 

that the vehicle is still traveling at some velocity and inevitably enters the junction. In this example, due 

to the possibility of a failure of the breaks the entity cannot deterministically access its LLFSM despite 

having one; Comhcolaiocht cannot ensure a safe solution for such systems.

Therefore, the following sub-section presents an analysis of the mode transition graph to check whether 

an entity can deterministically transition along an edge. The next sub-section then presents an analysis 

of whether an entity can take an out edge safely.
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4.3.2.2 Non-deterministic transitions

As illustrated in the intersection collision avoidance with faulty breaks scenario, uncontrollable transitions 

could prevent an entity from accessing LLFSMs. This section presents the analysis for examining whether 

an entity can perform a transition (along an edge) deterministically. With respect to the analysis of a 

mode transition diagram’s solvability, every edge in the mode transition diagram is to be examined and 

marked as either deterministic or non-deterministic; the marked mode transition diagram will be used in 

Section 4.3.3 in the calculation for the coordination strategy.

Note that while timed transitions are a subset of uncontrolled transitions, in this section, uncontrolled 

is used to refer to the untimed uncontrolled transitions. The analysis is as follows.

For each edge, (mi, m2) (representing a transition from mi to 7112), in the mode transition diagram, 

if the edge is a:

Uncontrollable/Timed transition, the transition may be taken deterministically only if:

• There arc no other uncontrollable/timed edges out of mi OR

• Every other out edge of mi is controllable, in which case, the entity can control itself not to 

transition using those edges.

In addition, when (mi, m2) is an uncontrollable transition, the transition may require an unknown 

period of time (which could be infinite).

Controllable transitions may be taken deterministically only if there are no uncontrollable out edges in 

mi; every out edges on mi is cither controllable or timed.

This is on the assumption that the entity can take the deliberative action to transition along 

the controllable out edge before the timed action is activated (e.g., that a vehicle can reach the 

stopped_before_junction mode before it has reached the in_junction_traveling mode. Fig­

ure 4.1).

Note: the existence of uncontrollable out edges from mi makes the controllable (mi, m2) transition 

non-deterministic because the entity may transition on a uncontrollable out edge before it can decide 

to transition along (mi, m2).

Table 4.4 summarizes the analysis above. The first column in the table specifies the edge under exam- 

iniation, (mi, m2) and the second column categorises the other out-edges from mi. The third column in 

the table specifies whether the entity can deterministically transition along the considered edge and the 

fourth column specifies whether the entity can calculate the transition time deterministically.
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Edge under 
examination

Other edges from 
the same vertex

Can entity transition along 
edge under examination 

deterministically?

Do the transition 
has deterministic 
transition time?

uncontrolled some timed/uncontrolled No -
all controlled Yes No (possibly infinite)

timed some timed/uncontrolled No -
all controlled Yes Yes

controlled all controlled/timed Yes Yes
some uncontrolled No -

Table 4.4: Entity’s transition alone an edge.

4.3.3 Coordination strategy

In Comheolai'ocht, a coordination strategy defines what entities can/cannot do in various situations so as 

to ensure that it does not violates a safety constraint. This section presents an analysis to derive such a 

coordination strategy from a mode transition diagram. The mode transition diagram can be from a single 

scenario or a composite scenario (see Section 4.4).

The follow sub-section describes the output of this analysis: the coordination strategy. Section 4.3.3.2 

then presents an overview of the analysis, in particular, the section describes the analysis flow, and the 

sul>modulcs in the analysis. The other sul>-scctions then present these different sub-modules. Finally. 

Section 4.3.3.7 summarizes this section.

4.3.3.1 Semantics

This section presents the syntax and semantics of a coordination strategy; it presents the coordination 

strategy’s parameters and their possible values in a coordination strategy, and how an entity may follow 

such a strategy to ensure that it does not violates a safety constraint.

An example of a coordination strategy for the intersection collision avoidance scenario (the mode 

transition diagram in Figure 4.1) is shown below, the meaning of the entries and their possible values arc 

detailed next:

Index Mode Result Condition Comments

1 traveling before junction Safe 0:3 1 2 Entrance

2 stopped before junction Safe - LLFSM

3 in junction traveling Safe 1:1 1 2 non-fail-safe

4 after junction Safe - Exit, LLFSM

5 in junction breakdown Safe - Exit

In the table above, the two columns. Mode and Comments, are not part of the coordination strategy; 

these columns oidy serve to label some information to aid the discussion below. The other columns are: |
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Index The Index column labels each mode with an unique identifier, t he unique identifier is defined for 

two purposes:

1, To simplify referencing in the condition column and when refering to an edge (e.g., (mi, m2) 

refers to the transition from the traveling_before_junction mode to the stopped_before 

_junction mode) in the analysis.

2. To uniquely identify a mode; when two scenarios of the same type are combined (Section 4.4), 

there will be modes with the same names - therefore, the name of the modes are not used in 

the analysis.

Result The Result column specifies whether an entity can ensures that it does not violate a safety 

constraint. The possible values of the result column and their meanings are:

Safe An entity in a mode marked Safe can ensure that it does not violates a safety constraint.

• An entity should only transition to a mode marked Safe.

• When all entrance inodes of a scenario are marked Safe, the scenario is self-contained', that 

is, an entity entering the scenario can ensures that it docs not violate a safety constraint.

• An LLFSM is Safe by definition. An entity can stay in the mode for a long enough period 

to guarantee successful coordination to ensure the entity’s safety.

• An exit mode that is not a non-fail-safe mode is Safe.

Unsafe An entity in a mode marked Unsafe cannot ensure the system’s safety; it may not be able 

to control its actions in order not to violate a safety constraint.

• An entity should not transition to a mode marked Unsafe.

• If any entrance mode of the analyzed mode transition diagram is marked Unsafe, an entity 

can only ensures the system’s safety if it can deterministically transition into a LLFSM 

before it enters the scenario.

— In this case, the scenario’s safety constraints are said to be exposed to other scenarios.

— The scenario composition step checks for the LLFSM required to coordinate the ex­

posed constraints.

Deadend An entity in a mode marked Deadend can only ensure the system’s safety while it remains 

in that mode. The mode is termed Deadend because the entity cannot safely transition to an 

exit mode.
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• There are two cases for Deadends:

Deadend-1 The mode does not have an out-edge transition and it is not an exit mode, 

the entity will not be able to reach an exit mode.

Deadend-2 All possible destination modes from the mode are marked Unsafe, the entity 

will not be able to reach an exit mode and ensures that it will not violate a safety 

constraint.

• An entity should not transition into a mode marked Deadend.

• If any of the entrance modes of scenario is marked Deadend, an entity can ensures the 

system's safety only if

— All entrance modes marked Deadend arc of case 2, and

— The entity can deterministically transition into a LLFSM before it enters the scenario.

Condition The Condition column describes how an entity should act in order to ensures its safety. This 

condition is only applicable to a mode marked Safe.

There arc two entries shown in the example arc O: 3 | 2 and I: 1 | 2,

• The first entry O: 3 | 2 can be read as: an entity can only safely transition into mode 3 

after is has successfully coordinated with other entities to give way, otherwise, the entity must 

transition into mode 2. This information will be used in the coordination scheme which specifies 

an entities’ behavior (Section 5.3).

• The second entry I: 1 | 2 can be read as; for an entity transition from mode 1 it must obtain 

the required shared resources in mode i or an earlier mode, otherwise, it must transition to 

mode 2. This information is required for the calculation of the set of entities to coordinate 

with (Section 4.4).

Note: There can be more than one entries in the condition column. A condition is not specified 

when the Result is clear, (i.e.. Safe without requiring the entity to perform anything).

4.3.3.2 Analysis overview

This section presents an overview of the analysis to derive a coordinat ion strategy; the section first presents 

the overall flow, and then presents an overview of the sub-components required.

Comheolai'ocht uses a dynamic programming |Cormen et ah, 2001] algorithm for deriving the coordi­

nation strategy, this is because the analysis steps exhibit the properties of overlapping subproblems and 

optimal substructure:
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Optimal substructure Whether an entity can ensures its safety in a mode, mi, is dependent on:

1. Whether it can deterministically access a LLFSM, and

2. Whether the entity can ensure safety in mi’s destination modes

Overlapping subproblems mi’s destination modes may include another mode’s destination modes. 

Therefore, the analysis for the coordination strategy has the following structure:

• Let

— current represent the current mode under examination,

— seeriLLFSM stores the identifiers of the last deterministically accessible LLFSM inodes,

— tab represents the strategy (the dynamic programming table),

— prev represents the mode that the entity transitioned from,

— Analyze represents the recursive function to generate the coordination strategy,

— G represents the mode transition diagram (graph),

— © represents the function to aggregate a set of strategics

• In

Analyze(current,seenLLFSM,tab,prev) = '\i{current,mdeat) G G,

®{Analyze(mdest, seenLLFSM, tab, current)}

The above function can be read as, in order to analyze the strategy for the current mode, Analyze{current,...), 

all t he dost inat ion modes (as defined by l.he out. edges, W{current, mdest) G G) arc analyzed, Analyze(mdeat^ ■■■)i 

and their results aggregated (®).

In this analysis, the term current mode, mi, is used to refer to the mode under analysis and the term 

destination mode to refer to a mode to which mi has an out edge to. The subsequent subsections presents 

various calculations for the analysis, in particular

• Section 4.3.3.3 presents the termination case for the Analyze function above.

• Section 4.3.3.4 presents the initialization and intermediate results for the strategy table.

• Section 4.3.3.5 presents the recursive case for the Analyze function above.

• Section 4.3.3.6 presents a special recursive case for the Analyze function - loops.

• Finally, Section 4.3.3.7 summarizes the analysis by presenting the Analyze function.
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Exit mode seenLLFSM = 0 seenLLFSM / 0
LLFSM Fail-safe mode safe safe

Non-fail-safe mode safe, I prev \ seenLLFSM unsafe

Table 4.5: Decision in exit-mode

4.3.3.3 Termination

The Analyze function terminates when the current mode under examination is an exit mode. An exit 

mode is marked Unsafe in the strategy table only if

• The exit mode is a non-fail-safe mode, and

• The entity cannot deterministically access a LLFSM prior to the transition into the exit mode. 

(seenLLFSM = 0)

Otherwise, the strategy table entry for the exit inode is marked Safe.

In the case where the exit mode is a non-fail-safe mode, the condition is marked “/preu | seenLLFSM" 

to represent that an entity transitioning from mode prev must perform the required coordination in mode 

prev or in one of its last deterministically accessible LLFSM modes. Table 4.5 summarizes this termination 

case. Exit modes that are fail-safe arc inherently safe and do not require a condition to be safe.

4.3.3.4 Intermediate coordination strategy table

This section presents an extension of the coordination strategy table to represent its state during ini­

tialization and intermediate analysis. Values of the coordination strategy table for finalized results were 

presented in Section 4.3.3.1.

The table below shows the coordination strategy table just after initialization:

Index Mode Result Condition Unexamined outedges

1 traveling before junction Null - 2. 3

2 stopped before junction Null - 1

3 in junction traveling Null - 4, 5

4 after junction Null -

5 in junction breakdown Null -

In the strategy table, there is an addition column. Unexamined outedges, that record the transitions 

that have not been analyzed. The table just after initialization has all results set to NULL to represent 

the fact that a mode has not been analyzed.
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The table below shows the table with some intermediate results, in particular, the table shows a 

snapshot of the table whereby the analysis of modes 4 and 5 is complete, and the analysis is about to 

mark mode 1.

Index Mode Result Condition Unexamined outedge

1 traveling before junction Pending - 2

2 stopped before junction Null - 1

3 in junction traveling Unsafe -

4 after junction Safe -

5 in junction breakdown Safe -

In the intermediate results table, the value of the Result column can be Pending; it signifies that 

analysis has started on the mode, but there is no conclusion yet. In this example, mode 3 is marked 

Unsafe because the analysis has not examined mode 2, the required LLFSM. Section 4.3.3.6 presents the 

analysis for loops (mode 2) and describes revisiting mode 3 to mark it Safe (with a condition) for the 

final results.

4.3.3.5 Recursive step

Assuming that all the destination modes of the current mode, mi, have been marked with a strategy, 

this section presents the recursive step: whether an entity can ensures that it docs not violate a safety 

constraint in mi.

In the analysis below, if mi is a LLFSM, then mi G seenLLFSM; therefore, the entity can deter­

ministically transition into a LLFSM (seenLLFSM ^ 0). The analysis is as follows (a summary of this 

analysis is shown in Table 4.6):

• If mi is a non-fail-safe mode

— and seenLLFSM = 0, then mi is marked Unsafe.

— otherwise, the mode is marked based on its destination modes, as specified in the following 

steps.
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An entity in mi can ensure it is safe if:

1. It can deterministically transition into a destination mode that is mared Safe. (Case 1 and 2 

in Table 4.6).

2. It can deterministically transition into a LLFSM [seenLLFSM / 0) before its transition to 

the destination mode, and that it can deterministically transition into a destination mode that 

may be unsafe (Case 5 in Table 4.6).

(a) Such a destination mode is marked either with:

i. Unsafe

ii. Deadend-2

iii. Safe with a condition in the strategy table (This case happens when another path has 

evaluated the destination mode previously)

(b) In this case, mi is marked as Safe. O : m.^gst\seenLLFSM and the destination mode is 

marked as Safe, I : rni\seenLLFSM. (Note: If mi is a LLFSM, then it is simply marked 

as Safe and the destination mode is marked as Safe, I : mi respectively)

Note: In this situation (Case 5 in Table 4.6), mae.st must be reanalyzed due to its change in 

status.

Although mi can be marked as Safe as long as one destination mode belongs to the category above, 

the developer may want to continue to analyze other destination modes of mi so that the entity’s 

deliberation can have more choices for transitions.

An entity in mi cannot ensure the system’s safety (mi is marked Unsafe) if:

1. There are no out-edges in mi with case 1, 2, or 5. and

2. The entity cannot deterministically transition into a LLFSM before its transition to mi 

{seenLLFSM = 0), and it may (non-deterministically) transition into a destination mode 

that is unsafe. (Case 8 in Table 4.6)

• An entity in mi can ensure that it does not violates a safety constraint (requires examination of all 

its destination modes) (marked Safe) if:

1. There arc no out-edges in mi with cases 1, 2, 5, or 8, and

2. All transition edges out of mi are non-dctcrniinistic (with the exception of Case 6; which will 

be explained shortly) and that every destination mode is either:
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(a) Marked as Safe (without a condition): (Case 3 and 4 in Table 4.6), or

(b) Unsafe, Deadend-2 or Safe (with a condition), and the entity can deterministically tran­

sition into a LLFSM before its transition along the examined edges {seenLLFSM / 0): 

(Case 7 in Table 4.6)

Note: In this case, the analysis is the same as Case 5 such that:

— mi is marked as Safe, O : mdesAseenLLFSM and the destination mode is marked as 

Safe, I : mi\seenLLFSM.

— The destination mode must be re-analyzed because of the new information.

• An entity in mi cannot safely transition out of the mode if:

1. mi is not an exit mode and there are no out-edges out of mi (marked Deadend-1) (Case 9 in 

Table 4.6), or

2. mi is not an exit mode and all destination modes arc marked as Deadend-1, mi is also marked 

as Deadend-1 (Case 10 in Table 4.6).

3. There arc no out-edges in mi with cases 1, 2, 3, 4, 5, 7 or 8, and

(a) The entity can deterministically transition into a destination mode, however it cannot 

ensure safety in this destination mode; the destination mode is marked Unsafe or Deadend- 

2, moreover

(b) The entity cannot deterministically transition into a LLFSM before its transition along the 

examined edge (seenLLFSM = 0). (Case 6 in Table 4.6)

In all cases above, the entity has reached a deadend, it could stay in the mode for an infinite 

period, but it cannot safely transition out of the mode. However, the analysis differentiate 

between Deadend-1 and Deadend-2.

Modes marked as Deadend-2 could be remarked as Safe (with a condition) if further analysis 

revealed that the entity may deterministically access a LLFSM.

4.3.3.6 Loops and unmarked destination modes

On initialization, the result column in the strategy table has the value NULL to represent that all modes 

have not been analyzed. If an analysis of a mode, mi, requires the result of a destination mode, m2, 

(c.g., the recursive steps described in the previous section requires the result of destination modes to be 

marked) which is not available (NULL), then m2 should be analyzed in order to analyze mi. In this case, 

mi is marked as Pending.
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Cases m2 is marked
(mi, m2) 

is deterministic
seenLLFSM

7^0
Analysis result: 
mi is marked

1 Safe Yes Yes Safe
2 Safe Yes No Safe
3 Safe No Yes Depends on all destinations
4 Safe No No Depends on all destinations
5 Unsafe/Deadend-2 Yes Yes Safe, 0: m2 | seenLLFSM
6 U nsafe /Dcadend-2 Yes No Dcadcnd-2
7 U nsafe/ Deadend- 2 No Yes Depends on all destinations
8 Unsafe, Deadeud-2 No No Unsafe
9 No out-edges in mi Safe if mi is exit mode, 

Otherwise Deadend-1
10 Deadend-1 Yes - Deadend-1

Table 4.6: Ensuring safety at a mode (mi) - No loops

A loop is discovered when the analysis of a mode, nix, requires the result of another mode, mioop, 

which has been marked Pending. If the seenLLFSM in mioop is a subset of the seenLLFSAl in mj, it 

implies that the entity can transition through some LLFSM by passing through the loop, therefore, the 

seenLLFSM in mioop updated to reflect the larger set of deterministically accessibe LLFSMs.

Leaving the modes in the loop marked as Pending, the analysis continues by analyzing other unmarked 

destination modes of mioop- When all destination modes of mioop arc marked (not Null):

1. If there was an update on seenLLFSM due to any of the loops, then rc-analyze all destination 

modes marked Unsafe or Safe (with a condition).

2. After the re-analysis of mioop’s destination modes, mioop is marked as presented in the recursive 

step (Section 4.3.3.5) by ignoring all loops (transitions marked Pending).

3. After marking mioop, rc-analyze all the loops (destination modes of m,|oop marked as Pending).

4.3.3.7 Summary

This section presented an analysis to derive a strategy that defines whether an entity can ensures that 

it does not violates a safety constraint when it transitions to a mode. Given this strategy, an entity 

should only transition into modes marked as Safe, the condition specifies that an entity may be required 

to transit into the LLFSM in order to ensure the non-violation of safety constraints.

Appendix I shows the pseudo code for the Analyze function.

122



4.4 Scenario Composition

The modelling in Chapter 3 splits the application environment into scenarios and the first three sections of 

this chapter focus on analyzing the solvability of a single scenario. This section presents Scenario Compo­

sition. systematic steps for combining the partitioned scenarios back into the application environment. In 

the process, entities’ coordination across scenarios is analyzed and the validity of compositions is checked.

The following sub-section presents the design and analysis steps applied to scenario composition. 

Section 4.4.2 presents the concepts underlying the composition of two scenarios. Section 4.4.3 then 

presents the checks for incompatible compositions (i.e., scenarios that cannot be composed). Finally, 

Section 4.4.4 presents the steps for composing scenarios.

4.4.1 Applying design and analysis to composite scenarios

Just as composite scenarios are also scenarios, the same set of design and analysis tools can be applied to 

analyzing composite scenarios. This section focuses on the re-design and analysis of modes for composite 

scenarios. The steps are;

1. Identify mode transitions between the entrance-modes and exit-modes of the scenario; this step is 

the same as Section 4.2.6.

2. Identify entrance modes with resource usage pre-conditions. A scenario may have pre-conditions 

that specify that entities must satisfy some constraints before they enter the scenarios. The pre­

conditions supported by Comheolai'ocht can be grouped under two categories: value-satisfying and 

resource usage:

(a) Value satisfying pre-conditions specify that an entity’s parameters should be within some range 

or in some modes. These pre-conditions are specified using the following syntax (see Section 

3.4.5.2):

entity condition := entity-type, ”.”, state-variable, rel-operator, value 

I entity-type,".",entity-behavior_ID 

I "'entity-type,".",entity-behavior ID

(b) Resource usage pre-conditions specify that an entity must hold exclusive use of some resources 

in order t o perform some act ions. These pre-condit ions are specified using the following synt ax 

(see Section 3.4.5.2):

resourcc_usage := cntity_conditiou => /io/c(s(resource_namejj[Qj.Qpy])
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Similar to a safety constraint that cannot be handled locally (Section 4.3.3.1), the resource usage 

pre-conditions are exposed to the other scenarios. As such, entrance modes with a resource usage 

pre-condition is represented as non-fail-safe modes in the composition; entities must coordinate to 

obtain the required resources in order to safely transition into the entrance modes.

3. Revisit the mode design step (Section 4.2.5) for the composite scenario, further partition any modes 

to differentiate between states that may eventually violate a pre-condition and states that will not 

violate a pre-conditions.

An example is shown in Chapter 6 where a road scenario is composed with a junction scenario. In 

the example a road scenario has a Driving LLFSM, and the junction scenario has a pre-condition 

that requires entities to hold some junction resources before they enter the junction (i.c., cross the 

junction). As a vehicle in Driving mode may eventually reach the end of the road and enter the 

junction, the mode is split into Driving_before_junction and Stopped_before_junction 

modes (Figure 6.6). The road and junction composite scenarios together form the intersection 

collision scenario (Figure 4.1).

4. Apply the coordination strategy analysis (Section 4.3.3) to find a strategy for t he composite scenario.

After applying these steps, the composite scenarios can be treated as a single scenario. For instance, 

composite scenarios can be further composed to form more complex composite scenarios (see Section 6.3 

for an example of composing composite scenarios).

4.4.2 Composing two scenarios: concepts

Scenarios are non-overlapping partitions of the environment. This implies that as soon as an entity leaves 

a scenario, it enters another scenario. In order for an entity to enter a scenario safely, the scenario’s 

pre-conditions must be satisfied. This section presents three questions an entity needs to answer in order 

to transit between scenarios:

1. Which scenario is the entity entering?

2. When should an entity start its preparation for satisfying the pre-condition?

3. Who should the entity coordinate with?

4.4.2.1 Which scenario is the entity entering?

When there are more than one scenario composed together, an entity leaving a scenario could be entering 

any of the other scenarios. Therefore, the entity must know which scenario it is joining so as to know
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which set of pre-conditions it must satisfy. This work assumes that the entity’s higher-level intelligence 

(c.g., planning) knows which scenario an entity is joining; the higher-level intelligence is not within the 

seope of the coordination protocol (see Section 1.7).

4.4.2.2 When should an entity start its preparation to satisfy the pre-condition?

How early an entity starts its preparations depends on the pre-conditions. As mentioned, the pre­

conditions supported by Comheolai'ocht can be grouped under two categories:

Value satisfying pre-conditions that specify an entity’s parameters should be within some range or in 

some modes.

The reaction time, S, is the minimum time required for an entity to modify the constrained pa­

rameters into the acceptable range before its arrival at the new scenario. This implies that the 

entity’s preparations for these pre-conditions must start at the latest d before the entity enters the 

scenario. Although d defines t he latest t ime for preparat ion, t he ent ity may start its preparat ions 

earlier based on some user preferences. For example, in the scenario composition of a vehicle entity 

exiting a highway and entering a road, the vehicle must observe the lower speed limit pre-condition 

of the road. The vehicle entity can either:

• perforin maximum deceleration at the last minute so as to arrive at its destination earlier, or

• gradually decelerate at an earlier time so as to allow passengers a more comfortable journey.

Resource usage pre-conditions specify that an entity must obtain exclusive use of some resources in 

order to enter the scenario safely.

Similar to an entity entering a non-fail-safc mode, an entity entering a scenario with a resource 

usage pre-condition should start preparation for its entrance in the last deterministically accessible 

LLFSM. Such a LLFSM can be found in the coordination strategy of the composite scenario:

1. Let the entrance mode with the pre-condition be mg,

2. The entry for rrig in the coordination strategy could be marked

(a) Unsafe: there are no deterministically accessible LLFSM, and an entity may not safely 

transition to the entrance mode. In this case, some unhandled eonstraints are exposed to 

other scenarios.

(b) Safe with a condition (e.g., {/ : myiUm^i}, I : m^2|{^22}i ■•■}): then the entity should 

start its coordination in one of the deterministically accessible LLFSM, (m^i or m22 in the 

example).
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4.4.2.3 With who should the entity coordinate?

This section presents the minimal group with which an entity must coordinate to ensure the safety 

constraint (or the pre-condition) is not violated. In contrast, the protocol derivation step (Chapter 5) 

extends this group to enable an entity to reach its goal faster (i.e., by taking its planned path, which may 

not transit through a LLFSM).

Straight composition Let’s start by explaining composition between two scenarios, si and S2, such 

that entities only travel from si to S2- When S2 has a resource usage pre-condition, entities must coordinate 

before they enter the scenario. By definition, an entity can remain in the LLFSM for long enough so as to 

guarantee successful coordination. Further assume that si has such a detcrministically-acccssible LLFSM 

that the entities can use for coordination before entering S2- hi the worst case where communication 

has failed for a prolonged period of time, every entity requesting entry into S2 (i c., requesting access 

to the shared resource) is waiting in its LLFSM in si. Therefore, in order to be safe, an entity must 

be able to coordinate with everyone in si’s last detcrministically-accessible LLFSM. However, utilizing 

the scenario’s Q-constraints. which defines the sequence of resource usage, an entity’s dependencies can 

be inferred (Section 3.4.3). This minimal group for coordination can be redefined to be those entities 

with the highest priority (as defined by the developer) or no dependencies (as inferred from the sequence 

constraints) in the last deterministically accessible LLFSM.

Generalisation The argument for the minimal group with which to coordinate made two relaxations: 

i) that Si has a deterministically accessible LLFSM and ii) straight scenario composition.

• If Si docs not have a deterministically-acccssiblc LLFSM, then the pre-conditions are exposed to 

other scenarios.

• When there is more than one scenario leading into S2, then by following the same argument as 

the straight scenario composition, the minimal group with which an entity must coordinate are the 

entities with the highest priorities or no dependencies in the last detcrministically-acccssible LLFSM 

of all the scenarios leading into 82- The steps arc:

1. Apply the design and analysis steps to the composition (Section 4.4.1).

2, In order for an entity to transition through an entrance mode mg of S2 in the composition, if 

TUg is marked

(a) Safe', then an entity can transition into the scenario through irig without coordinating with 

any other entity.
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(b) Safe with a condition (c.g., {/ : myi\{m2i}, I : Tny2\{m2:2), ■■•))'■

i. If all the in-cdgcs (i.c.. my\,my2, ■■■) are specified in the condition, then the entity needs 

to coordinate with all the entities (with the highest priorities or no dependencies) in 

the last dctcrministically-acccssible LLFSM (i.e., rnzi,mz2, ■■■)■

ii. If any of the in-edges are not specified in the condition:

A. If all the entrance modes of the composition are marked Safe or Safe (with condition), 

then all entities have a strategy not to use the in-edge to nie without a condition 

(which may be marked Unsafe). In this case, the entity need to coordinate with all 

the entities in the last deterministically-accessible LLFSM (i.e., rn2i,m22, ■••)•

B. Otherwise, there arc no dctcrministically-accessible LLFSMs for the in-edge. The 

entity may not safely transition through rUg as it cannot determine the set of entities 

with which to coordinate.

(c) Unsafe', then there are no deterministically-accessible LLFSM to be found in the composite 

scenario. The entity may not safely transition through rrig as it cannot determine the set 

of entities to coordinate with.

4.4.3 Exposing incompatible compositions

Due to physical and technical limitations, not all scenarios can be composed. This section discusses these 

limitations in scenario composition and shows how to identify these incompatible compositions. The 

two reasons why scenario compositions arc incompatible are: physical disjoints, and high-coordination 

requirements.

4.4.3.1 Disjoint incompatibility

Disjoint incompatibilities exist due to physical limitations. Disjoint incompatibility can be recognized by:

1. Mismatched physical boundaries

Scenarios include physical boundaries like roads, lanes, and walls. It is a clear sign of incompatible 

scenarios when the specifications of these physical boundaries do not match.

2. No behavior for transition between the scenarios

An entity leaving a scenario through its exit mode arrives at the entrance mode of its new scenario. 

A disjoint incompatibility may exist when an entity does not have a behavior that provides the 

transition from the previous scenario’s exit mode to the new scenario’s entrance mode.
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3. Some of the entities in both scenarios are different..

Entities come from somewhere and go to somewhere. If an entity appears in a scenario but not in 

another, then there is a possibility that the two scenarios are incompatible.

4.4.3.2 High coordination requirements

As discussed in Section 4.4.2.3, the minimal group with which an entity must coordinate are the entities 

with the highest priority or no dependencies in their last deterniinistically-accessible LLFSM of all sce­

narios leading into the entrance scenario. In addition, Section 4.4.2 shows the set of entities with which 

an entity must coordinate in order to enter a scenario. The combination of these two requirements may 

result in highly challenging coordination requirements:

1. Over huge distances

Even when the set of deterministically accessible LLFSM can be calculated (based on the coordina­

tion stategy) their physical location could be very far apart. Such coordination may be impractical 

due to limitation in the hardware required for the coordination (e.g., communication, sensors) and 

inaccuracies in entities behavior.

2. Between a very large number of entities

When there are a very large number of entities that may be concurrently in the set of deterniinistically- 

accessible LLFSM required for coordination, the physical limitation of the computational resources 

(i.e., computational power, bandwidth, memory) may make such coordination impractical. This 

challenge is presented in Section 2.1.4.1.

3. Errors

Inaccuracies can be handled by allocating extra allowance in modes or requiring entities to reserve 

extra resources (Section 4.2.4). The effect of catering for these errors may adversely effect the 

system’s efficiency. This inefficiency might mean that the sj'stem is impractical.

For illustration, assume a highway scenario composed with an intersection collision avoidance scenario 

(Figure 4.4). The intersection collision avoidance scenario’s pre-condition states that vehicles must hold 

the relevant resources before crossing - a resource usage precondition. Further, assuming the highway 

scenario models vehicles that cannot stop, then vehicles in highways do not have the required LLFSM to 

coordinate entry into the junction. Even if the highway scenario is composed with other scenarios that 

have deterniinistically-accessible LLFSMs:
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Highway

Figure 4.4: A non-compatible composition: highway connected to a intersection.

Fignrc 4.5: Current implementation: Highway-road-intcrscction composition

1. These dcterininistically-acccssible LLFSM may be physically far apart (since the highway may be 

long).

2. There may be a very large number of entities if there are many scenarios connected to the highway 

scenario (many entrances into the highway).

3. The vehicles are required to plan and coordinate in their last deterministically-accessible LLFSM, 

which may be far away from the actual resource usage (i.e., the junction crossing). Furthermore, 

inaccuracies in vehicle’s velocity implies that it cannot accurately predict the resource usage.

Together, the limitations make such a composition impractical for coordination while ensuring safety.

To complete the illustration: while it is too challenging to compose a highway to an intersection, a 

common solution is to insert a road scenario between the two scenarios (Figure 4.5), and do not assume that 

vehicles cannot stop in the highway scenario. This composition shows the current highway to intersection 

implementation - where highways are always connected to an intersection by a normal road which allows 

vehicle stopping and traveling at a slower speed.

129



4.4.4 Summary

This section presented the steps for performing scenario composition. The steps are:

1. The scenarios to be composed are checked for piiysical incompatibility.

2. The composite scenario’s modes are re-designed and analyzed.

3. The information required by an entity is calculated.

4. High requirements that may render a composition impractical arc check.

4.5 Summary

This chapter presented a step-by-step guide to analyze the system specified in Chapter 3. The analysis 

focuses on checking whether an entity can ensnre that the safety constraints will not be violated. When the 

entities can ensure non-violation of the safety constraints, the analysis produces a coordination strategy 

ensuring t his property. The coordinat ion strategy specifies:

1. The set of cixtities with which an entity must coordinate with,

2. When to start preparing for the transition into a non-fail-safe mode,

3. Whether a transition is safe.

In the event where an entity cannot ensure its safety within a scenario, the safey constraints could be 

exposed to a connecting scenario. A entity entering a scenario with exposed constraints must start its 

coordination outside the scenario.
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Chapter 5

Protocol Derivation

The final step in Comheolai'ocht’s uses our CwoRIS pattern to implement entities coordination. Using 

the environment model and constraints from step one, and the coordination strategy from step two, the 

CwoRIS pattern derives a protocol to provide distributed scheduling or mutual exclusion for dynamic 

participants that provides system safety. The derived protocol provides system safety by ensuring entities 

have exclusive access to shared resources despite imperfect communication.

The following subsection describes the communication and sensor requirements. Section 5.2 explains 

the concepts of the CwoRIS pattern which is implemented by three parts: coordination scheme (Sec­

tion 5.3), request/response protocol (Section 5.4) and local schcduling/rcschcduling (Section 5.5). Sec­

tion 5.3.4 then presents an example of applying the CwoRIS pattern using the Intersection collision 

avoidance scenario.

5.1 Communication &: Sensor Requirements

The CwoRIS pattern is designed to operate on top of a (1) multicast protocol that provides (2) ordered 

delivery of messages, (3) bounded message latency and (4) real-time feedback. Ordered delivery of mes­

sages ensures that messages that are delivered to some nodes arrive at these nodes in the same order 

[Kshemkalyani and Singhal, 1998]. Bounded message latency ensures that messages arc either delivered 

within a certain period or discarded. Feedback on message delivery ensures that a sender receives result 

on the entities that a message is delivered. Real-time feedback ensures that feedback on message delivery 

is delivered to the sender within a bounded time.

The ordered delivery and real-time feedback properties replace the requirement for the consensus 

property (Section 2.4.1).
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Ordered delivery is essential to CwoRIS because allocations are granted based on first-come first,- 

served; an unordered sequence may eatise t,wo entities \vit,h conflicting reqtiest.s to believe that, they have 

won the first-come first-served race and access the shared resource at the same t,ime. which is not, safe. 

Ordered delivery can be implemented with time-stamped messages and buffers at, reeievcr end. \\'hen 

a node receives a message, the message is stored in the btiffer and sorted based on the message’s time- 

stamp. These stored messages are delivered to the application in-order, delayed messages that may result 

in out-of-order delivery are discarded.

Real-time feedback is required because CwoRIS supports a real-time system where entities must make 

decisions based on t he outcome of whet her a message is delivered wit hin a fixed period. Real-t ime feedback 

can be implemented at the senders’ side with a timer. The timer is started after sending a message, when 

the time is up acknowledgements are aggregated and feedback to the sending application.

When applied to physical entities, CwoRIS further assumes that the lower-layer communication pro­

tocol provides geocast. Several protocols satisfy our requirements for geocast, ordcred-delivery, bounded 

message latency and real-time feedback, (e.g., STEAM (Hughes, 2006|(Section 2.5.2), Vertigo [Slot et ah, 

2010]). STEAM provides feedback on the area to which a message was successfully delivered. Vertigo 

uses a combination of sensors and routing protocol to provide both the set of nodes to which a message 

was successfully delivered (D), and the set of nodes that might be in the area (A) (a failure occurs when 

A-D ^0).

Furthermore, the implementation of the mutual exclusion version of CwoRIS pattern requires the use 

of a reliable resource sensor for detecting entities using the shared resources. Entities may access the 

resource sensor to check whether there are any entities using the shared resources.

In addition to communication requirements, CwoRIS assumes that physical entities have i) a speed 

upperbound, and ii) sufficient control to use only the resources it requires.

5.2 Concept

In the CwoRIS pattern, an entity docs not access the shared resources unless it can be sure that every 

other entity that may concurrently access the critical section has given way to it. Bouroche |2007| termed 

such behavior as being "responsible”. Each entity is responsible for respecting the safety constraint 

(not entering the critical section), and an entity can only enter the critical section by transferring its 

responsibility to other entities which then give way to it. The CwoRIS pattern is an extension of the 

“contract without feedback” protocol, one of the contract protocols explored by Bouroche |2007|. In 

the contract without feedback protocol, an entity transfers its responsibility by delivering a request to
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everyone tliat may be interested in tlic entity’s intention to enter the critical section, this results in 

granting allocations on a first,-eome first,-served basis. Any entity that receives such a proposal implicitly 

agrees to the proposal and defers to the sender; it must not access the shared resources at the same time 

as specified in the proposal message. The sender of the jtroposal establishes that it, is safe to rclinqiiish 

responsibility when the proposal has been delivered to everyone which can access the resources at the 

same time using communication feedback.

As mentioned CwoRIS is composed of three parts: the coordination scheme, the request/response 

protocol and scheduling rescheduling. Based on the coordination strategy from step two (Section 4.3.3), 

a coordination scheme (Section 5.3) is derived that defines when and how should an entity act in various 

situations such as successful unsuccessful resource reservation, race conditions, and entity breakdowns. 

The request respond protocol (Section 5.4) implements the protocol where entities send requests and are 

granted exclusive access to the shared-resources based on a first-come first-served policy. In addition, the 

protocol supports the various /f-constraints captured in the system modeling step (e.g., preemption, setup 

time). Finally, local scheduling rescheduling (Section 5.5) provides a method to schedule and reschedule 

a request that prevents a live-lock in the requests.

5.3 Coordination Scheme

The coordination scheme specifies the four steps an entity takes in order to guarantee exclusive access to 

t he shared resources. In t he definit ions, MsgLatency represents the latency within which a request must 

be delivered and feedback about message delivery returned to the sender. Figure 5.1(c) shows the example 

of a vehicle in the intersection collision avoidance scenario using CwoRIS’s four steps. Figure 5.1(a) shows 

the vehicle entity mode transition diagram before entering the junction and Figure 5.1(b) shows the time 

line of the mode transitions with respect to the four steps. The four steps in the coordination scheme are:

1. Lurking: During this step, an entity listens and builds the situation picture, before arriving at its 

decision point (Stx:tion 5.3.1 describe the decision point). I'he lurking time is defined t,o be A.

Note: the entity only stops listening after step 4 - after it had made a decision to access the shared 

resources.

2. Resource request sending: The second step uses the request/feedback protocol (Section 5.4) to send 

a request to the set of entities that might access the same resources at the same time. The request 

message is sent at least MsgLatency before the entity’s arrival at its decision point. Section 5.3.2 

describes the calculation of the set of recipients and the lurking time.
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Figure 5.1: Steps for a vehicle using CwoRIS.

3. Request delivery and feedback receipt.

The request should be delivered and the sender should receive feedback on the delivery results, at 

most MsgLatency after the resource request is sent.

4. Decision making.

Based on the result of request delivery, the entity may choose whether to access the shared resources 

or resend another request. There are two possibilities that can prevent an entity from acquiring 

access to its required resources: communication errors and the receipt of a conflicting request. The 

request/fccdback protocol (Section 5.4) ensures exclusive access to shared resources despite race 

conditions and communication errors.

In the event where an entity arrives at its decision point without having acquired exclusive access 

to resources it requires, it must start its transition into a long-lasting fail-safe mode (LLFSM; see 

Section 4.2.3). In this case, the entity sent requests to access the shared resources in its LLFSM.

5.3.1 Decision point

An entity may require time and space to prepare for mode transitions (e.g., vehicles require time to break 

to a stop). If i) an entity did not acquire exclusive access to the shared resources, and ii) by maintaining
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its current behavior, may result in it accessing the shared resources, then the entity must change its 

behavior to avoid accessing the shared resources. We define the last, point in time where the entity must, 

start changing its behavior in order to avoid accessing the shared resources as the decision point.

Definition: The decision point is the last point in time where an entity must start changing 

its behavior to avoid accessing the shared resources.

The location of a decision point can be derived from the coordination strategy: a decision point can be 

found at, every mode specified in the coordination strategy wit h a condition specified as O : x 11/ without 

a. I : z\y condition. Note: In the coordination strategy table for mode m, if the I : z\y condition is 

present, it implies that a LLFSM, y, can only be found in the previous mode, z, or cariler; the mode m. 

cannot transition into y.

5.3.2 Sending area and lurking period

Section 4.4.2.3 shows that the minimal group an entity must coordinate with to ensure the safety constraint 

(or the pre-condition) is not violated. While this minimal coordination group definition is sufficient to 

ensure safe coordination, it implies that every entity must transition into a LLFSM in order to coordinate; 

this might not be efficient. Illustrating using the intersection collision avoidance scenario: coordination 

only amongst this minimal group implies that each vehicle must stop (enter the LLFSM) before it co­

ordinates and enters the junction. Although current intersections that have no traffic lights require the 

vehicles to stop, coordinating entities could be more efficient by coordinating earlier in order to cross 

the junction without breaking. Therefore, a system could be more efficient if the entities complete the 

coordination process before they reach their decision points.

An entity must coordinate with all the entities that might access the resources it require. Therefore, 

to be efficient, an entity must coordinate with a larger group than the minimal group defined in Section 

4.4.2.3.

The CwoRIS pattern provides both scheduling and mutual exclusion versions of the protocol. The 

following sub-section presents the sending area and lurking time for the scheduling version, the sub-section 

after that presents the concepts applied to the mutual exclusion version.

5.3.2.1 Scheduling version

Lemma (Sending Area): Given a set of required resources = {(rx.y,t^,tg)}, an entity 

must deliver its request to every entity that might use some of the shared resources before 

inaXigTjJx.fe).
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Figure 5.2; Lurking time overview (scheduling version)

The calculation of the sending area is a direct translation from the definition that an entity must coordinate 

with all the entities that might access the resources it requires. This definition of the sending area is not 

exactly an area as it uses time (maxxgfl^ (i.te)) as a measurement. A developer may need to define 

additional policies in order to translate this definition into an actual geographical area required for geo­

cast, for example, the intersection collision avoidance (Section 5.3.4.1) uses the vehicles’ maximum velocity 

on the road (umax) to translate the time-definition into the geographical area for the location of entities 

that may use the shared resources "before maXx6/?„ (x.te)”-

Lemma (Lurking Time): Given a policy that defines the longest period for which a resource 

can be reserved is tmaxHoid- Iw order for an entity x to ascertain that no other entities is 

holding on to a resource q after tmaxhoid “ & from now, entity x must be able to access q before 

tmaxhoid — <5 from HOW and has been lurking for <5 without hearing a conflicting request.

Figure 5.2 shows an overview of the lurking time lemma. In the figure, ti shows the current time 

(now), entity x has lurked for a period of 5 which is between to and <i- The policy states that entities 

cannot reserve resources for a period longer than tmaxholdi therefore, no entity could book a resource now 

(ti), and still be holding to it after tmaxhoid (G + fmaxhoid = H)- The paragraph below presents the proof:

proof : Assuming that this lemma is incorrect, then

1. Some entity y holds the resource q after tmaxhoid “ 4 from now (after t2 in Figure 5.2).

2. Entity x can access resource q between (tmaxhoid — <f) and tmaxhoid from now (period between t2 and 

ts in Figure 5.2).

3. Entity x lurking for a period of 6 (from to to t\ in Figure 5.2) and hearing no requests for resource 

1-
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4. D(ic to the policy limiting the longest period a resource may be reserve for (fmaxhoid)i in order for 

entity y to hold 7 after fmaxhoid “ ^ from now (condition 1), the earliest time y can sent its request 

is tmaxhoid - (fmaxhoid - (5) = (5 ago (ill Figure 5.2, at fo).

5. By Lemma sending area, an entity sends a request to every entity that might access the same 

resources at the same time. In addition, the entity only holds a resource after it has received a 

feedback for its request from every entity in this group (c.f.. Section 5.4). Entity x can access 

resource 7 between (fmaxhoid “ and fmaxhoid (condition 2), which overlaps the period that entity 

y holds the resource for (condition 1). Therefore, entity x must be in y's sending area.

6. Entity x is in y's sending area (condition 5) and has been listening for 6 (condition 3). Entity y 

scuts its request not earlier than 6 ago (condition 4). Therefore x, must have heard y's request for 

resource 7 (a contradiction).

Therefore, Lemma Lurking time is shown. Note: in the event of a communication failure, entity y could 

not have received x’s feedback and could not be holding on to resource 7.

5.3.2.2 Mutual exclusion version

Unlike the scheduling version where entities know the period for which they require a resource (i.e., Ra 

= {(fx.y^is’ie)}) entities using the mutual exclusion version do not know when they will finish using the 

resource (i.c., tg is undefined). As another entity do not know when an entity will finish using a resource, 

the mutual exclusion version assumes that there is a reliable resource sensor for the detection of any entity 

using a resource. Furthermore, the policy for the mutual exclusion version depends on the resource start 

usage time (i.e., tg).

Lemma (Sending Area-Mutual exclusion): Given a policy that defines that an entity must 

either start using the resources within tmaxME after the resource acquisition or give up accessing 

the resources, an entity, x, must send its request to everyone that might access the resources 

within (2 ♦ (tmaxME + MsgLatency).

The sending area lemma in mutual exclusion version looks different from that of the scheduling version 

because the former uses resource start usage time (tg) and the latter uses the resource end usage time 

(tg). As the sending area and lurking time are related, both lemmas are provided before their proofs, the 

lurking time definition is:
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Lurking period
By policy, entities holding on to

t^^^MsgLatency
^rr^BxME+f^sgLotency ^

--------------------^
to ti t2 time

(now)

Figure 5.3: Lurking time overview (mutual exclusion version)

Lemma (Lurking Time-Mutual exclusion): If an entity x is in the sending area, heard no 

transfer messages for a period of tmaxME + sgLatency and the resource sensors do not 

register any entity currently using the resources, then there is no entity holding exclusive 

rights to the resources.

There are two properties regarding the sending area and lurking time for the mutnal exclusion version: 

i) fmaxME > 0 therefore, the lurking time must be at least MsgLatency and ii) the sending area is double 

the lurking time. Figure 5.3 shows an overview of the Inrking time for the mutual cxchision version. Note 

that similarly to the scheduling version, the sending area is defined using time, actual implementation 

need to translate this time representation into geographical area.

proof : Assuming that the lurking time lemma is false, then there is an entity, y, holding exclusive 

rights to some resources, despite:

1. Entity x:

(a) being in the sending area for a period of fmaxME + MsgLatency and

(b) did not. hear any conflict ing ri^source request.,

2. The resource sensors not registering any entity using the resources.

3. Entity y holding exclusive rights to some resource could only have two possibilities, either y is 

currently using the resources, or that y holds rights and will use it before fmaxME- Since condition 

2 states that the resource sensors do not register any entity using the resources, y is not currently 

using the resources, implying that y must be holding the resource rights for usage before fmaxME- 

In order for y to hold these rights:
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• The latest time for y’s request to be delivered is just before now (time ti in Figure 5.3), this 

case happens when y uses the resource just before tmaxME from now.

• The earliest time for y’s request to be delivered is tmaxME + sgLatency ago (time to in Figure 

5.3), such that y may use the resource now (at time fi). In this case, y’s message took 0 

time to be delivered at x, and y only holds the resources after MsgLatency after sending the 

request (tmaxME before now). Note that MsgLatency only provides an upper bound to message 

delivery latency, therefore the fastest time for a message to be delivered could be 0.

By design y holds exclusive rights to the resource only after sending its request to every entity in the 

sending area and receiving feedback from every of these entities (c.f., Section 5.4). Since y’s request is 

delivered to everyone in the sending area at most tmaxME + MsgLatency ago (condition 3; between time 

to and ti in Figure 5.3). By condition la (entity x is in the sending area during this period), entity x 

must have heard y’s message which contradicts condition lb.

The calculation of sending area follows: the earliest time for which x could have receive y’s request is 

fniaxME + MSgLatency ago (i.e., before ti, at to)- I'l order for y to access the resources after tmaxME + 

MsgLatency (at ^2)1 2/’s request must be delivered to 2 ♦ (tmaxME + MsgLatency).

5.3.3 Race conditions

An entity’s behavior when it receives a conflicting request from another entity is dependent on when it 

receives the message. There are three situations:

1. Before sending its own request

W'hen an entity receives a request (independently of whether the request conflicts with the entity’s 

own request), the request/feedback protocol (c.f.. Section 5.4) accepts the request as valid and 

stores the received request in the entity’s situation picture. The entity does not formulate requests 

for resources that conflict with existing requests stored in its situation picture.

2. After sending its request and before committing to crossing

This race-condition is handled by the request feedback protocol (c.f.. Section 5.4). The protocol 

either accepts or ignores the conflicting request; if the protocol accepts the conflicting message to 

be valid, the entity cancels its intention to access the shared resources. The entity can send a new 

request after canceling its intention; that is, still ensuring that the new request is not in conflict 

with existing requests.
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3. After conmiittiiig to access the shared resources

An entity ignores any conflicting request.s received after it. has committed to access the shared 

resources; this is because tlie request feedback protocol ensures that the sending entity will cancel 

its intention to access the shared resources.

5.3.4 Intersection collision avoidance scenario

This section presents the calculation of the sending area and lurking time for intersection collision avoid­

ance scenario. In this scenario, the intersection is modeled as a grid (Figure 3.2) with each grid square 

representing a uniquely identified resource, A vehicle crossing the junction is required to obtain

cither a schedule for or mutual exclusion on the use of the set of squares (resources) that it will traverse.

A vehicle requests the required resources using the request/feedback protocol (c.f.. Section 5.4); it 

proceeds to cross only if the protocol succeeds in obtaining a schedule or mutual exclusion. However, in 

the case where the vehicle cannot obtain the required resources or the request feedback protocol fails due 

to communication failures, the vehicle must come to a complete stop before entering the junction (the 

LLFSM). As a vehicle requires time and distance to stop, the vehicle, x, must decide by its decision point, 

deCx, whether it can cross or not.

A vehicle, x, with initial velocity, v^, and uniform deceleration, dx, has a breaking time of brkx — 

Entity x’s decision point expressed in time before arriving at the junction is brkx-

The formula for calculating the distance traveled, d, with Vg the initial velocity, a the acceleration and 

t the time, is:

, 1 2 
d = Vgt -h 2“'

In the intersection collision avoidance scenario, to obtain the breaking distance, Vg = Vx, t = brkx = 

a = —|di| (dx is a positive value for deceleration).

dec -v^--d^--^ decx-vx 2Ul~2dx

Therefore, the decision point, measured in distance from the junction is deCx = That is,

the request feedback protocol should be completed deCx away from the junction. As defined, the re­

quest/feedback protocol requires AIsgLatency time to complete, therefore vehicle x is required to start 

the protocol at least MsgLatency before arriving at its decision point.

The following two sections describe the implementation of the intersection collision avoidance scenario
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using the CwoRIS pattern iinpleincnted for scheduling and mutual exclusion respectively.

Before st art ing t he scheduling and mut ual exclusion sections, we define a property used in bot h sect ions; 

Given that vehicle x is distj.{t) from the junction, and the maximum speed for traveling in the scenario 

is n,nax: tfic earliest time vehicle x can arrive at the junction is bounded by:

earliest Arrivalx{t) =
distx(t)

5.3.4.1 Implementation with CwoRIS scheduling

This section describes the steps and parameters for an autonomous vehicle to obtain a schedule for crossing 

the intersection using the coordination scheme. This section first presents the sending area and lurking 

time required, then its describes the vehicle’s actions in various situations.

Obtaining a Schedule in intersection collision avoidance scenario Using the CwoRIS pattern, 

a node sending a request must ensure that the message has been delivered to everyone that might access 

the shared resources during the same time period. When applied to vehicles scheduling in this scenario, a 

vehicle must deliver its message to every other vehicle that might arrive at the junction before its crossing 

is completed.

Intersection Sending Area: Given a set of required resources Rj. = G, te)}i and Umax

as the vehicles’ maximum speed, a vehicle, x, must deliver its request to every vehicle within 

sendAreaxit) = (maxjg/e^ (i.tg) — t) * Umax of the junction in order to cross, where t is the 

sending time.

The sending area for this scenario just converts the general time-based sending area for scheduling (Section 

5.3.2.1) into a geography-based sending area using vehicles’ maximum speed in the junction.

Intersection Lurking Time: Given a policy that defines the longest period for which a resource 

can be reserved is tmaxHoW- In order for a vehicle x to ascertain that no other entities is 

holding on to a resource 7 after earliestArrivalx{t), x must has been lurking for tmaxHoid ~ 

earliestArrivalx{t) without hearing a conflicting request.

Similarily, the intersection lurking time is a direct translation from Lemma Lurking Time. The parameters 

of the original Lemma to the definition above has the relationship earliestArrivalx{t) = tmaxHoid “ 

Therefore, the parameters mapping are:
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Original intersection collision avoidance scenario adaption

^maxHold ^ earliest Arrivalx{t)

^maxHold “ earliestArrivalx{t)

Vehicle Behavior in Junction Applying the coordination scheme, the process for the vehicle, x, to 

obtain a schedule is as follows:

1. Start listening and building up an image of the situation tmaxHoid before arriving at the junction.

2. Send a resource request to an area of size (max^gHj. Je) ~ 0 * ^maxi which is to be delivered by 

MsgLatency, any time after lurking for at least crossingTimex and before MsgLatency + brkx 

from the junction {t is the current time).

Vehicle formulates its request using the situation picture; searching for a time that is not in conflict 

with existing requests for its required resources. In the case where its requested resources are not 

available (exist only after fmaxHoid)! the vehicle delays sending its request until they are available.

3. Deliver own request and receive communication feedback, at least brkx before arriving at the junc­

tion.

In the event where the vehicle arrives at its decision point, decx, without acquiring exclusive use to 

its required resources, it must break and stop so as to not enter the junction.

4. Decide whether to commit to crossing at deCx, brkx from the junction.

In the case where a vehicle accepts a conflicting request, it reschedules using the internal simulation 

method (Section 5.5.2) and send a new request.

When the request is delivered to every vehicle in the sending area without receiving a conflicting 

request, the vehicle commits to crossing. The vehicle crosses the junction using only the resources 

specified in Rx-

5.3.4.2 Implemented with CwoRIS mutual exclusion

Unlike the scheduling scenario in which vehicles must be certain about when they can complete crossing, 

vehicles in the mutual exclusion scenario do not need to know how long they require to cross the junction 

- the mutual exclusion scenario allows vehicles to access the critical section for an unbounded period.

The unbounded period, coupled with the presence of dynamic participants and unreliable communi­

cation, complicates the process to release resources after the vehicles complete their crossing. If messages 

are used to inform other vehicles about the resources release, the messages could be lost; after the sending
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vehicle leaves the system, a deadlock could occur. Bouroche et al. |2006j assume that the time that a 

vehicle needs to traverse a junction is bounded, providing a method for other vehicles to time-out resource 

allocations; time-outs arc unsuitable in the mutual exclusion scenario due to the assumption of unbounded 

access period to the shared resources. In contrast, CwoRIS pattern’s mutual exclusion version assumes the 

usage of resource sensors to detect entities using the resources; the intersection scenario assumes junction 

sensors arc available for vehicles to check whether there are any vehicles currently crossing the junction.

This section describes the steps and parameters for an autonomous vehicle to obtain exclusive access 

for crossing the intersection using the coordination scheme. This section first, presents the sending area 

and lurking time required, then its describes the vehicle’s actions in various situations.

Obtaining exclusive access in intersection collision avoidance scenario Using the mutual ex­

clusion version of the coordination scheme (Section 5.3.2.2) a vehicle must arrive at the junction within

^maxME after its request is approved or it has to abort its crossing. The time required for a vehicle, x, to
2

travel with uniform velocity, v^, from its decision point, decx, to the junction is (note: deCx = ^ was 

defined at the beginning of the section):

decx
Vx

Vx

2dx

Assuming the minimum deceleration (intentional breaking) for all vehicles is dmim tlic maximum time 

for any vehicle to travel from its decision point, without breaking, to the junction such that it can be 

picked up by the junction sensor is

^maxME “ CUr/zestArrfuu/fjecisionPoint(f) —
2d„

Applying tmaxME to the generic definitions:

Intersection Sending Area-Mutual exclusion: Given a policy that defines that a vehicle must 

either start using the resource within tmaxME = 2d^ after its resource acquisition or give up 

accessing the resources, a vehicle, x, needs to send its transfer message to every vehicle within 

sendAreauE = 2(tmaxME + MsgLatency) ♦ Umax surrounding the junction in order to cross.

The sending area is a direct adaption from the generic definition where the sending area is defined as 

geographical area.
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Intersection Lurking Time-Mutual exclusion: If vehicle, x, is in sendAreaME-. heard no transfer 

message for a period of tmaxME + MsgLatency and the junction sensors do not register any 

vehicles currently crossing the junction, then there are no vehicles holding a valid request for 

crossing.

The intersection lurking t.ime definition is exact,ly the same as that of the general definition.

Vehicle Behavior in Junction Applying the coordination scheme, the process for a vehicle, x, to 

obtain exclusive access to the junction is as follows:

1. Start lurking and building up an image of the situation sendAreoME from the junction.

2. When vehicle x is MsgLatency + brkx before reaching the junction, it checks that there is no 

conflict before sending a transfer message to an area of sendAreaME, which is to be delivered by 

M sgLatency.

The vehicle checks the situation picture and junction sensors for conflicts. The vehicle can send its 

request only when there are no conflicting requests recorded in the situation picture and there are 

no vehicles on the junction sensors. If a conflict is detected, the vehicle delays sending its request.

The vehicle sent its request after the junction sensors is clear and the recorded conflict in situation 

picture is at least after tmaxME-

3. Deliver own request and obtain communication feedback brkx (time) before reaching the junction.

In the case where a vehicle accepts a conflicting request, it resends another request as described in 

Step 2. If the vehicle arrives at its decision point, decx (location), without acquiring exclusive use 

to its required resources, it must break and stop so as to not enter the junction.

4. Decide whether to commit to crossing at its decision point.

If the vehicle’s request is delivered to every entity within the sending area and it did not receive a 

conflicting request, the vehicle may commit to crossing; at which case, it must start arrive at the 

junction before tmaxME-

5.3.5 Summary

In summary, the four steps of the coordination scheme are: i) lurking, ii) resource request sending, iii) 

request delivery and feedback receipt, and iv) decision making. This section presented various definitions 

(i.e., decision point, lurking time, sending area) for the implementation of the coordination scheme. The
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section also demonstrated the application of the coordination scheme to the intersection collision avoidance

5.4 Request/feedback Protocol

The request feedback protocol belongs to the second and third step of the coordination scheme, the 

protocol is designed to handle race conditions and communication errors while obtaining schedules and 

mutual exclusion. The request feedback protocol uses the lower-layer communication protocol to multicast 

the request to the sending area (entities that might access the requested resources at the same time). 

On the receiver side, after the lower-layer protocol receives a message and the request is delivered to 

the receiver’s request, feedback protocol, then an acknowledgment is replied autoniatically. When the 

receiver’s request feedback protocol receives a delivered request, it may either accept or ignore the request.

Definition (ignores)-. A node ignores a request when it can determine that the sender of the 

request will not act on the request.

If a node docs not ignores a request, it accepts the request.

In Section 5.4.2 the request/feedback protocol is enhanced with an inference mechanism that allows a 

node to determine that a sender will not act on the message, thereby allowing a node to ignore a transfer 

message.

MsgLatency after sending a request, the sender’s lower-layer communication protocol aggregates the 

received acknowledgments, the set of acknowledgment’s node ID are returned to the request/feedback 

protocol. The request, feedback protocol determines whether the node’s request is valid.

Definition (valid): A node’s request is said to be valid when the node can exclusively access 

the requested resources (at the lime specified in its request).

Two incidents may prevent a node from obtaining a valid request; communication errors and race condi­

tions. Communication errors happen when there requests or acknowledgments are lost. Race conditions 

happen when t wo nodes send requests for conflict ing resources. A request for conflict ing resources is 

named conflicting request for brevit.y:

Definition (conflicting request): A conflicting request refers to a transfer message, nir, from 

another node requesting access to a set of resources, Rr, such that the set of resources required 

by the receiving node, R„, is in eonflict (Rg n / 0) (sec Section 3.4.2.3).
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Figure 5.4: The basic protocol

The next sub-section describes the basic request'feedback protocol which determines race winners by using 

only the first-come/first-served mechanism. The following sub-section describes our request/feedback 

protocol enhanced with inference and priority. Finally, Section 5.4.3 presents the protocol enhanced with 

various /9-constraints defined for scheduling.

5.4.1 The basic protocol

Figure 5.4 shows the basic protocol composed of four functions ; initialize^), sendRequestQ, receiveRequestQ 

and receivereedback{).

initialize{) is used to provide some initial values to variables (e.g., setup the initial situation picture) 

when the node starts lurking.

sendRequest(area, MsgLatency, resources, ID) is used when a node with a unique ID sends a 

request to other nodes within an area for some set of resources, for which it requires feedback on the j 

delivery of the request within MsgLatency.

receiveRequest{request) is invoked when the node receives a request. Received requests arc cither 

other nodes’ transfer requests or the node’s own request being delivered.

In the basic protocol, a node accepts all received transfer requests (left sub-tree of receiveRequest{) 

in figure 5.4) as valid. In the algorithm, a situation picture is used to record all current requests to 

facilitate scheduling algorithms; a newly-received request replaces an old request from the same node. A 

node whose own request is delivered without it having received any prior conflicting request wins the first-
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Figure 5.5: Deadlock in late corner scenario.

come/first-serve race; if il received a conflict ing request before its own request, is delivered, t he node did 

not obtained exclusive access to the shared resources. It then reschedules another request (right sub-tree 

of receiveR(;qucst() in figure 5.4).

receiveFeedback{) is invoked once the lower layer coinuiunication protocol tiines-out after MsgLatency. 

A node holds a valid request, only when it wins the first.-come/first-served (FC/FS) race and its request, 

is delivered to every node that might access the resources at the same time. When a node docs not hold 

a valid request it restarts the protocol by sending another request.

The basic protocol is able to ensure mutual exclusion, but unless we assume the ’total collision’ model, 

latc-comers might create a deadlock. Figure 5.5 shows a scenario where a latc-comcr, node c, did not 

receive a message previously sent by node a, and enters into a deadlock with node b. The scenario assumes 

that the three nodes are requesting conflicting resources.

In the diagram, a short-hand representation of a node’s situation picture is shown at the point where 

a message is delivered. For example, in figure 5.5.1, after node b receives the message from node a, 

the situation picture at node b is “a. ~b, 0”. The bold font represents the fact that b accepts the last 

message received from node a. A before the node represents that the node ignores the last message 

received from that node; when applied to itself (in this example, node b), the node knows that it cannot 

access its required shared resources. ’0’ represents the fact that the node’s situation picture docs not 

record the existence of another node; node b may not know anything about node c because they have not 

communicated.
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1. Figure 5.5.1

(a) Node a sends a message msga, requesting access to tlie shared resources.

(b) Node b sends a message msg^, requesting access to the shared resources (before it receives 

msga).

(c) msga, is delivered at a and b, b accepts msga and cancels its intention to access the shared 

resources, a accesses the shared resources.

(d) Node c arrives without having received a’s message.

2. Figure 5.5.2

(a) Node c sends a message msgc, requesting access to the shared resources.

(b) msgh is delivered to nodes a, b and c; c accepts msgt and cancels its intention to access the 

shared resources.

The situation picture in b and c are now inconsistent, but neither will access the shared resources.

3. Figure 5.5.3

(a) Node b, who cannot proceed, sends a new request msg^ifor the same resources at a later time.

(b) msgc is delivered to b, b accepts rnsge and cancels its intention.

By now, a circular wait has been fortned between node b and c; node b accepts node c’s request 

is valid and backs off, but node c accepts node b’s request is valid and backs off too. Note that 

this is safe in that no entity accesses the shared resources at the same time. However, without a 

mechanism to either prevent or break the deadlock, node b and c face starvation, any subsequent 

nodes that arrive and wait on b and c will also be deadlocked.

5.4.2 Protocol with inference and priority

In this section, the basic protocol is enhanced with a mechanism that allows a node to ignore a received 

message. In this enhancement, an entity, x, may infers about another entity’s, y's, intention after it 

has received a message from y. In addition, if x acknowledged to y’s request, then y may also infers 

that X knows about y’s intention. This enhancement detects a deadlock by first building up a common 

knowledge; the knowledge of i) others’ intention, ii) whether others’ knows the entity’s intention, and iii) 

whether these intention are in conflict. .4fter such a deadlock is detected, the enhanced protocol breaks 

the circular waits by allowing a unique entity to ignore other partys’ intention.
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In iinplomciitation, a node may ignore a received message (breaks a deadlock) if it has had a previous 

message delivered to t.hat, message’s sender that- will result in the sender backing off. A unique priority is 

associated with each node to decide who may breaks the circular waits. The unique priority can either 

be derived from the node identifier or generated (Note: the priority can increase from one request to the 

next; it may not decrease) and sent as part of the request message.

In order to implement the protocol with inference and priority, there arc several minor additions to 

the basic protocol. Two further data structures arc introduced on each node (in addition to the situation 

picture): prevRequest and prevMembers, prevRequest remembers the previous request that the node 

sent. The prevMembers data struct ure records the set of node identifiers from which an acknowledgment, 

for its prev Request was received.

Definition (knows intention): A node, x, is snre that another node, j/, knows its intention, 

if X has received an acknowledgment from y for its last message.

By construction, prevM embers is a list of nodes that know x’s intention. Note that although node y may 

know x’s intention, it may chose to ignore it.

The protocol checks whether received requests can be ignored by checking whether three conditions 

are satisfied:

1. the receiver is sure that the sender knows its previous intention (i.e., the sender of the received 

request is in prevMembers), and

2. the receiver’s previous intention and the sender’s message have a resource conflict, and

3. the receiver has higher priority. (Only higher priority nodes can ignore messages from lower priority 

nodes.)

Figure 5.6 shows the algorithm for the request/feedback protocol with inference and priority.

The three main points that implement the inference and priority are shown in figure 5.6, box A, B 

and C:

1. Figure 5.6, box A. The protocol prepares the data required for inference after the protocol fails 

to acquire exclusive use of the critical section. Nodes who have acknowledged the delivered mes­

sage arc recorded in the prevM embers structure and the delivered message is remembered as the 

prevMessage.

2. Figure 5.6, box B. The protocol checks whether to ignore the message by checking the three condi­

tions:
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Figure 5.6: Decision wlien a node received a request

(a) q.NodelD 6 prevAfembers: wiiether q’s sender has iieard the node’s previous request.

(b) prevRequest fl 5 / 0: whether the previous request conflicts with the received message.

(c) q. Node ID.priority < own.N odel D .priority: whether the node has higher priority tlicn^’s

sender.

If all t.hroo conditions arc satisfied, a node can safely ignore t.he received message (because it. knows 

that the other node has accepted its request). Conditions (a) and (b) form the inference part of 

the protocol to detect deadlock while condition (c) forms the priority part of the protocol to break 

deadlocks.

3. Figure 5.6, box C. The node ignores q by not recording q in its situation picture.

5.4.3 Protocol with ,5-constraints

Section 3.4.3.2 presented the /3-constraints on ’sequence dependent’ and ’job-family’ setup time, ’preemp­

tion’, ’blocking’, ’no-wait’ and ’breakdown’. This section shows how the request feedback protocol can 

be modified to support these constraints.

5.4.3.1 No-wait

As mentioned, a resource-entity schedule exhibits the no-wait requirement when an entity is not allowed i

to wait between access to two successive resources.
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During iinplcincntation, this implies that an entity must 1) reserve a set of resources that are either 

continuous or overlapping in time, and 2) atomically reserve the set of resources. The situation picture 

data structure records which resources might be unavailable. Using the situation picture, a local search 

algorithm finds a set. of available resources that fits the continuous const.raint (Section 5.5 presents this 

local scheduling). Requests are made by specifying the required resource basket (Section 3.4.2.2) which 

implements the required atomic resource reservation.

5.4.3.2 Blocking

The presence of the blocking constraint implies that a completed job (e.g., vehicle) has to remain on the 

upstream machine (e.g., grid square) preventing (i.c., blocking) that machine from working on the next job 

(e.g., grid square from accepting the next vehicle). As a result of the blocking constraint, an entity may 

have to use a resource for an unbounded period of time. The CwoRIS pattern supports implementation 

of the blocking constraint via the protocol's mutual exclusion version.

5.4.3.3 Preemption

The preemption constraint implies that it is not necessary that an entity completes its resource use even 

though it has acquired exclusive access to it. A higher priority entity may request (preempt), and the lower 

priority entity must give up, the resource. Preemption is implemented in the rcquest/fecdback protocol 

with a two-part extension: communicate the intention to preempt resource usage, and preempted entity’s 

behavior.

Communicate preemption intention In the absence of a central scheduler, entities have to coordinate 

preemption in a distributed manner. There are essentially three parties involved: a) the high-priority entity 

sending the preemption request, b) the low-priority entity that must give up (or minimize its usage of) 

the resources it has acquired exclusive access to, and c) the other entities who do not hold any exclusive 

resources that the high-priority entity requires.

Figure 5.7 shows the extended receiveRequest{) function from the request/feedback protocol in order 

to support preemption constraint. The higher-priority entity whose request preempts another’s request 

(Case A in the figure) records the preempted request. The lower-priority entity who receives the pre­

emption request (Case B in the figure) performs its preempted behavior (as detailed in the following 

sub-section) and records the conflict. Due to the absence of consensus, other entities who receive a re­

quest would not know about the preemption (Case C in the figure); these entities act conservatively and 

accept both requests (by recording them in the situation picture).
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receiveRequesKrequest q)

q IS own request?

q IS a conflicting request
— ■»----------
Prior conflict
recorded?

Case A
If own request preempts q 

no \lr ~
If q preempts own request 

CaseC
Ifp.NodelDe prevMembers 
AND prevRequest 0^7:0 
AND q.NodelD.priority < 
own.NodelD.priority

-...................... ...............

Ignoreq
prevMembers.remove(q. NodelD)

Record q into situation picture

Reschedule Win
FC/FS

Figure 5.7: RcceivcRcquest function with preemption /t-constraint

Preemption Behavior When an entity holds a valid request for some resources, it may have committed 

to the use of these shared resources. In particular, an entity that has crossed its decision point would be 

in a behavior that cannot avoid accessing the shared resource.

In the event where a lower-priority entity is preempted before it reaches its decision point, it simply 

releases the resources held and cancels its intention to access the shared resources. When a preemption 

happens after the lower-priority entity’s crosses its decision point, it may be required to store its current 

situation, release the usage of its resources and plan for its access to the shared resources on a later 

schedule; implementation of the lower-priority entity handling preemption is dependent on the actual 

scenario.

Using the preempted records (Figure 5.7, Case A), a higher-priority entity may know whether the lower- 

priority entities have passed their decision points using cither i) the scenario sequence constraints (see 

Section 5.4.3.6 for an example), or ii) the contract with feedback protocol described in Bouroche’s thesis 

[2007]. Consequently, the higher-priority entity who successfully preempted other entities must allocate 

the necessary time for those preempted entities to give-way before it access the preempted resources.

5.4.3.4 Breakdown

Resource breakdowns imply that a resource may not be continuously available. In general, the handling of 

breakdowns involves two parts: detection and reaction. Breakdown detection involves the use of sensors or
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coiimiunicatioii to inform entities tliat the resource is not available. This work does not handle the actual 

detection mechanisms; instead it assumes that the time required for reliable detection of a breakdown is 

bounded by fdetect- Reaction to breakdowns involves entities changing their behavior to avoid using the 

unavailable resources. This work assumes the time required for an entity to change its behavior is bouned

by f react •

In Dresner and Stones’|2008a] intersection scenario, detection is achieved by having the broken vehicle 

send a signal to the centralized manager, which then informs all vehicles. Vehicles react by not entering 

the junction or switching on their on-board sensors to perform ’individual collision avoidance’ if they 

arc already in the junction. Their work does not provide time allowances between vehicles for breakdown 

detection and reaction; a vehicle which is crossing close behind a vehicle which breaks down might suddenly 

find that it does not, have time to react to the event, resulting in a collision. This work’s implementation 

of intersect,ion collision avoidance trades efficiency firr safety by providing an allowance of fdetect + freact 

between resource reservations, fdetect is assumed to be a constant and is added to each resource usage time 

and freact 'S depiuident on the situation. I’he following si^ction describes how this work handles different, 

reaction times.

5.4.3.5 Sequence dependent & job families setup times

Section 3.4.3.1 defined the specification of sequence dependent and job-family setup time using Ra<~\setupRb- 

As mentioned, sequence dependent setup time, Sjk, is the time required to prepare a resource between the 

processing of entities j and k. If the setup time between entities j and k depends on the resource i, then 

the subscript is included, i.e., Sijk-

For example, a vehicle’s breaking time (reaction time) is proportional to its speed and deceleration, and 

the traction of the road (resource dependent). Adding another vehicle to the picture, the available time 

for a vehicle to react is dependent on both vehicles’ speed, deceleration and direction; vehicles traveling 

in opposite directions have a smaller reaction time available than vehicles traveling in the same direction. 

In this example, the reaction time between two entities is dependent on both entity’s parameters (the 

subscripts j and k in the definition).

Job-families group entities into families and setup times are defined between any two families. Illustrat­

ing using the same vehicular example: vehicles crossing a junction with the same origin and destination 

can be categorized into the same family. The setup times between families can then be calculated by 

assuming a maximum speed in the junction and fixed deceleration rate.

In order to implement sequence dependent setup or job families, three modifications are required:
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1. An entity includes in its request the relevant parameters (for sequence dependent setup) or the 

family-identifier (for job-families). The receiveRequest() function in the request feedback protocol 

stores t hese parameters family-ident ifiers together wit h t he received request, int.o its sit>iat,ion pict.ure 

when the request cannot be ignored (Figure 5.7).

2. A X.calculatesetup{y's request) function is defined to return the setup time between entities x and 

y. The receiving entity, x, can then calculate the required setup time using the parameters family-id 

stored in the situation picture.

3. The normal conflict relation {Ra n /?(, / 0) in the receive feedback protocol and the .scheduling 

protocol is replaced with the conflict, relation defined for setup time [Ra Hsetup Rb / 0)- (Note: the 

definition below was presented in Section 3.4.3.2; it. is repeated here only for easy readability.)

Resource conflict with setujts: 'ISvo sets of resource tuples, Ra and Rh- with their respective setup 

times. Sab and Sba, are in conflict., Ra Hgetup Rb / 0) when some resources appear in both sets and 

their setup time added to resource required time overlaps.

Ra Flsetup Rb 7^ 0 3x G f?a, V € Rb* 

x.r = y.rf\

(x.f.s S^yx) ^ y■te.t\

iV-ls ^rxy) X.fg

5.4.3.6 Intersection collision avoidance scenario enhanced with /1-constraints

This section describes two extensions of the intersection collision avoidance scenario using the /j-constraints 

described. In particular, it examines a vehicle sequence for entering the junction and the prevention of 

vehicle’s collision in the event of vehicle breakdowns.

Vehicle sequence for entering a junction In the scenario (Figure 5.8), a vehicle behind, y, may 

prevent another vehicle in front, x, from crossing if y obtained some of the resources that x requires, In 

addition, y cannot move because x is in-front of it, forming a deadlock. This scenario has a constraint on 

vehicle sequence for entering the junction; there is a sequence constraint regarding vehicles’ exiting the 

road scenario (Section 3.4.3 presents the sequence constraint). Note: this scenario is about the sequence in 

which a vehicle leaves the road scenario and enters the junction; it does not matter whether the junction 

scenario is implemented with the scheduling or the mutual exclusion versions.

Two example cases for which these out-of-sequence resource reservations may happen are:
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Figure 5.8: Two vehicles crossing in sequence.

• y's message was delivered before z’s message

In this case, y wins the first-come first-served race and has exclusive rights to the crossing resource.

• x's message was delivered before y's message

In this case, y believes that x is crossing and acquires the next set of resources. However, x could 

be prevented from crossing because of either communication failure (x’s message is not delivered to 

everyone) or it has lost a race to another vehicle requesting a conflicting resource (e.g., vehicle z). 

Consequently, x requires the next set of reso\trces, which y is holding.

In either case, the result is that both vehicles cannot cross until y's request expires and x wins the next 

resource request; which is inefficient.

This work models the above problem as a preemption ft constraint: a resource that supports preemption 

(small yellow squares in Figure 5.8) is included at each road’s lane exit (a lane’s entrance into the junction). 

Note that all other resources in the junction arc non-preemptive. Using the request/respond protocol 

with preemption, vehicles request the relevant preemptive resources with all other required resources in a 

resource basket.

As presented in Section 5.4.3.3, preemption implementation requires a two-part extension:

1. Communicate intention

In this scenario, vehicle x’s request preempts vehicle y’s request when i) x’s request and y’s request 

hold the same preemptive resource, and ii) x is nearer to the junction than y.

(a) The set of preemptive resources are fixed in this scenario.

(b) By including an entity’s distance from the junction in its request message, the receiving entity 

can use the request/response protocol (Figure 5.7) to check for the preemption condition.
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2. Preempted behavior

In this scenario, when a vehicle in-front preempts another vehicle (at the back) of its resource usage, 

by the scenario’s resource usage sequence constraints, the vehicle at the back is dependent on the 

vehicle in-front, therefore, it could not have started crossing the junction. As such, the preempted 

vehicle only need to record that it has received a conflict. The rest (i.e., slowing down at its decision 

point) will be handled by the coordination scheme.

Prevent collisions during vehicle breakdown A vehicle may break down in the intersection and 

use resources that it did not reserve. Other vehicles that have acquired exclusive access to those resources 

may crash into the broken vehicle. This section presents an example for the elimination of collisions due 

to vehicle breakdowns by trading efficiency for safety: vehicles drive with bigger inter-vehicle gaps, so 

as to provide enough allowances for vehicles to react during a breakdown. This solution assumes that a 

brokendown vehicle slows to a stop and does not skid into other lanes/resources for simplicity.

Applying the /3-constraint for resource breakdowns (Section 5.4.3.4), a vehicle should allocate an 

allowance of fdetect + freact time for reacting to resources unavailability. The maximum time required to 

detect a breakdown, fdetect. is defined as a constant and the time for a vehicle to react, freacti is modeled 

using the job families /3-constraint.

We use the observation that vehicles traveling in the same direction (in the same family) have shorter 

stopping distances than vehicles traveling in different directions (from different families) to define freact- 

Vehicles in the scenario belongs to one of the 12 families represented by vehicles’ origins and destinations 

(four origin directions and three destination directions (no U-turns)). As defined in Section 5.4.3.5, the 

three modification steps are:

1. A vehicle entity includes in its request its family-identifier, and the request/feedback protocol records 

the family-identifiers of each vehicle (based on received messages) into its situation picture.

2. A x.calculateSetup{y’s request) function is defined to return the setup time between two entities: x 

and y. This can be implemented as a lookup table that stores the pre-calculated 12^ permutations 

in each vehicle.

3. The normal conflict relation (Ra fl / 0) in the receive/feedback protocol and the stheduling 

protocol is replaced with the conflict relation defined for setup time (Ra Hsetup Rb / 0) (Section 

3.4.3.2).

In addition, both the lurking time and the sending areas extended by fdetect + niax(freact) and (fdetect + 

max(freact)) * respectively.
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5.4.4 Summary

Tliis section presented the request/feedback protocol for entities to send and receive request in step two 

and three of the coordination scheme. The basic protocol is able to ensure mutual exclusion, but entities 

may be involved in a deadlock. The basic protocol is then extended with inference and priority to break 

deadlock. The section also showed the handling of ,'Tconstraints in the request/feedback protocol and an 

example of /^-constraints use in the intersection collision avoidance scenario.

5.5 Local Scheduling/rescheduling

As the appropriate scheduling policy is application dependent, this section discusses how a rescheduling 

policy can avoid livelocks. The following sub-section motivates the requirement for a rescheduled plan 

by describing an example of a set of nodes involvement in a live-lock due to improper rescheduling plan. 

After this, the section presents a rescheduling method that prevents live-lock.

5.5.1 Livelock example

In this thesis, a live-lock refers to a condition whereby two or more entities continuously change their 

internal states in response to requests received, the result is that none of the entities can proceed to 

access the shared-resources. This example assumes that the entities do not have a strategy for resending 

a schedule, therefore an entity may choose any schedule as long as it is reasonable; the entity would not 

schedule for resources that it believes are unavailable.

Figure 5.9 shows a sequence of messages leading to three entities (a, h, and c) being in a live-lock. The 

live-lock example involves four steps (numbered: A, B, C and D) with each step split into two diagrams 

(left and right). The left diagram shows the sequence in which entities’ requests are sent and delivered. 

The left diagram also shows the situation picture stored whenever an entity receives a request. In the 

diagram, the first request from entity x is labeled and the second request from x is labeled nix' to 

differentiate between the two requests. When an entry, y, receives a request nix, the situation picture 

records that the entity either accepts (x) or ignores (~x) the request, when the record is applied to the 

entity’s own request it means that it either gave up its message (~j/) or still believes that it has a chance 

to access the shared resources (y) (e.g.. Figure 5.9.C, entity b has a final situation picture of a',~ 6',~ c, 

meaning that entity b accepts request nia' (o'), ignores request nic (~c) and that it (~6') may not access 

the shared-resources). The right diagram shows the time requested for a resource in the entity’s request. 

The four steps are:
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Figure 5.9.A The delivery of request nix after entity a has sent out its request, nia- The request results 

in entity a accepting and barking off (i.e., a's situation picture is a:,~a).

Entity b arrives at the scenario and sends its request, nib, before entity a’s request is delivered.

When entity a’s request is delivered, entity b accepts it and backs off (i.e., b's situation picture is

o,~6).

Entity c arrives at the scenario and sends its request, nic, before entity b’s request is delivered.

When entity b’s request is delivered, entity c accepts it and backs off, entity a ignores because

of a’s delivered request (i.e., c’s situation picture is b,~c).

Figure 5.9.B Entity a resends a request, nia' before entity c’s request, rric, is delivered. When nic is 

delivered:

• Entity a accepts it because it does not have a conflicting request delivered to c, and entity a 

backs off by ignoring its own resent message a' (i.e., a’s situation picture is ~a',~&,c).

• Entity b ignores c’s request because it knows that entity c has received its previous conflicting 

request (i.e., b’s situation picture is a,~b,'^c).

• Entity c has backed off in Figure •'i.O.A when it receives entity b's request.

Figure 5.9.C Entity b resends a request, m;,', before entity a’s resend request, m-a', is delivered. When 

nria' is delivered:

• Entity o has backed off in Figure 5.9.B when it receives ent ity c’s request.

• Entity b accepts it because it does not have a conflicting request delivered to a, and entity b 

backs off by ignoring its own resent message b' (i.e., b's situation picture is a',~6',~c)..

• Entity c ignores request a' because it knows that entity a has received its previous conflicting 

request (nic) (i-C-, c’s situation picture is ~a',b,^c).

Figure 5.9.D Entity c resends a request, me', before entity b’s resend request (m;,') is delivered. When 

mb' is delivered:

• Entity a ignores request mb' because it knows that entity b has received its previous conflicting 

request (i.e., a’s situation picture is ~a','^b',c).

• Entity b has backed off in Figure 5.9.C when it receives a'.

• Entity c accepts mb' because it does not have a conflicting request delivered to b, and entity c 

backs off by ignoring its own rc'sent message c' (i.e., c’s situation picture is ~a',6',~c').
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Assuiuiiig that these three entities choos their requested resource’s usage time and send out their request 

in some order, they can be involved in a live-lock. While a three-entity live-lock might happen only 

occasionally, the possibility of encountering a live-lock increases when the number of entities requesting 

for the same resource increases and the number of messages increase.

5.5.2 Internal simulation on others’ behavior

The internal simulation method for preventing live-locks consists of two parts: i) entities gathering near- 

perfect information about other entities after two round of perfect communication and ii) the entities’ 

scheduling given the near-perfect information.

The follow'ing sub-section starts by explaining entities’ scheduling with near-perfect information. The 

second sub-section then explains how the entities may gather the near perfect information required after 

two rounds of perfect communication.

5.5.2.1 Pseudo centralized

Dresner (2009| uses a centralized intersection manager to schedule entities crossing an intersection. Scher- 

merhorn and Scheutz |2006| presented an agent coordination protocol which assumes that every agent has 

a reliable world view and each agent internally simulates every agents’ behavior to perform coordination. 

Although Dresner’s method is centralized and Schermerhorn and Scheutzs’ method is distributed, both 

of these methods presented some similarities:

1. The entities have perfect information on the resources that other entities require.

2. Using the perfect information cither the centralized entity or every entity can perform the same 

calculations to arrive at the same result (assuming a deterministic algorithm).

3. When all the entities arrive at a single result (thereby providing consensus), a live-lock can be 

detected.

Similar to Schermerhorn and Scheutzs’ method, our pseudo-centralized algorithm requires every entity to 

perform the same calculation. In contrast, our pseudo centralized protocol does not assume a shared world 

model. In order for each entity to derive the same world model, the algorithm assumes that every entity 

has access to i) a method providing a unique ordering of the entities (e.g., by using the entities’ arrival 

sequence, priority), ii) each entity’s resources requirement and iii) every entity uses the same protocol and 

algorithm for rescheduling requests. This rescheduling algorithm takes the approach that given that each 

entity knows what each other entity requires, and follows the same sequence of calculation, they would
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Figure 5.9: A live-lock schedule
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be able to arrive at the same results wliich can ensure that everyone can access tlieir required resources. 

Every entity uses tiie following algorithm:

1. Rank all entities by their priority.

2. From the highest priority entity until the entity itself (because the entity does not need to know 

about lower priority entities).

(a) Identify tlie highest priority entity and its resource requirements from the stored situation 

picture (from the request feedback protocol).

(b) Calculate the highest priority entity’s next request based on a siimdated situation picture.

(c) Update this calculated request into the simulated situation picture; assuming that the highest 

priority entity’s request is valid.

3. After finding the entities own schedule (last loop in step 2), the entity sends its request using the 

request feedback protocol.

Since every entity follows the same deterministic algorithm, they will arrive at the same result. As the 

calculation for an entity’s next request searches only for available resources, each calculated entity’s next 

request is iion-coiiflicting. Therefore, entities will not sent conflicting requests, and they would not be 

involved in a live-lock.

5.5.2.2 Obtaining near-perfect information

A request message in the request/feedback protocol contains the entity’s identifier, its priority and the 

resources that it requires. After two rounds of perfect' communication, an entity who has been listening 

for other entities’ requests for a certain period (lurking time) knows:

1. Who are the entities in the vicinity; entity identifiers in all received requests.

2. A unique ordering of the entities; ranked using the entities’ priority (differentiating using the entity’s 

identifiers in the event that two entities’ priorities are the same).

3. Every entity’s resource requirements; calculated based on the received request. The calculation 

uses two assumptions i) an entity wants to access its requested resources as early as possible but 

not earlier than specified in its request and ii) the time required for every resource specified in the 

request is relative to the earliest resource requirement time. For example, given a resource request

'Note: Safety is ensured even without perfect communication, the two rounds of perfect communication is only required 
for prevention of livelock.
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with {< ri,5,7 >, < r2,3,6 >, < r3,6,8 >} then tlie earliest time the request should be scheduled 

is at time= 3 with the relation {< ri,+2.+4 >,< r2,0,+3 >, < r3,+3,+5 >}. Therefore a valid 

schedule could be at time = 10 such that {< ri, 12.14 >, < r2,10. 13 >, < r3,13.15 >}.

This information fulfills the pscudo-ccntralizcd algorit hm’s requirements presented in Sect ion 5.5.2.1.

5.5.3 Summary

This section presents the usage of a rescheduling policy to avoid livelocks. The section presented how 

a livelock may be present. Then the section shows that given two rounds of perfect communication, an 

entity knows i) every entity in the vincinity, ii) a unique ordering of the entities and iii) the entities’ 

resource requirements. Assuming that every entity perform the same deterministic algorithm, entities can 

find a set of resources that satisfy its intention and do not conflict with other entities’ request. Therefore, 

entities will not sent conflicting requests, and will be able to prevent entering a live-lock.

5.6 Summary

This section presented the CwoRIS pattern, which is the final step in Comheolai'ocht for deriving entities 

coordination protocols. The section first presented the communication and sensor requirements followed 

by an overview of the pattern. It then presented the coordination scheme which defines:

• The decision point where an entity must decide whether to access the shared resources or transition 

into a LLFSM

• The lurking time which specifies for which duration an entity must listen to know that there is no 

conflicts reservations

• The area over which an entity must send its request message in order to obtain exclusive use to its 

required shared resources

• An entities’ actions in various situations (c.g., race condition, arriving at the decision point)

The section also presented the request feedback protocol and its two extensions (inference and score, and 

,9-constraints). The request/feedback protocol is used by entities in the coordination scheme to send and 

receive requests, it is designed to handle races and communication errors while obtaining schedules and 

mutual exclusion. The section also presented a local rescheduling protocol for the prevention of live-locks 

during entities’ coordination.
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Chapter 6

Evaluation

Tliis thesis presents Coinheolai'ocht, which provides a systematic approach for the development of scalable 

and reliable coordination protocols with different, time constraints. Comheolai'ocht, uses our coordination 

pattern, CwoRIS, that ensures that the entities have exclusive access to shared resources for dynamic 

participants.

In Comheolai'ocht, problems with different, time constraints are modeled as entities’ exclusive access 

to shared resources. This chapter first shows that protocols developed using Comheolai'ocht are scalable 

(Section 6.1) and reliable (Section 6.2). Next, the chapter demonstrates the use of Comheolai'ocht in 

the development of protocols for entities coordination in the intersection collision avoidance scenario 

and shows how the intersection scenario can be composed into a complex scenario that involves two 

adjacent intersections (Section 6.3). This adjacent intersection scenario also demonstrates Comheolafocht’s 

capability to divide a complex problem with interleaving constraints into smaller problems for concurrent 

development and composing them back into a system. Finally, the scalability and reliability of these 

scenarios are demonstrated in a large-scale simulation experiment (Section 6.4). The simulation results 

confirms that coordination protocols designed by Comheolafocht are scalable and reliable.

6.1 Scalability

One of the main challenges in an multi-entity coordination system is scalability due the disproportionate 

increase in required resources such as processing power, memory and bandwidth as the number of entities 

increases (Section 2.1.4.1). Resources usage can be minimized by limiting coordination to the relevant 

parties, for instance, coordination amongst physical entities may utilize the geographical location of the 

entities. However, in an environment where entities arc mobile, such localized communication results
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ill dynamic participation. This section shows that Comhcolai'ocht-dcvclopcd protocols support system 

scalability to entity numbers, Coinheolai'ocht’s support for dynamic participation is discussed in the next 

section where it is shown that the protocol is safe (Section 6.2.1).

The following sub-section shows that the CwoRIS pattern supports localized coordination and that 

upper bounds on the number of entities which need to participate in the coordination protocol can be 

derived. Given that, an entity only needs to coordinate with at. most a fixed number of entities, it, can be 

shown that requirements on bandwidth (Section 6.1.2). memory (Section 6.1.3) and computation power 

(Section 6.1.4) can be bounded.

6.1.1 Local coordination

As presented in Section 5.3.2, the CwoRIS pattern supports local coordination by defining some policies 

and the entities’ Sending area and Lurking time. The Sending area ensures that messages are only sent 

to relevant parties and the Lurking time ensures that entities only need to listen for a certain period. The 

following policies are defined in the CwoRIS pattern:

1. Scheduling version: the period for which a resource can be reserved is bounded by tmaxHoid-

2. Mutual exclusion version: the period within which an entity must start using the resource after its 

acquisition is bounded by tmaxME-

These two policies serve to bound the time for which information is relevant. In the scheduling case, 

information beyond (bcforc/after) tmaxHoid is not important by design. In the mutual exclusion case, 

information older than fmaxME can be verified using the resource sensors, allowing an entity to ignore any ' 

messages older than fmaxME- These two parameters provide an upper bound on the amount of information 

that need to be considered. This upper bound is translated to savings in entities’ memory (for storing j 

the relevant information) and computation (for performing local scheduling).

Since physical entities’ speed is bounded (e.g., vehicles’ maximum velocity, Umax, in the intersection 

collision avoidance examples), both Sending area and Lurking time can be translated into upp-:r bounds : 

in physical area. Since physical entities have actual physical bodies, there are located in some physical j 

space, it implies that an area can only have a certain number of entities. Together, these translate to an 

upperbound on the number of entities in the sending area. j

The following sections present calculations of the resources usage (i.e., bandwidth, memory and com- ^ 

putation power) bound based on the upper bound on the number of entities, rientity, within tie sending
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6.1.2 Bandwidth requirements

All entity requiring access to the shared resources sends out a request to entities in its sending area. In 

each request, the niaximiun number of resources required by an entity can be calculated based on the 

flow-shop, flexible flow-shop and the job-shop constraints (See Section 3.4.3.2). Therefore, there is an 

upper bound, Sreqiie.st, on the request size. On receiving a request, every entity within the sending area 

will reply with an acknowledgment, let the size for an acknowledgment message be Sack-

By definition, the entity sends its request to everyone that might access the shared resources at. the 

same time. Since the entity sends the request in order to access those resources, a rational entity would 

only request for resources that it may access. Therefore, the entity must be in its own sending area when 

its request is delivered. This implies that the number of entities sending a request at any one time is 

bounded by the number of entities in the sending area, rientity

For fairness, it is designed that an entity sent at most one request during the MsgLatency period. As 

such, the total required bandwidth over the sending area is no greater than:

Bandwidth upper bound : (^reque.st + nenUty^ack)

M sgLatency

In the event that the bandwidth upper bound cannot be accommodated, some ways to lower this 

upper bound include:

• Lowering rientity- By reducing the sending area, by coordinating only with the minimal set where 

entities must enter their LLFSM to coordinate (see Section 4.4.3.2), instead of the optimal set, where 

entities may decide before arriving at their decision point (see Section 5.3.1).

• Lowering Srequest: By using a coarser resource model where the environment is represented by fewer 

resources.

• Increasing MsgLatency: Having entities send less messages over a period.

Overall, we showed that an upper bound on the required bandwidth over the sending area can be derived 

and this upper bound does not depend on the total number of entities in the system.

6.1.3 Memory requirements

An entity may need to remember some information about other entities in order to coordinate. In the 

CwoRIS pattern, an entity stores the received requests (in the situation picture data structure), and the 

identifiers of entities who have acknowledged its previous request (in the prevMembers data structure).
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By t he definition of sending area, a request, is only relevant, to entit ies in t.he sending area. That, is, the 

calculation of sending area has already taken into account the duration for which requests are relevant (by 

the fmaxhoid and tmaxME policics) aiid entities entering the scenario during this period (by the maximum 

speed of entities Umax)- Therefore, an entity is only required to remember requests only from entities in 

the sending area, which is bounded by rientity Since an entity only needs to remember the last received 

request from each entity, the total number of requests that an entity needs to remember is also bounded 

by the number of entities in the sending area, nentity As such, the upper bound on memory usage for the 

situation picture data structure is: ^request ♦ ^entity

The prevMembers data structure records the identifiers of entities who acknowledged the entity’s 

previous message. The size of this data structure is bounded by: rientity *size t o st ore a vehicle’s identifier.

Ot her informat ion it ems st ored in t he developed prot ocol are of fixed size and t herefore do not. increase 

with the number of entities. We showed that an upper bound on the required memory (which does not 

depend on the total number of entities in the system) can be derived.

6.1.4 Computational requirement

There are two computationally-expensive methods in CwoRIS: the request feedback protocol and the 

local scheduling/reschednling methods.

As mentioned, an entity sends at most one request in MsgLatency. Since there are at most Wentity 

in the sending area at any one time, the number of requests received by an entity within a period of 

MsgLatency is bounded by rientity

Receive request Receiving a message involves calling the receive Request function in the request feedback 

protocol (Figure 5.6). There are two potentially expensive operations in this function: checking for con­

flicts between two requests and maintenance of the situation picture.

In our implementation, the resources in a request are sorted by their identifier, therefore a comparison 

of two resources sets for conflict has the order of 0(2 * \R\) = 0(|R|) operations (where |i?| denote the 

number of resources in the environment). Note that even if the resources are not sorted in advance, the 

comparison is 0(\R\log\R\) (i.e., using a sorting algorithm like merge sort, (Cormcn et ah, 2001]). Since 

|R| is a constant defined at design time, conflict checking between two requests has constant computation 

time.

The situation picture in each entity can be implemented using a stack data structure [Cornien et ah, 

2001] where newly-received messages require a constant time to insert. Expired records are removed 

periodically (i.e., every 2* MsgLatency) using a cleanup method. Therefore, records could be kept in the
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stack for a period of 2 * MsgLatency. As incntioncd, there are at most rientity requests received during 

a period of MsgLatency, therefore the situation picture stack holds at most 2 * rientity records and the 

cleanup operation has the order or 0{nentity)-

Since both chocking for conflict, bet.ween t,wo requests and insert,ing an accepted request into the 

situation picture can be performed in constant time, the receive request function can be performed in 

constant time. An entity receives at most rientity requests for the MsgLatency period, therefore the receive 

request requires O(nentity) operations during the MsgLatency period. The situation picture maintenance 

has the order of O(nentity) computations. Therefore, the computation required for the request/feedback 

protocol is bounded.

Local scheduling/rescheduling Two other expensive operations in CwoRIS are the local scheduling 

and rescheduling functions. The local scheduling function searches for available resources by checking the 

entity’s required resources against the situation picture. Our implementation uses a brute-force method 

that compares every record in the situation picture to the entity’s required resource, the method takes 

0(wentity + 1^1^) Computation.

Rescheduling involves simulating every entities’ local scheduling for live-lock prevention (Section 5.5.2), 

therefore rescheduling costs computation.

Since |i?| is a constant and rientity has an upper bound. The operation can be completed within a fixed 

amount of time.

6.1.5 Summary

We showed that the CwoRIS pattern (which Comheolaiocht uses) supports local coordination thereby 

providing an upper bound to the number of entities in the sending area. As a result, requirements on 

bandwidth, memory and computational power can be bounded and this upper bound does not depend on 

the total number of entities in the system (i.c., it oidy depends on the number of entities in the sending 

area). The system is therefore scalable with the number of entities.

6.2 Reliability

Protocols developed by Comheolaiocht are scalable because of the localized coordination, which may result 

in dynamic participation when the entities are mobile (Section 6.1). The dynamic participants property 

implies that entities may arrive at a scenario at the same time (the simultaneous arrival property) and 

may leave the scenario without telling other entities (the absent without notice property).
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Tlie system’s safety constraints, goals and optimizations form the system’s objectives (Section 2.1.2.4). 

This section shows that protocols developed by Comhcolai'ocht arc reliable by proving their safety and 

progress property; optimizations arc not within Comheolai'ocht’s scope. We show that protocols developed 

by Comheolai'ocht support:

Safety: by proving that entities’/system’s safety constraints arc not violated despite unreliable sen­

sors and actuators, entity failures, unreliable communication and simultaneous entity arrival (Sec­

tion 6.2.1).

Progress: by showing that entities will not create a deadlock or a live-lock (Section 6.2.2). The sections 

also describe how Comheolafocht can be used to overcome starvation.

6.2.1 Safety

The coordination strategy derived from Comheolafocht’s system analysis step ensures that entities can 

deterministically transition into a LLFSM before its transition into a non-fail-safe mode, therefore, en­

tity failures and unreliable sensors and actuators arc handled in the analysis step. In addition, the 

request/feedback protocol’s support for setup time /?-constraint can be use to provide allowance between 

resource reservations so that an entity may have enough time to detect and react to other entities’ failure.

The CwoRIS’s coordination scheme defined that an entity which does not have access to its required 

shared-resources must start to prepare its transition into its LLFSM at its decision point. By design, the 

coordination strategy from Comheolafocht combined with the coordination scheme from CwoRIS is able to 

ensure that entities only access their shared-resources after they have acquired access to them. This section 

shows that when an entity has acquired access to the shared resources using CwoRIS’s request/respond 

protocol, the entity is ensured exclusive access to those resources despite imperfect communications and 

simultaneous arrivals.

The proof begins by first enumerating all the factors that may affect an entity’s internal representation 

(i.e., communication errors, prior requests and delivery order; Sec Section 6.2.1.1). Each of these factors 

are then mapped to the entity’s internal representation in the request feedback protocol (Section 6.2.1.2). 

Using the conditions in the request feedback protocol (Section 6.2.1.3), the proof shows that there cannot 

be a situation where two entities are granted access to the same resources (Section 6.2.1.4).
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6.2.1.1 Enumeration of factors

Factors that may change the results of the request feedback protocol are:

• Message delivery & errors

Communication errors may result in a lost request, or lost acknowledgment. There are three possible 

outcomes when entity x sends a request to an area that includes entity y:

Success: A request sent by x is delivered to y and y received x’s acknowledgment.

LostAcknowledgement: A request sent by x is delivered to y but x did not receive y's acknowl­

edgment,

LostMessage: A request send by x is not delivered.

• Previous requests

The number of prior requests that x has sent to y can be categorize as:

None: x has not sent any request to y (within the period specified by the policies: tmaxhoid or

f niaxME) •

Once: x has sent a single request to y prior to the current request.

Many: x has sent more than one requests to y prior to the current request.

• Request delivery order (race conditions)

Due to the simultaneous arrival property, entities may enter the system and send their requests at the 

same time. CwoRIS assumes a lower-layer communication protocol that provides ordered delivery, 

therefore, the delivery order arc the same at each entity. The cases for sending and delivery of a 

request between two entities entering the scenario at the same time are:

SDX X sent a request that is delivered to y before y sends its request (Figure 6.1.a).

SDY y sent a request that is delivered to x before x sends its request (Figure 6.1.b).

SSX x and y both sent a request with x’s request delivered to y after y send its request but before 

y’s request is delivered (Figure 6.1.c).

SSY X and y both sent a request with y’s request delivered to x after x send its request but before 

x’s request is delivered (Figure 6.1.d) .
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(a) SDX (b) SDY

(c) SSX (d) SSY

Figure 6.1: Request delivery order
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6.2.1.2 Internal representation in the request/feedback protocol

Tliis section shows how tlic values of the previous requests’ and ’message delivery and errors’ are rep­

resented in the request feedback protocol’s internal representation. Information is stored the protocol’s 

two data structures (situation picture sitPict and prevMembers). The mappings arc:

None X has not sent any request to y.

y ^ x.prevMembers A y.sitPict does not contain x’s intention 

Once X has sent a single request to y, and the result was:

Success: the request was successfully delivered and acknowledged.

y G X.prevMembers A y.sitPict contains x’s intention 

LostAcknowledgement: the request was delivered to y but x did not receive y’s acknowledgment.

y ^ x.prevMembers A y.sitPict contains x’s intention 

LostMessage: the request was not delivered.

y ^ X.prevMembers A y.sitPict docs not contain x’s intention

Many x has sent more than one request to y. The last request that x sent was:

Success: successfully delivered to y.

y G X.prevMembers A y.sitPict contains x’s intention 

LostAcknowledgement: delivered to y, but x did not receive y’s acknowledgment.

y ^ X.prevMembers A y.sitPict contains x’s intention 

LostMessage: not delivered.

y ^ X.prevM ember s A{y .sitPict does not contain x’s intention V y.sitPict contains x’s obsolete 

intention)

Grouping situations with similar internal representations, we get a set of four possible representations:

• None & Once-LostMcssage

y ^ X.prevM embers A y.sitPict does not contain x’s intention

• Once-Success & Many-Success

y G X.prevMembers A y.sitPict contains x’s intention.

171



• Oiicc-LostAcknowlcclgemeiit & Maiiy-LostAckiiowlcdgciiiciit 

y ^ x.prevMembers A y.sitPict contains x's intention

• Many-LostMessage

y ^ x.prevMembers A (y.sitPict docs not contain x’s intention V y.sitPict contains x’s obsolete 

intention)

6.2.1.3 Conditions in the request/feedback protocol

Analyzing the request/feedback protocol (Figure 5.6), the conditions required for an entity to access the 

shared resources are:

1. From receiveFeedback(): Win first-come/first-serve A request delivered to everyone (who may access 

any of the required resources at the same time)

2. From receiveRequest(): Win first-come Orst.-serve

Received(other's request)\/ 

q n own request = 0V

(a) did not receive other request OR ;

(b) other’s request is non-conflicting OR;

(c) can ignore the other’s request:

i. sender know own’s intention: q.ModelD G prevMembers f\

ii. prevRequest ft g / 0A

iii. q's priority < own priority

By design, a node therefore holds a valid request only when the conditions (1 A (2aV26v(2c’A2cnA2ciM')) 

are satisfied.

6.2.1.4 Exclusive access proof

After enumerating all the cases, this section begins the proof:

Theorem (Exclusive Access): Using the CwoRIS protocol, there is no situation whereby two 

entities, x and y, use the same shared resource at the same time.

Assuming Theorem Exclusive Access is false, then there is a situation whore two entities, x and y, access 

the same shared resource at the same time.

Since a shared resource is used by entity x and y at the same time, the set of resources required by x 

and y, R^ and Ry respectively, has the relationship, R^ r\ Ry ^ 0; condition 2b is false, therefore, either 

condition 2a or 2c must be true.
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Case: SDX Assuming the last requests sent by x and y before they are allowed to access the shared 

resources were delivered in the order of ’SDX’: x has sent its last request (that allows x to access R^) 

that is delivered before y sent its request (that allows y to access Ry). Since x’s last request allows x to 

access the resources, by x’s condition 1, x’s last request must have been delivered to everyone that may 

be accessing the resources at the same time.

• Scheduling version

In the scheduling version, according to the formulation of Lemma Sending area, x sent its request 

to sendAreax{t), an area which includes all entities that may use any of the resources at the same 

time. Entity y uses (some of) the same resources at the same time as entity x, therefore y is within 

sendAreax{i) and has received x’s last request.

• Mutual exclusion version

In the mutual exclusion version, according to the formulation of Lemma Sending Area-Mutual ex­

clusion, X has sent its request to SendAreoME, an area big enough to include all entities that may 

reach their sent-request location {MsgLatency before arriving at their decision point) before x starts 

using the shared resources.

In the ‘SDX’ situation, x’s request was delivered to y before y sent its request, x sent the request 

to everyone within SendAreauE-

— If 2/ is within SendAreaME, it hoars x’s request.

— If 2/ is outside of SendAreuME, V requires longer than tmaxME to reach its sent-request location. 

Therefore, y oidy attempts to send its request tmaxME later. Entity x must start using the 

resources before tmaxME, therefore, y may detect that x is using the shared resources with the 

resource sensors and it will not send its request until after x has completed using the shared 

resources, a contradiction to the assumption that x and y use the shared resources at the same 

time.

Therefore, entity y must have heard x’s last request (both scheduling and mutual exclusion versions). 

Entity y receiving x’s request implies that y's condition 2a is false. As such, condition 2c must be true.

Case: SDY The argument for delivery order of ’SDY’ could be similarly shown by reversing the roles 

of X and y.
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Case: SSX The 'SSX’ case describes a race condition: tlie last requests sent by x and y, prior to 

accessing the shared resources, arrive in an order such that x’s request is delivered to y between y sending 

its request and y’s request being delivered.

Similarly to the SDX case, x's condition 1 ensures that x's last request must be delivered to everyone 

that may be accessing the resources at the same time before x accesses the shared resources. The following 

proof shows that y is within x’s sending area when x’s request is delivered in both scheduling and mutual 

exclusion versions.

• Scheduling version

The SSX scheduling scenario follows the same argument as the SDX scenario: according to the 

formulation of Lemma Sending area, x has send the transfer message to sendAreax{t), an area which 

includes all entities that may use the resources at the same time. Since entity y uses the resources 

at the same time as entity x, y is within sendAreax{t) and has received x's last request.

• Mutual exclusion version

Under the SSX' race condition, x’s message is delivered before y’s message is delivered. Therefore, 

y could not have started accessing the resources when x’s message is delivered. Since the ’SSX’ 

condit ion specified t hat, y sent its message before x’s message delivery, therefore y must be located 

after its send-request location when x’s message is delivered. According to the formulation of Lemma 

Sending area-Mutual Exclusion, x sent its transfer message to SendAreuME, an area big enough to 

include all entities that may reach their send-request location before x starts using the shared 

resources. Since y is after its send-request location and has not started using the shared resources, 

y is within SendAreaME when x’s last request is delivered.

In both versions, y is in x’s sending area when x’s last request is delivered, therefore y has received x’s 

last request due to x’s condition 1 (i.e., x’s message is delivered to everyone within the area). Therefore, 

y’s condition 2a is false in the 'SSX' case.

Case: SSY The argument for delivery order of 'SSY’ could be similarly shown by reversing the roles 

of X and y.

So far, y’s condition 2a and 2b has been show'ii to be false (i.e., in all SDX, SDY, SSX and SSY 

cases), therefore, in order for entity y to access the shared resources at the same time as entity x, entity 

y’s condition 2c must be true; condition 2ci A 2cii A 2ciii must be satisfied.
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Proving condition 2c In order for entity y to access the shared resource and violate mutual exclusion, 

it must ignore x's last message, in other words, entity y's conditions 2ci, 2cii and 2ciii must be true. Note: 

If entity y accepts (docs not ignore) x’s last, message (i.c., a conflict ing request,) it. must either reschedule 

a non-conflict,ing reqticst, or delay sending a new request until its required resources are available.

Considering all possible permutations of entity y's internal representation and its satisfaction of con­

dition 2c:

• None & Once-LostMessage

In this case, y has not sent x any prior request (None) or that it has made one request but the message 

has not been received by x (Once-LostMcssage). Therefore, y has the internal representation:

— X ^ y.prevAIembers A x.sitPict does not contain y's intention; y's condition 2ci is false (con­

tradiction)

Therefore y cannot have this internal representation when it receives x’s message.

• Once-LostAcknowledgcmcnt & Many-LostAcknowlcdgemcnt

In this case, y has sent one or many requests to x but y's prior request exhibited a lost acknowledg­

ment error.

— X ^ y.prevMembers Ax.sitPict contains y's intention; y's condition 2ci is false (contradiction) 

Therefore y cannot have this internal representation when it receives x’s message.

• Many-Lost Message

In this case, y has sent several requests to x prior to the current request, and y's prior request was 

not received by x.

— X ^ y.prevMembers A{x.sit Piet does not contain y’s intention V x.sitPict contains y's obsolete 

intention); y's condition 2ci is false (contradiction)

Once more, y cannot have this internal representation when it receives x’s message.

• Once-Success & Many-Success

In this case, y has sent one or more previous requests to x, x has also acknowledged y's request 

— X 6 y.prevAI embers; y's condition 2ci is satisfied

— In order for y to access the shared resources, let’s assume that both condition 2cii and 2ciii are 

satisfied
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* Condition 2cii: y's prcvRequest n re’s request {q)j^ 0

* Condition 2ciii: x’s priority < y's priority

Condition 2ci implies that x has received and acknowledged y's previous request.

Condition 2cii implies that y’s previous request is in conflict with x’s last crossing request. 

Condition 2ciii implies that entity y has a higher priority. Entity y’s previous request could be 

delivered either before or after x sent its last request:

After: y’s conflicting previous message is delivered after x sent its last request. Therefore,

* x’s condition 2a, ~ Received(y'sprevContract) is false

* x’s condition 2b, y’s prevRcquest (q) fl x’s request = 0 is false

* In order for x to access the shared resources, x’s condition 2c must be true; i.e., 

condition 2ci, 2cii and 2ciii must be true

* x’s condition 2ciii: y’s priority < x’s priority is false (contradiction).

Therefore, entity x could not have satisfied the conditions required for it to access the 

shared resources.

Before: y’s conflicting previous message is delivered before x sent its last request

* X could cither accept or ignore y’s previous request.

* If X accepts y’s previous request,

■ In the scheduling scenario, x would have rescheduled another time to access the 

shared resources, such that x’s request 0 y’s request = 0. The entities arc not using 

the same set of shared resources at the same time (contradiction).

■ In the mutual exclusion scenario, x will delay sending its request, therefore x cannot 

have use the resources at the same time, (contradiction)

* In order for x to ignore y’s previous request,

• X must have sent y a previous request in order for x’s condition 2ci, 2cii and 2ciii to 

be true

■ x’s condition 2ciii, x’s priority > y’s priority contradicts with y’s condition 2ciii 

which we assumed to be x’s priority < y’s priority, (contradiction)

All the cases for which entity x and entity y access the same resource at the same time lead to a contra­

diction. Therefore, the assumption that entity x and entity y can access the same resource at the same 

time is not true; Theorem Exclusive Access is proven.
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6.2.2 Liveness

This section shows the liveness properties of the protocols developed using Coinheolaiocht; these protocols 

prevent deadlocks and live-locks. Section 5.5 presented how to prevent live-locks using the CwoRIS 

pattern; therefore, this section does not addresses live-locks. The following section proves that the request 

feedback protocol will not get into a deadlock. Section 6.2.2.2 then argues that starvation have to be 

prevented in a case-by-case basis and presents how CwoRIS’s request/feedback protocol can be used in 

some of these cases to prevent starvation.

6.2.2.1 No deadlocks

A deadlock situation can arise only when all of the following conditions exists in a system (Coffman et ah, 

1971|:

1. Mutual exclusion: At least two resources arc non-sharcablc.

2. Hold and wait: A process is currently holding at least one resource and requesting additional 

resources which arc being held by other processes.

3. No Preemptive: Resources already allocated to a process cannot be preempted.

4. Circular Wait: A process must be waiting for a resource which is being held by another process, 

which in turn is waiting for the first process to release the resource.

It can be observed that the first three conditions may arise in CwoRIS. Comheolai'ocht allows the defi­

nition of multiple resources that arc non-sharcablc; condition mutual exclusion may arise. Entities who 

recieved an entity’s request believes that the requesting entity is holding on to the resources, and the 

same requesting entity may sent another request for resources, thus allowing the hold-and-wait condition 

to arise. CwoRIS’s preemption /3-constraint (Section 5.4.3.3) is an optional inclusion.

Theorem (No deadlock): There arc no deadlocks in the request feedback protocol after two 

consecutive rounds of perfect communication.

Therefore, in this non-deadlock proof, we shall show that the circular wait condition cannot arise. The 

following proof assumes that when an entity retransmits a request, it oidy requests the same set or a 

subset of the resources from the previous request. The subset relation between two resource baskets Ri 

and R2 is defined as:

Rl C R2 := V {ri,tsl,tel) 6 Rl • {ri,ts2,te2) € R2 A {ts2 > <sl) A (te2 < tel)
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This assumption is valid in CwoRIS’s mutual exclusion version where resource requests are for the 

period of [toi oo), where to refers to the current time. Since to only increases, subsequent requests are 

naturally a subset of an entity’s previous request. In scenarios where entities may change their plans (e.g., 

in the scheduling version), subsequent requests may not be a subset of their previous requests, in such 

cases, the nodes may get into a live-lock. Section 5.5 presented CwoRIS live-locks prevention.

In order t o prove t hat t he request /feedback prot ocol prevent s deadhreks, let us define a minimal circular 

wait:

Definition (Minirnal circular wait): A system has a minimal circular wait wdien all the nodes 

requiring access to the shared resources form a set S. such that every node in S waits for 

another node in S.

The proof starts by showing that CwoRIS’s rcquest/fcedback protocol may resolve a minimal circular 

wait.

Lemma (Resolve minimal circular wait): If entities only request for a subset of resources in 

their subsequent requests and there are no new entities arriving, the request, feedback proto­

col can resolves a minimal circular wait situation after two consecutive rounds of successful 

communication.

Ini uitively, the proi ocol uses a first-come 'first-served policy and ordered delivery to assign which ent it ies 

get access to the shared resources. The system resolves a minimal circular wait by creating a common 

ordering and uses this ordering to break out of the circular wait.. In the proof, we shall first, show that, 

aft.er a round of successful communication, the highest priority will not accept a conflicting message. The 

proof t hen shows that t he highest, priority node confirms t hat it. has t he right, of way and can break out. 

of the circular wait in the second round.

The lemma below describes that after a round of successful communication the highest priority will 

not accept a conflict ing message:

Lemma (Highest priority ignores all): After a node with the highest priority, x, in S receives 

feedback from the set of nodes, prevMemberSx, it can ignore any conflicting requests from 

prevAIemberSx until the request expiry or after it has another message delivered.

Requests in the mutual exclusion version expire after fmaxME and requests in the scheduling version expire 

after their resource usage time has passed which lasts most fmaxHoid- By design, an entity using CwoRIS’s 

request/feedback protocol ignores a request if all three conditions are satisfied:
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1. The sender has hoard the entity’s previous request.

2. The entity’s previous request conflicts with the received message.

3. The entity has a higher priority.

Since x lias highest priority amongst the nodes in 5, condit ion 3 is satisfied. By design, prevMemberSx 

contains identifiers of all the entities who heard x’s previous request. If x receives a conflicting request, 

Ry, from an entity, y, in prevMemberSx, then y has heard x's previous request (condition 1 is satisfied). 

Since Ry is conflicting with x’s current request and by assumption, x’s current request is a subset of its 

previous request, therefore, Ry is conflicting with x’s previous request (condition 2 is satisfied). As such, 

X can ignore any received conflict ing requests from S; Lemma Highest priority ignores all is shown.

Lemma (Highest priority wins): Assuming that there arc no newly arrived entities between 

two consecutive successful request deliveries, an entity with the highest priority, x, in S can 

acquire the resources it requires after its second message is delivered.

Given that there are no new arrivals, by Lemma Highest priority ignores all, entity x with its highest 

jiriority can ignore all conflicting reqtiests after it. has sticcessfully delivered its first request., m^, to 

everyone in S. Entity x can ignore any conflicting its requests while Rx has not expire. By design, entity 

X resends a request marked for delivery before the previous request expires. Therefore, entity x can ignore 

all messages that conflict with mx before its second message, m^, is delivered. After is delivered, x 

can acquire the resources that it requires (thus proving lemma Highest priority wins).

Lemma Resolve minimal circular wait is a direct result from Lemma Highest priority wins-, that is, 

the entity with the highest priority in the minimal circular wait would be able to gain access to its 

required shared resources after two rounds. Since a circular wait condition may not persists in CwoRIS 

request/feedback protocol. Theorem No deadlock is shown.

6.2.2.2 Starvation & design considerations

Starvation happens when an entity is perpetually denied the resources it requires. Without those resources, 

the entity can never reach its goal. Using two scenarios, this section shows that while Comheolaiocht does 

not have a generic solution that prevents all starvation, the CwoRIS pattern does provide some tools for 

starvation prevention.

Hidden dependency constraint The scenario where vehicles traveling on a road require access to the 

shared-resources in an intersection collision scenario was presented in Section 5.4.3.6 as an example of
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prccmptioH ^-constraint,. This section first describes starvation in the example scenario, then shows that 

the problem arises because of a missing dependency constraint and demonstrates how the preemption 

/?-constraint can be used in this situation.

In Dresner’s (2009) and Bouroche’s (2007) intersection designs (the former uses a centralized intersec­

tion manager and the latter uses a distributed contract protocol to obtain exclusive access to the junction), 

if a vehicle in front sends a request that is not delivered to all required entities, it cannot access the re­

quired resources for crossing. Subsequently, other vehicles behind the front vehicle may send a request for 

crossing the junction. Without proper handling, requests sent by the vehicles behind may be accepted; 

the result is that neither vehicles can cross the junction and the reserved resources are never used. In the 

worst, case, many vehicles come after the first vehicle and their requests may prevent, the first vehicle’s 

request from being delivered, thereby causing starvation.

In this example scenario, vehicle entities exiting the road have a dependency constraint that is often 

overlooked - that a vehicle at the back cannot exit the road (to cross the junction) if there is another 

vehicle in front.

A simpler alternative to handle such dependency constraints is to use sensors; in this case, we can 

enforce that only the front vehicle may send a request (the vehicle uses sensors to deduce that it is the 

front vehicle). On one hand, this sensor-based method results in the advantage of reducing the total 

number of sent requests. On the other hand, it means that vehicles behind may only send their requests 

after the front vehicle has left the road (started crossing), therefore vehicles behind may not be able to 

send their requests and decide before arriving at their decision points; they must start breaking at their 

decision points.

The proof that both preemption and firsl-vehicle-seut solutions prevent the starvation described in 

this scenario is trivial. In the first-vehiclc'-sent solution, a vehicle behind will not send a request, therefore 

the first vehicle’s request can be delivered and it may exit the road. Using the preemption /f-constraint, 

using their sensors (e.g., cruise control) vehicles behind the front vehicle have to slow down and stop if 

the vehicle in front stops. Therefore, the front vehicle knows that vehicles behind it have not crossed 

their decision point and committed to crossing the junction. The front vehicle can then safely preempt 

the resources promised to any vehicles behind it.

Priority tweaking The request/feedback protocol uses entities’ priorities to decide the winner in the 

event of races. This priority can also be used for preventing starvation, for instance an entity who has 

waited for longer can be assigned a higher priority compared to an entity who has just arrived. In addition, 

priorities may also be used in special situations whereby some entities require differential treatment (e.g..
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Bottleneck

Figure 6.2: Bottleneck between two intersection

emergency vehicle). A direction for future work may involve deriving a generic method for using the 

priority for various purposes like non-starvation and providing special treatment like emergency vehicle. 

This section however, presents a scenario with a hand-crafted priority system for starvation prevention.

This second example describes a scenario (Figure 6.2) with two junctions connected by a short road 

in-between. The diagram shows the short connecting road with available room for only three vehicles. 

In this scenario, any vehicle that stays on the connecting road takes up one of these available spaces, 

effectively blocking any east-wesl trafTic. The next section presents the modeling and analysis of this 

scenario using Comheolai'ocht, and Section 6.4 presents our simulation results for this scenario. In our 

implementation, entities on the connecting road arc provided with a higher-than-normal priority so as to 

let them win the first-come/first-serve race. This slight change in priority allows vehicles in the connecting 

junction to be cleared faster thereby allowing the east-west traffic to flow more smoothly.

Summary It can be seen from these two examples that starvation may be closely related to the scenario; 

a fair-solution providing every entity with an equal chance in accessing the shared resources may result in 

entities starvation when applied to scenarios with dependency or bottlenecks. While Comheolafocht may 

not produce protocols that are fair or prevents starvation, it provides some tools which a developer may 

use to prevent starvation.

6.2.3 Summary

In this section, we showed that Comheolafocht develops protocols that are safe and have no deadlocks. An 

entity will never use the shared-resources without first obtaining access to the shared-resources, and that 

no two entities may obtain access to the same set of resources; this ensured that a different time event 

ordering safety constraint will not be violated. The section also shows that entities will not be involved 

in a deadlock. In addition, we had presented a method for live-lock prevention in Section 5.5, and also 

shown that the Comheolafocht provided some tools for starvation prevention.

181



Figure 6.3: Intersection along Liffey River - Dublin (Picture from Google map)

6.3 Methodology steps

This section demonstrates the use of Comheolaiocht in the development of protocols for entities coor­

dination in the intersection collision avoidance scenario and shows how the intersection scenario can be 

composed into a complex scenario that involves two adjacent intersections. This adjacent intersection 

scenario also demonstrates Coiiiheolai'ocht’s capability to divide a complex problem with interleaving 

constraints into smaller problems for concurrent development and composing them back into a system.

The following sub-sections present the application of Comhcolalocht’s three steps (system modeling, 

system analysis and protocol derivation) to design coordination protocols for the Liffey scenario (named 

after the road and intersection over the Liffey river in Dublin, Figure 6.3). Note: the section only presents 

the challenging steps in Comheolaiocht. In these scenarios, we assume that vehicles arc driving on the 

left.

6.3.1 System modeling & specification

This section presents the modeling of the Liffey scenario using Comheolaiocht. For brevity, only the final 

model is presented (the intermediate steps are not shown). The scenario only models the vehicle-entity 

(Note: pedestrians are not supported in this evaluation). Its behaviors are:

• Driving: vehicle’s velocity is greater than zero

• Stopped: vehicle’s velocity is equal to zero

• Crossing junction: vehicle's velocity is greater than zero and is crossing the junction
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• Change lanes: effect, is that vehicle changed to the another lane

• Overtaking: vehicle x senses another vehicle, y, in front,, the final observable effect, is that vehicle y 

is behind x

• Breakdown: an uncontrollable behavior, vehicle’s velocity falls to zero

• Accelerate: vehicle’s velocity is greater than previous velocity.

• Decelerate: vehicle’s velocity is smaller than previous velocity.

The Liffey scenario (Figure 6.3) is partitioned into two .scenario-types: road, and junction. The junct ion 

scenario models the physical partition of the yellow-box of the intersection (Figure 6.3), there are four 

intersections in the diagram. The road scenario models t he mult iple lanes roads in the Liffey scenario. 

Note: the road scenario can be further decomposed into multiple lane scenarios, in this evaluation step 

we choose not to further decompose the road scenario for brevity.

I’he following sub-section presents the junction scenario’s specification, the next, section presents the 

road scenario’s specification.

6.3.1.1 Junction scenario

This section presents the specification of the junction scenario. In particular, it presents a shared re­

sources model and its constraint specifications for the junction scenario using the syntex provided in 

Comheolafocht.

Scenario abstraction; different time constraints The constraint that two vehicles may not cross 

the junction at the same time is modeled as shared-resources with a grid-representation of the junction. 

The following specification models the junction scenario’s shared resources. The specification represents 

the junction as multiple near-identical copies (i.e., n*m copies) of resources differentiated by their location:

(bi)-

Junction Resource := junctRn*Tn(i,j)

The specification below defines the mapping of the resource representation to its physical location, it 

is assumed that every entity knows this resource mapping.
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jimctRn*m(i,j)__ (junction.Xtop—junction.Xbottom) _ (junction.t/right-junction.yieft)let J^step — ^ ^ ) 2/step —

0 < i < n, 0 < j < m in

rcctangle( positionQunction.Xbottom + * * a^step, junction.?/ieft +j* 2/step),

positionQunction.Xbottom + (i + 1) * Xstep, junction.i/ieft + (j + 1) * 2/step))

Scenario setting; sequence constraints This step defines the resource usage order; a— and ^3—constraint 

for the junction scenario. The q—constraint is modeled as a job-shop:

junctR n*7n(i,j) = I

The following specification lists the job-classes. For instance, the record 3southLeftTurn(junctR(i jj) 

describes that all vehicle entities traveling from the sotith-direction and making a left-turn requires the 

resource junctR(i i). The second record, JsouthStraight_Lanei(junctR(i i^.junctRji 2), junctR^ „)), de­

scribes that all vehicles traveling from the south-direction and driving straight on lane one requires the

resources junctR^j ► junctR^ 2)
junctR(j^) in sequence.

J ~ {.^soutliLeftTlirn (j^UlCtR^ 2 j j),

.^soiithStraight_Lanel (juIlCtR^ 2), junCtR^2,2), juttCtR^2,m))

.^southRightTiirn(junctRj.t), juiictR^^ 2), • • - , jtinctR^,^^^j )

.^west Left Turn (junCtR(2 m))}

The /-/-constraint s of a junction are identified a.s: nowait, brkdown, and job — family setup time. The 

nowait constraint states that vehicle entities may not stop in the center of the junction, the brkdown 

constraint, specifies that, some resourctai may become unavailable due t,o vehicle bn^akdo-wns and the 

job — family setup time constraint is used to allocate enough time between entities usage of resource in 

the event of entity breakdown.

Pre-condition, post-condition and safety-constraints This step records the entrance- (pre-condition), 

goal- (post-condition) and safety-constraints of the junction scenario. The following specification captures 

the safety constraint for the junction scenario. The first line states that a vehicle whose mode is ’crossing’ ,
I

and whose location is at (x, y) in the junction must hold the resource junctR^,,, The second line states 

that when a vehicle ’breakdown’ and location is at (x, y) in the junction, then the resource junctR^^. y)
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has broken down. Xot.e that, this definition uses the short.-hand defined in Section 3.4.4.2.

safety constraintjjjj,^,jjo„ := vehicle.crossing A vehicle.location—> (x. y) => /io/ds(junctR(^ ,y))V

vehicle.breakdown A vehicle.location{x,y) => brkdown{]unctR^^ y’i)

There is no entrance constraint for the junction scenario; the scenario’s entrance condition is the same 

as its safety constraint. Note: the location where vehicles enter the junction is already captured in the 

job-shop constraints, therefore there is no need to specify it again in the entrance constraint.

An entity’s goal-constraint in the junction scenario is to arrive at its destination direction.

goal constraintjy„^fjo„ := vehicle.location = vehicle.destination direction 

6.3.1.2 Road scenario

This section presents the modeling of the road scenario. For easier reading, this section presents the 

modeling of the sequence constraints before the modeling of the different time constraints.

Scenario abstraction; different time constraints Vehicle entities in the road scenario should not 

collide. The road scenario is modeled as shared resources with m lanes, each further divided into n 

segments:

Road Resource := roadR n*m(segmentid,laneid)

For simplicity, the road scenario reuses the grid shared resource model from the junction scenario:

roadR n*m(segmentid,laneid) ___ Irtf ^ — (road.Jend-road.Xatart)
it-L Xstep — ^ i

0 < segmentid < n, 0 < laneid < m in 

rectangle( position(road.Xstart + segmentid ♦ Xstep, road.laneianeid-start),

position(road.Xstart + (segmentid -I- 1) * Xstep, road.lancianeid end)

Scenario setting; sequence constraints This step defines the o-constraint and ,5-constraints for the 

road scenario. The road scenario’s o-constraint is modeled as a flexible flow shop where all entities travel 

in a single direction from segment 1 up to segment n:
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roadRn*m(segmentid,laneid) _= FF" :: [roadRT'.roadRj*,..,roadR"]

Note: the scenario is modeled as a flexible flow-shop instead of flow-shop to signify that entities may 

change lanes.

The d-constraints of the road-scenario are defined as b/ocfc(roadR) and 

prmp({roadR(„ 1), roadR(„_2)i •••1 roadR(„ The first constraint fefocfc(roadR) defines that a vehicle

entity may stop on the road thereby blocking other vehicles from using the road. The second preemption 

constraint makes every last segment of a lane a preemption resource; this is an implementation spe­

cific constraint to avoid entities starvation when they are leaving the road, the example is explained in 

Section 6.2.2.2.

Pre-condition, post-condition and safety-constraints This step defines the entrance, goal and 

safcl.y constraints for t.hc road scenario. The safety const,raint of t he road defines that- in order for a 

vehicle to perform the change lane behavior, it must hold exclusive access to cither of the adjacent lanes:

safety constraint,.o,j^ := vehicle.changelane A vehicle.location —> {x,y)

=> ((/io/ds(roadR(2, y+i)) V holds{ro•ddR^^ y^l'f)A y — I > 0 A y + 1 < n)

The safety constraint specification assumes that entities driving forward (without changing lanes) are 

capable of detecting the vehicle in front. Therefore, instead of requiring entities to reserve resources for 

traveling straight, entities are assumed to have reserved the resources in front of the vehicle (Section 6.3.3 

shall define how far in front a vehicle is assumed to reserved resources).

The entrance constraint of the road specifics that any vehicle entering the road (with the driving 

behavior) must hold the first segment resource. This is to ensure that there is at most one vehicle 

entering the road at any one time. Note, once a vehicle is on the road (segment 2 and onwards), the 

non-collision constraint, is handled by the flexible flow shop a-constraint.

entrance constraintroad := vehicle.drive A vehicle.location —> (x,y)

=> holds(roadR(x,y)) A x = 1

An entity’s goal-constraint in the road scenario is to arrive at the end of the road, which is captured 

by the constraint vehicle.location = roadR(„ which binds the segment to n, the last segment on the 

road.
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Modes Velocity Breakdown Detected breakdown
Crossing > 0 No No

Breakdown = 0 Yes Any
Avoidance - 0 No Yes

Table 6.1: Vehicle entity’s modes in junction scenario

goal constraintfQjjj := vehicle.location = roadR(„ y)A

vehicle.destination.isLeftTurn => y = lA 

vehicle.destination.isRightTurii => y = n

6.3.2 System analysis

Comheolaiocht’s second step uses the algorithm presented in Chapter 4 to analyze the model specified in 

the first step to produce two results. Firstly, it determines whether Comheolaiocht can provide a reliable 

solution to the Liffey scenario; i.e., ensure that the vehicles do not collide. Secondly, if a reliable solution 

exists, this step outlines a coordination strategy that will be used to derive the coordination protocols in 

Comheolaiocht’s third step.

6.3.2.1 Mode design

Junction scenario By applying the mode design step (see Section 4.2.5), the variable ’Breakdown’ 

is idem ified as a part icipation variable because a vehicle t hat has broken down may exceed usage of 

its requested resources. The crossing and breakdown modes arc partitioned using the ’Breakdown’ 

participation variable. In addition, a broken vehicle has zero velocity, and a crossing vehicle has positive 

velocity, therefore, vehicle velocity is also a participation variable. In addition, an entity may react to 

another entity’s breakdown after detecting the breakdown, therefore another participation varibic ’Detect 

breakdown’. The avoidance mode is partitioned. The identified modes in the junction scenario are shown 

in Figure 6.1.

Following the steps to draw the mode transition diagram (see Section 4.2.6), the crossing mode is 

identified as the scenario’s entrance mode. A complete crossing exit mode (i.e., end of the junction) is 

included to differentiate between the entrance and exit modes. Since a vehicle’s velocity in the crossing 

mode is positive, it eventually reaches the complete crossing exit mode, therefore it is a timed-transition. 

This scenario assumes that a broken-down vehicle is eventually removed (e.g., by a recovery team, or the 

driver pushes the vehicle away from the junction), thereby making the breakdown tnode another exit­

mode. In addition, the breakdown transition has an uncontrollable cause. When a vehicle detects another 

vehicle’s breakdown, it avoids colliding with the brokendown vehicle by transitioning to the avoidance
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Figure 6.4: Junction scenario’s mode transition diagram

Modes Velocity Heading
Driving Any Parallel to road

Change lane > 0 Not parallel to road

Table 6.2: Vehicle entity’s modes in road scenario

mode; thus this transition is uncontrollable. After the broken down vehicle is removed, vehicles in their 

avoidance mode may transition back to the crossing mode. The mode transition diagram for the 

junction scenario is shown in Figure 6.4.

Road scenario Using the mode design steps, the change lane mode is partitioned from the driving 

mode because of the road scenario’s safety constraint, which describe a violation of the safety constraint 

when the vehicle perform the changes lane action. The identified modes in the road scenario are shown 

in Table 6.2.

In order to draw the mode transition diagram for the road scenario, an enter-road entrance mode and 

an exit-road exit mode are included. The enter-road mode is included because the road scenario has 

an entrance constraint that specifies that vehicle entering the junction must hold an entrance resource. 

The exit-road mode is included so as to show that a vehicle driving may exit the road scenario, it is 

assumed that vehicles do change lane and exit the road.

Vehicles who enter the road travel a certain distance to arrive in the driving mode and eventually 

reach the end of the road. Compared to the junction scenario, where vehicles reach the end of junction 

with a timed-transition, the transitions in the road scenario are controlled transitions; this is because 

vehicles are allowed to stop in the middle of a road. In addition, a vehicle may control when it wants 

to transition into the change lane mode. A vehicle changing lane has a positive speed, therefore, the 

transition to new lane is a timed transition. The mode transition diagram for the road scenario is shown 

in Figure 6.5.
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Figure 6.5: Road scenario’s mode transition diagram 

6.3.2.2 Solvability in Comheolaiocht

By following the stops in Section 4.3, a coordination strategy can be derived for each scenario. This 

section presents the coordination strategy for both scenarios.

Junction scenario

1. Identifying LLFSM

Except for the complete crossing mode, all other modes in this scenario are non-fail-safe. The 

crossing mode is non-fail-safe because it is specified in the safety constraint. Both avoidance and 

breakdown modes arc non-fail-safe because their usage of resources tnay exceed their reservations. 

Complete crossing mode is a fail-safe mode because when a vehicle has completed crossing it 

no longer requires the resources, however the mode is not a LLFSM because of the no — wait 

/3-constraint; the entity must move away.

2. Completing the coordination strategy table:

By following the algorithm presented in Section 4.3.3, the coordination strategy can be derived:

Index Mode Result Condition Comments

1 Crossing Unsafe - Entrance, non-fail-safe

2 Avoidance Unsafe - non-fail-safe

3 Complete crossing Safe - Exit, fail-safe-mode

4 Breakdown Unsafe - Exit, non-fail-safe

As seen from the coordination strategy above, the entrance mode is marked as Unsafe, therefore, 

vehicles do not have a stand-alone safe solution. The scenario’s safety constraint is exposed to other 

scenarios; i.e., the constraints must be handled before entities enter the scenario.
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Road scenario

1. Identifying LLFSM

The non-fail-safe mode of the road scenario are the enter road mode and the change lane mode. 

The change lane mode has a safety-constraint that requires the vehicle to coordinate (holds some 

resource) and the enter road mode has a pre-condition that requires coordination; making both 

modes non-fail-safe.

The driving mode is a LLFSM; all its out-edges are controlled transitions and it is a fail-safe mode. 

The exit road mode is a fail-safe mode.

2. Completing coordination strategy table:

The exit road mode is marked as Safe because it is an exit mode and a fail-safe mode. Next the 

change lane mode is Safe, (1 : 2); an entity transitioning from the driving mode can ensure the 

mode safety. The Driving mode is marked Safe because it is a LLFSM and both its destination 

modes arc marked Safe. The enter road scenario is marked as Unsafe-, its pre-condition constraint 

is exposed. The coordination strategy table is:

Index Mode Result Condition Comments

1 Enter road Unsafe Entrance, non-fail-safe

2 Driving Safe - LLFSM

3 Change Lane Safe I : 2 non-fail-safc

4 Exit road Safe - Exit, fail-safe mode

6.3.2.3 Scenario composition

This section composc's the road and the junction scenarios into the Liffey seenario (Figure 6.2 and Figure 

6.3). The composition is presented in two steps: the first step composes the intersection seenario with 

one junction and eight roads and the second step composes the two intersection scenarios into the Liffey 

scenario.

Intersection scenario The intersection scenario is made up of eight road scenarios and a junction 

scenario; four roads leading into the junction and four roads out of the junction. Let’s start by composing 

the four roads leading into the junction:

• Roads leading into a junction (Four roads merge into a junction)

1. Check for physical incompatibilities. There are no physical incompatibilities, for brevity, the 

actual steps are not shown.

190



2. Redesigning & analyzing modes

(a) Identify mode transitions between exit and entrance modes:

i. There is only one exit mode in the road scenario: exit road.

ii. There is only one entrance mode in the junction scenario: crossing.

iii. A vehicle may transition from exit road to crossing only if velocity > 0, the transition 

has a timed transition cause.

(b) Identify entrance modes with resource usage pre-conditions. The junction scenario’s cross­

ing mode has a safety condition that is exposed (a pre-condition).

(c) Revisit mode design step for the composite scenario.

The last dctcrministically-accessible LLFSM before arriving in the junction mode is the 

driving mode. This mode is partitioned so as to differentiate between modes that will 

eventually enter the crossing mode (i.e., driving before junction) and modes that will 

not enter the crossing mode (i.e., stopped before junction). The modes are:

Modes Velocity Heading

Driving before junction > 0 Parallel to road

Stopped before junction - 0 Parallel to road

Change lane > 0 Not parallel to road
Figure 6.6 shows the combined mode transition diagram for a vehicle entity moving from 

a road scenario into a junction scenario before arriving at its destination road scenario. 

In the figure, the road scenario is shown on top and the junction scenario is shown in 

the middle (let’s ignore the destination road scenario at the bottom of the figure for this 

discussion).

(d) Apply coordination strategy analysis

The completed coordination strategy table is as shown in Table 6.3. For brevity, the table 

shows only two roads (the other two roads are the same).

Note: Example on how to use this coordination strategy table follows shortly.

3. Information required by entities entering the junction scenario

(a) When to start the coordination protocol: as shown in the coordination strategy table (Fig­

ure 6.3), a vehicle entering the junction scenario from road.l scenario starts coordination 

at mode index number 2. The entity transitions into mode index number 3 if it has not 

gain exclusive access to the shared resource by its decision point.
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Index Mode Result Condition Comments
1 Enter road.l Unsafe - Entrance, non-fail-safe
2 Driving before junction. 1 Safe 0:5|3
3 Stopped before junction. 1 Safe - LLFSM
4 Change Lanc.l Safe 0:2 non-fail-safc
5 Exit road.l Safe I:2|3, 0:21|3
6 Enter road.2 Unsafe - Entrance, non-fail-safe
7 Driving before junction.2 Safe O:10|8
8 Stopped before junction.2 Safe - LLFSM
9 Change Lane.2 Safe 1:7 non-fail-safe
10 Exit road.2 Safe I:7|8, 0:21|8

11...20 Modes for the other two roads
21 Crossing Safe I:5|3, LT0|8, I:15|13, I:20|18 

0:2213,8,13,18, 0:24|3,8.13,18
non-fail-safc

22 Avoidance Safe I:21|3,8,13,18 non-fail-safe
23 Complete crossing Safe - Exit, fail-safe mode
24 Breakdown Safe I:21|3,8,13,18 Exit, non-fail-safe

Table 6.3: Coordination strategy for fonr roads leading into a jnnction scenario

Note: Vehicle from road.2 starts coordination at mode index 6 and transitions to 7 at its 

decision point. Vehicles from the other two roads arc similar.

(b) Who to coordinate with: in order to enter the junction scenario (mode index number 

21), an entity needs to coordinate with all the entities (with the highest priorities or 

no dependencies) in their last dcterministically-acccssiblc LLFSM (i.c., modes with index 

number 3, 8, 13 and 18).

4. Check whether the composition has high requirements

(a) The minimum distance required for coordination is the distance between the vehicles in 

modes wdth index number 3. 8, 13 and 18; in this case the front-most vehicle of each lane. 

The minimum distance required for coordination is thus the size of the junction — two 

vehicles’ length.

(b) The minimum set of entities that may participate in the coordination is thus the total 

number of lanes across all roads leading into the junction.

Let’s assume that both numbers are within communication limit, therefore, there arc no ’high- 

requirements’ and the composition could be solved.

• Junction exiting into four roads (Junction merge with four roads)

Let’s continue the second part of the intersection scenario by composing the junction with the four 

roads vehicle exits into.
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1. Checking for physical iiiicoiiipatibilities. There arc no physical incompatibilities, for brevity, 

the actual steps are not shown.

2. Redesigning & analyzing modes

(a) Identifying mode transitions between exit and entrance modes:

i. There arc only two exit inodes in the junction scenario: complete crossing and 

breakdown.

ii. There is only one entrance mode in the road scenario: enter road.

iii. A vehicle may transition from complete crossing to enter road only if velocity > 

0, the transitioir has a timed transition cause. There are no transitions out of the 

breakdown mO'dc.

(b) Identifying entrance modes with resource usage pre-conditions. The enter road mode has 

a pre-condition.

(c) Revisiting mode design step for the composite scenario: no now modes.

The bottom of Figure 6.6 shows the combined mode transition diagram. Note: the figure 

only shows one exit road (instead of four).

(d) Applying the coordination strategy analysis

The completed coordination strategy table is as shown in Figure 6.4, for brevity, this table 

continues Table 6.3. Note: Table 6.3 is edited at mode index number:

i. 21: the condition is edited to include O : 23|3,8,13,18

ii. 23: the condition is edited to I : 21|3, 8,13,18, O : 25|3,8,13,18.

The change is required because the entrance modes of the four exiting roads requires the 

coordination, and the last dctermiuistically-accessible LLFSM are found at mode index 

number 3, 8 , 13 and 18.

In general, the analysis should compose the exit scenarios before composing the entrance sce­

narios, so that the coordination strategy table does not need to be recalculated. In this case, 

the author knows that the composition will not affect earlier results.

3. Information required by entity entering the junction scenario

(a) When to start coordination: a vehicle exiting the junction scenario to enter a road scenario 

must start coordination at mode index number 2, 7, 12 or 17; i.e., at the same time as 

coordinating to enter the junction. The entity transitions into mode index number 3, 8, 

13 and 18 rcspectivcdy if it has not gained exclusive access to the shared resource by its 

decision point.
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Index Mode Result Condition Comments
25 Enter road.5 Safe I:23|3,8,13,18 non-fail-safe
26 Driving.5 Safe - LLFSM
27 Change Lane.5 Safe 0:26 non-fail-safe
28 Exit road.5 Safe - Exit, fail-safe mode

29-40 Mode for the other three roads (6,7,8)

Table 6.4: Extended coordination strategy table for intersection scenario

Figure 6.7: Liffey scenario composed by two intersection scenarios

(b) Who to coordinate with: all the entities (with the highest priorities or no dependencies) 

in the last deterniinistically-accessible LLFSM (i.e., inodes with index number 3, 8, 12 and 

17).

4. Check if composition has high requirements. Let’s assume there are none (so that the devel­

opment can continue; otherwise, the problem is not solvable.)

In summary, entities must coordinate in order to enter the junction and to enter the road after the 

junction, since the last LLFSM in both cases arc only found in the origin-road scenario, the entities must 

start their coordination in that scenario.

Liffey scenario In order to differentiate between the two intersection scenarios, let’s arbitrarily call 

one of them the first, junction, and the other one the second junction. In addition, let’s refer to the road 

in-between the two junctions as the middle-road. Inst.ead of designing the Liffey scenario from scratch, 

this section composes the Liffey scenario using t.wo intersection scenarios with an exiting road removed 

for each (Figure 6.7).

This composition is a straight (1:1) composition. When composing these two intersection scenarios 

into the Liffey scenario, t he same four steps apply:

1. Check for physical incompatibilities. There is no physical incompatibilities.

2. Redesigning & analyzing modes
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(a) Identifying mode transitions between exit and entrance modes:

i. The first junction’s complete crossing mode transitions to the second intersection sce­

nario’s road scenario’s enter road mode.

ii. Similarly, the second junction’s complete crossing mode transitions to first intersection 

scenario’s road scenario’s enter road mode.

iii. Both transitions have a timed cause.

For brevity, lets skip the next two steps (identifying entrance modes with pre-condition and 

revisiting mode design)

(b) Applying coordination strategy

Following the steps for analysis of the coordination strategy, the coordination strategy table 

can be discovered. However, step 4 below shall question this coordination strategy.

3. Information required by entity before entering the junction scenario

The two questions, “when to start coordination” and “who to coordinate with”, if answered without 

considering the length of the middle road, are exactly the same as the two intersection scenarios 

being handled separately.

Note: The next step considers the length of the road.

4. Check for composition with high requirements.

By examining the length of the middle road, some other questions appears,

(a) Can the entity transition into the middle road scenario’s stopped before junction LLFSM 

that is required to coordinate an entity’s entrance to the second junction?

(b) How many vehicles can stay within the middle road?

Depending on the length of the middle road, a vehicle may or may not be able to access the middle 

road scenario’s stopped before junction LLFSM. Due to these considerations, the next section 

presents two different protocols for handling the Liffey scenario, termed the independent-Liffey and 

the combined-Liffey.

(a) Independent-Liffey: this scenario is composed as shown in the steps above, with the road 

scenarios between the junction scenarios and vehicles may access the stopped before junction 

LLFSM in the middle-road.
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Figure 6.8: Combined-Liffcy scenario

(b) Combined-LifFey: in this composite scenario, the middle road is represented ^ls another junction 

scenario. Therefore the scenario is made up of three junction scenarios composed with 12 road 

scenarios (Figure 6.8).

Note: For brevity, the detailed steps for the composition of these scenarios are skipped, however, 

the next Section presents the coordination protocols for both Liffey scenarios and Section 6.4.4.2 

presents the simulation results of both scenarios.

6.3.3 Coordination protocol with CwoRIS

This section applies the CwoRIS pattern to the scenarios for safe coordination. From the mode analysis 

steps, there are three situations which requires coordination:

1. Road scenario: vehicle executing a change-lane behavior

2. Vehicle leaving road scenario to enter junction scenario

3. Vehicle leaving junction scenario to enter road scenario

Since situation 2 and 3 arc shown to have the same preparation location (in the stopped before junction 

mode) and require coordinating with the same set of entities (all roads leading into the junctioii(s)), these 

two situations are handled as one.

The first sub-section demonstrates the implementation of CwoRIS in the road scenario’s vehicle change 

lane behavior. The intersection scenario was used as an example to explain the CwoRIS pattern (Section 

5.3.4), and will not be revisited. Section 6.3.3.2 then demonstrates the CwoRIS pattern in the Liffey 

scenario.
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6.3.3.1 Road scenario - change lane behavior

This section presents the application of the CwoRlS pattern in the road scenario to support vehicle’s change 

lane behavior. The application of the CwoRIS pattern involves three steps: calculating the sending area, 

lurking time and deriving the vehicle’s behavior.

In the road scenario, a vehicle entity usually travels straight without changing lanes. Therefore, instead 

of requiring entities to reserve resources for traveling straight, entities are assumed to have reserved the 

resources in front of the vehicle for a period of Tbreak-

Tbreak ^

In our implementation, the minimum distance for Tbreak must be greater than the amount of time 

required for a vehicle traveling at the maximum velocity (Vmax) to decelerate to a stop (let d^in be the 

minimum deceleration for deliberate breaking).

Concept Figure 6.9 shows the application of the CwoRIS pattern to the vehicle change lane behavior in 

the road scenario. In the figure, vehicle w (the white car) shows the entity considered in this calculation 

who wants to execute a change lane to the upper lane; w' shows the intended position of the vehicle after 

execution of the change lane behaviour.

In order to show the possibilities of the CwoRIS pattern, the concept for implementing the change 

lane behavior uses a combination of both scheduling and mutual exclusion version. Coordination with 

the destination lane (the lane with vehicle p, r and w') uses the mutual exclusion version for two reasons: 

firsi.ly, vehicles may stop on a lane (specified by the WocIr(roadR) constraint in Section 6.-3). Secondly, 

a vehicle’s cruise control can be use. Coordination with a competing lane (the lane with vehicle y) uses 

the scheduling version because vehicles in the competing lane cannot use the cruise control to sense the 

target area.

The assumption in this design is that the change-lane vehicle must be able to sense whether there 

are any vehicles at its destination (red color road in Figure 6.9) just before it executes the change lane 

behavior (Step 4 in Figure 6.9).

Vehicle’s Behavior The steps required for vehicle w to perform the change-lane behavior are shown 

with numbers near the bottom of Figure 6.9. The steps are essentially the same as vehicles using the 

CwoRIS scheduling protocol with some changes to include CwoRIS mutual exclusion protocol:
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Figure 6.9: CwoRIS - Change lane in road scenario

1. A vehicle starts listening and building up a situation picture TmaxHoid before the vehicle wants to 

start changing lane.

2. If the vehicle did not hear any conflicting request, it may send the request for changing lane. 

The reqtiest must be sent to the sending area described above and at least T,„axHoid ~ Threat “ 

MsgLatency before the entity uses its resources.

3. The vehicle receives feedback using the request/feedback protocol, which determines whether the 

request is valid. If the request is valid, it may change lane in the specified time (which is at least 

Threat away).

4. When it is time for the vehicle to change lane, it may start changing lanes if it senses that there are 

no vehicles in the sensing zone (red color road in Figure 6.9).

5. The vehicle complete change lane behavior.

The three vehicles (p, r, y) in the figure show the different cases of a vehicle’s behavior when it receives 

a change-lane request.

• Vehicle p (purple car): the vehicle is in vehicle w's destination lane and is greater than Umax * Threat 

away from the intented location where vehicle w wants to change lane to. Vehicle p is not within 

w's send area and will not receive w’s request. When w changes lane, p would sense the vehicle and 

drives safely behind w using p’s cruise control.

• Vehicle r (red car): the vehicle is in vehicle w’s destination lane and is traveling near the intended 

location where vehicle w wants to change lane (within Umax * Threat)- By r’s implicit reservation.
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vehicle r has rights to the resources that w requires. The behavior for vehicle r is the same as the 

mutual exclusion version of CwoRIS: r can choose to either:

— Start using the resources (w’s sensing zone, the red color road in Figure 6.9) before Threak- 

Vehicle w will sense that vehicle r is using the shared resources and cancel its change-lane.

— Give way to vehicle w by not accessing the resources within the period specified in the request.

• Vehicle y (yellow car): vehicle y wants to change lane to the same destination lane as w's destination 

lane. Vehicle w and y are in a race condition which will be handled by the request/response protocol. 

Based on the protocol, the vehicle that has its request delivered first has the rights to use the 

resources.

Lurking time Based on the CwoRIS scheduling version, an entity can only hold some resource for at 

most a period of TmaxHoid- Due to the implicit reservation by vehicles in the destination lane, a vehicle 

can only request a resource at least Tbreak in the future. When applied to Lemma Lurking time (repeated 

below for easy reference):

Lemma (Lurking Time): Given a policy that defines the longest period for which a resource 

can be reserved is TmaxHoid- In order for an entity x to ascertain that no other entities is 

holding on to a resource q after Tmaxhoid ~ ^ from now, entity x must be able to access q 

before #,naxhoid ~ ^ from now and has been lurking for 6 wit hout, hearing a conflict,ing request,.

Let Execute be the time required for a vehicle to perform the change-lane behavior. Therefore, vehicle 

X wants to change lane (access the resources) Tbreak from now, which is equivalent to Tmaxhoid “ ^ ii> the 

above lemma. In addition, the vehicle requires Execute time to change-lane, therefore the minimum value 

for TmaxHoid IS n\ayi{Execute) Tbreak-

Based on Lemma Lurking Time, in order for a vehicle, x, to ascertain that no other vehicles is holding 

on to the resources for changing lane into after Tbreak from now, entity x must be has been lurking for 

^ = TmaxHoid ~ Tbreak without hearing a conflicting request.

Sending area Figure 6.9 shows the sending area for a vehicle attempting a change-lane behavior. The 

area shown is relative to the sending vehicle, w. Note that vehicles on the same origin lane arc excluded 

of the send area because of the assumption on cruise control.

• Vehicles in the destination lane use the implicit reservation similar to CwoRIS’s mutual exclusion. 

This means that those vehicles with implicit reservations (nearer than Tbreak) may use the resources 

at the same time. These entities must be informed of the entity’s request.
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• Vehicles in the competing lane may also request to change lane to the destination lane. These 

entities uses the CwoRIS scheduling protocol to request resources, therefore, the sending area must 

be TmaxHoid * ti^ax away from where t he vehicle first expects to use t he resource.

In addition, vehicles must use sensors to check that the area is clear just before changing lane (Step 4 in 

Figure 6.9), this is required because vehicles in the destination lane could have stopped in the lane.

6.3.3.2 Liffey scenario

This section presents the application of the CwoRIS pattern to the Liffey scenario to support vehicles 

crossing the Liffey junction. In the Liffey scenario, the two junctions are connected by a middle-road. As 

mentioned there arc two cases:

1. Combined-Liffey: The middle road is short, the middle junction is represented as another junction 

scenario.

2. Independent-Liffey: The middle road is long, the middle junction is represented as two road scenar­

ios.

Note: while it is expected that there is a number which can differentiate long/short road and when is the 

combined independent scenario better, determining this number is not within the scope of this thesis.

The application of the CwoRIS protocol involves three steps: finding the sending area, lurking time 

and the vehicle’s behavior.

Combined Liffey In the combined scenario, the middle road is considered as part of the junction, 

therefore, vehicles cannot stop in the middle road. All three junctions are represented as resources and 

\'ehicles send requests to reserve the resources in order to access the combined junctions.

The vehicle’s lurking lime in the combined Liffey implementation is the same as the single intersection 

scenario. The calculation of the sending area is also the same. Vehicles must deliver their request to 

all vehicles within sendAreaa(t) = {maxx^n^lx.te) — t) * Umax of the junction; the difference is that the 

combined Liffey scenario has six roads leading in to the junction instead of four, and that the size of the 

’junction’ in the combined Liffey scenario is larger. In addition, the vehicles’ behavior remains the same 

in the combined Liffey scenario.

Independent Liffey The independent Liffey scenario treats both the two junction scenarios as seperate. 

However, compared to a scenario where the middle road is long and the two junction scenarios are indeed 

independent, there are two additional considerations for the Liffey scenario with short middle-road:
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Figure 6.10: Implementation of independent Liffey scenario

1. Vehicles stopping in the middle road creates a bottle neck between the the two junctions. Section 

6.2.2.2 describes that the situation may result in starvation for certain vehicles.

As described in Section 6.2.2.2, starvation could be prevented by allocating vehicles in the middle 

road a higher priority to complete their crossing.

2. Limited driving space in the middle road: vehicles in the middle road take up space and vehicles 

may cross the junction then realize that there are no driving space for in the middle. While the 

normal exit-junction enter-road checks that the first few resources are not occupied before a vehicle 

attempts its crossing, the Liffey scenario is different because the exit-road (middle road) could be 

much shorter.

Recall that a road has been modelled as The n in the definition refers

to the number of resources available: the CwoRIS pattern can be used to reserve the amount of 

resources a vehicle requires to occupy on the middle-road. Since a vehicle docs not know how long it 

must stay in the middle-road, the mutual exclusion version is implemented. Therefore, it is assumed 

that the middle-road is equipped with resource sensors so that vehicles may access the sensors to 

check if there are any vehicles currently on the middle-road.

Figure 6.10 shows the implementation of the independent Liffey scenario. In the figure, a vehicle is 

shown crossing the west-side junction and is about to move into the middle-junction. In the figure, the 

middle junction is seperated into two colors, the northern side of the middle-road is grouped with the 

junction in the west-side and the southern side of the middle-road is grouped with the junction in the 

east-side; this is because a vehicle would perform the coordination to cross the west-side junction with the 

north-side middle road as a pair. Lets define the lurking time, sending area and behavior of the vehicles:

1. Lurking time: vehicles lurking time is the same as the a single junction. Vehicles in the middle road 

must lurk for the same lime as those that just arrived in the Liffey junction.
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2. Soiidiiig area: vehicles need to sent their requests for the junction and the middle-road to all four 

roads entering the junction; the middle-road and the three other roads incident to the junction. As 

the sending area encompasses the entire middle-road, there can be two possible implementations;

(a) Send requests only to the middle-road: in this implementation, the vehicle lurking time only 

starts when it enters the middle-road.

(b) Send requests to the middle-road and all roads leading into the junction: in this implementation, 

vehicles can ’start lurking' for the second junction even before it crosses the first junction.

The implementation in the simulation uses the second implementation; the implementation is chosen 

because having vehicles lurking in the middle-road may contribute to the mentioned bottleneck in 

the middle-road.

3. Vehicle behavior: nearly the same as the intersection scenario except that vehicles must not exit the 

junction and enter the middle-road at high-speed if there are already vehicles in the middle-road 

(i.e., by checking the resource sensors in the middle-road).

6.3.4 Summary

I'his section demonstrated the use of Comheolai'ocht in t he development of protocols for the Liffey scenario. 

It is shown that Comheolai'ocht can divides a complex problem into smaller problems which can be solved 

independently and be composed back to form the system.

6.4 Simulation results

This section demonstrates the scalability and reliability of protocols developed using Comheolai'ocht in a 

large-scale simulation experiment.

The following sub-section presents the simulation configuration. Section 6.4.2 compares the simulation 

results of Comheolai'ocht-developed protocols with other protocols designed specifically for intersection 

scenarios. The results show that protocols developed using the generic Comheolai'ocht have similar per­

formances to the specialized protocols. Section 6.4.3 presents simulation results focusing on the effects of 

communication and entity errors in Comheolai'ocht-developed protocols. The results confirms that pro­

tocols developed using Comheolai'ocht are reliable. Section 6.4.4 presents simulation results with varying 

entity numbers and shows that the developed protocol is scalable. The same section presents results 

for the Liffey scenarios and reinforces the argument that Comheolafocht supports protocols design for 

complex scenarios.
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6.4.1 Simulation configuration

There are a lot of robot development environments (RDE) for developing robotic applications. Kramer 

and Sclieutz |2007] provide a good survey reviewing nine RDE. The simulation described in this Section 

is implemented using the Player/Stage RDE |Gerkey ct ah, 2003]. Playcr/Stage is used in the evaluation 

because of its support for multi-robots simulation and ease of usage. The Player Stage is split into the 

player controller and the stage simulator, the player controller is the location where the vehicles’ control 

and coordination code are implemented while the stage simulator provides the simulation environment.

This section presents the implementation of various components in the simulation, including the envi­

ronment (Section 6.4.1.1), sensors (Section 6.4.1.2) and communication (Section 6.4.1.3).

6.4.1.1 Environment

Both the intersection and the Liffey scenarios are simulated on two-lanes roads; with two lanes going into 

and two lanes out of the junction. The maximum speed of the vehicles is set to 60km h, and TmaxHoW is 

sot at 8 seconds. Each road is 280 meters long (i.e., Roundup(60km h * TmaxHoWsec * 2); the multiply by 

2 is so that the scenario is big enough that geo-cast communication do not imply sending to every entity, 

and the rounding up is just for simpler calculations). Vehicles are randomly generated at a lane on a road 

leading into the junction and each vehicle entity has a random destination; vehicles on a left lane may 

only drive straight or turn left, similarly vehicles on the right lanes may only drive straight or turn right. 

In the event that a vehicle is generated on top of another vehicle, the vehicle is randomly regenerated on 

another lane.

In the Player controller, at each step, each vehicle entity makes its own local decisions on their steering 

and acceleration. Controls on the steering and acceleration are sent to the Stage simulator which simulates 

the vehicle’s movement. In addition the simulator gathers the sensors’ information which is returned to 

the Player controller.

The protocol for the independent Liffey scenario requires that the middle-road is equipped with sensors 

to detect entities on the road, the Stage environment simulates these sensors by looking up vehicles’ actual 

location.

Any collisions between vehicles arc recorded by Stage simulator using vehicles’ actual location.

6.4.1.2 Entity’s sensors

Each vehicle entity is equipped with a forward sensor that provides the vehicle with the distance to 

obstacles in front of it. The forward sensor’s range is set to be two vehicles length greater than the
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voliicle’s stopping distance. This sensor is used to implement reactive cruise control (applying breaks 

when there is a vehicle near) for the vehicle. Cruise control is only active on the road scenario and is 

deactivated when a vehicle is crossing a junction because vehicles are to follow their scheduled resource 

usage, the cruise control may unnecessary slow down a vehicle when it detects other vehicles crossing the 

junction.

In addition, each vehicle is equipped with GPS, speed and heading sensors. Stage simulates these 

sensors by reading the information of the actual representation.

6.4.1.3 Communication

Inter-entities communication is implemented using C—1-. Messages sent are collected at a centralized 

data structure and are delivered to the entities based on the specifications in Section 5.1 (i.e., geo-cast 

with ordered delivery, bounded message latency and real-time feedback.)

Imperfect communication is simulated by two parameters; the probability of a geo-cast failure, and 

the probability of each message failing given that the geocast has failed. This second parameter is used 

to simulate delivery failure of a message or an acknowledgment.

6.4.2 Implementation protocols comparision

This section compares the simulation results of Comheolai'ocht-developed protocols with other protocols 

made specifically for the intersection scenarios. The following sub-section describes each of the protocols 

that is compared. The next sub-section describes the comparison matrix and show how Comheolai'ocht- 

developed protocols compare with other protocols.

6.4.2.1 Intersection collision scenario protocols

The following describes the most significant existing protocols for the intersection collision avoidance 

scenario:

Traffic lights The traffic lights protocol models actual traffic lights in the intersection. The traffic light 

protocol is set to cycles of 20 seconds because it provides the best performances in the simulated 

scenario, and each cycle allows vehicles from a single direction to travel. In this evaluation, the 

traffic lights protocol is the onlj' implementation that uses only sensors; it does not depend on 

communication and reservation of crossing space.

Centralized The centralized protocol implements vehicles’ reservation for crossing the junction using a 

centralized server, which is modeled after the Autonomous Intersection Manager [Dresner, 2009]. A
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vehicle using this protocol sends a request to a centralized Intersection Manager which schedules 

the vehicle’s crossing and replies to the vehicle.

The following describes Conihcolaiocht developed protocols for the intersection collision avoidance sce­

nario:

C No optimizations This protocol uses only local scheduling (without the live-lock prevention inter­

nal simulation method), it implements the request feedback protocol with inference and priority 

presented in Section 5.4.2.

C Delay resend This version enhances the no optimization version by delaying an entity’s resend request 

in order to prevent live-locks. Depending on the number of vehicles waiting to cross intersection 

and how long a vehicle has been waiting at the intersection, the vehicle decides the time it waits 

before resending its subsequent requests. That is, a vehicle that has been waiting for a long time, 

docs not wait as long as a vehicle that has just arrived.

C Preemption This version implements both preemption /I-constraint (Section 5.4.3.6) and the live-lock 

prevention internal simulation method (Section 5.5.2).

6.4.2.2 Comparison matrices

This section compares the simulation results of the different protocols described in the previous section 

for perfect communication. The protocols arc compared with respect to vehicle density in the scenario; 

this parameter, vehicle density, records how many vehicles arc in the scenario at the same time. In order 

to maintain the vehicle density, a vehicle is generated and placed on the road whenever another vehicle 

completes it crossing and leaves the scenario.

Graphs in this section compare different parameters (y-axis) (i.e., throughput, crossing time, number 

of vehicles crossing without stop) for different protocols (lines) over different vehicle densities on the road 

(x-axis). Each point on the graph is calculated by averaging over four sets of sinndations where each set 

runs six hours of simulated time.

Throughput The first comparison parameter, throughput, records the number of vehicles granted 

access to cross the junction per hour. Figure 6.11 shows the graph comparing the throughput of the 

different protocols for different vehicle density.

The graph shows that each implemented protocol has a maximum throughput, such that a higher 

density of vehicles does not increase the throughput any further. The maximum throughput for simulations 

using:
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• Traffic lights is readied when tlic veiiiclc density reaches 30.

• The other protocols is reached when the vehicle density is around 20.

It can be seen from the graph that the throughput of Coinheolai'ocht’s protocol with no optimization 

decreases by around 50 vehicles after reaching its maximum at 20 vehicle density. The decrease in 

throughput is due to vehicles involved in live-locks when the density of vehicles increases.

The lYaffic lights protocol has the highest maximum throughput at 1100 vehicles per hour. The traffiic 

lights protocol gives the highest throughput because the implementation naturally provides a ’platooning’ 

effect where vehicles form plat oons at. t he t raffic lights which moves off at. t he same t ime. In contrast. 

all other protocols arc based on reservation where vehicles are allocated higher inter-vehicle distances for 

reaction time in the event of vehicle breakdowns. In contrast, traffiic lights protocol provides the least 

throughput when vehicle density is low, this is because a vehicle has to stop at the junction even when 

there are no vehicles crossing.

Ranked second in maximum throughput is the Comheolafocht’s protocol with preemption at 900 

vehicles per hour. The preemption version provides higher throughput compared to other version of 

Comheolafocht’s protocols (i.e., delay send and no optimization) because it has no live-locks. The delay 

send version is better than the no optimization version also because the delay send version uses time as 

a heuristic to break out of live-locks.

An unexpected result is that Comheolafocht’s protocol with preemption actually provides higher 

throughput than the centralized protocol. Further investigation reveals that two factors contribute to 

this result:

1. Comheolafocht’s protocols (including the preemption version) allow a slightly higher ratio of vehicles 

traveling straight and turning-left to cross the junction (33-35% each) when compared to vehicles 

turning right (31-33%) despite vehicles being generated with equal probability in each cases. This 

unbalanced ratio is attributed to two properties:

(a) Right-turning vehicles require more resources and for a longer period of time.

(b) Entities using Comheolafocht’s protocol coordinate in a distributed manner, they back-off when 

their required resources are not available and re-send their request after some time.

These two properties mean that right-turning vehicles find their requests harder to be satisfied and 

take more time to cross. In contrast, vehicles driving straight require resources for a shorter period 

and vehicles turning left require less resources, these vehicles may therefore satisfy their allocations
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Figure 6.11: Junction throughput with different implementations

2. The centralized protocol grants vehicles’ request based on a first-come first-serve allocation. Olt- 

servatiou of the allocations revealed that resources usage in such allocations is fragmented; once a 

right-turning vehicle resources’ are allocated, it. is difficult for the centralized scheduler to fit other 

vehicles (c.g., driving straight or doing another right turn) in the schedule. The result is that other 

resources in the junction are not utilized.

Crossing time The second comparison parameter, crossing time, records the average (Figure 6.12(a)) 

and the maximum (Figure 6.12(b)) time recorded for vehicles crossing the junction. This crossing time 

is recorded from the period when the vehicle first arrives 250 meters from the junction untill the time 

the vehicle arrives at its destination road (just completed crossing the junction). Figure 6.12 shows the 

crossing time plot against the different vehicle density for comparison between different protocols.

The graph shows that the traffic lights protocol has a crossing time that is independent from vehicle 

density. This is because our simulation of 280 meters and 20 seconds is optimized to allow all vehicles 

queuing on a road to cross the junction in a single round. In all other protocols, the average and maximum 

crossing time increase with higher vehicle density. The crossing time for the other protocols however is 

smaller than the traffic lights version when the vehicle density is low.

Comheolafocht’s no optimization protocol has the highest crossing time because of live-locks; the 

duration for live-locks are reduced in both delay send and preemption version. The maximum crossing 

time is similar in the centralized, delay send and preemption protocols. While the maximum crossing time 

is high (near to twenty minutes) in instances where the vehicle density is high, it is observed (from the
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Figure 6.12: Crossing time in seconds, (a) Average, (b) Maximum

simulation output) that every vehicle eventually crosses the junction (i.e., there is no starvation). Note: 

by observing the last few minutes of each simulation, the author deduce that there are no vehicles that 

faces starvation - if there was any vehicle that faced starvation and cannot crosses the junction, then there 

would be a lane that has lots of vehicles queuing behind it. There arc no simulation runs observed with 

such a long queue.

Comheolai'ocht’s preemption version provides average crossing times that arc better than the centralized 

protocol in several cases, this is attributed to the protocol allowing more driving straight and turning left 

vehicles to cross, which brings down the average crossing time.

Crossing without stopping The third comparison parameter, crossing without stopping, records the 

number (Figure 6.13(a)) and the percentage (Figure 6.13(b)) of vehicles crossing the junction without 

stopping.

Comheolai'ocht’s preemption and no optimization protocols allow the most vehicles to cross the junc­

tion without stopping. The preemption version provides the best results because of the preemption 

,d-constraint, a vehicle in-front may preempt another vehicle behind since the vehicle in-front knows that 

the vehicle behind could not have used the resources it had reserved. In contrast Comheolai'ocht’s delay 

resend version has a smaller number of vehicles crossing without stopping because they only wait for some 

time before resending a request, many vehicles arrive at their decision point during the wait and have to 

stop. Vehicles in the centralized version stop because there are no available resources, in many cases, an 

entity required resource has been allocated (i.e., to a right turning vehicle).

The traffic lights protocol provides a very high number of vehicles crossing without stopping when the 

vehicle density is at 30. However, on cross-examining the percentage of vehicles crossing without stopping.
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Figure 6.13: Vehicles crossing the junction without stop, (a) Number, (b) Percent of throughput

it shows that the percentage of vehicles crossing the junction without stop is constant at 30% for vehicle 

density below 30, and it drops to 20% when vehicle density is above 30.

In conclusion, Comheolafocht’s preemption provides better results than the centralized protocol be­

cause of two reasons; fragmented allocations in the centralized protocol, and Comheolafocht’s allowing 

more left-turn and straight crossings. Comheolafocht’s protocol allows the most vehicles to cross the junc­

tion without stopping because of the preemption /9-constraint. However, the traffic lights implementation 

naturally provides vehicle platooning thereby giving the best throughput and crossing time when vehicle 

density is high. An interesting future work would be to extend Comheolafocht scope to support entity 

grouping together (i.e., coalitions) which can be use to implement platoons.

6.4.3 Protocol’s reliability evaluation

A goal of Comheolafocht is to ensure that the developed protocols arc reliable; that the protocol is 

able to ensure system’s safety despite communication and entity errors. This section presents simulation 

results of the intersection collision scenario implemented with various versions of Comheolafocht-dcvcloped 

prot ocols. 'I'he following sub-sect ion present,s t he result s focusing on how errors in communicat ion affect s 

the system. The next sub-section then presents simulation results of a scenario where there arc simulated 

vehicle failures in the junction.

6.4.3.1 Communication errors

This section presents simulation results of the intersection scenarios with simulated communication errors 

(Figure 6.14). As mentioned, communication errors in the simulations are simulated using two parameters
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describing; i) the probability of a gcocast failure, and ii) the probability of each message failure given 

that the gcocast has failed. Three versions of Comheolaiocht-developed protocols arc compared in this 

section: no optimization, delay resend and preemption. In each simulation run, the parameter describing 

“ihe probability of a message failure given geocasl. has failed” is set at. 70%, in addit ion, the total collision 

model is simulated using Comheolai'ocht’s preemption version with this parameter initialized to 100%. 

The ot her communicat ion error parameter, t he “probabilit y of a geocast failure”, is simulated using t he 

values of {5%. 10%, 20%, 30%, 50%}.

The graphs in Figure 6.14 show the results from the simulation. These graphs (Figure 6.14.1 to 5) 

compares throughput and average crossing time {y-axis; figure a and b respectively) over the probability 

of a geocast error (x-axis) for scenarios with different, vehicle density. In each graph, four lines are plotted 

to represent the no optimization, delay resend, preemption and preemption with total collision model. 

Each point on the graph is calculated by averaging over four sets of simulations where each set runs six 

hours of simulation time.

There arc no collision recorded in all simulation runs - showing that Comheolaiocht-developed protocols 

ensure entity’s exclusive access to the junction despite communication failures.

In the simulations, the total collision simulation set serves as a baseline, and the other protocols show 

the effect of 70% of single message losses (givi'ii that the geocast, transaction fails). Throughput and 

average crossing time are chosen to evaluate the simulations because the former is a measurement of the 

system’s progress (e.g., live-locks and deadlocks) and the later measures entities’ progress.

As expected, simulation runs with total collision provide the highest throughput and the lowest average 

crossing time. Conversely, simulation runs using the no optimization version have the lowest throughput 

and the highest average crossing time.

An interesting observation is that the preemption version provides the same throughput as the total 

collision simulations. The preemption version’s i) internal simulation protocol and ii) preemption ft- 

constraint, allows the entity’s to claim junction resources that would otherwise be wasted due to single 

message failures. This non-wastage of resources is the reason for the preemption version having the same 

throughput as the total collision version. In contrast, simulations using the other two versions have 

significantly lowered throughput when the error rate is increased.

The average crossing time for simulations using the preemption version is higher than that of the total 

collision version. This is because, entities in the total collision version can use consensus to determine 

whether another vehicle can cross the junction compared to the preemption version which requires two 

rounds of communication without errors to prevent live-locks.
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Figure 6.14: Effect of communication errors on (a) throughput,, (b) average crossing time.
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6.4.3.2 Vehicle breakdown

This section presents simulation results with simulated vehicle breakdowns in the junction. This simulation 

is only carried out for Comheolaiocht’s preemption version and for vehicle density = 20. Simulations are 

evaluated using these values because these scenarios have the most vehicles moving at high speed. It is 

expected that scenarios with more vehicles traveling at a higher speed are more complex when one of the 

vehicle breaksdown. The table below shows the results of the simulation. Each row in the table corresponds 

to the average of four rounds of simulation with each round equivalent to 24 hours of simulation time.

Communication Vehicles Average Maximum Breakdowns Crashes

error cross time cross time

0% 19187 34.8 241.6 646 0

5% 18869 36.3 254.6 662 0

10% 18859 36.2 238 675 0

20% 18356 38.4 249 667 0

30% 18234 39.2 274.2 609 0

50% 17187 44.9 325 569 0

As can be seen from the table above, there arc no collisions recorded in the simulations despite more 

than 14.000 breakdowns sinudated with varying degrees of communication errors.

6.4.3.3 Conclusion

In conclusion, simulation results in this section confirm that Comheolai'ocht-developed protocols are safe - 

they ensures that the safety constraints arc not violate (i.e., no collisions in the scenario) despite imperfect 

communication and entity failures. The simulation results also confirm that Comheolai'ocht-developed 

protocols prevents live-locks.

6.4.4 Protocol’s scalability evaluation

A challenge is to build coordination solutions that scale when the number of entities increase in the 

system. Comheolaiocht-developed protocols overcome the scalability problem by utilizing local coordina­

tion, thereby providing an upper bound to computational resource usage (i.e., bandwidth, memory and 

processing power). This section presents simulation results that confirm that Comheolai'ocht-developed 

protocols provide such upper bounds. In particular, the following sub-section presents simulation results 

focusing on resources usage parameters (i.e., messages received per second, number of records stored in 

memory) in the intersection collision scenario with different vehicle density values. The next sub-section
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t hen presents t he simulat.ion resultrS implement ing the LifFey scenario. R.es>ilt,s in t.he Liffey scenario show 

that i) Comheolaiocht can be used to develop protocols for complex environments where multiple scenarios 

are combined together, and ii) that, protocols of the Liffey scenario are reliable and scalable.

The simulat ion results present ed in t his sect,ion (bot h intersect ion collision avoidance and Liffey sce­

narios) use the Comheolai'ocht’s preemption version of the protocol, each data point in the graphs records 

the average over four rounds of six hours of simulated time.

6.4.4.1 Higher vehicle density

This section presents simulation results for the intersection collision avoidance scenario focusing on two 

parameters: messages received per second and number of records stored. The first parameter is a direct 

measurement of bandwidth usage and the second parameter measures memory usage. Together, these 

parameters affect computational power usage; computational power is required for i) deciding whether 

to accept or ignore a received message, and ii) to search through the accepted messages (i.e., the stored 

records) for a schedule (i.e., the internal simulation method that prevents live-lock).

Figure 6.15 shows the average and maximum number of requests received per vehicle in the intersection 

collision avoidance scenario. It can be seen that the numbers increase proportionally with the vehicle 

density in the junction. This increase in requests received per vehicle is the result of vehicles staying 

longer in the vicinity of the junction, which can be seen from Figure 6.16. Figure 6.16 plots the average 

number of records received divided by the average time a vehicle takes to cross the junction, it thereby 

shows the average records received per second for each vehicle in the jnnetion. It can be seen from the 

graph that the records received per second reach a ceiling after the vehicle density increases beyond 20. 

This implies that the number of messages received per second is bounded, and that the system’s bandwidth 

requirement is bounded as claimed.

Figure 6.17 plots the average (a) and maximum (b) number of records stored in vehicles’ situation 

picture over the density of vehicles in the intersection collision avoidance scenario. The value for “number 

of records stored” for each vehicle is the maximum number of records stored in the vehicle’s situation 

picture, from when the vehicle enters the scenario (at the beginning of the road) untill it leaves the 

scenario (after it has crossed the junction). The graph in Figure 6.17 shows that:

1. the average number of stored records is significantly lower than the number of entities in the scenario, 

(e.g., an entity stores an average of eight records for scenarios with 50 vehicle density).
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2. the average number of stored records only increases slowly beyond 30 vehicle density. Further 

simulations for 60 and 80 vehicle density show that the average number of records stabilizes at 

around 8.5.

3. the maximum number of records stored for a vehicle is much higher and only stabilizes at around 

24. (Note: there is a vehicle with 29 records in situation picture when the vehicle density is 50, this 

vehicle was performing a right turn and stayed in the scenario for an extended period of time while 

there are more vehicles arriving and crossing during this period, resulting in the highcr-than-norinal 

number of records.)

These observations imply that the number of stored records are bounded, therefore an entity’s memory 

usage can be bounded.

Because both stored records and received messages per second is bounded, an entity’s requirement on 

computational resources is also bounded. Therefore, the results show that Comhcolai'ocht’s preemption 

version of the protocol is scalable with the number of entities in the junction.

6.4.4.2 LifFey scenario

This section presents the simulation results of the Liffey scenario using the protocol developed ;n Section 

6.3. In this simulation, the length of the middle road is ten meters; enough space only for two vehicles.

As shown in Section 6.3, there are two protocols for the scenario:
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• Combined Liffey: where t he middle road is represented as anot her junction scenario, vehicles crossing 

the junctions must obtain the resources for all three junctions before crossing.

• Independent. Liffey: where the middle road is represented as a road scenario. Vehicles may stop in 

the middle road to coordinate their crossing of the second junction.

As mentioned, each data point in the graphs records the average over four rounds of six hours of simulated 

time.

There are no collisions recorded in the simulations of both implementations. The results of these 

simulations are presented in Figure 6.18. It can be seen from the graphs that:

1. The throughput (Figure 6.18(a)) and average cross time (Figure 6.18(b)) graph patterns arc similar 

to those of the single junction scenario. For instance, the throughput hits a maximum at vehicle 

density 20, and the vehicle crossing time increases when the vehicle density increases. However, in 

t he Liffey scenarios, throughput is lower and crossing times are higher than the intersection collision 

avoidance scenario, this is because of the bottleneck in between the two junctions (i.e., the middle 

road).

2. The independent Liffey implementation only has better throughput and crossing time when the 

vehicle density is low (at. vehicle density 0), otherwise the combined Liffey implementation is 

better.

3. The number of requests sent (Figure 6.18(c)) and received (Figure 6.18(d)) is lower in the combined 

Liffey. Similarly, the average number of records received per second (Figure 6.18(f)) is also lower in 

the combined Liffey. This is because vehicles who require to cross both junctions only coordinate 

once using the combined Liffey, but, they need to coordinate twice in the independent Liffey.

4. In contrast,, the number of records stort'd in situation picture is lower in the indc'pendent. Liff(\v 

(Figure 6.18(e)). This is because vehicles that cross only one junction do not store records for 

vehicles crossing the other junction.

In conclusion, results in the Liffey sc:enario shows that Comheolai'ocht.-developed Liffey scenario protocols 

are safe (i.e., the safety constraints are respected) and scalable (i.e., there is an upper bound on message 

receives per second and records stored in situation picture).
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6.4.4.3 Summary

The section showed that the two parameters: messages received per second and number of records stored 

dictate bandwidth, memory and computational power usage. In addition, it is shown that both intersection 

collision and Liffey scenarios have an upper bound on the messages received per second and number of 

records stored. These upper bounds can be translated to upper bounds on resources usage. As such, the 

result s in t his sect ion confirm t hat Comheolai'ocht.-developed prot ocols arc scalable t o number of ent.if ies 

in the system.

6.5 Summary

This chapter has shown that protocols developed using Comheolaiocht arc scalable and reliable. 

Comhcolaiocht-developed protocols arc scalable because the bandwidth, memory and computational power 

usage is bounded. Comhcolai'ocht-devcloped protocols are reliable because i) entities using these proto­

cols will not violate system’s safety constraints and ii) entities will not be in a live-lock or deadlock. In 

addition, the chapter demonstrated the use of Comheolaiocht to develop protocols for the intersection 

collision avoidance and Liffey scenario. These results have also been demonstrated through simulated 

experiments. These experiments have also shown that the protocols developed using Comheolaiocht arc 

as efficient, as specialized prot.ocol for t he int.ersect.iou collision scenario.
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Chapter 7

Conclusion and Future Work

This thesis presented Coniheolai'ocht, a systematic approach to tiie design of scalable and reliable protocols 

for multi-entity coordination. This chapter summarises the most significant achievements of the work 

described in this thesis and assesses its contribution to the state of the art. In addition, some suggestions 

for future work are outlined.

7.1 Achievements

The motivation for the work described in this thesis arose of the increasing number of multi-entity ap­

plications developed. Such applications may be safety critical (i.e., violation of these requirements might 

endanger human safety and possibly damage crucial or expensive infrastructure), and have progress re­

quirements (i.e., some goals must be achieved). Protocols derived using Coniheolai'ocht ensure system's 

safety and allow progress despite imperfect perception, actuation and communication. In particular, de­

rived protocols ensure that entities behavior leave enough allowances for possible inaccuracies (bounded) 

and breakdowns (with knowm behavior). Similarily, derived protocols are tolerant against communication 

delays and omission. In addition, some applications may be required to scale in the nuinbter of entities 

deployed (e.g., to support faster operation or for robot maintenance) or require support for dynamic 

partxipantion, therefore, these systems should be scalable to the number of entities.

A review of existing work has shown that there are no generic (steps for developing) coordination proto­

cols that support dynamic participants, ensure system’s safety in the presence of imperfect communication 

and entity failure, and ensure that there are no deadlocks or live-locks.

The design of coordination protocols that arc scalable and reliable is particularly challenging because 

scalability in entity numbers is constrained by limited computational resources (i.e., bandwidth, memory
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and comput ational power), and system’s safety and goals requirement,s must be sat isfied despite component, 

failures (c.g., communication, sensors and actuators). For this reason, this thesis handles scalability 

by building on the observation that entities in a mobile environment are typically interested in events 

produced by other entities within a certain geographical area, and uses local coordination to derive an 

tipper bound for the number of entities involved in coordination. The work supports reliability by providing 

a systematic analysis of the application design, ensuring that entities have a strategy for acting safely 

even in the events of failures; protocols developed using Comheolai'ocht ensure system safety by having 

entities act in accordance to the defined coordination strategy in the event of errors.

In order to provide a systematic approach for designing coordination protocols, this thesis started 

by presenting a coordination taxonomy and providing the scope of this work; developers can then check 

whether Comheolaiocht can be used to develop their required multi-entity coordination protocols. Utilizing 

a shared-resource abstraction, this work allows developers to model coordination problems (i.e., those that 

exhibit, diffennit-t ime event ordering const raints) as shared-ri^sources whicdi enable t he use of scheduling 

and mutual exclusion techniques. In addition, the modeling of entities’ states and their evolution as 

graphs allows the developcTS t,o derive a ('oordination strategy that specifies what an entity may or may 

not do in various situations to ensure safety. By applying this coordination strategy to Comheolai'ocht’s 

CwoRIS pattern (which defines a coordination scheme, a request feedback prot.ocol and a rrecdieduling 

method), developers can generate scalable and reliable coordination protocols for their applications.

The scalable and reliable properties of Comheolaiocht-developcd protocols are shown using proofs 

and computational complexity calculations. In addition, the usefulness of Comheolaiocht’s approach is 

demonstrated in the development of a complex two-intcrscction scenario. Simulation results of intersec­

tion scenarios are used to confirm the scalability and reliability properties of Comheolaiocht-developed 

protocols.

Comheolaiocht provided systematic steps for developing protocols for multi-entity systems that arc 

both reliable and scalable; and that are not supported by existing coordination methods.

7.2 Future work

As is always the case in research, many issues are worthy of a more detailed investigation.

Comheolaiocht handle's coordination problems defined within a limited scope (e.g., problems with 

different-time event ordering constraints, non-group based coordination, static rc'sources). An extension 

to this work is to expand on the scope of problems that Comheolaiocht can derive coordination protocols 

for. For instance, while Comheolaiocht uses shared-resources for modeling different time event ordering
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constraints and uses scheduling and mutual exclusion for coordination, other classical representatiom like 

“product ion and consumption” and “read-writ e locks” can be used for t he modeling of ot her event ordering 

constraints.

Comheolai'ocht allows a design of coordination problems from scratch, however, there might be exiting 

autonomous or non-autonomous (i.e., human controlled) entities in the system. A significant extersion 

to this work is to investigate how to:

• Extend an existing system wdth additional entities or behaviour.

• Enable coordination between autonomous and non-autonomous entities.

In addition, most steps presented in Comheolai'ocht arc manual. Future work could investigate hov to 

automate these steps so as to shorten development time and to ease programming of autonomous imbile 

applications even more.

7.3 Summary

This chapter summarised the motivations for, and the most signicant achievements of the work deserbed 

in this thesis. In particular, it outlined how this work contributes to the state of the art of the coordinaion 

of autonomous mobile entities, by exploring the usage of scheduling methods for entities coordination In 

addition, some suggestions for future work presented.
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Part I

Code for finding Strategy
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This part shows the pseudo code for searching finding a safe si ragt.egy from a mode l.ransitjon diagram.

0
1

2
3

4

5

6
7

8 
9

10
11

12

13

14 

11 

12
13

14

15

16

17

18 

19 

18

19

20 
21 

22 
23 

24:

findStrategy(entrance, {}, initialized strategy, NULL)

findStrategyCcurr, seenLLFSM, strategy, prev)

{
if(curr is an exit mode) // termination Case 

if(curr is a non-fail-safe mode) 

if(seenLLFSM is empty)

strategy[curr].result = unsafe, RETURN;

else

strategy[curr].result = safe

strategy[curr].condition = I:prevIseenLLFSM, RETURN;

else

strategy[curr].result = safe, RETURN;

if(curr is a LLFSM) 

seenLLFSM += curr

if(curr is non-fail-safe and seenLLFSM = 0) 

strategy [curr].result = unsafe, RETURN;

strategy[curr].result = (pending * seenLLFSM) 

boolean allSafe = false 

for each destination mode, x, of curr 

{ xDeter = findDeterministic(curr, x)

// true if transition deterministic

// recursive step, search depth 

if(strategy[x].result is Null)

findStrategy(x, seenLLFSM, strategy, curr)

// deals with loops

if(strategy[x].result == (Pending ♦ LLFSM_prev))
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25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

if (LLFSM_prev is a subset of seenLLFSM)

strategy[x].result = (Pending * seenLLFSM) 

findStrategyCx, seenLLFSM, strategy, NULL)

// Recursive steps 

if(xDeter)

if(strategy[x].result == Safe) // Case 1 & 2 

strategy[curr].result = Safe, RETURN; 

if (strategy [x] . result == Unsafe AND seenLLFSM ^0) // Case 5 

strategy[curr].result = Safe

strategy[curr].condition = 0:xIseenLLFSM, RETURN;

if(strategy[x].result == Unsafe AND IxDeter AND 

seenLLFSM = 0) // Case 8 

strategy[curr].result = Unsafe, RETURN;

if(IxDeter AND (strategy[x].result == Safe OR // Case: 3 & 4 

(strategy[x] .result = Unsafe AND seenLLFSM /0))) // Case 7 

allSafe = true

If allSafe = true

strategy[curr].result = Safe, RETURN; // complete Case 3, 4, 7 

Else

strategy [curr].result = Deadend, RETURN; // Case 6, 9
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Part II

Rescheduling (other methods)
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. 1 Earliest plan

The first strategy for getting out of a live-lock is the earliest plan method. In this method, entities rec}uest 

for the earliest available resource time slot; the earliest time slot is calculated from each node’s internal 

situation picture.

Figure 1 shows a worst case based in the earliest plan model based on 3 entities, a, b and c. Compared 

to Figure 5.9, Figure 1 only shows the resource-time diagram; the reader can assume that the requests are 

delivered as in the sequence of Figure 5.9. In the figure, the small curly yellow arrows refers to an entity 

accepts a conflicting request when that request is delivered, the words describe the entity’s new schedule 

on accepting those conflicting request.

Figure l.A The scenario is the same as Figure 5.9.A where entity x’s message causes entity a to backoff. 

Just after entity a’s request is delivered, it recalculates the earliest time and send out its next request 

to be just after x.

Figure l.B Entity b who have sent request b before entity a’s request is delivered, heard a’s delivered 

request and accepts it. b recalculates and sent out its next request to start just after a’s first rer^uest.

Figure l.C Entity c who have sent request c before entity 6’s request is delivered, heard b's delivered 

request and accepts it. c recalculates and sent out its next request to start just after b’s first request.

Using CwoRIS’s request/feedback protocol: if entity c has the highest priority at this point, it can 

ignores entity a’s and entity b's second message and can access the shared resource after its second 

message is delivered.

Figure l.D Entity a and b second request is delivered.

• If entity b has the highest priority, it can ignores a’s second and c’s first message. Therefore b 

can access the shared resource after its second message is delivered.

• Assuming that entity a has the highest priority. During the delivery of a’s second message, it 

has heard entitye’s first message which is not in conflict with entity a’s first message. Therefore, 

entity a must accepts entity c’s first message and replan, a reschedules itself to after c.

— If entity b's priority is higher than c, b ignores c first request and schedule its third request, 

to be after a’s second request.

Figure l.E Entity c’s second request is delivered. By our assumption above, entity c has the lowest 

priority, having heard entity 6’s second request, c schedule itself after b’s second request.
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Entity a’s second request did conflict wit h entity c’s second request, therefore, when entity o’s cannot 

ignore entity c’s second request, it sent a fourth schedule after c’s second request.

Figure IF On the delivery of entity a’s fourth request, none of the other entities can ignore it, (since it 

has the highest priority) and entity a can access the shared resource.

Shortly after, entity b’s fourth request is delivered and it acquired time slot before entity a. The 

final request for ent ity c is not shown, but since c has the lowest priority, it would accepts both a 

and b and reschedule itself after them.

The rational for the earliest plan reschedule method is to force the entities to request for the same 

resources. When the reservered resources are the same, entities can ignore requests with lower priority 

using the request/feedback protocol’s inference and priority mechanism.

An evaluation on the worst case solve time for n nodes in a live-lock, happens when the nodes’ priority, 

with respect to the message arrival sequence, is in a decending order. In this worst case, the entities have 

to spent n rounds to align their resources request, and in the n -I- 1 ronnd the highest priority node can 

ignores all other requests and breaks out of the live-lock. In this worst case scenario, after the highest 

priority node gain accesses to its required resources in the n -f 1 round, the rest of the entities competes 

for the next (same) set of available resources and the next highest priority node can ignores all other 

entities. Thereafter, an entity may acquires accesses to the shared resources every two rounds after the 

n -h 1 round. Therefore, in the worst case, it takes 3n — 1 rounds for all n entities to clear a live-lock.

In the first n -h 1 rounds, n entities sent a request per round, giving a total of n(n -I- 1) messages. 

Every two rounds after the n -I- 1 round, an entity gets to access the share resources - there is one less 

request sent per two rounds; sum from (n — 1) to 1 gives |n(n — 1) and two rounds of it gives n(n — 1). 

Therefore the total number of request sent for all n entities to break out of a live-lock in the worst case 

is n(n -h 1) -f ri{n — 1) and in the order of O(n^).

.2 Other strategies; future work

This section presents serveral alternative strategies that can be compared in the future on the issue of 

breaking out of a live-lock.

The first strategy adopts the idea from the TCP IP; CwoRIS can uses randeemized or double backoff 

resend time so that the entities involved in the live-lock can avoid the same races in its resend. The 

staggering of resend time does not costs CPU and memory resources to implement, however, this solution 

does not guarantee that t he entity may break out of a live-lock and its effectiveness depends on t he number
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of entities involved in the live-lock. A future work is to optimize a good-enough timing strategy for a 

back-off and resend solution.

Another strategy is to have some entities back-off while others hold-wait-and-see during a conflict. 

Consider the example in Figure 5.9:

Figure 5.9.A Entity c accepts request from entity b and gets ready to back-off for a resend.

Figure 5.9.B When entity c’s request is delivered to everyone, entity c could have randomly decides to 

hold on to its request and wait (rather than resend).

Figure 5.9.D When entity c receives another request from entity b (request b'), entity c can infer that 

entity’s b previous request - the request that prevented entity c’s first, request from being valid - is 

in fact invalid. Therefore, entity c could actually acts on its first request.

This strategy is worth investigating in a future work because it is potentially cheaper in memory and 

CPU usage than the internal simulation method. However, the strategy is not investigated in this work 

because of two challenges:

1. Many permutations on decision to hold, wait and sec. Besides using a random strategy for waiting, 

the strategy could include other decisions like

(a) Wait only if < number of entities’ request receives are in conflict

(b) Wait only if < number of resources in conflict

(c) Wait only if < percentage of time is in conflict

(d) Wait until a double/random back-off time

2. The total number of ent ities involved in t he live-lock may affact. the quality of t he solut ion, making 

this strategy a difficult to test for efficiency.

For this thesis, the evaluation of CwoRIS foenses on the deterministic internal-simulation method.
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