
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

i^RINITY COLLEGE"

1 0 AUG 2n03

library DUBLIN

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any

other University, and that unless otherwise stated, it is entirely my own work.

Learning Object-Oriented Programming from the Students’

Perspective

Ioanna Stamouli

A thesis submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

February 2009

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

,/mJ
Stamouli

Dated: February 11, 2009

Acknowledgements

I would like to thank my supervisor, Meriel Huggard, for the maimer in which she has

supervised my research and this thesis. Meriel has always been willing to let me try out

new methods and ideas but always demanded justification for the choices I made. She was

always there to help me concisely formulate my ideas and identify their strong and weak

points. Her support, constructive criticism and patience throughout the many revisions of

this thesis are greatly appreciated.

One of the most influential people throughout my life and my studies has been Dr

Patroklos Argyroudis. 1 would not have dared dream that I could do this without his

support and constant encouragement. His moral support, especially during all those times

that self-doubt almost took over, gave me courage and kept me going.

Many thanks go to colleagues and friends in the Distributed Systems Group (DSG)

who were always willing to listen to my ideas and research worries even if they were

mostly outside their main research area. Specifically I would like to thank Neil O'Connor,

Alan Gray, Shiu Lun Tsang, Andrew Jackson, Jenny Munnely and Daire O’Broin for their

support and for their valuable suggestions on this thesis.

1 would like to say a big ‘thank-you’ to all the students who agreed to be interviewed

and facilitated this study. Also, I would like to thank Dr Owen Conlan for cross-validating

the analysis of a portion of my findings.

Thanks also go to the many people from the Computer Science education research

community who were very supportive from the very beginning in helping me with my

various research questions. Their feedback on my research allowed me to refine this study

while their positive attitude made me feel welcome in the community.

I wish to thank the Irish Research Council for Science, Engineering and Technology

iv

(IRCSET) and the Higher Education Authority (HEA) for providing financial support for

my studies.

Finally, I would like to dedicate this work to my family. My parents, Sakis and Maria,

and my little brother Nikos, supported me in countless ways. I wholeheartedly thank them.

Ioanna Stamouli

University of Dublin, Trinity College

February 2009

Abstract

Computer programming and programming languages are core modules in most undergrad-

\iate Computer Science and Engineering degree courses. However, learning to program

is a complex activity as it involves the understanding and use of abstract concepts, as

well as the development of problem-solving and general programming skills. This thesis

investigates how students experience learning object-oriented programming by following a

group of undergraduate students in Computer Science on an introductory object-oriented

programming course. In order to understand how they experience learning object-oriented

programming, we have investigated: a) the theoretical, b) the object-oriented and c) the

general aspects of programming from the students’ perspective. The theoretical aspect

concerns the students’ understanding of the nature of programming as an activity, what

it means to learn how to program, and their understanding of program correctness. The

object-oriented aspect concerns the students’ understanding of the unique constructs of this

programming paradigm, namely: objects, classes, attributes, methods and constructors.

The general programming aspect concerns the students’ understanding of programming

constructs that are common to most programming languages, specifically algorithms, ar­

rays, iteration mechanisms and selection.

These twelve research themes form the basis of this thesis. Together they provide

a more complete picture of the multifaceted process of learning to program within the

object-oriented paradigm from the students’ perspective. A longitudinal, qualitative study

was carried out on these twelve themes and data were collected through semi-structured

interviews over the course of an academic year. The analysis of the data was conducted

using the phenomenographic research approach.

The analysis of the twelve themes yielded sets of categories of description reflecting the

VI

students’ qualitatively different ways of understanding object-oriented progranmiing and

programming in general. The qualitative findings are presented in their structural and ref­

erential aspects. Furthermore, they are discussed in relation to relevant research on learn­

ing and learning to program. The results depict how students understand object-oriented

programming within the theoretical, object-oriented and general aspects of programming.

Learning of the various components of programming is characterised by a growing aware­

ness of the field of programming in relation to the development of qualitatively better

conceptions of the constructs. The development of abstract thinking, and general pro­

gramming skills, is experienced as the capability to draw from the learning environment

the appropriate elements that enable deeper understanding. Additionally, the students’

experience of their learning environment is studied, concluding that more practical work

and discourse is necessary to acquire a complete understanding of programming and the

constructs that comprise it.

Based on the findings, the study discusses the implications for educators when teaching

object-oriented programming. Educators should primarily be aware of the range of under­

standings held by their students and actively encourage the acquisition of richer conceptions

through carefully designed programming exercises and assignments. Teaching should not

be limited to the expert presentation of topics, but rather should provide students with a

number of ways to discern the desired understanding. Through this students wall develop a

holistic view of programming by becoming experts through practical work and experience.

Continuous discourse and encouragement of students to express their knowledge allows

them to become aware of their own understanding and, thus, identify more easily their

strengths and shortcomings in learning object-oriented programming.

vn

Contents

Acknowledgements iv

Abstract vi

List of Figures xiii

List of Tables xiv

Chapter 1 Introduction 1

1.1 Research Questions and Objectives... 3

1.2 Key Contributions... 3

1.3 Terminology... 4

1.4 Dissertation Outline.. 5

1.5 Publication Record... 6

Chapter 2 Related Research in Computer Science Education and Program­

ming 8

2.1 Computer Science Education .. 9

2.1.1 Small-Scale Studies... 10

2.1.2 Cognitive Psychology Studies.. 11

2.1.3 Learning Environments and Tools.. 13

2.1.4 Research Based on Edncational Traditions .. 14

2.1.4.1 Constructivism... 15

2.1.4.2 Phenomenography... 17

2.1.4.3 Critical Research into Gender.. 18

vin

2.1.4.4 Combined Approaches... 19

2.2 Research into Programming.. 20

2.2.1 Learning to Program... 20

2.2.2 Programming Constructs .. 20

2.2.3 Learning Taxonomies in Programming.. 21

Chapter 3 Phenomenography 24

3.1 Background.. 25

3.2 The Object of Learning ... 26

3.3 Variation ... 28

3.4 Data Collection and Analysis.. 30

3.5 Challenges of Phenomenography .. 32

3.6 Trustworthiness in Phenornenographic Studies... 34

3.7 Why Phenomenography... 38

3.8 Summary... 39

Chapter 4 The study 40

4.1 Themes of the study... 41

4.2 Selecting the Course... 43

4.2.1 Structure of the Course... 44

4.2.2 Contents of the Course.. 45

4.3 Selecting the Students.. 47

4.4 Data Collection.. 48

4.4.1 Interviews... 49

4.4.2 Observation.. 52

4.5 Transcriptions... 52

4.6 ATLAS.ti... 54

4.7 Analysis.. 54

4.8 Validity, Reliability and Generalisability in Practice.. 55

4.9 Summary... 58

IX

Chapter 5 The Theoretical Components of Programming 59

5.1 Students’ Understanding of Programming... 60

5.1.1 Structure and Meaning of Students’ Understanding of Programming 67

5.1.2 Changes in the Students Conceptions During the Course................... 70

5.1.3 Discussion on the Nature of Programming... 73

5.2 Learning to Program... 75

5.2.1 Structure and Meaning of Students’ Experience of Learning to Program 83

5.2.2 Discussion on Learning to Program... 87

5.2.2.1 Studies on Learning to Program... 87

5.2.2.2 Studies on Learning.. 90

5.3 Understanding of Correctness.. 92

5.3.1 Structure and Meaning of Students’ Understanding of Program Cor­

rectness ... 97

5.3.2 Learning to Program and its Relationship With Program Correctness 100

5.3.3 Program Correctness in the Literature..101

5.4 Summary.. 102

Chapter 6 The Object-Oriented Components of Programming 103

6.1 Understanding Object...104

6.1.1 Structure and Meaning of Students’Understanding of Object 109

6.1.2 Discussion of the Concept of Object.. 112

6.2 Understanding of Class... 113

6.2.1 Structure and Meaning of Students’ Understanding of Class...............119

6.2.2 Discussion of the Concept of Class..120

6.3 Understanding of Attribute..122

6.3.1 Structure and Meaning of Students’Understanding of Attributes . . 126

6.4 Understanding What a Method is...129

6.4.1 Structure and Meaning of Students’ Understanding of Methods . . . 134

6.4.2 Functions and Methods..136

6.5 Students’ Understanding of a Constructor..137

6.5.1 Structure and Meaning of Students’ Understanding of Constructor . 141

6.6 Shifts in Understanding of Object-Oriented Components................................. 143

6.6.1 Case Studies on Shifts in Understanding...145

6.7 Summary.. 147

Chapter 7 General Programming Components 151

7.1 On the Understanding of Algorithms...152

7.1.1 Identifying the Variations in Understanding of Algorithms.................. 158

7.1.2 Pre-college Students’ Understanding of Algorithms.............................. 161

7.2 Arrays.. 163

7.2.1 Arrays in Java... 164

7.2.2 Students’ Understanding of Arrays..166

7.2.3 Critical Aspects of The Students’ Understanding of Arrays.................. 171

7.2.4 Is an Array an Object?... 172

7.3 Students’ Views on Iterations...174

7.3.1 Students’ Understanding of the Concept of Loops................................. 175

7.3.2 Critical Aspect of The Students’ Understanding of Loops 179

7.3.3 Loop Invariants... 180

7.4 flow Students Understand Selection ...182

Chapter 8 Different Perspectives on the Study and its Implications 184

8.1 Relationships Between the Theoretical Components and Implications For

Teaching... 185

8.2 Object-Oriented Components and Implications for

Teaching... 190

8.3 General Programming Components ...194

8.3.1 Students’ Views on Algorithms and Teaching Implications 194

8.3.2 Students’ Understanding of Arrays..196

8.3.3 Students’ Understanding of the Mechanism of Iteration in Program­

ming ... 198

8.4 The Effects of the Learning Environment...199

8.5 Impact of the Context on the Findings..203

X]

8.6 Suriiniary.. 204

Chapter 9 Conclusions 206

9.1 Significance of this Study ...208

9.2 Further Research.. 210

9.3 Final Remarks ... 211

Bibliography 212

Appendix A Empirical study 225

Appendix B Semi-structured interviews 230

xn

List of Figures

3.1 Object of study (adapted from Bowden, 2005, p.l3)... 26

3.2 The experience of learning (Marton & Booth, 1997, p. 85).............................. 27

3.3 Internal and external horizons of the direct object of learning (adapted from

Marton & Booth, 1997, p. 88)... 30

5.1 Shifts in students’ conceptions of the nature of programming.......................... 71

5.2 An effective comparison of four phenomenographic studies on learning to

program and the relationships between them... 88

5.3 Learning to program in relation to program correctness......................................100

6.1 Shifts in understanding of the object-oriented concepts.................................... 144

7.1 Logical Representation of an integer array.. 165

7.2 Example of an array of objects... 165

7.3 Logical premises for while loops in Java...174

8.1 Relationships between the theoretical components...187

8.2 Relationships between the object-oriented components....................................... 192

A.l Initial background questionnaire, page 1..226

A.2 Initial background questionnaire, page 2..227

A.3 Theoretical sample as compared with the class as a whole, (sample size 16,

class size 40) (a) age, (b) gender, (c) educational background......................... 228

A.4 Consent form signed by all participants... 229

xm

List of Tables

4.1 Themes of the study... 42

4.2 Distribution of the themes across the interviews.. 49

5.1 The categories of description of programming...60

5.2 Understanding of programming; the focus of the conceptions.......................... 69

5.3 Categories of description for learning to program... 75

5.4 Understanding of learning to program; the focus of the conceptions............... 85

5.5 Marshal et ai, on students’ conceptions of learning in an engineering context. 90

5.6 The categories of description found for learning to program in relation to

the Marshall et al. conception of learning... 91

5.7 Categories of description for understanding of correctness................................ 93

5.8 Understanding of program correctness; the focus of the conceptions...................98

6.1 Categories of description for understandm^ o/objects... 105

6.2 Understanding of objects; the focus of the conceptions....................................... Ill

6.3 Categories of description for understanding of class...114

6.4 The focus of different understandings of the concept of class............................. 121

6.5 Categories of description for understanding of attributes.....................................123

6.6 The focus of different understandings of the concept of attribute128

6.7 Categories of description for o/mef/iods....................................... 130

6.8 The focus of different understandings of the concept of method........................ 135

6.9 Categories of description for understanding of constructors................................ 138

6.10 The focus of the understandings of the concept of constructor.......................... 142

XIV

6.11 Object-oriented framework of knowledge and its relationship to the object-

oriented constructs...150

7.1 Categories of description for the understanding of algorithms............................ 154

7.2 Aspects of variation in the understanding of algorithms..................................... 160

7.3 Categories of description for students’ understanding of arrays..........................166

7.4 The distribution of understanding of the nature of arrays.................................. 171

7.5 Categories of description for understanding the nature of iterations.................. 175

B.l Outline of the first interview...231

B.2 Outline of the second interview.. 232

B.3 Outline of the third interview...233

B.4 Outline of the fourth interview (part 1)...234

B.5 Outline of the fourth interview (part 2).. 235

B.6 Exercises given to students to solve out loud during the interviews................... 236

XV

Chapter 1

Introduction

Computer programming and programming languages are core modules in most undergrad­

uate Computer Science and Engineering degree courses. It is essential for students on such

courses to acquire the necessary programming skills as quickly as possible. However, it is

evident that many students hnd it difficult to acquire these skills, and this has a negative

impact on their performance throughout their undergraduate career (Hazzan, 2002; Carter

and Jenkins, 1999; Ragonis and Ben-Ari, 2005). A significant number of research studies

have l)een carried out in this field, providing insight into a wide variety of aspects of the

teaching and learning of computer programming. In particular, studies have focused on is­

sues concerning introductory programming courses in terms of syllabus, teaching methods

and paradigms; while numerous research studies investigate novice students’ misconcep­

tions and errors when learning to program. However very limited insights exist into the

way students learn and understand programming, particularly object-oriented program­

ming. In order to be able to teach effectively and help students learn programming in a

better way it is necessary to understand both how they learn and how they experience

the process of learning (Ramsden, 1992). In contributing to the body of knowledge in

Computer Science education research, this thesis explores students’ understanding of the

most fundamental concepts of object-oriented programming and programming as a whole.

The study adopts a positive attitude towards learning, primarily investigating students’

understanding rather than their misunderstandings, while paying special attention to the

variation that brings students to develop a complete appreciation of the concepts involved.

1

Learning to program within the object-oriented paradigm is a complex and nmltifaceted

experience. It involves: a) a theoretical understanding of the nature of the activity, b)

an understanding of the object-oriented constructs that are unique to this programming

paradigm and c) an understanding of some of the basic constructs that are common to most

programming languages. As this study aims to explore the overall experience of learning

to program within the object-oriented paradigm, the chosen themes were selected with

this in mind. The study moves from theoretical questions on the nature of programming

to the more specific and unique constructs of object-oriented programming and concludes

by considering some of the more general programming constructs. Specifically, the theo­

retical aspects of learning to program are explored in relation to students’ conceptions of

the nature of programming, what it means to learn how to program and their understand­

ing of program correctness. The object-oriented aspects of the experience investigated are

students’ understandings of the constructs of class, object attribute, method and construc­

tor. The students’ experience of the general programming constructs common to most

programming languages are explored through their understanding of algorithms, arrays,

iteration mechanisms and selection. These twelve research themes form the basis of this

thesis and together they provide a more complete picture of the multifaceted process of

learning to program within the object-oriented paradigm.

These twelve themes were investigated through a longitudinal qualitative study where

data were collected via semi-structured interviews over the course of an academic year.

Since the focus of the study is on the act of learning and the early experiences that first

year university students have when introduced to an object-oriented language, the research

framework used is phenomenography. Phenomenography is a research approach that allows

researchers to investigate the different ways in which people understand and experience

a phenomenon (Marton and Booth, 1997). It allows the researcher to go beyond causal

explanations of social phenomena to understand and develop the teaching and learning

in complex educational settings such as universities. The use of phenomenography as the

underlying research methodology for this study provides an insight into how Computer

Science students experience object-oriented programming in the three key areas identified

above.

1.1 Research Questions and Objectives

The oVjjectives of this study stem from the original research questions posed at its incep­

tion. Thus, the primary aim of this study is to explore the main conceptions undergrad­

uate students have of the most fundamental principles of object-oriented programming.

The specific focus of the study is on both the act of learning and the experiences that stu­

dents have when learning to think and program within the object-oriented paradigm. The

main goal of this study is to acquire an in-depth and in-breadth appreciation of students’

understanding of programming within the chosen programming paradigm. The research

questions that motivated the study are:

• How do students experience learning to program?

• How do students experience object-oriented programming concepts and formal defi­

nitions?

• How do students reason about specific programming problems, and programming

constructs as a whole?

• How do students perceive their learning environment, and which aspects of it do they

consider beneficial or redundant?

• How can students’ understandings be used to enhance teaching and therefore improve

the quality of learning?

Although these questions were central to this study from the very early stages, they have

naturally evolved and have been refined as it progressed.

1.2 Key Contributions

The key contribution of this thesis is an in-depth exploration of first year Computer Sci­

ence students’ understanding of the theoretical, object-oriented and general components

of programming. The key contribution of this work is as follows:

• A valuable insight is gained into students’ overall understandings of computer pro­

gramming, providing an un-abbreviated picture of the experience of first year pro­

gramming which ranges from its theoretical to its technical aspects.

• The results of this study can be used to create an awareness of the educationally

critical aspects of learning to program. These aspects have been identified by the

learners themselves.

• The findings capture the levels of understanding attained by the students, and thus

may be used to enhance the teaching of key programming concepts with the goal of

improving student learning.

• The research project contributes to the teaching and learning of programming, as

it employs a theoretically anchored research approach to studying students’ under­

standing and can therefore be applied to similar educational settings.

• The project as a whole constitutes a self-contained piece of work within the phe-

nomenographic tradition, a research approach that is continuously evolving.

1.3 Terminology

This section provides a short list of terms that are used frequently throughout the thesis,

along with their definitions.

• Theme (s) and construct(s) are used as synonyms and refer to the phenomena that

are investigated in this study. For example, “learning to program” is referred to as

a theme of this study, while “class” is referred to a construct or a programming

construct.

• Conception, category of description and way of experience are phenomenographic

terms that are used to denote different aspects of students’ understanding of the

phenomenon under investigation.

• Understanding and experience are also used as synonyms to denote the students’

view of the phenomenon that is in focus.

1.4 Dissertation Outline

This chapter lays out the scope and motivation of the study in broad terms. It also

snmmarises the research questions, objectives and key contributions this study aims to

achieve. The structure of the remainder of this work is outlined below.

Chapter 2 presents the field of Computer Science education, of which this study is a

part. We discuss the different divisions within the field, alongside notable individual re­

search projects. Greater emphasis is placed on qualitative projects related to programming

as these are directly relevant to the research presented in this study. This discussion helps

to provide a direct insight into relevant research in the field.

Chapter 3])resents the research approach that is fundamental to this thesis: phe-

nomenography. The theoretical and metliodological aspects of this research approach are

presented. The guidelines and practises that are employed in phenomenographic projects

are also discussed alongside trustworthiness issues that are relevant to all qualitative re­

search studies.

Chapter 4 contains the design of the empirical study, along with detailed accounts of

the general methodological considerations taken into account during data collection and

the selection of the educational setting. The choices made in both the design of the study

and in the analysis of the data are also described.

In Chapters 5, 6 and 7 the analysis of the data collected on the theoretical, object-

oriented and general programming components is presented. The qualitatively different

ways that students experience the themes of the study are discussed individually with the

use of supporting interview excerpts. The themes are then discussed as a whole and the

relationships between the categories highlighted. The structural and referential aspects of

the conceptions are then further analysed in accordance with phenomenographic guidelines.

The variations in awareness that bring out the conceptions are also presented; illustrating

the dimensions of variation on which the categories are based. The presentation of each

theme is immediately followed by a discussion section where the results are compared and

related to the literature in the field. Hence the contribution of the findings for each theme

can be immediately assessed in the context of the field.

In Chapter 8 we review the findings and further discuss their relationships in order to

present the full picture of what it means to learn how to program. The effects of the learning

environment are also explored based on the students’ experience of the elements that had a

positive impact on their learning, and their suggestions for imjrroving other aspects of their

learning environment. Based on the overall findings of the study, a number of logically-

based suggestions are presented for improving teaching and the learning environment.

The thesis concludes with a discussion of the contributions of this study and suggestions

for further work.

1.5 Publication Record

As sections of this work were completed the findings were submitted for publication in

refereed conferences proceedings and journals. These are listed below, together with other

related studies the author contributed to.

• Enda Dunican and Ioanna Stamouli, “Grounded theory and Phenomenography: what,

how, and when to use them”. Tutorial session in the annual PPIG (Psychology of

Programming Interest Group) workshop, Joensuu, Finland, .July 2007.

• Ioanna Stamouli and Meriel Huggard, “Object Oriented Programming and Program

Correctness: The Students’ Persjrective”, In Proceedings of the 2nd International

Computing Education Research Workshop, Kent, Canterbury, UK, 9-10 September,

2006.

• Ioanna Stamouli and Meriel Huggard, “Learning Object Oriented Programming from

the Students’ Perspective”, In Proceedings of EARLI JURE 9th Conference, Estonia,

Tartu, July 2006.

• Alan Gray, Andrew Jackson, Ioanna Stamouli and Shiu Lun Tsang, “Forming Success­

ful extreme Programming Teams”, In Proceedings of the IEEE Agile International

Conference, Minneapolis, Minnesota, USA, 23-28 July 2006.

• Ioanna Stamouli, “On Learning Object Oriented Programming”, Poster abstract. In

JURE - Junior Researchers of EARLI, 11th Biennial Conference, Cyprus, August

2005.

6

• Norman Reid, Rebecca Mancy, Ioanna Stamouli, Colin Higgins and Marjahan Be­

gum. “ExploreCSEd: Exploring Skills and Difficulties in Programming Education”,

In Proceedings of the 6th Annual Conference for the Higher Education Academy Sub­

ject Network for Information Computer Science, York, UK, 30 August-1 September

2005.

• Ioanna Stamouli, Marjahan Begum and Rebecca Mancy, “ExploreCSEd: Exploring

Skills and Difficulties in Programming Education”, Poster abstract. In Proceedings

of the 10th Annual Conference on Innovation and Technology in Computer Science

Education, Universidade Nova de Lisboa, Monte de Caparica, Portugal, 27-29 June

2005.

• Eileen Doyle, Ioanna Stamouli and Meriel Huggard, “Computer Anxiety, Self-Efficacy,

Computer Experience: an Investigation throughout a Computer Science Degree”, In

Proceedings of the 35th ASEE IEEE Frontiers in Education Conference, 2005.

• Ioanna Stamouli, Eileen Doyle and Meriel Huggard, “Estal)lishing Structured Support

for Programming Students”, In Proceedings of the 34th ASEE/IEEE Frontiers in

Education Conference, 2004.

Chapter 2

Related Research in Computer
Science Education and Programming

This chapter describes the field of Computer Science education research and provides a

detailed presentation of the domain in which the work is situated. As Berghmd et al.

(2006) point out about this field of research: “Computing education research (CER) is

a cross-disciplinary field comprising computing - of course - as well as a wide range of

other disciplines: pedagogy, psychology, cognitive science, learning technology, and sociol­

ogy Thus, there is an extremely wide variety of research directions wuthin the field of

computer education research, spanning from methods related to naturalistic science con­

ducted in the quantitative research tradition, to qualitative research approaches anchored

in theoretical methods that are directly related to pedagogy. However, irrespective of the

research traditions that a project follows, the main goal of the field of computer education

research is to improve learning and teaching within the discipline and contribute to the

development of Computer Science as a whole.

In this chapter we present and discuss educational research that is related to Computer

Science and which aims to improve and affect the teaching and learning of that discipline.

Although the work presented in this thesis follows a qualitative research approach, both

quantitative and qualitative projects are discussed in this chapter to illustrate the difference

in nature of such studies. As our study relates to computer programming, greater emphasis

is given to research projects in this area.

8

2.1 Computer Science Education

Research into Computer Science education, and specifically into learning to program, is

very diverse in terms of the paradigms taught, methodologies adopted, perspectives con­

sidered and focus groups established. In (Clancy et ah, 2001), the contribution by Fincher

discusses the research practises and communities that have formed within Computer Sci­

ence education research. The article stresses the need for both new and experienced re­

searchers in the field to find, and get involved with, the established Computer Science

research communities and contextualise their research within these settings. Therefore, it

is reasonable to expect that different types of research projects exist within the subject

area. Fincher identifies four broad areas that characterise different types of research in the

field with regard to their content, focus, practises and communities (Clancy et ah, 2001).

These are:

1. Small-scale investigations of a single aspect of the discipline or practise. As Fincher

says “these are often found at SIGCSE-sponsored conferences such as SIGCSE (ACM

Special Interest Group Computer Science Education), ITiCSE (Innovation and Tech­

nology in Computer Science Education) and the ACE (Australian Computing Edu­

cation) conferences”.

2. Investigations of specific mental and conceptual skills. Fincher says “these are often

found at PPIG (Psychology of Programming Interest Group) and ESP (Empirical

Studies of Programmersf\

3. Investigations based within the educational tradition. These are presented at educa­

tional conferences.

4. Investigations motivated by the use of tools in Computer Science teaching and learn­

ing. (Fincher in Clancy et ah, 2001, pp. 338-339)

There have been a number of other proposed categorisations of Computer Science educa­

tion research. Greening divides research in this field into positivistic research into learning

Unix, interpretivistic research into students’ conceptions and gender representation in Com­

puter Science (Greening, 1996). Holmboe et al. also identified six types of studies: new

9

untested ideas, reports from the trenches, discussion of theory, computer aided learning,

expert/novice differences, and empirical studies (Holmboe et al., 2001). More examples

of such characterisations of the research conducted in Computer Science education can be

found in (Carbone and Kaasbpll, 1998), (Berglund et ah, 2006) and (Fincher and Petre,

2004). However, the four categories presented by Fincher in (Clancy et ah, 2001) provide

a more complete, general categorisation and are more appropriate for the purposes of this

chapter. In the remainder of this section the four categories presented above are further

analysed with respect to their contribution and aims. As the work presented in this thesis

falls within the third category, more emphasis is placed on its description.

2.1.1 Small-Scale Studies

Small-scale investigations are usually performed by classroom practitioners in Computer

Science education. Such studies identify problems and report on the experience of teaching

courses in the subject area. Reports on these investigations usually appear in the proceed­

ings of conferences such as SIGCSE and ITiCSE^ and usually take the form of case studies.

Educators in Computer Science have first-hand experience of problems that may arise in a

course, such as high failure rates, retention, difficulty in learning or teaching specific con­

structs. These ideas are put forward and possible solutions in relation to the delivery of a

course or a change in the structure of a degree program are analysed and evaluated. Meth­

ods for gathering data include pre- and post-questionnaires, student examination grades

and other methods as reported in (Carbone and Kaasbpll, 1998).

As these studies address problems that have arisen in real teaching situations, the

motivation for conducting them usually stems from the desire of computing educators

and their institutions to enhance the quality of teaching and learning. Small-scale studies

usually provide interesting, insightful observations and ideas on how to teach a particular

course (Holmboe et al., 2001). Sharing these among the educational community is crucial

as it allows for the development, and further evolution, of Computer Science education.

During her Ph.D. studies, the author was involved in three such projects. In (Staniouli

^SIGCSE: The ACM Special Interest Group on Computer Science Education, http:/7www.sigcse.org/.
ITiCSE: Conference on Innovation and Technology in Computer Science Education organised by the

ACM Special Interest Group on Computer Science Education (SIGCSE), in co-operation with SIGACCESS
(the ACM Special Interest Group on Accessible Computing), http://iticsc2007.computing.dundcc.ac.uk/.

10

et al., 2004) the development of a Programming Support Centre, an initiative within the

Computer Science department in Trinity College Dublin, is presented. The evaluation

of the centre’s overall performance, through the use of questionnaires, illustrated that it

had a positive impact on tlie students’ learning experience. In (Doyle et ah, 2005) we

investigated whether Computer Science students of Trinity College suffer from computer

anxiety and low self-efficacy and we explored the relationships between these factors. Data

for this study were gathered from students in all four years of the degree program. The

statistical analysis of this data revealed a positive correlation between prior experience and

self-efficacy, and a negative correlation between anxiety and experience, thus verifying the

initial hypothesis of the study. The third study, which was funded by the U.K. Higher

Education Academy on Information and Computer Science, focused on investigating the

skills and difficulties involved in learning to program by gathering data from students

and educators in multiple institutions (Stamouli et ah, 2005). Further discussions on the

findings of this study are continued in (Reid et ah, 2005).

Generally, small-scale studies that deal with specific teaching and learning problems

are valuable for propagating ideas and sharing experiences. However, these projects are

carried out with very specific populations and through experimental evaluation tools such

as questionnaires and exam grades (which vary from one institution to another) and are,

therefore, hard to generalise. As (Carbone and Kaasboll, 1998; Berglund et ah, 2006) and

(Hohnboe et ah, 2001) point out, they are useful as a basis for discussion, but, in many

cases, they do not provide strong, generalisable results.

2.1.2 Cognitive Psychology Studies

From the very early stages of its development Computer Science education research has

been heavily influenced by the field of cognitive psychology. Cognitive psychology studies

that focus mainly on expertise, proficiency, a general exploration of knowledge structure

and knowledge acquisition (Holmboe, 2005; Berglund, 2005) fall into the same classifica­

tion. Research in this area employs quasi-psychological experiments which aim to describe

the characteristics of experts in a specific domain. The use of cognitive style metrics is

an example of this. These metrics investigate the variation among individual levels of

11

achievement based on the individual’s mental models. Cognitive dimensions and patterns

focus on the interactions between a physical form and the way in which that form inhibits,

or facilitates, various kinds of personal and social behaviour (Byrne and Lyons, 2001).

According to Green, the cognitive dimensions framework is mostly used in evaluating the

effectiveness of various techniques for interactive devices and for non-interactive notations

(Green, 1989).

Evidence suggests that cognitive style is independent from other constructs like intel­

ligence, personality and gender, and that it relates to and influences a range of behaviours

(Riding and Rayener, 1998). These behaviours include learning performance, social re­

sponses and occupational stress. In “Matters of Style”, Felder defines cognitive styles as

the characteristic strengths and preferences in the ways a person takes in and processes

information (Felder, 1996), whereas a learning strategy reflects the actual processes used

by a learner to respond to the demands of a learning activity (Riding and Rayener, 1998).

Since the niid-1940s, there have been various influences on this field, which led to the

emergence of numerous models for measuring cognitive styles. This has resulted in an

extensive list of labels for very similar descriptions of styles. This makes the comparison

of research studies in this field nearly impossible since they use different cognitive style

metrics or different labels for representing them. Some researchers attempted to categorise

all these existing style labels into families, but they did not succeed in creating a common

terminology for the field.

Programming and learning to program have been extensively explored within this re­

search tradition (Clements and Gullo, 1984; Mayers, 1981; Sime et ah, 1973). Most of

these studies investigated the learners’ styles for different population samples and pro­

gramming languages; some looked at the various dimensions of cognitive style. Although,

as (Bishop-Clark, 1995) points out, some of the results are comparable, there is no con­

clusive evidence that demonstrates which cognitive styles or learning strategies perform

better in programming courses.

A notable study is (Weinberg, 1971), which is considered by many “the first major

contribution in the field of Computer Science education within the cognitive psychology

tradition” (Holmboe, 2005). Later, (Brooks, 1977) used the theory of long- and short-term

12

memory as the framework for analysing expert programmers’ understanding and behaviour

with regard to identifying methods and general coding norms. Mclver in (Mclver, 2000)

investigated both syntactical and logical errors made by novice programmers by comparing

students who learnt two different procedural languages (namely LOGO and Grail). The

results show that the underlying programming language highly affects the rate of both

logical and syntactical errors made by students (Mclver, 2000). Additionally, (Robins

et ah, 2003) presented an overview of programmers needs, focusing on the characteristics

and differences of effective versus ineffective novice programmers. A substantial amount of

work on cognitive psychology and programming can be found in (Hoc et ah, 1991), while

a critical evaluation of this tradition is outlined in (Detienne, 2002).

Generally, it can be said that research in this area belongs to both cognitive psychology

and Computer Science education. Studies in this category explore the learner and his be­

haviour, independent of the environment and the object of study. Nonetheless as Berghmd

et. al point out ‘%his type of research has contributed both through its results and by the

rigor by which many research projects have been carried out” (Berghmd et ah, 2006).

2.1.3 Learning Environments and Tools

The field of animation and visualisation and, more generally, the development of learning

environments and tools, constitutes another bridge between disciplines; namely between

the fields of Computer Education, Human Computer Interaction (HCI) and Computer

Supported Collaborative Learning (CSCL). Research in this area is quite broad and is

motivated by the desire to create change through the use of tools and environments that

increase the effectiveness of teaching and learning. The span of this field ranges from

algorithmic animations such as Pavane (Romero et ah, 2003) and Jeliot (Jeliot-Team, 2006)

to novel programming platforms and languages such as BlueJ (Rolling, 2006). The latter

aims to help the understanding of programming constructs and hence reduce cognitive load

during programming activity. Collaborative learning environments such as COOL (Berge

et ah, 2003) have been designed to facilitate learning of object-oriented programming

through graphical languages such as BlueJ.

This is an important sub-field of Computer Science education which aims to enhance

13

and improve learning. Its outcomes are particularly relevant in situations with limited

teaching resources where it provides a means for encouraging collaboration.

2.1.4 Research Based on Educational Traditions

There are a number of research traditions or theories that can be applied to the exploration

of students’ understanding and learning of topics in Computer Science. Cognitive psychol­

ogy, as discussed above, is one such research tradition. These research traditions may

be broadly separated into positivistic and anti-positivistic (non-positivistic’-^) in relation to

their epistemology. However, many research studies use some combination of these two ap­

proaches (Wellington, 2000). The positivistic approach, also called objectivism, considers

the truth as hard evidence that is external to the individual, while the anti-positivistic ap­

proach challenges this by arguing that there is no, one objective truth (Cohen et ah, 2000).

Positivistic, quantitative researchers usually employ surveys, experiments, and question­

naires in data gathering and analysis, like many of the small-scale projects presented in

Subsection 2.1.1. Anti-positivistic, qualitative researchers “/.../ view the social world as

being a much softer, personal and humanly created kind, and will select from a comparable

range of recent and emerging techniques - accounts, participant observation and personal

constructs, for example'’ (Cohen et ah, 2000, p. 7). While the two approaches outlined

above seem to be polar opposites, they can, and often do, complement each other. Most

data collection methods in educational research yield both qualitative and quantitative

data, thus allowing for the triangulation of results.

Research that is based within either of these educational traditions is very important

as it allows for a better categorisation of relevant studies, and hence for the creation of re­

search communities. As (Berglund et ah, 2006) point out “lejxplicit adoption of a research

approach also facilitates communication with other researchers. A shared terminology be­

comes available and enables the researcher to learn from others and to judge and compare

different projects”. Thus the results of a project that is conducted using one particular

educational tradition may be relevant within the respective community. Moreover, it may

^The term anti-positivistic research appears in (Cohen et ah, 2000), while (Berglund et ah, 2006) refer
to the same research paradigm as non-positivistic and (Gall et ah, 1996) call it postpositivistic. Even
though there are differences between the exact definitions of these, they will not be discussed further in
this section as they are beyond the scope of this chapter.

14

be further compared to other projects, and also critically evaluated as to its validity and

generalisability. Comprehensive reviews of projects in this area can be found in (Berglund

et ah, 2006; Carbone and Kaasbpll, 1998; Hohnboe, 2005) and (Fincher and Petre, 2004).

The distinction between quantitative and qualitative research is an important one as

it influences which methods a researcher applies and the questions that can be explored

within that paradigm (Berglund et ah, 2006). Although there is a distinction between

qualitative and quantitative research, this does not imply that one is better than the other.

Rather it means that they may be used, and are appropriate, for addressing different types

of research questions. As (Gall et ah, 1996) argue “/.•/ qualitative research is best used

to discover themes and relationships at the case level, while quantitative research is best

used to validate those themes and relationships in samples and populations. In this view,

qualitative research plays a discovery role, while quantitative research plays a confirmatory

role” (Gall et ah, 1996, p. 29). In (Gall et ah, 1996) the distinction between quantitative

and qualitative research is discussed in detail. The work presented in this thesis is based

on phenomenography, a qualitative research approach, so in the subsections that follow we

focus on the evolution of, and trends within, the qualitative, anti-positivistic, area.

2.1.4.1 Constructivism

Research within the constructivist paradigm is diverse in focus. The main claim in con­

structivism is that knowledge is actively constructed by the learner (Fincher and Petre,

2004). Researchers in this field investigate issues such as the influence of learning environ­

ments, the effects of teaching in particular ways and, generally, the role of the learner and

others in the construction of knowledge (Berglund, 2004).

Gonstructivism is based on a number of educational theories. Bruner, in (Bruner,

1960), built upon the individual cognitive schemes outlined by Jean Piaget (Piaget, 1954),

to highlight the importance of emphasising the relationship of cognitive structure and

the structure of a subject (Fincher and Petre, 2004). Alongside this work, Vygotsky in

(Vygotsky, 1986) formulated the notion that “knowledge and learning are culturally and

societally constructed” (Fincher et ah, 2004, p. 35). In this theory, learning is related to,

and is part of, the student’s environment, thus studies that are conducted within this area

15

focus on the environment of the learner, along with the use of teaching tools and instruction

that affect and facilitate the construction of knowledge by the learner. A comprehensive

account of constructivism can be found in (von Glasersfeld, 1995) and (Ben-Ari, 2001).

From the point of view of this thesis, one of the most notable studies within the con­

structivist framework in Computer Science education is (Ben-David Kolikant, 2001) where

the researcher investigated the prior knowledge of high school students who are taking

a concurrent and distributed programming course. The study focuses on misconceptions

that originate from prior knowledge. Amongst other findings, the results indicate that

the students invent conceptual models as they work through an exercise. The work pro­

vides suggestions on how the design of a concurrent and distributed systems course can

be improved, for instance it stresses the need to take students’ prior knowledge into ac­

count when teaching new material. A later study (Ben-David Kolikant and Pollack, 2004),

investigated the students’ beliefs of a correct solution. The findings of the study suggest

that students are preoccupied with producing a working program and are tolerant of errors

(Ben-David Kolikant and Pollack, 2004). However, these beliefs are not common within

the profession of Computer Science, highlighting the need for course changes that will allow

for the adaptation of professional norms in programming courses.

Another study in programming that was conducted within the constructivist framework

is (Fleury, 2000). This study investigated how novice programmers “construct an under­

standing of the syntactical and semantic rules involving the constr-uction and use of objects

in Java” (Fleury, 2000). The findings of this study suggest that students construct their

own understanding when learning to program and therefore many students possess partial

understanding, even in cases where they are provided with a complete set of information on

a construct. To overcome this, Finery suggests that playing and practising with programs

allows students to increase their current level of understanding. Thus discourse at the

students’ level of understanding can assist them in further building upon their knowledge.

Aharoni (Aharoni, 2000) studied the thinking processes that occur in the minds of

students when learning and using data structures. The methods he used were based on

constructivism but also focused on the mental models developed by the students. The find­

ings suggest that while data structures should theoretically assist students in developing a

16

high level understanding of abstraction, this is not the case. To avoid this situation, Aha-

roni suggests that students should first gain an understanding of the abstraction involved

in data structures before being introduced to their implementation. Like Fleury, he argues

that “The students should get assignments from the teachers, so they can "play" with the

DS, much like they would do with concrete objects” (Aharoni, 2000). Hazzan also discussed

how students cope with abstraction in mathematics and in Computer Science (Hazzan,

2003), emphasising the need for students to reach a high level of abstraction when learning

to program.

Holmboe (Holmboe, 1999; Hohnboe, 2000) discusses the different types of knowledge in

Informatics. He argues that “mere understanding has no value without the skills to imple­

ment it, and the skills alone, though useful in many situations, can not he seen as knowledge

unless accompanied by a mental understanding of the concept at hand” (Hohnboe, 1999, p.

17). Finally, (Box and Whitelaw, 2000) conducted a study within the constructivist theory

framework where they concluded that object-oriented technology involves difficult cogni­

tive processes of abstraction; thus highlighting the need to actively encourage students to

develop abstract thinking skills.

Many more studies exist within the constructivist paradigm; those presented above were

selected for their relevance to Computer Science and programming in particular. In a classic

constructivist study Ben-Ari (Ben-Ari, 2004), discusses the implications of the environment

on knowledge construction in Computer Science. However, all the projects discussed in

this section focus on developing models of the knowledge that the students construct when

learning concepts within Computer Science and programming. As the environment within

which the students are taught affects the development of knowledge, many studies look at

ways of improving it in order to minimise the development of misconceptions when learning

Computer Science and programming constructs.

2.1.4.2 Phenomenography

Phenomenography is the qualitative, empirical research approach that is central to this

study. The most common and widely used definition of phenomenographic projects comes

from (Marton and Booth, 1997). This states that the aim of such projects is to explore a

17

phenomenon from the students’ perspective and to identify the qualitatively different ways

in which this phenomenon is experienced, understood, or perceived. As phenomenography

is fundamental to this study, this research approach is further discussed in terms of both

its methodological and theoretical aspects in Chapter 3.

A number of phenomenographic studies have been carried out in the field of Computer

Science. For her Ph.D. thesis Booth (Booth, 1992) studied what it means to learn how' to

program within a functional programming course. She also investigated students’ experi­

ence of other elements of procedural programming such as recursion and functions. Bruce

et al. also conducted a phenomenographic study into how beginners experience learning to

program in an Information Technology course (Bruce et ah, 2004). Both studies suggest

that the constructs of a programming language should be introduced to the students in as

many different ways as possible to encourage variation and enable students to experience

programming from all it perspectives. Eckerdal (Eckerdal, 2006) investigates how students

experience the constructs of object and class in object-oriented programming within an En­

gineering course. In his Ph.D. thesis (Berghmd, 2005) used phenomenography and activity

theory to investigates students’ understanding of computer networking protocols. Cope

(Cope, 2000), in his Ph.D. thesis, looks at students’ understanding of information systems;

highlighting the complexity of the constructs and the different levels of understanding that

students should achieve. Many more studies have used phenomenography as their research

framework, such as (Akerlind et al., 2005), but those detailed above are the ones which

explore learning within the field of Computer Science.

2.1.4.3 Critical Research into Gender

Critical research or enquiry is motivated by imbalances that may occur in educational

and other settings. The critical research paradigm actively attempts to reveal and address

imbalances that can be the effect of, among many other factors, gender, culture, educational

background, and environments (Greening, 1996; Berglund et al., 2006). Computer Science

and Engineering are two fields that are highly male dominated, thus research into gender

issues is highly relevant as it highlights the problem of this bias within the discipline and

proposes solutions for addressing it.

18

Recent research into gender issues in Computer Science shows that the small number of

females choosing Computer Science degrees is affected by low confidence in their computing

abilities, lack of programming and hands-on computer experience, and negative stereotypes

regarding the field (Beyer et ah, 2005). Berglund et al. (Berglund et ah, 2006), in reference

to (Bjorkman, 2002), point out that it is important for gender research to be performed

from within the discipline itself because in order to be effective any changes needed will

have to come from within the discipline.

There is a large body of critical enquiry research within the Computer Science education

field. An overview of these projects and their effects in the field is provided by Clear in

(Fincher and Petre, 2004). The critical research paradigm is very important as it challenges

those in academia to rethink and reflect on the teaching and learning paradigms that are

associated with Computer Science.

2.1.4.4 Combined Approaches

As stated above, qualitative and quantitative research methods are typically used to explore

different facets of research questions. However, these research methodologies are comple­

mentary: generally, qualitative research can be used to discover themes and relationships

between them, while quantitative research can be used to validate these. Quantitative data,

such as background statistics can set the scene for an in-depth qualitative study (Welling­

ton, 2000). Therefore, the combination of these two approaches in studies can provide

stronger evidence of the generalisability and validity of the research outcomes. The tri­

angulation of the data gathered helps to illuminate more facets of the research question

under consideration. Hence, the combination of the two approaches often presents a more

complete picture of learning and teaching (Greening, 1996).

An example of a combined approach study is (Perrenet et ah, 2005). Initially this

employs quantitative methods to explore students’ understanding of algorithms while later

in (Perrenet and Kaasenbrood, 2006) the findings are cross-validated with a qualitative

analysis of interview data. Another example is (Kinnunen and Malmi, 2004) who related

the results of their study to interview data, questionnaire data and course grades. Their

study explored how students approached learning to program in a problem-based course

19

and it identified effective and ineffective groups. Finally, in (Gray et al, 2006) it is argued

that the levels of engagement with, or “buy-in” into the ethos of the eXtreine programming

methodology is a significant determinant of a projects success. The researchers investigate

how team formation influences “buy-in” and how “buy-in”, in turn, effects success, learning

and working attitude within an academic environment. They employ both quantitative

data from surveys, project grades and qualitative interview data and conclude that teams

that comprised people with similar understandings of, and attitudes towards, the process,

have a higher level of “buy-in” and, as a result, exceed their expected performance.

2.2 Research into Programming

Among the studies presented above, a significant number focus on programming as this

appears to prove challenging for many students of Computer Science. In this section we

summarise research studies that focus on programming, and therefore are related to the

themes of this thesis.

2.2.1 Learning to Program

The question of how students experience programming have been investigated in three

other studies namely (Booth, 1992; Bruce et ah, 2004) and (Eckerdal, 2006). These studies

use phenomenography as the research framework for their analysis and are conducted in

educational settings other than Computer Science. Their findings illustrate a number

of categories of description that summarise the qualitatively different ways that students

experience computer programming. As the studies were conducted at different times and

in diverse educational settings, there are, naturally, a number of similarities and differences

in their outcome space. These, along with the finding of this study are further discussed,

analysed and compared in Chapter 5, 6, and 7.

2.2.2 Programming Constructs

The constructivist paradigm that is dominant within Computer Science education research

is based on the premise that knowledge is actively constructed by the students. Thus most

studies that focus on the various constructs of computer programming, either within the

20

object-oriented or procedural prograniniing paradigms, focus on the misconceptions and

lack of understanding that students exhibit. Holland et al. (Holland et ah, 1997) identified

and described a number of misconceptions that are observed in students’ learning about

object technology. The results of this study provide a number of simple and concrete mea­

sures that educators can take to avoid these misconceptions arising in a distance education

course. Another relevant study conies from (Ragonis and Ben-Ari, 2005) where a long-term

investigation explored the conceptions and misconceptions students build when learning

to program.

In this study, we adopt a positive perspective by investigating the understandings,

rather than the misunderstandings, that students have of some of the most fundamental

concepts of object-oriented programming. Therefore, it is not always possible to relate the

results found in this study with the outcomes of constructivist studies. Nonetheless, in

the discussion sections of Chapters 5, 6, and 7 the results of studies that are related to

the themes investigated in this thesis are further presented and discussed. Thus, where

possible, comparisons with previous work in the literature are provided so that the reader

may place the findings of the study within the appropriate context.

2.2.3 Learning Taxonomies in Programming

A popular educational framework is Bloom et al.’s taxonomy of educational objectives

that was devised in the 1950’s as a generic instrument for dividing the cognitive aspects

of learning into hierarchical levels (Bloom et ah, 1956). Throughout the years it has been,

and still is, widely used in course design in higher education, as a way of ensuring that

teaching and assessment achieve an appropriate balance between learning of content and

the development of high level skills. The learning taxonomy devised by Bloom et al. divides

the cognitive aspects of learning into six hierarchical levels:

• Knowledge (recall of facts, et cetera)

• Comprehension

• Application

• Analysis

21

• Synthesis

• Evaluation

Recent re-evaluation of Bloom et al.’s taxonomy by Anderson and Krathwohl has suggested

that the top two or three levels of the hierarchy may be flat (Anderson and Krathwohl,

2001). They have also proposed that the taxonomy should be two dimensional, with

the (slightly reconfigured) original categories of Remember, Understand, Apply, Analyze,

Evaluate and Create forming the cognitive process dimension and Factual, Conceptual,

Procedural and Meta-Cognitive forming a knowledge dimension (Anderson and Krathwohl,

2001). The computer science education literature contains a small number of examples of

the use of a taxonomy as an analytic tool. Bloom et al.’s taxonomy in programming has

been applied in course design in (Scott, 2003), while Lister and Leaney have used it for

structuring assessments in an introductoiy programming course (Lister and Leaney, 2003).

Another taxonomy that has been used in measuring the learning outcomes in pro­

gramming courses is Biggs and Collis taxonomy; the Structure of the Observed Leaning

Outcomes (SOLO) taxonomy (Biggs and Collis, 1982). SOLO can be used to set learning

objectives for particular stages of learning or to report on the learning outcomes, as it

charts the increasing structural complexity of student learning outcomes. The taxonomy

identifies that learning initially changes quantitatively, as the amount of detail in the stu­

dents response increases, and then qualitatively, as the detail becomes integrated into a

structural pattern (Johnson and Fuller, 2006). Lister et al. have used the taxonomy to

describe how code is understood by novice programmers, and describe the five SOLO levels

applied to novice programming as follows (Lister et al, 2006, p. 119):

• Prestructural: “In terms of reading and understanding a small piece of code, a student

who gives a prestructural response is manifesting either a significant misconception

of programming, or is using a preconception that is irrelevant to programming.”

• Unistructural: “(TJhe student manifests a correct grasp of some but not all aspects

of the problem. When a student has a partial understanding, the student makes j...]

an “educated guess””

22

• Multistructural: “[T]he student manifests an understanding of all parts of the prob­

lem. but does not manifest an awareness of the relationships between these parts”.

• Relational; “|T]he student integrates the parts of the problem into a coherent struc­

ture, and uses that structure to solve the task.

It has to be noted that both Bloom et al.’s and Biggs et al’s SOLO taxonomies are general

theories, which were not originally designed to be used in a programming context. However,

both taxonomies have been used and adapted within programming education, providing

some illuminating findings mostly focused on the how students understand code in order to

improve assessment and teaching. Recent examples of work in this area include (Fitzgerald

et ah, 2005; Lister and Leaney, 2003; Lister et ah, 2004; Lister et ah, 2006; Mannila, 2006;

Whalley et ah, 2006).

23

Chapter 3

P henomenogr aphy

This chapter describes phenouienography, the research approach, at the core of the work

presented in this thesis. This is an empirical study that aims to investigate the ways

students understand and experience a number of theoretical, object-oriented and general

programming constructs. Thus, phenomenography is a suitable research framework for

this endeavour.

In the previous chapter a number of research projects that explored learning and var­

ious aspects of programming were described. Some areas of programming, such as novice

programmers’ errors and misconceptions, have been researched at great length whilst in

other areas there is little or no existing research. The goal of this study is to take learning

to program within the object-oriented paradigm as a general framework and then to con­

duct an in-depth and in-breadth investigation into the ways Computer Science students

understand and experience critical aspects of learning to program within that framework.

Due to the great breadth of the study in terms of the phenomena analysed, a more complete

picture of students’ experience of object-oriented programming will be obtained.

It is important to note that phenomenography is neither a method in itself nor is it

only a theory of experience (Marton and Booth, 1997). However, there are methodolog­

ical elements that are associated with it, as well as theoretical elements that are derived

from it. Phenomenography is a way of identifying, formulating and investigating certain

research questions that are related to learning and understanding in an educational setting

(Marton and Booth, 1997). Therefore it is referred to as a research approach that combines

24

methodological and theoretical elements.

In the rest of this chapter the general foundations of phenomenography as a research

approach are presented briefly, with more emphasis being placed on the issues that are

related to this study.

3.1 Background

Phenomenography, as a research approach, emerged from a strongly empirical, rather than

a theoretical or philosophical basis (Akerlind, 2002). It is a relatively new research ap­

proach that emerged in the 1970s in Gothenburg, Sweden from the work of Ference Marton,

Lennart Svennson, Lars Owe Dahlgren and Roger Saljo. Based on the general observa­

tion that some people are better learners than other, this group of researchers carried

out a number of phenomenographic projects on learning that clearly showed that there

is a variation in what people understand and also in how they understand it. Thus, phe­

nomenographic research is defined in terms of the object of study, which is the phenomenon

under investigation, and in what or how people are experiencing it (Marton, 1981). This

is well defined in (Marton and Booth, 1997) where they say “A phenomenographic research

project reveals the qualitatively different ways in which a phenomenon can be experienced,

understood or perceived by a student cohort”.

Phenomenographic research projects most frequently focus on mapping variations in

the population’s experience. These experiences are then described in terms of a range

of qualitatively different ways of understanding a particular phenomenon in the form of

categories of description. The relationships between these categories of description are also

highlighted in terms of their inclusiveness and encapsulated understanding. In later studies

there has been great emphasis on identifying the structure of awareness underlying the

varying experience of phenomena (Akerlind, 2002; Marton et ah, 1993; Pang, 2003; Alarton

and Booth, 1997). Thus, newer studies have focused on combining phenomenography and

variation theory. Variation theory argues that “learners can only discern a particular aspect

when they experience variation on that aspect” (Pang, 2003). This constitutes the second-

order of variation which is experienced by the learners but is captured by the researcher

in a phenomenographic research project.

25

Figure 3.1: Object of study (adapted from Bowden, 2005, p.l3).

/
and

ixpulahan

Population ot
the study

Researcher

Object
of

study

ReiaSon
batArXin

raaearche/
and

ohe?!v.s;r?ef>f>r!
\

Relation between the
population of the study and

the phenomenon

Phenomenon

3.2 The Object of Learning

In a phenomenographic project the researcher needs to adopt a non-dualistic stance towards

the experience under investigation. The research is not focused on some hypothetical

mental structures of the learner or behaviourist actors (Marton and Booth, 1997). In

phenomenography there is no division between the outer and inner worlds. The world

and, therefore, its various phenomena, is not constructed by the individual nor imposed

from the outside (Bowden, 2005). Rather, as Marton & Booth say: “it is constituted as

an internal relation between them. There is only one world, but it is the a world that we

experience, a world in which we live, a world that is ours” (Marton & Booth, 1997, p. 13).

This means that in a phenomenographic study the object of the study is not the

phenomenon itself, but rather the relation between the study’s population and the phe­

nomenon. As illustrated in Figure 3.1 the phenomenon cannot be seen in isolation as the

point of interest in the study is the way this phenomenon is understood and experienced

by the learners. The aim of the researcher is to try and find out the object of learning by

analysing the relationship between the learner and the phenomenon at hand. For example,

in this study we consider how novice Computer Science students experience the construct

of class within the object-oriented paradigm.

As can be seen in Figure 3.1 there is an unavoidable relationship between the researcher

and the phenomenon that is investigated in any study, since the researcher is required to

know and understand thoroughly the aspects of the phenomenon that they are attempting

26

Figure 3.2; The experience of learning (Marton & Booth, 1997, p. 85).
The experience of

learning

How
asped

What
aspect

Act of indirect object Direct object
learning of learning of learning

to analyse. This is necessary so that the researcher, and in most cases the interviewer,

should be in a position to discuss and query the learner about the various facets of the

phenomenon. However, there are methodological guidelines in the phenomenograpliic re­

search approach that do not allow the researcher to impose his or her own interpretation of

the phenomenon on the student cohort. Similarly, the danger of imposing the viewpoint of

the researcher that arises from the relationship between the researcher and the population

of the study also exists. This can be avoided through methodological sound procedures

that are discussed in a later section of this chapter.

At the centre of any phenomenographic research project is the object of learning, that

is how a phenomenon is experienced by a specific group of learners and the variation in the

ways this phenomenon is understood. Thus, such studies adopt a positive attitude towards

learning by focusing on the understanding and conceptions that people hold rather than on

the misconceptions. In order to facilitate a structured way of analysing the understanding

of a phenomenon (Marton and Booth, 1997) have developed a model for the analysis and

description of learning as presented in Figure 3.2.

The experience of learning is something that can be seen through the how aspect and

what aspect of the experience. The what aspect constitutes the direct object of learning

which is the contents of the construct that is learnt and, furthermore, the phenomenon

that is under investigation. The how aspect refers to the learner’s approach in achieving

his or her task. In other words how does the learner go about understanding and learning

the construct of class for example. The how aspect is broken down into the act of learning

and the indirect object of learning. Where the act of learning refers to “the experience of

the way in which the act of learning is carried out” (Marton and Booth, 1997) and the

27

indirect object of learning refers to the goals that the learner is trying to achieve. The

latter is also referred to as motives in (Berglund, 2005). This model for analysing the

experience of learning is an essential tool for the researcher as it provides guidelines for

identifying the critical aspects of the experience as well as providing a complete picture

of the ways a phenomenon is understood. However as (Berglund, 2005) points out this

distinction between the what and the how aspects is entirely analytical and is only used

by the researcher to assist in the analysis.

3.3 Variation

Experiencing variation is an essential requirement for observing and understanding some­

thing in a certain way. Marton argues that “/b/y experiencing variation, people discern

certain aspects of their environment; we could perhaps say that they become “sensitised” to

those aspects” (Marton et ah, 2004, p. 11). The point they are making is that unless you

have a point of reference and a variation from it, discerning and understanding something

in its entirety is not possible. One of the many examples they present in the paper is the

following:

“/.../ for instance, knowing what red is presupposes the existence of other

colours, that is, a variation in colours. Even knowing what colour is, pre­

supposes an experienced variation of colour. Imagine for a moment that there

was no variation of colours, that everything around us had the same colour. It

would be impossible for us to know what red, green, or yellow were, just as it

would be impossible for us to discern colour as a feature.” (Marton et ah, 2004,

p. 14)

Thus, in order to be aware of something and understand it in a certain way, it is required

that one experiences variation in it. The aspects that are considered important in un­

derstanding a phenomenon are called critical features (Marton et ah, 2004). In the case

above where the phenomenon is the colour red one should experience the variation of other

colours, and possibly textures and objects of that colour, to gain a complete understanding

of the phenomenon. Four different types of variation, or rather patterns of variation have

28

been identified. These signify the difference between the elements that stay invariant and

those that do not in a learning situation. According to (Marton et ah, 2004), these are:

1. Contrast: A person needs a point of reference to compare something with something

else. As in the case above, in order to understand red you need to know about green,

for example, so that you can discern the contrast.

2. Generalisation: Variation in values of that aspect is necessary to discern the phe­

nomenon. Thus, cherry red and strawberry red would constitute values in this pattern

of variation.

3. Separation: In order to experience certain aspects of the phenomenon, and in order

to be able to separate these aspects from other aspects, it must vary while other

aspects remain invariant.

4. Fusion: In cases where the phenomenon has to be experienced in its entirety, meaning

that there are several critical aspects to it that have to be considered at the same

time, it is necessary that a situation should be present where these aspects are all

experienced simultaneously. Therefore, there is a fusion of variation in the dimensions

of variation of the specific critical aspects.

In order to identify the variation that facilitates certain types of understanding, the direct

object of learning (the “what” aspect in Figure 3.2), is further analysed by (Marton and

Booth, 1997) and illustrated in Figure 3.3. The ways of experiencing something, for exam­

ple the construct of a class in object-oriented programming, differ in both their meaning

(what a class is understood as) and structure (the relationship of its parts). The meaning

is referred to as the referential aspect while the structure is referred to as the structural

aspect. The latter denotes the parts of the understanding and their relationships (Marton

and Booth, 1997). The referential and structural aspects are constructs that have been

defined to assist the researcher in analysing the ways the object of learning is experienced

and understood; their use is only for analytical purposes. The structural aspect of the

learning experience is further broken into the internal and external horizons of the expe­

rience. The former denotes the focus of the attention and the relationships between the

29

Figure 3.3; Internal and external horizons of the direct object of learning (adapted from
Marton & Booth, 1997, p. 88).

Direct object
of learning

Structural
aspect

Referential
aspect

Internal
horizon

External
horizon

aspects and elements that are in focus. The latter denotes the elements and aspects that

surround the phenomenon along with the elements that the phenomenon is related to and

is a part of.

The meaning and use of the models presented in this section, along with the variation

in the critical aspects of the experience, are further discussed in Chapters 5, 6, and 7 where

the phenomena that are investigated in this study are decomposed into their referential

and structural aspects.

3.4 Data Collection and Analysis

In phenomenographic projects the main source of data are the interviews that the researcher

has conducted within the population of interest. The phenomenon that the study aims

to analyse should be clear prior to the commencement of the interviews. However, before

the main data gathering takes place, a pilot study conducted through interviews or by

other means, such as questionnaires, is usually recommended (Akerlind et ah, 2005). This

allows the researcher to observe the interest of the phenomenon in question. The interviews

usually start with a mimber of key questions that are used to set the theme of the interview

and make sure that all the members of the sample population are discussing the same

phenomenon. The questions are usually phrased in terms of the students’ perceptions,

understanding and experience (the set of questions that were used for this study can be

found in Appendix B), but the interviewer can deviate from those when interesting angles

of understanding are exposed through the discussion. These types of interviews are referred

30

to as semi-structured interviews (Kvale, 1996).

The selection of the theoretical sample for the interviews is also an important influence

on the data collected. When selecting the sample population in a study the aim is to cover

as broad a range of relevant characteristics as possible (Eckerdal, 2006). The relevant

characteristics among the sample population can be their background, prior experience,

gender, age and so on. These characteristics should be representative of the group under

investigation, as well as of other similar groups in different educational settings. For

example, in our study the sample population is comprised of novice Computer Science

students. Thus the researcher is expected to make an effort to choose the theoretical

sample, both in terms of how representative it is within this group of students and also

among other novice Computer Science groups. This is fundamental to phenomenographic

research since its main goal is to identify broad representations of the experience and not

just to map characteristics of a group of people (Bowden, 2005).

After the interview data have been gathered they are transcribed verbatim and the

highly iterative process of the analysis commences. In order to identify the different ways

people are experiencing the phenomenon in question the text of the interview data are

read repeatedly and the patterns that are particular to distinct understandings are noted.

Initially the transcripts are seen as a whole and within the context of the particular subject,

while in later stages the interview excerpts that are relevant to an understanding are

decontextualised and compared to each other, thus forming groups. The excerpts are

grouped and regrouped as the researcher further reads and compares the quotations, until

the data remain in a stable condition and the outcome space is formulated. By taking the

individual transcripts into account and through the comparison of the decontextualised

excerpts, the researcher expresses the meaning of the group or patterns that have emerged

by the formation of categories of description. It is important to note at this point that

phenomenography assumes that there is only a limited number of qualitatively distinct

ways a phenomenon can be understood (Eckerdal, 2006). These qualitatively distinct ways

of experiencing a phenomenon are summarised in the categories of description. Marton

and Booth describe the finding of a phenomenographic project in the following way:

“To be more precise, the outcome space is the complex of the categories of de-

31

scription comprising distinct groupings of aspects of the phenomenon and the

relationships between them. The qualitatively different ways of experiencing a

particular phenomenon, as a rule, form a hierarchy. The hierarchical structure

can be defined in terms of increasing complexity, in which the different ways

of experiencing the phenomenon in question can be defined as subsets of the

component parts and the relationships within more inclusive or complex ways

of seeing the phenomenon.” (Marton &: Booth, 1997, p. 125).

Therefore, categories of description form a hierarchy that extends from basic to more

complex understandings. However, this is not passing judgement on better or worse ways

of understanding (Akerlind et ah, 2005). The hierarchy of the categories is formed based

on both logical premises (i.c. which understanding is more basic compared to another)

and, more often, on the inclusiveness of the understanding. Some categories that are more

complex often presuppose the understanding that is encapsulated in a simpler category,

and this imposes a hierarchical structure.

The issue of inclusiveness in understanding within the categories of description is a

point of debate point among phenomenographers. There are two ways to determine the

inclusiveness of meaning within the categories of description: a) logical argument and b)

evidence from the interview transcripts (Akerlind, 2005). There are phenomenographers

that believe that non-inclusive categories should not be allowed in the outcome space

(Barnacle, 2005; Bowden, 2005; Green, 2005), while others pay little or no attention to

it (Berglund, 2005; Eckerdal, 2006). We argue that pure logical inclusiveness could be

seen as an imposition of the researcher’s views on the results. In this study inclusiveness

in the categories of description is solely based on the transcripts. Where evidence of the

inclusiveness of some categories is weak this is clearly stated in order for the readers to be

able draw their own conclusions.

3.5 Challenges of Phenomenography

As phenomenography is a qualitative research approach it is subject to the same criticisms

levelled at other qualitative methodologies. In particular, issues relating to validity and

reliability need to be addressed. In this section we discuss the potential problems that may

32

arise in a phenonieiiographic study and we focus, in particular, on the challenges faced in

this study.

One limitation of phenomenography, and of most qualitative methodologies, is that it

is impossible to say when there is no further information to be captured and, thus, when

there is no more variation to capture. Marton and Booth (1997) discuss whether the results

of a phenomenographic project apply to the individual, or to the group of individuals or the

wider population. The objective of a phenomenographic study is to capture the variation

and hence it is difficult to know when saturation has occurred as it heavily depends on

the theoretical sample and how it represents the general, or specific, population studied.

Thus, as Marton and Booth state: “To the extent that the group represents the variation

of individuals in a. wider population (or is a theoretical sample of this population) the

categories of description can also be said to apply to that wider population” (Marton &;

Booth, 1997, p.l24). Thus, the issue of saturation in variation cannot be easily verified in

either phenomenographic or any other qualitative studies. As regards to the theoretical

sampling of our study group, we carefully select the sample to be as representative of

the divergence of the study’s poptilation as possible. The theoretical sampling procedures

followed are further discussed in Chapter 4, while the generalisability of phenomenographic

studies is detailed in Section 3.6.

The role of the researcher and the conditions under which the interviews are conducted

are also very important in phenomenography. The interview conditions affect what people

say and how they say it. Interviews can be partly influenced by the expectation of what

the interview conditions are and what one is expected to describe in it, and partly by the

relationship between the interviewer and the participant (Kvale, 1996). From the latter we

conclude that research of any kind (qualitative, quantitative or mixed) is not independent

of the people involved, both the researcher and the participants affect the process and hence

the results (Eriksen, 2001). The theoretical and practical background of the researcher in

the subject area influences the analysis no matter how open minded one tries to remain

during the interviews and analysis.

To deal with this very important challenge a number of precautionary measures were

taken during the interview process. Firstly the interview questions that were used were

33

carefully formulated with accordance to the phenomenographic philosophy presented by

(Sandberg, 2000). The researcher involved in the study presented in this thesis was both

the interviewer and a laboratory demonstrator to the class. Thus the students were familiar

with the researcher from their laboratory classes and so they were open and relaxed during

the interview sessions. The procedures that were followed during the preparation of the

interviews and their execution along with the safeguards that were employed are discussed

in more detail in Chapter 4.

In order to minimise the influence of the researcher’s preconceptions on the outcomes

of the study multiple data gathering methods were used. The interview transcripts were

combined with observational data from exercises that the participants had to complete

during the interview sessions. All of this information was then taken into account during

the analysis process. The most important safeguard against bias during the analysis is for

the researcher to be self-effacing in their attitude so that they can try to understand how

the participants views the phenomenon under study in reality. In phenomenography the

researcher needs to learn from the interviewee; to listen and accept the different under­

standings and not try to correct the participants conceptions. This cannot l)e easily shown

to a third party in a phenomenographic study, thus a clear presentation of all the analytical

steps carried out is essential as these then allow the reader to draw his own conclusions

with regards to the validity and reliability of the results. A more comprehensive discussion

on the trustworthiness of phenomenographic results is presented in the following section.

3.6 Trustworthiness in Phenomenographic Studies

As phenomenography is a qualitative research approach, the issue of trustworthiness in

relation to the results that derive from such studies needs to be addressed. Generally,

trustworthiness in qualitative studies is usually discussed in terms of the validity, reliability

and generalisability of the results. The scientific holy trinity of validity, reliability and

generalisability (as (Kvale, 1996) characterises it) derives from a more classical positivist

approach to research than that associated with interview-based qualitative research such

as phenomenography. Nevertheless, it must still be addressed in relation to this study.

Thus, the three aspects of trustworthiness are re-framed within the epistemology of the

34

pheiioiiienographic research framework.

Generalisability, from the perspective of qualitative research, refers to the extent to

which the outcomes of a study can be expected to apply to environments other than

the original one (Akerlind, 2002; Booth, 1992; Cuba, 1981). Kvale presents three forms

of generalisability that are relevant to qualitative research in general, and not just to

phenomenographic studies in particular. These are the following:

• Naturalistic generalisation: This develops for the person as a function of experience;

it derives from tacit knowledge of how things are and leads to expectations, rather

than formal predictions; it may become verbalised, thus passing from tacit knowledge

to explicit propositional knowledge.

• Statistical generalisation: Is formal and explicit: it is based on subjects selected at

random from a population. With the use of inferential statistics the confidence level

of generalising from the selected sample to the population at large can be stated in

terms of probability coefficients.

• Analytical generalisation: Involves a reasoned judgement about the extent to which

the findings from one study can be used as a guide to what might occur in another

situation. It is based on an analysis of the similarities and differences between the

two situations. (Kvafe, 1996, pp. 232-233).

Obviously not all of these forms of generalisation are applicable to phenomenography,

clearly statistical generalisation is not relevant to phenomenography as the population of

the study is not selected randomly, nor is it big enough to allow the derivation of prob­

ability coefficients. As the aim of phenomenographic research is to identify the range of

ways in which the desired population experiences a phenomenon, the emphasis is on the

variation of the experiences within the sample population. Thus, in order to capture the

range of meaning, the sample population is selected on the basis of divergence rather than

representativeness, since this approach is more likely to yield information on the range of

ways of experience (Akerlind, 2002). However, the range of variation derived from the

population is indicative of the range of variation expected in a similar population (Booth,

1992; Akerlind, 2005; Bruce et ah, 2004; Berghmd, 2004; Eckerdal, 2006). Naturalistic

35

generalisation in phenoinenography is achieved through the development of the outcome

space and further dissemination of the results. Analytical generalisation suggests that the

results of a phenomenographic study should be generalisable to other groups of people

drawn from similar environments (e.g. in our study: first year Computer Science students

that learn object-oriented programming), however, this does not mean that the general-

isability would be quantitative in the sense of any particular distribution that is present

in the results. Rather, it means that the range of the experiences is quintessential to the

ways of, and variations in, the experience of the phenomenon.

Reliability, in the context of a qualitative research project, is seen as “the use of appro­

priate methodological procedures for ensuring quality and consistency in data'’ (Akerlind,

2002) based on (Cuba, 1981; Kvale, 1996). The most common criterion for measuring the

extent to which the results of a research project are reliable is repeatability or replicability

(Sandberg, 1996). The central idea of rejrlicability is that if two or more researchers arrive

at findings similar to the original researcher when studying and analysing the same data,

then the original researcher’s results are relialde.

Kvale (1996) defines two forms of reliability that apply to interview-based research

approaches, such as phenomenography and are based on different forms of replicability:

• Coder reliability check : Where two researchers independently code all or a sample

of the interview transcripts and compare categorisations.

• Dialogic reliability check: Where agreement between researchers is reached through

discussion and mutual critique of the data and of each researcher’s interpreted hy­

potheses.

Therefore there are two issues that concern the reliability, and thus replicability, of results

in a phenomenographic study. The first concerns the original discovery of the qualitative

variation in understanding among the group of individuals. Whereby the question to be

asked is, would other researchers reach the same categories of description as the original

researcher? The second concerns the extent to which other researchers can recognise the

understanding captured in the categories of description identified by the original researcher

(Sandberg, 1996).

36

The first issue deals with the replicability of the original discovery of the categories.

According to Marton “The original finding of the categories of description is a form of

discovery and discoveries do not have to be replicable” (Marton, 1986). Also Le Conipte

and Preissle, when discussing reliability in social studies, say that no researcher in the

social world can achieve total reliability. To be more specific they describe reliability as

“the extent to which studies can be replicated. It assumes that a researcher using the same

methods can obtain the same results as those of a prior study. This poses an impossible

task for any researcher studying naturalistic behaviour or unique phenomena” (Le Compte

and Preissle, 1984, p. 332).

As for the second issue, replicability is reasonable to expect in phenomenographic stud­

ies since it should be possible for independent researchers to reach a degree of agreement

concerning the presence, or absence, of the given categories of description. To facilitate

this reliability check, the researcher needs to make his/her interpretative steps clear to the

readers by fully detailing each step and by presenting examples to illustrate them. This

provides transparency throughout the whole process, from the initial data collection to the

presentation of the final analysis. Thus, a clear presentation of the analysis phase with

careful use of examples and supportive quotes, helps to justify the reliability of the study.

As Sandberg argues reliability should be seen as the interpretative awareness:

“Following the epistemology of intentionality underlying the phenomenographic

approach implies first and foremost that the researcher must demonstrate how'

he/she has dealt with his/her intentional relation to the individual’s concep­

tions being investigated. That is, in order to be as faithful as possible to the

individuals’ conceptions of reality, the researcher must demonstrate how he/she

has controlled and checked his/her interpretations throughout the research pro­

cess: from formulating the research questions, selecting individuals, analysing

that data obtained from those individuals, analysing the obtained data and

reporting the results.” (Sandberg, 1996, p.l37)

In Chapter 4 we further discuss how this reliability check has been applied in this study

and further measures that were taken to establish the reliability of the findings presented.

The fundamental concept of validity in the context of qualitative research is considered

37

as the extent to which a project has adequately reflected the phenomenon under investi­

gation and the degree to which the objectives of the research have been realised in the

actual study (Akerlind, 2002). In other words, validity in this context is assessed in terms

of whether a study successfully answers its research questions through the presentation of

suitably justified flndings. The issue of validity may be discussed in terms of communicative

and pragmatic validity checks (Akerlind, 2002; Kvale, 1996);

• Communicative validity check: Involves the researcher’s ability to defend the interpre­

tations of the data. In this check both the research methods and final interpretations

are under consideration. Acceptance of these through their dissemination among the

educational community constitutes the validity check.

• Pragmatic validity check: Deals with the usefulness of the research outcomes and the

extent to which they are meaningful for their intended audience.

Both these validity checks are relevant to phenomenographic projects and are applied

rigorously.

In this section the theoretical aspects of the issue of trustworthiness in phenomeno­

graphic research have been discussed. In Chapter 4 we further discuss how the various

checks of generalisability, reliability and validity have been applied in this study.

3.7 Why Phenomenography

The nature of the research questions that this study set out to explore meant that a

post-positivistic or naturalistic research approach was needed. Possible methodologies

to be adopted included Grounded theory, constructivist theory and general ethnographic

methods. Grounded theory is an inductive qualitative research method. In this approach,

the researcher begins by collecting data in the field and allows the theory or phenomena

emerge or emanate from the data (Glaser, 1992). This differs significantly from an approach

where the researcher starts with an hypothesis and then sets out to test it. Although

grounded theory appears an attractive alternative to phenomenography, the focused nature

of our study to the specific themes meant that grounded theory was not suitable for this

project.

38

The constrnctivist approach from the field of cognitive psychology and socio-cnltural

studies may also be used within educational and learning studies such as the one presented

in this thesis. The basic premise of constructivist theory is that an individual learner

must actively ‘Tuild" knowledge and skills and that information exists within these built

constructs rather than in the external environment (Bruner, 1990). Many studies within

this framework have produced interesting and noteworthy findings, some of these (Aha-

roni, 2000; Hazzan, 2002; Holmboe, 2000) were discussed in Section 2.1.4.1. However,

constructivism describes how a learner comes to learn something while phenomenography

focuses on the students’ relationship to the object of their learning, the latter being more

appropriate to the aims of this study.

The research questions that this project set out to investigate are such that phe-

nonienography is the most suitable research approach to realise them. Unlike other re­

search approaches phenomenography enables individuals to voice their perceptions of a

given phenomenon, but undertakes the analysis in a way that cuts across individuals and

across contexts (Green, 2005).

In this chapter, the theoretical, methodological and practical aspects of phenonienog-

raphy were presented along with the challenges that a phenomeographic researcher is faced

with. The challenges and limitation of phenomenography are taken into consideration and

appropriate safeguards put in place during the design and implementation phases of this

study in order that the findings are reliable and useful to educators in Computer Science.

3.8 Summary

In this chapter we have detailed phenomenography in both its theoretical and methodolog­

ical aspects. Although the phenomenographic research approach is relatively new, it has

been very well documented and the evolution of the approach can be traced through the

literature, as described above. The methods and guidelines that this research approach

suggests, and how these were applied in this study, are further discussed in Chapter 4.

39

Chapter 4

The study

This chapter details the empirical study that forms the core of this thesis. As presented

in Chapter 2, there have been some investigations of how students learn to program in

various educational settings (Booth, 1992; Bruce et al., 2004; Eckerdal, 2006). However,

these studies focus on either individual aspects of learning to program (Bruce et al., 2004),

or on a limited number of programming constructs (Eckerdal, 2006). In this study our

aim is to present an integrated picture of the comjilex activity of learning to program

from the perspective of novice Computer Science students. When learning to program,

students are presented with a number of key principles that are not necessarily all linked

to a specific programming language or programming paradigm. Thus, in order to gain a

complete picture of what it means for the students to learn how to program in the object-

oriented paradigm, the study is broken down into three distinct areas. The first of these is

the general question of the nature of programming as an activity; the second concerns the

more specific and unique constructs of object-oriented programming; the third relates to

the general programming constructs that are not necessarily related to any programming

paradigm. Another focus of this study is on the early experiences that first year university

students have when they are introduced to object-oriented languages; in particular on the

act of learning and thinking in the object-oriented way.

The themes that were chosen for inclusion in this study were carefully selected to reflect

the main concepts and ideas of object-oriented programming and programming as a whole.

The choice was based not only on the informal results of the pilot study, but also on the

40

author’s informed choice of themes of interest. In making these choices, the primary goal of

this study, which is to present a comprehensive insight into students’ experience of learning

to program as a whole, was used as the main frame of reference. The themes of this study

are grouped under three headings: theoretical object-oriented and general programming

components. The headings provide a clear separation between the themes that are more

general to the experience of learning to program and the themes that relate to the technical

aspects of programming.

The students selected for this study were drawn from a Computer Science degree pro­

gram, and consequently they were highly motivated to learn how to program. The first

year programming module of this course is highly intensive and stimulating, providing stu­

dents with many opportunities for self-study. Furthermore, this study is not merely based

on interview data, but also on a wide variety of material gathered through observation and

from the exercises that the students were asked to complete during the interviews.

The selection of the themes, courses and sample population, along with the method­

ological issues of this longitudinal phenomenographic study, are discussed in detail in the

remainder of this chapter.

4.1 Themes of the study

The themes of the study are grouped under the three headings: theoretical components,

object-oriented components and general programming components. Theoretical compo­

nents or themes are those which are more generally related to the experience of learning

to program snch as “the perception of program correctness”. As this study aims to investi­

gate students’ experiences when learning to program within the object-oriented paradigm,

the object-oriented components include the most fundamental and unique constructs of

this paradigm such as objects, classes, methods, attributes and constructors. To construct

a complete representation of students’ experience, the general programming components

were also included in this study. The general programming components considered are

not specific to object-oriented programming but rather they are essential to all program­

ming paradigms. The general programming components include students’ understanding

of an algorithm, array, iteration and selection. This distinction between themes is a nat-

41

ural boundary which provides a deeper understanding of the results obtained. Table 4.1

presents the main themes that were included in the interviews.

Table 4.1: Themes of the study.

Themes Theoretical
Components

Object- Oriented
Components

General
Programming
Components

Programming y
Learning to
program y
Understanding of
correctness y
Object y
Class y
Method V
Attribute V
Constructor ^/
Iteration V
Array V'
Algorithm V
Decision making V

The selection of the themes for this study was based on a number of factors. Since the

main objective of most research projects in the field of Computer Science education is to

improve teaching and learning, the themes of this study had to be relevant to both the ed­

ucator and the learner. To determine the themes, and their relevance to both the educator

and the learner, an informal pilot study was conducted. Part of the pilot study was a survey

conducted among the lecturers, research assistants and tutors involved with programming

courses. The particular courses were the first and second year programming courses in the

Computer Science and Engineering degree programs provided by Trinity College Dublin

in 2004. This established a set of constructs that students find most challenging to un­

derstand and use. An interview with the lecturer of the first year programming course

selected for this study took place after the survey had been completed. In this interview

the set of chosen themes was discussed to ensure their relevance and researchability. As

this study attempts to construct a complete picture of the experiences of students when

learning to program, some of the theoretical themes (for example, students’ perception

of correctness) were added at a later stage based on observation and informed personal

42

interest. Additionally, the course syllabus was thoroughly studied to ensure that all of the

themes investigated were part of the curriculum.

Not all themes and constructs on the course syllabus were included in this study. The

omitted themes included: object orientation, object-oriented design, variables, data types,

strings, Boolean operators, vectors, inheritance, applets, graphical user interfaces, abstrac­

tion and encapsulation. There were two main reasons for not including these. Firstly some

of the theoretical themes such as object orientation, abstraction and encapsulation were

not explicitly taught during the course rather they were introduced and applied throughout

the course implicitly. Although these are interesting themes, there was concern that they

would be too vague and difficult for students to conceptualise, which would lead in turn to

incoherent data. The second reason for excluding some of the themes mentioned above was

the fact that they were explicitly linked to the programming language. Applets and graph­

ical user interface are extensions of Java and are part of its API (Application Programming

Interface). Since our study hopes to explore students understanding of object-oriented pro­

gramming in general, rather than Java programming in particular, these themes were not

considered appropriate for this study. As for the more technical constructs such as data

types, variables, strings, these were not included due to the fact that they were too sim­

plistic and easy to understand based on our pilot survey and on the subsequent interview

with the lecturer concerned.

4.2 Selecting the Course

The study’s focus is on novice programmers’ understanding of the concepts involved in

object-oriented programming and programming in general, thus the desired student group

for inclusion in this investigation were first year programming students. The course from

which students were selected to participate in the interviews was Introduction to Object

Oriented Programming taught at Trinity College Dublin. The official description of the

programming course is given below (Dukes, 2005):

“/.../This course takes a practical approach to teaching the fundamental con­

cepts of computer programming with a strong emphasis on tutorial and labora­

tory work and is an important vehicle for developing students analytical and

43

problem-solving skills. This course aims to give students an understanding of

how computers may be employed to solve real-world problems. Specifically, this

course introduces students to the object-oriented approach to program design

and teaches them how to write programs in an object-oriented language” (in

this case, Java).

The course is part of the four year Computer Science degree program offered by the college.

This degree program attracts highly motivated individuals from various backgrounds who

intend to pursue a career in the held of computing and computer science research. The

reasons this course was considered an attractive option for this study were that hrstly it

is a pure Computer Science degree program and secondly, as previously mentioned, these

students have a high motivation to learn more about Computer Science and computer

programming. However, the students’ prior knowledge of programming exhibits much

variation since no programming experience is required in order to be admitted to study

for this degree. Many students had very limited or no prior experience with programming,

while others had extensive familiarity with computers and programming. Hence, this course

was considered representative of hrst year programming classes in Computer Science and

so likely to yield interesting and signihcant results. The programming language that is

used to introduce the students to object-oriented programming is Java (SunMicrosystems,

2006), a well known and widely used programming language.

4.2.1 Structure of the Course

Trinity College Dublin traditionally has two terms of nine weeks and one of six weeks, with

an additional “study week” at the end of each term for independent reading. Although

some students may have prior programming experience, the course is an introduction to

object-oriented programming suitable for complete novices.

The course is taught by a lecturer with the help of a teaching assistant and two demon­

strators who provide support for students. The lecturer on the course is a very experienced

Professor in the Computer Science department who has been teaching first year program­

ming for over eighteen years. Both the demonstrators and the teaching assistant for this

course are postgraduate computer science research students who are familiar with Java at

44

the development level.

The weekly schedule for this course consists of the following:

• Two hours of lectures, where the students are introduced to the programming con­

cepts at a theoretical level.

• Two hours of tutorials, where the students are required to complete a set of pro­

gramming exercises using pen and paper. These are then graded and returned to the

students with appropriate feedback.

• One hour laboratory class, the students are given small programming problems that

they have to implement and compile; these are also graded.

The students are introduced to new programming concepts during lectures, starting from

basic constructs and gradually expanding to include more complex and abstract ones. The

material is presented in the form of PowerPoint presentations that are then made available

to the students through the course wel) page. Additionally, students are given a book

written by the lecturer. This book includes all of the material that is covered in the

lectures, together with extensive examples and additional exercises (Cahill, 2001). The

emphasis of the course is highly practical: in the three hours of the course devoted to

tutorial and laboratory work, the students are presented with programming problems and

are required to produce solutions to them. At the end of each session the demonstrators

provide possible solutions to the programming task. During the sessions the demonstrators

provide feedback and assistance to students. In the laboratory sessions the programming

environment used is Eclipse. Eclipse is an open source programming platform widely used

in educational and industrial settings (Eclipse-Foundation, 2005).

4.2.2 Contents of the Course

The main objective of the course is to teach students how to program in the object-

oriented way using Java. However, the course is not limited to this. In order to learn

how to program, it is not sufficient to know the syntax of a language; logical thinking and

problem decomposition are also essential and form part of the course content. However,

due to the fact that these are considered implicit skills, they are not explicitly taught

45

but rather it is hoped that students develop them during the programming course. The

contents of the course include an introduction to objects and classes, variables, methods,

basic types, expressions, selection, iteration, arrays, applets and graphical user interfaces.

At the end of the course the students should be able to (Dukes, 2005):

• Design algorithms using sequence, selection and iteration.

• Design object-based programs using class-based decomposition.

• Write, compile, test and debug computer programs in an Interactive Development

Environment (Eclipse).

• Understand how programs are written in a high-level programming language and how

this is then translated into a form that is executed and understood by a computer

processor.

• Recognise the software engineering concerns that give rise to the use of classes and

other abstraction mechanisms.

To ease the transition into the logical thinking style that is essential for programming, the

lecturer spends the first four weeks of the course teaching the development and construction

of algorithms through the use of commands in plain English. After the students have

grasped the notion of creating algorithms by breaking the solution to a problem down into

very simple steps, the course moves straight into object-based programming using the Java

syntax.

As well as the weekly coursework assignments, the students are given four relatively

large programming problems throughout the year. The weekly coursework and program­

ming assignments together make up 30% of each student’s overall grade, while the remain­

ing 70% is awarded for the written examination at the end of the academic year. For

students to pass this course it is required that they pass both the coursework and the

examination i.e. they receive a grade of 40% or higher in each component. Thus, it is

important for the students to achieve good grades on both and, as a consequence, most of

them are very diligent throughout the year as well as during the examination period.

46

4.3 Selecting the Students

As was pointed out in Chapter 3, the selection of any study’s population is essential to

its success, thus diversity among the selected population was desired to ensure that a

rich set of results was obtained. The students taking the programming course in the

academic year 2004-2005 were asked to complete a background questionnaire and this was

used to assist the selection process. This questionnaire included sections on the students’

educational background, the programming languages that they might have learnt prior to

commencing the course and their motivation for choosing this particular Computer Science

degree program (see Appendix A). The questionnaire was also used to query the students

on whether they were willing to participate in the study for four paid hours of interviews.

The total number of the first year computer science students in October 2004 was 40,

including those who were repeating the course from the previous year and those who had

transferred into the course from another degree program. Initially 19 students expressed an

interest in particij^ating in the study, from which 16 were selected following the theoretical

sampling method described in Chapter 3. The diversity among the sample population,

in terms of gender, prior programming experience, repeating students etc. is presented in

more detail in Appendix A. Although participation in the study was voluntary, to motivate

the students to participate to the end of the study it was decided to offer them a modest

remuneration.

The students were interviewed four times during the academic year, once late in the

first term, once in the middle of the second term, and twice in the final term. Since all the

students had timetabled classes at the same time, the hours that they were available for

interviewing were limited. Thus, about two weeks were required to complete a full set of

interviews. All students participated in all interview sessions. However some rescheduling

was required as some students missed their scheduled interview appointments.

To ensure human-subject consent and address any confidentiality and ethical issues

involved, all the students who participated were asked to sign a consent form (see Appendix

A). The consent form assured the students that all the contents of the interviews were

confidential, and that they would appear anonymous in any publications based on the

study. In this thesis, the participating students have been given fictional names. Since the

47

female participants were few in number, they were also assigned male names to render the

population gender neutral.

4.4 Data Collection

The data used in the analysis were collected in the academic year of 2004 - 2005. The

complete set of data comprises the following:

• The background questionnaires that were completed by the students in the first week

of term.

• Four sets of interviews with all 16 students who were selected to participate in the

study.

• Laboratory and tutorial exercises that the students brought with them for some

interview sessions.

• Four think-aloud exercises that the students completed during the interview sessions.

The information gathered from the background questionnaire was used for selecting the

students that participated in the study. The interviews were the main source of data for

the phenomenographic analysis of the constructs presented in Table 4.1. The tutorial and

laboratory exercises that the students brought with them were used during interviews as

a starting point for further discussion on their experience of the programming constructs.

Finally, the students were asked to complete some think-aloud exercises during the in­

terview sessions. These were used to assess and investigate their understanding of the

object-oriented and general constructs of programming. The think-aloud exercises were

transcribed and used as part of the interview data. The main purpose of these exercises

was to ensure that the understanding they were expressing when answering to the interview

sessions was what they really perceived the construct to be. Thus, during the analysis the

think-aloud exercises are used in the same way as the interview transcripts. The strategies

that the students employed when solving the programming problems and their success or

failure in completing them is also mentioned during the analysis when it becomes relevant.

48

4.4.1 Interviews

The 64 interviews conducted with the students were senii-structured and followed the

guidelines for phenomenographic interviews described in Chapter 3. The distribution of

the investigated themes over the fo\ir interview sessions was determined by the order in

which students were introduced to new concepts during the course. Some of the theoreti­

cal, object-oriented and general programming constructs were discussed at more than one

interview session. A theme was discussed at more than one interview session when the

first interview session did not yield enough variation or when the students did not appear

confident when expressing their understandings. Thus the students’ experience of a con­

struct could be observed both when it was first introduced to them and at a later stage

when they had more experience with it. Generally, students appeared to be more confident

in describing programming constructs after having had the opportunity to practise them.

As the study investigated a large number of constructs (see Table 4.1), among a relatively

large (for a longitudinal, qualitative research study) sample population, it was not feasible

to discuss all of the constructs on multiple occasions. Table 4.2 presents the distribution

of the themes discussed over the four interview sessions.

Table 4.2: Distribution of the t lemes across the interviews
Themes Interview 1 Interview 2 Interview 3 Interview 4
Programming v/
Learning to program
Understanding of correctness
Object v/
Class V
Method V
Attribute V
Constructor
Iteration
Array V
Algorithm
Decision making sj

Each interview had a basic structure with a number of questions designed to capture

information on the themes of interest. However, the interview process was relaxed in

nature and therefore allowed for some deviations from the basic structure depending on

49

the points of interest that arose in the discussion. The main purpose in having an interview

outline was to ensure that the themes of interest would be addressed during the session.

The interview sheets used for the four sessions can be found in Appendix B. All the

stiidents who participated in the study were Irish thus the interviews were held in English.

Although the researcher is not a native English speaker she has a high level of proficiency

in the language. In order to ensure that the interview questions were phrased in a manner

that would help to reveal the specific fhemes of interest, they were further discussed with

the researcher’s supervisor and colleagues prior to the commencement of each interview.

From the first session, the students were informed of the purpose of this research project,

which was to capture their understanding of the programming concepts. However, it was

observed that when students were asked about their understanding of the object-oriented

and general programming constructs many tended to repeat definitions from the book and

the lecture notes. Hence it was evident, in some cases, that their answers were not really

their own understanding. To address this problem the researcher regularly reminded the

students that she was not looking for correct answers but rather for their own understand­

ing. Additionally, after talking about a concept in an interview session the students were

sometimes given small programming tasks where they had to use the underlying concept

and explain its use and purpose out loud. These small programming tasks were insight­

ful as there were times when the students realised that what they had earlier expressed

verbally was not how tliey used the construct in reality. Pour of these programming tasks

were completed during the four interview sessions and these can be found in Appendix

B. These programming tasks were selected from their course textbook (Cahill, 2001) and

some were adapted from the tasks they completed during their laboratory or tutorial ses­

sions, specifically problems 1 and 2. The other two programming problems (3 and 4) were

selected from the textbook after discussing their appropriateness for the constructs investi­

gated with the lecturer and my research advisor. The main criterion used for selecting the

programming problems was their potential to open up further discussion on the construct

and whether their completion would signify that the student knew how to use the construct

investigated. Even though these programming tasks enhanced the interview data, it was

not feasible to include one for every technical and object-oriented construct. In some in-

50

terview sessions students were asked to describe their understanding based on assignments

and tutorial exercises that they have previously completed. Many of the concepts in the

study, such as object and class, are very abstract and students found it easier to describe

their understanding through the use of examples.

The four interview sessions were distributed throughout the academic year. The timing

of the interview sessions was strongly dependent on the syllabus and times at which new

constructs were introduced. Thus, the first interview session was conducted late in the first

term at which stage the students had had extensive experience of constructing and working

with algorithms and a first experience of object-oriented constructs. The second interview

session was completed in the middle of the second term after the students had handed

in their first assignment and completed an informal examination. The second interview

session focused solely on the object-oriented constructs, as at that point in time the course

was very focused on their use and capabilities. At the third interview session their notions

of iterations and decision making were discussed as by that stage of the course students had

extensive experience with them. At the third interview the theme of learning to program

was revisited in order to see how the students’ understanding had progressed during the

academic year. At the beginning of the final term the students had learnt, about and were

using, two-dimensional arrays; thus in the last interview session their understanding of

arrays was discussed along with their notion of what constitutes a correct program. This

final interview session also included a discussion on object-oriented constructs along with

the student’s overall evaluation of the programming course (see the Table B.4 and B.5).

The majority of the interviews went according to plan. The interviews took the form of

friendly conversations in a relaxed and comfortable atmosphere. The fact that the students

were familiar with the researcher as their laboratory demonstrator set the students at their

ease. Some of the students had strong, local, accents and one of them spoke very quickly.

In these cases the students were asked to repeat some of their answers, just to make sure

that the researcher had understood exactly what they were explaining. However, none of

these difficulties were insurmountable, and all of the 64 interviews were valid and included

in the analvsis.

51

4.4.2 Observation

Being part of the teaching staff for the course was of direct benefit to the researcher in

this study. Firstly, the daily contact with the students helped the researcher to build up a

constructive relationship with them and provided her with the advantage of knowing how

each student usually approached a programming task. This meant that questions asked

during the interviews could be tailored to a student’s individual style. For example, in a

tutorial session students were given a scenario for creating a banking management system

and were asked to define the classes that would be required for their design. This exercise

generated a variety of solutions that were based on different assumptions. These were

clarified during the interview sessions, illuminating the students’ different understandings of

classes. Another advantage of participatitig in the course was that the researcher was aware

of exactly what was taught each week, thus the interview content could be appropriately

modified when necessary.

Although notes were kept of discussions and events during the class, these were not

used as evidence for supporting or contradicting the outcome space that was formed based

on the interview data. However, when observational data strongly supported or contra­

dicted the findings this is mentioned in the analysis, allowing the reader to draw his or her

own conclusions accordingly. Observational data were mainly used for prompting ques­

tions during the interview sessions. Observational data allowed the researcher to relate

to the students’ understandings more easily, while the sources of influence on a student’s

understanding were often apparent to the researcher from her knowledge of the course.

4.5 Transcriptions

The interview transcriptions began as soon as the interviews were completed. The inter­

views ware captured electronically using a Dictaphone device and later transcribed verba­

tim into Microsoft Word format. Both the audio files, and the transcriptions can be made

available to researchers on request. The number of interviews was very large and thus it

took over four months to transcribe them all. The researcher personally transcribed the

interviews, allowing her to become familiar with the data. By the end of the transcription

52

process, the first sorting of the data by theme was also complete. There were a num­

ber of interviews where the transcription was challenging due to the interviewees accent

and speed of speech. These were handled more carefully, with native English speaking

colleagues used to verify the transcriptions.

The task of transcribing the interviews was not taken lightly. Since the transcribed

interviews formed the basis for establishing the outcome space it was essential that the

process of transcription was carried out to the highest standards. The interviews were

transcribed verbatim, which means that in some cases there were repetitions and incoherent

sentences. However, in order to assure the validity of the transcripts these passages were

not altered to extract the subject’s intended meaning. According to Kvale:

‘To trans-sci'ihe means to transfovm, to change from one form to another. [...|

The problems with interview transcripts are due less to the technicalities of

transcription than to the inherent differences between an oral and a written

mode of discourse” (Kvale, 1996, pp. 166-167)

This problem, as descril^ed by Kvale, was a fundamental concern during the audio transcrip­

tion. In the phenomenographic tradition, the interviews are always transcribed verbatim

and used as the basis for the outcome space. However, the transcriptions were not used as

static written words in this study. During the transcriptions the researcher tried to cap­

ture the ongoing conversation as realistically as possible. In many cases, apart from the

actual verbatim transcriptions, notes were included to describe the setting and the mood

the subject was in during the interview. Some students tended to use their hands while

talking, especially when they had difficulties expressing something as well as they would

have liked to. This material could not be transcribed, although notes were kept during

the interviews when this was the case. A student’s hesitation when expressing something

was marked with a group of dots (“...”) while “thinking sounds” such as “Hum”, “Hem”,

“ahh” where also included when encountered. Other emotional aspects of the conversation,

such as laughter and giggling, were also annotated when appropriate. Thus substantial

effort was devoted to capturing as much of the essence of the emotions as possible in the

transcriptions, while always keeping in mind the issue of quality.

53

4.6 ATLAS.ti

Due to the large volume of material contained in the text of the transcriptions, it was

decided that a software tool should be used in the analysis of the interview transcripts.

The software tool used was ATLAS.ti, “ /o/ powerful workbench for the qualitative analysis

of large bodies of textual, graphical, audio, and video data” (A4uhr and Freise, 2003). The

software was not used to automate the process of analysis but to assist in identifying the

themes of interest more effectively. ATLAS.ti allows for the representation of the inter­

view data as primary documents that can be later grouped according to session, student

name/identifier, or theme of interest. It also allows for the creation of selected quotations

from the interviews that can then be grouped and referenced at a later stage. Additional

features of the softw'are include utilities such as codes, memos and network groups. Al­

though the features of codes and memos were relatively straightforward, network groups

were an altogether new and very useful utility for the researcher. Network groups allow

for the creation of complex conceptual structures that connect similar elements together

using diagrams. These were extensively used during the analysis of this study since the

categories of description were represented as codes. The supporting quotations and memos

assisted in the visualisation of hierarchies of understanding. As phenomenographic analysis

is highly iterative, network diagrams helped in grouping and regrouping the categories as

they were reaching stability. These diagrammatic representations illustrate the phases of

the process of analysis. However, these were not included in the analysis presented in this

thesis, since they would distract the reader. This material, along with the notes from the

analysis, are available to researchers on request.

4.7 Analysis

Each interview transcript was between five and twelve pages long, giving the researcher a

very rich (and large) set of data. The analysis had to be conducted in a very structured

manner due to the large volume of data and the number of phenomena under investigation.

Initially each interview transcrijrt was read as a whole and the preliminary analysis involved

sorting the interview sessions according to theme. Thus, the analysis was conducted on a

54

theme by theme basis, with one theme under examination at a time. After the primary

documents were collected for each theme, the relevant content-oriented passages were iden­

tified. These quotations were first read in relation to the whole interview and were then

decontexttialised and separated from the rest of the document. Subsequently, preliminary

codes were assigned to these quotations and the preliminary categories of description were

identified. These preliminary categories of description were then refined and examined for

iuclusiveness whilst being tested against the rest of the textual data. As many themes

were closely related, reflecting on the different quotations that supported them allowed for

further refinement of their meaning. This was achieved by considering the differences and

similarities between each quotation.

The analysis started in November 2005 and continued until December 2006. The anal­

ysis of each construct took between two and three months during which time the outcome

space for each one was re-read in relation to the interview transcripts and it was docu­

mented in this thesis.

4.8 Validity, Reliability and Generalisability in Practice

The issues surrounding the trustworthiness of phenomenographic studies were discussed in

Section 3.5. Issues relating to how validity, reliability and generalisability were addressed

in this study are discussed below.

Generalisability

The generalisability check that applies to phenomenographic studies is that of analytical

generalisation (Kvale, 1996). This is also affected by the selected population of the study.

To address the issue of generalisability in this study the background of the participating

population was thoroughly examined and the sample chosen to be as heterogeneous as

possible. Appendix A provides information on the background of the students in terms of

their previous programming experience, gender and education. This collective information

on the students’ characteristics together with a detailed description of the environment, the

course and the course content (presented in Section 4.2) would allow the interested reader

to determine whether the collective characteristics of the study’s results are applicable to

55

any particular student population.

The length and depth of the analysis did not allow for the repetition of the empirical

study at other institutions with a similar sample population, therefore no hard evidence can

be presented to support the generalisability of the specific results. Nevertheless, all possible

methodological guidelines were rigorously applied for the duration of this study to ensure

that the results would be generalisable. According to (Marton and Booth, 1997) if we

consider a less similar population then the ways of experiencing the phenomenon in question

that are captured in the categories of description should still be relevant, but possibly with

a less complete range of the experienced variations. Since some of the phenomena that

were investigated in this study have been investigated previously in different educational

settings, it was possible to compare and contrast our findings with these. Illustrating the

similarities and differences between these studies and the one documented here reinforces

its generalisability.

Reliability

As discussed in Section 3.5, replicability of the original discovery of the categories of de­

scription does not constitute a meaningful reliability check in social studies such as this

one (Le Compte and Preissle, 1984). It must be noted here that most phenomenographic

studies towards a Ph.D., such as (Booth, 1992; Berglund, 2005; Cope, 2000; Eckerdal,

2006), have not employed this coder reliability check. The dialogic reliability check “where

agreement between researchers is reached through discussion and mutual critique of the

data” (Kvale, 1996) has been employed extensively in this study. All the procedures that

were involved in this study, from the formulation of the research questions, to selecting

the course and later collecting and analysing the data, have been discussed with the re­

searcher’s supervisor and other members of the TCD Department of Computer Science

and School of Education. The outcome space for each phenomenon of this study was dis­

cussed mainly with researcher’s supervisor, but additionally part of the results were further

cross-analysed by Dr. Owen Conlan, a member of the university’s academic staff who has

expertise in learning studies.

However as Sandberg (Sandberg, 1996) argues, the most appropriate form of reliability

56

check ill jihenoiiieiiographic studies is the clear presentation of the interpretative steps with

the help of examples and excerpts to illustrate them. Therefore, this study is presented

following a logical structure that allows the reader to clearly identify the processes and

the factors that influenced the interpretation of the data and, hence, the outcomes. In

Chapters 5, 6, and 7 the categories of description are individually analysed, supported by

the appropriate quotations and methodical tables that illustrate the findings in all their

dimensions.

The findings of this study are presented in a clear and systematic manner in the sub­

sequent chapters, while great emphasis has been placed on discussing the findings in the

light of other research in the field. Despite that fact that many of these other studies

followed different research paradigms, nevertheless we discuss and, when appropriate and

feasible, compare them with our findings. It was found that these results corroborate and

hint at the generalisability of the categories of description found in this study, however

this cannot be used as a measure of reliability as it does not show the repeatability of the

results. However it provides strong indications that the understandings captured by the

categories of description are recognised, and present, in other educational settings.

Finally, our analysis is not solely based on interview data. In order to safeguard against

any possible bias or misunderstanding on the part of the researcher, written exercises were

used and observational data was gathered. These were taken into account throughout

the analysis of this study and are mentioned when appropriate in order to enhance the

presentation and discussion of the categories of description.

Validity

Validity in the context of qualitative research is considered as the extent to which a project

has adequately reflected the phenomenon under investigation and the degree to which the

objectives of the research have been realised in the actual study (Booth, 1992; Kvale,

1996; Akerlind, 2002). In other words, validity in this context is relative to whether a

study successfully answers the research questions by presenting sufficient justifications in

support of the findings. In Chapters 5, 6 and 7 the findings of each of the themes presented

in Table 4.1 are discussed and supported by excerpts from the interviews. Additionally,

57

comprehensive discussion and comparison with the literature articulates the relevance of

the results within the field. The results of this research have been discussed with other

colleagues both in the TCD Computer Science department and in other institutions. This

work has been peer reviewed, presented and debated at conferences and workshops within

the Education and Computer Science community.

4.9 Summary

In this chapter, the structure of the empirical study that underpins this thesis has been

presented. The selection of the themes analysed and the details of the educational setting

considered have been thoroughly discussed. The methodological aspects of phenonienog-

raphy and the way these were practised in this study have been detailed so that the reader

is provided with all the necessary information on which the trustworthiness of the results

is based. In the following three chapters, the findings and outcomes of the project are

discussed in detail.

58

Chapter 5

The Theoretical Components of
Programming

In this chajjter the theoretical coniponeiits of the study are analysed and discussed. The

students’ conception of the nature of programming, learning to program and their under­

standing of program correctness are not strictly confined to the object-oriented paradigm,

thus the students were asked to discuss these with respect to their current and previous

experience. The students’ general understanding of these themes is considered to be an

important aspect of their overall experience since we believe it affects the general approach

they employ towards learning the technical components of the language. In this chapter

the themes are initially discussed individually and then the relationships between them are

examined to provide an insight into the overall learning experience.

The first theme considered is the students’ understanding of programming. This was

discussed with the students in two interview sessions: once very early in the course and

again at the end of the course. By doing this we sought to capture the development of

student awareness and observe how their understanding develops as the course progresses,

thus providing a more complete insight into each conception. The second theme, students’

understanding of learning to program, was discussed in the third interview towards the end

of the course; while their understanding of program correctness was examined in the last

interview session when the students had received feedback on almost all their assignments

and laboratory work.

In the following we analyse these three theoretical themes, presenting the categories

59

of description as they were identified among the study’s population. The conceptions are

then discussed in terms of their focus and structure. The outcome space that has been

developed for each theme is then related to the literature and compared to the findings

of other studies, thus providing a complete presentation of our results within the field of

Computer Science education.

5.1 Students’ Understanding of Programming

The main focus of the study is to explore and document the experiences of novice students

when learning to program and think within the object-oriented paradigm. To fully capture

this, the interviews start with the foundations of programming in the broader sense and

consider how programming is understood in its essence as an activity. This theme was

visited in two different interview sessions: once in the very first session and again in the

third one. The interview questions that were used to investigate the theme were: “What is

programming for you?"', “How do you understand it?”', and “How would you describe it as

an activity?”. Four different categories that form the outcome space have been identified

and are summarised in Table 5.1. The categories are clearly distinguished in terms of their

focus, their meaning and the relationships between them.

Table 5.1: The categories of description of programming.
Category Label Category Description
1. Coding Programming is experienced as putting together

a set of instructions; as the act of coding in a
programming language.

2. Manipulation of hardware Programming is experienced as manipulating
hardware in terms of low-level binary operations
in switches and circuits.

3. Interaction Programming is seen as a form of interaction or
even as communication between the person who
is programming and the computer.

4. Problem-solving Programming is experienced as a problem-solving
activity that involves breaking down the problem
and devising an algorithm to solve it.

60

Category 1: Programming as coding

In this category programming is experienced as putting together a set of instructions so

that tlie computer will work in a certain way. Thus, programming is experienced as the

act of coding toward a goal. The statements that belong to this category stress the point

of instructions and code as a means to achieve a desired behaviour. As Eamonn states in

his first interview:

Interviewer: So what do you think programming is?

Eamonni: Programming would be defined as putting code to the machine to make

the machine work in certain applications.

Another comes from Liam:

Liami: Give a computer a set of instructions. To do whatever you want.

Interviewer: So you see the act of programming as writing a set of instructions then?

Liami: Yes I would say so ... programming is coding towards a target which could
be any problem really.

Another from Mark:

Marki: It is a series of commands really ... later these are translated by the computer

to solve a problem.

and a last one form Neil:

Interviewer: How would you describe programming?

Neill: The writing of a program.

Interviewer: Could you be a bit more specific please?

Neill: It is code mostly... but I suppose since we’ve done a lot of things in English it

could extend to that as well. So writing an algorithm really is a sequence of commands

to do things.

All these show a clear conception of programming as an activity involving writing code,

or as it is expressed in the quotations “programming is a series of commands”. Although

61

Eamoiiii, Liam and Mark clearly state that programming is about giving instructions to the

computer to do something, Neil is a bit more specific in his expression saying that it is about

writing an algorithm. Neil has a more developed conception of programming, however the

primary focus is still on code and instructions. A more mature view of programming

experienced as coding comes from Tim and Sean.

Tima: ...Emm programming is doing things through a computer... through a lan­

guage writing an algorithm to do a certain something ... to make a computer do

something.

Seans: Hm ... ah (programming is) writing out in a programming language... meth­
ods .and instructions that the computer can perform.

The last two passages bring out the use of the programming language as a means of

describing the instruction that one gives to a computer while programming. These come

from the third interview session. The primary focus of the students in this category is on

code. Thus, code is viewed as the means one uses when programming to achieve something.

However, in all the passages the goal of programming has been unspecified.

In this category programming is experienced as a one-way relationship with the com­

puter that involves writing code for the computer in order to achieve a desired behaviour.

There are, however, several aspects to this understanding. When compared with other ex­

cerpts, Eamonn, Liam and Mark’s views focus on the code in an abstract and vague way.

While Neil’s view of “programming as coding” focuses on the development of algorithms

through coding. Tim and Sean are more specific when they refer to coding involving the

use of a programming language to describe the instructions. Thus, there are three distinct

aspects in this category; coding as a set of instructions, coding as the development of

algorithms, and coding as the use of the programming language. These are discussed in

Section 5.1.1.

Category 2: Programming as manipulation of hardware

Here programming is experienced as the activity of manipulating the computer hardware

in order to achieve a desired behaviour that would be of benefit to the user. The statement

62

in this category is concentrated on the internal operations that take place during the

processing of a program. The whole activity of programming is experienced as an intangible

process that is centred on the low level processes that follow the execution of a program.

As Patrick explains in the following interview excerpt:

Interviewer: Can you tell me what is programming for you?

Patricki: I guess it is a higher level of abstraction of how a computer works. It is a

way of hmm ... I need to phrase this carefully to get it right. I guess when you are

programming it is a way of utilising the hardware of the PCs.

Interviewer: So you say that programs in general and thus the action of programming

results in utilising the hardware of the computer?

Patricki: Yeah, but in an abstract way.

Interviewer: What do you mean when yon say abstract?

Patricki: Essentially it means that at the end of the day the computer can work
only with ones and zeros and all these integers and stuff... all these terms we create
for programming are basically abstract, they descend to zeros and ones... I mean that

programming is a very abstract procedure because whatever you do at the end of the

day it is translated to zeros and ones so what we are doing is that we are creating our

own language to make the computer understand more complex things than zeros and

ones.

This understanding is also voiced by Anthony:

Anthonya: Programming is a set of instructions so that the computer knows how to

do hmm use the hardware. With some sort of instructions formatted ... like you get

your compiler... ehm that would translate English or the language you are using into

machine code because the computer can only understand machine code.

Similar to Category 1, students here perceive programming as a one-way relationship with

the computer that aims to create something (unspecified again) useful for the user utilising

the computer hardware. However the distinction is that the focus in this category is on low-

level operational processes compared to the high-level understanding presented in Category

1 where the conception was targeted on the code itself.

63

Category 3: Programming as interaction

This category encapsulates an understanding of the nature of programming as an inter­

action between the programmer and the computer itself. It incorporates the views from

Categories 1 and 2 but instead of a one-way relationship with the computer, programming

here is experienced as a two-way relationship in terms of input and output. Thus the act

of programming is experienced as a means to communicate the programmers’ wishes to the

computer that in return produces an output. Patrick expresses this in his first interview

as follows:

Patricks: Well I guess it’s writing algorithms the computers understand so when

somebody basically is writing a program I guess like in a way... elim... I suppose it

involves user input and the program uses the input to produce an output, I guess this

would be the best way to describe it.

Interviewer: So you say that programming is creating a program that takes an input

and produces an output.

Patricks: Pretty much yes ... it is a sort of conirnunication between you and the

computer in a way.

Alan who first expressed his understanding of the nature of programming as learning a set

of instructions, elaborates in his response to uncover yet another facet of his understanding:

Interviewer: So you see the act of programming as learning a set of commands then,

right?

Alani: Yes, just how to write, how to tell a computer in the simplest terms as you

can, to do something you want it do. So, it is a general interaction between you

and the computer since you give it something and then you get something back as a

response.

Cormac, on the other hand, views the act of programming in two levels:

Cormacj: At the very basic (level) it is turning on math switches inside the computer,

in a higher level it is just a way of communicating how we react to different things,

and how we communicate and... how computers communicate and it is the connection

between the two.

64

Interviewer: Between the person and the computer?

Cormaci: Yeah.

These clearly indicate the presence of a distinct category that describes the nature of pro­

gramming as a two-way interaction between a person and the computer. All the above

statements focus on the communication that results from programming a computer. When

comparing the statements from Patrick and Alan with the ones from Cormac we can see

that the latter conception is based in Category 1 while the former two include the under­

standing presented in Category 2. Patrick and Alan view programming as communication

however they seem to concentrate on the low-level, more grounded elements like input and

output. Cormac on the other hand has a more abstract understanding of this interac­

tion. Thus there are two different approaches in this category; one suggests interaction

through user input while the second is more conceptual, presenting programming as a

communication of human behaviour.

Category 4: Programming as a problem-solving activity

This fourth conception of the nature of programming focuses on the problem-solving aspect

of programming, while it also incorporates the understandings described in the previous

categories. The primary focus here is on the problem that the student has to deal with.

The conceptions described in Categories 1 and 2 are present in this category, but they

have moved to the background and thus are not in focus. Although the main focus of the

passages that belong to this category is on problem-solving and the various techniques that

one uses to do that, the computer is still central in their conception. As Sean argues in

the following, programming is all about the construction of algorithms:

Sean i: I would say programming is writing algorithms for a computer to solve a
problem I suppose. I guess it is a way to make the computer to solve problems using
various algorithms.

Colin focuses more on the techniques involved in problem-solving:

Interviewer: So what is programming then for you?

65

Colin 3: Hmm it’s a process of doing complex... elim writing an algorithm... an

algorithm to... do you mean programming in general?

Interviewer: Yeah.

Colin 3: The process of performing complex tasks ... solving the problems by breaking

them down to smaller steps... hmm... That’s about it really.

Cormac is more specific in his description of programming; breaking down the problem

into particular programming constructs like objects and their attributes.

Cormac 3: Hmm breaking down stuff to what they are and what their attributes

are, and putting all that in the form that a computer can understand. Hmm basically

it is just making algorithms... I don’t know...

Interviewer: You said that is about breaking down the problem...

Cormac 3: Yeah so you basically have this problem and you break it down to what

is it made up... like you break it down to objects, classes... it is just breaking down
into parts and then you solve each part. And then you put it all together and then

you have a program.

Cormac is a bit hesitant in his answer, but it is clear that his conception includes the

low level description of programming as coding also found in Category 1. The integrating

approach that is described by Cormac - of decomposing a problem and then composing

parts of the solution to ultimately solve the problem - is also expressed by Brian in his

third interview.

Brian 3: (...) like you are given like a problem and just having like sort of a set of

things that you can achieve and just trying to build layers of these ... achievement to

achieve whatever [...] basically it is scaling down into not only just one big thing bnt

into smaller things.

Karl on the other hand seems to unveil another aspect in understanding programming

where the motivation is for the programmer to gain a reputation within a community:

Interviewer: So what is programming for you?

Karli: Ahm mmm on what level do you mean?

66

Interviewer: When you are programming what are you doing?

Karli: Well I suppose solving a problem. Well by using specific tools.

Interviewer: So you see it as a problem-solving activity?

Karli: Yes in one level.

Interviewer: What other levels are there?

Karli: Hmm I suppose there is more to programming for some people they do it for

fun or reputation or hacking.

Students that experience programming as the activity of solving a problem, focus primarily

on the problem at hand and the various strategies that one can employ to solve this.

Many students when describing programming in this category said that it is about writing

algorithms for the computer. For that reason their understanding of algorithms was taken

up as a theme for the study and it is discussed in Chapter 7 along with other general

programming constructs.

Although problem-solving is central in the students’ responses in this category, some

students like Sean focus more on the construction of algorithms, while others such as

Corniac have a more technical or even low-level view that deals with the specific object-

oriented programming constructs of object and class. Brian, on the other hand, focuses

more on problem decomposition and the incremental construction of a solution. Thus

programming, when experienced as a problem-solving activity, incorporates three different

approaches: problem-solving as algorithm creation, problem-solving as object and class

identification, and finally problem-solving as problem decomposition.

5.1.1 Structure and Meaning of Students’ Understanding of Program­

ming

The structure of the students’ experience of programming as an activity is presented in

Table 5.2 following the guidelines in (Marton and Booth, 1997). As is observed in the

referential aspect of the categories, the meaning gradually evolves from an incomplete

experience that deals only with the tangible aspects of programming (Category 1), to a

broader view that takes into account the user and the programming problem (Categories

3 and 4). The internal horizon (column 3) shows how the different elements that form

67

the foundation of the experience are related to one another and how they connect to the

category and the theme itself. In this column the shifts from one category to another are

minor. In comparison, we see that parts of the foundations of Category 1 (coding) appear

in the rest of the categories.

In Category 1, “coding”, the internal horizon is narrow and disconnected; while in

2 the notion of computer hardware is introduced, giving a purpose to the activity of

programming. In 3 the internal horizon extends to include the user in the foundations

of the experience; providing an actor for programming. Thus the ultimate reason for the

activity of programming is to facilitate the user in utilising the computer through software.

Finally, in the last category the foundations have become discernable from the manifested

aspects of the nature of programming, and the conception is directed beyond the current

experience to that of real-world problems.

The focus in Category 1, “programming is experienced as putting together a set of

instructions as a description of coding in a programming language", is on the instructions

that the programming language provides and the actual act of using those in combination

to achieve something (unspecified). The variation that conditions this understanding comes

from the different instructions that exist in the programming language and the ways these

are combined to produce different programs. Students that share this understanding are

primarily concerned with learning the syntax of the language and the program layout,

frequently using sample programs as guides.

Category 2, “programming is experienced as manipulation of the hardware in terms of

low-level binary operations in switches and circuits", deals mostly with the internal opera­

tions that result from the act of programming. This category is similar to the previous one

in that here programming is experienced as an intangible process centred on the low-level

operations that follow from the execution of a program, while the purpose of programming

is the utilisation of the hardware. The variation in this category is brought out by the dif­

ferent binary operations and usage of the computer hardware. As in the previous category,

the students’ experience of programming focuses more on learning the instructions of the

language.

In Category 3 programming is seen as a form of interaction, or even as communication.

68

Table 5.2: Understanding of programming; the focus of the conceptions.

Referential aspect Internal horizon
(foundation)

Focus

1. Coding Coding in a
programming
language.

Code, programming
instructions,
programming
language.

Coding as a set of
instructions; coding as
the use of the
programming language.

2. Manipu­
lation of the
hardware

Manipulation of the
lower level
operations of the
computer.

Code, compilers,
binary operations,
computer hardware.

Manipulation of the
hardware through
programming.

3. Interaction Interacting with the
computer.

Programs, user,
computer,
interaction.

Interaction through user
input; communicating
human behaviour.

4. Problem

-solving

Solving problems
through the use of
the programming
language and the
computer.

Programming
language, problem
specifications,
real-world problems.

Problem-solving as
creating algorithms;
problem-solving as
identifying objects and
classes; problem-solving
as decomposing the
problem.

69

between the person who is programming and the computer. The concepts presented in

the previous categories are still present but they have moved into the background. Here

programming is viewed as the means for a two-party communication between the program­

mer and the computer. This involves input from the programmer/user and a response or

output from the program. Variation here is brought out by the different situations where

programs require input to produce meaningful outputs. Thus students in this category

program by keeping in mind this two-way interaction and how this can be achieved.

Finally, in Category 4 programming is experienced as a problem-solving activity that

involves breaking down the problem and devising an algorithm to solve it. The focus here

has moved to the actual problem to be solved through programming. The conception has

developed to include both the user of the program and the problem itself. The variations

within the conception itself are that programming is experienced as a problem-solving

activity that targets the creation of algorithms, the identification of objects and classes

through the problem definition, and finally the decomposition of the problem. Students

that belong to this category are not concerned with the syntactical details of the language

but rather concentrate on the problem and the techniques that they can use to solve them

in an efficient manner. This does not mean that the syntax of the language is not important

rather that it has now moved to the background of their experience.

5.1.2 Changes in the Students Conceptions During the Course

The structure of meaning that was presented in the previous sections comprises the full

breadth of the outcome space that reveals the perceptual boundaries of the categories.

In many phenomenographic studies the act of learning is seen as the development of the

students’ perception of the phenomenon to a richer and more complete understanding

(Booth, 1992). In terms of our study this means the transition from one conception

to another that is qualitatively “better” with respect to the logical hierarchy that has

been identified. That is not to say that a category is better than any other in terms of

the potential learning outcome. A successful student needs to acquire and adapt to the

conceptions encapsulated in each category at different stages of their studies. A potential

problem would arise if the students’ experience does not evolve further than Categories 1

70

and 2. In sudi cases additional assistance would be required to encourage the students to

experience the different ways of viewing the act of programming.

Figure 5.1; Shifts in students’ conceptions of the nature of programming.

In this study there were 3 different cases of a shift in the understanding of the nature of

programming as shown in Figure 5.1. All except for one case (Sean) have shifted towards a

category that would be considered qualitatively enhanced in the outcome space. Since the

categories are inclusive this only highlights that the students were focused on the different

aspects of their understanding in the two interview sessions. The shifts are considered in

isolation in this section.

Cormac in his first interview says that programming is communication; in his exact

words; “At the very basic (level) it is himing on math switches inside the computer, in a higher

level it is just a way of communicating how we react to different things, and how we communicate

and... how computers communicate and it is the connection between the two.” The understanding

presented here is very abstract, and it is focused around the programmer/user and the

computer while the act of programming is perceived as the medium that is used to achieve

this interaction. In the third interview session Cormac responds to the same question as

follows;

Cormac 3: Hmm breaking down stuff to what they are and what their attributes
are. and putting all that in the form that a computer can understand, ffmm basically
it is just making algorithms)...] so you basically have this problem and you break it
down to what is it made up of... like you break it down to objects classes... it is

71

just breaking down into parts and then you solve eac:h part. And then you put it all

together and then you have a program.

Cormac’s response describes a technique that one could follow to simplify the problem and

ultimately solve it. The notion of the programmer and the computer are presented here

as well, however the emphasis is on the programming problem and the problem-solving

techniques. Thus the elements of his previous conception are retained, but now a more

specific understanding is observed that deals with the tangible aspects of programming.

It is common to observe shifts in phenomenographic studies where two interview sessions

have taken place (Booth, 1992; Berglund, 2005); a comprehensive analysis of the types of

such shifts can be found in (Pong, 1999).

In Patrick’s first interview he voiced his understanding of the act of programming as

manipulating the computer hardware (see Section 5.1, above). There he talked about the

way a program is translated into binary in order to be executed by the computer. The

focus of his understanding is on the computer and how hardware can be utilised through

the programming language. Additional emphasis is given to the internal o[)erations of the

computer when it executes the programs. In his third interview his focus has shifted to

the interaction that is achieved through user input and the program’s output.

Patricks: Well I guess it’s writing algorithms the computers understand. So when

somebody basically is writing a program I guess like in a way... ehm... I suppose it

involves user input and the program uses the input to produce an output, I guess this

would be the best way to describe it.

Interviewer: So you say that programming is creating a program that takes input

and produces an output.

Patricks: Pretty much yes ... it is a sort of communication between you and the

computer in a way.

The shift in focus towards writing programs is evident. The answ'er stresses the impor­

tance of input and output as the means of interaction with the computer. The significant

difference between this and the previous excerpt is that here the conception of the act

of programming is extended towards the user while the reasons for writing programs are

made more specific.

72

Sean’s shift in understanding is in marked contrast to that of Cormac and Patrick

in that his shift in understanding was from a higher to a lower qualitative category of

description in the hierarchy of the outcome space. Sean initially experienced programming

as a problem-solving activity. Specifically in his first interview he said, very simply, that

programming is “writing algorithms for a computer to solve a problem I suppose. I guess it

is a way to make the computer solve problems using various algorithms. ” The emphasis in

his short answer is on writing algorithms while the goal of the act of programming is to solve

problems. The main aspects of his understanding include the programmer, the computer

and the problem. This conception clearly illustrates a ‘'problem-solving” understanding

of the nature of programming. In his third interview Sean says “hm ... ah (programming

is) writing out in a programming language ... methods and instructions that the computer

can perform.” Here the focus has changed and it has moved towards the more tangible

elements of programming, like the programming language, and the specific concepts of

programming, for example methods. Thus, initially Sean experienced programming in a

conceptual way, looking at the big picture; while later, when he had to deal with the

si:)ecific elements of programming, his understanding changed and shifted to the concrete

featvires of the process. This should not be viewed negatively, since for a student to be

successful it is necessary that he discovers the meaning encapsulated in each category in

order to develop a complete understanding of the theme.

5.1.3 Discussion on the Nature of Programming

In 1992, Booth conducted a phenomenographic study where the nature of programming

was investigated as one of the themes (Booth, 1992). The study’s population was drawn

from a first year Computer Engineering degree program. The programming paradigm that

was presented to the students was functional programming and the language that was

taught in the course was standard ML. The conceptions that were identified among the

study’s population were the following (Booth, 1992):

• Programming as a computer oriented activity, in which programming is con­

ceived of as an activity that focuses on the computer.

• Programming as a problem oriented activity, in which the main focus is on the

73

problem that programming activity is intended to solve, rather than the computer

itself.

• Programming as a product oriented activity, in which the main focus is on the

program as a product, in the sense that the programming is an activity for j^roducing

programs for potential users, and/or accessed for maintenance by other programmers.

These conceptions encapsulate a rather global and more generic experience of the nature of

programming, particularly when compared to the ones found in our study which could be

characterised as more pragmatic and focused. Nevertheless the focus of Booth’s categories

is reflected in the categories of description found among this study’s population and vice

versa. In the foundations of the first and second categories (coding and manipulation of

the hardware, respectively) programming is experienced as a one-way relationship with the

computer. Both coding and manipulating the computer hardware through programming

encapsulate the conception found in Booth’s hrst category of description, i.e programming

as a computer oriented activity.

The second conception that was found among the Computer Engineering students

summarises an experience where programming is seen as a problem oriented activity. The

same understanding has been identified in the fourth category of description in this study

where programming is seen as a problem-solving activity. In both studies, the categories

show that the experience has moved from the computer and is now focused on the problem

and the techniques that can be employed to solve it.

The conception of programming as a product oriented activity was not explicitly voiced

by the student cohort of our study. However in the third category, where programming

is seen as an interaction with the user, the notion of an end result is present. In this

category the sense of programming as an activity where the user, programmer interacts

with the computer to get a result reflects some of the properties of the third category

found in Booth’s study, but the complete conception as articulated by Booth is never

present within the studied population.

Given that the two studies have been conducted independently separated in time by

over fifteen years, and with different populations and courses, the fact that such strong

parallels of understanding can be seen between the studies strengthens their validity and

74

geiieralisability. The difference in the course and background of the studied population

can explain the difference in the detail of the conceptions encountered.

5.2 Learning to Program

Learning to program is another of the theoretical themes taken up by our study. While

learning to program is a phenomenon that has been investigated in previous studies (Booth,

1992; Bruce et ah, 2004), all of these have been in educational disciplines other than

Computer Science. The relationships between their results and those of this study are

further compared and discussed in Section 5.2.2. The main questions that were used to

investigate the students’ conceptions of this theme were: “What do you think learning

to program is all about?”: and “What do you think it takes to learn how to program?”.

Six distinct, and in some cases inclusive, ways of experiencing learning to program were

identified. These are presented in Table 5.3.

Table 5.3: Categories of description for learning to program.
Category Label Category Description
1. Learning the syntax of the
language

Learning to program is experienced as learning
the syntax of the language.

2. Learning and
understanding the
programming constructs

Apart from learning the syntax of the language,
the focus here also includes learning and
understanding the constructs involved in
programming in general.

3. Learning to write programs As above, but also utilising all these to write
programs.

4. Learning a way of thinking In addition to the above, learning to program is
also experienced as learning how to think
logically in general.

5. Learning to “Problem
Solve”

As above, and also utilising this way of thinking
to solve programming problems.

6. Acquiring a new skill The whole process is experienced as learning a
new skill that affects the w'ay one thinks in
real-life.

The first three categories focus on the programming language and its constructs while

75

the next two bring out the unique way of thinking that is required when programming. The

last category describes how learning to program involves the acquisition of a new skill that

can be utilised in everyday life. A more elaborate presentation of the categories follows,

along with supporting excerpts from the interviews.

Category 1: Learning the syntax of the language

Here learning to program is experienced as learning the syntax of the language. The

students that belong to this category seem to direct their efforts towards learning the

keywords and the details of the syntax, in some cases even by heart. Knowing the details

of the programming language provides the student with the ability to write a piece of code

that compiles without any syntactical errors and this is what they experience learning to

program as.

As Alan emphasises in his response, the important factor is knowing how to fix small,

syntactical errors that may occur.

Alan.u Hmni well it is necessary to like computers because you have to like them

otherwise you don’t enjoy it... and for me learning .Java and learning programming is
just all about sitting down writing code and just practicing and at the end it starts to

make sense. It is about learning... and learning everything about the grammar how

to phrase things and where you put the marks like the semicolons and stuff... and it

is more about learning the structure first how it works and then you actually learn
the specifics. That’s how I did it.

Interviewer: Can you explain to me a bit more what you mean about the specihcs?

Alans: Oh yeah, the syntax, you know, learning to fix the small errors that you

would... you know, you have the basic knowledge but then you still need to refine it...

you know, you may put the wrong brackets at some point and you may not know the

equals method to compare the two strings, you know, stuff like that.

Alan refers to the basic knowledge one lias about programming, but the main focus of

his experience is on learning the grammar details of the language. Although he briefly

mentions the structure of the program the emphasis in his response is on the syntactical

operations.

76

Another student, Liam, points out that the only thing you need to do to in order to

learn how to program is to get a book from which one can learn the syntax and features

of the language.

Liams: It’s about getting a couple of books, really... Well it is the language that you

are interested in anyway and the syntax of the language is what you learn from the

book. Then you have to mess around with the syntax and the features of the language

and having fun you learn more, really |...]. So what you can do depends really on the

language and this is, really, what you learn from a book, the syntax of the language,

that’s all you need anyway.

Here we get the perceptions of a complete novice (Alan) and a relatively experienced

programmer (Liam) that both focus their experience of learning to program on learning the

syntax of the language. However, this does not necessarily mean that Alan and Liam have

the same level of programming understanding. Liam, as a more experienced programmer,

has reached a level where learning to program is not an issue for him. This knowledge

is implicit for him and therefore learning to program in a new language is just a matter

of learning the syntax of that new language. Alan on the other hand exhibits a naive

understanding as he appears not to be aware of other important facets of programming.

Thus, he explains what learning to program is by taking into account only the pragmatic

elements of his experience. This actively illustrates that the learning outcome of each

category is not a fixed attribute that can either guarantee success or failure, but a mapping

of students’ understanding. As was mentioned in the previous section, the desired learning

outcome is for the students to acquire the knowledge encapsulated in each category of

understanding during the course.

Category 2; Learning and understanding the programming constructs

Students in this category are focused on the process of learning and understanding the

constructs involved in programming in general and therefore this category follows directly

from the first one. The understanding expressed in Category 1 is presumed, however the

syntactical details of the constructs have receded into the background of the experience.

The dominant feature of this category is understanding the essence of the programming

77

constructs. Neil expresses this conception strongly:

Neilg: [.. •I you need to know the syntax of the language that you are programming
in and the concepts like iterations and conditions. But all these you kind of need to

know how to use them, like, and when to use them... The syntax of these things is

also important but you need to understand the concepts first not in a single language,

like, because they kind of exist for most of the programming languages.

Neil is very clearly distinguishing between the syntactical details of the language and the

programming concepts such as iterations, conditions, etc. Stephan also talks about the

techniques you need to learn when programming. When asked what it takes for someone

to learn how to program, he responded:

Stephans: It takes a good deal of work actually.

Interviewer: Work on what?

Stephans: On studying concepts... programming concepts and the languages.

Interviewer: When you say concepts, what exactly do you mean?

Stephans: Well, basically, techniques, the basic understanding of how to make a
computer do something and then the language is something that you learn in order
to translate that to something that the machine can understand, but you have to
understand first how the concepts work so you can use them when you need to the
right way. You know...

Both students very clearly and plainly express an understanding of learning to program

that deals with learning and understanding the programming constructs.

Category 3: Learning to write programs

In this category the focus moves from the syntax and the programming constructs to the

actual writing of programs. Thus learning to program is experienced more as utilising the

syntax and the features of the language to write programs that solve the problem at hand.

Although the focus is clearly on the programs; the nature of the programs is not specified.

Anthony exhibits this conception in the following answer:

78

Interviewer: Wliat do you think it takes to learn how to program?

Anthonya: It involves setting out your ideas after thinking how to. like, put these

ideas into the proper syntax and you need to know the commands in whatever language

you are working in and then writing out the program. That’s about it really.

Anthony’s conceptions include the understanding presented in Categories 1 and 2, as he

talks about the proper syntax and the commands, however the emphasis is on learning to

program as the activity of w'riting programs.

Sean points out the importance of learning from other programming examples:

Seaiia: Ehm... first of all the basics of how the language works and what is the

grammar that it uses... and then just various different examples, just to get used to

how it is being used really. That is the only way to learn it really properly by writing

and writing... small programs at the start and then bigger as you get to know more.

You need lots of experience.

Sean’s point, of learning from programming examples, is not stressed in Anthony’s re-

sjronse, however they both focus on the fact that learning to program is about learning to

write programs. Mark summarises this conception by saying;

Marks: You need to be able to know the language you want to program in, but that

is not enough, you need to be able to write the programs right, that’s programming.

The construction of programs is central in this category. The views presented in Category

1 and 2 are also present but they seem to have moved to the background. All the passages

included in this section refer to the syntax of the language as something one needs to learn

when learning to program, but according to the students this is not all that is needed when

learning how to program. Therefore, there is a clear distinction between this category and

the ones presented before, since this one is more pragmatic and unveils a richer learning

experience, even if it is not complete.

Category 4: Learning a way of thinking

In this category the perception has progressed from language and programs to learning a

new “way of thinking”. Many students have expressed that when programming one needs

79

to be in a different frame of mind. Hence, in order to be able to program one needs to

learn to think in this new way. This frame of mind has been vaguely described as logical

thinking. Patrick explains this in the following way;

Interviewer; What do you believe is required, or what does it take to leani how to
program?

Patricks: You dehnitely need the sense of logic, that is the basic thing because
everything else then is based in your ability to logically think of a solution, even with
some of the other programs that we are doing you need the logic to be able to see it.
Basically, you need decent mathematics and a basic sense of logic and the practice, of
course. Pay attention and then it clicks, I guess.

Patrick here links the process of learning how to program with learning mathematics. This

may have been influenced by the fact that the students in the labs and tutorials were given

programming examples and problems based on mathematics. One thing is clear though;

this category reveals that programming requires the learner to be in a different frame of

mind where logic is central. Patrick mentions something else as well in his response, this

“click” moment that many students have talked about in our informal conversations during

the course. This moment is described as something that one cannot control and when it

happens, programming starts to make sense and the learner is able to program as if all the

knowledge has fallen into the right place.

Category 5: Learning to “Problem Solve”

This category derives from the previous one in that the concept of logical thinking is now

expressed as a condition for problem-solving. This more complete conception involves

learning to problem solve as part of the experience of learning to program. Being able

to see the solution to a problem is a critical feature of this category. The importance of

problem-solving is highlighted by the teaching staff from the very beginning of the course

and the students have been taught to perform case analysis when attempting to solve a

problem. This involves finding all the different cases that may arise in the solution to a

problem and the conditions that affect them. Usually, students are encouraged to write

down the conditions in English and use this as a guide when writing the code for their

80

solution. This has possibly affected the number of students who belong to this category.

For example, Eamonn describes this in the following quotation:

Eamonna: |...| Ehm logic, how to think logically and... breaking the whole thing

down. Like in the tutorial the demonstrator told me that you need to break the whole

thing down and then you work out what you need to have and how you go about it

(case analysis), and then the whole thing made a lot more sense. It is just ... you only

understand by being shown things... the book is good so then you only have to learn

it (the syntax) off.

Interviewer: So after the demonstrator showed you that then you could do it?

Eamonna: Yeah I learn better when someone shows me first. Like not that I can do

it perfect now but after he showed me it’s just clicked, and I felt I could do that. Like

I am not sure that I understand everything but I can pretty much use them if you

know what I mean. It sort of makes more sense.

Interviewer; So you say that one thing you need to know when learning to program

is how to do case analysis. Right?

Eamoniis: Yeah... Let’s just say... I am actually coming from the... actual point

that .Java code doesn’t matter that much, like I haven’t learnt it. Like I can do it with

a book along side I am not confused anymore. But the important thing is to think in

this way so you see the solution... Do you know what I mean?

Unlike Eamonn, Brian does not explain how he learnt to solve programming problems;

rather he focuses on the characteristics that a good solution should have.

Brians: I think it’s more trying not to look at it as one, it is not just one problem,

but more as to how you are going to deal with the problem. There is a lot of ways

probably... an infinite number of ways that you can do any one problem. It’s just

trying to do it the smartest and quickest way really not the quickest way, the best,

the more efficient way.

Interviewer: So learning to program is about being able to see the more efficient

solution to a problem?

Brians: Yeah.

Declan points out the difference between problem-solving in programming and problem­

solving in other situations:

81

Declana: Hmm logic and just kind of... hem... it has to be clear in your mind what

you have to do, if you know what I mean. Like, there is always going to be certain

cases when you have to solve a problem and you just have to know what rules you

have to follow and what kind of things you have to do to solve it. [...| IBjecause

you can solve problems without having to think so much about it, where in computer

programming solving a problem is more complicated because the instructions are so

basic you have to go down and solve the problem into its very basic elements, like,

I think a lot of the problem and its solution. Because when you are thinking of a

problem solution in your mind you take a lot of things for granted but it is not this
way in programming, because you have to think more basic.

The focus in this category is on problem-solving, and the students have described how one

can learn this technique. This category reveals a more developed conception of learning

to program that has extended beyond the previous categories to include the problem as

well as the ways one can approach its solution. The logical and systematic way of thinking

described in Category 4 is now used to enable problem-solving.

Category 6: Acquiring a new skill

The final category conceptualises learning to program as learning a new skill that affects

the way one thinks in real-life. This conception assumes understanding of the language

and the programming constructs while it also draws on elements from Categories 4 and

5. However the way that thinking logically enables problem-solving is now viewed from a

different perspective, that extends beyond the course to the real-world. Students experience

learning to program as the acquisition of a new skill that can be useful in other areas of

their studies, such as learning other programming languages, or even in different areas, like

mathematics. Colin voices this understanding in the following:

Colins: Just practice really. The more familiar you get with how it works then you

build a more solid base so I mean I would say that I have a pretty fair idea of how

Java works.

Interviewer: Have you learnt anything else to reach that point in programming

ability that you have now, except for the syntax that you’ve already mentioned?

82

Colins: Well I didiiH have to carry out anything very difficult so far but, yeah, you

learn how to break down things to more manageable pieces which would be applicable

to any programming language and any mathematical operations or anything really.

In a different interview session when students were asked what they thought was the most

important thing they learnt during the course Ken and Cormac said the following:

Ken4: [.. •I sort of you work out how to analyse problems and you realise that maybe

there are ways of doing something, that you haven’t thought of before and you can

apply that to other things like in IBASk

lie then continues by giving a mathematical example where the logical thinking he learnt

in the programming class has helped him solve a problem he had in his mathematics class.

Ken has explained how his new skills helped him in other courses while Cormac moves

even further:

Corrnac4: Yeah I did (learn) definitely logic and problem-solving etc. and it helps in

many other ways like cleaning the flat (laughs)

Interviewer: How was that?

Cormac4: (giggles) 1 mean the first time we tried to clean it everyone was trying to

do the same thing, but the next time we said, you do this and then you do the other,

and everything happened very fast and very structured.

Cormac argues that learning to program has affected the way he behaves and accomplishes

tasks in real-life situations, like when he is cleaning his flat. This conception removes the

experience of learning to program from the strict boundaries of the course and university,

and makes it part of the learner’s everyday world.

5.2.1 Structure and Meaning of Students’ Experience of Learning to

Program

The qualitatively different ways that students experience learning to program when they

are first introduced to it are presented in Table 5.3. The six categories that have been

' IB A3 is the code name for the assembly course in the first year Computer Science degree program.

83

identified within the study’s population are clearly distinct and inclusive, in the sense that

each one assumes the conception(s) formulated in the preceding categories. Thus, the

earlier categories express a relatively basic understanding and as we progress through the

categories the experience becomes richer and the view broadens and matures. The focus

of the understanding and the structure of the students’ experience is presented in Table

5.4.

The referential aspect of the first three categories, learning the syntax of the language,

learning and understanding the programming constructs and learning to write programs,

reveals an understanding that is more strongly oriented towards the technicalities of the

process of learning to program. However the internal horizon and the focus of each category

is different.

The experience in the first category is solely limited to the student learning the syntac­

tical details of the underlying programming language. Here the variation is brought about

by the different syntax the programming expressions have and the practices one uses to

learn them. In Category 2, the conception has evolved to a more abstract understanding of

programming constructs that is not confined to the taught programming language (Java)

as these exist in other languages as well. The variation here is introduced by the differ­

ent programming constructs like conditions, iterations, object and so on. The experience

broadens even further in the third category where the focus is on the way all of the pre­

vious categories enable the creation of programs. This category is more pragmatic when

compared to the previous one and the variation here comes from the different problems

and the different concepts that are required to be used to arrive at the end goal which

is the program itself. The existence of these particular conceptions is not surprising as

they fit, more or less, within the structure and development of the course. In particular,

the study of programming focuses on each of the foundation elements (column 2, Table

5.4) present within the first three categories, at different stages of the course presentation.

However, since the interviews that discuss this theme were held during the latter stages of

the course it was hoped that the students would have moved from this limited conception

to more complex experiences, such as the ones described in the next three categories.

In Categories 3 and 4, learning a new way of thinking and learning to problem solve, it

84

Table 5.4: Unc erstaiidiiig of learning to program; the focus of the conceptions.

Referential aspect Internal horizon
(foundation)

Focus

1. Learning the
syntax of the
language

Learning the
syntactical details of
the language.

Code, programming
instructions,
programming
language.

On the syntactical
details of the language.

2. Learning
and
understanding
the
programming
constructs

Understanding the
programming
constructs that
extend beyond the
current programming
language.

Programming
constructs,
programming
languages.

The programming
constructs and when to
use them.

3. Learning to
write programs

Using all the gained
knowledge to create
programs.

Programs, user,
code, programming
constructs.

The complete solution
to a problem in the
form of a program.

4. Learning a
way of thinking

Learning to think in
a certain way
required in
programming.

Logical thinking,
mathematics.

A “new way of thinking”
that is required when
programming.

5. Learning to
“Problem
Solve”

Learning to think in
a logical way that
conditions
problem-solving.

Problem-solving
techniques,
algorithms, logical
thinking.

Using this way of
thinking to solve the
problem at hand,
though various
techniques.

6. Learning a
new skill

Learning a new skill
that affects the way
one thinks in
real-life.

Logical, structured
way of thinking.

A skill that reaches
outside the boundaries
of the course or even
programming itself.

85

is observed that the referential aspect encompasses a view that is not intrinsic to the course

content or structure. In Category 4, this way of thinking is expressed as logical thinking.

The variation in the focal awareness of this category is that students have realised that

there is something more to learning to program and that it is a systematic or logical way

of thinking. Hence, the students felt that this is what one should learn, and concentrate

on, when learning to program. However, the conception described in Category 4 is not

complete, since this way of thinking is not clearly understood and the students refer to

a “click” moment, where all prior knowledge falls in place. In the penultimate category

the conception has become clear; learning to program is experienced as learning to solve

problems using programming constructs and techniques. The conception has moved from

the detail of the programming language to a more abstract understanding that is centred

on the actual problem. The variation here is brought aboiit by the fact that the language

is seen as the means for solving the problem, and the different techniques one can employ

to devise an algorithm that will solve the problem. Although this view was not explicitly

part of the course, it was encouraged and fostered throughout the course, especially when

programming tasks were assigned to the students.

In the final category, learning to program is viewed as acquiring a new skill. This

conception presupposes the foundations discussed in the previous categories and concen­

trates instead on something external to the components of programming. This complex

conception views the process of learning to program as learning a new skill, that is not

only required when programming and solving problems but that changes the way a person

thinks and acts in life. This structured and logical way of thinking, which was initially

outlined in Category 5, is now put in the context of the learner’s everyday life. Those

in this category have discerned the skills that are inherent in learning to program and

are now using them in other courses or activities, such as solving mathematical problems,

learning other programming languages or everyday activities that require a structured way

of thinking.

86

5.2.2 Discussion on Learning to Program

In the two sections that follow we discuss the outcome space identified for the phenomenon

of learning to program; in relation to other phenomenographic studies on learning to pro­

gram and the experience of learning respectively. By comparing and discussing the similar­

ities and differences of the derived outcome spaces we provide an insight into the relevance

of the findings and consequently draw a comprehensive picture of the results within the

context of the field.

5.2.2.1 Studies on Learning to Program

The experience of learning to program among novice programmers is a popular phenomenon

that has been investigated in a number of studies, namely (Booth, 1992; Bruce et ah,

2004; Eckerdal, 2006) and (Stamouli and Huggard, 2006). These four studies have been

conducted in isolation and with different student cohorts and degree programs (Computer

Engineering, Information Technology, Aquatic Marine Engineering, and Computer Science

respectively). Despite this difference in the educational settings, we can observe a number

of similarities in their results as they all investigate the same phenomenon: the experience

of novice college students when learning to program. In order to illustrate the similarities

and differences among the four phenomenographic studies diagrammatically we have con­

structed Figure 5.2. This shows how the categories of the different studies are related and

how they span the learning to program experience continuum.

The outcome space of the four studies can be logically separated into three sections:

the categories that focus on the pragmatic elements of the experience, the conceptual

categories and finally the meta-categories that transcend the experience of learning to

program itself. This separation is denoted by dashed lines in Figure 5.2. In some studies

the categories are more condensed than others and thus a single category from one study

may summarise a number of conceptions that appear in more detail in another. An example

of this is Eckerdal’s first category of description, which synopsises the meaning of the

first three categories of our study and two categories from Bruce’s and Booth’s studies.

These differences can be attributed to the different settings of each study as well as to the

background and course of each student cohort involved. In our study students were very

87

Figure 5.2; An effective comparison of four phenomenographic studies on learning to
program and the relationships between them.

Study: Stamouli Eckerdal Bruce Booth

Course:

2&
5; «■
S-S

Computer Science

1. Learning the
syntax of the
language.

2. Learning and
understanding the
programming
constructs.

3. Learning to write
programs.

4, Learning a new
viay of thinking.

5. Learning to
problem solve.

6. Acquiring an new
skill.

Aquatic and Envtron- IT

1.Understand the
programming
language and use it
to write programs.

1, Following.

2. Coding

3, Understanding
and integration of
concepts

2. Learning a new way
of thinking,

3. Learning is to gain
understanding of how
programs appear in
everyday life.

4. Learning a way of
thinking that enables
problem solving.

4. Problem solving.

5, Participatingf'
encuituring.

5, Learning a new
skill.

Engineering

1.Learning a
programming
language

2. Learning to write
programs in a
programm ing
language.

3. Learning to solve
problems in the form c
programs.

4. Becoming part of
the programming
community.

88

specific on the different pragmatic elements of their experience of learning to program, and

this resulted in exposing many more facets of the experience. Hence the richness of the

interview data determines the detail and number of categories found in different studies.

In other cases some categories appear in only one study. An example of this is Bruce’s

first category “following” where learning to program is experienced as getting through

the unit and getting a good grade on it (Bruce et ah, 2004). The same argument used

above in relation to the richness of the data could be applied here also. However, the

specific nature of the category in this study is rather different. It could be said that

this category illustrates the motivation for trying to learn how to program rather than

students’ experience of what learning to program means. In Berglund and Eckerdal’s study

on the motives that students have when taking a Computer Science course, a very similar

motive is identified under academic achievement (Berglund and Eckerdal, 2006). Thus the

researcher’s views of what constitutes the phenomenon under investigation also affects the

results. There is only one case where the same experience is explicitly encapsulated in a

similar category in all studies and that is learning to problem solve.

We argue that the reason for the differences in the way the categories are expressed and

appear in the experience of the same phenomenon is due to the difference between the stu­

dent cohorts in terms of background, course content, environment, programming language

and, in some, cases the researcher’s view of the phenomenon itself. As Booth explains in

her thesis when she talks about the reliability of the results of a phenomenographic study,

“The reliability of a phenomenographic study has much in common with the

reliability of a journey of exploration. Such a study is in many respects a

process of discovery /.../ The results are in the end a description of the territory

in terms of what has been seen and experienced. It would not be expected that

a second explorer, even charged with the same task, would tackle the journey

in the same way, and might therefore arrive at different description.” (Booth,

1992, p. 67)

She continues by saying that it would however be reasonable to expect the second researcher

to arrive at very similar results with the same set of data. The four studies described above

have investigated the same phenomenon in very different environments and while the results

89

differ in some aspects they show marked similarities in others.

5.2.2.2 Studies on Learning

Apart from specific qualitative studies on learning to program there has been much research

interest over the last three decades on the experience of learning in general. These studies

include (Saljo, 1982) and (Marton et ah, 1993), where longitudinal and very thorough

phenomenographic studies have been conducted on learning among students on a Social

Science foundation degree course in Britain. However it is evident that such studies are

profoundly influenced by the particular educational context in which they are conducted;

hence the results found in this study are related to Marshall et al. which was conducted

in an Engineering and Science context. The qualitative conceptions that were identified

in their study are presented in Table 5.5, (Marshall et ah, 1999). The authors’ original

notation (A, B, C, etc.) and terminology is retained in the table and throughout the

discussion that follows.

Table 5.5: Marshal et al, on students’ conceptions of learning in an engineering context.
Conception Description

A Learning as memorising definitions, equations and
procedures.

B
Learning as applying equations and procedures:

learning is experienced as the ability to apply some
knowledge.

C
Learning as making sense of physical concepts and

procedures: learning is experienced as active
construction of meaning, an ‘activity within the mind’.

D

Learning as seeing phenomena in the world in a new
way: learning is experienced in terms of using the

understanding of the concepts in the learning material
to see phenomena in the physical world in a new way.

E

Learning as a change in a person: by interacting with
the learning material - or with peers - a student may
develop new ways of seeing phenomena in the world

and this leads to change as a person.

The progression of the experience in the categories found in Marshall et al. shows

a shift from a passive or pragmatic perception (A, B) to the construction of meaning

for the learning material and real-world phenomena (C, D). This in turn leads to the

90

conception (E) where the person views learning as a life changing experience. Looking at

these conceptions for learning and the ones found in this study for learning to program it

is clear that there are many similarities in the qualitative meaning. These are illustrated

in Table 5.6. The first three categories of description in our study show similarities to

Categories A and B of Marshal et al. in that they are concerned with the pragmatic

elements of the experience. Category 4 is more in tune with C as learning is described

as an activity through the mind. In 5 the focTis has moved to the problem itself and

the actions one should follow to model this problem through programming. Conception D

shares some elements with Category 5, in respect to the modelling of real-world phenomena

or programming problems. The final category found in our study’s outcome space shares

a great similarity to conception E as acquiring a new skill constitutes a change in how a

person would react to the world phenomena.

Table 5.6: The categories of description found for learning to program in relation to the
Marshall et al. conception of learning.

Category of description on learning to
program

Related conception from
Marshall et al.

1. Learning the syntax of the language A

2. Learning and understanding the
programming constructs A, B

3. Learning to write programs B

4. Learning a new way of thinking C

5. Learning to problem solve D

6. Acquiring a new skill E

In these two sections we have discussed how the conceptions for learning to program,

91

as they were seen in the study’s population, relate to other phenomenographic studies

that investigate the same theme. Although some of the details and focus of the concep­

tions change among these studies, the spectrum of the experience and nnderstanding is

completely captured. The categories of description identified in our study also showed

important similarities to a more general study of learning presented in (Marshall et ah,

1999), underlining the depth and reliability of our findings.

5.3 Understanding of Correctness

An understanding of correctness is an important aspect of the experience of learning to

program, since it affects the approach a learner adopts. This theme was taken up in

the last interview session, which took place after the students had received feedback on

almost all their assignments and laboratory work and at a point where their understanding

of programming was reaching a more mature stage. The questions that were used to

investigate their understanding were: “When do you believe a program is correct?’’-, and

“What is your idea of a correct program?”.

Four qualitatively different ways of experiencing the correctness of a program have been

identified: the first two categories focus more on the problem and the code correctness of

the program while the last two are more developed, since they incorporate non-functional

elements that aim to assist the actual user of the program. The categories are summarised

in Table 5.7 and these are further analysed in the sections that follow.

Category 1: Syntactical correctness

In this category a program is experienced to be correct when it is free of any syntactical

errors, in other words when it compiles and runs. The student focus in this category is solely

on the code. Neither the problem requirements nor the human aspect of programming are

involved in this perception. The experience is narrowed down to the relationship between

the code and the programmer, as Liam explains in the following:

Interviewer: When do you think a program is correct?

Liam4: When it has no bugs.

92

Table 5.7: Categories of description for understanding of correctness.
Category Label Category Description
1. Syntactical correctness A program is perceived to be correct when it is

syntactically right, that is when it compiles and
runs without any errors.

2. Functional correctness Apart from being syntactically correct the pro­
gram needs to fulfil the requirements of the prob­
lem specification.

3. Design correctness In addition to the above, the program should be
correctly structured in order to enable extend-
ability.

4. 10 validation and perfor­
mance correctness

As above, and also the program should cater for
invalid input and it should also be optimised in
terms of code length and how fast it executes.

Interviewer: Anything else?

Liam4: No, not really, as long as it r\ms, it’s right.

Alan, in the next cjiiote, elaborates a bit more by saying that a program should use all

the methods and classes that he has previously defined. However the focus of correctness

remains the syntactical correctness of the program itself.

Alan4: When it works and the application runs and calls all the methods in the class

and everything is fine and no errors.

Interviewer: So when the syntax is right then it is correct?

Alan4: Yeah. I find that doing it in paper first is easier for me.

The understanding of when a program is correct in this category is restricted to the code

and the language that is used. The student is satisfied with the correctness of the program

when it runs, independent of the functionality of the program. Fortunately, not many

students within the participating population shared this view.

Category 2: Functional correctness

This category of description expresses an understanding of program correctness where the

problem requirements are the focus. The understanding that was expressed in the previous

93

category is still present; however the central point of the experience has expanded beyond

the code to include the problem definition and the requirements of the application.

As Patrick explains in the following statement, program correctness is about satisfying

the requirements of the problem:

Interviewer: When do you think a program is correct?

Patrick4: I suppose when it satisfies all the things in the question and when it

compiles successfully or when the red lines disappear from Eclipse [laughs]. I suppose

it is right when it does what you want it to do.

Another opinion is expressed by Stephan in his final interview:

Stephan,!: Well I suppose that the way I look at correctness is a bit different than

what the lecturer believes. He thinks that a program is correct only if it follows the

object-oriented way while I think that a program is correct when it does what it has
to do. Also the source code has to look correct and readable.

The lecturer has been emphasising the importance of following object-oriented design prin­

ciples when developing an application. However Stephan, who has prior programming

experience with procedural languages, cannot see the point in object-oriented design as

long as the necessary functionality is implemented; design is not considered to be part of

a program’s correctness here. Students in this category experience program correctness as

being related to the code being error free but the primary focus is on the problem definition

rather than on the code per se.

Category 3: Design correctness

In this case learners experience program design as the principal criterion for correctness;

affecting the extensibility and readability of the program. Therefore, apart from all the

other properties that should be present in a solution, the right structure of the program is

key. Eamonn explains this as follows:

Interviewer: I mean let’s take for example your poker program, which were your

criteria of correctness?

94

Eamonn4: I felt it was correct when it ran, did what it was supposed to do and it

was structured properly. |...] I feel design is part of correctness. It is easier and better

when it is correctly structured, because people can understand it... and because then

you can go back and extend and reuse what yon had there. So appropriate design is

really important and it adds to the solution.

Brian explains how liis perception of when a program is correct has changed after the

exam.

Brian4: I used to just say when it does what is supposed to do but it was... Karl,

when we had that sort of half exam just before Easter and it |his program] was right I

mean what he wrote was right but it was missing something small and for that he got

I think 10 out of 40 or something, so it is kind of like... it kind of has to be functional
as well it has to be open and object-oriented and it has to be sort of modular [he writes

down again] because he had it all in a big blob of code. So it is right if it is like... I
don’t like to think that... if the final result is right so the whole thing is right. It is

how yon got there, how you designed the t hing to get there as opposed to correctness
as such.

Brian says that he previously believed that program correctness was all about the functional

elements of the program, but as his friend had marks deducted from his exam paper because

his design was inappropriate, he changed his mind. Brian’s focus in his answer is clearly

on design and this view is unlike that expressed in the previous categories. In the last

sentence of his response Brian makes a distinction between the end-product correctness

and the process that one follows to achieve that. Thus, from his point of view what is

important is the techniques used to develop a solution and that these are what constitutes

the program’s correctness. Declan is thinking along the same lines in his response:

Declan4: Well, if it works firstly and then the way the code is written and structured

because sometimes code can look terrible, I mean really horrible, like if you got like
iT-— 1 I don’t like it because it is very hard to read. Just, generally on how easy the

code is to read and so on...

Although all of the students quoted above experience design to be an important part of

correctness, their motivation is very different. Eanionn stresses the importance of design

95

because that makes the solution easier to extend, Brian concentrates on achieving good

grades and separates syntactical and design correctness, while Declan points out that

the right structure improves readability and therefore makes the program correct. These

students share the same perception of program correctness, however they approach it from

very diverse and different angles.

Category 4: I/O validation and performance correctness

In this category the perspective is broadened even more to include non-functional require­

ments as part of the experience:

Anthony4: When it fulfils the functions that it is supposed to do... without any side

effects, it might be able to fulfil all the tasks but it should be responding in cases

where the user enters something invalid.

Interviewer: You mean checking for the validity of the user input?

Anthony4: Yeah.

Anthony here emphasises the importance of input validation and he experiences this as

being part of a correct program. Thus, apart from the functionality that should be im­

plemented, the learner considers non-functional elements such as error checking to be

necessary when a solution is developed. Even though the focus is still on the problem re­

quirements, there is more to correctness than just the basic functionality. Colin expresses

this more strongly:

Colin4: A program is correct when it does what you want it to do first of all, so you

give it the values you want it to use and then it just works. It works also when it is

user proof so if you use the wrong values then you cannot crash it, you cannot pass

values that would make it not work. You have to be able to respond properly when

you don’t give exactly what it wants. It should be able to distinguish among what is

valid and what is not. It should also be what is the word... optimised. It has to be

as short as possible to do it and it should also take up less memory and it should run

faster.

Interviewer: Did you come up with this by yourself, or you read it somewhere?

Colin4: Oh, by myself, from my experience.

96

Collin’s nnderstanding of correctness takes into account the behaviour that a program

should have when it is executed. From his point of view the responses a program provides

to the user should be meaningful. Hence, in order for a program to be correct, input and

output validation is necessary. Colin also emphasises other non-functional properties such

as code length and memory efficiency. Kevin emphasises the importance of providing clear

guidelines regarding the user input and program usage:

Kevin4: When you run it and it does everything you kind of ask from it to do, say

it looks for user errors, so if you ask for yes or no and you expect the user to type “y”
or “n” then if the user types something else this would not crash the program, like, it

will deal with that correctly. So sort of input and error checking is important as well.

Karl thinks along the same lines in his response:

KarH: When it does what it is supposed to do without errors I suppose hmm...
Caters for any error that might occur any problems, like yeah, problems that might
arise from the user doing something that he is not supposed to rather than crashing

and it is supposed to do whatever you expect it to do rather than something that you

either don’t nc'ed or don’t want. It is correct when it solves the problem and prevents

other problems from occurring.

All the above quotes reveal an understanding of correctness that incorporates the previous

categories but focuses mostly on I/O validation and other non-functional properties such as

optimisation and efficiency. The focus of the students’ experience has expanded to involve

the user as well, since the importance of validating input and output in this category aims

to assist the user in using and acquiring a better understanding of the application.

5.3.1 Structure and Meaning of Students’ Understanding of Program

Correctness

Four distinct categories of description were identified among the students with regard to

their views of program correctness. The students were asked what constituted program

correctness within the context of the course rather than in general. Thus the qualitative

categories of description were formulated with this in mind. The focus of the conceptions

found for this theme are presented in Table 5.8. The internal horizon of the first two,

97

syntactical and functional correctness, reveal a conception that is focused on the more

tangible foundations of the theme.

Category 1, “A program is perceived to be correct when it is syntactically right, that

is when it compiles without any errors”, describes a conception where the central focus is

the programming language and the syntax of the solution. The variation here is brought

about by the different syntactical mistakes and structure of different programs. Students

that share this viewpoint have difficulty understanding programming and in many cases

remain puzzled when they do not achieve the grades they expect.

Table 5.8: Unc erstanding of program correctness; the focus of the conceptions.

Referential aspect Internal horizon
(foundation)

Focus

1. Syntactical The program is Code, syntax, On the syntax of the
correctness correct when it

compiles.
programming
language.

solution.

2. Functional The program is Syntax, problem On the completion of
correctness correct when it fulfils

the requirements of
the problem.

specification, output. the functionality.

3. Design The program is Problem On object-oriented
correctness correct when it is specification, design and

correctly structured. object-orientation,
design.

extendability of the
solution.

4. I/O The program is Code, user, input. On the interaction of
validation and correct when it output, design. the program with the
performance caters for unexpected non-functional user and robustness of

behaviour from the
user.

requirements. the program.

98

Functional correctness was a popular category among this study’s population. The ful­

filment of the problem requirements is the focal point of this conception. The foundation of

this conception is primarily the functionality that is presented in the problem specification,

while the variation for this understanding comes from differences in the problem-solving

activities. Even though this is a straightforward and very logical conception, students

that experience program correctness in this way often fail to achieve their potential in a

course such as the one under investigation. When learning object-oriented programming,

an essential goal of the course is for students to learn to write and think according to the

object-oriented paradigm. Not taking object-orientation into account results in incorrect

or incomplete solutions. From the analysis of the interview data, it appears that students

with previous experience in procedural programming languages failed to see the importance

of the object-oriented paradigm.

The next category, design correctness, presupposes the understanding expressed in the

])revious two conceptions and instead focuses on the design of a program. As illustrated

in the fotmdations of this conception, students that share this view do not merely try to

fulfil the requirements of a given problem, but try to follow object-oriented techniques

and develop an extensible, and more reliable, solution. This conception reveals a richer

understanding of what constitutes a correct program. This is clearly differentiated from

the previous category and has been placed in a more realistic paradigm where programs

can be reused or further extended. The variation here stems from the novelty inherent in

the object-oriented paradigm that mandates an original view of a programming solution.

Finally, the category labelled I/O validation and performance correctness focuses mostly

on the interaction between the program and the user. The foundation of the learner’s con­

ception has moved beyond the tangible elements of correctness and is now concerned with

non-functional aspects of the program. The actual user is central to this conception and

this enables the students to experience a correct program as something that solves real-

world problems and therefore should be designed to interact appropriately.

99

5.3.2 Learning to Program and its Relationship With Program Correct­

ness

When observing the outcome space for the constructs of learning to program and program

correctness at the level of individual students, we find that the way students experience

learning to program is related to their perception of what constitutes a correct program.

As illustrated in Figure 5.3, the conceptions of the individual students whose experience of

what it means to learn to program falls into the first four categories of description, experi­

ence program correctness as either syntactical or functional. A one-to-one relationship was

not established between the two themes; from the nine students that fell into the first four

categories of the first theme, all, except one, viewed program correctness as syntactical or

functional. Thus, the way one experiences learning to program influences how one imder-

stands the outcome of that process, i.e. the program itself. In the first four categories of

the learning to program theme, the experience is confined to the programming language

and the programs. Similarly, for the program correctness theme, the first two categories

focus on the language and the problem at hand, rather than taking the bigger picture into

account.

Figure 5.3: Learning to program in relation to program correctness.

Learning to program Program correctness

1. Learning the syntax uf the
language,

2. Learning and understanding
the programming constructs.

3. Learning to write programs.

4. Learning a new way of
thinking.

1. Syntactical correctness.

2, Functional correctness.

5. Learning to problem solve,

6 . Acquiring a new skill.

3, Design correctness.

4 I/O validation correctness.

For Categories 5 and 6, (Learning to Problem Solve and Acquiring a new skill) a one-

to-one relationship is observed with design correctness and T O validation and performance

100

correctness respectively. The distribution of the seven students that belong to the afore­

mentioned categories, is that three experienced program correctness as design correctness,

while four experienced programming as T O validation and performance correctness. Thus,

when the focus of learning to program is on the structured way of thinking that enables

problem-solving, the primary criterion for program correctness is the object-oriented struc­

ture and extendability of the solution. Finally, when learning to program is conceptualised

as the process of acquiring a new skill that can be used in real-life; the understanding of

program correctness is focused on the interaction between the user and the program, taking

into account non-functional elements such as optimisation of the code and performance of

the program as a whole. Hence, the results suggest that there is a clear linear relation

between the two themes.

Although, the study’s sample population is not sufficiently large to draw final conclu­

sions on the relationships observed, it is sufficiently representative to indicate the existence

of this trend. Therefore, the results suggest that students develop a general view about

learning programming and the programming constructs, and that this then influences their

experience throughout the course and, possibly, their undergraduate career.

5.3.3 Program Correctness in the Literature

The notion of correctness is an elusive one as it greatly depends on one’s background,

experience and standards. Nevertheless numerous research studies have been conducted on

the habits and norms novice programmers employ to test the correctness in their programs.

Specifically Scott et al. found that students do not test their systems to the same level

that would be expected from industry. This is because they do not have the required

knowledge to do so and, furthermore they do not value testing as highly as the industry

would (Scott et ah, 2004). Other researchers such as (Fleury, 1993), have found that

college students’ understanding of programming differs from that of experts and, as was

presented in the previous section, this was found to extend to their standards of correctness.

Although many studies have looked at the errors, either syntactical or logical, that novice

programmers make when learning to program e.g. (Spohrer and Soloway, 1986; Barr et ah,

1999; Hristova et ah, 2003), very few have looked at what students perceive to be a correct

101

program, which makes it hard to compare our results in great detail.

One recent study did investigate how students define correctness. It was conducted

among high school and college students through the use of questionnaires (Ben-David Ko-

likant, 2005). Her conclusions regarding the definitions of correctness are the following:

• A correct program is a working program.

• A working program exhibits reasonable 10 for many legal inputs.

• A reasonable output should be correct, but also in cases of incorrect output the

program should display something that is expected.

The progression of the reasoning that the students have followed in this set of results

is somewhat similar to the progression of understanding in our categories of description.

However these results cannot be compared in any great depth and detail to the ones

presented in Table 5.7, although they do illustrate that similar perceptions appear within

a different educational context.

5.4 Summary

This chapter presented the conceptions novice programmers have of the theoretical compo­

nents under consideration. These were the nature of programming, learning to program and

program correctness. The phenomenographic outcome space for each of the components

has been analysed with supporting excerpts from the interview sessions used to present the

categories of description in relation to the individuals. The meaning and structure of the

categories for each theme have also been discussed, illustrating the overall picture of the

components. The relationship of each theoretical construct to other research projects in

the area of Computer Science education has been discussed, demonstrating the similarities

of our findings to those from other educational contexts.

102

Chapter 6

The Object-Oriented Components of

Programming

Ill this chapter we discuss our findings regarding the object-oriented components of the

study. The tlieines that are analysed deal with students’ understanding of the following

constructs: object, class, attribute, method and constructor. These are undoubtedly key

constructs in the object-oriented paradigm. In most programming modules students are

introduced to these constructs at the beginning of the course. Thus it necessary for them

to gain an understanding of these in the early stages of their studies. This holds true

for the course where we conducted this study since the adopted teaching approach was

objects first. Due to the fact that these concepts are very closely inter-related, they were

investigated together at two separate interview sessions, namely in sessions 1 and 4. The

former was at the end of the first term while the latter took place at the end of the third

term when the students had been using objects and classes extensively in their programs for

a significant amount of time. Although it was expected that a significant variation would

be observed between students’ conceptions in the two interviews sessions, it was evident

that the observed shifts in their understanding were minimal. As discussed in Section 6.6,

these shifts may be classified as spontaneous and triggered intra/inter-contextual shifts as

defined by (Pong, 1999) and (Berglund, 2005).

It was observed during the interviews that students often tended to explain and describe

the object-oriented constructs in relation to one another. Thus, in some of the excerpts used

103

in the following analysis their responses may capture their conceptions for both objects

and classes, or attributes and methods. Another issue that arose during the interviews

on these themes was that students preferred to discuss them by giving specific examples.

This can be attributed to the abstract nature of these concepts. Where students felt they

needed a reference point to use when describing their understanding often they referred to

previous exercises they had completed in tutorials or as assignments.

The object-oriented components included in this study are analysed from the phe-

nomenographic perspective in the rest of this chapter. A general discussion of the results

for each construct is provided, and the chapter concludes with an overview of the students’

shifts in understanding.

6.1 Understanding Object

The fundamental idea behind object-oriented programming is that programs are comiu’ised

of collections of interacting objects. Hence, when students first become familiar with this

programming paradigm, they are required to think in terms of objects and classes and to

use them extensively in the development of programs. There are many definitions of what

an object is in the literature, and the students in this study were introduced to many of

these during their programming course. However the definition that we feel captures the

essence of them all comes from Conway, who states (Conway, 1999) that “/a/n object is

anything that provides a way to locate, access, modify, and secure data. /.../ But in the

more general sense, anything that provides access to data may be thought to be an object’’.

For some this may appear to be simple to understand, however students seem to have

very diverse experiences of what constitutes an object and what it really is. Due to the

abstract nature of the concept, a number of different questions were used to investigate

the students’ conceptions of the construct. These were: “What do you think an object is?”,

“How do you understand the concept of objects?” and “What is the difference between an

object and a class?”. In addition to the data obtained from the two interview sessions,

students were also given a problem and asked to decide how many different objects they

would include in their solution (see Appendix B, problems 1 and 2). The data from this

written exercise served as a staring point for further discussions and clarifications.

104

Table 6.1: Categories of description for understanding of objects.
Category Label Category Description
1. Object as code Object is experienced as a piece of code.
2. Object seen as a
programming construct

a. Object is experienced as a programming con­
struct that is designed to hold values and group
behaviours.
b. Object is considered to be an active entity in
the program that contributes to its design.

3. Object is seen as a model
of real-world phenomena

As above and, in addition, object is understood
to be a representation of real-world phenomena.

Table 6.1 summarises the categories of description of the construct of object that have

been found and also shows the subcategories identified for the second category. In this

second category of description an understanding is voiced that objects are experienced as

programming constructs of the language. The difference in the role and purpose of the

object in a program forms the basis for the creation of the two subcategories.

Based on the data gathered, the understanding outlined in the hrst category is not

included in the other categories. However, a logical inclusiveness is presumed with respect

to the latter categories due to the simplicity of the former.

Category 1: Object as code

In this case the learner experiences an object as a piece of code. The focus of the conception

is limited to the code as a set of instructions. Sean says;

Sean4: [...] an object would refer to those different attributes and then you put values

to these different values. It’s just code..

Stephan explains how he understands an object by giving a programming example and

more specifically by writing down a code example in the following:

Interviewer: What do you think is an object?

Stephan4: Like if you have a Car class (he writes down how a class is defined) then

an object would be Car mazda = new CarO and then you call the constructor. So it

is part of the program I guess...

105

While Stephan explains his understanding of what an object is by using the appropriate

Java syntax for creating one, Karl explains what an object and a class are in terms of code

length in the following:

Karl i: [...| When you create a class you have a big file with all the information
about that class, when you create an object you do it with a single line. Right? |...|
|S|o an object is a single item which is representing the class and contains all the
characteristics of a class. An object is the w-ay of using the class wdthin the program,
it’s a line of code.

This conception was not widespread among the population. Nonetheless, it is a distinct w’ay

of experiencing the concept of an object, which is highly focused around the programming

language and the specific syntactical details used to define an object.

Category 2: Object seen as a programming construct

This category of description expresses an understanding of objects as a programming con­

struct. There were two subcategories identified that belong within the same framework of

the category, but which expose the different roles of the object.

a. Object as a construct

This subcategory is strongly related to Category 1 since a programming construct is part

of the code, however here the understanding is better developed. Object is experienced in

a coherent way, as a construct that can hold multiple values and has a role in the program;

as Alan explains in his answer:

Interviewer: So you say class is the template, then what is an object?

Alani: The object jnst holds the values.

In the third session, while completing a written exercise, Alan said that objects are used for

holding values for every attribute in its respective class. Liam expresses that understanding

of objects as programming entities in a clearer way in the following:

Interviewer: What is an object then?

106

Liam i: It is a particular instance of a class, but yon take the abstract definition of

the class and you put the values in, and you reference the object and you act on that

object, like with Integers and stuff.

Liam associates the way objects are used with the way Integer, a built-in construct in

.lava, is used in a program. Neil describes an object in terms of the information it holds and

clearly expresses an understanding of object as a programming construct in the following.

Neil i'. An object is an entity, that pretty much is the dictionary definition of an

object it has attributes to it and information about certain parts of it. You can have

several objects that are the same type of object but they have different features... it’s

a construct in Java.

The understanding presented in this subcategory is more developed in the sense that

objects are not just seen as arbitrary lines of code, but are rather experienced as coherent

programming constructs that serve a purpose within the program.

b. Object as an entity in a program

Here an object is seen as an entity that is important in the design of the program since it

provides structure to the program. Patrick explains this plainly in the following:

Interviewer: And then an object is...

Patrick i: Is an entity with the program that has values for these attributes and

plays an important role in the overall program.

and again in his fourth interview, he stresses the point of having objects for handling

functionality in the program.

Interviewer: How do you approach a problem, do you first look for classes or are

you looking at the functionality required?

Patrick 4: The first thing I do is like find the classes, I look at the most basics and

then what I need to create. Like in terms of objects you are not going to be getting

anything more basic than the object like. So I do the objects first because the lecturer

is very particular about how you identify and define objects and stuff, having structure

107

within the programs. So I thought like you have a Card object and then you think
about the attributes and stuff and then you have another class for handling the Cards,

it’s like... it seems that is the best way of doing it structurally. You first have the

Card and then you have all the other classes that go with it I guess and then I kind

of work on the methods from there.

Finally, Mark says that an object can be anything that has properties and functionality

and comprises a complete entity.

Meirk 4 : Hmm anything... a thing that has properties and generally methods that
can be applied to that thing as well and to its properties I suppose everything that

can be described as a complete thing.

All the above excerpts denote an understanding in which an object is viewed as a complete

entity that contributes to the structure of the program. When compared to Subcategory

2a we can clearly observe the same foundation for the understanding, although the role of

the object is altered. In the first subcategory the role of the object is to hold attributes and

values, while in second one an object is mainly seen as an active entity that contributes to

the design of the program. Thus, the two approaches of understanding result in the same

category but have different starting points.

Category 3: Object as a real-world phenomenon

This final category draws on the previous one in the sense that these entities are now

associated with real wold phenomena, like physical objects. Students who share this un­

derstanding have also demonstrated the understanding presented in Category 2, so these

last two categories are inclusive. Brian, when asked in reference to a problem if “Red”

would be a class or a value for an attribute of the class Traf f icLights, responded with

the following:

Brian i: Well Red it is more of a description, while traffic fight is a physical object.

So classes are usually physical objects of the real-world. So door could be a class and

your blue door [points to my office door] would be an object, and then open would be

a value of the attribute status.

108

He makes a similar point in his fonrth interview;

Brian 4: An object is just a... like you would have the class and then you can

have many objects, it’s kind of hard... because you can’t talk about objects without

referring to the class as well and the other way around. If you have your class... it’s

basically your rules for the object so the object is just a thing that fits within this

rules, like if you think about it as a physical example of the class.

Eamonn’s understanding incorporated the views presented in the previous category but

moved beyond them to associate the conception of object with real-world phenomena.

Eamonn 4: Object is everything you can represent as a complete thing. A person is

an object, a chair is an object, everything in this room can be an object in a program.

In his fourth interview Karl expresses a different understanding to that in his first interview,

in that it extends beyond the physical description of objects;

Interviewer: What is an object?

Karl 4: Could be anything really .. it doesn’t necessarily have to be a physical one

it could be a concept, a list for example.

The conception presented in this category encapsulates an understanding in which an object

is viewed either as a physical entity or a phenomenon of the real-world. This illustrates

a more advanced understanding since it pnts the object into a wider perspective, opening

the horizon for a broader, more efficient usage of the construct.

6.1.1 Structure and Meaning of Students’ Understanding of Object

The analysis of the students’ understanding of objects revealed three distinct categories.

The meaning encapsulated within the categories of description and their focus is sum­

marised in Table 6.2. Like the structure and focus of the categories analysed in the pre­

vious chapter, the students’ understanding of object moves from a level of relatively poor

understanding such as that presented in Category I, to the more complex and multidimen­

sional conceptions summarised in Categories 2 and 3. This is also evident when observing

the internal horizon of the categories, where the foundation of the conceptions move from

109

the obvious (e.g. code and syntax) to the mores fundamental elements of object-oriented

modelling and real-world objects.

Looking at each category separately, when an object is experienced as a piece of code,

the students’ understanding assumes a relatively poor and naive format. The focal point

of this first conception is on the actual line of code that is used to create and manipulate

the object. The variation for discerning this understanding is brought out by the different

ways objects appear in specific programming examples. Therefore, the focal awareness in

understanding an object as a piece of code stems from the ways that the various objects

appear and are used in programs.

In the first subcategory of the second category, object is experienced as something more

coherent than just lines of code. Here object is perceived as a programming construct,

that can hold multiple values for its attributes. The foundations of this conception are still

close to the programming language, but they are more in tune with the object orientated

paradigm of the language. The dimension of variation here is brought out by the way

other programming constructs are viewed when compared to programmer-dehned objects.

For example. Integer is a programming construct and a Java built-in defined class. The

variation between such programming constructs and custom-defined objects that can store

different sets of attributes bring out the variation necessary for this understanding.

In the second subcategory, object is viewed as an active entity in the program. Here

the foundations of the conception remain the same, although the role of the object is

experienced in terms of the design and structure of the program. The focal point of this

understanding is that object is a complete entity that acts as a medium for utilising the

necessary functionality for the program to achieve its goal. The basis of the category

remains the view of object as a construct, but the scope differs. The variation in the

understanding is brought about by the way object actively shapes the program and the

functionality within it. Thus the different ways object is used and the values it takes brings

about the variation in the focal awareness.

In the final category, objects are experienced as representations of real-world phenom­

ena. This category encapsulates a richer understanding since it includes the conceptions

of the previous categories while developing the notions of objects further by relating them

no

Table 6.2: Understanding of objects; the focus of the conceptions.

Referential aspect Internal horizon
(foundation)

Focus

1. Object as
code

Object is understood
as part of the code.

Code, syntax,
programming
language.

On the actual
instructions used to
create and manipulate
an object.

2. Object as a
programming
construct

a. Object is
experienced as
another

Programming
construct,
object-orientation,

On the values that the
attributes of different
objects hold.

programming
construct.

b. Object is
considered to be an
active entity that
contributes to the
structure of the
program.

programming
language. On the object as a

coherent entity that
acts as medium for
utilising functionality
necessary for the
program/algorithm.

3. Object as a
real-world
phenomenon

Object is
experienced as a
model of real-world
phenomena.

Problem
specification, design,
real-world objects,
object-oriented
modelling.

On modelling objects
from real-world objects
and phenomena.

Ill

to real-world phenomena and objects. The foundations of this understanding include the

problem specification, since it is from there that students can recognise and determine the

necessary objects for their solution. Real-world objects and phenomena that objects are

modelled on, are also in the foundation of this conception. The dimension of variation here

is the objects that are found in real-life and can be modelled in programs. The variations

in these constitute the focal awareness.

6.1.2 Discussion of the Concept of Object

The analysis of the three categories and two subcategories of description have been pre­

sented. These were derived from interviews conducted with the students both at the start

and the end of their acquaintance with objects as part of the course. From the point of

view of the course and instruction outcomes, the understanding summarised in all three

categories is both desirable and necessary for the students to acquire; since an object is a

piece of code, and it is used to hold values, while at the same time it is a construct that

can represent real-world phenomena. Problems may arise in cases where a student’s under­

standing reaches that presented in Category 1 and does not progress from there. Very few

students articulated only the conceptions of Category 1 during the last interview, however

the snapshot nature of this study cannot tell us if, or when, their conceptions matured at

a later stage.

In the literature, only one study has investigated students’ understanding of object and

class (Eckerdal et ah, 2005). Eckerdal conducted a phenomenographic analysis on the two

themes of object and class drawing on interview data from students who were enrolled on

an Aquatic and Environmental Engineering course. It should be noted that in the final

analysis that is presented in (Eckerdal et ah, 2005) and (Eckerdal, 2006) the outcome

spaces for the two constructs are combined and their implications are discussed in parallel.

However, in order to be able to draw parallels with the findings of our study they will be

presented separately here and in Section 6.2.2 below.

Three categories of description were identified for object among the population in Eck-

erdal’s study (Eckerdal, 2006);

1. Object is experienced as a piece of code.

112

2. Object is experienced as something that is active in the program.

•3. Object is experienced as a model of some real-world phenomenon.

The categories Ijear a great similarity to the ones identified among the Computer Science

population of this study. The first category in Eckerdal’s study summarises the same expe­

rience as the first identified in this study and presented in Table 6.1. The second category

varies significantly. In (Eckerdal et ah, 2005), this category is described as a result of

program execution and the task at the object in run-time. In our study this is concep­

tualised in Subcategory 2b, while Subcategory 2a (object experienced as a programming

construct) was not identified within Eckerdal’s outcome space. The third category in both

studies captures the same conception where object is experienced as a model of a real-world

phenomenon.

The two studies were conducted independently, in isolation from one another, at differ­

ent points in time, in different contexts and with different sample populations. Nonetheless

the results show many similarities and few differences. The differences in the studies may

be attributed to the background and course of the student population. The fact that more

detail was observed in Subcategories 2a and 2b of our study may be attributed to the

technical background of the course in general and the prior programming familiarity that

most Computer Science students have. The similarities between the two outcome spaces

highlight a very important attribute for the results of this study as a whole; the fact that

they are generalisable. Considering the diversity of the two courses and the settings of the

studies, the similarity of the results leads us to argue that the findings can be generalised

to other groups of students that are taught object-oriented programming.

6.2 Understanding of Class

Like objects, classes are a fundamental building block of object-oriented programming.

Given the definition of a problem students need to able to recognise which elements can

be represented as classes and also construct classes in a way that simplifies the solution by

providing structure and meaning to the program. Due to the close relationship between

object and class, students often tended to describe one using the other as a reference or part

113

of their definition. We discuss classes in two interview sessions, 1 and 4, at the beginning

of the course and at the end. Data from session 2 where students were required to solve

programming problem out loud (see Appendix B) was also used in the analysis. The

questions used to investigate students conceptions of class were: ’’How do you understand

the concept of a class?”-, “When you have a problem, how do you pick what is going to

be a class?”-, “How would you describe what a class is to sorneone that didn’t know about

programming?”-, and “What is the difference between an object and a class?”.

Table 6.3: Categories of description for understanding of class.
Category Label Category Description

1. Class as code Classes are experienced as a piece of code.
2. Class provides structure to
the program

Classes are experienced as entities that
contribute to the structure of the program.

3. Class is a template for
objects

Classes are understood as templates that model
the attributes and methods of objects.

4. Class is a model of
real-world phenomena

As above, and also classes are understood as
types for objects that can be found in the real
world.

Four qualitatively different ways of experiencing classes have been identified among

this study’s population. The categories follow a similar pattern to the one observed in

the analysis of the construct of object. Not all categories have been found to be inclusive.

Based on the data, only Categories 3 and 4 were found to be fully inclusive, however an

underlying logical inclusiveness is assumed. The categories are summarised in Table 6.3

and are further analysed in the sections that follow.

Category 1: Class as code

In this first category of description, the construct of class is experienced as a piece of code.

Often students in this category describe a class in terms of the attributes and methods of

which it is composed; as Cormac says in his response:

Interviewer: So how would you define a class?

Cormaci: A grouping of attributes... I don’t know.

114

Anthony is more specific in his response, since he describes class as a block of code in the

following excerpt.

Anthonyi: A class is... It is very hard to describe like... It is basically a block of

code that describes what the object is made from. It is a description of the object.

Classes are basic building blocks, while objects are instances of these.

Sean expresses this conception in an even clearer way when he specifically relates concept

of class with the syntax of Java.

Interviewer: What is your understanding of a class?

Sean4: It is a type in Java you can have various methods in a class just that it is a

type in Java.

Interviewer: So then the class is an actual type?

Sean4: No it defines a type more or less, it is not a type itself. Well say for a example

that there isn’t any RationalNumber type in Java so you use the class to define that

type, so in a sense you create that type using the class.

Interviewer: What did you have in mind when you were describing this to me?

Sean4: Hmm I thought of code mostly.

Students that share this conception describe their views from different angles but the

focus of the conception is clearly limited to code and Java. The experience of class in

this category is consistent with the description of object in the first category dealing with

objects.

Category 2: Class provides structure to the program

Category 2 describes an understanding in which class is viewed as a construct necessary

for constructing and structuring a program solution. A class is also described as some­

thing that plays an important role in the problem, and therefore should form part of the

solution. Declan illustrated this very clearly when discussing an assignment that required

the construction of a dating program:

Interviewer: So in your dating program you had a class Person. How did you identify

that Person should be a class?

115

Declarii: I am not sure really I suppose it depends on the program you want to

write... Aa... yes the program that you want to write so I am going back to the

dating (program) one, you want to use the program for the person and so wherever

you want to use the program on, person is part of the program... and therefore I will

use it as part of the solution, so I have a class, [he writes down the syntax of the

class] [...] Ohm so it (person) would be inside such a program and would be necessary

to know his information. So when something is important and can be broken down

to its attributes it becomes a class I suppose. Hmm so for everything you need to

know more information about, can become a class. That’s the best I can give you for

definition! [laughs].

Eamoiin stresses the fact that a class is a collection of attributes and methods but it has

to represent something that is coherent and has a meaning in the solution of the problem.

Interviewer: Okay so what is your understanding of the concept of a class?

Eamonn4: Classes?

Interviewer: Yeah.

Eamonn4: They represent some objects that you can use in your normal programs.

Interviewer: So given a problem how do you identify the classes?

Eamonn4: You just decide what you are going to need to solve the problem and then

decide the attributes the problem might posses and then you write a class with the

methods and attributes you need to solve the problem, like your variables.

Interviewer: So you say that you use a class as a collection of methods and attributes

then?

Eamonn4: Well it should be something coherent as well like a class should be some­

thing to represent something and that would hopefully give you the means to solve

the problem as well.

Eamonn illustrates an inclusive understanding of Category 1 but his understanding is

more developed and better aligned with the current category. The last excerpt comes for

Stephan, where he described how he decided on the classes to use in his solution.

Stephani: So in a given a problem ... I decide on what are the really essential

entities needed and then represent them as classes, and maybe after that ... maybe

some complementary classes to make the design more clear.

116

Category 3: Class as a template for objects

In this category of description a class is understood as serving as a template for the object.

Classes are viewed as descriptions of objects and are used to create multiple instances of

them in a program. Patrick expresses this in the following way:

Interviewer: How do you understand the concept of a class?

Patrick i: Usually I guess a class is a template for creating an object and an object

is a particular entity within a program that basically I guess it is an entity that plays

a role within your algorithm, your overall program. A class is more general. It is a

template for repeatedly building objects. So a class is a generalisation of an object

itself.

Patrick stresses the fact that objects are important components inside programs and al­

gorithms, while the understanding that a class serves as a mould for creating new objects

is clear from this response. Alan expresses the same understanding, focusing more on the

values that the individual attributes would take when creating different instances of a class:

Alani: I would describe a class as a general template for creating lots and lots of
different types of the same object... No wait... it’s the same type of object but different

attributes each time. Like you would have a class for a Person and for each person

you’d have to define and create a new one with their eye colour, hair colour, height,

age etc. you can just contain all the list of possible variables you would have for what

it is that you’re creating.

Later in his fourth interview when the topic of class was revisited he added to this concep­

tion, saying that a class is like a blueprint for an object, and once you have defined them

you can use them to act upon the methods that the class specifies.

Alan4: A class is a generic type, a generic way of creating many types of the same

class. A class would... let’s say rectangle would like... let you create many different

types of rectangle... sorry many instances of the class rectangle. And then it would let

you create these objects and call these methods from within them so that you make

them do what you want them to do.

117

Filially Brian uses the same terminology of “blueprint” to describe his understanding of

class and in his response it appears that he has developed a hierarchy of how the concepts

of object and class are related to each other.

Braini: A class is just like a blueprint for objects. A class is basically a list for things

... whatever you want to describe, you do it with a class. The object comes from the

class so you can have whatever object you want once you define the class. Also, the

class is the higher order from the object.

In this category, the concept of class is experienced as a template for the object. As such,

it is related to the programming language and the concept of object, but also to the overall

program. The excerpts from the interviews mostly discuss the technical issues of how a

class is used to create multiple instances for objects.

Category 4: Class a model of real-world phenomena

In this final category a class is perceived as something that models real-world entities and

phenomena so they can be used and represented accordingly in a program. This is clearly

expressed in Declan’s response in the followdng;

Declan4: A class is hmm .. something that represents an object because it is a way

of representing something into a computer, because you can’t describe what a person

is made up... to a kind of... you can’t really describe it any other way. So when you

need to represent something from the real word then you kind of have to use a class

to describe it.

Declan expresses the understanding that was summarised in Category 3, but the overall

meaning and focus of his response illustrates the fact that his experience of the construct

class goes beyond that and extends to the real-world. Mark, in the following excerpt

from his fourth interview, initially appears to perceive class as a template for objects,

however later when he is asked what it signifies when something is a class, he reveals an

understanding that relates classes to real-world objects and phenomena.

Interviewer: What is your understanding of a class?

118

Mark4: Hmm it is basically a blueprint of creating lots of different instances of class...

no lots of different objects from it limin it just gives you the basic information you

need to create an instance of a class and then it is just a blueprint.

Interviewer: Do you usually approach a solution to a problem by identifying the

classes first or by looking at the functionality?

Mark4: I would start by thinking first of the classes and then the rest of the things.

Interviewer: And what signifies when something is a class?

Mark4: Hmm it depends on the problem and how they are on the real-world as well.

Like for the poker I had (a class) Card and Hand and then the program, because cards

are real objects and then the hand is something different as well, so I thought this was

the way I should represent, it.

The conception of class that was presented in this category proclaims an understanding that

is more in tune with the real-world, which means that it goes beyond the boundaries of the

program and the programming language to include the metaphor of real-world modelling

in the programs. This understanding is inclusive of Category 3, however the focus is on

tlie real-world entities tliat can be described through the use of classes.

6.2.1 Structure and Meaning of Students’ Understanding of Class

Four categories of description have been observed for the students’ understanding of the

concept of class. The categories follow a similar pattern to the ones identified for object,

but there is an extra category as the constructs may be interrelated but at the same time

they are quite different as well. Table 6.4 shows the structure, foundations and focus of

the conceptions found.

In Category 1, class is understood as a piece of code that describes the behaviours and

characteristics of the object. This conception is not wrong and cannot be described as a

misconception of class, but it is a partial view of the theme closely related to the code and

the syntax of the language. In this category the need for user defined classes is caused

by the fact that some types are not built-in to the programming language. Therefore, a

class is perceived as a piece of code that defines a type for a construct (like Person, or

RationalNumber) that is not already defined within .lava but is required for the program.

119

The dimension of variation is the textual code representation of a class and the variations

in the focal awareness derive from the different classes there may be in a program.

In Category 2 the conception of class becomes more coherent, as a class is now perceved

as a complete construct that is used in the program to provide structure and design. A class

in this category is considered to represent the important elements of the problem definition

and is used as part of the solution to it. The foundations of the conception follow the same

lines, as shown in Table 6.4. The variation in the focal awareness is brought about by the

different programs and the alternate ways that classes are used in them.

Category 3 captures how a class is experienced as a template for creating muhiple

objects. The focus of this conception is on modelling the behaviours and characteristics of

an object in a construct that allows for the creation of multiple instances of it. This con­

ception brings about an understanding that describes the fundamentals of object-oriented

programming, since the cardinal relationship between object and class is clear, while their

contribution within the program is also emphasised. The dimension of variation in this

category is that objects are modelled through the use of classes and the different values of

these constitute the focal awareness.

Finally, the last category of description of student understanding of class is the same

as the last one identified for object. It focuses on modelling real-world objects and phe­

nomena through the use of classes. This conception illustrates a richer and more complete

understanding as it includes the object-oriented view of classes that was presented in the

previous category, but it also includes the real-world metaphor. As for Category 3 in the

construct of object, the dimension of variation comes from the variety of real-world objects

and phenomena that can be modelled through the use of classes and the requirements

that programming problems have. Variations in the values of these constitute the focal

awareness for the understanding in this category.

6.2.2 Discussion of the Concept of Class

In a formal definition of class given by Conway (Conway, 1999), it is stated that “A class

is a formal specification of the attributes of a particular kind of object and the methods

that may be called to access those attributes. In other words, a class is a blueprint for a

120

Table 6.4: The focus of different understandings of the concept of class.

Referential aspect Internal horizon
(foundation)

Focus

1. Class as
code

Classes are
understood as a
piece of code.

Code, syntax,
programming
language.

On the actual piece of
code, the attributes and
methods that constitute
the class.

2. Class
provides
structure to the
program

Classes are
experienced as a
construct that
provides structure to
the program.

Programming
construct, programs.

On the class as a
construct for providing
meaningful structure to
a program.

3. Class as a
template for
objects

Classes are
considered to act as
templates for
creating multiple
objects.

Problem
specification,
object-orientation,
object, programs,
design.

On the class as a
construct for modelling
the behaviours and
characteristics of an
object.

4. Class as a
model for
real-world
phenomena

Classes are
experienced as a
means for modelling
real-world objects
and phenomena.

Problem
specification, types,
design, real-world
objects,
object-oriented
modelling.

On modelling real-world
objects and phenomena.

121

given object”. The understanding presented by this definition can be partially found in the

categories of description identified among the population of the study. However, the full

meaning of the definition is only fully captured in Categories 3 and 4, which represent both

a richer conception and the desirable level of understanding that students should achieve

by the end of the course.

As was mentioned in Section 6.1.2, (Eckerdal, 2006) has researched Aquatic Engineering

students’ understanding of the concept of class. The phenomenographic analysis of her

study yielded the following three categories of description:

1. Class is experienced as an entity in the program, contributing to the structure of the

code.

2. Class is experienced as a description of properties and behaviour of the object.

3. Class is experienced as a description of properties and behaviour of the object, as a

model of some real-world phenomenon.

Comparing these categories with the ones found in our study, we can again observe many

similarities along with a few differences. The first and second categories identified among

the Computer Science students of this study are captured by Eckerdal’s first category of

description. While Categories 2 and 3 from Eckerdal’s study differ only in wording from

Category 3 (class is a template for objects) and Category 4 (class as a model for real-

world phenomena) in our study. Once again, this shows that the investigation of the same

phenomenon in different settings yields similar results. Even though some of the categories

are somewhat different, the spectrum of the experience for the constructs is encompassed

in both sets of results. The differences that are observed is something that should be

expected, given the variance in the course setting and the researchers that carried out the

study.

6.3 Understanding of Attribute

Attributes are the principal elements of a class and its corresponding objects. Attributes

define the characteristics and properties of a class by outlining its composition. A common

122

problem that was observed within the first year students of this study related to the choice

of aspects that should be represented as attributes in a class. Many students, who were

strongly influenced by prior experience with procedural programming languages, tended to

create attributes that did not represent characteristics of the object but that were merely

variables, such as counters, that could be used by the main program. Like objects and

classes, students’ understanding of attributes was discussed in the first and last interview

session and also during the second session when students were solving exercises out loud.

Students did not appear to fully grasp the purpose of an attribute in the first interview

session, however, in the later interviews they were well able to express their understanding

of this construct. The questions that were used to investigate the theme were; “What is the

role of attributes in a class?”', “How do you choose the attributes of a class?”', “What do you

think attributes are?”. The data yielded three distinct categories of students’ understanding

of the construct of attribute as presented in Table 6.5.

Table 6.5: Categories of description for understanding of attributes.
Category Label Category Description
1. An attribute is a container Attributes are understood merely as containers

of specific type that hold values.
2. Attributes determine the
functionality

As above, but also attributes determine the func­
tionality of the class.

3. An attribute is a
characteristic of the object

As above, and that attributes represent the char­
acteristics of the object that are important in the
design of the class and the problem.

The categories were inclusive and the development of the students’ understanding from

one to another is evident. The categories are analysed in further detail in the following

subsections.

Category 1: An attribute is a container

111 this category, students experience attributes as containers that hold values. The focus

is on the type of these variables, as Liam explains in his fourth interview:

Interviewer: What is the role of the attributes in a class?

123

Liam4: To hold values, depends what you want to do with them.

Interviewer: Can you elaborate a bit more?

Liam4: Yeah, well any kind yon can define your own types of values and at the end

of the day it is all broken dowm to numbers and characters that are numbers as w'ell

and essentially you combine those to make more complicated things.

Liam here does not make a distinction between attributes and common variables, rather he

emphasises the low-level characteristics of characters as primitive data types. Neil following

in the same line of thought describes attributes as follows:

Neil4: The object needs to have certain information, in order to store certain infor­

mation we have the attributes that have certain types and so on. You can have as

many as you need to use in the object.

In this category the conception of attributes has not been differentiated from that of vari­

ables, which is not incorrect since attributes are variables, but their purpose and properties

serve a specihc purpose for the class and the object. The understanding of attributes in

this category is not complete as the students’ focus is primarily on the practical aspects of

the concept, and does not consider attributes as part of the model of the class.

Category 2: Attributes determine the functionality

In this category attributes are seen as determinant factors of the functionality of the

class. Most textbooks (Cahill, 2001; Deitel and Deitel, 2005) associate methods with the

functionality of the class. However, here students perceive attributes as the instigators

of the functionality and behaviour of a class. Eamonn expresses this very clearly in the

following excerpt:

Interviewer: So what is the role of attributes in a class?

Eamonn4: They define how a class would respond...

Interviewer: Wouldn’t that be the methods?

Eamonn4: Well yeah if the attributes are not there in the first place then you use

the attributes to invoke everything and that kind of defines what you can do.

124

Here, Eamonn expresses an understanding in which the relationship between attributes and

methods is very close, since the former influences the latter. This will become clearer when

we investigate students’ perceptions of methods in Section 6.4. In Category 2, students

experience “methods as something that manipulates the attributes of a class”. Brian, after

a long discussion about an assignment, says the following about attributes:

Interviewer: Are attributes specific to the class you are trying to create or are they
just general?

Brian4: It depends on what you are trying to do with the class itself. Like with
the class Chair you can have colour, material, whatever. If you have the method
where is the chair? That would mean that in your class attributes you should have
(an attribute for) location or something... like I am still going back to the methods
because if you need it, you use it, if you don’t need it you don’t use it...

Interviewer: So you say that your attributes sort of derive from the methods and
functionality you want to have in this class?

Brian4: Yeah that’s it!

Brian explains his understanding with an example saying that depending on the function­

ality one wants to include in a class, one shonld provide the attributes that would allow

for that to be developed. This is a distinct understanding that incorporates the elements

presented in Category 1, but it captures a more elaborate and broader view of the theme

that involves both the methods and the problem definition in its foundations.

Category 3: Attribute as a characteristic of object

This category subsumes the understanding of the previous two categories, however a new

angle in the perception is introduced. The attributes of a class are experienced as containers

that hold values for the different objects and are influenced by the functionality the class

requires. However, they are also seen as characteristics of the object that the class is

describing, drawing on the physical properties of the type in the way that it is represented

in the real world. Stephan says this in the following:

Interviewer: What is the role of attributes in a class?

Stephan4: They are just describing the characteristics of an object.

125

Tim, responding to the same question, is a bit more detailed in his response.

Tim4: Hmm... they define what the class is, the values that the class can get.

Interviewer: In your assignment how did you decide that your class Card would have

those two attributes suit and value?

Tim4: Because they actually describe the actual card so every card has these two

attributes... values of whatever.

Interviewer: So the attributes describe the object then?

Tim4: Yeah.

Patrick illustrates an understanding which incorporates that presented in Category 1 but

makes a further distinction between how things are viewed from the code and the concep­

tual point of view:

Patrick4: I suppose they are used to describe the object, essentially they are con­

tainers from an object point of view they are the objects characteristics I suppose.

Finally, Mark explains how the attributes can be derived from the actual characteristics

of the object when it is transformed into an entity in the code.

Mark4: Well it depends on what you are trying to describe, you usually choose your

attributes based on physical properties or, for a person, it would be name and stuff,

so general characteristics I suppose.

The interview excerpts included in this section show" an understanding in which attributes

are experienced both in relation to the problem and the code, but also as characteristics of

actual objects in the real world. This understanding illustrates a more mature view" which

contains aspects of the technical perspective of the construct while also encapsulating the

metaphor of the attributes’ purpose.

6.3.1 Structure and Meaning of Students’ Understanding of Attributes

The structure of the categories and the meaning of the students’ understanding of attributes

is presented in Table 6.6. The referential aspect of the categories that represent the direct

object of learning, in this case what attributes are understood to be, shows a gradual shift

126

from the programming language (Category 1) to a wider perspective that involves the

characteristics of real-world objects (Category 3).

Thus, when attributes are experienced as containers, i.e. as simple variables, the em­

phasis is on the type that an attribute may have and the way this is expressed through

the programming language. Therefore, this first category illustrates an understanding of

attributes that is completely detached from the actual purpose of the construct in rela­

tion to the class or the object. This is not to say that attributes are not “containers”, or

variables, but there is a major difference between the purpose of attributes and “regular

variables” that may be used as counters in a loop for instance. Here there is no differ­

entiation between the two, and therefore the students’ understanding is incomplete. The

variation, or even the lack of variation that encourages this understanding comes from the

lack of differentiation between regular variables and class attributes.

In Category 2 a rather unexpected understanding is presented. Although methods are

the constructs that define the functionality that a class implements, the students here

perceived attributes as being part of the dehnition of functionality. However this is not

incorrect since the attributes that a class should include depend on the purpose and,

therefore, on the functionality of the class. In the foundations of this understanding (second

column. Table 6.6) the class and object are included because attributes are intrinsic to

them. However the emphasis is on the fact that the functionality required by the problem

instigates the elements that will be included as attributes. The dimension of variation here

is brought about by the programs that the students work on. Thus the variation for this

understanding stems from the different attributes the classes require.

Finally, the last category subsumes the understandings of the previous categories and

extends it by introducing a new dimension of understanding where an attribute is experi­

enced as a characteristic that the object has in the real world. In the literature, attributes

in object-oriented environments are also referred to as object attributes, illustrating the

direct association of an attribute with the respective object (Conway, 1999). The under­

standing of attributes here is more complete, and “richer”, because it approaches the issue

of deciding an appropriate attributes for a class from a different perspective: the class as a

type, the real-world object and the problem requirements. The dimensions of variation for

127

Table 6.6: The focus of different understandings of the concept of attribute

Referential aspect Internal horizon
(foundation)

Focus

1. Containers Attril)utes are
understood merely
as containers for
storing values.

Code, syntax,
containers
(variables).

On the code and
variables.

2. Functiona­
lity

Attributes are
experienced as
instigators for the
functionality of a
class.

Class, object,
functionality.

On the
functionality that
the class should
implement.

3. Characteri­
stics

Attributes are
understood as
characteristics of the
object that the class
is modelling.

Class, real-life
objects, problem
specification.

On the
characteristics of
the real objects
and the problem
specification.

128

this complex conception are brought about by differentiation in the problems and classes,

but also by the fact that attributes are presented in direct relation to characteristics of

real-world objects.

All three conceptions together, as experienced by the students, present a complete

picture of the desired understanding one should achieve during a programming course about

the construct of attribute. However, when a student’s understanding is restricted to the

first two categories the chances of developing misconceptions, or of generating programming

mistakes in the design phase, are much greater. As was mentioned previously, many

students had problems when deciding what to include in the attributes of a class. As

a result many programming solutions included counters and other unrelated variables as

attributes of the class because these would be needed later in the main program or for

some method. Therefore, while the first two categories of description do not represent a

misunderstanding of the construct, such limited understanding may lead to problems. As

the third category subsumes the conceptions of the first two categories it is the one that

should be encouraged through the use of appropriate examples and even explicitly in the

introduction of the construct of attribute during the instruction.

6.4 Understanding What a Method is

Method is the most common construct used to provide the functionality required in an

object-oriented program. Every Java application begins with the execution of its main

method and this typically creates some objects and then invokes methods on those objects

(Cahill, 2001). Thus, methods in the object-oriented paradigm are not merely routines that

are used repeatedly in a program as in procedural languages, but rather they encapsulate

the functionality and behaviour of an object. When designing a class, the functionality

and behaviour of the class should be captured by methods. It is reasonable to say that an

understanding of the construct of method is essential in understanding how object-oriented

programs work.

The course notes guided students to ask the following when deciding on the methods

of a class: “/.../ The next step, in common with the design of any class, is to decide what

methods the class should be providing. To put it in another way, what do we want to be

129

able to ask instances of the class to do for us?” (Cahill. 2001). However, from obser-'ations

and discussions from interview session 2 where students were solving exercises out bud, it

was evident that many students place functionality inside classes that is often outside of

the scope and purpose of the class.

The categories of description that were identified for the understanding of metlod are

presented in Table 6.7. The questions that were asked to uncover the understanding of

methods during the interviews were; “How do you understand methods”-, “What is the role

of methods in a class?’) and “How do you decide on which methods to include in dass?”.

It should be noted that methods were discussed along with attributes, and so thefe were

mostly follow-up questions from the previous discussion on attributes.

Table 6.7: Categories of description for understanding of methods.
Category Label Category Description
1. A method is just code A method is experienced as a piece code that

has a specific structure, although its purpose s
not clear in this understanding.

2. A method is used to
manipulate objects

Methods are experienced as above, but now tie
purpose of a method is clear. It aims at
manipulating objects through their attributes
while providing ways of using objects to achieve
something.

3. A method defines the
functionality of a class

As above, but also a method is now seen
through the perspective of the problem
specification and in terms of the functionality it
encapsulates. Thus, methods are seen as the
problem-solving part of a class that enable the
representative object to perform actions and
solve the problem.

Like the categories found for attributes, the qualitative ways of experiencing nethods

here are also inclusive. Observing the categories, the change in focus from Categories 1 to

3 is evident. The richness in the conceptions is further analysed in the sections bebw.

130

Category 1: A method is just code

The first category summarises an understanding that is directed towards the programming

language and its syntax. When students who share this conception explain what methods

are, they tend to include syntactical details, like Kevin in the following excerpt:

Interviewer: What do the methods represent in a class?

Kevin4: The methods are basically you have... it’s the method name and you’d have

the return type to see what it returns and... and you have the methods whatever way

you need them and you can basically call these methods from you main class with the
method’s name.

Interviewer: So when you were describing that to me, what was the mental image
you had?

Kevin4: I was thinking of code not specific code but an outline of how these things...
how methods are constructed in general.

Although Kevin was asked what methods represent, his response was more in terms of the

syntactical elements that compose a method and how it is used in a program. The focus of

his understanding is clearly on the syntactical details and the actual code. This becomes

more evident in his answer to the follow-up question; when he says that when he thinks

about methods it brings to mind the syntax of the Java code. Tim states this very briefly

when he says that:

Tim4: Methods are commands to the object for the class to use.

He continues in a detailed description of the method ChangeSuit he had developed for his

poker assignment.

Category 2: A method is used to manipulate objects

This was a common w'ay of understanding methods in the population of this study. The

understanding of the previous category is subsumed by this one, however the purpose of

the method is clearer and is targeted at the manipulation of the corresponding object. This

conception is very closely related to the object attributes, since a method is experienced

as a medium for accessing the values of the attributes. Karl voices this in the following:

131

Karl4: They [methods] provide ways of extracting these values of the attributes from
the objects and they basically provide ways of seeing the object for what it is. Because

in reality you could see the object Card and see all its attributes... the methods provide

a sort of way of accessing those attributes.

Patrick thinks along the same lines in his response, but he views methods as “things” drat

allow one to manipulate and interact with the objects in general and not only for retrieving

and managing their attributes.

Interviewer: So what are the methods?

Patrick4: It is just a way... ways of I am not sure I can define it as the notes [laughs].

Interviewer: Well I wouldn’t want you to do that anyway, I want to see what is your

understanding of a method.

Patrick4: It is just that... I know what I am talking about just expressing it properly
is a bit problematic [laughs]. Methods are for manipulating objects. I mean there is
no point in having objects in a irrogram if you can’t do anything with them. So the
methods provide you with ways of interacting with the object basically.

Brian’s understanding of methods is clearly directed towards object manipulation. He

summarises it in the following:

Brian4: A method is like an action or a series of things you can do to... no its... its

kind of hard to think about that like... methods are methods it is something that you

use to do something with your object. It is something that is inherent to the object

something that you can manipulate it with.

The quotations from the students above illustrate an understanding of methods that is

directly associated with the object and its attributes. It presupposes the understanding

presented in the previous category, but its foundations are still limited to the object and

its attributes. Students’ understanding in this category is highly influenced by the Set

and Get methods that are used to set and get the values of the attributes in an object

(Cahill, 2001). This understanding, although not fully covering the whole spectrum of an

attribute, progresses from the previous category because methods are now seen in relation

to objects and serve a well defined purpose in the design of a class.

132

Category 3: A method defines the functionality of a class

The final qualitative category introduces the problem requirements as another aspect of

the students’ experience of a method. Students understand methods as a medium for

implementing the functionality required by the problem, but this is tied to the object-

oriented design. A clear example of this understanding articulated by Alan who illustrates

the inclusiveness of the previous categories in his understanding.

Alan4: Methods use the attributes to give the answer that you want it to give you.
A method uses the attributes to calculate whatever you want calculated... whatever
the exercise wants you to calculate.

Eamonn stresses the point that a method is the place in the program where one implements

the ‘'problem-solving” part of the solution but at the same time a method should represent

an action that is inherent to that specific class. Thus the functionality that is implemented

in a class should be related to the characteristics and purpose of the class itself. This is

illustrated in the following excerpt:

Eatnonn4: Methods are ways of solving problems they are used to solve the problem,
and you can invoke them from new objects.

Interviewer: You have me confused here... how would you decide that a method
would be in a specific class and not in another?

Eamonn4: Because it performs a task for a class to solve a problem for that class.
So the methods that are included in a class are related to the class itself and the
operations that this class can do...

The understanding presented in the above quotations is qualitatively “richer” than in the

previous categories, since they incorporate in their foundation both the object-oriented

design concerns and the requirements of the problem at hand. When designing a solution

and deciding on where to put the functions that the program should perform, students who

experience methods as “implementations of the functionality’’ mainly focus on the inherent

behaviour of the class as a type, but they are also aware of the desired output that the

program should have.

133

6.4.1 Structure and Meaning of Students’ Understanding of Methods

There are clear similarities between the ways attributes and methods are experienced by

the students, both in terms of the foundations and focus and in the ways the understanding

is developing from one category to another. Table 6.8 presents the structure and focus of

the conceptions on methods.

In Category 1, a method is experienced merely as a piece of code. The concept of a

method is described and experienced through its syntactical components, such as the return

type, the arguments and so on. The focus of the understanding is on the programming

language and the technical expressions that are used in the program to invoke methods

on the object. The foundations of this understanding are restricted to the syntax of the

programming language ignoring the relationship of the construct to the class and the object.

Since the students develop a variety of methods for any given program, the variation in the

awareness of this understanding comes from the particular differences and similarities these

may have. The changes in the return types and arguments in different methods constitute

the focal awareness of this understanding.

In Category 2 the experience broadens so that its foundations now include the object

for which the methods are designed. In this category, methods are seen as part of the

object while they act also as media for accessing and using objects. There is greater

emphasis here on the object and, more specifically, on its attributes when methods are

used to manipulate it. The concept here is placed in a richer context since methods are

now seen in relation to, and as part of, the objects. The variation in awareness is brought

about by object/attribute interactions through the use of methods. The difference within

these methods constitutes the focal awareness.

In the final category, a method is experienced as the construct that provides the func­

tionality that a specific class requires. Therefore, a method is understood both in relation

to the functionality that is engendered by the problem and also to the relevance that it

has with respect to the class as a type and its real-world behaviour. The richness and

completeness of the conception demonstrated by this category presupposes a relatively

mature understanding of object-orientation. Among the foundations of this experience is

problem-solving: methods are now seen as elements where the problem-solving part of the

134

Table 6.8: T le focus of different understandings of the concept of method.

Referential aspect Internal horizon
(foundation)

Focus

1. A method is
just code

A method is
experienced through
its syntax.

Code, syntax,
programming
language.

On the actual piece of
code and on the
commands that are
used to invoke methods
though objects.

2. A method is
used to
manipulate
objects

A method is
experienced as a
medium for
manipulating the
attributes of the
object.

Code, attributes,
objects.

On the interaction of
objects and their
attributes.

3. A method
defines the
functionality of
a class

A method is
experienced as a
construct where one
can implement the
functionality that is
inherent to the class.

Problem
requirements,
problem-solving,
object orientation,
design, class/object.

On the both the
functionality and the
design of the class.

135

program is implemented. The dimension of variation is brought about by the problems and

the functionality of the classes that the students are called to implement. The variations

in the program’s design and functionality constitute the focal point of the awareness in

this understanding.

6.4.2 Functions and Methods

In the object-oriented paradigm methods implement commands that instances of the class

are capable of carrying out. As such, methods have been introduced to the students of this

course as constructs that model the behaviour exhibited by the instances of a class (Cahill,

2001). In the final interview of the series, students were asked to voice their understanding

of a method. The students were guided to discuss their ideas within the context of object-

orientation and the course that they were currently following. Analysis yielded a set of

categories that capture the understanding of a method within such a setting.

When looking at different programming paradigms, such as functional programming,

the experience of the equivalent theme to a method, which would be a function, is quite

diverse. Although the constructs of method and function are somewhat synonymous^ in

object-oriented programming, this is not the case in functional programming. In the latter

a function takes the form of a mathematical equation since the paradigm and associated

languages provide very few built-in programming constructs when compared to the high

level abstraction mechanisms that Java and other object-oriented programming languages

provide. One of the first phenomenographic studies on programming was conducted by

Booth in Sweden in 1992. One of the themes investigated in this study was the construct

of a function in Standard ML, a functional programming language. Students’ conceptions

of the construct of function were summarised in three distinct categories of description

(Booth, 1992):

• The function as a static relationship, in which a function involves a rule. The focus

is not on the rule itself, but rather on the expression of the rule or on the effect of

the rule. The rule is a black box.
Bn the literature wc find that “[mjethods that return a value are often called functions and methods

that return no value are often called procedures'” (Cahill, 2001).

136

• The function as a dynamic relationship, in which a rule is again involved but the rule

itself is the focus. Now the black box has been opened and it is being examined.

• The function as a dual static/dynamic relationship, in which a rule is involved, that

can be viewed as dynamic or static.

The primary focus of the conceptions of function found in Booth’s work is on the rule

that a function needs to carry out. The categories progress from a static view to a more

complicated one that literally combines the dynamic and static conception. Although

functions in Booths’ study and methods in this study constitute different phenomena, the

progression from one category to another presents a number of similarities. In our first

category, “a method is experienced as a piece of code”, the experience is a static one as

the focus is on the syntax itself. Similarly in Booth’s first category the focus is on the

expression of the rule rather than on the rule itself. In the second category a method

is perceived as something manipulating and interacting with the attributes of the object.

Thus the focus is on the effects of the method, similar to the function in the second

category of the Booth’s study. Finally, the third category in both studies encapsulates a

complete understanding where all prior categories are subsumed. Therefore, even if the two

constructs are perceived differently within object-oriented and functional programming, the

foundations of the categories follow the same development trend.

6.5 Students’ Understanding of a Constructor

The concept of a constructor is of a more technical nature than the object-oriented concepts

that have been discussed up to this point. However, it is an important element in the

construction of a class and in the object paradigm in general. A constructor is generally

defined as a “special” method that is used only to initialise the instance variables of a

new object (Cahill, 2001). Theoretically, constructors are not difficult for the students to

understand and implement. However it was observed in the classroom that many students

are not fully aware of the constructor’s purpose and, as such, they just include it because

“it’s something that has to he there”.

Students’ understandings of constructors were discussed in the second interview session

137

where they were prompted to create a fully functional class. The questions that were asked

during the interviews were: “What is a constructor?”; “Where and when do you use it?”; and

“What is its purpose?”. Analysis yielded three qualitatively different ways that students

understand constructors, as presented in Table 6.9.

Table 6.9: Categories of description for understanding of constructors.
Category Label Category Description
1. A constructor is used for
creating new objects.

A constructor is experienced as “something” that
creates objects.

2. A constructor is used to ini­
tialise object attributes.

As above, but now the internal functionality of
a constructor, which is to initialise the objects’
attributes, is also emphasised.

3. A constructor is a spe­
cialised method.

As above, but constructors are now seen for what
they are: methods that have a specific use and
specialised purpose.

The categories for understanding of constructors were found to be inclusive. Thus, in

the first one the concept is experienced as “something” that a class has to have and that

is used to create objects. Students in this category did not seem to have a very clear

understanding of how constructors work and even their understanding of a constructor’s

purpose is somewhat vague. In the second category, the purpose of a constructor is more

concrete; while in the final category the students see that constructors are essentially

methods, although used in a specific way.

Category 1: A constructor is used for creating new objects

The first category captures an understanding that is targeted at objects. The students see a

constructor as something that is used for creating objects, however they do not necessarily

exhibit a knowledge of what a constructor is. Brian in his second interview session said.

Interviewer: Do you know what a constructor is?

Brian2: Yes.

Interviewer: Can you explain it to me?

Brian2: Okay for example in the class Student that we have here the constructor
would make an object of the class Student...

138

Interviewer; Right, so what is a constructor?

Brian2: It is what makes the objects...

Interviewer: Hnim so where do you use it?

Brian2: It is used in main to create objects...

Brian very clearly says that constructors are for creating objects, despite the interviewer’s

attempts to encourage him to elaborate he seems to be viewing them in this single dimen­

sion. Mark and Karl exhibit the same level of understanding when they responded with

the following;

Mark2: I don't know how to explain it... Hmm it is the initial method that you need
to create an object I suppose...

and

Karl2: It is used in the main program when I suppose you want to reference an object
you need to create the object first, so you call the constructor to make the object.

Both excerpts are focused on the use of a constructor that is directly related to the object

itself. Although this understanding is not a misconception, it illustrates a partial un­

derstanding of the concept. When completing the exercises during the interview sessions

students were asked to point out the exact line where the constructor was called. Some

students were unable to do so. This illustrates that they were not aware of the actual

details and purpose of the constructor. However the same students were able to create

objects and the class constructors when asked to do so.

Category 2: Initialising an objects’ attributes

A common way of understanding a constructor is that it is used to initialise the attributes

of an object and therefore to create a new instance of it. The functionality and internal

operations of constructors are apparent in this conception and so it constitutes a more

complete understanding than in the previous category. Answering the question “what is a

constructor?”, Eainonn says:

139

Eamonn2: It is where you can pass the values for the object. So you have [class]
Student with name, age and address. To assign values to these variables you use the

constructor. So you initialise the object this way.

Interviewer: And when would you use it?

Eamonn2: You use it in main when you create the object.

Eamoiin uses a previously discussed example about the Student class to explain his un­

derstanding of the constructor. Declan, in the following, gets a bit confused initially but

then states clearly his conception of constructors to be initialising the object attributes:

Interviewer; Could you explain to me what a constructor is?

Declan2: So that is when hmm... when you are creating that object and stating what
attributes make that object and what their types are...

Interviewer: So you say a constructor is where you state the object or class at­
tributes?

Declan2: Huh well yeah. It is sort of where you actually define where the attributes
that compose the actual object are. So you initialise the object by initialising its
values.

Colin exhibits the understanding described in this category in the following:

Colin2: Whenever you create a new object you use that to get all the parameters for

the attributes. So you put all your attributes as parameters in the constructors and

then when you have your new object with the specific values that you want.

The understanding in this category is focused both on the objects and their attributes,

while the purpose of a constructor is concretely stated in all the above excerpts.

Category 3: A constructor is understood as a specialised method

In this final category, a constructor is not merely described as “something” but it is now

understood in its essence as a specialised method. Neil says this in the following:

Neil2: I would say it is a method in a class that takes in parameters and assigns them

to the variables of the class and creates the new object of that class.

140

Liam adds to this by saying that you can run methods inside a constructor, demonstrating

an advanced understanding:

Liam2: It is a method first of all, and it is used to initialise all the attributes of the

object and you can also run some other methods in it as well... and by using it you

initialise an object and you instantiate it obviously.

Liam is an experienced programmer and it was expected that he would give a rather

detailed and technical explanation of the construct. A final quote comes from Colin. He

summarises the conceptions that were presented in the previous categories while clearly

stating his understanding of constructors as methods.

Colin2: Yeah it is something that hmm. It is just an attribute sorry a method to

assign values to the attributes when a new object is created of the specific class.

6.5.1 Structure and Meaning of Students’ Understanding of Constructor

As the theme of constructors is more technical than the others discussed in this chapter,

the progression of awareness between the categories is different to that of objects and

classes. As can be observed in the referential aspect of the categories, (see the first column

in Table 6.10), the awareness changes not so much in “what is understood”, but rather in

“how much is understood”. Although none of the categories capture any misunderstandings

in the students’ conceptions, it is apparent that the first two categories illustrate a partial

perception of the constructor relative to that expressed in the third category.

Looking at the categories individually, in Category 1 the main focus is on the outcome

that the use of a constructor has. Students here describe the constructor as “something”

that creates an object. This exhibits a poor understanding of the internal operations of

the construct. The variation in awareness that encourages this understanding is brought

about by the presentation of the constructor as a necessary element for creating an object.

Thus in the construction of classes, the repeated declaration of attributes that is followed

by the creation of the constructor constitutes the dimension of variation in this category.

In Category 2, a constructor is experienced as the medium for initialising the attributes

of the class when creating an object. Thus, at the foundations of this understanding is the

class; since constructors are now seen to be actively related to the class and its attributes.

141

The understanding in this category is qualitatively different and richer when compared to

the previous one because now the how aspect is also emphasised alongside the purpose of

the construct. The variation in awareness in this category is brought out by the relation

of the attributes and the respective object, while different examples of these constitute the

dimension of variation in this awareness.

Table 6.10: The focus of the understandings of the concept of constructor.

Referential aspect Internal horizon
(foundation)

Focus

1. A
constructor is
used for
creating new
objects

A constructor is
experienced in
relation to object
creation.

Objects. On the outcome
(object).

2. A
constructor is
used to
initialise object
attributes

A constructor is
experienced as a
means of initialising
the objects’
attributes.

Class, object,
attributes.

On the internal
operations (attributes).

3. A
constructor is a
specialised
method

A constructor is
experienced in its
essence as a
specialised method
that is used for
instantiating object
attributes.

Class, object,
attributes, method.

On the essence of the
concept (method).

In the final category, a constructor is experienced for both its purpose and how it

achieves it, but now the conception broadens to include what it is in its essence. The

awareness has progressed so that students can now abstract and see that a constructor

is fundamentally a method that is used in a different way from other methods. Students

142

that share this understanding perceive constrnctors ontside their strict boundaries of at­

tribute initialisation and become more creative with it by invoking other methods within

it. This category illustrates a view of constructors that is more complete and mature.

The dimension of variation here is brought out by relating constructors to other methods.

The more elaborate and complicated the constructor is, the more attention it will require

to understand it; resulting in students paying attention to it and understanding it as a

specialised method.

6.6 Shifts in Understanding of Object-Oriented Components

As mentioned throughout the analysis of the object-oriented concepts presented above; all

the themes, except for constructor, were discussed with the students during two separate

interview sessions, namely session 1 and 4 (see Appendix B). As expected, a number of

shifts were observed in students’ understanding of these constructs. As shown in Figure

6.1, the majority of the shifts in their conceptions occurred in relation to objects and

classes, while only limited instances of shifts were identified in attributes and methods.

This can be ascribed to the relative complexity of the constructs of objects and classes,

when compared to the more technical themes of methods and attributes.

The categories of description for the individual concepts represent the conceptions

of the sample population of the study, but also show the division in the continuum of

understanding of the phenomena under investigation. The fact that the categories are set

in hierarchies does not imply that some categories are “better” than others, in the sense

that the existence of an understanding guarantees a “better” learning outcome. Taking

the stance of (Bruce et ah, 2004) “/.../ successful students may adopt any of the different

learning approaches associated with each category at different stages of their study. It would

appear that the problems are likely to occur when students don’t move beyond the learning

experience of Categories 1 or 2”\ we agree that the students go through different stages

when learning and becoming aware of a concept. Therefore, students are expected to

progress and shift between the categories, since that is wdiat constitutes learning.

In Figure 6.1 there are cases wdiere the shift in the students awareness has occurred

“backwards” to qualitatively lower understanding. This was not an unexpected event,

143

since the categories are inclusive in most cases. Therefore, when the students exhibited an

understanding captured by a more developed category, they were aware of the conceptions

in the former categories, but the emphasis of the replies in the later interviews had a

narrower focus. Based on the previous argument by Bruce et al. the desired outcome is

for the students to go through the different learning approaches of each category during

their studies, therefore any shift, either forward (to a “richer” category) or backwards (to

a “poorer” understanding) is a positive event, since it illustrates how the awareness of the

student develops during the learning process.

Figure 6.1; Shifts in understanding of the object-oriented concepts

student Concept initial category Shift Type of shift

Liam

Stephan

Karl

Objects

Objiects

Objects

Cat. 2: Programming
construct

Cat, 4: Real-world
phenotnerta

Cat. 3; Entity in a ---------------,
program ua . i. e

Gat. 4: Real-worldCat, 1: Codephenomena

Cat. 4: Real-wortd __________ Cat. 2: Structure to
phenomena Ihe program

Cat. 2: Structure to ----------------- Cat, 4: Real-world
the program phenomenon

Cat 1: Code ----------------* an object

----------------- Cart: codean object

/-of -5. * Cat. 1; Charade-Cat, 3: Containers -----------------

Cat, 3: Characte- ---------------- ..
ristics Containers

Intra-conteKtual

Inter-contextual

Inter-contextual

Eamonn

Declan

Anthony

Sean

Classes

Classes

Classes

Classes

Inter-contextual

Inter-contextual

Intra-contextuai

Intra-contextual

^an

Neil

Attributes

Attributes

Inter-contextual

Inter-contextual

Neil Methods Gat. 3: Functionality Cat. 2: Manipula­
tion of Objects Inter-contextual

In summary, the range of understanding in the form of the categories of description

remains stable, but the student’s perceptions do not. As discussed by Pong (1999) in

the dynamics of awareness, there are two types of conceptual shifts that can be observed

during an interview session. The inter-contextual that occur due to the introduction of

144

a new subject in the discussion, thus when the context changes, and the intra-contextual

shifts that occur within the same context usually spontaneously or when triggered during

a conversation (Pong, 1999). In this study there were two interview sessions where these

concepts were discussed, hence there is also an element of development in awareness during

the year. The context and experience the students had in the time between interview

sessions allowed for the majority of shifts to be inter-contextual. However, a number

of intra-contextual shifts were observed during the same interview sessions as well, as in

Figure 6.1. To illustrate this further two representative student cases are analysed in detail

in the following subsection.

6.6.1 Case Studies on Shifts in Understanding

In the first case study Liam demonstrates an intra-contextual shift in his understanding

of objects within the same interview session. Earlier in this chapter (Section 6.1) when

Liam was asked what an object was he associated objects with Integers in his response,

saying that they are all programming constructs that are created to hold values and can

be later referenced. His understanding exhibits the clear properties of the second category

of description for the concept of objects. However, after that statement the discussion

continues with a tutorial example they had completed the day before the interview:

Interviewer; How does this relates to the objects you had in the bank system?

Liami: Well... in the bank system I had accounts and customers, because these
were important objects for the problem, and with the bank you need customers and
because you have many of them and because they all have different attributes you
make them classes. Then you have to decide what are the appropriate methods and
attributes, because the account object should be able to increase and decrease the
balance because you can’t have these kind of methods in the customer it doesn’t make
sense... A customer can do other things...

When Liam is asked to elaborate on his response in relation to the bank problem, he talks

both about classes and objects and he relates objects and their methods to the behaviours

that real-world entities have. He specifically says that you would need another class for

‘‘account” because “it doesn’t make sense” to have methods in the customer class that would

145

increase/decrease the balance in the object of the customer, since it is not related to the

conceptual view of a real customer. Thus, Liam voiced another facet of his understanding

where the object is seen as a representation of a real-world phenomenon that has a specified

role in the program. In this case, the shift was triggered by the interviewer asking the

student to elaborate on his initial response causing a spontaneous intra-contextual shift in

the student’s awareness.

Another example of a shift, this time inter-contextual, is exhibited by Eamonn’s under­

standing of classes. When the concept of class was discussed in his hrst interview, Eamonn

was a bit hesitant in his response as to what a class is:

Eamonni: Yeah well classes, they are a little bit difficult to get your mind around

it, [...] you certainly have to make yourself think in terms of objects and classes...

which attributes go with each class... it’s just something that you don’t normally

think about.

Later in the discussion he was asked about the differences between an object and a class. At

this point he expressed an understanding that is more in tune with the fourth category of

description for class, where the focus is on how these real-world phenomena are translated

into models in the program.

Interviewer: Okay so what is the difference between an object and a class?

Eamonni: A class would represent all the objects, where as... Say class person

would represent all people, all the people as they are in the world, so they would have

the basic attributes in that class, all people generally have hair colour, eye colour

and stuff. An object like describes an individual. Like an individual person or an

individual chair I suppose instead of the general picture.

Eamonn exhibits a more abstract understanding in the above since he illustrates, with

the example of a Person class, how people in the real world can be modelled through the

use of a class in a program. His fourth interview took place at the end of the academic

year and in it the focus of his awareness has changed. As presented in Section 6.2, he

viewed a class as the means to achieve structure in the program and as a way to help solve

the problem at hand. However, his previous conception has not been eliminated since he

states that “[a class/ should be something coherent as well, like a class should represent

146

something and that would hopefully give you the means to solve the problem". Thus, the

understanding of classes as real-world phenomena is still present, although it has receded

into the background bringing the focus to the problem-solving activity where a class is

experienced as a construct that provides structure. The shift in the understanding in this

case is inter-contextual since the context of the students’ experience has changed.

6.7 Summary

In this chapter we have investigated how first year Computer Science students experience

five programming constructs that lie in the heart of the object-oriented paradigm. Some

of the constructs, namely object and class, are doubtlessly more important in the con­

text of object-oriented programming than some of the other constructs that have been

discussed such as constructors. However, the mapping of students’ understanding of all

these constructs formulates a complete picture of students’ experience and understanding

of object-orientation.

Hohnboe (liolmboe, 1999) outlines a cognitive framework for different types of knowl­

edge in object-orientation. In Table 6.11 we can see how the categories of description

for the five constructs that were analysed in this chapter are associated with Holmboes’

framework. The four levels, or types, of knowledge described by liolmboe:

• Initial Hunch: An initial hunch is described as folk wisdom. Students of this type

lean towards operational understanding by focusing on the process of programming.

• Practical Knowledge - User-base: The concept of object-orientation is perceived

in terms of the processes and operations performed by the programmer. There is still

a strong focus on practical applications and how things work. The common factor

for all practical knowledge is that it is based on skills with little understanding of

why it works.

• Theoretical Knowledge - Definitions: This type could be described as a person

with an initial hunch who does not obtain personal experience but his understanding

is based on theoretical definitions and the formal aspects of object-orientation.

147

• Holistic Understanding - Relational: A person with holistic knowledge relates

the implementation and design of a computer program to the real world being sim­

ulated.

Although Holmboe talks about cognitive types of knowledge from a constructivist perspec­

tive, it is evident that the types that he identified relate to the progression that appears

in the categories of description of the object-oriented constructs that we have analysed in

this chapter.

Starting with the construct of object, we argue that the understanding encapsulated

in Category 1 “object as code” is an initial hunch type of knowledge as the conception in

this category leans towards the operational processes. The first subcategory of the second

category, where objects are experienced as constructs used to hold values, is classified as

practical knowledge, since the focus is on the practical implications of how the construct

works. The second subcategory is a theoretical type of knowledge in that the view of object

as an active entity denotes a familiarity with the formal aspect of object-orientation. The

final category for the concept of object clearly demonstrates an holistic understanding since

the perception links the formal programming construct to the subjective content of reality.

The categories for the constructs of class and object showed many similarities in their

analysis (see Sections 6.1.1 and 6.2.1). In particular. Categories 1 and 4 for class were

almost identical to Categories 1 and 3 for object. Therefore, Categories 1 and 3 for object,

and Categories 1 and 4 for class can be classified as initial hunch and holistic understanding

respectively in Holmboes’ framework (Holmboe, 1999). Category 2, where a class is ex­

perienced as a construct that provides structure to the program falls under the theoretical

type of knowledge although it involves elements from the practical type of knowledge of the

framework. The same holds true for Category 3 as the conception has a strong theoretical

influence.

For the constructs of attribute and method, Category 1 in both outcome spaces presents

a practical type of knowledge rather than an initial hunch. This is because in both cases the

understanding stems from the processes and operations that the constructs can perform.

Category 2 for the two constructs demonstrates theoretical knowledge as the understanding

appears more abstract. The third category for both method and attribute pertain to

148

emulation of real objects’ characteristics and behaviour. Thus they are characterised as an

holistic type of nnderstanding.

The final construct analysed in this chapter is constructor. The first category of de­

scription for constructors appears to constitute more of an initial hunch] students in this

category were unable to discuss many of the operational details of the construct. The

second category, where the constructor was viewed as something that is used to initialise

the attributes of the object, demonstrates a practical type of knowledge because the focus

was on the operational details of how the construct worked internally. The final category

of description for constructors encapsulates both a practical type of knowledge but it also

shows an advanced theoretical understanding of what a constructor actually does.

149

o
o

"O
-u*
c
CD

0)

bC
a

a
a

to
S "O o c
ffi

cd o.y So
-kJ
o a;
o "$

2 0
H ^

-M
b
b

5-t-.
o

• o
O

b

o
CO g

o5
O c/2
bO cb
b4-P d

b
o b

c/}

o5 «-•-(d
2 d o db b
o 3 O "b

o bO T5 ob O d
o5 b 4-5o5

o
d b

b 3. d 3

X:o

(M

i-»
O
bjOCD4J
a
o

0)>
bC
O

o

Cw
q;

C'J

obO
o;
d

U

Cj
r. ^v/3 ^_3

O
02 <D
X ■'—:
05
Ij o
&i tP

Eb b ^
^ P o 1d
•r S. “ "q.

2^ -, -UO O ^ ^5
CL +j 's^ -u

'•'" 05
.22

>b 0)S-Io :cbC ^0)
;h

O o5

>b
o
bjO ,
<D
o5
o

a>

o
►^v

o5 q;

CO ^
>,
S) 1

-t_5 -»->
o5O 3

"3

o

CJ
o

l:;
"O
0)
c/2

c/2
0)fM

O ^
bO 9 ^
a; Lin -p

-*-s 505 ^ ^0 3 3

r^*
O
bO
0)
cb

O

o
"S

02

CJ02

'TJ
Gcb
02bO

'TIJ
02

o

o

o
02
3cb

024ĈJ
02

02
02
so
CO

S3

obC
U 02

g

o5

02
02• '~>
O

cnT

^ S' a
O —'
bc a
- cd g

o
02

05
O'JJcSCO

>5 <Di-l 4JO 3bO X!
S -P
O o

02

02
TUO

02

cb tZ2

bO 202 -O4-> '»-505 02
O 3

b* 02
S2 b

o5 c/2

CN ^
b o
M B
B I
n ° D o

-Oo

J3u
C
3

o

>>
o ^bO ^
0) ob

c/2O 05

O
bO .
b 02

U 02

T5
b

o3 C/)
p ^

o ?
fccO P
-2 2
o 8

!-. biOo a
aQi

oQ"—i
X}
O

cccc
ct
6

T3
0

JS
QJ

u
0-wO3q4J033
0

O

150

Chapter 7

General Programming Components

Ill this chapter we extend our analysis to four concepts which are central to both object-

oriented programming and to programming in general. These concepts are: algorithms,

arrays, iterations and selection. Since these are neither specific to Java nor strictly to

object-oriented programming we refer to them as general programming components in order

to distinguish them from the theoretical and object-oriented components which have been

analysed in the previous two chapters. The four general programing constructs that we

investigate in this chapter were selected both because of their importance according to the

relevant literature (see for example (Giles, 2002; Howe et ah, 2004; Walker, 1998; Koffman

and Wolz, 2001)), and also because our pilot study showed that educators think that some

students find them challenging.

The construction of algorithms lies at the heart of programming; indeed it is funda­

mental to the process of problem-solving. It encourages a more abstract w'ay of thinking

that we have previously identified as critical to the development of programming thinking

(see chapter 5). Most students who enter a programming course have a clear conception of

what an algorithm is, but they have not necessarily linked this to the concept of computer

programming. For example, for some, an algorithm is a more general, and even elusive,

construct because when students solve a programming problem they are not necessarily

aware that they are constructing an algorithm. Similarly an educator may be teaching al­

gorithm construction without specifically mentioning algorithms, but rather by illustrating

different ways to solve a problem and to reach a solution.

151

On the other hand, arrays, iterations and selection are some of the more coherent

constructs that are taught in most introductory programming courses. Students are not

required to have developed a prior understanding of these, and the educator teaches them

deliberately and explicitly through examples and problem-solving.

It is imperative that an insight into how students understand these constructs is ob­

tained since they are fundamental to programming and programming thinking. As Dijkstra

pointed out about programming constructs (Dijkstra, 1982): “The tools we use have a pro­

found (and devious!) influence on our thinking habits, and, therefore, on our thinking

abilities.” Therefore, looking at how these are understood by novices would provide educa­

tors with a powerful teaching guide. Unfortunately, most of the literature that discusses the

programming constructs under consideration here concentrates on the ways experts believe

these should be understood and on the best ways of teaching them in introductory and

advanced courses. In contrast, this study investigates how these general programming con­

structs are understood by students taking a typical introduction to programming course.

It is argued that no meaningful change in the way j^rogramming constructs are taught may

be made without first comprehending the students’ exjrerience (Berglund, 2004).

In the remainder of this chapter the concepts of algorithms, arrays, iterations (loops)

and selection are analysed through the phenomenographic perspective within the Java

paradigm on an introductory programming course. The critical aspects of the derived

outcome spaces for these constructs are then discussed; while the relevance of the results

with respect to the literature is also addressed.

7.1 On the Understanding of Algorithms

The notion of algorithm is central to the programming paradigm, since it encapsulates

the most basic way of thinking required to develop a program. One of the most essential

things that students have to realise when learning to program is that a computer cannot

understand and interpret complex commands as a human can. Computers can only inter­

pret a limited set of simple commands that should be presented in a meaningful sequence

and are generic enough to work for any case scenario. One of the most common textbooks

used for introductory Java courses gives the following definition for algorithms (Deitel and

152

Deitel, 2005): “Any computer problem can be solved by executing a series of actions in a

specific order. A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

is called an algorithm^

An algorithm is a general concept that can be meaningful not only in the programming

paradigm but also in real-life scenarios. Therefore, most students have a prior under­

standing for what an algorithm is. However in this study they were asked to discuss their

understanding of algorithms in the context of computer programming.

Algorithms were introduced in the very first weeks of the programming course consid­

ered in this study. Students were initially asked to reflect on the complexity of instructions

that a computer can understand relative to those understood by a hnnian being. In an

active, physical example they were asked to instruct one of their classmates to reach the

door from where he was standing given a finite set of instructions. This exercise illustrated

the need for clearly sequenced instructions; while the fact that their initial solution would

work only from a specific starting point, introduced the need for conditional commands

and repetition of some parts of the algorithm. For almost three weeks the students were

given a series of exercises in which they had to develop algorithms. Initially they produced

instructions in English but they gradually progressed to the Java syntax. Students’ un­

derstanding of an algorithm was discussed in the first interview session. This was close to

when they had been formally introduced in lectures, but after one week of practical classes

on the topic.

It is important to note that when discussing their understanding of what learning to

program means to them, many students paralleled it with learning to write algorithms. A

comprehensive example of that notion comes from Anthony in his first interview where

he said “Programming is writing an algorithm for solving a problem. Programming is

getting the computer to understand what this algorithm is going to do.” According to

Anthony learning to write algorithms is equivalent to learning to program. This illustrates

the importance that the students’ understanding of algorithms holds in this study. As

153

Table 7.1: Categories of description for the understanding of algorithms.
Category Label Category Description
1. Algorithms as
problem-solving

Algorithms are seen as methods that include a
series of commands designed to solve the
problem at hand.

2. Algorithms as a means of
reducing complexity in
programs

As above, but now algorithms are seen as a
feature that reduces the complexity inherent to
the problem specification.

3. Algorithms outside the
programming paradigm

Algorithms are seen as a procedure that
represents a step-by-step solution that can be
applied to both the physical world and any
programming paradigm.

was mentioned previously, it is perceived that algorithms encapsulate the different way of

thinking that is necessary when learning to program.

The students were asked to answer the following questions: ‘'What is an algorithm?”,

“How would you define it?” and “Why do you think it is important when learning to

program?”. The three conceptions found within the student cohort are summarised in

Table 7.1. These will be elaborated on, and discussed further, in the rest of this section.

Category 1: Algorithms seen as problem-solving components

In the first category, algorithms are understood to be the equivalent of methods. In many

cases algorithms are referred to as functions, but more often students tend to describe

them as a series of commands designed to solve the problem at hand. This conception is

the most pragmatic one since it is grounded in the programming paradigm, and involves

the tangible elements of algorithms. For example, Patrick says “I guess it is a series of

commands that solves a problem. ” This conception of algorithms is very close to Categories

2 and 3 on the nature of methods in Section 6.4.

On the other hand, Anthony highlights the generic characteristic of an algorithm, which

is to solve the problem for any possible case.

Anthonyi: An algorithm is a set of instructions that would solve a problem but it
would work for any given situation. The instructions are specific to the problem you

154

are trying to solve, but it should give you the right answer for whatever input you
give it.

Ken shares this understanding when he says the following:

Kerii: An algorithm is a collection of commands I guess. It is supposed to be a bullet
proof way to solve a problem. Obviously, the commands that are available are limited
so you have to work with that, it’s like a function really...

The next two excerpts from Declan and Mark emphasise that algorithms are meant to be

a procedure that can be carried out by a computer.

Interviewer: How would you define what an algorithm is?

Declani: As a set of instructions, to explain to the computer how are you going to
solve a j)robleni.

and when Mark was asked to describe what an algorithm is, his response was;

Marki: It is a series of instructions to tell the computer what ... to do something.

By observing the individual responses of the students, it can be seen that while different,

they share points of similarity. All the students that share this conception began describing

their understanding of an algorithm by saying that it is “a set of instructions.” This

shows that their understanding of algorithms is grounded in the pragmatic elements of an

algorithm which is its components, the sequence of instructions. At the same time each

student emphasised another property of an algorithm which is its result. Ultimately, if one

needs to devise an algorithm, there is an underlying problem that requires a solution, and

the students incorporate this into their understanding. Hence students view algorithms in

terms of their result, which is to solve the problem. Although implicitly all the students

were talking about algorithms that a computer can understand, only Declan and Mark

made that explicit. However their responses express an understanding of algorithms that

has its basis in the problem-solving aspect of algorithms.

155

Category 2: Algorithms as a means of reducing complexity in programs

In this second category algorithms are identified as the means by which a reduction of

complexity is achieved in a program. Unlike the previous category an algorithm is not

viewed as something that ultimately solves a problem by itself, but rather it is perceived

as something that can be incorporated into a program or a method to reduce the complexity

of the program. Alan explains this in the following:

Alani: An algorithm is a list of commands, very basic, to form some complex function.

Yeah it is just a series of commands and you have to make it like with many small

steps and simple ones to make it do something complex. It has a structure and usually

contains loop with a while command and you figure out if you need counters and so

on. [...] There is a logical structure and you make it do whatever it is what you have

to do, but not all at once you can have many that are connected to do that.

Cormac also takes up this aspect of a logical sequence as a property of algorithms in his

response:

Cormaci: It is a list of instructions but a logical list of instructions. It has to be in

a certain order the set of commands controlling what is going on and saying what is

going to happen. You have to be able to differentiate between the different situations.

Interviewer: So you say it is a sequence of logical steps that has conditions and

commands with a beginning and an end.

Cormaci: Yeah.

Both students mention the use of logical sequencing as a means of reducing complexity

and achieving the end result, which is to solve a problem through the use of algorithms in

a program. They both talk about possible components of an algorithm such as conditions

and iterations, although an algorithm is not viewed as an isolated procedure that provides

a solution but rather as a component within a program.

Other students exhibit a broader understanding of algorithms based on the reasoning

that if an algorithm is an implementation of a part of a problem, then every construct

that helps in solving the problem and reducing the problem complexity can be perceived

as an algorithm. Brian, when asked to identify the most important concepts that were

introduced in the course up to that point, says the following:

156

Briarii: I would probably say just the algorithms... Because then you have methods

but methods are algorithms in a sense because it is the basis for problem-solving and

the basis for everything. .Just the rest of the things, like classes and object they are

just programming ways of thinking and structuring things. Like a method is called a

method but it is actually doing something like the algorithm does, an implementation.

A class is called a class but.. I don’t know how you define that and anything but it is

terminology more than anything, algorithms are the actual problem-solving part of it.

You have the problem and then you break it down and then for each part you create

an algorithm. So then you combine all these it is not as complicated as it seemed

before.

The supporting excerpts in the analysis of this category clearly demonstrate a view of

algorithms as procedures for handling the complexity of a problem. Unlike Category 1,

the focus has shifted from the result that an algorithm may have to the purpose that it

has in a program. Thus algorithms are viewed as a means for reducing complexity while

at the same time they are perceived to be sufficiently abstract so as to encapsulate the

characteristics of other programming constructs like methods and classes.

Category 3; Algorithms seen outside the programming paradigm

The conception in this final category of description was voiced by a small number of

students, however it is important to include it since it opens up an angle that was not

apparent before and, at the same time, is inclusive of the previous conceptions. Students

in this category view algorithms both as a programming construct but also as something

that can model a solution outside the programming paradigm. The understanding here

is more abstract and somewhat detached from programming. Stephan, an experienced

programmer, is able to talk about algorithms in a way that illustrates a deep understanding

of the abstract process without loosing track of the concept of algorithm as a procedure

that can be applied in other paradigms.

Maxi: An algorithm is actually a sequence of actions... well yeah a sequence of

actions designed in such a way that you will get something to carry out an action.

It doesn’t hold only for computers, it is the same for people. Like, I can give an

example... the lecturer has shown us how to construct an algorithm to get a person

157

from one place in the class to walk to the wall. So it was just a sequence of steps
on a smaller scale like very simple to demonstrate basic understanding. Something
that when all of these simple commands are combined yon can perform a bigger more
complex action.

Liam, another student with previous programming experience and general aptitude in

programming, in a very laconic statement summarises this understanding in the following:

Liami: A series of instruction to do one particular task, either physical or program­
ming.

A final expression of this understanding comes from Neil:

Neili: A scries of commands that... That’s it pretty much... to do something whatever
it is required to do. It can be done by both a person or a computer, it is more general.

All the students who voiced an understanding of algorithms that moves beyond the pro­

gramming paradigm were high achieving students that had programed before in at least

one programming language. This is not to say that only students who had previous pro­

gramming experience can understand the nature of algorithms in this way. However it

may be that this experience allowed them to view algorithms in a more abstract way, both

within the programming paradigm and in a more general setting. We argue that this un­

derstanding is a richer one since it encapsulates the metajhior of a real-world step-by-step

solution together with how this can become an algorithm for a computer program.

7.1.1 Identifying the Variations in Understanding of Algorithms

To identify critical aspects of the understanding of algorithms, we need to look at the struc­

tural aspect of the categories. In Table 7.1, the first category presents an understanding

where algorithms are compared to methods. They are experienced as a single compo­

nent that solves the entire problem. The focus of this understanding of algorithms, the

structural aspect, is that students parallelise and compare problem-solving components

and methods. In the foreground of the understanding is the notion of the computer as

something that will take an algorithm and use it to solve a problem. This is understood to

be the ultimate goal of an algorithm. For students to be able to discern the understanding

158

described in Category 1, the relationship between the problem and the algorithm needs

to be apparent. The different types of algorithms that are developed for solving different

types of problems constitute the values among this dimension.

In Category 2, algorithms are experienced as a construct that reduces complexity in

a program. Unlike the previous category, an algorithm is now understood in relation

to a deconstructed problem from which many algorithms can be developed, which are

later combined to solve the problem. The focus of this understanding is on problem

deconstruction, while the solution of each component of the problem is experienced as an

algorithm. It is only later that these algorithms are combined to create a program. Thus,

the focus here is on the purpose of an algorithm. This is to reduce the inherent complexity of

the problem, whilst it is the combination of several algorithms which constitutes a solution

of the problem. In order for the students to discern this understanding of algorithms, they

have to become familiar with the merging of several sub-algorithms to create a complete

solution. By experiencing problem deconstruction and program construction through the

combination of different algorithmic parts, a student can become aware of algorithms as

a means for reducing complexity. The different types of problems and the combination of

algorithms to derive a solution constitute the values among this dimension of variation.

In the last category given in Table 7.1, the structural aspect is the algorithm as a set of

instructions that uphold certain properties and that can be interpreted by either a computer

or a person. In this case the student can see how creating algorithms relates to things that

happen in daily life. For example, a student who experiences algorithms in this manner,

would view giving instruction to a tourist on how to get to the local post office, as requiring

the same type of thought process as creating an algorithm that counts the occurrence

of a specific letter in a sentence in a program. Although this level of understanding is

expressed in a less technical way, it illustrates a higher level of understanding where the

knowledge has matured and can be transferred to other practises. In order to discern such

an understanding, a student needs to be aware of the modelling attributes of a computer

algorithm that replicate those seen in real-life situations. Table 7.2 provides a summary of

the critical aspects that were identified for the understanding of algorithm.

It should be noted that deciding on the hierarchy of the categories of description that

159

Table 7.2: Aspects of variation in the understanc ing of algorithms.
Referential Aspect Structural Aspect Dimensions of

Variation

1. Algorithms are
understood as
problem-solving
components (methods).

The focus is on algorithms
as a set of instructions that
solve the programming
problem at hand.

Variation of problem
specification and the
algorithms that can be
developed for them.

2. Algorithms seen as a
means of reducing
complexity in programs.

Focus is on problem
decomposition and the
development of
sub-algorithms that, when
combined, constitute a
complete program.

Variation is brought
about by the various
combinations of
algorithms in a program
and by the varying
complexity of the
problem.

3. Algorithms seen outside
the programming
paradigm.

The focus is on the reality
aspect of algorithms.

Variation is brought
about by the
transformation of daily
life problems into
computer programs.

160

were identified among the students was not an easy task for this theme. For many people

mathematical notions lie at the heart of an algorithm. Therefore it may appear at first

inappropriate to place the last category where algorithms are also experienced outside the

I^rogramming paradigm at the top of the hierarchy. This decision was not taken lightly

but rather the data corroborated the hierarchical structure, based on the inclusiveness of

understanding discerned in the categories.

7.1.2 Pre-college Students’ Understanding of Algorithms

A recent study performed with pre-college students in Israel evaluated their conceptions of

what an algorithm is through the solutions they devised to algorithmic problems (Heber-

man et ah, 2005). The research was build on the premises that “an algorithm is a solution

of an algorithmic problem; it must correctly fulfil the pre-condition/post-condition (I/O

relationship) specified in the problem; and it should be concise and efficient” (Heberman

et ah, 2005). The study was conducted with 97 pre-college students who studied Com­

puter Science following their high school syllabus presented in (Gal-Ezer and Harel, 1999).

The methodology used to gather the data was a mixture of quantitative and qualitative

techniques, where the students were initially asked to solve a puzzle and then develop an

algorithm for it and after that a number of students were interviewed about this process.

The results indicated that the students of the study demonstrated a cognitive obstacle

(as defined in (Tall, 1989)). Nevertheless, the conceptions that they identified among the

population were as follows:

• An algorithm is the exclusive solution of an algorithmic problem. Students

consider the algorithm as a “stand-alone” product of the problem-solving process.

• An algorithm ^‘serves as a proof of its own correctness”. Students relate to

an algorithm as a mechanism - a means that proves the correctness of a suggested so­

lution. For example, a student that adopted a proof-by-examples approach said: “the

process that is emulated by the algorithm proves and demonstrates its correctness,

because I can ‘run’ it (mentally or on the computer) for a large number of inputs

and demonstrate that for each input, the correct output is obtained”.

161

• Algorithms embody processes; they are not I/O objects. Even when they

identify simple 1.0 relationships, students usually avoid the use of arithmetic ex­

pressions/functions for displaying a final declarative result of the problem’s analysis.

• (too) Short algorithms are not acceptable. Students hold the misconception

that “a short algorithm is not satisfactory” if it neither represents the story described

in the problem, nor reflects the problem’s analysis process. Hence, students might

not consider short concise algorithms as satisfactory solutions, even though they

correctly yield the desired I/O relationship. (Heberman et ah, 2005)

Although the above study investigates the students’ conceptions of algorithms, this phe­

nomenon differs from that explored in our programming course. The way algorithms were

introduced to the high school students was through a formal mathematical definition of

the concept. In our study algorithms were introduced in a more abstract way and were

primarily presented as (Cahill, 2001) “A procedure for solving a problem for all possible

cases that can be interpreted by a computer.”

Even though data were captured and analysed in the two studies following different

philosophies, we can observe a number of similarities and differences among the two sets

of results. The conception of pre-college students that “an algorithm is the exclusive

solution of an algorithmic problem ” corresponds to Category 1 of the outcome space where

“algorithms are understood as problem-solving components.”

The second conception in Heberman et al. was that algorithms are perceived to serve

as proofs of their own correctness. This is seen within Categories 1 and 2 of this study

but it is never in focus or explicitly voiced. Eor example, in Section 7.1, Anthony says

‘An algorithm is a set of instructions that would solve a problem but it would work for any given

situation. The instructions are specific to the problem you are trying to .solve, but it should give

you the right answer for whatever input you give it. ” Later in the interview he says “Like you

have certain cases that he (the teaching assistant) gives us and you have to make sure it works for

all for them, then your algorithm really solves the problem.”

The last two conceptions found in that study: “algorithms embody process” and “too

short algorithms are not acceptable”, are not in the same context as the phenomenographic

outcome space presented in section 7.1, and therefore they could not be compared or

162

combined further. Nonetheless, it is interesting to note that the two studies, although

being so different with regards to their population and even the phenomenon in focus,

shared some significant commonalities.

Another study where students’ understanding of algorithms was in focus is (Perrenet

et ah, 2005). This was a quantitative project among mature university students in the

Netherlands, which was later cross-validated with qualitative methods in (Perrenet and

Kaasenbrood, 2006). Few points of commonality are observed compared to the categories

found among this study’s population. This may be due to the different analytical methods

that were employed in the two projects, since in (Perrenet and Kaasenbrood, 2006) the

conceptions were predefined based on the experts’ understanding and not on the students’

understanding. The most probable explanation for the lack of correlation in the results

would be that although the theme was seemingly the same (students’ understanding of

algorithms), the difference in the manner and depth that it was taught in the two courses

constituted an altogether different phenonienon.

7.2 Arrays

An array is a programming construct that exists in most programming languages. It is

one of the simplest data structures and is introduced in the majority of the introductory

programming courses. An array provides an easy way to store and manipulate multiple

objects and primitive data types. Hence, arrays are essential to the solution of certain

types of problems. In this course, arrays were introduced in the second week of the second

term. Both single-dimension arrays and 2-dimensional arrays were taught to, and used

by, the students on this course. They were used in various contexts from data sorting to

matrix multiplications. The majority of the exercises that were given to students during

the course can be found in (Cahill, 2001, p. 369).

The concept of arrays was discussed during the fourth interview session. The main

reason for discussing it at this later stage in the year and not just after it was introduced in

the class, was the disparity of understanding among the students. Based on observations of

the students during the lectures, it was clear that many students’ lack of understanding and

knowledge of arrays actually prevented them from using them in their solution. Therefore,

163

it was decided to allow the students some time to get to grips with arrays in both their

theoretical and technical aspects before investigating their understanding. By the time

of the fourth interview the students had had the opportunity to work with both single­

dimension and 2-dimensional arrays. This allowed for the collection of a very rich set of

data. Due to the technical nature of arrays, the students were asked to solve a problem (see

Appendix B) to verify that they could apply their knowledge. Students were initially asked

to explain their understanding of arrays verbally. Prior to the presentation and analysis of

the results obtained, the following subsection presents a short introduction to arrays using

the same examples as in the course text.

7.2.1 Arrays in Java

In their introduction to arrays students are presented with the problem of creating a

program that would maintain student records for the school. After identifying the types of

classes that would be required in a program, such as Student, the students were then asked

to think of a solution that would manage all these objects. The issue of managing and

storing multiple Student objects then became apparent. This suggests that such a program

might need to use hundreds of different variables to hold references to these objects. In

the presentation of this problem the educator demonstrated the need for a construct that

would be able to hold, and manage, collections of objects in a program. He then continued

by saying (Cahill, 2G^l)“What we need is a way of representing a collection of entities, like

the collection of students, that doesn’t require us to know in advance how many entities,

will be in the collection, doesn’t require us to declare a separate variable for each entity,

and provides a convenient way for us to access the individual entities when necessary. One

way of managing such a collection in Java is known as an array.”

Thus an array is an indexed collection of values. In Java an array can contain values

of any type, both primitive types such as integers and reference types such as instances

of objects. To refer to a particular element in an array, one needs to specify the name of

the reference to the array and the index number in the array. Figure 7.1 shows the logical

representation of an integer array. The length of the array is 12 and the index of the first

element in any array is always 0.

164

Figure 7.1: Logical Representation of an integer array.
Name of array (a) --------

Irxfex of the
elements in array a

► a(0]

a[1 1

a[21

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[91

a(10]

a[11 I

6

11

-43

3

50

-9876

2

10

53

-7

18

2300

Another example of an array, adapted from (Cahill, 2001), is shown in Figure 7.2. In

this case, the array contains values of a reference type (object) String, the array stores

references to the correspondim] objects.

Figure 7.2: Example of an array of objects.
An array of String

indices o i 2 3

elements

In Java there is no single “array” type. Instead, Java provides the means to introduce

new types whose values are arrays of some existing type. These new types are called array

types. Thus an array is actually a reference to an array object in memory, meaning that

individual arrays are objects of the corresponding array type.

The syntax of arrays was then introduced along with various examples on their use.

The above provides a short introduction to the theoretical basics underlying arrays in Java

and also provides examples of the material used to present this construct to the class.

165

Table 7.3: Categories of description for students’ understanding of arrays.
Category Label Category Description
1. Arrays as containers Arrays are experienced as “something” that can

contain a number of objects, or rather as
collections of objects.

2. Arrays as tools for dynamic
object access

As above, but now the dynamic access
characteristic is the main focus of the
conception.

3. Arrays as collections of
pointers

As above, but now the focus is on the internal
operation of the arrays. This understanding
illustrates a “deep” understanding of the
memory allocation of pointers and how these are
used through the arrays.

7.2.2 Students’ Understanding of Arrays

Three ways of understanding the nature of arrays have been articulated by the group of

students in this study. They are summarised in Table 7.3. In the most basic conception

arrays are not really perceived as a programming construct with properties but rather are

viewed as a collection of objects, or “something” that holds objects. This conception has

been labelled arrays as containers and is similar to the category identified for attributes

(Section G.3), with the difference now being that arrays can hold multiple values or objects.

In the second category arrays are seen as constructs and the emphasis is on the dynamic

access that can be achieved through their use. In the final category the focus moves to

the internal and memory representation of arrays. This last category expresses a deeper

understanding.

Category 1: Arrays as containers

In this category arrays are experienced as collections of objects. The emphasis is on

the objects themselves rather than on the array as a programming construct. Eamonn

expresses this clearly in his response:

Eamonn4: They [arrays] are basically groups of objects of one particular type.

166

In the above, Eamonn sees any group of objects as an array and therefore it is recognised

as a multiple container. Patrick is a bit more hesitant in his response, however he seems

to be reaching the same conclusions as Eamonn.

Patrick4: Array is a ... a way of... it contains multiple types... I am sorry... I am

very bad at describing these things. I guess it is a multiple container for containing

many different types of stuff, objects or primitive types but they should all have the

same type like. It can hold one plus things, |...| it is a way of holding one or more

than one objects or things but they must all be of the same type of objects.

When the student was later asked when it is required or preferable to use arrays in pro­

gramming, he responded:

Patrick4: Well I guess it depends, I mean it seemed to be the right thing to do in
that poker program because you’re going to have... I suppose if you want to like have

multiple objects in the same place together like the cards in the poker program!

As in the first category found for the programming construct of attributes (Section 6.3)

the type and nature of the objects that would be stored in an array form part of Patrick’s

conception, although the simplicity and superficial nature of his description of the construct

illustrates a rather naive understanding. A final example of this category comes from Colin

who says:

Colin4: A single array is a set of objects of the same type which are held in its...

I suppose you can think of it as a container that has something in there, like many

things, and they would all be the same type but they would all have different properties

hm... not different properties but different values and the same properties.

Colin’s description of an array of objects echos the multiple containers that Patrick de­

scribed. Many students voiced a similar level of understanding but as their responses

did not differ significantly from the ones above they have not been included here. All of

the excerpts mainly focus on the properties of the objects that can be stored in an array

rather than on arrays themselves. Hence arrays are experienced in this category as mere

containers of objects.

167

Category 2: Arrays as tools for dynamic object access

In the second category arrays are experienced as tools that allow dynamic access to their

contents. The understanding in this category has moved beyond that of the contents of an

array to a more inclusive view of an array as a construct. Many students who voiced this

conception tended to describe arrays as a box or a list, as if they were describing a mental

picture they had formulated. Alan illustrates this in a very clear way in the following:

Interviewer: Could you explain to me what do you think is the nature of an array?

Alan4: An array is like a box of whatever it is you’re doing an array of, for example I

would say an array of ints. So you would have a box that would be n times long that

would be specified by you and each one of those would contain a number int inside
it, and they could be accessed at anytime as long as you specify which box you want

it to go to and if you specify an array of length 7 because of the way java is the first

one is 0 and the last one is 6. Because this is the way it is specified within it.

Interviewer: So wliile you were talking about arrays what did you have in your

mind?

Alan4: Actually the diagram. Well it is just an abstract way of looking at it, to help

you understand it. Whereas all that it is really is the code and it has a list of numbers
that it is storing it away and this is all that it’s doing. So I kind of thought of the
diagram and I also thought of the code as well.

The focus has clearly changed when compared to the responses in the previous category.

The emphasis here is on the arrays themselves rather than on the items that they contain,

however the underlying conception of arrays as a group of objects is still present but has

moved into the background. This becomes apparent when the student is asked when he

feels it is necessary to use arrays.

Alan4: Arrays are simple because you can create them easily... My card program...

my poker program as I said earlier I didn’t know about arrays before but if I had

I would have used them straight away because my class then would have used two

attributes and an array of type int and an array of type char that would be very fast

and it would be easier to sort them into numerical order it would basically make it

a lot easier. So I would say any program that has lots and lots of the same type of

variable should use arrays.

168

Although contained within a discussion of his poker program, the understanding of arrays

as a groujung of objects is present in the above excerpt. This differs from the previous

category as here arrays are experienced as constructs and more specifically as high level

tools.

Neil4: They are a group of primitive data types but they can also be objects as well.

They basically store all information you need to have, and it is an easy way of storing

information because you can access them later easily because they have the indexing

bit. It is a very easy way of managing data. It is like the link lists in C++ but easier,

much easier! |laughs| |...] Yeah so basically it is a list of object all of the same type
and each object had an index and each array has a fixed amount of objects it can hold
and they are very handy for doing things.

Neil compares arrays with linked lists in C ! ! , signifying an understanding of an array

as a programming construct that provides easy access to its contents. Another visual

representation of arrays comes from Corniac who says:

Corniac4: It describes like... it has all the boxes and you store an object in each of

the boxes and t.hen you can access those boxes in a way you can call up on one of these

boxes, and then you have a set of objects in an array, that you can access whenever
you want, and you don’t have to go though them one by one you can access which

ever you want. It was really helpfid when I could visualise it and see how it can be

represented.

Ill all the above excerpts, arrays have been described very vividly, as if describing a picture.

The emphasis was on the benefits of using an array which was, according to the students’

experience, the ease of access to the stored objects. This differs from Category 1 as an array

is experienced here as a programming construct with associated properties and capabilities.

Category 3: Arrays as collections of pointers

In neither of the two previous categories has an array been experienced as a collection of

pointers; rather the “boxes” of an array were used to store objects (and not pointers to

them). This third category encapsulates a view that demonstrates an advanced under­

standing of how arrays operate as programming constructs in memory. Liam summarises

this in the following:

169

Liam4: It is a sequence... so your array would be like a pointer to some memory

location where there are integers or anything else each successive memory location

would be an integer and then you reference them.

l-J
Interviewer: Why do we need them, what do they add in the Java context?

Liam4: You can write more general things you don’t need a specific name for each

object you don’t need to know that specific name for each object you can just reference

it with a number and then you have it.

The description given by Liam is again diagrammatic, although his response manifests an

advanced understanding of the inner workings of arrays. This is reinforced when he talks

about the flexibility of arrays in the context of Java, where he says that it is possible to

have objects without specific names that are accessible by reference through the array.

This is also expressed by Anthony:

Anthony4: I have a very good understanding of arrays. An array is like a group

of pointers that would point to a certain object or it could be an array of primitive

types as well, but it points to references of the objects, so you can store any number
of objects in there and then you can access them through the indexes that hold these

pointers inside.

Mark also articulates this understanding in the following excerpt:

Mark4: It is a list of references to lots of different object, I mean if it is an array of
objects, it could be an array of primitive data types then it is a list of those things.

It is just a list really... a list of pointers to whatever.

The above excerpts demonstrate an advanced understanding that brings out the actual

nature of arrays as data structures that refer to objects rather than physically storing

them. The understanding that was presented in the previous two categories is still present,

although in a somewhat different framework. There are still objects in an array, although

now there are references to these objects and there is still the option for dynamic access

to the data in the array, but this is now done through their references.

170

'able 7.4: The distribution of understanding of the nature of arrays.
Nature of arrays Number of students
Arrays as containers 5
Arrays as tools for dynamic object access 8
Arrays as collection of pointers 3

Total 16

7.2.3 Critical Aspects of The Students’ Understanding of Arrays

Three different conceptions have been found in the understanding of arrays within the

population of this study. From the categories it can be seen that the understanding develops

and becomes more mature, as the understanding within the individual categories in this

theme is inclusive. When considering the understanding that is encapsulated in the first

category, one could say that this view of arrays constitutes a misunderstanding since arrays

are much more than containers for objects. However, one cannot say that this response

is wrong either, as it demonstrates a partial and maybe even naive understanding of the

construct. In the first category, the focus is on the contents of the array rather than

the construct of the array itself. Arrays here are seen purely in the context of their

purpose, which is to hold collections of objects, and no further attention has been given

to the construct itself. In order for the students to reach this understanding, they have

to experience a variation in the types of arrays they need to create for given problems. A

significant number of students shared this understanding. The distribution of the students

among the categories can be seen in Table 7.4.

The understanding is expanded in Category 2 where the students are more focused on

the benefits of using arrays, which are now experienced as constructs and not merely as

collections of objects. The variation in the aw'areness in this category is brought about by

using arrays in situations where dynamic access to the data within the arrays is required.

The majority of the students shared this understanding, suggesting that the hands-on

experience of using arrays in problem-solving encourages this understanding.

Very few students experience arrays as collections of pointers and those that did under­

stand them this way were the most experienced programmers among the population. This

category of understanding has as its focus the internal mechanism of how arrays are repre-

171

sented in memory. Thus arrays are understood as a continuous block of memory where the

values of the objects are stored while the array itself contains pointers to these, as illus­

trated in Figure 7.2. Since the categories are inclusive, this last category proposes a‘'richer”

understanding of arrays. In order for the students to discern this understanding they have

to first understand how the construct of an arrays works in theory, since mere use of the

construct will not necessarily bring the students awareness to that aspect of arrays. More

experienced programmers, who have worked with other programming languages, such as

Cm, are already aware of other complex data structures that utilise pointers. Therefore,

this understanding comes to them more easily.

7.2.4 Is an Array an Object?

Even though the construct of an array was explicitly presented to the students as an

object during lectures, it became apparent through observation that students had not

really grasped this idea. Due to the practical nature of the course many students do not

attend lectures, but they rather go to the laboratory and tutorial sessions only. Therefore,

for many students it proved to be quite challenging to understand that an array is an

object of a built-in class in Java. For this reason the students were specifically asked

if they thought arrays were objects or not in the last interview session of the study. It

appeared that many of the students had not thought about this before and they were only

coming to the realisation that an array is an object during the interview, like Brian in the

following:

Interviewer: So do you think that an array of integers, let’s say, is an object of a
class?

Brian4: Hmm.. I guess it kind of would be actually hrnm I haven’t thought of that
before really.

Interviewer; Are arrays part of the primitive data types?

Brian4: No, I don’t think so. Because you have methods that only refer to arrays
like... and primitive data types don’t have methods like that, and in order to use
methods you need objects through which you use them and in order to have an object
you should have a class so array is a class!

172

Through this deductive process Brian realises that arrays are objects. Others are more

hesitant and do not clearly see the connection, like Patrick who said:

Patrick4: It is a primitive type isn’t it? Like integers and so on?... Oh well maybe

it is not... No it isn’t. It is an object but it is an object that is inherent in it so it is

part of .lava in general... I am not sure really.

Many students felt that an array is not a primitive data type, but they could not compre­

hend what it really is. A significant number of responses were similar to Declan’s response

where he said:

Declan4: I wouldn’t say that they are objects... but they definitely aren’t primitive
data types... because it’s more complex than primitive data types, you can do things
with it... but you don’t write a class for it... it must be something else... I think.

Only three of the students were aware prior to the interview that arrays w'ere objects, and

these were the students that viewed arrays as collections of pointers (Category 3 showm

in Table 7.1). This is certainly due to their more in-depth knowledge of the language

constructs and their experience with other programming languages.

Thus, by the end of the course the majority of the students were not aware that arrays

are objects, even if it was written in their lecture notes and presented to them during the

course. This could be due to the fact that the syntactical notation of arrays is very different

from what students have previously seen when using and developing objects (Howe et ah,

2004). The emphasis in this course, and in other introductory courses, is on using and

creating objects while learning their syntax. Therefore, even if the students were using the

keyword new which is associated with object creation, they did not realise that they were

creating an array object because they were more focused on the problem-solving aspect of

programming. Irrespective of this, most students were able to solve problems that involved

using arrays with ease. This means that students do not need to know everything about

a construct in order to be able to use it efficiently. However, the awareness of an array

as an object allows for a deeper understanding of the construct since the use of new and

other methods associated with arrays are not merely a syntactical issue but have a specific

meaning. Ventura et al. (Ventura et ah, 2004) argue that arrays are far too complicated for

173

Figure 7.3: Logical premises for while loops in Java.

while (<Boolean expression>)
{

<statement sequence>

introductory students and should not be introduced as the first data structure. However,

their results are inconclusive and do not show that introducing arrays later in the course

after teaching HashMaps had any significant impact on students’ understanding (Ventura

et ah, 2004). This will be further discussed in Chapter 8, where the implications of the

results for educators are addressed.

7.3 Students’ Views on Iterations

Repetition in programming is a key feature that even the most basic problems require for

their solution. Most programming languages provide some sort of repetition constructs

and, even if they vary among languages, their purpose is the same: for the program to be

able to execute the same sequence of statements a variable number of times. The concept of

iteration was taken up in this study as one of the general programming constructs since it is

recognised to be an essential part of programming. Iterations are not as multifaceted as the

previously discussed themes and could even be considered a simple thing to understand.

For most of this study’s sample population this was the case, although our analysis showed

that complete and deep understanding of iterations is not always reached by all.

In Java there are three different iteration statements, while loops, do-while loops

and for loops. All three operate under the same logical premises. All three were taught

and used during the course. The most widely used were while loops and these were

introduced first. The students w'ere then introduced to for loops, which were primarily

used for looping through arrays. In this study, iterations (loops) were investigated at

the conceptual level, while the students’ knowledge of the syntactical details and of how

individual loops work was not in focus, since these would not constitute an appropriate

phenomenon for a phenomenographic analysis. In the following sections the conceptions

174

Table 7.5: Categories of description for understanding the nature of iterations.
Category Label Category Description
1. Iterations as a static
mechanism of repetition

A loop is experienced as a mechanism that
allows a block of code to be executed a
predetermined number of times.

2. Iterations as a dynamic
mechanism of repetition

As above but now the condition that determines
the number of iterations can also be dynamic or
based on an event.

or understanding of loops that were identified among the sample population are further

discussed.

7.3.1 Students’ Understanding of the Concept of Loops

Two conceptions were found among the students in this study. Due to the rather simple

nature of the concept of loops the variation within the conceptions was limited. Iterations

were widely understood as the repetition of a block of code. The difference between the

two categories is mainly focused on the nature of the iteration, meaning dynamic or static

as shown in Table 7.5. The variation comes from the understanding of the termination

condition of the loop. In the first category loops are understood as counter-controlled

repetition constructs. Thus, the condition of the loop is always a counter that is either

incremented or decremented a predetermined (static) number of times. In the second

category counters are not the only way to determine the number of iterations, since the

condition can be a run-time or user determined event.

Category 1: Loop as a static mechanism of repetition

In this conception the students experience loops as a mechanism that can repeat a block

of code a finite number of times. Thus to create a loop students feel that they need to

know beforehand the number of times the loop is going to execute. This suggests that the

condition for the termination of the loop is always understood to be a counter of some

sort. Alan expresses this when he explains the concept of loops.

Alans: A loop tells it to do something, tells the computer to do certain commands a

175

certain amount of times. You can tell it to do it 100 times or two times and it will keep

doing it until it is told to stop. It starts off by checking the condition say a counter

that counts up to 50. So it checks the condition to see if it is 50 then it is not and

then goes on and does it and then you add one to the counter and it will do it until

the counter reaches the specific value which is 50.

Interviewer: Yes. Could you have a different condition other than a counter in the

loop?

Alana: What do you mean?

Interviewer: Could there be a case where you didn’t know beforehand how many

times the loop is going to execute?

Alans: No... definitely no, unless there was an error and you got an infinite loop...

Alan expresses an understanding of loops where the repetition is static, meaning that the

number of iterations has to be known in advance, so no events can interfere with this

process. Although he does say “it will keep doing it until it is told to stop” which would

suggest that he understands that a run-time event could determine the number of iterations,

he later explains that this would not be possible. Like Alan, Declan was explicitly asked

about the nature of the terminating condition in the following:

Dedans: So you have a condition and you say until that condition is met you do an

operation repeatedly. So you say while number c is less that 6 so we have c — 0 and

then we say while c is less than 6 add one to c, so every time we go in the loop we

check if c is less than 6 and for as long as c is less than 6 we continue adding ones to

it until it reaches 6.

Interviewer: So you use this only with counter conditions?

Dedans: Em... yeah I mean you can use it for different scenarios but you usually

yeah you increment numbers really. Like whenever you want to do an operation

multiple times then you use loops really. But I only use as conditions like counters so

I increment or decrement the counters.

Interviewer: Can you use a loop without knowing beforehand how many times it is

going to iterate?

Dedans: Hm... I am not sure... maybe.

176

Declan’s explanation shows how he uses loops with a counter, however he seems unsure

whether using the construct without a definite repetition would be possible. Other students

shared this static understanding of loops, but to avoid repetition only one more interview

excerpt wall be included in this section. This comes from Tim who said:

Tims: Okay the loop is used to repeat a number of instructions until a given condition
is fulfilled. So say while i is less than 10 repeat this number of instructions for 10 times
so each time yon increment i so you repeat the same action 10 times. So you have a
condition that you manipulate to repeat a specific action or a set of instructions.

All the above excerpts demonstrate an understanding where loops can only be counter-

controlled. During the course students used loops primarily with counters that were in­

cremented or decremented, however observational data showed that all these students also

used loops that were controlled by user events. So is this conception of loops wrong? The

answer is no. Even if these specihc students have used loops with Boolean or event gener­

ated terminating conditions, they were not aware that they were doing it at the time. By

following either the lecturer’s or the demonstrators instructions there were able to achieve

dynamic behaviour in loops but apparently they were not aware or they did not fully un­

derstand this at the time. Moreover, this conception would be further encouraged when

the students started using for loops, since in these loops the counter control is part of the

condition. However the students mainly used while loops that allow for event terminating

conditions as well. Since the students primarily used loops with counters as their termi­

nation condition they have developed an understanding where only this aspect is in focus.

Therefore this conception is not incorrect but rather it is incomplete.

Category 2: Loops as a dynamic mechanism of repetition

In the second category a loop is experienced as a dynamic mechanism for repeating a block

of code, however its termination condition is not only controlled by counter conditions, but

rather it is understood as a Boolean (sentinel) condition that can also be event generated.

This is expressed by Patrick in his response:

Patricks: A loop is used when you want to do something continuously, and carry
out a process until one condition is fulfilled. Like for example if i was a number to

177

reach 10, so I will keep adding ones until it reaches that value. So basically it saves

you from writing the same thing 10 times. Like it is an efficient way and the syntax is

easy. Like for example if you want to do something for 100 times this is better to do

it with a loop. Like it doesn’t work only with counters it works with Boolean values

as well. Like do something until this value is true, like stop if you find the letter in an

array, or do it until the user presses Q or something. Basically it is an efficient way of

doing something repeatedly it saves you a lot of time and space.

He then continues by writing down some of the examples he previously mentioned. What is

obvious in the expressed understanding is that the conception of Category 1 is presupposed

in this category. However the termination condition for loops is experienced as sentinel-

controlled and therefore it can be any run-time event “do it until the user presses Q or

something” ox a generated event “like stop if you find the letter in an array.” Cormac is more

abstract in his response but he express the dynamic repetition view of this category in the

following:

Cormaca: It is just a mechanism to avoid repeating yourself like repeating loads and

loads of lines of code. And it is not always that you know how many times something

can be repeated, it just makes it possible to do something many times. Like you don’t

know how many people come in first year so if you say while there are still people

coming do something.

A final quote come from Stephan who, while talking about the loop’s terminating condition,

comes to the realisation that counter expressions are also Boolean.

Stephana: Basically we have some Boolean expression oh., well in some cases it is

not, with the counters... Hmm but yes it is a Boolean expression because it translates

to true or false! oh yeah it is! So if it is true then the block of statements enclosed

in the brackets it is executed as many times... as long as the Boolean expression is

true. Repeating a block of statements without explicitly repeating them physically if

you know what I mean. And you can have also infinity loops and loops that you don’t

know how many times they are going to be executed beforehand.

All of the excerpts above demonstrate an understanding where a loop is a programming

construct that allows for repeating a block of code “without explicitly repeating them physi­

cally” as Stephan says. The difference in this category when compared with the previous

178

one is that students are aware that no matter what the terminating condition is, it is

always a Boolean expression and therefore it can be generalised to be anything, either a

predetermined number or a generated run-time event. In this category the understanding

is more complete, since loops are fully understood through all their facets. It has to be

said that the majority of the population in this study shared this conception.

7.3.2 Critical Aspect of The Students’ Understanding of Loops

Loops represent an important control structure, without which students are often incapable

of solving simple programming problems that occur frequently in applications. Therefore, a

concrete understanding of this basic construct in programming is imperative when learning

any programming language. Within the student population of this study it was found that

all of them were able to express an understanding of the principal purpose of a loop which is

to “repeat an action or a sequence of actions while some condition holds true” (Koffman and

Wolz, 2001). Although this intrinsic understanding was encapsulated in both categories

of understanding, the two categories are clearly distinct. The difference between the two

emanated from the nature of the repetition, i.e. static and dynamic. In the first category,

students experience loops as static in nature where the repetition is counter-controlled,

meaning that a control-variable determines the number of times a set of statements will

execute. Counter-controlled repetition is often called definite repetition, since the number

of repetitions is known before the loop begins executing (Deitel and Deitel, 2005). Thus

in this initial category students experience of loops is single-dimensional, focusing only

on the definite repetition properties of a loop. Even if these students have actually used

loops that were not counter-controlled during the tutorials and their assignments, when

specifically asked whether dynamic behaviour could be achieved in loops their response

was negative. This indicates that, even in cases where they are developing loops that are

not counter-controlled, they are not fully aware of what they are doing, and thus their

understanding of the nature of loops is restricted. This understanding is discerned due to

the lack of variation in instruction, since most of the loops students are required to use are

static, and therefore using control variables only encouraged this view of loops.

In the second category, loops are not only experienced as above, but the understanding

179

is broadened since the dynamic nature of the construct is brought to the foreground of the

conception. Thus, it is understood that the terminating condition for a loop can be any

event that can be represented as a Boolean condition. This means that it is not necessary

to know beforehand the number of times the code is to be repeated. In the literature this

type of repetition is referred to as sentinel-controlled repetition, where the sentinel vilue

translates into a Boolean statement and can be any event, like the end of a file or the user

pressing a specific key while the program was executing. This sentinel-controlled repetition

is also called indefinite repetition since the number of repetitions is not known before the

loop begins to execute (Deitel and Deitel, 2005). The understanding in this category is

more complete since loops are understood in their full, static and dynamic, nature. The

dimension of variation in this experience comes from the different types of loops that the

students use when solving problems. Thus the variation between problems that require the

development of definite and indefinite repetitions constitutes the values in this dimension

of variation.

7.3.3 Loop Invariants

There are a number of research projects that investigate how loops should be taught, and

at which stage of an introductory programming module (see (Dale, 2005; Walker. 1998;

Arnow, 1994; Roberts, 1995)). None of these look at the understanding of loops as a

construct from the students' perspective, therefore the results found in this study cannot

be compared or related to any in the literature. However in (Walker, 1998), Walker reports

that a large number of his first year student sample “had a great trouble describing ideas

behind a loop even after much study and practice”. This contradicts the findings presented

above, as the majority of the students in this study had no difficulty in describing the ideas

behind loops and indeed presented a number of examples during the interview session. This

was also confirmed by observational data from the laboratory and tutorial sessions where

students were often asked to explain line by line their programs and the reasoning 3ehind

their solutions. This disparity may be attributed to the different academic background

and courses of the students, but it is also an indication of how varied one class can le from

another.

180

Walker (Walker, 1998), amongst others (Nguyen and Xue, 2004), suggests that loop

invariants should be part of the curriculum and the way that loops should be taught to

novices. A loop invariant is a statement that must always be true before, during and after

each iteration of the loop, and it is used to help prove that a loop is written correctly. An

example of a for loop invariant that is used in a sorting function is (Koffman and Wolz,

2001):

/* invaricint:
+ The elements in x[0] through x [fill-1] are in
* their proper place and fill <x.length is true
*/
If an educator chooses to use loop invariants when teaching repetition constructs, they

w'ould typically engage the students in self-reporting their understanding of the operational

premises of the loop conditions. This helps the students develop a vocabulary for expressing

their understanding better. However, understanding the loop conditions and expressing

them did not appear to be challenging for the group of students in this particular study.

In addition, loop invariants tend to be used for counter-controlled loops, since it is easier

to express these types of conditions mathematically. Presenting further counter-controlled

invariant examples would augment the gap between the students’ understanding of the

static and dynamic nature of loops, and this is surely not a desired outcome.

Doubtlessly, there are many benefits to using loop invariants when introducing the

concept of loops. The main one being that you prevent students from blindly writing

something down without thinking, as the process of writing the invariamts would require

them to think through the design of their solution. It may even help the students whose

experience is limited to the static nature of loops, but only if used for dynamic loops with

sentinel, as well as counter, values. Therefore, loop invariants may be a powerful technique

for reasoning about real programs and complicated loops, but the educator should be

cautious in introducing loop invariants for both definite and indefinite loops.

181

7.4 How Students Understand Selection

Selection in most programming languages, including Java, is primarily achieved through

the use of if statements. An if statement always contains a Boolean expression, and it

may have either one consequent or more alternatives. An if statement, with two alter­

natives determines which of two alternate statements will be executed; this is also called

an if-else statement (Koffman and Wolz, 2001). Students’ understanding of selection

was investigated in the third interview session where students were asked to discuss their

understanding of if statements and were also given an exercise (see Appendix B) to solve

out loud. At the time of the interview the students were very familiar with the construct

and were able to use multiple conditions that were connected with the Boolean AND (&&)

and OR operators (||).

A thorough analysis of the interview data yielded a unified understanding of if statements,

thus no variations in students’ understanding were identihed. A representative response

to the questions “How do you understand if statements?" comes from Stephan in the

following;

Stephana: Basically you have the if which is a keyword, then you have the Boolean

expression and then if this Boolean expression is true then the sequence which is in

the brackets under the statement is executed. Then you can have an else-if which will

have another condition and if the condition is not true then the else sequence will be

executed and so on and so forth. At the end you have the final else which means that

if none of the conditions is true then the last code that is under this final else will be

executed. [He sketches his response while talking].

Interviewer: What would you say is the purpose of an if statement in programming?

Stephana: Well you need to make decisions, like if you have found that letter in the

array print it or something, and so you use them [if statements] all the time... I can’t

even think of any program I’ve written that I didn’t use ifs!

All the responses followed a similar pattern to Stephan’s. The obvious question to ask here

is why there was no variation observed in the student responses.

After revisiting the analysis of the data on four occasions and discussing them with other

colleagues, it was evident that the outcome space for selection statements was composed

182

of only one unified category, which was summarised by Stephan above. The reason for

this is that the notion of selection or decision making is so closely related to our everyday

life that its full and deep understanding comes naturally when learning how to use it in

programming. All of the students could effortlessly express their understanding. Thus it

would appear that some phenomena, such as this one, are so conventional and inherent to

our everyday way of thinking and operating, that they yield no variation, or at least they

did not bring forth any variation among this study’s cohort.

Despite the fact that the students’ voiced understanding of if statements was ho­

mogeneous, when attempting the simple selection problem (see Appendix B) during the

interview session they adopted very different strategies to its solution. Some combined all

the statements into one Boolean expression connected with logical and and or operators,

while others used nested if and else-if statements. All of the students managed to

solve the given problem, but the variety of approaches adopted suggests that the varia­

tion in this phenomenon is hidden in the problem-solving strategies and not the principal

understanding of the concept. This however falls outside of the scope of this thesis.

183

Chapter 8

Different Perspectives on the Study

and its Implications

Ill Chapters 5, 6 and 7 we presented and discussed the phenonienographic results obtained

for the twelve themes that are the focus of this thesis. In this chapter we draw on these

findings to synthesise tlie bigger picture of how students experience object-oriented pro­

gramming by discussing them as a whole and also by exploring the effects of the learning

environment on students’ experience.

In order to reveal the relationships between the individual phenomena and the whole

we first consider them within their initial categorisations of theoretical, object-oriented

and general programming components. This provides a means by which we can observe

the relationships between the categories of description of the investigated phenomena and

study their interactions. Based on these we draw some general conclusions and discuss the

implications of the results, both as regards the learning experience and the implications

for educators.

Students’ experience of the overall educational environment is also explored in this

chapter. At the final interview session students were explicitly asked to comment on

the elements of the environment which affected their learning experience. Although the

data on which this discussion is based were gathered through the interview process, a

phenonienographic analysis was not performed as these were considered as comments and

specific suggestions on the course in general.

184

Furthennore. it should be emphasised that this chapter provides an important bridge

between the outcomes of this research and teaching practise. Evidently the main body of

research in this study was focused on identifying and analysing students’ understandings.

However drawing from this phenomenographic analysis, and through the use of variation

theory, a number of suggestions on teaching approach together with some general classroom

interventions were identified. These have the potential of improving teaching and thus

learning of programming. Even though a thorough evaluation of the siiggestions and

interventions proposed is outside the scope of this study, we present a chain of reasoning

that supports them based on our findings. These suggestions are further linked to existing

studies based on well-practised educational theories in order to provide a more complete and

coherent synthesis of the bigger picture that this chapter aims to present. The opportunity

to rigorously examine their effectiveness is left to future research projects.

8.1 Relationships Between the Theoretical Components and

Implications For Teaching

In Figure 8.1 the categories of description for the three components that constitute the

theoretical facet of the students’ experience of programming are summarised together with

the relationships between them. As was discussed in the phenomenographic analysis of the

themes in Chapter 5, each individual understanding of the phenomena represents an im­

portant aspect of the experience, since all are needed to reach a deep level of understanding

of the theoretical facets of programming.

The first theoretical theme to be analysed was the nature of programming. Four qual­

itatively different ways of experiencing this were found within the study’s population. In

the first two categories programming is experienced as the act of coding and as a means

of manipulating the hardware, thus the focus is on the pragmatic and tangible elements

of programming. These two understandings do not capture the essence of the nature of

programming, which is better represented in the last two categories in Figure 8.1.

In relation to the experience of learning to program, six conceptions were voiced by

the students. The first four present a partial understanding that is strongly linked to the

185

output and results of the act of programming such as the syntax, programming constructs

and the programs themselves. The last two Categories, 5 and 6, illustrate more abstract

understandings that move beyond the obvious to more holistic and complex conceptions.

The last theoretical theme investigated was how students experience program correct­

ness. The phenonienographic analysis yielded four qualitatively different ways in which

students understand when their programs are correct. The categories progress in a similar

fashion to those of the other two themes; with the first two focusing on the tangible ele­

ments of correctness (as one student said: “if the red lines disappear from eclipse”) while

the last two relate to other, non-functional aspects of programming such as I/O validation

and design.

Looking at the categories as a whole we can see that their progression and development

follows similar patterns. In the early categories, students focus on the obvious and have a

basic understanding of the theoretical facets of programming. In Section 5.4 we discussed

the relationship between the categories of description that reflect the experience of learning

to program and the understanding of correctness. It was observed that there is a correlation

between the first four categories of learning to program and the first two categories of

correctness, while a one-to-one relationship was found between the last two categories of

each theme (as illustrated in Figure 8.1). For example, a student who experiences learning

to program as learning to problem solve voiced an understanding of program correctness

that was focused on the correct design of the solution.

These observations bring out two points of note: firstly, that in the progression of

the categories there is a natural distinction between those that are more naive and those

that illustrate a more advanced understanding and secondly, that the students’ level of

understanding and experience of an individual theoretical component often extends to a

similar level of understanding in another theme.

Based on the first point of note, the findings for the theoretical components of the

study can be divided into two broad categories based on their general foci. These are

illustrated in the last column of Figure 8.1. The general foci of the first categories relate

to the pragmatic elements of the course and thus, those in these categories discuss the

themes strictly within the boundaries of the course. When discussing the correctness of

186

o
a

o

CJ

Oo;

03

o

00
o

187

a program many students expressed their frustration with low grades and the marking

system in general. This shows that the students attitude towards learning and studying

is affected by their understanding of the nature of programming and learning to program.

Moreover, this influences the focus of their study and, in some cases, their capability to

study and learn.

The general foci of the later categories show that students whose understanding is em­

bodied in these categories experience programming in a wider context that is not restricted

to the programming language and the course. These students seek to improve and extend

their personal skills as they emphasise the role of the user and the end-product when dis­

cussing correctness. Thus, when the experience is broader and deeper the students’ attitude

towards learning is different. They approach learning by focusing more on problem-solving

rather than by concentrating only on the syntactical details of the language.

Therefore, we can see that learners develop a general attitude towards programming

and its various aspects. Thus, it is imperative that educators try and encourage students

towards the understanding encapsulated in the latter categories of the themes. One way

to do this is by taking into account the critical understandings and the dimensions of

variation in teaching that brings forth the awareness of a specific understanding. During

the analysis of the theoretical components, specifically in Subsections 5.1.1, 5.2.1 and

5.3.1 of this thesis the educationally critical aspects and the dimensions of variation in

the awareness were presented in detail for all three theoretical themes. It is thoroughly

documented in (Marton et ah, 2004) (and subsequent chapters of that book) that when the

dimensions of variations of a subject are taken into account in teaching, students achieve

a more complete understanding.

Furthermore, instruction that is highly focused on the programming language and its

components is more likely to give rise to strong code-oriented understandings of the nature

of programming and the experience of learning to program. An alternate design based on

solving problems would favour the development of deeper understandings (as in Categories

3 and 4 of the nature of programming and Categories 5 and 6 of learning to program) as it

would encourage students to develop and use the higher cognitive aspects in Bloom et al.’s

taxonomy (such as Analysis, Synthesis and Evaluation, see Section 2.2.3) (Bloom et ah.

188

1956).

The development of this advanced understanding could also be stimulated by the en­

couragement of discussion on programming problem solutions, either in groups or indi­

vidually, in order for the students to experience the programming language and the code

as a means for solving problems and expressing solutions. Hence, discourse and alterna­

tive ways of assessing programs would bring forth the variation that encourages a deeper

understanding of the nature of programming and learning to program. The studies of

(Fleury, 1993; Booth, 1992) have researched the effects of tising discourse on students’

understanding of programming with positive results.

It is pragmatic to expect that students’ experience of what constitutes a correct pro­

gram is highly influenced by instruction and assessment. In most programming courses

educators are satisfied with a student’s program if he/she can demonstrate a working pro­

gram that can go through a few exeoition cycles (Ben-David Kolikant and Pollack, 2004;

Ben-David Kolikant, 2005). This means of assessment can assure the lecturer that the

student’s solution will compile and run but at the same time encourages students to expe­

rience program correctness as both syntactical and functional: if a program compiles and

executes providing a reasonable output, it is right. However, this unintentionally suggests

that design and other non-functional considerations are not parts of a correct program.

Thus for students to develop the latter understandings about program correctness, educa­

tors should use assessment criteria that incorporate elements of design and non-functional

requirements. By explicitly discussing the criteria and attributes that a correct solution

should have, educators can cause students to redefine their perception of correctness. Re­

search in different educational environments that investigate students views of correctness

in programming have highlighted the need for more emphasis on design and non-functional

requirements (Fleury, 2000; Ben-David Kolikant, 2005; Scott et ah, 2004).

The important point to make in relation to teaching is that problem-based instruction

could encourage more holistic understandings (Eckerdal, 2006; Fleury, 2000). In particular

educators should be aware of the students’ understandings and the variations in awareness

that encourage the development of conceptions. Another important aspect in instruction is

discourse. Educators should engage students in verbally expressing their thinking process.

189

Research has shown that this is an effective way of evaluating students’ understanding

and subsequently improving it (Mannila, 2006; Lister et ah, 2004). This would allow the

students to become aware of their current level of understanding and then the educator

could further provide assistance and explanations that would suit the students’ current

level of knowledge. As stated above, the relationships that were found to exist between

the theoretical components showed that students’ level of understanding of a theoretical

component often extends to a similar level of understanding to other themes. Thus in­

fluencing students’ understanding of one of the themes discussed in this thesis may lead

students to adopt a different attitude towards programming that would positively influence

the outcomes of their learning. This could be further assessed through future research.

8.2 Object-Oriented Components and Implications for

Teaching

The object-oriented components explored in this study are the constructs of object, class,

attribute, method and constructor. The phenomenographic analysis in Chapter 6 revealed

students’ understanding of these within the context of a first year introductory course in

Computer Science. Figure 8.2 gives the qualitatively different ways that learners experience

these central constructs of the object-oriented paradigm and illustrates the relationships

these have to their foci.

In Section 6.7 we discussed how the findings of Chapter 6 related to Hohnboe’s frame­

work of knowledge for object-orientation (Holmboe, 1999). There we found that the cate­

gories of our study agree with the four categories that Holmboe suggests. However, when

we consider how the conceptions of the object-oriented components develop in relation to

each other and independent of any external framework, we observe the emergence of a

pattern in their general foci.

For each of the five constructs the first categories found are limited to the description

and analysis of the code used to implement the construct. The students gave very basic

descriptions, for instance that an attribute is a container like any other variable or that a

method is a piece of code. During the interviews the students were asked probing questions

190

to encourage them to elaborate further, but their understanding appeared to be limited to

the programming language and the syntax. This level of understanding was identified for

all the constructs and is not incorrect, since all the constructs are part of the programming

language and have a syntax of their own. However, either the theoretical extension of each

construct and their meaning within the object-oriented paradigm is not fully comprehended

by the students or they do not have any awareness of them.

Among the categories found another general foci relates to a pragmatic and practical

understanding of the concept. The focus has shifted from the code and moves to the

use. and purpose, of the construct. For example, when a constructor is understood as a

method used to initialise objects or when classes are experienced as constructs that provide

structure to the program. This understanding is important as it encompasses the practical

use of a construct and also shows an awareness of how the underlying constructs are part

of the object-oriented paradigm.

The last categories of all the object-oriented components, except that for students’ un­

derstanding of constructors, illustrate that the learner understands the connection between

reality and the implemented problem, since the components are experienced as modelling

the entities of the real-world phenomena. As the categories are inclusive, the last cate­

gories encapsulate an holistic understanding of the constructs. The understanding that is

encapsulated in these categories’ general foci shows that the students have reached a level

of abstract thinking, which may be considered the desired outcome of any programming

course. Since the concept of constructor is a more technical construct, which is not as

complex as the other object-oriented components, it does not have natural parallels in the

real-world and thus is not part of this general foci.

In order for the students to reach an advanced, and complete, understanding of the

object-oriented components discussed in this thesis, they need to become aware of various

facets of the constructs. As each of the categories of description encapsulates an important

aspect of the constructs, an awareness of all of them together is necessary to facilitate the

acquisition of a complete understanding. In Chapter 6 we presented the critical aspects of

each of the constructs that brings about the awareness of an understanding (see Subsections

6.1.1, 6.2.1, 6.3.1, 6.4.1 and 6.5.1). With the use of variation theory, as discussed in Chapter

191

o
a

o
o

a;

.S^
‘C
o

CD

o

0)
CD

•D
-D

c/2
CD

O

CD
oi

q6

o
;h

.Sf

c
4»
Coa.
£
o
u
TJ
a>
£
4»

±Z fo

o ™ ro
'4-0) ----
00 -U 05
C CD ES E
-acta o c
to
OJ dJ ™

Q \— tn a.

o•t-l
(J
3

c
o
O

■a
o

zs

ti<

c
o
(/)

u
o

c
03 '4-
o °

cu
03 00
E =*
E u
°-6
03 03

y

to
c
o

CL CJ

c
E
E
C3)

(D
x:

s ^
O ^
X
QJ C
CO.2
e tj
03 CD

■a c
3 c

8

E#

03 O
CO

O 15
i- -a CO
Q. 03 00
-Q = 03

FO ci;,
00 CO

03 ^ TO ujF E x: x:

T3
c
03
(O
CD
D

s ^
TO ■jj
tj °
03 •

’ OD
E

00

o
B s
c: , 03
tD O C
O XJ g ..
o tj

< c S 5^
.‘i’ bE ^

O

£ Q-
03 TO (

03
QJE.b

iZ 03
a ^
^ O
c u< TO
^ 00

00
CO _TO

^ CJ
o

tJ
O)
[S'
o

*6 ^ c:
Co ft5

^ O
CO:::)

00
03
tJ
OD

e «
C-J 03
E
tl o o
c 03 <D
o -a
U 03 := ^
- CO TO :2

rs g TO

00
T3

i5
y 3CO
3 •

CO
.g-ts

^ C OD
^ E g
CN TO C O

^ E o w

^ 03 § ^

C^^ TD TO

o ETO
00 00 03 ^
'" "i ^ e

;« CL

'-’ Cl CD
c^i ^tj £

CO ^
Og

tj
CD

o

TO C/j
= £ D
E t; =
1^5
®

g’cPtl a o
Oi CO Q. U LZ

CO

a xi
■fl
2

u
CD X3
Q. o

ro tj

.w E

CO 1-
Cd£

Crt £
00Sfi ™ +- ™ -Q.tj

O E
CTO S ^

CD

00

b

(T3 .-e^ o)
- e e S

CX CO CD CL

O CD .fe
££
c « o ™E ^ e-o
ro-a Jb

03
8

CO « tj
aj.E CD
3 te S'
5 tj o
^ TO 03
< TO ^

^ H-
CO U O

00
8 "

^ CD
c
03
03 ^ 00

O ID -Q

° Q
E I

D
E
o
c
03

W s ^

ti ^ 03

Is ° §
o S-g-s S

. CD g 5 L=
CXc 00 C 5 CL

BufLUUJEjBQJCl

JO sjuauodLUDO pBjueijQ

pafqo BOUBiJBdxB aoiAOi\j

192

3, we identified the dimensions of variation that encourage a specific understanding. The

use of variation theory has been shown to be an effective tool in teaching and, thus, learning.

Several examples of this can be found in (Marton and Tsiu, 2004). Thus the dimensions

of variation identified for the ol)ject-oriented constructs can be incorporated within the

teaching and learning environment to enhance the learning outcomes.

Moreover, practical knowledge of the constructs needs to be acquired in a manner that

does not lose track of the theoretical extensions of the programming paradigm and the

constructs within it. For example, explicit discourse on the theoretical implications of the

construct of class and object is necessary to achieve deeper understanding. However, what

usually happens in most introductory courses is that the students are initially introduced

to the constructs at the theoretical level, usually during lectures, and then they spend the

rest of course implementing and coding without referring back to, or re-evaluating, their

theoretical knowledge. Thus, the focus of discourse on principles of the object-oriented

paradigm and the theoretical aspects of the programming constructs should be maintained

throughout the course. We believe that this would encourage students not to lose track of

the bigger picture as their practical knowledge and experience increases. This suggestion

for the need of explicit discourse is often brought out in educational research studies of

programming and computer science in general (Eckerdal et ah, 2005; Bruce et ah, 2004;

Berghmd, 2005; Booth, 1993; Fleury, 2000), however its impact has not been practically

assessed.

To help students gain the understanding encapsulated in the latter categories of the

object-oriented constructs with respect to their relation to the real-world, it would be ben­

eficial for students to carry out assignments and problems that analyse real-life situations.

During the interview sessions students expressed frustration when they did not understand

the purpose of having classes for implementing simple tasks. However, with problems that

require the design and implementation of several classes and the creations of several objects,

students would become aware of the modelling purpose of the programming constructs of

object and class. If students were explicitly asked to identify the required attributes and

methods before implementing them and to justify their choice, this would help to avoid

undesirable situations where, for example, counter or other variables are cast as attributes

193

of a class. This would further encourage engagement in the higher cognitive processes of

Synthesis and Evaluation as per scribed in Bloom et al.’s taxonomy (Bloom et ah, 1956).

Practical knowledge of the constructs and their syntax in the programming language

is also very important. Thus a great deal of practise and code development should be

part of any introductory programming course. However, most programming courses put

far too much emphasis on the programming language and the code, neglecting the encour­

agement of abstract thinking and theoretical understanding of the paradigm. Lister et al.

have brought together several ideas for laboratory exercises, examinations etc. that are

based on Bloom’s taxonomy and that utilise a grading philosophy that emphasises the bal­

ance between practical knowledge and abstract thinking skills (Lister and Leaney, 2003).

Thus a teaching approach that incorporates such elements in its assessment and exercise

philosophy should have beneficial effects on students’ learning.

8.3 General Programming Components

The general programming components investigated in this study were students’ under­

standing of algorithms, arrays and iteration. These constructs were chosen because they

are common to most programming languages, independent of the]nograniming paradigm.

A full comprehension of these is fundamental for students as they are essential in program­

ming and problem-solving. The general programming constructs differ in coinjilexity to

those of the object-oriented and theoretical components previously discussed. For exam­

ple, there is a theoretical aspect to the construct of algorithm as it is an abstract concept,

however the construct of an array and the iteration mechanisms are more technical in na­

ture. This meant that less variation was observed in students’ understanding due to the

heterogeneity and specific technicality of the general programming components. In the

following sections we discuss these components separately, proposing ways of enhancing

their teaching to encourage deeper level of understandings.

8.3.1 Students’ Views on Algorithms and Teaching Implications

The students’ conceptions of algorithms were explored as part of their experience within

the first year programming course. Since the focus of the course is on object-oriented

194

programming, algorithms were introduced in an informal manner as a means of problem­

solving rather than formally through the use of mathematics, as they would be in a data

structures and algorithms course. The investigation yielded three categories of description:

1. Algorithms are seen as methods that include a series of commands designed to solve

the problem at hand.

2. Algorithms are seen as a means of reducing the inherent complexity in the problem

specification.

3. Algorithms are seen as procedures that represents a step-by-step solution that can

be applied to both the physical world and any programming paradigm.

The first category was frequently voiced by the students and was the most common found

among the population. This is probably due to the fact that this understanding was actively

encouraged through the method of instruction used for this course. When algorithms and

problem-solving were initially introduced, students were asked to solve small problems in

the form of algorithms, later in the course these were used as part of methods in classes.

Thus, students implicitly experienced algorithms as methods.

In the second category the understanding captured by the first category is still present,

however the focus has shifted to the result of using various algorithms in a program.

Students emphasise the process of decomposing the problem into sub-algorithms that are

them implemented in a solution. The result of this process is to reduce the complexity of

the problem at hand. To become aware of this understanding of algorithms the students

need to experience the process of breaking down problems into smaller sub-problems and

the recombination of these to solve the overall problem.

In the last category, the students demonstrated that they understand the relationship

between constructing algorithms and solving real-world problems. The students may be­

come aware of this facet of algorithms when solving real-world problems that bring out the

modelling aspect of algorithms.

Section 7.1.1 provides a detailed account of how variation theory is used to find the

dimensions of variation that encourage a specific understanding of algorithms. A review'

of several popular textbooks for introductory object-oriented programming courses found

195

that algorithms are explained and defined in a few lines where very little emphasis is

placed on a deep understanding of the construct. Thus, while a deep understanding of the

notion of an algorithm is desired, all efforts towards achieving that are implicit. In general,

students are not explicitly introduced to the meaning of an algorithm and its purpose in

programming in introductory courses.

Thus it is pragmatic to suggest that by explicitly introducing algorithms as proce­

dures that model solutions or situations of the real-world and through carefully chosen

assignments that encourage problem-solving and the combination of algorithms to form

a single solution, educators can encourage a deep understanding of the construct of algo­

rithm. Heberman et al. have studied novice programmers perception of algorithms in a

different educational setting to that of this study and have concluded that “students should

be taught that explanations and justification are inherent elements in the solution of an

algorithmic problem. Rules of written and oral discourse may be elaborated in order to

establish reliable and coherent student-teacher and student-peers communication” (Heber­

man et ah, 2005). It has been shown in (Levitin and Papalaskciri, 2002) that puzzle-like,

real-world problems encourage the development of creative problem-solving skills. Finally,

Parrenet et al.’s preliminary results further support our argument that assignments that in­

corporate algorithms within program development encourage abstract thinking and deeper

understanding of algorithms (Perrenet et ah, 2005). Thus our suggestion from theoretical

observation and analysis is shown to be effective in practise.

8.3.2 Students’ Understanding of Arrays

An array is a data structure found in many programming languages that is frequently used

in the development of programs. An array is usually the first data structure that stu­

dents encounter during a first year programming course and thus it is important that they

fully understand it. The phenomenographic analysis in Chapter 7 showed that students

experience arrays in the following ways:

1. Arrays are experienced as “something” that can contain a number of objects, or rather

as a collection of objects.

2. Arrays are experienced as tools for dynamic object access.

196

3. Arrays as collections of pointers: this understanding illustrates a “deep” understand­

ing of the memory allocation of pointers and how these are used through an array.

In the first category, the notion of an array is not very clear to the students. Arrays are

not understood as structures with properties and methods, rather the focus is placed on

the elements that are contained in it. As students create a variety of arrays with different

contents in their program solutions they become aware of this understanding. However this

is a naive understanding, since arrays are not viewed as constructs. This may impede the

students in their utilisation of the construct and in their appreciation of its capabilities.

In the second category, which was voiced by the majority of students in this study (see

Table 7.4, Section 7.2.3), arrays are experience as constructs emphasising their capability

of dynamic access. Accessing the stored elements of an array in a non-sequential manner

brings this understanding to the foreground of the students’ experience.

Only in the third category did students express an understanding of how the construct

works in terms of memory representation. As Java is a high level object-oriented language

memory management and pointers are hidden from the programmer. However an under­

standing of the internal operations of the construct demonstrate a richer understanding

that allows for better use of the construct.

In Section 7.2.4 we analysed and discussed students’ understanding of whether an array

is a class and therefore if an array is created, it is an object. Although most students did

not experience an array as an object, they were aware of the fact that it was not a primitive

data type but at the same time they could not identify it as an object as it was not similar

to the ones that they have seen and developed themselves. During lectures the structure of

an array as a collection of pointers, and the fact that it is a built-in class, was specifically

presented to the students. This is also explicitly stated both in their suggested text book

and their lecture notes. However during both the interview and tutorials the students did

not demonstrate this understanding. Thus a theoretical presentation of the architecture

of the structure of array is not sufficient for students to experience it and understand it

in its entirety. Most of the time students focus on understanding how to use a construct

to solve the problem at hand and thus the underlying architecture of the construct is not

as important for them. We believe that in order to encourage a deeper understanding

197

educators should approach the introduction of the architectural aspect of arrays through

practical programming examples. Howe et al. argue for the appropriateness of component-

first teaching of programming (Howe et ah, 2004). Most importantly, they point out that

when the students are only taught about arrays through practical use, misconceptions

might arise due to the fact that students have not achieved a deep understanding of the

architectural aspects of the construct (Howe et ah, 2004).

Ventura et al. (Ventura et ah, 2004) investigated whether introducing HashMaps as the

first structure that students encounter in an introductory programming course would ease

students’ understanding of arrays. Their results of experimenting with both HashMaps and

collections (arrays) did not show any significant differentiation as to whether one is easier

to understand than the other. Our findings show that students can use arrays easily, even

if they are not always aware of the architectural structure of the construct. Thus we believe

that not only should the architectural details of an array be included in instruction, they

should also be presented through exercises that lead students to think, and become aware,

of the correct architecture via experience. This was evident when students where asked if

an array they had created is an object: they simply had not thought about it. For example

some of the students concluded that an array of integers is an object only after thinking

about it during the interview sessions. If students were encouraged to think of this aspect

of the construct then it may be the case that they would develop a deeper, more complete

understanding during their course of instruction.

8.3.3 Students’ Understanding of the Mechanism of Iteration in Pro­

gramming

Iterations in Java are implemented through the constructs of for, while, and do-while

loops. The participating students were asked to discuss their understanding of the nature of

iterations irrespective of the construct that was used to achieve it. The phenomenographic

analysis yielded two qualitatively different ways of experiencing the nature of iteration in

programming.

1. Iterations as a static mechanism of repetition. A loop is experienced as a mechanism

that allows a block of code to be executed a predetermined number of times.

198

2. Iterations as a dynamic mechanism of repetition. As above, but now the condition

that determines the number of iterations can also be dynamic or based on an event.

In the first category the student is not aware of the dynamic conditions that can deter­

mine the number of iterations, while in the second the dynamic properties are part of the

conception. Obviously the first understanding can lead to problems when the number of

iterations is not known beforehand or depends on a condition set at run-time execution.

Static iteration with the use of counters is usually introduced first as it is easier for stu­

dents to understand. However, it is imperative that students gain an understanding of the

dynamic conditions of the repetition mechanisms.

As discussed in Section 7.3.1, students have primarily used while loops both with

counters and other dynamic and run-time conditions. However, when asked to verbalise

their understanding and even when explicitly asked if there could be loops without a

predetermined number of iterations, a significant number of students failed to demonstrate

that they fully understood the notion of dynamic or run-time conditions, even if they have

used them. This is evidence of the poor reflective capability of the students, as some were

not in a position to explain how they developed the loops but would say “I just did”.

We believe that, in order to address this issue, educators should approach instruction

of the repetition mechanisms with carefully selected examples that emphasise both their

static and dynamic properties. Introducing loops through formal techniques such as loop

invariants stating the pre- and post-conditions, can prove powerful tools for educators (see

Section 7.3.3). However, the most important element would be to encourage students

to explain their decisions and learn how to reason and explain their programs. Through

discourse, students develop the vocabulary they need to achieve such outcomes (Soloway,

1986). Moreover, talking will allow them to reflect on their own knowledge and become

aware of the properties of programs that would otherwise remain in the background of

their experience.

8.4 The Effects of the Learning Environment

The learning environment is an important element of students’ experience of learning

programming. At the last interview session students were asked to comment on their

199

learning environment as regards the beneficial parts of it and the things that they thought

could be improved. A detailed account of the questions that students were asked can be

found in Appendix B.

Generally, students were content with the way the material was introduced and the

volume of course w'ork and feedback they got throughout the course. As this particular

class was fairly small, around 40 people, there was enough time for the demonstrators and

teaching assistant to attend to each student’s individual needs. The students were asked

specifically to comment on the learning environment in terms of the lectures, laboratory

and tutorial sessions.

As regards the lectures, the majority of the students said that they found them repeti­

tive and not always very exciting. Alan expresses that feeling quite strongly in his response:

Interviewer: You said before that you found lectures to be less beneficial than the

tutorial and lab. Do you care to explain a bit more?

Alan 4: He tended to repeat things... it was kind of boring to be honest because

we would sit there and then he would talk about these... and then I would take my

laptop and play basically [laughs]. Probably theory it is not that interesting but it is

really required I can see that. But in the tutorials it was different... You would do

something and then if it wasn’t right or you didn’t know how to do it, you guys would

explain the theory and what was wrong straight away so it would stick better it was

generally easier. I mean in 1 hour tutorial I would learn whatever 1 learnt in ‘2 hours

of lectures. I think it was too repetitive.

Alan recognises that the theoretical part of programming is important and necessary but at

the same time when it is conducted solely without practical examples and applied exercises

students experience it as repetitive and not very interesting. Alternative Alan and other

students find tutorials to be more beneficial as they can discuss their understanding, or

the lack of it, at a time when they become aware of it. Additionally, Declan says about

the lectures;

Declan4: I liked the arrangement but I felt that we could have done more examples,

because when the demonstrator substituted once he had lots of examples and gave us

time to do a little bit of code and I found that very helpful.

200

Both claims support our suggestion for increased discourse at the level of each student’s

understanding. They also suggest that theory and the various uses of the constructs should

be introduced through a combination of theory and practical applications.

Students also commented that they found the tutorial sessions to be very helpful due

to the group work involved. Although the students were supposed to complete the pro­

gramming tasks individually, it was usually the case that they would form small groups

and would discuss their ideas, problems and solutions together. Brian and Neil summarise

this experience in the following:

Brian4: Hmm I would probably say tlie tutorials would be the best. Because in the

tutorials... I don’t know if it should be this way... but it is more of a group effort like

(giggles) because there is hardly going to be any case that yon wont be able to do it.
So sharing ideas with someone else was just a great way of learning really, because
we were all at the same level so it was interesting and we were kind of learning from

each other as well! It is just better learning this way than sitting in a lecture and then
theory.

Neil4: Probably the tutorial just because you are able to code with other people,

although most probably the other people they are just copying you and using your

stuff (laughs) but you exchange ideas and this is awesome!

It is evident from these statements that students find it beneficial to work in small groups

where they learn from their peers. Patrick points out that during the tutorials he could

practise the “problem-solving part”, as he expressed in the following:

Patrick4: I would say definitely the tutorial because you get hands-on experience

and if you don’t understand something then somebody will explain it to you straight

away, so I would say the labs and tutorial. But I suppose the tutorial most because you

get the problem-solving part of it as well, because syntax is not the most important

feature I guess. The labs were most about compiling the thing and making it show

that it runs above all.

Thus by designing the course in such a way that exercises can be completed within small

groups, educators can effectively enhance their students’ learning experience and poten­

tially achieve a better outcome.

201

Students also commented positively on the learning benefits of the laboratory sessions.

Students who had previons programming experience found the laboratory sessions espe­

cially beneficial as they actually got to work with, and write in, the syntax of the language.

Stephan said the following about laboratories;

Stephan4: Hmm the labs definitely, the lecturers are obviously the most beneficial

but the labs were the more you get basically to write a lot less than in the tutorials

and you get to see it run as well and the errors that you make because the environment

highlights them to you alright.

Few students found laboratory sessions more beneficial than tutorials due to the fact that

they could see if their solution worked without having to wait for feedback and the correc­

tions to their tutorial exercises. Seeing the output of your solution is a big part of the joy

and sense of accomplishment one gets from programming. Moreover, programming as an

activity is about w’orking with computers. Thus the weekly laboratories are essential for

experiencing this aspect of programming. As Alan summarises in his response:

Alan4: [...J In the tutorials we just write the whole thing on paper and you don't

really know if this is going to work like... While in the labs you can test it immediately

and then say yeah it works. Hurrah!

In the laboratory sessions students had the opportunity to experiment with the programs

and the syntax through trying out ideas and getting familiar with the language. This

reflected positively in, and enriched, the students’ learning experience. A big part of

learning to program is practising with language and different problems, as Liam points

out;

Liam4: I don’t think you can lecture somebody to programming I think he should

be giving more exercises to do like the tutorials or the labs even, so I think more

interaction is needed more exercises.

The students’ responses draw a clear picture of the beneficial aspects of the learning envi­

ronment and highlight improvements that could be incorporated into the instruction used

on the course. Students preferred a more practical, hands-on method of instruction instead

202

of a pure, theoretical introduction to the various programming constructs. They found dis­

course and practical work within small groups to be beneficial and enjoyable while they

felt the experience of working in the laboratories with the programming environment was

essential for their learning and familiarity with the programming language. These sugges­

tions agree with the recommendations that we have provided in this chapter in relation to

the development of a deeper understanding of the components of programming discussed

in the thesis.

8.5 Impact of the Context on the Findings

This study investigated students’ understanding of object oriented programming within

the context of a specific course module. The module comprised an articulated teaching

strategy, an underlying programming language, Java, and a specific development tool,

Eclipse. These factors undoubtedly had an effect on the variation of understandings that

may be present within the source material, more so in some constructs than in others. The

tools and the environment within which one learns affect the process of reasoning and thus

the understanding that one develops.

For some of the themes in this study these effects are minimal, for example the theoret­

ical components as they are less reliant on the language. For others, such as constructors,

arrays and object-oriented themes that depend on the language itself, this may be more

important.

To more fully explore the significance, and impact, that the context of the study had

on the findings, it would be necessary to perform similar studies in different educational

settings, with different programming languages etc. Since other such studies do not cur­

rently exist, it is difficult to accurately portray and assess the impact of the context on the

findings. This study explicitly details the educational setting, course, syllabus and how the

material was taught in order to allow the reader to independently evaluate any potential

influences of the context of the study that may be reflected in the findings.

The specific selection of the course and the educational setting was important in seeking

to minimise the effect of context on the studys’ findings. The course and the programming

language used in the course selected are as generic as reasonably possible - thereby mirror-

203

iiig the educational setting in other first year object-oriented programming courses. The

students were similarly representative of typical undergraduate cohorts. Some had prior

experience, some had never programmed before while others were repeating or students

who had transferred from other courses. This diversity within the population should help

ensure that the sample population is representative of an typical first year programming

course grouping.

Throughout the analysis it was observed that students with programming experience

frequently (although not always) perceived the constructs and themes in a more complete

and advanced way. Where relevant this is highlighted within this thesis but the purpose of

this study was not to investigate if students’ prior programming experience (or other factors

such as gender) affects their performance and their perception of programming. Thus, when

prior programming experience could have influenced the existence of an understanding it is

noted accordingly to allow the reader to draw his or her conclusion of the possible influence

of the context in the findings of this study. Similarly any influences that were caused by

the teaching strategy in the form of a programming exercise or example are also noted.

8.6 Summary

This chapter discussed the variation in students’ experience of learning about theoretical,

object-oriented and general programming constructs. Based on the educationally critical

aspects that encourage the development of specific understandings, we have identified

several ways in which the educational environment and instruction could be enhanced

to potentially improve the learning outcomes. These suggestions for teaching have been

proposed based on the critical aspects of students’ understanding identified herein and,

thus they may act as a guide to educators who want to improve their teaching. Their

actual effectiveness has not been empirically established as this falls outside the scope of

this study. However, evidence of the effectiveness of the suggestions deduced herein can be

gleaned from the literature where others have documented similar outcomes via different

methodologies.

A common implication for instruction that arose in relation to all of the components

of this study was discourse. Writing a program that compiles and runs should not be

204

considered sufficient by either the student or the educator. Students should be encouraged

to explain their design decisions and also learn how to reason and explain their programs.

Through discourse students can develop the vocabulary needed to explain their program

solutions, while at the same time talking about these will allow them to reflect on their own

knowledge and become aware of aspects of programming that would otherwise remain in

the background of their experience. The students’ experience of their learning environment

strongly supports these arguments as they specifically requested more group work and an

amalgamation of the predominantly theoretical lectures with the more practical tutorial

and laboratory classes.

205

Chapter 9

Conclusions

Programming is an essential, core module of every Computer Science and Engineering

degree course. Object-oriented languages are now the dominant programming paradigm in

introductory programming courses. Many argue that the ongoing switch from procedural

languages to Java and Cl I is a step forward, as it leads to better program organisation

and the development of abstract thinking skills (Berge et ah, 2003; Cries, 2002). However,

learning to program has proven to be a challenging activity from the students’ perspective

(Aharoni, 2000; Barr et ah, 1999; Carter and Jenkins, 1999). Moreover, research in the

field has shown that more abstract types are required when learning to program within

the object-oriented, rather than the procedural, paradigm (Box and Whitelaw, 2000).

Furthermore people have high expectations of programming students, as Cries points out

programming is more than a bunch of facts. It is a skill, and teaching such a skill is

much harder than teaching physics, calculus or chemistry. People expect a student coming

out of a programming course to he able to program any problem. No such expectations

exists for calculus or chemistry students.” (Cries, 2002). Put simply, learning to program

within the object-oriented paradigm is a complex process.

The primary motivation for this study was to gain an insight into students’ under­

standing of object-oriented programming in its various facets. In order to draw a complete

picture of what it means for novice Computer Science students to learn how to program,

we have explored their understanding in relation to the theoretical, object-oriented and

general programming aspects of the experience. The longitudinal study that is presented

206

in this thesis provides an in-breadth and in-depth insight into the students’ experience

and understanding of the most fundamental concepts of learning to program within the

object-oriented paradigm using the methodologically-anchored research approach of phe-

nomenography.

The analysis of the data was performed in a systematic way. The development of

the categories is fully documented through notes, memos and diagrams in the analysis

software that was used, ATLAS.ti. The data were analysed by recourse to the initial

research questions that formed the basis for this work. The categories of description that

emerged for each theme of this study were established through an iterative and systematic

study of the data, where feedback from previous iterations gave rise to further refinement

for each category. The guidelines for ensuring the validity, reliability and generalisability

of the study, discussed in Chapter 3, were rigorously applied from the early stages of data

gathering to the final presentation of the findings. Before the complete set of categories

were finalised these were discussed with both the researcher’s supervisor and also with

other colleagues in the Computer Science department. Excerpts of the interview data were

presented throughout the analysis in order to support the findings and conclusions of this

study. The results, in the form of categories of description, are thoroughly discussed within

the phenomenographic tradition. The critical aspects of understanding are also explained

through the use of variation theory. The rich findings of this study are presented alongside,

and are related to, relevant results from other studies in the field, allowing the reader to

fully appreciate their relevance and importance within the wider field.

The research questions presented in Chapter 1 were fully addressed throughout this

thesis. More specifically:

• The question of “How do students experience learning to program?” was investigated

explicitly during the interviews. Discussions on the nature of programming and on

the students’ understanding of program correctness were used to provide a more

complete view of the students’ experiences. These results were given in Chapter 5.

• The question about students’ understanding of the object-oriented components, was

explored through the investigation of their conceptions of the constructs of object,

class, attribute, method and constructor. These findings were presented in Chapter

207

• The third research question “How do students reason about specific programming

problems, and programming constructs as a whole?”, was explored through the in­

vestigation of understanding of the general programming constructs of algorithms,

arrays, iterations and selection, for further details see Chapter 7.

• The effects of the learning environment and how it is experienced by students was

explored in the last interview session which was analysed in Chapter 8.

• The final research question, “How students’ understandings can be used to enhance

teaching and therefore improve the quality of learning?”, was addressed throughout

this thesis. Chapter 8 presented the themes in their totality and discussed ways of

enhancing teaching based on the findings of this study while it relates the proposed

interventions and teaching techniques to learning theories and established research

in the field.

Therefore, this thesis realised its overall goal of providing an in-depth and complete pic­

ture of how Computer Science students understand and experience object-oriented pro­

gramming. The findings were presented in detail to allow the reader to recognise their

validity, reliability and generalisability; while extensive discussions and comparisons with

other relevant projects were used to site the work clearly within the wider field.

9.1 Significance of this Study

The study presented in this thesis incorporates elements from three different areas, namely:

Computer Science education research, Computer Science education, and Computer Science.

Thus, it constitutes a contribution to all three of these helds. Both the contribution and

significance of this empirical study to the body of knowledge for these fields is considered

in this section.

Two major contributions to Computer Science education research and Computer Sci­

ence are identified in this theses, namely.

6.

208

• The investigations of the themes included in this study, together with the exten­

sive data collected provides a novel in-depth and in-breadth insight into students’

learning. This constitutes a significant contribution to the field of Computer Science

education research.

• The study as a whole provides a valuable insight into the students’ overall under­

standing of computer programming. It provides a complete picture of the experience

of first year programming, ranging from the theoretical aspects of programming to the

technical ones. Hence this work provides educators with the necessary confidence and

knowledge to adapt and enhance their teaching to create a learning environment best

suited to the achievement of their desired learning outcomes, and thus contributing

to the field of Computer Science education.

Apart from these two major contributions there are other points of significance in this

study that are discussed below.

The field of Computer Science education research is a relatively new field when com­

pared to others such as Mathematics education research. Indeed, the discipline of Com­

puter Science itself is young and rapidly evolving. As presented in the literature survey,

studies that investigate the students’ experience of learning Computer Science topics are

very few. Thus, the completion of this study presents a significant contribution to the

field of Computer Science education research, while also linking the qualitative results to

enhancement of teaching.

In addition, this study is conducted within the phenomenographic tradition, and as

such it adds to the body of knowledge, development and dissemination of this research

approach.

The findings have been used throughout this work to explore the educationally critical

aspects that significantly effect learning to program, as identified by the learners them­

selves. Moreover, the findings illustrate the level of students’ understanding achieved.

Therefore, the implications of the findings allow us to provide suggestions on ways to en­

hance the teaching of key programming concepts with the aim of improving learning. This

constitutes a clear contribution to the field of Computer Science education.

This research project has been conducted within the subject domain of Computer Sci-

209

ence and, as such, is primarily targeted at evaluating learning and enhancing teaching

within this subject area. However it has employed a theoretically anchored approrch,

namely phenonienography and variation theory, to study the students’ understanding.

Therefore, it may be applied to other similar educational settings. We have already com­

pared our findings to a number of relevant studies that were conducted in different educa­

tional settings and found that our results can be further generalised, therefore contribuung

to programming education in general.

As mentioned in earlier chapters of this thesis, other phenomenographic studies have

been carried out in the field of Computer Science that are focused on programming, more

specifically (Booth, 1992; Bruce et ah, 2004; Eckerdal, 2006) (see Chapter 2 for a detailed

description). However, none of these has the depth of analysis or the breadth of themes

present in this study. Additionally, these studies are not focused on investigating object-

oriented programming within Computer Science, rather they explore specific constricts

and elements of programming. Therefore, the breadth of the themes investigated, and the

depth of our analysis, along with the extensive discussion of the findings in the light of

related studies and theories, brings out the novelty of our research.

9.2 Further Research

The data collected for this research project are extremely rich and diverse; thus allowing for

the investigation of many detailed research questions. Only some of these were analysed in

this thesis. Not only does this data set contains the transcripts of detailed interviews with

the students but it also contains their solutions to a number of programming exercises,

their grades on assignments and laboratory exercises, along with a comprehensive set of

observational data. Thus it will be possible to carry out further research using the sime

set of data. For example, it is possible to analyse students’ strategies when learning to

program or when developing algorithms and then further correlate these results with the

findings of this study. Although interesting, these questions are outside the scope of this

study, but should make for compulsive future research.

Interview data were also gathered for other themes such as students’ understanding

of inheritance, encapsulation, software engineering, object-orientation and their beliefs on

210

the characteristics of a good programmer. These themes were beyond the scope of this

thesis. Preliminary sorting and analysis was conducted on these data, preparing the way

for future research.

Through the analysis and discussion of the findings of this work we have identified the

critical aspects that encourage specific understandings of programming and programming

constructs. Based on these we have made a number of logically grounded suggestions for

enhancing teaching and the learning environment. Empirical support for the effectiveness

of these suggestions is now required.

A final research suggestion would be for a similar study on understanding to be carried

out with the educators, teaching assistants and demonstrators that teach object-oriented

programming. As pointed out in the analysis of the themes of this study, teaching and the

structure of the learning environment in terms of lectures, tutorials and assignments af­

fects students’ experience and the understanding they develop on programming constructs.

Gaining an understanding of how educators experience these, and comparing them with

the students’ conceptions, would help to improve learning outcomes by explicitly guid­

ing teaching and allowing educators to become more aware of their own understandings,

strengths and shortcomings.

9.3 Final Remarks

It is expected that the research presented in this thesis will lead to an improvement in

teaching and student learning of programming, specifically of the object-oriented paradigm.

This will, in turn, result in better-prepared programmers who have acquired an holistic

experience of learning to program, allowing them to become informed practitioners in

the field. As programming paradigms develop and computers become ever more pervasive,

programming will remain a critical element of any Computer Science degree program. This

reinforces the need for continuous research in order to assimilate ongoing developments.

We hope that this work is an inspiration to others to carry out research that extends

our knowledge of students’ understanding, allowing us to enhance the quality of students’

experience and significantly improve their learning outcomes.

211

Bibliography

Aharoni, D. (2000). Cogito, Ergo Sum! Cognitive Processes of Students Dealing with

Data Structures. In Proceedings of the 31st SIGCSE technical symposium on Computer

Science Education, pages 26-30.

Akerlind, G. (2002). Principles and Practices in Phenomenographic Research. In Pro­

ceedings of the International Symposium on Current Issues m Phenomenography, page

17p.

Akerlind, G. (2005). Phenomenographic Methods: A Case Illustration. In Bowden, J.

and Green, P., editors. Doing Developmental Phenomenography, pages 103-127. RMIT

University Press, Melbourne.

Akerlind, G., Bowden, J., and Green, P. (2005). Learning to do Phenomenography:

A Reflective Discussion. In Bowden, J. and Green, P., editors. Doing Developmental

Phenomenography, pages 74-100. RMIT University Press, Melbourne.

Anderson, L. W. and Krathwohl, D. A. (2001). A Taxonomy for Learning, Teaching, and

Assessing: A Revision of Bloom,’s Taxonomy of Educational Objectives. Addison-Wesley.

Arnow, D. (1994). Teaching Programming to Liberal Arts Students: Using Loop In­

variants. In Proceedings of the 25th SICCSE technical symposium on Computer Science

Education, pages 141-144.

Barnacle, R. (2005). Interpreting Interpretation: A Phenomenological Perspective on

Phenomenography. In Bowden, J. and Green, P., editors. Doing Developmental Phe­

nomenography, pages 47-55. RMIT University Press, Melbourne.

212

Barr, M., Holden, S., Phillips, D., and Greening, T. (1999). An Exploration of Novice

Programniing Errors in an Object-Oriented Environment. In Working group reports from

ITiCSE on Innovation and Technology in Computer Science Education workshop, pages

42-46.

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Com­

puters in Mathematics and Science Teaching, 20(l):45-73.

Ben-Ari, M. (2004). Situated Learning in Computer Science Education. Computer Science

Education, 14(2):85-100.

Ben-David Kolikant, Y. (2001). Gardeners and Cinema Tickets: High School Students’

Preconceptions of Concurrency. Computer Science Education, ll(3):221-245.

Ben-David Kolikant, Y. (2005). Students’ Alternative Standards for Correctness. In

Proceedings of the 1st International Computing Education Research Workshop, pages 37-

43.

Ben-David Kolikant, Y. and Pollack, S. (2004). Establishing Computer Science Profes­

sional Norms Among High-School Students. Computer Science Education, 14(l):21-35.

Beige, O., Ejuk, A., Groven, A. K., Hegna, IL, and Kaasbpll, J. (2003). Comprehensive

Object-Oriented Learning - An Introduction. Computer Science Education, 13(4):331-

335.

Berghmd, A. (2004). A Framework to Study Learning in a Complex Learning Environ­

ment. Research in Learning Technology, 12:65-79.

Berghmd, A. (2005). Learning Computer Science in a Distributed Project Course: the

What, Why, How and Where. PhD thesis, Uppsala: Uppsala University, Interfaculty

Units, Acta Universitatis Upsaliensis.

Berglund, A., Daniels, M., and Pears, A. (2006). Qualitative Research Projects in Com­

puting Education Research: An Overview. In Proceedings of the 8th Australasian Com­

puting Education Conference, pages 25-33.

213

Bergluiid, A. and Eckerdal, A. (2006). What Do CS Students Try to Learn? Insights From

a Distributed, Project-Based Course in Computer Systems. Computer Science Education,

16(3):185-195.

Beyer, S., DeKeuster, M., Walter, K., Colar, M., and Holcomb. C. (2005). Changes in

CS Students’ Attitudes Towards CS Over Time: An Examination of Gender Differences.

In Proceedings of the 36th SIGCSE technical symposium on Computer Science Education,

pages 392-396.

Biggs, B. J. and Collis, F. K. (1982). Evaluating the Quality of Learning: The SOLO

Taxonomy. Academic Press, London.

Bishop-Clark, C. (1995). Cognitive Style, Personality and Computer Programming. Com­

puters in Human Behaviour, ll(2):241-260.

Bjorkman, C. (2002). Challenging Canon: the Gender Question in Computer Science.

Licentiate thesis. Karlskrona: Blekinge Institute of Technology.

Bloom, B. S., Mesia, B. B., and Krathwohl, D. R. (1956). Taxonomy of Educational

Objectives (two vols: The Affective Domain andThe Cognitive Domain). Addison-Wesley.

Booth, S. (1992). Learning to Program a Phenomenographic Perspective. PhD thesis,

Acta Universitatis Gothoburgensis.

Booth, S. (1993). A Study of Learning to Program From an Experiential Perspective.

Computers in Human Behavior, 9:185-202.

Bowden, J. (2005). Reflections on the Phenomenographic Team Research Project. In

Bowden, J. and Green, P., editors, Doing Developmental Phenomenography, pages 11-31.

RMIT University Press, Melbourne.

Box, R. and Whitelaw, M. (2000). Experiences When Migrating from Structured Anal­

ysis to Object-Oriented Modelling. In Proceedings of the ASE Australian conference on

Computer Science Education, pages 12-18.

Brooks, R. (1977). Towards a Theory of the Cognitive Processes in Computer Program­

ming. International Journal of Man-Machine Studies, 9(6):737-751.

214

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M., and Stoodley,

I. (2004). Ways of Experiencing the Act of Learning to Program: A Phenomenographic

Study of Introductory Programming Students at University. Journal of Information Tech­

nology Education, 3:143-160.

Bruner, J. (1960). The Process of Education. Harvard University Press.

Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.

Byrne, P. and Lyons, G. (2001). The Effect of Students Attributes on Success in Pro­

gramming. In Proceedings of the 6th SIGCSE/SIGCUE ITiCSE conference on Innovation

and Technology in Computer Science Education, pages 49-52.

Cahill, V. (2001). Learning to Program the Object-Oriented way with Java.

Carbone, A. and Kaasbpll, J. J. (1998). A Survey of Methods Used to Evaluate Computer

Science Teaching. In Proceedings of the 6th annual conference on the Teaching of Com­

puting and the 3rd annual Conference on Integrating Technology into Computer Science

Education, pages 41-45.

Carter, J. and Jenkins, T. (1999). Gender and Programming: What’s Going On? In

Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and

Technology in Computer Science Education, pages 1-4.

Clancy, M., Stako, J., Guzdial, M., Fincher, S., and Dale, N. (2001). Models and Areas

for CS Education Research. Computer Science Education, 11(4):323-341.

Glements, D. and Gullo, D. (1984). Effects of Computer Programming on Young Chil­

dren’s Cognition. Journal of Educational Psychology, (76):1051-1058.

Cohen, L., Manion, L., and Morrison, K. (2000). Research Methods in Education. Rout-

ledge Palmer.

Conway, D. (1999). Object-Oriented Perl. Manning Publications Co.

Cope, C. (2000). Educationally Critical Aspects of the Experience of Learning about the

Concept of an Information System. PhD thesis, LaTrobe University, Bundoora, Australia.

215

Cuba, E. (1981). Criteria for Aseertiiig the Trustworthiness of Naturalistic Inquiries.

Educational Communication and Technology Journal, 29(2):75“91.

Dale, N. (2005). Content and Emphasis in CSl. ACM SIGCSE Bulletin, 37(4):69-73.

Deitel, H. M. and Deitel, P. J. (2005). JAVA: How to program: with an introduction to

J2SE 5.0 with the UML 2. Prentice-Hall.

Detienne, F. (2002). Software Design - Cognitive Aspects. Springer, London.

Dijkstra, W. E. (1982). How Do We Tell Truths That Might Hurt? ACM SIGPLAN

Notices, 17(5): 13-15.

Doyle, E., Staniouli, I., and Huggard, M. (2005). Computer Anxiety, Self-EfRcacy, Com­

puter Experience: an Investigation throughout a Computer Science Degree. In Proceedings

of the 35th ASEE/IEEE FIE, Frontiers in Education Conference, page 5p.

Dukes, J. (2005). Iba2 Introduction to Programming,

https://www.cs.ted.ie/courses/ba/localMerged/jf/syllabus.php/.

Eckerdal, A. (2006). Novice Students’ Learning of Object-Oriented Programming. PhD

thesis, Uppsala University, Department of Information Technology.

Eckerdal, A., Thune, M., and Berglund, A. (2005). What Does it Take to Learn ‘Program­

ming Thinking’ ? In Proceedings of the 2nd International Computing Education Research

Workshop, pages 135-142.

Eclipse-Foundation (2005). Eclipse.org Home Page, http://www.eclipse.org/.

Eriksen, T. H. (2001). Small Places, Big Issues: An Introduction to Social and Cultural

Anthropology. Pluto Press, London, UK.

Felder, R. M. (1996). Matters of Style. ASEE Prism, 6(4):18-23.

Fincher, S. and Petre, M. (2004). Computer Science Education Research. Routledge

Palmer.

216

Fitzgerald, S., Simon, B., and Thomas, L. (2005). Strategies that Students Use to Trace

Code: An Analysis Based in Grounded Theory. In Proceedings of the 1st International

Computing Education Research Workshop.

Fleury, A. E. (1993). Students’ Beliefs about Pascal Programming. Journal of Educational

Com,puting Research, 9(3):355-371.

Fleury, E. A. (2000). Programming in Java: Student-Constructed Rules. In Proceedings

of the 31st SIGCSE technical symposium on Computer Science Education, pages 197-201.

Gal-Ezer, J. and Harel, D. (1999). Gurriculum and Gourse Syllabi for High School CS

Program. Computer Science Education, 9(2): 114-147.

Gall, D. M., Borg, R. W., and Gall, P. J. (1996). Educational Research: An introduction.

Longman Publishers, USA.

Glaser, B. G. (1992). Basics of Grounded Theory Analysis: Emergence vs Forcing. Mill

Valley, Ca.: Sociology Press.

Gray, A., Jackson, A., Stamouli, I., and Tsang, S. L. (2006). Forming Successful eXtreme

Programming Teams. In Proceedings of the IEEE, Agile International Conference, pages

390-399.

Green, P. (2005). A Rigorous Journey into Phenomenography: From a Naturalistic In­

quirer Point of View. In Bowden, J. and Green, P., editors. Doing Developmental Phe­

nomenography, pages 32-46. RMIT University Press, Melbourne.

Green, T. R. G. (1989). Cognitive Dimensions of Notations. In Sutclife, A. and Macaulay,

L.. editors. People and Computers V, pages 443-460. Cambridge University Press.

Greening, T. (1996). Paradigms for Educational Research in Computer Science. In Pro­

ceedings of the 2nd ACSE Australian conference on Computer Science Education, pages

47-51.

Giles, D. (2002). Where is Programming Methodology These Days? ACM SIGCSE

Bulletin, 34(4):5-7.

217

Hazzan, O. (2002). Reducing Abstraction Level when Learning Computability Theory

Concepts. In Proceedings of the 7th SIGCSE/SIGCUE ITiGSE conference on Innovation

and Technology in Computer Science Education, pages 156-160.

Hazzan, O. (2003). How Students Attempt to Reduce Abstraction in the Learning of

Mathematics and in the Learning of Computer Science. Computer Science Education,

13(2):95-122.

Heberman, B., Averbutch, H., and Ginat, D. (2005). Is it Really an Algorithm - The Need

for Explicit Discourse. In Proceedings of the 10th SIGCSE/SIGCUE ITiGSE conference

on Innovation and Technology in Computer Science Education, pages 74-78.

Hoc, J. M., Green, T. R. G., and Samurcay, R. (1991). The Psychology of Programming.

Academic Press, London.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding Object Misconceptions.

In Proceedings of the 28th SIGCSE technical symposium on Computer Science Education,

pages 131-134.

Holmboe, C. (1999). A Cognitive Framework for Knowledge in Informatics: The Case of

Object-Orientation. In Proceedings of the 4th SIGCSE/SIGCUE ITiCSE conference on

Innovation and Technology in Computer Science Education, pages 17-20.

Holmboe, C. (2000). A Framework for Knowledge: Analysing High School Students’

Understanding of Data Modelling. In Proceedings of the 12th Workshop of the PPIG

Psychology of Programming Interest Group, pages 267-279.

Holmboe, C. (2005). Language and Learning of Data Modelling. PhD thesis. University

of Oslo, Norway.

Holmboe, C., Mclver, L., and George, C. (2001). Research Agenda for Computer Science

Education. In Proceedings of the 13th Workshop of the PPIG Psychology of Programming

Interest Group, pages 207-223.

Howe, E., Thornton, M., and Weide, W. B. (2004). Components-first approaches to

218

CS1/CS2: principles and practice. In Proceedings of the 35th SIGCSE technical sympo­

sium on Computer Science Education, pages 291-295.

Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003). Identifying and Correcting

Java Programming Errors for Introductory Computer Science Students. In Proceedings

of the 34th SIGCSE technical symposium on Computer science education, pages 153-156.

Jeliot-Team (2006). Jeliot 3. http://cs.joensuu.fi/jeliot/.

Johnson, G. C. and Fuller, U. (2006). Is Bloom’s Taxonomy Appropriate For Computer

Science? In Proceedings of Kolin Kolistelut-Koli Calling, 6th Finnish/Baltic Sea Confer­

ence on Computer Science Education, Koli, Finland.

Kiimunen, P. and Malmi, L. (2004). Do Students Work Efficiently in a Group? - Problem-

Based Learning Groups in Basic Programming Course. In Proceedings of Kolin Kolistelut-

Koli Calling, flh Finnish/Baltic Sea Conference on Computer Science Education, Koli,

Finland, pages 57-66.

Koffman, B. E. and Wolz, U. (2001). Problem Solving with Java, 2nd edition. Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Rolling, M. (2006). BlueJ - The interactive Java Environment, http://www.bluej .org/.

Kvale, S. (1996). Interviews: An Introduction to Qualitative Research Interviewing. Sage

publications, London.

Le Compte, M. and Preissle, J. (1984). Ethnography and Qualitative Design in Educational

Research. Academic Press, London.

Levitin, A. and Papalaskari, AI. (2002). Using puzzles in teaching algorithms. ACM

SIGCSE Bulletin, 34(1).

Lister, R,., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, AL, AIcCartney,

R., Alostrom, J. E., Sanders, K., Seppala, O., Simon, B., and Thomas, L. (2004). A multi­

national study of reading and tracing skills in novice programmers. SIGCSE Bulletin,

38(3):119-150.

219

Lister, R. and Leaney, J. (2003). Introductory prograniniing, criterion-referencing, and

Bloom. In Proceedings of the 34th SIGCSE Technical Symposium on Computer Science

Education, pages 143-147.

Lister, R., Simon, B., Thompson, E., Whalley, L. J., and Prasad, C. (2006). Not seeing

the forest for the trees: novice programmers and the SOLO taxonomy. ACM SICCSE

Bulletin, 38(3).

Mannila, L. (2006). Progress Reports and Novices’ Understanding of Program Code.

In Proceedings of Kolin Kolistelut-Koli Calling, 6th Finnish/Baltic Sea Conference on

Computer Science Education, Koli, Finland.

Marshall, D., Summers, M., and Woolnough, B. (1999). Students’ Conceptions of Learning

in an Engineering Context. Higher Education, 38(3):291 309.

Marton, F. (1981). Phenomenography - Describing Conceptions of the World Around us.

Instructional Science, 10:177-200.

Marton, F. (1986). Phenomenography: A Research Approach to Investigating Different

Understandings of Reality. Journal of Thought, 21:28-49.

Marton, F. and Booth, S. (1997). Learning and Awareness. Lawrence Erlbaum Associates,

London.

Marton, F., Dall’Alba, G., and Beaty, E. (1993). Conceptions of Learning. International

Journal of Educational Research, 19(3):277-300.

Marton, F., Runesson, U., and Tsiu, B. M. A. (2004). The Space of Learning. In Marton,

F. and Tsiu, B. M. A., editors. Classroom Discourse and the Space of Learning, pages 3-

40. Lawrence Erlbaum Associates, London.

Marton, F. and Tsiu, B. M. A. (2004). Classroom Discourse and the Space of Learning.

Lawrence Erlbaum Associates, London.

Mayers, R. E. (1981). The Psychology of How Novices Learn Computer Programming.

ACM Computing Surveys, 13(1):121-141.

220

Mclver, L. (2000). The Efffect of Programming Language on Error Rates of Novice Pro­

grammers. In Proceedings of the 12th Workshop of the PPIG Psychology of Programming

Interest Group, pages 181-192.

Muhr, T. and Ereise, S. (2003). ATLAS.ti The Knowledge Workbench, V5.0 User’s Guide

and Reference, http://www.atlasti.com/downloads/atlman.pdf.

Nguyen, H. P. and Xue, J. (2004). Strength Reduction for Loop-Invariant Types. In

Proceedings of the 27th Australasian conference on Computer Science, pages 213 - 222.

Pang, F. M. (2003). Two Faces of Variation: On Continuity in the Phenomenographic

Movement. Scandinavian Journal of Educational Research, 47(2):145-156.

Perrenet, J., Groote, F. J., and Kaasenbrood, E. (2005). Exploring Students’ Under­

standing of the Concept of Algorithm: Levels of Abstraction. In Proceedings of the 10th

SIGCSE/SIGCUE ITiCSE conference on Innovation and Technology in Computer Sci­

ence Education, pages 64-68.

Perrenet, ,1. and Kaasenbrood, E. (2006). Levels of Abstraction in Students’ Under­

standing of the Concept of Algorithm: the Qualitative Perspective. In Proceedings of the

11th SIGCSE/SIGCUE ITiCSE conference on Innovation and Technology in Computer

Science Education, pages 270-274.

Piaget, J. (1954). Construction of reality in the child. Routledge and Kegan Paul.

Pong, W. Y. (1999). The Dynamics of Awareness. In Proceedings of the 8th European

Conference for Learning and Instruction, Goteborg University, page 12p.

Ragonis, N. and Ben-Ari, M. (2005). A Long-Term Investigation of the Comprehension

of OOP Concepts by Novices. Computer Science Education. 15(3):203-221.

Ramsden, P. (1992). Learning to Teach in Higher Education. Routledge.

Reid, N., Mancy, R., Stamouli, L, Higgins, C., and Begum, M. (2005). ExploreCSEd:

Exploring skills and difficulties in programming education. In Proceedings of the 6th

Annual Conference for the Higher Education Academy Subject Network for Information

Computer Science, page 4p.

221

Riding, R. and Rayener, S. (1998). Cognitive Styles and Learning Strategies. David Fulton

Publishers, London, UK.

Roberts, S. E. (1995). Loop Exits and Structured Programming: Reopening the Debate.

In Proceedings of the 26th SIGCSE symposium on Computer Science Education, pages

268-272.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and Teaching Programming:

A Review and Discussion. Computer Science Education, 13(2): 137-172.

Romero, P., Cox, R., DuBoulay, B., and Lutz, R. (2003). A Survey of External Repre­

sentations Employed in Object-Oriented Programming Environments. .Journal of Visual

Languages and Computing, 14(5):387-419.

Saljo, R. (1982). Learning and Understanding: A Study of Differences in Constructing

Meaning I^rom a Text. Goteborg Stidies on Educational Sciences (41) Acta Universitatis

Gothoburgensis.

Sandberg, ,J. (1996). Are Phenonienographic Results Reliable? In Dah’Alba, G. and

Hasselgren, B., editors. Reflections on Phenomenography: Toward a Methodology?, pages

129-140. Goteborg Studies in Educational Sciences 109. Acta Uninersitatis Gotlioburgen-

sis.

Sandberg, J. (2000). Understanding human competence at work: an interpretive ap­

proach. Academy of Management Journal, 43(l):9-25.

Scott, E., Zadirov, A., Feinberg, S., and Jayakody, R. (2004). The Alignment of Software

Testing Skills of IS Students with Industry Practices A South African Perspective. Journal

of Information Technology Education, 3:1-12.

Scott, T. (2003). Bloom’s taxonomy applied to testing in computer science classes. Journal

of Computing in Small Colleges, 19(l):264-274.

Sime, M. E., Green, T. R. G., and Guest, D. J. (1973). Psychological Evaluation of

Two Conditional Constructions Used in Computer Languages. International Journal of

Man-Machine Studies, 5(1):105-113.

222

Soloway, E. (1986). Learning to Program - Learning to Construct Mechanisms and Ex­

planations. CommunicMions of the ACM, 29(9):850-858.

Spohrer, C. J. and Soloway, E. (1986). Novice mistakes: Are the Folk Wisdoms Correct?

Communications of the ACM, 29(7);624-632.

Stamouli, L, Begum, M., and Mancy, R. (2005). ExploreCSEd: Exploring Skills and

Difficulties in Programming Education. In Proceedings of the 10th SIGCSE/SIGCUE

ITiGSE conference on Innovation and Technology in Gomputer Science Education (Ab­

stract poster), page 371.

Stamouli, L, Doyle, E., and Iluggard, M. (2004). Establishing Structured Support for Pro­

gramming Students. In Proceedings of the Sfth ASEE/IEEE FIE, Frontiers in Education

Conference, page 5p.

Stamouli, 1. and Huggard, M. (2006). Object Oriented Programming and Program Cor­

rectness: The Students’ Perspective. In Proceedings of the 2nd International Computing

Education Research Workshop, pages 109-118.

SunMicrosystems (2006). Java, http: //java. sun. com.

Tall, D. (1989). New Cognitive Obstacles in a Technological Paradigm. In Research Issues

in the Learning and Teaching of Algebra, N.C.T.M., pages 87-92.

Ventura, P., Egert, C., and Decker, A. (2004). Ancestor Worship in CSl: On the Primacy

of Arrays. In Proceedings of the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications (OOPSLA), pages 68-72.

von Glasersfeld, E. (1995). A Constructivist Approach to Teaching. In Steffe, L. and

Gale, P., editors, Gonstructivism in Education, pages 3-15. Hillsdale, NJ: Erlbaum.

Vygotsky, L. (1986). Thought and Language. MIT Press Cambridge, Mass.

Walker, M. H. (1998). Modules to Introduce Assertions and Loop Invariants Informally

Within CSl: Experiences and Observations. AGM SIGGSE Bulletin, 30(2):31-35.

223

Weinberg, G. (1971). Psychology of Computer Programming. Dorset House Publisliiiig

Co., Inc. New York, USA.

Wellington, J. London, U. (2000). Educational Research Contemporary Issues and Prac­

tical Approaches. Continuum.

Whalley, L. J., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K. A.,

and Prasad, C. (2006). An Australasian Study of Reading and Comprehension Skills in

Novice Programmers, using the Bloom and SOLO Taxonomies. In Proceedings of the 8th

Australasian Computing Education Conference.

224

Appendix A

Empirical study

This appendix relates to Chapter 4 and it contains:

1. The initial questionnaire that was completed by all first year Computer Science

students in the academic year 2004-2005 (Figures, A.l and A.2).

2. The selection of the theoretical sample as compared to the whole class (Figure A.3).

3. The consent form that participating students signed (Figure A.4).

225

Figure A.l: Initial background questionnaire, page 1.

Department of Computer Science
Trinity College Dublin
Ioanna Stamouli

Michaelmas Term
2004

Name:

Gender:

Age:___

Course:

I I Female Q Male

Educational background:

Secondary school
Mature student
Exchange student
Transfer student, if yes please specify:_
0th er:_____________________________

Have you taken any seminars, courses or certifications related to computers or computer programming?

Q Yes □ No

If yes please specify:

Do you have any work experience related to computers?

□ Yes □ No

If yes please specify:

226

Figure A.2: Initial background questionnaire, page 2.
"Which of the following programming langugges hawe you used or heard about?

Vveused... Vye heard about...
Java Java
c C
C-H- C-H-
Visual Basic Visual Basic
ASP ASP
PHP PHP
Peri Peri
ML ML
Lisp Lisp
Prolog Prolog
Odieifs') Othcri's'l

For what purposes do you use your computer most often?

Wd) browsing/Email
Coding / Web development
Games
Other___________________

What are the reasons that motivated you to choose a Computer Science based degree?

What do you expect to learn in the ‘Introduction to Programming' course?

Would you be mterestedm being interviewed a few times during this year, for a fee?

□ Yes □ No

ff yes, please provide your email:__

227

Figure A.3: Theoretical sample as compared with the class as a whole, (sample size 16,
class size 40) (a) age, (b) gender, (c) educational background.

Gender dirtjiliiiti»n
Th«D lelical larrple

(■)

dirtriMJtiDn

Femata # Male

Thaotetical sarrple

0 18-19 '9 2^0-21
22-23 • 244-

Qi)

EcfciGatien bacl^round
22-23 • 24-I-

Thecieiicai &arrpie

te peat students
no prior programming experience
seme programming experiecne <c>

• repeatsludents
0 no pria programming experience
0 some programming expariecne

228

Figure A.4: Consent fonii signed by all participants.
Coyisey^t Form

I gve my informed consent to participate in this phenomenographic study on the
relationship between learning to prog: am the object oriented way and cognitive stjdes.

I consent to the publication of the study re suits so long as the data is kept confidential, so
that no identification can be made, I understand that my responses are anonymous and
will be identified by number only.

1) I have been informed that my participation in this stutfy will require my
involvement in a series of semi-structured interviews were I will be answering
questions.

2) I have been informed that my participation in this stui%r will require my
completing two cogiitive style tests. The tests that will be involved in this study
are the Group ofEmbedded Figures Test (GEFT) and the Felder’s Learning Styles
Questionnaire.

3) I have been informed that this phenomenographic study is involved in identifying
the relationship between learning to program the object oriented way and
cognitive styles Thus the task of the research stucfy is not an IQ or perfoimance
test.

4) I have been informed that there are no known expected risks or discomforts
involved in my participation in this stui^r. This judgement is passed 141 on a
relative large body of research with people undertaking tasks of a similar nature.

5) I have been informed that participation is voluntary I have been informed that
withdrawal from the study prior to its completion will result in not receiving the
ageed fees.

6) I have been informed that the researcher will ^adly answer any questions about
the research when the interviewing and experimental session is completed.

Concerns about ary aspects of this study may be referred to Ioanna Stamouli, a PhD
student in the C omputer S cience D epartm ent at Trinity C ollege Dublin.

Sigied:

(Researcher) (Participant)

229

Appendix B

Semi-structured interviews

This appendix relates to Chapters 5, 6, and 7 and it contains:

1. The outlines of the four semi-structured interview sessions (Tables B.l, B.2, B.3 and

B.4).

2. The three exercises that students completed out loud in the second and third sessions

(Table B.6).

230

Table B.l: Outline of the first interview.
Interview Nol - Question sheet

1. Explain the study.
2. Give him/her the consent form to sign.
3. Start the Dictaphone!

General
- Talk about their responses to the questionnaire.
- What programming languages they have used.
- What have they studied in school etc.

Motivation
- Why did you choose this course?
- What are your expectations from lba2?

Programming
- What is programming for you?
- What do you understand it to be?

Programmer
- What would you say characterises a good programmer?
- What is the approach to study that you are following?

Algorithms
- From what you have done so far is there anything that interests you
particularly?
- Has anything proven particularly challenging?
- What wound you say are the most important concepts you’ve met
so far?
- What would you say an algorithm is and how would you describe it?

Objects
- W'hat do you think of objects and classes so far?
- How would you describe a class?
- How would you describe an object?

231

Table B.2: Outline of the second interview.
Interview No2 - Question sheet

1. Start the Dictaphone!

Catch up from the last time
- What have you learnt since we last met?
- Is there anything you though was especially interesting?
- Is there anything that you have had to stop and think about?
- What was it? How did you sort it out?

Reflection
- What do you think your classmates think of Java?
- Do you think Java is hard?
- Do your classmates think Java is hard?
- Do you think they have the same problems that you have?

Object Orientation
- How do you find thinking in object and classes?
- Does this conies naturally to you?
- Is it easy (given a problem) to identify the classes you should have?
- Do you see any benefits in this approach?

Constructor
- What is a constructor?
- How do you understand it?

Problem 1
- Would you read and work out this problem? (Give problem 1)
- How is your lab work going?
- How do you usually start solving a problem?
- How do you proceed with it?
- Discuss the student system or bank system from the laboratory
exercises.

232

Table B.3: Outline of the third interview.
Interview No3 - Question sheet

1. Start the Dictaphone!

Programming / Learning to program
I am going to repeat some of the questions we talked about in the
previous interviews.
- What is programming for you?
- flow would you describe it?
- What does it take to learn how to program?
- Would you say (at this point) that you know how to program?

Decision making
- What do you use when you need to make a decision about
something in a program? (example the leap year problem)
- Can you explain to me how if statements work?
- Can you give me an example?
- Present the student with the exercise
1. Can yon attempt this problem?
2. Could you please think out-loud when you do it?

Iterations
- Imagine I know nothing about loops can you explain the underlying
idea for me ?
- When do you use loops?
- How many kind of loops do you know about?
- What are the condition that help you in deciding which one to use?
- Present the student with the exercise
1. Can you attempt this problem?
2. Could you please think out-loud when you do it?

233

Table B.4: Outline of the fourth interview (part 1).
Interview No4 - Question sheet

1. Start the Dictaphone!

Software engineering
- What do you believe software engineering is? How do you
understand it?
- In your understanding, what are the elements involved in it?

Objects and classes
- Assume that I know nothing about classes, objects, attributes,
methods how would you describe them to me?
- How do you understand the concept of a class?
- How do you understand the concept of an object?
- How do you understand the concept of an attribute?
- How do you understand the concept of a method?

Arrays
- Assume that I know nothing about arrays, explain them to me in
your own words.
- Why do we need arrays?
- Where are arrays used more frequently?
- 2D, arrays what are they?
- When and why do you use them?
- Are you able to loop through a 2D array?
- Why do you use the key word new when you create an array?

Correctness
- What actually is a correct program?
- How can one know if a program is correct?

Inheritance
- What is inheritance?
- When do vou use it?

234

Table B.5: Outline of the fourth interview (part 2).
Abstraction encapsulation
- Do you know what abstraction is?
- How do you understand encapsulation?

General
- Do you feel that lba2 has fulfilled your expectations?
- What did you find was the most helpful feature of this course?
- What was the least helpful feature of this course?
- Are you happy with the lecturers’ presentation of the course?
- Do you feel happy with the material presented? Was it too much?
Did you expect more?
- Did you find that you had to study the theory on your own to
understand the concepts presented?
- What was your approach to study? Did you had to change it as the
course progressed?
- What was the hardest thing for you to understand from the whole
course?
- Do you feel you have the same level of understanding as the rest of
your classmates?
- Have you developed any skills during the course?
- Do you feel any of these could be transferable to other courses?
- Do you feel confident in programming in Java?
- Did you enjoy lba2 in general?
- During the interviews did you find that you coxildn’t reply to some
questions?
- When you realised that you didn’t really understand a concept did
you go back to study it?

235

Table B.6: Exercises given to students to solve out loud during the interviews.

Problem 1; You are required to design a coliege student record system that will allow store information
about the students' previous education and current status in college. The system should
also manage information about the degrees and courses provided. The lecturers
information should also be available along with the course they are teaching. The system
functionality should allow;

•For a student to be transferred from one degree to another.
•A lecturer to be added.
•A course to be added.
•A lecturer to be allocatedto another course.

Assumptions:

•Each lecturer can be allocated to only one course.
•Each degree can have only 4 years and maximum 10 courses per year.

Problem 2: Write a Java application that will read two distances, one expressed in the imperial unit of
inches and the other expressed in metric units (i.e. metres), and which will report the sum
of the distance as yards, feet and inches and the difference between the distances as
metres.

•you should allow for the constructor to take in yards, feet and Inches

Hint 1 yard is 36 inches, 1 foot is 12 inches, 1 inch is 2.5 cm

Problem 3: Write a method that report weather a person is eligible for a student's discount A person
can get a student discount if he/she has:
•a valid student id
•if his age is less than 21 and his/her parents income is no more than 20.000 euro per
annum
•if he is older than 21 his income should be no more than 15.000 euro per annum
•If he is a post graduate he should be less than 26.

class Student{
String student_id;
int age;
String name;
String address;
boolean postgraduate;
int income;
int parent_income;

}

Problem 4: Using a loop (either a for or a while loop) print the following in the standard output.

*•*****+******+ + ***+* *

+*•***********

* + *•** * **** *•** *** ** + +

**********+**+*+
+ ★ + *+ ***+*★*★*■*•

* * + * * + * + +

+ + * + + * + •* + * +

**** *** *** *

236

