
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Specification and Verification of Design Pattern Structure,

Behaviour and Variation

Ashley Sterritt

A Dissertation submitted to the University of Dublin, Ti’inity College

in fnltillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

A])ril 2013

TRINITY COLLEGE

2 < wa, 2013

LIBRARY DUBLIN ^

'ihuo.^ ^'7SY

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any

other University, and that unless otherwise stated, it is entirely my own work.

Uhlev Sterritt

Dated: April 30, 2013

1 - -11 I'-* r I

. ' *•
u-i

A . I

>''rt"

ll, ^

!»»• V/ 'b^I

r'l' *’ ' -.

r- - j

; f :
\\\ !•■ I

. . ‘li
■ ..I * ^ I II

■, ■ tAi

H 1.J, ■:!. hV.
' J/.

1/

’,. L'

"{"■' ^ i'
IIP “■ij nil* '■"*

T'

>'!'> ;•

' ..■ \ i' IP
■

L' p^

\ I*
iv IV

•3* >,•■ 1

ii>

t"

■ I . II .

<« 9 i.B ■ .U' . •

Permission to Lend and/or Copy

I, tlie niidersigned, agree that Tidnity College Library may lend or coi)y this Disserta­

tion upon request.

-1. In -I I-,

■ r ' 11 ; 1 f,r .■■ -■_■ J ■ _1 '■*■ L

- .. I... '
■-r".. ■ ■ ■“/ ^
' I V ■ L ■ 'k d II I
-., . rf*! ■ ■!»!_. ■■

i :

3

B# I- ri" Bl'

_ I ' ■

■ ' K 1 j ' i";rr,.'._-

'j*- '- j- •'

■V" ’ ■. 1 ■.
■ B •' ■ B

' •

I ■_ -.') .

f-*! V ' J ,r —-

T ' ■.

- .' -
' I :•

■ I ^ - -•
L T -T ■

- :■ ■■>'■' ^ >■ '

VI

Standing on the shoulders of giants,

leaves me cold

Michael Stipe, ‘King of Birds’

' I

I, , '*.■■ i" ' ,. ■■
Lvl !"'■ ' ‘'ll-- ' V '

!.'ir ,■ ', -‘• ',1 ill r '..1
l».“ l «i _ II II

!'■ .r- V ■

II, II

I T ,”4i S '
I

L”i - I- ,
'■■■ .J-

■.‘'T *1 I • • I

bi ’ > ,

1.-'

^^1 »

I. :.“■■••.)

'i. II .

L'^'i . '

V Jf jit

■-I I . •
.1 ..

v-

-• iiiini A .■•-*

jlihi '■.ji'ii;*' -n '-;'. . / ■„,'
•*, I .

V

> 1,1,

II 1 .“ill' /■ -.j; ; ■II, '. I . I- ■
n.i|.-. r- ■ ' - I ,1
v-- ,,- I-J -"Iiji-. “■• •

.» I. .1 ' .1 -

i:r ■:
i'.:
Illf-;

■ I.''*; , I •

Vlll

f-W
1.1 “ , , ■ .■« V
I," ''.-:.'- k-

Acknowledgements

I wotilcl like to thank my supervisor Professor Viniiy Cahill for his time and support over

the years. I appreciate his rigorousness and patience. I would also like to thank Dr Siobhan

Clarke for reading and providing feedl)ack on my work. I benefited greatly from my exposure

to intelligent and enthusiastic researchers. I remember especially conversations with Dr.

Marcin Karpinski, Dr. Ray Cunningham and Dr. Anthony Harrington. 1 thank Dr. Serena

Fritsch and Marco Slot for reading drafts of this thesis, and for their friendship at a stressful

time. I would also like to thank \\'arren Kenny, my programming guru.

Melanie has been incredibly supportive and understanding, especially since she realized

that I might actually finish sometime. She has helped in many many ways. Finally, I would

like to thank my family for their supi)ort. My mother has taught me to value education

and learning. This thesis is for her.

Ashley Sterritt

University of Dublin, Trinity College

April 2013

IX

Abstract

Design patterns are generic solntions to connnonly-occnrring ol^ject-oriented software de­

sign problems that display good design properties snch as extensibility or loose couirling.

During software maintenance, earlier design decisions, sncli as the application of design

patterns, can be violated, gradually reducing software (piality in a phenomenon known as

■architectural drift’. Specifications serve to formalize design decisions and can b(' compared

directly to implementations, as well as being nsefnl in coimmmication. Precise specifica­

tion of patterns and automated verification of the conformance of implementations to the

specifications can help' to avoid architectural drift, preserving software ([nality. Specihcation

langnages and verihcation of design patterns can also be iis('d for legacy code understanding

and the generation of (|nality metrics.

Design patterns place constraints on nmltiple entities (objects, classes and inheritance

hierarchies). They also describe generic interactions between entities, whose number and

type are unknown. This second characteristic is a distinguishing feature of patterns and

means they present a subtly different specification challenge to concrete software architec­

tures. Pattern catalogues typically describe a number of trade-offs and optional hiatures to

consider when implementing a j'articnlar design I'attern. Therefore, it is difficult to produce

one specification that covers all the potential pattern implementation variants. For this rea­

son, many existing apj'roaches to design-pattern specification and verification have focused

on only the structure and behaviour common to all variants, producing specifications that

are vague and lead to many false j'ositives during verification. Some recent research has

focused on addressing design pattern variants directly, but this has focused on structure

only and lacked an accompanying verification tool.

In our analysis of the widely-us('d Gang of Four (GoF) i'attern catalogue, we identihed

five categories of invariants that a design pattern specification language should be capable of

specifying. Of these, three were found to be insnfhciently addressed by the state of the art in

tlesigii pattern specification and verification: invariants relating to inter-class dependency,

an object’s rnntiine state and the rnntime properties of data strnctnres. Existing design

pattern specification langnages were found to suffer from numerons deficiencies, snch as,

a lack of expressiveness, imprecise semantics, no verification support and/or verification

based on only simple or sporadically-applied program analyses. In this thesis, we focns

on the specihcation and verification of pattern variants and of the insnfHciently-addressed

invariant categories identified.

This thesis presents Alas, a precise specification language that is capable of expressing

constraints in each of the five invariant categories that we identified. It provides syntax

and semantics for the description of design pattern variants as well as for the generic

specihcation necessary to describe design patterns. The Alas Verihcation Tool (AVT) can

read Alas specihcations aiul verify that .lava source code conforms to them. It uses data-flow

analysis and deals with object-oriented issues snch as aliasing and modnlar verihcation.

To evalnate Alas and AVT, we created our own benchmark based on Alas specihcations,

identifying GoF pattern instances in a number of code bodies that make extensive use

of patterns and are commonly analyzed by related work. W’e aggregated some existing

benchmarks Iry including pattern instances included in them that also conform to onr

sijecihcation. Small extensions to the benchmark were made to increase the generality of

the analysis results. To our knowledge, this is the hrst sizeable benchmark to include design

pattern variants.

Verihcation of novel invariant categories by AVT is demonstrated on the benchmark

and is shown to be accurate and scalable to medium-sized examples. The novel invari­

ant categories provided by Alas and verihed by AVT allow ns to address patterns typically

overlooked by the literature, as well as novel aspects of more well-supported i)atterns. Spec­

ihcation and verihcation of design pattern variants allows us to identify pattern instances

overlook(>d by existing tools, and to distinguish between instances of different variants in­

distinguishable by existing tools.

XI

Contents

Acknowledgements ix

Abstract ix

last of Tables xvii

List of Figures xix

Chapter 1 Introduction 1

1.1 Motivation ... 2

1.2 Background... 3

1.3 Scope of the Thesis... 5

1.4 Key Contributions of tlie Thesis ... 6

1.5 Roadmap of the Thesis... 9

Chapter 2 Design Pattern Specification and Verification Classification 10

2.1 Introduction... 10

2.2 Scope and related work .. 12

2.2.1 Other DPSL and DPVT reviews in the literature............................... 15

2.3 Abstraction Levels in Design Pattern Specification.. 15

2.3.1 Generic j)attern specification .. 16

2.3.2 Variant-specific pattern specification.. 17

2.4 Specihcation of Design Patterns... 18

2.4.1 Syntactic elements.. 20

2.4.2 Invariant elements.. 22

2.4.3 Invariant dynamism... 36

2.4.4 Conceptual elements... 36

xii

2.4.5 Summary.. 37

2.5 Verification of Design Pattern Implementations.. 38

2.5.1 Invariant elements.. 39

2.5.2 Languages compared during verification.. 45

2.5.3 Conformance relation .. 46

2.5.4 Pattern instance classification.. 48

2.5.5 DPVT use cases... 49

2.5.6 Program analysis... 50

2.5.7 Assigning jjattern roles to implementation actors.............................. 55

2.5.8 Summary... 56

2.6 Conclusions... 57

Chapter 3 Alas 59

3.1 Introduction... 60

3.1.1 Language basis rationale... 60

3.1.2 Alas design decisions... 63

3.1.3 LfML as a basis for design pattern specification................................ 64

3.1.4 Sample Alas specification.. 65

3.2 Structural specification in Alas... 68

3.2.1 Dependency invariants.. 69

3.2.2 Structural variant specification... 72

3.2.3 Structural cardinality invariants .. 77

3.3 Behavioural si)ecification in Alas.. 80

3.3.1 Control-flow invariants.. 81

3.3.2 Object-state invariants.. 87

3.3.3 Data structure invariants.. 98

3.3.4 Interaction invariants .. 102

3.3.5 Behavioural pattern variant specification.. 104

3.3.6 Behavioural cardinality invariant specification................................... 107

3.4 Summary.. 108

Chapter 4 AVT Implementation 111

4.1 Verification requirements imposed by Alas... 112

4.2 Shape analysis algorithm... 113

xiii

4.2.1 Iiitra-i)rocedural analysis .. IIG

4.2.2 Iiiter-procediual analysis... 120

4.2.3 Teniiination... 123

4.2.4 Efficiency.. 124

4.3 Alas danse verificaticni... 125

4.3.1 Conservative verification... 126

4.3.2 Dependency... 127

4.3.3 Object state... 127

4.3.4 Data-striictnre... 128

4.4 Miscellaneous implementation issues... 129

4.4.1 Synthetic method CFGs... 129

4.4.2 Unimplemented featnres... 130

4.5 Snnnnary.. 131

Chapter 5 Pattern Specification and Benchmark 133

5.1 Benchmark Construction Methodology.. 133

5.1.1 Code Body Selection... 134

5.1.2 Inspection method.. 136

5.2 Benchmark... 138

5.2.1 Ucpendency... 140

5.2.2 Object State .. 145

5.2.3 Data structnre... 148

5.3 Snmmary.. 153

Chapter 6 AVT Verification Evaluation 155

6.1 Methodology .. 156

6.1.1 Scoi)e.. 156

6.1.2 Metrics ... 156

6.2 Results... 157

6.2.1 Dependency... 157

6.2.2 Object State .. 159

6.2.3 Data Structure... 164

6.3 Snmmary... 168

xiv

Chapter 7 Conclusions 170

7.1 Specific conclusions... 170

7.2 General conclusions... 173

7.3 Future work... 175

Appendix A Control-flow invariant semantics 177

A.l Seciuencing... 177

A.2 Selection... 178

A.3 Iteration... 181

A.4 Lifeline seinaiitics.. 182

A. 5 Generic behaviour ... 183

Appendix B Benchmark Observations and Ancillary Specifications 185

B. l Dependency... 185

B.1.1 Abstract Factory.. 185

B.l. 2 Coniinand.. 186

B.l.3 Builder. Strategy, State... 186

B.2 Object-state... 187

B.2.1 Prototy])e.. 187

B.2.2 01)server and Memento ... 188

B. 3 Data-structure... 189

B.3.1 Decorator.. 189

B.3.2 CoR... 190

B. 3.3 Composite.. 190

Appendix C Verification Examples 193

C. l Dependency... 193

C.2 Object state... 195

C. 3 Data structure... 196

C. 3.1 Decorator.. 196

C. 3.2 Composite.. 197

Appendix D Aggregated benchmarks 200

D. l Dependency... 200

D. 1.1 Abstract Factory... 200

XV

D.1.2 Couiiiiatul.. 201

D.2 Object state.. 203

D.2.1 Prototype.. 203

D.3 Data structure .. 204

D.4 Decorator... 204

D.4.1 Composite.. 204

Appendix E Generic behavionr specification 208

Appendix F List of Acronyms 229

XVI

List of Tables

2.1 Classification of the supi^ort of each DPSL for each of the syntactic elements 23

2.2 Classification of the support of each DPSL for each of the invariant types . 29

2.3 Classification of the support of each DPVT for each of the invariant types . 41

2.4 Relation between specification and implementation language for each DPSL 48

2.5 Relation between specification and implementation language for each DPVT 49

2.6 Analysis use case, program analysis and implementation language classifica­

tion of each DPSL’s associated DPVT... 51

2.7 Analysis use case, program analysis and implementation language classifica­

tion of each DPVT.. 52

3.1 Ordering and element uniqueness of each of the Alas (and OCL) collection

kinds... 97

4.1 Distinguishing features of the shape analysis algorithms implemented by

Rinetzky et al. and AVT... 123

4.2 A summary of the requirements imposed by the novel invariant categories of

Alas and features of object-oriented programming languages, and the AVT

design approaches addressing each requirement... 132

5.1 Code bodies and how often they occur in the evaluation of existing DPVTs 135

5.2 Novel invariant categories in Alas required for each of the patterns in GoF

design pattern catalogue specifications... 139

5.3 Intended instances of variants of the Prototype pattern in the Alas bench­

mark for each code body... 146

6.1 AVT analysis results for the Abstract Factory pattern................................ 158

6.2 AVT analysis results for the Command pattern.. 159

xvii

G..'^ AVT analysis results foi' the Prototype jratterii... 162

6.4 AVT analysis results for the Decorator irattern... 165

6.5 AVT analysis results for the Composite pattern... 167

D.l Instances of variants of the Abstract Factory pattern in each benchmark from

the .THotDraw code body .. 201

D.2 Instances of variants of the Abstract Factory j)attern in each benchmark from

the .lUnit code body.. 201

D.;i Instances of variants of the Abstract Factory pattern in each benchmark from

the Swing code body.. 202

D.4 Actor names in candidate Command instances .. 203

D.5 Command instance classification.. 203

D.6 Instances of variants of the Decorator pattern in each benchmark from the

.IHotDraw code body... 205

D.7 Instances of variants of the Decorator pattern in each Ixmchmark from the

•lUnit code body.. 205

D.8 Instances of variants of the Decorator jmttern in each benchmark from the

Swing code body.. 205

D.9 Instances of the Composite pattern identifi(‘d in both the Alas Irenchmark

and aggregated benchmarks... 207

xvm

List of Figures

2.1 Bayley and Zhii’s [2010] specification of the Abstract Factory pattern, includ­

ing two variants: Single factory method and Multiple factory methods 18

2.2 DPSL classification framework dimensions... 19

2..‘1 Syntactic elements of GoF design i)atterns... 21

2.4 Invariant categories and types: Part 1: Dependency and cardinality invariants 25

2.5 Invariant categories and types: Part 2: Control-flow invariants 26

2.6 Invariant categories and tyi)es: Part 3: Object-state and data-structnre in­

variants .. 27

2.7 The specification of the Visitor pattern given in Mak et al. [2004]............... 31

2.8 Flyweight pattern conditional branching expressed in BPSL 32

2.9 RBML [France et ah, 2004] l)ehavionral specification of the Visitor pattern 33

2.10 Conceptual elements of GoF patterns.. 38

2.11 Classification framework dimensions specific to DPVTs................................. 46

2.12 Control-flow graph for an imj)lenientation of the Singleton’s get Instance ()

method (PINOT)... 54

2.13 FU.TABA [Wendehals and Orso, 2006] DFA for the State pattern............... 55

3.1 A textual specification of the FalseFaq-ade pattern, eciuivalent to the gTai)hical

specification in Figure 3.2.. 67

3.2 The structural specification of the FalseFagade pattern, including a struc­

ture diagram with three class roles, three method roles and three reference

variable roles. The constraint boxes define a dependency invariant, a pattern

variant differing in structure from the structure diagram and a data-strncture

definition.. 68

xix

3.8 The behavioural speeificatioii of the FalseFac^'ade pattern. The behaviour

within tlie opt operator is conditional. A data structure invariant is attached

to the end of receivingMethod, indicating a post-condition......................... (if)

3.4 Composite Structure diagram with two structural variant definitions, both

of which add static roles to the core specification. This allows for four valid

variants of the Composite pattern... 73

3.5 A variant specified in a separate SD, illustrating the use of the scoping (: :)

and substitution (->) operators... 75

3.6 Behavioural specification of the CoR pattern involving a two-operand alt

with an operand guarded by a basic state invariant on an object role. A

single path in a valid implementation may not contain the behaviour of both

operands. The call event involving successor’s handleRequest oidy occurs

if the successor has been initialized... 84

3.7 Specifying iteration over and interaction with an unbounded collection by

matching the name of the ciuantified variable in the loop guard (obs) and

tlie selector string in the lifeline.. 86

3.8 A potential (non-Alas compliant) Memento [)attern specification where the

objects jrointed to by reference variable roles are strictly equal when the

Memento’s c'onstructor returns.. 88

3.9 Illustration of the usage of the CopyState reference variable role in a struc­

tural specification. CopyState may be bound to a different set of primitive

and user-defined reference variables in each imi)lementation of the Memento 90

3.10 Illustration of the isCopy operator, relating the copystate of two objects at

a particular point in the execution. Note also the matching jjarameter and

lifeline object role name. The diagram states that the Originator object calls

the Memento passed to it as a parameter... 90

3.11 Class A satisfies the strict ownership relation with respect to class B, but class

B does not satisfy the strict ownership relation with respect to class C . . . 92

3.12 Graph of all reachable state and the included copy state for the classes defined

in Figure 3.11 using the comp copy state definition...................................... 93

3.13 Factory method specification using the isAlias operator and the cpialified

and unqualified version of the returnval keyword. The f actoryMethod is

recpiired to return the object returned by the constructor of Product. . . . 9()

XX

.‘5.14

,3.11

3.1G

3.17

3.18

3.19

3.20

3.21

A graphical definition of a collection. Sulrject contains an ordered collection

of potentially non-nnicpie Observer objects... 97

Subject’s detachObserver sjjecification illustrating collection operators and

matching parameter and constraint role names. The method slionld remove

the parameter from the list and have no other side effects................................. 98

CoR Behaviour diagram along with an interaction invariant using Alas data-

structnre operators. The specification states that a DefaultHandler should be

reachable from every handler in any valid chainOfResponsibility. This

constraint must be satisfied at the end of every method that refers to and/or

mutates the chainOfResponsibility... 104

Composite Behaviour diagram illustrating the use of the var operator and

variant-labelled constraint boxes to specify variant-specific behaviour. The

same variant is named in both the var operator and constraint box, meaning

that both of these constraints must apply in a valid parentLinks variant of

the Coni[)osite pattern... 106

BD illustrating the nse of the scoping ojierator for the definition of a snb-

variant and the alternative conformance relations provided by Alas. The flo

nothing variant may only be satisfied by implementations that satisfy the

unsafe variant... 106

Specification of two behavioural variants of the CoR pattern using a multiple-

operand var. Ea(4i valid CoR implementation must perform the behaviour

specified in viaSuperDelegation or directDelegation, bnt not both or

neither... 107

Structural cardinality invariant specifying a surjective relation between Fac­

tory Methods and AbstractProducts in each ConcreteFactory: every Facto-

ryMethodSet contains some method that initializes some snbclass of each

of the AbstractProduct classes. Both the method role representing a Fac­

tory Method and the class role representing a ConcreteProduct have been

substituted with variables bound in the cjuantified specification..................... 109

Structnral cardinality invariant specifying an injective relation between Fac­

tory Methods and ConcreteProducts in each ConcreteFactory: no two Fac­

tory Methods create the same ConcreteProduct. Two (luantified variables

are bound to a single variable substituting for a method role........................... 109

xxi

4.1 The iniiiiiiig example used to ilhistrate the featmes of the sliajie analysis

algorithm implementexl in AVT... 115

4.2 Control-flow gxajrli for the example of Figure 4.1... 115

4.3 Simple set method example with two formal i)arameters and one reference

variable that may be all aliased when the method call dispatches............... 118

4.4 Shape graidi resulting from the analysis of the hrst path through the example

of Figure 4.1, until the end of the IF block... 118

4.5 Shajre graph re})resenting the second path through the method of Figure 4.1,

through the ELSE block ... 119

4.6 The call graph edges resulting from the analysis of the call to setRealSub-

ject in Figure 4.1 .. 122

4.7 The relationshijr between conservative Alas predicate verification and the

choice of meet ojrerator ... 126

4.8 Pseudocode for isCopy verification on a single sliaix' graph 128

5.1 Alas specification of the GoF (core) and No AF variants of the Abstract

Factory pattern ... 141

5.2 Alas sirecihcation of the structure of all variants of the Command irattern . 143

5.3 Alas specification of the behaviour of the Command pattern...................... 144

5.4 Alas si)ecification of the Prototype’s clone method. The clone methcKl is

required to make and return a copy of "this’.. 146

5.5 ()i)tionListModers clone method in the Swing code Imdy. The ListenerList

variable is not made an alias or assigned a deep-coined object 147

5.6 Structural specification of the Decorator pattern, along with a single struc­

tural variant.. 149

5.7 Alas specification of the operation method of the Composite subclass 151

6.1 DefanltListSelectioiiModel’s clone method in the Swing code body.... 160

6.2 Shape graphs output by AVT after analyzing DefaultListSelectionModel’s

clone method... 161

6.3 Result of applying the isCopy predicate to the shape graphs of Figure 6.2 . 162

6.4 SelectioiiTool’s createDragTi'acker method from the .JHotDraw benchmark . 164

6.5 Result of applying the data-structure invariant to SelectioiiTool’s createDrag-

Tracker method.. 165

xxii

B. l Specification of the operation method for the Forward if not null variant of

the Decorator pattern... 190

C. l StandardDrawingView’s selectionZOrdered in the JHotDraw code body is a

‘bad’ client of the Factory Method UndoableAdapter.getAffectedFignres as

it creates an instance of a FignreEnumeration subclass 193

C.2 AVT output when applying the implementation dependency invariant of the

Abstract Factory Client role to the method of Figure C.l 194

C.3 Elenientiterator’s clone method in the Swing code body............................. 195

C.4 Result of applying the isCoi)y predicate to the source code of Figure C.3 . 196

C.5 BouncingDrawing’s replace method fioni the .THotDraw benchmark............ 196

C.6 Result of api)lying the data-structure invariant to BonncingDrawing’s rej)lace

method ... 197

C.7 Segment of the AVT analysis output when analyzing SuiteTest’s suite

method. The Comj)osite tree is correctly classified as being free from sharing 198

C. 8 Modified source code of JTree’s getDefaultModel method from the Swing

code body, with sharing introduced. The original simply omits the addition

of the ‘blue’ node to the parent ‘sports’ .. 199

D. l Composite class actor of each identified instance, along with their variant

classification... 207

E. l A generic specification of the Looi)ing Director variant of the Builder ijattern.

No selector is provided for the method set: any arbitrary member of the

BuildPartSet method set may be called on each iteration of the loop. . . . 209

E.2 A generic specification of a Template Method. Each of the members of the

PrimitiveOperationSet is called in sequence. The set may vary in size

between valid implementations.. 210

E.3 Generic specification of the ConcreteFactory’s factoryMethod. The specifi­

cation states that for each class in the ConcreteProduct class set role, there

exists an alternative path that creates an object of that class........................ 211

xxni

Chapter 1

Introduction

This thesis presents Alas (Auotlier Language for pAttern Specification): a specification

language capable of expressing the constraints imposed by object-oriented design patterns

from each of the invariant categories identified in a novel classification franu'work of design

pattern specification languages (DPSLs). Alas is also ca])al)le of specifying variants of

design j)atterns that differ in terms of structure and/or behaviour. Verification involves

comparing a design i)attern specihcation in a given language to an implementation and

categorizing the inij)lcnientation as conforming or not conforming to the specification. Ve

use the term Design Pattern Verification Tool (DPVT) for tools that])erforni this fnnction.

The Alas Verification Tool (AVT) is a DPVT capable of checking that .lava source code

conforms to Alas specifications. The evaluation contained in this thesis demonstrates how

the combination of Alas and AVT allows i)roperti(^s of design pattern imi)lementations

that were previously not addressed to be sirecified and verifi('d. The specification and

verification of design pattern variants allows for more pattern instances to be identified

in the analyzed bodies of code. Also, instances of different variants can be distinguished

that are indistinguishable by other languages and tools. Finally, the thesis illustrates the

wider applicability of Alas and AVT due to characteristics of the code bodies analyzed and

instances uncovered.

The remainder of this chapter is structured as follows: we motivate and i)rovide back-

gronnd on the specification and verification of design patterns in Sections l.f and i.2, re­

spectively. We describe the scope and key contribntions of this work in Sections 1.3 and 1.4,

respectively, before jrroviding a brief roadmap of the rest of the thesis in Section 1.5.

1

1.1 Motivation

Design patterns are ‘simple and elegant solutions to specific problems in object-oriented

software design... that have been developed and evolved over time’ [Gamma et ah, 1995].

The concept of design patterns as generic solutions to be applied in multiple contexts

originated with Christopher Alexander, who developed a pattern language for designing

buildings and cities [Alexander, 1979]. Alexander’s work differs from subsequent work on

software design patterns in that he dictates an order in which the patterns should be applied,

and that his aim is to generate a complete design. Similarities, however, include the use of

templates to explain patterns in natural language and a discussion in terms of a concrete

example. Beck and Cunningham [1987] introduced the concept of patterns to software

design, with a small group of graphical user interface (GUI) patterns for Smalltalk. Since

then, a multitude of new patterns have been proposed in other catalognes and academic

papers [Coplien, 1998][Gamma et ah, 1995][Schmidt et al., 2000][Erl, 2008] with many

focusing on object-oriented programming languages. A patterv catalogue is a collection

of design patterns, where for each pattern a description of its intent, applicability and

j)ossibly some illustrative sample code is provided. The intent of a design j)attern describes

its intended function and (sometimes imi^licit) non-fmictional properties that a correct

implementation of the pattern should display. The value of object-oriented design patterns

(subsequently referred to simply as design patterns) lies in the fact that they are not the

most obvious solution to novices in object-oriented software design: instead they represent

years of collective experience in how to “find pertinent objects, factor them into classes at

the right grannlarity, define class interfaces and inheritance hierarchies, and establish key

relationships between them”[Gamma et al., 1995], so that the design displays some positive

non-functional property, such as extensibility or loose coupling.

A software designer or developer applies a design pattern when they intend some piece

of code to exhibit one of these non-functional properties. The intent is sometimes captured

in comments, documentation or in variable naming conventions, but in other instances,

they remain implicit. In the latter case, the intention that a piece of code should conform

to some design pattern may be lost if, for example, the original developer leaves the orga­

nization to which the code belongs. A pattern can be incorrectly apj)lied by the original

developer or original design decisions can be violated during maintenance, so that the code

no longer conforms to the pattern. Bieman et al. [2003] have shown that code utilizing

design patterns ca.n be more prone to ehange than other code. Becanse the ajjplication of

patterns is not always fully docnmientf'd and pattern iniplenientations are prone to change

during maintenance, the invariants imposed by a design pattern may l)e broken and the

original design may degrade in a irhenomeiion known as architectural erosion or drift [Perry

and Wolf, 1992][van Gurp and Bosch, 2002]. Precise specification of the invariants a design

pattern imposes on an implementation and automated verification based on these specifi­

cations is useful to protect the developer's initial intent when ai)plying the design pattern

and can protect against this phenomenon.

1.2 Background

Pattern specifications define a numlrer of roles (classes, objects or methods), most of which

are mutually exclusive, and also place constraints on how the^se roles interact. Thus, pat­

terns define object-oriented protocols to be satisfied by actors in the implementation. De­

sign patterns place constraints on multipk' entities (objects, class(>s and inheritance hier­

archies) and are also more generic than concrete software architectures as they describe

interactions between entities, whose number, type and precise behaviour are unknown. For

example, when specifying conditional behaviour in a concrete software architecture, the

condition to be evaluated is known. However, some design patterns involve conditional

behaviour where the actual condition differs between implementations and is not known at

speciheation time. Also, while specifying concrete software architectures, it is not neces­

sary to place a constraint on the number of classes in a particular role, as the number of

classes is known, while such constraints are a central concern for design j)attern speciheation

[Lauder and Kent, 1998][Eden, 2()01][Mak et ah, 2004]. Due to the sjjecihc requirements

on speciheation posed by the generic nature of design patterns, existing concrete software

architecture speciheation languages are unsuitable for their speciheation. This reqiiirement

has motivated the development of numerous DPSLs, most of which focus on the description

of the Gang of Four (GoF) pattern catalogue [Gamma et ah, 1995].

Pattern catalogues typically describe a number of trade-oH's and optional features to

consider when implementing a particular design pattern. Therefore, it is difficult to produce

one speciheation that covers all the potential pattern variants. Because of the existence of

design pattern variants, many approaches to speciheation and veriheation of design patterns

focus on only the structure and behaviour common to all variants, protlucing speciheations

3

that are vague and lead to inaiiy false positives rlui iiig verification. Some p'romising work

on design jrattern variants has emerged in recent years, but has tended to focus on one or

a small number of patterns, analyze small or self-coded benchmarks and/or lack a DPSL

or corresponding DPVT [Stencel and Wegrzynowicz, 2008][Bayley and Zhu, 2010].

Design patterns impose different types of constraints that must be satisfied by conform­

ing implementations. The structural class patterns in the GoF catalogue require particular

irdieritance relations between classes, while the structural object patterns describe ways to

compose objects into structures that display particular properties. The Composite pattern,

for example, describes the creation of trees of composed objects, where a single object and

a composite can be treated uniformly by clients, as they expose the same interface. The

creational patterns aim to improve extensibility by ‘abstract[iiig] the instantiation process’,

and inii)ose invariants on the creation of objects. The Singleton pattern, for example, ‘en-

snre[s] that a class has only one instance, and provide[s] a global point of access to it’.

Finally, the behavioural patterns are concerned with the assignment of responsibilitms be­

tween objects. They involve patterns of communication between objects involving sequences

of method calls, but also relationships between the state of objects. The Memento pattern,

for example, stores a copy of an object’s internal state ‘so that the object can be restored

to this state later’. A DPSL that is capable of expressing each of the different types of

invariants imposed by design patterns enables better understanding and documentation, as

well as more accurate verification of design pattern implementations. Existing DPSLs suffer

from a lack of exi)res8iveness, imprecise semantics, the lack of an accompanying verification

tool, or the verification tool based on them performs only simple or sporadically-applied

program analyses.

Design])attern specification and verification can be used as part of either a forward or

reverse engineering use case. In a forward engineering use case, the developer of a piece of

code can mannally identify which actors are intended to play which roles in the specification.

A DPVT can then confirm that the pattern has been implemented correctly. In a reverse

engineering use case, a DPVT compares every class or group of associated classes to the

input specihcations. Unlike in a forward engineering use case, in reverse engineering a large

number of spurious instances can be identified that were never intended to be instances of

the pattern, esiiecially if the specification is vague. A large proportion of design pattern

verification tools (DPVTs) fall into the category of design pattern mining tools: tools that

do not have a corresponding DPSL and target reverse engineering focused on legacy code

understanding. These have hard-coded specifications of design patterns tliat suffer from

a number of drawbacks. Firstly, they are limited to the design pattern variants that the

tool developer has considered. Secondly, the tool developer’s specification of the pattern is

difficult to infer as it is hard-coded by the DPVT and is not always clearly documented.

The provision of a DPSL along with a DPVT that is capable of verifying code against

specifications written in the DPSL provides a means to specify patterns and variants not

considered by the DPSL/DPVT developers, docnment important design decisions with

precise specifications, and guard against architectural drift by enabling verification and

re-verification implememtations as they are extended or maintained.

1.3 Scope of the Thesis

A design pattern is a generic solution to a software design problem with a statc'd intent. A

design j)attern implementation or instance is the ajjplication of a pattern to a i)articnlar

design problem embodied in programming language code. Some stimctnral and behavioural

features of design patterns may be implemented in different ways while still satisfying the

design patterns intent. These features are trade-off points and their existence creates a

nnniber of valid design pattern variants. In this thesis, we define a design jrattern variant

as a solution, with an associated name, that chooses]nnticnlar alternatives at some trade­

off points, but may leave other choices open. The constraints imposed by all the valid

variants of a design pattern can be seen as defining a space of pattern implementations that

conform to these constraints. The space of all possible imj)lementations in a given language

that possess a structure and behaviour satisfying a design pattern’s intent is termed the

pattern’s code signature. Each DPSL and DPVT also j)rovide their own code signature that

approximates the true sigiiatnre of each jiattern it specihes or supports. A code signature

that is too permissive has the potential for false positives during verification, while a code

signature that is too strict has the potential for false negatives during verification.

This thesis focuses on specifying and verifying design patterns that are outlined in the

GoF catalogue [Gamma et ah, 1995]. This catalogue has proved to be very popular and

numerous documented instances of the patterns from this catalogue occur in many unrelated

code bodies [Kaiser, 2001| [Gamma and Beck, 2003]. Most DPSLs and DPVTs target the

GoF catalogue and few in fact address patterns not contained in this catalogue [Henzeroth

et ah, 2003][Stencel and Wegrzynowicz, 2008][Shi, 2007a].

As a number of prol)loms relating to software verification are nndecidable in general

[Landi, 1992][Ranialingam, 2000][Reps, 2000], it is not possible to design a tool that will

antomatically verify conformance or non-conformance correctly in all cases. Verification tool

developers have the choice to either require user input to direct the verihcation process,

such as in theorem i^roving, or introduce various incompletenesses (statements that are true

but cannot be proven) into the theory of the tool to guarantee termination without user

input. The former option requires the user to be proficient in the formal semantic basis of

the tool and methods of mathematical proof. The latter option is often preferred when the

target user of the tool is a software engineer or developer and the focus is more on code

understanding than on the number of provable statements. Though some software tools,

such as compilers that guarantee termination of their code optimization algorithms, are not

complete, they are sound, i.e., do not prove any statement to be true that is actually false.

They do this, for example, by abandoning optimizations that are not provable. We, along

with the vast majority of DPVTs, choose the latter option.

In order to give the work a feasible scope, a number of software constmcts that are

rhallenging to specify and verify have not been addressed. The two foremost among these

are concurrency and excejrtion handling. Concurrency complicates software verification as

it greatly expands the state space of the program under analysis by removing assum])tions

that may be made about sequential programs. There is a large body of work focused on

dealing with concurrency alone [Clarke et ah, 1986][Qadeer and Rehof, 2005] [Andrews et ah,

2004] and numerous state-of-the-art specification languages, forinalisms and tools are aimed

at sequential programs only [Parkinson and Bierman, 2008][Leavens et ah, 2007][Shi, 2007a].

Similarly, exception handling increases the state space of the program under analysis by

increasing the number of potential flows of control, and hence data, through the program.

Most DPVTs do not address exception handling [Shi, 2007a][Blewitt et ah, 2005].

1.4 Key Contributions of the Thesis

The first contribution of this thesis is a thorongh analysis of the GoF pattern catalogue

[Gamma et ah, 1995] that identified a set of thirteen design pattern invariant types that

are necessary to express the intent of design patterns precisely. We classify these invariant

types within five design pattern invariant categories: cardinality, deijendency, control flow,

object state and data structure. The capability to express this set of pattern elements can

be seen as a lecinirenient on any DPSL. The pattern invariant categories form part of a

classification framework for DPSLs and DPVTs.

The second contribution of this thesis is the classification of existing DPSLs and DPVTs

using our novel framework. Of the five invariant categories identihed, three were found to

have invariant types that are either not expressible or imprecisely e;xpressible in existing

languages, or not verifiable by existing tools. These categories are dependency, object state

and data structure. We identify specification and program analysis teclmicpies that are

suitable to express and verify the poorly-supported invariant types.

The third contribution of this thesis is the development of a DPSL called Alas, which

is capable of expressing precisely and concisely all of the design-pattern invariant types

identified. Alas is also capable of describing variants of design jratterns, each of which are

specified explicitly and combined in a disjunction that forms the specification of a given

pattern. The language is based on LfML 2.0 Class and Seciuence diagrams and OCL [OMG,

2009] with modified and extended syntax and semantics. LfML is the de facto standard

for graphical object-oriented software modelling and is widely taught and used in industry.

However, in its current form it is not suitable for design pattern specification for a number

of reasons. For example, L(' Gueunec et al. [2000] describes how UML is unsuitable for

the specification of cardinality invariants due to the binding semantics of LIML Templates.

Also, the semantics of some of the Combined Fragments introduced in LfML 2.0 have been

shown to be ambigvious [Lund and Stolen, 2000]. We clarify existing syntax as well as our

extensions using operational semantics.

The fourth contribution of this thesis is the development of AVT, which can compai’e

source code in the .Java programming language to Alas specifications and identify whether

the code conforms or does not conform to the specification. State-of-the-art DPVTs com­

pute the potential values of variables on the stack only, while the verihcatioii of object-state

and data-structure invariants recjuires an accurate model of the graphs of objects stored

on the runtime heap. We implement a static analysis known as shape analysis, novel in

the area of design pattern si)ecification and veriheation, to enable the verification of these

invariant types. We demonstrate in Chapter 6 that while it is not capable of verifying

all invariants within the insufficiently addressed invariant categories in general (due to the

inherent limitations of software verification discussed above) it is capable of verifying many

of the most common cases that occur in design-pattern implementations accurately.

The fifth contribution of this thesis is the creation a benchmark of identihed pattern

7

instances from tliree code bodies, for use in the evaluation of DPVTs. Desjrite numerous

authors advocating a shared benchmark of identified pattern instances in code bodies for

use by the community [Wegrzynowicz and Stencel, 20()9][Fulop et ah, 2008][Pettersson et ah,

2()()9][Arcelli et ah, 2008], the currently available benchmarks are inadequate for a number

of reasons. The pattern benchmarks where pattern instances are identified by manual

inspection of the source code identify a small number of instances. This is most likely

evidence of incomplete coverage of the code body, i.e., manual inspection that does not

cover all the classes in the code body. Automated analyses, where complete coverage is

more attainable, lack manual validation and often include large numbers of false positives.

Also, benchmarks are not always accompanied by complete and unambiguous specifications

of the patterns, making indeirendent corroboration of the results difficult. We aggregated

iuformation from two existing benchmarks: one manual [Gueheneuc, 2007] and one fully

automated [Shi, 2007b]. Including information from an automated benchmark provided

better coverage than existing manvial benchmarks without introducing a large number of

false positives because we performed manual code inspection on the instances identified

automatically. We identified instances not included in any of the benchmarks by performing

a keyword search based on variable naming conventions in design pattern implementations.

Also, to our knowledge, tliis is the oidy sizeable benchmark to include variants of patterns.

The code bodies selecte^d for inclusion in the Irenchmark were chosen for their widespread

and (incompletely) documented use of patterns. They are three of the bodies most com­

monly analyzed by the literature, had existing publicly available benchmarks and cover a

finite broad range of size in terms of number of classes and lines of code (LOC). This range

of code body sizes has been a priority in the design pattern verification literature [Tsantalis,

2()()9][Pettersson et ah, 2009]. Small extensions to the code bodies were made to exercise

more of the code signature of each pattern, increasing the generality of any results obtained

from an analysis of the benchmark.

The sixth and final contribution of this thesis is an evaluation of Alas and AVT on

the benchmark of identified pattern instances. Specifications of 13 of the 23 GoF pat­

terns in Alas involve invariants taken from the insufficiently-addressed invariant categories

identified, demonstrating the added expressiveness of the language. AVT is shown to ver­

ify instances of novel or insufficiently-addressed patterns and pattern roles. In particular,

we identify instances of the Prototype and Command pattern, and the Client role in the

Abstract Factory pattern. Properties of design pattern implementations that were pre-

8

vioiisly not expressible or verifiable are verifiefl t)y AVT. For example, we demonstrate

data-strnctnre invariants in the context of the mmierons instances of the Coniijosite and

Decorator patterns in the code bodies analyzed. By specifying and verifying design pat­

tern variants, we are able to identify valid pattern implementations not inclnded in existing

benchmarks, as well as distinguishing between variants indistinguishable by state-of-the-art

DPSLs.

1.5 Roadmap of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents a novel classification

framework for DPSLs and DPVTs and classifies existing approaches using the framework.

Chapter 3 describes the syntax and semantics of Alas, using examirles drawn from specifi­

cations of GoF design patterns. Chaj^ter 4 i)resents AVT. Both Chapters 3 and 4 provide

a rationale for the design decisions involved in creating the langnage and tool respectively.

Alas specifications and a benchmark based upon those specifications is given in Chapter 5.

The evaluation of AVT is provided in Chapter (i, inclnding an evaluation plan and its ratio­

nale. Finally, Chapter 7 presents specific and general conclusions of the thesis and outlines

potential future work.

Chapter 2

Design Pattern Specification and

Verification Classification

111 this chapter, we present a comjirehensive survey of the large body of work on specification

and verification of object-oriented design patterns. A thorough analysis of the widely-used

Gang of Four pattern catalogue yielded a nninber of invariant types essential to the precise

specification of design patterns. These invariant types are separated into five invariant

categories that provide the basis for a novel classification framework for design pattern

sjiecification languages and verification tools. We classify a large number of languages

and fools from the literature using our framework and identify invariant categories that

are poorly supported by the state-of-the-art. We identify the program analysis techniciues

reejuired to support the verification of the poorly-suiiported invariants. Also, we assess the

level of support in the literature for design pattern variant specification and verification.

2.1 Introduction

Before reviewing the large body of literature relating to the specification and verification of

design patterns, a thorough analysis of the GoF pattern catalogue [Gamma et at, 1995] was

performed, to identify a set of invariant categories and types that are sufficient to specify

the GoF patterns precisely. The capability to express this set of pattern invariants can

be seen as a recgiirement on any design pattern specification language. While the focus of

the analysis was on the i)attern’s intent, we address the specification of different variants

of the same pattern that share that common intent. The GoF catalogue was chosen for

its poiJularity, and because the vast majority of specifieation languages in the literature

10

focus on supporting eleiiieiits of these patterns. While the ichuitihc'd invariants were dev

rived from a single catalogue, it is expected that they are applicable to a wide variety of

object-oriented design patterns at a similar level of abstraction, covering numerous ai)])li-

cation domains. Some invariant types could be expanded or changed to sui^port language

concei)ts or properties that do not appear in the GoF catalogue, for example, threads or

different types of aggregation relationships, \\diile it is difficult for such a set of invariants

to be exhaustive, the set should be large enough to cai)ture the essential jrrojrerties of the

pattern, so that a specification can be created that will not be too vague and yield many

false positives during verification. For instance, a specification language that only allows

structural relations between classes to be expressed overlooks the behavioural invariants

important for precisely representing patterns, e.g., conditional branching in the Flyweight

and Singleton patterns.

Invariants are not the only elements rc'quired to specify design patterns: the recpiired

elements identified are categorized as either syntactic, invariant or conceptual elements.

Syntactic elements represent elements of OOPL syntax. A conceptual element is an ab­

stract concept that leaves no consistent signature on the application code, and is thus dif­

ficult or impossible to verify by automated analysis. For exainjile, the distinction between

intrinsic and extrinsic state in the context of the Flyweight pattern seems to defy concise

formalization. An invariant element describes some proi)erty that is always true in a correct

implementation of a ijattern. Invariant elements are further sub-divided into cardinality,

(inter-object) dependency, control-flow, data-structure and object-state invariants.

The set of invariant elements forms the first part of a classihcation framework for de­

sign pattern specification and verification approaches that also addresses verification issues

such as the conformance relation supported (i.e. what is the recjuired relation between

the specification and a satisfying implementation), how instances arc classified as either

conforming or non-conforming, and the program analysis type. The conformance relation

is concerned especially with what behaviour can be inter-leaved with pattern behaviour in

a correct pattern implementation. Program analysis is split into three types: structure-

only, dynamic and static. Structure-only ignoreis behavioural properties and analyses static

structure alone. Dynamic analysis involves the program being executed with a number

of different inputs. Static analysis builds an abstract model of the iJotential control and

data-flow in a program at compile-time. Finally, program analysis techniciues that can ad­

dress the poorly-supported invariant categories and types are discussed within the context

If

of related work classification.

The reniaiiider of the rhapter is organized as follows: Section 2.2 ontlines the scope of

the review, inclnding a list of langnages and tools classified. Section 2.3 discusses some

high-level issues regarding design pattern si)ecification. Sections 2.4 and 2.5 present the

language and tool sections of the classification respectively.

2.2 Scope and related work

^^’e begin this section by briefly introducing some terminology used throughout this review

and classification. The reviewed langnages are referred to as design pattern specification

languages (DPSLs). A pattern description in one of these languages is referred to as a

pattern specification. Patterns are discussed at three levels: the pattern, its variants and its

implementations. Pattern and pattern variant names are capitalized throughout the text.

A i)attern (e.g. Proxy) defines a collection of incomplete (or generic) classes and objects

with associated invariants that allow many jiossible variants or realizations. A variant of

a pattern fills gaps left at the generic level, by choosing between trade-offs and oj^tional

features in the generic jrattern, as well as by potentially adding its own invariants. The GoF

book presents multiple variants of patterns to be used in different situations. The Observer

IJattern, for example, can be realized as a Push-based or Pnll-based variant, depending on

whether the Subject object provides the state that was updated to the Observer pro-actively

or reactively after an update notification. Hofer describes three variants of the Visitor

I)attern: a Visitor-Controlled, Structure-Controlled and Direct Visitor variant, each with

different flows of control between the Visitor and an object structure. Pattern variants are

independent of source code, and may be described informally in plain text or formally, using

a specification language. A pattern implementation or instance is the pattern expressed in

OOPL code.

Pattern specifications are said to dictate a number of roles that imist be filled by con­

forming imjrlementations. These roles may refer to, for example, classes, objects or methods.

The entities in the implementation that fulfill these roles are referred to as actors. An event

is any computational step that affects the abstract state (control flow or data) of the pro­

gram, and will be referred to when discussing j^attern behaviour. We define Invariant types

as language elements that place constraints on an implementation of an object-oriented

design pattern. Invariants or clauses are formed by instantiating some invariant type and

12

refer to one or a nuniber of OOPL eonstruets. Invariants are combined using logical con­

junction or disjunction, to form a pattern specification. Classification dimensions will be

illustrated throughout the chapter using tree diagrams. Each of these diagrams contains

mutually exclusive alteumatives, i.e., oidy one path may be selected from the root to the leaf

of the tree. For example, a tool may implement both a static and a dynamic analysis, but

any particular program analysis in isolation can be classihed as either static or dynamic.

DPSLs may be distinguished from other specification languages, such as Architecture

Description Languages (ADLs) [Garlan and Shaw, 1994], Iry their level of granularity: DP­

SLs may describe interactions at the object level, while ADLs address software components

and connectors. ADLs describe global invariants, which must be satisfied by all the com-

ironents of a program: in the Pipe and Filter architectural style, all components are either

Pipes or Filters. DPSLs describe local invariants, which need only to be satished by one

or a small nuniber of classes in a program [Eden and Kazinan, 2003]. DPSLs are capa­

ble of representing some of the syntax of a programming language, but a DPSL is not a

programming language. The objects, attributes and methods specified in DPSLs are place­

holders or role specihers for actual programming language entities. For example, in the

Observer pattern, the method role attach (Observer) may be hik'd by any method that

accepts an Observer object as a parameter and adds it to a list of objects that subseciuently

receives notihcations of state updates. The actor that hlls this role could have any name

(c.g., attachObserver or addSubscriber). A design-pattern siiecihcation omits the details

that are not relevant to the pattern, for example, it may specify that a method signature

must have a particular return type and parameter list, but omit the entire method body.

A design-pattern siiecihcation abstractly describes a set of possible implementations, that

each conform to the design pattern. To be considered a DPSL by our classihcation frame­

work, an approach must address the higher level of abstraction of design patterns relative

to concrete classes and methods by irroviding some means of binding or linking entities

at these two levels of abstraction. Binding roles to actors is dealt with in more detail in

Section 2.5.7

There are a large number of apirroaches that support one or a number of the following

invariant types (defined in detail in later sections): structural cardinality, interface depen­

dency, setpience and method calls. \\'e include in our classification of related work only

languages and tools that support some of the other invariant types (they may also support

some of the types listed above), to limit the scope and length of the review. Approaches

13

excluded by these criteria will still be discussed, where they provide a useful example of

some language or tool feature. As numerous interesting pattern verification ajjproaches do

not have a corresponding DPSL or are excluded by our first criterion, verification tools

that support the most powerful conformance relation are also included. Ai)proaches which

meet the first criterion are DisCo [Mikkonen, 1998], OC/VDM+4- [Lano et ah, 1996], BPSL

jTaibi and Ngo, 2003], Lander and Kent [1998], Le Guennec et al. [2000], LePUS [Eden,

2008], RBML [France et ah, 2004], DPML [Mapelsden et ah, 2002], FU.IABA [Wendehahs

and Orso, 2006], Dong et ah [2007], GEBNF [Bayley and Zhu, 2010], DVP [Knudsen et ah,

2007], Hofer [2009], Slietty and Menezes [2011], Ammour et ah [2005] and Contracts [Helm

et ah, 1990]. Verification tools that meet the second criterion are [Stencel and We-

grzynowicz, 2008], SanD [Heuzeroth et ah, 2003], PINOT [Shi, 2007a], Hedgehog [Blewitt

et ah, 2005], Columbus [Ferenc et ah, 2005], PEC [Lovatt et ah, 2005], Peng et ah [2008],

DeMIMA [Gueheneuc and Antoniol, 2008] and MoDeC [Ng et ah, 2010]. Some approaches

are relevant to, and are discussed in, both the specification and verihcation sections, while

some appear in only one section. Also, some approaches are based upon existing formal

languages that are more exi)ressive than the subset used to define a DPSL by the reviewed

ai)i)roach. These formal languages are not considered in their fnll generality, but evaluated

according to their application to the specific problem of design-pattern specification.

Tw'o approaches included in the DPVT section only (PINOT [Shi, 2007a] and Hedgehog

[Blewitt et ah, 2005]) have an associated specification language. Both specification lan­

guages j)rovide so])histicated composite invariants as single predicates: for example, lazy

instantiation. Snch predicates require that behavionr snch as selection and properties such

as aliasing must be verified, but do not i)rovidc the means to specify these invariants in

isolation. According to our classification framework, both tools are more expressive than

their associated specification language, and the languages have been excluded for the sake

of Irrevity. Another classification approach would be to give each language and their asso­

ciated tools equivalent expressiveness: this could have been done without altering any of

the major findings of the review.

Some approaches included in the classification are actually the combination of a number

of publications that build on each other. This explains why these approaches occasionally

have two or more nmtually-exclnsive classifications. This is especially true of FU.TABA,

which is the combined work of Wendehals [2004] and later von Detten [2011].

14

2.2.1 Other DPSL and DPVT reviews in tlie literature

Dong et al. [2009] provide a classification frainework for DPVTs only, with a focus on

a reverse engineering use case. We include some of the classification dimensions of their

framework in the framework provided in this chapter. A number of DPVTs included in their

review are also included in onr review (though neither review is a super-.set of the other, as

we exclude numerous tools they include by applying onr inclusion criteria). Novel features of

our classification framework and review relative to Dong et al. are the inclusion of DPSLs

and a more detailed classification dimension regarding the expressiveness of approacluis

(namely, our invariant categories and types). We also include more recent work that has

emerged since the publication of Dong et al.

Rasool et al. [2011] describe a direct performance comparison between six DPVTs,

focusing on the nnmber of pattern instances found by each tool in a number of commordy-

analyzed bodies of code such as .IHotDraw and .TUnit. \W do not directly ccmijmre the

analysis results of different DPVTs, as different DPVTs are based upon different pattern

speciheations (more detail is provided on this issue in Chapter 5). ^^’e review DPSL/DPVT

evaluation methodologies in Chapters 5 and 6, S(‘ction 5.1. Baroni et al. [2003] revi(;w

six DPSLs without an extensive classification framework. As it was written in 2003 and

addresses a field of research that is still active, it retpiires updating. Nomflieless, it is a good

source of information on the earlier apj)roaches in this field. Shi [2007a] provides a l)rief

criticjne of 13 verification tools including a discussion of the GoF patterns and OOPLs they

suj)j)ort. Taibi’s (ed.) book [2008] was useful to this review, as it collects more up-to-date

information on many of the foremost approaches in the area, though it makes no attempt

at a comparison or classification of language or tools. Eden’s website [2012] also contains

links to many useful resources in the area of design-pattern specification and verification.

2.3 Abstraction Levels in Design Pattern Specification

Approaches to design-pattern specification may be sej^arated into two categories based on

the genericity of the specifications that they support. One category advocates the use

of one generic specification to describe all possible variants of a ijattern, while the other

advocates the precise specification of each pattern variant (see Figure 2.2). The advantages

and disadvantages of each approach are discussed in Section 2.3.1 and 2.3.2 respectively.

15

2.3.1 Generic pattern specification

One key decision when developing a language for describing design patterns is the level of

abstraction with which to represent the pattern. Many of the reviewed approaches seek to

capture a pattern in its most generic form, which has been called the patterns ‘essence’ or

‘leitmotif’ [Eden, 2001] [Mak et ah, 2004]. A leitmotif includes only invariants that are com­

mon to all valid inn)lenientations of a particular pattern. Apjjioaches that favour generic

specifications tend to specify structure only, and ignore behaviour completely. While the

distinguishing features of pattern variants are more likely to be seen clearly at the level

of behaviour, numerous pattern variants also differ in their structure. Thus, specifying

structure only is not a complete solution to the problem of specifying pattern variants. The

approaches that refer to a pattern ‘leitmotif’ [Eden, 2001|[Mak et ah, 2004][Le Gnennec

et ah, 2000] only specify pattern structure using, for example, UML Class diagrams. The

problem with specifying only the static structure is that it completely overlooks the be­

haviour required to satisfy the pattern’s intent. The intent of the Singleton pattern, for

example, is to ensure that only one instance of a particular class is ever created. This

dictates that any method that returns an instance of the Singleton always returns the same

object, which can only be verified by analyzing the method’s behaviour.

Structural descriptions are not suitable for reverse engineering (a common use case

for DPSLs [Shi, 2007a] [Le Guennec et ah, 2000][Heuzeroth et ah, 2003]). Using only a

structural description, it is difficult to distinguish structurally-similar patterns such as the

State and Strategy])atterns. Even when behavionral invariants are included at the generic

pattern level, the specification may still be too vague to be very usefvd during verification.

In ovir analysis of the GoF State pattern, for example, only two invariants (an inheritance

relationship and a method call) were found to be common to all variants of the State pattern,

meaning that many class definitions in a body of code may conform to this specification that

were not intended instances of the pattern. The GoF catalogue defines two major variants

of the State pattern, one where objects of State subclasses instantiate each other, and one

where a Gontext object that holds a reference to a State instantiates State subclasses. Once

a variant is formed, by choosing which role instantiates State subclasses, the specification

captures much more of the original designer’s intent and is thus much better at uncovering

implementation errors.

16

2.3.2 Variant-specific pattern specification

Ill many cases, it is useful to have a variant-specific description of a pattern, with a de­

tailed behavioural specification that can be compared to the source code to verify that

the designer’s intent is met by an implementation. This can help to avoid mistakes dur­

ing initial development, as well as architectural drift during iiiaintenance. For example, a

Virtual Image Proxy should only create the image object after the draw method has been

called by the dociiment editor. This invariant is what is important to the develojiers of

the docnment editor. Both Hedgehog and D'^ verify multiple pattern variants (D* verifies

the Eager Initialization, Lazy Initialization, Delegated Construction and Liniiton variants

of the Singleton pattern) to reduce the occurrence of false jiositives described above, but

much of the analysis is hard-coded. This leads to the possibility of false negatives, when

variants not thought of by the tool developer occur in the analyzed code. Anticipating all

possible variants of a pattern when developing a verification tool is difficult. For this reason,

allowing the user to specify theii' own variants is preferable to hard-coding. However, user-

created specifications may be more computationally expensive to verify. For the reasons

discussed above, we believe that both generic and variant-specific pattern specifications can

be useful, depending on their intended use.

Pattern variants can be specified all together as a single pattern specification or can

be specified separately in multiple pattern variant specifications. An advantage of having

different specifications for each variant is that it limits the visual and logical complexity of a

specification, by avoiding the need to combine the variant-specific clauses using disjunction.

When variants of the same pattern are specified separately, however, there is no distinction

between a pattern and a pattern variant: the specification of both involves creating a new

and independent set of invariants. Combining all variants in a single sirecification makes

the points of variability between variants more explicit and maintains a close relationship

between all the variants of the same pattern. Having a single sjjecification may also speed

up verification, where some complicated behaviour can be verified once for all the variants

that share the behaviour.

To make pattern variants explicit in specifications, it is necessary to have some facility

for naming variants and associating a name with each alternative at a {joint of variability.

This is illustrated in Figure 2.1 taken from Bayley and Zhn [2010], who describe two variants:

Single factory method and Multiple factory methods, a{)plying some clauses to both

variants and having other clauses differ for each variant. The IN CASE OF {jhrase identifies

17

Static Conditions

1. Depends on Alternatives of Components Declaration 2;
(a) In case of Single facton’ method. Alternatives:

i. Stronger condition: factoiyMcthod.isAbstract
ii. Weaker condition: factory Method.isLcaf

(b) In case of Multiple factory methods. Alternatives:
i. A: V/w e factory Methods ■ {fm.isAbstract)

ii. B: V/;/i e facton Methods ■ {-•fiii.isLcaf)
iii. C: V/»i e factory Methods ■ {^ftu.isLcaf V frn.isAbstract)

1. for each creator subclass there is one product subclass

VC e stibsiCrcator) ■ 3!P e stibsiProduct\
furThennore. denoting witness P by /(C), then / is a total bijection.

Fig. 2.1: Bayley and Zhu’s [2010] specification of the Abstract Factory pattern, including

two variants: Single factory method and Multiple factory methods

each alternative at a variation point clearly, and prefixes the variant name associated with

the alternative.

We classify approaches according to wdiether they allow for all variants to be included

in a combined specification or whether they reejnire a separate specification for each pattern

variant (See Figure 2.2). We also classify approaches based on whether they are ca])able of

associating the explicit name of a variant with an alternative at a variation {)oint, or whether

variants are anonymous. GEBNF [Bayley and Zhn, 2010] is in fact the only approach

included in this classification that is capable of providing a combined specification for all

variants and associating a variant name with an alternative at a variation point, though it

only supports structural variation between variants. Hofer [2009] specifies three variants of

the Visitor pattern separately using an extension to Spec#. verifies multiple variants of

the Singleton pattern, as stated above. Overall, the specification and verification of design

pattern variants is poorly supported in the literature, in particular, the specification of

variants that differ in terms of behaviour.

2.4 Specification of Design Patterns

In order to i)recisely specify object-oriented design patterns, a language is required that

can represent all the object-oriented progTamming language constructs referred to by the

pattern as well as constraints on object interconnection and interaction. The parts that

can be combined to create a design-pattern specification are referred to as elements. The

18

Leitmotif

Design Pattern
Specification
Languages

-—I Detail level I—lp=:z:zr- - - - - - -
-----------------------^ -I Variant-specific)■

(——^--------------- I Separate specification f
— Variant specification M ..-.....................—

' - J Combined specification

-—I Variant naming J—(Explicit name }

Anonymous)•

I Syntactic ■

Design pattern elements j—| invariant ^

Conceptual

Spec -> Spec J-
'—[Languages compared]—(spec •> ooml [

Spec -> OOPL j

-j Closed

Conformance relation]—(One-io-one (

Refinement (

Fig. 2.2: DPSL classification framework dimensions

19

elements of design-pattern si)ecifieations that refer to {)rogramniing language coiistnicts,

e.g., inheritance, method signatures, and lists, are termed syntactic elements. Constraints

on the connection and interaction of stnictnral and behavioural entities, as well as the

allowable flows of control within a progTam, are termed invariant elements. Finally, pattern

elements that have a specific meaning for developers, but are difficult or impossible to

automatically identify in OOPL source code are termed conceptual elements (see Figure 2.2).

Each of these three element categories are dealt with in turn below. The elements identified

by this classihcation were extracted from the GoF book [Gamma et ah, 1995], as this is

the catalogue supported by all the reviewed specification languages. We generalize these

elements in some cases, so they may be applied to other object-oriented design patterns.

The section ends with a brief discussion of specification language syntax. This section forms

the specihcation half of our classification framework.

2.4.1 Syntactic elements

D(!sign jjatterns can represent any reusable solution to a commonly occurring design i)rob-

lem. As such, they could l)e expected to contain any language construct of the class of

programming language within which they are applicable. As the GoF catalogue [Gamma

et ah, 1995] focused on demonstrating how to use object-orientation to its full potential,

however, it focuses on a small subset of constructs (related to class relationships, object

composition and interaction) and how they can be used to create reusable and extensible

software designs. Figure 2.3 lists the syntactic elements that we discovered in the 23 pat­

terns catalogued in the GoF book. Syntactic elements that occur less frequently in the

GoF catalogue have a list of patterns where they occur in square brackets after their name.

Syntactic elements are divided into two categories: structural syntactic elements and he-

luivioural syntactic elements. Structural syntactic elements are visible at the interface level

(or form part of the structural relationship between classes, e.g., references and inheri­

tance), and are illustrated in the Structure section of each design-pattern description in

the GoF catalogue. Behavioural syntactic elements are visible only at the implementation

level, and arc sometimes shown in informal notes in the Structure section and described

in more detail, for example, in the Sample Code section of the GoF catalogue. While the

GoF catalogue used C-t-+ and Smalltalk as their implementation languages, it can be seen

that the syntactic elements listed are also to be found in currently-popular object-oriented

languages such as .Tava and C#.

20

Structural syntactic elements

• 1. Class

• 2. Inheritance

• 3. Method signature

• 4. References (including reference to self) [Singleton, Visitor, Prototype]

• 5. Access modifiers

• (i. Attributes

• 7, Abstract

• Behavioural syntactic elements

» 8. Object

• 9. Object creation

• 10. Conditional branches (including boolean) [Singleton, Flyweight]

• 11. Loops [Observer, Iterator]

• 12. Collections (adding to, removing from and iteration) [Observer, Composite, In­

terpreter, Iterator]

• 13. Method invocation

• 14. Assignment (especially assignment of an instance of a concrete subclass to an

abstract superclass variable) [Bridge, State, Strategy]

Fig. 2.3: Syntactic elements of GoF design patterns

21

The only clement that requires more explanation is the final one. The intent of mimer-

ons patterns is to allow clients not to prematurely commit to a particnlar implementation.

This manifests itself in code as an assignment of an instance of a concrete snbclass to an

abstract superclass. It is also worth noting the common syntactic elements or concepts of

OOPLs not within scope of GoF design patterns. These include: arithmetic operations, ex­

ception handling, package import, casting and concurrency. Operators overlooked include

algebraic operators and bitwise operators. The omission of these concepts simplifies the

verification problem, though some features may need to be handled to provide sound veri­

fication nonetheless. Multiple irdieritance is only required for the Class Adapter variation

of the Adapter pattern, and, as it is not supported in more recent popular object-oriented

languages, such as .lava and C#, it has been omitted from the list. To our knowledge, it is

only supported by DisCo [Mikkonen, 1998]

Structural syntactic elements (elements 1-7) receive more widespread support than be-

havoural syntactic elements (See Table 2.1). Only OC/VDM-I--I- [Lano et ah, 1996], RBML

[France et ah, 2004] and FU.IABA [Wendehals and Orso, 2006] provide support for the

majority of syntactic pattern elements. Conditional branches, loops and assignment state­

ments arc the most poorly supported elements. Approaches that are based ui)on temporal

logic (e.g. DisCo [Mikkonen, 1998]) perform poorly in this dimension of the classification.

The reason for this is that temporal logic-based approaches only describe relations between

a system at different times in terms of logic, and not in terms of programming language con­

structs. An additional mapping stage is required in these approaches to connect temporal

logic operators and operands, and the progTamming language code constructs that realizes

them. DPSLs have been classified here according to only the syntactic elements described

in the literature, which may not include all the syntax supported by the languages.

2.4.2 Invariant elements

A pattern implies one or a number of invariants, each of which is an instance of a particular

invariant element or type. A pattern invariant is defined as something that is always true

in a correct implementation of a pattern. Key invariants can often be identified from

a description of the pattern’s intent, for example, ‘separate the construction of a complex

object from its representation’ or ‘Ensure a class only has one instance’ [Gamma et ah, 1995].

Other important invariants become clear from a careful reading of the remaining sections

of a pattern description in a catalogue. The GoF book also discusses imttern realization

22

c/5
CL,
Q

C/D
C/D
ci
U

a;
0
a
03

0)

o3
.!>

C/D

0

<V

C/D
OP
0
53

cu

C/D

CD
S

0

C/D
C/D
OD
0
0

<:

(Tj<v
'3

:2

<

0
o3
1m

■+-»
C/D

C

-4-'

q;
3?

c

.2

a;

0

0
0)
S’

0

C/D
q;

'o
SH
cd

2
"5

.2

0
u

C/D
a
0
0

hJ

C/D

.2

0

C/D

"3

0

0
-4-'
ID

'stH

2

3

.2P
’3
(n
<

DisCo V y V X V X y X X X X v/ X

OC/VDM++ V v/ ^/ v' V \/ y v/ y V %/ v/ V
BPSL V v V V V V n/ V X V V V X

Lauder & Kent V V X V V V v' X V X X X y X

Le Gtieiiiiec et al. V V X V V V X X X X X V X X

L(>PUS;? V V X V X X y X v/ X X X X

RBML V V X V X V y V V' X

DPML V V v/ V v/ n/ v X X X X X X X

FU.IABA V V V \/ v/ X V X V n/

Dong et al. V X X X X y X X X X X X X X

GEBNF v/ v/ v/ y y V v/ V X X X y X

DVP V y X V X y X X V X v' X

Hofer V V V V y X X X X X v X

Shetty & Meiiezes V V V V y X X X X X v/ X

Ammonr et al. V V V V V V X X X X X X X

Gontracts V V V V V V X V X X X V V X

Table 2.1:

2:5

alternatives, where each realization may offer a different trade-off between non-functional

projrerties. In a pattern realization, a choice must be made between each alternative, and

regarding each open issue, and this choice, when made, should be captured in an invariant,

if it is important to the correct functioning of the system. For example, in the context of the

State pattern, it is necessary to decide whether the Context or the State subclasses define the

state transitions, and the existence of this necessity means there are at least two significant

variants of the State pattern, each with different non-functional properties. This review

includes all the key invariant types, along with those regarding realization alternatives,

identified by the authors. Each of the invariants listed contributes to providing a precise

formal description of a design pattern, with the potential to aid program understanding as

well as automated verification.

This section separates the 13 identifi(;d invariant types into five categories and describes

each category in turn while providing examples. A description of the each invariant type,

along with concrete exami)les, are given below in Figures 2.4, 2.5 and 2.6. Invariant cat­

egories may depend upon each other. In particular, cardinality invariants often refer to

dei)endencies between structural entities and both object-state and data-structure invari­

ants can be applied to different stages of the control-flow. Structural entities in the following

discussion are either classes or methods. Behavioural entities are typically objects, but may

also be control-flow events. Invariants are also classified according to their dynamism. An

invariant is behavioural if its truth value depends upon the state of the computation at a

I)articular i)oint. Structural invariants can be verified independently of the computational

state. Some invariants have been taken directly from the literature, while others have been

generalized. To the knowledge of the authors, invariants 2, 11, 12 and 13 have not previously

been identified (in the generality given here) in the context of design-pattern specification

and verification.

2.4.2.1 Dependency invariants

Dependency invariants are defined as invariants that place some constraint on the level of

coupling allowed between classes. As one of the main focuses of the GoF catalogue is on

reducing the coupling between classes and objects, dependency invariants are key to cap­

turing a pattern’s intent. The key invariant of many of the GoF patterns can be exi)ressed

informally as ‘class A shouldn’t need to have knowledge of class B’. More specifically, in

the Fagade and Mediator patterns, it is important that instances of some class or set of

24

• Dependency invariants:

• 1. Interface dependency: A stnictural entity depends, or does not dei)end, on the

interface of another strnctnral entity.

Positive example: (Proxy) A Proxy has a reference to a RealSnbject.

Negative example: (Mediator) No Colleague has a direct reference to any other Col­

league.

• 2. Implementation dependency: A structural entity commits, or does not

commit, to a particular implementation of a class.

Negative exami)le 1: (Abstract Factory) A Client does not initialize a ConcreteProd-

uct directly, instead it calls a Factory Method.

Negative examirle 2: (Command) An Invoker does not initialize a ConcreteCommand.

• Cardinality invariants:

• 3. Universality and Existence: There is a relationship between separate sets of

structural or behavioural entities.

Structural example: (Abstract Factory) There must be one Factory Method in each

ConcreteFactory for each AbstractProduct class.

• 4. Uniqueness: An element of a set of structural or behavioural entities performs a

unicpie role in that set.

Behavioural example: (Visitor) Each accept method in each ConcreteElement must

call a unique member of the set of visit methods in a ConcreteVisitor class.

Fig. 2.4: Invariant categories and types: Part 1: Dependency and cardinality invariants

25

• Control-flow invariants:

• 5. Sequence: An event is always followed by another event.

Example: (Template Method) The primitiveOperation methods are called in a par­

ticular order in the templateMethod.

• 6. Selection: An event occurs if some condition is satisfied, or a choice is made

between mutually-exclusive events.

Example: (CoR) A ConcreteHandler’s liandleRequest method should either handle a

reciuest or forward it to a successor.

• 7. Iteration: An event occurs repeatedly, often once for each element in some set of

l)ehavioural entities.

Example: (Observer) A Subject’s notify method calls the update method on all Ob­

server objects in its list of Observers.

• 8. Method call: A method calls another method.

Example: (Adapter) The Adapter’s request method calls the Adaptee’s specificRe-

cjuest method.

Fig. 2.5: Invariant categories and types: Part 2: Control-flow invariants

26

• Object-state invariants:

• 9. Basic state: An object is in a particular basic state (not initialized, initialized,

marked for deletion).

Example: (Singleton) If a reference variable that is intended to point to the single

instance of the Singleton class is null when the Singleton’s getlnstance method is

called, a new instance of the Singleton is created and assigned to the reference varial)le.

• 10. Aliasing: The same object is involved in a number of events, or two reference

variables are aliases of each other.

Example: (Factory Method) The ConcreteProdnct object initialized in the Factory

Method is the same object that is returned by the Factory Method.

• 11. Copying: One object is a ‘deep cojry’ of another.

Example: (Memento) A Memento object is a deep copy of the original object, so

that the original can be manipulated without affecting the Memento.

• Data-structure invariants:

• 12. Object position: An object (of a particular tyj)e) is or is not in a collection, or

is at a particular position within a collection.

Example: (Observer) A Subject’s attach) Observer) method adds the Observer object

argument to its list of Observers.

• 13. Shape: A data-structure has a particular shape, or has an object of a particular

type at a particular position.

Example: (Composite) A Composite object structure is free from cycles, and each

object is reachable via only one path (i.e., the structure is also free from sharing).

Example: (Decorator) A chain of Decorator objects is terminated by a ConcreteCom-

ponent object.

Fig. 2.6: Invariant categories and types: Part 3: Object-state and data-structure invariants

27

classes do not hold a direct reference to instances of some other set of classes. These are

examples of interface dependency invariants, where the holding or not holding of a refer­

ence is important. A more snbtle recpiirement that occurs in many patterns including the

Abstract Facd.ory and Bridge patterns dictates that the holder of a reference to an object

(Abstraction in Bridge, Client in Abstract Factory) must not initialize the object itself but

must delegate the initialization of the object to, for example, a Factory object. These are

instances of implementation dependency invariants, where a client should not commit to a

particular subclass by calling the constructor directly. This distinction allows fine-grained

statements about inter-class dependency to be made. Invariants that require a dependency

to exist are termed positive dependency invariants, while invariants that forbid particular

dependencies from existing are termed negative dependency invariants.

^^dnle a number of approaches support interface dependency invariants, few make the

distinction between interface and implementation dependency (see Table 2.2). Contracts

and FU.TABA support a restricted (positive) form of interface dependency invariants (Ap­

proaches sup])orting positive dependency invariants only have a P in parentheses in their

deiKUidency column in Table 2.2). It is possible to specify that a class references or calls an-

oth(U' claas, but not that a cla^s should not reference another class. Numerous ai^proaches,

including LePUS and RBML support specification of restricted interface and imi>lementa-

tion dejiendency. Lc'PUS, for exami)le, has a si)ecific ‘creates’ relation, to specify that a

class has the responsibility of instantiating another class. RBML can specify direct calls

to constructors in its interaction diagrams. Finally, BPSL supports all dependency invari­

ants in their full generality, with ‘Reference-to-one’ and ‘Creation’ relations and a logical

negation operator.

Annnour et al. [2005] clearly has the intention of describing the absence of an implemen­

tation dependency with their hiddenSubclasses predicate, which states that a class does

not ‘access’ the set of all subclasses of some class. However, accessing is defined in terms

of any use of the name of the class within the other classes’s definition, e.g., a variable, a

cast, a constructor call, and this is their only form of dependency. For this reason, they

cannot distinguish between interface and impleinentation dependency.

2.4.2.2 Cardinality invariants

Invariants in this category place constraints on the relationship between sets of entities, or

elements within a set of entities. Sets are a natural way to describe groups of entities (classes

28

Jc/1
0,
Q

OG

a<v
Q

02
o

o
'o
-M

o
O

q;
"S
CO
o<uo
o

9
O

CO
CC
Q

DisCo All (P) Univ Aliasing -

OC/VDM++ All (P) - All Aliasing -

BPSL All - Sequence

and choice

Aliasing -

Lander & Kent All (P) - Sequence

and calls

- -

Le Gnennec et al. - All (S) Basic state -

LePUS3 All (P) Univ (S) - - -

RBML All (P) Univ (S) Basic - -

DPML All (P) - Sequence

and calls

- -

FU.TABA Interface (P) Secinence

and itera­

tion

Dong et al. - - All Aliasing -

GEBNF All (P) All Sequence

and calls

- -

DVP - - All Aliasing -

Hofer - Univ Calls Aliasing -

Shetty & Menezes Interface (P) Univ Calls - -

Aininour et al. All (P) - - - -

Contracts Interface (P) - Sequence

and calls

Aliasing Object

position

Table 2.2: Classification of the support of each DPSL for each of the invariant types

29

or iiiethods in this case) that share a particular characteristic, and will be used throughout

this thesis. Examples of sets in pattern specifications include the set of all classes that

inherit from AbstractFactory, the set of all classes that initialize a Concreteimplementor

(Bridge) and the set of Factory Methods. An example of a cardinality invariant from the

Abstract Factory pattern, is that the number of Factory Methods in each ConcreteFactory

should be ecpial to the number of AbstractProduct classes. Taking an instance from the GoF

catalogue, a MotifWidgetFactory must be capable of creating (have one Factory Method

for) all the concrete Motif widgets that inherit from an AbstractProduct, e.g., MotifWindow
and MotifScrollBar.

Cardinality invariants received a lot of attention in the earlier literature on design

pattern specification. DPSLs that are based on set semantics [Le Guennec et ah, 2000][Mak

et ah, 2004][Eden, 2001] [Mapelsden et ah, 2002], or first-order logic, [Bayley and Zhu,

2010][Shetty and Menezes, 2011] as expected, handle cardinality invariants well (Table 2.2).

Figure 2.7 from Mak et al. shows their specification of the Visitor pattern. Pattern roles are

modelled using FJML ClassifierRoles (e.g., /Visitor, /AcceptOp), which may be filled by

classes, interfaces or methods. ‘‘The number at the right upper corner of each ClassifierRole

denotes the number of its instances in one pattern instance" [Mak et ah, 2004]. The

specification states that for every concrete Element class, there needs to be a Visit-
Element method that is capable of ‘visiting’ that Element, i.e., in any instance of the

Visitor pattern, there is n VisitElements and n Elements. If there is only one Concrete-
Visitor, there will be n VisitConcreteElement ClassifierRole instances. FIcrwever, every

new ConcreteVisitor that is added must be capable of visiting every concrete Element,
i.e., it must implement every VisitElement operation. If the number of ConcreteVisitors
is denoted by m, then the rccpiired number of VisitConcreteElements in the inheritance

hierarchy must ecjual m x n.

Most approaches that specify cardinality invariants (some of them excluded from this

classification) focus on strnctural cardinality (constraints on sets of structural roles), but

a few also specify behavioural cardinality (constraints on sets of entities performing some

behaviour). Slietty and Menezes, as well as Flofer, specify that every element of some set of

methods should call some element of another set of methods. Technically, both can specify

uniciueness constraints, as they use first-order logic, but neither approach demonstrates this

capability. GEBNF is capable of specifying both structural and behavioural instances of

both cardinality invariant types. In Table 2.2, and Universality and Existence is abbreviated

;io

m
/Conciete Visitor: Class

1
/Client: Classifier

«associate_l»

mxn
/VisitConcreteElement:

Method

m
«tealize» «impletemenl»

<<;associate-ooe»

/ObjectStructure:'^
Class

«asscciale’»

-5>| /Visitor; Class,Interface

«ar£ument»

1
-S') /AcceptOp: Operation

1
/Element: Class,Interface

<5<tealize>>

jil
> /VisitElement; Operation

<-:invoke»

«rnipletement»
/Acceptlmpl: Method

-------------- ^---------------

/ConcreteElement: Class

Fig. 2.7: The specification of the Visitor pattern given in Mak et al. [2004]

to Univ.

2.4.2.3 Control-flow invariants

Control-How invariants are defined as invariants that place constraints on the control-How in

a pattern. The four types of Hows required are sequencing, selection, iteration and method

calls. In pattern specifications, a particular action, such as a method call, may be specifirrd

to occur before another {sequencing), a choice between alternative actions might be made

{selection), or a particular action should be performed repeatedly {iteration). While the

static elements of design patterns are represented by Class diagrams in the GoF book,

the control How (especially important in the behavioural patterns of the GoF catalogue) is

represented by interaction diagrams.

The Strategy and Template Method patterns define a sequence of events within a single

method, while the Observer and Visitor patterns are characterized by fixed inter-object

protocols, i.e., sequences of events spanning multiple methods. In the Observer pattern,

a call to the Subject’s setState method should always be followed by a call to its notify

method, which in turn should call the update method of all attached Observers. Depending

on whether the pattern implementation follows the Push or Pull variant, each (Observer may

then call the Subject back, to acquire the necessary state information. The Visitor pattern

31

Exists(Flyweight[i]) A GetFlyweight(client, i) Return(Flyweight[i])

'Exists (Flyweight [i]) A GetFlyweight (client, i) —>■ Create (Flyweight [i])

Fig. 2.8: Flyweight pattern conditional branching expressed in BPSL

realizes donble-dispatch in languages that support only single-dispatch by following a call by

an ObjectStructnre to a ConcreteElement’s visit method with a call to a suitable Visitor’s

method. Thus the method which is executed depends upon the dynamic type of two objects,

ConcreteElement and Visitor.

Wliile the secjuence of invocations is linear in the examples above, the Singleton pattern

demonstrates selection between alternatives in a pattern’s dynamics, \\dien a client invokes

the getlnstance(Key) method, it should either return a reference to the existing Singleton

object, or if it does not exist, create it and then return a reference to it. Other exaniides of

GoF design patterns that include selection are Proxy, Flyweight and Chain of Responsibility.

The Observer and Composite pattern both include iteration when calling a method on every

element of a list.

DPSLs are classihed based on their suj)port for the four control-flow invariant types

(see Table 2.2). Most apju'oaches that specify behaviour of any kind support secpience and

method calls, as these are central to the intent of design patterns: many patterns insert

an intermediary (Decorator, Proxy, Mediator, Facade) between a Client and its initial

delegate before the pattern was applied. Both DisCo [Mikkonen, 1998] and BPSL [Taibi

and Ngo, 2003] are based upon the Temporal Logic of Actions (TLA) [Lamport, 1994],

and support the specihcation of seciuencing and choice in control-flow. Figure 2.8 shows

how the conditional branch in the Flyweight pattern might be expressed in BPSL. Such an

expression is less readable than if/else constructs for pattern users who are familiar with

object-oriented progTamniing but not formal logic.

A number of approaches support all control-flow invariant types. OC/VDM-(-+ [Lano

et ah, 1996] uses linear temporal logic operators from the Object Calculus to express se­

ciuencing. Object-oriented progTamniing constructs are supported by using VDM-I--I- as a

pattern specification language, which includes if/then/else and for all/do constructs. DVP

is based on a number of different formal languages, but derives its ability to specify control

flow from Communicating Seciucntial Processes (CSP) [Hoare, 1985]. RBML [France et ah,

2004] and FU.TABA [Wendehals and Orso, 2006] use UML 2.0 Seciuence Diagrams, which

32

|C(>ni[Ke.iieinii:nK:liiin

{obj:|<)bjeciSiruclure

IlsChikXIoinpukiiel

|AaepH|viii-|r<incrcU:VUiUH)
|ri>mpo&itetnie(ik:tiofi

"J iob| = |clcr>ilil

ItJsel
|Aixept(|vi&;|(!nni:reieViuiorj

|vu:|Vi)iUir

|ViMitJgin(teleni|i|:|Coocfelefclenie«|.

lOpentuoiM

Fig. 2.9: RBML [France et al., 2004] l)eliaviom'al specification of the Visitor pattern

adds syntax for expressing conditional branching and loops. A Boolean guard condition

can be placed at the beginning of a sequence diagram fragment, to allow specification of

the selection between alternatives or a loop condition. A repeat fragment specifies that the

sequence of events inside the fragment is repeatedly executed. Figure 2.9 [France et ah,

2004] shows the use of the new Combined Fragment syntax element in UML 2.0. It is visu­

alized as a rectangle enclosing a subsecjuence of the Seciuence diagram with a label in the

top left corner. The outer rectangle (labelled repeat) specihe^s a loop that continues until

all the elements contained in the ObjectStructure are visited. The inner (alt) rectangle

performs a selection based on whether the current element is a composite stiaicture or not.

The use of the vertical bar prefix (j) indicates that these are role names, and may be filled

by elements with different actual names.

2.4.2.4 Object state invariants

The invariants in this category si)ecify that an object should be in a particular basic state:

not initialized, initialized or marked for deletion, or that a particular relation (aliasing, deep

copying) should hold between the state of two objects. Object state invariants generally

also have temporal properties and for this reason often depend upon control-flow invariants.

The interaction of the Singleton pattern that involves comparing an object to the value

NULL was described above in Section 2.4.2.3. A similar interaction occurs in the context

of the Flyweight pattern, except that a Flyweight Factory creates instances of not one but

numerous different ConcreteFlyweight classes.

Numerous interactions between GoF design patterns assume the same object is involved

33

in a inuiiber of different events. A simple example of such an invariant is provided by the

Factory Method pattern. The Factory Method should initialize a ConcreteProduct object

within its body and return it, i.e., the object returned from the Factory Method is the same

object returned from the ConcreteProduct constructor within the Factory Method. Also,

the accept0 method of each ConcreteElement class in an instance of the Visitor pattern

should accept a ConcreteVisitor object as an argument and jrerform a callback to that

same ConcreteVisitor object. The Observer pattern involves a similar interaction. These

interactions are examples of aliasing invariants.

The intent of the Memento pattern is to ‘capture and externalize an object’s internal

state so that the object can be restored to that state later’. Typically, a Memento is created

from the state of some object before an operation that mutates the state of that object but

should also be undoable. For this requirement to be satisfied, the Memento object itself

should not be mutated by the operation, i.e., none of the Memento’s variables should be

aliased with variables of the original object. This deep copying invariant type is discussed

in the GoF catalogue in the context of the Prototype pattern [Gamma et ah, 1995, p.221],

where it is also relevant. Performing a deep copy of an object is challenging, especially

when object srrnctures contain cyclic references [Gamma et ah, 1995]. Also, only the state

that is composed by the object, i.e., that is modelled by a ‘has a’ relationship from object

to composed state, should be copied. Other objects that are associated with the object,

but have a separate lifetime, should not be copied (e.g., while copying an Observer, the

associated Subject should definitely not be copied, as it is important that each Observer

observes the same Subject). For this reason, to precisely specify deep copying behaviour,

it is necessary for a DPSL to be capable of making a distinction between associated and

composed state.

RBML, Le Guennec et ah, and OC/VDM++ support the specification of basic state

invariants, as they are each capable of testing for object initialization by comparing an object

to the value NULL. The approaches that specify oidy a single generic ‘equality’ relation [Dong

et ah, 2007][Mikkonen, 1998][Taibi and Ngo, 2003][Hofer, 2009], without defining what

eciuality means in detail, are classified as supporting the aliasing invariant type (abbreviated

to alias in Table 2.2). These approaches do not make explicit the distinction between object

identity and value equality. Gontracts defines an equality as well as a less-strict relates

o])erator between the state of two objects, but does not define it in detail, though the

intention is likely that the state of one object is some function of the state of another,

34

e.g., some subset of the states are equal or an integer is ronverted to an ecjuivalent string

of characters. The approaches that are based upon UML are capable of distinguishing

between an association and aggregation relationship, though these relationships are

not precisely defined in terms of object initialization and lifetimes. The value (Hiuality of

primitive variables required to perform a deep copy are not specifiable by any of the reviewed

DPSLs. This is not surprising, as the GoF catalogue focuses on relations between user-

defined classes and objects such as inheritance, class deijendency and object composition.

In summary, basic state invariants are supported by a small number of approaches, aliasing

is well-supported, but deep cojiying is not supported by any of the reviewed DPSLs.

2.4.2.5 Data-structure invariants

Data-structure invariants place constraints on the objects in, and the position of objects

within a collection. They also constrain the contents and shape of user-defined recursive

data structures. Both the Observer and Flyweight jjattens involve an object (of class

Subject and FlyweightFactory resjiectively) that holds a collection of objects of some other

class (Observer and ConcreteFlyweight respectively). Both patterns involve methods that

insert objects into, or otherwise mutate the contents of the collection. In the context of the

Iterator pattern, a Concretelterator has a rehuence to an aggregate object, anti should be

capable of performing operations such as accessing the first object in that aggregate. These

are examples of object position invariants.

Data structure invariants also place constraints on the shape of data structures at run­

time, such as whether the structure contains cycles, or whether a i)articular object is reach­

able (transitively) via a particular reference. A number of GoF design jjatterns either

describe the use of recursive data structures or are often applied to them. A desirable prop­

erty of the Chain of Responsibility pattern is that every request eventually gets handled by

some Handler. This is often ensured by providing a root Handler that is placed at the end

of every chain of Handlers, which can provide some default response. The Composite pat­

tern ‘compose[s] objects into tree structures to represent part-whole hierarchies’. To ensure

correct traversal behaviour, the Composite object structure should be free from cycles and

sharing, so that the traversal terminates and visits each object only once.

Some approaches define ‘attach’ events in the context of the Observer pattern [Taibi

and Ngo, 2003], but these events have little or no associated semantics. Ordy Contracts

defines an ‘attach’ event in terms of an object being inserted into a collection (or, in their

35

case, a logical set). Dong et al. provide a First() and NextO function that may be

nsed to specify iteration over a list, bnt do not describe any syntax for describing the data

structnres themselves.

With regard to shape invariants, both Krishnaswami of al. [2009] and DiStefano [2008]

specify a number of design patterns using Separation Logic [Reynolds, 2002], which allows

the disjointness of portions of the heap to be specified. Separation logic also allows shape

invariants such as cycle-freeness to be guaranteed through an ownership model (though

neither approach demonstrates this), where an owner object encapsulates all of its state.

However, Leavens et al. [2007] identify invariants of the Composite pattern that cannot be

verified using an ownership model, showing the model is not applicable to data-strncture

invariants in general. Neither Krishnaswami et al. nor DiStefano et al. provide a DPSL,

and their specifications must be verified manually using a theorem prover. In summary,

object position invariants have been given limited attention in the context of design pattern

si)ecification, while shape invariants have been almost completely ignored.

2.4.3 Invariant dynamism

It should be clear from the previous section that some invariants depend upon the state of

the computation, while others do not. The former category may be classified as behavioural.

invariants, and are defined as those invariants whose truth value dei)ends upon the state of

the computation at a specific point in the execution. From a verification perspective, these

invariants require control- and data-flow information to verify that they are satisfied. Those

invariants that are computation state-independent are classified as structural invariants.

From a verification perspective, these invariants can be checked more easily by inspection

of the source code.

Dependency invariants are structural, as they dei)end upon the properties of single

declarations or expressions in isolation. Cardinality invariants, as discussed, may be both

structural and behavioural. Control-flow, data structure and object state invariants truth-

value clearly differs depending on the values that flow into and out of different points in

the program execution. They are all thus classified as behavioural invariants.

2.4.4 Conceptual elements

Conceptual elements are defined as higher-level elements of design patterns that are difficult

or impossible to verify by automated analysis of source code. This difficulty is not due to

36

the complexity of the analysis required, but to the fact that the pattern element is an

abstract concept that leaves no consistent signature on the application code. Both the

Interpreter and Strategy pattern rely on some abstract concept to describe their intent: the

class hierarchy in the Interju'eter pattern is intended to implement a language, while each

of the concrete Strategy subclasses implements a related algorithm. The difference between

some patterns is not always obvious when syntax alone is considered, or even after control-

and data-flow analysis. For example, the Comijosite and Interpreter pattern are both,

syntactically, an o{)eration applied to every member of an aggregated object hierarchy.

A common difference between the DPSLs reviewed is the set of concepts that they con­

sider to be conceptual or unverifiable elements. For example. Hedgehog cannot distinguish

between State and Strategy and rules out Command for being too vague. PINOT considers

the Builder and Memento patterns as ‘Generic concepts’ that 'lack definite structural and

behavioural aspects for pattern detection’, while the Interpreter and Command patterns

are classified as ‘Domain-specific patterns’, that recpiire domain-specific knowledge for ver­

ification [Shi, 2()07a]. We have attempted to identify, in the jnevious section, a numb'er

of additional invariants to those currently occurring in the literature to make it possible

for more jratterns to be distinguished during verification. However, it is not practical to

provide a lang\iage expression for some more sophisticated concepts that have no obvious

signature in the source code. A list of these conceptual elements of i)atterns is given in

Figure 2.10. Again, the pattern that contains the c'onceptual element is given in brackets

after the element name.

The authors of the GoF book themselves observed this problem with such generic de­

scription: “Considered in its most general form (i.e., an operation distributed over a class

hierarchy based on the Composite pattern), nearly every use of the Composite pattern will

also contain the Interpreter pattern.” However, an implementation should only be con­

sidered to implement the Interpreter pattern in “those cases in which you want to think

of the class hierarchy as defining a language” [Gamma et ah, 1995] - a hard-to-formalize

distinction. This makes reverse engineering of patterns from source code difficult and prone

to error, where these conceptual elements are involved.

2.4.5 Summary

In this section, we presented a novel classification framework for DPSLs that includes a set

of invariant types that are necessary for the precise specification of design patterns. De-

37

• Intrinsic, and extrinsic state (Flyweight)

• Object represents a request (Command, CoR)

• Class hierarchy represents a language (Interpreter)

• Each member of a class hierarchy imi)lenients a related algorithm (Strategy)

Fig. 2.10: Conceptnal elements of GoF patterns

pendency invariants place constraints on the level of coupling between classes. Cardinality

invariants describe relationships between different sets of structural or behavioural entities.

Control-how invariants constrain the allowable hows of control through an implementation.

Object-state invariants describe properties that must hold on one or a immber of related

olijects, while data-structure invariants constrain the shape or contents of data-structures

at lumtime.

OC/VDM-I- f supports all syntactic elements, while RBML, BPSL and FU.TABA each

support a majority of syntactic elements. Dependency invariants are supported in full by

BPSL, which is the only approach addressing implementation dependency in its full gener­

ality. Structural cardinality invariant elements are addressed by a number of approaches,

with fewer addressing behavioral cardinality. All control-how invariants are supported by

OC/VDM-l--f and RBML. Object state invariants related to basic states and aliases are

supi)orted by some apjuoaches, but deep copying is not supported fully by any approach.

Data-structure invariants are jmssibly the most poorly-supported category, with object po­

sition not sui)ported in its full generality, and shape invariants have been largely ignored.

Finally, a number of DPSLs provide a concise graphical syntax for describing structure,

with fewer also providing syntax for behavioural invariant specihcation. RBML provides

l^erhaps the most expressive and one of the most intuitive graphical syntaxes overall.

2.5 Verification of Design Pattern Implementations

Verifying that an implementation conforms to a pattern specihcation involves two main

steps: binding elements of the implementation to elements of the s])ecihcation to which they

correspond and verifying that the elements of the implementation are capable of performing

the actions outlined by the specihcation elements to which they correspond. The issues

38

involved when a verification tool evaluates wlKhlier an iinpleinentation confonns to the roles

ontlined in the specification are discussed in this section. We classify DPVTs according to

their support for the invariant categories described in Section 2.4.2, as well as introducing

some tool-specific classification dimensions. The distinction between language and tool and

tool-specific classification dimensions is not strict, as, for example, the conformance relation

of an approach is dependent on the semantics of the language and also the features and

soundness of the tool. Likewise with the mapping from a specification to an implementation

language: this could be defined precisely by a DPSL, or a DPSL could lack a semantic

mapping, which would then have to be performed by the associated tool. This section

forms the second half of the classification framework.

Unlike DPSLs, we do not classify DPVTs according to the OOPL syntax they support.

How a DPVT addresses, for example, method calls, involves many design decisions such as

how to represent the local stack and global heap, polymorphism and calling context. This

makes a simple yes/no classification of support for OOPL syntax quite meaningless.

2.5.1 Invariant elements

Similarly to DPSLs, we classify DPVTs according to the invariant types they support.

Where DPSLs have an associated DPVT, we classify these tools also: a tool may verify

only a subset of the invariants expressilrle by the language, or it may verify some invariants

in an unsound and incomplete manner. DPVTs associated with a DPSL included in this

review will be referred to mostly using the language’s name, to avoid confusion.

2.5.1.1 Dependency invariants

The verification of dependency invariants involves searching for associations between classes

that are manifest as either reference variables or expressions such as methods calls. Com­

paring the type of all the variables of a class to some pattern role is straightforward and

is performed by a number of DPVTs [Anmionr et ah, 2005][Dong et ah, 2007|[Taibi and

Ngo, 2003][Maplesden et ah, 2007] (see Table 2.3). Making a full exploration of the ab­

stract syntax tree of a method or all methods in a class searching for a particular kind

of expression is more challenging, but likewise well documented in the literature [Lovatt

et ah, 2005][Gueheneuc and Antoniol, 2008]. DeMIMA in particular includes a rich set of

dependency relations and classifies relations into categories such as association, aggregation

and composition using dynamic analysis to determine, for example, the lifetime of different

39

objects aiici whether associations between objects are exclusive or not. As statecl atiove in

Section 2.4.2.1, however, each of the classified approaches (apart from BPSL) only allows the

specification of the existence of certain dependencies and not their non-existence. BPSL’s

[Taibi et ah, 2009] verification tool compares TLA-h-based specifications to other TLA+-

based specifications only. Interface dependency invariant verification is well-snpported and

evalnated in the literature, though this cannot be said for implementation dependency. In

particular, there is a lack of tools that can verify implementation dependency invariants

against implementations in OOPLs and a lack of evaluations on well-documented bench­

marks.

2.5.1.2 Cardinality invariants

The verification of cardinality invariants simply involves counting the number of entities

satisfying a dependency, control-flow or other type of invariant and is thus not particularly

challenging. MaramaDPTool is implemented as an eclipse plugin and is capable of verify­

ing the cardinality invariants specifiable by DPML [Maplesden et ah, 2007] (universality

cardinality invariant, stiaicture only). Similarly, Shetty and Menezes [2011] describes the

implementation of a tool to snj)porr the verification of the same invariant type, thovigh its

operation is not documented. LePUS3 has an associated tool capable of verifying .lava code

against LePUSd specifications involving both universality and nniciueness invariants (strnc-

tnre only). LAMBDES-DP supports the verification of both the structural and behavioural

invariants specifiable in GEBNF through the use of an automatic theorem prover that does

not guarantee termination in general. Zhn et al. [2009] describe the use of LAMBDES-DP

to compare GEBNF specifications to their own benchmark of UML models. In smnmary,

the verification of cardinality invariants is not particularly challenging in isolation (car­

dinality invariants may contain complex sub-clauses involving object-state etc.) and has

been demonstrated by a number of approaches in the literature. However, these approaches

have tended to analyze benchmarks that have a small number of pattern instances, were

developed by the authors, or both.

2.5.1.3 Control-flow invariants

Control flow invariants constrain the valid paths that a program may take at nmtime.

Verifying whether implementations conform to control-flow specifications involves relating

each potential path through the implementation to a path in the specification. As the

40

CO

Q

O

0

<V
a
a;

Q

4-'

a
U

o
"o
-M
ao

U

0)

cC

c/3

O
o;

S’
O

(V

CJ

;->
c/3

Q

Sequence,

selection

and calls

Aliasing

SanD Interface (P) - Sequence

and calls

- Object

position

PINOT All (P) - All Aliasing -

Hedgehog All (P) - All Basic state

and aliasing

-

Columbus All (P) Sequence,

iteration

and calls

PEC Interface (P) - - Aliasing -

Peng et al. - - Secpience

and calls

- -

DeMIMA All (P) - - - -

MoDeC Interface (P) Sequence,

iteration

and calls

Table 2.3: Classification of the support of each DPVT for each of the invariant types

41

iiiipleinentation may perform additional bohavionr beyond what the specihcation requires,

mnltiple paths through the implementation may satisfy a single path in the specihcation.

In a typical OOPL, there are nmnerons ways to impknnent selection and iteration. In .lava,

for example, any statement placed inside an if, if. . .else, or switch block is conditional,

but so is any statement that may be bypassed by a jninp statement (break, return etc.).

Iterative behaviour may be implemented in .lava using loop statements or recursive calls.

Such flexibility is challenging for a verihcation tool. It should also be noted that precise

verihcation of control-how invariants recphres knowledge of the valid data hows through a

program: a control-how invariant may require not just that a sequence of calls are made

through the same reference variable, but that they dispatch to the same object.

MoDeC [Ng et ah, 2010] uses bytecode instrumentation to verify control-how invariants

regarding sequence, iteration and method calls. It handles loops by ‘[identifying] every

branch instruction whose target is indexed before its own position’. DeMIMA [Gueheneuc

and Antoniol, 2008] performs Prolog queries on program traces, but it ignores the coverage

problem by assuming that a set of unit tests is pre-generated for it. SaiiD [Heuzeroth et ah,

2003] can verify that the same object received a sequence of method calls by tracking object

identity through its dynamic analysis.

Hedgehog [Blewitt et ah, 2005], PINOT [Shi, 2007a] and D’^ [Stencel and Wegrzynowicz,

2008] all verify all four of the control-how invariant types as well as sophisticated combi­

nations of control-how invariants as atomic invariants, such as ‘lazy initialization’ (see Ta­

ble 2.3). However, PINOT classihes a method as a Factory Method even when a new object

is not returned over every path through the method. It also misses some method calls, for

example, those that occur as arguments to other method calls. Finally, it performs ‘limited

loop analysis’ which occasionally classihes an inhnite looj) as conforming to the specihca­

tion of the Observer pattern, whore the loop should iterate over the list of Observer objects

attached to the subject. Hedgehog assumes loops execute once, which is not the typical

approach to analyzing loops in the iterative hxed-point algorithms that perform data-how

analysis (DFA) and is unsound. Similarly, performs an ‘arbitrary number of iterations’

of the data-how analysis, rather than iterating until convergence. Calls to constructors are

treated context-insensitively and the call graph is computed before the data-how analysis

algorithm commences. Both of these design decisions introduce inaccuracy, though they

may both be sound (context-sensitive analysis and call graph construction will be discussed

in more detail in Chapter 4).

42

Control-flow invariants are well supjrorted in the literature and are addressed by some

of the most sophisticated DPVTs. However, each tool has a number of features that address

control-flow invariants that are either inaccurate, unsound or both.

2.5.1.4 Object-state invariants

To verify each of the object state invariants identified in our GoF analysis it is necessary to

compute the potential values of variables at different points in the program at runtime and

conrpare those values to each other or to some hxed value. Basic state invariants compare

variable values to the undefined value (in .Java: null). In a static analysis, the value of

each variable could be represented as one of two alternatives: null or ^ null [Cousot and

Cousot, 1977]. In a dynamic analysis, the value in each trace could be compared to null

directly. Aliasing invariants specify that two reference variables are or are not aliased. Alias

analyses are a common form of data-flow analysis, with a large body of a.ssociated literature

[Hind, 2001]. Similarly to basic state invariants, dynamic analyses could compare the value

of reference variables in a trace directly. Deep copy invariants are more challenging, as

they involve grajdis of related objects (the clone and all its associated state). An analysis

must compute an accurate model of the heap to verify such invariants precisely. Such an

analysis is discussed in the next section on data-structure invariants. Also, invariants of

this type require the value of primitive variables to be compared. Primitive varialdes are

rarely modelled accurately by program analyses, as to do so causes a state-space explosion.

However, as a method performing a copying operation would be exjrected to perform direct

assigmneiits from the state of the original to the state of the copy, a reaching definitions

data-flow analysis could identify that the required assignment had occurred. Finally, a

cloning or copying method may in turn call clone or copy methods on its composed state,

so an inter-procedural analysis is require to track the flow of values into and returning from

method calls.

Hedgehog [Blewitt et ah, 2005] performs a data-flow analysis that tracks the values

null or null. A variable has non-null value if it satishes one of three criteria: (1)

it is initialized with a non-null expression, (2) all constructors initialize the variable or

the variable is assigned the value of a parameter and (3) the assignment is guarded by

a conditional that tests if the parameter is non-null. The second criterion overlooks the

possibility that the variable will be re-assigned the value null after initialization, so is

unsound. The third criterion involves path-sensitive data-flow, which is undecidable in

43

general, though in this case, the criterion is a useful heuristic that is sound. Lano et al.

[1996] verify similar invariants, hnt only mannally and against VDM++ code.

Nnineroiis approaches, both based on static and dynamic analysis, track object identities

and thus can compute aliasing relationships [Henzeroth et ah, 2003][Blewitt et ah, 2005].

Each of these approaches could perform reaching definition analyses for primitive variables

with minor extensions, though, to oiir knowledge, none of them do so. Hedgehog and

PINOT both perform a limited inter-procednral analyses, bnt only for certain patterns and

invariant types. The traces generated by Henzeroth et al. are inter-procedural also, bnt it is

not clear whether the heap, or just the local stack is modelled at any particular stage of the

trace. In svnnmary, basic state and aliasing invariants are supported by the literature, with

some incompleteness or nnsoundness common to program analysis tools while deep copying

invariants is not supported by any DPVT, though some tools provide some prerequisites

for the verification of invariants of this type.

2.5.1.5 Data-structiire invariants

Data structure invariants are computationally exj^ensive to verify, as they deal with struc­

tures that are of a potentially nnbonnded size. Desi)ite this, proving properties of recursive

data structures at runtime is an active area of research. Shape analysis]Sagiv et ah,

20()2][Berdine et al., 2007] is an advanced form of alias analysis that aims to statically

determine the complex data strnctnres built in the heaj) at rnntime. Questions about lieaj)-

allocated data structures that a shape analysis can answer include aliasing, heap-sharing,

reachability, the disjointness of two data structures or the presence/absence of cycles in a

recursive structure. As heap-allocated data structures are theoretically unbounded in size,

some part of the structure is represented exactly, while the rest is only approximated, de­

pending on the proj)erties of interest to the verifier. Size information, such as the length of

lists, is typically lost, and information regarding approximated or summarized contents of

the heap are conservative (produce a false outcome when a true outcome cannot be proven,

i.e.. generate false negatives).

Whth regard to object position invariants, SanD verifies that an object is inserted into

a collection by identifying the argument passed to a collection’s insert method (see Ta­

ble 2.3). Using this facility, they can identify that an object is added to the Observer

list held by a Subject object, in the context of the Observer pattern. Taibi et al. [2009]

verify an ‘attached’ event, though this event is defined only in terms of temporal logic and

44

not jjrogramming language code. As stated above, both Krishnaswanii et al. [2009] and

DiStefano et al. [2008] specify some shape invariants in the context of detailed, pattern

instance-specihc invariants. These specihcations must be verified manually using a theorem

prover. Rosenberg et al. [2010] use an ownership model to verify invariants of the Compos­

ite jjattern. Limitations of the ownership model were discussed in Section 2.4.2.5. Finally,

Bierhoff et al. [2008] verify limited shape invariants in the context of the Composite pattern

given a number of assumptions and limitations (e.g., a Composite has a maximum of two

children). Verihcation is also manual and the specihcation and verification langnage is the

same (Spec#). In summary, some but not all invariants of object position are verihable

by DPVTs in the literature, while no approach can verify shape invariants without making

limiting assumptions, and even then, invariants are not veriable automatically and in their

full generality.

2.5.1.6 Summary

Cardinality, interface dej)endency and control-flow invariants are well suirported by DPVTs,

though there are some un.sound or sporadically-applied methods in the analyses that support

control-flow invariants. Positive implementation dependency invariants are addressed by

numerous tcmls, but negative implementation dependency invariants are largely overlooked.

The invariant ty{)es that were poorly-sujrported l)y DPSLs, such as deep c-opying and all

data-structure, were also poorly-supported by DPVTs, though there is some work in the

area of verification of shape invariants that did not meet the inclusion criteria of this review.

2.5.2 Languages compared during verification

During verification, a design-pattern specihcation can be compared to its realization or

implementation in a number of different language forms. Firstly, a design-pattern speci­

hcation could be compared to another, jjerhaps more detailed, specihcation in the same

language, to prove, for example, that a Pluggable Factory realization is a rehnement of the

Abstract Factory pattern. Secondly, a specihcation can be compared to a model in some

object-oriented modelling language (OOML) that has a small semantic gap to code (e.g.,

UML [OMG, 2009]). Finally, a specihcation can be compared to OOPL code. This requires

a semantic mapping between DPSL and OOPL that allows statements in the two languages

to be related to one another. Figure 2.2 visualizes these alternatives while Table 2.4 out­

lines the mappings provided by the verihcation tools supporting the DPSLs reviewed, while

45

Use case i J
•jj^orward Engineering 1
I Reverse Engineering [

I Structural

Design Pattern
Verification Tools

-[program analysis Static I

I Dynamic [

I
—f Instance classification 1—|j~~——,
^^------------------- ' ^IjRireshol^

-{Implementation language]

Fig. 2.11: Classification framework dimensions specific to DPVTs

Table 2.5 outlines the same for DPVTs without an associated DPSL included in the review.

We also classify DPVTs based on the OOML or OOPL they analyze (see Figure 2.11), as

shown in the final column of Tables 2.6 and 2.7.

2.5.3 Conformance relation

Conformance relations define how the specification and implementation are comirared dur­

ing verification. We distinguished three conformance relations based on their handling of

behaviour that occurs iii the imirlenientation but does not appear in the specification (see

Figtire 2.2). We refer to this behaviour as non-pattern functionality or unspecified function­

ality from this point onwards. Patterns do not exist in isolation, but perform a particular

function for the rest of the application. The unspecified functionality can nonetheless refer

to pattern actors and interfere with the proper functioning of the pattern. For example, a

pattern actor may be aliased, and the alias may be used to perform an action that breaks,

for example, an object-state invariant. Such a violation may go undetected without a suf­

ficiently powerful alias analysis. Also, a method actor may call unspecified methods that

update pattern variables in unintended ways. A relation is categorized as safe if it consid­

ers all functionality (specified and unspecified) that may affect the correct execution of a

pattern. A relation is categorized as unsafe if it considers only specified functionality.

The most restrictive relation is termed closed. The closed relation disallows non-pattern

functionality completely in the implementation, i.e., the specification and implementation

46

are required to be eqiuvalent. Such a relation is safe but iinpractic-al, as the iiiipleiuentatioii

is required to be a closed system that does not have any other interactions and performs

only the function specified. This requirement could be relaxed to only require the dynamic

part of the specification, e.g., a control flow invariant describing a method call and a loop,

to be closed while the static specification is open. This would allow other dependencies and

methods to exist without violating the simcification. Even with this relaxation, the closed

relation remains very restrictive, as the developer who implements the pattern is forbidden

from interleaving non-pattern and pattern functionality, which may be useful or necessary

in many pattern realizations.

The one-to-one conformance relation is satisfied if the structure and behaviour of the

specification is included in the implementation, while non-pattern functionality is ignorexl.

The relation identifies a one-to-one mapping between elements in the specification and

implementation and then terminates. As should be clear from the previous section, this

relation may overlook a violation due to non-pattern functionality, and is thus categorized

as unsafe.

The third conformance relation is named refinement. An implementation is a refinement

of a specification if, when placed in the same environment, the implementation behaves ex­

actly like the pattern when the pattern behaviour is involved, while it may also j)erfonn

unspecified behaviour when requin'd. This unspecified behaviour is verifital also and must

not violate any of the pattern invariants. This definition of refinement is derived from

the one in Hoare [1985]. The objects and methods playing the roles dictated in a imttern

spec'iflcation do not constitute a closed system, but are inevitably involved in many other

interactions, that may or may not be governed by any pattern specification. The perfor­

mance of these other operations may delay the pattern behaviour, but should not cause the

pattern behaviour to never occur or violate any of the i)attern invariants.

It should be noted that the relation supported by a particular approach depends mainly

upon the verification tool, but also depends on the semantics of the mapping from spec­

ification language to OOPL. A correct classification of each approach can only be done

where the verification stage and/or OOPL mapping is described explicitly in the literature.

Tables 2.4 and 2.5 summarize the conformance relation for each of the reviewed approaches.

The cells belonging to the DPSLs that do not have a clearly defined semantic niapi)ing to

an implementation language and do not have an associated verification tool are left blank.

The DPSLs based on temporal logics (Dong et ah, BPSL and OC/VDM+-f) are capa-

47

Name Implementation language

type

Conformance

relation

Instance

classification

DisCo Spec -> Spec Refinement Binary

()C/VDM-h + Spec ^ OOML Refinement Binary

BPSL Spec Spec Refinement Binary

Lauder & Kent Spec OOML One-to-one Binary

Le Guennec et al. Spec OOML One-to-one Binary

LePUS3 Spec ^ OOPL One-to-one Binary

RBML Spec ^ OOML One-to-one Binary

DPML Spec OOML One-to-one Binary

FU.IABA Spec ^ OOPL Refinement Threshold, Binary

Dong et al. Spec, Spec Refinement Binary

GEBNF Spec ^ OOML Refinement Binary

DVP Spec “> Spec Refinement Binary

Hofer Spec -> OOPL Refinement Binary

Shetty & Menezes Spec ^ OOPL Refinement Binary

Ainmour et al. Spec ^ OOML One-to-one Binary

Contracts Spec ^ Spec Rehnement Binary

Table 2.4: Relation between specification and implementation language for each DPSL

blc of specifying a refinement relationship, as they use temporal operators that can state

something is always true, i.e., true for the entire execution of the program, after a given

event or between events. DPVTs that i)erforni static or dynamic analyses are also classified

as supporting the refinement relation, where it is clearly documented that object identi­

ties and other data values are tracked throughout the analysis and used to reason about

conformance.

2.5.4 Pattern instance classification

The classification of candidate pattern instances as conforming or not conforming to a

pattern specification by most DPVTs is a binary yes or no decision. However, a number

of aj)i)roaches use a scoring system that includes a threshold value, where a score above

48

Name Implementation language

type

Conformance

relation

Instance

classification

Spec -o OOPL Refinement Binary

SaiiD Spec ^ OOPL Refinement Binary

PINOT Spec ^ OOPL Refinement Binary

Hedgehog Spec -o OOPL Refinement Binary

Columbus Spec ^ OOPL One-to-one Threshold

PEC Spec ^ OOPL Refinement Binary

Peng et al. Spec -> OOML Refinement Binary

DeMlMA Spec —> OOPL Refinement Binary

MoDeC Spec -> OOPL Refinement Binary

Table 2.5: Relation between specification and iinpleinentation language for each DPVT

the threshold value indicates conformance (Figure 2.11). Tsantalis et al. [2006] calculate

a similarity score between graphs of classes, where the edges are associations and inher­

itance relations. FU.IABA [Wendehals and Orso, 2006] collects a number of traces of a

program, and counts the number of traces that reach an accepting or final state of a petri

net representation of the design i)attern specification. Finally, Columbus [Ferenc et ah,

2005] counts the number of loops and reenrsive calls in a method, and classifies the method

as the Strategy’s algorithmlnterface method if the number is above a particular threshold.

We classify the instance classification method of approaches as either ‘binary’ or ‘threshold’

(see Tables 2.4 and 2.5).

2.5.5 DPVT use cases

Tools for design pattern verification fall into two categories depending on their intended use

(see Figure 2.11). These categories separate tools that aim to supj)ort a forward engineering

(FE) jHocess [Blewitt et ah, 2005] [Peng et ah, 2008], from those that aim to support a reverse

engineering (RE) process [Shi and Olsson, 2006] [Bergenti and Poggi, 2000][Gueheneuc and

Antoniol, 2008][Smith and Stotts, 200.3] (see Tables 2.6 and 2.7). A FE process guides the

development and maintenance of software systems by allowing the develojrer to check that

their new implementation or modification conforms to the designer’s original intent. A RE

inocess takes existing source code and attempts to discover patterns in source code, to aid

49

program imderstaiicliiig. A FE process that incorporates design-pattern specification and

verification involves three stages: specification of the properties/invariants that characterize

each of the supported patterns, niannally matching roles in the sirecification to actors in

the source code, and verification. A RE process shares the first stage with a FE process,

but must then make an automatic search of the source code for pattern implementations.

Both FE and RE tools have the potential to produce false positives and false negatives

during verification, but in EE these errors are caused by either a fault in the specification,

or the tool. RE tools have the added problem of producing false jrositives that were never

intended to be patterns. This cannot haiipen in a EE process, as the user identifies explicitly

which entities are supjiosed to constitute a pattern implementation. This raises the issue

of the level of detail of pattern specifications again, as a generic description of a static class

structure is likely to produce a large number of false positives. Indeed, numerous designers

of RE apiiroaches complain that some patterns have specifications that are too vague to

juovide meaningful results during verification. Eor example, PINOT [Shi and Olsson, 2006]

does not support the Builder and Memento patterns for this reason.

Performing a detailed juogTam analysis, required for the verification of dynamic pattern

invariants (e.g., object-state invariants), on the entire source code is prohibitively exiiensive

for a practical verification tool. For this reason, most RE tools i)erform a first pass to

identify pattern candidates, applying data-flow analysis only to those candidates identified

on the first pass. SaiiD [Heuzeroth et ah, 2006] and IDEA [Bergenti and Poggi, 2000]

identify candidates by their static structure first, then analyze behaviour. PINOT ‘begins

its detection process for a given pattern based on what is most likely to be most effective

in identifying that pattern (e.g., declarations, associations, delegations)’.

In summary, design pattern verification tools have two major use-cases: forward and

reverse engineering. Reverse engineering provides a number of extra challenges that make it

a more difficult problem to eliminate false jrositives and false negatives during verification.

2.5.6 Program analysis

Eroni the perspective of this review, tool support for DPSLs is vital for two main reasons:

it can speed up the jjioof of conformance to a pattern specification, saving time that is

irrecious in a software development life cycle, and secondly, it has the potential to shield

nmch of the comjrlexity of the formal specification from the software developer, who is

I)rincipally concerned with applying patterns and developing well-designed systems. In

50

Name Use case Program analysis Implementation language

DisCo - - -

OC/VDM++ FE - VDM+ +

BPSL RE Static TLA+

Lauiler & Kent FE UML UML

Le Gnennec et al. FE/RE Static UML

LePUS3 FE/RE Structural •lava

RBML FE Static UML

DPML FE Static UML

FU.IABA RE Static, Dynamic •lava

Dong et al. FE Static TLA

GEBNF RE Static UML

DVP - - -

Hofer FE Dynamic Spec# (C#)

Shetty & Menezes RE Static c#
Amnionr et al. FE Structural UML

Contracts - - -

Table 2.6: Analysis use case, progTam analysis and iinpleinentation language classification

of each DPSL’s associated DPVT

51

Name Use case Program analysis implementation language

RE Static .lava

SanD RE Dynamic •lava

PINOT RE Static .lava

Hedgehog RE Static .lava

Columbus RE Static C++

PEC FE Dynamic Java

Peng et al. - - -

DeMIMA RE Dynamic Java

MoDeC RE Dynamic Java

Table 2.7: Analysis use case, program analysis and iniplementation language classification

of each DPVT

order to verify the behavioural invariants, it is necessary to analyze the behaviour of a

candidate implementation at runtime. Program analysis techniciues [Nielson et ah, 1999]

are intended to perform this task, and the use of program analysis techniques to verify

DPSL specifications is reviewed in this section. Program analyses can be classified as either

static or dynamic (see Figure 2.11).

Static program analysis (SA), as defined by Nielsen et al. ‘offers static compile-time

techniques for predicting safe and computable approximations to the set of values or be­

haviours arising dynamically at run-time when executing a program on a computer’ [Nielson

et ah, 1999]. SA techniques build an abstract representation of the entire program in terms

of control- and data-flow. As a number of problems in program analysis are undecidable

in general [Landi, 1992], SA techniques produce safe or conservative results: they output

false negatives or “don’t know” when the answer is undecidable [Sagiv et ah, 2002].

There are many uses of the term static analysis in the literature, and they do not all

have the same meaning. Static analysis is a term often applied to the analysis of the

static class structure of inheritance and dependency, but it is used here with respect to

the more powerful definition from Nielson et ah, given above. This definition of static

analysis is equivalent to some definitions of program analysis in the literature. We use

the term irrogram analysis in a more general sense to describe any technicpie that aims

to understand the runtime behaviour of a program, and is not limited to compile-time

52

aiuilyses.

Dynamic program analysis (DA) involves executing the system with a set of test cases.

The challenge of developing a DA system is generating adequate inputs to attain sufficient

code coverage (e.g., to execute all paths through conditional statements that are reachable).

This is known as the code coverage problem, and is a limitation of dynamic analyses, as

it is difficult to identify the set of test cases that will exercise every potential path, or

even every line of code in a program. Dynamic analysis is more appropriate for use in the

context of specific requirements, and for identifying defects caused by interactions that are

too complex to be uncovered by static analysis [Evans, 2005]. Design-pattern verification

tools exist that use both the static [Shi and Olsson, 2006] and dynamic [Wendehals and

Orso, 2006][Heuzeroth et ah, 2003] ajrproaches to program analysis. Wc provide a brief

overview of the two apjrroaches here using an illustrative examirle. The classification of the

program analysis method of each of the reviewed DPVTs is given in Tables 2.6 and 2.7.

2.5.6.1 Static analysis

Data-flow analysis (DFA) is the only form of static analysis used by existing approaches

to the verification of DPSL specifications ([Aho et ah, 1986] Section 10.5) ([Nielson et ah,

1999] Ch.2). Data-flow information can describe which variables are live on exit from a

block and the variables that are aliased at a particular point in the program execution. An

analysis progresses by solving a system of data-flow ecpiations that refer to the entry and

exit of a basic block. A basic block is ‘a sequence of consecutive statements in which flow of

confrol enters at the beginning and leaves at the end without the possibility of branching’.

PINOT [Shi and Olsson, 2006] describes the use of data-flow analysis to verify implemen­

tations of the Singleton pattern. The Singleton pattern has proven problematic for design

pattern specification and verification approaches, as it involves conditional behaviour and

object initialization. The Singleton pattern is represented in PINOT as a class whose meth­

ods either (a) return an instance or (b) implement lazy instantiation. This is a tractable

data-flow problem, as it only involves two values: null and null. The Singleton’s

getInstanceO method (Figure 2.12) is separated into two basic blocks. BasicBlockO is

shown to be the only block to create an instance of the class, and will do so oidy if the object

was null on entry to the method. BasicBlockl does not assign null to the object variable

and returns it unchanged. So for both input values: null and null, the output value

is verihed to always be null. The same analysis also proves that only one instance can

53

Conditions
[^theSpoon ‘! = null|

(returned)

Fig. 2.12; Control-flow graph for an implementation of the Singleton’s getInstanceO

method (PINOT)

be created. This analysis demonstrates a refinement relation between PINOT specification

and .lava code, as any non-pattern functionality that subsequently updated the value of the

instance would be identified by the data-flow analysis.

2.5.6.2 Dynamic analysis

F’U.TABA [Wcndehals and Orso, 2006] uses dynamic analysis to verify that sequences of

methofl calls occur in the correct order using method call traces captured from Eclipse

using a tool that leverages the debugging interface of the .lava Virtual Machine (.TVM).

Sequences of method calls are transformed into a Deterministic Finite Automata (DFA). A

single call is transformed into two states with a transition between them. The transition

is labelled with the caller object, the call symbol(->) and the callee object. When two

calls occur in sequence in the pattern specification, the end state of the first call is merged

with the start state of the second call, and so on. A DFA for the State pattern is shown

in Figure 2.13. The Petri net concept of tokens are used to count the method traces that

pass correctly through each of the states of the pattern DFA. A trigger is any method that

labels a transition from the initial state e.g. context. request and context. setState in

Figure 2.13. The execution of a trigger method call adds one token to the initial state. The

token moves through the DFA as the method trace follows the correct behaviour of the

pattern specification. Method calls that occur in the wrong order move to rejecting states

and are evidence of non-conformance. When all tokens are collected the number of tokens

that have passed through an accepting state (a state at which the DFA has performed its full

procedure) are compared to the number of tokens ending in a rejecting state. This example

describes the verification of control-flow invariants, but dynamic analysis has also been

used to verify invariants that require data-flow information, such as aliasing invariants, as

54

{co:context)->(a;abstractState).handle

Fig. 2.13: FU.TABA [W'endelials and Orso, 2006] DFA for the State pattern

discussed above. To our knowledge, none of the reviewed DPVTs that perform DA address

the code coverage problem in detail: DeMIMA, for example, assnmes the existence of a set

of test cases that will provide good code coverage, rather than generating the set of test

cases itself.

2.5.7 Assigning pattern roles to implementation actors

Assigning roles, as described in the design pattern specification, to corresponding actors

in the implementation involves creating a binding between the two, in order for the ac­

tor to be checked for conformance to be checked. Binding actors to roles is a relatively

straightforward jnocess compared to specification and checking conformance to dynamic

irattern specihcations, but there are a few issues that deserve a brief discussion. A number

of approaches use queries to compare implementations to specifications. Dong et al. j^ass

implementation-specific names as parameters in a query to a Prolog rules database. Mak

et al. and Le Guennec et al. use OCL queries as part of their specifications, which are then

applied to UML (Class) diagrams. Most of the approaches that use a graphical syntax for

specification require a separate diagram of the pattern realization. LePUSS uses shaded

instead of blank shapes to distinguish constants, i.e., actual method signatures or classes

from variables, i.e., class or method roles. LePUS3 supi)orts specifications that contain only

variables (pattern specifications), a mix of variables and constants (frameworks) and oidy

constants (concrete programs). DPML uses solid outlines for its specification symbols, and

identical shapes with dashed outlines for symbols in an Instantiation diagram. Verification

55

ill these two apjiroaches involves a check for equivalent symbols in the two diagrams being

compared, i.e., a one-to-one conformance relation. A further link is required, however, be­

tween instance model and code. Lander and Kent use three layers of models, with abstract

state and behaviour at the highest (role) level and concrete semantics at the lowest (class),

with an explicit user-defined mapping between each layer. The role level suffers from the

genericity problem as discussed in Section 2.3.1.

Most approaches perform some consistency checking while linking is being performed.

Invariants that can be checked simply, such as cardinality, are often supported directly

in the linking process. DPML also guides the user through the process by highlighting

valid candidates for certain pattern roles. Allowing an implementation actor to play roles

in multiple patterns, e.g., an Observer that is also a Singleton, is also desirable and can

be supported easily. Finally, Mak et al. support flexible links between specification and

implementation. Taking the example of a combination of Abstract Factory with either

Factory Method or Prototype; “Whether the instantiation takes place locally as the factory

method in [the] Factory Method pattern, or delegates to other methods such as the clone

method in the Pluggable Factory pattern is left open”. This allows for more flexibility in

the conforming implementation, but adds an extra verification challenge.

2.5.8 Summary

In this section, we presented the dimensions of the classification framework specific to

DPVTs, and used these dimensions, along with the invariant types identified in the spec­

ification section of the classification framework, to classify existing work in the literature.

Of the invariants supported by DPSLs, implementation dependency is foimd to be poorly-

supported by verification tools. Cardinality invariants are addressed by some tools that

are based on a DPSL. A single approach addresses data-structure invariants regarding ob­

ject position, and no ajjproach supports shape invariants. The Object-state invariant type

relating to deep copying behaviour is also overlooked by existing DPVTs. Control-flow

invariants are well supi)orted, but with some inaccuracies and unsoundness common in

software verification.

Numerous DPVTs are capable of addressing the most sophisticated conformance relation

(refinement). DPVTs were identified that perform both static and dynamic analysis. Static

analysis and dynamic analysis have different advantages and disadvantages, and are suitable

in different contexts. The state-of-the-art tools in design pattern verification are identified

56

as PINOT [Shi, 2007a], Hedgehog [Blewitt et ah, 2005] and D'* [Stenccl and 'Aegxzynowicz,

2008], as tliey support the most sophisticated confoi inance relation and verify some of the

more challenging behavioural invariant types. Most DPVTs address the .lava programming

language, but some also target C++ and C#. DPVTs in the literature are (piite evenly split

between applying a forward engineering and a reverse engineering u.se case, while some do

not define a particular use case. Most DPVTs classify implementations as either conforming

or non-conforming, while a few use a scale of conformance levels along with a threshokl.

2.6 Conclusions

A multitude of approaches to the formal specification and verification of object-orient('d

design patterns exist in the literature. This chapter presents our novel classification frame­

work for DPSLs and DPVTs. Onr inclusion criteria focus on expressiveness and also try to

limit the scope of the review without excluding any approach that has a uniciue solution for

some invariant type. Some issues specific to design pattern specification such as the levels

of abstraction at which to specify and the re-usability of specifications were discussed.

We identihed the OOPL syntactic elements, as well as 13 invariant types, within 5 in­

variant categories, that are retiuired for precise design pattern specification. We classified

the DPSLs according to their support for each of the syntactic elements and found that

one approach supported all elements, while a few others supported a majority of elements.

W'ith regard to invariant elements, it was found that three invariant types in particular

were either jioorly-supported or entirely overlooked in the literature. These are imple­

mentation dependency, deep copying (object-state) and data-structure invariants regarding

data-structure shape. This lack of support is manifest as either DPSLs lacking the syntax

and semantics to express the invariant type or DPVTs lacking the ability to i)erform a

required analysis, or both.

Other classification dimensions include the conformance relation, use case, targeted

implementation language and program analysis applied. The most powerful conformance

relation was found to be addressed by a number of approaches, some of which applied static

and some of which applied dynamic program analyses.

We conclude that a novel DPSL is recpiired that is capable of specifying invariants

from the three poorly-supported invariant categories, and also capable of specifying design

pattern variants, which vary in terms of structure and/or behaviour. The remainder of this

57

thesis describes the design and evalnation of such a DPSL and its associated DPVT. The

associated DPVT iini)leinents a static analysis, for reasons discussed above. The DPVT

targets the .lava prograinining language, due to its popularity, and the fact that most of

the code bodies analyzed by existing DPVTs are written in .Java.

58

Chapter 3

Alas

In the previous chapter, we identified a set of syntactic and a set of invariant elements

necessary to precisely specify object-oriented design patterns. In this chapter, we present

Alas (Another Language for pAttern Specification), a DPSL capable of expressing each of

the syntactic and invariant elements identified in the previous chapter'. In i)articnlar, we

focus on the tliree invariant types poorly snpportc'd in the DPSL and DPVT literature:

•y invariants

• Deep copying object state invariants

• Data-structnre shape invariants

Also, it was found in the previous chapter that the specification of structural and be­

havioral variants of patterns is poorly supported. We describe the variant specification

features included in Alas.

In Section 3.1, we consider major design decisions inherent in the definition of a DPSL

and provide a rationale for the decisions we made in designing Alas. A brief illustrative

example of specification in Alas is also provided. Section 3.2 outlines structural specification

in Alas, while Section 3.3 describes behavioural specification. We conclude the chapter with

a brief summary in Section 3.4.

'Alas miglit be more accurately described as a 'notation' for design pattern specification, as it lias not
been formally demonstrated that each statement that can be made in Alas is meaningful and consistent.

59

3.1 Introduction

This section discusses the design alternatives considered and the salient design decisions

made in the definition of Alas. The main contributions of Alas in the context of design

pattern specification are briefly snmmarized and the section finishes with an illustrative

example of an Alas specification.

3.1.1 Language basis rationale

As a large body of work on design pattern specification exists, we decided to base onr new

language on an existing language that has either been developed specifically for design pat­

tern specification, has been modified and applied in that context or lias some characteristics

that make it suitable for specification of design patterns. While the ability to express each

of the design-pattern aspects outlined above is the primary design goal of Alas, other char­

acteristics are also desirable and relevant, namely: precision, the popularity of the existing

language in academia and industry, the availability of tool support, and the semantic gap to

.lava. A language is jirecise if each of its elements has a clearly-defined meaning that is free

from amhignity. The related concept of consistency recpiiros that the meaning of different

language elements never contradict one another. Precision in a langnage definition removes

the nnmber of design decisions left open to the developer of analysis tools conforming to

the langnage definition, imjn'oving tool interoperability. The removal of ambiguity also im­

proves commnnication among the users of the langnage anti increases the level of confidence

in the analysis results of language-confonning tools. The semantic gap in this context is

the difference l)etween the meanings of constructs in the si)ecification and implementation

langnage. For example, the semantic gap between .lava and some specification language

with object-oriented constructs may be easier to bridge than the gap to a langnage without

such constructs. Each of these properties were considered when choosing a basis for Alas.

This section considers first DPSLs then non-DPSLs as a basis for Alas.

Unfortunately, two of the three more precisely-defined DPSLs reviewed (LePUS [Eden,

2008] and DisCo [Mikkonen, 1998]), were also two of the least expressive with respect to the

pattern invariant categories and types, especially the behavioural invariant categories. The

third more precisely-defined DPSL (OC/VDM+-I- [Laiio ct ah, 1996]) supports all control-

flow invariants as well as some restricted dependency and object-state invariants, but does

not address cardinalitv or data structure.

60

Architecture Description Languages sucli as Wright [Allen, 1997], and other languages

based on process algebrae are precisely defined and supported by industrial tools but ad­

dress a different level of abstraction to DPSLs, as discussed in Chapter 2. Sejmration logic

has also been used to specify design patterns [Distefano and Parkinson ,1, 2008], though

it does not meet the criteria for inclusion in our classification framework in Chapter 2. It

is also ideally suited to data-structure and some object-state invariant specification. Its

formality gives it a steep learning curve and it does not address the other three invariant

categories. Object-oriented specification languages have received much attention in the re­

search community recently. JML [Leavens et ah, 2006] and Spec# [Barnett et ah, 2005]

are relatively expressive, but do not provide a convenient mechanism for control-flow in­

variant specification and do not address cardinality or dei)endency invariants at all. UML

is used (in extended and/or constrained forms) by a number of DPSLs [Lauder and Kent,

1998][Le Guennec et ah, 2000][Mak et ah, 2004], including the most exprcissive DPSL ac­

cording to our classification framework, RBML [France et ah, 2004]. Also, UML is the de

facto standard for object-oriented software modelling, and as such, it is widely taught in uni­

versities and widely used in industry [Fowler and Scott, 2000][Cheesmaji and Daniels, 2001].

UML 2 Secpience Diagrams, in combination with OCL, provide a convenient mechanism for

control-flow and some object-state invariant specification. UML has also been extended to

address cardinality invariants by a number of DPSLs [Le Guennec et ah, 2000][Mak et ah,

2004].

A related but separate issue is how to translate each of the syntax elements of the DPSL

into constraints on object-oriented j)rogTamniing language (OOPL) code (in this case, Java

code). A number of formal definitions of Java exist, varying in semantic framework and Java

language coverage [Borger and Schulte, 1999][Farzan et ah, 2004][Parkinson, 2005]. These

definitions could be reused in the definition of Alas to improve the precision of the overall

model, and may improve tool support, if the definitions have associated tools. Model-driven

engineering [Selic, 2003] describes a methodology for transforming models from one meta­

model (i.e., language definition) to another, and meta models for parts of LIML, OCL, Java

and other OOPLs exist [AtlaiiMod, 2010]. Tiansformations are written in an operational

language, making the meaning of the mapping hard to identify and understand. Also,

meta-models are often informal or incomplete.

VDM-I-+ [Durr and van Katwijk, 1992] is a specification language based on the VDM

formal method, but extended to support object-oriented and concurrent systems. Some

61

tools exist to reverse engineer VDM++ from Java and also to generate Java/C++ from

VDM+ + , and the mappings in both directions are docnmeiited [VDMTools, 2010] [VDM-

Tools , 2010]. OCL is used to define the semantics of UML, but its ojjerational style lends

itself to verbose specifications [Vaziri and Jackson, 2000], a number of OCL expressions

evaluate to an undefined value by design, and there are a number of UML features OCL

is not able to formalize [OMG, 2010b]. Finally, another alternative approach to providing

a translation from DPSL to Java, is to create one from scratch using some widely-used

existing framework, such as operation or denotational semantics.

intimately, we decided to make some syntactic extensions to UML 2.0 (subsequently

referred to as UML 2) and provide more detailed semantic definitions (using an operational

semantics) where required for design pattern specification. UML was chosen as it has

already been demonstrated to be well suited to design pattern specification, especially by

HBML. Other benefits of choosing UML are its popularity and the small semantic gap

between elements of its syntax and constructs in OOPLs.

However, UML is widely criticized for its lack of a formal semantics [Lund and Stolen,

200(5][France et ah, 200(5][Jackson, 2002] and, possibly because of this, lacks siqjporting

program analysis tools. Also, UML in its current form is uiisuirable for design-pattern

specification for a number of reasons, each of which is listed here and described in more

detail later in the chapter:

• Le Guennec et al. [2000] note that UML, despite its templates and parameterized

binding, is not suited to expressing cardinality invariants. This is due to a lack of

control over the number of bindings that can be made between elasses and roles.

• The binding semantics of lifelines are unsuitable for specifying iterations over lists or

other collections of unbounded size, and also for specifying generic pattern behaviour.

• The operators introduced in UML 2 to describe conditional behaviour are ambiguous

[Lund and Stplen, 200(5].

• OCL lacks a transitive closure operation and OCL queries and constraints in the

context of a particular object may only refer to objects that are navigable from the

contextual object via association. These two features, as well as others, make data-

structure invariants expressed in UML/OCL verbose, error-prone and inefficient to

verify [Vaziri and Jackson, 2000] [Baar, 2010].

(52

The rest of this chapter describes liow each of these deficiencies of UML in the context

of the specification of design patterns are resolved in Alas.

3.1.2 Alas design decisions

An Alas specification consists of a single strnctiiral specification and a behavionral spec­

ification, which refers to entities defined in the strnctnral specification. The structural

specification is made up of a Structure Diagram (SD), with syntax based on UML 2 Class

Diagrams (subsequently Class Diagrams), as well as supporting text, which is placed in­

side UML 2 constraint boxes (e.g., cardinality invariants are si)ecified textually). The

behavioural specification consists of zero or more Behaviour Diagrams (BDs), with syntax

based on UML 2 Sequence Diagrams, which are a good fit for the interactions between

objects described in the GoF catalogue (the catalogue itself uses OMT Interaction Dia­

grams, a forerunner of Seqtience Diagrams, but lacking constructs to describe selection and

iteration [Booch, 1994]).

Structural pattern roles (classes, methods and references) are specified either graphically

or textually in the UML Class Diagram-based SD. Languages based on UML, and UML

Class Diagrams in particular, can leverage the popularity of UML, making them easier to

learn and use. Also, the GoF catalogue itself uses OMT Cla.ss Diagrams [Rumbaugh et al.,

1991], a forerunner of UML Class Diagrams, to describe pattern structure, indicating that

Class diagrams are a suitable means of describing the structural constraints imposed by

design patterns.

Cardinality invariants in Alas are expressed using first-order logic, similarly to some

DPSLs [Bayley and Zhu, 2010][Shetty and Menezes, 2011]. First-order logic enables the

specification of the universality and existence, and uniqueness cardinality invariant types.

As Class Diagrams are used to specify relationships that should exist and not relationships

that should not exist, they are suitable for specifying positive dependency invariants, but not

negative dependency invariants. In Alas, dependency invariants are specified textually. We

could have defined negated versions of the standard UML relationships such as association

and inheritance, but this would preclude the combination of cardinality and dependency

invariants in a single invariant (as cardinality invariants are text only). Another approach

would be to use OCL at the meta-model level, but we decided against this due to the

verboseness of the specification.

BDs support the description of the behavioural syntactic elements identified in Chapter

(id

2, as well as behavioural pattern roles (i.c., object roles). Control-flow invariants are ex­

pressed within the BDs, which include syntactic elements taken from UML 2 that support

the s])ecification of Sequence, Selection, Iteration, and Method calls. Both object-state and

data.-structure invariants are specified in constraint boxes accompanying a BD.

BDs provide a concise way to specify design pattern variants that differ in terms of

behaviour. This is done by clarifying existing Sequence Diagram operators and adding

an additional operator (see Section 3.d.5). Alas object-state and data-structure invariants

can be expressed in Hoare logic-style post-conditions and invariants similar to class invari­

ants used by many object-oriented software specification languages [OMG, 2010a] [Meyer,

1997][Liskov and Wing, 1994][Leavens et ah, 2006]. Emerson [Emerson, 1990] states that

Hoare logic is a simpler formalism than temporal logic for sequential terminating programs

and it has tlie advantage that invariants in Hoare logic are modular, simplifying verification

[Miiller et ah, 2006][Chin et ah, 2008]. Finally, generic structure and behaviour in design

patterns is specified in Alas using sets, flexil)le role-to-actor binding rules and modified roles

and operators.

3.1.3 UML as a basis for design pattern specification

The UML standard provides two extension mechanisms: a ‘lightweight’ extension mecha­

nism (UML Profiles) that provides a means to constrain but not contradict existing UML

constructs and a ‘heavyweight’ extension mechanism (the Meta-Object Facility [MOF]),

that allows the definition of UML-like languages (UML itself was dehned, retrospectively,

using the MOF). As Alas requires non-standard UML syntax and semantics, UML Profiles

arc not ap])licable. The MOF, as a tool for language definition, has l)een criticized for its

inflexibility in modelling instances and types [Volz and .Tablonski, 2010] [Genova, 2009]. The

limitations of OCL for semantic definition have been discussed above. We choose not to

use MOF or OCL in the definition of Alas, instead defining our novel extensions in terms

of an operational semantics.

The function of the most well-known UML diagrams (Class, Sequence, Activity) is to

describe concrete software architectures, that is, actual actors (classes, methods and objects

) and their association and interaction with one another. Roles in design patterns are not

actors but placeholders for many potential actors that may conform to the constraints

imposed by the role. UML’s mechanism for describing class structure at the level of roles is

the UML Collaboration diagram. UML diagrams may also be parameterized by the use of

64

UML Templates. Collaborations and templates have a number of characteristics that make

them suitable for the definition of pattern roles. Both allow actors to be bound to multiple

different roles in different contexts and both allow an actor to contain other structural and

behavioural actors unspecified by the role: ‘A bound element may have multiple bindings,

possibly to the same template. In addition, the l)ound element may contain elements other

than the bindings’ [OMG, 2010b] pp642.

However, in design pattern specification it is necessary to specify that some roles are

filled by only one actor in one context (e.g., operation in the Decorator pattern) and that

some roles may be filled by multiple actors (e.g., visit methods of a Visitor class) in the

same context. In UML collaborations and templates, a template may have many bindings

and a collaboration may have many uses, but we take this to assume that each binding or

use is in a different context. The alternative is that a role may be filled by one or more

actors in a given context. In either case, there is no mechanism for making the required

distinction between single and multiple actor roles. Likewise, it is not clear whether an

actor may fill multiple different roles in the same context.

In summary, Alas diagrams correspond to the level of abstraction of UML collaborations

and templates, but this mechanism is not applicable without modification due to ambiguous

role-actor binding semantics.

3.1.4 Sample Alas specification

Before descrithng the Alas syntax and semantics for addressing ewh of the design pat­

tern aspects in detail, we present a simple example Alas specification here. This examj)le

provides an intuitive sense of how Alas specifications are composed, while glossing over

semantic issues and usage rules. The invented example we take is called the FalseFagade

pattern, which is similar to the GoF Facade patterns, but with some extensions to exercise

features of Alas not needed to specify Fagade.

The structural specification of the FalseFagade pattern is shown in Figure 3.2, and

consists of a SD and three constraint boxes'^. The SD specifies that there are three class

roles (Client, Facade and SnbSystemClass), three reference roles with multiplicities (facade,

ssc and next) and each class role has one method role. Thus, a conforming implementation

is required to have three classes with these inter-relationships. The three reference roles

^The diagrams in this thesis are drawn using Rational Software Architect (RSA) [Rational@, 2007], but
the expressiveness and meaning of Ahis is independent of diagram editor.

65

are declared using unidirectional associations and the methods are all public^. Each SD

has a pattern label that associates the SD with a i)attern name. Pattern labels are specified

within constraint boxes using the syntax pattern <patternName>.‘*

The specification of Figure 3.2 can also be expressed textually. The class operator

is used to declare and name a class role. The refVar operator is used to declare and

name reference roles and takes two operands: a class name from a previously-defined class

role and a reference name. The isMethod operator is used to declare a method and can

be used to constrain the method’s modifier, actor name, parameters and return type (No

constaints are indicated by a *). Role specifications can place constraints on actor names

to capture naming conventions for a jjarticular pattern or within a particular code body.

Factory Methods, for example, often begin with the prefix create. Methods are associated

with classes using the hasMethod operator, which takes a class and a method operand.

Reference roles are associated with class roles using the hasRefVar operator, which takes a

class and reference role operand. The equivalent textual specification to the graphical part

of Figure 3.2 is given in Figure 3.1.

The first constraint box in Figure 3.2 contains a dependency invariant using the Alas

hasRef operator, which specifies that a class has some reference variable of a particular class.

The hasRef operator takes two operands, in this case, two class roles. The invariant also

uses the logical operator NOT with the usual meaning. The invariant states that the Client

class sho\ild not hold a direct reference to a SubSystemClass instance. The second constraint

box declares a named variant (backRef erence) that requires that the SubSystemClass has

a reference to the Fagade. If an actor is found to bind to this reference role, then the

inqdenientation is an instance of the backRef erence variant. Otherwise, it is an instance

of the pattern’s ‘core’ variant, the variant that includes none of the invariants ai)plied by

structural and behavioural variants. The third constraint box declares a data structure

(sseChain), which is a linked list of SubSystemClass objects. While the next reference role

is declared in the SD, it is still necessary to define the data structure separately, as a data

structure definition can specify that some subset of the SD is a relevant data structure.

The behavioural specification in the case of the FalseFaq'ade pattern consists of only

one BD (Figure 3.3), while other pattern specifications may require two or more. The

BD contains three object roles, indicated by the three lifelines. Each of the lifelines is an

object of a class role defined in the SD. Note also that the object names for the Facade and

^indicated in RSA by the green circle before the method name.
''Pattern labels are typically omitted from the Alas SDs in this thesis to avoid visual clutter.

66

pattern AbstractFactory

class Client

class Facade

class SubSystemClass

refVar Facade facade

refVar SubSystemClass ssc

refVar SubSystemClass next

doStuff isMethod public, *, *, void

delegatingMethod isMethod public, *, *

receivingMethod isMethod public, *, *, *

Client hasMethod doStuff

Facade hasMethod delegatingMethod

SubSystemClass hasMethod receivingMethod

Client hasRefVar facade

Facade hasRefVar ssc

SubSystemClass hasRefVar next

Fig. 3.1: A textual specification of the FalseFagade pattern, ecpiivaleiit to the graphical

specihcatioii in Figure 3.2

67

-facade -esc

- next

1 rsuiisiB

1

itemCIm ’
1 bboSluiTO

1 1 l&deiegatingMethodO 1 j 1 receivfngMethocf ()

NOT (CtienthasRef SubSystemClas^
{sscChainisStructura SubSystemClass nerf}

(vananIbackReference
SubSyslemClass hasRetVar Facade facade)

Fig. 3.2: The structural specification of the FalseFagade pattern, including a structure

diagram with three class roles, three method roles and three reference variable roles. The

constraint boxes define a dependency invariant, a pattern variant differing in structure from

the structure diagTam and a data-structure definition.

SubSystemClass correspond to the reference roles defined in the SD®.

The sirecification states that the Client’s doStuff method calls the Fagade’s delegat-

ingMethod. The call from the Facade to the SubSystemClass object role is contained in

an opt operator, indicating that the call is conditional. A constraint box is attached to

the return arrow of the receivingMethod, indicating a i)ost-condition on it. The post­

condition in this case states that the linked list of SubSystemClass objects is always cycle

free at the end of the receivingMethod, which may mutate the list and potentially violate

the invariant.

3.2 Structural specification in Alas

Structural specifications in Alas allow the definition of structural invariants and also define

the roles that are the basis for behavioural specification. Structural specifications also allow

the definition of structural variants. Two invariant categories contain invariants that can

be expressed using structural si)ecification alone: deijendency and cardinality. Section 3.2.1

discusses dependency invariant specification in Alas. Section 3.2.2 outlines structural vari­

ants and Section 3.2.3 deals with cardinalitv invariants.

■'’The numbering placed before t he method name tliat labels a method call is inserted by RSA and is not
Alas syntax.

()8

isscChstn isCycief me)

Fig. 3.3: The beliavioiiral specification of the FalseFac^-ade pattern. The behaviour within

the opt operator is conditional. A data structure invariant is attached to the end of

receivingMethod, indicating a post-condition.

3.2.1 Dependency invariants

While every design pattern specification dehnes required associations between classes that

can be described as dependencies, the focus of many dependency invariants imposed by

the GoF patterns is on assocations that should not exist, i.e., negative dependencies. We

distinguish between interface and implementation depemdencies. The former refers to the

situation when one class knows the interface of another cla.ss, for example, by holding

a reference to that class. The latter refers to a situation where one class commits to a

particular implementation of another class l)y calling its constructor directly. As discussed

in Chapter 2, interface dependency invariants are widely supported by DPSLs, a number of

DPSLs support a restricted form of implementation dependency and only BPSL is capable

of expressing both (though this capability is not demonstrated in the literature [Taibi and

Ngo, 2003] [Taibi and Mkadini, 2006]).

3.2.1.1 Interface dependency

Many of the GoF design patterns promote loose-coupling and extensibility, to allow main­

tenance and the addition of new functionality to be performed more easily. The intent of

numerous patterns can be generalized to ‘Clients shouldn’t need to know about Class X’

or ‘Clients shouldn’t be hard-coded to use a particular subclass of Class X’ where ‘know

about’ and ‘hard-coded’ describe the way that the Client refers to the other object. Inter­

face dependency invariants are expressed in Alas using the interface dependency operators;

hasRef, depends and calls, which are typically applied to two class operands, with the

69

iiiraiiing that the first is constrained in its relationsliip to the second. Single dependency

clauses may be combined and modified with the standard logical connectives: AND, OR, XOR

and NOT, with their nsnal meanings. AND, OR and XOR are binary oi^erators and are placed

between individnal clauses, while NOT is unary and occurs before the clause to which it is

applied.

The intent of the Facade pattern is to ‘minimize the comnmnication and dependencies

between subsystems’ by introducing a Fa(,’ade class as a single access point to a number of

subsystem classes, so that clients do not have to refer to them flirectly. The intent of the

pattern is captured in the Alas invariant below:

NOT Client hasRef SubSystemClass

hasRef is a binary operator that states that the first operand has a reference variable whose

class is the second operand. The variable must be at class scope, i.e., an attribute in UML

and .lava terminology. By default it takes two class operators but the first operator may

also be a method allowing for more fine-grained statements about where dependencies occur

to be made. hasRef differs from hasRefVar in that it does not define and name a role, it

only specifies the existence of some relationship.

By default, the second operand of a hasRef danse applies to a class or any of its

subclasses (in this ('xainjile, a Client must not have a reference to a SubSystemClass or any

of its subclasses). This can be over-ridden by another danse that states otherwise, as shown

in Section .3.2.1.2. This latter case is actually common in design pattern specification: a

class should have a reference to another class, but should not have a reference to any

subclass of that other class. The reference may be inherited, e.g., if Client above inherited

a reference to a SubSystemClass from its superclass AbstractClient, this would violate the

invariant above.

\A'hile hasRef constrains only the variables of a class, the depends operator, when ap­

plied to two class operands, means that the first does not have an attribute or local variable

whose type is the second operand. Finally, the calls operator is useful in cases where an

explicit reference is not required to make a method call, e.g., when calling static methods

or in method call chaining. The first and second operand of the calls predicate may be

either a class or method. For examj)le, the Caretaker in the Memento pattern has the

responsibility of creating a Memento, but should never access or write to its state. This

70

could be described using the Alas invariant below;

Caretaker hasRef Memento AND (NOT Caretaker calls Memento.GetStateO)

AND (NOT Caretaker calls Memento.SetStateO)

Both hasRef and calls are not transitive relations, so, for example, even though

Director hasRef Builder and Builder hasRef PartA, Director hasRef PartA evalu­

ates to false for a correct implementation of the Builder pattern. Parentheses are included

above for readability purposes only, the NOT operator has higher precedence than AND (and

OR), so the brackets may be omitted here and the meaning is the same.

3.2.1.2 Implementation dependency

A number of GoF design patterns focus on flexibility in the creation of objects. A summary

of their common intent might be that ‘a client holds a reference to an object, but is not

hard-coded to a particular implementation (subclass).’ Alas provides a single implementa­

tion dependency operator, islnitializer. that is u.sed similarly to the interface depen­

dency operators described above, taking two class ojrerands or a method and class operand.

It states that the hrst operand calls the constructor of the second operand explicitly some­

where in its definition. The ability to distinguish between interface and implementation

dejrendency, and positive and negative dependency, is part of the first major contribution

of Alas.

The Abstract Factory pattern ‘provide[s] an interface for creating families of... objects

without specifying their concrete class.’ Thus, a client should never contain the code: Maze

aMaze = new MazeO or BombedMaze bMaze = ... as the hrst performs the initialization

itself, and the second commits to a particrdar subclass. Instead, creation of the object is

delegated to a factory object: Maze aMaze = factory.makeMazeO. This is partially de­

scribed in the Alas invariant below;

Client hasRef Product AND NOT (Client hasRef ConcreteProduct) AND

NOT (Client islnitializer Product)

where ConcreteProduct inherits from Product and there are no intermediate classes be­

tween the two roles in the inheritance hierarchy dehned in the SD of the Abstract Factory

71

I)attcni (not shown here). The first two clauses state that the Client has a reference variable

of snperclass (Product), but not of a subclass of Product. The third predicate states that

the Client does not initialize any object of class ConcreteProdnet.

3.2.2 Structural variant specification

There are a nninber of trade-offs or alternatives to consider when implementing design

patterns, which create a number of potential pattern variants, each requiring their own

specification. As stated in Chapter 2, named variants, especially those differing in terms of

behaviour, are not well supported by the state-of-the-art in DPSLs and variant specification

is one of the main contributions of Alas. In Alas, variants may differ in terms of structure,

l)ehaviour or both. The structure and behaviour that is common to all variants can be

specified only once and shared between each variant. Variant-specific structure is specified

inside constraint boxes in the structural specification. The first line in the constraint box

defines the variants that the following constraints a[)ply to using the variant keyword

followed by a comma-separated list of variant names. In Behaviour diagrams, variant-

specific control flow is specified using the var Combined Fragment that expresses potential

choice (see Section 3.3.5). Variant-specific object-state and data-structure behaviour are

placed within constraint boxes that are labelled similarly to those included in structural

sjjecifications described above. Variant specifications can place additional constraints on

other variants or remove the conditions described in the shared or core variant pattern

specification, to allow for more concise specifications. Structural roles are removed from

the core (or other variants) by repeating the role definition exactly in the variant definition,

and preceding it with the keyword removes. Removing a structural role from a specification

also removes all clauses that refer to that role.

A trade-off to consider with respect to the Composite pattern is where to declare child

management methods (add, remove and GetChild(int)). If they are defined in the Compo­

nent superclass, it adds transparency, as all Components can be treated uniformly. Defining

them in the Composite subclass, however, offers safety, as a client cannot do something

meaningless such as trying to add children to a Leaf. Another variation point is whether

each child has a reference back to its parent. Figure 3.4 shows the Alas specification of

the safe variant as the generic pattern, with the unsafe and parentLinks variants speci­

fied in separate constraint boxes. An equivalent specification could be obtained by adding

the three child management methods to the Component class in the diagram, changing the

72

{vanantparenfl.inks

Component hasRefVar Component parent

(variant unsafe

ComponenthasMethod add
Component hasMethod remoe
ComponenthasMethod getChId)

Fig. 3.4; Composite Structure diagram with two structural variant definitions, botli of

which add static roles to the core s[)ecification. This allows for four valid variants of the

Composite pattern.

variant name from unsafe to safe and prefixing each of the hasMethod statements with

removes. For simplicity, the textual descriptions of the child management methods (defin­

ing return type etc.), have been omitted. The differences between variants can be inferred

during verification. In this case, if no actor is found to fill the role of add, remove and

GetChild(int) methods in the Component class, but all other roles are correctly tilled, the

implementation will be identified as the ‘safe’ variant of the Comi)osite pattern.

The replaces keyword is a concise way to combine in a single statement additions of new

invariants with the removal of existing invariants. It is especially useful for changing some

property of a method signature, as the signature specification, defined using the isMethod

keyword, can be separated into its constituent sub-clauses (hasReturnType, hasParam).

For example, to specify the No Abstract Factory variant of the Abstract Factory or Factory

Method patterns, it is necessary to change the return type of the Factory Method from

AbstractFactory to ConcreteFactory. This is specified as;

variant No Abstract Factory

removes AbstractFactory

replaces ConcreteFactory.factoryMethod hasReturnType AbstractFactory

with ConcreteFactory.factoryMethod hasReturnType ConcreteFactory

73

Note that in a sequential interpretation of the Alas specification above, factoryMet-
hod could not be referred to in line 3 of the specification above, as the AbstractFactory
structural role is removed in line 2 and f actoryMethod is removed by extension, as it refers

to AbstractFactory. We define a more flexible interpretation that allows structural role

definitions to be ‘brought back’ into the specification after their removal is triggered by

having the part of their definition that has been removed replaced by a still-present role.

In this case, the new definition of f actoryMethod no longer relies upon AbstractFactory,
and thus, does not need to be removed*’. The specification of the No Abstract Factory

variant also illustrates qualified names of structural roles. Both AbstractFactory and

ConcreteFactory have a factoryMethod role (the method is over-ridden in the subclass),

so the specific method referred to must be identified by prefixing the method with the class

role defining it and a dot.

Sometimes a variant of a pattern may have more differences from the structure of the

core variant (subsequently referred to simply as core) than similarities, but is still consid­

ered a valid variant of the pattern. To address this issue, Alas provides a scoping operator

(: :) ro allow the specification of variants in separate SDs to be linked back to their core.

The scoping operator takes two operands, the first operand is the pattern name given in

the pattern label, the second operand is the variant name. See Figure 3.5 for an example

of the scoping operator in the context of the Abstract Factory pattern. The constraint box

is an example of a variant label, which uses the scoping operator to associate the variant

with it core variant, in this case, the Abstract Factory pattern. Constraints from the core

arc not automatically applied to the variant specified in the separate SD, as the names

used in the two SDs may not be equal. To include invariants from the core in the variant

specification, the substitution operator (->) must be used to map names in the two SDs.

The substitution operator takes two operands, the first of which is a name from the core

SD and the second of which is a name from the variant SD that is being substituted for

the first in the core. Invariants from the core are only included in the variant specification

when every role in a clause or sub-clause has a mapping defined for it.

®A strictly sequential interpretation of Alas specifications with the removes and replaces keywords
would require variants to he ordered with respect to each other, to identify the roles that are present or
removed. This interpretation complicates the semantics of the language and also makes specifications less
readable, as all variants must be read in order to understand anv variant in isolation.

74

l^factoryMethod () AbstractProduct

^^ConcfeteProSucT

“l\
{variant .^stracl Factory;;No AF

ConcreteFactory •> Factory}

Fig. 3.5: A variant specified in a separate SD, illustrating the use of the scoping

substitution (->) operators

and

A second use for the scoping operator is to define sub-variants: variants that further

rela.x or constrain another variant and are only ineaningful or relevant in the context of the

this other variant. In this case, the first operand to the scoping operator is a variant name,

or ccumna-separated list of variant names, the second operand is the sub-variant name.

The variants that are affected by the constraints in another variant conld be inferred,

but the scoping mechanism allows for more fine-grained control of the scope of a variants

constraints. For example, a sub-variant could be applied to only a single variant, while

it coidd validly be combined with two or more variants. An example of a sub-variant is

provided in the section on behavioural variants (section 3.3.5).

3.2.2.1 Semantics

A pattern specification includes a set of structural roles defined in a SD, a set of invariants

defined in associated textual clauses and constraints from one or more BDs. We refer to

all these definitions and invariants generically as cojistraints in the following discussion. A

pattern specification is a conjunction of each of these individual constraints from each of

the included diagrams. The removes keyword can be used to remove both structural role

definitions and textual clauses such as dependency invariants from a specification. In both

cases, the entire constraint must be repeated in the removes clause. This avoids ambiguity

but makes it verbose to remove long constraints such as cardinality invariants. Removal of

a structural role also removes all clauses that refer to the role.

In a conjunction or disjunction of multiple clauses, a single sub-clause can be removed,

and the effect of removing the sub-clause is to replace the clause in the specification with

75

tlie value true. For exaiii})le, a variant that removes the second sub-clanse of:

NOT (A isinitializer B) AND NOT (B islnitializer C)

results in the clause:

NOT (A islnitializer B) AND true

NOT (A islnitializer B)

NOT is considered as part of a sub-clause, while AND, OR and XOR are the connectives

between clauses. When removing textual clauses (or sub-clauses) that include NOT, it is

necessary to remove the NOT in the clause included after the removes keyword, otherwise

it is possible to create a NOT (true) clause, which is unsatisfiable. A variant that removes

all structural definitions (and, by extension, all textual clauses) from the core variant is an

invalid definition.

Dc'fining a set cons as the set of all constraints, with a size n, a pattern si)ecification

(the core variant) can be defined as:

core = consi A cons2 A . . . A cons,;

A variant specification containing m additional constraints (i.e., no removes constraints) is

defined as:

variant = consi A cons2 A ... consm

The combination of a core variant with the above variant results in the overall pattern

specification:

pattern = core V (core A variant)

A variant specified in a separate SD and linked using the scoping operator does not by

default include constraints from the core variant. Defining the set core^ as the set of

constraints taken from the core for which the other variant provides complete substitutions,

tlie specification of the overall pattern can be represented as:

pattern = core V (core., A variant)

76

Returning to variants specified in the same SD as the core, we define variant,, as the set of

removes ciauses and varianta as tiie set of additional constraints, tlie pattern specification

becomes:

pattern = core V ((core \ variant,.) A varianta)

where the liidiiig operator, \, removes botli structural definitions and any clause or sub­

clause that refers to them. Multiple variants are not mutually-exclusive by definition. For

example, the inclusion of two variants leads to the pattern specification as defined below

(angled braces [()] have been used to denote the outermost parentheses of each sub-clause,

to improve readability):

pattern = core V ((core \ variant/.) A variant/) V
((core \ variant/) A variant/) V
(core \ (variant/ A variant/) A ((variant/ \ variant/)
A (variant/ \ variant/)))

The four clauses combined in a conjunction represent (he core variant, the first v'ariant, the

second variant and the combination of the first and second variant respectively. Note on

the last two lines of the definition that the set of removes clauses of each variant applies

not just to the core variant but to all other variants with which it may be coml)ined also,

i.e., variants may remove definitions and clauses from other variants. Similarly to a single

variant, a combination of imdtiple variants that removes all structural definitions from the

core is also invalid.

3.2.3 Structural cardinality invariants

Cardinality invariants place constraints on the number of elements in a set, usually by com­

paring the number of elements in two or more sets to each other. As described in Chapter

2, cardinality invariants are well supported in the literature [Le Guennec et ah, 2000, Mak

et ah, 2004, Eden, 2008], though the languages that address them tend to focus on structure

and lack support for behavioural specification. Structural cardinality invariants (cardinality

invariants that are described completely in the structural specification) can be expressed in

Alas using sets and qnantihcation. Up nntil now, each role has been an individual role, i.e.,

a role that is played by one actor only. In this section we introduce set roles, roles that may

be filled by one or more actors. Sets can be created using two approaches: explicitly using

77

Alas built-in operators or implicitly in a quantified expression. Sets of classes are always

created implicitly while sets of methods are always created explicitly. The isMethodSet

operator is identical to the isMethod operator except that it defines a set role rather than a

single role. Similarly, hasMethodSet is identical to hasMethod, except that it associates a

class to a method set and not a single method role. An example of a definition of a method

set, which we will use later to specify a cardinality invariant in the context of the Visitor

pattern is shown below:

VisitMethodSet isMethodSet

public NOT static NOT abstract, visit*, ConcreteElement ce, *

Visitor hasMethodSet VisitMethodSet

The above specification excerpt states that the VisitMethodSet is a set of methods that

are all public and not abstract or static. isMethod clasuses that do not include static

or abstract, mean that the role may be filled by an actor that is either static or non­

static, abstract or non-abstract. The specification also states that each member of the

set must have a name that begins with ‘visit’, have a parameter that is a member of the

ConcreteElementSet, and may have any return type. Role names specified so far have

simply been placeholders for the actual actor names in a candidate implementation and

place no constraints on the actual name of the actor. With the isMethod operator, it is

possible to constrain the names of actors in a conforming implementation, using a limited

form of regnlar expressions.

Alas supports the nniversal, existential and nnique quantifiers of first-order logic, rep­

resented by the keywords FORALL, EXISTS and EXISTSONE, with their usual meanings. The

general form of quantified first-order logic statements in Alas is:

Q X in set [where constraint] @ predicate

where Q is a quantifier, x is a bonnd variable drawn from set and predicate is a valid

Alas clause or another cpiantified statement. Constraints are optional, as indicated by the

brackets and are used to exclude elements of the set that do not meet some criteria from the

evaluation of the invariant. The in keyword is used to designate that a variable is drawn

from a particular set (as in the Python programming language). The @ .symbol substitutes

78

for the bullet symbol from Z notation (•) [Woodcock and Davies, 1996], which can be read

as ‘it holds that’ or ‘such that’, and is used to separate (inantification and predicates.

Sets of classes are defined by designating a previously-defined single class role as the

set in some cpiantified statement. This overrides the role’s initial definition, and makes

the role a set role. The Mediator pattern ‘pioinotes loose coupling by keeping objects

from referring to each other explicitly’ by placing a Mediator object between a set of ob­

jects that co-operate. The Mediator pattern differs from the Faq'ade pattern in that it

defines a multi-directional protocol, while the Facade handles unidirectional communica­

tion. The Alas invariant below states that no two (non-identical) members of a set of classes

(ConcreteColleague) that inherit from a common parent (Colleague, whose definition is

not shown) refer to each other explicitly;

NOT EXISTS cA, cB in ConcreteColleague

where NOT (cA == cB) (S cA hasRef cB

where cA and cB are arbitrary names. Note that cA and cB arc cpiantified variables reine-

senting classes, that may be substituted here for class roles. Quantified variables may take

the place of roles in any Alas clause, provided they are of the type that the operator that

is applied to them expects. The ConcreteColleague role is over-ridden here by its use as

a set in a qnantihed statement and is made a set role. Finally, this example illustrates the

use of the == operator that may compare two classes or methods for equality (a class or

method is ecjnal to itself only).

The Visitor pattern will be used to demonstrate universal quantification in Alas struc­

tural specihcations. A Visitor ‘represent[s] an operation to be performed on the elements

of an object structure’. Each Visitor class should be capable of visiting every element type

(e.g., a code generating visitor must be able to generate code for every type of expression).

Using the defintion of VisitMethodSet above, and the universal (inantifier FORALL (and

omitting some definitions for brevity), this invariant can be specified as:

FORALL ce in ConcreteElement, v in ConcreteVisitor @

EXISTS visitMethod in v.VisitMethodSet Q

visitMethod hasParameter ce

79

wliero hasParameter is a convenience method defined in terms of isMethod, where only

the parameters in the metliod signature are constrained. Note the use of the dot notation

(v.VisitMethodSet) to indicate the set of methods belonging to a particular class. In

natural language this states that every class that inherits from Visitor contains at least

one method that accepts each element of the ConcreteElementSet as a parameter. This

example is an instance of the universality and existence invariant type. Invariants of the

miiqueness invariant type are expressible directly using the EXISTSONE quantifier.

Finally, cardinality invariants can also place constraints on the multiplicity of relation-

sliijjs between classes. A Decorator object should be associated with, or ‘decorate’, only one

Component object, so the Decorator class should define only one reference variable attribute

of type Comijonent. Alas provides the refVars keyword to represent the set of all reference

variable attributes held by a class role. Similarly, the methods keyword rei)resents the set

of all methods defined in a class role'. The class of a reference variable can be accessed

using the class keyword. refVars, methods and class keywords are all associated with

a role using the dot notation: <roleName>. <keyword>. Inheritance relationships can be

specified textually using the inherits keyword, which states that the first class operand

is recpiired to inherit from the second class operand. The invariant in the context of the

Decorator pattern may be specified as:

EXISTSONE var in Decorator.refVars 0

var inherits Component OR var.class == Component

3.3 Behavioural specification in Alas

In this section, we describe behavioural specification in Alas. Alas behavioural specifications

are capable of expressing behavioural cardinality invariants, control-flow, object-state, and

data-structure invariants. In particular, Alas is capable of expressing object-state invariants

regarding deep copying and data-structure invariants regarding data-structure shape. Alas

BDs also provide a concise syntax for expressing design pattern variants that differ in

terms of their behaviour. Finally, generic control flow can be specified using BDs (see

Appendix E).

BDs describe a seciuence of events that are initiated or performed by roles. BDs are

^Itoth refVars and methods refer to the set of all structural entities occurring in the class actor bound
to the class role, not just the structural entities specified i?i the role.

80

based on UML 2 Sequence diagrams and OCL but introduce new constructs and differing

semantics for some existing constructs. This section introduces tiie syntax recjuired to

specify each of the invariant categories in turn, drawing examples from the GoF catalogue.

An overview of the semantics of each concept is given in a short section after that concept

is introduced. Detailed semantics and more subtle issues that are less critical to basic

understanding are covered in Appendix A.

3.3.1 Control-flow invariants

Delegation of responsibilities between objects is a central concern in design patterns and the

ability to express delegation is thus a basic requirement of a DPSL. Numerous GoF design

patterns describe two or more events that should always occur in sequence, while a number

of patterns also include conditional and iterative behaviour. As described in Chairter 2, a

number of DPSLs are capable of expressing all control-flow invariants [Lano et ah, 1996,

France et ah, 2004]. This section describes how invariants of the types Sequence, Sele­

ction, Iteration and Method call are si)ecihed in Alas.

Lifelines are the foundation of BDs and represent interacting object roles. Lifelines are

indicated by a labelled box, called its head, with a vertical line below it, along which events

are specified. The labels within lifeline heads take two operands, which are tyirically an

object name and a class name, separated by a colon (though some exceptions are discussed

later). Objects interact by exchanging synchronous method calls. Every call event has a

corresponding return event. A call event is indicated by an arrowc'd line between caller and

callee with the callee being the target of the arrow. The line is lalrelled with the method

role name (or other method identifier) and may optionally include arguments. Arguments

specified must conform to the type specified by the parameters of the method. Every BD

begins with a fomid call, a call event with no calling object role. This indicates that the

method receiving the found call does not need to be called anywhere in the implementation,

i.e., no role needs to be bound to the source of the found call.

The object name given to a lifeline receiving a call in a BD may match a reference

role belonging to the class of the calling role. This indicates that the object to which that

reference is currently pointing is the intended receiver of the call (issues regarding object

identity are discussed later). For example. Figure 3.3 shows the Client calling the Fagade

object using the reference role (facade) defined above in Section 3.1.4. Alternatively, the

object name may match no previously defined role. Subsequently, we will use the term

81

object role sonictinies as a catch-all term for all roles representing objects and sometimes

in the more specific sense of roles that do not match previously defined reference variable

roles. In each case, it should be clear from the context.

3.3.1.1 Sequencing

A DPSL should be capable of specifying two related but separate issues: that some set of

events should occur in a particular order and that they should always occur together. The

Command pattern, for example, requires that the execute method of the ConcreteComniand

(Command subclass role) should always call the action method of the Receiver. The first

issue, ordering, is indicated in Alas by the vertical position of events in a BD: events occur

after all events above them and before all rwents below them. As there is no conc\nrency

in Alas, BDs define a total order of events.

\\e will refer to the second issue, that the events always happen, as universal behaviour.

The default semantics of UML Seciuence diagTams, however, is that a diagram defines

only a trace that should be possible, while allowing the existence of other traces that

are different: ‘there are other legal and possible traces that are not contained within the

described interactions’[OMG, 2010b, p.473]. Thus, a Sequence diagTam defines by default

existential behaviour. An assert operator can be used to state that ‘all other continuations

[besides the one specified] result in an invalid trace’ ibid, p.486. This assert operator

api)roximate!s the universal behaviour specification that we require but is not formally

defined elsewhere. We have chosen the universal behaviour semantics for Alas diagrams.

Though this limits exju'essiveness, as context-sjrecific behaviour is not expressible, it does

not affect the specification of conditional behaviour.

Existential behaviour specification is useful in the early stages of system design, when

the design is being ‘fleshed-out’ and is typically replaced by universal specification when the

requirements of the system are better understood [Damni and Harel, 1998]. With regard

to design patterns, control flows are described that innst be satisfied in all contexts, so the

universal meaning is desired. The Alas meaning is similar to a Sequence diagram contained

entirely within an assert operator or a Live Sequence Chart (LSC) universal chart [Danmi

and Harel, 1998].

82

3.3.1.2 Selection

A number of design patterns involve conditional behaviour. The Flyweight pattern describes

the initialization of an object on the condition that the object has not yet been initialized

(lazy initialization), while in the Proxy pattern, the Proxy object delegates only if the

intended target of the client (the RealSnbject object) has been initialized. These examples

involve conditional behaviour, but a number of alternative or mntnally-exclusive conditional

behaviours are required in other patterns. A Handler in the CoR pattern, for example,

should either handle a request or forward it, but not both or neither. The Parameterized

Factory variant of the Abstract Factory and Factory Method patterns describes the use of

a parameter to choose between the initialization and return of multiple alternative types of

object.

The opt and alt operators, taken from UML 2, are used in Alas to specify single,

and multiple mntnally exclusive conditional behaviour respectively. Composite operators

describe events that can themselves contain sequences of events. Coni})osite operators

accept one or more operands, each of which is a secpience of events Similarly to UML,

the opt operator is a composite operator that contains one sequence of events and states

that ‘either the sole operand happens or notliing happens’ [OMG, 2010b] p.484, while the

alt operator takes composes nmltiirle sequences of events and states that ‘at most one of

the operands will be chosen’. Lund and Stolen [Lund and Stolen, 2006] show that these

operators are ambiguous. It is not clear whether mandatory or potential choice is intended,

i.e., whether two alternative behaviours must be possible in the implementation or whether

the implementor has the option to implement one or the other behaviour. We choose the

mandatory choice semantics, as the intention is that some conditional branching occurs

in the implementation, as shown in the informal examples in the GoF catalogue. As we

will see later, the var operator, introduced in Alas for pattern variant specification, is an

operator that expresses the potential choice semantics.

All composite events are mutnally recursively comjrosable, meaning that any composite

event may contain an instance of any other composite event inclnding an event of its own

type, e.g., an opt may contain an opt. Every operand of a composite event has an optional

guard, specifying the condition under which the operand is chosen. Guards can be specified

completely, though anticipating the guard condition for all valid implementations in all

contexts is typically not practical or possible. For this reason, Alas provides a means to

specify generic guards (see Appendix E), where only a sub-clanse of the complete guard

83

I 1 iwHwinfuyujHJUi I : imiymiiHfiBr

1;handleRequest

1: serveRequest

2: serveRequest
rj

(NOT (successor = NULL)!

1: handleRequest

2. handleRequest

2 handleRequest j j

Fig. 3.6: Beliaviouiiil specification of the CoR pattern involving a two-operand alt with

an operand guarded by a basic state invariant on an object role. A single path in a valid

impleinentation may not contain the behavionr of both operands. The call event involving

successor’s handleRequest only occurs if the successor has been initialized.

condition is specified.

Object roles have their basic state (uninitialized, initialized, garbage collected) specified

l)y comparing the role to the NULL role (NULL is a keyword that is equal to any object role

that is either uninitialized or garbage collected), and a constraint on the basic state of an

object role may be placed in the guard of an Alas control-flow operator. Figure 3.6 gives an

example usage of the alt operator and a complete guard imposing a basic state invariant

on an object role. The specification in the figure states that a ConcreteHandler can either

handle a reciuest or forward to its successor, on the condition that its successor is initialized.

3.3.1.3 Iteration

Both the Composite and the Observer pattern involve a method that iterates over an

unbounded collection of objects and calls the same method on each element of the collection

(collections are dealt with in more detail in Section 3.3.2.4). To express iterative behaviour,

Alas provides the loop operator (taken from UML 2), which, similarly to opt, takes a

single operand containing a sequence of events and has a guard. To express iteration and

interaction with an unbounded collection, we recpiire two further mechanisms: a way to

84

relate the iiimiber of iterations of a loop with the size of a collection and a lifeline that rray

represent different objects at different times.

VMiile a nninber of non-standard idioms have been proposed to express this behaviour

[France et ah, 2006][Larnian, 2005], it is not cnrrently supported in the UML stamh.rd.

In UML Secpience diagrams, a lifeline represents one and only one object: ‘While Parts

and StructuralFeatures may have multiplicity greater than 1, Lifelines represent only me

interacting entity...’. An object role name in a UML diagram may be replaced by a colleclion

name followed by scpiare braces. A selector is an integer value placed within the sqrare

braces to act as an index into the collection, selecting an element at a particular posit.on.

Also, the selector may be omitted allowing an arbitrary object to be bound, but tfese

bindings are still to a single object and immutable.

In Alas, the selector is not constrained to being an integer only, and may be a str.ng.

A cpiantified statement, quantifying over some collection role, may be placed in the Irop

guard of the loop operator (also in UML). When the (piantified variable’s name matches

the selector string, the desired meaning is crbtainc'd: that the loop iterates once for each

element of the collection and that each element of the collection is involved in the intcracdon

on one iteration. An example from the Observer pattern as shown in Figure 3.7 (all vrlid

uses of selectors and their meanings are given in a table in Appendix A Seetkm A.5). The

order that each element of the collection is involved in the interaction is not constraine 1 in

this case, e.g., a loop interaction may Iregin with the first element and irrogress forwards or

begin with the last element and progress backwards.

3.3.1.4 Non-pattern structure and behaviour

A pattern actor will rarely only perform a pattern role and is typically involved in a number

of other interactions that are not part of the specified pattern behaviour. Thus, recpiiring

that a method in a candidate implementation does not call any other method except the ones

explicitly specified is very restrictive, and may lead to false negatives during verification.

However, a (sj)ecified) call event occurring twice instead of once in a candidate implemen­

tation may have a significant affect on behaviour, as many methods are not idempotent.

\\’e use the term conformance relation to denote the allowable non-pattern structure and

interleaved non-pattern behaviour that an actor may contain/perform and still satisfy a

role. The default conformance relation of Alas, which we call Non-role refinement, states:

all interaction between object roles in a j)attern specification should be explicitly specified.

85

[-■ | i i BBWfVWUWiWI|'UBI*Mf |

1.1: notify

loopi

[forallobsinObsE rLisq

1: update

2; update

1 2: notify

2. setState ,

Fig. 3.7: Specifying iteration over and interaction witli an unbounded collection by match­

ing the name of the (piantified variable in the loop guard (obs) and the selector string in

the lifeline.

l)ut a role may have other interleaved interactions with unspecihed objects. A structural

role may have any number of non-pattern structural relations provided they do not vio­

late some specified invariant. This is a special case of the refinement conformance relation

defined in Chapter 2

The conformance relation only relates to method calls, (i.e., interactions between roles)

and does not affect other control branchings such as loops and conditionals. Unspecified

interleaved loops and conditionals are allowed, as are local method calls. One side-effect

of this relation is that it means that a conforming implementation may contain self calls

that are specified and also self calls that are unspecified. Non-role refinement is similar to

the conformance relation supported by LSC [Damm and Harel, 1998]: “If the chart is a

universal chart, none of the events in [the set of events visible to the chart] will be allowed

to occur in between the events appearing in the chart itself... Events and variables not

visible in a chart are not constrained by the chart.” However, the scope from which events

are drawn is slightly different: In LSC, a set of visible events is defined for each diagram

while in Alas (and UML) the set of methods to consider is defined in the Structure (or

Class) diagram to which the Behaviour (or Sequence) diagram corresponds.

However, a Factory Method specification, for example, may include only a call from

86

the Factory to the Product constructor while an iinplcinentation may also call a mutator

method (also included in the structural specification) on the Product before returning in or­

der to initialize some state, violating the non-role refinement relation. For this reason, Alas

includes a Refinement relation that allows arbitrary interleaving of behaviour with sjreci-

fied pattern behaviour. The default relation may be overridden by including a constraint

box, not attached to any lifeline, stating ConformanceRelation = Refinement. Alas also

provides the Equivalence conformance relation, that forbids a method actor to have any

other method calls except those included in the specific'ation. The conformance relation is

set for the entire diagram.

3.3.2 Object-state invariants

In Alas, invariants may be placed on the state of objects or the relationship between the

states of interacting objects at a particular point in the execution of a program using Alas

BDs and attached constraints. Object-state invariants can be used to sjrecify (1) whether

an object has been initialized, (2) whether two objects are copies or aliases of one another

and (3) the state or contents of data structure's and colle;ctions. Each of these types of

object-state invariants will be discusse'd below, using examples. In particular, we focus on

the specification of dec'p copying invariants as one of the majcrr contributions of Alas.

The UML Standard describeis a concrete syntax for constraints that involves a rounde'd

rectangle that spans potentially numerous lifelines that are reciuired to ‘synchronize’ on this

constraint. Rational Software Architect does not irrovide this syntax, but instead provides

constraint boxes that do not impinge upon lifelines but may be attached to them using a

dotted line. In Alas, as there is no concurrency, it is sufficient to connect the constraint to a

single lifeline, though the constraint may refer to the state of multiple objects (i.e., there is

no synchronization reciuirement). We use the term anchoring to refer to the connection of a

constraint to a particular point in a lifeline. We use the term constraint for the text within

a constraint box and invariant for the combination of constraint and anchoring position.

Constraints may be anchored to one of two positions in an Alas BD: at a method

return they specify and post-conditions. The .second position to which a constraint may

be anchored is at any other control branch, such as the end of a loop or conditional. This

second positioning is treated like a post-condition; it states that an invariant should hold at

that point in the interaction. Alas does not provide pre-conditions as they are were found

to be less usefvd than post-conditions on methods and control-flows, and complicate the

87

originator.states memento.stsie

Fig. 3.8: A potential (non-Alas compliant) Memento pattern specification where the ob­

jects pointed to by reference variable roles are strictly ecjual when the Memento’s constructor

returns.

semantics of the language.

3.3.2.1 Deep copying behaviour

In the Memento pattern, a memento object ‘capturejs] and externalizejs] an object’s internal

state so that the object can be restored to this state later.’ The state of the Memento

(or some subset of it) is a function of the state of the Originator at two points in the

execntion: when the Memento is created and when the Originator is restored to the state

held by the Memento later. Thus, the Memento is a copy of (a subset of) the state of the

Originator, encapsulated within an object of a different type. A potential specification (non-

Alas compliant) of a particular instance of the Memento pattern is given in Figure 3.8, where

state is a reference variable role. There are two problems with this diagram in the context

of design pattern si)ecification. Firstly, in most implementations of the Memento (and

Observer) pattern we encountered during the creation of the benchmark used in Chapter 5

of this thesis, the state of the two objects is not strictly equal (same runtime type and same

value), as the value stored in the Memento, for example, is some function of the Originator’s

state (e.g., a .lava integer array in one object converted to a string and prepended with an

identifying tag in another object).

Secondly, the relevant state to be copied (subsecjuently, copy state) differs between

pattern implementations, while each subclass may add extra state that should be cojjied.

The copy state is some combination of irrimitive and reference variables (subsequently

variables) and objects, that may themselves contain other variables and objects, and so on

88

recursively. A generic iiietliod for specifying this bundle of state is necessary to describe

the object-state invariant imposed by the Memento pattern.

To deal with the first issue, Alas includes a relates operator (inspired by the reflects

keyword in Contracts [Helm et ah, 1990]) that takes two pre-dehned reference variable or

object roles as operands and specifies that one operand is some function of the state of the

other.

W'ith regard to the second issue, Alas provides the keywords CopyState and copystate,

that allow the definition of a special role that is defined identically to a reference variable

role excejA that its role type and role name must be CopyState and copystate respectively.

The role may be bound to a set of variable and reference variable actors, defined in the

containing class, and also to further state recursively reachable from them. An example of

the usage of the role is given in Figure 3.9, in the context of the Memento pattern.

The copy state of two or more roles may be compared in a BD using the operators

isCopy and isRCopy. isCopy takes two copy state operands and states that the two are

strictly equal at the point in the execution where the constraint is anchored (constraints are

always anchored at control-flow events, which can be matched between specification ami

implementation). isRCopy is equivalent to relates, except that it takes two copy state

operands. An example of the usage of isCopy is given in Figure 3.10. These mechanisms

collectively address the deep copying invariant type in our DPSL classification framework

of Chapter 2. Introducing an isCopy operator to OCL has been proposed elsewhere, but

with shallow copy semantics [Markovic and Baar, 2005]. The ability to define the cojyy state

of class roles in Alas gives it the ability to describe the Prototype and Memento patterns,

two of the most poorly supported GoF patterns in the DPSL literature.

The anchoring of the constraint in Fignre 3.10 is equivalent to a post-condition in OCL.

The specification states that the Originator must call the Memento object that was passed

to it as a parameter to setStateToMemento and ensure that the copy state of itself and

the memento are equal at the end of the method execution. Note that this demonstrates a

parameter role, where the parameter role name matches an object role name.

3.3.2.2 Copy state definition

Alas provides two categories of approaches to defining the copy state: user-dehned and

relation-defined. The copy state to be included during verification can be defined by the

user by selecting reference and primitive variables to be included from the set of classes

89

^^^•Snento
copystate: CopyState

QgetState 0
setState ()

Fig. 3.9: Illustration of the usage of the CopyState reference variable role in a structural

specification. CopyState may be bound to a different set of primitive and user-defined

reference variables in each implementation of the Memento

Fig. 3.10: Illustration of the isCopy operator, relating the copystate of two objects at a

particular point in the execution. Note also the matching parameter and lifeline object role

name. The diagram states that the Originator object calls the Memento passed to it as a

parameter.

90

reachable from the class actor. This approach is only available in a forward-engineering use

case, where the original developer can capture their intent precisely at development time by

binding actors in the implementation to the copy state role manually. To enable a reverse

engineering use case, and to provide a generic specification that can be used in multiple

contexts, Alas also provides copy state definitions based on the relation between composing

object and composed copy state that is both formal and can be automatically verified.

The distinction between association, aggregation and composition relations can lielj) to

identify the copy state. The issue may be phrased as: should we follow this object reference

and include all the objects reachable transitively from it in the copystate? Association

represents the ability to send a message from one object to another. Aggregation restricts

this to message sending within a whole/part hierarchy, while composition adds the further

recjuirement that the lifetime of the part ends with the destruction of the whole or aggre­

gating object. The state that is in a composition or aggregation relation to the composing

object might be expected to be copied, but the state of all objects with which the object is

associated is neither suitable nor practical for inclusion in a copy.

The UML Reference Manual [Rumbaugh ef ab, 1999] defines the composition relation

relative to an aggregation relation as adding the constraint that 'an object may be part of

only one composite and that comijosite object has responsibility for the disposition of all

its parts - that is, for their creation and destruction'. Ambler [2005] states that whole and

part should have ‘coincident lifetimes’. The key concepts in defining a composition relation

are ownership and lifetime. An ownership relation exists between whole and part objects

if the part is not included in any other whole, and a strict ownership relation exists if the

part cannot be included in any other whole. A composition relation also requires that the

lifetime of the whole and part, defined by their creation and destruction time, are relatc'd.

Alas defines the comp (composition) copy state as all the states that satisfy a strict

ownership relation with the composing object. A close relation between the lifetimes of

whole and part is ini])lied by a strict ownership relation, as the whole must initialize the

{)arts, as no other object is capable of referring to it, and the parts should be destroyed

(or garbage collected) when the whole is destroyed, also because no other object has a

reference to it. In a class actor definition, strict ownership is guaranteed by initializing the

copy state somewhere in the class definition and not providing any accessor method that

returns a reference to any object of the part. An ownership relation, by contrast, is satisfied

by a program where the class initializes the copy state and no accessor method is called on

91

class A {
B b;
D d;

}

class 6 {
C c;
C getC(){

return c;
}

}

class C {}
class D {}

Fig. 3.11: Class A satisfies the strict ownership relation with respect to class B, but class

B does not satisfy the strict ownership relation with respect to class C

any object of the part, though an accessor method may be available.

The definition of comp is recursive: each recursively composed class must satisfy the

strict ownership relation between it and its own state variables. For example, in Figure 3.11,

class A owns the object referred to by b and d but also c: even though B provides an accessor

method for its variable c, no client is aware that an instance of class A has a reference to

an instance of B, so has no means to gain access to the recursively composed C object.

However, the relation between B and C does not model a strict ownership relation, so C is

not included in a comp-based copy state definition. The relation between B and C is only

association.

The candidates for inclusion in the copy state of any object are all the objects transitively

reachable via the reference variables defined in the object’s class. These objects can be

imagined to form a graph, where the nodes are objects and the edges are reference variables.

Svicli a graph may include cycles. A relation-defined copy state constrains the graph of

objects included in the copy state to those objects that satisfy the composition relationship

with the object that directly composes them, i.e., whole and part objects are opposite ends

of a single edge. Figure 3.12 illustrates the graph formed by the example in Figure 3.11.

Black nodes and edges are included based on the comp definition of copy state, while red

nodes and edges are reachable but excluded from the copy state.

As accessor and mutator methods are ubicpiitous in object-oriented programming, de­

velopers may choose to include not just the state that is composed by an object in its copy

state, but also the state that it merely aggregates. For example, a Tyre object may l)e

92

Fig. 3.12: Graph of all reachable state and the included coi)y state for the classes dehned

in Figure 3.11 using the comp copy state definition

initialized by a TyreManufacturer and added to a Car after its construction, but when

copying a Car it is also nece^ssary to copy its aggregated Tyre objects. Alas provides two

other relation-defined copy state definitions that relax the constraints imposed by comp.
iComp [initialization-only) copy state recpiires only that a whole initializes its parts, and

does not recpiire ownership or coincident destruction of whole and part. Secondly, Alas

provides the dComp [destruction-only) copy state dehnition, lhat requires that the part is

not shared in the heap. This allows clients to initialize a part and pass it to the constructor

or some mutator method of the whole. Note, this definition forl)ids sharing of a i)art be­

tween any two objects in the heap, not just objects of the same class or kind. For example,

not only can an Engine not be shared between two Car objects, it also cannot be shared

between a Car and a ScrapYard, as this may well break some key invariant of the Car or

ScrapYard class. All three of the relation-defined copy states include all primitive variables

in their graph of relevant state.

3.3.2.3 Object identity

The role of a Factory Method is to return a newly-created instance of a Product class.

Thus, a key invariant of the Factory Method pattern is that a new object is returned, i.e.,

the object created by the call to the Product constructor in the Factory Method is the

same object that is returned by the Factory Method. A related creational pattern is the

Prototype pattern, where new objects are created by copying a prototypical instance. One

invariant of the Prototype pattern is that the object returned by the Prototype’s clone()

method is not the same object as the prototype, but should have identical values for some

subset of its state, similarly to the Memento example above. Thus, to sjjecify the Factory

93

Motliod and Prototype patterns jrrecisely, it is necessary to be able to express the distinct

concepts of object identity and value equality respectively.

The OCL Standard [OMG, 2010a] defines operators informally using natural language.

The definition of the equality operator, for example, is: ‘The equality of values of the same

type can be checked with the operation —t’ ibid. pl95, where a value ‘can be either an

object, which can change its state in time, or a data type’ ibid. p.98. The interpretation of

this depends on the meaning of the word ‘equality’, which is not defined. Object identity is

discussed briefly in the OCL Standard, Appendix A, Section 1.2.1: ‘Objects are referred to

by unicpie object identifiers’ [OMG, 2006]. The OCL set oid(c) is also defined as the set

of object identifiers for a class. However, this set is not used in the definition of any of the

relevant OCL operators. The implementation of Dresden-OCL’s [Demuth and Wilke, 2009]

equality operator calls the Java equals() method. The implementation of the equals!)

method is not constrained in Java and could fu'ovide either object identity or value equality

semantics. In this case, using the equality operator in OCL has different meanings in

different contexts, and the meaning can not be anticipated when the specification is created.

The UML Standard also makes little reference to object identity. A DataType is de-

scribed as being 'similar to a Class. It differs from a Class in that instances of a DataType

are identified only by their value.’ However, the meta-class Class has no attributes or as­

sociations that could be used to store its identity, and both Class and DataType occur at

the same level of the UML meta-iidieritance hierarchy, inheriting directly from Classifier,

and nothing else. Thus, it is not clear how the unique identify of objects is represented in

UML.

Object identity and value equality are distinguished explicitly in Alas using the isAlias

and isCopy binary operators respectively. isAlias, similarly to isCopy described above,

takes two reference variable or object roles. It evaluates to true where the two roles are

bound to the same object actor. Both operators are defined precisely in terms of object

identifiers and values below in Section 3.3.2.3. Note that x isCopy y => NOT (x isAlias

y) thus isCopy is a mechanism for specifying deep copies (the values of corresponding

reference variables in both operands are not identical objects) and isAlias is a mechanism

for specifying shallow copies (the operands themselves, and the values of corresponding

reference variables in both operands are identical objects). As pattern invariants referring

to copied state and the distinction between copies and aliases is poorly addressed in existing

DPSLs, the mechanism described above is one of the major contributions of Alas.

94

returnval is a keyword in Alas that refers to the object returned by a method. It

may be used in constraint boxes that are anchored to method call retnrn events, and in

this case refers to the object returned by the method. The value returned by methods

of other lifelines in the behavioural specification can also be accessed using qualihcation

(<MethodName>.returnval). When a method is called more than once in a BD, its calls

may be distinguished using an occurrence number, appended to the method name after a

colon in the form <MethodName>:<OccurrenceNumber>.returnval.

In fact, the state of any interacting object may be referred to at any control-how event

during an interaction. The object pointed to by a reference variable role belonging to

some other lifeline can be referred to by qualifying it with the owning lifeline’s object

role name. Similarly to method calls above, object state at conditional branchings may

be accessed by attaching an occurrence number to the control-how operator (e.g., opt).

For example, opt:2.handler.successor accesses the object pointed to by the successor

reference variable of the handler lifeline at the end of the third opt operator occurring in the

speciheation. This mechanism in Alas provides a means to express detailed relationships

between the states of objects at different stages of the interaction.

Figure 3.1,1 illustrates the use of the isAlias operator and returnval keyword in the

context of the Factory Method pattern. The speciheation states that the object returned by

the Factory Method is the same object that was returned by the Product constructor. The

distinction between object identity and value equality and the isAlias ojjerator addresses

the aliasing invariant type of our classiheation framework.

Semantics

To dehne object state invariant syntax, the state of a program is represented as a transition

system. In each state (s G S), there is a set of objects (O) that can grow and shrink between

states as objects are created and destroyed, but has a hxed size in any one state. Each

object has a unique identity, which can be accessed using the function id{o]. Each object

has a set of variables (A), each element of which is referred to using the notation ohj.a

(including variables of primitive and user-defined types), and also a subset of variables CA

(i.e., CA C A) that represents the subset of variables bound to its copystate. The value

of variables in each state can be obtained using the function Val{a). Each object may be

bound to a set of role names (N), and the function obj{n) maps a role name to its object.

We can now define the Alas operators isAlias and isCopy:

95

Fig. 3.13: Factory method specification using the isAlias operator and the qualified and

unqualified version of tlie returnval keyword. The f actoryMethod is required to return

the object returned by the constructor of Product.

name isAlias otherName id{ ohj (name)) = id{obj{othe7'Name)) .

name isCopy otherName
^dcf

yea : CA •
{Val(ol)j{7iame).ca) = Valiobj{otherName).ca)) A {(nam,e).caisAlias {otherName).ca)

3.3.2.4 Collections

Alas snijports the four kinds of collections provided by OCL: Bag, Sequence, Set and Or-

deredSet. Their meanings are summarized in Table 3.1, and are compatible with OCL.

Collections are typed, i.e., their contents have a definite type that is specified using a class

role. Collection roles are defined and related to their containing class roles similarly to

method and reference variable roles. For each collection kind, there is an associated opera­

tor for its definition (e.g., isBagj that takes two operands: the collections role name and its

content type. Its content type must be a previously-defined class role. An example of the

definition of a Sequence in the context of the Observer pattern (the Sequence used above

in Figure 3.7) is given below:

96

Ordering Element uniqueness

Bag Unordered Non-unique

Sequence Ordered Non-uniqTie

Set Unordered Uniciue

OrderedSet Ordered Unique

Table 3.1: Ordering and element uniqueness of each of the Alas (and OCL) collection

kinds

pppp-pw-p—-
obsetverList:Sequence<Observer>
attachObserver (obs : Observer)
detachObserver (obs: Observer)

^ notify 0
{gXsetState ()

----------- --

Fig. 3.14: A grai)hical definition of a collection. Subject contains an ordered collection of

potentially non-unique Observer objects

class Observer
observerList isSequence Observer
Subject hasCollection observerList

In structure diagrams, collections are defined either with associations of multiplicity * (with

optional ordered and unique keywords attached to association ends, as in UML) or in the

attribute compartment of a class. The type of the contents of a collection is given in angled

braces after its kind. A graphical equivalent of the textual specification above is given in

Figure 3.14.

Alas supports a number of operations that refer to the states of collections. These

include includes, excludes and union and are taken directly from OCL. Particular posi­

tions in ordered collections may also be specified, such as first, next and at. The suffix

.old is used to refer to the value of some variable at the beginning of the method in a

condition placed elsewhere in the control flow of the method, and is borrowed from the

Eiffel programming language [Meyer, 1997]. Applying the equality operator (=) to two

97

{observetUst excludes obs AND
observeri-ist.old - observerList union obs}

Fig. 3.15: Suliject’s detachObserver specification illustrating collection operators and

matching parameter and constraint role names. The method should remove the parameter

from the list and have no other side effects.

collection operands states that every element of one operand is also an element of the other

operand and, for ordered collections, that the elements occur in the same order. Both the

Observer and Composite patterns include an object role (Subject and Comi)osite respec­

tively) that adds to and removes from a Sequence of objects. The Alas specification of the

detachObserver method is given in Figure 3.15. Note the matching of the i)arameter role

with an object role used in the constraint box. The specification states that the parameter

passed to the detachObserver method has been removed from the collection and no other

object has been added or removed.

3.3.3 Data structure invariants

As the specification of data-structure invariants is poorly-supported in the DPSL and DPVT

literature, the ability to sjjecify data-structure invariants, in particular, shape invariants,

is one of the major contributions of the Alas language. A number of design patterns de­

scribe the use of recursive data structures that can be modified at runtime. For example,

the CoR pattern describes the use of a linked list of ffandler objects and the Composite

pattern involves a part-whole hierarchy structured as a tree. Each of these data structures

has desirable proi)erties relating to their ‘shape’, e.g., the absence of cycles in a linked list,

the violation of which can lead to runtime exceirtions, deadlocks, and logic errors. To be

able to describe these properties, it is necessary to be able to express the transitive closure

operation, so all elements in an unbounded structure can be related to one another logically.

98

There is ikj piiinitive operator in OCL for expressing transitive closure directly and it is not

discussed in the latest OCL Standard [OMG, 2010a] [Baar, 2010]. To obtain the transitive

closure of following a reference variable predecessor, for example, the user may write a

recursive function similar to:

allPredecessors = self.predecessor
—> union (self.predecessor.allPredecessors) .

This statement, however, may not provide a valid closure, as it may recurse infinitely if

the data structure has cycles and, in this case, evaluates to an undefined value [Vaziri

and .lackson, 2000]. Some tools supporting OCL, such as Eclipse, provide a safe closure

operation, by building a collection using an iterative fixedpoint algorithm [Damns, 2007].

In OCL queries and constraints, it is possible only to refer to objects that are nav­

igable from the contextual object via associations. In a singly-linked list, for example,

this corresponds to all the objects occurring later in the list than the contextual object.

\Mien defining data-structure properties, however, it is often more convenient to navigate

a structure in the opposite direction to association links: whether heap sharing occurs can

be expressed succinctly by evaluating if an object has two or more immediate predecessors

(see Section 3.3.3.1). In OCL, it would be necessary to begin from the root of the data

structure and attempt to identify two (potentially very long) paths to the object.

In Alas, Data structure roles are defined textnally and data-structnre operators are

apjilied to the roles to form constraints. These constraints may be anchored to BDs,

similarly to object-state invariants, or may Ire used unanchored in interaction invariants

(see Section 3.3.4). Data structure roles are defined using existing reference variable or

collection roles {link roles, in this context), where the variable or collection is the same

class or a superclass of the class role that contains it. The data structure is defined as

the transitive closure of following the link roles (which are potentially 1-to-n multiplicity

relations, creating multiple link paths) from some root object until a terminating object is

encountered over every link path. A terminating object may either be of a class that does

not include any link roles or the link roles are uninitialized or empty. For example, in the

Composite pattern, a Composite object holds a list of Component (its superclass) objects

called children. Some of the children may themselves be Composites, while others are

Leafs. Ti'ansitively including the children list of all Composites starting from the root

99

(lofines a tree of Composite objects at any particular stage in an interaction. A particular

link path terminates either when a Leaf is encountered (no link roles) or when a Composite

has no objects in its children list (empty link role).

A data structure is defined using the isStructure operator, which takes two operands.

The first operand is a structure role name and the second operand is a class role, a dot

and a comma separated list of link roles, all of the same class or a superclass of the class

role and where all link roles are pre-defined reference variable or collection roles associated

with the class role. Including a role in a data structure definition has no effect on existing

object-state invariants that refer to that role. The data structures used in the CoR and

Composite pattern are defined below. Note that there is syntactically no difference between

including a reference variable (Hander. successor) and a collection (Composite. children)

role:

chainOfResponsibility isStructure Handler.successor

compositeTree isStructure Composite.children

Alas provides a number of data-structure operators: isCycleFree, isReachableFrom,

isDisjointFrom, isShared and isSharingFree. isCycleFree takes a single data struc­

ture operand and states that the data-structure should be free from cycles. isReachable­

From takes two object operands, and states that the first object may be reached from the

second object by following one of the link roles in the associated data-structure definition.

When isReachableFrom is used within a behavioural cardinality invariant, its operands

may l)e bound variables representing objects drawn the data structure being quantified

over (an example of this use is given in Figure 3.16). When the data structure that the

operands is not clear from the context, the data structure can be specified explicitly using

the in keyword as:

X isReachableFrom y in chainOfResponsibility

isDisjointFrom takes two data-structure operands and states that no object should be

contained in both structures. isShared takes a single object operand and states the operand

is reachable via at least two links in a data structure. Finally, isSharingFree is based on

isShared. takes a single data-structure operand, and states that the structure is free from

100

objects that are shared. The operators are defined in more detail in the next section.

Data strnctnre invariants may be attached to lifelines, but are more often used in mu’ GoF

specifications in the context of interaction invariants, as described in Section 3.3.4. The

ability to specify data-strncture invariants is the second major contribution of A.as, as

the entire invariant category is overlooked in the DPSL literature. These invariar.ts are

challenging to verify, and are the focus of an active area of research in software verification

[Rondon et ah, 2008] [Kim and Rinard, 2011].

3.3.3.1 Semantics

A recursive data structure is defined as a directed graph, where the nodes are objects (with

unique identifiers) and the edges are references labelled by their variable name. NULL is

a valid value for a node, indicating that the object pointed to by a reference has not been

initialized, or has been garbage collected, and objects may occur more than once in the

same structure. The extent of the data structure stretches from some root node u.itil all

paths from the root encounter a NULL node or a node that defines no out edges, \^'e define

hasSuccessor* as a transitive (non-reflexive, non-commutative) binary operator taking

two object operands that evaluates to true if it is i)ossible to navigate along the direction of

the references from the first operand to the second opeuand. hasPredecessor* is a similar

operator, though it navigates in the opposite direction to the references (this operator dis­

tinguishes Alas from OCL in this context). Both operators have a non-starred count-^rpart,

that indicates navigation is only performed for one step. Thus, o hasSuccessor p is true

iff one of o’s immediate successors is p. The Alas data-structure operators are defined using

eciuivalences (<t^) to statements using these basic operators and first-order logic. Below, the

Alas data-structure predicates are defined in terms of equivalences;

ds isCycleFree

Vx, y ds \ X hasSuccessor* y • -^x liasPredecessor* y .

X is Reachable From y ^ x hasSuccessor* y .

X isShared

3y, z : ds • X hasPredecessor y A x liasPredecessor z .

ds isSharingFree

'ix : ds • -ix isShared

x.last <=>

101

: ds • y isPredecessor x

whero ds represents some data structure, and x, y and z are objects. The | symbol indicates

a constraint (similarly to the where keyword in Alas). All the above definitions are qualified

with the constraints that x, y and z are non-identical, but this constraint is omitted for the

sake of brevity.

3.3.4 Interaction invariants

The object-state and data-structure invariants introduced in previous sections are invari­

ants on the state of pattern roles at explicitly-specified stages of an interaction (e.g., when a

method returns). However, it is necessary to express invariants on pattern roles that apply

at any point at which interaction with the role may occur, e.g., a chain of Decorator objects

should always terminate with an object that is a ConcreteComponent, i.e., not a Decora­

tor. As classes can be subclassed, and these subclasses may include additional methods

that mutate the pattern role’s state, the grouj) of methods that affect a pattern invariant is

not known at si)ecification time. To address this Issue, Alas provides interaction invariants,

similar to the history invariants introduced in Liskov and Wing [1994]. Interaction invari­

ants must hold when any method belonging to a class actor returns. Interaction invariants

introduce no new syntax to Alas, but are distinguishable syntactically from object-state

and data-structure invariants as they are not anchored to any lifeline.

As objects may become aliased and be mutated via an alias, the object that holds a

reference cannot always maintain an invariant on the state of an associated object alone.

Rather than require a class to withhold access to its state (e.g., provide no accessor method),

interaction invariants require all actors that may gain access to an object referred to by

an invariant to cooperate to maintain that invariant. In the object-oriented specification

literature, this is referred to as a visibility-based invariant [Leavens et ah, 2007], as the

invariant is ‘visible’ to multiple class roles. The other approach, where a class is required to

be the only access point for some state, is known as an ownership-based invariant. We chose

to specify visibility-based invariants as they are more generally applicable: ownership-based

invariants require the ownership relation to be satisfied.

The CoR pattern decouples the sender and receiver of a request by creating a chain

of objects, each of which has the option to handle the request or pass it on. A desirable

property of the CoR pattern is that every request is eventually handled by some Handler.

102

This is often ensured by providing n DefaultHandler that is at the end of every chain

of Handlers, where this DefaultHandler provides some default response to every type of

request. Informally, the constraint is that there exists a handler that is capable of providing

a response to this req\iest type and this handler is reachable from every other handler.

The specification of this invariant in Alas uses the isReachableFrom data-strncture

operator, which takes two object operands and states that the first operand may be reached

by the second operand by transitively following the link roles. isReachableFrom is defined

in Section 3.3.3.1 above. The Alas specification is given in Figure 3.16. The BD states

that the role default’s HandleRequest method will always call its ServeRequest method,

i.e., it will never forward the message without handling it. The interaction invariant states

that every element in the chainOfResponsibility data structure has a DefaultHandler

further along the structure from it that will guarantee its reejuest is handled. Note, the

ilefinition of the chainOf Responsibility data structure is given in Section 3.3.3. Clients

manipulate the chain by inserting new Handlers, altering the shape of the structure and

potentially violating the invariant. The interaction invariant of Figure 3.16 is shown with a

speciheation of the default DefaultHandler role for illuslralion purposes, but could equally

well be included within the SD.

Note that two fiuantilied variables (default and handler) are drawn from the same

set of objects (the data-structure chainOf Responsibility). During evaluation, all com­

binations of candidate actors for the two roles will be tested in sequence, with the two

roles being bound to the same actor in some combinations. For this reason, if the roles

are mutually-exclusive (as in the example of Figure 3.16), this must be specified explicitly

using negation (NOT) and isAlias. While most roles are mutually-exclusive, we chose to

allow multiple bindings to a single actor for consistency with classical first-order logic.

The Composite and Decorator pattern have similar ‘well-configuredness’ interaction

invariants, as shown below. The isSharingFree data-structure operator takes one data-

structure role as an operand and states that the data structure shoidd have no object in it

that is referenced via a link role from two other objects. The dehnition of isShared, on

which isSharingFree is based, is given in Section 3.3.3.1. The first class invariant below

states that no object is shared within the tree structure, though some object outside the

structure may have a reference to it, i.e., non-sharing within the data structure does not

imply ownership by a single composing object. Finally, the Decorator invariant is similar

to that of the CoR above, but more specific. It specifies that a chain of Decorators must

103

\ "! Hfammaimm"

serveRequest

1.2; serveRequest

{FORALL handler in chainOfResponsibility @
EXISTS default in chainOfResponsibility where (NOT handler isAllas defaulb @
default tsReachableFrom handler AND default isTypeOf DefaultHandla)

Fig. 3.16: CoR Behaviour diagram along with an interaction invariant using Alas data-

strurture operators. The specification states that a DefaultHandler should be reachable

from every handler in any valid chainOfResponsibility. This constraint must be satisfied

at the end of every method that refers to and/or mutates the chainOfResponsibility.

terminate in a ConcreteComponent (or one of its subclasses) and not a Decorator. The

operations for ordered collections (first, last, next and at) are also applicable to data

structure definitions, where the data structure definition defines a structure with a total

order of elements.

componentTree isSharingFree

decoratorChain.last isKindOf ConcreteComponent

The invariant defined above in the context of the CoR pattern is largely ecpiivalent to

the Decorator invariant stated above: it will be satished if the last element in a structure has

a particular type. However, this is not the case if each Handler in a chain had potentially

multiple successors (the chainOfResponsibility had multiple link roles or a link role that

is a collection).

3.3.5 Behavioural pattern variant specification

The var operator is used in Alas to specify variant-specific control-flow. It may take one or

more operands. Each operand is labelled with a variant name in its guard. A var operand’s

guard may contain nothing but a variant name. When one operand is supplied, potential

choice is intended: the variant’s behaviour may or may not occur in an implementation

104

and the iinpleinentation ran still satisfy the core or sonic other variant. When innltiple

operands are provided, one of the alternatives that these ojierands represent must occur

in every valid iinpleinentation (i.e., there is no core variant in this case). The seniantics of

the single and multiple operand var operators are very similar to the definitions of opt and

alt above respectively, and have been omitted here for the sake of brevity. A BD referring

to a structural role that has been removed from a variant does not apply to that variant.

If the variant is required to perform a similar interaction, it must be specified in full and

wholly contained within a var operator, iiaming the relevant variant.

In the Composite pattern, a trade-off to consider is whether to allow explicit links from

child Component’s to their parent, which can simplify traversal and Component deletion.

An important invariant in this context is that the child-jiarent reference is kept consistent

with the parent-child reference. In the Alas specification of Figure 3.17, this responsi­

bility is given to the parent Composite’s add method, which could, for example, call a

setParent (Composite c) method on the Component parameter c. The this keyword can

be used to refer to the object whose lifeline has the constraint anchored to it. The invariant

of Figure 3.17 states that at the end of the add method, the Component that has now been

addt'd to the Composite’s children list has its parent reference set to the identity of the

Composite.

An alternative to consider in the contcixt of the unsafe variant of the Composite pattern

defined above is whether the child management methods declared in the Component simjjly

do nothing or throw an exception. Using the sco{)ing operator of Alas, we can dehne a sub­

variant of the unsafe variant called the do nothing variant, where each child management

method does not call any of the other method roles defined in the specification. The

‘do nothing’ requirement can be captured precisely using the Equivalence conformance

relation, as shown in Figure 3.18.

One of the implementation issues to consider with respect to the CoR pattern is the

implementation of the successor reference variable. The variable can be declared in the

Handler superclass or the ConcreteHandler subclass. In the first case, delegation to the next

object in the chain is performed by the ConcreteHandler calling the request handling method

on its superclass, and the superclass performs the forwarding. In the latter case, the subclass

object delegates directly. These alternative behaviours are specified in Figure 3.19, which

extends Figure 3.6 to support two variants: viaSuperDelegation and directDelegation.

Note that the two roles named successor do not create a naming conflict, as they refer to

105

Fig. 3.17: Composite Behaviour diagTam illustrating the use of the var operator and

variant-labelled constraint boxes to specify variant-specific behaviour. The same variant is

named in both the var operator and constraint box, meaning that both of these constraints

must apply in a valifl parentLinks variant of the Composite pattern.

[W) tcomponenrcomponerit ^

{variant Unsafe::do nothing)

tx
{ConformanceReiations Equivaience)

Fig. 3.18: BD illustrating the use of the scoping operator for the definition of a sub-variant

and the alternative conformance relations provided by Alas. The do nothing variant may

only be satisfied by implementations that satisfy the unsafe variant

106

I ' VRHdritfetiafMfareAMraftHawr] ["v ,’wpgrHiH«r] | ^ ■lygeytiiByiniMB' | | . ,rouy46F.Miw

IhandleRequest

R“

(successor
varl

t«naSuperOelegation

(directOelegaton

1: serveRequest

2: serveRequest
ZJ

1 handleRequest

2 handleRequest

1.1 handleRequest

1 2: handleRequest

T

T

1: handleRequest

2: handleRequest

2: handleRequest |

Fig. 3.19: Si)efificatioii of two behavioural variants of the CoR pattern using a nuiltiple-

operand var. Each valid CoR inipleinentation must perform the behaviour specified in

viaSuperDelegation or directDelegation, but not both or neither.

reference roles belonging to two different class roles in two separate variants.

3.3.6 Behavioural cardinality invariant specification

The behavioural specifications introduced up until this point describe invariants over in­

teractions between individual roles. These roles may be filled by multiple actors in the im­

plementation. The verification of each class actor can be done in isolation from other class

actors, as the conformance of one does not affect the conformance of the other. However,

some behavioural specifications place constraints on a set of conceptually-related classes

or methods, and these use quantification, similarly to the structural specifications in Sec­

tion 3.2.3. These types of invariants are referred to as behavioural cardinality invariants.

107

(.Quantified statements cio not need to be anchored to any lifeline, as they apply to the entire

speciheation.

As in structural cardinality invariants, quantified variables may take the place of struc­

tural and behavioural roles in BDs. A variable may substitute for both a class or object role

name given in a lifeline head or a method role name that labels call events. Each variable

used as a role name substitute must be bound within some quantified statement in the

same BD. Variables may occur in a quantified statement and not in the accompanying BD.

In cases where two or more variables are drawn from the same set, and may be bound to a

single lifeline, the substitution operator (->) can be used to map one or more variable names

in a cpiantihed statement to a single role occurring in the accompanying BD. Intuitively,

two actors can be imagined as being bound to the same role at the same time.

The Abstract Factory pattern describes an exclusive relationship between Concrete-

Factory and ConcreteProduct roles: (1) some subclass of each AbstractProduct should be

initialized by some Factory Method in each ConcreteFactory but (2) no two Factory Meth­

ods in a ConcreteFactory should initialize the same ConcreteProduct. The two conditions

above describe a surjective (onto) and an injective (one-to-one) relationshij) between sets

respectively. When combined, this is a bijective relation. These relations are specifiable in

Alas using hrst-order logic.

Figures .‘1.20 and ,3.21 show the specifications of the two invariants described above. It

uses the context keyword, taken from OCL, to indicate the class role in the context of which

the invariant is evaluated. An equivalent specification could be obtained without using the

context keyword, but with a more complex quantified statement. Note that both variables

fml and fm2 are substituted for the same method variable (fm) in Figure 3.21, which specifies

the injective relation (that no two CoiicreteFactories create the same ConcreteProduct).

Note also that the variable ap that occurs in the quantified statement in both figures does

not occur as a role name substitute in either BD. Also, the FactoryMethodSet does not

need to be associated with a class role: it is by default identified as the set belonging to

the contextual class.

3.4 Summary

This chapter described Alas, a DPSL capable of specifying invariants from each of the five

invariant categories identified in Chapter 2, including instances of the three invariant types

108

I.IConcreteProduct

1.2;ConcreteProduct

"b,
{context ConcreteFactoty;
FORALL apCIass in AbstraclProduct@

E)0STS tm in FactoryMettodSet, cpCIass in ConcreteProduct
(wtiere cpCIass Inherits apCiass) @

T

Fig. 3.20: Structuial cardinality invariant specifying a surjective relation between Factory

Metliods and AbstractProdncts in eacli ConcreteFactory: every FactoryMetliodSet con­

tains some metliod tliat initializes some subclass of eacli of the AbstractProduct classes.

Both the metliod role representing a Factory Metliod and tlie class role representing a Con-

creteProdiict have been substituted with variables bound in the (luantihed specification.

1
1.1: ConcreteProduct | K

{context ConcreteFactory;

1 2: ConcreteProduct FORALL apCiass in AbstractProduct @
FORALLcpCIassin ConcreteProduct (where cpCIass Inherits apCiass) @

'— NOT EXISTS frni -> fm, frn2 -»fm In FactoryMethodSet
1 ^ere NOT frni = 1m2) @}

T 1

Fig. 3.21: Structural cardinality invariant specifying an injective relation between Fac­

tory Methods and ConcreteProdncts in each ConcreteFactory: no two Factory Methods

create the same ConcreteProduct. Two quantified variables are bound to a single variable

substituting for a method role.

109

that are poorly supported in the DPSL and DPVT literature. Alas includes syntax to

describe each of the syntactic elenients identified in Chapter 2. Also, Alas is capable of

expressing variants of design patterns, that differ in terms of structure and/or behaviour.

In fact, variation points can include invariants from any of the five invariant categories.

Multiple named variants may be combined into a single specification, and rules are defined

that identify combinations of variants as valid or invalid. Alas is based upon and extends

UML 2, which provides diagrams that are suitable for both structural and behavioural

sirecification and has a small semantic gap to object-oriented programming languages. The

description of a DPVT that is capable of verifying the novel invariant types provided by

Alas is described in Chapter 4. An evaluation of GoF design pattern specification in Alas,

in the context of code bodies commonly analyzed in the design pattern specification and

verification literature is provided in Chapter 5.

110

Chapter 4

AVT Implementation

The design of the Alas Verification Tool (AVT) is described in this chai)ter, with occas­

sional iniplenientation details being presented where these are relevant. AVT is designed

to be capable of verifying .lava source code against specifications written in the Alas design

pattern specification language (DPSL). We focns on the verification of novel invariants and

invariant categories in Alas. We present the compiler framework used as a basis for AVT

below. We then dismiss the requirements imposed by Alas on a supporting verification

tool. We describe the program analysis algorithm implemented by Alas and list some mi­

nor implementation issues. Finally, we outline AVT behaviour specific to each invariant

category.

State-of-the-art DPVTs [Shi, 2007a][Blewitt et ah, 2005][Stencel and Wegrzynowicz,

2008] all verify properties of local variables or attrilmtes in the context of a single method,

such as whether a variable has a mill or non-imll value (Singleton pattern) or points to a new

object (Singleton, Factory Method). The analyses that these tools implement compute the

values of variables on the stack only, while the verification of object-state and data-structure

invariants requires an accurate model of the graphs of objects stored on the runtime heap.

We implement an analysis known as shape analysis, novel in the area of design pattern

specification and verification, to enable the verification of these invariant types. A static

analysis approach was chosen instead of a dynamic analysis, as the invariants to be analyzed

are generic, i.e., not application-specific [Evans, 2005], and it facilitated comparison to the

state-of-the-art DPVTs, which all implement a static analysis.

AVT is built upon the dikes compiler [IBM, 2005]. The dikes compiler was chosen as it

is open source, fast, and because it is the basis for the PINOT tool [Shi and Olsson, 2006].

One disadvantage of choosing dikes is that it is no longer under development and has limited

111

sni)port for Java 5 and any subsequent Java versions. Initially, we planned to extend the

PINOT tool and perform a direet comparison between AVT and PINOT as part of the

evaluation of AVT. However, the PINOT source code is modularized by pattern instead of

by language element or invariant category and this made it difficult to extend. Chapter 5

exirlains why a direct tool-to-tool comparison was not performed. While its source code

did not prove useful for our initial intention, PINOT did provide useful examples of how to

extract information from .Tikes to perform data-flow analysis.

4.1 Verification requirements imposed by Alas

Each invariant category imposes its own reciuirements and constraints on a supporting

veriheation tool. We address each of the invariant categories separately here

• Veriheation of implementation dependency invariants requires the complete explo­

ration of the abstract syntax tree (AST) of a method and the identiheation of con­

structor calls to classes in a particular inheritance hierarchy.

• Veriheation of deep copy object-state invariants requires the comparison of the values

of objects of the same class, at a particular point in the control how of a method. The

possilrle vahms of both primitive and reference variables need to be computed. The

concept of a copy involves not just a single object and its variables on the stack, but a

complex object structure involving all of the heap that may be referenced transitively

from the object. Both the values of reference and primitive variables are relevant to

the deep cojry invariant.

• Veriheation of data-structure invariants involves computing the values of theoretically-

unbounded recursive data-structures stored in the heap and identifying irroperties of

these structures, for example, that they are free from cycles. As structures are the­

oretically unbounded, and may grow to prohibitively-large sizes for veriheation in

oven medium-sized programs, it is necessary to summarize information about a struc­

ture that is not necessary for veriheation, but represent properties of the structure

necessary for veriheation precisely.

• As objects typically encapsulate their internal state in object-oriented programs,

clients usually operate on the internal state of an object by calling methods on the

object. The same method, for example, an instance of the Composite class role’s

112

acldChild method, may be called multiple times in a program on different objects in

different contexts. To verify properties of object structures precisely, it is necessary to

distinguish the different calling contexts of methods which operate on the strnctuies.

• Similarly to most DPVTs in the literature, AVT is a fnlly-antomated verification tcol.

As software verification is nndecidable in general, any software verification tool nust

introduce some inaccuracy into its analysis to guarantee termination in general. It is

important that these inaccuracies are sound and conservative, i.e., they do not albw

statements to be proven that are mitrne. As Alas clauses may or may not be negat'd,

Alas provides a particular challenge for conservative verification, as will be discusted

later in the chaj)ter.

The remainder of the chapter is structured as follows: Section 4.2 describes the slnpe

analysis algorithm implemented by AVT. Shape analysis is a precise form of data-flow aml-

ysis suitable for the verification of object-state and data-strnctnre invariants, as discussed

in Chapter 2. Section 4.3 describes the functionality specific to the verification of erch

of the different novel invariant categories addressed by AVT. Section 4.4 discusses sone

miscellaneous implementation issues. A summary of the chapter is given in Section 4.5.

4.2 Shape analysis algorithm

Software verification aims to prove that pieces of software demonstrate some desirarle

or undesirable property. While there are a nmnber of largely-independent connmmities

working on the problem of software verification, there are many similarities between tlnse

communities and the solutions that they have developed. Schmidt [1998], as well as Stef’en

[Steffen, 1991], have demonstrated that there are close parallels between the capabilitiet of

data-flow analysis and model checking. Nielson et al. [1999] have demonstrated the paralels

between a number of verification approaches such as type and effect systems, data-fbw

analysis, and constraint-based systems. Each of these approaches may be applicable to

the verification of the invariant categories and types identified in Chapter 2. We clnse

data-flow analysis, and in particular, shape analysis, as it has been demonstrated as beng

applicable to the verification of object-state and data-strnctnre invariants similar to tlnse

exjnessible by Alas [Calcagno et ah, 2007][Rinetzky et ah, 2005][Berdine et ah, 2007]. Data­

flow analysis is also the approach used by the current state-of-the-art DPVTs [Blewitt et d.,

2005][Shi and Olsson, 2006][Stencel and Wegrzynowicz, 2008]. Data-flow analysis (DFA)

113

involves setting up and solving a system of equations that involve the program variables and

their values before and after each statement in the program [Aho et ah, 1986]. The solutions

to data-flow ecpiations after each statement are a set of data-flow facts. DFAs are commonly

inij)leniented as iterative fixed-point algorithms which guarantee termination if a number of

well-documented and well-studied conditions are met [Nielson et ah, 1999][Aho et ah, 1986].

Shai)e analysis is a DFA technique whose equations describe a finite characterization of the

shape of data structures [Sagiv et ah, 2002]. Analyses are intra-procedural if operation calls

are ignored or if the language under analysis does not include operation calls. Analyses

that handle ojjeration calls are termed inter-procedural^. As part of the implementation of

AVT, we developed an inter-procedural shape analysis based on Rinetzky et al. [2005], with

a number of differences which we document in this chapter. In particular, the representation

of the data-flow facts is closer to [Nielson et ah, 1999] than Rinetzky et al. [2005].

DFA is performed on a program representation known as the control-flow graph (CFG).

A CFG is a directed graph rei:)resenting all the paths through the method or program.

Nodes in the graph are basic blocks: sequences of consecutive statements that do not

contain the possil^ility of branching or jumping [Aho et ah, 1986]. Edges are valid flows

of control between blocks and depend upon the type of branch or jump statement used.

The transformation of the AST provided by .likes to a CFG performed by AVT is not

documented here in detail, but is based upon the algorithm of Aho et ah [1986, pp529] and

the .lava Language Specification [Gosling et ah, 2005]. The representation of inter-method

control flow, referred to as the call graph, is a point of variability in DFA tools, and is

discussed in Section 4.2.2.

The DFA flxed-i)oint algorithm calculates the outpiit set of data-flow facts for each basic

block in the CFG by applying the transfer function of each statement in the basic block in

sequence to the input set, which is itself the outimt set of each of the block’s predecessors in

the CFG. The algorithm continues to iterate until no output set changes since the previous

iteration. The transfer functions for each type of assignment are dealt with formally by

Nielson et al. [1999], we simply implement the semantics given there for .lava.

In this chapter, we present a running example to illustrate the features of the shape

analysis algorithm implemented in AVT. The source code for the example is given in Fig­

ure 4.1. It contains an assignment of a parameter with an unknown value to an attribute,

a, and two assignments of newly-created objects to another attribute, b, over mutually-

*As we analyze .Java, all procedures are met hods, but we retain the term procedure, as it is the prevailing
terra u.sed in the DF’A literature

114

public void soBeHethod(a aParan){

a = aParaa;

if(c != null){
b = new B();

>

else {
b - new B();

}

b.setRealSubjecK a);

}

Fig. 4.1: The nmning example used to illustrate the features of the shape analysis algo­

rithm implemented in AVT

Fig. 4.2 ; Control-flow graph for the example of Figure 4.1

exclusive control-flow paths. Finally, the two attributes are associated with one another

via a call to setRealSubject, the source of which is not shown, setRealSubject simply

assigns its argument to an attribute, realSubject of the callee object.

A CFG for the example code of Figure 4.1 is given in Figure 4.2. Data-flow facts flow

along edges in the CFG in the direction of the arrows in the hgure. For example, the data­

flow facts input to the analysis of the hnal (POST) block is the combination or meet of the

data-flow facts output from its predecessor blocks (IF and ELSE). How data flow facts are

combined at the meeting point of control-flow paths is defined by the meet operator. The

output of each iteration of the fixed-point algorithm is the result of applying the transfer

functions of each of the individual statements in the POST block to its input data-flow facts

in sequence.

115

As a number of Alas invariants are placed on individual methods, AVT performs a jno-

gram segment analysis instead of a whole-progxam analysis. This is significant for reasons

that will be discussed later in the chapter. The functionality required for a program segment

analysis can be seen as a super-set of the functionality required for whole-program analyses,

as the whole program is contained within a single method (main in .lava). We refer to the

source code under analysis throughout as the program segment under test (PUT), which

refers to the method under analysis and the transitive closure of all the methods called

from it.

We present first the intra-procedural part of the shape analysis algorithm, then the

inter-procedural part before discussing some issues regarding convergence and scalability.

4.2.1 Intra-procedural analysis

The data-flow facts oi)erated on by a shape analysis are known as shape graphs, and the

output of a shape analysis is a set of shape graphs. Each shape graph contains a number

of core predicates that describe the value of program variables at that point in the analysis.

Also, oj^tional additional predicates describe properties of individual or groups of core

predicates, such as whether a particular value is shared between references of multiple

other values or occurs on a cycle of values. These oj)tional predicates are referred to as

instrumentation, predicates in Sagiv et al. [2002]. The level of precision with which we model

core predicates means we do not reciuire any instrumentation predicates, as only minimal

information abont the precise shape of data structures is discarded by our algorithm (in

particular, in the presence of recursive calls). Core predicates are further subdivided into

unary and binary predicates. Unary predicates involve variables that would be stored

on the stack at runtime, i.e., local variables and attributes of ‘this’. Unary predicates

are represented as pairs of Var x Val, where Var is a variable drawn from the set of all

variables in the PUT, and Val is a value drawn from the set of all values occurring during

the analysis. Binary predicates represent the runtime heap and are triples of Val x Var x

Val, where the first value is the source object holding the reference Var. Unary predicates

could be considered a special case of binary predicates where the source object is ‘this’.

Values for reference variables are locations, as described below.

The shape graphs resulting from separate control-flow j^aths are combined in a union

when the paths meet, but no information is discarded: the result of two or more i)aths

meeting includes all the graphs resulting from each path. This allows ‘strong updates’ to

116

be pei'foniied: the previous value of a variable is reinoved or ‘killed’ when a new value

occurs [Nielson et ah, 1999]. This results in a powerful analysis and is required for Alas

verihcation, as discussed later in Section 4.3.1. The coinbinatioii of shape graphs at the

meeting of control-how paths is maximally precise (as it does not summarize or discard any

information), b\it means the set of shape graphs is exponential in the number of branches

and jumps in the PUT.

4.2.1.1 Locations

Following Sagiv et al. [2002], we use the term location to refer to a memory location in

the heap. Shape analysis represents the theoretically inhiiite number of locations with a

hnite set of abstract locations. In our algorithm, we distinguish between two main types of

locations; allocation locations and unknown locations. Allocation locations represent objects

created within the PUT. A new allocation location is created once for every allocation site

(expression containing the new keyword) in every calling context. Allocation locations

occurring within loops are transformed into a single multi-allocation location^ representing

one or more locations {Multi-unknown locations also occur in the context of collections and

loops). Unknown locations represent olqects that are referenced l)ut not allocated within

the PUT, including the formal parameters of the method under test, as well as any class

attributes referenced before being assigned a value. A new uukiiown location is created the

first time such a variable is referenced in the PUT. The use of multiple unknown locations

instead of a single one for each type or for all types allows us to calculate more accurate

aliasing information. For example, in Figure 4.3, before the body of the method setMethod-
WithTwoParams begins execution, formal i)arameteu's dsParam and objParam, and attribute

dsAttribute may all be aliases, but none can be shown to definitely be aliases. However,

after line 1, our algorithm can determine that dsParam and dsAttribute are aliases, while

using a single abstract location for all unknown values, similarly to Sagiv et al. [2002], all

three variables can only be shown to be possible aliases.

Both types of locations are uniquely identified by a quadruple of integers; calling con­

text lumiber, block number in method, line number in block, and occurrence number in

line. Each unicpie node in the call graph is assigned a number as an identifier. Call graph

construction is dealt with in Section 4.2.2. For allocation locations, this ciuadruple repre­

sents where the new expression occurs and for unknown locations, this (juadruple represents

where the name expression that first references the variable occurs. The value of primitive

117

void setMethodWithTwoParams{ DummySubject dsParam,
Object objParam){

dsAttribute = dsParam;
}

Fig. 4.3: Simple set method example with two formal parameters and one reference variable

that may be all aliased when the method call dispatches

At end of IF

a

Fig. 4.4: Shape gra7)h resulting from the analysis of the first path through the example of

Figure 4.1, until the end of the IF block

variables are represented exactly like unknown locations: as a cpiadniple representing where

they are first referenced. Similarly to most data-flow analysis tools, exact literal values of

literal integer and floating-point mnnbers is not part of the data-flow facts, as this greatly

multiplies the size of the state space of the analysis [Consot and Cousot, 1977].

Figure 4.4 illustrates the shape graph oiitput after analyzing the IF block. Allocation

locations are denoted by circles, while summary locations are denoted by squares. Inside the

location’s outline is its class and its unicpie identifier. Figure 4.4 shows two unary predicates

(i.e., pairs of variable and value), denoting the names and values of two attributes of ‘this’

(local variables are also represented as unary predicates), a has been initialized to the

summary location representing the unknown value of the parameter, which is first accessed

in the first statement of the first block of the method. While b has only one potential value

at the end of the IF block: the object created in the block. Note that the new object’s

context number (the first number in its unique identifier) is different from the that of the

summary location, as it has been allocated in a different context: the constructor of B. The

predicate representing aParam is omitted, it has the same value as the predicate representing

a, due to the assignment.

Figure 4.5 illustrates one of the two shape graphs output at the end of the analysis. This

118

Shape graph 2
At EOM

b

realSubject

Fig. 4.5: Shape graph representing the second path through the method of Figure 4.1,

through the ELSE block

graph represents the second path through the method, through the ELSE block. Note that

the context number of the location point(!d to by b is different from the context number of

the location pointed to by b in Figure 4.4. This illustrates the distinction made by our shape

analysis algorithm between separate calling contexts to the same method. The receiver of

the call to setRealSubject is identified, and the value of its realSubject attribute is set to

the argument to the method. This is shown in the figure as the binary predicate, represented

by the triple of location, variable and location. The link in the heap between the locations

pointed to by b and a is maintained after the method returns, precisely rejrresenting paths

in the heap.

4.2.1.2 Collections

Collections are complex to handle in data-flow analyses for a number of reasons. Two of the

most challenging features of collections are their theoretically-unbounded size, and accesses

and insertions that do not occur at the extremities of the collection. In program segment

analysis, a further complication is that the existing contents and proirerties of a collection

at the start of the method execution may not be known.

Updates to collections are handled similarly to updates to any object: with unary and

binary predicates. When a new element is added to a collection, a binary predicate is created

with the collection as the source object, the new element as the target object and a dummy

variable is created to link the source collection and the target element. These dummy

119

variables are known as selector variables and are miinbered according to their abstract

position in the collection. Collection insertions within loops are handled by making the

target of the corresponding predicate a multi-allocation or multi-unknown location. The

selector becomes a multi-selector also. Multi-selectors and multi-unknown locations are also

useful in a second case when a collection is used that has not been initialized in the PUT,

and hence has an unknown number of elements already in it. In this case, the collection

itself is represented as an unknown location and its original contents are represented as one

element: a multi-unknown location accessed through a multi-selector variable, representing

the unknown number of elements in the collection.

Accesses of, insertions to and removals from a collection which are indexed by an integer

value present a problem, as the exact value operated on cannot be known. We refer to these

oi)erations as complex accesses, insertions and removals. Complex accesses may access any

element in the collection. This is handled in AVT by producing, at a statement where a

complex access occurs, an output shape graph for every input shape graph and potentially-

accessed location (i.e., multiplying the number of input shape graphs by the abstract size

of the collection). Within loops, accesses may occur multiple times within the same calling

context. This is handled by having a shape graph store the resiilts of previous accesses in the

same context and the analysis prcrduces a different result on each iteration until all potential

contents have been accessed. This, along with the use of multi-locations and multi-selectors,

allows collection complex access within and outside of loops to be handled conservatively

when the exact value accessed on each iteration is not known. Special considerations for

complex removals and complex insertions are omitted here for the sake of brevity.

4.2.2 Inter-procedural analysis

Context-sensitive analyses calculate separate results for each separate calling context of

the same method, improving analysis precision in languages with operation calls [Nielson

et ah, 1999]. Object-sensitivity is a form of context-sensitivity that distinguishes calling

contexts based on the receiver object at the call site. Object-sensitivity has been shown

to be especially suitable for object-oriented languages such as .lava [Milanova et ah, 2005],

providing precise and efficient analyses relative to other approaches to context-sensitivity.

For example, the same mutator method may be called multiple times in a program, on

numerous different objects of the same class. Analyses that fail to distinguish between

contexts merge all the data-flow facts that reach a particular method or method call site.

120

Ill the teniiinology of the object-sensitivity coiiiiiiiiiiity, we iiiipleiiieiit an object-sensitive

analysis with an infinite context depth [Sinaragdakis et ah, 2011], though in practice the

contexts are finite, as described below.

The call graph is a directed graph that represents the potential callee objects and meth­

ods at each call site in the entire PUT [Grove et ab, 1997]. We compute the call graph

sinmltaneously with the shape analysis {on-the-fly call graph construction), so both the call

graph and output shape graphs must converge to a fixed point for the algorithm to termi­

nate. On each iteration of the algorithm, all shape graphs reaching a statement containing

a call are compared to the call graph edges already created for that statement on jirevious

iterations. If a new call receiver (callee) location occurs in some shape graph, a new call

edge is added to the call graph. Following Rinetzky et al. [2005], the input shape graph to

a call graph node includes only the portion of the heap reachable from the callee location

and call arguments to the target call graph node. This is done by accessing first the val­

ues of the call arguments, and then searching through the binary predicates for predicates

where the call argument values are the source of the predicate. The targets of each of the

binary predicates identified are added to the shape grai)h. The targets are then used as

the sources for the next search through the set of all binary predicates, and so on until all

values reachable from the arguments have been included. The resulting shape graph at the

end of the statement is a combination of the input graph at the caller and the output graph

at the callee. The merging of these two graphs in our algorithm follows Rinetzky et al.

[2005], and dei)ends upon whether the call is local or not, and requires conversions of some

unary predicates to binary predicates and vice versa, to model the runtime stack and heap

ac‘curately.

The call graph edges resulting from the analysis of the call to setRealSubject in

Figure 4.1 is shown in Figure 4.6. Note, separate call graph nodes have been created for

each callee location occurring in the shape graphs that reach the call in the analysis. If a

new call graph node was added only for every callee class, only one node would be created

for this graph, as both potential callees in this example are of the same class. This latter

approach is highly conservative and discards information necessary to verify object-state

and data-structure invariants: all potential callee locations of the same class are merged

creating spurious relations between locations. Figure 4.6 also illustrates the mutually-

recursive relationship between call graphs and CFGs, the CFG of someMethod contains two

call graph edges leading to setRealSubject, and call graph nodes contain the CFGs of the

121

Fig. 4.6 : The call graph edges resulting from the analysis of the call to setRealSubject

in Figure 4.1

methods they represent.

The data-flow facts flow across call edges similarly to how they flow across a method’s

CFG edges, with the added complication that values can move from the stack to the heap

and vice versa when the ‘this’ predicate changes. To handle these flows, our algorithm

converts core i)redicates to binary predicates and vice versa at call entry and return edges.

The identified callee location in the calling context becomes the ‘this’ predicate in the

called context. The state reachable from the i)aranieters of the call, including the values of

attributes of the callee location, are include in the shape graphs passed to the call graph

node"^. The callee location is compared to the source location of all binary predicates to

identify the values of the callee attributes. The attributes of the callee’s attributes are

identified in ttirn using the same method, until the entire graph of objects reachable from

the callee is included in the input shape graph. The same procedure is followed for method

arguments.

A call stack is maintained throughout the analysis to allow for the identification of

recursive and mutually-recursive methods. Each recursive call site is given a new call graph

edge the first time it occurs in the stack only (this approach is termed virtual unrolling in

^This approach is more efficient than passing the entire heap to every method call on the assumption
that the graph of objects reachable from a callee and call parameters are a small subset of the entire heap

122

Rinetzky et al. AVT

Single summary location per class Single summary location per refer­

enced variable name (maximum)

Merge shape graphs where control-

flow paths meet

Maintain separate shape graphs for

each path through a program

Table 4.1: Distinguishing features of the shape analysis algorithms iinplemented by Rinet-

zky et al. and AVT

Theiling and Ferdinand [1998]). For example, a method with two recursive call sites (sitel

and site2) will result in a call graph including two separate subgraphs inchiding the edges:

sitel site2 and site2 —> sitel. Subsequent occurrences of the same recursive call

sites in the analysis are not given their own node in the call graph. When these subsequent

occurrences are encountered, the analysis result is given as the result of analyzing the call

site’s call graph node on the previous iteration.

4.2.3 Termination

The conditions that need to be satisfied for a DFA to be guaranteed to terminate for

all inputs are dealt with at length elsewhere in the literature [Aho et ah, 1986][Nielson

et ah, 1999], and our analysis is based upon approaches that have been shown to converge

[Nielson et ah, 1999][Sagiv et ah, 2002]. One important condition is that the algorithm

does not allow the data-flow facts to grow indefinitely in general. We restrict otirselves to

demonstrating that the distinguishing fe'atures of our algorithm relative to the algorithm

of Rinetzky et al. [2005] cannot lead to inhnite data-flow facts. This guarantees that AVT

terminates in general. These extensions are summarized in Table 4.1.

The number of variables and occurrences of variable names in a program’s source code

are of course finite. The number of unknown locations occurring during the shape analysis

is bounded by the number of variables occurring in the PUT and the number of contexts.

The number of allocation locations is bounded by the number of allocation sites and the

number of contexts. The number of contexts is bounded by the number of call sites and

the number of locations. There remain two theoretical sources of infinite state spaces.

Firstly, allocations within loops are a potential source of infinite objects. This is avoided

by creating a single multi-allocation location in these cases. Such cases can be identified

123

using the loop-back data-flow from loop exit to loop entry. Secondly, recursive calls are a

potential source of infinite contexts. This is avoided by only creating a new context for a

recursive call site the first time it occurs in the call stack, as described above. Thus, the

interaction between contexts and locations is finite: only one new location is created for

each occurrence site (either object allocation or variable reference) in each context, and the

number of contexts stops growing in all cases.

There are a finite number of paths through a method. The number of paths through

a program is a function of the number of paths through each method in the program and

the number of calling contexts in total. As both of these are finite, the number of paths

represented by our shape analysis is finite. There is a maximum of one shape graph for each

unique path through the program. In many cases, there are less than one, as the analysis

disposes of duplicate shape graphs.

The shape analysis algorithm outlined in the previous sections is simple, powerful and

precise, but computationally expensive. We chose to develoj) a simple and precise algorithm

as it reduced the implementation effort required to create a proof-of-concept research tool.

Also, the methods that AVT analyzes, such as Prototype’s clone method and Abstract Fac­

tory’s Factory Method are expected to be quite short in the most common c:ases. However,

interaction invariants may be applied to much larger methods, including the whole program.

For this reason, we consider some steps that could be taken to improve the scalability of

the algorithm here.

4.2.4 Efficiency

Our algorithm is unlike most in the literature in one main respect: it retains the value of

all binary predicates precisely throughout the analysis. This makes our algorithm compu­

tationally expensive. In this section, we consider approaches to making our algorithm more

efficient, while still being able to provide the information necessary to verify object-state

and data-structure invariants.

A salient point of variability among tools in the literature is how they summarize the

heap: retaining some information regarding the heap precisely while only apirroximating

some other information. Some approaches create a single location for each allocation site

[Chase et ah, 1990], i.e., they are context-insensitive. Other approaches limit the length

of paths in the heap [.Jones and Muchnick, 1979]. A third category summarizes all binary

jjredicates by setting their value to be a single abstract summary location [Sagiv et ah, 2002]

124

unless they can be distinguished by the value of the instrumentation predicates. In this

way, properties, such as a linked list being cycle free, can be verified though information on

the exact size of the list or the exact identity of its contents is not available. Implementing

one of these three approaches would reduce the number of binary predicates occurring in

shape graphs.

Also, Sagiv et al. [2002] provide a technique to merge sets of shape graphs into a single

summary shape graph, removing the exponential factor of our analysis involving control-

how branching and meeting. Rinetzky ct al. [2005], among others [Cherem and Rugina,

2007], calculate reusable method summaries, reducing the number of times the same method

must be analyzed. Finally, Milanova et al. [2005] describe a parameterizable analysis that

may represent the values of some variables more precisely, while aggressively summarizing

information about other variables. This approach also reduces the number of predicates in

each shape graph.

To summarize:

• The number of binary predicates per shape graph can be reduced by jiiedicate svnn-

marization. The most suitable ai)proach for our i)urpose may be some instantiation

of the framework described by Sagiv et al. [2002], as some of their instrumentation

predicates closely parallel Alas data-strncture predicates. However, choosing a set of

instrumentation predicates that is accurate while also being scalable is challenging.

• The number of shape graphs could be reduced by combining graphs at the meet point

of control-how paths.

• The number of times a method is analyzed can be reduced by generating and reusing

method summaries.

• The number of predicates in each shape graph can be reduced by representing some

subset of the variables in the program more precisely.

4.3 Alas clause verification

Verification of two of the three invariant categories requires the shape analysis algorithm

described in the preceding section. Object-state and data-strncture clauses are verihed by

(pierying the set of shape graphs output by the analysis. Dependency invariants refer to

125

objl isAlias obj2 <=> obj1 ‘must alias’ obj2
NOT (objl isAlias obj2) <=> NOT (objl ‘may alias’ obj2)

Fig. 4.7: The relationship between conservative Alas predicate verification and the choice

of meet operator

the existence or non-existence of declarations or expressions in a class or method and do

not recpiire data-flow information for their verification.

4.3.1 Conservative verification

As software verification is an undecidable problem in general [Landi, 1992][Ranialingam,

1994], it is necessary that any analysis that guarantees termination in the general case must

introduce some conservative approximations of the ‘true’ resvdt, the result that would be

produced by some ideal unrealizable verification apj)roach. A central concern in software

verification is ensuring that the conservative approximations are sound, i.e., that they

preserve the program’s semantics and do not allow something that is false to be proven

as true. Analyses are classified into two categories based upon their confluence or meet

operator (the operator that defines how different data-flow facts are combined at control-

flow meeting i)oints). These two categories are ‘must’ and ‘may’ analyses. Must analyses

require a property to be satisfied over all execution paths and may analyses require that a

property is satisfied by at least one path only. For must analyses, the output is conservative

if it is a subset of the true result. For may analyses, the output is conservative if it is a

superset of the true result.

As Alas clauses may or may not be negated, the conservative result may fall into either

category of analysis. For example, a negated isAlias clause is conservatively verified by a

may alias analysis, while a non-negated isAlias clause is conservatively verified by a must

alias analysis. This situation is summarized in Figure 4.7.

^^’e address the need for must and may alias information in AVT by not merging shape

graphs at control-flow meeting points, i.e., all jjaths are modelled explicitly and there is a

shape graph for each unique path through the PUT. The output of the analysis contains the

necessary information for a must and may analysis, similarly to Nielson et al. [1999]. The

advantage of this approach is that a single algorithm could be used to produce the data-flow

facts required to verify both negated and non-iiegated Alas clauses. The disadvantage of

126

this approach is that the analysis is exponential in the lunnber of control-how paths through

the PUT.

4.3.2 Dependency

This section focuses on the isinitializer iinpleinentation dependency invariants, as a

major contribution of Alas. An isinitializer clause states that a class or method should

or should not contain a call to the constructor of a class or any of its subclasses. Verihcation

of clauses containing the isinitializer predicate can be performed by exploring the

AST of the method actor (or all methods of the class actor in turn), and comparing each

constructor call to the class that is the second operand of the clause.

We implemented a single BlockScanner class that performs AST parsing and calls dif­

ferent visit methods on an Analysis class for each type of statement and expression.

Each Analysis class overrides one or a number of visit methods to perform its function.

The InitializerAnalysis class implements the isinitializer predicate and overrides

the visit method for constructor call expressions only. The TypeSymbol class in .likes rep­

resents classes and interfaces and provides an IsSubType method, which implements the

most generic sub-typing relation, handling transitive closures of superclasses and superin­

terfaces as well as an array’s compatible types. InitializerAnalysis calls IsSubType to

perform its class comparison

4.3.3 Object state

This section focuses on isCopy, the predicate in Alas that specifies deep copying relation­

ships. An isCopy clause states that the objects referenced by the two reference variable

operands should be ‘deep’ copies of one another at a particular point in the control-flow

of the method. The isCopy clause in the context of the Prototyjje pattern’s clone method

states that ‘this’ and the special variable ‘returnval’, which represents the value returned

by the method, should be copies at the end of the method. This invariant is simpler to

verify than the general isCopy clause, as it is ai)plied to the final output of the analysis,

but an invariant on any control-flow branching or meeting coidd be verified by stopping

the analysis at that point and applying the invariant once the analysis for the sub-graph

leading to that point had converged.

A pseudocode for the isCopy verification algorithm is given in Figure 4.8. The mech­

anism for accessing values by variable name (and object source, in the case of binary

127

GET the class of the current locations being compared
FORALL attribute of this class

IF attribute is reference variable
IF attribute is in copystate

IF values of this attribute for the current locations are
aliases

FAIL
ELSE

GOTO line 1 with pair of values for this attribute
ELSE (attribute is primitive)

IF values are non-equal
FAIL

IF no FAILS encountered
PASS

Fig. 4.8: Pseudocode for isCopy verificat ion on a single shape graph

predicates) is straightforward and has been omitted. Aliasing is handled naturally in the

analysis: variables with the same value are aliases. \Mien primitive variables of different

objects have the same value, one must have been assigned the value of the other, or both

assigned the same value from some third variable or expression.

4.3.4 Data-structure

Due to the precision of heap modelling in our shape analysis, no instrumentation predicates

are required to verify data-structure invariants. All the data-structure language elements

below require the traversal of data structures conforming to data-structure definitions given

in the Alas pattern specification. Ti'aversals of data structures are handled naturally in AVT

as the set of binary predicates in a shaj)e graph can be searched by source location, and

variable name and type: this is exactly the information provided in an Alas data-structure

definition. Source locations in binary predicates whose class matches the class role defined in

the data-structure definition are potential roots of data structures. If the selector variable of

the binary predicate matches the link role of the data-structure definition, then the binary

predicate does represent a link in the relevant data-structure. The target of the binary

predicate can then be used to search for j)otential subsequent links in the structure using

128

the same procedure, and so on transitively, until no successor location can be found.

Verification specific to each of the data-structure invariant types supj)orted by AVT are

dealt with in turn below:

• last: a sequence of binary predicates is followed until a target location is found that

is not the source location for any other predicate satisfying any link role in the data-

structure definition. The target location at the end of the sequence is the last element

in some data-structure.

• isCycleFree: sequences of binary jiredicates are traversed as above for last, but the

value, i.e., identity, of each target location (as well as the initial source location) is

recorded and compared to each subseejuent target. Any two occurrences of the same

location in a sequence is evidence of a cycle. This traversal is done depth-first, to

allow a source to lead to multiple targets, as is the case when a collection is part of

a data-structure definition.

• isSharingFree: the set of all binary predicates is iterated over, and those that satisfy

any link role included in the isSharingFree clause have their target location recorch'd.

If the same target location is added to this record twice, this is evidence of sharing.

4.4 Miscellaneous implementation issues

4.4.1 Synthetic method CFGs

Wdien AVT encounters a node in the call graph, it accesses the source of the called method

and analyzes the source directly to produce a CFG. This is not possible for some methods

where the source is unavailable, such as some methods in class Object in .lava. In these cases,

we generate our own CFGs, which we refer to as synthetic CFGs, as they are generated

without analyzing Java code. Synthetic CFGs are created based on documentation and

their semantics as described in the Java Language Specification [Gosling et ah, 2005]. We

will describe the semantics of some of the more relevant synthetic CFGs here.

Object.clone

Object.clone creates a ‘shallow copy’ of the callee object. It creates a new object of the

runtime type of the callee object and initializes each of the object’s attributes with the

corresponding attributes of the callee object as if by assignment. Any reference variable

of the callee object will be aliased with the corresponding variable in the clone. Inherited

129

attriliutes have their values copied also. Our synthetic CFG generates a direct assignment

between all varial:)les of the callee object and clone.

java.util methods

To limit compilation time and space requirements, only Swing was compiled instead of the

entire .lava 2 Software Development Kit [Microsystems, 2010]. Thus, a synthetic method

CFG was required for each call to methods outside of Swing. Many of these were to utility

methods, due to the widespread use of collections such as Lists and Vectors. Creating

CFGs for these methods required some additional implementation effort, but added the

advantage that collections could be handled without implementing array handling code.

4.4.2 Unimplemented features

A number of features were not implemented in AVT. Neither concurrency nor exception

handling are handled by AVT. As concurrent i)rogTams can jump after any statement, and

even in the middle of statements that contain multiple expressions, concurrency greatly

increases the size and complexity of the call graph, while at the same time reducing the

likelihood that proi)erties can be decisively verified. We limit ourselves to demonstrating

proi)erties in the context of sequential execution, as discussed in Chapter 2. Similarly,

exception handling mechanisms increase the complexity of the intra-method CFG, as jumps

may occur from any potentially exception-throwing statement to its corresponding catch

statement. Computing the potential exceptions thrown by each statement, and the catch

block to which control would transfer in each case is not particularly conij^lex, but would

recpiire a considerable implementation effort while adding numerous shape graphs to the

output from which few properties could be verified (an exception will often cause some of

the behaviour required to satisfy the invariant[s] to be skipped completely). Control flow in

AVT CFGs proceeds unconditionally from a try block, to the finally block (if available) to

the next statements immediately after the exception handling code, so not every potential

path through the actual program is represented in the CFG produced by AVT.

Handling array mutation in general requires path-sensitive data-flow analysis, which is

challenging and existing approaches either apply heuristics, are unsound or both [Dillig

et ah, 2008]. AVT does not irerform path-sensitive data-flow analysis. Much of the use of

arrays in programs depends upon indexing with integer literals or variables, and handling

literal values precisely greatly increases the potential size of the data-flow facts [Cousot

and Cousot, 1977]. As such, the handling of arrays is likely to be highly conservative

130

and imprecise. For these reasons, arrays in general are not supported by AVT. Despite

not handling arrays, AVT is capable of handling collections through the use of synthetic

method CFGs that abstract the underlying array rejnesentation.

Finally, support for a number of small features were not implemented due to time

constraints, though most of the behaviour required to handle them was implemented to

support other features already. Anonymous inner classes complicate the computation of

correct dynamic dispatch as they may over-ride one or a nnuiber of their superclasses

methods. This dispatch behaviour is not implemented in AVT, which can handle dynamic

dispatch in non-anonymous contexts. Neither the instance nor static initialization blocks

are analyzed when a new object is created. There is nothing particularly challenging about

analyzing either, as they contain the same types of statements as normal methods, but

they are encoded slightly differently in .likes. Finally, the composition relation in the

context of the copystate keyword is not computed by AVT, but it could be with minor

extensions: each constructor of a class could be analyzed in turn and the variables that

have allocation locations assigned to them could be added automatically to the copystate.

Already, constructors are analyzed as part of the shape analysis when each new object is

created.

4.5 Summary

This chapter described the design and imijlementation of AVT, with particular focus on

the shape analysis algorithm recjuired to verify object-state and data-structure invariants.

W'e outlined the features of the algorithm that address each recpurenient imposed by Alas.

These features are summarized in Table 4.2. We also considered how the algorithm could

be made more scalable before describing the verification of novel Alas invariants at a high

level.

131

R<'(iuirenient AVT design approach

Implementation depen­

dency invariant verification

AST exploration, class comparisons

Object-state invariant ver­

ification

Shape analysis, special ‘locations’ for primitive vari­

able values, recursive copy state comparisons of loca­

tions

Data-structure invariant

verification

Shape analysis, Alas shape predicate queries on shape

grajihs

Mutation of encapsulated

state via method calls

Context-sensitive call graph construction, context-

sensitive allocation and summary locations

Conservative verification Meet operator that maintains a shape graph for every

unique path through the program under test, multiple

summary locations for the same class

Table 4.2: A summary of the requirements imposed by the novel invariant categories

of Alas and features of object-oriented])rogTamming languages, and the AVT design ap­

proaches addressing each requirement

132

Chapter 5

Pattern Specification and

Benchmark

In this chapter, we specify each of the patterns that beneht from the novel invariant cat­

egories supported by Alas and create a benchmark based upon those specifications. The

benchmark is used in Chapter 6 to evaluate AVT. A specification is jnovided to make

the resnltant benchmark reproducible. Creating the pattern specifications and benchmark

address two evahiation objectives, namely:

• Expressiveness: Alas shovdd be capable of describing the novel and poorly-snpported

design pattern invariants identified in onr GoF analysis, as well as design pattern

variants;

• Usefvdness: The novel properties and variants si)ecifiable by Alas shotdd actually

occur in existing code bodies.

The remainder of the chapter is stnictnred as follows. Section 5.1 reviews the evahiation

methodology of other approaches and outlines our own approach. Section 5.2 provides the

actual benchmark, as well as the specification of invariants of patterns not provided in

Chapter 3. Finally, Section 5.3 provides a sninmary of the chapter.

5.1 Benchmark Construction Methodology

This section discusses some key concerns when developing an evaluation methodology for

DPSLs and DPVTs, with a iiarticular focus on DPVTs. In each subsection, we first consider

133

aspects of DPSL and DPVT evaluation methodologies in the literature, before presenting

our own api^roach. The evaluation of most DPVTs involves analyzing some piece of software

using the tool and reporting the results of the analysis. We refer to the piece of software

analyzed as the code body. Usually prior to analysis, a number of pattern instances are

identified in the code body. One or a set of code bodies with a set of pattern instances

identified in them is defined as a benchmark.

5.1.1 Code Body Selection

Tsantalis et al [Tsantalis, 2009] state that desirable characteristics of code bodies are that

they ‘rely heavily’ on design patterns (i.e., have a large number of pattern instances per

class or method), have documented pattern instances [Ng, 2008] and have publicly-available

source [Pettersson et ah, 2009]. Another desirable characteristic suggested in the DPVT lit­

erature is that the code bodies within a benchmark should vary in size [Tsantalis, 2009] [Pet­

tersson et ah, 2009]. Blewitt [Blewitt et ah, 2005] states that the code body shotild include

‘r(;al world examples’, i.e., should not be written by the tool developers themselves. Fi­

nally, Gueheneue and Antoniol [2008] state that being able to compare results against other

DPVTs is desirable and affects the choice of code body.

Shadish et ah states that “most experiments are highly local but have general aspira­

tions” [Shadish et ah, 2002](pl8). An experiment may implement and test only one instance

of some class of system or analyze only a sample of data from a much larger dataset. The

problem of external validity relates to the ability to infer whether a causal relationship

holds over variations in apj)lication, such as a different instance of some class of systems

or a different dataset. Demonstrating the external validity of an exi)eriment improves the

level of confidence in a tools applicability, one of the evaluation goals we stated above.

There is not a one-to-one mapping from pattern specifications to implementations: there

is often a number of ways to correctly implement a behaviour. For example, in .lava,

mutually-exclusive control-flow could be implemented using if. . .else blocks; jump state­

ments, such as break or return, nested within conditional blocks or with switch state­

ments. We refer to the set of all correct implementations of a particular pattern specification

as the pattern’s signature.

It is possible that the implementation of the DPVT is tuned to produce correct results

for just the code body or pattern instances analyzed or that instances were chosen that show

the tool in a good light. It is possible that such a DPVT would perform badly on other

1.14

Code body Occurrences in DPVT evaluations

.IHotDraw 12

AWT 7

.TRefactory 5

JUnit 4

QuickUML 3

Table 5.1: Code bodies and how often they occur in the evaluation of existing DPVTs

code bodies. Each code body has its own implementation idioms (termed implementation

variation in [Antoniol et ah, 2001]), as well as common design pattern variants. For example,

the widespread use of the ObserverList class iii Swing leads to many instances of the

encapsulated observer list variant of the Observer pattern in that code body. .IHotDraw

makes widespread use of iterator classes. To help address the problem of external validity,

and to demonstrate the ap])licability of a DPVT, we believe that the code bodies selected for

inclusion in a benchmark should not just include a large number of valid pattern instances,

but should include a large number of different members of the pattern’s signature. We

added this selection criterion to the criteria from other DPVT evaluations.

From 19 DPVT evaluations, we identified the most commonly-used code bodies. Our

findings are summarized in Table 5.1. Unfortunately, the same version of these code bodies

was not used by all evaluations. The most commonly used versions of .IHotDraw were

versions 5.1 [Gueheneuc and Antoniol, 2008][Tsantali.s, 2009](Kaczor et ah, 2006][De Lucia

et ah, 2009] and 6.Obi [Shi and Olsson, 2006] [Stencel and Wegrzynowicz, 2008][Alnusair

and Zhao, 2010] [Ng et ah, 2010]. The most commonly used version of AWT was version

1.4 [Beyer et ah, 2003] [Pettersson et ah, 2009]. We selected .IHotDraw version 6.Obi, Java

Swing vl.4.2 and JUnit v3.7 as the code bodies for our benchmark. .IHotDraw is well known

for its use of design patterns, some pattern instances are documented, it has a relatively

large number of pattern instances and is the most commonly used code body in DPVT

evaluations. Swing vl.4.2 has a large number of pattern instances, and is analyzed by two

other approaches [Shi and Olsson, 2006][Pettersson et ah, 2009]. JUnit v3.7 has a large

number of pattern instances for its size and some of these instances are documented. The

three code bodies vary in size: Swing is the largest with 1,540 classes, .IHotDraw has 744

and .lUnit is the smallest with 156. All three have source code that is publicly-available.

135

After creating our benchmark, it was decided that these three code bodies did not

coin])letely exercise the full code signature of each of the pattern specifications we wished

to focus on, so we developed our own small benchmark, in the same way that Stencel [Stencel

and Wegrzynowicz, 2008] provided their own implementations for variants of the Singleton

pattern in their benchmark. Similarly to SanD [Henzeroth et ah, 2003], we included in this

benchmark a number of ‘fault patterns’, true negatives similar to correct implementations,

to increase the external validity of the benchmark.

5.1.2 Inspection method

A benchmark may be constructed manually (by code inspection by a human) or automati­

cally (by a tool), but most are constructed with a combination of the two approaches. Some

evaluations involve no benchmarking being performed before analysis, but rather allow the

analysis to form a starting point for the benchmark, with false positives being removed

after manual inspection [Shi and Olsson, 2006][Gueheneuc and Antoniol, 2008]. Such an

approach has the advantage of being fast and having complete code coverage (if the tool

is run over the entire code body). A significant disadvantage of this approach is that it

ignores false negatives completely, artificially improving the recall results. Antoniol et al

[Antoniol et al., 2001] use a version of their tool with slightly relaxed pattern specifications

to build a benchmark, reducing but not completely removing the disadvantage described

above.

SanD [Henzeroth et al., 2003] and Kramer and Prechelt [1996] perform a keyword-based

search of the code body. Numerous patterns have common naming conventions for roles

(e.g., clone method in the Prototype pattern) or common coding idioms (many Factory

Methods in .lava will contain the code segment return new). Candidate actors identified

by keyword-based searching can then be classified as instances using manual inspection.

Keyword-based searching is another fast method of covering all the code within a code

body, but is reliant on the existence of naming conventions and idioms.

Manual inspection could be performed on every class, considering each class for all

possible pattern roles. Such an approach wonld take a prohibitively long time for all but

the smallest benchmarks, and to our knowledge, has not been performed in any DPVT

evaluation. In summary, eacli benchmark construction method has its own advantages and

disadvantages, but none of the methods are mutually-exclusive and we consider them com­

plementary when used in conjunction with each other, as some mitigate the disadvantages

136

of others.

One reason for naining entities is that it facilitates the comparison of results in different

studies if the studies refer to the same name. Shadish et al. [Shadish et al., 2002] use the term

construct validity to describe the problem of making valid inferences from the particular

instances on which data was collected to the higher order constructs that those instances

aim to represent. In the context of the evaluation of DPVTs, the key constructs of int-^rest

are design patterns. However, languages and tools differ in the roles and invariants that

rej)resent a given design pattern name. One tool might recpiire, for example, an abstract

Observer superclass in a valid instance of the Observer pattern, while another might not.

One tool might require a Composite implementation to iterate over a list, while another

may only require a 1-to-n aggregation relationship.

Comparing the results of two tools while analyzing the same pattern name with different

representations of the pattern is not meaningful: a true positive according to one appioach

may be classified as a false positive by another approach. Thus, inferences about the relitive

merit of DPVTs that differ in their representation of patterns lack construct validity. Most

new DPSLs and DPVTs innovate not just by changing jmttern specifications but aho by

adding new roles and invariant categories to pattern si^ecihcalions. Recphring that each

tool addresses the same specification would preclude innovation. The ijroblem of construct

validity limits the re-nsability of benchmarks, as the pattern specifications used for the

benchmarks differ between approaches. This is a major barrier to the goal of a shared

benchmark within the DPVT literature [Wegrzynowicz and Stencel, 2009][Fuloj) et ah,

2008][Pettersson et ah, 2009][Arcelli et ah, 2008]. Rasool et al. [2011] identify instances in

their benchmark which are also contained in other benchmarks. Selecting and analyzing the

same pattern instances as existing approaches facilitates the comparison of analysis results

between tools and also indicates that the benchmark is not biased to suit a particular tool’s

capabilities.

We aggregated the information from two existing benchmarks: one manual [Gneheneuc,

2007] and one fully automated [Shi, 2007b]. These will be referred to in the remainder

of the chapter as the P-MARt [Gneheneuc, 2007] and PINOT [Shi, 2007b] benchmarks.

The benchmark of Pettersson [2010] could not be used, as it does not address any of the

patterns that we focus on. We found that some but not all of the pattern instances identified

therein satisfied the corresponding Alas sijecification. Similarly to Rasool et al. [2011], we

identify the pattern instances that are common to onr benchmarks and the aggregated

i;i7

beuchiiiarks. We also performed a keyword-based search of the code bodies, which yielded

some pattern instances not included in the other benchmarks. All pattern instances were

manually inspected for correctness. With this approach, we obtained the main benefit of an

automated benchmark while avoiding its main disadvantage. To our knowledge, only one

other DPVT evaluation in the literature performed both a tool-based and keyword-based

search [Heuzeroth et ah, 2003].

We construct a. benchmark for only the patterns that demonstrate a major contribution

of Alas and AVT. In some cases, we identified instances where comments, variable naming,

or relationships between classes suggest a pattern instance was intended by the code body

developer, but the instance does not satisfy the Alas specification. For example, all methods

called ‘clone’ and returning an instance of the method’s containing class were recorded as

intended instances of the Prototype pattern. These intended or failed instances are useful

as they are true negatives that test AVTs ability to identify specification violations as well

as specification conformance.

5.2 Benchmark

In the remainder of this chapter, we present the benchmark created based on our Alas

specifications. We separate the results for the three invariant categories where Alas provides

a contribution in their own section, and within these sections, each pattern relevant to that

invariant category is given its own subsection.

In each section, we specify the structure and behaviour of each pattern that we address

in detail, to demonstrate the capabilities of Alas, especially with regard to pattern variant

specification. The subsections on individual patterns are organized as follows: first we de­

scribe our specifications of each of the pattern variants that were included in the benchmark

and analysis and outline the keywords used in the keyword search. The actual number of

instances of each pattern fonnd is given in Appendix D. Each invariant category section

ends with a brief discussion of findings.

Some interesting observations made during the benchmark that are not central to the

presentation of the evaluation, and some additional specifications based on those observa­

tions, are provided in Appendix B. Appendix D discusses the benchmarks we aggregated,

the similarities and differences between our specifications and theirs, and enumerate the

total number of instances in the Alas benchmark as well as the instances common to Alas

138

Design pattern Invariant type

Creational patterns

Abstract Factory Implementation dependency

Builder Implementation dependency

Factory Method Imidementation dependency

Prototype Deep copying,

Implementation dependency

Structural patterns

Composite Data-structure

Decorator Data-structure

Behavioural patterns

CoR Data-structure

Command Implementation dependency

Iterator Implementation dependency

Memento Deej) copying

Observer Deep copying

State Implementation dependency

Strategy Implementat ion dependency

Table 5.2: Novel invariant categories in Alas required for each of the patterns in GoF

design pattern catalogue specifications

139

and the aggregated benchmarks.

5.2.1 Dependency

As sliown in Figure 5.2, the Abstract Factory, Builder, Command, Prototype, Factory

Method, State, and Strategy patterns benefit from the novel dependency invariants ex­

pressible by Alas. The Prototype pattern is dealt with in the section on object-state (Sec­

tion 5.2.2). The Client class roles in the Prototype pattern instances in the benchmark are

similar to the classes tested in the context of the other patterns, so analysis of the Prototype

pattern in the context of dependency invariants has been skipped to avoid repetition. The

Abstract Factory, Factory Method and Command patterns are dealt with below, while the

remainder are discussed in Appendix B, as few instances of them were fonnd.

5.2.1.1 Abstract Factory/ Factory Method

W’e address the Abstract Factory and Factory Method patterns together, as each instance of

the Abstract Factory pattern must contain one or a number of Factory Method instances.

The strnctnre required for a Factory Method instance is also a subset of the structure

required for an Abstract Factory instance, as can be seen in the GoF pattern catalogue

[Gamma et ah, 1995, p.88,108].

W’e specified four variants of the Abstract Factory pattern. The first is analagous to the

GoF GMT diagram for the pattern {GoF variant, the core variant) [Gamma et al., 1995,

p.88], requiring an AbstractFactory and a ConcreteFactory role, as well as AbstraetProdnet

and ConcreteProduct roles. The second variant removes the AbstractFactory class roles,

allowing a single class (ConcreteFactory) to define the Factory Method interface and provide

an implementation (no AF variant). Both of these variants are specified in Figure 5.1. The

third and fourth variants remove the AbstraetProdnet and ConcreteProduct roles, and have

the Factory Method return an instance of the ConcreteFactory class. Similarly to the first

two variants, one requires an AbstractFactory class {Self factory variant) and the other

does not {Self factory no AF variant).

The behaviour of the Factory Method role is the same in all variants, and was given in

Figure 3.13 of Chapter 3. A client is any class that calls the Factory Method or a constructor

of the Product or any of the ConcreteProduct classes^. A client that only calls the Factory

Method is referred to as a ‘good’ client (as it satisfies the key dependency invariant), while

‘The isinitializer clause can be applied to individual client methods also.

140

■^'Client

bst^cfactory

> facion/MethodSet j) AbstraclProdiict

^^AteftacJPro'duc#

^^ConcreteFaefory
^^ConcreteProduct

fetactoryMethodSet 0 : AbstractProducl
tfo ConcreteProduct ()

{variant no AF

removes class AbstractFactory

Fig. 5.1: Alas sj)ec'ific'atioii of the GoF (core) and No AF variants of the Abstract Factory

I)attern

a client that calls the constrnctor of a ConcreteProduct class directly is referred to as a

‘bad’ client.

Wdiile some Factory Methods are intended to be nsed by the entire code body, others

are only intended for nse by some small set of clients, or even just the Factory Method

defining class itself. The decision on how widely a Factory Method should be nsed within

a code body is orthogonal to the evaluation of a DPVT. We classify as a ‘bad’ client any

class or method that creates an instance of a Product class for which there exists a Factory

Method within the code body, i.e., we imply that the entire code body should use the same

Factory Method if it wishes to create an instance of any Product class^. We choose this

widest possible scoi)e (whole code body) for each Factory Method, as this provides ns with

more instances of ‘bad’ clients for AVT to analyze.

Keyword search and pattern instances

The keywords used to search for Abstract Factory instances were: ‘factory’, ‘kit’ and ‘make’.

Due to the size of the Swing code body, it was not possible to complete a search for the

^This means that some instances of the Factory Method clash, i.e., both return instances of classes within
the same Product inheritance hierarcliv and are thus 'bad’ clients of each other.

141

‘create’ and ‘return new’ strings.

As we are concerned only with the dependency invariant between the Client and Product

roles, we are concerned only with instances that have clients. For the AF and all other

patterns, tables of instance counts are given in Appendix D. In .THotDraw, we identified

45 Clients of 23 separate Abstract Factory pattern instances, with 26 Clients that satisfy

the dependency invariant and 19 that violate it. In .TUnit, we identified 10 Clients of 10

separate Abstract Factory instances, with 8 Clients that satisfy the invariant and 2 that

violate it. In Swing, we identified 32 Clients of 12 separate Abstract Factory instances,

with 17 Clients that satisfy the invariant and 15 of which violate it. The large number of

(dasses violating the invariant demonstrates that Factory Methods, even when created, are

not used consistently throughout code bodies. The addition of the novel implementation

dejrendency invariants in Alas could benefit the non-functioual properties of these systems

by highlighting when a Factory Method could be used.

5.2.1.2 Command

The intent of the Command pattern is to ‘encapsulate a request as an object, thereby letting

you parameterize clients with different requests’. This allows requests to be made ‘with­

out knowing anything about the operation being requested or the receiver of the request’

[Gamma et ah, 1995, p.233]. The object encapsulating the recpiest is the Command, and it

separates the Invoker and Receiver roles. A Client class initializes both ConcreteCommand

and Receiver, decoupling Invoker from ConcreteCommand and also ConcreteCommand

from Receiver. The Command pattern is not widely supported in the design pattern speci­

fication and verification literature. Blewitt et al. [2005] places the Command in the category

of ‘semantic patterns’, which are beyond the capabilities of the SPINE language they define.

However, we were able to identify a number of implementation dependency invariants that

specify the intent of the pattern.

Our specification of the Command pattern is shown in Figure 5.2, with the three key

implementation dependency clauses in the upper left constraint box. The first variant

(Command forms Facade), defined in the lower left constraint box, adds the extra constraint

that the Invoker role does not hold a reference to or call the Receiver. The other two variants

relax the allowed coujrling between the Command and Receiver. The Command is Receiver

variant removes the Receiver role altogether, along with all structural definitions and clauses

142

RJ'di.nt

^setCommand (j
ft delegate () ft execute ()

ft action ()
^-------------- ft ConcreleCommand ()

ft execute ()

{
(NOT Invoker isinrtialcer Command) AND
(NOT Invoker islnmaltzer Receiver) AND
(NOT Command islnitialcer Receiver)
)

{variant Command is Receiver

removes class Receiver

{ variant Command forms Facade

(NOT Invoker hasRef Receiver) AND
(NOT Invoker calls Receiver)
>

(variant l^own Receiver

removes NOT (Command isinitializer Receiver)
}

Fig. 5.2: Alas specification of tlie structure of all variants of the Couiiuaud pattern

that refer to it. Tlie hnal variant (Known Receiver) removes only tlie requirement tliat tlie

Coimnand does not initialize tlie Receiver. The inclusion of the last variant was prompted

liy our experience creating tlie benchmark. An intended instance of tlie Command pattern

can be configured to use one of a set of Receivers, thongii it initializes these Receivers itself.

Tlie beliavionral specification of tlie Command pattern is given in Figure 5.3, and simply

involves two stages of delegation from Invoker, to Command, to Receiver. Tlie behavioural

specification of tlie Command is Receiver variant, wliicli removes tiie Receiver role, involves

simply tlie first of tlie two delegations described in Figure 5.3.

Keyword search and pattern instances

Tlie keywords used to search for instances of tlie Command pattern were: ‘Command’,

‘Invoker’, ‘Receiver’ and ‘Execute’. The lack of an automated benchmark for this pattern

is unfortunate, as it is likely a number of valid instances of the Command pattern were not

recovered. We speculate numerous instances exist that do not follow tlie naming sclieme

of file pattern, because, despite a number of roles and implementation dependency invari­

ants, tlie pattern’s signature is not very strong, as tlie beliavionral specification involves

straiglitforward unconditional delegation.

\Miile Gnehenenc [2007] identify a single instance of tlie Command pattern in tlie .IHot-

Draw code body (for all classes inheriting from tlie AbstractCommand class), we sejiarate

tliis instance into 5 different instances, as described in Appendix D.1.2.

143

Winwkeflrivok'er' krtcXoncreteCommand H fi*?

1: delegate

in....—V
2: delegate

11: execute

1.2: execute

1.1,1: action

1.1.2: action

Fig. 5.3: Alas specification of the behaviour of the Command pattern

5.2.1.3 Discussion

\l’ith regard to the evaluation objectives:

• Expressiveness: Alas is expressive enough to describe implementation dependency

invariants in the context of nnmerons patterns.

• Usefulness: We demonstrated that Alas is capable of specifying multiple variants of

patterns, and, in the context of fhe Abstract Factory pattern especially, that these

variants actually occur in existing code bodies

Abstract Factory

To otir knowledge, we are the only approach in the design pattern specification and verifi­

cation literature in placing constraints in the Client role of fhe Abstract Factory pattern.

Alas specifications distinguish between variants that are combined in other benchmarks:

we separate instances of the GoF and Self Factory variants listed by Shi [2007a], and we

separate instances of the GoF and No AF variants provided by Gueheneuc [2007]. With

the exception of the Self Factory, No AF variant we find numerous instances of each of

the variants specified. Also, in some cases, the inclusion of multiple variants allows us to

identify .iiore pattern instances in total than the aggregated benchmarks.

Num'rous instances of clients were found that bypassed a provided Factory Method and

instantiated the Product class directly, violating the implementation dependency invariant.

This deuonstrates that the application of this novel invariant in Alas could improve the

architecture of software systems, by identifying when these dependencies are unnecessarily

144

created.

Command

Along with DeMIMA [Gueheneuc and Antoniol, 2008], Alas/AVT is one of the few ap­

proaches that address the Command pattern. Unfortunately, without an automated l)ench-

mark, it was not possible to identify many instances of the pattern in code bodies. Of the

instances found, it was clear that there were significant variations in the implementation of

the pattern, even within the same inheritance hierarchy.

5.2.2 Object State

As shown in Figure 5.2, the Prototype, Memento and Observer patterns benefit from the

novel object state invariants expressible by Alas. The following subsection deals with the

Prototype pattern, as more instances of it that benefitted from the novel invariant categories

were found. The Memento and Observer patterns are dealt with in Appendix B.

5.2.2.1 Prototype

The Prototype pattern ‘specif[ies] the kinds of objects to create using a prototypical in­

stance, and create[s] new objects by copying this prototype’. A key invariant of the Pro­

totype pattern is that the copy and original can be mutated without affecting each other,

i.e., the values that are not intended to be shared between the copy and original should not

be aliased.

We specified two variants of the Prototype pattern, one with a Prototype cla.ss declaring

a clone method that returns an instance of the Prototype class, and a ConcretePrototype

classes inheriting fi'om Prototype and implementing the clone metlKKl (GoF variant). The

second variant does not require the Prototype class role {No AP variant). W’e created the

second variant to increase the likelihood of pattern instances to analyze. The behaviour

of the clone method is specified in Figure 5.4. The clone method’s post-condition requires

the value returned to be a copy of ‘this’, where the meaning of copy for each Prototype

instance is defined by the copystate definition.

Keyword search and pattern instances

The keywords used in the search for the Prototype pattern were: ‘Prototype’ and ‘Clone’.

We identified each method with the prefix ‘clone’ that returned an instance of its containing

class. Also, during the creation of the Abstract Factory benchmark for Swing, the create

method DebugGraphics was found to have the intention of creating a deep (•o])y of ‘this’.

145

■b.
{returnval.copystate isCopy this.copystate}

Fig. 5.4: Alas specification of the Prototype’s clone method. The clone method is reciuired

to make and return a copy of ‘this’

variant .1 Hot Draw Swing

GoF 2 2

No AP 2 7

Table 5.3: Intended instances of variants of the Prototype pattern in the Alas benchmark

for each code body

Table 5.3 summarizes the intended instances of each variant identified in the code bodies.

To identify if the relation-based copystate dehnitions described in Chapter 2 match

deep copying behaviour occurring in practice, we compare the copystate included by the

definition and the actual state copied by each candidate clone method instance identified

in our benchmark using manual inspection, ft was found that iComp (copystate defini­

tion that requires initialization of copystate only) was the best indicator of association

relationships: relationships where the variable should be aliased between original and copy

objects. iComp correctly predicated aliased state in 71.43% of candidate instances. How­

ever, it predicated aliased and deep copied state in only 42.86% of cases. In numerous cases,

variables are initialized with newly-created objects that are not assigned any state from the

original. An example of this in the Swing code body is the clone method of OptionList-

Model, shown in Figure 5.5. OptionListModel’s BitSet variable value is deep copied by

calling clone on it, while the ListenerList variable listenerList is merely initialized

146

/**

• Returns a clone of the receiver with the same selection.
' <code>listenerLists</code> are not duplicated.
" @return a clone of the receiver
• (Bexception CloneNotSupportedException if the receiver does not
• both (a) implement the <code>Cloneable</code> interface
• and (b) define a <code>clone</code> method
*/public Object cloneO throws CloneNotSupportedException {

OptionListHodel clone = (OptionListHodel)super.clone();
clone.value = (BitSet)value.clone();
clone.listenerList = new EventListenerLisK);
return clone;
}

Fig. 5.5: OptioiiListModel’s clone method in the Swing code body. The ListenerList

variable is not made an alias or assigned a deep-copied object

with a new object. The comments shown indicate that this is the intended behaviour:

‘listenerLists are not duplicated’. None of the relation-based copystate dehnitions con­

sistently distinguished between variables that have their values deep copied and variables

that are assigned to new objects. Thus, the relation-based definitions do not closely match

the behaviour of deep copy methods, and may provide inaccnrate results when used in a

reverse engineering use case.

We classify candidate instances as conforming or non-conforming based on their satis­

faction of the iCom.p copystate definition. The choice of copystate definition does not

affect the iinmber of reference variables that AVT is recpiired to analyze: each copystate

definition classifies all reachable state as satisfying an association or composition relation

with the object that contains it. Comments and documentation are not available for all can­

didate instances, so a user-based copystate definition cannot be inferred from the source

code. In .THotDraw, 2 clone methods conform to the definition, and 2 do not. In Swing, 4

methods conform to the definition, and 6 do not.

5.2.2.2 Discussion

Instances of both variants of the Prototype pattern were identified in the code bodies

included in our benchmark, thongh there is a small number of instances of the Prototype in

total, which is not surprising, due to its specihc intent and strong signature. With respect

to the evaluation objectives:

• Expressiveness: Alas is capable of expressing deep copying invariants through the use

147

of the isCopy keyword and the relation- and user- based definitions of copystate.

• Usefulness: The inclusion of deep copying invariants in Alas allows for the precise

si)ecification of the Prototype pattern: a pattern with a weak code signature in ex­

isting DPSLs and DPVTs. The three relation-based copystate definitions address

concepts such as ownership and initialization, which are the most frequently-used con­

cepts used to define composition relationships. However, these copystate definitions

only partially matched the copying behaviour occurring in the benchmark. Either

a more sophisticated definition of relation-based copystates is required, or there is

Tio consistent code signature for the state of an object that requires deep copying,

re-initialization or aliasing in general. The latter case would suggest that reverse

engineering instances of the clone method of the Prototype class, and deep copying

invariants in general, is fundamentally limited, and a forward engineering use case,

with a user-based copystate definition is moi’e suitable in this context.

5.2.3 Data structure

As shown in Figure 5.2, the Composite, Decorator and Chain of Responsibility (CoR)

patterns benefit from the novel objex’t state invariants expressible by Alas. The follow­

ing sulxsection deals with the benchmarking and analysis of the Composite and Decorator

patterns. Few CoR pattern instances were identified, and it is discussed in Appendix B.

5.2.3.1 Decorator

The Decorator pattern ‘attach[es] additional responsibilities to an object dynamically’

[Gamma et ah, 1995] in a way that is transparent to clients. This is achieved by in­

serting a decorator object between decorated object and client, with the same interface as

the decorated object.

We specify three variants of the Decorator pattern. The first variant {GoF variant)

has a similar structure to that given in the GoF catalogue, including a Decorator and

ConcreteDecorator role. As in other patterns, we remove the requirement that Decorator

is abstract: we found this restriction greatly reduced the number of conforming instances

found in code bodies in most cases'^. The second variant {No sub variant) removes the

ConcreteDecorator role. This variant is proposed in the GoF catalogue for cases when the

'^Tlie key role of the abstract Decorator class, as with other abstract classes in the GoF catalogue, is to
define a common interface for subclasses, and this can be achieved bv a non-abstract class as well

148

Fig. 5.6; Structural specification of the Decorator pattern, along with a single structural

variant

Decorator class ‘add[s] one resjronsibility’ only. The structural specification of the Decorator

pattern is shown in Figure 5.6.

We found that some intended instances of the Decorator pattern in both .THotDraw and

Swing forward to a Component only on the condition that the Component is not nidi. We

created a Forward if not, null variant to handle this case, as described in Appendix B.

The data-structure invariant included in the Alas specification of the Decorator pattern

was given in Chapter 3 Section 3.3.3, but is reproduced here, along with the data-structnre

definition.

decoratorChain isStructure Decorator.component
decoratorChain.last isKindOf ConcreteComponent

Informally, it states that every instantiated chain of Decorators and Components should

terminate with a ConcreteComponent object. Every chain ternunating in a ConcreteCom­

ponent is known to be well-configured (W'C), every chain terminating in a Decorator is

known to be badly configured (BC) and chains ternunating in Components of unknown

149

type (as they are not initialized within the method under test’s body) is not provably well

or badly configured (this third case is abbreviated to UC in the following).

Keyword search and pattern instances

The keywords used to search for Decorator pattern instances were: ‘Decorator’, ‘Decorate’,

‘Delegate’, ‘Real’, ‘Underlying’, ‘Wdap’ and ‘My’ (.THotDraw only). The convention of

naming the decorated reference variable ‘my...’ is applied throughout much of the .THotDraw

code body. This did not hold for the other two code bodies, and a search of their source code

using this keyword was not performed. Similarly to the Abstrac't Factory benchmark above,

we only include instances with clients that instantiate chains of Decorator and Component

objects. In .THotDraw, we identified 13 Decorator instances, with 23 methods instantiating

Decorator chains. Of these, 7 are provably well-configured. In Swing, we identified 10

Decorator instances, with 16 methods instantiating Decorator chains. Of these, one is

provably well-conhgured. As the benchmark included no badly-confignred chains, we added

a 'fault pattern’ instance by modifying a method from .THotDraw to badly-configure a chain.

W’e also added two methods that instantiated well configured chains of Decorators flrawii

from the Swing code body.

5.2.3.2 Composite

The Composite pattern’s intent is to ‘compose objects into tree structures to represent

part-whole hierarchies.’ The Composite pattern involves a Comi^osite object that contains a

collection of objects of its Component superclass. The Composite is commonly referred to as

the ‘parent’ and the Comjjonent objects it aggregates are its ‘children’. Classes that inherit

from Component but not Composite are Leaf classes. An operation method is declared in

the Component class, and over-ridden in the Composite class. The operation method is

important to the intent of the Composite pattern as it ‘lets clients treat individual objects

and compositions of objects uniformly.’ In the context of the Composite pattern, the GoF

catalogue considers a number of trade-off or variation points. One of these variation points

is whether a child has a reference back to its parent. We specify a parentLinks variant to

capture this variation point. The structural specification of the Composite pattern was given

in Chapter 3, Figure 3.4. An Alas behaviour diagram specifying the operation method

of the Composite role is given in Figure 5.7. The parent reference variable is declared in

the Composite, as suggested by the GoF catalogue, but it could also be declared in the

Comi)osite subclass. An essential invariant of the parentLinks variant is that ‘all children

150

I i iliiUHIIIHWgrCTHPBWiq
1 operation ^

(forall indexin children)

1 operation

2 operabon

Fig. 5. 7: Alas specification of the operation method of the Composite subclass

have as their parent the composite that in turn has them as children’ [Gamma et ah, 1995,

p.l66]. This can be ensured most safely by updating a Component object’s parent only

when it is added or removed from the Composite. \\e specify this invariant in the context

of the add method in Chapter 3, Figure 3.17.

The second variation point we consider is where the child management methods, snch

as add and getChildAt, are declared. The GoF catalogue suggests a transj)arent or unsafe

variant that declares the child management methods in the Component superclass. This

variant is also sjrecihed in Figure 3.4. This approach has the advantage of allowing instances

of all Component classes to be treated uniformly by clients, but has the disadvantage that a

client may do something meaningless, for example, trying to add a child object to a instance

of a Leaf class. Variants No operation and No remove are described in Ajjpendix B.3.3.

The Composite jmttern is used to build trees of objects, as each parent may have multi­

ple children. To ensure correct traversal of tree structures, it is important that each object

may be reached by only one path from the root object, i.e., no child should be shared by

two parents. The data-structure dehnition and isSharingFree clause is given below.

componentTree isStructure Composite.children

componentTree isSharingFree

Keyword search and pattern instances

The keywords used to search for Composite instances were: ‘Composite’, ‘Component’,

‘Parent’, ‘Ti-ee’, ‘Leaf. In total, 4 instances were found in the Swing code body, 2 in

.IHotDraw and 1 in JUnit. More details are provided in Appendix D.4.1.

151

To evaluate the verification of Alas isSharingFree clauses, we recgiire non-trivial in­

stantiations of trees of Composite and Component objects. In Swing, we identified four

trees, instantiating instances of two different Composite pattern instances. In .lUnit,

we found 12 instantiations of the single Composite pattern instance identified, while no

non-trivial tree instantiations were found in .THotDraw. Each of these instances are well-

configured: they contain no cycles. Though this is a small number, it is perhaps unsur­

prising, as each of the code bodies are frameworks, that focus on providing a structure

for applications to instantiate. Creating a benchmark from applications that use the code

bodies included in our evaluation could extend the number of instances of Composite trees

(as well as Decorator and CoR chains) to analyze, and would be an interesting direction

for future work.

5.2.3.3 Discussion

With respect to the evaluation objectives:

• Expressiveness: Alas data structure invariants are sufficiently expressive to describe

invariants of both linked-list-like structnres and trees, such as the absence of cycles

and sharing.

• Usefulness: Structural and behavioural invariants were identified in the context of

both the Composite and Decorator pattern. Instances conforming to four different

Conij)osite variants were identified across the entire benchmark, while instances of

three separate Decorator variants were identified. Some of these instances had non­

trivial instantiations of data-structures, suitable for analysis by AVT.

Decorator

We address three variants of the Decorator pattern, two taken directly from the GoF cat­

alogue and one based upon a common variation in the code bodies, in particular. Swing,

included in our benchmark. Numerous instantiated Decorator chains were identified.

Composite

The specification of multiple variants allowed us to capture important design trade-offs

discussed in the GoF catalogue. We were able to distingriish variants of patterns undistin­

guished in existing benchmarks and each of the variants was fonnd to occur in some code

152

body. Even in our largest code body, Swing, only a few valid instances of the Composite

pattern exist due to its strong signature and specific intent.

5.3 Summary

This chapter demonstrated the specification of the novel invariant types supported by Alas.

We identified a list of evaluation objectives, as well as reviewing the DPSL/DPVT evalua­

tions in the literature. We discussed properties of our benchmark and analysis that improve

the generality of the results obtained. The remainder of the chapter treated specification of

the three invariant categories that contain novel invariant types in Alas, and a benchmark

based upon those specifications. Design pattern variants were discussed on a per-pattern

basis.

Implementation dependency invariants were included in the specification of nnmerous

GoF patterns. As one of the main focus('s of the GoF catalogue is reducing coupling,

implementation dependency invariants allow more of the intent of GoF patterns to be

cajitured during specification. Instances of the Abstract Factory and Gommand pattern

were identified. Numerous classes were found that violated the dependency invariant of the

Abstract Factory pattern.

Deep copying invariants were evaluated mainly in the context of the Prototype pattern.

This pattern has a weak code signature in existing approaches that are not capable of

expressing deep copying invariants, as it is difficult to distinguish the Prototyjre’s clone

method from a Factory Method without the concept of composed state and cojiying. A

small number of intended ‘clone’ methods were identified in the code bodies, some of which

satisfied onr specification and some of which violated it. The relation-based copystate

definitions only partially matched the coj)ying behaviour occurring in the benchmark.

Data-structure shape invariants specifiable in Alas allowed invariants novel in the lit­

erature to be expressed. The use of data-structure invariants in interaction invariants

expanded the realm of design pattern specification and verification, from single methods

performing a specific function in isolation or secjuences of method calls, to potentially the

entire program. Instances of the Composite and Decorator pattern were identified, as well

as associated non-trivial instantiations of linked-list and tree shaped structures.

The ability of Alas to specify design pattern variants allows it to cajAure the intrinsic

variation in GoF patterns. Structural and behavioural variation points are explicit in

153

Alas specifications, highlighting the trade-offs involved in implementing design patterns.

Variants of GoF patterns were found to differ in terms of strnctnral roles, dependency and

object state. In nmnerons cases, the specification of variants allows us to identify more

pattern instances than existing benchmarks, and also distinguish between variants that are

indistinguishable in other approaches.

154

Chapter 6

AVT Verification Evaluation

In chapter 3, the features of the Alas language that enable the specification of invariants

from the novel invariant categories were presented. Chapter 5 presented Alas specifications

of patterns that benefit from the novel invariant categories, and a bechmark based upon

these specifications. There are two main objectives in the evaluation of AVT. Firstly, to

demonstrate that the novel invariant categories provided by Alas are actually verifiable and

secondly, to demonstrate that the design of AVT presented in chapter 4 is appropriate for

the verification of those categories of invariants in .lava code. A])propriateness is represented

using three properties: applicability, accuracy, and practicality. In more detail:

• Verifiability: AVT must demonstrate that the novel Alas invariants are actually veri­

fiable, i.e, that it is possible to compare .lava code to an Alas specification and obtain

a result consistent with the Alas semantic model;

• Applicability: AVT is capable of verifying Alas design pattern specifications imple­

mented using a variety of different implementation styles and idioms;

• Accuracy: AVT is capable of classifying pattern instances correctly, producing false

negatives only for implementations containing highly-challenging features (the incom­

pleteness inherent in all software verification approaches), and largely avoiding false

positives (as this is the more serious case of unsoundness);

• Practicality (and Scalability): We document the running time needed and computing

hardware used by AVT to verify each conforming or non-conforming implementation.

The evaluation objectives stated above are not addressed by different experiments, but

rather different aspects of the same experiment. Including some number of true positives

155

and negatives addresses verifiability, while the further inclusion of false positive and false

negative statistics addresses accuracy. As discussed in detail above, the characteristics of

the code bodies and benchmarks address applicability.

6.1 Methodology

Two major methodological issues are discussed in this section. The first discusses which

invariants from the specifications are actually verified by AVT. The second relates to the

metrics used to evaluate accuracy and how they are applied.

6.1.1 Scope

For each pattern, we perform verification of the novel invariant type or types only. Other

invariants imposed by each of the patterns addressed were not verified Iry AVT. As stated

in the previous chapter, pattern instances were identified using manual (human) inspec­

tion, after some automated filtering. Interface dependency, cardinality and control-flow

invariants have already received considerable attention in the literatnre, and the verifiabil­

ity, apjfiicability, accuracy and practicality of the tools addressing those invariant categories

has already been demonstrated [Shi, 2()()7a][Blewitt et ah, 20()5][Tsantalis, 2009] [Gueheneuc

and Antoniol, 2008]. The verification of structural characteristics such as method signatures

and interface dei)endency has been demonstrated by many existing DPVTs, and much of

the functionality recpiired to verify these invariants, e.g., variable or return type checking, is

recjuired to verify the more challenging invariants verified in later sections of this evaluation

also.

6.1.2 Metrics

The most commonly used metrics for DPVT evaluation are precision and recall [Gueheneuc

and Antoniol, 2008]. Both of these metrics are taken from the field of information retrieval

and measure the accuracy of the tool. In the context of DPVTs, precision is the ratio of true

positive instances obtained by the analysis to the true positives and false positives obtained.

Similarly, recall is the ratio of true jjositives to true positives and false negatives. A false

I)ositive in this context is a non-pattern instance that is wrongly classified by the tool as a

pattern instance. A false negative is a trne pattern instance that is wrongly classified by the

tool as a non-pattern instance. Some evaluations only identify true positives [Stencel and

156

WegTzynowicz, 2008] [Heuzeroth et al., 2003], wliiie others present only recall jTsantalis,

2009] JWendelials and Orso, 2006] or only analyze known pattern instances (gnaranteeing

0% or 100% recall) jBlewitt et ah, 2005][Ng et ah, 2010], Shi [2007a] analyzes the entire

code bodies bnt does not categorize identified instances as positives or negatives.

\^'e use precision and recall to measure the accuracy of AVT analyses. Only inspected

true positives and negatives are analyzed, instead of the entire code body*. This does

not preclude the occurrence of false positives or negatives, unlike some evaluations in the

literature.

Where there are a lack of true positive or true negative instances in the benchmark

based on existing code bodies, we add instances to our own benchmark to address the gap.

However, precision and recall statistics for the external code bodies only are presentc'd, to

avoid skewing results.

6.2 Results

In the following section, we present the results of the AVT analysis of the benchmark

outlined in the prcwious chaj)ter. Resnlts are grouped by invariant category, and by pattern

within each invariant category. All analysis resnlts were obtained using a desktop comimter

with two Intel Core 2 E 6600 @ 2.4GHz CPUs and 2GB of RAM rnnning the Ubuntu Linux

10.04 operating system.

6.2.1 Dependency

In this section, we evalnate AVT’s ability to verify implementation dc^pendency invariants.

In the context of the Abstract Factory pattern, this involves analyzing the ‘good’ and ‘bad’

clients from the benchmark and comparing the result with the benchmark’s classification.

Similarly with the Command pattern, except that three separate implementation deiren-

dency invariants exist between pattern roles (See Figure 5.2).

As described in Chapter 4, verifying implementation invariants involves searching the

abstract syntax tree (AST) of a method or methods for constrnctor calls of a particular

type. AVT performs an extensive exploration of the AST, so we expect its accuracy to

be high. As AVT does not require data-flow analysis to verify dependency invariants, we

expect it to scale well to larger class definitions. In simimary, we expect AVT to verify

'All data-structure instantiations are analyzed, so full coverage is achieved in that category

157

Code body TP TN FP FN Precision Recall

.IHotDraw 26 19 0 0 100% 100%

•TUiiit 8 2 0 0 100% 100%

Swing 17 13 2 0 93.75% 100%

Table 6.1: AVT analysis results for the Abstract Factory pattern

inipleinentation (lei)endency invariants in an accurate and scalable nianner.

6.2.1.1 Abstract Factory

Table 6.1 snnnnarizes the results of the AVT analysis of the Client invariant of the Abstract

Factory pattern for all three code bodies. Recall was 100% for all three code bodies.

Precision was 100% for both .IHotDraw and .lUnit, and 93.75% for Swing. Both false

positives in Swing were dne to overlooked initializations within the instance initialization

block, and both occur in the class BasicTextUI. For example, BasicTextUI creates an

object of the class Def aultEditorKit directly in its instance initialization block, instead of

calling the Factory Method createDef aultEditorKit of class JEditorPane. These resnlts

meet, and slightly exceed, our expectations, as we expected more relevant constructor calls

to occur in the initialization blocks of class flefinitions.

Some Client classes are quite large, for example, HTMLDocument in the Swing benchmark,

which was analyzed in full, contains around 1,400 lines of code and over 50 individual

methods. It was analyzed by AVT in under a second. An example of an AVT analysis of a

dependency invariant is given in Appendix C.l.

6.2.1.2 Command

Table 6.2 summarizes the results of the AVT analysis of all Command instances. Precision

and recall are 100%, as AVT correctly classifies the four true positives and one true negative

contained in the benchmark. None of the Command instances suffer from the issues that

affected the results of the Abstract Factory analysis.

6.2.1.3 Discussion

This subsection presented the results of the benchmarking and AVT analysis of dependency

invariants. We disenss here how well the language and tool performed with regard to each

158

Code body TP TN FP FN Precision Recall

.IHotDraw 4 1 0 0 100% 100%

Table 6.2: AVT analysis resvilts for the Coiniiiaiid pattern

of the evaluation objectives outlined at the beginning of the chapter.

• The verifiability of dependency invariants was demonstrated through the correct clas­

sification by AVT of numerous true positives and true negatives.

• The classes to which dependency invariants apply cover a broad sirectrum in terms of

size and implementation styles. Some, such as CommandButton, are small and simple

to analyze while others such as HTMLDocument contain around 1,400 lines of code, and

were analyzed in full. Constructor calls in the benchmark occur within a number of

different contexts within the AST, within return expressions, as the parameters to

other calls and on the right-hand side of assignments. AVT was able to locate the

call within the AST in each case.

• The accuracy of the AV'T analysis was good. This matches our intuition that 100%

precision and recall is achievable in the context of deijendency invariants, as the

verification involves the parsing of an abstract syntax tree (all of which is available)

and the comparison of two types (for which complete name and scope information is

available from the compiler).

• The verification of dependency invariants by AVT was demonstrated to be practical,

as all analyses took less than a second running on the modest hardware platform

described above.

6.2.2 Object State

In this section, we evaluate AVT’s ability to verify object-state invariants, specifically, deep

copying invariants in the context of the Prototype pattern. AVT is used to compute whether

or not the intended clone method instances identified in the benchmark correctly perform

a deep copying operation. The results of the AVT analysis is compared to the benchmark’s

classification, which contains both true positives and true negatives.

159

public Object cloneO throws CloneNotSupportedException {
DefaultListSelectionModel clone = (DefaultListSelectionModel)super.clone();
clone.value = (BitSet)value.clone();
clone.listenerList = new EventListenerList();
return clone;
}

Fig. 6.1 : DefaultListSelectionModel’s clone method in the Swing code body

6.2.2.1 Prototype

We illustrate the operation of AVT in the context of an example before providing the

overall results. A more complex example is provided in Appendix C. The implementation

of DefaultListSelectionModel’s clone method is shown in Figure 6.1. The first line calls

Object.clone, which creates a new instance of the class as if by directly assigning all

the variables of the original to the same variables of the clone. This is adecinate ‘deep’

copy for all the primitive variables contained in the class. Lines two and three create new

objects and assigns them to the two reference variables of the class. The first is created

by a call to BitSet’s clone method, while the second simply creates a new instance of an

EventListenerList.
An abridged version of the shai)e graph produced by AVT on analyzing this method is

given in Figure 6.2. Core predicates (variables directly reachable from ‘this’) are displayed

as i)airs of variables and values while binary predicates are triples of: source object, vari­

able name, and target object. As stated in Chapter 4, values are uniquely identified by

the cpiadniple of integers: context, block, line, occurrence, so all variables with the same

quadruple must point to the same value. The second core predicate ‘clone’ in the listing is

the intended copy. It is the same value as the one returned by clone, as the special variable

‘retnrnvar, the last in the listing of core predicates, has the same quadruple: (1,1,0,0). The

source of all binary jrredicates in the listing is the ‘clone’. It can be seen that the value

of all primitive variables, while unknown, is the same in both the original, ‘this’, and the

cojjy: the quadruples for ‘a.nchorIndex’,‘leadIndex’ and ‘firstAdjustedIndex’ are identical in

the core and binary predicate listings. The values pointed to by the two reference variables

‘value’ and ‘listenerList’ are different, due to the assignments in line 2 and 3 of clone.

The outj)Ut of applying the isCopy predicate to the shape graph of Figure 6.2 is shown in

Figure 6.3. AVT correctly asserts that all the primitives variables of the original and clone

are equal and that the two reference variables are not aliased. A violation is identified

as the two attributes of ‘listenerList’ have not been copied: two Object arrays called

160

Analysis result:
Nitfber of ShapeOraphs: 1 Graph nuaber:e

Core Predicates;
Variable: hante: this, Type: OefaultListSelectionHodel, DUHHY
, Value: Type: OefaultListSelectionHodel. Hethod: clone. Context; G. Block Wuaber; 8, Line Nusber; 6. Occurrence Nuoiber: 8
Variable: Na*€: clone. Type: DefaultListSelectiorttodel, R£AL
, Value: Type: OefaultListSelectionHodel, Hethod: clone. Context; 1. Block Nuaber: i, Line Nwber: 8. Occurrence Nuaber: 8

variable: Maae: anchorlndex. Type: int, REAL
, Value: Unknown primtlve value of type: int, Hethod: clone. Context; 1. Block Number: l, Line Number: 7. Occurrence
Number; 8
Variable: Name: leadindex. Type: int. REAL
, Value: Unknown primitive value of type: int, Hethod: clone. CoiUext; 1, Block Number: i, Line Number: 8, Occutrence
Number: 8
Variable: Name; firstAdjustedlndex, Type: int, REAL
. Value: Unknown primitive value of type: int, Hethod: clone, Context; 1, Block Number: I, Line Numbet: 9, Occurrence
Number: 8
Variable; Name: value, Type: BltSet, REAL
, Value: SiMmary location for type; BltSet. Method: clone. Context: 1. Block Number: 1, Lii>e Number: 14. Occurrence Numbet:
8
Variable: Name: listenerLlst, Type: EventListenerList, REAL
, value: Summary location for type: EventListenerList, Hethod: clone. Context: 1. Block Number: 1, Line Number; is.
Occurrence Number: 6
variable: Name; returnval. Type: Object, OUHMY
, value: Type: OefaultListSelectionHodel, Method: clone. Context: l. Block Number: l. Line Number: 8. Occurrence Number: 8

Binary Predicates:
Source object: Type: OefaultListSelectionHodel. Hethod: clone. Context: 1. Block Nijmber: l. Line Number; e. Occurrence
Number: 6. Selector: Name: anchorlndex. Type: int, REAL
Target object: Unknown primitive value of type: int, Hethod: clone. Context: 1, Block Number; 1, Line Number: 7, Occurrence
Number: 9
Source object: Type; OefaultListSelectionHodel. Method: clone, Context; 1, Block Number; 1, Line Number; 8, Occurrence
Ni»ber: 8, Selector: Name: leadindex. Type: int, REAL
Target object; Unkrwwn primitive value of type: int, Hethod: clone. Context; 1. Block Number: 1, Line Number; 8, Occurrence
N(fld>er: 8
Source object; Type; OefaultListSelectiorVtodel. Method: clone. Context: 1. Block Number: 1. Line Number: 8. Occurrence
Nimtber: 6, Selector: Name: firstAdjustedIr>dex, Type; int, REAL
Target object: unknown primitive value of type: int, Hethod; clone. Context: 1. Block Number: l. Line Number: 9, Occurrence
Number; e

Source object: Type: OefaultListSelectionHodel, Method: clone, Context: 1. Block Number: l. Line Number: 8. Occurrence
Number; 0, Selector; Name; value. Type; BltSet. REAL
Target object: Type: BltSet, Hethod: clone. Context: 2. Block N<mN>er: 1, Line Number: 6, Occurrence Number: 8
Source object: Type: OefaultListSelectiorVtodel. Hethod: clone. Context: 1. Block Number: 1. Line Number: 9. Occurrence
Number: 8. Selector: Name: listenerList, Type: EventListenerList, REAL
Target object: Type; EventListenerList, Hethod: clone. Context: 0. Block Number: 1, Line Number: 2, Occurrence Number: 0

Fig. 6.2: Shape graphs output by AVT after analyzing DefaultListSelectioiiModers clone

method

161

this isCopy returnval

Graph number: 0
'this' is not an alias of ’returnval'. Good!
'this -> selectionMode■ has a primitive value equal to: 'returnval -> selectionMode'. Good!
'this -> minindex' has a primitive value equal to: ‘returnval -> minindex'. Good!
'this -> maxindex' has a primitive value equal to: 'returnval -> maxindex'. Good!
’this *> anchorindex' has a primitive value equal to: 'returnval -> anchorindex'. Good!
’this -> leadindex' has a primitive value equal to: 'returnval ♦> leadindex'. Good!
’this -> firstAdjustedIndex’ has a primitive value equal to: 'returnval -> firstAdjustedlndex'. Good!
’this -> lastAdjustedlndex’ has a primitive value equal to: returnval -> lastAdjustedIndex'. Good!
'this -> isAdjusting’ has a primitive value equal to: 'returnval •> isAdjusting’. Good!
'this -> firstChangedIndex’ hdfgdfgas a primitive value equal to: 'returnval -> firstChangedIndex'. Good!
'this -> lastchangedindex' has a primitive value equal to: ’returnval -> lastChangedIndex'. Good!
'this -> leadAnchorNotificationEnabled' has a primitive value equal to: ‘returnval ->
leadAnchorNotificationEnabled'. Good!
’this -> MIN' has a primitive value equal to: 'returnval -> MIN’. Good!
’this -> MAX' has a primitive value equal to: 'returnval -> MAX’. Good!
'this -> value’ is not an alias of 'returnval •> value'. Good!
'this -> listenerLisf is not an alias of 'returnval -> listenerLisf. Good!
listenerList undefined reference variable in both 'this -> listenerLisf and ' returnval -> listenerLisf.
No copying performed. Fail!
NULL ARRAY undefined reference variable in both 'this -> listenerLisf and ' returnval •> listenerLisf.
No copying performed. Fail!
Graph number: 0: FAIL!

FAIL!

Fig. 6.3: Result of applying the isCopy predicate to the shape graphs of Figure 6.2

Code body TP TN FP FN Precision Recall

.THotDraw 2 0 2 0 50% 100%

Swing 2 5 2 1 50% 66.6%

Table 6.3: AVT analysis results for the Prototype pattern

‘NULL_ARRAY’ and ‘listenerLisf. The conunents attached to DefaultListSelection-

Model indicate that the ‘listenerLisfs are not to be copied, so this is actually correct

behaviour in the context of this particular instance. Nonetheless, this is a useful example

to illustrate the recursive verification of the isCopy predicate in AVT.

The results of analyzing both the .THotDraw and Swing benchmarks is shown in Ta­

ble 6.3. As the definition of both precision and recall has as numerator the number of true

positives, both overlook the number of true negative instances identified by the analysis.

The percentage of candidate instances that were correctly classified by AVT for the Swing

benchmark (the only benchmark containing true negatives) was 70%.

The limited handling of arrays means AVT fails to verify that Def aultXreeSelection-

Model correctly copies its selection array. Both DebugGraphics and FigureAttributes

instances require handling of polymorphic calls to variables whose runtime type is unknown,

and whose compile type is abstract and does not provide an implementation of the method.

A solution to this issue is to add a call edge for each method implementation in a subclass

162

and analyze each of these. This is not difficult and involves no technique not already

included in AVT. However, this approach has the i)otential to greatly multiply the number

of shape graphs in the analysis, decreasing scalability. The copying performed by Abstract-

Figure is based on serialization, which is not supported by AVT. In a simple example such

as this one, where the entire object is both written and read again in a single statement, the

inpnt and output streams could be modelled as if they contain objects of the written/read

class. A synthetic summary of readObject could be provided that has a similar effect to

Object. clone. Handling serialization in general, however, would require the analysis tool

to track the ordering and contents of reads and writes to streams where one attribute is read

or written at a time. Finally, to verify AbstractAction.ArrayTable, AVT would require

the application-specific knowledge that its table attribute can be downcast to an Object

array or Hashtable and that, in array form, it stores key and value pairs contiguously.

6.2.2.2 Discussion

This subsection presented the results of the benchmarking and AVT analysis of object-state

invariants. \Mth regard to each of the evaluation objectives outlined at the beginning of

the chapter:

• The analysis of true positive and true negative instances demonstrate the verifiability

of Alas object-state invariants. The shape analysis converged in all cases.

• Despite the small number of instances, many of the implementation idioms and lan­

guage features that may be expected to occur frequently in iini)lementations of the

clone method are pre.sent. Instances were identified that: call Object.clone to cre­

ate a new object (OptionListModel), do not call Object.clone (DebugGrapics),

access state directly via ‘this’ (SmallAttributeSet), call clone methods on reference

variables (Elementiterator), and call clone methods defined in their superclasses

(TriangleFigure). In terms of language features, there are instances that create

deep copies of lists, by iterating over each element in the list (Elementiterator)

and perform copying using serialization (AbsractFigure). Also, there are instances

that make polymorphic (FigureAttributes) and potentially-recursive calls (Debug-

Graphics). For this reason, we believe our benchmark of the Prototype pattern is

representative of Prototype instances that occur in practice, and the analysis results

obtained will generalize to other code bodies.

163

protected Tool createDragTracker(Figure f) {
return new UndoableTooKnew Drag!racker(editor(), f));

)

Fig. 6.4 ; SelectioiiTool’s createDragTracker method from the .THotDraw benchmark

• Accuracy over the two code bodies was good. As a proof of concept tool, it does not

implement all the language features of .lava, which is a flexible high-level language.

Some of the incorrect results are due to issues that could be solved without fundamen­

tal redesign of the shape analysis algorithm realized in AVT. Other features, such as

the path-sensitive analysis required to verify Abstract Act ion. Array!able requires a

different and challenging analysis ai)proach. We believe this illustrates the challenge

of verifying implementations in high-level languages in the general case.

• The analysis of every candidate pattern instance completed in under three seconds.

6.2.3 Data Structure

In this section, we evaluate AVT’s ability to verify data-structure invariants, in the form

of interaction invariants. AVT is used to compute whether the Decorator chains and Com­

posite trees identified in the benchmark are well- or badly-configured. The results of AVT’s

analysis is compared to the benchmark, which contains both true positives and true nega­

tives.

6.2.3.1 Decorator

We analyzed each of the Decorator chains in the benchmark with AVT. Results are discussed

in terms of the client method that instantiates the Decorator chain aiifl of the Decorator

class. We illustrate the verification of data structure invariants in the context of an example

before providing the overall results. A second exanqile is provided in Appendix C. The

source code for SelectionTool’s createDragTracker method from the .THotDraw code

body is shown in Figure 6.4, and the corresponding AVT output is shown in Figure 6.5. AVT

correctly identifies that the last object in the chain is an instance of a ConcreteComponent

class (DragTracker), and the chain is thus well-configured.

Table 6.4 summarizes the results of analyzing the Decorator chain instantiations iden-

tihed in .THotDraw and Swing using AVT. UC chains are classihed as negatives, as they

cannot be proven to be well conhgured. Failures or errors when analyzing UC chains are thus

164

Analyzing:

•>Tool myWrappedTool . LAST isKindOf UndoableTool OR
->Tool myWrappedTool . LAST isKlndOf Tool

ShapeOraph: :getCorePredicateByNaiive: couldn't find core predicate:myWrappedTool. Returning NULL. Danger here!
LastOperand::evaluate: Binary predicate number: 0 is valid link role
LastOperand::getLastInChain: Path ends
InitUtility::egualsString: DragTracker = UndoableTool ?
InitUtility::equalsString: mismatch
AbstractTool <: UndoableTool ?
Object <: UndoableTool ?
InitUtility:;equalsString: DragTracker == Tool ?
InitUtility::equalsString: mismatch
AbstractTool <: Tool ?
InitUtility::inheritsString; type match via interface
Last element in chain is of ConcreteComponent type. Data structure is well configured.

Fig. 6.5: Result of applying the data-structure invariant to SelectioiiTool’s createDrag-

Tiacker method

Code body TP TN FP FN Precision Recall

.IHotDraw 7 12 2 2 77.7% 77.7%

Swing 2 9 1 1 66.6% 66.6%

Table 6.4: AVT analysis results for the Decorator jiattern

reported as false positives. As the definition of both jirecision and recall has as numerator

the number of true positives, both overlook the number of true negative instances identified

by the analysis. The number of decorator chains correctly classified by AVT includes both

true jiositives and true negatives: AVT correctly classihes 82.6% of decorator chains in

•IHotDraw, and 84.6% of decorator chains in Swing. In total, six instantiations were not

correctly classified by AVT. Both the analysis of the GraphicalCompositeFigure. create-

Instance client method in .IHotDraw and the BasicTreeUI. createDefaultCellEditor

client method in Swing fail as AVT does not handle calls between different constructors us­

ing the syntax thisC. . .). This is a failure of the control-flow graph building code, and not

the shape analysis: constructors are handled soundly in other cases. In Swing, Default-

FocusManager’s constructor, which is a client of the LegacyGlueFocusTraversalPolicy

Decorator class, requires analysis of the instance initialization block, which is not analyzed

by AVT, to produce the correct output.

In .IHotDraw, FigureAttributes. read, which is a client of the MapWrapper Decora­

tor class, requires more precise handling of polymorphic calls to abstract methods, where

the method is implemented in one or more subclasses, as discussed in the context of the

165

Prototype pattern above. Finally, the analysis of two instantiations, of separate Decorator

instances, both of which occnr in the JavaDrawApp. createTools client method cannot be

completed by AVT within a nintime of 5 minutes. The method contains the instantiation

of 14 separate decorator chains, as well as nnmerous other objects of ConcreteComponent

types, which are not summarized even in the parameterized-precision version of the shape

analysis. Nnmerons ConcreteComponent objects are created over conditional paths, leading

to a set of data flow facts including many shape graphs. Examples such as JavaDrawApp.-

createTools represent a worst-case scenario for the shape analysis algorithm imj)lemented

in the current version of AVT, though larger program segments, such as an entire program,

may be expected to present similar challenges. The focus of future development of AVT

could be on inii)roving scalability in cases such as these.

One of the largest exami>les that does complete is the analysis of DrawApplication’s

createEditMenu method, which contains the instantiation of 10 well-configured decorator

chains, each of length 2. The output of AVT contains a single shape graijh witli 45 core

predicates and over 80 binary predicates. The progTarn segment contains around 100 unique

lines of rode, some of which are analyzed many times, as there are a total of over 300 calling

contexts: the method contains contains 27 constructor calls of different tyj)cs, some of which

call mnltiplc local methods to perforin further initialization; each of the newly-instantiated

decorator chains is then added to a HashMap via a call to a mutator method on Command-

Menu This example demonstrates that AVT can precisely compute the runtime value of

more than 100 program variables, created in nnmerous separate calling contexts, scaling

well to program segments containing fewer conditional branches.

No badly-configured Decorator chains were encountered in either code body. A single

badly-configured Decorator chain was added to onr own benchmark by instantiating a chain

of UndoableCommands, which terminates with an object of type UndoableCommand, i.e., the

Decorator class. UndoableCommand allows this type of configuration by providing a mutator

method for its delegate that performs no type checking on the argument that is set as its

delegate. AVT correctly classifies the chain as being badly configured.

6.2.3.2 Composite

The results of the analysis are given in Table 6.5, first for the unchanged code body, and

below it the starred version of Swing represents the version of the code body re-implemented

with Vectors. Results for which AVT failed to complete due to scalability issues are

166

Code body TP TN FP FN Precision Recall

.lUnit 7 0 0 5 100% 58.3%

Swing 1 0 0 3 100% 20%

Swing* 4 0 0 0 100% 100%

Table 6.5: AVT analysis results for the Composite pattern

classified as false negatives: AVT is incapable of demonstrating that the tree is sharing free.

AVT correctly identifies that all instances in the modified code body are free from sharing.

The source code for the modified version with added sharing is shown in Appendix C.3.

Appendix C.3 also presents an example of AVT verifying an isSharingFree invariant in

the context of the Composite pattern.

Three of the four instantiations of Composite trees in the Swing benchmark rely on

arrays (three createDefaultRoot methods in subclasses of AbstractDocument). These

were re-implemented to use Vectors instead of arrays in a semantics-preserving manner.

AVT performs better on the Swing examples, as they contain fewer conditional updates.

The program segment contained in JTree’s getDefaultModel contains around 60 nniciue

lines of code (many of which are analyzed nmltijile times in different calling contexts) and

the AVT analysis terminates after 2 seconds ontpntting a single shape graph containing 31

core predicates and 38 binary predicates. Also, the analysis involves a total of at least 326

calling contexts (this is the largest context nmnber of a variable in the ontj)nt). Similarly,

the analysis of HTMLDocument’s createDef aultRoot method results in an output of 4 shape

graphs, one of which contains 29 core jnedicates and 47 binary predicates, i.e., the value of

76 different program variables. The analysis handles greater than 176 calling contexts in 2

seconds. We modified getDefaultModel to introduce sharing.

6.2.3.3 Discussion

The ability of Alas to specify data-structure invariants novel in the context of design pat­

terns was demonstrated in this section. These data-strnctnre invariants capture critical

correctness properties of instantiations of data structures inexpressible in existing DPSLs.

These instances are specifiable by Alas, but not verifiable by AVT, as it does not perform

path-sensitive data-flow analysis, as discussed in Chapter 4.

This subsection presented the results of the benchmarking and AVT analysis of data

167

structure invariants. With regard to each of the evaluation objectives outlined at the

beginning of the chapter:

• AVT was demonstrated on conforming and non-conforming pattern implementations

in the case of each pattern to demonstrate the verifiability of the Alas specifications.

In the cases where there were no instances of specification violations, these were added

from our own benchmark.

• While few non-trivial instantiations were identified in the code bodies, they are quite

representative examples, as there are only a few ways to implement part-whole com-

I)osition relationships. Wo identified examples of both arrays and collections intended

to have contents that are instances of some superclass. We created our own small code

body containing a few ‘fault pattern’ instances, as well as implementation variants of

instances from the other code bodies, to more fully demonstrate the capabilities of

AVT.

• Accuracy is good, for the analyses which converge. In all cases where the AVT analysis

completes without error, it is able to correctly classify the Decorator chain as being

WC, BC or UC.

• AVT analyzed many of the methods included in the evaluation in under a second or

two. AVT was demonstrated to scale well to increasing numbers of variable updates

and calling contexts and increasing lines of code, but was shown to scale poorly when

the number of conditional branches increases, where conditional paths differ in the

values they assign to variables. This situation increases the number of shape graphs

that AVT must include in the data-flow facts propagating through the analysis. AVT

scaled less effectively to the Composite examples in this section than the Decorator

examples of the previous section, but this is a property of the benchmark rather than

the pattern. The program segments instantiating Composite trees in this benchmark

tend to involve more elements and include more complex behaviour than the program

segments instantiating Decorator and CoR chains.

6.3 Summary

This cha])ter demonstrated the verification of the novel invariant types by AVT.

168

Ve'rification of implementation dependency invariants by AVT was both accurate and

efficient. The inter-procednral shape analysis algorithm implemented by AVT enabled the

verification of deep copy object-state invariants by i)recisely representing graphs of objects

in the heap and identifying sharing of objects between reference variables. Verihcation

of these invariants by AVT was demonstrated to be accnrate, where the language features

occurring in the benchmark had been supported. The relationship between object structures

reachable from different root objects can be computed efficiently. Data-structure invariants

were verihed accurately in cases where the analysis converged, but the application of AVT

to larger code segments exposed a limitation in the scalability of the tool.

Typically, existing DPVTs analyze methods with a particular function that can be ex­

pressed as a binary property such as created/not creatt'd or iiull/iiot null, and are only

required to model the method’s local stack. Object state and data-structure invariants re­

quire precise modelling of the shape of the runtime lieaj). The verification of data-structure

invariants in Alas is ac'cnrate, as the entire heap is modelled precisely with limited sum­

marization. However, the analysis is not as scalable as other shape analysis algorithms

that perform more aggressive summarization. \Miile tracking all values occurring in a pro­

gram segment precisely is suitable for tyi)ical deep copying object state invariants that

are verihed typically on small and medium sized methods, scalable verihcation of similarly

complex properties over a larger program segment will recpiire more efficient algorithms.

^^’e discussed approaches that would improve scalability in Chapter 4.

1(19

Chapter 7

Conclusions

III tliis chapter, we begin by discussing the specific contributions and conclusions of this

thesis. We then consider the implications of our findings in the field of design pattern

specification and verification. Finally, we propose future research enabled by this work.

7.1 Specific conclusions

A large body of literature exists that addresses the specification and verification of object-

oriented design patterns, especially those outlined in the GoF pattern catalogue [Gamma

et ah, 1995]. Each design pattern imposes constraints that must be satisfied by a conforming

implementation, and most patterns include trade-off or variation points where some alter­

native must be chosen to fully instantiate the pattern. The first contribution of this thesis

is our analysis of the GoF pattern catalogue identified a set of invariant categories, each of

which contains a set of invariant types that are necessary to specify the GoF patterns pre­

cisely and enable accurate verification of design pattern implementations in object-oriented

programming language (OOPL) code. This analysis also identified a number of key varia­

tion points discussed in the GoF catalogue.

The second contribution of this thesis is a classification of existing design pattern spec­

ification languages (DPSLs) and design pattern verification tools (DPVTs) was performed

according to which invariant categories each DPSL and DPVT supported. Some of the

DPVTs included in the classification verify specifications written in a DPSL and some

others are hard-coded with a pre-defined set of pattern specifications. It was found that

numerous approaches addressed the structural roles and interface dependencies that are

required. Control flow such as method calls and sequencing of events were also found to

170

be well supported. Two invariant types were found to be almost completely overlooked by

the literature: deep copying behaviour and the shape of data structures at runtime. Some

research has been conducted on data structure shape invariants in the context of design

patterns, but this has either lacked a DPSL, specihed only application-specific invariants

or has major limitations in its generality. One invariant type was found to be addressed by

a DPSL, but insufficiently supported by any DPVT and insufficiently evaluated on bench­

marks of identified pattern instances: implementation deirendeiicy. Typically, dependency

invariants in the literature focus on required or positive dependencies between pattern roles

and not on forbidden or negative dependencies. One of the focuses of the GoF catalogue,

however, is reducing the level of coupling between classes to improve extensibility, and be­

cause of this, the absence of different kinds of dependencies between roles is a key concept

in design pattern specification.

Numerous approaches, especially earlier approaches to design pattern specification at­

tempted to avoid the problem of design pattern variants by sj)ecifying only the ‘leitmotif’

of a pattern: the constraints common to all variants of a pattern. These approaches also

tended to focus on structure. Such an approach provides a specihcatioii that has a weak

signature in OOPf, code, leading to the profluction of a large number of false positives

or unintended instances being identified during verification. This approach also overlooks

the behavioural variation of design patterns. To our knowledge, only a single DPSL in the

literature, GEBNF [Bayley and Zhu, 2010], provides support for the specification of mul­

tiple pattern variants within a single si)ecification and for the explicit naming of variants

at variations points. GEBNF enables structural variation only, and its specifications are

verified against object-oriented models only, and not code.

The third contribution of this thesis is the Alas DPSL, which is capable of specifying each

of the invariant types, including the invariant types poorly-supported in existing DPSLs.

We demonstrate the utility of the novel invariant types identified by our GoF analysis and

supported by Alas by enhancing the specification of around half of the GoF design patterns

using invariants from the novel invariant types. Alas is also novel in that it supports the

specification of structural and behavioural variants of design j)atterns. In fact, it is possible

to specify variations based on all the invariant categories in Alas, as variant sirecificatious

can refer to variations in structure, control-flow and the state of objects or data-structiires

at particular points in the control flow.

The fourth contribution of this thesis is the design and implementation of a DPVT called

171

the Alas Verification Tool (AVT), capable of verifying the novel invariant types specifiable

in Alas. AVT irerforms an inter-procedural shape analysis of .lava code, the outinit of which

can be queried to verify object-state and data-structure invariants. AVT is also capable

of verifying both positive and negative iinjrleinentation dependency invariants through an

exploration of the abstract syntax tree (AST) of a method, and the comparison of the

type of objects created by expressions in the AST to class actors bound to roles in the

specification.

The fifth contribution of this thesis is the creation of the first sizeable benchmark to

include pattern variants, as well as providing the specifications used in creating the bench­

mark that makes its results reproducible independently. The aggregation of an automatic

and a manual benchmark, as well as the performance of our own keyword-based search,

conveyed a number of desirable properties on our benchmark. The aggregation of an auto­

matic benchmark allowed us to achieve good code coverage relatively quickly. The inclusion

of a manual benchmark, as well as the manual inspection of all instances, gave us more

confidence in the validity of our benchmark than automated benchmarks, which suffer from

errors or oversights in the implementation of the benchmarking tool. Code bodies for inclu­

sion in the benchmark were chosen based on a number of criteria, including how often they

were analyzed by other DPVTs, their size and their density of pattern instances. The si)ec-

itication of design pattern variants allowed for the identification of instances overlooked in

other benchmarks as well as allowing us to distinguish between pattern instances that were

not distinguished, i.e., conilrined into a single generic specification, in other approaches.

The specification of invariants from the novel invariant categories allowed us to address

patterns, e.g.. Command and Memento, that are often overlooked by other approaches,

which consider them as unspecifiable or too generic. Invariants from the novel invariant

categories also allowed us to add i)recision to the specification of roles that are commonly

specified in the literature, add roles that are not commonly addressed and specify novel

properties that relate to the correct instantiation and use of design pattern roles. The

ability to combine control-flow, object-state and data-structure invariants into the same

specification allows more sophisticated concepts, such as lazy initialization, to be described

based on the atomic set of invariants they impose, though the verification of such concepts

in general has not been implemented.

The sixth and final contribution of this thesis was the evaluation of AVT, which demon­

strated that the novel invariant types are verifiable accurately and in the context of the

172

varying implementation idioms occurring within the benchmark. The verification of imple­

mentation dei)endency invariants was found to be efficient and accurate. The development

of a single analysis that can verify negated and non-negated clauses, deep copying behaviour

and data-structure interaction invariants was found to be challenging. In particular, the

shape analysis performed by AVT was found to have scalability limitations when applied

to program segments that contained numerous conditional paths that differ in terms of the

values they give to some pattern actor. Some approaches to improve the scalability of the

tool were identified. The inter-procediiral shape analysis algorithm imjjlemented by AVT

enabled the verification of deep copy object-state invariants and data-structure shape by

precisely representing graphs of objects in the heap and querying those graphs.

7.2 General conclusions

\Miile this thesis describes the ability to specify and verify both variants and the invariant

categories poorly-supported in the design pattern specification and verification literature as

separate contributions, they are in fact complimentary. Some pairs of variants can only be

distinguished using the novel invariant types provided by Alas, and sometimes invariants

from the novel invariant types are only relevant in the context of a particular variant. There

exists a positive feedback loop whereby increasing the iiumber of invariant types supported

by a design pattern sj)ecification language increases the number of variants that can be

described, and expanding the types of distinctions that can be made between variants

(structural, control-flow, etc.) can increase the oi)portunity to express novel invariants.

The combination of pattern variant specification and the novel invariant types serves to

increase the precision with which patterns can be specified and benchmarks of pattern

instances can be documented. Not all the specifications enabled by the novel features of

Alas improve the precision and recall of the Alas Verification Tool, but instead add extra

roles that were previously unspecifiable or had a weak signature, or constrain how a client

accesses or instantiates already specifiable roles.

W'hile the novel invariant types supported by Alas increase the precision with which

patterns can be specified, numerous GoF patterns did not benefit significantly, and were

largely excluded from our evaluation. Most of these patterns are structural and have a

weak code signature in both their Alas specification and in the specification of other DPSLs.

Examples of these patterns are Fagade, Adapter and Mediator. DPVTs that have addressed

173

these i)attenis have found very large numbers of instances, which is likely evidence of many

of these instances being unintended by the code body developer. These patterns resist

precise description of their intents and are not amenable to a reverse engineering or ‘pattern

mining’ use case.

As evidenced by our experiments, the specification of variants of design patterns in­

creases the number of instances of a pattern that can be identified and captures valid

variation points inherent in the design patterns structure or behaviour. However, some

types of variations were found to be difficult to capture, especially in their most general

sense. For example, the Encapsulated child list variant of the Observer pattern found com­

monly in the Swing code body splits the role of Subject into two objects, one which triggers

notification when its state is updated, and one which holds the list of associated Observers

(the latter are often instances of the ListenerList class). While this variant is specifiable

in Alas, theoretically, any number of further levels of indirection conld be added, and the

implementation may still be considered a valid variant of the Observer pattern. Enumer­

ating every valid splitting or merging of pattern roles would lead to a large and difficult

to understand sjjecification. Some work in the literature has considered general rules for

allowable splitting and merging of pattern roles using sub-graph isomorphism (SGI) [Zhang

ot ah, 2004], though this is applicable mainly to structural roles. Explicit variant specifi­

cation and SGI rules can l)e complementary: SGI rules can reduce the number of variants

that need to be explicitly specified and explicit variant specifications can identify allowable

variations from a pattern’s core specification that cannot be automatically identified by

SGI rules.

The benchmark of pattern instances we created from code bodies commonly analyzed in

the literature has few non-trivial instantiations of data-structures. Also, numerous abstract

classes and interfaces are defined that suggest by their name that they are intended to be

instances of patterns, but lack subclasses or methods implementing behaviour required by

our specification. Often, the code bodies commonly analyzed in the literature were chosen

for their high density of design pattern instances, or at least interfaces. The code bodies

that have tended to have the highest density of patterns arc frameworks, which aim to

provide an elegant and extensible structure of classes, each of which an application may

chose to subclass or instantiate. However, the framework itself lacks implementations of

abstract methods, subclasses of abstract classes or interfaces, method calls between associ­

ated classes and instantiations of objects and data-structures. The properties of the code

174

bodies analyzed may have influenced the design and focus of DPSLs. The novel invariant

types, though their utility has been demonstrated for frameworks such as .IHotDraw and

Swing, may be even more useful when used in the context of applications that are built

upon these frameworks.

7.3 Future work

The performance of DPVTs is difficult to evaluate due to the lack of construct validity

of inferences about the relative performance of tools that encode different spetafications

of the same jmttern name. Our specification of design pattern variants, and the creation

of a benchmark based on those specifications, enables a more direct comparison between

DPVTs, as it is more likely that the variants addressed by each tool can be identified. We

do not claim that our specifications currently represent a superset of all variants supported

in the literature, though we have identified the variant or variants of particular patterns

addressed by DPVTs in some cases. The set of Alas sj)ecifications could be extended to

include more of the variants addres.sed by other DPVTs, capturing the variation in the

interpretation of a patterihs intent throughout the literature.

As stated earlier in this chapter, most of the code bodies commonly used to evaluate

DPVTs in the literature are frameworks, which provide the structure required for pat­

tern instances, but lack some behaviour that is required to satisfy the Alas specification.

The creation of benchmarks from applications that use the commonly-analyzed frameworks

would enable further measurement of the utility of the novel behavioural invariant types

identified in this thesis, as well as stimulating research into the behavioural aspects of pat­

terns, which have received less attention than structural aspects. To onr knowledge, only

Heuzeroth et al. [2003] has included a framework and an associated application in their

benchmark. Also, the commonly-analyzed frameworks are old, and are coded in an older

version of the Java programming language. Future benchmarks could focus on more recent

frameworks developed in more recent versions of .lava and that also continue to be utilized

for application development. The Eclipse Framework [Eclipse, 2012] is a promising candi­

date, as it has documented pattern instances and a large body of applications based upon

it.

Clearly the shape analysis algorithm implemented in AVT has limitations; in jjarticular,

its scalability to larger and more complex programs, especially programs with multiple

175

conditional paths that differ in terms of the values they give to state that is bound to a

role in the Alas specification. A number of ai)proaches to improving the scalability of the

analysis were discussed in Chapter 4, and these could be implemented in futvire versions

of the tool. Also, the efficiency of the implementation could be improved by tuning the

performance of the code. While creating our benchmark, we identified some classes and

methods that guarantee shape invariants in all cases, irrespective of the behaviour of clients.

Path-sensitivity could be combined with shape analysis to address these interesting but

challenging-to-verify invariants.

\Miile the GoF catalogue of design patterns is by far the most popular catalogue specified

in the literature, some DPSLs have been applied to other patterns and catalogues [Kim,

2004][Shetty and Menezes, 2011] from different domains. Future work could apply the novel

invariant categories and the pattern variant specification mechanisms provided by Alas to

the specification of other sots of patterns.

Finally, pattern specifications that specify variants using separate structure diagrams,

substitution, and the removal and replacement of structural roles can make it difficult to

visualize the sjjecification of an individual variant. An interpreter and visualization tool

could l)e developed to interpret valid and invalid combinations of pattern variants and

generate diagrams to facilitate understanding.

176

Appendix A

Control-flow invariant semantics

The semantics of coiitrol-How invariant specifications in Alas Behavionr Diagrams (BDs) is

treated in more detail in the following appendix than in the body of the thesis.

A.l Sequencing

The semantics of an Alas specifications and .lava implementations to which they are com­

pared are defined in terms of control-flow graphs.

A control-flow graj)!! (CFG) is a set of basic blocks and an ordering relation {successor).

A basic block (snbseciuently block) is a secpience of consecutive events in which control flow

enters the beginning and exits at the end without the possibility of branching [Aho et ah,

1986]. The ordering relation between blocks may relate 1-to-n and n-to-f and may contain

cycles. This relation can also be viewed as the edges in the graph of blocks where this view

is more intuitive. Each graph contains an initial and a final block. The final block is the

only block with no successor and no block has the initial block as its successor.

A path is a series of blocks formed by beginning at the initial block and following the

edges of the graph until the final block is encountered (cyclic paths arc taken only once,

so all paths terminate). All paths through the graph begin at the initial and end at the

final block. We define P to be the set of all unique paths, such that no two elements of the

set have the same set of blocks, every block is included in at least one path and all valid

paths are included. Such a set can be imagined as the output of a depth-first traversal of

the control-flow graph where a new element of the set is created each time the final block

is encountered.

Every specification, implementation and implementation path has a set of Events, ac-

177

cessible using <Path — path set>.Events. The specification and candidate implementation

CFGs are referred to as Spec and Imp respectively. The ordering relation between events

(—>■) indicates that an event occurs before another event, \^'e define universal behaviour

and sequencing of events by stating that every event in the specification occurs over every

path of the implementation and over every path in the implementation, the events occur in

the order defined in the specification.

Ve in Spec.Events •

Mpath in Imp.P •

e e path.Events

Va, bin Spec.Events | a —> 6 •

Mpath in Imp.P •

a —> binp.Events

More detail on verification of implementations against specifications are provided in

Chapter 4 , but for an intuitive understanding, verification can be thought of as pattern

matching between the CFG of specification and implementation, where the pattern defined

by the specification CFG can be satisfied by many implementation CFGs (i)attern here

is used in a more general sense than design pattern). We define a function satisfies that

relates implementations to specifications and evaluates to true when the CFG of the imple­

mentation conforms to the pattern defined by the specification CFG, or false otherwise.

A.2 Selection

The Alas selection operators opt and alt do not have a single equivalent in programming

language syntax; there are multiple ways to implement conditional and mutually-exclusive

conditional Hows. For example, in .lava, the code after a conditional return block is itself

conditional, while multiple conditional return blocks in a single method are mutually ex­

clusive. Instead of defining a set of equivalences, we formalize the selection operators in

terms of paths, sub-paths and guarded blocks.

178

As Alas has composite events and allows the specification of nmtually-exclusive be­

haviour, an event is only required to occur over some subset of paths where it is conceptu­

ally ‘reachable’. We define a sub-path as the set of paths beginning at a particular event

or block and ending at the end of some other event or block, with the traversal of back

edges that loop back to blocks before the beginning of the sub-path forbidden. As multiple

events can occur in the same block, a sub-path may begin in the middle of a block. A

sub-path may be accessed using <Event block> .SubPath. For example, an opt operator

defines a set of sub-paths defined by the contents of its single operand. A (multi-line) if

block in a .Java implementation likewise defines a set of snb-paths that is equal to all the

valid paths from the opening left-brace to the closing right-brace of the block’s definition.

While matching an iinjilementation with an opt in the specification, if the end of some

conditional sub-path is reached before all the events contained in the opt are matched,

then this candidate conditional sub-path does not match the opt in the specification.

The unique guard of an event, ug (event), is the disjunction of all the guards of

the edges entering that block (as a block may be ‘reached’ along multiple paths). The

cumulative guard, cg(event), is the conjunction of all the uniciue guards of each path from

the initial to the block containing the event, themselves all combined in a conjunction. The

cunudative guard can be thought of as the condition required to reach a particular block

or event during ‘execution’. The uniciue and cumulative guard of the initial block is true.

We define the function contuiner(event) to evaluate to the composite event or lifeline

containing event and the function previous(event) may be used to access the previous

event within the current containing event, or the beginning of the containing event if no

such event exists. We abbreviate previous(opt).SubPath to currentSubPath in the following

formalization, and similarly for alt, for convenience. The events contained in a composite

event may be accessed using <CompositeEvent>.Events.

An empty opt operator (one that has no events contained in it) is valid Alas syntax and

states that some conditional block must exist within the current sub-path. An opt operator

with contained events states that there exists some path over which all the contained events

occur (1), the cumulative guard on every one of the contained events is the same (2), and

is a strict super-set of the cumulative guard of the containing event (3). Also, the ordering

relation defined above in the section on sequence applies equally to the contents of an opt

operand (and alt operands), though with the relevant sub-path substituting for P. The

ordering relation defined previously can be read as the sequencing requirement for events

179

at the ‘top level’ of the spec, i.e., within no container except for the lifeline itself.

3patli in c,ur rent Sub Path •

3hlock in path •

cg(block)! = true

Vel, e2 in OPT.Events •

cg{el) = cg{e2)

Ve in OPT.Events •

cg(e) D eg [container [OPT))

Note that this definition allows for the nesting level in the specification and inipleinenta-

tioii to be non-eqnivalent. A specification of an opt containing two call events, for example,

may be matched by the two calls ocenrring at some arbitrarily deej) level of nesting within,

for example, three levels of Java if blocks. Likewise, a block may not be nested at all, but

may still have a non-trne guard. For example in:

if (X > 5){

return

}
a();

a is guarded, with guard x <= 5. This code snippet could match a specification with a call

to a contained within and opt event.

With regard to the alt operator, each alt operand shares with the single opt operand

the condition of guardedness and equal guardedness for all contained events (first and sec­

ond equation above) and that the cumulative guard of each operand is greater than the

cumulative guard of the container of the alt (third equation above-f). The alt operator

adds a fourth condition, that each of its operands are mutually exclusive. Note, this does

not say that an event cannot occur in more than one operand of the same alt, but that two

ojjerands cannot contain all the same events in the same order. Also, we impose the rule

that no alt oi)erands in Alas are equal to, or ecpial to a prefix of some other Alas operand,

180

to facilitate verification, i.e., 0])eraiicis must be distinguishable. This iinjdies that no alt

operand is allowed to be empty, as the empty specihcation is a prefix of all specihcations.

-<3path in cun'ent Sub Path •

3opl, op2 in ALT.Operands •

path satisf ies opl A path satisf ies op2

This definition of alt allows for sub-paths to exist where none of the operands actually

occur. We term this type of alt as an existentially path cpiantihed alt or alte for short.

Figure 3.6 is an example of an alte, as there is no guard condition labelled true. In some

cases however, we wish to state that one of a number of alternatives must occur. To specify

this, true must be specified as the guard condition of the hnal alt operand. We term this

type of alt as a universally path quantihed alt or altu. The altu places the further

constraint that every sub-path satisfies some operand:

Spath in currentSubPath •

3opi:n ALT .Operands •

path satisf ies op

A.3 Iteration

Identifying the number of iterations a loop will make requires path-sensitive data-flow

analysis, which, in languages like .lava that have dynamic allocation and recursive data

structures, is an nndecidable problem[Dlmrjati et ah, 2006][Landi, 1992]. For this reason,

we relax the meaning of the matching of cpiantihed variables in loop guards (subsequently,

loop variables) and selector strings to be that the number of iterations the loop performs is

some function of the size of the collection.

181

loop iteration condition ~ collection size

As with selection operators, there is no one-to-one mapping to .lava syntax, and a loop

o])erator may be matched by any of the loop constrncts in .Java and also by loops in

the control-flow graph caused by recnrsive calls. Also, all information relevant to the

mimber of iterations performed by the loop is not contained in single loop condition in the

implementation. A .Java while loop, for example, often has its loop variable incremented

in the body of the loop.

Not ordy must the loop iterate some number of times proportional to the size of the

collection, but the call to the collection element must be indexed in some way by the cur­

rent loop iteration count. This again requires path-sensitive data-flow information, as the

indexing may be indirect, as in the example below;

ObserverClass obsObj = collection[loopindex];
obsObj .methodRoleO ;

Similarly to the iteration condition, we relax the indexing requirement from equality to

proportionality:

Receive!'object position ~ Iteration number

With regard to lifeline role to olrject actor binding, in the case where the loop variable

and stlector string match, we allow the binding to be mutable. More specifically, a binding

is fixel for the sub-paths defined by loop operator, but may be changed each time a back-

edge i-i followed to the start of the loop sub-path.

A.4 Lifeline semantics

The lireline type specified should correspond to the compile-time type intended, even when

that type is abstract (thus there are ‘object roles’ of non-instantiable type). A behavioural

specification can be thought of as stating ‘the method of this class must perform this

particdar behaviour’ rather than ‘an object of this class must be instantiable and behave

182

in this way’. Also, where a lifeline represents a reference variable role, its type in the

structnral and behavioural specification must match exactly.

A class actor must be capable of performing a specihed behaviour, but does not nec­

essarily have to define the behaviour within its own class dehnition, i.e., a class actor can

satisfy a specification using inherited behaviour. For example, Figure 3.7 specifies the be­

haviour of the ConcreteSubject’s setState and notify methods, but the notify method

is often implemented in the abstract Subject. If an abstract superclass must implement

a behaviour, it should be specified separately using a lifeline of the superclasses’ type.

The Observer specification in Figure 3.7 could be separated into two BDs: one dehning

notify’s behaviour with a Subject role and one defining setState (subclass-specific) with

a CoucreteSubject role.

The runtime type of a role may always be equal to or a subclass of the compile-time

tyi)e, and may change at any stage during the interaction.

Role naming

Duplicate names are allowed, where this does not cause ambiguity. It is a syntax error

to produce a specification where a name does not clearly denote one and only one role.

In the case of generic use of sets, it is possible that two lifelines or method calls will be

indistinguishable from their name alone. To allow the lifelines or calls to be distinguished,

their generic name must be suffixed by their occurrence number. Occurrence munbers

increase from left-to-right horizontally across lifelines and from top to bottom of the BD

for method names. E.g., the second generic lifeline’s label might become refVarRoleName

: ClassSetRole [] :1. Similarly to ordered sets, occurrence numbers begin at zero.

Lifeline naming

The object role name in a lifeline may be an arbitrary string, in the case where interaction

is not through an already-defined reference variable role. Class role names, however, must

always be predefined single or set roles.

A.5 Generic behaviour

Both generic behaviour and behavioural cardinality invariants affect the role-to-actor bind­

ing semantics in contradictory ways. For this reason, the use of roles with selectors (generic)

and the use of quantified variables as roles (cardinality) is forbidden within a single BD.

Generic behaviour and behavioural cardinality invariants may be specified in different BDs

183

within the same pattern specihcatioii, where the two BDs do not contradict one another.

Valid selector usage and semantics

The table below snmmarizes the valid combinations of set role types (class set, method set

or collection) and selector usages. Parameter roles are a combination of an object and a

class role. Both class and object (potentially drawn from a collection) in a parameter may

have a selector applied.

Class Method Collection

Empty selector yes yes yes

Integer selector no yes yes

Unmatched string selector yes yes yes

Matched string selector yes yes yes

In smnmary, the only invalid combination is an integer selector with a class role set, as a

class set role is nnordered. Object roles (where an object role name matches no reference

varialjle role) are always mutable within a BD, as this is much more flexible and actually

required in some cases. The meaning of the different selectors in terms of the element

selected from the set and the mutability of the binding is given in the following tal.de.

Selector usage Element position Binding Example usage

Empty selector Arbitrary Mutable Builder (Method role)

Integer selector Fixed Fixed -

Unmatched string selector Arbitrary Fixed -

Matched string selector Varying, non-arbitrary Mutable Observer (Collection role)

184

Appendix B

Benchmark Observations and

Ancillary Specifications

Some interesting observations made during the liencimiark that are not central to the pre­

sentation of the evahiation, and some additional specifications based on those observations,

are j)rovidetl in this appendix.

B.l Dependency

B.1.1 Abstract Factory

While creating our benchmark, we found two instances of Factory Methods with unorthodox

implementations. The subclasses that implement both DrawApplication. createStorage-
FormatManager and Figure. handles differ not in the runtime type of the ConcreteProduct

object returned, but in the objects composed within the ConcreteProduct object. A Poly-
LineFigure, for example, returns a HandleEnumerator containing zero or more PolyLine-
Handles, while an ElbowConnection returns a HandleEnumerator that contains a Change-
ConnectionStartHandle, a ChangeConnectionEndHandle and zero or more NullHandles
and ElbowHandles. Though we cannot specify an invariant such as ‘All ConcreteProducts

must return a different composition of types of objects’, the shape analysis performed by

AVT would be capable of verifying such an invariant. This is a combination of a cardinality

and data-strncture invariant that we did not consider during the design of Alas and may

be an interesting direction for future work.

185

B.1.2 Command

The instance involving ConnectedTextTool is noteworthy, as its confonnance to the pat­

tern specification depends on the interpretation of inner classes. The Invoker role is filled

by ConnectedTextTool. DeleteUndoActivity, which is an inner class of the Client. If an

inner class is considered to be part of the outer class, then this breaks the first depen­

dency invariant in Section 5.2.1.2, as the Invoker (which is also the client) initializes a

CoiicreteCoiniiiand. However, if they are considered separate classes, then this is a valid

instance. The former interpretation (that inner classes are part of the outer class definition)

is the one that is consistent with Alas semantics.

As part of future work, AVT could be modified to perform reverse engineering to discover

more Command implementations. Also, the improvement in the pattern signature provided

by the addition of implementation dependency invariants could be measured by performing

reverse engineering on the selected code bodies with two specifications of the Command

pattern: one with, and one without implementation dependency invariants.

B.1.3 Builder, Strategy, State

Builder

The Builder pattern aims to ‘separate the construction of a complex object from its repre­

sentation’ by having a Director object define the construction algorithm and delegating the

actual initialization of each part of the complex object to a Builder object, which knows

how parts are represented. To satisfy the intent of the pattern, the Director should not

initialize parts of the complex object. This requirement can be captured in the following

invariant:

NOT (Director isinitializer ProductPart)
The interaction diagram in the GoF catalogue [Gamma et ah, 1995, p.99] also describes

a Client role configuring a Director with different ConcreteBuilder objects (similarly to

the interaction of Client and Invoker, and Client and ConcreteCommand in the Command

Iiattern). This can also be specified as:

NOT (Director isinitializer Builder)
Wdiile creating our benchmark, we found that most classes and methods with ‘builder’

in their name are not called from within a loop, as defined in the GoF catalogue and in our

generic specification of Figure E.l. ‘Builder’ classes and methods in the code bodies stud­

ied typically resemble Factory Methods, though they often perform some additional state

186

initialization. We were unable to identify any genuine Builder instances with our keyword

search, and the pattern is not included in either of the benchniarks we aggregated.

State/Strategy

It is widely agreed in the design pattern specification and verification literature that the

State and Strategy patterns are similar, and difficult to distinguish in code [Gueheneuc

and Antoniol, 2008]. However, some approaches do address both patterns. Both patterns

involve an object (Context) with a configurable delegate (a State or Strategy object). Shi

[2007a] suggests that the delegate is modified by State subclasses in the State pattern,

and by some separate Client role, through the Context’s interface, in the Strategy pattern.

Though these alternatives are both considered in the context of the State pattern in the CoF

catalogue, they arc the typical means used by approaches to distinguish the twx) patterns.

In the informal description of Shi [2007a], State subclasses must know about and initialize

instances of each other. This could be forbidden in the Strategy pattern with the following

cardinality invariant that uses a dependenc:y clause:

NOT EXISTS si, s2 in ConcreteStrategy 0 si isinitializer s2
In the State pattern, the Context class coidd be forbidden from initializing State classes:

NOT (Context isinitializer State)
Though the PINOT benchmark contains both State and Strategy instances, it is likely

many of these are unintended instances, due to the weak signature of the patterns in

PINCT’s (and our) definition. For example, their automated benchmark includes 90 in­

stances of the Strategy pattern and 37 instances of the State pattern, in a code body of

just over 1,000 classes. Also, with the widespread use of interfaces in the Swing benchmark,

numerous classes may be considered members of the same inheritance hierarchy if they, for

example, both implemented the Serializable interface. However, it should be clear that

Serializable is not a suitable interface for the State class role.

B.2 Object-state

B.2.1 Prototype

The clone method of FigureAttributes (also in Swing) highlighted an issue with the Alas

definition of copystate. When creating a copy, the FigureAttributes object wraps its

own Map attribute with a MapWrapper object and returns both objects as part of the clone.

187

This satisfies the Alas requirement that a particular variable of the original is not an alias of

the same variable in the clone, but is nonetheless returning a clone with aliased state. The

solution to this issue would be to define a ‘deep’ copy as one that shares no state with the

original, irrespective of the variable used to access the state. We found that some intended

instances of the Decorator pattern in both .TffotDraw and Swing forward to a Component

only on the condition that the Component is not null.

B.2.2 Observer and Memento

Observer

The Observer pattern ‘define[s] a one-to-many dependence between objects so that when one

object changes state, all its dei)endents are notified and updated automatically’ [Gamma

et ah, 1995]. The GoF describes a variation point with regard to the Observer update pro­

tocol. If the Subject sends the updated state to the Observer during the initial notification,

this is an example of the push model variant of the pattern. If the Subject does not send

the updated state in the initial notification, the Observer may perform a call-back on the

Subject to access its state. This interaction is described as the pull model variant. A second

variation i)oint relates to whether the Subject or a Client role triggers updates by calling

notify. We sjjecify the behaviour of the Subject triggers update variant in Chapter 3 Fig­

ure 3.7. In the Client triggers update variant, some method of the Client role calls notify

directl_y, instead of the call from Subject’s setState method to notify in Figure 3.7.

^^e specified both these variation points, which create four potential variants of the

Observer pattern. We searched for instances where the Observer copies the updated state

for processing, but found few instances of this behaviour. In most cases, the state of

the Srdqect is read directly by the Observer via an alias, but no copy is made. In other

instances, no state is pushed or pulled: the Subject sends a notification of an update to

the Observer, and the Observer performs some behaviour based upon the update method

called, but independently of any state of the Subject.

Memento

The Memento pattern ‘capture[s] and externalize[s] an object’s internal state so that the

object can be restored to that state later’ [Gamma et ah, 1995]. We provided part of

the behavioural specification of the Memento pattern in Figure 3.10. While creating our

benchmark, we identified very few instances of the Memento pattern. In Swing, Mementos

are typically stored using serialization. We considered a serialization-based variant of the

188

Memento pattern, but there was little variation in tlie beliavionr of instances wlien com­

pared to instances of the Prototype pattern. For tliis reason, we focused onr evalnation of

object-state invariants on the latter pattern.

W'liile deep copying beliaviour is relevant to the Memento pattern, as it is explicit in the

intent of the GoF description, few instances occur in practice. With regard to the Observer

pattern, we identified less inter-dependence between the state of the Subject and Observer

roles occurring in practice than the core variant described in the GoF catalogue. Alas is

capable of describing two major variation points in the context of the Observer pattern.

B.3 Data-structure

B.3.1 Decorator

We found that some intended instances of the Decorator jiattern in both .JffotDraw and

Swing forward to a Component only on the condition that the Component is not null. This

is surprising, as it is counter-intuitive that a decorator olrject could exist without an objt;ct

to decorate. However, it is conceivable that a Decorator could act as a placeholder foi' an

object that may or may not exist. This is the role, for example, of the JComponent. Action-
Standin class in the Swing benchmark. The forward if not null behaviour is not evidence

of a CoK pattern, as a handleRequest method of a ConcreteHandler class is recpiired to

have not just one conditional path, but two mutually-exclusive conditional paths, one that

serves the request and one that forwards it. The operation method for the FoTward if not.

null variant is specihed in Figure B.l. The operation method of the Decorator class for

the other two variants simply delegates unconditionally to the operation method of its

associated Component.

One of the notable features of the Swing code body is that it is most of the Decorator

pattern instances make it impossible to badly-conhgure Decorator chains. This is done

by requiring that the Component that the Decorator is decorating must be set in the

Decorator’s constructor as no mutator method is provided for the Component reference

variable. The only way to badly configure a Decorator chain constructed from these classes

would be to create an infinite chain of Decorator’s. This is a limited instance of an ownership

relationship in a context we did not expect and may be an interesting direction for future

work.

189

Fig. B.l: Specification of the operation method for the Forward if not mill variant of the

Decorator pattern.

B.3.2 CoR

The CoR pattern ‘avoids conpling the sender of a request to its receiver by giving more

than one object a chance to handle the request. We specified the behaviour of the Con-

creteHandler role in Chapter 3 Figure 3.6. The PINOT specification of ConcreteHan-

dler’s behaviour only requires a single conditional path, while our specification requires

two mutually-exclusive paths. We found few instances of the pattern in each of the code

bodies, and almost no non-trivial instantiations of chains of ConcreteHandlers. As the Dec­

orator ijattern has a similar data-structure invariant and more instantiations of chains of

Decorators were identified, it was chosen to focus on Decorator pattern instance verification.

B.3.3 Composite

While the specification described in Section 5.2.3.2 follows the GoF catalogue closely, our

experience while creating our benchmark is that there are very few instances that satisfy

the entire specification. Numerous classes that are clearly intended to fill the Composite

role lack one or more of the child management methods, or combine the add and rem-

190

ove methods into a single method, and some operation methods perform only conditional

delegation to child Components. It is common in the literature for DPSLs and DPVTs to

relax the constraints of the Composite pattern relative to the GoF specification: Blewitt

et al. [2005], for example, require only an add and remove method. We specify two variants

that relax the core Composite specification: one removes the operation role {No operation

variant), and the other omits the remove method in the Composite class, to allow instances

with a single combined add/remove method {No remove variant). The specification of these

two variants involves simple remove clauses and have been omitted for the sake of brevity.

All four variant specifications are mutually-combinable, making a total of Hi valid variant

combinations of the Composite pattern according to our specification.

The child inanagement methods defined in the Component class may then either do

nothing or throw an exception. We can specify an approximation of ‘do nothing' using a

BD for each child management method that includes a found call to the method and no

events within the methods lifeline. By the definition of the conformance relation of Alas,

this states that a conforming method actor in a candidate implementation may not call

any other method actor (including itself) that is bound to a role in the specification, Imt

is free to call other unbound methods. A more precise specification of ‘do nothing’ could

be achieved if Alas supported the other, more restrictive c'onformance relations discussed

in Chapter 2. Supporting multiple conformance relations, however, requires more effort in

defining the language semantics, as well as tool supi)ort, and we have only found this one

application for the other conformance relations in onr GoF pattern specifications.

Note, that if the parent reference variable from the i)arentLinks variant was included in

the data-structure definition below, a correctly-configured tree with respect to the matching

of parent and child links would be neither cycle nor sharing free. Each parent-child pair

would form a cycle, and multiple children may jrotentially share the same parent.

componentTree isStructure Composite.children

componentTree isSharingFree

Though we focus on specifying data-structure properties using interaction invariants,

we found a few cases where a method in isolation can guarantee a data-structure invariant.

The insert method of DefaultMutableTreeNode guarantees there are no cycles in the

parent links by calling an isNodeAncestor method, which checks if the parameter is an

191

ancestor, i.e., transitive closnre of the parent link, of this. It also checks whether the new

child has an existing parent, and if so, removes it from its current parent’s children list,

ensuring there is no sharing. Verifying that insert guarantees these properties requires

path-sensitive data-flow analysis that evaluates conditional expressions and also handles

looping, and is beyond the capabilities of AVT.

192

Appendix C

Verification Examples

This appendix jn’ovides some further verification examples that illustrate the cai)abilities

and limitations of AVT. For each example, the code under analysis is shown, along with

abbreviated output from AVT’s analysis.

C.l Dependency

The source code of StandardDrawingView’s selectionZOrdered method from the .IHot-

Draw code body is shown in Figure C.l. Figure C.2 shows the AVT output when analyzing

this method: AVT correctly identifies selectionZOrdered as a ‘bad’ client of the Fac­

tory Method UndoableAdapter.getAffectedFigures, which returns a Product of class
FigureEnumeration. '

*hi this and all subsequent illustrations of AVI’ out[)iit, some debugging output has been removed or
reformatted for the sake of readability. However, all output presented is a result of the AVT analysis.

public FigureEnumeration selectionZOrdered!) {
List result = CollectionsFactory.current!).createList(selectionCount());

}

result.addAll!fSelection);
return new ReverseFigureEnumerator!result);

Fig. C.l: StandardDrawingView’s selectionZOrdered in the .THotDraw code body is a ‘bad’

client of the Factory Method UndoableAdapter.get AffectedFigures as it creates an instance

of a FigureEnumeration subclass

193

Expression is local call
Method not in call stack. Analyzing now

NOT selectionZOrdered isinitializer FigureEnumeration

MethodName: selectionZOrdered

BlockScanner::scanStatement
Statement: Local variable declaration
Expression is call
BlockScanner::scanExpression: Expression is non-local call
Scanning baseopt
Expression is call
BlockScanner;:scanExpress3on: Expression is non-local call
Scanning base opt
Expression is name
Expression is call
BlockScanner::scanExpression:
BlockScanner::scanExpression:
BlockScanner::scanStatement
Expression is call
BlockScanner::scanExpression: Expression is non-local call
Scanning base opt
Expression is name
Expression is cast
Expression is name
BlockScanner;;scanStatement
Return encountered
Expression is cast
Expression is class creation
InitializerAnalysis::visitClassCreation

ReverseFigureEnumerator equals or sub FigureEnumeration?
InitializerAnalysis::visitClassCreation: Subclass constructor call match found
Creation of object of type: ReverseFigureEnumerator
Finished processing return statement

FAIL! selectionZOrdered initializes FigureEnumeration

Fig. C.2; AVT output when applying the implementation dependency invariant of the

Abstract Factory Client role to the method of Figure C.l

194

public synchronized Object cloneO {

try {
Eleeentlterator it = new Ele»entlterator{root);
if {eleaentstack != null) {
it .eleiBentStack - new StackO;
for (int i = 8; i < ele»entStack.size(); {

Stackitea itea = (Stackltea)eleiAentStack.eleaentAt(i);
Stackltea donee = (Stackltea)itea.clone();
it. elementstack. push (donee);

>
>
return it;

} catch (CloneNotSupportedException e) {
throw new InternalError(};

}
}

Fig. C.3: Eleiiientlterator’s clone method in the Swing code body

C.2 Object state

This example illustrates the capabilities of AVT in the context of loops, and in particular,

loops that mutate collections: a particudarly challenging case.

The implementation of the clone method of Elementiterator is shown in Figure C.3,

and the result of AVT applying the isCopy jjredicate to it is shown in Figure C.4. The

three shape graphs correspond to the three paths through the method: entering the if

only, entering the if and the nested for, and skijrping both completely. As discussed in

Chapter 4, the construction of the control how graph for exception handling was desigiu'd

but not implemented so the shape graph corresponding to the How that enters the catch

block does not apirear in the output. All three graphs include the information that the 'root’

variables of the original and copy are aliased. In the Hrst graph, AVT correctly identihes

that the ‘elementStack’ of the cojyv is emiJty and the ‘elementStack’ of the original may not

be, so it Hags a violation. To verify that the size of the original’s ‘elementStack’ is checked

within the for loop’s condition, and that correct copying of the stack is actually performed,

recjuires path-sensitive data-How analysis, which is not performed by AVT, as discussed in

Chapter 4. In the third graph, AVT complains that no cojjying of the stack has occurred.

The result of applying the isCopy predicate to the second shape graph illustrates some

of the most sophisticated features of AVT’s shai)e analysis, as it combines looping (which

provides an extra complication to shape analysis algorithm convergence), complex accesses

of collection contents, aliasing and cloning. The call to elementAt accesses the single sum­

marized selector variable (a selector in a collection that represents zero or more contiguous

elements in a collection), and the Stackltem accessed is then itself cloned and added to the

copy’s ‘elementStack’. AVT correctly identifies that the elements in the Hrst position ([()])

195

this isCopy returnval

Graph number: 0
’this' is not an alias of 'returnval’. Good!
’this -> roof is an alias of ’returnval -> roof. Fail! (isCopy => NOT isAlias)
'this -> elementStack' is not an alias of 'returnval •> elementStack'. Good!
Collection: 'this -> elementStack' has an element at position: 6

but collection: 'returnval -> elementStack' does not. Fail!
Graph number: 0: FAIL!

Graph number: 1
'this' is not an alias of 'returnval'. Good!
'this •> roof is an alias of 'returnval -> roof. Fail! (isCopy => NOT isAlias)
'this -> elementStack' is not an alias of 'returnval -> elementStack'. Good!
Collections; 'this -> elementStack' and 'returnval -> elementStack' both have elements at position: 0.

Comparing elements now.
'this > elementStack -> [9]' is not an alias of 'returnval -> elementStack -> [01'. Good!
‘this •> elementStack -> [9] -> childindex’ has a primitive value equal to:

'returnval -> elementStack -> {9] -> childindex’. Good!
'this -> elementStack -> (9) -> item' is an alias of

'returnval -> elementStack -> [0] -> item'. Fail! (isCopy => NOT isAlias)
Graph number: 1: FAIL!

Graph number: 2
'this’ is not an alias of 'returnval'. Good!
'this -> roof is an alias of 'returnval -> roof. Fail! (isCopy => NOT isAlias)
elementStack undefined reference variable in both 'this' and ' returnval'. No copying performed. Fail!
Graph number: 2: FAIL!

FAIL!

Fig. C.4: Result of applying the isCojjy predicate to the source code of Figure C.3

public synchronized Figure replace(Figure figure, Figure replacement) {
if (!(replacement instanceof AnimationDecorator) 6A

!(replacement instanceof ConnectionFigure)) {
replacement = new AnimationDecorator(replacement);

}return super.replace(figure, replacement);
}

Fig. C.5: BouiiciiigDrawing's replace method from the .THotDraw benchmark

of both ‘elementStack’s are not aliases, that their primitive attribute, ‘childindex’, has an

ecinal value and their reference variable attribute, ‘item’, is aliased (as the implementation

of Stackitem’s clone method simply calls Object.clone).

C.3 Data structure

C.3.1 Decorator

The source code of BouncingDrawing’s replace method (also in .IHotDraw) is shown in

Figure C.5, and the corresponding AVT output is shown in Figure C.6. In this case, the

chain can not be proven to be well- or badly-confignred, as the next object in the chain is

a i)arameter of the method under test and its class is Component.

196

Analyzing:

->Figure ayOecoratedFigure . LAST isKindOf DecoratorFigure OR
->Figure ayOecoratedFigure . LAST isKindOf Figure

ShapeOraph:igetCorePredicateByNaae: couldn't find core predicate:ayOecoratedFigure. Returning NULL.
LastOperand::evaluate: Binary predicate nuaber: 6 is valid link role
ShapeOraph::getBinaryPredicateByIdentifier: NO HATCH FOUND! RETURNINO NULL!
LastOperand::getLastInChain: Path ends
InitUtility::equalsString: Figure = DecoratorFigure ?
InitUtility::equalsString: aisaatch
InitUtility::inheritsString
Storable <: DecoratorFigure ?
InitUtility::inheritsString: No interfaces in type: Figure
Cloneable <: DecoratorFigure ?
InitUtility::inheritsString: No interfaces in type: Figure
Object <: DecoratorFigure ?
InitUtility: :inheritsStrinq: Found Class Object
No match
IsKindOfClause::verify: Object is not of that kind
InitUtility::equalsStrinq: Figure == Figure ?
InitUtility: :equalsString; match
Last element in chain is of Component type. Can't prove structure well or badly configured

ANALYSIS TIHE: 2

Fig. C.6; Result of applying the clata-structuie invariant to BonncingDrawing’s replace

method

C.3.2 Composite

The analysis of the TestSuite Composite actor from the .TUnit code body jirovides a useful

illustration of the scalability limitations of AVT. TestSuite can be initialized with one of

three constructors: two simple constructors, one with no parameters, one with a String
parameter; and a very complex constructor that accejits a Class parameter and condition­

ally adds multiple child Test objects (Test is the Component class). Around half the trees

we identified use a simple constructor, while the other half use the conijilex constructor.

SuiteTest’s suite method creates a TestSuite with the String-parameter constructor and

adds 9 Test objects to its list of children. AVT’s analysis of the jirogram segment converges

after two iterations and outputs a single shape graph. Figure C.7 shows the end of the out­

put file generated by the AVT analysis of SuiteTest’s suite method. The values of the

binary predicates which satisfy the link role of the data-structure definition are compared

to identify if any sharing occurs in the program segment. AVT correctly identifies that the

tree is free from sharing in under a second.

VectorTest’s suite method contains a single call to the class-based constructor of

TestSuite. The AVT analysis of the program segment contained in suite outputs 19
shape graphs in under two seconds. The suite method of AllTests in the tests package

197

Comparing:
Source object: Summary Collection Location: Summary location for type: Vector. Method: addTest, Context: 4, BlocK Number: 1, Line Number: 0.

Occurrence Number: 6, Selector: Selector; (Name: {6], Type: Object, LOCAL VAR, OUWY
jTarget object: Type: SuiteTest, Method: suite, Context: 0, Block Number: 1, Line Number: 34, Occurrence Number; 6
and

Source object: Summary Collection Location: Sunmary location for type: Vector, Method: addTest, Context: 4, Block Number: 1, Line Number: 0,
Occurrence Number: 0, Selector: Selector: [Name: (7], Type: Object. LOCAL VAR, DUMMY

jTarget object: Type: SuiteTest. Method: suite. Context; 0, Block Number: 1, Line Number: 39, Occurrence Number: 0
IsSharedClause: :corapareAU: Target objects non-identical, Good!

Comparing:
Source object: Summary Collection Location: Suwnary location for type: Vector. Method: addTest, Context; 4, Block Number: 1, Line Number: 0,

Occurrence Number: o. Selector; Selector: [Name; (61. Type: Object, LOCAL VAR, DUMMY
jTarget object; Type; SuiteTest. Method: suite. Context: 0, Block Number: 1, Line Number: 34, Occurrence Number: 6
and

Source object: Suwnary Collection Location; Summary location for type; Vector, Method: addTest, Context: 4, Block Number: 1, Line Number: 0.
Occurrence Number; 6, Selector: Selector: [Name: (8), Type: Object, LOCAL VAR, DWHY

jTarget object: Type; SuiteTest. Method: suite, Context: 9. Block Number: 1. Line Number: 44. occurrence Number: e
IsSharedClause: :cofflpareAU: Target objects non-identical. Good?

Not comparing predicate to itself

Comparing:
Source object: Summary Collection Location: Summary location for type: Vector, Method: addTest, Context: 4, Block Number; 1, Line Number: 0,

Occurrence Number: B, Selector: Selector: (Name: {7j, Type: Object, LOCAL VAR, DUMMY
jTarget object: Type: SuiteTest, Method: suite. Context: 0. Block Number: 1. Line Number: 39, Occurrence Number; G
and

Source object: Summary Collection Location: Summary location for type: Vector, Method: addTest. Context: 4, Block Number: i. Line Number; 0,
Occurrence Number: 0, Selector: Selector: (Name; [0j, Type: Object. LOCAL VAR, DUMMY

jTarget object: Type: SuiteTest, Method: suite. Context: 9. Block Number; l. Line Number: 44, occurrence Number: e
IsSharedClause::compareAll: Target objects non-identical. Good!

Not comparing predicate to itself
No sharing found in current graph
No sharing found
Result:
Graph number 0:
No sharing found in graph: 0
No sharing found

ANAIYSIS TIME: Os

Fig. C.7: Segment of the AVT analysis output wlicn analyzing SuiteXest’s suite metliocl.

The Composite tree is correctly classified as being free from sharing

198

protected static TreeModel getDefaultTreeModeK) {
DefaultHutableTreeNode root = new DefaultHutableTreeNode("JTree*);

DefaultMutableTreeNode parent;

parent = new DefaultHutableTreeNode)"colors”);
root.add(pa rent);
DefaultMutableTreeNode blueNode = new DefaultHutableTreeNode(“blue");

parent.add(blueNode);
parent.add(new DefaultMutableTreeNode)“violet"));
parent.add(new DefaultHutableTreeNode("red"));
parent.add(new DefaultMutableTreeNode)"yellow"));

parent = new DefaultHutableTreeNode)"sports");
root.add(parent);
parent.add(new DefaultHutableTreeNode)“basketball"));
parent.add(new DefaultHutableTreeNode)"soccer"));
parent.add(new DefaultHutableTreeNode)"football"));
parent.add(new DefaultMutableTreeNode)"hockey"));
parent.add(blueNode);

parent = new DefaultHutableTreeNode(“food");
root.add(parent);
parent.add(new DefaultHutableTreeNode)"hot dogs"));
parent.add(new DefaultMutableTreeNode)"pizza"));
parent, add (new DefaultMutableTreeNodeCravioli"));
parent.add(new DefaultMutableT reeNode("bananas")); return new DefaultTreeHodel)root);
}

Fig. C.8; Modified source code of JTree's getDefaultModel method from the Swing code

body, with sharing introdnced. The original simply omits the addition of the ‘bhie’ node

to the parent ‘si)orts’

ordinarily contains 12 calls to the complex Class-parameter coiistnctor of TestSuite. We

commented ont all but two, and the analysis ran for 276 seconds. The Cla.ss-parameter

constructor of TestSuite is close to the worst-case scenario for AVT, in that it conditionally

adds nnmerons children to the structure in separate sequential conditionals. Sequential

conditionals are more problematical than nested conditionals, as they create more potential

paths through the program than the same number of nested conditionals.

The source code for the modified version of JTree’s getDefaultModel method with

added sharing is shown in Figure C.8 It simply adds the ‘blue’ node to two parents, while

the original only added it to the ‘colors’ parent. AVT correctly identifies that sharing exists

in the tree.

199

Appendix D

Aggregated benchmarks

As stated in Section 5.1.2, it is important that a bencinnark is created objectively, and

instances are not cherry-picked to the advantage of one approach or another. In this ap­

pendix, we identify the commonalities and differences between onr benchmark and the

l)enchmark we used as a starting point, similarly to Rasool et al. [2011]. We demonstrate

that nmneroiis instances are common to onr benchmark and those created by others, while

also highlighting differences and providing a justification for these.

D.l Dependency

D.1.1 Abstract Factory

^^'e create and analyze the first sizeable benchmark that includes variants of the Abstract

Factory pattern. Existing benchmarks and DPVT evaluations in the literature report in­

stances of a single, generic sijecification [Shi, 2007a][Blewitt et ah, 2005][Stencel and We-

grzynowicz, 2008].

Both PINOT [Shi, 2007b] and P-MARt [Gnehenenc, 2007] provide a benchmark for the

Abstract Factory pattern that we aggregated in creating our own. PINOT’s specification

recpiires an AbstractFactory role, but also adds the constraint that the Factory Method

returns an object of a subclass of its return type. Some of the instances provided by

PINOT do not create a new object over all paths, and some in fact may return the value

null. This is forbidden by our specification. Gnehenenc [2007] does not provide a detailed

specification of the Abstract Factory pattern, but seems to allow GoF and No AF variants.

The first two columns of Tables D.l, D.2 and D.3 summarize the outcome of aggregating

the PINOT and P-MARt benchmarks. In Table D.l, as in all subsecjuent tables the number

200

variant PINOT P-MARt Alas

GoF 22(26) 1(1) 22

No AF 0(0) 1(1) 23

Self Factory 3(4) 0(0) 3

Self Factory, No AF 0(0) 0(0) 0

Table D.l: Instances of variants of the Abstract Factory pattern in each benchmark from

the .THotDraw code body

variant P-MARt AIhs

GoF 0(0) 1

No AF 0(0) 12

Self Factory 0(0) 1

Self Factory, No AF 0(0) 0

Table D.2: Instances of variants of the Abstract Factory pattern in each benchmark from

t he JUnit code body

in each cell under each aggregated benchmark indicates the number of instances of that

variant from the benchmark that we include in our own, i.e., the number of instances

shared by our Ijenchmark and the benchmark created by others. The second number in

brackets indicates the total number of instances of that variant reported in the aggregated

benchmark, indicating the number of instances in the aggregated benchmark not included

in the Alas benchmark. As can be seen from the table, our classification of instances agrees

in all cases with P-MARt, and agrees in a majority of cases with PINOT. The instances

from PINOT’s benchmark that we exclude either do not create a new object over all paths

through the Factory Method, or are intended instances of clone methods of the Prototype

pattern. The one instance of the Self Factory pattern identified in .lUnit is also included in

the small manual benchmark DEEBEE [Fulop et ah, 2008].

D.l. 2 Command

Typically, approaches that address the pattern specify only an inheritance relationship (be­

tween Command and ConcreteCommand) and a sequence of method calls (Invoker to Con-

201

variant PINOT Alas

GoF 24(39) 24

No AF 0(0) 3

Self Factory 2(2) 2

Self Factory, No AF 0(0) 0

Table D.3: Instances of variants of the Abstract Factory pattern in each benchmark from

the Swing code body

creteCommand, followed by ConcreteCommand to Receiver) [Tsantalis, 2009]. Guehenenc

and Antonio! [2008] distinguish Command from other patterns by identifying separate

Client and Invoker roles, though the invariants placed on those roles are not described.

In Alas, it is possible to specify the interaction between Client, Invoker and ConcreteConi-

mand as a series of method calls where object and parameter roles match, as demonstrated

in the context of the Memento j)attern in Chapter 3 Section 3.3.2.1.

Guehenenc [2007] provides a benchmark for the Command pattern in both .THotDraw

and .TUnit. W'e include in our benchmark the single Command instance they identify in

.THotDraw. The GoF pattern classification of Shi [2007a] places Command in the category of

‘domain-sj)ecihc patterns’, the verification of which require application- or domain-specific

knowledge. Domain-specific patterns are not supported by the PINOT toot [Shi anrl Olsson,

200(5].

M’ithout documentation, it was difficult to identify the intended Receiver role, and

thus difficult to classify the pattern as an instance of one or another variant. W’e sep­

arate the single instance identified by Gueheneuc [2007] into 5 different instances. W’e

identify each instance below using the different Invoker actors in the code body, and the

different ConcreteCommand actors with which they interact. Each subclass of Abstract-

Command in the .THotDraw code body differs in how much behaviour its execute method

performs and how much it delegates. Two subclasses in particular contain complex execute

methods and delegate only relatively small tasks to the Receiver: AlignCommand and

ChangeAttributeCommand, AlignCommand has an abstract inner class Alignment, which

declares a number of static final instances (Alignment is a type of Limiton [Stencel and

Wegrzynowicz, 2008]). The client configures the Command with one of these particular

instances of Alignment. Much of the behaviour of Command’s execute is performed by

202

Instance Invoker ConcreteCommand Client

nnmber

1 CommandBntton DeleteCommand etc. DrawApplet

2 CommandMenu AlignCommand Draw Application

3 CommandMenu UndoCommand etc. Draw Application

4 ConnectedTextTool DeleteCommand TextTool,

. DeleteU ndo Act ivity ConnectedTextTool

5 CommandChoice ChangeAttributeCommand DrawApplet

Table D.4: Actor names in candidate Command instance's

Instance number Variant

1 Command forms Fac^ade

2 Known Receiver

3 Command forms Facade

4 Negative

5 Known Receiver

Table D.5: Command instance classification

delegating to the Alignment. We classify these two instances as Known Receiver variants.

The execute method role still delegates to a DrawingView, similarly to other instances, so

it conld be considered an orthodox GoF example, bnf it is clear that the main task of the

method is performed by delegating to the Alignment. The cla.ssihcation of the hve instances

is snnnnarized in Tables D.4 and D.5.

D.2 Object state

D.2.1 Prototype

None of the aggregated benchmarks address the Prototype pattern. The GoF pattern

classification of Shi and Olsson [2006] places Prototype in the category of language-provided

patterns, which is not supported by the PINOT tool [Shi and Olsson, 2006]. We argue that

the ijrovision of features such as the Cloneable interface in .lava does not remove the issue

203

of deep vs. shallow copies, and the iinpleinentation of correct clone methods is a non-trivial

task.

D.3 Data structure

D.4 Decorator

PINOT is based on a different specification of the Decorator pattern: all delegation to the

Component must be unconditional. Any conditional delegation is a CoR instance. Our

specihcations follow the GoF catalogue in having a superclass delegate in the Decorator

pattern and a same-class delegate in the CoR pattern: PINOT seems to allow superclass

delegation in the CoR. pattern. Thus, a lot of the forward if not null variant instances of the

Decorator pattern in our benchmark are CoR instances in PINOT’s [Shi, 2007b]. PINOT’s

benchmark was very useful in this case, as it provided complete code coverage for two of

our three code bodies identifying all superclass delegation instances.

The P-MARt benchmark has a similar specification to our GoF variant specification,

requiring both a Decorator and ConcreteDecorator role, as v/ell as Component and Con-

creteConiponent roles. The same inheritance and delegation relations between classes are

required by P-MARt and Alas specifications. Tables D.6, D.7 and D.8 summarize the out-

jiut of aggregating the PINOT and P-MARt benchmarks for each of the three included

code bodies. It can be seen that our benchmark is in complete agTeement with PINOT

with regard to No sub variants, and with P-MARt with regard to GoF variants. PINOT

identifies both GoF and No sub variants. The Decorator role in the GoF variant instance

in .THotDraw is DecoratorFigure, for the instance in Swing it is FlowView and in .lUnit it

is TestDecorator.
The inclusion of three variants allows us to collect instances that occur in neither of

the aggregated benchmarks, and, in fact, the Alas benchmark for the Decorator pattern is

a superset of the PINOT and P-MARt benchmarks. We are able to distinguish instances

uncovered by the PINOT benchmark into two variants: GoF and No sub.

D.4.1 Composite

Both the PINOT and P-MARt benchmarks address the Composite pattern. The PINOT

specification of the Composite pattern is difficult to identify, as it is hardcoded in the tool.

204

variant PINOT P-MARt Alny

GoF 0(0) 1(1) 1

No Snb 5(5) 0(0) 5

Forward if not mill 0(0) 0(0) 1

Total 5 1 7

Table D.6: Instances of variants of the Decorator pattern in each benchmark from the

•IffotDraw code body

variant P-AIARt Alfis

GoF 1(1) 1

Total 1 1

Table D.7: Instances of variants of the Decorator i)attern in each benchmark from the

JUiiit code body

variant PINOT AlilS

GoF 1(1) 1

No Snb 18(18) 18

Forward if not mill 0(0) 4

Total 19 23

Table D.8: Instances of variants of the Decorator pattern in each benchmark from the

Swing code body

205

As we understand it, any class that has an array attribute of some superclass (including

class Object) is an instance. As .Tava 1.4.2 (the language analyzed by PINOT and AVT)

lacks generics, it is more difficult to identify the content type of a collection than an array.

PINOT addresses this issue by searching for a call to a ‘put’ method on some collection

attribute of a candidate Composite class that adds an instance of some superclass to the

collection. A ‘put’ method is any method in a hard-coded list of collection mutation methods

such as Vector.add or Map.put. This is a less strict specification than any of our variants,

and by allowing the class Object to play the role of Component, and classes such as String
and Integer to play the role of Leaf, it includes numerous instances that are unlikely to

be inteiifled by the original develoj)er of the classes.

The P-MARt [Gueheneuc and Antoniol, 2008] specification of the Composite pattern

includes three classes: Component, Composite and Leaf, with Composite and Leaf both

inheriting from Comjronent. There is a composition relationship between Composite and

Component. The composition relation in DeMIMA (the tool developed by the creators of

the P-MARt benchmark) rerpiires the ‘exclusivity’ and ‘lifetime’ properties. Exclusivity

requires that ‘instances of the part might be instantiated before the whole is instantiated,

but they must not belong to any other v/liole.’ The related lifetime proi)erty requires that

the composed and composing objects are destroyed, or garbage collected in languages such

as .lava, at similar times. It is not clear how these properties are identified during manual

code inspection.

Table D.9 summarizes the number of instances of Composite patterns in each of the

aggregated benchmarks for each of the code bodies included in our evaluation. We include

both pattern instances from the P-MARt benchmark. Neither the PINOT nor our Alas

benchmarks are supersets of each other with regard to Composite pattern instances. Both

PINOT and P-MARt report instances of the core and no remove variants, but do not make

a distinction, as neither are concerned with the remove method role.

Table D.l lists each instance by Composite class actor name and gives the variant sj)ec-

ifications satisfied by each. DefaultMutableTreeNode declares a parent reference variable

in its class dehnition, instead of inheriting the variable from the Component role, as in the

parcirLinks variant. A parentLinks in Composite variant could also be specified to handle

this case.

206

PINOT P-MARt Alas

•IHotDraw 2(4) 1(1) 2

•lUnit - 1(1) 1

Swing 2(20) - 4

Table D.9: Instances of the Composite pattern identified in both the Alas benchmark and

aggregated benchmarks

parent Links Unsafe No operation No remove

•TffotDraw

PertFignre X X X X

CompositeFignre X X X X

■lUnit

TestSnite X X X v/
Swing

CompositeView v/
ComponndEdit X X v/
BrancliElement X X %/ v/

DefanltMutableTreeNode X X

Fig. D.l: Composite class actor of each identified instance, along with their variant clas­

sification

207

Appendix E

Generic behaviour specification

Generic behaviour arises when all valid implementations of a particular pattern or pattern

variant include a behaviour, but some intrinsic detail of that behaviour can differ between

implementations, making the creation of a single specification to represent these imple­

mentations difficult. The state of the art in DPSLs tends to overlook generic behaviour

as unspeciliable or implementation-dependent, weakening the precision of the specification

and increasing the likelihood of errors, usually false positives, during verification. Generic

behaviour s])ecification is the fourth and final major contribution of Alas. In this section,

we disenss the features of Alas that address generic behaviour.

The actual guard conditions on conditional branchings in patterns implementations are

implementation dependent and can thus rarely be specified exactly. In Alas, it is possible

to si)ecify generic guards, by indicating that a guard condition is (1) some function of the

state of some object role or roles or (2) includes a particular conditional expression that

may be combined with other implementation-specific conditional expression in a candidate

implementation. In the former case, a comma-separated list of object roles is included in

the guard condition belonging to an operand of a selection operator. In the latter case, a

comma-separated list of conditions, suffixed with a + is placed in the guard. Both cases

can also be combined in the same list, but it is a syntax error to include a +-suffixed and

non-+-suffixed clause in the same list: a guard condition is either completely or generically

specihed. For exami)le, the alt operator guarding the call to the successor role in the CoR

specification of Figure 3.6 could be guarded with successor alone (instead of successor

!= NULL), to indicate that the behaviour is dependent on the state of the successor, but

not necessarily its NULL-ness.

Genericity also applies in the specification of method calls. The Builder pattern ‘sep-

208

m,UI(IUIUII«UUI TnmswBoiiBr

'feop'l

[foraii obj in CompositeStt'ucture)

1: BuildPartSetO

2 BuNdPartSetj)

2 build I
I

Fig. E.l: A generic specihcatioii of the Looping Director variant of the Builder pattern.

No selector is provided for the method set: any arbitrary member of the BuildPartSet

method set may be called on each iteration of the loop.

arates the construction of a complex object from its representation’ by having a Director

define the algorithm for the building process, but delegating the actual work to a Builder

that knows the output representation. One variant discussed in the GoF catalogue ([Gamma

et ah, 1995, p.97]) involves a Director iterating over some input structure and calling dif­

ferent building methods on each iteration, depending on the type of the currently indexed

object in the structure. We extend the concept of selectors for collection roles by applying

them to method (and also class) set roles, allowing mutable bindings to method (and class)

roles in a BD. Specifying a role with braces but no selector indicates that an arbitrary

element from the set may be bound, but with a mutable binding (uidike UML). Our Alas

specification of the Looping Director variant of the Builder pattern introduced above is

shown in Figure E.l, where the building methods are represented with the BuildPartSet

method set role.

Design patterns impose ordering constraints on sets of methods, though the number

of methods is implementation-specific. In Alas, method sets are ordered (with the order

defined at binding time, when the roles are initially bound to actors). Selectors applied

to method sets may be integers, allowing the selection of a particular element of the set,

but this does not solve the issue of unbounded-size method sets. We address this issue by

allowing the selector to be a range, indicated by [begin. . . end] and by providing access to

209

1 1 PrimitiveOperationSet(0 PrimitlveOperationSet siz^

1.2: PrimitiveOperationSet(O...PnmitiveOperationSet.si2^

“1

Fig. E.2 : A generic specification of a Template Method. Each of the members of the

PrimitiveOperationSet is called in sequence. The set may vary in size between valid

implementations.

the size of the set: <MethodSet>. size. This mechanism is demonstrated in the context of

the Template Method pattern in Figure E.2. A Template Method ‘define[s] the skeleton of

an algorithm’ by calling all the members set of methods (primitiveOperations) in a hxed

order, where the number and ordering of primitiveOperations will differ in each context.

This s[)ecification will bo expanded at binding time to a sequence of calls, beginning with the

first element and continuing until and including the last element. A variant of the Btiilder

pattern, where the Director contains a sequence of calls to individual build methods instead

of a loop, is specihed identically.

The final type of generic behaviour addressed is generic conditional branching. Some

variants of GoF patterns relate the number of alternative control Hows to the number of

elements in a set of classes or methods. The Parameterized Factory variant of the Abstract

Factory pattern, for example, involves a Factory Method that is capable of creating objects

of multiple different types, choosing between the types using a parameter. Thus, it has a

number of mutually-exclusive paths, each creating a new object, equal to the number of

classes inheriting from the AbstractProduct class role (assuming that the Factory Method

should be capable of producing each of the ConcreteProducts).

Alas provides the repeat keyword, that may be placed in the guard of an alt oijerand,

with the meaning that the current operand may occur once or multiple times in a conforming

implementation. A cpiantified statement, quantifying over some class or method set role,

may follow the repeat keyword, indicating that a mutually-exclusive path must occur once

for each member of the set. Any interaction involving the set role may have its binding

influenced by a selector, as in the case of iteration over collection roles in Section 3.3.1.3.

Figure E.3 specifies the Parameterized Factory variant behaviour described above. This

210

Fig. E.3: Generic specification of the ConcreteFactory’s factoryMethod. The specification

states tliat for each class in the ConcreteProduct class set role, there exists an alternative

path that creates an object of that class.

approach may also be used to describe the Looping Director variant, by specifying that an

alt operand repeats once for every method in the BuildPartSet method set role. Note

that the ConcreteProduct lifeline has a nmtable-binding class set role and a fixed-binding

object role. For a discussion of valid combinations of single roles, set roles and selectors,

see Appendix A Section A.5.

211

Bibliography

VDMTooLs . The VDM++ to Java Code Generator ver.1.1. Technical report, CSK

Corporation, 2010.

Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986. ISBN 0201101947.

Christopher Alexander. The Timeless Way of Building. Oxford University Press, 1979.

ISBN 0195024028.

Robert Allen. A Formal Approach to Soff.ware Architecture. PhD thesis, Carnegie Mellon,

School of Conii)nter Science, .lannary 1997. Issued as CMU Technical Report CMU-CS-

97-144.

Awny Ahmsair and Tiaii Zhao. Using Ontology Reasoning for Reverse Engineering Design

Patterns. In Sndipto Ghosh, editor. Models in Software Engineering, volume 6002 of

Lecture Notes in Computer Science, pages 344 358. Springer Berlin / Heidelberg, 2010.

ISBN 978-3-642-12260-6. URL http://dx.doi.org/10.1007/978-3-642-12261-3_32.

10.1007/978-3-642-12261-3_32.

Scott W. Ambler. The Elements of UML(TM) 2.0 Style. Cambridge University Press, New

York, NY, USA, 2005. ISBN 0521616786.

S. An.mour, Mikal Ziane, Xavier Blanc, and S. Chantit. A uml precise specification of design

patterns using decoupling constraints. In 4lh Workshop in Software Model Engineering

(WiSME ’05), 2005. INT LIP6 MoVe.

Tony Andrews, Shaz Qadeer, Srirain K. Rajamani, .lakob Rehof, and Yichen Xie. Zing: a

model checker for concurrent software. In Computer Aided Verification, pages 484-487.

Springer, 2004.

212

G. Antoiiiol, G. Casaz/a, M. Di Peiita, and R. Fiutein. Object-oriente^d design patterns

recovery. Journal of Systems and Software, 59(2):181 196, 2001. ISSN 0164-1212.

doi: 10.1016/S0164-1212(01)00061-9. URL http://www.sciencedirect.com/science/

article/pii/S0164121201000619.

Francesca Arcelli, Marco Zanoni, and Christian Tosi. A benchmark proposal for design pat­

tern detection. In 2nd Workshop on FAMIX and Moose in Reengineering (FAMOOSr’08),

2008.

AtlanMod. Atlantic Zoo, 2010. URL http://www.emn.fr/z-info/atlanmod/index.php/

Atlantic. Last accessed: 11th March 2011.

Thomas Baar. On the need of user-defined libraries in ocl. In OCL arid Textual Modelling

workshop, MoDELS 2010, 2010.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:

An overview, pages 46 69. Springer Berlin / Heidelberg, 2005.

Aline Lucia Baroni, Yann-Gael Gnehenenc, and Herve Albin-Aniiot. Design patterns for­

malization. Technical report, Ecole Nationale Superieure des Techniciues Industrielles et

des Mines de Nantes, 2003.

Ian Bayley and Hong Zhu. Formal speciheation of the variants and behavioural features

of design patterns. ,7. Stjst. Softw., 83(2):209 221, 2010. ISSN 0164-1212. doi: http:

//dx.doi.org/10.1016/j.jss.2009.09.039.

Kent Beck and Ward Cnnningham. Using pattern languages for object-oriented programs.

Technical report, Apple Computer Inc. and Tektronix Inc., 1987.

.losh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefaiio, Peter \X. 0‘Hearn, Thomas

Wies, and Hongseok Yang. Shape Analysis for Composite Data Structures. In Computer

Aided Verification, 2007.

Federico Bergenti and Agostino Poggi. Improving UML designs using automatic design

pattern detection. In In Proc. 12th. International Conference on Software Engineering

and Knowledge Engineering (SEKE 2000, pages 336 343, 2000.

Dirk Beyer, Andreas Noack, and Claus Lewerentz. Simi)le and Efficient Relational Querying

of Software Structures. In Proceedings of the 10th Working Conference on Reverse Engi-

213

neeiing, WCRE ’03, pages 216 , Washington, DC, USA, 2003. IEEE Computer Society.

ISBN 0-7695-2027-8. URL http://dl.acm.org/citation.cfm?id=950792.951386.

•Tames M. Bienian, Greg Straw, Huxia Wang, P. Willard Munger, and Roger T. Alexander.

Design patterns and change proneness: An examination of five evolving systems. In

METRICS ’03: Proceedings of the 9th International Symposium on Software Metrics,

page 40, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1987-3.

Kevin Bierhoff and Jonathan Aldrich. Permissions to specify the composite design pat­

tern. In Proceedings of the Specification and Verification of Component-Based Systems

(SAVCBS) Workshop, 2008.

Alex Blewitt, Alan Bundy, and Ian Stark. Automatic Verification of Design Patterns in Java.

In ASE ’05: Proceedings of the 20th IEEE/ACM international Conference on Automated

Sofmare Engineering, pages 224 232, New York, NY, USA, 2005. ACM. ISBN 1-59593-

993-4. doi: http://doi.acni.org7l0.1145/1101908.1101943.

Grarl} Booch. Object-Oriented Analysis and Design with Applications . Addison-Wesley,

1991. ISBN 0805353402.

Egon Bdrger and Wolfram Schulte. A Programmer Eriendly Modular Definition of the

Sen.antics of Java. In Jim Alves-Eoss, editor, Formal Syntax and Semantics of Java,

voh.me 1523 of Lecture Notes in Computer Science, pages 541-541. Springer Berlin /

Heiielberg, 1999. URL http://dx.doi.org/10.1007/3-540-48737-9_10. 10.1007/3-

540-48737-9_10.

Cristimo Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Footprint

Analysis: A Shajje Analysis That Discovers Preconditions. In Static Analysis, Ijth

International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24 , 2007,

Proceedings, pages 402 418, 2007.

David R. Ghase, Mark Wegman, and F. Kenneth Zadeck. Analysis of Pointers and Struc­

tures. In Proceedings of the ACM SIGPLAN 1990 conference on Programming language

des'.gn and im,plem.entatioTi, PLDI ’90, pages 296-310, New York, NY, USA, 1990. ACM.

ISBN 0-89791-364-7. doi: 10.1145/93542.93585. URL http://doi.acm.org/10.1145/

93542.93585.

214

John Clieesiiuiii and John Daniels. UML components: a simple process for specifying

component-based software. Addison Wesley, 2001.

Sigmund Clierein and Radu Rngina. A Practical Escape and Effect Analysis for Build­

ing Lightweight Method Summaries. In Proceedings of the 16th interjiational con­

ference on Compiler construction, CC’07, pages 172-186, Berlin, Heidelberg, 2007.

Springer-Verlag. ISBN 978-3-540-71228-2. URL http://dl.acm.org/citation.cfm?

id=1759937.1759953.

\lhi-Ngan Chin, Cristina David, Hun Hai Nguyen, and Shengchao Qin. Enhancing modular

OO verification with separation logic. SIGPLAN Not., 43(1):87 99, 2008. ISSN 0362-

1340. doi: http://doi.acm.org7l0.1145/1328897.1328452.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verihcation of hnite-state con­

current systems using temporal logic specifications. ACM Trans. Program. Lang. Syst.,

8(2):244-263, 1986. ISSN 0164-0925. doi: http://doi.acm.org7l0.1145/5397.5399.

.lame Coplien. C-I--I- idioms. In European Conference on Pattern Languages of Programs

(EuroPLoP '98), 1998.

Patrick Cousot and Radliia Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

POPL ’77; Proceedings of the M-h ACM SIGACT-SIGPLAN symposium on Princi­

ples of programming languages, pages 238 252, New York, NY, USA, 1977. ACM. doi:

http://doi.acni.org/10.1145/512950.512973.

Werner Damm and David Harel. LSCs: Breathing Life into Message Secpience Charts. In

Formal Methods in System Design, pages 293 312. Kluwer Academic Publishers, 1998.

Christian Damns. Re: transitive closure, 2007. URL http://dev.

eclipse.org/newslists/news.eclipse.modeling.mdt.ocl/msg00538.html.

http://dev.eclipse.org/newslists/news.eclipse, modeling. mdt.ocl/msg00538.html.

A. De Lucia, V. Deufemia, C. Gravino, and M. Risi. Behavioral Pattern Identification

through Visual Language Parsing and Code Instrumentation. In Software Maintenance

and Reengineering, 2009. CSMR ’09. ISth European Conference on, pages 99 108, march

2009. doi: 10.1109/CSMR.2009.29.

215

Birgit Deniuth and Claas Wilke. Model and Object Verification by Using Dresden OCL.

In Proceedings of the Russian-German Workshop “Innovation Information Technologies:

theory and practice”, July 25-31, Ufa, Russia, 2009, 2009.

Dinakar Dhnrjati, Mannvir Das, and Ync Yang. Path-Sensitive Dataflow Analysis with

Iterative Refinement. In SAS'06: The 13th International Static Analysis Symposium,

Seoul, August 2006, pages 425 -442. Springer Berlin / Heidelberg, 2006. doi: 10.1007/

11823230_27. URL http: //dx. doi. org/10.1007/11823230_27.

Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, Complete and Scalable Path-Sensitive

Analysis. In Proceedings of the 2008 ACM SIGPLAN conference on Programming lan­

guage design and im,plem.entation, PLDI ’08, pages 270-280, New York, NY, USA,

2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.1375615. URL http:

//doi.acm.org/10.1145/1375581.1375615.

Dino Distefano and Matthew .1. Parkinson .1. jStar: Towards Practical Verification for .lava.

In OOPSLA '08: Proceedings of the 23rd ACM SIGPLAN conference on Object oriented

programming systems languages and applications, pages 213 226, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-21,5-3. doi: http://doi.acm.org/10.1145/1449764.1449782.

•ling Dong, Panlo Alencar, and Donald Cowan. Formal Specification and Verification of

Design Patterns, pages 94 108. IGI Publishing, 2007.

•Ting Dong, Yajing Zhao, and Tn Peng. A review of design pattern mining techniques.

International Journal of Software Engineering and Knowledge Engineering (USEKE),

19(6):823 855, 2009.

E. Dnrr and .1. van Katwijk. Vdm-I--I-, a formal specification language for object-oriented

designs. In CornpEuro ’92 . ’Computer Systems and Software Engineering’,Proceedings.,

pages 214 -219, may 1992. doi: 10.1109/CMPEUR.1992.218511.

Eclipse. Eclipse IDE, 2012. URL http://www.eclipse.org/. Last accessed: 30th April

2012.

Aninon H Eden. Formal Specification of Object-Oriented Design. In Proceedings of the

International Conference on. Multidisciplinary Design in Engineering, 2001.

216

Aimioii H. Eden. Object-oriented modelling in lepus3 and class-z, 2008. URL http://

WWW. lepus. org.uk/ref/lepus3-tutorial.pdf. http://www.lepus.org.uk/ref/le]) is3-

tutoiial.pdf last accessed: 21st .July 2008.

Amnon H. Eden. Formal and precise software pattern representation languages. 2012. I'RL

http://www.eden-study.org/. http://www.eden-study.org last accessed April 2012.

Amnon H. Eden and Rick Kazman. Architecture, design, implementation. In ICSE ’03:

Proceedings of the 25th International Conference on Software Engineering, pages 149

159, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X.

E. Allen Emerson. Temporal and modal logic. Handbook of theoretical computer science

(vol. B): formal models and semantics, pages 995 1072, 1990.

Thomas Erl. SO A Design Patterns. Prentice Hall, 2008. ISBN 013G135161.

David Evans. Static/dynamic analysis: Past, present and future. In

Verification Grand Challenge Workshop 2005, SRI Menlo Park, 2005.

www.cs.virginia.edu/ evans/talks/static-dynamic.ppt.

Azadeh Farzan, Feng Chen, Jose Meseguer, and Grigore Ro^ju. Formal Analysis of .lava

Programs in JavaFAN. In Proceedings of Computer-aided Verification (CAV’Of), volume

3114 of LNCS, pages 501 - 505, 2004.

R. Ferenc, A. Beszedes, L. Fulop, and .1. Lele. Design pattern mining enhanced by ma­

chine learning. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE

International Conference on, pages 295 304, sept. 2005. doi: 10.1109/ICSM.2005.40.

Martin Fowler and Kendall Scott. UML distilled (2nd ed.): a brief guide to the standard

object modeling language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2000. ISBN 0-201-65783-X.

Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A UML-Based Pattern

Specification Technique. IEEE Transactions on Software Engineering, 30(3):193 206,

2004. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.2004.1271I74.

Robert B. France, Sudipto Ghosh, Trung T. Diidi-Tf ong, and Arnor Solberg. Model-driven

development using UML 2.0: Promises and pitfalls. IEEE Computer, 39(2):59 66, 2006.

217

Lajos .leno Fnlop, Rudolf Ferenc, and Tibor Gyiniotliy. Towards a Benchmark for Evahi-

atiiig Design Pattern Miner Tools. In Proceedings of the 2008 12th European Conference

on Software Maintenance and Reengineering, 2008.

Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and Plugins.

Addison Wesley, 2003. ISBN 0321205758.

Erich Gamma, Richard Helm, Ralph .Tohnson, and .Tohn Vlissides. Design Patterns: Ele­

ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola

and G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering,

pages 1-39, Singapore, 1994. World Scientific Publishing Company.

Gonzalo Genova. \Miat is a metamodel: the OMG’s metamodeling infrastructure. Technical

report, Universidad Carlos III de Madrid, 2009.

•lames Gosling, Bill .loy, Guy Steele, and Gilad Bracha. The .Java Language Specification.

Addison-Wesley, 2005. ISBN 0201310082.

David Grove, Greg DeFouw, .leffrey Dean, and Craig Chambers. Call Grai)h Construction

in Object-Oriented Languages. In Proceedings of the 12th ACM SIGPLAN conference on

Object-oriented programming, .systems, languages, and applications, OOPSLA ’97, pages

108-124, New York, NY, USA, 1997. ACM. ISBN 0-89791-908-4. doi: 10.1145/203698.

264352. URL http://doi.acm.org/10.1145/263698.264352.

Y.-G. Gueheneuc. P-MARt: Pattern-like Micro-Architecture Rei)Ository, 2007. URL http:

//www.ptidej .net/downloads/pmart/. Last accessed: 10th Aj)ril 2012.

Y.-G. Gueheneuc and G. Antoniol. DeMIMA: A Multilayered Approach for Design Pattern

Identification. Software Engineering, IEEE Transactions on, 34(5):667 684, Sept.-Oct.

2008. ISSN 0098-5589. doi: 10.1109/TSE.2008.48.

Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying Behav­

ioral Com{)ositions in Object-Oriented Systems. SIGPLAN Not., 25(10):169-180, 1990.

ISSN 0362-1340. doi: http://doi.acni.org/10.1145/97946.97967.

D. Heuzeroth, S. Mandel, and W. Lowe. Generating Design Pattern Detectors from Pattern

Specifications. Automated Software Engineering, 2003. Proceedings. 18th IEEE Intema-

218

tional Conference on, pages 245 248, Oct. 2003. ISSN 1527-1366. doi: 10.1109/ASE.

2003.1240313.

Michael Hind. Pointer analysis: Haven’t we solved this problein yet? In PASTE’Ol, pages

54-61. ACM Press, 2001.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.

ISBN 0131532715.

Simon Holer. Verification of design patterns. Master’s thesis. Chair of Programming

Methodology, Department of Computer Science, ETH Zurich, 2009.

IBM. .likes compiler, 2005.

http://jikes.sourceforge.net/.

URL http: / / j ikes. sourcef orge. net/.

Daniel .lackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.

Methodol., 11:256-290, April 2002. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/

505145.505149. URL http://doi.acm.org/10.1145/505145.505149.

Neil D. .lones and Steven S. Muchnick. Flow Analysis and Optimization of LISP-like

Structures. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium oji Principles

of programming languages, POPL ’79, pages 244-256, Now York, NY, L-SA, 1979. ACM.

doi: 10.1145/567752.567776. URL http://doi.acm.org/10.1145/567752.567776.

O. Kaczor, Y.-G. Gueheneuc, and S. Hamel. Efficient Identihcation of Design Patterns with

Bit-Vector Algorithm. In Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on, pages 10 pp. 184, march 2006. doi:

10.1109/GSMR.2006.25.

Wolfram Kaiser. Become a programming Picasso with .IHotDraw. .lavaWorld, February

2001. URL http://www.javaworld.eom/javaworld/jw-02-2001/jw-0216-jhotdraw.

html. http://www.javaworld.eom/javaworld/jw-02-2001/jw-0216-jhotdraw.htnd.

Dae-Kyoo Kim. A META-MODELING APPROACH TO SPECIEYING PATTERNS. PhD

thesis, Colorado State LTniversity, Fort Collins, Colorado, 2004.

Deokhwan Kim and Martin C. Rinard. Verification of semantic conmmtativity condi­

tions and inverse oj^erations on linked data structures. In Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation, PLDI

219

’ll, pages 528 541, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. doi:

10.1145/1993498.1993561. URL http://doi.acm.org/10.1145/1993498.1993561.

.Tohii Kiiudseii, Anders P. Ravn, and Arne Skon. Design verification patterns. In Cliff B.

.Tones, Zliiming Lin, and .Tim Woodcock, editors. Formal methods and hybrid real-time

systems, pages 399 413. Springer-Verlag, Berlin, HeidelTrerg, 2007. ISBN .3-540-75220-X,

978-3-540-75220-2. URL http: //dl. acm. org/citation. cfm?id=1793874.1793892.

C. Kramer and L. Preclielt. Design Recovery by Antoniated Searcli for Structural Design

Patterns in Object-Oriented Software. In Reverse Engineering, 1996., Proceedings of the

Third Working Conference on, pages 208 215, nov 1996. doi: 10.1109/WCRE.1996.

558905.

Neelakantan R. Krishnaswami, .lonathan Aldrich, Lars Birkedal, Kasper Svendsen, and

Alexandre Buisse. Design patterns in sejjaration logic. In Proceedings of the flh

international workshop on Types in language design and implementation, TLDI ’09,

pages 105-116, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-420-1. doi:

10.1145/1481861.1481874. URL http://doi.acm.org/10.1145/1481861.1481874.

Leslie Lamport. The temporal logic of actions. ACM Ti'ansactions on Programming Lan­

guages and Systems, 16(3):872 923, 1994. ISSN 0164-0925. doi: http://doi.acm.org/10.

1145/177492.177726.

William Landi. Undecidability of Static Analysis. ACM Lett. Program. Lang. Syst., 1(4):

323 337. 1992. ISSN 1057-4514. doi: http://doi.acm.org/10.1145/161494.161501.

K Lano, .1 Bicarregni, and S Goldsack. Formalising Design Patterns. In RDCS-FACS

Northern Formal Methods Workshop, 1996.

Craig Larnian. UML Interaction Diagrams: Basic Sequence Diagram Notation, 2005.

URL http://www.informit.com/articles/article.aspx?p=360441&seqNum=5. Last

accessed: 17th March 2011.

Anthony Lauder and Stuart Kent. Precise Visual Specification of Design Patterns. In

ECOOP '98: Proceedings of the 12th European Conference on Object-Oriented Program­

ming, jrages 114 134, London, UK, 1998. Springer-Verlag. ISBN 3-540-64737-6.

Alain Le Guennec, Gerson Sunye, and .Tean-Marc .Tezeciuel. Precise Modeling of Design

Patterns. In In Proceedings of UML’OO, jrages 482 496. Springer Verlag, 2000.

220

Gary T. Leavens, Albert L Baker, and Clyde Rnby. Preliminary design of .IML: a behavioral

interface specification language for Java. SIGSOFT Softw. Eng. Notes, Jf (3):1 38, 2006.

ISSN 0163-5948. doi: littp://doi.acni.org/10.1145/1127878.1127884.

Gary T. Leavens, K. Rustan M. Leino, and Peter Miiller. Specification and verification

challenges for secpiential object-oriented programs. Form. Asp. Coniput., 19(2): 159 189,

2007. ISSN 0934-5043. doi: http://dx.doi.Org/10.1007/s00165-007-0026-7.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of snbtyping. ACM Trans.

Program. Lang. Syst., 16(6):1811 1841, 1994. ISSN 0164-0925. doi: http://doi.acm.org/

10.1145/197320.197383.

Howard C. Lovatt, Anthony M. Sloane, and Dominic R. Verity. A pattern enforcing compiler

(pec) for java: using the compiler. In Proceedings of the 2nd Asia-Pacific conference on

Conceptual modelling - Volume f3, APCCM ’05, pages 69 78, Darliiiglmrst, Australia,

Australia, 2005. Australian Computer Society, Inc. ISBN 1-920-68225-2. URL http:

//dl.acm.org/citation.cfin?id=1082276.1082285.

Mass Soldal Lund and Ketil Stolen. A Fully General Operational Semantics for UML 2.0

Sequence Diagrams with Potential and Mandatory Choice. In PM 2006: Formal Methods,

2006.

Jeffrey K. H. Mak, Clifford S. T. Choy, and Daniel P. K. Luii. Precise Modeling of Design

Patterns in UML. In ICSE ’Of, pages 252 261, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7695-2163-0.

David Mapelsden, John Hosking, and John Grundy. Design pattern modelling and instanti­

ation using DPML. In CRPIT ’02: Proceedings of the Fortieth International Conference

on Tools Pacific, pages 3 11, Darliiiglmrst, Australia, Australia, 2002. Australian Com­

puter Society, Inc. ISBN 0-909925-88-7.

David Maplesden, John Hosking, and John Grundy. A Visual Language for Design Pattern

Modeling and Instantiation, pages 20 43. IGI Publishing, 2007.

Slavisa Markovic and Thomas Baar. Refactoring OCL Annotated UML Class Diagrams.

In Model-Driven Engineering, Languages and Systems (MoDELS), pages 280 294, 2005.

Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall

Professional Technical Reference, 1997. ISBN 0136291554.

221

Smi Microsystems, .lava 2 Software Development Kit, 2010. URL http://docs.oracle.

com/j avase/1.4.2/docs/.

T. Mikkonen. Formalizing design patterns. Software Engineering, 1998. Proceedings of

the 1998 International Conference on, pages 115-124, Apr 1998. ISSN 0270-5257. doi:

10.1109/ICSE. 1998.671108.

Ana Milanova, Atanas Ronntev, and Barbara G. Ryder. Parameterized Object Sensitivity

for Points-to Analysis for .lava. ACM Trans. Softw. Eng. MethodoL, 14(1):1-41, January

2005. ISSN 1049-331X. doi: 10.1145/1044834.1044835. URL http://doi.acm.org/10.

1145/1044834.1044835.

Peter Miiller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered

object structures. Sci. Comput. Program., 62(3):253 286, 2006. ISSN 0167-6423. doi:

litti)://dx.doi,org/10.1016/j.srico.2006.03.001.

.Tanice Ka-Yee Ng. Identification of Behavioral and Creational Design Patterns through

Dynamic Analysis. Technical report, Universitc de Montreal, 2008.

Janice Ka-Yee Ng, Yann-Gael Gueheneuc, and Giuliano Antoniol. Identification of Be­

havioural and Creational Design Motifs through Dynamic Analysis. J. Softw. Maint.

EvoL, 22:597 627, December 2010. ISSN 1532-060X. doi: http://dx.doi.org/10.1002/

smr.421. URL http: //dx. doi . org/10.1002/smr .421.

Flennning Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.

Springer, 1999. ISBN 3540654100.

OMG. Object Constraint Language, Version 2.0, 2006. URL http://www.omg.org/

cgi-bin/doc?formal/2006-05-01.

OMG. Unified Modeling Language: Superstructure http://www.onig.org/docs/formal/09-

02-02.pdf, 2009.

OMG. Object Constraint Language, Version 2.2, 2010a. URL http://www.omg.org/spec/

OCL/2.2/. htt])://www.onig.org/spec/OCL/2.2/.

OMG. Unified Modeling Language:

http://www.omg.Org/spec/uml/2.3/superstructure/pdf/, 2010b.

222

Superstructure

Matthew .1. Parkinson. Local reasoning for Java. PhD thesis, Universitj' of Caiiibricige

Computer Laboratory , 2005.

Matthew .1. Parkinson and Gavin M. Biennan. Separation logic, abstraction and inheri­

tance. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT sympo­

sium on Principles of programming languages, pages 75 -86, New York, NY, USA, 2008.

ACM. ISBN 978-1-59593-689-9. doi: http://doi.acrn.org/10.1145/1328438.1328451.

Tn Peng, .ling Dong, and Yajing Zhao. Verifying behavioral correctness of design jrattern

iinplementatioir. In SEKE, pages 454 459, 2008.

Dewayne E. Perry and Alexander L. Mhlf. Formdations for the study of software ar­

chitecture. ACM SIGSOET Software Engineering Notes, 17(4):40 52, 1992. URL

citeseer.ist.psu.edu/perry92foundation.html.

Niklas Pettersson. Design Pattern Detectioir Evaluation Suite (DPDES), 2010. URL http:

//w3.msi. vxu. se/-npe/DPDES/. Last accessed: 10th April 2012.

Niklas Pettersson, Well Lowe, and .Toakiin Nivre. Evaluation of Accuracy in Design Pattern

Occurrence Detection. IEEE Tiunsactions on Software Engineejing, 99(RapidPosts),

2009. ISSN 0098-5589. doi: http://doi.ieeeconij)utersociety.org/10.1109/TSE.2009.92.

Shaz Qadeer and .lakob Rehof. Context-bounded model checking of concurrent software.

In In TACAS, pages 93 107. Springer, 2005.

G. Ranialingani. The Undecidability of Aliasing. ACM Transactions 07i Programming

Languages and Systems, 16(5): 1467 1471, 1994. ISSN 0164-0925. doi: http://doi.acni.

org/10.1145/186025.186041.

G. Ramalingam. Gontext-sensitive synchronization-sensitive analysis is undecidable. ACM

Trans. Program. Lang. Syst., 22(2):416 430, 2000. ISSN 0164-0925. doi: http://doi.acm.

org/10.1145/349214.349241.

Ghulam Rasool, Patrick Maeder, and Ilka Philippow. Evaluation of design pattern re­

covery tools. Procedia Computer Science, 3(0):813 819, 2011. ISSN 1877-0509.

doi: 10.1016/j.procs.2010.12.134. URL http://www.sciencedirect.com/science/

article/pii/S1877050910005090. World Conference on Information Technology.

223

Rational®. Rational Software Architect htti)://www-

3()6.ibm.coin/software/awdtools/architect/swarchitect/, 2007. URL http:

//www-306.ibm.com/software/awdtools/architect/swarchitect/.

Thomas Reps. Undecidability of context-sensitive data-independence analysis. ACM Trans.

Program.. Lang. Syst., 22(1):162-186, 2000. ISSN 0164-0925. doi: http://doi.acin.org/10.

1145/345099.345137.

.lohn C. Reynolds. Separation logic: A logic for shared mutable data strnctnres. In Pro­

ceedings of the 17th Annual IEEE Symposium, on Logic in Computer Science, LICS ’02,

pages 55 74, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1483-9.

URL http://dl.acm.org/citation.cfm?id=645683.664578.

Noam Rinetzky, Mooly Sagiv, and Eraii Yaliav. Interprocednral Shape Analysis for

Cutpoint-Free Programs. In In SAS?05: Static Analysis Syrnpo.sium, volume 3672 of

LNCS, pagers 284-302. Springer, 2005.

Patrick M. Rondon, Ming Kawagnei, and Ranjit .Iliala. Liquid types. In Proceedings of the

2008 ACM SIC PL AN conference on Programming language design and implementation,

PLDI ’08, pages 159 169, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2.

doi: 10.1145/1375581.1375602. URL http: //doi . acm. org/10.1145/1375581.1375602.

Stan Rosenberg, Anindya Banerjee, and David A. Naumann. Local reasoning and dynamic

framing for the composite pattern and its clients. In Proceedings of the Third international

conference on Verified software: theories, tools, experiments, VSTTE’IO, pages 183 198,

Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15056-X, 978-3-642-15056-2. URL

http://dl.acm.org/citation.cfm?id=1884866.1884887.

.lames Rmnbangh, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc., Upper Saddle River,

N.L USA, 1991. ISBN 0-13-629841-9.

.lames Rmnbangh, Ivar .lacobson, and Grady Booch. The Unified Modeling Language ref­

erence manual. Addison-Wesley, 1999. ISBN 0-201-30998-X.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric Shape Analysis via 3-

Valued Logic. ACM Transactions on. Programm.i.ng Languages and Systems, 24(3):217

298, 2002. ISSN 0164-0925. doi: http://doi.acni.org/10.1145/514188.514190.

224

David A. Schmidt. Data Flow Analysis is Model Checking of Abstract Interpretations. In

PTOceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program­

ming Languages, POPL ’98, pages 38 48, New York, NY, USA, 1998. ACM. ISBN 0-

89791-979-3. doi: 10.1145/268946.268950. URL http://doi .acm. org/10.1145/268946.

268950.

Douglas C. Schmidt, Michael Stal, Hans Rohert, and Frank Buschmann. Pattern-Oriented

Software Architecture: Patterns for Concurrerit and Networked Objects, .lohn Wiley and

Sons, 2000.

Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5): 19

25, 2003. ISSN 0740-7459. doi: http://doi.ieeecomputer.society.org/10.1109/MS.2003.

1231146.

William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Experimental and Quasi-

Experimental Designs for Generalized Causal Inference. Houghton MilHin, 2002. ISBN

0395615569.

Shravan Shetty and Vinod Menezes. Verification of architectural rules and design pat­

terns. Master’s thesis, Department of Mathematics and Computer Science, Eindhoven

University of Technology, 2011.

Nija Shi. Reverse Engineering of Design Patterns from Java Source Code. PhD thesis,

Computer Science, University of California, Davis, 2007a.

Nija Shi. PINOT: Pattern INference and recOvery Tool, 2007b. URL http://www.es.

ucdavis.edu/~shini/research/pinot/. Last accessed: 7th March 2012.

Nija Shi and Ronald A. Olsson. Reverse Engineering of Design Patterns from .lava Source

Code. In ASE ’06: Proceedings of the 21st lEEE/ACM International Conference on

Automated Software Engineering, pages 123 134, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2579-2. doi: http://dx.doi.org/10.1109/ASE.2006.57.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. Pick Your Contexts Well:

Understanding Object-Sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’ll, pages 17 30,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.

1926390. URL http://doi.acm.org/10.1145/1926385.1926390.

225

J.M. Smith and D. Stotts. SPQR: flexible antomated design pattern extraction fi'om source

code. Automated Software Engineering, 2003. Proceedings. 18th IEEE International Con­

ference on, pages 215-224, Oct. 2003. ISSN 1527-1366. doi: 10.1109/ASE.2003.1240309.

Bernhard Steffen. Data Flow Analysis as Model Checking. In Proceedings of the Inter­

national Conference on Theoretical Aspects of Computer Software, TAGS ’91, pages

346 365, London, UK, UK, 1991. Springer-Verlag. ISBN 3-540-54415-1. URL http:

//dl.acm.org/citation.cfm?id=645867.670930.

Krzysztof Stencel and Patrycja Wegrzynowicz. Implementation Variants of the Singleton

Design Pattern. In OTM Workshops, pages 396 406, 2008.

Toufik Taibi. Design Pattern. Formalization Techniques. IGI Publishing, 2008. ISBN

9781599042190.

Toufik Taibi and Taieb Mkadmi. Generating .lava Code from Design Patterns Formalized

in BPSL. Innovations in Information Technology, 2006, pages 1 5, Nov. 2006. doi:

10.1109/INN()VATIONS.2006.301944.

Toufik Taibi and David Click Ling Ngo. Formal Specification of Design Patterns - A

Balanced Approach. Journal of Object Technology, 2(4):127 140, 2003.

Toufik Taibi, Angel Herranz, and .luaii .lose Moreno-Navarro. Stepwise refinement valida­

tion of design jiatterns formalized in tla-f using the tic model checker. Journal of Object

Technology. 8(2):137 161, March 2009. ISSN 1660-1769. doi: 10.5381/jot.2009.8.2.a3.

LTRL http://www. jot.fin/contents/issue_2009_03/article3.html.

H. Theiling and C. Ferdinand. Combining Abstract Interpretation and ILP for Microarchi­

tecture Modelling and Program Path Analysis. In Real-Time Systems Sym.posium, 1998.

Proceedings., The 19th IEEE, pages 144 -153, dec 1998. doi: 10.1109/REAL.1998.739739.

N. Tsantalis, A. Chatzigeorgiou, G. Stejihanides, and S.T. Halkidis. Design pattern detec­

tion using similarity scoring. Software Engineering, IEEE Transactions on, 32(11):896

909, nov. 2006. ISSN 0098-5589. doi: 10.1109/TSE.2006.112.

Nikos Tsantalis. Design Pattern Detection using Similarity Scoring, 2009. URL http:

//java.uom.gr/~nikos/pattern-detection.html. Last accessed; 8th April 2012.

226

•lilies vail Giirp and ,Tan Bosch. Design erosion; problems and causes. Journal of Systems

and Software, 119,2002. ISSN 0164-1212. doi: DOI:10.1016/S0164-1212 01)

00152-2. URL http://www.sciencedirect.com/science/article/B6V0N-44X09DV-1/

2/5aeefd30957f7ffba93ce7d2426b2e2a.

Mandana Vaziri and Daniel .Jackson. Some Shortcomings of OCL, the Object Constriint

Language of UML. In Proceedings of the Technology of Object-Oriented Languages and

Systems (TOOLS 34’00), TOOLS ’00, pages 555 , Washington, DC, USA, 2000. IEEE

Computer Society. ISBN 0-7695-0774-3. URL http://portal.acm.org/citation.cfm?

id=832261.833293,

VDMTools. The .lava to VD1M-I--I- User Manual ver.1.0. Technical report, CSK Corporation,

2010.

Bernhard Volz and Stefan .lablonski. Towards an open nieta modeling environment. In

Proceedings of the 10th Workshop on Domain-Specific Modeling, DSM ’10, pages 1":1-

17:6, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0549-5. doi: 10.1145/2060329.

2060366. URL http;//doi.acm.org/10.1145/2060329.2060366.

Markus von Detten. Towards systematic, comprehensive trace generation for behav­

ioral iiattern detection through symbolic execution. In Proceedings of the 10th ACM

SIGPLAN-SIGSOFT tuorkshop on Program analysis for software tools, PASTE 11,

pages 17 20, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0849-6. doi:

10.1145/2024569.2024573. URL http; //doi. acm. org/10.1145/2024569.2024573.

Patrycja Wegrzynowicz and Krzysztof Stencel. Towards a Comprehensive Test Suite for

Detectors of Design Patterns. In ASE ’09: Proceedings of the 2009 IEEE/ACM bi-

ternational Conference on Automated Software Engineering, pages 103 110, Washing­

ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3891-4. doi: http:

//dx.doi.org/10.1109/ASE.2009.85.

Lothar Wendehals. Specifying Patterns for Dynamic Pattern Instance Recognition with

UML 2.0 Sequence Diagrams. In Proceedings of the 6th Workshop Software Reengineering

(WSR), volume 24/2, pages 63 -64. Softwaretechnik-Trends, 2004.

Lothar Wendehals and Alessandro Orso. Recognizing Behavioral Patterns at Runtime

using Finite Automata. In WODA ’06: Proceedings of the 2006 international workshop

227

on Dynamic systems analysis, pages 33 40, New York, NY, USA, 2006. ACM. ISBN

1-59593-400-6. doi; littp://doi.acm.org/10.1145/1138912.1138920.

.Tim Woodcock and .Tim Davies. Using Z: specification, refinement, and proof. Preiitice-Hall,

1996. ISBN 0139484728.

Zlii-Xiaiig Zliang, Qing-Hua Li, and Ke-Rong Ben. A New Metliod for Design Pattern

Mining. In Machine Learning and Cybernetics, 2004- Proceedings of 2004 International

Conference on, volnme 3, pages 1755 1759 vol.3, ang. 2004. doi: 10.1109/ICMLC.2004.

1382059.

Hong Zhn, I. Bayley, Lijnn Shan, and R. Amphlett. Tool support for design pattern recog­

nition at model level. In Computer Software and Applications Conference, 2009. COMP-

SAC '09. 33rd Annual IEEE International, volnme 1, pages 228 -233, July 2009. doi:

10.1109/COMPSAC.2009.37.

228

Appendix F

List of Acronyms

AF: Abstract Factory

AVT: Alas Verification Tool

AST: Abstract Syntax Tree

BC: Badly confignred

BD: Behavionr Diagram

BPSL: Balanced Pattern Specification Langnage (DPSL) [Taibi and Ngo, 2003]

CFG: Control-Flow Graph

CoR: Chain of Responsibility

DA: Dynamic Analysis

dComp: Destrnction-only composition copystate

DEEBEE: Design Pattern Evaluation Benchmark Environment (Benchmark) [Fulop

et ah, 2008]

DFA: Data-Flow Analysis

DPML: Design Pattern Modelling Langnage [Maplesden et ah, 2007]

DPSL: Design Pattern Specification Langnage

DPVT: Design Pattern Verification Tool

229

GEBNF: Graphic Extension of BNF (DPSL) [Bayley and Zhn, 2010]

GoF; Gang of Four

iConip: Initialization-only composition copystate

OCL: Object Constraint Language [OMG, 2010a]

OC/VDM-f-l-: Object Calculus/Vienna Development Method-t f (DPSL) [Lanoetal.,

1996]

OOML: Object-Oriented Modelling Language

OOPL: Object-Oriented Programming Language

PINOT: Pattern Inference and Recovery Tool (DPVT) [Shi and Olsson, 2006]

P-MARt: Pattern-like Micro-Architecture Repository (Benchmark) [Gueheneuc, 2007]

SA: Static Analysis

SD: Strncture Diagram

SanD: Static and Dynamic Specification Language (DPSL) [Heuzeroth et ah, 2003]

UC: Uiiknowii configuration

UML: Unified Modeling Language [OMG, 2009]

\^'C: Well configured

230

