LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Specification and Verification of Design Pattern Structure,

Behaviour and Variation

Ashley Sterritt

A Dissertation submitted to the University of Dublin, Trinity College
in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

April 2013

TRINITY COLLEGE
2 & e 2003

LIBRARY DUBLIN

| e

ii

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any

other University, and that unless otherwise stated, it is entirely my own work.

Y/Kshloy Sterritt

Dated: April 30, 2013

Permission to Lend and/or Copy

[, the undersigned, agree that Trinity College Library may lend or copy this Disserta-

tion upon request.

vi

Standing on the shoulders of giants...

leaves me cold

Michael Stipe, ‘King of Birds’

viii

Acknowledgements

I would like to thank my supervisor Professor Vinny Cahill for his time and support over
the years. I appreciate his rigorousness and patience. I would also like to thank Dr Siobhan
Clarke for reading and providing feedback on my work. I benefited greatly from my exposure
to intelligent and enthusiastic researchers. I remember especially conversations with Dr.
Marcin Karpinski, Dr. Ray Cunningham and Dr. Anthony Harrington. I thank Dr. Serena
Fritsch and Marco Slot for reading drafts of this thesis, and for their friendship at a stressful
time. I would also like to thank Warren Kenny, my programming guru.

Mélanie has been incredibly supportive and understanding, especially since she realized
that I might actually finish sometime. She has helped in many many ways. Finally, I would
like to thank my family for their support. My mother has taught me to value education

and learning. This thesis is for her.

Ashley Sterritt
University of Dublin, Trinity College
April 2013

ix

Abstract

Design patterns are generic solutions to commonly-occurring object-oriented software de-
sign problems that display good design properties such as extensibility or loose coupling.
During software maintenance, earlier design decisions, such as the application of design
patterns, can be violated, gradually reducing software quality in a phenomenon known as
‘architectural drift’. Specifications serve to formalize design decisions and can be compared
directly to implementations, as well as being useful in communication. Precise specifica-
tion of patterns and automated verification of the conformance of implementations to the
specifications can help to avoid architectural drift, preserving software quality. Specification
languages and verification of design patterns can also be used for legacy code understanding
and the generation of quality metrics.

Design patterns place constraints on multiple entities (objects, classes and inheritance
hierarchies). They also describe generic interactions between entities, whose number and
type are unknown. This second characteristic is a distinguishing feature of patterns and
means they present a subtly different specification challenge to concrete software architec-
tures. Pattern catalogues typically describe a number of trade-ofts and optional features to
consider when implementing a particular design pattern. Therefore, it is difficult to produce
one specification that covers all the potential pattern implementation variants. For this rea-
son, many existing approaches to design-pattern specification and verification have focused
on ounly the structure and behaviour common to all variants, producing specifications that
are vague and lead to many false positives during verification. Some recent research has
focused on addressing design pattern variants directly, but this has focused on structure
only and lacked an accompanying verification tool.

In our analysis of the widely-used Gang of Four (GoF) pattern catalogue, we identified
five categories of invariants that a design pattern specification language should be capable of

specifying. Of these, three were found to be insufficiently addressed by the state of the art in

design pattern specification and verification: invariants relating to inter-class dependency,
an object’s runtime state and the runtime properties of data structures. Existing design
pattern specification languages were found to suffer from numerous deficiencies, such as,
a lack of expressiveness, imprecise semantics, no verification support and/or verification
based on only simple or sporadically-applied program analyses. In this thesis, we focus
on the specification and verification of pattern variants and of the insufficiently-addressed
invariant categories identified.

This thesis presents Alas, a precise specification language that is capable of expressing
constraints in each of the five invariant categories that we identified. It provides syntax
and semantics for the description of design pattern variants as well as for the generic
specification necessary to describe design patterns. The Alas Verification Tool (AVT) can
read Alas specifications and verify that Java source code conforms to them. It uses data-flow
analysis and deals with object-oriented issues such as aliasing and modular verification.

To evaluate Alas and AVT, we created our own benchmark based on Alas specifications,
identifying GoF pattern instances in a number of code bodies that make extensive use
of patterns and are commonly analyzed by related work. We aggregated some existing
benchmarks by including pattern instances included in them that also conform to our
specification. Small extensions to the benchmark were made to increase the generality of
the analysis results. To our knowledge, this is the first sizeable benchmark to include design
pattern variants.

Verification of novel invariant categories by AVT is demonstrated on the benchmark
and is shown to be accurate and scalable to medium-sized examples. The novel invari-
ant categories provided by Alas and verified by AVT allow us to address patterns typically
overlooked by the literature, as well as novel aspects of more well-supported patterns. Spec-
ification and verification of design pattern variants allows us to identify pattern instances
overlooked by existing tools, and to distinguish between instances of different variants in-

distinguishable by existing tools.

X1

Contents

Acknowledgements
Abstract

List of Tables

List of Figures

Chapter 1 Introduction

Il Motivation: s u ele o s sm, 8 3 @@ 5 ¢ 5% & ¢ 5 65 & 8 # s 2 s W sE 8 2 88
125 SBackerctund sy e T B B s S A e, G d A e E R e b 4 s
1.3 Scope of the Thesis
1.4 Key Contributions of the Thesis . « : . s v « s ¢« w ¢ ¢ 3 55 o 5 s w6 5 3 04
1.5 Roadmap of the Thesis

Chapter 2 Design Pattern Specification and Verification Classification

2.1 Tofroduction . . . « v s 5w 6 5 mw v s 5w e s b e & m s s w oo e e
2.2 | Scopeand related work : u s a5 sim s s wom s s s mE E § mE s s 5 @@ S e @B
2.2.1 Other DPSL and DPVT reviews in the literature
2.3 Abstraction Levels in Design Pattern Specification
2.3.1 Generic pattern specificationo
2.3.2 Variant-specific pattern specification o000 L.
2.4 Specification of Design Patterns
2.4.1 Syntactic elementso
2.4.2 Invariantelements : . s s s o & ¢ 5 5w 5 v v m s v e E o8 me s
2.4.3 Invariant dynamism o oL
244 Conceptual elemMents o « « : s 5 « ¢ w0 o« 5 6@ w55 e 8o b omE 58 s

Xii

ix

xvii

Xix

DIANG SIIIINETYE W 5 vr o ooe il S LG 095 BITR 5170 o s B e SR g e 20 37

2.5 Verification of Design Pattern Implementations 38
2:5.1 Invariant elements . . « s o 6+ 55 v s B ot s 56w 5o @lE b b B 39
2.5.2 Languages compared during verification 45
2.5.3 Conformance relation 46
2.5:4 Pattern instance classification . « « ¢ s 5 2 ¢ ¢ 2w e L E e s e e s s 48
2.5.5 DPVT usecases i 49
2.5.6 Program analysiso 50
2.5.7 Assigning pattern roles to implementation actors 55
2.5.8 SUMIMATY . . « o v e v v w0 o o o v o o e e e e e w e e e e e e e 56

2.6 Conclusions 57
Chapter 3 Alas 59
F8 mIntraduction’s B b gl e e e L L S e SRR R 60
3141 S lanpage basisirationale & %o iaca ard o' doio e Mhand e s o o o 60
312 - AlasidesigndeciSions .=, . - . o . L e e i n e e e s b e 63
3.1.3 UML as a basis for design pattern specification 64
3.1.4 Sample Alas specificationo 65

3:2. Strictural specificatiom I AlAS s« + % s a s v nmes P ans fab e &l 68
32.1 Dependencyinvariants « = - . ¢ os ¢ ¢ sw s v w e e s ww s voww e 69
3.2.2 Structural variant specificationo 0L T2
3.2.3 Structural cardinality invariantso L T

3.3 | Behaviotiral specification in Alas & : : s« o5 « 5w « 5 5m 5 s GEw o8 S s s 80
3.3.1 Control-flow invariants 81
3.3.2 Object-state invariantso 87
3.3.3 Data structure invariantso Lo 98
334 Interactiominvariamts : ws s .+ 6.0 5 ¢ w55 2% v e 5 8BS 8 8w B 102
3.3.5 Behavioural pattern variant specification L. 104
3.3.6 Behavioural cardinality invariant specification 107

Selll SUIMITALY ~ - 2 5 6@ 5% om ™ mod Shm® o o HEom 5 A A5 B & A G E S 108
Chapter 4 AVT Implementation 111
4.1 Verification requirements imposed by Alas 112
4.2 Shape analysis algorithm 000000 113

4.2.1 Intra-procedural analysis
4.2.2 Inter-procedural analysis
4.2.3 Termination
4.2.4 Efficiency
4.3 Alas clause verification
4.3.1 Conservative verification
4.3.2 Dependency
4.3.3 Object state
4.3.4 Data-structure
4.4 Miscellaneous implementation issues
4.4.1 Synthetic method CFGs
4.4.2 Unimplemented features
4.5 Summary

Chapter 5 Pattern Specification and Benchmark

5.1 Benchmark Construction Methodology
5.1.1 Code Body Selection . .
5.1.2 Inspection method . . .
5.2 Benchmark
5.2.1 Dependency
5.2.2 Object State
5.2.3 Data structure
5.3 Summary« - oo o

Chapter 6 AVT Verification Evaluation

6.1 Methodology
6.1.1 SCOPE « s v in v o b o
6.1.2 Metrics

6:2 Results. & . wc s e s s
6.2.1 Dependency
6.2.2 Object State
6.2.3 Data Structure

6.3 Summary

Xiv

129

133
133
134
136
138

140

Chapter 7 Conclusions
7.1 Specificconclusions e e
T2 ~General conclusions . « « & w5 2w sz 5 s & 58 95 58 5@ 4 5 5 663 8 E ¥

7 RN T i) 0 1) o A N S A DU St B U S S I S R

Appendix A Control-flow invariant semantics
Al Sequencing e
AL TSelectioN s o 5 » 4% dir w8 e e W e e e e e e e " e e
A3 Tteration
A4 Lifeline semantics

A.5 Generic behaviour e e

Appendix B Benchmark Observations and Anciilary Specifications
Bl = DEPENABOCT ¢ v Jha | 3 5 5 s s et b6 gz | 200, fo ettt S bl e e, 5 o (b, 5 o 0 g s 5 e 3
B:1ll, ADStract BAGLOLY « o w5 Sbe 5o 6 08t i1 wta o o o s e 15 2ol st o 5
B.1.2 Command e
B.1.3 Builder, Strategy, State 0.
B.2 Object=5tate . . « o & s o 5w s wm v 4 mw s s e s a s m e s s m e
B2:1 Prototype s = : v o s 5 50 55 915 ¢ 1 5.0 5% 099 5 % 6 5 s 5w 83
B.2:2" 'Observerand Memenfo: « o s s » 5 ¢+ 5 50 s » 656 = 96 5 5 5m 5 3
B.3 Data-structure
B.3.1 Decorator
B.3.2 CoR e e e e e e e e e
B33 Composite . « : v om ¢ 5 55 673 @ 5 5 85/ & s6 5 § 5 L5 E 5 5 5 53
Appendix C Verification Examples
C.1 Dependency
C.2 Object state e e e e e
C.3 Datastructure o i it e e e
(3l DECOTAEAT & v = = @l s 56 b 5 = sl & B 5 @b 5 5 Bl & 5 B 5 b Wk F E
C.3.2 Composite. e
Appendix D Aggregated benchmarks
D.1 Dependency e
D.1.1 Abstract Factory « = « s = 5 s s s o s 5 56 ¢ 5 w6 55 55 5 5 29 ¢

XV

170
170
173
175

177
177
178
181
182
183

185
185
185
186
186
187
187
188
189
189
190
190

193
193
195
196
196
197

D.2 Object state 203
Di2.) PrototyDe « « o oo v 5 wm s « 5 5% ¢ 8 s 5 5 8 5008 58 mw o s 8w s 203

D3 Data Strictiite: « « & o5 5 5 65 w6 % S 5 5 G & 8 5 4 5 6 6 8 56 & 5 & 45 3 204
DA DOCOTATOT 15 "5 ik ¢ 2 & 8 5 st @k & 5 ot b 4 mosl £ 8 A G 5 E RE S EE B S 204
D.4.1 Composite 204
Appendix E Generic behaviour specification 208
Appendix F List of Acronyms 229

XVvi

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

20

4.1

4.2

5.3

6.1
6.2

Classification of the support of each DPSL for each of the syntactic elements
Classification of the support of each DPSL for each of the invariant types
Classification of the support of each DPVT for each of the invariant types .
Relation between specification and implementation language for each DPSL
Relation between specification and implementation language for each DPVT
Analysis use case, program analysis and implementation language classifica-
tion of each DPSL’s associated DPVT
Analysis use case, program analysis and implementation language classifica-

tion of each DR L. 1o i s e i o oo, ol e a5l e e ey s

Ordering and element uniqueness of each of the Alas (and OCL) collection

JAHAS . ¢ o s 5 2 Sods v s 5w b sps e ¢ o @ den Bew vmd w ps b ow B 5 G0 A

Distinguishing features of the shape analysis algorithms implemented by
Rinetzky etal. and AVT ¢ o . < o v 5 s mw s 55 sim 58 5 5 3 98 5 5 808 &3
A summary of the requirements imposed by the novel invariant categories of
Alas and features of object-oriented programming languages, and the AVT

design approaches addressing each requirement L.

Code bodies and how often they occur in the evaluation of existing DPVTs
Novel invariant categories in Alas required for each of the patterns in GoF
design pattern catalogue specificationso 0L
Intended instances of variants of the Prototype pattern in the Alas bench-

mark for each code body o

AVT analysis results for the Abstract Factory pattern

AVT analysis results for the Command pattern

Xvii

23
29
41
48
49

97

123

132

135

139

6.3
6.4
6.5

Dl

D.2

D4

D.5

D.6

D.7

D.8

D.9

AVT analysis results for the Prototype pattern
AV'T analysis results for the Decorator pattern

AV'T analysis results for the Composite pattern

Instances of variants of the Abstract Factory pattern in each benchmark from
the JHotDraw code body
Instances of variants of the Abstract Factory pattern in each benchmark from
the JUnit code body e
Instances of variants of the Abstract Factory pattern in each benchmark from
the.Switigicodebody v vl it vt L 5o s & mmwm s 5w s e e s
Actor names in candidate Command instances
Command instance classification00
Instances of variants of the Decorator pattern in each benchmark from the
JHotDraw code body
Instances of variants of the Decorator pattern in each benchmark from the
JUniticode body o . il bk wiiie me s B n s s m e ek s s s @ e
Instances of variants of the Decorator pattern in each benchmark from the
SWING code BOAY « « i o 5w 6 5w o cobw ks s e P osew E 5 B s s § s @
Instances of the Composite pattern identified in both the Alas benchmark

and aggregated benchmarks

Xviii

201

202

203

203

205

205

205

207

List of Figures

2.1 Bayley and Zhu'’s [2010] specification of the Abstract Factory pattern, includ-

ing two variants: Single factory method and Multiple factory methods 18
2.2 DPSL classification framework dimensions 19
2.3 Syntactic elements of GoF design patterns 211
2.4 Invariant categories and types: Part 1: Dependency and cardinality invariants 25
2.5 Invariant categories and types: Part 2: Control-flow invariants 26

2.6 Invariant categories and types: Part 3: Object-state and data-structure in-

EnEkeins, e e M M E oo o g e S S e L e e o R 27,
2.7 The specification of the Visitor pattern given in Mak et al. [2004] Sl
2.8 Flyweight pattern conditional branching expressed in BPSL 32

2.9 RBML [France et al., 2004| behavioural specification of the Visitor pattern 33
2.10 Conceptual elements of GoF patterns 38
2.11 Classification framework dimensions specific to DPVTs 46

2.12 Control-flow graph for an implementation of the Singleton’s getInstance ()

method (PINOT) 54

2.13 FUJABA [Wendehals and Orso, 2006] DFA for the State pattern 55

3.1 A textual specification of the FalseFacade pattern, equivalent to the graphical
specification in Figure 3.2 oo 67
3.2 The structural specification of the FalseFacade pattern, including a struc-
ture diagram with three class roles, three method roles and three reference
variable roles. The constraint boxes define a dependency invariant, a pattern
variant differing in structure from the structure diagram and a data-structure

definition. L 68

Xix

3.4

3.10

3.11

3.12

3.13

The behavioural specification of the FalseFacade pattern. The behaviour
within the opt operator is conditional. A data structure invariant is attached
to the end of receivingMethod, indicating a post-condition.
Composite Structure diagram with two structural variant definitions, both
of which add static roles to the core specification. This allows for four valid
variants of the Composite pattern.
A variant specified in a separate SD, illustrating the use of the scoping (::)
and substitution (=>) operators L
Behavioural specification of the CoR pattern involving a two-operand alt
with an operand guarded by a basic state invariant on an object role. A
single path in a valid implementation may not contain the behaviour of both
operands. The call event involving successor’s handleRequest only cccurs
if the successor has been initialized.00
Specitying iteration over and interaction with an unbounded collection by
matching the name of the quantified variable in the loop guard (obs) and
the selector string in the lifeline.

A potential (non-Alas compliant) Memento pattern specification where the
objects pointed to by reference variable roles are strictly equal when the
Memento’s constructor returns.
Mlustration of the usage of the CopyState reference variable role in a struc-
tural specification. CopyState may be bound to a different set of primitive
and user-defined reference variables in each implementation of the Memento
Hlustration of the isCopy operator, relating the copystate of two objects at
a particular point in the execution. Note also the matching parameter and
lifeline object role name. The diagram states that the Originator object calls
the Memento passed to it as a parameter.
Class A satisfies the strict ownership relation with respect to class B, but class
B does not satisfy the strict ownership relation with respect to class C
Graph of all reachable state and the included copy state for the classes defined
in Figure 3.11 using the comp copy state definition
Factory method specification using the isAlias operator and the qualified
and unqualified version of the returnval keyword. The factoryMethod is

required to return the object returned by the constructor of Product.

69

34

86

88

90

90

92

93

96

3.14

3.15

3:16

3.17

3.18

3.19

3.20

321

A graphical definition of a collection. Subject contains an ordered collection
of potentially non-unique Observer objects
Subject’s detachObserver specification illustrating collection operators and
matching parameter and constraint role names. The method should remove
the parameter from the list and have no other side effects.
CoR Behaviour diagram along with an interaction invariant using Alas data-
structure operators. The specification states that a DefaultHandler should be
reachable from every handler in any valid chainOfResponsibility. This
constraint must be satisfied at the end of every method that refers to and/or
mutates the chain0OfResponsibility.
Composite Behaviour diagram illustrating the use of the var operator and
variant-labelled constraint boxes to specify variant-specific behaviour. The
same variant is named in both the var operator and constraint box, meaning
that both of these constraints must apply in a valid parentLinks variant of
the Composite'pattenn. = < v © v s v ¢ 5 uie c s ma 2 8w s« @a o5 s
BD illustrating the use of the scoping operator for the definition of a sub-
variant and the alternative conformance relations provided by Alas. The do
nothing variant may only be satisfied by implementations that satisfy the
nSAle VAEIANT % 2 25 s G e S HE i s SR s B AR EE F REES LEE
Specification of two behavioural variants of the CoR pattern using a multiple-
operand var. Each valid CoR implementation must perform the behaviour
specified in viaSuperDelegation or directDelegation, but not both or
neither.
Structural cardinality invariant specifying a surjective relation between Fac-
tory Methods and AbstractProducts in each ConcreteFactory: every Facto-
ryMethodSet contains some method that initializes some subclass of each
of the AbstractProduct classes. Both the method role representing a Fac-
tory Method and the class role representing a ConcreteProduct have been
substituted with variables bound in the quantified specification.
Structural cardinality invariant specifying an injective relation between Fac-
tory Methods and ConcreteProducts in each ConcreteFactory: no two Fac-
tory Methods create the same ConcreteProduct. Two quantified variables

are bound to a single variable substituting for a method role.

Xxi

97

98

104

106

106

4.1

4.2
4.3

4.4

4.6

4.7

4.8

5.1

6.1

6.2

6.3
6.4
6.5

The running example used to illustrate the features of the shape analysis
algorithm implemented in AVT
Control-flow graph for the example of Figure 4.1
Simple set method example with two formal parameters and one reference
variable that may be all aliased when the method call dispatches
Shape graph resulting from the analysis of the first path through the example
of Figure 4.1, until the end of the IF block
Shape graph representing the second path through the method of Figure 4.1,
through the ELSE block
The call graph edges resulting from the analysis of the call to setRealSub-
jectin Figure 4.1 e e e e e e
The relationship between conservative Alas predicate verification and the
choice of TNEEt OPETAtOT « + + 4 wis & 5 6 & & 9 & & s B & s 5 5 55 « & & ¢ ¢ s

Pseudocode for isCopy verification on a single shape graph

Alas specification of the GoF (core) and No AF variants of the Abstract
Factory pattern L
Alas specification of the structure of all variants of the Command pattern

Alas specification of the behaviour of the Command pattern
Alas specification of the Prototype’s clone method. The clone method is
required to make and return a copy of ‘this’ L.
OptionListModel’s clone method in the Swing code body. The ListenerList
variable is not made an alias or assigned a deep-copied object
Structural specification of the Decorator pattern, along with a single struc-
PUral VArIAGNE « . . ww s s e s s e s e e e b s s § mom s E o s o s

Alas specification of the operation method of the Composite subclass

DefaultListSelectionModel’s clone method in the Swing code body
Shape graphs output by AVT after analyzing DefaultListSelectionModel’s
clome method 0 0 ot e s e e e e e s m o s e
Result of applying the isCopy predicate to the shape graphs of Figure 6.2

SelectionTool’s createDragTracker method from the JHotDraw benchmark .
Result of applying the data-structure invariant to SelectionTool’s createDrag-

Tracker method L

B.1

Gl

C.2

C.3

C.5
C.6

C.7

CS8

D.1

E.l

E.2

E.3

Specification of the operation method for the Forward if not null variant of

the Decorator pattern. 190

StandardDrawingView’s selectionZOrdered in the JHotDraw code body is a
‘bad’ client of the Factory Method UndoableAdapter.getAffectedFigures as
it creates an instance of a FigureEnumeration subclass 193

AVT output when applying the implementation dependency invariant of the

Abstract Factory Client role to the method of Figure C.1 194
Elementlterator’s clone method in the Swing code body 195
Result of applying the isCopy predicate to the source code of Figure C.3 . 196
BouncingDrawing’s replace method from the JHotDraw benchmark 196

Result of applying the data-structure invariant to BouncingDrawing’s replace
method oL 197
Segment of the AVT analysis output when analyzing SuiteTest’s suite
method. The Composite tree is correctly classified as being free from sharing 198
Modified source code of JTree’s getDefaultModel method from the Swing
code body, with sharing introduced. The original simply omits the addition

of the ‘blue’ node to the parent ‘sports’™ 199

Composite class actor of each identified instance, along with their variant

classification 207

A generic specification of the Looping Director variant of the Builder pattern.
No selector is provided for the method set: any arbitrary member of the
BuildPartSet method set may be called on each iteration of the loop. . . . 209
A generic specification of a Template Method. Each of the members of the
PrimitiveOperationSet is called in sequence. The set may vary in size
between valid implementations. 210
Generic specification of the ConcreteFactory’s factoryMethod. The specifi-
cation states that for each class in the ConcreteProduct class set role, there

exists an alternative path that creates an object of that class. 211

xxiii

Chapter 1

Introduction

This thesis presents Alas (Another Language for pAttern Specification): a specification
language capable of expressing the constraints imposed by object-oriented design patterns
from each of the invariant categories identified in a novel classification framework of design
pattern specification languages (DPSLs). Alas is also capable of specifying variants of
design patterns that differ in terms of structure and/or behaviour. Verification involves
comparing a design pattern specification in a given language to an implementation and
categorizing the implementation as conforming or not conforming to the specification. We
use the term Design Pattern Verification Tool (DPVT) for tools that perform this function.
The Alas Verification Tool (AVT) is a DPVT capable of checking that Java source code
conforms to Alas specifications. The evaluation contained in this thesis demonstrates how
the combination of Alas and AVT allows properties of design pattern implementations
that were previously not addressed to be specified and verified. The specification and
verification of design pattern variants allows for more pattern instances to be identified
in the analyzed bodies of code. Also, instances of different variants can be distinguished
that are indistinguishable by other languages and tools. Finally, the thesis illustrates the
wider applicability of Alas and AVT due to characteristics of the code bodies analyzed and

instances uncovered.

The remainder of this chapter is structured as follows: we motivate and provide back-
ground on the specification and verification of design patterns in Sections 1.1 and 1.2, re-
spectively. We describe the scope and key contributions of this work in Sections 1.3 and 1.4,

respectively, before providing a brief roadmap of the rest of the thesis in Section 1.5.

1.1 Motivation

Design patterns are ‘simple and elegant solutions to specific problems in object-oriented
software design... that have been developed and evolved over time’ [Gamma et al., 1995].
The concept of design patterns as generic solutions to be applied in multiple contexts
originated with Christopher Alexander, who developed a pattern language for designing
buildings and cities [Alexander, 1979]. Alexander’s work differs from subsequent work on
software design patterns in that he dictates an order in which the patterns should be applied,
and that his aim is to generate a complete design. Similarities, however, include the use of
templates to explain patterns in natural language and a discussion in terms of a concrete
example. Beck and Cunningham [1987] introduced the concept of patterns to software
design, with a small group of graphical user interface (GUI) patterns for Smailtalk. Since
then, a multitude of new patterns have been proposed in other catalogues and academic
papers |[Coplien, 1998][Gamma et al., 1995|[Schmidt et al., 2000][Erl, 2008] with many
focusing on object-oriented programming languages. A pattern catalogue is a collection
of design patterns, where for each pattern a description of its intent, applicability and
possibly some illustrative sample code is provided. The intent of a design pattern describes
its intended function and (sometimes implicit) non-functional properties that a correct
implementation of the pattern should display. The value of object-oriented design patterns
(subsequently referred to simply as design patterns) lies in the fact that they are not the
most obvious solution to novices in object-oriented software design: instead they represent
years of collective experience in how to “find pertinent objects, factor them into classes at
the right granularity, define class interfaces and inheritance hierarchies, and establish key
relationships between them”[Gamma et al., 1995], so that the design displays some positive

non-functional property, such as extensibility or loose coupling.

A software designer or developer applies a design pattern when they intend some piece
of code to exhibit one of these non-functional properties. The intent is sometimes captured
in comments, documentation or in variable naming conventions, but in other instances,
they remain implicit. In the latter case, the intention that a piece of code should conform
to some design pattern may be lost if, for example, the original developer leaves the orga-
nization to which the code belongs. A pattern can be incorrectly applied by the original
developer or original design decisions can be violated during maintenance, so that the code

no longer conforms to the pattern. Bieman et al. [2003] have shown that code utilizing

design patterns can be more prone to change than other code. Because the application of
patterns is not always fully documented and pattern implementations are prone to change
during maintenance, the invariants imposed by a design pattern may be broken and the
original design may degrade in a phenomenon known as architectural erosion or drift [Perry
and Wolf, 1992]|[van Gurp and Bosch, 2002|. Precise specification of the invariants a design
pattern imposes on an implementation and automated verification based on these specifi-
cations is useful to protect the developer’s initial intent when applying the design pattern

and can protect against this phenomenon.

1.2 Background

Pattern specifications define a number of roles (classes, objects or methods), most of which
are mutually exclusive, and also place constraints on how these roles interact. Thus, pat-
terns define object-oriented protocols to be satisfied by actors in the implementation. De-
sign patterns place constraints on multiple entities (objects, classes and inheritance hier-
archies) and are also more generic than concrete software architectures as they describe
interactions between entities, whose number, type and precise behaviour are unknown. For
example, when specifying conditional behaviour in a concrete software architecture, the
condition to be evaluated is known. However, some design patterns involve conditional
behaviour where the actual condition differs between implementations and is not known at
specification time. Also, while specifying concrete software architectures, it is not neces-
sary to place a constraint on the number of classes in a particular role, as the number of
classes is known, while such constraints are a central concern for design pattern specification
[Lauder and Kent, 1998|[Eden, 2001|[Mak et al., 2004]. Due to the specific requirements
on specification posed by the generic nature of design patterns, existing concrete software
architecture specification languages are unsuitable for their specification. This requirement
has motivated the development of numerous DPSLs, most of which focus on the description
of the Gang of Four (GoF) pattern catalogue [Gamma et al., 1995].

Pattern catalogues typically describe a number of trade-offs and optional features to
consider when implementing a particular design pattern. Therefore, it is difficult to produce
one specification that covers all the potential pattern variants. Because of the existence of
design pattern variants, many approaches to specification and verification of design patterns

focus on only the structure and behaviour common to all variants, producing specifications

that are vague and lead to many false positives during verification. Some promising work
on design pattern variants has emerged in recent years, but has tended to focus on one or
a small number of patterns, analyze small or self-coded benchmarks and/or lack a DPSL

or corresponding DPVT [Stencel and Wegrzynowicz, 2008|[Bayley and Zhu, 2010].

Design patterns impose different types of constraints that must be satisfied by conform-
ing implementations. The structural class patterns in the GoF catalogue require particular
inheritance relations between classes, while the structural object patterns describe ways to
compose objects into structures that display particular properties. The Composite pattern,
for example, describes the creation of trees of composed objects, where a single object and
a composite can be treated uniformly by clients, as they expose the same interface. The
creational patterns aim to improve extensibility by ‘abstract[ing] the instantiation process’,
and impose invariants on the creation of objects. The Singleton pattern, for example, ‘en-
sure[s] that a class has only one instance, and provide[s| a global point of access to it
Finally, the behavioural patterns are concerned with the assignment of responsibilities be-
tween objects. They involve patterns of communication between objects involving sequences
of method calls, but also relationships between the state of objects. The Memento pattern,
for example, stores a copy of an object’s internal state ‘so that the object can be restored
to this state later’. A DPSL that is capable of expressing each of the different types of
invariants imposed by design patterns enables better understanding and documentation, as
well as more accurate verification of design pattern implementations. Existing DPSLs suffer
from a lack of expressiveness, imprecise semantics, the lack of an accompanying verification
tool, or the verification tool based on them performs only simple or sporadically-applied

program analyses.

Design pattern specification and verification can be used as part of either a forward or
reverse engineering use case. In a forward engineering use case, the developer of a piece of
code can manually identify which actors are intended to play which roles in the specification.
A DPVT can then confirm that the pattern has been implemented correctly. In a reverse
engineering use case, a DPVT compares every class or group of associated classes to the
input specifications. Unlike in a forward engineering use case, in reverse engineering a large
number of spurious instances can be identified that were never intended to be instances of
the pattern, especially if the specification is vague. A large proportion of design pattern
verification tools (DPVTs) fall into the category of design pattern mining tools: tools that

do not have a corresponding DPSL and target reverse engineering focused on legacy code

understanding. These have hard-coded specifications of design patterns that suffer from
a number of drawbacks. Firstly, they are limited to the design pattern variants that the
tool developer has considered. Secondly, the tool developer’s specification of the pattern is
difficult to infer as it is hard-coded by the DPVT and is not always clearly documented.
The provision of a DPSL along with a DPVT that is capable of verifying code against
specifications written in the DPSL provides a means to specify patterns and variants not
considered by the DPSL/DPVT developers, document important design decisions with
precise specifications, and guard against architectural drift by enabling verification and

re-verification implementations as they are extended or maintained.

1.3 Scope of the Thesis

A design pattern is a generic solution to a software design problem with a stated intent. A
design pattern implementation or instance is the application of a pattern to a particular
design problem embodied in programming language code. Some structural and behavioural
features of design patterns may be implemented in different ways while still satistying the
design patterns intent. These features are trade-off points and their existence creates a
number of valid design pattern variants. In this thesis, we define a design pattern variant
as a solution, with an associated name, that chooses pnrri('ulur alternatives at some trade-
off points, but may leave other choices open. The constraints imposed by all the valid
variants of a design pattern can be seen as defining a space of pattern implementations that
conform to these constraints. The space of all possible implementations in a given language
that possess a structure and behaviour satisfying a design pattern’s intent is termed the
pattern’s code signature. Each DPSL and DPVT also provide their own code signature that
approximates the true signature of each pattern it specifies or supports. A code signature
that is too permissive has the potential for false positives during verification, while a code
signature that is too strict has the potential for false negatives during verification.

This thesis focuses on specifying and verifying design patterns that are outlined in the
GoF catalogue [Gamma et al., 1995]. This catalogue has proved to be very popular and
numerous documented instances of the patterns from this catalogue occur in many unrelated
code bodies [Kaiser, 2001|[Gamma and Beck, 2003]. Most DPSLs and DPVTs target the
GoF catalogue and few in fact address patterns not contained in this catalogue [Heuzeroth

et al., 2003][Stencel and Wegrzynowicz, 2008](Shi, 2007a].

()]

As a number of problems relating to software verification are undecidable in general
[Landi, 1992][Ramalingam, 2000][Reps, 2000], it is not possible to design a tool that will
automatically verify conformance or non-conformance correctly in all cases. Verification tool
developers have the choice to either require user input to direct the verification process,
such as in theorem proving, or introduce various incompletenesses (statements that are true
but cannot be proven) into the theory of the tool to guarantee termination without user
input. The former option requires the user to be proficient in the formal semantic basis of
the tool and methods of mathematical proof. The latter option is often preferred when the
target user of the tool is a software engineer or developer and the focus is more on code
understanding than on the number of provable statements. Though some software tools,
such as compilers that guarantee termination of their code optimization algorithms, are not
complete, they are sound, i.e., do not prove any statement to be true that is actually false.
They do this, for example, by abandoning optimizations that are not provable. We, along
with the vast majority of DPV'Ts, choose the latter option.

In order to give the work a feasible scope, a number of software constructs that are
challenging to specify and verify have not been addressed. The two foremost among these
are concurrency and exception handling. Concurrency complicates software verification as
it greatly expands the state space of the program under analysis by removing assumptions
that may be made about sequential programs. There is a large body of work focused on
dealing with concurrency alone [Clarke et al., 1986][Qadeer and Rehof, 2005|[Andrews et al.,
2004 and numerous state-of-the-art specification languages, formalisms and tools are aimed
at sequential programs only [Parkinson and Bierman, 2008]|Leavens et al., 2007][Shi, 2007a].
Similarly, exception handling increases the state space of the program under analysis by
increasing the number of potential flows of control, and hence data, through the program.

Most DPVTs do not address exception handling [Shi, 2007a][Blewitt et al., 2005].

1.4 Key Contributions of the Thesis

The first contribution of this thesis is a thorough analysis of the GoF pattern catalogue
[Gamma et al., 1995] that identified a set of thirteen design pattern invariant types that
are necessary to express the intent of design patterns precisely. We classify these invariant
types within five design pattern invariant categories: cardinality, dependency, control flow,

object state and data structure. The capability to express this set of pattern elements can

be seen as a requirement on any DPSL. The pattern invariant categories form part of a
classification framework for DPSLs and DPVTs.

The second contribution of this thesis is the classification of existing DPSLs and DPVTs
using our novel framework. Of the five invariant categories identified, three were found to
have invariant types that are either not expressible or imprecisely expressible in existing
languages, or not verifiable by existing tools. These categories are dependency, object state
and data structure. We identify specification and program analysis techniques that are
suitable to express and verify the poorly-supported invariant types.

The third contribution of this thesis is the development of a DPSL called Alas, which
is capable of expressing precisely and concisely all of the design-pattern invariant types
identified. Alas is also capable of describing variants of design patterns, each of which are
specified explicitly and combined in a disjunction that forms the specification of a given
pattern. The language is based on UML 2.0 Class and Sequence diagrams and OCL [OMG,
2009] with modified and extended syntax and semantics. UML is the de facto standard
for graphical object-oriented software modelling and is widely taught and used in industry.
However, in its current form it is not suitable for design pattern specification for a number
of reasons. For example, Le Guennec et al. [2000] describes how UML is unsuitable for
the specification of cardinality invariants due to the binding semantics of UML Templates.
Also, the semantics of some of the Combined Fragments introduced in UML 2.0 have been
shown to be ambiguous [Lund and Stelen, 2006]. We clarify existing syntax as well as our
extensions using operational semantics.

The fourth contribution of this thesis is the development of AVT, which can compare
source code in the Java programming language to Alas specifications and identify whether
the code conforms or does not conform to the specification. State-of-the-art DPVTs com-
pute the potential values of variables on the stack only, while the verification of object-state
and data-structure invariants requires an accurate model of the graphs of objects stored
on the runtime heap. We implement a static analysis known as shape analysis, novel in
the area of design pattern specification and verification, to enable the verification of these
invariant types. We demonstrate in Chapter 6 that while it is not capable of verifying
all invariants within the insufficiently addressed invariant categories in general (due to the
inherent limitations of software verification discussed above) it is capable of verifying many
of the most common cases that occur in design-pattern implementations accurately.

The fifth contribution of this thesis is the creation a benchmark of identified pattern

instances from three code bodies, for use in the evaluation of DPVTs. Despite numerous
authors advocating a shared benchmark of identified pattern instances in code bodies for
use by the community [Wegrzynowicz and Stencel, 2009][Fulop et al., 2008][Pettersson et al.,
2009][Arcelli et al., 2008], the currently available benchmarks are inadequate for a number
of reasons. The pattern benchmarks where pattern instances are identified by manual
inspection of the source code identify a small number of instances. This is most likely
evidence of incomplete coverage of the code body, i.e., manual inspection that does not
cover all the classes in the code body. Automated analyses, where complete coverage is
more attainable, lack manual validation and often include large numbers of false positives.
Also, benchmarks are not always accompanied by complete and unambiguous specifications
of the patterns, making independent corroboration of the results difficult. We aggregated
information from two existing benchmarks: one manual [Guéhéneuc, 2007] and one fully
automated [Shi, 2007b]. Including information from an automated benchmark provided
better coverage than existing manual benchmarks without introducing a large number of
false positives because we performed manual code inspection on the instances identified
automatically. We identified instances not included in any of the benchmarks by performing
a keyword search based on variable naming conventions in design pattern implementations.

Also, to our knowledge, this is the only sizeable benchmark to include variants of patterns.

The code bodies selected for inclusion in the benchmark were chosen for their widespread
and (incompletely) documented use of patterns. They are three of the bodies most com-
monly analyzed by the literature, had existing publicly available benchmarks and cover a
quite broad range of size in terms of number of classes and lines of code (LOC). This range
of code body sizes has been a priority in the design pattern verification literature [Tsantalis,
2009] [Pettersson et al., 2009]. Small extensions to the code bodies were made to exercise
more of the code signature of each pattern, increasing the generality of any results obtained

from an analysis of the benchmark.

The sixth and final contribution of this thesis is an evaluation of Alas and AVT on
the benchmark of identified pattern instances. Specifications of 13 of the 23 GoF pat-
terns in Alas involve invariants taken from the insufficiently-addressed invariant categories
identified, demonstrating the added expressiveness of the language. AVT is shown to ver-
ify instances of novel or insufficiently-addressed patterns and pattern roles. In particular,
we identify instances of the Prototype and Command pattern, and the Client role in the

Abstract Factory pattern. Properties of design pattern implementations that were pre-

viously not expressible or verifiable are verified by AVT. For example, we demonstrate
data-structure invariants in the context of the numerous instances of the Composite and
Decorator patterns in the code bodies analyzed. By specifying and verifying design pat-
tern variants, we are able to identify valid pattern implementations not included in existing
benchmarks, as well as distinguishing between variants indistinguishable by state-of-the-art

DPSLs.

1.5 Roadmap of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents a novel classification
framework for DPSLs and DPVTs and classifies existing approaches using the framework.
Chapter 3 describes the syntax and semantics of Alas, using examples drawn from specifi-
cations of GoF design patterns. Chapter 4 presents AVT. Both Chapters 3 and 4 provide
a rationale for the design decisions involved in creating the language and tool respectively.
Alas specifications and a benchmark based upon those specifications is given in Chapter 5.
The evaluation of AVT is provided in Chapter 6, including an evaluation plan and its ratio-
nale. Finally, Chapter 7 presents specific and general conclusions of the thesis and outlines

potential future work.

9

Chapter 2

Design Pattern Specification and

Verification Classification

In this chapter, we present a comprehensive survey of the large body of work on specification
and verification of object-oriented design patterns. A thorough analysis of the widely-used
Gang of Four pattern catalogue yielded a number of invariant types essential to the precise
specification of design patterns. These invariant types are separated into five invariant
categories that provide the basis for a novel classification framework for design pattern
specification languages and verification tools. We classify a large number of languages
and tools from the literature using our framework and identify invariant categories that
are poorly supported by the state-of-the-art. We identify the program analysis techniques
required to support the verification of the poorly-supported invariants. Also, we assess the

level of support in the literature for design pattern variant specification and verification.

2.1 Introduction

Before reviewing the large body of literature relating to the specification and verification of
design patterns, a thorough analysis of the GoF pattern catalogue [Gamma et al., 1995] was
performed, to identify a set of invariant categories and types that are sufficient to specify
the GoF patterns precisely. The capability to express this set of pattern invariants can
be seen as a requirement on any design pattern specification language. While the focus of
the analysis was on the pattern’s intent, we address the specification of different variants
of the same pattern that share that common intent. The GoF catalogue was chosen for

its popularity, and because the vast majority of specification languages in the literature

10

focus on supporting elements of these patterns. While the identified invariants were de-
rived from a single catalogue, it is expected that they are applicable to a wide variety of
object-oriented design patterns at a similar level of abstraction, covering numerous appli-
cation domains. Some invariant types could be expanded or changed to support language
concepts or properties that do not appear in the GoF catalogue, for example, threads or
different types of aggregation relationships. While it is difficult for such a set of invariants
to be exhaustive, the set should be large enough to capture the essential properties of the
pattern, so that a specification can be created that will not be too vague and yield many
false positives during verification. For instance, a specification language that only allows
structural relations between classes to be expressed overlooks the behavioural invariants
important for precisely representing patterns, e.g., conditional branching in the Flyweight

and Singleton patterns.

Invariants are not the only elements required to specity design patterns: the required
elements identified are categorized as either syntactic, invariant or conceptual elements.
Syntactic elements represent elements of OOPL syntax. A conceptual element is an ab-
stract concept that leaves no consistent signature on the application code, and is thus dif-
ficult or impossible to verify by automated analysis. For example, the distinction between
intrinsic and extrinsic state in the context of the Flyweight pattern seems to defy concise
formalization. An invariant element describes some property that is always true in a correct
implementation of a pattern. Invariant elements are further sub-divided into cardinality,

(inter-object) dependency, control-flow, data-structure and object-state invariants.

The set of invariant elements forms the first part of a classification framework for de-
sign pattern specification and verification approaches that also addresses verification issues
such as the conformance relation supported (i.e. what is the required relation between
the specification and a satisfying implementation), how instances are classified as either
conforming or non-conforming, and the program analysis type. The conformance relation
is concerned especially with what behaviour can be inter-leaved with pattern behaviour in
a correct pattern implementation. Program analysis is split into three types: structure-
only, dynamic and static. Structure-only ignores behavioural properties and analyses static
structure alone. Dynamic analysis involves the program being executed with a number
of different inputs. Static analysis builds an abstract model of the potential control and
data-flow in a program at compile-time. Finally, program analysis techniques that can ad-

dress the poorly-supported invariant categories and types are discussed within the context

11

of related work classification.

The remainder of the chapter is organized as follows: Section 2.2 outlines the scope of
the review, including a list of languages and tools classified. Section 2.3 discusses some
high-level issues regarding design pattern specification. Sections 2.4 and 2.5 present the

language and tool sections of the classification respectively.

2.2 Scope and related work

We begin this section by briefly introducing some terminology used throughout this review
and classification. The reviewed languages are referred to as design pattern specification
languages (DPSLs). A pattern description in one of these languages is referred to as a
pattern specification. Patterns are discussed at three levels: the pattern, its variants and its
implementations. Pattern and pattern variant names are capitalized throughout the text.
A pattern (e.g. Proxy) defines a collection of incomplete (or generic) classes and objects
with associated invariants that allow many possible variants or realizations. A variant of
a pattern fills gaps left at the generic level, by choosing between trade-offs and optional
features in the generic pattern, as well as by potentially adding its own invariants. The GoF
book presents multiple variants of patterns to be used in different situations. The Observer
pattern, for example, can be realized as a Push-based or Pull-based variant, depending on
whether the Subject object provides the state that was updated to the Observer pro-actively
or reactively after an update notification. Hofer describes three variants of the Visitor
pattern: a Visitor-Controlled, Structure-Controlled and Direct Visitor variant, each with
different flows of control between the Visitor and an object structure. Pattern variants are
independent of source code, and may be described informally in plain text or formally, using
a specification language. A pattern implementation or instance is the pattern expressed in
OOPL code.

Pattern specifications are said to dictate a number of roles that must be filled by con-
forming implementations. These roles may refer to, for example, classes, objects or methods.
The entities in the implementation that fulfill these roles are referred to as actors. An event
is any computational step that affects the abstract state (control flow or data) of the pro-
gram, and will be referred to when discussing pattern behaviour. We define Invariant types
as language elements that place constraints on an implementation of an object-oriented

design pattern. Invariants or clauses are formed by instantiating some invariant type and

12

refer to one or a number of OOPL constructs. Invariants are combined using logical con-
junction or disjunction, to form a pattern specification. Classification dimensions will be
illustrated throughout the chapter using tree diagrams. Each of these diagrams contains
mutually exclusive alternatives, i.e., only one path may be selected from the root to the leaf
of the tree. For example, a tool may implement both a static and a dynamic analysis, but

any particular program analysis in isolation can be classified as either static or dynamic.

DPSLs may be distinguished from other specification languages, such as Architecture
Description Languages (ADLs) [Garlan and Shaw, 1994|, by their level of granularity: DP-
SLs may describe interactions at the object level, while ADLs address software components
and connectors. ADLs describe global invariants, which must be satisfied by all the com-
ponents of a program: in the Pipe and Filter architectural style, all components are either
Pipes or Filters. DPSLs describe local invariants, which need only to be satisfied by one
or a small number of classes in a program [Eden and Kazman, 2003]. DPSLs are capa-
ble of representing some of the syntax of a programming language, but a DPSL is not a
programming language. The objects, attributes and methods specified in DPSLs are place-
holders or role specifiers for actual programming language entities. For example, in the
Observer pattern, the method role attach(Observer) may be filled by any method that
accepts an Observer object as a parameter and adds it to a list of objects that subsequently
receives notifications of state updates. The actor that fills this role could have any name
(e.g., attachObserver or addSubscriber). A design-pattern specification omits the details
that are not relevant to the pattern, for example, it may specify that a method signature
must have a particular return type and parameter list, but omit the entire method body.
A design-pattern specification abstractly describes a set of possible implementations, that
each conform to the design pattern. To be considered a DPSL by our classification frame-
work, an approach must address the higher level of abstraction of design patterns relative
to concrete classes and methods by providing some means of binding or linking entities
at these two levels of abstraction. Binding roles to actors is dealt with in more detail in

Section 2.5.7

There are a large number of approaches that support one or a number of the following
invariant types (defined in detail in later sections): structural cardinality, interface depen-
dency, sequence and method calls. We include in our classification of related work only
languages and tools that support some of the other invariant types (they may also support

some of the types listed above), to limit the scope and length of the review. Approaches

13

excluded by these criteria will still be discussed, where they provide a useful example of
some language or tool feature. As numerous interesting pattern verification approaches do
not have a corresponding DPSL or are excluded by our first criterion, verification tools
that support the most powerful conformance relation are also included. Approaches which
meet the first criterion are DisCo [Mikkonen, 1998], OC/VDM++ [Lano et al., 1996/, BPSL
[Taibi and Ngo, 2003|, Lauder and Kent [1998], Le Guennec et al. [2000], LePUS [Eden,
2008], RBML [France et al., 2004], DPML [Mapelsden et al., 2002], FUJABA [Wendehals
and Orso, 2006], Dong et al. [2007], GEBNF [Bayley and Zhu, 2010], DVP [Knudsen et al.,
2007], Hofer [2009], Shetty and Menezes [2011], Ammour et al. [2005] and Contracts [Helm
et al., 1990]. Verification tools that meet the second criterion are D? [Stencel and We-
grzynowicz, 2008], SanD [Heuzeroth et al., 2003|, PINOT [Shi, 2007a], Hedgehog [Blewitt
et al., 2005], Columbus [Ferenc et al., 2005], PEC [Lovatt et al., 2005, Peng et al. [2008],
DeMIMA [Guéhéneuc and Antoniol, 2008] and MoDeC [Ng et al., 2010]. Some approaches
are relevant to, and are discussed in, both the specification and verification sections, while
some appear in only one section. Also, some approaches are based upon existing formal
languages that are more expressive than the subset used to define a DPSL by the reviewed
approach. These formal languages are not considered in their full generality, but evaluated

according to their application to the specific problem of design-pattern specification.

Two approaches included in the DPVT section only (PINOT [Shi, 2007a and Hedgehog
[Blewitt et al., 2005]) have an associated specification language. Both specification lan-
guages provide sophisticated composite invariants as single predicates: for example, lazy
instantiation. Such predicates require that behaviour such as selection and properties such
as aliasing must be verified, but do not provide the means to specify these invariants in
isolation. According to our classification framework, both tools are more expressive than
their associated specification language, and the languages have been excluded for the sake
of brevity. Another classification approach would be to give each language and their asso-
ciated tools equivalent expressiveness: this could have been done without altering any of

the major findings of the review.

Some approaches included in the classification are actually the combination of a number
of publications that build on each other. This explains why these approaches occasionally
have two or more mutually-exclusive classifications. This is especially true of FUJABA,

which is the combined work of Wendehals [2004] and later von Detten [2011].

14

2.2.1 Other DPSL and DPVT reviews in the literature

Dong et al. [2009] provide a classification framework for DPVTs only, with a focus on
a reverse engineering use case. We include some of the classification dimensions of their
framework in the framework provided in this chapter. A number of DPVTs included in their
review are also included in our review (though neither review is a super-set of the other, as
we exclude numerous tools they include by applying our inclusion criteria). Novel features of
our classification framework and review relative to Dong et al. are the inclusion of DPSLs
and a more detailed classification dimension regarding the expressiveness of approaches
(namely, our invariant categories and types). We also include more recent work that has
emerged since the publication of Dong et al.

Rasool et al. [2011] describe a direct performance comparison between six DPVTs,
focusing on the number of pattern instances found by each tool in a number of commonly-
analyzed bodies of code such as JHotDraw and JUnit. We do not directly compare the
analysis results of different DPVTs, as different DPVTs are based upon different pattern
specifications (more detail is provided on this issue in Chapter 5). We review DPSL/DPVT
evaluation methodologies in Chapters 5 and 6, Section 5.1. Baroni et al. [2003] review
six DPSLs without an extensive classification framework. As it was written in 2003 and
addresses a field of research that is still active, it requires updating. Nonetheless, it is a good
source of information on the earlier approaches in this field. Shi [2007a] provides a brief
critique of 13 verification tools including a discussion of the GoF patterns and OOPLs they
support. Taibi’s (ed.) book [2008] was useful to this review, as it collects more up-to-date
information on many of the foremost approaches in the area, though it makes no attempt
at a comparison or classification of language or tools. Eden’s website [2012] also contains

links to many useful resources in the area of design-pattern specification and verification.

2.3 Abstraction Levels in Design Pattern Specification

Approaches to design-pattern specification may be separated into two categories based on
the genericity of the specifications that they support. One category advocates the use
of one generic specification to describe all possible variants of a pattern, while the other
advocates the precise specification of each pattern variant (see Figure 2.2). The advantages

and disadvantages of each approach are discussed in Section 2.3.1 and 2.3.2 respectively.

2.3.1 Generic pattern specification

One key decision when developing a language for describing design patterns is the level of
abstraction with which to represent the pattern. Many of the reviewed approaches seek to
capture a pattern in its most generic form, which has been called the patterns ‘essence’ or
‘leitmotif’ [Eden, 2001|[Mak et al., 2004]. A leitmotif includes only invariants that are com-
mon to all valid implementations of a particular pattern. Approaches that favour generic
specifications tend to specify structure only, and ignore behaviour completely. While the
distinguishing features of pattern variants are more likely to be seen clearly at the level
of behaviour, numerous pattern variants also differ in their structure. Thus, specifying
structure only is not a complete solution to the problem of specifying pattern variants. The
approaches that refer to a pattern ‘leitmotif’ [Eden, 2001][Mak et al., 2004][Le Guennec
et al., 2000] only specify pattern structure using, for example, UML Class diagrams. The
problem with specifying only the static structure is that it completely overlooks the be-
haviour required to satisfy the pattern’s intent. The intent of the Singleton pattern, for
example, is to ensure that only one instance of a particular class is ever created. This
dictates that any method that returns an instance of the Singleton always returns the same

object, which can only be verified by analyzing the method’s behaviour.

Structural descriptions are not suitable for reverse engineering (a common use case
for DPSLs [Shi, 2007a] [Le Guennec et al., 2000][Heuzeroth et al., 2003]). Using only a
structural description, it is difficult to distinguish structurally-similar patterns such as the
State and Strategy patterns. Even when behavioural invariants are included at the generic
pattern level, the specification may still be too vague to be very useful during verification.
In our analysis of the GoF State pattern, for example, only two invariants (an inheritance
relationship and a method call) were found to be common to all variants of the State pattern,
meaning that many class definitions in a body of code may conform to this specification that
were not intended instances of the pattern. The GoF catalogue defines two major variants
of the State pattern, one where objects of State subclasses instantiate each other, and one
where a Context object that holds a reference to a State instantiates State subclasses. Once
a variant is formed, by choosing which role instantiates State subclasses, the specification
captures much more of the original designer’s intent and is thus much better at uncovering

implementation errors.

16

2.3.2 Variant-specific pattern specification

In many cases, it is useful to have a variant-specific description of a pattern, with a de-
tailed behavioural specification that can be compared to the source code to verify that
the designer’s intent is met by an implementation. This can help to avoid mistakes dur-
ing initial development, as well as architectural drift during maintenance. For example, a
Virtual Image Proxy should only create the image object after the draw method has been
called by the document editor. This invariant is what is important to the developers of
the document editor. Both Hedgehog and D? verify multiple pattern variants (D? verifies
the Eager Initialization, Lazy Initialization, Delegated Construction and Limiton variants
of the Singleton pattern) to reduce the occurrence of false positives described above, but
much of the analysis is hard-coded. This leads to the possibility of false negatives, when
variants not thought of by the tool developer occur in the analyzed code. Anticipating all
possible variants of a pattern when developing a verification tool is difficult. For this reason,
allowing the user to specify their own variants is preferable to hard-coding. However, user-
created specifications may be more computationally expensive to verify. For the reasons
discussed above, we believe that both generic and variant-specific pattern specifications can
be useful, depending on their intended use.

Pattern variants can be specified all together as a single pattern specification or can
be specified separately in multiple pattern variant specifications. An advantage of having
different specifications for each variant is that it limits the visual and logical complexity of a
specification, by avoiding the need to combine the variant-specific clauses using disjunction.
When variants of the same pattern are specified separately, however, there is no distinction
between a pattern and a pattern variant: the specification of both involves creating a new
and independent set of invariants. Combining all variants in a single specification makes
the points of variability between variants more explicit and maintains a close relationship
between all the variants of the same pattern. Having a single specification may also speed
up verification, where some complicated behaviour can be verified once for all the variants
that share the behaviour.

To make pattern variants explicit in specifications, it is necessary to have some facility
for naming variants and associating a name with each alternative at a point of variability.
This is illustrated in Figure 2.1 taken from Bayley and Zhu [2010], who describe two variants:
Single factory method and Multiple factory methods, applying some clauses to both

variants and having other clauses differ for each variant. The IN CASE OF phrase identifies

L7

Static CONDITIONS

1. DEpeNDs ON ALTERNATIVES OF Components Declaration 2:
(a) IN cask oF Single factory method. ALTERNATIVES:
i. Stronger condition: facrorvMethod.isAbstract
ii. Weaker condition: —~factoryMethod.isLeaf
(b) IN case oF Multiple factory methods. ALTERNATIVES:
i. A: VY fm € factorvMethods - (fin.isAbstract)
ii. B: Y fm € facrorvMethods - (-~ fm.isLeaf)
ili. C:VYfm € factorvMethods - (=fm.isLeaf vV fm.isAbstract)

2. for each creator subclass there is one product subclass

YC € subs(Creator) - A'P € subs(Product)
3. furthermore, denoting witness P by f(C), then f is a total bijection.

Fig. 2.1: Bayley and Zhu’s [2010] specification of the Abstract Factory pattern, including

two variants: Single factory method and Multiple factory methods

each alternative at a variation point clearly, and prefixes the variant name associated with
the alternative.

We classify approaches according to whether they allow for all variants to be included
in a combined specification or whether they require a separate specification for each pattern
variant (See Figure 2.2). We also classify approaches based on whether they are capable of
associating the explicit name of a variant with an alternative at a variation point, or whether
variants are anonymous. GEBNF [Bayley and Zhu, 2010] is in fact the only approach
included in this classification that is capable of providing a combined specification for all
variants and associating a variant name with an alternative at a variation point, though it
only supports structural variation between variants. Hofer [2009] specifies three variants of
the Visitor pattern separately using an extension to Spec#. D? verifies multiple variants of
the Singleton pattern, as stated above. Overall, the specification and verification of design
pattern variants is poorly supported in the literature, in particular, the specification of

variants that differ in terms of behaviour.

2.4 Specification of Design Patterns

In order to precisely specify object-oriented design patterns, a language is required that
can represent all the object-oriented programming language constructs referred to by the
pattern as well as constraints on object interconnection and interaction. The parts that

can be combined to create a design-pattern specification are referred to as elements. The

18

Design Pattern
Specification
Languages

§=m Yol Leitmotif
1 Detail level }———4’ = *i .
(= ‘Varant-specific |

| Separate specification |

- Variant specification |

| Combined specification |

f ————————— |Explicit name |
—— Variant naming AQW

| syntactic |
— Design pattern elements | Invariant
[

1Conceptual |

| Spec -> Spec |

{Languages compared)—{Spes = oML
| Spec -> OOPL |

{Closed |
- Conformance relation L’ﬂ?ﬂ‘?ﬂ?“’f‘i f

{ Refinement

Fig. 2.2: DPSL classification framework dimensions

19

elements of design-pattern specifications that refer to programming language constructs,
e.g., inheritance, method signatures, and lists, are termed syntactic elements. Constraints
on the connection and interaction of structural and behavioural entities, as well as the
allowable flows of control within a program, are termed invariant elements. Finally, pattern
elements that have a specific meaning for developers, but are difficult or impossible to
automatically identify in OOPL source code are termed conceptual elements (see Figure 2.2).
Each of these three element categories are dealt with in turn below. The elements identified
by this classification were extracted from the GoF book [Gamma et al., 1995], as this is
the catalogue supported by all the reviewed specification languages. We generalize these
elements in some cases, so they may be applied to other object-oriented design patterns.
The section ends with a brief discussion of specification language syntax. This section forms

the specification half of our classification framework.

2.4.1 Syntactic elements

Design patterns can represent any reusable solution to a commonly occurring design prob-
lem. As such, they could be expected to contain any language construct of the class of
programming language within which they are applicable. As the GoF catalogue [Gamma
et al., 1995] focused on demonstrating how to use object-orientation to its full potential,
however, it focuses on a small subset of constructs (related to class relationships, object
composition and interaction) and how they can be used to create reusable and extensible
software designs. Figure 2.3 lists the syntactic elements that we discovered in the 23 pat-
terns catalogued in the GoF book. Syntactic elements that occur less frequently in the
GoF catalogue have a list of patterns where they occur in square brackets after their name.
Syntactic elements are divided into two categories: structural syntactic elements and be-
havioural syntactic elements. Structural syntactic elements are visible at the interface level
(or form part of the structural relationship between classes, e.g., references and inheri-
tance), and are illustrated in the Structure section of each design-pattern description in
the GoF catalogue. Behavioural syntactic elements are visible only at the implementation
level, and are sometimes shown in informal notes in the Structure section and described
in more detail, for example, in the Sample Code section of the GoF catalogue. While the
GoF catalogue used C++ and Smalltalk as their implementation languages, it can be seen
that the syntactic elements listed are also to be found in currently-popular object-oriented

languages such as Java and C+#.

20

Structural syntactic elements

1. Class

2. Inheritance

3. Method signature

4. References (including reference to self) [Singleton, Visitor, Prototype]
5. Access modifiers

6. Attributes

7. Abstract

Behavioural syntactic elements

8. Object

9. Object creation

10. Conditional branches (including boolean) [Singleton, Flyweight|
11. Loops [Observer, Iterator|

12. Collections (adding to, removing from and iteration) [Observer, Composite, In-

terpreter, Iterator]
13. Method invocation
14. Assignment (especially assignment of an instance of a concrete subclass to an

abstract superclass variable) [Bridge, State, Strategy]|

Fig. 2.3: Syntactic elements of GoF design patterns

The only element that requires more explanation is the final one. The intent of numer-
ous patterns is to allow clients not to prematurely commit to a particular implementation.
This manifests itself in code as an assignment of an instance of a concrete subclass to an
abstract superclass. It is also worth noting the common syntactic elements or concepts of
OOPLs not within scope of GoF design patterns. These include: arithmetic operations, ex-
ception handling, package import, casting and concurrency. Operators overlooked include
algebraic operators and bitwise operators. The omission of these concepts simplifies the
verification problem, though some features may need to be handled to provide sound veri-
fication nonetheless. Multiple inheritance is only required for the Class Adapter variation
of the Adapter pattern, and, as it is not supported in more recent popular object-oriented
languages, such as Java and C#, it has been omitted from the list. To our knowledge, it is
only supported by DisCo [Mikkonen, 1998|

Structural syntactic elements (elements 1-7) receive more widespread support than be-
havoural syntactic elements (See Table 2.1). Only OC/VDM++ [Lano et al., 1996], RBML
[France et al., 2004] and FUJABA [Wendehals and Orso, 2006] provide support for the
majority of syntactic pattern elements. Conditional branches, loops and assignment state-
ments are the most poorly supported elements. Approaches that are based upon temporal
logic (e.g. DisCo [Mikkonen, 1998|) perform poorly in this dimension of the classification.
The reason for this is that temporal logic-based approaches only describe relations between
a system at different times in terms of logic, and not in terms of programming language con-
structs. An additional mapping stage is required in these approaches to connect temporal
logic operators and operands, and the programming language code constructs that realizes
them. DPSLs have been classified here according to only the syntactic elements described

in the literature, which may not include all the syntax supported by the languages.

2.4.2 Invariant elements

A pattern implies one or a number of invariants, each of which is an instance of a particular
invariant element or type. A pattern invariant is defined as something that is always true
in a correct implementation of a pattern. Key invariants can often be identified from
a description of the pattern’s intent, for example, ‘separate the construction of a complex
object from its representation’ or ‘Ensure a class only has one instance’ [Gamma et al., 1995].
Other important invariants become clear from a careful reading of the remaining sections

of a pattern description in a catalogue. The GoF book also discusses pattern realization

22

JUOWUSISS Y

X

%

STTe> POTIoIN

v

SUOT129[[0))

X

sdoorg

vVIivi]v

X

SOTURI([RUOIIIPUO.)

X

ans

X

uoreaId 129(qQ

v

X

1lqO

X

X

v

Joensqy

SINqLIIY

4

VIVIVIVIVIVIV]V

v

SIOUIPOW SSo00Y

X

SOOUAINJAY]

VIVIV]V
VIVv|V

v

AINRUSIS POYIDN

X

X

X

9OUR)LIAYU]

v

v

SSeID

VIVIVIV

VIVIVIVIVIVIV|VIVIV|V|V V]V

VIVIVIVIVIVIV|V]V

Vv

vV
vV

VIVIVIVIVIV]V

VIVIVIVIVIVIV]|VY

VIVIVIVIVIVIV| V]V

VI VI V]V

VIVIVIVIVIV]V
VI VIV IVIVIV]V
VIV IVIVIVIV]V
VIVIVIVIV]V

1Sdd

DisCo

OC/VDM++

BPSL

Lauder & Kent

Le Guennec et al.
LePUS3

RBML
DPML

FUJABA

Dong et al.
GEBNF
DVP

Hofer

Shetty & Menezes

Ammour et al.

Contracts

Table 2.1: Classification of the support of each DPSL for each of the syntactic elements

23

alternatives, where each realization may offer a different trade-off between non-functional
properties. In a pattern realization, a choice must be made between each alternative, and
regarding each open issue, and this choice, when made, should be captured in an invariant,
if it is important to the correct functioning of the system. For example, in the context of the
State pattern, it is necessary to decide whether the Context or the State subclasses define the
state transitions, and the existence of this necessity means there are at least two significant
variants of the State pattern, each with different non-functional properties. This review
includes all the key invariant types, along with those regarding realization alternatives,
identified by the authors. Each of the invariants listed contributes to providing a precise
formal description of a design pattern, with the potential to aid program understanding as
well as automated verification.

This section separates the 13 identified invariant types into five categories and describes
each category in turn while providing examples. A description of the each invariant type,
along with concrete examples, are given below in Figures 2.4, 2.5 and 2.6. Invariant cat-
egories may depend upon each other. In particular, cardinality invariants often refer to
dependencies between structural entities and both object-state and data-structure invari-
ants can be applied to different stages of the control-flow. Structural entities in the following
discussion are either classes or methods. Behavioural entities are typically objects, but may
also be control-flow events. Invariants are also classified according to their dynamism. An
invariant is behavioural if its truth value depends upon the state of the computation at a
particular point. Structural invariants can be verified independently of the computational
state. Some invariants have been taken directly from the literature, while others have been
generalized. To the knowledge of the authors, invariants 2, 11, 12 and 13 have not previously
been identified (in the generality given here) in the context of design-pattern specification

and verification.

2.4.2.1 Dependency invariants

Dependency invariants are defined as invariants that place some constraint on the level of
coupling allowed between classes. As one of the main focuses of the GoF catalogue is on
reducing the coupling between classes and objects, dependency invariants are key to cap-
turing a pattern’s intent. The key invariant of many of the GoF patterns can be expressed
informally as ‘class A shouldn’t need to have knowledge of class B’ More specifically, in

the Facade and Mediator patterns, it is important that instances of some class or set of

24

e Dependency invariants:

e 1. Interface dependency: A structural entity depends, or does not depend, on the
interface of another structural entity.
Positive example: (Proxy) A Proxy has a reference to a RealSubject.
Negative example: (Mediator) No Colleague has a direct reference to any other Col-

league.

e 2. Implementation dependency: A structural entity commits, or does not
commit, to a particular implementation of a class.
Negative example 1: (Abstract Factory) A Client does not initialize a ConcreteProd-
uct directly, instead it calls a Factory Method.

Negative example 2: (Command) An Invoker does not initialize a ConcreteCommand.

e Cardinality invariants:

e 3. Universality and Existence: There is a relationship between separate sets of
structural or behavioural entities.
Structural example: (Abstract Factory) There must be one Factory Method in each

ConcreteFactory for each AbstractProduct class.

e 4. Uniqueness: An element of a set of structural or behavioural entities performs a
unique role in that set.
Behavioural example: (Visitor) Each accept method in each ConcreteElement must

call a unique member of the set of visit methods in a ConcreteVisitor class.

Fig. 2.4: Invariant categories and types: Part 1. Dependency and cardinality invariants

Control-flow invariants:

5. Sequence: An event is always followed by another event.
Example: (Template Method) The primitiveOperation methods are called in a par-

ticular order in the templateMethod.

6. Selection: An event occurs if some condition is satisfied, or a choice is made
between mutually-exclusive events.
Example: (CoR) A ConcreteHandler’s handleRequest method should either handle a

request or forward it to a successor.

7. Iteration: An event occurs repeatedly, often once for each element in some set of
behavioural entities.
Example: (Observer) A Subject’s notify method calls the update method on all Ob-

server objects in its list of Observers.

8. Method call: A method calls another method.
Example: (Adapter) The Adapter’s request method calls the Adaptee’s specificRe-

quest method.

Fig. 2.5: Invariant categories and types: Part 2: Control-flow invariants

26

¢ Object-state invariants:

e 9. Basic state: An object is in a particular basic state (not initialized, initialized,
marked for deletion).
Example: (Singleton) If a reference variable that is intended to point to the single
instance of the Singleton class is null when the Singleton’s getlnstance method is

called, a new instance of the Singleton is created and assigned to the reference variable.

e 10. Aliasing: The same object is involved in a number of events, or two reference
variables are aliases of each other.
Example: (Factory Method) The ConcreteProduct object initialized in the Factory

Method is the same object that is returned by the Factory Method.

e 11. Copying: One object is a ‘deep copy’ of another.
Example: (Memento) A Memento object is a deep copy of the original object, so

that the original can be manipulated without affecting the Memento.

e Data-structure invariants:

e 12. Object position: An object (of a particular type) is or is not in a collection, or
is at a particular position within a collection.
Example: (Observer) A Subject’s attach(Observer) method adds the Observer object

argument to its list of Observers.

e 13. Shape: A data-structure has a particular shape, or has an object of a particular
type at a particular position.
Example: (Composite) A Composite object structure is free from cycles, and each
object is reachable via only one path (i.e., the structure is also free from sharing).
Example: (Decorator) A chain of Decorator objects is terminated by a ConcreteCom-

ponent object.

Fig. 2.6: Invariant categories and types: Part 3: Object-state and data-structure invariants

classes do not hold a direct reference to instances of some other set of classes. These are
examples of interface dependency invariants, where the holding or not holding of a refer-
ence is important. A more subtle requirement that occurs in many patterns including the
Abstract Factory and Bridge patterns dictates that the holder of a reference to an object
(Abstraction in Bridge, Client in Abstract Factory) must not initialize the object itself but
must delegate the initialization of the object to, for example, a Factory object. These are
instances of implementation dependency invariants, where a client should not commit to a
particular subclass by calling the constructor directly. This distinction allows fine-grained
statements about inter-class dependency to be made. Invariants that require a dependency
to exist are termed positive dependency invariants, while invariants that forbid particular
dependencies from existing are termed negative dependency invariants.

While a number of approaches support interface dependency invariants, few make the
distinction between interface and implementation dependency (see Table 2.2). Contracts
and FUJABA support a restricted (positive) form of interface dependency invariants (Ap-
proaches supporting positive dependency invariants only have a P in parentheses in their
dependency column in Table 2.2). It is possible to specify that a class references or calls an-
other class, but not that a class should not reference another class. Numerous approaches,
including LePUS and RBML support specification of restricted interface and implementa-
tion dependency. LePUS, for example, has a specific ‘creates’ relation, to specify that a
class has the responsibility of instantiating another class. RBML can specify direct calls
to constructors in its interaction diagrams. Finally, BPSL supports all dependency invari-
ants in their full generality, with ‘Reference-to-one’ and ‘Creation’ relations and a logical
negation operator.

Ammour et al. [2005] clearly has the intention of describing the absence of an implemen-
tation dependency with their hiddenSubclasses predicate, which states that a class does
not ‘access’ the set of all subclasses of some class. However, accessing is defined in terms
of any use of the name of the class within the other classes’s definition, e.g., a variable, a
cast, a constructor call, and this is their only form of dependency. For this reason, they

cannot distinguish between interface and implementation dependency.

2.4.2.2 Cardinality invariants

Invariants in this category place constraints on the relationship between sets of entities, or

elements within a set of entities. Sets are a natural way to describe groups of entities (classes

28

5
& e g £ >
= = (o s — =]
< = 17} —
S g 3 o B
= 8 = — o
A < E = = 3
o [< o Wo! <
A A @] Q o A
DisCo All (P) Univ Aliasing -
OC/VDM++ All (P) - All Aliasing -
BPSL All - Sequence Aliasing -
and choice
Lauder & Kent All (P) - Sequence - -
and calls
Le Guennec et al. | - All (S) Basic state | -
LePUS3 All (P) Univ (S) | - - -
RBML All (P) Univ (S) | Basic - -
DPML All (P) - Sequence - -
and calls
FUJABA Interface (P) | - Sequence - -
and itera-
tion
Dong et al. - - All Aliasing -
GEBNF All (P) All Sequence - -
and calls
DVP - - All Aliasing -
Hofer - Univ Calls Aliasing -
Shetty & Menezes | Interface (P) | Univ Calls - -
Ammour et al. All (P) - - - -
Contracts Interface (P) | - Sequence Aliasing Object
and calls position

Table 2.2: Classification of the support of each DPSL for each of the invariant types

29

or methods in this case) that share a particular characteristic, and will be used throughout
this thesis. Examples of sets in pattern specifications include the set of all classes that
inherit from AbstractFactory, the set of all classes that initialize a Concretelmplementor
(Bridge) and the set of Factory Methods. An example of a cardinality invariant from the
Abstract Factory pattern, is that the number of Factory Methods in each ConcreteFactory
should be equal to the number of AbstractProduct classes. Taking an instance from the GoF
catalogue, a MotifWidgetFactory must be capable of creating (have one Factory Method
for) all the concrete Motif widgets that inherit from an AbstractProduct, e.g., MotifWindow

and MotifScrollBar.

Cardinality invariants received a lot of attention in the earlier literature on design
pattern specification. DPSLs that are based on set semantics [Le Guennec et al., 2000][Mak
et al., 2004][Eden, 2001 [Mapelsden et al., 2002], or first-order logic, [Bayley and Zhu,
2010][Shetty and Menezes, 2011] as expected, handle cardinality invariants well (Table 2.2).
Figure 2.7 from Mak et al. shows their specification of the Visitor pattern. Pattern roles are
modelled using UML ClassifierRoles (e.g., /Visitor, /AcceptOp), which may be filled by
classes, interfaces or methods. “The number at the right upper corner of each ClassifierRole
denotes the number of its instances in one pattern instance” [Mak et al., 2004]. The
specification states that for every concrete Element class, there needs to be a Visit-
Element method that is capable of ‘visiting’ that Element, i.e., in any instance of the
Visitor pattern, there is n VisitElements and n Elements. If there is only one Concrete-
Visitor, there will be n VisitConcreteElement ClassifierRole instances. However, every
new ConcreteVisitor that is added must be capable of visiting every concrete Element,
i.e., it must implement every VisitElement operation. If the number of ConcreteVisitors
is denoted by m, then the required number of VisitConcreteElements in the inheritance

hierarchy must equal m x n.

Most approaches that specify cardinality invariants (some of them excluded from this
classification) focus on structural cardinality (constraints on sets of structural roles), but
a few also specify behavioural cardinality (constraints on sets of entities performing some
behaviour). Shetty and Menezes, as well as Hofer, specify that every element of some set of
methods should call some element of another set of methods. Technically, both can specify
uniqueness constraints, as they use first-order logic, but neither approach demonstrates this
capability. GEBNF is capable of specifying both structural and behavioural instances of

both cardinality invariant types. In Table 2.2, and Universality and Existence is abbreviated

30

o fVisitC Element: |
{Concrete Visitor : Class H ey
Method

E
<<realize>> <<impletement > >
E
. . L <<associate_1>> .. 1 . B
/Client: Classifier > /Visitor : Class,Interface /VisitElement: Operation
E
<<associate-one>> <<cargument>> <<invoke>>
E
ectS J <<associate_*>»> i <<impleternent>> n
AObjec é?;;lclure. - {AcceptOp: Operation {Acceptimpl: Method
1 <<realize» > n
/Element : Class,Interface /ConcreteElement: Class

Fig. 2.7: The specification of the Visitor pattern given in Mak et al. [2004]

to Univ.

2.4.2.3 Control-flow invariants

Control-flow invariants are defined as invariants that place constraints on the control-flow in
a pattern. The four types of lows required are sequencing, selection, iteration and method
calls. In pattern specifications, a particular action, such as a method call, may be specified
to occur before another (sequencing), a choice between alternative actions might be made
(selection), or a particular action should be performed repeatedly (iteration). While the
static elements of design patterns are represented by Class diagrams in the GoF book,
the control flow (especially important in the behavioural patterns of the GoF catalogue) is
represented by interaction diagrams.

The Strategy and Template Method patterns define a sequence of events within a single
method, while the Observer and Visitor patterns are characterized by fixed inter-object
protocols, i.e., sequences of events spanning multiple methods. In the Observer pattern,
a call to the Subject’s setState method should always be followed by a call to its notify
method, which in turn should call the update method of all attached Observers. Depending
on whether the pattern implementation follows the Push or Pull variant, each Observer may

then call the Subject back, to acquire the necessary state information. The Visitor pattern

31

Exists(Flyweight [i]) A GetFlyweight(client, i) — Return(Flyweight[i])

—Exists(Flyweight [i]) A GetFlyweight(client, i) — Create(Flyweight[i])

Fig. 2.8: Flyweight pattern conditional branching expressed in BPSL

realizes double-dispatch in languages that support only single-dispatch by following a call by
an ObjectStructure to a ConcreteElement’s visit method with a call to a suitable Visitor’s
method. Thus the method which is executed depends upon the dynamic type of two objects,
ConcreteElement and Visitor.

While the sequence of invocations is linear in the examples above, the Singleton pattern
demonstrates selection between alternatives in a pattern’s dynamics. When a client invokes
the getlnstance(Key) method, it should either return a reference to the existing Singleton
object, or if it does not exist, create it and then return a reference to it. Other examples of
GoF design patterns that include selection are Proxy, Flyweight and Chain of Responsibility.
The Observer and Composite pattern both include iteration when calling a method on every
element of a list.

DPSLs are classified based on their support for the four control-flow invariant types
(see Table 2.2). Most approaches that specify behaviour of any kind support sequence and
method calls, as these are central to the intent of design patterns: many patterns insert
an intermediary (Decorator, Proxy, Mediator, Facade) between a Client and its initial
delegate before the pattern was applied. Both DisCo [Mikkonen, 1998] and BPSL [Taibi
and Ngo, 2003] are based upon the Temporal Logic of Actions (TLA) [Lamport, 1994],
and support the specification of sequencing and choice in control-flow. Figure 2.8 shows
how the conditional branch in the Flyweight pattern might be expressed in BPSL. Such an
expression is less readable than if/else constructs for pattern users who are familiar with
object-oriented programming but not formal logic.

A number of approaches support all control-flow invariant types. OC/VDM++ [Lano
et al., 1996] uses linear temporal logic operators from the Object Calculus to express se-
quencing. Object-oriented programming constructs are supported by using VDM++ as a
pattern specification language, which includes if/then/else and for all/do constructs. DVP
is based on a number of different formal languages, but derives its ability to specify control
flow from Communicating Sequential Processes (CSP) [Hoare, 1985]. RBML [France et al.,
2004] and FUJABA [Wendehals and Orso, 2006] use UML 2.0 Sequence Diagrams, which

32

|Compositelnteraction 1.%,)

Jobj:|ObjectStructure |vis:|Visitor

repeat
[-NomOfEloments feleafi}:|Element
— el ol T il i
[&) [1sChildComposite]
. [[Compositelnteraction |
: : -
I IAccepi(yis ConcreteVisiion) | R |

1
| |Acceptifvis:|Concrete Visitor)
= [VisiElem(jelesm | |'[Concret ld‘JcmtnlJ.‘
= ———

v ||
U

Fig. 2.9: RBML [France et al., 2004] behavioural specification of the Visitor pattern

adds syntax for expressing conditional branching and loops. A Boolean guard condition
can be placed at the beginning of a sequence diagram fragment, to allow specification of
the selection between alternatives or a loop condition. A repeat fragment specifies that the
sequence of events inside the fragment is repeatedly executed. Figure 2.9 [France et al.,
2004] shows the use of the new Combined Fragment syntax element in UML 2.0. It is visu-
alized as a rectangle enclosing a subsequence of the Sequence diagram with a label in the
top left corner. The outer rectangle (labelled repeat) specifies a loop that continues until
all the elements contained in the ObjectStructure are visited. The inner (alt) rectangle
performs a selection based on whether the current element is a composite structure or not.
The use of the vertical bar prefix (|) indicates that these are role names, and may be filled

by elements with different actual names.

2.4.2.4 Object state invariants

The invariants in this category specify that an object should be in a particular basic state:
not initialized, initialized or marked for deletion, or that a particular relation (aliasing, deep
copying) should hold between the state of two objects. Object state invariants generally
also have temporal properties and for this reason often depend upon control-flow invariants.
The interaction of the Singleton pattern that involves comparing an object to the value
NULL was described above in Section 2.4.2.3. A similar interaction occurs in the context
of the Flyweight pattern, except that a FlyweightFactory creates instances of not one but
numerous different ConcreteFlyweight classes.

Numerous interactions between GoF design patterns assume the same object is involved

33

in a number of different events. A simple example of such an invariant is provided by the
Factory Method pattern. The Factory Method should initialize a ConcreteProduct object
within its body and return it, i.e., the object returned from the Factory Method is the same
object returned from the ConcreteProduct constructor within the Factory Method. Also,
the accept() method of each ConcreteElement class in an instance of the Visitor pattern
should accept a ConcreteVisitor object as an argument and perform a callback to that
same ConcreteVisitor object. The Observer pattern involves a similar interaction. These

interactions are examples of aliasing invariants.

The intent of the Memento pattern is to ‘capture and externalize an object’s internal
state so that the object can be restored to that state later’. Typically, a Memento is created
from the state of some object before an operation that mutates the state of that object but
should also be undoable. For this requirement to be satisfied, the Memento object itself
should not be mutated by the operation, i.e., none of the Memento’s variables should be
aliased with variables of the original object. This deep copying invariant type is discussed
in the GoF catalogue in the context of the Prototype pattern [Gamma et al., 1995, p.221],
where it is also relevant. Performing a deep copy of an object is challenging, especially
when object structures contain cyclic references (Gamma et al., 1995]. Also, only the state
that is composed by the object, i.e., that is modelled by a ‘has a’ relationship from object
to composed state, should be copied. Other objects that are associated with the object,
but have a separate lifetime, should not be copied (e.g., while copying an Observer, the
associated Subject should definitely not be copied, as it is important that each Observer
observes the same Subject). For this reason, to precisely specify deep copying behaviour,
it is necessary for a DPSL to be capable of making a distinction between associated and

composed state.

RBML, Le Guennec et al., and OC/VDM++ support the specification of basic state
invariants, as they are each capable of testing for object initialization by comparing an object
to the value NULL. The approaches that specify only a single generic ‘equality’ relation [Dong
et al., 2007|[Mikkonen, 1998|[Taibi and Ngo, 2003][Hofer, 2009], without defining what
equality means in detail, are classified as supporting the aliasing invariant type (abbreviated
to alias in Table 2.2). These approaches do not make explicit the distinction between object
identity and value equality. Contracts defines an equality as well as a less-strict relates
operator between the state of two objects, but does not define it in detail, though the

intention is likely that the state of one object is some function of the state of another,

34

e.g., some subset of the states are equal or an integer is converted to an equivalent string
of characters. The approaches that are based upon UML are capable of distinguishing
between an association and aggregation relationship, though these relationships are
not precisely defined in terms of object initialization and lifetimes. The value equality of
primitive variables required to perform a deep copy are not specifiable by any of the reviewed
DPSLs. This is not surprising, as the GoF catalogue focuses on relations between user-
defined classes and objects such as inheritance, class dependency and object composition.
In summary, basic state invariants are supported by a small number of approaches, aliasing

is well-supported, but deep copying is not supported by any of the reviewed DPSLs.

2.4.2.5 Data-structure invariants

Data-structure invariants place constraints on the objects in, and the position of objects
within a collection. They also constrain the contents and shape of user-defined recursive
data structures. Both the Observer and Flyweight pattens involve an object (of class
Subject and FlyweightFactory respectively) that holds a collection of objects of some other
class (Observer and ConcreteFlyweight respectively). Both patterns involve methods that
insert objects into, or otherwise mutate the contents of the collection. In the context of the
Iterator pattern, a Concretelterator has a reference to an aggregate object, and should be
capable of performing operations such as accessing the first object in that aggregate. These
are examples of object position invariants.

Data structure invariants also place constraints on the shape of data structures at run-
time, such as whether the structure contains cycles, or whether a particular object is reach-
able (transitively) via a particular reference. A number of GoF design patterns either
describe the use of recursive data structures or are often applied to them. A desirable prop-
erty of the Chain of Responsibility pattern is that every request eventually gets handled by
some Handler. This is often ensured by providing a root Handler that is placed at the end
of every chain of Handlers, which can provide some default response. The Composite pat-
tern ‘compose(s| objects into tree structures to represent part-whole hierarchies’ To ensure
correct traversal behaviour, the Composite object structure should be free trom cycles and
sharing, so that the traversal terminates and visits each object only once.

Some approaches define ‘attach’ events in the context of the Observer pattern [Taibi
and Ngo, 2003], but these events have little or no associated semantics. Only Contracts

defines an ‘attach’ event in terms of an object being inserted into a collection (or, in their

35

case, a logical set). Dong et al. provide a First() and Next() function that may be
used to specify iteration over a list, but do not describe any syntax for describing the data
structures themselves.

With regard to shape invariants, both Krishnaswami et al. [2009] and DiStefano [2008]
specify a number of design patterns using Separation Logic [Reynolds, 2002, which allows
the disjointness of portions of the heap to be specified. Separation logic also allows shape
invariants such as cycle-freeness to be guaranteed through an ownership model (though
neither approach demonstrates this), where an owner object encapsulates all of its state.
However, Leavens et al. [2007] identify invariants of the Composite pattern that cannot be
verified using an ownership model, showing the model is not applicable to data-structure
invariants in general. Neither Krishnaswami et al. nor DiStefano et al. provide a DPSL,
and their specifications must be verified manually using a theorem prover. In summary,
object position invariants have been given limited attention in the context of design pattern

specification, while shape invariants have been almost completely ignored.

2.4.3 Invariant dynamism

It should be clear from the previous section that some invariants depend upon the state of
the computation, while others do not. The former category may be classified as behavioural
invariants, and are defined as those invariants whose truth value depends upon the state of
the computation at a specific point in the execution. From a verification perspective, these
invariants require control- and data-flow information to verify that they are satisfied. Those
invariants that are computation state-independent are classified as structural invariants.
From a verification perspective, these invariants can be checked more easily by inspection
of the source code.

Dependency invariants are structural, as they depend upon the properties of single
declarations or expressions in isolation. Cardinality invariants, as discussed, may be both
structural and behavioural. Control-flow, data structure and object state invariants truth-
value clearly differs depending on the values that flow into and out of different points in

the program execution. They are all thus classified as behavioural invariants.

2.4.4 Conceptual elements

Conceptual elements are defined as higher-level elements of design patterns that are difficult

or impossible to verify by automated analysis of source code. This difficulty is not due to

36

the complexity of the analysis required, but to the fact that the pattern element is an
abstract concept that leaves no consistent signature on the application code. Both the
Interpreter and Strategy pattern rely on some abstract concept to describe their intent: the
class hierarchy in the Interpreter pattern is intended to implement a language, while each
of the concrete Strategy subclasses implements a related algorithm. The difference between
some patterns is not always obvious when syntax alone is considered, or even after control-
and data-flow analysis. For example, the Composite and Interpreter pattern are both,
syntactically, an operation applied to every member of an aggregated object hierarchy.

A common difference between the DPSLs reviewed is the set of concepts that they con-
sider to be conceptual or unverifiable elements. For example, Hedgehog cannot distinguish
between State and Strategy and rules out Command for being too vague. PINOT considers
the Builder and Memento patterns as ‘Generic concepts’ that ‘lack definite structural and
behavioural aspects for pattern detection’, while the Interpreter and Command patterns
are classified as ‘Domain-specific patterns’, that require domain-specific knowledge for ver-
ification [Shi, 2007a]. We have attempted to identify, in the previous section, a number
of additional invariants to those currently occurring in the literature to make it possible
for more patterns to be distinguished during verification. However, it is not practical to
provide a language expression for some more sophisticated concepts that have no obvious
signature in the source code. A list of these conceptual elements of patterns is given in
Figure 2.10. Again, the pattern that contains the conceptual element is given in brackets
after the element name.

The authors of the GoF book themselves observed this problem with such generic de-
scription: “Considered in its most general form (i.e., an operation distributed over a class
hierarchy based on the Composite pattern), nearly every use of the Composite pattern will
also contain the Interpreter pattern.” However, an implementation should only be con-
sidered to implement the Interpreter pattern in “those cases in which you want to think
of the class hierarchy as defining a language” [Gamma et al., 1995 - a hard-to-formalize
distinction. This makes reverse engineering of patterns from source code difficult and prone

to error, where these conceptual elements are involved.

2.4.5 Summary

In this section, we presented a novel classification framework for DPSLs that includes a set

of invariant types that are necessary for the precise specification of design patterns. De-

37

e [ntrinsic and extrinsic state (Flyweight)

Object represents a request (Command, CoR)

Class hierarchy represents a language (Interpreter)

Each member of a class hierarchy implements a related algorithm (Strategy)
Fig. 2.10: Conceptual elements of GoF patterns

pendency invariants place constraints on the level of coupling between classes. Cardinality
invariants describe relationships between different sets of structural or behavioural entities.
Control-flow invariants constrain the allowable flows of control through an implementation.
Object-state invariants describe properties that must hold on one or a number of related
objects, while data-structure invariants constrain the shape or contents of data-structures
at runtime.

OC/VDM-++ supports all syntactic elements, while RBML, BPSL and FUJABA each
support a majority of syntactic elements. Dependency invariants are supported in full by
BPSL, which is the only approach addressing implementation dependency in its full gener-
ality. Structural cardinality invariant elements are addressed by a number of approaches,
with fewer addressing behavioral cardinality. All control-flow invariants are supported by
OC/VDM++ and RBML. Object state invariants related to basic states and aliases are
supported by some approaches, but deep copying is not supported fully by any approach.
Data-structure invariants are possibly the most poorly-supported category, with object po-
sition not supported in its full generality, and shape invariants have been largely ignored.
Finally, a number of DPSLs provide a concise graphical syntax for describing structure,
with fewer also providing syntax for behavioural invariant specification. RBML provides

perhaps the most expressive and one of the most intuitive graphical syntaxes overall.

2.5 Verification of Design Pattern Implementations

Verifying that an implementation conforms to a pattern specification involves two main
steps: binding elements of the implementation to elements of the specification to which they
correspond and verifying that the elements of the implementation are capable of performing

the actions outlined by the specification elements to which they correspond. The issues

38

involved when a verification tool evaluates whether an implementation conforms to the roles
outlined in the specification are discussed in this section. We classify DPVTs according to
their support for the invariant categories described in Section 2.4.2; as well as introducing
some tool-specific classification dimensions. The distinction between language and tool and
tool-specific classification dimensions is not strict, as, for example, the conformance relation
of an approach is dependent on the semantics of the language and also the features and
soundness of the tool. Likewise with the mapping from a specification to an implementation
language: this could be defined precisely by a DPSL, or a DPSL could lack a semantic
mapping, which would then have to be performed by the associated tool. This section
forms the second half of the classification framework.

Unlike DPSLs, we do not classify DPVTs according to the OOPL syntax they support.
How a DPVT addresses, for example, method calls, involves many design decisions such as
how to represent the local stack and global heap, polymorphism and calling context. This

makes a simple yes/no classification of support for OOPL syntax quite meaningless.

2.5.1 Invariant elements

Similarly to DPSLs, we classify DPVTs according to the invariant types they support.
Where DPSLs have an associated DPV'T, we classify these tools also: a tool may verify
only a subset of the invariants expressible by the language, or it may verify some invariants
in an unsound and incomplete manner. DPVTs associated with a DPSL included in this

review will be referred to mostly using the language’s name, to avoid confusion.

2.5.1.1 Dependency invariants

The verification of dependency invariants involves searching for associations between classes
that are manifest as either reference variables or expressions such as methods calls. Com-
paring the type of all the variables of a class to some pattern role is straightforward and
is performed by a number of DPVTs [Ammour et al., 2005|[Dong et al., 2007|[Taibi and
Ngo, 2003|[Maplesden et al., 2007] (see Table 2.3). Making a full exploration of the ab-
stract syntax tree of a method or all methods in a class searching for a particular kind
of expression is more challenging, but likewise well documented in the literature [Lovatt
et al., 2005][Guéhéneuc and Antoniol, 2008]. DeMIMA in particular includes a rich set of
dependency relations and classifies relations into categories such as association, aggregation

and composition using dynamic analysis to determine, for example, the lifetime of different

39

objects and whether associations between objects are exclusive or not. As stated above in
Section 2.4.2.1, however, each of the classified approaches (apart from BPSL) only allows the
specification of the existence of certain dependencies and not their non-existence. BPSL’s
[Taibi et al., 2009] verification tool compares TLA+-based specifications to other TLA+-
based specifications only. Interface dependency invariant verification is well-supported and
evaluated in the literature, though this cannot be said for implementation dependency. In
particular, there is a lack of tools that can verify implementation dependency invariants
against implementations in OOPLs and a lack of evaluations on well-documented bench-

marks.

2.5.1.2 Cardinality invariants

The verification of cardinality invariants simply involves counting the number of entities
satisfying a dependency, control-flow or other type of invariant and is thus not particularly
challenging. MaramaDPTool is implemented as an eclipse plugin and is capable of verify-
ing the cardinality invariants specifiable by DPML [Maplesden et al., 2007] (universality
cardinality invariant, structure only). Similarly, Shetty and Menezes [2011] describes the
implementation of a tool to support the verification of the same invariant type, though its
operation is not documented. LePUS3 has an associated tool capable of verifying Java code
against LePUS3 specifications involving both universality and uniqueness invariants (struc-
ture only). LAMBDES-DP supports the verification of both the structural and behavioural
invariants specifiable in GEBNF through the use of an automatic theorem prover that does
not guarantee termination in general. Zhu et al. [2009] describe the use of LAMBDES-DP
to compare GEBNF specifications to their own benchmark of UML models. In summary,
the verification of cardinality invariants is not particularly challenging in isolation (car-
dinality invariants may contain complex sub-clauses involving object-state etc.) and has
been demonstrated by a number of approaches in the literature. However, these approaches
have tended to analyze benchmarks that have a small number of pattern instances, were

developed by the authors, or both.

2.5.1.3 Control-flow invariants

Control flow invariants constrain the valid paths that a program may take at runtime.
Verifying whether implementations conform to control-flow specifications involves relating

each potential path through the implementation to a path in the specification. As the

40

o
5 & § |8 3 5
D3 - - Sequence, Aliasing -
selection
and calls
SanD Interface (P) | - Sequence - Object
and calls position
PINOT All (P) - All Aliasing -
Hedgehog | All (P) - All Basic state | -
and aliasing
Columbus | All (P) - Sequence, - -
iteration
and calls
PEC Interface (P) | - - Aliasing -
Peng et al. | - - Sequence - -
and calls
DeMIMA | All (P) - - - -
MoDeC Interface (P) | - Sequence, - -
iteration
and calls

Table 2.3: Classification of the support of each DPVT for each of the invariant types

41

implementation may perform additional behaviour beyond what the specification requires,
multiple paths through the implementation may satisfy a single path in the specification.
In a typical OOPL, there are numerous ways to implement selection and iteration. In Java,
for example, any statement placed inside an if, if...else, or switch block is conditional,
but so is any statement that may be bypassed by a jump statement (break, return etc.).
[terative behaviour may be implemented in Java using loop statements or recursive calls.
Such flexibility is challenging for a verification tool. It should also be noted that precise
verification of control-flow invariants requires knowledge of the valid data flows through a
program: a control-flow invariant may require not just that a sequence of calls are made

through the same reference variable, but that they dispatch to the same object.

MoDeC [Ng et al., 2010] uses bytecode instrumentation to verify control-flow invariants
regarding sequence, iteration and method calls. It handles loops by ‘[identifying] every
branch instruction whose target is indexed before its own position’. DeMIMA [Guéhéneuc
and Antoniol, 2008] performs Prolog queries on program traces, but it ignores the coverage
problem by assuming that a set of unit tests is pre-generated for it. SanD [Heuzeroth et al.,
2003] can verify that the same object received a sequence of method calls by tracking object

identity through its dynamic analysis.

Hedgehog [Blewitt et al., 2005, PINOT [Shi, 2007a] and D? [Stencel and Wegrzynowicz,
2008] all verify all four of the control-flow invariant types as well as sophisticated combi-
nations of control-flow invariants as atomic invariants, such as ‘lazy initialization’ (see Ta-
ble 2.3). However, PINOT classifies a method as a Factory Method even when a new object
is not returned over every path through the method. It also misses some method calls, for
example, those that occur as arguments to other method calls. Finally, it performs ‘limited
loop analysis’ which occasionally classifies an infinite loop as conforming to the specifica-
tion of the Observer pattern, where the loop should iterate over the list of Observer objects
attached to the subject. Hedgehog assumes loops execute once, which is not the typical
approach to analyzing loops in the iterative fixed-point algorithms that perform data-flow
analysis (DFA) and is unsound. Similarly, D? performs an ‘arbitrary number of iterations’
of the data-flow analysis, rather than iterating until convergence. Calls to constructors are
treated context-insensitively and the call graph is computed before the data-flow analysis
algorithm commences. Both of these design decisions introduce inaccuracy, though they
may both be sound (context-sensitive analysis and call graph construction will be discussed

in more detail in Chapter 4).

42

Control-flow invariants are well supported in the literature and are addressed by some
of the most sophisticated DPVTs. However, each tool has a number of features that address

control-flow invariants that are either inaccurate, unsound or both.

2.5.1.4 Object-state invariants

To verify each of the object state invariants identified in our GoF analysis it is necessary to
compute the potential values of variables at different points in the program at runtime and
compare those values to each other or to some fixed value. Basic state invariants compare
variable values to the undefined value (in Java: null). In a static analysis, the value of
each variable could be represented as one of two alternatives: null or — null [Cousot and
Cousot, 1977]. In a dynamic analysis, the value in each trace could be compared to null
directly. Aliasing invariants specify that two reference variables are or are not aliased. Alias
analyses are a common form of data-flow analysis, with a large body of associated literature
[Hind, 2001]. Similarly to basic state invariants, dynamic analyses could compare the value
of reference variables in a trace directly. Deep copy invariants are more challenging, as
they involve graphs of related objects (the clone and all its associated state). An analysis
must compute an accurate model of the heap to verify such invariants precisely. Such an
analysis is discussed in the next section on data-structure invariants. Also, invariants of
this type require the value of primitive variables to be compared. Primitive variables are
rarely modelled accurately by program analyses, as to do so causes a state-space explosion.
However, as a method performing a copying operation would be expected to perform direct
assignments from the state of the original to the state of the copy, a reaching definitions
data-flow analysis could identify that the required assignment had occurred. Finally, a
cloning or copying method may in turn call clone or copy methods on its composed state,
so an inter-procedural analysis is require to track the flow of values into and returning from
method calls.

Hedgehog [Blewitt et al., 2005] performs a data-flow analysis that tracks the values
null or = null. A variable has non-null value if it satisfies one of three criteria: (1)
it is initialized with a non-null expression, (2) all constructors initialize the variable or
the variable is assigned the value of a parameter and (3) the assignment is guarded by
a conditional that tests if the parameter is non-null. The second criterion overlooks the
possibility that the variable will be re-assigned the value null after initialization, so is

unsound. The third criterion involves path-sensitive data-flow, which is undecidable in

43

general, though in this case, the criterion is a useful heuristic that is sound. Lano et al.
[1996] verify similar invariants, but only manually and against VDM++ code.

Numerous approaches, both based on static and dynamic analysis, track object identities
and thus can compute aliasing relationships [Heuzeroth et al., 2003][Blewitt et al., 2005].
Each of these approaches could perform reaching definition analyses for primitive variables
with minor extensions, though, to our knowledge, none of them do so. Hedgehog and
PINOT both perform a limited inter-procedural analyses, but only for certain patterns and
invariant types. The traces generated by Heuzeroth et al. are inter-procedural also, but it is
not clear whether the heap, or just the local stack is modelled at any particular stage of the
trace. In summary, basic state and aliasing invariants are supported by the literature, with
some incompleteness or unsoundness common to program analysis tools while deep copying
invariants is not supported by any DPVT, though some tools provide some prerequisites

for the verification of invariants of this type.

2.5.1.5 Data-structure invariants

Data structure invariants are computationally expensive to verify, as they deal with struc-
tures that are of a potentially unbounded size. Despite this, proving properties of recursive
data structures at runtime is an active area of research. Shape analysis [Sagiv et al.,
2002][Berdine et al., 2007] is an advanced form of alias analysis that aims to statically
determine the complex data structures built in the heap at runtime. Questions about heap-
allocated data structures that a shape analysis can answer include aliasing, heap-sharing,
reachability, the disjointness of two data structures or the presence/absence of cycles in a
recursive structure. As heap-allocated data structures are theoretically unbounded in size,
some part of the structure is represented exactly, while the rest is only approximated, de-
pending on the properties of interest to the verifier. Size information, such as the length of
lists, is typically lost, and information regarding approximated or summarized contents of
the heap are conservative (produce a false outcome when a true outcome cannot be proven,
i.e., generate false negatives).

With regard to object position invariants, SanD verifies that an object is inserted into
a collection by identifying the argument passed to a collection’s insert method (see Ta-
ble 2.3). Using this facility, they can identify that an object is added to the Observer
list held by a Subject object, in the context of the Observer pattern. Taibi et al. [2009]

verify an ‘attached’ event, though this event is defined only in terms of temporal logic and

44

not programming language code. As stated above, both Krishnaswami et al. [2009] and
DiStefano et al. [2008] specify some shape invariants in the context of detailed, pattern
instance-specific invariants. These specifications must be verified manually using a theorem
prover. Rosenberg et al. [2010] use an ownership model to verify invariants of the Compos-
ite pattern. Limitations of the ownership model were discussed in Section 2.4.2.5. Finally,
Bierhoff et al. [2008] verify limited shape invariants in the context of the Composite pattern
given a number of assumptions and limitations (e.g., a Composite has a maximum of two
children). Verification is also manual and the specification and verification language is the
same (Spec#). In summary, some but not all invariants of object position are verifiable
by DPVTs in the literature, while no approach can verify shape invariants without making
limiting assumptions, and even then, invariants are not veriable automatically and in their

full generality.

2.5.1.6 Summary

Cardinality, interface dependency and control-flow invariants are well supported by DP VTS,
though there are some unsound or sporadically-applied methods in the analyses that support
control-flow invariants. Positive implementation dependency invariants are addressed by
numerous tools, but negative implementation dependency invariants are largely overlooked.
The invariant types that were poorly-supported by DPSLs, such as deep copying and all
data-structure, were also poorly-supported by DPVTs, though there is some work in the

area of verification of shape invariants that did not meet the inclusion criteria of this review.

2.5.2 Languages compared during verification

During verification, a design-pattern specification can be compared to its realization or
implementation in a number of different language forms. Firstly, a design-pattern speci-
fication could be compared to another, perhaps more detailed, specification in the same
language, to prove, for example, that a Pluggable Factory realization is a refinement of the
Abstract Factory pattern. Secondly, a specification can be compared to a model in some
object-oriented modelling language (OOML) that has a small semantic gap to code (e.g.,
UML [OMG, 2009]). Finally, a specification can be compared to OOPL code. This requires
a semantic mapping between DPSL and OOPL that allows statements in the two languages
to be related to one another. Figure 2.2 visualizes these alternatives while Table 2.4 out-

lines the mappings provided by the verification tools supporting the DPSLs reviewed. while

; | Forward Engineering |
|Usecase || ‘
e i Reverse Engineering |

I{ Structural

| Program analysis —{Static |

Design Pattern

s : [Dynamic |
Verification Tools {Dynamic |

, - - {Binary |
1 Instance classification | ———
e e { Threshold |

-

| Implementation language }

Fig. 2.11: Classification framework dimensions specific to DPVTs

Table 2.5 outlines the same for DPVTs without an associated DPSL included in the review.
We also classify DPVTs based on the OOML or OOPL they analyze (see Figure 2.11), as

shown in the final column of Tables 2.6 and 2.7.

2.5.3 Conformance relation

Conformance relations define how the specification and implementation are compared dur-
ing verification. We distinguished three conformance relations based on their handling of
behaviour that occurs in the implementation but does not appear in the specification (see
Figure 2.2). We refer to this behaviour as non-pattern functionality or unspecified function-
ality from this point onwards. Patterns do not exist in isolation, but perform a particular
function for the rest of the application. The unspecified functionality can nonetheless refer
to pattern actors and interfere with the proper functioning of the pattern. For example, a
pattern actor may be aliased, and the alias may be used to perform an action that breaks,
for example, an object-state invariant. Such a violation may go undetected without a suf-
ficiently powerful alias analysis. Also, a method actor may call unspecified methods that
update pattern variables in unintended ways. A relation is categorized as safe if it consid-
ers all functionality (specified and unspecified) that may affect the correct execution of a
pattern. A relation is categorized as unsafe if it considers only specified functionality.

The most restrictive relation is termed closed. The closed relation disallows non-pattern

functionality completely in the implementation, i.e., the specification and implementation

46

are required to be equivalent. Such a relation is safe but impractical, as the implementation
is required to be a closed system that does not have any other interactions and performs
only the function specified. This requirement could be relaxed to only require the dynamic
part of the specification, e.g., a control flow invariant describing a method call and a loop,
to be closed while the static specification is open. This would allow other dependencies and
methods to exist without violating the specification. Even with this relaxation, the closed
relation remains very restrictive, as the developer who implements the pattern is forbidden
from interleaving non-pattern and pattern functionality, which may be useful or necessary
in many pattern realizations.

The one-to-one conformance relation is satisfied if the structure and behaviour of the
specification is included in the implementation, while non-pattern functionality is ignored.
The relation identifies a one-to-one mapping between elements in the specification and
implementation and then terminates. As should be clear from the previous section, this
relation may overlook a violation due to non-pattern functionality, and is thus categorized
as unsafe.

The third conformance relation is named refinement. An implementation is a refinement
of a specification if, when placed in the same environment, the implementation behaves ex-
actly like the pattern when the pattern behaviour is involved, while it may also perform
unspecified behaviour when required. This unspecified behaviour is verified also and must
not violate any of the pattern invariants. This definition of refinement is derived fromn
the one in Hoare [1985]. The objects and methods playing the roles dictated in a pattern
specification do not constitute a closed system, but are inevitably involved in many other
interactions, that may or may not be governed by any pattern specification. The perfor-
mance of these other operations may delay the pattern behaviour, but should not cause the
pattern behaviour to never occur or violate any of the pattern invariants.

It should be noted that the relation supported by a particular approach depends mainly
upon the verification tool, but also depends on the semantics of the mapping from spec-
ification language to OOPL. A correct classification of each approach can only be done
where the verification stage and/or OOPL mapping is described explicitly in the literature.
Tables 2.4 and 2.5 summarize the conformance relation for each of the reviewed approaches.
The cells belonging to the DPSLs that do not have a clearly defined semantic mapping to

an implementation language and do not have an associated verification tool are left blank.

The DPSLs based on temporal logics (Dong et al., BPSL and OC/VDM++) are capa-

47

Name Implementation language | Conformance | Instance
type relation classification
DisCo Spec — Spec Refinement Binary
OC/VDM++ Spec - OOML Refinement Binary
BPSL Spec — Spec Refinement Binary
Lauder & Kent Spec -+ OOML One-to-one Binary
Le Guennec et al. | Spec -+ OOML One-to-one Binary
LePUS3 Spec — OOPL One-to-one Binary
RBML Spec — OOML One-to-one Binary
DPML Spec -+ OOML One-to-one Binary
FUJABA Spec — OOPL Refinement Threshold, Binary
Dong et al. Spec — Spec Refinement Binary -
GEBNF Spec —+ OOML Refinement Binary
DVP Spec — Spec Refinement Binary N
Hofer Spec — OOPL Refinement Binary
Shetty & Menezes | Spec — OOPL Refinement Binary
Ammour et al. Spec — OOML One-to-one Binary
Contracts Spec — Spec Refinement Binary

conformance.

2.5.4 Pattern instance classification

48

Table 2.4: Relation between specification and implementation language for each DPSL

ble of specifying a refinement relationship, as they use temporal operators that can state
something is always true, i.e., true for the entire execution of the program, after a given
event or between events. DPVTs that perform static or dynamic analyses are also classified
as supporting the refinement relation, where it is clearly documented that object identi-

ties and other data values are tracked throughout the analysis and used to reason about

The classification of candidate pattern instances as conforming or not conforming to a
pattern specification by most DPVTs is a binary yes or no decision. However, a number

of approaches use a scoring system that includes a threshold value, where a score above

Name Implementation language | Conformance | Instance
type relation classification

92 Spec — OOPL Refinement Binary

I SanD Spec — OOPL Refinement Binary -
PINOT Spec — OOPL Refinement Binary
Hedgehog | Spec —+ OOPL Refinement Binary
Columbus | Spec —+ OOPL One-to-one Threshold
PEC Spec — OOPL Refinement Binary
Peng et al. | Spec -+ OOML Refinement Binary
DeMIMA | Spec —» OOPL Refinement Binary
MoDeC Spec — OOPL Refinement Binary

Table 2.5: Relation between specification and implementation language for each DPVT

the threshold value indicates conformance (Figure 2.11). Tsantalis et al. [2006] calculate
a similarity score between graphs of classes, where the edges are associations and inher-
itance relations. FUJABA [Wendehals and Orso, 2006] collects a number of traces of a
program, and counts the number of traces that reach an accepting or final state of a petri
net representation of the design pattern specification. Finally, Columbus [Ferenc et al.,
2005] counts the number of loops and recursive calls in a method, and classifies the method
as the Strategy’s algorithmlInterface method if the number is above a particular threshold.
We classify the instance classification method of approaches as either ‘binary’ or ‘threshold’

(see Tables 2.4 and 2.5).

2.5.5 DPVT use cases

Tools for design pattern verification fall into two categories depending on their intended use
(see Figure 2.11). These categories separate tools that aim to support a forward engineering
(FE) process [Blewitt et al., 2005][Peng et al., 2008], from those that aim to support a reverse
engineering (RE) process [Shi and Olsson, 2006 [Bergenti and Poggi, 2000][Guéhéneuc and
Antoniol, 2008][Smith and Stotts, 2003] (see Tables 2.6 and 2.7). A FE process guides the
development and maintenance of software systems by allowing the developer to check that
their new implementation or modification conforms to the designer’s original intent. A RE

process takes existing source code and attempts to discover patterns in source code, to aid

49

program understanding. A FE process that incorporates design-pattern specification and
verification involves three stages: specification of the properties/invariants that characterize
each of the supported patterns, manually matching roles in the specification to actors in
the source code, and verification. A RE process shares the first stage with a FE process,
but must then make an automatic search of the source code for pattern implementations.

Both FE and RE tools have the potential to produce false positives and false negatives
during verification, but in FE these errors are caused by either a fault in the specification,
or the tool. RE tools have the added problem of producing false positives that were never
intended to be patterns. This cannot happen in a FE process, as the user identifies explicitly
which entities are supposed to constitute a pattern implementation. This raises the issue
of the level of detail of pattern specifications again, as a generic description of a static class
structure is likely to produce a large number of faise positives. Indeed, numerous designers
of RE approaches complain that some patterns have specifications that are too vague to
provide meaningful results during verification. For example, PINOT [Shi and Olsson, 2006]
does not support the Builder and Memento patterns for this reason.

Performing a detailed program analysis, required for the verification of dynamic pattern
invariants (e.g., object-state invariants), on the entire source code is prohibitively expensive
for a practical verification tool. For this reason, most RE tools perform a first pass to
identify pattern candidates, applying data-flow analysis only to those candidates identified
on the first pass. SanD [Heuzeroth et al., 2003] and IDEA [Bergenti and Poggi, 2000]
identify candidates by their static structure first, then analyze behaviour. PINOT ‘begins
its detection process for a given pattern based on what is most likely to be most effective
in identifying that pattern (e.g., declarations, associations, delegations)’.

In summary, design pattern verification tools have two major use-cases: forward and
reverse engineering. Reverse engineering provides a number of extra challenges that make it

a more difficult problem to eliminate false positives and false negatives during verification.

2.5.6 Program analysis

From the perspective of this review, tool support for DPSLs is vital for two main reasons:
it can speed up the proof of conformance to a pattern specification, saving time that is
precious in a software development life cycle, and secondly, it has the potential to shield
much of the complexity of the formal specification from the software developer, who is

principally concerned with applying patterns and developing well-designed systems. In

50

Name Use case | Program analysis | Implementation language
DisCo - - -

OC/VDM++ FE - VDM++

BPSL RE Static TLA+

Lauder & Kent FE UML UML

Le Guennec et al. | FE/RE | Static oM. |
LePUS3 FE/RE | Structural Java

RBML FE Static UML

DPML FE Static UML

FUJABA RE Static, Dynamic .Ia;ap kil
Dong et al. FE Static TLA

GEBNF RE Static UML

DVP - - -

Hofer FE Dynamic Spec# (C#) -
Shetty & Menezes | RE Static C#

Ammour et al. FE Structural UML

Contracts

Table 2.6: Analysis use case, program analysis and implementation language classification

of each DPSL’s associated DPVT

ol

Name Use case | Program analysis | Implementation language
g RE Static Java

SanD RE Dynamic Java

PINOT RE Static Java

Hedgehog | RE Static Java

Columbus | RE Static G-+

PEC FE Dynamic Java

Peng et al. | - - -

DeMIMA | RE Dynamic Java

MoDeC RE Dynamic Java

Table 2.7: Analysis use case, program analysis and implementation language classification

of each DPVT

order to verify the behavioural invariants, it is necessary to analyze the behaviour of a
candidate implementation at runtime. Program analysis techniques [Nielson et al., 1999]
are intended to perform this task, and the use of program analysis techniques to verify
DPSL specifications is reviewed in this section. Program analyses can be classified as either
static or dynamic (see Figure 2.11).

Static program analysis (SA), as defined by Nielsen et al. ‘offers static compile-time
techniques for predicting safe and computable approximations to the set of values or be-
haviours arising dynamically at run-time when executing a program on a computer’ [Nielson
et al., 1999]. SA techniques build an abstract representation of the entire program in terms
of control- and data-flow. As a number of problems in program analysis are undecidable
in general [Landi, 1992], SA techniques produce safe or conservative results: they output
false negatives or “don’t know” when the answer is undecidable [Sagiv et al., 2002].

There are many uses of the term static analysis in the literature, and they do not all
have the same meaning. Static analysis is a term often applied to the analysis of the
static class structure of inheritance and dependency, but it is used here with respect to
the more powerful definition from Nielson et al., given above. This definition of static
analysis is equivalent to some definitions of program analysis in the literature. We use
the term program analysis in a more general sense to describe any technique that aims

to understand the runtime behaviour of a program, and is not limited to compile-time

52

analyses.

Dynamic program analysis (DA) involves executing the system with a set of test cases.
The challenge of developing a DA system is generating adequate inputs to attain sufficient
code coverage (e.g., to execute all paths through conditional statements that are reachable).
This is known as the code coverage problem, and is a limitation of dynamic analyses, as
it is difficult to identify the set of test cases that will exercise every potential path, or
even every line of code in a program. Dynamic analysis is more appropriate for use in the
context of specific requirements, and for identifying defects caused by interactions that are
too complex to be uncovered by static analysis [Evans, 2005]. Design-pattern verification
tools exist that use both the static [Shi and Olsson, 2006] and dynamic [Wendehals and
Orso, 2006][Heuzeroth et al., 2003| approaches to program analysis. We provide a brief
overview of the two approaches here using an illustrative example. The classification of the

program analysis method of each of the reviewed DPVTs is given in Tables 2.6 and 2.7.

2.5.6.1 Static analysis

Data-flow analysis (DFA) is the only form of static analysis used by existing approaches
to the verification of DPSL specifications ([Aho et al., 1986 Section 10.5) ([Nielson et al.,
1999] Ch.2). Data-flow information can describe which variables are live on exit from a
block and the variables that are aliased at a particular point in the program execution. An
analysis progresses by solving a system of data-flow equations that refer to the entry and
exit of a basic block. A basic block is ‘a sequence of consecutive statements in which flow of
control enters at the beginning and leaves at the end without the possibility of branching’.

PINOT [Shi and Olsson, 2006] describes the use of data-flow analysis to verify implemen-
tations of the Singleton pattern. The Singleton pattern has proven problematic for design
pattern specification and verification approaches, as it involves conditional behaviour and
object initialization. The Singleton pattern is represented in PINOT as a class whose meth-
ods either (a) return an instance or (b) implement lazy instantiation. This is a tractable
data-flow problem, as it only involves two values: null and — null. The Singleton’s
getInstance() method (Figure 2.12) is separated into two basic blocks. BasicBlockO is
shown to be the only block to create an instance of the class, and will do so only if the object
was null on entry to the method. BasicBlockl does not assign null to the object variable
and returns it unchanged. So for both input values: null and — null, the output value

is verified to always be — null. The same analysis also proves that only one instance can

Conditions
Statements

Conditions

Statements

Fig. 2.12: Control-flow graph for an implementation of the Singleton’s getInstance()
method (PINOT)

be created. This analysis demonstrates a refinement relation between PINOT specification
and Java code, as any non-pattern functionality that subsequently updated the value of the

instance would be identified by the data-flow analysis.

2.5.6.2 Dynamic analysis

FUJABA [Wendehals and Orso, 2006] uses dynamic analysis to verify that sequences of
method calls occur in the correct order using method call traces captured from Eclipse
using a tool that leverages the debugging interface of the Java Virtual Machine (JVM).
Sequences of method calls are transformed into a Deterministic Finite Automata (DFA). A
single call is transformed into two states with a transition between them. The transition
is labelled with the caller object, the call symbol(->) and the callee object. When two
calls occur in sequence in the pattern specification, the end state of the first call is merged
with the start state of the second call, and so on. A DFA for the State pattern is shown
in Figure 2.13. The Petri net concept of tokens are used to count the method traces that
pass correctly through each of the states of the pattern DFA. A trigger is any method that
labels a transition from the initial state e.g. context.request and context.setState in
Figure 2.13. The execution of a trigger method call adds one token to the initial state. The
token moves through the DFA as the method trace follows the correct behaviour of the
pattern specification. Method calls that occur in the wrong order move to rejecting states
and are evidence of non-conformance. When all tokens are collected the number of tokens
that have passed through an accepting state (a state at which the DFA has performed its full
procedure) are compared to the number of tokens ending in a rejecting state. This example
describes the verification of control-flow invariants, but dynamic analysis has also been

used to verify invariants that require data-flow information, such as aliasing invariants, as

54

(co:context)->(a:abstractState). handle

(cl:client)->(co:context).request

(cl:client)->(co:context).request

(cl:client)->(co:context).request (co:context)->(co:context).setState

[
(cl:client)->(co:context).setState (a:abstractState)->(co:context).setState

(cl:client)->(co:context).request

(co:context)->(b:abstractState).handle

(cl:client)->(co:context).request

Fig. 2.13: FUJABA [Wendehals and Orso, 2006] DFA for the State pattern

discussed above. To our knowledge, none of the reviewed DPVTs that perform DA address
the code coverage problem in detail: DeMIMA, for example, assumes the existence of a set
of test cases that will provide good code coverage, rather than generating the set of test

cases itself.

2.5.7 Assigning pattern roles to implementation actors

Assigning roles, as described in the design pattern specification, to corresponding actors
in the implementation involves creating a binding between the two, in order for the ac-
tor to be checked for conformance to be checked. Binding actors to roles is a relatively
straightforward process compared to specification and checking conformance to dynamic
pattern specifications, but there are a few issues that deserve a brief discussion. A number
of approaches use queries to compare implementations to specifications. Dong et al. pass
implementation-specific names as parameters in a query to a Prolog rules database. Mak
et al. and Le Guennec et al. use OCL queries as part of their specifications, which are then
applied to UML (Class) diagrams. Most of the approaches that use a graphical syntax for
specification require a separate diagram of the pattern realization. LePUS3 uses shaded
instead of blank shapes to distinguish constants, i.e., actual method signatures or classes
from wariables, i.e., class or method roles. LePUS3 supports specifications that contain only
variables (pattern specifications), a mix of variables and constants (frameworks) and only
constants (concrete programs). DPML uses solid outlines for its specification symbols, and

identical shapes with dashed outlines for symbols in an Instantiation diagram. Verification

5D

in these two approaches involves a check for equivalent symbols in the two diagrams being
compared, i.e., a one-to-one conformance relation. A further link is required, however, be-
tween instance model and code. Lauder and Kent use three layers of models, with abstract
state and behaviour at the highest (role) level and concrete semantics at the lowest (class),
with an explicit user-defined mapping between each layer. The role level suffers from the
genericity problem as discussed in Section 2.3.1.

Most approaches perform some consistency checking while linking is being performed.
[nvariants that can be checked simply, such as cardinality, are often supported directly
in the linking process. DPML also guides the user through the process by highlighting
valid candidates for certain pattern roles. Allowing an implementation actor to play roles
in multiple patterns, e.g., an Observer that is also a Singleton, is also desirable and can
be supported easily. Finally, Mak et al. support flexible links between specification and
implementation. Taking the example of a combination of Abstract Factory with either
Factory Method or Prototype: “Whether the instantiation takes place locally as the factory
method in [the] Factory Method pattern, or delegates to other methods such as the clone
method in the Pluggable Factory pattern is left open” This allows for more flexibility in

the conforming implementation, but adds an extra verification challenge.

2.5.8 Summary

In this section, we presented the dimensions of the classification framework specific to
DPVTs, and used these dimensions, along with the invariant types identified in the spec-
ification section of the classification framework, to classify existing work in the literature.
Of the invariants supported by DPSLs, implementation dependency is found to be poorly-
supported by verification tools. Cardinality invariants are addressed by some tools that
are based on a DPSL. A single approach addresses data-structure invariants regarding ob-
ject position, and no approach supports shape invariants. The Object-state invariant type
relating to deep copying behaviour is also overlooked by existing DPVTs. Control-flow
invariants are well supported, but with some inaccuracies and unsoundness common in
software verification.

Numerous DPVTs are capable of addressing the most sophisticated conformance relation
(refinement). DPVTs were identified that perform both static and dynamic analysis. Static
analysis and dynamic analysis have different advantages and disadvantages, and are suitable

in different contexts. The state-of-the-art tools in design pattern verification are identified

56

as PINOT [Shi, 2007a], Hedgehog [Blewitt et al., 2005] and D? [Stencel and Wegrzynowicz,
2008, as they support the most sophisticated conformance relation and verify some of the
more challenging behavioural invariant types. Most DPVTs address the Java programming
language, but some also target C++ and C#. DPV'Ts in the literature are quite evenly split
between applying a forward engineering and a reverse engineering use case, while some do
not define a particular use case. Most DPVTs classify implementations as either conforming

or non-conforming, while a few use a scale of conformance levels along with a threshold.

2.6 Conclusions

A multitude of approaches to the formal specification and verification of object-oriented
design patterns exist in the literature. This chapter presents our novel classification frame-
work for DPSLs and DPVTs. Our inclusion criteria focus on expressiveness and also try to
limit the scope of the review without excluding any approach that has a unique solution for
some invariant type. Some issues specific to design pattern specification such as the levels
of abstraction at which to specify and the re-usability of specifications were discussed.

We identified the OOPL syntactic elements, as well as 13 invariant types, within 5 in-
variant categories, that are required for precise design pattern specification. We classified
the DPSLs according to their support for each of the syntactic elements and found that
one approach supported all elements, while a few others supported a majority of elements.
With regard to invariant elements, it was found that three invariant types in particular
were either poorly-supported or entirely overlooked in the literature. These are imple-
mentation dependency, deep copying (object-state) and data-structure invariants regarding
data-structure shape. This lack of support is manifest as either DPSLs lacking the syntax
and semantics to express the invariant type or DPVTs lacking the ability to perform a
required analysis, or both.

Other classification dimensions include the conformance relation, use case, targeted
implementation language and program analysis applied. The most powerful conformance
relation was found to be addressed by a number of approaches, some of which applied static
and some of which applied dynamic program analyses.

We conclude that a novel DPSL is required that is capable of specifying invariants
from the three poorly-supported invariant categories, and also capable of specifying design

pattern variants, which vary in terms of structure and/or behaviour. The remainder of this

thesis describes the design and evaluation of such a DPSL and its associated DPVT. The
associated DPVT implements a static analysis, for reasons discussed above. The DPVT
targets the Java programming language, due to its popularity, and the fact that most of

the code bodies analyzed by existing DPVTs are written in Java.

Chapter 3

Alas

In the previous chapter, we identified a set of syntactic and a set of invariant elements
necessary to precisely specify object-oriented design patterns. In this chapter, we present
Alas (Another Language for pAttern Specification), a DPSL capable of expressing each of
the syntactic and invariant elements identified in the previous chapter!. In particular, we

focus on the three invariant types poorly supported in the DPSL and DPVT literature:

e Implementation dependency invariants
e Deep copying object state invariants

e Data-structure shape invariants

Also, it was found in the previous chapter that the specification of structural and be-
havioral variants of patterns is poorly supported. We describe the variant specification
features included in Alas.

In Section 3.1, we consider major design decisions inherent in the definition of a DPSL
and provide a rationale for the decisions we made in designing Alas. A brief illustrative
example of specification in Alas is also provided. Section 3.2 outlines structural specification
in Alas, while Section 3.3 describes behavioural specification. We conclude the chapter with

a brief summary in Section 3.4.

! Alas might be more accurately described as a ‘notation’ for design pattern specification, as it has not
been formally demonstrated that each statement that can be made in Alas is meaningful and consistent.

3.1 Introduction

This section discusses the design alternatives considered and the salient design decisions
made in the definition of Alas. The main contributions of Alas in the context of design
pattern specification are briefly summarized and the section finishes with an illustrative

example of an Alas specification.

3.1.1 Language basis rationale

As a large body of work on design pattern specification exists, we decided to base our new
language on an existing language that has either been developed specifically for design pat-
tern specification, has been modified and applied in that context or has some characteristics
that make it suitable for specification of design patterns. While the ability to express each
of the design-pattern aspects outlined above is the primary design goal of Alas, other char-
acteristics are also desirable and relevant, namely: precision, the popularity of the existing
language in academia and industry, the availability of tool support, and the semantic gap to
Java. A language is precise if each of its elements has a clearly-defined meaning that is free
from ambiguity. The related concept of consistency requires that the meaning of different
language elements never contradict one another. Precision in a language definition removes
the number of design decisions left open to the developer of analysis tools conforming to
the language definition, improving tool interoperability. The removal of ambiguity also im-
proves communication among the users of the language and increases the level of confidence
in the analysis results of language-conforming tools. The semantic gap in this context is
the difference between the meanings of constructs in the specification and implementation
language. For example, the semantic gap between Java and some specification language
with object-oriented constructs may be easier to bridge than the gap to a language without
such constructs. Each of these properties were considered when choosing a basis for Alas.
This section considers first DPSLs then non-DPSLs as a basis for Alas.

Unfortunately, two of the three more precisely-defined DPSLs reviewed (LePUS [Eden,
2008] and DisCo [Mikkonen, 1998]), were also two of the least expressive with respect to the
pattern invariant categories and types, especially the behavioural invariant categories. The
third more precisely-defined DPSL (OC/VDM++ [Lano et al., 1996]) supports all control-
flow invariants as well as some restricted dependency and object-state invariants, but does

not address cardinality or data structure.

60

Architecture Description Languages such as Wright [Allen, 1997], and other languages
based on process algebrae are precisely defined and supported by industrial tools but ad-
dress a different level of abstraction to DPSLs, as discussed in Chapter 2. Separation logic
has also been used to specify design patterns [Distefano and Parkinson .J, 2008], though
it does not meet the criteria for inclusion in our classification framework in Chapter 2. It
is also ideally suited to data-structure and some object-state invariant specification. Its
formality gives it a steep learning curve and it does not address the other three invariant
categories. Object-oriented specification languages have received much attention in the re-
search community recently. JML [Leavens et al., 2006] and Spec# [Barnett et al., 2005]
are relatively expressive, but do not provide a convenient mechanism for control-flow in-
variant specification and do not address cardinality or dependency invariants at all. UML
is used (in extended and/or constrained forms) by a number of DPSLs [Lauder and Kent,
1998][Le Guennec et al., 2000][Mak et al., 2004], including the most expressive DPSL ac-
cording to our classification framework, RBML [France et al., 2004]. Also, UML is the de
facto standard for object-oriented software modelling, and as such, it is widely taught in uni-
versities and widely used in industry [Fowler and Scott, 2000][Cheesman and Daniels, 2001].

IML 2 Sequence Diagrams, in combination with OCL, provide a convenient mechanism for
control-flow and some object-state invariant specification. UML has also been extended to
address cardinality invariants by a number of DPSLs [Le Guennec et al., 2000][Mak et al.,

2004).

A related but separate issue is how to translate each of the syntax elements of the DPSL
into constraints on object-oriented programming language (OOPL) code (in this case, Java
code). A number of formal definitions of Java exist, varying in semantic framework and Java
language coverage [Borger and Schulte, 1999][Farzan et al., 2004][Parkinson, 2005|. These
definitions could be reused in the definition of Alas to improve the precision of the overall
model, and may improve tool support, if the definitions have associated tools. Model-driven
engineering [Selic, 2003] describes a methodology for transforming models from one meta-
model (i.e., language definition) to another, and meta models for parts of UML, OCL, Java
and other OOPLs exist [AtlanMod, 2010]. Transformations are written in an operational
language, making the meaning of the mapping hard to identify and understand. Also,

meta-models are often informal or incomplete.

VDM-++ [Durr and van Katwijk, 1992] is a specification language based on the VDM

formal method, but extended to support object-oriented and concurrent systems. Some

61

tools exist to reverse engineer VDM++ from Java and also to generate Java/C++ from
VDM-++, and the mappings in both directions are documented [VDMTools, 2010][VDM-
Tools , 2010]. OCL is used to define the semantics of UML, but its operational style lends
itself to verbose specifications [Vaziri and Jackson, 2000], a number of OCL expressions
evaluate to an undefined value by design, and there are a number of UML features OCL
is not able to formalize [OMG, 2010b]. Finally, another alternative approach to providing
a translation from DPSL to Java, is to create one from scratch using some widely-used
existing framework, such as operation or denotational semantics.

Ultimately, we decided to make some syntactic extensions to UML 2.0 (subsequently
referred to as UML 2) and provide more detailed semantic definitions (using an operational
semantics) where required for design pattern specification. UML was chosen as it has
already been demonstrated to be well suited to design pattern specification, especially by
RBML. Other benefits of choosing UML are its popularity and the small semantic gap
between elements of its syntax and constructs in OOPLs.

However, UML is widely criticized for its lack of a formal semantics [Lund and Stelen,
2006][France et al., 2006][Jackson, 2002| and, possibly because of this, lacks supporting
program analysis tools. Also, UML in its current form is unsuitable for design-pattern
specification for a number of reasons, each of which is listed here and described in more

detail later in the chapter:

e Le Guennec et al. [2000] note that UML, despite its templates and parameterized
binding, is not suited to expressing cardinality invariants. This is due to a lack of

control over the number of bindings that can be made between classes and roles.

e The binding semantics of lifelines are unsuitable for specifying iterations over lists or

other collections of unbounded size, and also for specifying generic pattern behaviour.

e The operators introduced in UML 2 to describe conditional behaviour are ambiguous

[Lund and Stelen, 2006].

e OCL lacks a transitive closure operation and OCL queries and constraints in the
context of a particular object may only refer to objects that are navigable from the
contextual object via association. These two features, as well as others, make data-
structure invariants expressed in UML/OCL verbose, error-prone and inefficient to

verify [Vaziri and Jackson, 2000] [Baar, 2010].

62

The rest of this chapter describes how each of these deficiencies of UML in the context

of the specification of design patterns are resolved in Alas.

3.1.2 Alas design decisions

An Alas specification consists of a single structural specification and a behavioural spec-
ification, which refers to entities defined in the structural specification. The structural
specification is made up of a Structure Diagram (SD), with syntax based on UML 2 Class
Diagrams (subsequently Class Diagrams), as well as supporting text, which is placed in-
side UML 2 constraint boxes (e.g., cardinality invariants are specified textually). The
behavioural specification consists of zero or more Behaviour Diagrams (BDs), with syntax
based on UML 2 Sequence Diagrams, which are a good fit for the interactions between
objects described in the GoF catalogue (the catalogue itself uses OMT Interaction Dia-
grams, a forerunner of Sequence Diagrams, but lacking constructs to describe selection and
iteration [Booch, 1994]).

Structural pattern roles (classes, methods and references) are specified either graphically
or textually in the UML Class Diagram-based SD. Languages based on UML, and UML
Class Diagrams in particular, can leverage the popularity of UML, making them easier to
learn and use. Also, the GoF catalogue itself uses OMT Class Diagrams [Rumbaugh et al.,
1991], a forerunner of UML Class Diagrams, to describe pattern structure, indicating that
Class diagrams are a suitable means of describing the structural constraints imposed by
design patterns.

Cardinality invariants in Alas are expressed using first-order logic, similarly to some
DPSLs [Bayley and Zhu, 2010][Shetty and Menezes, 2011]. First-order logic enables the
specification of the universality and existence, and uniqueness cardinality invariant types.
As Class Diagrams are used to specify relationships that should exist and not relationships
that should not exist, they are suitable for specifying positive dependency invariants, but not
negative dependency invariants. In Alas, dependency invariants are specified textually. We
could have defined negated versions of the standard UML relationships such as association
and inheritance, but this would preclude the combination of cardinality and dependency
invariants in a single invariant (as cardinality invariants are text only). Another approach
would be to use OCL at the meta-model level, but we decided against this due to the
verboseness of the specification.

BDs support the description of the behavioural syntactic elements identified in Chapter

63

2, as well as behavioural pattern roles (i.c., object roles). Control-flow invariants are ex-
pressed within the BDs, which include syntactic elements taken from UML 2 that support
the specification of Sequence, Selection, Iteration and Method calls. Both object-state and
data-structure invariants are specified in constraint boxes accompanying a BD.

BDs provide a concise way to specify design pattern wvariants that differ in terms of
behaviour. This is done by clarifying existing Sequence Diagram operators and adding
an additional operator (see Section 3.3.5). Alas object-state and data-structure invariants
can be expressed in Hoare logic-style post-conditions and invariants similar to class invari-
ants used by many object-oriented software specification languages [OMG, 2010a][Meyer,
1997][Liskov and Wing, 1994][Leavens et al., 2006]. Emerson [Emerson, 1990] states that
Hoare logic is a simpler formalism than temporal logic for sequential terminating programs
and it has the advantage that invariants in Hoare logic are modular, simplifying verification
[Miiller et al., 2006|[Chin et al., 2008]. Finally, generic structure and behaviour in design
patterns is specified in Alas using sets, flexible role-to-actor binding rules and modified roles

and operators.

3.1.3 UML as a basis for design pattern specification

The UML standard provides two extension mechanisms: a ‘lightweight’ extension mecha-
nism (UML Profiles) that provides a means to constrain but not contradict existing UML
constructs and a ‘heavyweight’ extension mechanism (the Meta-Object Facility [MOF]),
that allows the definition of UML-like languages (UML itself was defined, retrospectively,
using the MOF). As Alas requires non-standard UML syntax and semantics, UML Profiles
are not applicable. The MOF, as a tool for language definition, has been criticized for its
inflexibility in modelling instances and types [Volz and Jablonski, 2010][Génova, 2009]. The
limitations of OCL for semantic definition have been discussed above. We choose not to
use MOF or OCL in the definition of Alas, instead defining our novel extensions in terms
of an operational semantics.

The function of the most well-known UML diagrams (Class, Sequence, Activity) is to
describe concrete software architectures, that is, actual actors (classes, methods and objects
) and their association and interaction with one another. Roles in design patterns are not
actors but placeholders for many potential actors that may conform to the constraints
imposed by the role. UML’s mechanism for describing class structure at the level of roles is

the UML Collaboration diagram. UML diagrams may also be parameterized by the use of

64

UML Templates. Collaborations and templates have a number of characteristics that make
them suitable for the definition of pattern roles. Both allow actors to be bound to multiple
different roles in different contexts and both allow an actor to contain other structural and
behavioural actors unspecified by the role: ‘A bound element may have multiple bindings,
possibly to the same template. In addition, the bound element may contain elements other
than the bindings’ [OMG, 2010b] pp642.

However, in design pattern specification it is necessary to specify that some roles are
filled by only one actor in one context (e.g., operation in the Decorator pattern) and that
some roles may be filled by multiple actors (e.g., visit methods of a Visitor class) in the
same context. In UML collaborations and templates, a template may have many bindings
and a collaboration may have many uses, but we take this to assume that each binding or
use is in a different context. The alternative is that a role may be filled by one or more
actors in a given context. In either case, there is no mechanism for making the required
distinction between single and multiple actor roles. Likewise, it is not clear whether an
actor may fill multiple different roles in the same context.

In summary, Alas diagrams correspond to the level of abstraction of UML collaborations
and templates, but this mechanism is not applicable without modification due to ambiguous

role-actor binding semantics.

3.1.4 Sample Alas specification

Before describing the Alas syntax and semantics for addressing each of the design pat-
tern aspects in detail, we present a simple example Alas specification here. This example
provides an intuitive sense of how Alas specifications are composed, while glossing over
semantic issues and usage rules. The invented example we take is called the FalseFacade
pattern, which is similar to the GoF Facade patterns, but with some extensions to exercise
features of Alas not needed to specify Fagade.

The structural specification of the FalseFacade pattern is shown in Figure 3.2, and

consists of a SD and three constraint boxes?.

The SD specifies that there are three class
roles (Client, Facade and SubSystemClass), three reference roles with multiplicities (facade,
ssc and next) and each class role has one method role. Thus, a conforming implementation

is required to have three classes with these inter-relationships. The three reference roles

2The diagrams in this thesis are drawn using Rational Software Architect (RSA) [Rational®), 2007], but
the expressiveness and meaning of Alas is independent of diagram editor.

are declared using unidirectional associations and the methods are all public®. Each SD
has a pattern label that associates the SD with a pattern name. Pattern labels are specified
within constraint boxes using the syntax pattern <patternName>.!

The specification of Figure 3.2 can also be expressed textually. The class operator
is used to declare and name a class role. The refVar operator is used to declare and
name reference roles and takes two operands: a class name from a previously-defined class
role and a reference name. The isMethod operator is used to declare a method and can
be used to constrain the method’s modifier, actor name, parameters and return type (No
constaints are indicated by a *). Role specifications can place constraints on actor names
to capture naming conventions for a particular pattern or within a particular code body.
Factory Methods, for example, often begin with the prefix create. Methods are associated
with classes using the hasMethod operator, which takes a class and a method operand.
Reference roles are associated with class roles using the hasRefVar operator, which takes a
class and reference role operand. The equivalent textual specification to the graphical part
of Figure 3.2 is given in Figure 3.1.

The first constraint box in Figure 3.2 contains a dependency invariant using the Alas
hasRef operator, which specifies that a class has some reference variable of a particular class.
The hasRef operator takes two operands, in this case, two class roles. The invariant also
uses the logical operator NOT with the usual meaning. The invariant states that the Client
class should not hold a direct reference to a SubSystemClass instance. The second constraint
box declares a named variant (backReference) that requires that the SubSystemClass has
a reference to the Facgade. If an actor is found to bind to this reference role, then the
implementation is an instance of the backReference variant. Otherwise, it is an instance
of the pattern’s ‘core’ variant, the variant that includes none of the invariants applied by
structural and behavioural variants. The third constraint box declares a data structure
(sscChain), which is a linked list of SubSystemClass objects. While the next reference role
is declared in the SD, it is still necessary to define the data structure separately, as a data
structure definition can specify that some subset of the SD is a relevant data structure.

The behavioural specification in the case of the FalseFacade pattern consists of only
one BD (Figure 3.3), while other pattern specifications may require two or more. The
BD contains three object roles, indicated by the three lifelines. Each of the lifelines is an

object of a class role defined in the SD. Note also that the object names for the Facade and

3indicated in RSA by the green circle before the method name.
*Pattern labels are typically omitted from the Alas SDs in this thesis to avoid visual clutter.

66

pattern AbstractFactory

class Client

class Facade

class SubSystemClass

refVar Facade facade

refVar SubSystemClass ssc

refVar SubSystemClass next

doStuff isMethod public, *, *, void
delegatingMethod isMethod public, *, *, *
receivingMethod isMethod public, *, *, *
Client hasMethod doStuff

Facade hasMethod delegatingMethod
SubSystemClass hasMethod receivingMethod
Client hasRefVar facade

Facade hasRefVar ssc

SubSystemClass hasRefVar next

Fig. 3.1: A textual specification of the FalseFacade pattern, equivalent to the graphical

specification in Figure 3.2

67

gcusmw [§]

(TR
NOT (ClienthasRefSubSystemClass) Bl (acchom MEpECiass e j
)

{variantbackReference
SubBystemClass hasRefVar Facade facade)

Fig. 3.2: The structural specification of the FalseFagade pattern, including a structure
diagram with three class roles, three method roles and three reference variable roles. The
constraint boxes define a dependency invariant, a pattern variant differing in structure from

the structure diagram and a data-structure definition.

SubSystemClass correspond to the reference roles defined in the SD?.

The specification states that the Client’s doStuff method calls the Fagade’s delegat-
ingMethod. The call from the Fagade to the SubSystemClass object role is contained in
an opt operator, indicating that the call is conditional. A cobstraint box is attached to
the return arrow of the receivingMethod, indicating a post-condition on it. The post-
condition in this case states that the linked list of SubSystemClass objects is always cycle
free at the end of the receivingMethod, which may mutate the list and potentially violate

the invariant.

3.2 Structural specification in Alas

Structural specifications in Alas allow the definition of structural invariants and also define
the roles that are the basis for behavioural specification. Structural specifications also allow
the definition of structural variants. Two invariant categories contain invariants that can
be expressed using structural specification alone: dependency and cardinality. Section 3.2.1
discusses dependency invariant specification in Alas. Section 3.2.2 outlines structural vari-

ants and Section 3.2.3 deals with cardinality invariants.

“The numbering placed before the method name that labels a method call is inserted by RSA and is not
Alas syntax.

68

1.1:delegatingMethod

e S i)

1: receivingMethod

2: recevingMethod

1.2: delegatingMethod

{sscChain isCycleF ree)

Tzuosnm |

Fig. 3.3: The behavioural specification of the FalseFacade pattern. The behaviour within
the opt operator is conditional. A data structure invariant is attached to the end of

receivingMethod, indicating a post-condition.

3.2.1 Dependency invariants

While every design pattern specification defines required associations between classes that
can be described as dependencies, the focus of many dependency invariants imposed by
the GoF patterns is on assocations that should not exist, i.e., negative dependencies. We
distinguish between interface and implementation dependencies. The former refers to the
situation when one class knows the interface of another class, for example, by holding
a reference to that class. The latter refers to a situation where one class commits to a
particular implementation of another class by calling its constructor directly. As discussed
in Chapter 2, interface dependency invariants are widely supported by DPSLs, a number of
DPSLs support a restricted form of implementation dependency and only BPSL is capable
of expressing both (though this capability is not demonstrated in the literature [Taibi and

Ngo, 2003] [Taibi and Mkadmi, 2006]).

3.2.1.1 Interface dependency

Many of the GoF design patterns promote loose-coupling and extensibility, to allow main-
tenance and the addition of new functionality to be performed more easily. The intent of
numerous patterns can be generalized to ‘Clients shouldn’t need to know about Class X’
or ‘Clients shouldn’t be hard-coded to use a particular subclass of Class X’ where ‘know
about’ and ‘hard-coded’ describe the way that the Client refers to the other object. Inter-
face dependency invariants are expressed in Alas using the interface dependency operators:

hasRef, depends and calls, which are typically applied to two class operands, with the

69

meaning that the first is constrained in its relationship to the second. Single dependency
clauses may be combined and modified with the standard logical connectives: AND, OR, XOR
and NOT, with their usual meanings. AND, OR and XOR are binary operators and are placed
between individual clauses, while NOT is unary and occurs before the clause to which it is
applied.

The intent of the Fagade pattern is to ‘minimize the communication and dependencies
between subsystems’ by introducing a Facade class as a single access point to a number of
subsystem classes, so that clients do not have to refer to them directly. The intent of the

pattern is captured in the Alas invariant below:

NOT Client hasRef SubSystemClass

hasRef is a binary operator that states that the first operand has a reference variable whose
class is the second operand. The variable must be at class scope, i.e., an attribute in UML
and Java terminology. By default it takes two class operators but the first operator may
also be a method allowing for more fine-grained statements about where dependencies occur
to be made. hasRef differs from hasRefVar in that it does not define and name a role, it
only specifies the existence of some relationship.

By default, the second operand of a hasRef clause applies to a class or any of its
subclasses (in this example, a Client must not have a reference to a SubSystemClass or any
of its subclasses). This can be over-ridden by another clause that states otherwise, as shown
in Section 3.2.1.2. This latter case is actually common in design pattern specification: a
class should have a reference to another class, but should not have a reference to any
subclass of that other class. The reference may be inherited, e.g., if Client above inherited
a reference to a SubSystemClass from its superclass AbstractClient, this would violate the
invariant above.

While hasRef constrains only the variables of a class, the depends operator, when ap-
plied to two class operands, means that the first does not have an attribute or local variable
whose type is the second operand. Finally, the calls operator is useful in cases where an
explicit reference is not required to make a method call, e.g., when calling static methods
or in method call chaining. The first and second operand of the calls predicate may be
either a class or method. For example, the Caretaker in the Memento pattern has the

respousibility of creating a Memento, but should never access or write to its state. This

70

could be described using the Alas invariant below:

Caretaker hasRef Memento AND (NOT Caretaker calls Memento.GetState())

AND (NOT Caretaker calls Memento.SetState())

Both hasRef and calls are not transitive relations, so, for example, even though
Director hasRef Builder and Builder hasRef PartA, Director hasRef PartA evalu-
ates to false for a correct implementation of the Builder pattern. Parentheses are included
above for readability purposes only, the NOT operator has higher precedence than AND (and

OR), so the brackets may be omitted here and the meaning is the same.

3.2.1.2 Implementation dependency

A number of GoF design patterns focus on flexibility in the creation of objects. A summary
of their common intent might be that ‘a client holds a reference to an object, but is not
hard-coded to a particular implementation (subclass). Alas provides a single implementa-
tion dependency operator, isInitializer, that is used similarly to the interface depen-
dency operators described above, taking two class operands or a method and class operand.
It states that the first operand calls the constructor of the second operand explicitly some-
where in its definition. The ability to distinguish between interface and implementation
dependency, and positive and negative dependency, is part of the first major contribution
of Alas.

The Abstract Factory pattern ‘provide(s| an interface for creating families of... objects
without specifying their concrete class.” Thus, a client should never contain the code: Maze
aMaze = new Maze() or BombedMaze bMaze = ... as the first performs the initialization
itself, and the second commits to a particular subclass. Instead, creation of the object is
delegated to a factory object: Maze aMaze = factory.makeMaze (). This is partially de-

scribed in the Alas invariant below:

Client hasRef Product AND NOT (Client hasRef ConcreteProduct) AND

NOT (Client isInitializer Product)

where ConcreteProduct inherits from Product and there are no intermediate classes be-

tween the two roles in the inheritance hierarchy defined in the SD of the Abstract Factory

71

pattern (not shown here). The first two clauses state that the Client has a reference variable
of superclass (Product), but not of a subclass of Product. The third predicate states that

the Client does not initialize any object of class ConcreteProduct.

3.2.2 Structural variant specification

There are a number of trade-offs or alternatives to consider when implementing design
patterns, which create a number of potential pattern variants, each requiring their own
specification. As stated in Chapter 2, named variants, especially those differing in terms of
behaviour, are not well supported by the state-of-the-art in DPSLs and variant specification
is one of the main contributions of Alas. In Alas, variants may differ in terms of structure,
behaviour or both. The structure and behaviour that is common to all variants can be
specified only once and shared between each variant. Variant-specific structure is specified
inside constraint boxes in the structural specification. The first line in the constraint box
defines the variants that the following constraints apply to using the variant keyword
followed by a comma-separated list of variant names. In Behaviour diagrams, variant-
specific control flow is specified using the var Combined Fragment that expresses potential
choice (see Section 3.3.5). Variant-specific object-state and data-structure behaviour are
placed within constraint boxes that are labelled similarly to those included in structural
specifications described above. Variant specifications can place additional constraints on
other variants or remove the conditions described in the shared or core variant pattern
specification, to allow for more concise specifications. Structural roles are removed from
the core (or other variants) by repeating the role definition exactly in the variant definition,
and preceding it with the keyword removes. Removing a structural role from a specification
also removes all clauses that refer to that role.

A trade-off to consider with respect to the Composite pattern is where to declare child
management methods (add, remove and GetChild(int)). If they are defined in the Compo-
nent superclass, it adds transparency, as all Components can be treated uniformly. Defining
them in the Composite subclass, however, offers safety, as a client cannot do something
meaningless such as trying to add children to a Leaf. Another variation point is whether
each child has a reference back to its parent. Figure 3.4 shows the Alas specification of
the safe variant as the generic pattern, with the unsafe and parentLinks variants speci-
fied in separate constraint boxes. An equivalent specification could be obtained by adding

the three child management methods to the Component class in the diagram, changing the

72

- chidren m

Q'!/ operation ()

& operation () l E operation ()

add (c :Composite)
& remove (¢ : Composite)

Q getChild (index : Integer)

{variant parentLinks

Comp thasRefvar Comp it parent}

{variantunsafe

ComponenthasMethod add
Comp thasMethod
ComponenthasMethod getChild}

Fig. 3.4: Composite Structure diagram with two structural variant definitions, both of
which add static roles to the core specification. This allows for four valid variants of the

Composite pattern.

variant name from unsafe to safe and prefixing each of the hasMethod statements with
removes. For simplicity, the textual descriptions of the child management methods (defin-
ing return type etc.), have been omitted. The differences between variants can be inferred
during verification. In this case, if no actor is found to fill the role of add, remove and
GetChild(int) methods in the Component class, but all other roles are correctly filled, the
implementation will be identified as the ‘safe’ variant of the Composite pattern.

The replaces keyword is a concise way to combine in a single statement additions of new
invariants with the removal of existing invariants. It is especially useful for changing some
property of a method signature, as the signature specification, defined using the isMethod
keyword, can be separated into its constituent sub-clauses (hasReturnType, hasParam).
For example, to specify the No Abstract Factory variant of the Abstract Factory or Factory
Method patterns, it is necessary to change the return type of the Factory Method from
AbstractFactory to ConcreteFactory. This is specified as:

variant No Abstract Factory

removes AbstractFactory

replaces ConcreteFactory.factoryMethod hasReturnType AbstractFactory

with ConcreteFactory.factoryMethod hasReturnType ConcreteFactory

73

Note that in a sequential interpretation of the Alas specification above, factoryMet-
hod could not be referred to in line 3 of the specification above, as the AbstractFactory
structural role is removed in line 2 and factoryMethod is removed by extension, as it refers
to AbstractFactory. We define a more flexible interpretation that allows structural role
definitions to be ‘brought back’ into the specification after their removal is triggered by
having the part of their definition that has been removed replaced by a still-present role.
In this case, the new definition of factoryMethod no longer relies upon AbstractFactory,
and thus, does not need to be removed®. The specification of the No Abstract Factory
variant also illustrates qualified names of structural roles. Both AbstractFactory and
ConcreteFactory have a factoryMethod role (the method is over-ridden in the subclass),
so the specific method referred to must be identified by prefixing the method with the class

role defining it and a dot.

Sometimes a variant of a pattern may have more differences from the structure of the
core variant (subsequently referred to simply as core) than similarities, but is still consid-
ered a valid variant of the pattern. To address this issue, Alas provides a scoping operator
(::) to allow the specification of variants in separate SDs to be linked back to their core.
The scoping operator takes two operands, the first operand is the pattern name given in
the pattern label, the second operand is the variant name. See Figure 3.5 for an example
of the scoping operator in the context of the Abstract Factory pattern. The constraint box
is an example of a wvariant label, which uses the scoping operator to associate the variant
with it core variant, in this case, the Abstract Factory pattern. Constraints from the core
are not automatically applied to the variant specified in the separate SD, as the names
used in the two SDs may not be equal. To include invariants from the core in the variant
specification, the substitution operator (->) must be used to map names in the two SDs.
The substitution operator takes two operands, the first of which is a name from the core
SD and the second of which is a name from the variant SD that is being substituted for
the first in the core. Invariants from the core are only included in the variant specification

when every role in a clause or sub-clause has a mapping defined for it.

SA strictly sequential interpretation of Alas specifications with the removes and replaces keywords
would require variants to be ordered with respect to each other, to identify the roles that are present or
removed. This interpretation complicates the semantics of the language and also makes specifications less
readable, as all variants must be read in order to understand any variant in isolation.

74

I_s factoryMethod () - AbstractProduct

(BN
{ variant Abstract Factory::No AF

ConcreteFactory -> Factory}

Fig. 3.5: A variant specified in a separate SD, illustrating the use of the scoping (::) and

substitution (->) operators

A second use for the scoping operator is to define sub-variants: variants that further
relax or constrain another variant and are only meaningful or relevant in the context of the
this other variant. In this case, the first operand to the scoping operator is a variant name,
or comma-separated list of variant names, the second operand is the sub-variant name.
The variants that are affected by the constraints in another variant could be inferred,
but the scoping mechanism allows for more fine-grained control of the scope of a variants
constraints. For example, a sub-variant could be applied to only a single variant, while
it could validly be combined with two or more variants. An example of a sub-variant is

provided in the section on behavioural variants (section 3.3.5).

3.2.2.1 Semantics

A pattern specification includes a set of structural roles defined in a SD, a set of invariants
defined in associated textual clauses and constraints from one or more BDs. We refer to
all these definitions and invariants generically as constraints in the following discussion. A
pattern specification is a conjunction of each of these individual constraints from each of
the included diagrams. The removes keyword can be used to remove both structural role
definitions and textual clauses such as dependency invariants from a specification. In both
cases, the entire constraint must be repeated in the removes clause. This avoids ambiguity
but makes it verbose to remove long constraints such as cardinality invariants. Removal of
a structural role also removes all clauses that refer to the role.

In a conjunction or disjunction of multiple clauses, a single sub-clause can be removed,

and the effect of removing the sub-clause is to replace the clause in the specification with

the value true. For example, a variant that removes the second sub-clause of:

NOT (A isInitializer B) AND NOT (B isInitializer C)

results in the clause:

NOT (A isInitializer B) AND true

4> NOT (A isInitializer B)

NOT is considered as part of a sub-clause, while AND, OR and XOR are the connectives
between clauses. When removing textual clauses (or sub-clauses) that include NOT, it is
necessary to remove the NOT in the clause included after the removes keyword, otherwise
it is possible to create a NOT (true) clause, which is unsatisfiable. A variant that removes
all structural definitions (and, by extension, all textual clauses) from the core variant is an
invalid definition.

Defining a set cons as the set of all constraints, with a size n, a pattern specification
(the core variant) can be defined as:

core = cons; A consp A ... A cons,

A variant specification containing m additional constraints (i.e., no removes constraints) is
defined as:

variant = cons; A consy A ... cons,,

The combination of a core variant with the above variant results in the overall pattern
specification:

pattern = core V (core A variant)

A variant specified in a separate SD and linked using the scoping operator does not by
default include constraints from the core variant. Defining the set corey as the set of
constraints taken from the core for which the other variant provides complete substitutions,
the specification of the overall pattern can be represented as:

pattern = core V (core; A variant)

76

Returning to variants specified in the same SD as the core, we define variant, as the set of
removes clauses and variant, as the set of additional constraints, the pattern specification
becomes:

pattern = core V ((core \ variant,) A variant,)

where the hiding operator, \, removes both structural definitions and any clause or sub-
clause that refers to them. Multiple variants are not mutually-exclusive by definition. For
example, the inclusion of two variants leads to the pattern specification as defined below
(angled braces [()] have been used to denote the outermost parentheses of each sub-clause,
to improve readability):
pattern = core V ((core \ variant!) A variant!) v
((core \ variant?) A variant?) Vv
(core \ (variant! A variant?) A ((variant! \ variant?)

A (variant? \ variant?)))

The four clauses combined in a conjunction represeut the core variant, the first variant, the
second variant and the combination of the first and second variant respectively. Note on
the last two lines of the definition that the set of removes clauses of each variant applies
not just to the core variant but to all other variants with which it may be combined also,
i.e., variants may remove definitions and clauses from other variants. Similarly to a single
variant, a combination of multiple variants that removes all structural definitions from the

core is also invalid.

3.2.3 Structural cardinality invariants

Cardinality invariants place constraints on the number of elements in a set, usually by com-
paring the number of elements in two or more sets to each other. As described in Chapter
2, cardinality invariants are well supported in the literature [Le Guennec et al., 2000, Mak
et al., 2004, Eden, 2008], though the languages that address them tend to focus on structure
and lack support for behavioural specification. Structural cardinality invariants (cardinality
invariants that are described completely in the structural specification) can be expressed in
Alas using sets and quantification. Up until now, each role has been an individual role, i.e.,
a role that is played by one actor only. In this section we introduce set roles, roles that may

be filled by one or more actors. Sets can be created using two approaches: explicitly using

77

Alas built-in operators or implicitly in a quantified expression. Sets of classes are always
created implicitly while sets of methods are always created explicitly. The isMethodSet
operator is identical to the isMethod operator except that it defines a set role rather than a
single role. Similarly, hasMethodSet is identical to hasMethod, except that it associates a
class to a method set and not a single method role. An example of a definition of a method
set, which we will use later to specify a cardinality invariant in the context of the Visitor

pattern is shown below:

VisitMethodSet isMethodSet
public NOT static NOT abstract, visit*, ConcreteElement ce, *

Visitor hasMethodSet VisitMethodSet

The above specification excerpt states that the VisitMethodSet is a set of methods that
are all public and not abstract or static. isMethod clasuses that do not include static
or abstract, mean that the role may be filled by an actor that is either static or non-
static, abstract or non-abstract. The specification also states that each member of the
set must have a name that begins with ‘visit’, have a parameter that is a member of the
ConcreteElementSet, and may have any return type. Role names specified so far have
simply been placeholders for the actual actor names in a candidate implementation and
place no constraints on the actual name of the actor. With the isMethod operator, it is
possible to constrain the names of actors in a conforming implementation, using a limited
form of regular expressions.

Alas supports the universal, existential and unique quantifiers of first-order logic, rep-
resented by the keywords FORALL, EXISTS and EXISTSONE, with their usual meanings. The

general form of quantified first-order logic statements in Alas is:

Q x in set [where constraint] @ predicate

where Q is a quantifier, x is a bound variable drawn from set and predicate is a valid
Alas clause or another quantified statement. Constraints are optional, as indicated by the
brackets and are used to exclude elements of the set that do not meet some criteria from the
evaluation of the invariant. The in keyword is used to designate that a variable is drawn

from a particular set (as in the Python programming language). The @ symbol substitutes

78

for the bullet symbol from Z notation (e) [Woodcock and Davies, 1996, which can be read
as ‘it holds that’ or ‘such that’, and is used to separate quantification and predicates.

Sets of classes are defined by designating a previously-defined single class role as the
set in some quantified statement. This overrides the role’s initial definition, and makes
the role a set role. The Mediator pattern ‘promotes loose coupling by keeping objects
from referring to each other explicitly” by placing a Mediator object between a set of ob-
jects that co-operate. The Mediator pattern differs from the Facade pattern in that it
defines a multi-directional protocol, while the Facade handles unidirectional communica-
tion. The Alas invariant below states that no two (non-identical) members of a set of classes
(ConcreteColleague) that inherit from a common parent (Colleague, whose definition is

not shown) refer to each other explicitly:

NOT EXISTS cA, cB in ConcreteColleague

where NOT (cA == cB) @ cA hasRef cB

where cA and cB are arbitrary names. Note that cA and cB are quantified variables repre-
senting classes, that may be substituted here for class roles. Quantified variables may take
the place of roles in any Alas clause, provided they are of the type that the operator that
is applied to them expects. The ConcreteColleague role is over-ridden here by its use as
a set in a quantified statement and is made a set role. Finally, this example illustrates the
use of the == operator that may compare two classes or methods for equality (a class or
method is equal to itself only).

The Visitor pattern will be used to demonstrate universal quantification in Alas struc-
tural specifications. A Visitor ‘represent[s| an operation to be performed on the elements
of an object structure’. Each Visitor class should be capable of visiting every element type
(e.g., a code generating visitor must be able to generate code for every type of expression).
Using the defintion of VisitMethodSet above, and the universal quantifier FORALL (and

omitting some definitions for brevity), this invariant can be specified as:

FORALL ce in ConcreteElement, v in ConcreteVisitor @
EXISTS visitMethod in v.VisitMethodSet @

visitMethod hasParameter ce

79

where hasParameter is a convenience method defined in terms of isMethod, where only
the parameters in the method signature are constrained. Note the use of the dot notation
(v.VisitMethodSet) to indicate the set of methods belonging to a particular class. In
natural language this states that every class that inherits from Visitor contains at least
one method that accepts each element of the ConcreteElementSet as a parameter. This
example is an instance of the universality and ezxistence invariant type. Invariants of the
uniqueness invariant type are expressible directly using the EXISTSONE quantifier.

Finally, cardinality invariants can also place constraints on the multiplicity of relation-
ships between classes. A Decorator object should be associated with, or ‘decorate’; only one
Component object, so the Decorator class should define only one reference variable attribute
of type Component. Alas provides the refVars keyword to represent the set of all reference
variable attributes held by a class role. Similarly, the methods keyword represents the set
of all methods defined in a class role”. The class of a reference variable can be accessed
using the class keyword. refVars, methods and class keywords are all associated with
a role using the dot notation: <roleName>.<keyword>. Inheritance relationships can be
specified textually using the inherits keyword, which states that the first class operand
is required to inherit from the second class operand. The invariant in the context of the

Decorator pattern may be specified as:

EXISTSONE var in Decorator.refVars @

var inherits Component OR var.class == Component

3.3 Behavioural specification in Alas

In this section, we describe behavioural specification in Alas. Alas behavioural specifications
are capable of expressing behavioural cardinality invariants, control-flow, object-state, and
data-structure invariants. In particular, Alas is capable of expressing object-state invariants
regarding deep copying and data-structure invariants regarding data-structure shape. Alas
BDs also provide a concise syntax for expressing design pattern variants that differ in
terms of their behaviour. Finally, generic control flow can be specified using BDs (see
Appendix E).

BDs describe a sequence of events that are initiated or performed by roles. BDs are

"Both refVars and methods refer to the set of all structural entities occurring in the class actor bound
to the class role, not just the structural entities specified in the role.

80

based on UML 2 Sequence diagrams and OCL but introduce new constructs and differing
semantics for some existing constructs. This section introduces the syntax required to
specify each of the invariant categories in turn, drawing examples from the GoF catalogue.
An overview of the semantics of each concept is given in a short section after that concept
is introduced. Detailed semantics and more subtle issues that are less critical to basic

understanding are covered in Appendix A.

3.3.1 Control-flow invariants

Delegation of respousibilities between objects is a central concern in design patterns and the
ability to express delegation is thus a basic requirement of a DPSL. Numerous GoF design
patterns describe two or more events that should always occur in sequence, while a number
of patterns also include conditional and iterative behaviour. As described in Chapter 2, a
number of DPSLs are capable of expressing all control-flow invariants [Lano et al., 1996,
France et al., 2004]. This section describes how invariants of the types Sequence, Sele-
ction, Iteration and Method call are specified in Alas.

Lifelines are the foundation of BDs and represent interacting object roles. Lifelines are
indicated by a labelled box, called its head, with a vertical line below it, along which events
are specified. The labels within lifeline heads take two operands, which are typically an
object name and a class name, separated by a colon (though some exceptions are discussed
later). Objects interact by exchanging synchronous method calls. Every call event has a
corresponding return event. A call event is indicated by an arrowed line between caller and
callee with the callee being the target of the arrow. The line is labelled with the method
role name (or other method identifier) and may optionally include arguments. Arguments
specified must conform to the type specified by the parameters of the method. Every BD
begins with a found call, a call event with no calling object role. This indicates that the
method receiving the found call does not need to be called anywhere in the implementation,
i.e., no role needs to be bound to the source of the found call.

The object name given to a lifeline receiving a call in a BD may match a reference
role belonging to the class of the calling role. This indicates that the object to which that
reference is currently pointing is the intended receiver of the call (issues regarding object
identity are discussed later). For example, Figure 3.3 shows the Client calling the Fagade
object using the reference role (facade) defined above in Section 3.1.4. Alternatively, the

object name may match no previously defined role. Subsequently, we will use the term

81

object role sometimes as a catch-all term for all roles representing objects and sometimes
in the more specific sense of roles that do not match previously defined reference variable

roles. In each case, it should be clear from the context.

3.3.1.1 Sequencing

A DPSL should be capable of specifying two related but separate issues: that some set of
events should occur in a particular order and that they should always occur together. The
Command pattern, for example, requires that the execute method of the ConcreteCommand
(Command subclass role) should always call the action method of the Receiver. The first
issue, ordering, is indicated in Alas by the vertical position of events in a BD: events occur
after all events above them and before all events below them. As there is no concurrency

in Alas, BDs define a total order of events.

We will refer to the second issue, that the events always happen, as universal behaviour.
The default semantics of UML Sequence diagrams, however, is that a diagram defines
only a trace that should be possible, while allowing the existence of other traces that
are different: ‘there are other legal and possible traces that are not contained within the
described interactions’(OMG, 2010b, p.473]. Thus, a Sequence diagram defines by default
existential behaviour. An assert operator can be used to state that ‘all other continuations
[besides the one specified| result in an invalid trace’ ibid. p.486. This assert operator
approximates the universal behaviour specification that we require but is not formally
defined elsewhere. We have chosen the universal behaviour semantics for Alas diagrams.
Though this limits expressiveness, as context-specific behaviour is not expressible, it does

not affect the specification of conditional behaviour.

Existential behaviour specification is useful in the early stages of system design, when
the design is being ‘fleshed-out’ and is typically replaced by universal specification when the
requirements of the system are better understood [Damm and Harel, 1998]. With regard
to design patterns, control flows are described that must be satisfied in all contexts, so the
universal meaning is desired. The Alas meaning is similar to a Sequence diagram contained
entirely within an assert operator or a Live Sequence Chart (LSC) universal chart [Damm

and Harel, 1998].

82

3.3.1.2 Selection

A number of design patterns involve conditional behaviour. The Flyweight pattern describes
the initialization of an object on the condition that the object has not yet been initialized
(lazy initialization), while in the Proxy pattern, the Proxy object delegates only if the
intended target of the client (the RealSubject object) has been initialized. These examples
involve conditional behaviour, but a number of alternative or mutually-exclusive conditional
behaviours are required in other patterns. A Handler in the CoR pattern, for example,
should either handle a request or forward it, but not both or neither. The Parameterized
Factory variant of the Abstract Factory and Factory Method patterns describes the use of
a parameter to choose between the initialization and return of multiple alternative types of
object.

The opt and alt operators, taken from UML 2, are used in Alas to specify single,
and multiple mutually exclusive conditional behaviour respectively. Composite operators
describe events that can themselves contain sequences of events. Composite operators
accept one or more operands, each of which is a sequence of events Similarly to UML,
the opt operator is a composite operator that contains one sequence of events and states
that ‘either the sole operand happens or nothing happens’ [OMG, 2010b| p.484, while the
alt operator takes composes multiple sequences of events and states that ‘at most one of
the operands will be chosen’ Lund and Stelen [Lund and Stelen, 2006] show that these
operators are ambiguous. It is not clear whether mandatory or potential choice is intended,
i.e., whether two alternative behaviours must be possible in the implementation or whether
the implementor has the option to implement one or the other behaviour. We choose the
mandatory choice semantics, as the intention is that some conditional branching occurs
in the implementation, as shown in the informal examples in the GoF catalogue. As we
will see later, the var operator, introduced in Alas for pattern variant specification, is an
operator that expresses the potential choice semantics.

All composite events are mutually recursively composable, meaning that any composite
event may contain an instance of any other composite event including an event of its own
type, e.g., an opt may contain an opt. Every operand of a composite event has an optional
guard, specifying the condition under which the operand is chosen. Guards can be specified
completely, though anticipating the guard condition for all valid implementations in all
contexts is typically not practical or possible. For this reason, Alas provides a means to

specify generic guards (see Appendix E), where only a sub-clause of the complete guard

83

WW

1:handleRequest |

s 1:serveRequest

1 2
2:serveRequest
'_.:

[NOT (successor= NULL)]

._._.__..___.__*___

1:handleRequest

2 handleRequest

T 2:handleRequest

Fig. 3.6: Behavioural specification of the CoR pattern involving a two-operand alt with
an operand guarded by a basic state invariant on an object role. A single path in a valid
implementation may not contain the behaviour of both operands. The call event involving

successor’s handleRequest only occurs if the successor has been initialized.

condition is specified.

Object roles have their basic state (uninitialized, initialized, garbage collected) specified
by comparing the role to the NULL role (NULL is a keyword that is equal to any object role
that is either uninitialized or garbage collected), and a constraint on the basic state of an
object role may be placed in the guard of an Alas control-flow operator. Figure 3.6 gives an
example usage of the alt operator and a complete guard imposing a basic state invariant
on an object role. The specification in the figure states that a ConcreteHandler can either

handle a request or forward to its successor, on the condition that its successor is initialized.

3.3.1.3 Iteration

Both the Composite and the Observer pattern involve a method that iterates over an
unbounded collection of objects and calls the same method on each element of the collection
(collections are dealt with in more detail in Section 3.3.2.4). To express iterative behaviour,
Alas provides the loop operator (taken from UML 2), which, similarly to opt, takes a
single operand containing a sequence of events and has a guard. To express iteration and

interaction with an unbounded collection, we require two further mechanisms: a way to

84

relate the number of iterations of a loop with the size of a collection and a lifeline that nay
represent different objects at different times.

While a number of non-standard idioms have been proposed to express this behaviour
[France et al., 2006][Larman, 2005], it is not currently supported in the UML standerd.
In UML Sequence diagrams, a lifeline represents one and only one object: ‘While Parts
and StructuralFeatures may have multiplicity greater than 1, Lifelines represent only one
interacting entity.... An object role name in a UML diagram may be replaced by a collection
name followed by square braces. A selector is an integer value placed within the square
braces to act as an index into the collection, selecting an element at a particular posit.on.
Also, the selector may be omitted allowing an arbitrary object to be bound, but these
bindings are still to a single object and immutable.

In Alas, the selector is not constrained to being an integer only, and may be a strng.
A quantified statement, quantifying over some collection role, may be placed in the bop
guard of the loop operator (also in UML). When the quantified variable’s name matches
the selector string, the desired meaning is obtained: that the loop iterates once for each
element of the collection and that each element of the collection is involved in the interaction
on one iteration. An example from the Observer pattern as shown in Figure 3.7 (all valid
uses of selectors and their meanings are given in a table in Appendix A Section A.5). The
order that each element of the collection is involved in the interaction is not constrained in
this case, e.g., a loop interaction may begin with the first element and progress forwards or

begin with the last element and progress backwards.

3.3.1.4 Non-pattern structure and behaviour

A pattern actor will rarely only perform a pattern role and is typically involved in a number
of other interactions that are not part of the specified pattern behaviour. Thus, requiring
that a method in a candidate implementation does not call any other method except the ones
explicitly specified is very restrictive, and may lead to false negatives during verification.
However, a (specified) call event occurring twice instead of once in a candidate implemen-
tation may have a significant affect on behaviour, as many methods are not idempotent.
We use the term conformance relation to denote the allowable non-pattern structure and
interleaved non-pattern behaviour that an actor may contain/perform and still satisfy a
role. The default conformance relation of Alas, which we call Non-role refinement, states:

all interaction between object roles in a pattern specification should be explicitly specified,

85

[CoRGTeSUReTFCOeTetRSURPA | [ToRSeRaIENnheTORsener |

1: setState

g
1.1: notify

[forall obs in Ob rList)
1: update
2: update
T
1.2: notify [

I
Fig. 3.7: Specifying iteration over and interaction with an unbounded collection by match-

ing the name of the quantified variable in the loop guard (obs) and the selector string in

the lifeline.

but a role may have other interleaved interactions with unspecified objects. A structural
role may have any number of non-pattern structural relations provided they do not vio-
late some specified invariant. This is a special case of the refinement conformance relation
defined in Chapter 2

The conformance relation only relates to method calls, (i.e., interactions between roles)
and does not affect other control branchings such as loops and conditionals. Unspecified
interleaved loops and conditionals are allowed, as are local method calls. One side-effect
of this relation is that it means that a conforming implementation may contain self calls
that are specified and also self calls that are unspecified. Non-role refinement is similar to
the conformance relation supported by LSC [Damm and Harel, 1998]: “If the chart is a
universal chart, none of the events in [the set of events visible to the chart] will be allowed
to occur in between the events appearing in the chart itself... Events and variables not
visible in a chart are not constrained by the chart.” However, the scope from which events
are drawn is slightly different: In LSC, a set of visible events is defined for each diagram
while in Alas (and UML) the set of methods to consider is defined in the Structure (or
Class) diagram to which the Behaviour (or Sequence) diagram corresponds.

However, a Factory Method specification, for example, may include only a call from

86

the Factory to the Product constructor while an implementation may also call a mutator
method (also included in the structural specification) on the Product before returning in or-
der to initialize some state, violating the non-role refinement relation. For this reason, Alas
includes a Refinement relation that allows arbitrary interleaving of behaviour with speci-
fied pattern behaviour. The default relation may be overridden by including a constraint
box, not attached to any lifeline, stating ConformanceRelation = Refinement. Alas also
provides the Equivalence conformance relation, that forbids a method actor to have any
other method calls except those included in the specification. The conformance relation is

set for the entire diagram.

3.3.2 Object-state invariants

In Alas, invariants may be placed on the state of objects or the relationship between the
states of interacting objects at a particular point in the execution of a program using Alas
BDs and attached constraints. Object-state invariants can be used to specify (1) whether
an object has been initialized, (2) whether two objects are copies or aliases of one another
and (3) the state or contents of data structures and collections. Each of these types of
object-state invariants will be discussed below, using examples. In particular, we focus on
the specification of deep copying invariants as one of the major contributions of Alas.

The UML Standard describes a concrete syntax for constraints that involves a rounded
rectangle that spans potentially numerous lifelines that are required to ‘synchronize’ on this
constraint. Rational Software Architect does not provide this syntax, but instead provides
constraint boxes that do not impinge upon lifelines but may be attached to them using a
dotted line. In Alas, as there is no concurrency, it is sufficient to connect the constraint to a
single lifeline, though the constraint may refer to the state of multiple objects (i.e., there is
no synchronization requirement). We use the term anchoring to refer to the connection of a
constraint to a particular point in a lifeline. We use the term constraint for the text within
a constraint box and invariant for the combination of constraint and anchoring position.

Constraints may be anchored to one of two positions in an Alas BD: at a method
return they specify and post-conditions. The second position to which a constraint may
be anchored is at any other control branch, such as the end of a loop or conditional. This
second positioning is treated like a post-condition: it states that an invariant should hold at
that point in the interaction. Alas does not provide pre-conditions as they are were found

to be less useful than post-conditions on methods and control-flows, and complicate the

87

1. createMemento |

1.1: Memento

=
originator state = memento.state
1.2: Memento d

2: createMemento |

4 ————— — — 1 — —

Fig. 3.8: A potential (non-Alas compliant) Memento pattern specification where the ob-
jects pointed to by reference variable roles are strictly equal when the Memento’s constructor

returns.

semantics of the language.

3.3.2.1 Deep copying behaviour

In the Memento pattern, a memento object ‘capture[s| and externalize[s] an object’s internal
state so that the object can be restored to this state later! The state of the Memento
(or some subset of it) is a function of the state of the Originator at two points in the
execution: when the Memento is created and when the Originator is restored to the state
held by the Memento later. Thus, the Memento is a copy of (a subset of) the state of the
Originator, encapsulated within an object of a different type. A potential specification (non-
Alas compliant) of a particular instance of the Memento pattern is given in Figure 3.8, where
state is a reference variable role. There are two problems with this diagram in the context
of design pattern specification. Firstly, in most implementations of the Memento (and
Observer) pattern we encountered during the creation of the benchmark used in Chapter 5
of this thesis, the state of the two objects is not strictly equal (same runtime type and same
value), as the value stored in the Memento, for example, is some function of the Originator’s
state (e.g., a Java integer array in one object converted to a string and prepended with an
identifying tag in another object).

Secondly, the relevant state to be copied (subsequently, copy state) differs between
pattern implementations, while each subclass may add extra state that should be copied.
The copy state is some combination of primitive and reference variables (subsequently

variables) and objects, that may themselves contain other variables and objects, and so on

88

recursively. A generic method for specifying this bundle of state is necessary to describe
the object-state invariant imposed by the Memento pattern.

To deal with the first issue, Alas includes a relates operator (inspired by the reflects
keyword in Contracts [Helm et al., 1990]) that takes two pre-defined reference variable or
object roles as operands and specifies that one operand is some function of the state of the
other.

With regard to the second issue, Alas provides the keywords CopyState and copystate,
that allow the definition of a special role that is defined identically to a reference variable
role except that its role type and role name must be CopyState and copystate respectively.
The role may be bound to a set of variable and reference variable actors, defined in the
containing class, and also to further state recursively reachable from them. An example of
the usage of the role is given in Figure 3.9, in the context of the Memento pattern.

The copy state of two or more roles may be compared in a BD using the operators
isCopy and isRCopy. isCopy takes two copy state operands and states that the two are
strictly equal at the point in the execution where the constraint is anchored (constraints are
always anchored at control-flow events, which can be matched between specification and
implementation). isRCopy is equivalent to relates, except that it takes two copy state
operands. An example of the usage of isCopy is given in Figure 3.10. These mechanisms
collectively address the deep copying invariant type in our DPSL classification framework
of Chapter 2. Introducing an isCopy operator to OCL has been proposed elsewhere, but
with shallow copy semantics [Markovi¢ and Baar, 2005]. The ability to define the copy state
of class roles in Alas gives it the ability to describe the Prototype and Memento patterns,
two of the most poorly supported GoF patterns in the DPSL literature.

The anchoring of the constraint in Figure 3.10 is equivalent to a post-condition in OCL.
The specification states that the Originator must call the Memento object that was passed
to it as a parameter to setStateToMemento and ensure that the copy state of itself and
the memento are equal at the end of the method execution. Note that this demonstrates a

parameter role, where the parameter role name matches an object role name.

3.3.2.2 Copy state definition

Alas provides two categories of approaches to defining the copy state: user-defined and
relation-defined. The copy state to be included during verification can be defined by the

user by selecting reference and primitive variables to be included from the set of classes

89

£ copystate | CopyState
getState ()
setState ()

Fig. 3.9: Illustration of the usage of the CopyState reference variable role in a structural
specification. CopyState may be bound to a different set of primitive and user-defined

reference variables in each implementation of the Memento

I
1. atemptUndo () | | I
I
|

1.1: setStateToMemento (memento : Memento)

1.1.1: getState

1.1.2: getState ()

1.2: setStateToMemento |

TN\ |

| |
=

I | originator.copystate isCopy memento.copystate j

2 attemptundo ()

Fig. 3.10: Illustration of the isCopy operator, relating the copystate of two objects at a
particular point in the execution. Note also the matching parameter and lifeline object role
name. The diagram states that the Originator object calls the Memento passed to it as a

parameter.

90

reachable from the class actor. This approach is only available in a forward-engineering us
case, where the original developer can capture their intent precisely at development time by
binding actors in the implementation to the copy state role manually. To enable a reverse
engineering use case, and to provide a generic specification that can be used in multiple
contexts, Alas also provides copy state definitions based on the relation between composing
object and composed copy state that is both formal and can be automatically verified.

The distinction between association, aggregation and composition relations can help to
identify the copy state. The issue may be phrased as: should we follow this object reference
and include all the objects reachable transitively from it in the copystate? Association
represents the ability to send a message from one object to another. Aggregation restricts
this to message sending within a whole/part hierarchy, while composition adds the further
requirement that the lifetime of the part ends with the destruction of the whole or aggre-
gating object. The state that is in a composition or aggregation relation to the composing
object might be expected to be copied, but the state of all objects with which the object is
associated is neither suitable nor practical for inclusion in a copy.

The UML Reference Manual [Rumbaugh et al., 1999] defines the composition relation
relative to an aggregation relation as adding the constraint that ‘an object may be part of
only one composite and that composite object has responsibility for the disposition of all
its parts - that is, for their creation and destruction’. Ambler [2005] states that whole and
part should have ‘coincident lifetimes’. The key concepts in defining a composition relation
are ownership and lifetime. An ownership relation exists between whole and part objects
if the part is not included in any other whole, and a strict ownership relation exists if the
part cannot be included in any other whole. A composition relation also requires that the

lifetime of the whole and part, defined by their creation and destruction time, are related.

Alas defines the comp (composition) copy state as all the states that satisfy a strict
ownership relation with the composing object. A close relation between the lifetimes of
whole and part is implied by a strict ownership relation, as the whole must initialize the
parts, as no other object is capable of referring to it, and the parts should be destroyed
(or garbage collected) when the whole is destroyed, also because no other object has a
reference to it. In a class actor definition, strict ownership is guaranteed by initializing the
copy state somewhere in the class definition and not providing any accessor method that
returns a reference to any object of the part. An ownership relation, by contrast, is satisfied

by a program where the class initializes the copy state and no accessor method is called on

91

class A {

B b;
D d;
)
class B {
€ ¢cs
C getC(){
return c;
}
}
class C {}
class D {}

Fig. 3.11: Class A satisfies the strict ownership relation with respect to class B, but class

B does not satisfy the strict ownership relation with respect to class C

any object of the part, though an accessor method may be available.

The definition of comp is recursive: each recursively composed class must satisfy the
strict ownership relation between it and its own state variables. For example, in Figure 3.11,
class A owns the object referred to by b and d but also c: even though B provides an accessor
method for its variable c, no client is aware that an instance of class A has a reference to
an instance of B, so has no means to gain access to the recursively composed C object.
However, the relation between B and C does not model a strict ownership relation, so C is
not included in a comp-based copy state definition. The relation between B and C is only
association.

The candidates for inclusion in the copy state of any object are all the objects transitively
reachable via the reference variables defined in the object’s class. These objects can be
imagined to form a graph, where the nodes are objects and the edges are reference variables.
Such a graph may include cycles. A relation-defined copy state constrains the graph of
objects included in the copy state to those objects that satisfy the composition relationship
with the object that directly composes them, i.e., whole and part objects are opposite ends
of a single edge. Figure 3.12 illustrates the graph formed by the example in Figure 3.11.
Black nodes and edges are included based on the comp definition of copy state, while red
nodes and edges are reachable but excluded from the copy state.

As accessor and mutator methods are ubiquitous in object-oriented programming, de-
velopers may choose to include not just the state that is composed by an object in its copy

state, but also the state that it merely aggregates. For example, a Tyre object may be

92

Fig. 3.12: Graph of all reachable state and the included copy state for the classes defined

in Figure 3.11 using the comp copy state definition

initialized by a TyreManufacturer and added to a Car after its construction, but when
copying a Car it is also necessary to copy its aggregated Tyre objects. Alas provides two
other relation-defined copy state definitions that relax the constraints imposed by comp.
iComp (initialization-only) copy state requires only that a whole initializes its parts, and
does not require ownership or coincident destruction of whole and part. Secondly, Alas
provides the dComp (destruction-only) copy state definition, that requires that the part is
not shared in the heap. This allows clients to initialize a part and pass it to the constructor
or some mutator method of the whole. Note, this definition forbids sharing of a part be-
tween any two objects in the heap, not just objects of the same class or kind. For example,
not only can an Engine not be shared between two Car objects, it also cannot be shared
between a Car and a ScrapYard, as this may well break some key invariant of the Car or
ScrapYard class. All three of the relation-defined copy states include all primitive variables

in their graph of relevant state.

3.3.2.3 Object identity

The role of a Factory Method is to return a newly-created instance of a Product class.
Thus, a key invariant of the Factory Method pattern is that a new object is returned, i.e.,
the object created by the call to the Product constructor in the Factory Method is the
same object that is returned by the Factory Method. A related creational pattern is the
Prototype pattern, where new objects are created by copying a prototypical instance. One
invariant of the Prototype pattern is that the object returned by the Prototype’s clone()
method is not the same object as the prototype, but should have identical values for some

subset of its state, similarly to the Memento example above. Thus, to specify the Factory

93

Method and Prototype patterns precisely, it is necessary to be able to express the distinct

concepts of object identity and value equality respectively.

The OCL Standard [OMG, 2010a] defines operators informally using natural language.
The definition of the equality operator, for example, is: ‘The equality of values of the same
type can be checked with the operation =;” ibid. p195, where a value ‘can be either an
object, which can change its state in time, or a data type’ ibid. p.98. The interpretation of
this depends on the meaning of the word ‘equality’, which is not defined. Object identity is
discussed briefly in the OCL Standard, Appendix A, Section 1.2.1: ‘Objects are referred to
by unique object identifiers’ [OMG, 2006]. The OCL set oid(c) is also defined as the set
of object identifiers for a class. However, this set is not used in the definition of any of the
relevant OCL operators. The implementation of Dresden-OCL’s [Demuth and Wilke, 2009]
equality operator calls the Java equals() method. The implementation of the equals()
method is not constrained in Java and could provide either object identity or value equality
semantics. In this case, using the equality operator in OCL has different meanings in

different contexts, and the meaning can not be anticipated when the specification is created.

The UML Standard also makes little reference to object identity. A DataType is de-
scribed as being ‘similar to a Class. It differs from a Class in that instances of a DataType
are identified only by their value! However, the meta-class Class has no attributes or as-
sociations that could be used to store its identity, and both Class and DataType occur at
the same level of the UML meta-inheritance hierarchy, inheriting directly from Classifier,
and nothing else. Thus, it is not clear how the unique identify of objects is represented in

UML.

Object identity and value equality are distinguished explicitly in Alas using the isAlias
and isCopy binary operators respectively. isAlias, similarly to isCopy described above,
takes two reference variable or object roles. It evaluates to true where the two roles are
bound to the same object actor. Both operators are defined precisely in terms of object
identifiers and values below in Section 3.3.2.3. Note that x isCopy y => NOT (x isAlias
y) thus isCopy is a mechanism for specifying deep copies (the values of corresponding
reference variables in both operands are not identical objects) and isAlias is a mechanism
for specifying shallow copies (the operands themselves, and the values of corresponding
reference variables in both operands are identical objects). As pattern invariants referring
to copied state and the distinction between copies and aliases is poorly addressed in existing

DPSLs, the mechanism described above is one of the major contributions of Alas.

94

returnval is a keyword in Alas that refers to the object returned by a method. It
may be used in constraint boxes that are anchored to method call return events, and in
this case refers to the object returned by the method. The value returned by methods
of other lifelines in the behavioural specification can also be accessed using qualification
(<MethodName>.returnval). When a method is called more than once in a BD, its calls
may be distinguished using an occurrence number, appended to the method name after a
colon in the form <MethodName>:<0ccurrenceNumber>.returnval.

In fact, the state of any interacting object may be referred to at any control-flow event
during an interaction. The object pointed to by a reference variable role belonging to
some other lifeline can be referred to by qualifying it with the owning lifeline’s object
role name. Similarly to method calls above, object state at conditional branchings may
be accessed by attaching an occurrence number to the control-flow operator (e.g., opt).
For example, opt:2.handler.successor accesses the object pointed to by the successor
reference variable of the handler lifeline at the end of the third opt operator occurring in the
specification. This mechanism in Alas provides a means to express detailed relationships
between the states of objects at different stages of the interaction.

Figure 3.13 illustrates the use of the isAlias operator and returnval keyword in the
context of the Factory Method pattern. The specification states that the object returned by
the Factory Method is the same object that was returned by the Product constructor. The
distinction between object identity and value equality and the isAlias operator addresses

the aliasing invariant type of our classification framework.

Semantics

To define object state invariant syntax, the state of a program is represented as a transition
system. In each state (s € 9), there is a set of objects (O) that can grow and shrink between
states as objects are created and destroyed, but has a fixed size in any one state. Each
object has a unique identity, which can be accessed using the function id(o). Each object
has a set of variables (A), each element of which is referred to using the notation obj.a
(including variables of primitive and user-defined types), and also a subset of variables C'A
(i.e., CA C A) that represents the subset of variables bound to its copystate. The value
of variables in each state can be obtained using the function Val(a). Each object may be

bound to a set of role names (N), and the function obj(n) maps a role name to its object.

We can now define the Alas operators isAlias and isCopy:

T TR [TR

1: factoryMethod I I
" i 1.1: Product

1.2: Product

{ProductretumvalisAlias reiumval)j

p mem omes Slel Lo SEe

T 2 factoryMethod |

Fig. 3.13: Factory method specification using the isAlias operator and the qualified and
unqualified version of the returnval keyword. The factoryMethod is required to return

the object returned by the constructor of Product.

name isAlias otherName — 4. id(obj(name)) = id(obj(other Name)) .

name isCopy otherName

- def

Yea:CAe

(Val(obj(name).ca) = Val(obj(other Name).ca)) A = ((name).caisAlias (other Name).ca)

3.3.2.4 Collections

Alas supports the four kinds of collections provided by OCL: Bag, Sequence, Set and Or-
deredSet. Their meanings are summarized in Table 3.1, and are compatible with OCL.
Collections are typed, i.e., their contents have a definite type that is specified using a class
role. Collection roles are defined and related to their containing class roles similarly to
method and reference variable roles. For each collection kind, there is an associated opera-
tor for its definition (e.g., isBag) that takes two operands: the collections role name and its
content type. Its content type must be a previously-defined class role. An example of the
definition of a Sequence in the context of the Observer pattern (the Sequence used above

in Figure 3.7) is given below:

96

Ordering | Element uniqueness
Bag Unordered Non-unique
Sequence Ordered Noun-unique
Set Unordered Unique
OrderedSet | Ordered Unique

Table 3.1: Ordering and element uniqueness of each of the Alas (and OCL) collection

kinds

= observerList:Sequence<Qhserver=

§ attachObserver { obs : Observer)
% detachObserver (ohs: Ohserver)
& notify ()

_?Q setState ()

T

Fig. 3.14: A graphical definition of a collection. Subject contains an ordered collection of

potentially non-unique Observer objects

class Observer
observerList isSequence Observer

Subject hasCollection observerList

In structure diagrams, collections are defined either with associations of multiplicity x (with
optional ordered and unique keywords attached to association ends, as in UML) or in the
attribute compartment of a class. The type of the contents of a collection is given in angled
braces after its kind. A graphical equivalent of the textual specification above is given in
Figure 3.14.

Alas supports a number of operations that refer to the states of collections. These
include includes, excludes and union and are taken directly from OCL. Particular posi-
tions in ordered collections may also be specified, such as first, next and at. The suffix
.0ld is used to refer to the value of some variable at the beginning of the method in a
condition placed elsewhere in the control flow of the method, and is borrowed from the

Eiffel programming language [Meyer, 1997]. Applying the equality operator (=) to two

o7

m

1:someMethod '

1.1: detachObserver (obs : Observer) I

1.2: detachObserver

Ope
2: someMethod !

l

{mmmnss j
observerList.old abservm.istuiunabs}

Fig. 3.15: Subject’s detachObserver specification illustrating collection operators and
matching parameter and constraint role names. The method should remove the parameter

from the list and have no other side effects.

collection operands states that every element of one operand is also an element of the other
operand and, for ordered collections, that the elements occur in the same order. Both the
Observer and Composite patterns include an object role (Subject and Composite respec-
tively) that adds to and removes from a Sequence of objects. The Alas specification of the
detachObserver method is given in Figure 3.15. Note the matching of the parameter role
with an object role used in the constraint box. The specification states that the parameter
passed to the detachObserver method has been removed from the collection and no other

object has been added or removed.

3.3.3 Data structure invariants

As the specification of data-structure invariants is poorly-supported in the DPSL and DPVT
literature, the ability to specify data-structure invariants, in particular, shape invariants,
is one of the major contributions of the Alas language. A number of design patterns de-
scribe the use of recursive data structures that can be modified at runtime. For example,
the CoR pattern describes the use of a linked list of Handler objects and the Composite
pattern involves a part-whole hierarchy structured as a tree. Each of these data structures
has desirable properties relating to their ‘shape’, e.g., the absence of cycles in a linked list,
the violation of which can lead to runtime exceptions, deadlocks, and logic errors. To be
able to describe these properties, it is necessary to be able to express the transitive closure

operation, so all elements in an unbounded structure can be related to one another logically.

98

There is no primitive operator in OCL for expressing traunsitive closure directly and it is not
discussed in the latest OCL Standard [OMG, 2010a] [Baar, 2010]. To obtain the transitive
closure of following a reference variable predecessor, for example, the user may write a

recursive function similar to:

allPredecessors = self.predecessor

— union (self.predecessor.allPredecessors) .

This statement, however, may not provide a valid closure, as it may recurse infinitely if
the data structure has cycles and, in this case, evaluates to an undefined value [Vaziri
and Jackson, 2000]. Some tools supporting OCL, such as Eclipse, provide a safe closure
operation, by building a collection using an iterative fixedpoint algorithin [Damus, 2007].

In OCL queries and constraints, it is possible only to refer to objects that are nav-
igable from the contextual object via associations. In a singly-linked list, for example,
this corresponds to all the objects occurring later in the list than the contextual object.
When defining data-structure properties, however, it is often more convenient to navigate
a structure in the opposite direction to association links: whether heap sharing occurs can
be expressed succinctly by evaluating if an object has two or more immediate predecessors
(see Section 3.3.3.1). In OCL, it would be necessary to begin from the root of the data
structure and attempt to identify two (potentially very long) paths to the object.

In Alas, Data structure roles are defined textually and data-structure operators are
applied to the roles to form constraints. These constraints may be anchored to BDs,
similarly to object-state invariants, or may be used unanchored in interaction invariants
(see Section 3.3.4). Data structure roles are defined using existing reference variable or
collection roles (link roles, in this context), where the variable or collection is the same
class or a superclass of the class role that contains it. The data structure is defined as
the transitive closure of following the link roles (which are potentially 1-to-n multiplicity
relations, creating multiple link paths) from some root object until a terminating object is
encountered over every link path. A terminating object may either be of a class that does
not include any link roles or the link roles are uninitialized or empty. For example, in the
Composite pattern, a Composite object holds a list of Component (its superclass) objects
called children. Some of the children may themselves be Composites, while others are

Leafs. Transitively including the children list of all Composites starting from the root

99

defines a tree of Composite objects at any particular stage in an interaction. A particular
link path terminates either when a Leaf is encountered (no link roles) or when a Composite

has no objects in its children list (empty link role).

A data structure is defined using the isStructure operator, which takes two operands.
The first operand is a structure role name and the second operand is a class role, a dot
and a comma separated list of link roles, all of the same class or a superclass of the class
role and where all link roles are pre-defined reference variable or collection roles associated
with the class role. Including a role in a data structure definition has no effect on existing
object-state invariants that refer to that role. The data structures used in the CoR and
Composite pattern are defined below. Note that there is syntactically no difference between
including a reference variable (Hander . successor) and a collection (Composite.children)

role:

chainOfResponsibility isStructure Handler.successor

compositeTree isStructure Composite.children

Alas provides a number of data-structure operators: isCycleFree, isReachableFrom,
isDisjointFrom, isShared and isSharingFree. isCycleFree takes a single data struc-
ture operand and states that the data-structure should be free from cycles. isReachable-
From takes two object operands, and states that the first object may be reached from the
second object by following one of the link roles in the associated data-structure definition.
When isReachableFrom is used within a behavioural cardinality invariant, its operands
may be bound variables representing objects drawn the data structure being quantified
over (an example of this use is given in Figure 3.16). When the data structure that the
operands is not clear from the context, the data structure can be specified explicitly using

the in keyword as:

x isReachableFrom y in chainOfResponsibility

isDisjointFrom takes two data-structure operands and states that no object should be
contained in both structures. isShared takes a single object operand and states the operand
is reachable via at least two links in a data structure. Finally, isSharingFree is based on

isShared, takes a single data-structure operand, and states t