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Abstract

With the growth in cloud computing there is additional complexity introduced in cloud 

systems and therefore there is a need for more efficient resource allocation. Autonomic 

computing is a promising approach for resource allocation in cloud computing and this 

approach advocates for self-managing ability whereby autonomic systems can allocate 

resources for their own needs without intervention from humans. In the Platform-as- 

a-Service (PaaS) model, the platform provider requests for resources such as CPU and 

RAM from the infrastructure provider and ensures the end client who has requested for 

platform resources is allocated sufficient resources to meet their requirements. In the 

PaaS model, platform providers suffer volatile resource demands and high provisioning 

costs due to resource prediction errors and penalties that arise due to SLA violations.

This thesis investigates the problem of autonomic resource allocation in the PaaS 

cloud to prevent resource over-provisioning and under-provisioning by the high-availability 

platform provider systems. This research investigates the use of a collaborative and so­

cial model based approach to address this issue and proposes a Sharex approach which 

allows platform providers to exchange resources with each other for limited time periods. 

In this coordinated approach for organizing system-wide resource exchanges, a resource 

exchange coordinator is proposed to help all the platform providers who are interested 

in exchanging resources and each platform provider who exchanges resources receives 

a commission that can be used to offset any penalties. Results from simulations indi­

cate that in terms of prediction errors, the proposed Sharex model performs comparably 

with existing approaches but provides a significant reduction in penalties accrued by the 

platform providers and is therefore a feasible model for autonomic resource allocation.
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Chapter 1

Introduction

1.1 Autonomic Resource Allocation in the PaaS Context

Cloud computing enables multiple tenants to share a large pool of computing resources 

in a scalable fashion [33]. Cloud computing reduces the cost and complexity of oper­

ating computer networks and have additional benefits such as scalability, efficiency and 

reliability through use of shared resources such as data storage space, networks, com­

puter processing power and specialized user and corporate applications. There are three 

service models used in cloud computing: Infrastructure as a Service (laaS), Platform as 

a Service (PaaS) and Software as a Service (SaaS). In the laaS model, the provider only 

provides the hardware and network capabilities while the client installs and manages 

their own applications, software and operating systems. In the PaaS model the provider 

handles the platform capabilities including the operating system, network and hardware 

while the client is responsible for management of the applications. In the SaaS model, 

the IT operational functions and infrastructure are abstracted away from the consumer 

or client. In this model, business process and applications as well as other consumer 

software is provided in addition to the operating system hardware and network.

In the Platform as a Service (PaaS) model the platform providers offer an abstracted



hosting environment for the application providers by haimessing a large-scale physical 

infrastructure. Most contemporary commercial platform providers are also the infras­

tructure providers however as the PaaS model becomes more mature, more specialized 

platform vendors will separate from the infrastructure vendors. The platform providers 

focus on the development of a cloud middleware which hides the complexity of the cloud 

infrastructure [86]. The concept of middleware was first described in [24] in the context of 

distributed systems. In this paper, middleware was referred to as a set of intermediaries 

for the components in a distributed computing system. The concept of middleware in 

the PaaS environment leverages the deployment of distributed applications onto dynamic 

resources spanning over a large scale network in a pay-as-you-go fashion.

The application providers focus on the development of the business logic which can 

be deployed seamlessly on the cloud platforms, and accessed by the end users on the 

Internet. To support the application deployment and execution, the platform providers 

must respond to the resource requirements originating from the applications, and this can 

only be achieved by acquiring the respective physical resources from the laaS providers. 

The physical resources are provisioned by the infrastructure providers to the platform 

providers through Virtualization. The resource provisioning is mediated by the Service 

Level Agreements (SLAs) to guarantee the Quality of Service (QoS). The SLAs are 

used to cover the availability and performance of provided services. Resources in the 

PaaS model are viewed differently from different perspectives. From the perspective of 

a platform provider, it has to acquire resources sufficiently to respond the changes in 

demand from its customers. Therefore the resources a platform provider has to negotiate 

with an infrastructure provider is expressed at the hardware level using volumes of 

hardware resources. However, a platform provider has to offer on-demand access to 

application providers at a more abstracted resource perspective, such as number of URL 

fetches or number of database transactions. Platform providers are considered high- 

availability systems, therefore are assumed to understand the minimal level of hardware 

resources required to provision the demands from the clients.



The resource provisioning from the infrastructure providers to the platform providers, 

and from the platform providers to the application providers are both bound to the Ser­

vice Level Agreements (SLAs). A platform provider is faced with challenges of managing 

the SLA from both ends to ensure its resource availability. Resource demands from the 

application providers may exhibit unpredictable patterns, such as sudden surges, which 

causes the platform provider to experience the condition of resource under-provisioning. 

On the contrary, demands in resources may continuously decline and causes significantly 

over-provisioning for a platform provider. Both under-provisioning and over-provisioning 

of cloud resources are undesirable for a platform provider. The SLA between an infras­

tructure provider and a platform provider can be dynamically adapted under certain 

constrains. Such constrains must be fully understood and the advantages in certain 

flexibility must be carefully utilized to reduce the risks of provisioning problems and the 

cost. Therefore a platform provider must incorporate a resource management system to 

deal with such volatile resource demands.

Autonomic Computing [73] is a promising approach for resource allocation. It advo­

cates self-managing ability for a system to allocate resources for its own need without 

human intervention. Such autonomic features of resource allocation have been studied 

in the research literature with different focus areas. For example [118] used Reinforce­

ment learning to learn resource valuation estimates for making high quality server al­

location decisions while [21] made use of combinatorial search techniques and analytic 

queuing models. In [117] the author compared a queuing-theoretic performance model 

and model-free reinforcement learning while [16] and [15] focus on maximizing revenue 

while minimizing operational costs or energy costs respectively. None of the current 

approaches in the literature however comprehensively addresses the issues of managing 

the volatile resource demands for the high-availability platform provider systems. The 

Monitor-Analysis-Planning-Execution-Knowledge (MAPE-K) autonomic model [73] has 

been proposed to address self-managing issues. Little work to date has fully connected 

the planning and execution components in the MAPE-K model in delivering an auto-



nomic solution towards such problem.

1.2 The Sharex Approach with Resource Planning Sys­

tems

Predictive systems are used to forecast how much resources are going to be needed in 

the future, in order for a resource manager to make reservations in advance. However, 

prediction functions always include errors inevitably because of the uncertainties in the 

future. The resource allocation management that resides in the platform provider must 

be able to cope with such prediction errors at any given time. Current studies lack a 

thorough investigation into how such prediction errors can be dealt with in an inex­

pensive manner [112]. This thesis proposes the Sharex approach towards managing the 

prediction errors for the resource management system for the platform providers. The 

Sharex approach is a social exchange mechanism to allow platform providers to exchange 

resources to facilitate short term demand requirements. The exchange process is estab­

lished on the Edgeworth box model [85] whereby two negotiators can become better 

off by exchanging one resource for the other. The establishment of resource exchange is 

based on the assumption that the SLA allows such flexibility at inexpensive cost. Sharex 

differs from the other autonomic solutions in resource management such as [50,62,66] in 

terms of better elasticity, inexpensiveness and responsiveness.

The Sharex mechanism is a coordinated social negotiation mechanism. The platform 

providers that are willing to participate can register with a coordinator. Through the 

negotiator, platform providers get to know each other therefore can establish commu­

nications at any time required. The Edgeworth Box [85] negotiation is established by 

two platform providers that have opposite need for resources X and Y. The matching 

of two negotiating parties are based on heuristic searching by any participants, and as­

sumed honesty of the participants. The participants that are negotiating the resource 

exchange must honestly reveal its resource capacity as well as its urgency (expressed by



the Cobb-Douglas utility parameter [85]).

The negotiation strategy adopted by all the participants is a heuristic concession 

making strategy which priorities a successful outcome over obtaining an optimal alloca­

tion. Such strategy is ideal for the scenario of PaaS platform providers, where penalty for 

SLA violations is much more significant than the commissions for exchanging resources, 

and the surges in the resource demand must be dealt with in a timely fashion. It is 

for the reasons of responsiveness that the heuristic strategy rather than game-theoretic 

strategy seems to be the best fit [69].

The Sharex mechanism is incorporated into a reactive management component to 

deal with resource shortage. The reactive management component is equivalent to the 

Execution component in the MAPE-K model. It receives the commands from the plan­

ning components but has the ability to react to sudden bursts in resource demand, in 

which case it triggers the Sharex mechanism. If no successful resource exchange is agreed, 

the reactive resource management component is still capable of amending the SLA to 

guarantee the availability in the resource provisioning. Such amendment is necessary 

but is at the cost of penalties for SLA violations to the infrastructure provider.

1.3 Main Contributions

The thesis investigates the problem of autonomic resource allocation in the PaaS cloud to 

prevent resource over-provisioning and under-provisioning by the high-availability plat­

form provider systems. The key issues to be addressed by this research are to determine 

whether during resource allocation, a collaborative and social model based approach 

between the planning and execution modules in the MAPE-K model can provide a fea­

sible and affordable solution to address the over-provisioning and under-provisioning 

challenges faced by high-availability platform providers. In addition this research will 

determine whether such a solution can be adopted by generic platform providers for 

reactive resource allocation. The main contributions are as follows.



1. The thesis draws a theoretical PaaS model which clarifies the participants as well 

as the resource allocation mechanism. The theoretical PaaS model has been dis­

cussed in the literature [131] however few have presented this model to the level of 

such details for studying the resource allocation problems. The theoretical PaaS 

model uses a time series model [26] for segmenting demands at different times 

which can be analyzed by the platform providers. Moreover, the thesis provides a 

generalized resource granularity model for PaaS platform providers so that resource 

requirements can be quantified in the study.

2. This work proposes and examines the Sharex approach in the process of reactive 

management by resource allocation system. The thesis includes the design and 

implementation of Sharex based resource allocation ecosystem. The thesis also 

proposes a novel evaluation approach for the evaluation of the Sharex, and this 

evaluation approach is also compatible to a different resource allocation model, 

such as an auction-based model [30]. The evaluation is based on the extraction 

of historical demands from the monitoring data of large operational Grid systems. 

The historical demands are used as input for a large number of platform providers 

to exercise in the context of the large scale grid systems.

3. The thesis surveys the economic approaches for resource allocation in cloud com­

puting and demonstrates a feasible resource management system which can be 

adopted by a generic platform provider for ongoing resource allocation. The 

autonomic solution is capable of solving resource over-provisioning and under­

provisioning without human intervention. The outcome of such resource manage­

ment turns out to be inexpensive compared to the double auction model. The 

resource utilization efficiency achieved by the management system is also higher 

than the double auction approach.



1.4 Thesis Roadmap

This chapter has provided an introduction to this thesis and autonomic resource alloca­

tion in the PaaS context. The remainder of the thesis is organized as follows. Chapter 2 

presents the landscape of the Autonomic Resource Allocation in Cloud Computing and 

discusses several key areas relevant to this research. Chapter 3 draws the context of the 

PaaS resource allocation while Chapter 4 outlines the resource management approach 

proposed by the thesis. Chapter 5 describes the architecture of the implementation 

and Chapter 6 presents evidence extracted from experiments and analysis of the results. 

Chapter 7 makes a conclusive statement and suggests the future direction of the research.



Chapter 2

Autonomic Resource Allocation 

in Cloud Computing

2.1 Introduction

This chapter discusses several key focus areas relevant to the research into autonomic 

resource allocation in the cloud. Current research in each area and approaches used 

to contribute to forming an autonomic cloud are discussed as well as identification of 

potential areas of exploration beyond the current literature. This chapter is divided 

into several sections including cloud computing overview, cloud service level agreements, 

autonomic resource allocation in cloud systems, economic approaches for resource allo­

cation, Edgeworth Box model and thesis motivation.

2.2 Cloud Computing Overview

This section provides an introduction to cloud computing and looks at current trends 

and research in this area. Cloud computing has emerged in recent years as a commer­

cial concept and promises low cost and highly scalable IT operations through delegating 

the ownership of computer resources (both hardware and software) to specialized data

8



centers [121]. Such business model is also widely accepted as a realization of utility com­

puting, which promotes the use of computing resources like water and electricity [33]. 

National Institute of Standards and Technology (NIST) [89] defined cloud computing as 

a model for enabling convenient, on-demand network access to a shared pool of config­

urable computing resources (e.g. networks, servers, storage, applications and services) 

that can be rapidly provisioned and released with minimal management effort or service 

provider interaction. Cloud computing differs from traditional hosting services because 

of three characteristics. First of all cloud services are sold on demand for set periods 

of time e.g. an hour, day week etc. Secondly cloud services are elastic in that user’s 

purchase as much of the service as they need and finally, cloud services are managed by 

a provider.

There are several types of cloud deployment models available. Public clouds are the 

most common type, where providers offer resources to the general public. In private 

clouds, providers offer the cloud infrastructure to a single organization for exclusive use. 

In community clouds, several organizations or communities which share concerns also 

share the cloud infrastructure. Finally hybrid clouds combine two of more of the other 

cloud deployment models [89].

Cloud computing is also frequently compared to the concept of Grid computing [52], 

which flourished prior to the development of the cloud. According to Foster et al [53], 

cloud computing and Grid computing share an important common attribute, which is to 

delegate the management of computer resources to a third party in order to reduce the 

operation cost and increase reliability and flexibility. However, cloud computing differs 

from Grid computing mainly in two aspects. Firstly cloud computing is driven by the 

need to analyze massive amount of data. Operating at a massive scale requires access to 

hundreds of thousands of computers which are made commercially available on-demand. 

Secondly the cost of provisioning resources to the cloud is less expensive than the Grid, 

because cloud providers implement low-cost virtualization on commodity clusters. This 

makes cloud computing affordable to both individuals and businesses at different scale.



Traditionally, Grid computing is developed with public funding and is primarily allocated 

to scientific communities. On the contrary, a cloud system is generally privately funded 

and is developed to serve in the commercial context.

Cloud systems are normally separated into three categories with regards to their 

models of resource provisioning. These models are Infrastructure as a Service (laaS), 

Platform as a Service (PaaS) and Software as a Service (SaaS), and are also commonly 

regarded as business models [131].

• laaS is a resource provisioning model where infrastructure providers offer virtual­

ized hardware resources to their clients in an on-demand manner. The infrastruc­

ture provider runs a data center installed with a large number of high specification 

servers and the resources on these physical servers can be virtualized and provi­

sioned to different clients. The laaS model heavily relies on virtualization technolo­

gies, among which Xen, KVM and VMWare are the most popular choices [131]. 

The advantages of the laaS paradigm are that it provides access to a large amount 

of computing power and eliminates the need for the customers to invest in IT 

hardware. Amazon EC2 [1] is an example of a leading and prominent laaS cloud 

service provider.

• PaaS promotes integrated development and the execution platform environment 

is the service that is provisioned to the clients. In the laaS model, the virtual in­

stances lack systematic platform packages including operating system and compat­

ible software suites to operate directly without further installations. The platform 

services usually are proprietary standards to a commercial provider and the PaaS 

paradigm offers highly customized computer resources for application providers. 

Google App Engine [109] is an example of a PaaS application. Advantages of 

PaaS include decreased overall costs and hardware/software compatibility since 

the vendor is responsible for providing the solution. Such platform services serve 

as a middleware that hides the complexity of the cloud infrastructure. Therefore

10



the application providers can focus on the creation of business logic that will run 

spontaneously on the hosting platform. The platform providers share physical re­

sources provided by the infrastructure providers. Zhang et al [131] argued that it 

is entirely possible that a PaaS provider runs its cloud on top of an laaS cloud, 

although they see laaS and PaaS providers are often part of the same organization.

• SaaS enables provisioning of software as resources to the cloud end users, such as 

the CRM systems offered by Salesforce (Sales Force CRM Solutions) [5] and Oracle 

(Oracle on Demand) [4]. The software is highly customized and can be accessed 

through a web based portal without having to be installed on the client computer. 

The software being used is licensed at a much lower cost, usually through a sub­

scription and in such cases, users no longer have to pay the starting cost for full 

licenses in order to have the software running locally on the desktop. The advan­

tages of SaaS include cost savings through reduced investment in IT infrastructure, 

scalability since increased growth can be managed by increase in the monthly SaaS 

subscription, accessibility since applications are access over the Internet and re­

silience since the data resides in the providers data center so restoration of services 

in case of a disaster at the client premises is easier. However challenges with the 

SaaS model include security as sensitive data is now entrusted to a third party 

provider, outages either over the Internet or at the vendor premises can compro­

mise performance and in addition the performance of the application (especially if 

accessed over the Internet) may not be as good as when accessed over a company 

LAN.

Despite the fact that many cloud service providers operate on their own proprietary 

standards, many open source cloud systems have become available for public or private 

clouds. These open source cloud systems eliminate the need for costly development of 

cloud infrastructure therefore anyone can deploy these cloud systems and operate their 

own clouds. OpenStack, OpenNebula and Eucalyptus are well known examples of open

11



source laaS solutions, providing open standards for managing computation, storage, 

networking resources [110]. Meanwhile, OpenShift and Cloud Foundry are examples 

offering open source PaaS solutions, which support various programming languages, 

database connectivity, and automatic scaling of applications [111].

Growth in the cloud computing sectors are affected by several challenges, which 

include risks regarding data confidentiality and challenges with auditability, data trans­

fer bottlenecks, performance unpredictability and scalable storage requirements. These 

challenges however are also opportunities for research and development for example 

the confidentiality and auditability challenges provide room for research into encryption 

solutions, firewall solutions and geographic data storage solutions while performance un­

predictability can be addressed through improved VM support and flash memory. These 

challenges and proposed solutions are discussed further in [54].

2.3 Cloud Service Level Agreements

This section offers a view on the Service Level Agreements (SLAs), which serve as a piv­

otal component for cloud computing. An SLA is a legal document between the provider 

and the consumer of a particular cloud service, specifying a number of obligations that 

both parties must fulfill and penalties if the terms are violated [94]. These obligations are 

also known as Quality of Service (QoS), which include detailed metrics (both functional 

and non-functional) about how a cloud service must be delivered [119]. These metrics 

can include low level parameters such as CPU cycles, disk usage or network traffic, or 

high level parameters such as video fps and resolution [25]. SLAs can be predefined by 

a service provider and are not flexible to change. For instance, Amazon EC2 offers an 

SLA guaranteeing the monthly availability of their instances up to 99.5% [6]. Other 

SLAs can be dynamically adapted using predefined SLA templates, some of which can 

even be negotiated at run-time [28].

There are many existing SLA management frameworks and language standards,
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among which Web Services Agreement Specification (WS-Agreement) [12] and Web Ser­

vice Level Agreement (WSLA) [72] are the most popular and widely used in research 

and industry [129]. WS-Agreement is a language and a protocol for establishing, negoti­

ating, and managing agreements on the usage of services at run-time between providers 

and consumers. WSLA is a framework developed by IBM to express SLAs, measure 

and monitor QoS parameters and report violations to the parties. Both frameworks are 

developed based on the XML language.

SLAs can generally be separated into three types. Task Service Level Agreements 

(TSLAs), Resource Service Level Agreements (RSLAs) and Binding Service Level Agree­

ments (BSLAs) [39]. A TSLA specifies the performance of an activity or task. A RSLA 

defines the right to consume a resource. A BSLA states the application of a resource to 

a task.

Given the context of the existing research on the SLA, we identify the key con­

cerns of a PaaS SLA based on the PaaS resource consumption scenario. PaaS cloud 

re.source provisioning scenario involves different stakeholders, including infrastructure 

providers, platform providers and application providers [81]. Platform providers con­

sume the services of the infrastructure providers by requesting virtual machines and 

storage and deploying application containers on the virtual machines. The revenue of a 

platform provider comes from the applications/services it hosts. Its costs come from the 

resources it consumes from the infrastructure provider and the penalties it has to pay 

for the SLA breaches. Our interests here are to explore the SLAs between a platform 

provider and an infrastructure provider, which are the foundations for further investi­

gating the PaaS resource allocation mechanisms. To disambiguate the types of SLAs 

mentioned here, we propose a definition of AP-SLA, which is the SLA signed between 

an application provider and a platform provider, and IP-SLA, which is the SLA signed 

between a platform provider and an infrastructure provider. The type of IP-SLA in this 

scenario naturally conforms to the RSLA type proposed in [39], which allows specifying 

how much resources a platform provider is entitled to.
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The first concern about a PaaS SLA is the translation from high level SLA metrics to 

low level parameters, as the AP-SLA usually specifies high level metrics (e.g. video reso­

lution), while the IP-SLA specifies low level metrics (e.g. storage and bandwidth). This 

requires the resource management system residing in a platform provider to perform an 

accurate analysis and allocate sufficient resources to deliver the contractual performance 

of its hosted applications while achieving good resource utilization efficiency. Boniface et 

al [25] propose the use of Artificial Neural Network to train the SLA manager of a plat­

form provider to map the high level specifications to low level specifications. Emeakaroha 

et al [42] developed LoM2His framework to map low level metrics to application level 

metrics in the cloud based on a set of mapping rules. Reig et al [103] proposed the 

use of machine learning algorithms to translate customers’ Quality of Experience (QoE) 

requirements into low level QoS requirements in the cloud. Such mapping is not in the 

scope of our study therefore we assume the high level metrics are translated correctly 

into low level metrics.

The second concern is the resource granularity specified in an AP-SLA document. 

Resource granularity refers to the amount of detail that should be taken into consideration 

when describing resources is related to the difficulty of achieving a generic solution for 

distributed clouds [44]. A resource provider may model each resource individually on a 

fine-grained scale, such as the gigahertz of CPU or gigabytes of memory, but may also 

offer them as coupled bundle, such as virtual machine classes (e.g. high specification 

virtual machines). We assume all participants have agreed upon a predefined resource 

granularity model during resource allocation. In our research, we express the RSLA 

between a platform provider and an infrastructure provider in terms of a resource quota 

based on certain predefined granularity model. The resource quota specifies the overall 

limit in which a platform provider can allocate resources in total to host applications. 

We consider such limit as hard SLA constraints and can not be breached unless it is 

reconfigured. Raj et al [100] implemented similar SLA constrains through physical level 

quality isolation.
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The third concern is what resource leasing terms are in place for a RSLA between 

a platform provider and an infrastructure provider. In our research, we propose two re­

source leasing mechanisms that an infrastructure provider offers to a platform provider. 

The first mechanism is on-demand access, where a platform provider can access un­

limited resources that are available from an infrastructure provider at any time. The 

second mechanism is reserved resources access, where a platform provider is entitled to 

allocate resources within the quota for a period of time specified in the SLA. A platform 

provider is subject to pay a penalty fee (or loss of deposit) if the reserved SLA is to 

be modified or canceled. Although the on-demand access mechanism is more flexible, 

the price for the resources is much higher than the price offered in the reserve-based 

mechanism. Moreover, platform providers are allowed to trade their resource quotas 

during the reserve-based contract periods to deal with fluctuations in their resource 

demands. These resource access mechanisms are referenced to the pricing scheme for 

Amazon EC2 [2]. Amazon EC2 offers on-demand virtual machine access and reserved 

instance access based on a contract. The purchase of a reserved instance saves up to 75% 

compared to on-demand access. Once purchased, the reserved instance agreement can 

not be changed or the buyer loses the deposit. It is however possible for a buyer to list 

the reserved instance on the Amazon Market Place [7] for sale if a change is required. 

Amazon charges a 12% service fee of the total upfront cost for the resale of reserved 

instances.

The above underlying assumptions on the PaaS RSLAs allow us to further explore 

autonomic resource allocation systems and economic approaches for resource allocation 

in cloud computing, which are presented later in this chapter.
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2.4 Autonomic Resource Allocation in Cloud Systems

2.4.1 Introduction

This section presents a wide spectrum of literature centered at the topic of autonomic 

resource allocation in cloud systems. We firstly conduct a survey in the autonomic 

computing area, discussing the major aspects of autonomic computing and the general 

architecture structure. Autonomic resource allocation models in cloud systems generally 

focus on either predictive or reactive approaches. Predictive approaches aim to analyze 

recent resource usage patterns to predict the likely pattern in the future, and adjust the 

allocation policies accordingly. Reactive approaches primarily target on detecting and 

handling non-optimal resource allocation scenarios or SLA violations in a responsive 

manner. We study both the predictive and reactive approaches for autonomic cloud 

resource management in the literature.

2.4.2 Autonomic Systems

The concept of autonomic computing was first introduced by Paul Horn, IBM’s senior 

vice president of research in March 2001 in a key note address to the National Academy 

of Engineers at Harvard University [73]. Autonomic Computing advocates a system 

that is capable of self-managing without human intervention [73]. It was inspired by 

biology where for example the autonomic nervous system is responsible for regulating 

key involuntary functions of the body including heart, muscle and gland activities. In 

an autonomic system, human operators only need to issue high level guidelines which 

can be interpreted and executed effectively. In cloud computing, the major feature of 

Autonomic Systems is self-management and this consists of four major function areas: 

self-configuration, self-optimization, self-healing and self-protection and are discussed in 

detail in [73] and [67].

• Self-configuration is concerned with automatic configuration of system components
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to adapt to changes in the environment or deployment of new components while 

maintaining a fully functional system. The autonomic system should be able to 

modify the existing configuration without human intervention to meet the new 

requirements.

• Self-optimization is concerned with efficient allocation of system resources to meet 

user requirements with minimum human intervention. A system should have the 

ability to autonomously adapt itself to a new event that would cause it to operate 

at sub-optimal levels. This should be done by automatically performing a set of 

operations to restore the system to an optimal state.

• Self-healing requires an autonomic system to automatically detect potential failures 

or problematic operations and recover from certain failures. Detection of potential 

failures can be done through predictive or proactive methods while recovery from 

failures requires the system to perform three actions. First is to responsively 

identify the failed parts or systems, second is to diagnose the cause of the failure 

and third is to call a recovery function to automatically restore the system to a 

healthy state.

• Self-protection refers to the ability of the system to automatically ensure it is less 

vulnerable to malicious attacks without the human effort. An autonomic system 

must constantly monitor its security weaknesses and prevent any potential threats 

that could undermine the current security level.

The function areas mentioned can be further extended to be more domain and appli­

cation specific [114] and other examples of self- areas of research include adaptive client- 

server communication [19,84,90], work load adaptive services [22] and self-managing 

storage [88].

The general architectural structure of an autonomic system comprises the Monitor­

ing, Analysis, Planning, Execution and Knowledge components (MAPE-K) which was
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Fig. 2.1: IBM’s MAPEK construct extracted from [C5]

first introduced by IBM in [65] and also discussed further in [29]. The MAPE-K construct 

is a constant loop within an autonomic system during the self-management process and 

each ci-spect is briefly discussed below and illustrated in Figure 2.1 extracted from [65].

• The Monitoring component constantly gathers information in the operating envi­

ronment and selectively chooses relevant information with highlights on particular 

issues. Different metrics can be measured such as hardware metrics or operating 

sy.stem metrics and examples of the information that is monitored includes system 

status e.g. CPU load, offered resources and throughput. The monitoring compo­

nent determines symptoms that need to be analyzed by aggregating, correlating 

and filtering the information and once a symptom is identified, this information is 

forwarded to the Analysis component for further processing. Collectd [3] and Na- 

gios [46] are examples of tools that can be used for monitoring computer systems.

• The Analysis component analyzes the information passed to it from the Monitoring 

component and has mechanisms to correlate and model complex scenarios. This 

component uses predetermined pattern recognition techniciues to quickly identify
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arising issues drawn from the monitoring data then passes the issues to the Plan­

ning component to plan for actions. Other techniques for modeling complex sce­

narios include parametric models such as regression models investigated in [80,101] 

and performance models e.g. queuing theory based models in [18,95,96].

• The Planning component compiles the best set of actions to address the raised 

issues from the Analysis component. The planning stage serves as a solution 

center which can quickly identify an optimal solution for a problem and uses policy 

information to execute its work [9,82]. Two common methods for planning and 

optimizing system performance are by searching in continuous space or searching 

in discrete space [59]. The identified solution is then forwarded to the Execution 

component.

• The Execution component is responsible for implementing the solution it receives 

from the Planning component. This component has the predefined instructions 

to perform according to the guidelines specified in the solution delivered from 

the planning component. An example is where controllers were used in [8,71] to 

maintain the VM utilization at a particular percentage.

• The Knowledge component mediates the above four components during the auto­

nomic life cycle. It constantly accumulates knowledge from the on-going system 

operations and can be queried by any component at different stages of autonomic 

management. This knowledge component can also accept high level guidelines 

from human operators.

Biology inspired autonomic computing has been dominated by wider computer sci­

ence areas, from ubiquitous computing to large scale distributed systems such as grids 

and clusters [64]. These areas that strive to bring the feature of autonomicity face 

common challenges such as state-flapping, performance evaluation and development of 

robust software engineering architecture [64]. State-flapping is where the optimal op-
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eration of the managed element is diminished by oscillation between states or policies. 

Performance evaluation refers to measuring how well an autonomic system performs, and 

it usually yields to other priorities such as the ability of a system to meet the given SLA. 

The ability to carry out robust software engineering to allow interoperability between 

autonomic systems is another challenge in the area of autonomic computing.

Autonomic computing is a necessary aspect to build self-managing networks that can 

perform resource sharing function efficiently and effectively. This section has introduced 

autonomic computing, discussed functional areas, architecture structure and current 

research.

2.4.3 Predictive Approaches

Predicting resource demands is a key issue in cloud resource management and it is not 

an easy task for enterprises to forecast and determine their future requirements for a 

resource [75]. Many autonomic management systems for the cloud employ the predictive 

approaches to understand how much resources are likely to be required in the next period, 

and have shown promising prediction accuracy based on experimentation. We introduce 

several important works on cloud resource prediction in this section.

Islam et al [66] introduced an empirical model for predicting resource demands in the 

cloud. The motivation of their work comes from the problem of the delays in starting 

new virtual instances in the cloud on demand. By predicting the demand and making 

an allocation in advance, they are able to provision the virtual machines without lags. 

Their approach used both the Error Correction Neural Network and Linear Regression 

for resource prediction, which are common machine learning techniques in time-series 

analysis. The evaluation of the prediction approach is based on firstly using workload 

generator implemented under the Transaction Processing Performance Council - Web 

(TPC-W) benchmarking specification to generate demands, and secondly, using histori­

cal data to train the prediction system. Their results show that Neural Network model 

with sliding window technique demonstrates superior prediction accuracy compared to
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Linear Regression. Islam’s work is limited to predicting resource demands in the cloud, 

but did not consider how certain prediction errors can be managed by a cloud resource 

allocation system.

Gong et al [61] introduced the PRESS prediction approach for forecasting cloud 

resource usages in order to avoid over-provisioning and under-provisioning scenarios. 

The PRESS approach targets on elastically adjusting the resource usage cap assigned 

to each virtual instance according to a prediction. In such case, the allocation for the 

running applications does not result in resource waste or costly penalty due to SLA 

violations. A prediction model based on two types of workloads are implemented in 

PRESS. For the first type where the workloads show repeating patterns, they employ a 

pattern recognition technique to identify signatures from historical resource usage and 

make a prediction. For the second type for applications without repeating patterns, they 

use a discrete-time Markov chain with a finite number of states to build a short-term 

prediction. The outcome of a prediction for the second type suggests a new system 

state specifying a range of resource demand values (e.g. 10 to 20). The evaluation of 

PRESS is based on the data generated by a benchmarking system called RUBiS and the 

traces from Google clusters. The results showed that PRESS outperformed the other 

prediction techniques (such as moving average and auto-correlation [61]) in terms of the 

reduction in SLA violations, reduction in wasted resources and prediction accuracy.

Wu et al revealed a two-period reservation mechanism for IT resources to handle 

bursts in demand [128]. This is a coordinated approach for predicting resource demands 

where a broker was introduced to accept the prediction of resource demands from the 

resource consumers. The resource consumers submits the prediction in the first period, 

and pays a price at the second period for the actual resource consumption. Resource 

over-consumption and under-consumption is charged at a reduced cost and this approach 

is analogical to social insurance. One key issue to note however, is that this approach is 

based on a probability that users would need resources in period 2 but this probability is 

an unstable factor which can be difficult for the coordinator to manage. Wu’s work was
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evaluated empirically by [105] and the evaluation suggested that honesty is an important 

factor for both the resource users and coordinator where an increased level of honesty 

can make both users and coordinators profitable and reduce costs. Rirther investigation 

by Rogers in [106] extended the simulation so that the market underwent a period of 

high or low availability simulating non uniform variations. This was to investigate how 

the coordinator and users behave under such conditions and results show that there is an 

optimum honesty that occurs when there is no surplus or deficit of resource purchased 

by the coordinator.

Caron et al addressed the resource allocation problem from the point of resource 

scaling and used a pattern matching technique for forecasting grid and cloud computing 

on-demand resources [35]. This approach is based on observing similar patterns in the 

historical set to predict the future. The prediction algorithm is based on the modification 

of Knuth-Morris-Pratt (KMP) which is an algorithm used for pattern matching. The 

results from their research showed the prediction is good but unstable and can yield 

high prediction errors in certain data sets. Caron’s work did not include a method by 

which the prediction errors can be handled. England et al presented a resource leasing 

policy for on-demand computing [45]. This work discovered a relationship between the 

number of leased resources and the optimal costs and evaluation showed that under 

significantly fluctuating demands, resource over-provisioning delivers better results than 

under-provisioning. Doyle in [40] presents a model based utility resource management 

solution by using coordinated provisioning of memory and storage resources. In order 

to predict the value of candidate resource allotments under changing load conditions he 

used in internal models of service behavior.

In [70] the authors present a solution to model and predict cloud VM demands using a 

temporal data mining system called ASAP (A Self-Adaptive Prediction System). A cloud 

prediction cost algorithm is proposed to encode the constraints and cost to the cloud 

and also guide the training of the prediction algorithms. Results using historical IBM 

data show that use of ASAP significantly improves the cloud service quality. Genetic
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programming and fuzzy logic theory were used by Andrzej ak et al in [13] to predict the 

resource usage. The prediction is based on the scenario when resources are scarce, non­

stationary and expensive to obtain and the prediction algorithm based on GA and fuzzy 

logic showed better accuracy than other non-linear techniques such as decision trees.

Forecasting how much resources are required in future also enables efficient energy 

management and Buyya studied the issue of energy efficient management of cloud re­

sources [31]. Buyya presented the energy saving trade-offs by reducing the number of 

active cloud resources and the potential of SLA violations. The reduced quantity of 

active cloud resources improves resource utilization efficiency however increases the like­

lihood of SLA violation for not being able to cope with the resource demands. Buyya’s 

work showed intriguing evidence of a balance for resource management efficiency, how­

ever this work did not discuss the mechanism for dealing with SLA violations. Almeida 

in [10] investigates two issues, namely the short term resource allocation problem and 

long term capacity planning problem (forecasting). They propose an optimization model 

to identify the optimal resource allocation by satisfying the customers QoS constraints 

while maximizing the provider’s revenues and minimizing resource usage cost.

The autonomic resource allocation systems in the cloud that focus on predictive al­

gorithms have the following advantages. The first advantage is in budget monitoring and 

planning, making the system owners aware of the current and future operation costs. 

The second advantage is in resource provisioning speed, allowing more instant access to 

the resources that have been prepared and allocated in advance. The third advantage is 

in mitigating the problem of resource over-provisioning and under-provisioning by elasti­

cally adjusting the resource usage cap. However, an autonomic system that solely relies 

on predictive approach for managing resource allocation in cloud can not operate at an 

optimal state [20]. The prediction errors that exist in almost every prediction system 

must be further monitored and corrected by the other components of the autonomic 

systems, especially those systems having hard SLA constrains [100]. In our research, the 

resource management system in the platform providers can not rely on the predictive
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methods for allocating resources from infrastructure providers to host applications and 

services. In an under-provisioning scenario, the platform providers can not access addi­

tional resources to overcome the unfulfilled demands unless the resource usage limit is 

reconfigured. Therefore resource management system must be capable of reactive ad­

justment of its resource usage cap, regardless of expected or unexpected fluctuations in 

resource demands, in order to maintain the normal platform services. We fully discuss 

the reactive approaches in the next section.

2.4.4 Reactive Approaches

According to Patel et al [94], cloud services are subject to load fluctuations and these 

fluctuations are unpredictable and dramatic. Unexpected load on the cloud services 

may result in significant degradation in service quality (sometimes almost equivalent to 

rejection), poor resource utilization or SLA violations. In this section we cover the area 

in which a reactive approach is taken to manage resource allocation in cloud systems 

under unpredictable demands.

Eyraud-Dubois et al [48] proposed VM migration based on bin-packing algorithm 

and VM consolidation based on ^-asymptotic approximation algorithm to ensure each 

physical machine is not overloaded hence the SLA for each virtual machine is sufficiently 

met. Meanwhile, this approach aims to deliver good resource utilization efficiency. Their 

solution in handling SLA violations is attained by performing a fast and accurate mi­

gration to return a VM to a valid state therefore they can minimize the time spent in 

SLA violations. Their work was based on one resource type scenario (i.e. CPU usage) 

but they discussed the possibility of extending their model to a multi-resource model.

Shen et al [112] proposed the CloudScale approach in handling prediction errors 

result from their prediction system PRESS [61]. CloudScale implements the elasticity 

of resource scaling based on two mechanisms, online adaptive padding and fast under­

estimation correction. The online adaptive padding technique reserves a resource cap 

over the actual demand slightly to deal with bursts in demand. And the fast under-
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estimation correction technique raises the resource cap by a small increment each time 

until the SLA goals are attained. In addition, in case of a resource conflict where a 

physical server is completely overloaded, CloudScale offers a solution to migrate virtual 

machines from the overloaded server to an idle server.

Emeakaroha et al [43] proposed a unique solution called DeSVi towards the au­

tonomic detection of SLA violations in cloud infrastructures. DeSVi is an laaS level 

architecture implemented for the infrastructure providers, and consists of three compo­

nents, the application deployer, the automated emulation framework and the monitor. 

The application deployer manages application level scheduling and the automated emu­

lation framework serves as the virtualized infrastructure manager. The monitor which is 

based on LoM2HiS [42] is core to detecting SLA violations. The monitor uses a two-step 

mechanism. Firstly the monitor adopts a rule-based mapping to match hardware level 

QoS parameters against user level QoS parameters, in order to quantify the threshold 

of a potential SLA violation. Secondly the monitor employs the open source monitor­

ing agent named Ganlia to produce hardware level metrics in XML format and then 

uses the SAX XML parser to extract relevant information [43]. The information ex­

tracted from the monitoring agent is compared to the SLA violation threshold. In case 

SLA violation threats are detected, it notifies the knowledge component for preventative 

actions. Emeakaroha et al highlighted the tradeoffs between the cost of measurement 

intervals and cost of failing to detect SLA violations. They concluded that the bal­

ance between the two costs is application dependent. Emeakaroha’s work emphasizes 

the aspect of an infrastructure provider, which is usually considered to own abundant 

hardware resources, therefore SLA violations can always be avoided by allocating addi­

tional resources to their clients. For a platform provider however, it must consider its 

own limit in resource acquisition in order to provision its services. Thus, in order for a 

platform provider to prevent SLA violations (AP-SLA) for the services it provides to the 

application providers, it has to take additional actions to reconfigure its SLA (IP-SLA) 

signed with the infrastructure providers.
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Research has also been done by Brandic et al in [27] and [74], which discuss the impor­

tance of self-manageable cloud services in the conditions of SLA violations. In Brandic’s 

work, a full MAPE-K autonomic model is projected to a proposed cloud architecture. 

Brandic proposed a negotiation bootstrapping and service mediation approach along the 

self-management procedure. In [113], a complex negotiation architecture for distributing 

resources through brokers is proposed. The agents can start multiple concurrent negoti­

ation with the brokers and the article proposed a negotiation algorithm that can select 

the best offer from the market. Anandasivam in [11] introduced a heuristic approach for 

capacity control in clouds. In this case resource providers are assumed to have limited 

capacity but have to maximize the revenue through price setting. This work compared 

a set of price setting policies for different resource demands. Yeo in [130] proposed Li- 

braSLA framework for cluster computing based admission control policies to manage 

SLAs, handle penalties and enhance utilities. Given the parameters such as deadline, 

budget and penalty, LibraSLA calculates the expected utility value for each job and 

therefore maximizes the revenue through scheduling.

A body of research on reactive approaches in autonomic clouds has been focusing on 

the management of virtual machines across physical servers. These works only offer so­

lutions to automatically detect SLA violations at the VM level and resolve the violations 

through adjustment of VM resource usage cap or VM migration. But these approaches 

cannot fully address the resource allocation issues in the PaaS context, where we consider 

different platform providers operating on the global cloud infrastructure with potentially 

hundreds of thousands of clusters. The platform providers in this case must manage both 

AP-SLAs and IP-SLAs at the same time. We assume the platform providers deliver the 

best effort to avoid quality degradation in their services and address the resource al­

location issues through IP-SLA reconfiguration. The IP-SLA reconfiguration allows a 

platform provider to reset the resource usage limit, or to cancel the current SLA and 

start a new SLA on a different set of terms. However, such reconfiguration may be con­

sidered as unilaterall}'^ violating the SLA by a platform provider. Therefore the platform
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provider is liable to pay a penalty fee to the infrastructure provider. A similar scenario 

is discussed in [78] where the work suggested that the resource consumer must pay for 

increasing the resource quota and such mechanism is called elasticity and fairness during 

performance isolation. The work in [79] thoroughly discusses the term elasticity which 

is the ability of systems to dynamically scale the resources provided to clients depending 

on their work load. Elasticity is a key benefit of cloud computing and the research pro­

vides a definition of resource elasticity based on the context of virtualization and cloud 

computing. The research defines elasticity of execution platforms as consisting of the 

temporal and quantitative properties of runtime resource provisioning and unprovision­

ing, performed by the execution platform; execution platform elasticity depends on the 

state of the platform and on the state of the platform-hosted applications.

Nonetheless, many of the works discussed in this section are very important and 

related to our research, because they provide essential references to the construct of 

autonomic clouds at the laaS level. However, we can not directly apply these solutions to 

forming an elastic and self-manageable PaaS cloud because of the scale and complexity 

in the PaaS environment. The solution for this problem space has to come from a 

research body where models for global resource management are established. According 

to Ferguson et al [51], resource allocation in large-scale distributed systems requires the 

incorporation of modern economics, through which the performance of applications may 

potentially be altered by trading one resource for another. In the next section we fully 

compare various economic models that are used in resource allocation for cloud and grid 

systems.
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2.5 Economic Approaches for Allocating Resources in Cloud 

and Grid Systems

2.5.1 Introduction

In the previous sections, we have pictured a resource provisioning environment where the 

platform providers must manage AP-SLAs and IP-SLAs. Our research focuses on inves­

tigating a plausible solution for a platform provider to self-manage resource allocation, 

so that the resource quota acquired from the IP-SLAs can sufficiently and efficiently 

support the services described in the AP-SLAs. The approaches studied in the previous 

sections did not fully consider the application of global resource management, which 

enables platform providers to inter-change their resource quotas. By enabling collabo­

rations, the platform providers may have the opportunity to strengthen the elasticity of 

their services, ensuring that the QoS delivered by their services is not undermined by 

sudden bursts in demand [32].

The basic principle of the global resource management among platform providers is 

that some platform providers may have idle resources that the others need at a par­

ticular time, and can be borrowed temporarily upon certain conditions. Such unused 

resources to be shared are called Spot market resources [120]. Early examples of Spot 

market resource sharing models are Spawn [123] and Popcorn market [102]. In contrast 

to Spot market resources, the majority of resources that the platform providers have 

reserved from the infrastructure providers through IP-SLAs are called the Future mar­

ket resources [120]. The management of global resource allocation is a non-trivial issue. 

The resource sharing mechanism must be well regulated to ensure fairness and efficiency. 

To achieve this goal, computational economy frameworks have been widely proposed to 

grid computing [30] and later adopted by cloud computing [57].

The economic models that are studied for resource allocation problems can generally 

be separated into two categories, which are price-based and non-price based [98]. Price- 

based models are commonly referred to as market-oriented models and the resource
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allocation using these models is driven by demand and supply [55]. The exchange of 

resources is mediated by the real world currency such that each resource has a price 

at certain time. As a result, buying and selling resources will cost and gain money 

respectively. There are several types of price-based models and they mainly include 

commodity market and auctions [98]. Non-price based models do not use monetary 

measures in exchanging resources, instead there are various incentive measures such as 

credits, tokens or just a generic utility expression [30]. Game-theoretical approaches 

where autonomous agents interact to bid for an outcome of resource allocation are a 

dominant area of study for non-price based models [98]. Agents which are involved in 

negotiating resource allocation are commonly assumed to be selfish and non-cooperative, 

and each agent tries to maximize its own utility. Another area of study in non-price based 

models is cooperative allocation approach [98]. In the cooperative allocation models, the 

participants are assumed to be non-selfish or less-selfish. They collaborate to allocate 

resources in a goal to maximize overall utility. These models are also referred to as social 

models [36]. We introduce each of these economic models in this section and identify 

potential solutions for addressing resource allocation challenges in the PaaS context.

2.5.2 Commodity Market

Commodity market is a popular price-based economic model for allocating computa­

tional resources. In a commodity market, consumers and producers of resources transact 

based on a market price, which is analyzed by a pricing method. The market price is 

believed to reflect the demand and supply equilibrium of a particular resource in the 

market [126]. The information about the demand and supply is aggregated from all the 

prices at which the consumers and producers are willing to buy and sell respectively, 

and the quantities to be asked or offered at such prices [125].

An important aspect of using the commodity market as an approach to systematically 

allocate resources in large scale distributed systems is the study of the pricing algorithms. 

A popular stream of this study is based on the adaptation of Smale’s method [17,115,126].
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The Smale’s method uses multivariable calculus aiming to produce a trajectory for the 

prices to follow, and it relies on polling the entire market for aggregate supply and 

demand repeatedly to obtain the partial derivatives of the excess demand functions [126]. 

The other pricing method involves the tatonnement process [37,126]. With tdtonnement, 

each individual price is raised or lowered according to whether that commodity’s excess 

demand is positive or negative, and it is an iterative process [126].

The advantage of a commodity market for resource allocation, as compared to a Vick­

rey auction, is that it shows better price stability and resource utilization efficiency [126]. 

However according to Wolski [125], a strong discipline in the commodity markets dictates 

there must be no single participant in the market representing a large enough market 

share to affect the prices unilaterally. Since we do not want to force this assumption into 

our study of PaaS resource allocation, we do not consider the use of commodity markets 

for our resource allocation problems.

2.5.3 Auctions

In contrast to commodity markets, auction-based mechanisms for resource allocation 

problems are believed easier to implement [125]. Auctions are conducted by a single 

auctioneer, which has the authority to gather bids and offers on each resource listed and 

enforce the commitment to each auction result. There are many auction models available, 

most of which are derived from the real world auctions. They include English auction, 

first-price sealed-bid auction, Dutch auction, Vickrey auction and double auction [30].

In an English auction, bidders make open bids for the resource announced and only 

the highest bidder wins [30]. In this auction model, bidders know about each others’ bids 

and compete against each other by announcing a higher bid at each time until no bidders 

are willing to raise the bids further. English auctions usually result in the overvalued 

resource sold to the winning bidder therefore this approach favors the resource sellers 

over the buyers [62].

The first-price sealed-bid auction is similar to the English auction except that each
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bidder only makes one bid for each auction and they do not know about each others’ 

bids [30]. Although this approach reduces the competition comparing to the English 

auction, it still favors the resource sellers as the buyers still have to compete for the 

highest bid [62].

In a Dutch auction, the auctioneer starts at a high price and lower the price at each 

time until the price is accepted by the first taker [30]. This auction model allows the 

auctioned resource to be sold to match the demand. In comparison, English auctions 

start at a low price and Dutch auctions start at a high price. Because Dutch auctions 

better reflect the market demands, this approach favors the resource buyers over the 

sellers.

In a Vickrey auction, each bidder submits one bid without knowing the others’ bids, 

and the highest bidder wins the resource at the price of the second highest bidder [30]. 

Therefore this approach favors the resource buyers over the sellers [62].

The above auction models are all one-to-many auction models and they favor either 

the buyers or the sellers [62], therefore they are less attractive solutions for addressing 

resource allocation problems. Double auction models however, implement a many-to- 

many relationship and favor neither of the buyers or sellers [62]. In a double auction, 

many sellers make offers of their resources at different prices and many buyers make bids 

for the resources. The price for each auction is determined by a double auction pricing 

method based on the prices that both sides submitted [62]. Double auctions can be of 

two types and they are Continuous Double Auctions (CDA) and Clearing House Double 

Auction. In the Clearing House Auctions, the auctions have a predefined time frame 

when the participants can submit their offers. In the CDAs, the offers are submitted 

continuously until a match between an ask and a bid is achieved, or until the auction is 

canceled [99].

In double auctions, the bidding strategies taken by the participants (also referred to 

as agents) play an important role [122]. According to Vytelingum et al [122], there is 

no known dominant strategy. Thus, many strategies have been developed as heuristic-
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based, decision-making algorithms that attempt to best exploit the observable market 

information available to the agents in order to maximize their profits. Zero-Intelligence 

(ZI) bidding strategy is one of the most referenced bidding strategies in the literature [60]. 

A ZI agent makes an uninformed decision regardless of the observed market information. 

In particular, a ZI buyer or seller submits an offer drawn from a uniform distribution in 

a price range allowed in the market. The work in [60] showed CD As populated by these 

non-intelligent trading agents were still highly efficient, leading to a conclusion that the 

high market efficiency was principally due to the structure of the market mechanism 

rather than how intelligent the agents were. However, Cliff [38] showed that at least a 

minimal intelligence is necessary to achieve efficiency that is comparable to that of CDAs 

with human traders. The Zero-Intelligence Plus(ZIP) strategy was developed and was 

shown to considerably outperform the ZI strategy. ZIP distinguishes itself from ZI as it 

learns to increase or decrease the profit margin based on market information. Both ZI 

and ZIP strategies are commonly used as benchmarks for comparison such as in [63,122].

The double auction resource allocation approach seems to be a good candidate for 

addressing the problems in the PaaS context. Through the double auction mechanism, 

the platform providers which have over-provisioned resources can sell while the platform 

providers which have under-provisioned resources can buy. The sellers are compensated 

for the resources shared to the buyers while achieve a better resource utilization efficiency. 

The buyers pay considerably less money to secure resources needed in the short term to 

meet their demands than having to pay costly penalties to the infrastructure providers 

for a full SLA reconfiguration. Therefore a Spot market based on double auction is 

formed to enable fair and efficient resource management in PaaS. The drawbacks of 

using double auction include the price instability such that the platform providers may 

have limited budget in purchasing resources while the market price is high, and the 

centralized protocol where all platform providers must submit their bids to the central 

auctioneer [30].
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2.5.4 Game Theoretical Approaches

The use of a resource market to distribute resources among platform providers is a poten­

tial approach to address our problems while the use of non-price based mechanisms are 

discussed in this section. It is common for a resource sharing distributed system to en­

able resource distribution among the individual entities through bilateral or multi-party 

negotiations without a monetary system [14,124]. In such resource sharing systems, each 

entity often makes tradeoffs to degrade the quality of certain resources while upgrade the 

quality of other resources [50]. The tradeoffs approach is sometimes referred to as the 

bartering approach meaning that resources are exchanged without the use of money [30]. 

The works in this area often borrow the notion of autonomous agents from the field of 

game theory, where they emphasize on the construction of a negotiation protocol and the 

study of agent behaviors [69]. The outcome of the negotiations using game theoretical 

approaches is considered a Nash Equilibrium [14,124], in which no agent can further 

improve its utility without decreasing the other agents’ utility.

The negotiation protocol confines the rules which each agent must follow during nego­

tiation, and they often involves the initiation, negotiation and commitment phases [93]. 

In the initiation phase, agents can self-discover resources and explore their interests in 

them. In the negotiation phase, agents often have to follow a turn based mechanism 

where one makes a proposal while the other makes a counter proposal until an overlap 

between two proposals is found hence an agreement is made. In the commitment phase, 

the agents which have agreed upon certain resource sharing terms continue on to execute 

these terms. Although the entire process sometimes requires a centralized coordination, 

agents are often designed to a high degree of autonomy that they can self-manage without 

external assistance. The use of this approach benefits from greater scalability because the 

process is not subject to centralized control. FIFA [91] is an example of agent communi­

cation standard, which also supports agent management and agent-software integration. 

In FIFA framework, agents can communicate via standardized communication acts (e.g.
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request, propose, agree, reject, etc), which specify the structure of messages. As well 

the FIPA communication framework offers a number of standardized negotiation proto­

cols, from simple protocols such as FIPA-request and FIPA-query to complex protocols 

such as FIPA-contract-net protocol and FIPA-Auction-English protocol. FIPA does not 

limit the protocols to preexisting protocols in the specification, but requires any protocol 

implemented using the standardized protocols conform to the specification.

The design and implementation of agent behaviors are a much more challenging 

task. Many of the agent implementations inherit from the Believe-Desire-Intention 

(BDI) model proposed in Artificial Intelligence (AI) [127]. The agents in the field of 

game theoretical study are often thought to be selfish and non-cooperative [69]. Firstly 

they try to maximize their own individual utility by making proposals with more gains 

and less losses. Secondly, they are not willing to reveal their own information or nego­

tiation objectives thus they have to make assumptions about each other based on their 

rationality [49]. Thirdly, they are less willing to concede during the negotiation. As a 

result, computational complexity and communication overheads are common challenges 

in game theoretical approaches [69]. The assumptions the agents make on the others 

may form a very large problem space and the computation becomes a heavy burden on 

the executing platform, and the unbounded proposal exchanges and high rate of abor­

tion in negotiation increase the communication overheads significantly [83]. Although 

many researches in this area have tried to eliminate these issues by designing more in­

telligent agents [68] and imposing time constrains [77] on the negotiation, the results of 

the negotiation may lead to a less optimal outcome.

Nonetheless, the PaaS resource sharing problems can potentially be addressed by 

deploying agents we discussed in this area to negotiate resource allocation. Agents can 

self-explore available resources and make tradeoffs to negotiate a resource allocation bi­

laterally [50]. By leveraging the tradeoffs, the platform providers have an opportunity to 

collaborate based on self-interests to tackle unpredictable resource demands. The draw­

back of this approach however is the potential latency resulting from the communication
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and computational overheads.

2.5.5 Social Approaches

To address the problem of complexity in resource allocation games, cooperative agents 

are studied and the results showed that cooperative agents are more time efficient [76]. 

In contrast to non-cooperative agents, cooperative agents are less selfish and prioritize 

the maximization of social welfare. Meanwhile they are more willing to share informa­

tion with each other. By gaining perfect information, the agents can eliminate a large 

computational burden used for assumptions calculations. In addition they are more will­

ing to make a concession in the conflicts of interests and they use heuristic approaches 

for negotiation, which aim to produce a good enough outcome rather than an optimal 

outcome [69]. As a result, the negotiation has a better chance for reaching an agreement 

and can provide better response time. This section introduces the social approaches, 

where the environment is populated with inter-related cooperative agents, for resource 

allocation.

In social-based resource allocation systems, agents establish longer relationships with 

each other to form a resource sharing society, and collectively handle unpredictable 

resource demands by contributing some of their idle resources and accessing additional 

resources urgently required from the resource pool offered in the community [97]. Such 

sharing mechanism is still a form of tradeoffs [50] but with less selfishness. However the 

social approaches face two common challenges, which are incentive design, and trust and 

risk management [36].

A good incentive design does not only provide motivations for agents to join and 

remain in the society, but also ensure that the resource sharing is fair and each agent is 

compensated for the contribution it makes [36]. Credits, tokens, reputation and other 

social incentives have been proposed in [36] to enable a social based cloud computing 

system to be shared by users. In the PaaS resource sharing context, each platform 

provider starts with an endowment of resources, and may shift to a completely new
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resource state after making a tradeoff with another platform provider in the social group. 

To capture the differences in the resource states, the Cobb-Douglas function, which is 

commonly used as a utility fuction in Microeconomics [85], can serve to represent the 

utility of a platform provider. Therefore we assume the incentive for a platform provider 

to share resources using social based approach is to achieve no less utility through a 

tradeoff in the community.

The trust and risk management is a very tricky problem in social approaches [36]. 

The fundamental aspect of a social relationship is based on honesty, where each agent 

must fully trust each other and assumes every agent would truthfully reveal its own 

information. The risk associated with such trust is that some agents in the social group 

may not play by the rules and gain unfair advantages in resource sharing by dishonestly 

producing fake information. Therefore a trust manager must be implemented in every 

social based system to closely monitor if each agent is honest, and to alert the community 

if a dishonest agent is discovered. The trust manager can be implemented in different 

ways. The first way is to use a reputation system [104], where each agent is given an 

initial rating (e.g. 1000). When an agent is found producing fake information (either 

by random inspection or peer report), the rating is deducted according to the severity 

of the incidence. An agent which has poor rating would be very likely rejected in the 

community when requesting resource shares. Another approach for trust manager imple­

mentation is through information validation. When two agents are interested in social 

resource tradeoffs, either agent is able to validate the information produced by the other 

with the trust manager. If the validation does not pass, an agent immediately aborts 

the negotiation and reports to the community. The agent which produced untruthful 

information can be ejected from the social group. The first approach is more efficient 

that it requires less communication however it does not well detect misbehavior in short 

time. The second approach is easier to implement and can immediately determine a 

trust breach, but it requires each agent to verify information with each other in every 

resource tradeoffs.
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Despite the challenges discussed above, social approaches are still a very attractive 

solution for addressing resource provisioning problems in the PaaS context. We summa­

rize all the candidates for addressing our problems and suggest the best solution in the 

next section.

2.5.6 Comparison

In the previous sections, we have identified three potential candidates for addressing the 

PaaS resource allocation problems. The first candidate is the double auction mechanism, 

which is a market-oriented solution. The second candidate is the game theoretical ap­

proach, which is a non-price based solution. The third candidate is the social approach, 

which is also non-price based. We fully compare all three candidates based on a num­

ber of important characteristics and recommend the best solution for the thesis. The 

comparison is illustrated in table 2.1.

Firstly we look at the incentive design. We believe all three candidates are well 

motivated. In a double auction, the platform providers can buy or sell resources at a 

price, which is based on the bidding information produced by the market of buyers and 

sellers [30]. In both game theory and social approaches, utility functions are common 

form to specify if one state of resource allocation for a platform provider is better than 

another [85].

Secondly all candidates for resource allocation have different objectives. The allo­

cation objective for a double auction is the market equilibrium [122], where the price 

for a particular resource correctly reflects the supply and demand of the current mar­

ket. Meanwhile, game theoretical approaches and social approaches have the opposite 

allocation objectives [69]. In game theoretical approaches, non-cooperative agents are 

interested in maximizing individual utilities. On the contrary, cooperative agents’s goal 

in social approaches is to maximize the social welfare. The allocation outcome using 

the game theoretical approaches is also an equilibrium called Nash equilibrium [14,124], 

such that each agent has played its best response and can not achieve a better utility

37



Table 2.1: Model Comparison for PaaS Resource Allocation

C haracter ist ics Double auction Game theory Social

Incentives Price Utility Utility/Social rewards

Allocation objec­

tive

Market equilibrium Maximize individ­

ual gains

Maximize social utility

Architecture Centralized Decentralized Distributed and central­

ized coordination

Computational

and communica­
tion complexity

Minimized High overheads Moderate

Scalablility Limited Flexible Flexible

Resource discov- Auctioneer Self-explore /Aided- Pre-existing social rela-

ery explore tions

Limitations Budget Negotiation over­

heads

Trust and security
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without decreasing the other agents’ utility. The best response is a strategy devised by 

an agent that is rational and does not have complete information. The chosen strategy 

is based on making rational assumptions about the other agents’ actions. The resource 

allocation outcome in social approaches is not optimal because of the heuristic allocation 

method [69]. Often the platform providers must consider the cost of SLA penalty for not 

meeting the resource requirements, therefore an optimal allocation in the Spot economy 

becomes less important.

Thirdly we investigate the resource sharing architecture in the Spot economy for 

the three candidates. Double auction is a centralized resource allocation approach that 

the entire process is conducted by a single auctioneer. Therefore it is a potential single 

point of failure and may have scalability issues. In game theory, all agents are highly au­

tonomous and are allowed to roam freely to discover available resources to negotiate for. 

Therefore it is a highly decentralized architecture in nature that is not subject to single 

point of failure. In social systems, due to the fact that all agents share resources based 

on mutual trust, which can not be guaranteed unless a commonly agreed authority called 

trust manager is implemented. Therefore despite the agents in the social approaches can 

still autonomously discover resources in a decentralized manner, they must regularly co­

ordinate with the trust manager to ensure the opponent is not deceitful. Therefore the 

social approaches are neither fully decentralized nor fully centralized architecture.

Fourthly we examine the computational and communication complexity in the three 

candidates. The complexity in double auctions is minimized because in each auction, 

only one bid is placed by each participant. However, if there are multiple resource types 

in the PaaS granularity, each resource type requires an auction. This can potentially be 

a heavy burden for the auctioneer. The complexity for game theoretical approaches is 

high [76], because the agents are not willing to cooperate during the negotiations. Time 

delays caused in such systems are usually higher than the social approaches, where agents 

are more cooperative. Still cooperative agents have to heuristically seek an allocation 

outcome that are acceptable and the negotiation process is subject to the coordination
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with the trust manager. Therefore we believe the social approaches have a moderate 

complexity, and is comparable to double auctions.

The next characteristic to examine is the scalability. Due to the centralized nature 

of double auction systems, auction based approaches have limited scalability. On the 

contrary, game theoretical systems and social systems have greater scalability because of 

their decentralized negotiation process. The scalability challenge for social approaches is 

in the trust manager which must monitor the honesty for the entire community. However 

we believe the impact of the trust manager on the scalability characteristic for the social 

approaches is not significant.

Furthermore we compare the resource discovery methods used by three candidates. 

In double auctions, all resources on auctions are announced by the auctioneer therefore 

it is the only component in the system for resource discovery. In game theory, agents are 

capable of self-exploring resources to be negotiated for, or can sometimes be assisted by 

resource brokers. In social approaches, agents can only share resources in pre-existing 

social relationships. The establishment of social relationships requires additional steps, 

which include firstly to apply for a social membership and secondly to introduce the new 

member to the community. Therefore game theoretical approaches have an advantage 

on this characteristic.

Finally we discuss the key limitations that exist in the three candidates. An impor­

tant limitation for double auctions is that some platform providers may have greater 

budget constrains, and sometimes may not afford to pay for additional resources in the 

auctions if the market demand is high. The key limitation for the game theoretical 

approaches is apparently in the negotiation overheads which may cause significant time 

delay in resource provisioning. Meanwhile, the limitation in the social approaches is in 

the trust and security issues. Social members have to trust each other based on the as­

sumption that no member would exploit the trust relationship to gain unfair advantages 

in resource sharing. Also truthfully revealing information may lead to security concerns. 

As a result, social approaches require an effective trust manager to protect the common
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interests of the social members.

In PaaS resource sharing environment, it is important to establish a Spot economy for 

the platform providers to share resources that is fair, affordable, responsive and secure. 

Based on the characteristics presented and compared above, social approaches are the 

best candidate for addressing the resource allocation problems in PaaS. We believe by 

introducing a trust manager component in the system, the security can be managed to 

protect the social members. In the next section we introduce the Edgeworth Box model 

as the negotiation method for the social-based resource sharing in PaaS.

2.6 Edgeworth Box Model

The Irish philosopher Francis Ysidro Edgeworth invented the Edgeworth Box model [41] 

which is an economic model for resource allocation between two people over two goods 

i.e. it is a means of representing the distribution of resources between the two parties. 

His original model was depicted with two axes and this was expanded to a box diagram 

by Pareto [92]. Edgeworth Box model has been applied to resource allocation problems 

in [50,108]. It is a model naturally designed for resource allocation between two resource 

owners and offers a negotiation space in which a different resource allocation outcome 

may benefit both. We believe this model is suitable as a negotiation model to be adopted 

by the social agents to allocate resources in the Spot economy. We introduced the use 

of Cobb-Douglas function as a utility function for a platform provider [85], and it can 

be written as U = -f Uy, where cj^and uy are the amount of resource X and Y 

respectively. A and B are Cobb-Douglas parameters and they are generally summed 

to 1 in Microeconomics [85], such that A + B = 1. Although Edgeworth Box model is 

originally proposed in a two resource scenario, it can be further generalized to support 

any number of resource types [116]. We discuss the two resource types Edgeworth Box 

model.

If we assume two people A and B, each with an initial endowment of goods X and
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Y, we can construct a box with the length of axes based on the total amount of goods 

X and Y both people have. If the view of A is from the bottom left corner and the 

view of B is from the top right corner and A has initial endowment of ujx of good X 

and ujy of good Y, and B has initial endowment of lox of good X and LOy of good Y 

then we can represent the endowment of goods X and Y for A and B hy 

and = {u!^,uJy) respectively. The utility function represents the preferences of 

the consumer and we can represent the utility function of ^ as Ua{Xa,Ya) where Xa 

represents the consumption of good X by ^ and Ya represents the consumption of good 

Y by A. The utility function of B is Ub{Xb',Yb) where Xb represents the consumption 

of good X hy B and Yb represents the consumption of good Y hy B. The total amount 

of good X is given by X = + cOx while the total amount of good Y is given by

r =

An endowment allocation refers to the amount of X or F goods allocated to A and 

B and is only valid if it does not exceed the overall total amount of that particular 

good. However all points in the Edgeworth box are feasible endowment points. In the 

Edgeworth model, an indifference curve represents the family of all consumption plans 

with the same utility i.e.in utility terms, all points on the curve are equally satisfactory. 

The indifference curves of A are bent outwards i.e. convex to the origin and the larger 

the distance between the curve and the origin, the better off A is i.e. the higher the 

level of satisfaction of A. Similarly for B, the larger the distance between the curve 

and the top right corner, the better off B is i.e. the higher the level of satisfaction of 

B. The slope of an indifference curve represents the rate at which the person [A or 

B) willingly exchanges one good for another without loss of utility and the Marginal 

Rate of Substitution value MRSa,b for A or i? is the absolute value of the slope of the 

indifference curve for A or B.

When the two indifference curves belonging to the two people meet at two separate 

points, this forms an eye-shaped core which is also called the lens of trade (Figure 2.2). 

Any point of allocation within the core will allow both A and B to be better off, which
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Fig. 2.2: Edgeworth l)ox (figure extracted and modified from [23])
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Fig. 2.3: The core (figure extracted and niodihed from [23])

means tlie utility score for both people increase by adjusting their allocation from their 

initial endowment to anywhere within the dark eye-shaped area illustrated in Figure 2.3.

When discussing the Edgeworth box model, one concept to be discussed is Pareto ef­

ficiency. An equilibrium point exists whenever the indifference curves for the two parties 

A and D meet at a tangent and at this equilibrium point, any further adjustments or 

negotiations in trade will result in a worse situation for either or both parties. Equilib­

rium points are also known as Pareto efficient points and a Pareto efficient allocation is 

one where neither party can be made better off without making the second party worse 

off.

A set of pareto efficient points is called a Pareto Set or Contract Curve and this 

stretches from the origin of one person to the origin of the other person . This curve 

represents all possible mutually advantageous outcomes however the final selected out­

come is dependent on the initial endowment. In the example given using pareto points.
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a feasible outcome is limited to the section of the curve that falls between the lens, i.e. 

the core (see Figure 2.3). The use of pareto points to determine feasible outcomes has 

a limitation in that it severely reduces the number of feasible outcomes to only those 

located on the core. This implies that use of pareto points will provide a rigid solution 

whereas in this thesis, in order to ensure a more flexible solution, the solution space is 

expanded to allow any outcome in the contract lens as a feasible solution. A heuristic 

based approach such as the Zeuthen concession making strategy [107] can be used to 

explore a resource allocation outcome in the contract lens.

This section has discussed the Edgeworth box model as a means of representing 

the distribution of resources between the two parties. Pareto optimality has also been 

discussed as well as the limitation in using pareto points to provide a flexible resource 

allocation solution. This thesis proposes a solution to this limitation to enable a feasible 

and flexible resource allocation solution.

2.7 Motivation

High availability systems such as the platform provider in the PaaS model suffer volatile 

resource demands as well as high costs in provisioning resources to the clients due to 

prediction errors and penalties introduced by SLA violations. Elasticity for the platform 

providers when provisioning resources must be provided to realize autonomic resource 

management. Such platform services must be able to handle prediction errors in resource 

forecasting and must have a reaction mechanism while executing autonomic manage­

ment. The current research literature does not clearly have a full solution to address 

these concerns in the PaaS context. This thesis therefore seeks to close this gap by 

advocating a social-based economic mechanism based on the Edgeworth Box approach 

to allow resource sharing among participating platform providers during the process of 

autonomic resource management.
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Chapter 3

Platform as a Service Resource 

Provisioning Model

3.1 Introduction

In the previous chapter, the PaaS resource provisioning context was described and the 

research issues w'ere identified along with a proposed solution. To address these issues, 

we must firstly model the resource allocation problem in further detail and secondly 

apply the proposed solution to the problem model. The objective of this chapter is 

to provide a definitive representation of the PaaS model, based on which the problems 

in the resource allocation process can be demonstrated. This design is not intended 

to be representative of the complete PaaS resource sharing paradigm, but to a certain 

extent serves as a self-confined resource allocation context. Such context is primarily 

established by stating the various stake holders or participants in the environment, as 

well as providing a clear definition of their relationships in terms of resource provisioning 

and consumption. This conceptual PaaS model is fundamental for establishing a solution 

towards the resource allocation problems.

This chapter is organized into four sections where section one outlines the participants
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in the PaaS model and how resources are distributed from the physical data centers 

to the end users on the edges of the Internet. The second section offers a resource 

granularity model so that resources can be quantified during allocation. The third 

section presents the resource allocation mechanism including the allocation methods 

available to a platform provider and a resource allocation process that is followed by the 

participants. The last section demonstrates 5 different scenarios of resource allocation 

by a platform provider under such resource allocation context.

3.2 Platform as a Service Constituency

The resource provisioning mechanism in the center of the PaaS model uniquely requires 

an active role of a platform provider, which offers the platform environment as a com­

puting utility (analogous to using the electricity). Therefore the participation by the 

platform providers in this resource sharing mechanism forms a unique constituency. The 

conceptual PaaS model proposed by the thesis draws the PaaS composition by eliciting 

the participants and their specific roles. This PaaS model constitutes multiple infras­

tructure providers, multiple platform providers and multiple application providers (or 

end users) therefore this number and type of participants is sufficient for investigating 

the resource allocation problems in the PaaS context.

3.2.1 Resource Supplier

The infrastructure providers, which operate on large scale physical infrastructures, for 

example data centers, are the primary participants in the laaS paradigm and their role 

of provisioning hardware resources is inherently adaptable to the PaaS model proposed 

by this thesis. The infrastructure providers in the PaaS paradigm also maintain the 

ownership of the computer resources, however they also have a particular focus on leasing 

the resources to the platform providers. The computer resources are virtualized from a 

myriad of physical machines and these virtual instances can be created and manipulated
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by the platform providers under certain constraints. For instance, the infrastructure 

providers in the new context must be aware of the resource quota which is available to 

a particular platform provider, before any virtualized resources are provisioned.

Assumption 1: In this model, all the infrastructure providers offer standardized 

resource access interface. We do not consider resource heterogeneity and cloud interop- 

eratiblity issues in our model. Also, the model assumes that the resource provisioning 

by potentially many infrastructure providers has reached a perfect market equilibrium 

and the resources are leased to the platform providers at a standard cost. In this sce­

nario, the resource provisioning services provided by all the infrastructure providers are 

abstracted as a transparent resource access interface to a pool of unlimited virtualized 

physical resources, such that the number of physical machines n ~ oo for the scale of 

the context. Therefore an infrastructure provider in our model is indifferent from an­

other and all infrastructure providers can be viewed transparently as a solitary resource 

provisioning entity.

The concerns of the resource supplier in the PaaS context are then formalized as 

follows. Let P = {pi,P2)P3) •••Pn} be the overall set of physical machines available from 

the infrastructure provider I. For each physical machine p,, resources can be virtualized 

to operate a set of virtual machines Vt = {vii,Vi2,Vi3, ...Vim}-

3.2.2 Intermediary Resource Provider

A platform provider, which is the indispensable participant in the PaaS paradigm, is 

concerned with offering an abstraction of the virtualized physical resources from the 

infrastructure provider (see section 3.2.1) as a computational environment to the appli­

cation providers (see section 3.2.3). It therefore serves as an intermediary component 

between the resource consumers, i.e. the application providers and the resource provider, 

i.e. the infrastructure provider. As shown in figure 3.1, a platform provider firstly ob­

tains access to a virtual instance residing in one of the physical machines owned by the 

infrastructure provider. Secondly, the platform provider deploys platform service pack-
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ages onto the virtual instance. Thirdly, the access to the platform service hosted on the 

virtual instance is given to an application provider.

Physical Machine 

Virtual Instance 

Virtual Instance Access 

Platform Service Deployment 

Platform Service Access

Platform Provider System 

Application Provider System

Fig. 3.1 : Platform Service Access

The operation of the platform services on a virtual instance consumes server re­

sources. The role of the platform provider in this PaaS model is focused on the man­

agement of the resource acquisition from the resource supplier to facilitate the service 

demands from the resource consumers. Each application provider has a set of resource 

requirements and it varies from time to time. The platform provider gathers all the 

resource requirements from its clients, and makes appropriate resource acquisition from 

the infrastructure provider. Therefore each platform provider has certain resource limits 

to operate its services and these limits can be adjusted under constraints.

Definition 1 Resource Demand: The resource demand is the total present re­

quirement of physical server resources from all the application providers associated with
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a platform provider, and is denoted by d„.

Definition 2 Resource Quota: The resource quota is the total present access limit 

to physical server resources that a platform provider can allocate maximally to the entire 

collection of its platform services, and is denoted by qn-

Assumption 2: A platform provider is assumed to understand how much physical 

resources needed at present to provide sufficient platform services to its clients. Under 

this assumption, the quota of physical resources that a platform provider has access 

to can guarantee high availability (e.g. 99.9%) to its clients. Therefore, the resource 

volumes can be quantified in the same scale for both acquisition and provisioning, and 

that the high availability platform services can be represented as:

Qn ^ dn (3.1)

3.2.3 Resource Consumer

The end consumers of the resource demands are modeled as application providers. De­

spite the fact that the Internet users who are accessing the cloud applications are the 

ultimate resource consumers, this thesis does not try to disambiguate this driving force 

of the resource demands other than considering them as the clients of the platform 

providers. To disambiguate application providers from the cloud end users is the con­

cern of the SaaS paradigm and in this case, an application provider develops the cloud 

based applications to be deployed onto a virtual instance offered by a platform provider. 

An application provider must reach an agreement with a specific platform provider over 

how much resources should be allocated to its own virtual instance. An application 

provider may also request for an upgrade or downgrade of a virtual instance over time 

as the demand changes. The participation of application providers in this PaaS model 

is merely concerned with generating fluctuating resource demands for a large set of vir­

tual instances and these volatile demands for resources ultimately drive the resource 

allocation by the platform providers.
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3.3 Resource Granularity

Physical resources offered by the infrastructure provider in the PaaS model have complex 

details, and can be viewed from different perspectives in different resource allocation 

systems. Typical concerns over physical resources are about the CPUs, RAM, hard 

disks, network, etc. Each of these concerns can be further expanded. For instance, 

the resources of the CPU can be viewed as number of CPU cores, clock speed for each 

core, processing time, etc. In a resource allocation model, however, the granularity 

of physical resources must be defined, so that it provides consistent semantics for the 

participants during allocation. The semantics of a granularity model must specify the 

types of resource and the respective value quantification.

A resource granularity model in a resource allocation system is closely related to the 

concerns over the performance impact by allocating additional resources. A performance 

benchmark is a complex factor, however, it is generally accepted that the more resources 

are available to a computer system, the better marginal performance it delivers.

Moreover, the computer resources are constantly in the process of evolution, therefore 

there can be no permanent value quantification for a resource granularity model. Each 

type of resource in a model must be referenced to the modern server side computer 

hardware when quantifying its value. In addition, the cloud system consists of a large 

pool of server resources, and the vertical and horizontal scale of resources must be 

considered during value quantification for a granularity model. Firstly, the vertical 

scale of resource volume can be quantified within a value range. Secondly, this thesis 

considers the quantification of the horizontal scale (by adding more instances) as a linear 

combination of individual instance resource capacity specified in the quantification of 

vertical scale.
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3.3.1 Generalized Resource Granularity Model

A PaaS resource allocation system must be able to flexibly work with any resource gran­

ularity model, depending on what can be agreed by the participants. When resources 

are modeled with finer granularity, it does not remove the necessity of providing a defi­

nition for each resource type, as well as a respective value quantification. For instance, 

in a granularity model including resources of CPU and RAM, we may define the value 

of 1000 in CPU resource as the processing power equivalent to a standard dual-core 3.5 

GHz CPU and the value of 1000 in RAM as a capacity equivalent to a standard 16 GB 

RAM.

In a generalized resource granularity, the resource capacity on a physical machine 

can be represented as Rj = with the resource granularity of x type

of resources. Each resource type t, it has a unique value quantification, and R\ is a value 

representing the resource capacity of this resource type for machine p,;. Considering the 

horizontal scale, the total resource capacity is R = Ri + R2 + R3... -I- R,m for m physical 

machines, therefore R* = R\ +R2 + R\-.- + R\n for each resource type t 6 {tl, t2, <3, ...tx}.

3.4 Resource Allocation Mechanism

Resource allocation between an infrastructure provider and a platform provider is the 

provisioning of virtualized physical resources from the infrastructure provider to the 

platform provider under certain regulations. The previous section has provided a defini­

tion of resource granularity, which is a description of what can be offered by the resource 

provisioning service. This section draws a general framework of the resource alloca­

tion mechanism, which is a description of the regulations of the resource provisioning 

service. The mechanism must be understood by the platform providers when making 

adaptive decisions to meet their resource demands. The design of this resource allocation 

mechanism is established based on the following two prerequisites.

Physical Server Resource Limit The first prerequisite is to allow server resources to
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be subdivided to support a virtualized instance which operates within the server. 

This is an indispensable requirement in the context of cloud computing and a vir­

tualized server can be allocated up to the maximum resources available on the 

physical server. In a typical scenario, a physical server subdivides its hardware 

resources to operate multiple virtual instances. As such, the total resource ca­

pacity of a physical server is the linear combination of the resources allocated 

to the virtual servers residing in the physical server and the idle resources. Let 

V = {v\,V2,V'i, ...Vn] represent a set of virtual machines operating on a physi­

cal machine. Let rt = ,rf‘, ...rY) represent the resource bundle (with the 

granularity of x types) allocated to the VM vi which is operating on the physical 

machine. Thus, the total resource capacity already allocated on a physical machine 

fallow Is:

Roilow = ^n(rP,rp,rf,...r(-^) (3.2)
1=1

This prerequisite requires that the overall allocated resource capacity must not 

exceed the total resource capacity R on that physical machine:

R-allow ^ R (3.3)

SLA Resource Limit The second prerequisite is to allow server resources potentially 

shared by many platform providers to be accounted. The infrastructure providers 

operate a large number of physical servers. An SLA can be signed with a platform 

provider to set certain resource quota aside for them. The resource quota defines 

the maximum resource volume a platform provider can access and allocate the 

resources to a number of virtual machines. Since this thesis models only one 

unified infrastructure provider, the total resource capacity of the infrastructure 

is considered to be infinity. However, a platform provider must obtain an SLA
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with certain resource quota. Let 5 = {si, S2, ss, •••Sn} denote a set of the SLA 

signed by the infrastructure provider I with all the platform providers PP — 

{ppi,pp2iPP3^ ■■■PPrt}- For example, s; is the SLA signed between the infrastructure 

provider and the platform provider ppi. Let Q = {91,92,®, •••9n} be the resource 

quota specified by the equivalent SLA set S. For example, qt is the resource quota 

specified in the SLA Sj. Let Vi = {vii,Vi2,Vi3, ...Vim} represent a set of virtual 

machines instantiated and allocated to a platform provider ppi under the SLA Sj. 

A virtual machine vij could reside in any of the physical machines. Let = 

...rlj) represent the resource bundle allocated to the VM vij. Total 

resource capacity allocated to all the m virtual machines by a platform provider 

must be under the resource quota, such that

Qi — ^ ^ ^'ij 
j=l

(3.4)

3.4.1 Dynamic and Static Allocation

An SLA document agreed between an infrastructure provider and a platform provider 

must specify whether to allocate resources through a dynamic provisioning mechanism 

or a static provisioning mechanism and although a platform provider is allowed to switch 

between the two allocation mechanisms, it is subject to penalties in some cases.

Definition 5: A dynamic allocation mechanism is a flexible approach for a platform 

provider to acquire physical resources from an infrastructure provider in an on-demand 

manner.

Resources provisioned using the dynamic mechanism are billed at a high unit cost 

Cd however using this allocation mechanism, a platform provider can have access to a 

considerable amount of resources at any time and is not bound to a minimum contract, 

such that 9, = 00 and tend = 0, where tend is the contract finish time for the current SLA 

9j. This means the SLA can be terminated or amended at anytime without constraints.
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Therefore the total cost C to the platform provider for operating its services is equal 

to the cost or value of the resource units purchased from the infrastructure provider and 

is

C = Cd*N (3.5)

where N = n is the average resource units used within the short time

interval i.

Definition 6: A static allocation mechanism is a reserve-based allocation approach 

for a platform provider to acquire a fixed amount of resources over a period of time, 

subject to a minimum contract.

Resources provisioned using this static mechanism are billed at a lower unit cost 

Cs, but can result in penalties for canceling the reservation or amending the specified 

resource volume within the contract period. The Platform Provider requests for a quota 

of physical resources over certain amount of time which is usually a minimum of an 

hour or day depending on the infrastructure provider but can be renewed after contract 

expiry.

Platform providers pay a fixed amount over the contract period regardless of whether 

the reserved resources are fully utilized or not. The cost for the resource units is C, where

C — c.nt (3.6)

Note c is the unit cost per unit period, n is the resource quantity and t is the 

contractual period. In the static method, the resource quantity n is a fixed quantity and 

is the resource quota Qn specified by the SLA. Since t is measured discretely such as per 

hour or per 30 minutes, the total resource cost C can also be written as
t

C = ^csn (3.7)

Resource volume specified in a static SLA is a hard limit beyond which resources 

cannot be consumed unless this reservation is amended or canceled. Hence, the resource
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quota qn specified in the static SLA is

(3.8)

This is based on the resource granularity of x resource types and the platform provider 

is subject to the SLA quota limit (Equation 3.4). Moreover, with the static allocation 

method, the contract finish time tend is always initialized to the value when the SLA is 

created, where tc is the current time and T is the minimum contract time required by 

the static method.

^end — te T (3.9)

An amendment allows the reservation to be adjusted to a new volume to meet the 

new demands while cancellation of a reservation automatically switches the SLA back 

to a djmamic allocation mechanism.

In a static SLA, the quota can be amended in two cases. In the first case the 

quota can be amended if the new resource demands exceed the current quota. Lack of 

sufficient resource quota will prevent the platform provider from being able to service 

their customer needs and the assumption is that since the initial quota purchased includes 

a buffer or headroom to cater for any bursts in resource demands, once the demand 

exceeds the purchased resource quota the SLA needs to be amended.

The second case for quota amendment is if the current demand is much less than the 

reserved quota. In this case maintaining the initial reserved quota will result in inefficient 

use of resources by the platform provider and it may be more cost effective to reduce 

the reserved quota instead of incurring additional maintenance costs for resources that 

are not utilized. If we assume the current quota is q,;, the new quota after amendment is 

Qn and d„ represents the new resource demand then we can calculate the new resource 

quota in Equation 3.10.
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(In = (3.10)
dn, {dn > qi or dn « Qi) and tc < tend 

Qii dji < Qi

where tc is the current time and tend is when the static SLA shall be finished.

The cost incurred due to an amendment has two aspects, the penalty cost due to 

the infrastructure provider because of breach of SLA and then the cost of the addi­

tional resources (in case of increasing the quota). In a static SLA, the penalty cost is 

proportional to the total cost of initial resources so if the percentage penalty cost is 

represented as Pp and the total cost of resources is in equation 3.7 then the penalty cost 

for one transaction is

P — Pp ^ ^ (^s n (3.11)

In the case of addition of resources, if we combine the penalty cost and cost of 

additional resources, the total cost incurred by the platform provider for a penalty 

transaction at time t — i is given by Equation 3.12 where n is the adjusted resource 

quantity.

t t

Total cost per penalty = Pp CgU + Cgfi (3.12)
2=0 t=i

In this SLA design, an infrastructure provider allows a platform provider to choose 

one resource allocation mechanism when signing up an SLA, and to switch from one to 

the other at a later time according to the new resource demands. Generally, platform 

providers will select a static allocation mechanism for relatively stable resource demands. 

However, a dynamic allocation mechanism would be a more suitable option if the resource 

demands exhibit high fluctuations and since the pattern of resource demands can change 

from one period of time to another, the allocation mechanism may at times also need to 

change to adapt to the demand pattern.
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Switching from a dynamic allocation mechanism to a static allocation mechanism is 

welcomed by an infrastructure provider and therefore a platform provider currently on 

a dynamic SLA can switch to a static SLA at any time without penalties. The platform 

provider must agree with the infrastructure provider on the resource quota allocated, 

resource unit cost and the contract time. Such a switch in the SLA does not affect the 

ongoing resource consumption however, once a static SLA is formed, a platform provider 

has to fulfill its obligations such as the resource quota restriction and the contract time 

restriction. Such a switch is a good option if a platform provider sees rather stable 

resource demands.

Switching from a static allocation mechanism to a dynamic allocation mechanism 

is inevitably required if a platform provider receives highly volatile resource demands 

that can no longer be managed under the static mechanism. The switch from a static 

allocation mechanism to a dynamic allocation mechanism is not a free option because 

the bearing platform provider is bound to the contract time. If such switch has to be 

made before the contract expires, the platform provider receives a penalty, which is 

the same as Equation 3.11. Therefore a platform provider must evaluate the cost of 

the penalty charge before making such a switch however the switch is free of charge 

if the contract time has been completely fulfilled. Although it is undesirable for an 

infrastructure provider to offer such a switch, the penalty charge can compensate for the 

change in the SLA.

This reservation-based mechanism offers an advantage in that the resource reserved 

is isolated and is always available for the platform provider over the contract period. 

However, it is a challenge for the platform provider to make an accurate reservation 

and insufficient reservation will result in platform providers being unable to handle 

peak loads while excessive reservations to deal with projected peak load can result in 

unused resources which cause losses and in the long run make the platform provider less 

competitive in the Cloud market.
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3.4.2 Resource Allocation Process

A PaaS resource provisioning model must include a resource allocation process so that 

this process can be followed by the participants. The resource allocation process pro­

posed by the thesis does not address all the engineering problems, but serves as a basic 

protocol for resource allocation. This process is a partial implementation of the auto­

nomic MAPE-K model [73], and is presented in a sequence diagram (see figure 3.2) and 

with textiial descriptions.

Fig. 3.2 : PaaS Resource Allocation Process

1. An application provider a submits a service request e to a platform provider pp 

with certain resource requirements. The service request e can be of several types. 

One type is the new service allocation for a VM set V. The service request type 

can also be others such as scale up the current service (for the set of VMs), scale 

down the current service or stop the current service.
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2. The platform provider pp receives the request and examines its current SLA. If the 

platform provider is on a dynamic SLA, it may process the request immediately, 

by performing step 5. If the platform provider is on a static SLA, it must verify 

if the resource quota is sufficient for the new demands d„, so that 

Additional adaptive resource quota management can be implemented at this step, 

which is discussed in the next chapter.

3. This step is optional, and is carried out only if an amendment to the current SLA 

is required. This step can involve one of the two amendment types. One type is 

to switch between SLA types, i.e. between a static SLA and a dynamic SLA. The 

other type is to amend the resource quota for a static SLA.

4. The new resource quota is agreed between the infrastructure provider and the 

platform provider. After the amendment, the platform provider must be able to 

fulfill the service request e.

5. The platform provider now has sufficient resource quota for serving the request 

e. It asks the infrastructure provider to perform the according operations on the 

per-VM basis.

6. The infrastructure provider confirms the allocation and calculates the bills for the 

platform provider on the transaction.

7. The platform provider deploys necessary platform software packages, and finally 

the access to the VM set after the operation is granted to the requesting client a.

From a platform provider perspective, step 1 belongs to the monitoring autonomic 

component, such that an allocation event is detected. Step 2 is the analysis autonomic 

component where the resource management system decides whether actions are required 

to respond to the allocation event. Step 3 and 4 are the planning and execution auto­

nomic components where the resource management system deliberates on a course of 

actions and execute the actions. The rest of the steps are normal system functions.
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3.5 Resource Allocation Scenarios

Cloud services are subject to unpredictable and dramatic load fluctuations [94]. Based 

on the the previous deflnition of the PaaS constituency, resource granularity and alloca­

tion mechanism design, this section demonstrates five hypothetical resource allocation 

scenarios leading towards a discussion of the resource allocation problems for a platform 

provider.

3.5.1 Scenario 1

A new application provider a newly arrives at time t to operate using the platform 

services offered by a platform provider pp. The application provider requests a set of 

virtual machines V = {ui,^2, us, ...u„}to be instantiated with full software packages, 

and requires the resource capacity for the VMs as r = {?'i,r2,r3, ..;r„}, where r, is the 

resource capacity required for the VM Vi, and can be presented as rt = (r^, rp, rp, ...rp) 

for a resource bundle using the granularity of x resource types. In this scenario, two cases 

are considered which both result in a successful outcome of this service request.

Case 1: The platform provider pp is on a dynamic SLA with the infrastructure 

provider I. Therefore the platform provider is entitled to access unrestricted quota 

q = oo without contract time obligations tend = 0. The platform provider immediately 

serves the request from the application provider a and asks the infrastructure provider 

for the creation of the VM set V. In turn, the infrastructure provider processes the 

request from the platform provider by creating the VMs across a number of available 

physical machines P = {pi,P2,P3, -.-Pr}- Note that more than one VMs can reside in one 

physical machine p. Access to these VMs are then issued to the platform provider pp, 

which installs its default platform and software packages. Finally, the platform provider 

grants access to these VMs to the application provider a.

In this transaction, the infrastructure provider adds a new bill Ct the platform 

provider pp for the resource consumption of the VM set V at time t. The bill Ct can be
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written as Ct = CdT = c^ri, where n is the number of VMs requested.

Case 2: The platform provider pp is on a static SLA s with the infrastructure 

provider I. Note that the static SLA s specifies the maximum resource quota that can 

be accessed by the platform provider pp is q = with the resource

granularity of x types and the contract is due to finish at time tend where t < t^nd- In 

this scenario, it is assumed that the platform provider pp has consumed the resources 

bundle qc = lO’c ^ ^nd strictly > 9* + s^ch resource type,

where is the total resource volume of type t requested by all the new' VM set

V. This means that the platform provider has sufficient resource quota for the new 

allocation. The infrastructure provider creates the VM set using the same procedure as 

in Case 1 and and access to the VMs are granted to the application provider.

In this transaction, the infrastructure provider updates the new consumed resource 

quota qcnetu for the platform provider pp, such that qcnew = Qc + J'- At this stage, the 

bill for the platform provider does not change (see Equation 3.7).

3.5.2 Scenario 2

An existing application provider o currently operates a set of VM V — {ui, U2) ^’3, 

using the platform services offered by a platform provider pp at time t. The resource 

capacity for the VMs as r = {ri, r2, ra, ...rn}, where is the resource capacity required 

for the VM Vi, and can be presented as rt = ,r*^,rf‘, for a resource bundle

using granularity of x resource types. At time H, the application provider requests the 

set of VM Vto be upgraded with higher capacity rt. In this scenario, two cases are 

considered which both result in a successful outcome of this service request.

Case 1: The platform provider pp is on a dynamic SLA with the infrastructure 

provider I. Therefore the platform provider is entitled to access unrestricted quota 

q = 00 without contract time obligations t^nd = 0. The platform provider immediately 

serves the request from the application provider a and asks the infrastructure provider 

for upgrading of the VM set V to the new capacity r/. Then the infrastructure provider
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processes the request from the platform provider by upgrading the VMs on their residing 

physical machines P = {pi,P2tP3i ■■■Pr}- Upon successful upgrade, the new information 

about these VMs aj-e then returned to the platform provider pp. The platform provider 

verifies the upgrade and finally the platform provider informs the application provider 

a about the upgrade.

In this transaction, the infrastructure provider adds a new bill Cff the platform 

provider pp for the additional resource consumption at time H. The bill cp can be 

written as cp — c^irl — r) — Cd{rp — n), where n is the number of VMs requested.

Case 2: The platform provider pp is on a static SLA s with the infrastructure 

provider I. Note that the static SLA s specifies the maximum resource quota that can 

be accessed by the platform provider pp is q = {q*^with the resource 

granularity of x types and the contract is due to finish at time tend where t < tend- Li 

this scenario, it is assumed that the platform provider pp has consumed the resources 

bundle qc = iq*c^,q*J^,qc^,---q*f), and strictly q* > resource

granularity type, w'here — r-) is the total resource volume of type tx requested

to be upgraded by the VM set V. This means that the platform provider has sufficient 

resource quota for the new allocation. The infrastructure provider upgrades the VM set 

using the same procedure as in Case 1 and and application provider is informed about 

the successful upgrade.

In this transaction, the infrastructure provider updates the new consumed resource 

quota qcnew for the platform provider pp, such that qcnew = 9c + (r' — r). At this stage, 

the bill for the platform provider does not change (see Equation 3.7).

3.5.3 Scenario 3

An existing application provider a currently operates a set of VM V = {vi,V2,V3, ...u„} 

using the platform services offered by a platform provider pp at time t. The resource 

capacity for the VMs as r = {ri,r2,r3, ...r„}, where r* is the resource capacity required 

for the VM Vi, and can be presented as r* = (r|\rp,rP, ...r-^) for a resource bundle
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using granularity of x resource types. At time U, the application provider requests the set 

of VM Vto be upgraded with higher capacity rf. In this scenario, the platform provider 

is assumed to be using a static SLA however the remaining resource quota allowed in 

the SLA can not fulfill the upgrade request from the client, such that for at least one 

resource quota of type t, q* < ql + across total n virtual machines. The

platform provider may consider one of the following two options.

The platform provider may request an amendment to the existing static SLA to a 

new resource quota qnew that can fulfill the upgrade request. The infrastructure provider 

calculates the penalty charge for the platform provider according to Equation 3.12.

Alternatively, the platform provider may request a cancellation to the existing static 

SLA and automatically switch back to a dynamic SLA. The infrastructure provider 

calculates the penalty charge for the platform provider according to Equation 3.11.

Problem 1: A platform provider may experience sudden surges in the resource 

demands from time t to time V. In order to guarantee the high availability in its platform 

services, a platform provider inevitably breaches the static SLA with the infrastructure 

provider and is subject to high penalty costs.

3.5.4 Scenario 4

An existing application provider a currently operates a set of VM V = {vi,V2,V3, ...Vn} 

using the platform services offered by a platform provider pp at time t. The resource 

capacity for the VMs as r = {ri,r2,r3, ...r„}, where r, is the resource capacity required 

for the VM Vi, and can be presented as Vi = (r*^, rp, rp, ...r-^) for a resource bundle 

using granularity of x resource types. At time U, the application provider requests a set 

of VM Vto be downgraded with much lower capacity rf. In this scenario, the platform 

provider is assumed to be using a static SLA with resource quota qn and the drop in 

the resource demands results in insufficient use of the resource quota that dnew « qn- 

Despite the fact that the platform provider can fulfill the service request as normal, 

it must consider the penalty charge P for amending the resource quota down to suit
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the new demands (according to Equation 3.12), and the cost of leaving idle resources 

Cwaste — ^s{Qn ~ dnew) for the remaining time tend — tf. In this case it is assumed

that Cnjaste ^ ^•

Problem 2: A platform provider may experience constant decline in its resource 

demands and may result in significantly insufficient use of resource quota reserved in 

a static SLA. Apart from judging the cost saved after amending the static SLA, the 

platform provider must also consider the Problem which arose in Scenario 3 in the short 

future, if it reduces the resource quota significantly.

3.5.5 Scenario 5

A platform provider offers platform services to a set of application providers A via the 

operations on the VM set V = {vi,V2,V3, ...Vn}. In this scenario, the platform provider 

is assumed to be operating under a dynamic SLA, however, the demands for the VM set 

in total has exhibited a very stable pattern.

Problem 3: A platform provider may be delivering its services via dynamic SLA 

at high unit cost Cd where Cd » c,,. However, the platform provider can be receiving 

constant demand levels therefore it operates its services at a much higher cost than its 

competitors.

3.5.6 Resource Allocation Problem

In circumstances when the fluctuation occurs in the resource demands for a platform 

provider over a short period, it can either result in a large amount of over-provisioning or 

under-provisioning of resources that it reserved within the time period via a static SLA. 

This causes either frequent penalty charges or significantly insufficient use of physical re­

sources. On the other hand, the dynamic allocation mechanism promises great flexibility 

for resource allocation. But it is charged at much higher unit costs and is not suitable for 

demands that exhibit stable pattern. A platform provider requires more sophisticated 

autonomic resource management capability to deal with the above scenarios.
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3.6 Summary

This chapter has presented the PaaS resource allocation context. Firstly a constituency 

of the PaaS model is discussed to allow an understanding of each participants. Sec­

ondly the resource granularity model is proposed based on a generalized model of x re­

source types. Thirdly, the resource allocation mechanism is described in detail. Finally, 

five resource allocation scenarios are demonstrated and the general resource allocation 

problems are discussed. The next chapter will present the resource allocation solution 

proposed by the thesis to address these problems.
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Chapter 4

The Sharex Resource Allocation

Approach

4.1 Introduction

The PaaS resource sharing model can be used by various platform providers to offer 

highly integrated on-demand platform related services to their customers. One key 

challenge faced by these platform providers is satisfying the customer requirements dur­

ing times of volatile resource demands by providing sufficient physical resources while 

avoiding resource under-provisioning or over-provisioning. Since the platform providers 

operate at a relatively large commercial scale, direct monitoring and management of 

the resource allocation process by humans is not the most efficient or effective tech­

nique. This therefore dictates the need for fully autonomic resource allocation, that is, 

the platform provider systems must be capable of self-managing to adapt to the various 

conditions of resource demands.

Standard autonomic management of resource allocation does not fully deliver a sat­

isfactory resource provisioning model because of prediction errors, which are an in­

evitable factor during resource forecasting, can lead to resource over-provisioning or
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under-provisioning. This chapter introduces the Sharex resource allocation approach 

based on the context established in the previous chapter. The Sharex approach enables 

a community of platform providers to exchange resources based on the Edgeworth Box 

model in order to reduce SLA violations which increase the overall cost to the platform 

provider and customer.

This chapter is divided into three sections with the first section introducing the 

flexibility allowed in the PaaS resource allocation context for platform providers to share 

resource quota. The second section depicts a resource allocation management method 

in the PaaS context combining both predictive and reactive allocation management, and 

guarantees high resource provisioning availability. The third section presents the Sharex 

allocation approach incorporated into the resource allocation management method.

4.2 Resource Sharing Flexibility

In section 2.3 we discussed the flexibility allowed in the Amazon EC2 reserved instance 

based on the Amazon marketplace [7], and suggested similar flexibility mechanism can 

be allowed for platform providers under static SLAs in our PaaS context, but achieved 

through the sharing of unused resource quota to form a Spot economy [120]. In this 

section we introduce resource sharing flexibility only allowed to a platform provider 

which is on a static SLA. Although the static allocation mechanism is considered a 

cost-saving resource allocation approach for both the infrastructure provider and the 

platform provider, it is a risky choice for a platform provider due to the penalty related 

restrictions. Resource demands in the clouds are highly volatile and can be momentarily 

stable but sudden surges or drops can occur and this inevitably leads to the violation of 

the SLA unilaterally by a platform provider. As a result, the platform provider’s risk of 

receiving penalties for signing on to a static allocation mechanism is significant.

Consider two platform providers ppi and pp2 operating under static SLA si and S2 

respectively. The platform provider pp\ has the resource quota qi and resource demands
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di, while the platform provider pp2 has the resource quota q2 and resource demands d2 

at time t. Both platform providers have enough resource quota to fulfill their services, 

such that gi > di and q2 > d2. At time t', the platform provider ppi has a new set of 

resource demands d[ and the platform provider pp2 has a new set of resource demands ^2- 

Both platform providers are assumed to be under-provisioning under the new demands, 

so that for at least one resource type, d[ > q\ and d'2 > q2- Let T = {t^, 

be the resource granularity of x types. The platform provider pp\ has a set of resource 

types t\ E T that are under-provisioned, and the platform provider pp2 has a set of 

resource types <2 € T that are under-provisioned. In this scenario, it is assumed that 

two platform providers have surges in the resource demands of different resource types 

and the resource quota for both platform providers combined can still meet the overall 

combined demands, such that fl ^2 = 0 ^nd q\ + q2> d\ + d'2.

Design Decision: Two platform providers under the above resource under-provisioning 

scenario can share their resource quota for a short period of time to fulfill their service 

demands.

The sharing of resource quota must satisfy the following conditions.

• First, the resource sharing can only take place between two platform providers who 

have signed up for a static SLA.

• Second, a platform provider must have sufficient remaining resource quota in order 

to share with another platform provider which needs such resources. The platform 

provider who offers spare resources to another will experience the equivalent re­

duction in its resource quota.

• Third, the sharing must have a deadline which must be earlier than any of plat­

form providers’ the contract expiry time. When the sharing deadline arrives, the 

shared resource quota must be returned and this is enforced by the infrastructure 

providers. A platform provider however can negotiate a new resource share with 

the others.
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• The platform providers only need to pay a small commission fee for such quota 

sharing to the infrastructure providers, which is proportional to the value of the 

shared resources. Such a commission fee is insignificant compared to a standard 

penalty charge. The commission fee charge is referenced to the Amazon market­

place [7], where a 12% of service charge is applied to the upfront cost of the reserved 

instance traded in the market.

Based on the above scenario, two platform providers can negotiate an exchange of 

resource quota over two resource set t\ and t2, where nt2 = 0- For platform provider 

pp\, it receives additional resource quota in the resource types belonging to set ti but 

gives away resource quota in the resource types belonging to t2- On the contrary, the 

platform provider pp2 receives additional resource quota in the resource types belonging 

to set t2 but gives away resource quota in the resource types belonging to ti. We assume 

such resource exchange only occurs when two platform providers have complementary 

needs, because if a platform provider does not need additional resource to overcome an 

under-provisioning scenario, it has to pay for a commission fee that is associated wdth 

the exchange.

A successful exchange of resources occurs when the end result will ensure both plat­

form providers have sufficient resources to meet their demands. For example if we 

consider a successful exchange of resources between two platform providers ppi and pp2 

with initial resource quota qi = ...) and 92 = (•••i ^2^ •••’•••) respectively

and we assume platform provider pp\ requires additional resources in set t\ while plat­

form provider pp2 requires additional resources in set ^2) Equations 4.1 - 4.3 represent 

the resource quota after a successful negotiation and exchange of resources.

Q\r = {...,q\^+Aq*\...,q\^-Aq^\...) (4.1)

q2new = (•■■,72* -) (4.2)
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<7lr ^— Qlrnin B-nd Q2new ^— Q2mi (4.3)

Where qinew and q2new are the new resource quota for platform providers ppi and 

PP2 respectively, Aq^^ is the amount of resource that was exchanged in set ti, Aq*'^ is 

the amount of resource that was exchanged in set t2 and qimin and q2min refer to the 

minimum resource quota that need to be maintained on platform providers pp\ and pp2 

respectively. When exchanging resources, a commission or exchange fee is required to be 

paid to the infrastructure provider and this fee is proportional to the amount of resources 

being exchanged i.e. Aq^'^ + if we represent the exchange commission percentage

as e and then the exchange fee per transaction is given by Equation 4.4.

Ce-e(Ag‘' +Ag'2) (4.4)

4.3 PaaS Autonomic Resource Allocation Management

This section introduces a resource allocation management mechanism situated in the 

PaaS context for a platform provider. This resource management strategy combines the 

Planning and Execution function in the MAPE-K model and guarantees high resource 

provisioning availability. The decision making process implemented by this allocation 

management is fitted to the Step 2 from the PaaS resource allocation process (see figure 

3.2 in Chapter 3). The execution of a decision outcome is fitted to the Step 3 from the 

PaaS resource allocation process.

4.3.1 Predictive Resource Management

Predicting the resource demands in the near future is a non-trivial problem. If the 

prediction fails for example by predicting less demand that what is actually required, 

this can result in a penalty charge. A prediction has to consider possible surges in 

the resource demands and therefore this predictive approach must reserve additional
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resource quota to allow for certain fluctuations otherwise the penalty charges will be 

very frequent and costly. However, if too much additional resource quota is reserved, 

the solution results in inefficient use of resources and huge costs.

The Planning stage of autonomic resource allocation management plays a key role in 

forecasting the resources required in the next stage and evaluating the trade-offs among 

different possible actions. There are two possible decisions that should be delivered and 

the outcome of the decision making process is a decision as well as certain accumulative 

parameters. The available decisions are to either to take immediate action to amend 

the SLA or to take a deferred action and continue to monitor these parameters. If im­

mediate action is required, the execution component is required to execute the action 

to deal with the current demands while in the case of a deferred action, if resources are 

not met at a later stage, the deferred action can be activated. In both cases, the knowl­

edge component is required as it mediates through several stages of resource allocation, 

constantly archives the resource demands and has certain parameters to be consulted as 

reference when an action has to be taken at a later stage.

The decision making process must take into consideration the context of the resource 

allocation method, which is described in the previous chapter. Essentially it has to 

decide which type of SLA is suitable for the predicted resource demands. If the resource 

demands will have significant fluctuations then the best option would be to opt for a 

dynamic SLA to obtain on-demand resource quota at a higher unit cost. On the other 

hand, if the resource demands exhibit a relatively stable pattern, the best option is to 

select a static SLA so the unit cost is much lower although there would be penalties in 

case of SLA violations in this case.

The various possible decision outcomes are summarized in Table 4.1. This decision 

table is inspired by CloudScale [112], which was discussed in section 2.4.4. The decision 

table must provide choices for the resource management system to perform fast error 

corrections, and is considered comprehensive because it has included all possible changes 

of SLAs in the PaaS context. By issuing such commands the platform providers are able
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to self-adjust to a satisfactory state.

Table 4.1: Decision Outcome

No SLA Migration Description

1. DYNAMIC TO STATIC Switch SLA from an on-demand SLA to a static

SLA immediately.

2. STATIC TO DYNAMIC IM- Switch SLA from a static SLA to an on-demand

MEDIATE SLA immediately.

3. STATIC TO DYNAMIC DE- Switch SLA from a static SLA to an on-demand

FERRED SLA at the next occurrence of SLA violation.

4. STATIC AMENDMENT IM- Amend static SLA to meet the current demands

MEDIATE immediately.

5. STATIC AMENDMENT DE- Amend static SLA to meet the current demands

FERRED at the next occurrence of SLA violation.

6. SLA SET EXTENSION SLA extension request needs to be sent to the

broker.

A decision is accompanied by a parameter called the flexibility ratio which serves 

to suggest how much additional resources are required to service the current resource 

demands. For example, let 7 denote the flexibility ratio. If the current amount of 

resources is q and a decision is made to change to a static SLA from a dynamic SLA 

then including the 7 parameter, the new value of resources to service the current demands 

would be

9 = 9(1+ 7) (4.5)

The ratio 7 is an accumulative value affected by the fluctuation ratio 6 which is used
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to represent the change of resource demands in the current period in proportion to the 

previous period. If Q is significantly high, this implies that the resource demands in the 

current period are significantly higher than those in the previous period and therefore 

the ratio 7 is incremented by a fixed fraction rj. If 0 is relatively low, this implies there 

is no significant change between the resource demands in the current period and the 

resource demands in the previous period and therefore the ratio 7 is decremented by a 

fixed fraction r].

The ratio 9 is also used during a dynamic SLA to determine whether to switch to a 

static SLA. During a dynamic SLA, 0 is used to monitor the resource demands and if the 

average value of 0 is relatively small, this indicates fairly stable resource requirements 

and can therefore facilitate a decision to switch to a static SLA.

Since there are only two possible SLAs that can exist between a platform provider 

and infrastructure provider ie static or dynamic SLA, in the case of predictive resource 

management, depending on the current SLA implemented and the current environment 

two algorithms are proposed to evaluate the decision. These two algorithms are now 

discussed further.

If a dynamic SLA is currently implemented, a decision regarding whether to switch 

to a static SLA needs to be made depending on the resource demands and value of 0. 

However it is key to note that before a decision is made, the platform provider should 

have been on the dynamic SLA for longer than the observation period Tg and Algorithm 

1 presents this decision process.
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Algorithm 1 Prediction Algorithm to Evaluate if to Switch from a Dynamic to a Static 

SLA_______________________________________________________________________
Require: s = DYNAMIC Mo > To {The observation period must be greater or equal to the minimum observation 

period.}

6» ^ 0
for t = tcurrent tO tcurrent do

e^e + e,
end for
n e"avq — t t'■current 'o

if 9a.vg < S then

D r- SWITCH TO STATIC SLA IMMEDIATELY 

else

D r- null 

end if

If a static SLA is currently in effect, there are various actions that can be implemented 

(see actions 2-5 in Table 4.1) and Algorithm 2 is used to evaluate all possible decisions.
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Algorithm 2 Prediction Algorithm to Evaluate Possible Decisions While on a Static 

SLA_______________________________________________________________________
Require: s = STATIC

o ^ |rt-rt_i|

D ^ NULL

if 6i > 7 then 

if 7 > n then

D ^ SWITCH TO DYNAMIC SLA IMMEDIATELY 

return 

else

7 = 7 + '?
end if

else if 6t < 'r then 

if 7 > u,’ then 

7 = 7-'? 

else

7 = ai 

end if 

end if

if tcurrent ^ ^expiry then

D ^ EXTEND STATIC SLA 

return 

end if

{fl is the highest accumulated fluctuation tolerance for 7, and a; is the lowest accumulated fluctuation value 

for 7.}

{Check if current reserved resource quota is too much above the required resource demands, c is the static unit 

cost, d is the current resource requirement, Cw is the estimated waste, 5 is the penalty proportion and Cp is the 

estimated penalty cost if to amend the SLA. } 

if « < q * (1 — 7) then

Cpj =(q*(l 7) d) * C * {texpiry ^current)

Cp = Q * C * ttoi * d 

if Cw > Cp then

D ^ AMEND STATIC SLA IMMEDIATELY 

return 

end if 

end if

(If the number of penalties occurred within one observation period exceeds the maximum allowed penalty 

times.}

D ^ SWITCH TO DYNAMIC SLA DEFERRED 

end if
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Both algorithms may yield a decision to modify the SLA either by amendment or 

migration based on the recent trend of resource demands. If the resource demands are 

highly volatile, the SLA is more likely to be a dynamic SLA however if the resource 

demands are relatively stable, the SLA is more likely to be a static SLA. In addition, 

the static SLA can be amended to adjust the resource quota to facilitate sudden surge 

or drop in the demands.

The outcome of a decision can either be directly accepted by the reactive resource 

management module and becomes become effective immediately, or a deferred decision 

is taken by the reactive management module and the decision is then implemented when 

the SLA is violated at a later stage. The reason for a deferred decision is that the cost 

of constantly modifying an SLA is expensive due to the penalty charge so sometimes 

the most reasonable solution is to defer action to a later time. The demands history 

as well as the parameter values such as the flexibility ratio 7 are constantly monitored 

and this information is used to improve the decision making process. The next section 

discusses reactive resource management which will work together with the predictive 

resource management approach.

4.3.2 Reactive Resource Management

The reactive resource management module is an important layer in the autonomic archi­

tecture which implements the execution component in the MAPE-K model. This module 

is designed to follow the guidelines from the predictive resource management module as 

well as react to unforeseen circumstances in the resource demands. This module is indis­

pensable due to the fact that prediction errors always occur and the role of this module 

is to make necessary amendments to the SLA to ensure that the resource quota is always 

sufficient for the ongoing demands. This module is mainly active when a static SLA is 

being used and can be passively activated to serve when relevant situations arise. The 

events that activate this reactive resource management module are either the arrival of 

a new predictive command, static SLA expiry or a resource shortage alarm in a static
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SLA.

The basic operating procedure for the reactive resource management module is de­

scribed next:

1. The module verifies whether any high level commands require immediate execution, 

for example switch between the two SLA types from dynamic to static or from 

static to dynamic, or amend the resource quota immediately for a static SLA.

2. The module verifies whether the current SLA is a static SLA or a dynamic SLA.

• In the case of a dynamic SLA, no further action will be taken.

• In the case of a static SLA, the expiry date of the current SLA is checked 

and if the SLA has expired and there are no guidelines to renew this SLA, 

the module automatically switches to a dynamic SLA since the contract has 

been fulfilled. In this case there is no penalty charge.

3. If a resource quota alarm is received indicating that the current resource quota 

reserved in a static SLA cannot meet the new demands, the module must take ac­

tion to resolve this incident. First it checks for deferred SLA amendment decisions 

and if there is a deferred decision in place then this decision become an immediate 

action. In case there is no deferred decision in place then the resource quota of the 

SLA is amended according to the new requirements. Extra reservations are also 

made in accordance with the flexibility ratio 7 and in such SLA amendment cases, 

a penalty is charged.

The reactive resource management guarantees high resource provisioning availability 

but inevitably leads to penalty charges, however, this can be potentially mitigated by 

utilizing the flexibility allowed in the SLA context, i.e., sharing of resource quota between 

two platform providers. A negotiation process for exchanging resource quota can be 

performed before the reactive resource management module considers a deferred SLA 

amendment decision in Step 3.
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This negotiation mechanism has several requirements in order to be effective and 

these are presented below:

• A protocol of negotiation must be agreed between the platform providers to allow' 

for effective exchange of interests in the negotiation and resolution of their inci­

dents. FIFA [91] offers a standard agent based communication framework and was 

discussed in section 2.5.4. A negotiation protocol that is compliant to standards 

such as FIFA benefits from wider compatibility such that it can embrace more 

platform providers which are interested in joining the social group.

• In the negotiation, the platform providers are not allowed to make unlimited bids 

to get an optimal outcome. Constrains must be incorporated into their bidding 

strategy, so that when the maximum allowed bids have reached or the delay is too 

long, the negotiation is rejected.

• The platform providers can only accept a resource negotiation outcome if it will 

resolve the incident. The bidding strategy must also take into consideration of the 

utility value to ensure a resource exchange satisfies the incentive design.

The next section presents the Sharex resource allocation approach based on the 

Edgeworth box model where the outcome of a negotiation for sharing resources improves 

the well-being of both platform providers.

4.4 Sharex Resource Allocation Approach

The Sharex resource allocation mechanism is an allocation approach allowing platform 

providers to bilaterally share physical resources through negotiation. This approach 

derives from the Edgeworth Box model, where two negotiating parties with different 

amounts of resources can improve their utility by exchanging resources.

The Edgeworth Box model opens a space for negotiation called the contract lens 

and any negotiation outcome that falls in the contract lens is thought to be improv-
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ing the well-being for both negotiating parties. However, unlimited bargaining for the 

resource allocation share can lead to significant delays in arriving at a common resolu­

tion [69]. This thesis adopts the concession making technique based on heuristics such 

as the Zeuthen approach [107] in achieving agreement during negotiations. The Zeuthen 

approach proposed limited rounds of bargaining among players which make a sequence 

of successive concessions to reach a common solution. This technique is employed to be 

highly cooperative and is proposed because the commission charge for sharing resources 

for short time is significantly less than paying for the penalty charge that would be in­

curred by amending the SLA. We substantiate the costs for a penalty and a commission 

charge where an exchange takes place based on the equation 3.12 and 4.4. We assume 

that both participants have an SLA with total contract time of 10 hours and have 5 

hours remaining. The cost of static resource provisioning is 1 dollar per hour per re­

source unit and the penalty and commission charge percentages are at 10%. Table 4.2 

shows that both platform providers would have to pay the penalties for 2500 dollars and 

5500 dollars respectively if an exchange did not take place, instead they managed to 

agree on an exchange and paid 70 dollars each.

Table 4.2: Commission charge and penalty charge example

Participants PPi PP2

Resource type CPU RAM CPU RAM

Endowed 1000 3000 2000 2000

Required 1200 2300 1500 2500

New allocation 1200 2500 1800 2500

Commission charge 70 70

Penalty charge otherwise 2500 5500
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4.4.1 Sharex Resource Exchange Protocol

The implementation of the resource exchange protocol allows platform providers to carry 

out the resource exchange based on the Edgeworth box model. The resource exchange 

is mediated by a Resource Exchange Coordinator, which acts as a registry and the 

trust manager for the interested platform providers. The trust manager implements 

the information validation approach, which was discussed in section 2.5.5, so that fake 

information can be immediately detected. This section introduces the Sharex resource 

exchange protocol, which includes registration, initiation, negotiation and commitment 

for resource exchanges. Current FIFA protocol standards do not fully support the Sharex 

communication requirements, therefore we propose and describe this exchange protocol. 

However, the messages used in Sharex are compliant with the FIFA communication acts.

1. Registration: A platform provider which is interested in participating in this re­

source quota sharing mechanism registers with the coordinator by sending a FIFA- 

request message (see figure 4.1). The platform provider immediately receives a 

FIFA-inform message containing a list of the other platform providers which have 

already registered for resource quota exchange. Meanwhile, the coordinator sends 

a broadcast message (FIFA-inform) to inform all the existing platform providers 

about the new registrant.

2. Initiation: If a platform provider is on a static SLA but the resource quota specified 

by the SLA does not meet the current resource demands, it initiates the resource 

exchange process, and also listens to the other platform providers with initiation 

requests. In initiation, the platform provider (ppl) firstly randomly selects a plat­

form provider (pp2) from the registration list, and sends an initialization request 

(FIFA-inform) to pp2. The initiation request must specify the resource quota q 

and the utility preference (see section 4.4.2). Secondly, pp2 which receives the 

request evaluates the request based on the condition presented in the demand 

scenario from section 4.2, and it sends an information validation message (FIFA-
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Register

f
Broadcast

C
^Broadcast

Coordinator Platform Provider

Fig. 4.1: Sharex Registration Phase

query) to the coordinator to verify if the information provided by ppl is correct. 

The coordinator replies with a FIPA-inform message stating the truthfulness of 

the information. Thirdly, if the information is successfully verified by the coordi­

nator and the initialization request is accepted, pp2 replies with an FIPA-inform 

message containing its own exchange information to ppl. Since pp2 has the infor­

mation from ppl, it is certain that the exchange scenario will also be accepted by 

ppl. However ppl still has to verify the information it just received by sending a 

FIPA-query to the coordinator. If all validations pass, the two platform providers 

enter the negotiation phase. Otherwise the ppl picks another random platform 

provider from the list until one agrees to start negotiation. Finally two platform 

providers which are about to start negotiation blocks all the other initiation re­

quests. The initiation phase is illustrated in figure 4.2, where P2 is the initiator. 

P2 has two initiation requests blocked by platform providers P3 and P4 before it 

successfully establishes a negotiation with P6. When an initialization request is 

blocked, it means the recipient does not have the resources demanded to offer, or
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it concludes based on the information received that any exchange outcome is not 

favorable. Platform providers are allowed to consider multiple offers simultane­

ously. If a platform provider is found producing false information, the coordinator 

removes the platform provider from the registration and sends a broadcast message 

(FIPA-inform) to all the members.

P4 PI

P2

P6

P5 P3

P2 initiator Blocked Initiation

Established Initiation

Fig. 4.2: Sharex Initiation Phase

3. Negotiation: The negotiation process is carried out over a limited rounds. The 

initiator first sends an offer (FIPA-propose) of a new allocation scheme to the 

invited and receives a response. The response can be an acceptance (FIPA-agree), 

a counter offer (FIPA-propose) or a rejection (FIPA-cancel). If the offer is accepted, 

they proceed to the next phase. If the invited returns a counter offer, the initiator 

evaluates the counter offer and may send back a counter offer, an acceptance 

or a rejection to the invited. This process repeats until an agreement is made, 

maximum rounds have reached or the negotiation is aborted. If a negotiation is 

aborted, both platform providers return to the previous phase. The negotiation
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strategy is presented in section 4.4.2.

4. Commitment: When two platform providers agree to exchange resources, the initia­

tor sends a resource exchange request (FIPA-request) to the infrastructure provider 

(see figure 4.3). The infrastructure provider verifies the request with the invited 

platform provider. If successfully verified, the infrastructure provider approves the 

request by sending a FIPA-agree and bills both platform providers for the exchange 

commission according to equation 4.4. Finally, the initiator sends a confirmation 

message (FIPA-inform) to the invited. At this stage, both platform providers 

record this swap agreement and continues the resource allocation process.

IP

P2 Initiator P6 Invited IP Infrastructure Provider

Fig. 4.3 : Sharex Commitment Phase

4.4.2 The Concession Making Negotiation Strategy

Negotiation is an important aspect in the Edgeworth box model so to arrive at an ami­

cable agreement, both parties have to make concessions to each other to avoid deadlocks 

which would lead to an abortion of the negotiations. Thus, both parties have to clearly 

understand the negotiation space by calculating the boundaries. The boundaries of 

the negotiation are an overlapping area between the Edgeworth contract lens and the 

resource requirements level. This is illustrated in Figure 4.4 using a two resource exam-

84



pie where D'^ and indicate the scale of resource quota for resource D for platform 

provider A {PPa) and platform provider B {PPb) and P-^ and P^ indicate the scale of 

resource quota for resource P for PPa and PPb-

Fig. 4.4: Edgeworth box model

The contract lens is illustrated by the greyed out lens-shape formed by the intersec­

tion of the indifference curves of platform provider A (PPa) shown in green and platform 

provider B {PPb) shown in blue. Both platform providers negotiating for resources must 

understand the context of the negotiation by truthfully exchanging total resource quota 

values and their utility function. It is the nature of the Edgeworth box model to al­

low calculations based on knowledge of the sum of different resources and their utility 

function so that the contract lens can be computed. If this approach is based on inac­

curate disclosure of such information, it will require both platform providers to make 

assumptions regarding the total resources available as well as the other’s utility function 

which can become inefficient and time consuming. Therefore this thesis proposes the 

open negotiation approach.

The utility function of a platform provider for possessing a bundle of resources is 

the Cobb-Douglas function U — [85]. The value of q is a floating point value

between 0 and 1 exclusively. The assumption made in this case is that the value of a
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is a dynamic value determined by the ongoing resource demands, but has an interval 

based on two conditions. For example, if a platform provider is short of one type of 

resource, e.g. X, while has spare quota of the other type, e.g. Y, then the value of a is 

a random value between 0.5 to 1 exclusively. This means that to obtain an additional 

resource quota of X while giving up certain amount of resources Y can increase value of 

the utility score. On the other hand, where the platform provider is short of resource Y 

but has spare resource X, the value of a is between 0 and 0.5. If two platform providers 

were to negotiate resources, there would therefore be two utility functions Ui = X°‘Y^~°' 

and U2 = X^Y^~^. Therefore in order for an Edgeworth box to be constructed, both 

platform providers have to truthfully reveal their holding of X and Y as well as their 

Cobb-Douglas parameters a and 0. The value of a and 0 are always in different intervals 

for example, if a is between 0 and 0.5, 0 must be between 0.5 and 1. The size of the 

interval between the two parameters is an indication of how eager the two platform 

providers are to exchange resources i.e. a large interval indicates both platform provider 

are eager to exchange resources and therefore the larger the contract lens is.

For a context to be established, both platform providers must have opposite resource 

requirements, otherwise a negotiation cannot be initiated. For example, if both platform 

providers need extra resources of X and are willing to give up certain amount of resource 

of Y, the negotiation cannot take place, because any outcome of a reallocation will not 

improve both platform provider’s utility and solve their problems of resource shortage. 

Once the context has been established, both platform providers are aware of the precise 

dimensions of the eye-shaped contract lens. A negotiation outcome is required to make 

at least one platform provider better off however both platform provider’s resource re­

quirements have to be fulfilled. The resource requirements of the two platform providers 

forms a square box where the square box and the eye-shaped contract lens always have 

an overlapping area, which is where the outcome of the negotiation will be (see Fig 4.4).

In [116], a generalized utility representation of Cobb-Douglas function is discussed 

and is presented in equation 4.6.
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U{Ri, i?2, i?3,. ■ •, Rx) = R^^RTRT-• -R? (4.6)

where ai + 02 + 03... + = l.This utility function has the same property as the

the basic two-resource-type case, and the assumption for diminishing marginal utility is 

consistent. Therefore the general utility function can be applied to the general resource 

granularity model. The value of ai to are the weighing parameters affecting the 

utility gains or losses over all resources. The distribution of the weighing parameters is 

separated as two sets:

{
Y^a, € [0.51,0.99],Vf 6 Ti

(4.7)
G [0.01,0.49],Vo^ Ti

where T\ is the under-provisioned resource set. Such distribution of weighing pa­

rameters assumes the platform providers are more willing to make an exchange with 

abundant resources for what are currently under-provisioned. The distribution for indi­

vidual parameters within each set is random.

The negotiation process takes place by making limited rounds of offers and counter 

offers. In order to achieve autonomic negotiation, both platform providers must have 

an algorithm for negotiating the resource allocation and there are two algorithms in 

this process. One algorithm is used by the platform provider that actively initiates a 

negotiation while the second algorithm is used by the platform provider who passively 

accepts the negotiation.
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Algorithm 3 Negotiation Algorithm for the First Order Negotiator
Require: a € (0.5,1) A /3 £ (0,0.5)

u(x, y) <—greater(required x and y, or best utility x and y) 

remainingreonnds <— A/ 

while {revnainingrounds > 0) do 

send offer «— (x, y) 

receive response —► D, {xc,yc) 

if D = accept then

proceed to commitment 

return

else if D = reject then 

proceed to abortion 

return

else if D = counteroffer then

if Xc,yc satisfies required x and y then 

accept the counter offer 

proceed to commitment

return

else if X, y greater than required x and y then

{x, y) ^ (x * {1 — c),y * (1 — c)) or minimally required (x,y) 

send counteroffer 

else

reject offer 

proceed to abortion 

return 

end if 

end if 

end while 

return
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Algorithm 4 Negotiation Algorithm for the Second Order Negotiator
Require: Q £ (0.5,1) A /3 £ (0, 0.5) 

remainingreounds <— M 

while {remainingrounds > 0) do 

receive offer —>• D,{xo,yo) 

if D = accept then

proceed to commitment 

return

else if D = reject then 

proceed to abortion 

return

else if jD = counteroffer then

if Xo,yo satisfies required x and y then 

accept the counter offer 

proceed to commitment 

return

else if x, y greater than minimally required x and y then 

(x. y) ■>— {x * {1 — c). y * (1 — c)) or minimally required (x,y) 

send counteroffer 

else

reject offer 

proceed to abortion

return 

end if 

end if 

end while 

return

Both algorithms are designed to be cooperative, which means the platform providers 

are willing to exchange resources in order to satisfy the resource requirements, provided 

that the exchange solves the resource shortage for both and makes at least one of them 

better off but not worse off.

In terms of the validity time for an exchange, the time that resources can be ex­

changed between platform providers cannot be violated. Both platform providers have 

to fulfill the exchange agreement with each other and if one platform provider has to 

change the SLA, the unfinished exchange agreement is still accounted for the consump-

89



tion of the platform provider. There is no minimal time required for this exchange 

agreement and therefore both platform providers can agree to exchange resources based 

on very short intervals, e.g. 5 minutes.

4.5 Conclusion

This chapter presents the autonomic management of resource allocation by the platform 

providers. The planning and execution functions are implemented here as the core of 

the resource allocation management, which guarantees high resource availability for a 

platform provider. The planning component works to manage the SLA by monitoring 

the recent demand history while the execution component serves to react to various 

conditions following the guidelines from the planning components. This management 

approach incorporates the Sharex resource allocation mechanism which is an Edgeworth 

Box based system wide negotiation protocol suite for a community of platform providers 

to share resources temporarily when faced with sudden changes in the resource demands. 

This approach is based on the hypothesis that in the case of sudden resource surges, it 

is likely some platform providers will have excess resources available for sharing. Nego­

tiation for resources solves the resource shortage for both platform providers and makes 

at least one platform provider better off.
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Chapter 5

PCRAT Implementation

5.1 Introduction

This thesis seeks to evaluate the proposed resource allocation approach based on a simu­

lated environment. There are existing cloud simulation environments such as CloudSim 

[34]. However most of the simulation environments are based on the laaS model and none 

of them satisfies the resource allocation requirements in the PaaS context. The simula­

tion for laaS context is focused on virtualization and VM optimization. The simulation 

for PaaS context requires a larger scale of laaS environment that allows multiple plat­

form providers to manage and share resources quotas. The Platform-as-a-service Cloud 

Resource Allocation Test-bed (PCRAT) is an experimental platform implemented to 

simulate the condition in which a PaaS SLA needs to be adjusted to avoid resource over­

provisioning or under-provisioning at a scale with relative reality. This platform will 

simulate the presence of multiple SLAs concurrently managed by the platform providers 

which have varying resource needs. The Sharex allocation approach and the double 

auction approach are both tested under this implementation. PCRAT is a multi-process 

simulation environment implemented in C programming language with an underlying 

communication model based on the service-oriented architecture (SOA) [47] supported
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by the libcsoap and libxml2 open source library.

This chapter is separated into several sections, including service implementation, 

resource granularity model, time series model, laaS simulation, Sharex implementation, 

double auction implementation, limitations and summary.

5.2 Service Implementation

The realization for two processes to exchange information in this simulation framework is 

through the Service Oriented Client-Server communication model (see Figure 5.1). The 

benefits of using this communication model across the entire framework are twofold. 

First, it allows the reuse of some common functionality and design patterns which helps 

to reduce the development effort and improve reliability. Second, the service oriented 

messaging model is an advanced communication model based on XML, which largely 

helps to separate the higher level protocol from the building blocks of the core managerial 

logic. This model is founded on the open source library libcsoap and libxml2, which 

provide most of the networking APIs which can be harnessed by the allocation protocol. 

Above this open source soap development library, Sharex protocol and double auction 

protocol implementations are developed to compose each service interface. The interface 

specifies how each of the allocation messages is structured in SOAP format. The protocol 

implementation involves marshaling and un-marshaling of the allocation messages from 

both client side and server side, therefore communicating with a remote interface appears 

to be just a function invocation.
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Protocol Implementation 

nanohttp-client Iibxml2 

LIbcsoap Client

Protocol
Definition

Service Deployment Service Deployment Service Deployment

Protocol Implementationl

nanohttp-serv libxrnC

LIbcsoap Host

Fig. 5.1: Service-oriented Request and Response Communication Model

5.3 Resource Granularity Model

PCRAT is designed to support different resource granularity models. The flexibility in 

the resource granularity model is important for the simulation to be performed under 

various type of resources inputs. In our simulation, we carried out experiments for both 

Sharex and double auction under 2, 3, 4 and 5 resource types. The simulation results are 

presented in the next chapter. This work assumes that all parties in the environment 

have agreed on a granularity model when the negotiations take place. The resource 

granularity in PCRAT requires a configuration file before a simulation run and each 

process in the simulation extracts the granularity configuration in order to construct 

resource management models and communication models. Figure 5.2 shows an example 

of the configuration file which is written in a formatted plain text.
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1 RESOURCE
2 resource"
3 resource"
4 resource"
resource" 

o resource"
7 resource"
8 resource"
9 resource" 
10 resource’

.10=90000
NAME=cpu
10=90001
NAME=bytes_in
10=90002
NAME=bytes_out
10=90003
NAME=memory
10=90004
NAME=disk

Fig. 5.2: Configuration File for Resonrce Grannlarity

5.4 Time Series Model

There are generally two approaches to perform a sinmlation in clone! comi)nting. One 

api)roach is to deploy a gennine application on functional clouds such as Amazon EC2 [1] 

or ClondSim [34]. Such method depends on using benchmarking standards such as TPC- 

W [87] to generate real workloads (e.g. 50 wet) requests per minute) and redirecting the 

workloads into the tested system. The performance results of the simulated system 

are gathered based on monitoring software. This apiiroach is adopted by w’ork [61,66]. 

The advantage of this approach is that the results are more accurate and c:an better 

reflect the real operating environment. However, such simulation technique is limited 

to simulate small scale systems and can not be used for global resource management 

involving a large number of machines. The second apj^roach is to use the Time Series 

Analysis teclmicpies [26] with a charge-back method to present historical data directly 

for simulation. In this approach, there is no need to generate real workloads and it only 

requires a simulator to extract the data from the historical data sets into the compatible 

forms and feed directly into simulation. Using such time series model benefits from the 

ability to run simulations at a larger scale and is suitable for the PaaS context in onr
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thesis. This simulation approach is also used in work [56], where the traces from the 

PlanetLab systems are extracted for evaluations.

The Resource Demand Generator is implemented to extract the historical data and 

drive the entire simulation according to the data. This module consists of three major 

components: data extraction component, process management component and exper­

iment control component. The data extraction component extracts resource demands 

from its local data source written in CSV format for each platform provider on a per- 

VIM basis. The source of demands are batch monitoring data extracted from real op­

erating environment over a period of time. The process management component can 

fork new' process to run any module in this simulation framework, e.g. an infrastruc­

ture provider process. This component is capable of starting the equivalent number of 

platform providers according to the number of data series extracted from local source 

and this component is capable of demolishing the processes after a simulation. The 

experiment control component is responsible for sending the resource demands to each 

platform provider and a timing signal to the broker at each time period.

5.5 laaS Simulation

The laaS simulation offers a meaning of cloud resource provisioning at the physical and 

virtualization levels, and more importantly allows the laaS resource providers to enforce 

the SLA constrains for the simulation. Although the laaS simulation component may 

overlap with some existing simulation frameworks, our development has focused on the 

SLA management and enforcement. The laaS simulation in PCRAT mainly includes two 

modules, which are the infrastructure provider and the SLA broker. The SLA broker 

is in fact a part of the infrastructure provider’s system, but was separated as an inde­

pendent process so that it’s easier to understand the responsibilities of each process. As 

a result, we can consider the infrastructure provider and the SLA broker as a resource 

provider system. The Infrastructure Provider module aims at providing a simulation of
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a large scale cloud infrastructure which operates upon a spectrum of physical hardware 

and realizes the resource provisioning functionality through virtualization. The imple­

mentation of this module has focused on management operations of virtual instances 

and physical machines.

A physical machine in PCRAT is an entity to represent a real-world physical ma­

chine with quantifiable resource capacity. The resource capacity of these machines are 

specified in the configuration files and the infrastructure provider is configured to op­

erate a spectrum of physical machines with various resource capacities. The resource 

configuration needs to be compatible with the resource granularity configuration.

A virtual machine in PCRAT is an entity representing a virtualized instance with an 

allocation of resource volume on a physical machine. The resource volume of a virtual 

machine is measured in the same quantification specified in the physical machine. The 

resource broker requests for a virtual machine to be created for a demanding platform 

provider. Such requests for creation of a virtual machine have specifications regarding 

resource volume and are allocated by one immediately available physical machine. Each 

virtual machine has a unique identifier called VM tag, which consists of a series of 

randomly generated alphabetic characters and is generated during creation of the VM.

The main services deployed on the infrastructure provider module are the VM man­

agement services, which offer an interface for executing management operations for vir­

tual machines. The management operations are as follows.

• VM creation allows a virtual machine to be created with specified resource volume. 

During the creation process, the infrastructure provider finds an available physical 

machine for such allocation and if allocated successfully, a randomly generated tag 

for this virtual image is returned. This VM tag is a unique identifier for the new 

VM. The VM creation operation results in the reduction of available resources on 

the physical machine hosting the VM.

• VM deletion allows an existing virtual machine to be removed using the VM tag as
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the unique identifier. The removal of a virtual machine results in the destruction 

of the entity in the simulation environment and an increase in the total resource 

availability on the physical machine where the virtual machine resides for the 

equivalent amount of resources allocated to this virtual machine.

• VM scale up allows an existing virtual machine to be allocated extra resources. 

This scale up operation requires the VM tag as the unique identifier and a spec­

ification to indicate the additional resources to be added to this virtual machine. 

If the physical machine where the virtual machine is residing does not have suf­

ficient resource availability for the specified allocation, the migration process will 

be triggered.

• VM scale down allows an existing virtual machine to reduce the allocated resources. 

This scale down operation requires the VM tag, as well as a specification to indi­

cate the amount of resources to be reduced. The reduction in the VM allocated 

resources will result in availability of the equivalent amount of resources on the 

hosting physical machine.

A monitoring service is also offered on the infrastructure provider to allow the broker 

query the current status, such as the total resource capacity, available resource volume, 

etc. A maintenance worker is also implemented to periodically inspect the efficiency 

of the placement of the virtual images across all the physical machines. The essential 

objective of the maintenance worker is to reduce the number of active physical machines 

and this is achieved by migrating certain virtual images from one physical machine to 

another and putting the idle physical machines into an inactive state. However this is 

not a frequent process and does not seek the optimal efficiency of placement.

The SLA broker acts on behalf of the infrastructure provider to lease resources to the 

platform providers. The implementation of this module has focused on the management 

operations of the SLA, as well as enforcing the QoS specified in the SLAs.

The SLA management operations in this module enable the platform providers to
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(lyiiaiiiically modify their SLAs and generates bills with accordance with the SLAs in each 

time period. The billing information as well as the QoS are periodically recorded by the 

SLA broker onto a local CSV file for each platform provider. The management operations 

can be invoked through the SLA management service interface and a description of the 

service functions is outlined below.

SLA Creation enables the establishment of a SLA document in the broker after receipt

of a request from a platform provider. In the request, the jilatform provider needs

to provide its ID as a unique identifier and the details of the SLA document such as

SLA type and QoS. The broker then checks the validity of the recpiest and registers

the new established SLA with the billing system. A sample message for request

and response is presented in Figure 5.3.

POST /SLABroker/SLAManagement HTTP/1.1 
Host: Tocalhost
Content-Type: application/soap+xml; charset=utf-8

<?xml version="l.0"?>
<soap:Envelope

: xmlns: soap="http ;//wvav.w3 .org/2001/12/soap-envelope" 
soap; encodlngStyle="http;//www.w3.org/2001/12/soap-encoding">

<soap;Body>
, <ra:SLACreationRequest>

<m;ID>PP001</m;ID>
<m;SLAType>Static</m:SLAType>
<m;Cont ractTime>60</m:Cont ractTime>

1 <m;ResourceQuota>
<m:CPU>lO00</m:CPU>

' <ni: RAM>1000</m: RAM>
I </m:ResourceQuota>
j </m;SLACreationRequest>

j <in; SLACreationResponse>
<ra:ID>PPO01</m;ID>
<ra:Status>Successfull</m:Status>

! </m:SLACreationResponse>
</soap:Body>

</soap:Envelope>

Fig. 5.3: SLA Creation Message

SLA Amendment allows a platform provider to dynamically modify the SLA docu-
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ineiit to meet its volatile resource demands. This amendment function includes 

options for changing the SLA type as well as the QoS. If an amendment is made 

to an existing static SLA, a penalty charge is applied. The amendment function 

requires the ID to identify the SLA document and the details of the modifications 

to the SLA. A sample message for request and response is presented in Figure 5.4.

POST /SLABroker/SLAManagement HTTP/1.1 
Host: locaThost
Content-Type: application/soap+xml; charset=utf-8

<?xml version="l.0"?>
<sodp:Envelope
xmlns: soap="http :/7wwvv.w3 .org/2001/12/soap-envelope"
soap: encodingStyle=''http: //www.w3 .org/2O01.'12/soap-encoding">

<soap;Body>
<m;SLAAmendmentRequest>

<ra;ID>PP0Ol</m;ID>
<m:SLAType>Dynamic</m;SLAType>
<m:ResourceQuota>

<m:CPU>0</ni:CPU>
<ra:RAM>0</m:RAM>

</m;ResourceQuota>
</ni; SLAAmendmentRequest>

<m;SLAAmendmentResponse>
<ni; ID>PP001</m: ID>
<ra:Status>Successfull</m:Status>

</m: SLAAmendinentResponse>
</soap:Body>

</soap;Envelop6>

Fig. 5.4: SLA Amendment Message

SLA Resource Exchange carries out a resource exchange between two platform providers 

at the request of one of them. A request for this function requires the ID of the 

request originator and the ID of the platform provider whose resources are to be 

exchanged with the originator. In addition, the originator needs to specify the 

details of the exchange, including type of resource, the volume and a duration for 

which the exchange is valid. A commission charge is generated as part of this 

invocation and the static bills for both platform providers are unaffected by the 

presence of a resource exchange. A sample message for recpiest and response is
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presented in Figure 5.5.

POST /SLABroker/SLAManagement HTTP/1.1 
Host: TocaThost
Content-Type: appTication/soap+xml; charset=utf-8

<?xmX version="l.0"?>
<soap;Envelope
xmlns:soap="http://WWW.w3.org/2001/12/soap-envelope"
soap:encodingStylG="http:'/www.wB.org/2001/12/soap-encoding">

<soap;Body>
<m:SLAExchangeRequest>

<ni: InitiatedBy>PP001</in: InitiatGdBy>
<Tn: AcceptedBy>PP002</in; AcceptedBy>
<m:ExchangeTime>l</m:ExchangGTime>
<m:ResourcGQuota>

<m;CPU>300</m:CPU>
<m;RAM>-5O0</m:RAM>

</m; ResourceQuota>
</m:SLAExchangeRequest>

<ni; SLAExchangeResponse>
<m;InltiatGdBy>PP001</m:InitiatedBy>
<m:AcceptedBy>PP0O2</m:AcceptedBy>
<m:Status>Successfull</m:Status>

</m;SLAExchangGRGsponsG>
</soap:Body>

</soap;Envelope>

Fig. 5.5: SLA Exchange Message

SLA Set Extension offers an option for the existing SLA holders to request an ex­

tension of their contract prior to the e/xpiry of their current SLAs. This function 

requires the ID of the jilatfonn provider as well as the new QoS to be updated 

after the expiry of the current SLA. The transition from an expired SLA to an 

extended SLA does not impose any penalty however the bill for the extended SLA 

will depend on the new QoS requested in the extension. The extension request is 

possible at any time prior to the expiry but an extension request recphres the same 

minimum contract term as the standard static SLA. A platform provider with a 

renewed static contract has the same obligation to resource usage and billing rules 

and if an extension request is absent, on the expiry of the current SLA, the SLA is 

automatically switched back to an on-demand SLA. A sample message for request
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and response is presented in Figure 5.6.

POST /SLABpoker/SLAManagement HTTP/1.1 
Host: locaThost
Content-Type: appTlcation/soap+xmT; charset=utf-8

<?xinl VG rsion=" 1.0" ?>
<soap;Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http:. /www.w3.org/2001/12/soap-encoding">

<soap;Body>
<ni: SLAExtensionRequest>
<m;ID>PP001</m;ID>
<ra; Cont ractTimG>60</m:Cont ractTime>
<m; ResourcGQuota>

<m; CPU>2000</iii: CPU>
<m;RAM>20O0</m:RAM>

</ni; ResourceOuota>
</miSLAExtGnsionRequest>

<m:SLAExtensionResponse>
<m;ID>PPO01</m; ID>
<m;Status>SuccGssfull</m;Status>

</iii: SLAExtensionResponse>
</soap:Body>

</soap;EnvGlope>

Fig. 5.6; SLA Extension Message

5.6 Sharex Implementation

Sliarex re,source exchange mechanism is implemented in PCRAT and it includes two 

important modnles, which are the platform provider module and the Sharex resource 

exchange coordinator module. This .section shows the implementation details for each 

of these two modules.

The resource exchange coordinator is implemented to coordinate the process of re­

source exchange in this simulation framework to facilitate interaction between the plat­

form providers. This module is part of the resource provider system which also includes 

the infrastructure provider and the SLA broker. The coordinator acts as a social au­

thority in the environment and offers trust management validation function. It can also 

register a platform provider which is interested in joining the social group and introduce
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the platform provider to the social group. It offers the registration interface to allow 

a platform provider to register its ID and listening address. Since there are more than 

one [ffatform provider running in the system, each platform provider process is bound 

to a uniciue listening address. Once the registration is complete, the coordinator replies 

with a response me.ssage to the new member, and this message includes the information 

about the social group. Meanwhile the coordinator multicasts a notification message to 

the social group al:)out the new member. A sample request and response message for 

social registration is presented in Figure 5.7.

POST /Coordinator/Registration HTTP/1.1 
Host: Tocathost
Content-Type: appTication/soap-^xmT ; charset=utf-8

<?xml verslon="l .0''?>
<sodp:Envelope
xinlns: soap="http ://www.w3 .org/2001, 12/soap-envelope"
soap; encodings!yle="http/WWW.w3 .oi'g/2001/12/soap-encoding">

<soap;Body>
<m;SocialRegist rationRequest>

<m:ID>PP001</m: ID>
<m: ListeningPort>10000<m: ListeningPort>

</tn; Social Regist rationRequest>

<m:SocialRegist rationResponse>
<m:Status>Accepted</m;Status>
<ni: ID>PP002</ni: ID>
<m: ListeningPort>10001<ni: ListeningPort>
<tn: ID>PP003</ni: ID>
<m:ListeningPort>10002<ra:ListeningPort>

</in: SocialRegist rationResponse>
</soap;Body>

</soap;Envelope>

Fig. 5.7 : Sharex Registration Message

The TrustManagement interface offered by the coordinator requires the ID of the 

platform provider to be verified, along with its resource quota. If the provided informa­

tion is successfully verified by the coordinator, the coordinator replies with a response 

message with a True status, otherwise False. A sample request and response message 

for information validation is presented in Figure 5.8.
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POST /Coordinator/TrustManagement HTTP/1.1 
Host: locaThost
Content-Type: appTication/soap-^xml; charset=utf-8

<?xml version="l.0"?>
<soap;Envelope
xmlns: soap=''http://www.w3 .org/2001 '12/soap-envelope"
soap; encodings! yle="http :/iVww.w3 .org/2G01/12/soap-encoding “>

<soap:Body>
<miSLAInfoValidationRequest>

<m;ID>PP001</m;ID>
<m;ResourceQuota>

<m;CPU>2000</in:CPU>
<in; RAM>2000</m: RAM>

</in: ResourceOuota>
</m:SLAInfoValidationRequest>

<m:SLAInfoValidationResponse>
<in; ID>PP001</m; ID>
<m;Status>T rue<m:Status>

</ni; SLAInfoValidationR6sponse>
</soap;Body>

</soap;EnvGlope>

Fig. 5.8: Ti’iist Management Message

The platform provider implements the antonomic resource management mechanisms 

di.scnssed in chapter 4. The PCRAT deploys mnlti])le platform provider instances and 

once the simulation starts, the demand generator sends the resource demands jieriodi- 

cally to eac'h platform provider in the environment. The platform providers coordinate 

with the resource exchange coordinator and among themselves under various load con­

ditions. At each time period, each platform provider logs its QoS, provisioning costs 

and provisioning responsiveness onto a local CSV file. The CSV files are collected in 

the end of an experiment and can lie analyzed for each experiment. The provisioning 

responsiveness is a timing measure for how fast the entire resource exchange process 

(from negotiation initiation to completion) can complete in the need of a negotiation.

There are two interfaces offered by the platform provider module, which are the social 

notification interface and resource exchange interface. The social notification interface 

allows the coordinator to introduce a new social member when the social member reg-
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isters. The message inclvides the ID of the new member as well as its unique listening 

address. A sample request and response message for social notification is presented in 

Figure 5.9.

POST /PlatformProvider/SocialNotification HTTP/1.1 
Host: Tocalhost
Content-Typo: apptication/soap+xml; charset=utf-8

<?xml version="l.0"?>
<soap;Envelope
xmtns:soap="http://WWW.w3.0rg/2001/12/soap-envelope"
soap: encodings! yle="http : ' .^www.w3 .org/2001/12/soap-encoding “>

<soap;Body>
<m:SocialNotificationRequest>

<ni: ID>PP001</m; ID>
<ra:ListeningPort>10000<ra:ListeningPort>

</m;SocialNotificationRequest>

<m:SocialNotificationResponse>
<m: Status>OK</ni; Status>

</m;SocialNotificationResponse>
</soap:Body>

</soap:Envelope>

Fig. 5.9: Sharex Notification Message

The resource exchange interface allows the resource exchange to be initiated and 

negotiated. The initiation function allows a platform provider to request another j)lat- 

form provider to start the jrrocess of resource exchange ba.sed on the Edgeworth box 

model. This function requires the ID of the negotiating platform provider, its current 

entitlement to resources and its exchange preference. This function examines the need of 

resource types for each other, performs information validation with the coordinator and 

makes a decision on whether or not the negotiation process should start. If the condition 

satisfies the model in the previous chapter, a negotiation process is activated for both 

negotiating parties. The activation of the negotiation process results in the construction 

of a negotiation object, a negotiation context and the negotiator’s profile. In the current 

implementation, the negotiation object is used to record the sequence of a negotiation 

and prevent the occurrence of multiple negotiations taking place in one platform irrovider
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at a time. This object is associated with the negotiation context which keeps the meta 

information about the Edgeworth box model between the two parties. The negotiator’s 

information is also recorded and irrespective of whether the initiation of negotiations is 

successful or not, both platform providers mark each other as already negotiated with 

and would not attempt to re-negotiate with each other in the current time period (in 

the case where initiation of negotiations is unsuccessful). This is because both platform 

providers have come to a conclusion at this stage that under the Edgeworth box model, 

any allocation outcome can not satisfy the requirements for at least one of them. How­

ever, this does not impede two platform providers to exchange resources in the future 

time period. A sample of the Sharex initialization message is presented in Figure 5.10.
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POST /PTatformProvider/ResourceExchange HTTP/1.1 
Host: Tocalhost
Content-Type: appTication/soap+xmT; charset=utf-8

<?xml version="l.0"?>
<soap;Envelope
xmlns:soap="http://www.w3.org/20Gl/12/soap-envelope"
soap: encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>
<m:SLAExchangeInitializationRequest>

<m:ID>PP0Ol</m:ID>
<m:ResourceQuota>

<m;CPU>2000</[n;CPU>
<m;RAM>2000</m;RAM>

</m:ResourcGOuota>
<111; CobbDougl asPa ram>

<m:CPU>0.7</ra;CPU>
<m;RAM>0.3</m;RAM>

</in; CobbDouglasParam>
</m;SLAExchangeInitializationRequest>

<m;SLAExchangeInitializationResponse>
<m;ID>PP002</m: ID>
<m;Status>Accept<m;Status>
<m; RGSourceQuota>

<m:CPU>3000</m:CPU>
<m:RAM>1000</m;RAM>

</ni; RGSourceOuota>
<m;CobbDouglasParam>

<m:CPU>0.35</tn;CPU>
<111: RAM>0.65</m; RAM>

</m:CobbDouglasParam>
</in: SLAExchange Ini tiali2ationRGsponsG>

</soap:Body>

</soap:Envelope>

Fig. 5.10: Sharex Initialization Message

During the resource exchange negotiation, the negotiation function allows a request 

to lie entered liy the parties involved in the current negotiation. This function provides 

a response in a format similar to a recjnest message and both a request and response 

can be of the following four types: acceptance of previous offer, an offer (counter offer), 

confirmation or abort negotiation. Parameters included in the messages include the ID 

of the originating platform provider, the message type, the suggested new allocation 

scheme in the Edgeworth box context, and how long the resource exchange is valid for. 

The ID and message types are mandatory fields while the rest are optional depending
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on tlie type of the message. An offer is recorded in an array, which is associated with 

the current negotiation object and the negotiation object and its associated entities are 

destroyed when a negotiation is completed. A sam])le of the Sharex negotiation message 

is presented in Figure 5.11.

POST /PTatformProvider/RQSourceExchange HTTP/1.1 
Host: localhost
Content-Type: application/soap+xml; charset=utf-8

<?xinT version="l .0"?>
<sodp;Envelope
xmlns:soap="http;. /ww^.wS.org/2001/12/soap-envelope"
soap: encodingStyle="http; / /www.w3 .org/2001.'12/soap-encoding ">

<soap;Body>
<m: SLAExchangGNegotiationRequest>

<m:ID>PP001</m; ID>
<in: Status>ProposG<m; Status>
<ni: Allocation>

<ni:CPU>2500</m:CPU>
<m;RAM>1500</m: RAM>

<1 m: Allocation>
</m;SLAExchangeNegotiationRequGSt>

<m:SLAExchangeNGgotiationResponsG>
<m: ID>PP0O2</ni: ID>
<m;Status>P roposesm: Status>
<in: Allocation>

<ra:CPU>2300</m;CPU>
<ra:RAM>1500</m;RAM>

</m;Allocation>
</ni: SLAExchangGNegotiationResponse>

</soap;Body>

</soap;Envelope>

Fig. 5.11: Sharex Negotiation Message

5.7 Double Auction Implementation

We implemented a double auction mechanism within the PCRAT framework, which al­

lows us to compare the Sharex approach against the classical approach. The double 

auction mechanism implemented in PCRAT is a realization of the Clearing House Dou­

ble Auction prescribed in work [62]. This Clearing House Double Auction mechanism 

features a periodic auction market, which is compatible with the time .series model used
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in PCRAT. The double auction mechanism reuses most of the resource provisioning 

infrastructure offered by the laaS simulation and the resource demand generator. In 

the implementation, the platform provider functionality is modified so that it performs 

double auction instead of Sharex negotiation. During the resource allocation, a platform 

provider sells the idle resource quotas and buys the required resource quotas. All the 

buying and selling information is encoded into a single bidding message. Meanwhile, 

two bidding strategies are implemented in the platform provider module, which are the 

ZI strategy and the ZIP strategy [122]. ZI strategy does not consider the market infor­

mation and makes a random bid within an allowed value range and ZIP strategy takes 

the market information into consideration. Both strategies are proven to be effective in 

double auctions [122].

The realization of a double auction mechanism requires a key module which is the 

auctioneer. The auctioneer is a centralized process responsible for conducting an auction 

market for each resource type specified in the granularity model for each time period. 

The auctioneer in this mechanism is considered a part of the resource provisioning sys­

tem, which also includes the infrastructure provider and the SLA broker. Therefore an 

auctioneer has the authority to enforce an auction result based on the bids submitted 

by all the platform providers. The auctioneer performs the following work at each time 

period. At each time period, it firstly gather all the bidding information from the plat­

form providers. Secondly, it iterates through each type of resources, extracts bidding 

information for each auction market and starts each auction market. Thirdly, for each 

auction market, the auctioneer sorts the buyers’ bids and sellers’ bids into a buyer’s 

queue (from high price to low price) and seller’s queue (from low price to high price) 

respectively. Next, the auctioneer determines the market price based on the algorithm 

specified in work [62]. After a market price is set, the auctioneer processes the auction 

result, by matching the buyers and sellers in the sorted order (i.e. the highest bidder 

firstly gets to buy resource from the lowest seller at the market price). Then the auc­

tioneer enforces such auction result by notifying the SLA broker in the form of an SLA
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exchange (reused interface). Finally the auctioneer publishes the auction results and 

notifies all the platform providers. This process continues until all the resource auctions 

are finished. An illustration of this auctioneer workflow is presented in Figure 5.12.

Fig. 5.12: Flowchart for auctioneer

The auctioneer offers an interface to allow bids to be placed. The interface requires 

the platform provider ID, as well as a specification of how many resources are to be 

sold/bought at a bidding price. A positive number indicates it is a buy while a negative 

number indicates it is a sell. A sample message for auction bid is presented in Figure 

5.13.
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POST /AuctionGGr/Bidding HTTP/1.1 
Host: Tocalhost
Content-TypG: application/soap+xml; charsGt=utf-8

<?xmT version="l.0"?>
<sodp;EnvoiopG
xmlns:soap="http ;//www.w3.org/2001/12/soap-onvgIope"
soap:GncodingStylG="http://www.wB.org/2001/12/soap-encoding">

<sodp;Body>
<m:AuctionBidRequGSt>

<m;ID>PP001</m;1D>
<m;ResourceQuota>

<m: CPU>100</ni; CPU>
<m: PriCG>2.2</ni; PricG>
<m;RAM>-50O</m;RAM>
<mi PricG>3.6</m; Price>

</m: ResourcGQuota>
</ni; AuctionBidRGquest>

<ni; AuctionBidRGsponse>
<m;ID>PP001</m; ID>
<m:Status>OK</m;Status>

</in; AuctionBidRGSponse>
</soap:Body>

</soap:EnvGlopG>

Fig. 5.13: Double Auction Bidding Message

Meanwhile, the platform provider has an interface to receive auction results. An 

auction result message would include all the auction details. A double auction is a 

many-to-many economic model, therefore a platform provider may buy or sell resources 

from/to many others. The auction residt message contains the market price for this 

auction, and the auction details reveals whom the resource is traded with as well as 

the quantity of resource traded. A positive number in the resource field indicates the 

recipient of the message bought resource from the platform provider s]Tecified in the 

message, and vice versa. A sample auction result message is presented in Figure 5.14.
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POST /PlatformProvider/AuctionResuTt HTTP/1.1 
Host; locaThost
Content-Type: appTication/soap+xmT; charset=utf-8

<?xml version="l .0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001.'12/soap-envelope"
soap; encodingStyle="http :/.^www.w3.0 rg/2001/12/soap-encoding">

<soap:Body>
<ni: Auc t ionResul t Request >

<m; AuctionPrice>
<ni: CPU>3.0</in: CPU>
<n): RAM>2.8</m: RAM>

</m:AuctionPrice>
<01; Auc t IonResul t>

<m: ID>PP001</ni; ID>
<oi: ResourceQuota>

<m:CPU>80</m:CPU>
<01: RAM>-30</oi; RAM>

</oi; ResourceOuota>
</oi; AuctionResult>
<oi: AuctionResult>

<oi: ID>PP0O2</oi; ID>
<oi: ResourceQuota>

<m: CPU>0</io: CPU>
<oi: RAM>- 100</m; RAM>

</oi; ResourceOuota>
</oi; Auc t ionResul t>

</m:AuctionResultRequest>

<01; Auc t ionResul tResponse>
<ra: Status>OK</oi: Status>

</oi: Auc t ionResul tResponse>
</soap:Body>

</soap;Envelope>

Fig. 5.14; Double Auction Result Message

5.8 Limitations

The PCRAT impleinentatioii simulates the resource allocation process in a PaaS con­

text and demonstrates the possibility for exchanging resources to overcome resource 

imbalances however, it is subject to certain limitations.

The resource demands in the PCRAT are reconstructed based on historical monitor­

ing data, and are injected into the framework in artificial time periods. This approach
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is easier than generating continuous real time demands, because using continuous real 

time demands compared to discrete time demands requires a variety of realistic demand 

models. Such realistic demand models are rather difficult to obtain, and require the 

simulation to be implemented on larger scale experimental infrastructure. This thesis 

adopts the discrete time demand model but admits certain limits about answering fur­

ther questions. Since the simulation process is synchronized by artificial time signals, 

the need for carrying out resource exchange can be understood as precisely at the same 

time. In the real world, real time demands can exhibit different characteristics from 

sampled demand data and the need for carrying out the resource exchange may be more 

frequent. In a continuous time model, the resource exchange activity for some platform 

providers can be much more intensive but they may not be able to find suitable candi­

dates for exchange. Also, in a continuous time model, the valid duration for an exchange 

agreement is hard to decide because a longer duration will mean more obligation but 

shorter duration would mean more frequent need for exchange. This however may be 

addressed by allowing a platform provider to have multiple exchange agreements but in 

this case, a platform provider would need to optimize the exchange decision for further 

exchanges.

In addition, although the design of Sharex negotiation model includes the require­

ments for the communication messages to be compliant with the FIFA communication 

acts, the current implementation can not fully ensure the compliance due to the time 

limitations. Therefore we would include the FIFA compatibility integration into the 

future work.

5.9 Summary

This section has presented the anatomy of the simulation framework by discussing the 

constituent modules in the FCRAT model which includes infrastructure provider, SLA 

broker, resource allocation coordinator, platform provider, and resource demand gen-
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erator modules. The infrastructure provider is responsible for providing the physical 

resources while the service level agreement broker acts on behalf of the infrastructure 

provider to lease resources to the platform providers. The resource allocation coordinator 

facilitates the process of resource exchanges between the platform providers and in this 

simulation, the platform providers carry out simultaneous resource allocation while the 

resource demand generator is responsible for generating the resource requests necessary 

for the simulation by using historical data. In addition, the double auction approach is 

also implemented using part of the PCRAT modules for comparison. This chapter has 

discussed the resource allocation process and the limitations of the framework and the 

next chapter presents and analyzes the results of the experiment.
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Chapter 6

Evaluation

This chapter presents evidence based on the PCRAT framework described in Chapter 

5 to evaluate the feasibility of the approach proposed by this thesis. Using the Sharex 

model proposed, this section explores the effect on resource allocation using the workload 

traces we can obtain. We also offer a side-to-side comparison between our solution and 

the double auction approach using the same set of data.

6.1 Experiment Setup

This section offers an overview about the experiment parameters used during setup of 

the simulation.

6.1.1 Experiment Input

The experiments presented in this thesis are based on workload traces gathered from a 

large scale grid hosting environment similar to the PaaS scenario. Although the Grid and 

Cloud concepts are conceived at different stages in the process of IT development, they 

share common characteristics and challenges of resource provisioning [53]. As such, we 

made the best attempt by acquiring the most appropriate historic monitoring data for the 

European Grid Infrastructure (EGI) through the Grid Observatory (GO) Portal [58].
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Among the comprehensive attributes recorded on the observed systems, we identified 

and extracted 5 data sets that represent the resource consumption for 5 resource types 

on the grid servers. Each resource set comes with two groups of values which are the 

monitored information and machine property. Monitored information is dynamic and 

changes from minute to minute, while the machine property is static and describes the 

hardware specification on all grid servers. We provide the details of the data sets in 

table 6.1.

Table 6.1: Information Extracted from GO Historical Data

Resource Descrip­

tion

Monitored Informa­

tion

Machine Property

CPU Consumption one minute load average number of cores and

core speed

In-flow Network Con­

sumption

bytes in per minute None

Out-flow Network Con­

sumption

bytes out per minute None

Memory Consumption memory free, memory

cached,

memory buffered

memory total

Disk Consumption disk free disk total

All the GO monitoring attributes are stored in a proprietary XML schema, each of 

which is referenced by a unique machine ID and a sensor ID. For each attribute, the per- 

minute time stamp and the associated monitoring value are assembled as an XML node. 

A daily monitoring data sheet aggregates 1440 (24*60) data nodes for each sensor, i.e. 

server attribute and there is one data sheet generated for each observed Grid machine. 

In the data extraction process, a SAX-based script was used to parse the GO XML files
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and convert the target data into the equivalent number of CSV files in order to feed the 

experiment.

Some of the data such as the network-in and network-out can directly represent the 

network resource workloads. But the others are not directly available for use. We made 

our best effort to compute the CPU consumption data based on equation 6.1, memory 

consumption data based on equation 6.2, and disk consumption data based on equation 

6.3. These resource consumption models offer moderate fidelity for projecting resource 

demands from one grid server to one platform provider. The result of such projection is 

not perfectly accurate however reflects the relative load conditions of each server. Thus 

we believe the data derived from the model is consistent for all platform providers and is 

valid input. Finally, we adjust the scale of the input value appropriately across the entire 

data set in order to balance the differences in resource values from different resources.

Rcpu = num.cores * core^speed * load-one (6.1)

Rmnnory = meni-total — {merri-free + mem-cached -f mem-buffered) (6.2) 

Rdisk — disk.total — disk-free (6.3)

We performed our simulation based on various resource granularity models, including 

2, 3, 4 and 5 resource scenarios. The details of the resource selection for each granularity 

model is presented in table 6.2. In each experiment, a set of resources extracted from one 

grid server is randomly selected and is matched to the input for one platform provider. 

Therefore in an experiment, the group of platform providers can operate under the same 

load conditions experienced by the sampled grid servers on that particular day. To 

best eliminate the noises using such sampling technique, we carried out the experiments 

using varying number of platform providers. For each resource granularity model, we 

performed experiments using the number of platform providers ranging from 40 to 120, 

and the number of platform providers increases by 10 in each experiment.
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Table 6.2: Resource Granularity Configuration

Granularity Resource Names

2 cpu, network inbound

3 cpu, network inbound, network outbound

4 cpu, network inbound, network outbound, memory

5 cpu, network inbound, network outbound, memory, disk

6.1.2 Framework Configurations

The experiment framework requires certain configurations which can affect the decisions 

during the resource allocation for a platform provider in the simulation. The set of 

configurations is related to the Service Level Agreement (SLA) set by the resource broker, 

and is described in Table 6.3. Related to the previous section, although the historical 

data sets are used to simulate the resource demands, they are not intended to map the 

demands to very precise hardware specifications. The scale of such a cost scheme is 

comparable to the Amazon EC2 Pricing Scheme [2] where the reserved Amazon EC2 

instances reduce the unit cost significantly and this also requires an upfront payment. 

On-demand instances, on the other hand have no upfront costs. Such upfront payments 

are also proportional to the value of the reservation, which is introduced as penalty in 

this thesis. Amazon offers a market place to allow reserved instances to be traded while 

it charges certain fees proportional to the deal.
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Table 6.3: Broker Service Level Agreement Configurations

Configuration Description Value

per unit cost over 1 period for any resource under a reserva­

tion

1

per unit cost over 1 period for any resource with on-demand

provisioning

2

minimum periods required for a reservation 30

penalty charges if a reservation has to be altered or canceled,

proportional to the contract value (%)

10

commission charge to both platform providers swapping re­

sources, proportional to the value of the resource volume

swapped (%)

5

6.2 Evaluation Criteria

We present the evaluation criteria in this section, which include the Reduction in SLA 

Violations (RSV), response time, penalty rate. Resource Utilization Efficiency (RUE), 

and average cost.

6.2.1 Reduction in SLA Violations (RSV)

The RSV is an important measurement for Sharex. It indicates the effectiveness for 

the exchange-enabled allocation approach, without which would lead to violations of the 

SLAs, and is an important characteristic of resource provisioning elasticity. The RSV 

is observed based on equation 6.4. The occurrences of commission charges and penalty 

charges can be extracted from the aggregated log files. It is also important to note 

that the Sharex approach does not completely eliminate the SLA violations but helps to
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reduce the SLA violations to a certain degree.

RSV =
no. of commission charges counted

no. of commission charges counted + no. of penalty charges counted
(6.4)

6.2.2 Response Time

Response time is an important figure for a resource provisioning system. Under Sharex, 

a platform provider system must be able to seek for a solution in a responsive manner. 

We have identified two concerning issues in the current implementation, where the ne­

gotiation selection is based on random choice and the negotiation object does not allow 

concurrent access. The measure of response time can help answering the questions about 

whether such shortcomings have a big impact on the viability of Sharex. The response 

time is an average of the negotiation time recorded by the platform providers in the 

aggregated log file.

6.2.3 Penalty Rate

Penalty rate is a similar evaluation criteria to RSV measurement, and is described in 

equation 6.5. It allows the observation of an overall effectiveness of an approach, and 

in this case, we offer a direct comparison between Sharex and double auction on this 

attribute.

RSV
no. of penalty charges counted

total number of aggregated log entries

6.2.4 Resource Utilization Efficiency (RUE)

(6.5)

RUE is an indicator about how well each resource type is utilized in the resource provi­

sioning process (see equation 6.6). An imperative requirement for the platform providers 

is to guarantee high-availability in their resource provisioning, which suggests a plat­

form provider should rather over-provision resources than under-provision resources.
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The RUE indicator enables observation over the degree to which resources are over­

provisioned to satisfy the high-availability requirements, and how efficient an approach 

is to utilize computer resources and reduce global power consumption.

RUE = total resource demanded 
total resource allocated

(6.6)

6.2.5 Average Cost

Cost is another important factor that must be taken into consideration when evaluating 

a resource allocation approach. It is an indication of the economic efficiency of an 

allocation approach. The evaluation is based on calculating the average cost per resource 

unit, which is represented in equation 6.7. Since the unit cost price is applied consistently 

across all resource types, the total cost can be evenly divided over the summation of total 

resource demands for all resources.

average cost — total cost
total resource demanded (6.7)

6.3 Results

The results are analyzed based on the output produced by the experiments and the 

results are relatively consistent for all the platform providers. The results showed that 

the performance of Sharex under various evaluation criteria is comparable to the double 

auction approach.

6.3.1 Reduction in SLA Violations (RSV)

The graph in Figure 6.1 shows the RSV values for platform providers under 2, 3, 4 and 5 

resource granularity models. From the graph we can observe that the Sharex approach 

achieves the RSV value from around 12% at minimum to near 30% at maximum. Mean­

while, as the number of platform providers increases, the RSV value also increases in
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a nearly linear trend. In addition, the RSV shows a general decline at around 3% as 

the resource granularity model increases the complexity. Based on the observation, we 

conclude that the Sharex has played a significant role during the resource allocation in 

helping to reduce the SLA violations, and the effectiveness of Sharex benefits from a 

larger population.

40 60 80 100

Number of Platform Providers

120

Fig. 6.1: Penalty Reduction Rate for Sharex

6.3.2 Response Time

The data for response time measured in the experiments is presented in Figure 6.2. 

The results in the graph have shown good responsiveness despite the concerns over the 

performance issues raised in our model. Based on the graph, most Sharex negotiation 

process can be finished within the 2 seconds boundary on average, and with less than 80
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platform providers, most negotiation process can be finished within 1.5 seconds boundary 

on average. The response time for all granularity models shows a consistent pattern 

as the number of platform provider increases. It is observable that under 100 platform 

providers, the responsiveness deteriorates at a low speed with the expansion of the social 

group, however beyond 100 platform providers, the response time starts to increase at 

a much more notable speed. This does suggest that the issues in our model can cause 

scalability problems when the social group gets large. Therefore our conclusion is that 

the Sharex approach under current construction is efficient for a social group under 100 

members. We will explore a much more efficient social relationship during the negotiation 

and seek a solution applicable to larger social groups in our future work. Finally, it is 

worth noting that as the granularity model expands from 2 resources to 5 resources, the 

response time increases up to 0.5 seconds.
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Fig. 6.2; Response Time for Sharex

6.3.3 Penalty Rate

The penalty rate is presented in several graphs (Figures 6.3,6.4,6.5,6.6), each of which 

represents the data for one resource granularity model. In each graph, the comparison 

between the Sharex and double auction is presented on this criteria. Each experiment in 

double auctions is conducted in two runs, one of which employs the ZI bidding strategy 

while the other employs the ZIP strategy.

In all data sets, the penalty rate shows a relatively consistent pattern, with the values 

enclosed in the range between 12% to 17%. The differences on this criteria among Sharex, 

ZI and ZIP are insignificant. It is however notable that ZIP generally outperforms ZI, 

and ZI outperforms the Sharex. However, the penalty rate decreases more in Sharex
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than in ZI or ZIP as the number of platform providers increases. This suggests that 

Sharex benefits more than a double auction from a larger economic group.

Fig. 6.3: Penalty Occurrence Rate for 2 Resources
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Fig. 6.4: Penalty Occurrence Rate for 3 Resources
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Fig. 6.5: Penalty Occurrence Rate for 4 Resources
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Fig. 6.6: Penalty Occurrence Rate for 5 Resources 

6.3.4 Resource Utilization Efficiency (RUE)

The RUE data is also presented in several graphs (see Figure 6.7,6.8,6.9,6.10). These 

data sets have shown mixed results. In the resource granularity model for 2 resources, 

Sharex shows a very close performance to ZIP under this criteria. Both solutions offer 

the RUE at around 53%, however they both fall below the ZI solution by around 2%. 

In other resource granularity models, the Sharex has demonstrated an advantage over 

ZI and ZIP. Sharex in the latter scenarios outperforms ZI by around 5% and ZIP by 

around 10%. Our interpretation on such outcome is that the double auction approach 

may achieve a lower penalty rate, however it was at the cost of over-provisioning resources 

therefore shows a lower performance in RUE. Meanwhile, the complexity of the resource
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granularity model has greater impact on double auctions than on Sharex from the RUE 

perspective. Therefore we can speculate that the volatility in a resource market is a 

factor that may affect the price-based approaches in delivering good RUE results. As 

the resource granularity model increases from 2 resources to 5 resources, so is the market 

dimensions, such that the volatility associated with each market has an accumulative 

effect that ultimately results in poorer resource utilization in market based allocation 

systems. The Sharex approach however, does not rely on a resource market but seeks 

heuristic allocation among social members.

Furthermore, we examine the relationship between number of platform providers and 

the RUE values across four resource granularity models for all three approaches. The 

graphs show that the RUE values may increase or decrease as the number of platform 

providers increase for all three approaches. We highlight that the RUE for the Sharex 

approach has a small tendency of deterioration as the number of platform providers 

increase. For resource granularity models of 3 resources and 4 resources, the RUE 

values for Sharex fall below ZI for more than 90 and 100 platform providers respectively. 

However, in the resource granularity model of 5 resources, the RUE values for Sharex 

regain higher position in comparison to ZI approach as the number of platform providers 

increase. Based on the results, Sharex shows an absolute advantage over ZIP and has 

an overall advantage over ZI.
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Fig, 6. 7: Resource Utilization Efficiency for 2 Resources

129



Fig. 6.8: Resource Utilization Efficiency for 3 Resources
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Number of Platform Providers

Fig. 6.9. Resource Utilization Efficiency for 4 Resources
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Fig. 6.10: Resource Utilization Efficiency for 5 Resources

6.3.5 Average Cost

The results for average cost are presented in four gi'aphs, where Figure 6.11 shows the 

results for 2 resource granularity model, Figure 6.12 shows the results for 3 resource 

granularity model, Figure 6.13 shows the results for 4 resource granularity model and 

Figure 6.14 shows the results for 5 resource granularity model. It is intriguing to observe 

that the data in average cost has displayed similar pattern to RUE results. First of 

all, Sharex operates at a higher cost under the 2 resource model comparing to both 

ZI and ZIP. Secondly, Sharex begins to demonstrate an advantage on provisioning cost 

over ZI and ZIP for 3, 4 and 5 resource models. Thirdly, the resource granularity 

complexity seems to have a greater impact on auction based approaches than in the
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Sharex approach. We had interpreted this result pattern in the previous section. But we 

would like to present an additional fact that the ZIP strategy takes market information 

into consideration, while the ZI strategy does not. A sample graph for the CPU market 

price produced by the ZI population is presented Figure 6.16 and a sample graph for the 

CPU market price produced by the ZIP population is presented in Figure 6.15. In the 

ZIP graph, we often see the market price bounces around 2 while there are high prices 

from time to time. In ZI, the market price constantly changes. Based on this fact, we can 

strengthen our speculation that market oriented approaches suffer from higher market 

dimensions as the volatility in each market dimension may accumulate and may reduce 

the efficiency for such approaches. To conclude in this section, Sharex approach is a more 

cost-saving resource allocation approach compared to the double auction approaches.
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Fig. 6.11: Resource Provisioning Cost for 2 Resources
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Fig. 6.12: Resource Provisioning Cost for 3 Resources
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Fig. 6.14: Resource Provisioning Cost for 5 Resources
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Fig. 6.15: A Sample Market Price for CPU with ZIP Bidding Strategy
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Fig. 6.16; A Sample Market Price for CPU with ZI Bidding Strategy

6.4 Summary

Based on the data gathered from the simulation and various evaluation criteria, the 

Sharex approach has been proven to be capable of providing an effective and respon­

sive resource allocation mechanism for the PaaS paradigm. Under comparison, Sharex 

outperforms both double auction mechanisms directed by ZI and ZIP agents on RUE 

and average cost data. Although Sharex did not achieve as good results as ZI and ZIP 

in penalty rate data, the difference is within 3% typically which is insignificant. The 

current implementation in Sharex has limited scalability and we will seek to address this 

issue in our future work.
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Chapter 7

Conclusion and Future Work

Cloud computing reduces the cost and complexity of operating computer networks and 

have additional benefits such as scalability, efficiency and reliability through use of shared 

resources such as data storage space, networks, computer processing power and special­

ized user and corporate applications. There are three service models used in cloud 

computing: Infrastructure as a Service (laaS), Platform as a Service (PaaS) and Soft­

ware as a Service (SaaS).In the faaS model, the provider only provides the hardware 

and network capabilities while the client installs and manages their own applications, 

software and operating systems. In the PaaS model the provider handles the platform 

capabilities including the operating system, network and hardware while the client is 

responsible for management of the applications. In the SaaS model, the IT operational 

functions and infrastructure are abstracted away from the consumer or client. In this 

model, business process and applications as well as other consumer software is provided 

in addition to the operating system hardware and network.

With the growth in cloud computing there is additional complexity introduced in 

cloud systems and therefore there is a need for more efficient resource allocation. This 

has given rise to the field of Autonomic Computing which is a promising approach for 

resource allocation that advocates for self-managing ability whereby the system can
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allocate resources for its own need without the intervention from human. Various ap­

proaches have been used to implement efficient resource allocation in autonomic systems 

and these have been discussed extensively in chapter 2.

In the PaaS model platform providers suffer volatile resource demands and high pro­

visioning costs due to resource prediction errors and penalties that arise due to SLA 

violations therefore the platform services need to display elasticity in provisioning ser­

vices in order to provide affordable solutions for their clients. Such platform services 

must be able to handle prediction errors that occur during resource forecasting and must 

also have a reaction mechanism while executing autonomic management. The current 

research literature does not clearly have a full solution to connect the planning and ex­

ecution of the MAPE-K model in the PaaS context and this has been the goal of our 

thesis.

The thesis investigates the problem of autonomic resource allocation in the PaaS 

cloud to prevent resource over-provisioning and under-provisioning by the high-availability 

platform provider systems. The key issues to be addressed by this research are to de­

termine whether during resource allocation, a collaborative and social model based ap­

proach between the planning and execution modules in the MAPE-K model can provide 

a feasible and affordable solution to address the over-provisioning and under-provisioning 

challenges faced by high-availability platform providers.

In order to ensure more effective resource allocation the Sharex approach is proposed 

which allows platform providers to exchange resources with each other for limited periods 

of time. In this coordinated approach for organizing system-wide resource exchanges a 

resource exchange coordinator is proposed to help all the platform providers who are 

interested in exchanging resources and each platform provider who exchanges resources 

receives a commission that can be used to offset any penalties.

The solution was implemented using a social model based on the Edgeworth box 

model and tested using the Platform-as-a-service Cloud Resource Allocation Test-bed 

(PCRAT). PCRAT is an experimental platform implemented to simulate the conditions
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under which a Service Level Agreement (SLA) needs to be adjusted to avoid resource 

over-provisioning or under-provisioning at a scale relative to reality.

Analysis of the results indicates that in terms of resource utilization efficiency and 

average resource provisioning cost, our proposed model performs better than the double 

auction approaches with ZI and ZIP bidding strategies. Meanwhile, our model performs 

comparably with the double auction approaches in terms of the penalty occurrence rate. 

In addition, the Sharex approach reduces the penalties by approximately between 12% 

to 30% which is a significant improvement on standard autonomic allocation systems. 

Finally, the resource provisioning mechanism proposed in our model has demonstrated 

good responsiveness with the turnaround time between 1 second and 3 seconds in our 

simulation. These results allow us to conclude that the Sharex approach has proved to 

be a feasible model for autonomic resource allocation.

Future work in this area will include testing the model with real-world data to evalu­

ate the model performance under a variety of realistic and live demand models, expansion 

of the model to include other types of resources and enhancing the model to allow for 

simultaneous negotiations with different platform providers. Testing the model with real 

world data will allow observation of the model behavior while receiving continuous data 

streams and we will also be able to further analyze the impact of various load conditions 

on the model. Another area of research is to establish a better structured social relation­

ship as well as to allow concurrent negotiations to address the scalability issue and further 

improve the chance for a successful exchange. Further work can be done in concurrently 

evaluating multiple exchange scenarios with different agents to reduce the occurrences 

of blocked resource exchange initializations. Finally, the future research should focus on 

Sharex protocol integration with existing negotiation and communication standards.
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