LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

An Inexpensively Elastic Resource Allocation Model For

Platform as a Service Cloud Computing

Xiaobin Xiao

A Dissertation submitted to the University of Dublin, Trinity College
in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

December 2015

e,
-2
=
A\ o ¥ i
23, I~
- ‘\ VIS
LY "’»‘“ 4"\ v/-
A\ Qe N,
AN

P
CO"'\P\)N'L SC‘Q’\ w .
ond - Stakiskick

THESIS

50699248 11104

W

TRINITY LIBRARY
0 8 MAR 2017
DUBLIN

1

T hey

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this Disserta-

tion upon request.

g AR

T XiaobitnXid0o

Dated: December 29, 2015

Acknowledgements

I would like to express my gratitude to my supervisor Stephen Barrett for his guidance
throughout my PhD journey. He does not only motivate me to explore the relevant areas
of my research, but also provides very useful comments and feedback at different stages
of this work. He also acts as a good friend offering very kind support and advice.

I would like to express my appreciation to the corﬁmittee members of DSG, CAG, and
TCHPC of Trinity College, and the Grid Observatory for offering very useful academic
support, especially at the final stage of my research.

I would like to thank my family members for their love and support that accompanied
me all these years. They always encourage me to overcome various kind of difficulties
in my research and in my life. Their support have been an important source of my
confidence.

I would like to thank JRCSET for funding this research. Without the funding, I was

not able to begin this journey.

Xiaobin Xiao
University of Dublin, Trinity College
December 2015

iv

Abstract

With the growth in cloud computing there is additional complexity introduced in cloud
systems and therefore there is a need for more efficient resource allocation. Autonomic
computing is a promising approach for resource allocation in cloud computing and this
approach advocates for self-managing ability whereby autonomic systems can allocate
resources for their own needs without intervention from humans. In the Platform-as-
a-Service (PaaS) model, the platform provider requests for resources such as CPU and
RAM from the infrastructure provider and ensures the end client who has requested for
platform resources is allocated sufficient resources to meet their requirements. In the
PaaS model, platform providers suffer volatile resource demands and high provisioning
costs due to resource prediction errors and penalties that arise due to SLA violations.
This thesis investigates the problem of autonomic resource allocation in the PaaS
cloud to prevent resource over-provisioning and under-provisioning by the high-availability
platform provider systems. This research investigates the use of a collaborative and so-
cial model based approach to address this issue and proposes a Sharex approach which
allows platform providers to exchange resources with each other for limited time periods.
In this coordinated approach for organizing system-wide resource exchanges, a resource
exchange coordinator is proposed to help all the platform providers who are interested
in exchanging resources and each platform provider who exchanges resources receives
a commission that can be used to offset any penalties. Results from simulations indi-
cate that in terms of prediction errors, the proposed Sharex model performs comparably
with existing approaches but provides a significant reduction in penalties accrued by the

platform providers and is therefore a feasible model for autonomic resource allocation.

Contents

Acknowledgements

List of Tables

List of Figures

Chapter 1 Introduction

|8
1.2
1.3
1.4

Autonomic Resource Allocation in the PaaS Context
The Sharex Approach with Resource Planning Systems
Main Confributtons:! .. L . 0L o o L e e e L e

THERISTROBAINAT & & a8 ol o akta o o o rend & sy 06 sy W ey lenie e 3

Chapter 2 Autonomic Resource Allocation in Cloud Computing

2.0
2:2
2.3
24

Btrodieiiont. & o e s s e
Cloud Computing OVETVIEW . . v cov o b v v o o e os oo s os s s o
Cloud Service Level Agreements
Autonomic Resource Allocation in Cloud Systems
2 S T o G b T A i W TR U e
2142 WAntonomiciSystemsi T L Stat M R e e
2.4.3 Predictive Approaches
2.4.4 Reactive Approaches

iv

vi

2.5 Economic Approaches for Allocating Resources in Cloud and Grid Systems 28

2.6
2.7

A2 B B oY LB Te 036 0 sl ey e e e e ey e
2.5.2 Commodity Market
2:5:3 JAMEEIONSL: 2 v 5 0 5 s b e e e e
2.5.4 Game Theoretical Approaches
2:5.55 Social ‘Approaches: ™. 1L s il a s L e e
235 6N ComMP AT SONE i F it atatrs o e A el Tl P R] et
Edgeworth Box Model
Motivations « - ks o s ao i n A s o s e e e e

Chapter 3 Platform as a Service Resource Provisioning Model

31
3.2

3.3

3.4

3.5

e T G O e L
Platform as a Service Constituency o\ . v v v v v e v v o v o0
S22 L Resonrce SUPPHEE v s 4t v il e s b i i
3.2.2 Intermediary Resource Provider.
8.2 Resonrce WoRSHINGT: o o Lo v i bt iaiid S e e s i Ul iy, e g
Resoiree Granmlanilyi . & e 5ot ch ol o Tl oo mie ik e o S
3.3.1 Generalized Resource Granularity Model
Resource Allocation Mechanidsin u - v v vos o b s v s as o v o s
3.4.1 Dynamic and Static Allocation
342 Resource Allocation BTOCESS.. - . . ol o aiiee o et o eie 6 o s
Resource Allocation Scenarios
3oL iSeenariol I e o SRS B R e R e
52N S cenaTio 24 W8 L or S ettt B S e T S A T
31531 MBS eenarior 3 e e
LD S C T A T O O R
D IS e L AT O 5 s R s
35161 "ResourcetAllocationProbleme o iy S e e R L

ii

28

52

3.6

Summamyae S T

Chapter 4 The Sharex Resource Allocation Approach

4.1
4.2
4.3

4.4

4.5

IOtTOAMCEIONG = & & & Sles = = = & o s seaeh h sea sl &
Resource Sharing Flexibility
PaaS Autonomic Resource Allocation Management .
4.3.1 Predictive Resource Management
4.3.2 Reactive Resource Management
Sharex Resource Allocation Approach
4.4.1 Sharex Resource Exchange Protocol
4.4.2 The Concession Making Negotiation Strategy

Coneclusion o s e e e e e e e e .

Chapter 5 PCRAT Implementation

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9

TR0 100 1 L1101 NS i e e

Servico bmplementation . . . 50 s e e 8 e it e i v e e e ey

Resource. Granularity Model.. . .o -l i e e o e s e

RitheitSeriessNIoded " Sl o LB ohefinh, ol 0L A0 SalURs (o il UL

TEAS TS IRUHATTION < b e s ine A el 5 n el oy it S e R il e

Sharex Doplementabion.. « oo o vn v olv v mie i e R e b

Double: Anction Implementation. . . . iwe e la = el s e wo i ke

EAMAEBEIONE 5 o5 e e e e b o ot rod i T ariatia o o T dsian o ol Bl e a8 8 e

Bty L S e e e Wl e e e e e e e e

Chapter 6 Evaluation

(Gl

6.2

Experitnent SebUD . o o s o che s 5 o e s e e men e i e a e

6Y B rperinten GRlapu bR anE R T R

6:1.2 ErameworkConfigurationst. - = o o LRI

Bvalmation @ e teria i e e i

iii

67
67
68
71
71
77
79
81
84
90

91
91
92
93
94
95
101
107
e
112

6.2.1 Reduction in SLA Violations (RSV) 118

6.2:2 ‘Response THIME . o\ o e = o 2 oo & sl s s 5 s 5 s s e s e e 119

6.2.3 Penalty Rate 119

6.2.4 Resource Utilization Efficiency (RUE) 119

6.2.5) WANEragclCost i i s rSAie e oavde by Be U8 St el e e 120

653 IResulbed e o R o L R e ot 120
6.3.1 Reduction in SLA Violations (RSV) 120

6.3.2 Response Time, 121

633" Penalty Rate 0 o ue 8 o e s 123

6.3.4 Resource Utilization Efficiency (RUE) 127

6:3:5'; "AveragetCaptiin . - s S i S R Bl s e 132

A T T T TRy A St L P S S e) it 138
Chapter 7 Conclusion and Future Work 139
Bibliography 142

iv

List of Tables

2.1 Model Comparison for PaaS Resource Allocation 38
4.1 DecisionOuteomeo . . e i e e s e e e e s e e e 73
4.2 Commission charge and penalty charge example 80
6.1 Information Extracted from GO Historical Data 115
6.2 Resource Granularity Configuration 117
6.3 Broker Service Level Agreement Configurations 118

List of Figures

2.1
2:2
2.3

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
BT
5.8
5.9

IBM’s MAPEK construct extracted from [65] 18
Edgeworth box (figure extracted and modified from [23]) 43
The core (figure extracted and modified from [23]) 44
Platform Service Access i e 49
PaaS Resource Allocation Process 59
sharex Registrafion Phase & ool allen b ol dl o b doae e Yee s o s s 82
Sharex Initiation Phalse. v oo o v o0 i e mwmee oo 83
Sharex Comuatrment BIaes . . b @l o aim ot e e le e o s e oi'd s 84
Bdeeworthiboximodelt 15 - et s onthie c B 2 S mlh e s b 85
Service-oriented Request and Response Communication Model 93
Configuration File for Resource Granularity 94
SLA Creation Message v v v v v v i v it o e vt o e oo 98
SLA Amendment Message 99
SEAExchangeiMessade ™ miode (b o e e 100
SIA Extension Messages i o 5 L S n s S R 101
Sharex Registration Message . . s vie o ko s ool s o v oa o a ol s 102
Trust Management Messageo i it 103
Sharex Notification Message 104

vi

5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Sharex Initialization Message 106

Sharex Negotiation Message oo i v v v i vt vn . 107
Flowchart for auctioneer 109
Double Auction Bidding Message 110
Double Auction Result Message 111
Penalty Reduction Rate for Sharex 121
Response Time foriSharex . b bow kit Tt S 123
Penalty Occurrence Rate for 2 Resources 124
Penalty Occurrence Rate for 3 Resources. 125
Penalty Occurrence Rate for 4 Resources 126
Penalty Occurrence Rate for 5 Resources 127
Resource Utilization Efficiency for 2 Resources 129
Resource Utilization Efficiency for 3 Resources 130
Resource Utilization Efficiency for 4 Resources 131!
Resource Utilization Efficiency for 5 Resources 132
Resource Provisioning Cost for 2 Resources 133
Resource Provisioning Cost for 3 Resources 134
Resource Provisioning Cost for 4 Resources 135
Resource Provisioning Cost for 5 Resources 136
A Sample Market Price for CPU with ZIP Bidding Strategy 37
A Sample Market Price for CPU with ZI Bidding Strategy 138

vii

Chapter 1

Introduction

1.1 Autonomic Resource Allocation in the PaaS Context

Cloud computing enables multiple tenants to share a large pool of computing resources
in a scalable fashion [33]. Cloud computing reduces the cost and complexity of oper-
ating computer networks and have additional benefits such as scalability, efficiency and
reliability through use of shared resources such as data storage space, networks, com-
puter processing power and specialized user and corporate applications. There are three
service models used in cloud computing: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS). In the IaaS model, the provider only
provides the hardware and network capabilities while the client installs and manages
their own applications, software and operating systems. In the PaaS model the provider
handles the platform capabilities including the operating system, network and hardware
while the client is responsible for management of the applications. In the SaaS model,
the IT operational functions and infrastructure are abstracted away from the consumer
or client. In this model, business process and applications as well as other consumer
software is provided in addition to the operating system hardware and network.

In the Platform as a Service (PaaS) model the platform providers offer an abstracted

hosting environment for the application providers by harnessing a large-scale physical
infrastructure. Most contemporary commercial platform providers are also the infras-
tructure providers however as the PaaS model becomes more mature, more specialized
platform vendors will separate from the infrastructure vendors. The platform providers
focus on the development of a cloud middleware which hides the complexity of the cloud
infrastructure [86]. The concept of middleware was first described in [24] in the context of
distributed systems. In this paper, middleware was referred to as a set of intermediaries
for the components in a distributed computing system. The concept of middleware in
the PaaS environment leverages the deployment of distributed applications onto dynamic
resources spanning over a large scale network in a pay-as-you-go fashion.

The application providers focus on the development of the business logic which can
be deployed seamlessly on the cloud platforms, and accessed by the end users on the
Internet. To support the application deployment and execution, the platform providers
must respond to the resource requirements originating from the applications, and this can
only be achieved by acquiring the respective physical resources from the IaaS providers.
The physical resources are provisioned by the infrastructure providers to the platform
providers through Virtualization. The resource provisioning is mediated by the Service
Level Agreements (SLAs) to guarantee the Quality of Service (QoS). The SLAs are
used to cover the availability and performance of provided services. Resources in the
PaaS model are viewed differently from different perspectives. From the perspective of
a platform provider, it has to acquire resources sufficiently to respond the changes in
demand from its customers. Therefore the resources a platform provider has to negotiate
with an infrastructure provider is expressed at the hardware level using volumes of
hardware resources. However, a platform provider has to offer on-demand access to
application providers at a more abstracted resource perspective, such as number of URL
fetches or number of database transactions. Platform providers are considered high-
availability systems, therefore are assumed to understand the minimal level of hardware

resources required to provision the demands from the clients.

The resource provisioning from the infrastructure providers to the platform providers,
and from the platform providers to the application providers are both bound to the Ser-
vice Level Agreements (SLAs). A platform provider is faced with challenges of managing
the SLA from both ends to ensure its resource availability. Resource demands from the
application providers may exhibit unpredictable patterns, such as sudden surges, which
causes the platform provider to experience the condition of resource under-provisioning.
On the contrary, demands in resources may continuously decline and causes significantly
over-provisioning for a platform provider. Both under-provisioning and over-provisioning
of cloud resources are undesirable for a platform provider. The SLA between an infras-
tructure provider and a platform provider can be dynamically adapted under certain
constrains. Such constrains must be fully understood and the advantages in certain
flexibility must be carefully utilized to reduce the risks of provisioning problems and the
cost. Therefore a platform provider must incorporate a resource management system to
deal with such volatile resource demands.

Autonomic Computing [73] is a promising approach for resource allocation. It advo-
cates self-managing ability for a system to allocate resources for its own need without
human intervention. Such autonomic features of resource allocation have been studied
in the research literature with different focus areas. For example [118] used Reinforce-
ment learning to learn resource valuation estimates for making high quality server al-
location decisions while [21] made use of combinatorial search techniques and analytic
queuing models. In [117] the author compared a queuing-theoretic performance model
and model-free reinforcement learning while [16] and [15] focus on maximizing revenue
while minimizing operational costs or energy costs respectively. None of the current
approaches in the literature however comprehensively addresses the issues of managing
the volatile resource demands for the high-availability platform provider systems. The
Monitor- Analysis-Planning-Execution-Knowledge (MAPE-K) autonomic model [73] has
been proposed to address self-managing issues. Little work to date has fully connected

the planning and execution components in the MAPE-K model in delivering an auto-

nomic solution towards such problem.

1.2 The Sharex Approach with Resource Planning Sys-

tems

Predictive systems are used to forecast how much resources are going to be needed in
the future, in order for a resource manager to make reservations in advance. However,
prediction functions always include errors inevitably because of the uncertainties in the
future. The resource allocation management that resides in the platform provider must
be able to cope with such prediction errors at any given time. Current studies lack a
thorough investigation into how such prediction errors can be dealt with in an inex-
pensive manner [112]. This thesis proposes the Sharex approach towards managing the
prediction errors for the resource management system for the platform providers. The
Sharex approach is a social exchange mechanism to allow platform providers to exchange
resources to facilitate short term demand requirements. The exchange process is estab-
lished on the Edgeworth box model [85] whereby two negotiators can become better
off by exchanging one resource for the other. The establishment of resource exchange is
based on the assumption that the SLA allows such flexibility at inexpensive cost. Sharex
differs from the other autonomic solutions in resource management such as [50,62,66] in
terms of better elasticity, inexpensiveness and responsiveness.

The Sharex mechanism is a coordinated social negotiation mechanism. The platform
providers that are willing to participate can register with a coordinator. Through the
negotiator, platform providers get to know each other therefore can establish commu-
nications at any time required. The Edgeworth Box [85] negotiation is established by
two platform providers that have opposite need for resources X and Y. The matching
of two negotiating parties are based on heuristic searching by any participants, and as-
sumed honesty of the participants. The participants that are negotiating the resource

exchange must honestly reveal its resource capacity as well as its urgency (expressed by

the Cobb-Douglas utility parameter [85]).

The negotiation strategy adopted by all the participants is a heuristic concession
making strategy which priorities a successful outcome over obtaining an optimal alloca-
tion. Such strategy is ideal for the scenario of PaaS platform providers, where penalty for
SLA violations is much more significant than the commissions for exchanging resources,
and the surges in the resource demand must be dealt with in a timely fashion. It is
for the reasons of responsiveness that the heuristic strategy rather than game-theoretic
strategy seems to be the best fit [69].

The Sharex mechanism is incorporated into a reactive management component to
deal with resource shortage. The reactive management component is equivalent to the
Execution component in the MAPE-K model. It receives the commands from the plan-
ning components but has the ability to react to sudden bursts in resource demand, in
which case it triggers the Sharex mechanism. If no successful resource exchange is agreed,
the reactive resource management component is still capable of amending the SLA to
guarantee the availability in the resource provisioning. Such amendment is necessary

but is at the cost of penalties for SLA violations to the infrastructure provider.

1.3 Main Contributions

The thesis investigates the problem of autonomic resource allocation in the PaaS cloud to
prevent resource over-provisioning and under-provisioning by the high-availability plat-
form provider systems. The key issues to be addressed by this research are to determine
whether during resource allocation, a collaborative and social model based approach
between the planning and execution modules in the MAPE-K model can provide a fea-
sible and affordable solution to address the over-provisioning and under-provisioning
challenges faced by high-availability platform providers. In addition this research will
determine whether such a solution can be adopted by generic platform providers for

reactive resource allocation. The main contributions are as follows.

. The thesis draws a theoretical PaaS model which clarifies the participants as well
as the resource allocation mechanism. The theoretical PaaS model has been dis-
cussed in the literature [131] however few have presented this model to the level of
such details for studying the resource allocation problems. The theoretical PaaS
model uses a time series model [26] for segmenting demands at different times
which can be analyzed by the platform providers. Moreover, the thesis provides a
generalized resource granularity model for PaaS platform providers so that resource

requirements can be quantified in the study.

. This work proposes and examines the Sharex approach in the process of reactive
management by resource allocation system. The thesis includes the design and
implementation of Sharex based resource allocation ecosystem. The thesis also
proposes a novel evaluation approach for the evaluation of the Sharex, and this
evaluation approach is also compatible to a different resource allocation model,
such as an auction-based model [30]. The evaluation is based on the extraction
of historical demands from the monitoring data of large operational Grid systems.
The historical demands are used as input for a large number of platform providers

to exercise in the context of the large scale grid systems.

. The thesis surveys the economic approaches for resource allocation in cloud com-
puting and demonstrates a feasible resource management system which can be
adopted by a generic platform provider for ongoing resource allocation. The
autonomic solution is capable of solving resource over-provisioning and under-
provisioning without human intervention. The outcome of such resource manage-
ment turns out to be inexpensive compared to the double auction model. The
resource utilization efficiency achieved by the management system is also higher

than the double auction approach.

1.4 Thesis Roadmap

This chapter has provided an introduction to this thesis and autonomic resource alloca-
tion in the PaaS context. The remainder of the thesis is organized as follows. Chapter 2
presents the landscape of the Autonomic Resource Allocation in Cloud Computing and
discusses several key areas relevant to this research. Chapter 3 draws the context of the
PaaS resource allocation while Chapter 4 outlines the resource management approach
proposed by the thesis. Chapter 5 describes the architecture of the implementation
and Chapter 6 presents evidence extracted from experiments and analysis of the results.

Chapter 7 makes a conclusive statement and suggests the future direction of the research.

Chapter 2

Autonomic Resource Allocation

in Cloud Computing

2.1 Introduction

This chapter discusses several key focus areas relevant to the research into autonomic
resource allocation in the cloud. Current research in each area and approaches used
to contribute to forming an autonomic cloud are discussed as well as identification of
potential areas of exploration beyond the current literature. This chapter is divided
into several sections including cloud computing overview, cloud service level agreements,
autonomic resource allocation in cloud systems, economic approaches for resource allo-

cation, Edgeworth Box model and thesis motivation.

2.2 Cloud Computing Overview

This section provides an introduction to cloud computing and looks at current trends
and research in this area. Cloud computing has emerged in recent years as a commer-
cial concept and promises low cost and highly scalable IT operations through delegating

the ownership of computer resources (both hardware and software) to specialized data

centers [121]. Such business model is also widely accepted as a realization of utility com-
puting, which promotes the use of computing resources like water and electricity [33].
National Institute of Standards and Technology (NIST) [89] defined cloud computing as
a model for enabling convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g. networks, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction. Cloud computing differs from traditional hosting services because
of three characteristics. First of all cloud services are sold on demand for set periods
of time e.g. an hour, day week etc. Secondly cloud services are elastic in that user’s
purchase as much of the service as they need and finally, cloud services are managed by
a provider.

There are several types of cloud deployment models available. Public clouds are the
most common type, where providers offer resources to the general public. In private
clouds, providers offer the cloud infrastructure to a single organization for exclusive use.
In community clouds, several organizations or communities which share concerns also
share the cloud infrastructure. Finally hybrid clouds combine two of more of the other
cloud deployment models [89].

Cloud computing is also frequently compared to the concept of Grid computing [52],
which flourished prior to the development of the cloud. According to Foster et al [53],
cloud computing and Grid computing share an important common attribute, which is to
delegate the management of computer resources to a third party in order to reduce the
operation cost and increase reliability and flexibility. However, cloud computing differs
from Grid computing mainly in two aspects. Firstly cloud computing is driven by the
need to analyze massive amount of data. Operating at a massive scale requires access to
hundreds of thousands of computers which are made commercially available on-demand.
Secondly the cost of provisioning resources to the cloud is less expensive than the Grid,
because cloud providers implement low-cost virtualization on commodity clusters. This

makes cloud computing affordable to both individuals and businesses at different scale.

Traditionally, Grid computing is developed with public funding and is primarily allocated
to scientific communities. On the contrary, a cloud system is generally privately funded
and is developed to serve in the commercial context.

Cloud systems are normally separated into three categories with regards to their
models of resource provisioning. These models are Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS), and are also commonly

regarded as business models [131].

e JaaS is a resource provisioning model where infrastructure providers offer virtual-
ized hardware resources to their clients in an on-demand manner. The infrastruc-
ture provider runs a data center installed with a large number of high specification
servers and the resources on these physical servers can be virtualized and provi-
sioned to different clients. The IaaS model heavily relies on virtualization technolo-
gies, among which Xen, KVM and VMWare are the most popular choices [131].
The advantages of the IaaS paradigm are that it provides access to a large amount
of computing power and eliminates the need for the customers to invest in IT
hardware. Amazon EC2 [1] is an example of a leading and prominent IaaS cloud

service provider.

e PaaS promotes integrated development and the execution platform environment
is the service that is provisioned to the clients. In the IaaS model, the virtual in-
stances lack systematic platform packages including operating system and compat-
ible software suites to operate directly without further installations. The platform
services usually are proprietary standards to a commercial provider and the PaaS
paradigm offers highly customized computer resources for application providers.
Google App Engine [109] is an example of a PaaS application. Advantages of
PaaS include decreased overall costs and hardware/software compatibility since
the vendor is responsible for providing the solution. Such platform services serve

as a middleware that hides the complexity of the cloud infrastructure. Therefore

10

the application providers can focus on the creation of business logic that will run
spontaneously on the hosting platform. The platform providers share physical re-
sources provided by the infrastructure providers. Zhang et al [131] argued that it
is entirely possible that a PaaS provider runs its cloud on top of an IaaS cloud,

although they see IaaS and PaaS providers are often part of the same organization.

SaaS enables provisioning of software as resources to the cloud end users, such as
the CRM systems offered by Salesforce (Sales Force CRM Solutions) [5] and Oracle
(Oracle on Demand) [4]. The software is highly customized and can be accessed
through a web based portal without having to be installed on the client computer.
The software being used is licensed at a much lower cost, usually through a sub-
scription and in such cases, users no longer have to pay the starting cost for full
licenses in order to have the software running locally on the desktop. The advan-
tages of SaaS include cost savings through reduced investment in IT infrastructure,
scalability since increased growth can be managed by increase in the monthly SaaS
subscription, accessibility since applications are access over the Internet and re-
silience since the data resides in the providers data center so restoration of services
in case of a disaster at the client premises is easier. However challenges with the
SaaS model include security as sensitive data is now entrusted to a third party
provider, outages either over the Internet or at the vendor premises can compro-
mise performance and in addition the performance of the application (especially if
accessed over the Internet) may not be as good as when accessed over a company

LAN.

Despite the fact that many cloud service providers operate on their own proprietary

standards, many open source cloud systems have become available for public or private

clouds. These open source cloud systems eliminate the need for costly development of

cloud infrastructure therefore anyone can deploy these cloud systems and operate their

own clouds. OpenStack, OpenNebula and Eucalyptus are well known examples of open

11

source laaS solutions, providing open standards for managing computation, storage,
networking resources [110]. Meanwhile, OpenShift and Cloud Foundry are examples
offering open source PaaS solutions, which support various programming languages,
database connectivity, and automatic scaling of applications [111].

Growth in the cloud computing sectors are affected by several challenges, which
include risks regarding data confidentiality and challenges with auditability, data trans-
fer bottlenecks, performance unpredictability and scalable storage requirements. These
challenges however are also opportunities for research and development for example
the confidentiality and auditability challenges provide room for research into encryption
solutions, firewall solutions and geographic data storage solutions while performance un-
predictability can be addressed through improved VM support and flash memory. These

challenges and proposed solutions are discussed further in [54].

2.3 Cloud Service Level Agreements

This section offers a view on the Service Level Agreements (SLAs), which serve as a piv-
otal component for cloud computing. An SLA is a legal document between the provider
and the consumer of a particular cloud service, specifying a number of obligations that
both parties must fulfill and penalties if the terms are violated [94]. These obligations are
also known as Quality of Service (QoS), which include detailed metrics (both functional
and non-functional) about how a cloud service must be delivered [119]. These metrics
can include low level parameters such as CPU cycles, disk usage or network traffic, or
high level parameters such as video fps and resolution [25]. SLAs can be predefined by
a service provider and are not flexible to change. For instance, Amazon EC2 offers an
SLA guaranteeing the monthly availability of their instances up to 99.5% [6]. Other
SLAs can be dynamically adapted using predefined SLA templates, some of which can
even be negotiated at run-time [28].

There are many existing SLA management frameworks and language standards,

12

among which Web Services Agreement Specification (WS-Agreement) [12] and Web Ser-
vice Level Agreement (WSLA) [72] are the most popular and widely used in research
and industry [129]. WS-Agreement is a language and a protocol for establishing, negoti-
ating, and managing agreements on the usage of services at run-time between providers
and consumers. WSLA is a framework developed by IBM to express SLAs, measure
and monitor QoS parameters and report violations to the parties. Both frameworks are
developed based on the XML language.

SLAs can generally be separated into three types, Task Service Level Agreements
(TSLAs), Resource Service Level Agreements (RSLAs) and Binding Service Level Agree-
ments (BSLAs) [39]. A TSLA specifies the performance of an activity or task. A RSLA
defines the right to consume a resource. A BSLA states the application of a resource to
a task.

Given the context of the existing research on the SLA, we identify the key con-
cerns of a PaaS SLA based on the PaaS resource consumption scenario. PaaS cloud
resource provisioning scenario involves different stakeholders, including infrastructure
providers, platform providers and application providers [81]. Platform providers con-
sume the services of the infrastructure providers by requesting virtual machines and
storage and deploying application containers on the virtual machines. The revenue of a
platform provider comes from the applications/services it hosts. Its costs come from the
resources it consumes from the infrastructure provider and the penalties it has to pay
for the SLA breaches. Our interests here are to explore the SLAs between a platform
provider and an infrastructure provider, which are the foundations for further investi-
gating the PaaS resource allocation mechanisms. To disambiguate the types of SLAs
mentioned here, we propose a definition of AP-SLA, which is the SLA signed between
an application provider and a platform provider, and IP-SLA, which is the SLA signed
between a platform provider and an infrastructure provider. The type of IP-SLA in this
scenario naturally conforms to the RSLA type proposed in [39], which allows specifying

how much resources a platform provider is entitled to.

13

The first concern about a PaaS SLA is the translation from high level SLA metrics to
low level parameters, as the AP-SLA usually specifies high level metrics (e.g. video reso-
lution), while the IP-SLA specifies low level metrics (e.g. storage and bandwidth). This
requires the resource management system residing in a platform provider to perform an
accurate analysis and allocate sufficient resources to deliver the contractual performance
of its hosted applications while achieving good resource utilization efficiency. Boniface et
al [25] propose the use of Artificial Neural Network to train the SLA manager of a plat-
form provider to map the high level specifications to low level specifications. Emeakaroha
et al [42] developed LoM2His framework to map low level metrics to application level
metrics in the cloud based on a set of mapping rules. Reig et al [103] proposed the
use of machine learning algorithms to translate customers’ Quality of Experience (QoE)
requirements into low level QoS requirements in the cloud. Such mapping is not in the
scope of our study therefore we assume the high level metrics are translated correctly
into low level metrics.

The second concern is the resource granularity specified in an AP-SLA document.
Resource granularity refers to the amount of detail that should be taken into consideration
when describing resources is related to the difficulty of achieving a generic solution for
distributed clouds [44]. A resource provider may model each resource individually on a
fine-grained scale, such as the gigahertz of CPU or gigabytes of memory, but may also
offer them as coupled bundle, such as virtual machine classes (e.g. high specification
virtual machines). We assume all participants have agreed upon a predefined resource
granularity model during resource allocation. In our research, we express the RSLA
between a platform provider and an infrastructure provider in terms of a resource quota
based on certain predefined granularity model. The resource quota specifies the overall
limit in which a platform provider can allocate resources in total to host applications.
We consider such limit as hard SLA constraints and can not be breached unless it is
reconfigured. Raj et al [100] implemented similar SLA constrains through physical level

quality isolation.

14

The third concern is what resource leasing terms are in place for a RSLA between
a platform provider and an infrastructure provider. In our research, we propose two re-
source leasing mechanisms that an infrastructure provider offers to a platform provider.
The first mechanism is on-demand access, where a platform provider can access un-
limited resources that are available from an infrastructure provider at any time. The
second mechanism is reserved resources access, where a platform provider is entitled to
allocate resources within the quota for a period of time specified in the SLA. A platform
provider is subject to pay a penalty fee (or loss of deposit) if the reserved SLA is to
be modified or canceled. Although the on-demand access mechanism is more flexible,
the price for the resources is much higher than the price offered in the reserve-based
mechanism. Moreover, platform providers are allowed to trade their resource quotas
during the reserve-based contract periods to deal with fluctuations in their resource
demands. These resource access mechanisms are referenced to the pricing scheme for
Amazon EC2 [2]. Amazon EC2 offers on-demand virtual machine access and reserved
instance access based on a contract. The purchase of a reserved instance saves up to 75%
compared to on-demand access. Once purchased, the reserved instance agreement can
not be changed or the buyer loses the deposit. It is however possible for a buyer to list
the reserved instance on the Amazon Market Place [7] for sale if a change is required.
Amazon charges a 12% service fee of the total upfront cost for the resale of reserved
instances.

The above underlying assumptions on the PaaS RSLAs allow us to further explore
autonomic resource allocation systems and economic approaches for resource allocation

in cloud computing, which are presented later in this chapter.

15

2.4 Autonomic Resource Allocation in Cloud Systems

2.4.1 Introduction

This section presents a wide spectrum of literature centered at the topic of autonomic
resource allocation in cloud systems. We firstly conduct a survey in the autonomic
computing area, discussing the major aspects of autonomic computing and the general
architecture structure. Autonomic resource allocation models in cloud systems generally
focus on either predictive or reactive approaches. Predictive approaches aim to analyze
recent resource usage patterns to predict the likely pattern in the future, and adjust the
allocation policies accordingly. Reactive approaches primarily target on detecting and
handling non-optimal resource allocation scenarios or SLA violations in a responsive
manner. We study both the predictive and reactive approaches for autonomic cloud

resource management in the literature.

2.4.2 Autonomic Systems

The concept of autonomic computing was first introduced by Paul Horn, IBM’s senior
vice president of research in March 2001 in a key note address to the National Academy
of Engineers at Harvard University [73]. Autonomic Computing advocates a system
that is capable of self-managing without human intervention [73]. It was inspired by
biology where for example the autonomic nervous system is responsible for regulating
key involuntary functions of the body including heart, muscle and gland activities. In
an autonomic system, human operators only need to issue high level guidelines which
can be interpreted and executed effectively. In cloud computing, the major feature of
Autonomic Systems is self-management and this consists of four major function areas:
self-configuration, self-optimization, self-healing and self-protection and are discussed in

detail in [73] and [67].

e Self-configuration is concerned with automatic configuration of system components

16

to adapt to changes in the environment or deployment of new components while
maintaining a fully functional system. The autonomic system should be able to
modify the existing configuration without human intervention to meet the new

requirements.

Self-optimization is concerned with efficient allocation of system resources to meet
user requirements with minimum human intervention. A system should have the
ability to autonomously adapt itself to a new event that would cause it to operate
at sub-optimal levels. This should be done by automatically performing a set of

operations to restore the system to an optimal state.

Self-healing requires an autonomic system to automatically detect potential failures
or problematic operations and recover from certain failures. Detection of potential
failures can be done through predictive or proactive methods while recovery from
failures requires the system to perform three actions. First is to responsively
identify the failed parts or systems, second is to diagnose the cause of the failure
and third is to call a recovery function to automatically restore the system to a

healthy state.

Self-protection refers to the ability of the system to automatically ensure it is less
vulnerable to malicious attacks without the human effort. An autonomic system
must constantly monitor its security weaknesses and prevent any potential threats

that could undermine the current security level.

The function areas mentioned can be further extended to be more domain and appli-

cation specific [114] and other examples of self- areas of research include adaptive client-

server communication [19, 84, 90], work load adaptive services [22] and self-managing

storage [88].

The general architectural structure of an autonomic system comprises the Monitor-

ing, Analysis, Planning, Execution and Knowledge components (MAPE-K) which was

17

Autonomic Manager

Plan

Analyze

/ Knowledge Base

Managed Element

Execute

Fig. 2.1: IBM’s MAPEK construct extracted from [65]

first introduced by IBM in [65] and also discussed further in [29]. The MAPE-K construct
is a constant loop within an autonomic system during the self-management process and

each aspect is briefly discussed below and illustrated in Figure 2.1 extracted from [65].

e The Monitoring component constantly gathers information in the operating envi-
ronment and selectively chooses relevant information with highlights on particular
issues. Different metrics can be measured such as hardware metrics or operating
system metrics and examples of the information that is monitored includes system
status e.g. CPU load, offered resources and throughput. The monitoring compo-
nent determines symptoms that need to be analyzed by aggregating, correlating
and filtering the information and once a symptom is identified, this information is
forwarded to the Analysis component for further processing. Collectd [3] and Na-

gios [46] are examples of tools that can be used for monitoring computer systems.

e The Analysis component analyzes the information passed to it from the Monitoring
component and has mechanisms to correlate and model complex scenarios. This

component uses predetermined pattern recognition techniques to quickly identify

18

arising issues drawn from the monitoring data then passes the issues to the Plan-
ning component to plan for actions. Other techniques for modeling complex sce-
narios include parametric models such as regression models investigated in [80,101]

and performance models e.g. queuing theory based models in [18,95,96].

The Planning component compiles the best set of actions to address the raised
issues from the Analysis component. The planning stage serves as a solution
center which can quickly identify an optimal solution for a problem and uses policy
information to execute its work [9,82]. Two common methods for planning and
optimizing system performance are by searching in continuous space or searching
in discrete space [59]. The identified solution is then forwarded to the Execution

component.

The Execution component is responsible for implementing the solution it receives
from the Planning component. This component has the predefined instructions
to perform according to the guidelines specified in the solution delivered from
the planning component. An example is where controllers were used in [8,71] to

maintain the VM utilization at a particular percentage.

The Knowledge component mediates the above four components during the auto-
nomic life cycle. It constantly accumulates knowledge from the on-going system
operations and can be queried by any component at different stages of autonomic
management. This knowledge component can also accept high level guidelines

from human operators.

Biology inspired autonomic computing has been dominated by wider computer sci-

ence areas, from ubiquitous computing to large scale distributed systems such as grids

and clusters [64]. These areas that strive to bring the feature of autonomicity face

common challenges such as state-flapping, performance evaluation and development of

robust software engineering architecture [64]. State-flapping is where the optimal op-

19

eration of the managed element is diminished by oscillation between states or policies.
Performance evaluation refers to measuring how well an autonomic system performs, and
it usually yields to other priorities such as the ability of a system to meet the given SLA.
The ability to carry out robust software engineering to allow interoperability between
autonomic systems is another challenge in the area of autonomic computing.
Autonomic computing is a necessary aspect to build self-managing networks that can
perform resource sharing function efficiently and effectively. This section has introduced
autonomic computing, discussed functional areas, architecture structure and current

research.

2.4.3 Predictive Approaches

Predicting resource demands is a key issue in cloud resource management and it is not
an easy task for enterprises to forecast and determine their future requirements for a
resource [75]. Many autonomic management systems for the cloud employ the predictive
approaches to understand how much resources are likely to be required in the next period,
and have shown promising prediction accuracy based on experimentation. We introduce
several important works on cloud resource prediction in this section.

Islam et al [66] introduced an empirical model for predicting resource demands in the
cloud. The motivation of their work comes from the problem of the delays in starting
new virtual instances in the cloud on demand. By pred<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>