
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

An Inexpensively Elastic Resource Allocation Model For

Platform as a Service Cloud Computing

Xiaobin Xiao

A Dissertation submitted to the University of Dublin, Ti'inity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

December 2015

cx/xd

50699248

5 0 6 9 9 2 4

THESIS

11104

trinity library

0 8 MAR 2017

DUEUlv.

/X inoL^

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this Disserta­

tion upon request.

Dated: December 29, 2015

Acknowledgement s

I would like to express my gratitude to my supervisor Stephen Barrett for his guidance

throughout my PhD journey. He does not only motivate me to explore the relevant areas

of my research, but also provides very useful comments and feedback at different stages

of this work. He also acts as a good friend offering very kind support and advice.

I would like to express my appreciation to the committee members of DSG, CAG, and

TCHPG of Trinity College, and the Grid Observatory for offering very useful academic

support, especially at the final stage of my research.

I would like to thank my family members for their love and support that accompanied

me all these years. They always encourage me to overcome various kind of difficulties

in my research and in my life. Their support have been an important source of my

confidence.

I would like to thank IRCSET for funding this research. Without the funding, I was

not able to begin this journey.

Xiaobin Xiao

University of Dublin, Trinity College

December 2015

IV

Abstract

With the growth in cloud computing there is additional complexity introduced in cloud

systems and therefore there is a need for more efficient resource allocation. Autonomic

computing is a promising approach for resource allocation in cloud computing and this

approach advocates for self-managing ability whereby autonomic systems can allocate

resources for their own needs without intervention from humans. In the Platform-as-

a-Service (PaaS) model, the platform provider requests for resources such as CPU and

RAM from the infrastructure provider and ensures the end client who has requested for

platform resources is allocated sufficient resources to meet their requirements. In the

PaaS model, platform providers suffer volatile resource demands and high provisioning

costs due to resource prediction errors and penalties that arise due to SLA violations.

This thesis investigates the problem of autonomic resource allocation in the PaaS

cloud to prevent resource over-provisioning and under-provisioning by the high-availability

platform provider systems. This research investigates the use of a collaborative and so­

cial model based approach to address this issue and proposes a Sharex approach which

allows platform providers to exchange resources with each other for limited time periods.

In this coordinated approach for organizing system-wide resource exchanges, a resource

exchange coordinator is proposed to help all the platform providers who are interested

in exchanging resources and each platform provider who exchanges resources receives

a commission that can be used to offset any penalties. Results from simulations indi­

cate that in terms of prediction errors, the proposed Sharex model performs comparably

with existing approaches but provides a significant reduction in penalties accrued by the

platform providers and is therefore a feasible model for autonomic resource allocation.

Contents

Acknowledgements iv

List of Tables v

List of Figures vi

Chapter 1 Introduction 1

1.1 Autonomic Resource Allocation in the PaaS Context..................................... 1

1.2 The Sharex Approach with Resource Planning Systems 4

1.3 Main Contributions.. 5

1.4 Thesis Roadmap... 7

Chapter 2 Autonomic Resource Allocation in Cloud Computing 8

2.1 Introduction.. 8

2.2 Cloud Computing Overview... 8

2.3 Cloud Service Level Agreements .. 12

2.4 Autonomic Resource Allocation in Cloud Systems .. 16

2.4.1 Introduction ... 16

2.4.2 Autonomic Systems... 16

2.4.3 Predictive Approaches..20

2.4.4 Reactive Approaches...24

2.5 Economic Approaches for Allocating Resources in Cloud and Grid Systems 28

2.5.1 Introduction ... 28

2.5.2 Commodity Market ... 29

2.5.3 Auctions... 30

2.5.4 Game Theoretical Approaches .. 33

2.5.5 Social Approaches.. 35

2.5.6 Comparison.. 37

2.6 Edgeworth Box Model.. 41

2.7 Motivation ...45

Chapter 3 Platform as a Service Resource Provisioning Model 46

3.1 Introduction...46

3.2 Platform as a Service Constituency.. 47

3.2.1 Resource Supplier .. 47

3.2.2 Intermediary Resource Prcwider.. 48

3.2.3 Resource Consumer ... 50

3.3 Resource Granularity... 51

3.3.1 Generalized Resource Granularity Model... 52

3.4 Resource Allocation Mechanism... 52

3.4.1 Dynamic and Static Allocation.. 54

3.4.2 Resource Allocation Process.. 59

3.5 Resource Allocation Scenarios..61

3.5.1 Scenario 1... 61

3.5.2 Scenario 2... 62

3.5.3 Scenario 3... 63

3.5.4 Scenario 4... 64

3.5.5 Scenario 5... 65

3.5.6 Resource Allocation Problem... 65

0

3.6 Summary... 66

Chapter 4 The Sharex Resource Allocation Approach 67

4.1 Introduction.. 67

4.2 Resource Sharing Flexibility... 68

4.3 PaaS Autonomic Resource Allocation Management..................................... 71

4.3.1 Predictive Resource Management... 71

4.3.2 Reactive Resource Management.. 77

4.4 Sharex Resource Allocation Approach.. 79

4.4.1 Sharex Resource Exchange Protocol... 81

4.4.2 The Concession Making Negotiation Strategy.................................. 84

4.5 Conclusion .. 90

Chapter 5 PCRAT Implementation 91

5.1 Introduction.. 91

5.2 Service Implementation ...92

5.3 Resource Granularity Model.. 93

5.4 Time Series Model..94

5.5 laaS Simulation.. 95

5.6 Sharex Implementation.. 101

5.7 Double Auction Implementation ..107

5.8 Limitations.. Ill

5.9 Summary... 112

Chapter 6 Evaluation 114

6.1 Experiment Setup .. 114

6.1.1 Experiment Input ..114

6.1.2 Framework Configurations..117

6.2 Evaluation Criteria.. 118

in

0

6.2.1 Reduction in SLA Violations (RSV).. 118

6.2.2 Response Time.. 119

6.2.3 Penalty Rate... 119

6.2.4 Resource Utilization Efficiency (RUE)... 119

6.2.5 Average Cost... 120

6.3 Results..120

6.3.1 Reduction in SLA Violations (RSV).. 120

6.3.2 Response Time.. 121

6.3.3 Penalty Rate... 123

6.3.4 Resource Utilization Efficiency (RUE)... 127

6.3.5 Average Cost... 132

6.4 Summary..138

Chapter 7 Conclusion and Future Work 139

Bibliography 142

IV

List of Tables

2.1 Model Comparison for PaaS Resource Allocation..38

4.1 Decision Outcome .. 73

4.2 Commission charge and penalty charge example...80

6.1 Information Extracted from GO Historical Data .. 115

6.2 Resource Granularity Configuration ... 117

6.3 Broker Service Level Agreement Configurations... 118

List of Figures

2.1 IBM’s MAPEK construct extracted from [65].. 18

2.2 Edgeworth box (figure extracted and modified from [23])............................ 43

2.3 The core (figure extracted and modified from [23])..................................... 44

3.1 Platform Service Access... 49

3.2 PaaS Resource Allocation Process .. 59

4.1 Sharex Registration Phase.. 82

4.2 Sharex Initiation Phase ... 83

4.3 Sharex Commitment Phase... 84

4.4 Edgeworth box model.. 85

5.1 Service-oriented Request and Response Communication Model................... 93

5.2 Configuration File for Resource Granularity... 94

5.3 SLA Creation Message.. 98

5.4 SLA Amendment Message.. 99

5.5 SLA Exchange Message... 100

5.6 SLA Extension Message... 101

5.7 Sharex Registration Message ..102

5.8 Trust Management Message... 103

5.9 Sharex Notification Message...104

VI

5.10 Sharex Initialization Message..106

5.11 Sharex Negotiation Message...107

5.12 Flowchart for auctioneer...109

5.13 Double Auction Bidding Message..110

5.14 Double Auction Result Message...Ill

6.1 Penalty Reduction Rate for Sharex.. 121

6.2 Response Time for Sharex..123

6.3 Penalty Occurrence Rate for 2 Resources..124

6.4 Penalty Occurrence Rate for 3 Resources..125

6.5 Penalty Occurrence Rate for 4 Resources..126

6.6 Penalty Occurrence Rate for 5 Resources..127

6.7 Resource Utilization Efficiency for 2 Resources ... 129

6.8 Resource Utilization Efficiency for 3 Resources ... 130

6.9 Resource Utilization Efficiency for 4 Resources ... 131

6.10 Resource Utilization Efficiency for 5 Resources... 132

6.11 Resource Provisioning Cost for 2 Resources...133

6.12 Resource Provisioning Cost for 3 Resources...134

6.13 Resource Provisioning Cost for 4 Resources...135

6.14 Resource Provisioning Cost for 5 Resources...136

6.15 A Sample Market Price for CPU with ZIP Bidding Strategy......................... 137

6.16 A Sample Market Price for CPU with ZI Bidding Strategy............................ 138

vn

Chapter 1

Introduction

1.1 Autonomic Resource Allocation in the PaaS Context

Cloud computing enables multiple tenants to share a large pool of computing resources

in a scalable fashion [33]. Cloud computing reduces the cost and complexity of oper­

ating computer networks and have additional benefits such as scalability, efficiency and

reliability through use of shared resources such as data storage space, networks, com­

puter processing power and specialized user and corporate applications. There are three

service models used in cloud computing: Infrastructure as a Service (laaS), Platform as

a Service (PaaS) and Software as a Service (SaaS). In the laaS model, the provider only

provides the hardware and network capabilities while the client installs and manages

their own applications, software and operating systems. In the PaaS model the provider

handles the platform capabilities including the operating system, network and hardware

while the client is responsible for management of the applications. In the SaaS model,

the IT operational functions and infrastructure are abstracted away from the consumer

or client. In this model, business process and applications as well as other consumer

software is provided in addition to the operating system hardware and network.

In the Platform as a Service (PaaS) model the platform providers offer an abstracted

hosting environment for the application providers by haimessing a large-scale physical

infrastructure. Most contemporary commercial platform providers are also the infras­

tructure providers however as the PaaS model becomes more mature, more specialized

platform vendors will separate from the infrastructure vendors. The platform providers

focus on the development of a cloud middleware which hides the complexity of the cloud

infrastructure [86]. The concept of middleware was first described in [24] in the context of

distributed systems. In this paper, middleware was referred to as a set of intermediaries

for the components in a distributed computing system. The concept of middleware in

the PaaS environment leverages the deployment of distributed applications onto dynamic

resources spanning over a large scale network in a pay-as-you-go fashion.

The application providers focus on the development of the business logic which can

be deployed seamlessly on the cloud platforms, and accessed by the end users on the

Internet. To support the application deployment and execution, the platform providers

must respond to the resource requirements originating from the applications, and this can

only be achieved by acquiring the respective physical resources from the laaS providers.

The physical resources are provisioned by the infrastructure providers to the platform

providers through Virtualization. The resource provisioning is mediated by the Service

Level Agreements (SLAs) to guarantee the Quality of Service (QoS). The SLAs are

used to cover the availability and performance of provided services. Resources in the

PaaS model are viewed differently from different perspectives. From the perspective of

a platform provider, it has to acquire resources sufficiently to respond the changes in

demand from its customers. Therefore the resources a platform provider has to negotiate

with an infrastructure provider is expressed at the hardware level using volumes of

hardware resources. However, a platform provider has to offer on-demand access to

application providers at a more abstracted resource perspective, such as number of URL

fetches or number of database transactions. Platform providers are considered high-

availability systems, therefore are assumed to understand the minimal level of hardware

resources required to provision the demands from the clients.

The resource provisioning from the infrastructure providers to the platform providers,

and from the platform providers to the application providers are both bound to the Ser­

vice Level Agreements (SLAs). A platform provider is faced with challenges of managing

the SLA from both ends to ensure its resource availability. Resource demands from the

application providers may exhibit unpredictable patterns, such as sudden surges, which

causes the platform provider to experience the condition of resource under-provisioning.

On the contrary, demands in resources may continuously decline and causes significantly

over-provisioning for a platform provider. Both under-provisioning and over-provisioning

of cloud resources are undesirable for a platform provider. The SLA between an infras­

tructure provider and a platform provider can be dynamically adapted under certain

constrains. Such constrains must be fully understood and the advantages in certain

flexibility must be carefully utilized to reduce the risks of provisioning problems and the

cost. Therefore a platform provider must incorporate a resource management system to

deal with such volatile resource demands.

Autonomic Computing [73] is a promising approach for resource allocation. It advo­

cates self-managing ability for a system to allocate resources for its own need without

human intervention. Such autonomic features of resource allocation have been studied

in the research literature with different focus areas. For example [118] used Reinforce­

ment learning to learn resource valuation estimates for making high quality server al­

location decisions while [21] made use of combinatorial search techniques and analytic

queuing models. In [117] the author compared a queuing-theoretic performance model

and model-free reinforcement learning while [16] and [15] focus on maximizing revenue

while minimizing operational costs or energy costs respectively. None of the current

approaches in the literature however comprehensively addresses the issues of managing

the volatile resource demands for the high-availability platform provider systems. The

Monitor-Analysis-Planning-Execution-Knowledge (MAPE-K) autonomic model [73] has

been proposed to address self-managing issues. Little work to date has fully connected

the planning and execution components in the MAPE-K model in delivering an auto-

nomic solution towards such problem.

1.2 The Sharex Approach with Resource Planning Sys­

tems

Predictive systems are used to forecast how much resources are going to be needed in

the future, in order for a resource manager to make reservations in advance. However,

prediction functions always include errors inevitably because of the uncertainties in the

future. The resource allocation management that resides in the platform provider must

be able to cope with such prediction errors at any given time. Current studies lack a

thorough investigation into how such prediction errors can be dealt with in an inex­

pensive manner [112]. This thesis proposes the Sharex approach towards managing the

prediction errors for the resource management system for the platform providers. The

Sharex approach is a social exchange mechanism to allow platform providers to exchange

resources to facilitate short term demand requirements. The exchange process is estab­

lished on the Edgeworth box model [85] whereby two negotiators can become better

off by exchanging one resource for the other. The establishment of resource exchange is

based on the assumption that the SLA allows such flexibility at inexpensive cost. Sharex

differs from the other autonomic solutions in resource management such as [50,62,66] in

terms of better elasticity, inexpensiveness and responsiveness.

The Sharex mechanism is a coordinated social negotiation mechanism. The platform

providers that are willing to participate can register with a coordinator. Through the

negotiator, platform providers get to know each other therefore can establish commu­

nications at any time required. The Edgeworth Box [85] negotiation is established by

two platform providers that have opposite need for resources X and Y. The matching

of two negotiating parties are based on heuristic searching by any participants, and as­

sumed honesty of the participants. The participants that are negotiating the resource

exchange must honestly reveal its resource capacity as well as its urgency (expressed by

the Cobb-Douglas utility parameter [85]).

The negotiation strategy adopted by all the participants is a heuristic concession

making strategy which priorities a successful outcome over obtaining an optimal alloca­

tion. Such strategy is ideal for the scenario of PaaS platform providers, where penalty for

SLA violations is much more significant than the commissions for exchanging resources,

and the surges in the resource demand must be dealt with in a timely fashion. It is

for the reasons of responsiveness that the heuristic strategy rather than game-theoretic

strategy seems to be the best fit [69].

The Sharex mechanism is incorporated into a reactive management component to

deal with resource shortage. The reactive management component is equivalent to the

Execution component in the MAPE-K model. It receives the commands from the plan­

ning components but has the ability to react to sudden bursts in resource demand, in

which case it triggers the Sharex mechanism. If no successful resource exchange is agreed,

the reactive resource management component is still capable of amending the SLA to

guarantee the availability in the resource provisioning. Such amendment is necessary

but is at the cost of penalties for SLA violations to the infrastructure provider.

1.3 Main Contributions

The thesis investigates the problem of autonomic resource allocation in the PaaS cloud to

prevent resource over-provisioning and under-provisioning by the high-availability plat­

form provider systems. The key issues to be addressed by this research are to determine

whether during resource allocation, a collaborative and social model based approach

between the planning and execution modules in the MAPE-K model can provide a fea­

sible and affordable solution to address the over-provisioning and under-provisioning

challenges faced by high-availability platform providers. In addition this research will

determine whether such a solution can be adopted by generic platform providers for

reactive resource allocation. The main contributions are as follows.

1. The thesis draws a theoretical PaaS model which clarifies the participants as well

as the resource allocation mechanism. The theoretical PaaS model has been dis­

cussed in the literature [131] however few have presented this model to the level of

such details for studying the resource allocation problems. The theoretical PaaS

model uses a time series model [26] for segmenting demands at different times

which can be analyzed by the platform providers. Moreover, the thesis provides a

generalized resource granularity model for PaaS platform providers so that resource

requirements can be quantified in the study.

2. This work proposes and examines the Sharex approach in the process of reactive

management by resource allocation system. The thesis includes the design and

implementation of Sharex based resource allocation ecosystem. The thesis also

proposes a novel evaluation approach for the evaluation of the Sharex, and this

evaluation approach is also compatible to a different resource allocation model,

such as an auction-based model [30]. The evaluation is based on the extraction

of historical demands from the monitoring data of large operational Grid systems.

The historical demands are used as input for a large number of platform providers

to exercise in the context of the large scale grid systems.

3. The thesis surveys the economic approaches for resource allocation in cloud com­

puting and demonstrates a feasible resource management system which can be

adopted by a generic platform provider for ongoing resource allocation. The

autonomic solution is capable of solving resource over-provisioning and under­

provisioning without human intervention. The outcome of such resource manage­

ment turns out to be inexpensive compared to the double auction model. The

resource utilization efficiency achieved by the management system is also higher

than the double auction approach.

1.4 Thesis Roadmap

This chapter has provided an introduction to this thesis and autonomic resource alloca­

tion in the PaaS context. The remainder of the thesis is organized as follows. Chapter 2

presents the landscape of the Autonomic Resource Allocation in Cloud Computing and

discusses several key areas relevant to this research. Chapter 3 draws the context of the

PaaS resource allocation while Chapter 4 outlines the resource management approach

proposed by the thesis. Chapter 5 describes the architecture of the implementation

and Chapter 6 presents evidence extracted from experiments and analysis of the results.

Chapter 7 makes a conclusive statement and suggests the future direction of the research.

Chapter 2

Autonomic Resource Allocation

in Cloud Computing

2.1 Introduction

This chapter discusses several key focus areas relevant to the research into autonomic

resource allocation in the cloud. Current research in each area and approaches used

to contribute to forming an autonomic cloud are discussed as well as identification of

potential areas of exploration beyond the current literature. This chapter is divided

into several sections including cloud computing overview, cloud service level agreements,

autonomic resource allocation in cloud systems, economic approaches for resource allo­

cation, Edgeworth Box model and thesis motivation.

2.2 Cloud Computing Overview

This section provides an introduction to cloud computing and looks at current trends

and research in this area. Cloud computing has emerged in recent years as a commer­

cial concept and promises low cost and highly scalable IT operations through delegating

the ownership of computer resources (both hardware and software) to specialized data

8

centers [121]. Such business model is also widely accepted as a realization of utility com­

puting, which promotes the use of computing resources like water and electricity [33].

National Institute of Standards and Technology (NIST) [89] defined cloud computing as

a model for enabling convenient, on-demand network access to a shared pool of config­

urable computing resources (e.g. networks, servers, storage, applications and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction. Cloud computing differs from traditional hosting services because

of three characteristics. First of all cloud services are sold on demand for set periods

of time e.g. an hour, day week etc. Secondly cloud services are elastic in that user’s

purchase as much of the service as they need and finally, cloud services are managed by

a provider.

There are several types of cloud deployment models available. Public clouds are the

most common type, where providers offer resources to the general public. In private

clouds, providers offer the cloud infrastructure to a single organization for exclusive use.

In community clouds, several organizations or communities which share concerns also

share the cloud infrastructure. Finally hybrid clouds combine two of more of the other

cloud deployment models [89].

Cloud computing is also frequently compared to the concept of Grid computing [52],

which flourished prior to the development of the cloud. According to Foster et al [53],

cloud computing and Grid computing share an important common attribute, which is to

delegate the management of computer resources to a third party in order to reduce the

operation cost and increase reliability and flexibility. However, cloud computing differs

from Grid computing mainly in two aspects. Firstly cloud computing is driven by the

need to analyze massive amount of data. Operating at a massive scale requires access to

hundreds of thousands of computers which are made commercially available on-demand.

Secondly the cost of provisioning resources to the cloud is less expensive than the Grid,

because cloud providers implement low-cost virtualization on commodity clusters. This

makes cloud computing affordable to both individuals and businesses at different scale.

Traditionally, Grid computing is developed with public funding and is primarily allocated

to scientific communities. On the contrary, a cloud system is generally privately funded

and is developed to serve in the commercial context.

Cloud systems are normally separated into three categories with regards to their

models of resource provisioning. These models are Infrastructure as a Service (laaS),

Platform as a Service (PaaS) and Software as a Service (SaaS), and are also commonly

regarded as business models [131].

• laaS is a resource provisioning model where infrastructure providers offer virtual­

ized hardware resources to their clients in an on-demand manner. The infrastruc­

ture provider runs a data center installed with a large number of high specification

servers and the resources on these physical servers can be virtualized and provi­

sioned to different clients. The laaS model heavily relies on virtualization technolo­

gies, among which Xen, KVM and VMWare are the most popular choices [131].

The advantages of the laaS paradigm are that it provides access to a large amount

of computing power and eliminates the need for the customers to invest in IT

hardware. Amazon EC2 [1] is an example of a leading and prominent laaS cloud

service provider.

• PaaS promotes integrated development and the execution platform environment

is the service that is provisioned to the clients. In the laaS model, the virtual in­

stances lack systematic platform packages including operating system and compat­

ible software suites to operate directly without further installations. The platform

services usually are proprietary standards to a commercial provider and the PaaS

paradigm offers highly customized computer resources for application providers.

Google App Engine [109] is an example of a PaaS application. Advantages of

PaaS include decreased overall costs and hardware/software compatibility since

the vendor is responsible for providing the solution. Such platform services serve

as a middleware that hides the complexity of the cloud infrastructure. Therefore

10

the application providers can focus on the creation of business logic that will run

spontaneously on the hosting platform. The platform providers share physical re­

sources provided by the infrastructure providers. Zhang et al [131] argued that it

is entirely possible that a PaaS provider runs its cloud on top of an laaS cloud,

although they see laaS and PaaS providers are often part of the same organization.

• SaaS enables provisioning of software as resources to the cloud end users, such as

the CRM systems offered by Salesforce (Sales Force CRM Solutions) [5] and Oracle

(Oracle on Demand) [4]. The software is highly customized and can be accessed

through a web based portal without having to be installed on the client computer.

The software being used is licensed at a much lower cost, usually through a sub­

scription and in such cases, users no longer have to pay the starting cost for full

licenses in order to have the software running locally on the desktop. The advan­

tages of SaaS include cost savings through reduced investment in IT infrastructure,

scalability since increased growth can be managed by increase in the monthly SaaS

subscription, accessibility since applications are access over the Internet and re­

silience since the data resides in the providers data center so restoration of services

in case of a disaster at the client premises is easier. However challenges with the

SaaS model include security as sensitive data is now entrusted to a third party

provider, outages either over the Internet or at the vendor premises can compro­

mise performance and in addition the performance of the application (especially if

accessed over the Internet) may not be as good as when accessed over a company

LAN.

Despite the fact that many cloud service providers operate on their own proprietary

standards, many open source cloud systems have become available for public or private

clouds. These open source cloud systems eliminate the need for costly development of

cloud infrastructure therefore anyone can deploy these cloud systems and operate their

own clouds. OpenStack, OpenNebula and Eucalyptus are well known examples of open

11

source laaS solutions, providing open standards for managing computation, storage,

networking resources [110]. Meanwhile, OpenShift and Cloud Foundry are examples

offering open source PaaS solutions, which support various programming languages,

database connectivity, and automatic scaling of applications [111].

Growth in the cloud computing sectors are affected by several challenges, which

include risks regarding data confidentiality and challenges with auditability, data trans­

fer bottlenecks, performance unpredictability and scalable storage requirements. These

challenges however are also opportunities for research and development for example

the confidentiality and auditability challenges provide room for research into encryption

solutions, firewall solutions and geographic data storage solutions while performance un­

predictability can be addressed through improved VM support and flash memory. These

challenges and proposed solutions are discussed further in [54].

2.3 Cloud Service Level Agreements

This section offers a view on the Service Level Agreements (SLAs), which serve as a piv­

otal component for cloud computing. An SLA is a legal document between the provider

and the consumer of a particular cloud service, specifying a number of obligations that

both parties must fulfill and penalties if the terms are violated [94]. These obligations are

also known as Quality of Service (QoS), which include detailed metrics (both functional

and non-functional) about how a cloud service must be delivered [119]. These metrics

can include low level parameters such as CPU cycles, disk usage or network traffic, or

high level parameters such as video fps and resolution [25]. SLAs can be predefined by

a service provider and are not flexible to change. For instance, Amazon EC2 offers an

SLA guaranteeing the monthly availability of their instances up to 99.5% [6]. Other

SLAs can be dynamically adapted using predefined SLA templates, some of which can

even be negotiated at run-time [28].

There are many existing SLA management frameworks and language standards,

12

among which Web Services Agreement Specification (WS-Agreement) [12] and Web Ser­

vice Level Agreement (WSLA) [72] are the most popular and widely used in research

and industry [129]. WS-Agreement is a language and a protocol for establishing, negoti­

ating, and managing agreements on the usage of services at run-time between providers

and consumers. WSLA is a framework developed by IBM to express SLAs, measure

and monitor QoS parameters and report violations to the parties. Both frameworks are

developed based on the XML language.

SLAs can generally be separated into three types. Task Service Level Agreements

(TSLAs), Resource Service Level Agreements (RSLAs) and Binding Service Level Agree­

ments (BSLAs) [39]. A TSLA specifies the performance of an activity or task. A RSLA

defines the right to consume a resource. A BSLA states the application of a resource to

a task.

Given the context of the existing research on the SLA, we identify the key con­

cerns of a PaaS SLA based on the PaaS resource consumption scenario. PaaS cloud

re.source provisioning scenario involves different stakeholders, including infrastructure

providers, platform providers and application providers [81]. Platform providers con­

sume the services of the infrastructure providers by requesting virtual machines and

storage and deploying application containers on the virtual machines. The revenue of a

platform provider comes from the applications/services it hosts. Its costs come from the

resources it consumes from the infrastructure provider and the penalties it has to pay

for the SLA breaches. Our interests here are to explore the SLAs between a platform

provider and an infrastructure provider, which are the foundations for further investi­

gating the PaaS resource allocation mechanisms. To disambiguate the types of SLAs

mentioned here, we propose a definition of AP-SLA, which is the SLA signed between

an application provider and a platform provider, and IP-SLA, which is the SLA signed

between a platform provider and an infrastructure provider. The type of IP-SLA in this

scenario naturally conforms to the RSLA type proposed in [39], which allows specifying

how much resources a platform provider is entitled to.

13

The first concern about a PaaS SLA is the translation from high level SLA metrics to

low level parameters, as the AP-SLA usually specifies high level metrics (e.g. video reso­

lution), while the IP-SLA specifies low level metrics (e.g. storage and bandwidth). This

requires the resource management system residing in a platform provider to perform an

accurate analysis and allocate sufficient resources to deliver the contractual performance

of its hosted applications while achieving good resource utilization efficiency. Boniface et

al [25] propose the use of Artificial Neural Network to train the SLA manager of a plat­

form provider to map the high level specifications to low level specifications. Emeakaroha

et al [42] developed LoM2His framework to map low level metrics to application level

metrics in the cloud based on a set of mapping rules. Reig et al [103] proposed the

use of machine learning algorithms to translate customers’ Quality of Experience (QoE)

requirements into low level QoS requirements in the cloud. Such mapping is not in the

scope of our study therefore we assume the high level metrics are translated correctly

into low level metrics.

The second concern is the resource granularity specified in an AP-SLA document.

Resource granularity refers to the amount of detail that should be taken into consideration

when describing resources is related to the difficulty of achieving a generic solution for

distributed clouds [44]. A resource provider may model each resource individually on a

fine-grained scale, such as the gigahertz of CPU or gigabytes of memory, but may also

offer them as coupled bundle, such as virtual machine classes (e.g. high specification

virtual machines). We assume all participants have agreed upon a predefined resource

granularity model during resource allocation. In our research, we express the RSLA

between a platform provider and an infrastructure provider in terms of a resource quota

based on certain predefined granularity model. The resource quota specifies the overall

limit in which a platform provider can allocate resources in total to host applications.

We consider such limit as hard SLA constraints and can not be breached unless it is

reconfigured. Raj et al [100] implemented similar SLA constrains through physical level

quality isolation.

14

The third concern is what resource leasing terms are in place for a RSLA between

a platform provider and an infrastructure provider. In our research, we propose two re­

source leasing mechanisms that an infrastructure provider offers to a platform provider.

The first mechanism is on-demand access, where a platform provider can access un­

limited resources that are available from an infrastructure provider at any time. The

second mechanism is reserved resources access, where a platform provider is entitled to

allocate resources within the quota for a period of time specified in the SLA. A platform

provider is subject to pay a penalty fee (or loss of deposit) if the reserved SLA is to

be modified or canceled. Although the on-demand access mechanism is more flexible,

the price for the resources is much higher than the price offered in the reserve-based

mechanism. Moreover, platform providers are allowed to trade their resource quotas

during the reserve-based contract periods to deal with fluctuations in their resource

demands. These resource access mechanisms are referenced to the pricing scheme for

Amazon EC2 [2]. Amazon EC2 offers on-demand virtual machine access and reserved

instance access based on a contract. The purchase of a reserved instance saves up to 75%

compared to on-demand access. Once purchased, the reserved instance agreement can

not be changed or the buyer loses the deposit. It is however possible for a buyer to list

the reserved instance on the Amazon Market Place [7] for sale if a change is required.

Amazon charges a 12% service fee of the total upfront cost for the resale of reserved

instances.

The above underlying assumptions on the PaaS RSLAs allow us to further explore

autonomic resource allocation systems and economic approaches for resource allocation

in cloud computing, which are presented later in this chapter.

15

2.4 Autonomic Resource Allocation in Cloud Systems

2.4.1 Introduction

This section presents a wide spectrum of literature centered at the topic of autonomic

resource allocation in cloud systems. We firstly conduct a survey in the autonomic

computing area, discussing the major aspects of autonomic computing and the general

architecture structure. Autonomic resource allocation models in cloud systems generally

focus on either predictive or reactive approaches. Predictive approaches aim to analyze

recent resource usage patterns to predict the likely pattern in the future, and adjust the

allocation policies accordingly. Reactive approaches primarily target on detecting and

handling non-optimal resource allocation scenarios or SLA violations in a responsive

manner. We study both the predictive and reactive approaches for autonomic cloud

resource management in the literature.

2.4.2 Autonomic Systems

The concept of autonomic computing was first introduced by Paul Horn, IBM’s senior

vice president of research in March 2001 in a key note address to the National Academy

of Engineers at Harvard University [73]. Autonomic Computing advocates a system

that is capable of self-managing without human intervention [73]. It was inspired by

biology where for example the autonomic nervous system is responsible for regulating

key involuntary functions of the body including heart, muscle and gland activities. In

an autonomic system, human operators only need to issue high level guidelines which

can be interpreted and executed effectively. In cloud computing, the major feature of

Autonomic Systems is self-management and this consists of four major function areas:

self-configuration, self-optimization, self-healing and self-protection and are discussed in

detail in [73] and [67].

• Self-configuration is concerned with automatic configuration of system components

16

to adapt to changes in the environment or deployment of new components while

maintaining a fully functional system. The autonomic system should be able to

modify the existing configuration without human intervention to meet the new

requirements.

• Self-optimization is concerned with efficient allocation of system resources to meet

user requirements with minimum human intervention. A system should have the

ability to autonomously adapt itself to a new event that would cause it to operate

at sub-optimal levels. This should be done by automatically performing a set of

operations to restore the system to an optimal state.

• Self-healing requires an autonomic system to automatically detect potential failures

or problematic operations and recover from certain failures. Detection of potential

failures can be done through predictive or proactive methods while recovery from

failures requires the system to perform three actions. First is to responsively

identify the failed parts or systems, second is to diagnose the cause of the failure

and third is to call a recovery function to automatically restore the system to a

healthy state.

• Self-protection refers to the ability of the system to automatically ensure it is less

vulnerable to malicious attacks without the human effort. An autonomic system

must constantly monitor its security weaknesses and prevent any potential threats

that could undermine the current security level.

The function areas mentioned can be further extended to be more domain and appli­

cation specific [114] and other examples of self- areas of research include adaptive client-

server communication [19,84,90], work load adaptive services [22] and self-managing

storage [88].

The general architectural structure of an autonomic system comprises the Monitor­

ing, Analysis, Planning, Execution and Knowledge components (MAPE-K) which was

17

Fig. 2.1: IBM’s MAPEK construct extracted from [C5]

first introduced by IBM in [65] and also discussed further in [29]. The MAPE-K construct

is a constant loop within an autonomic system during the self-management process and

each ci-spect is briefly discussed below and illustrated in Figure 2.1 extracted from [65].

• The Monitoring component constantly gathers information in the operating envi­

ronment and selectively chooses relevant information with highlights on particular

issues. Different metrics can be measured such as hardware metrics or operating

sy.stem metrics and examples of the information that is monitored includes system

status e.g. CPU load, offered resources and throughput. The monitoring compo­

nent determines symptoms that need to be analyzed by aggregating, correlating

and filtering the information and once a symptom is identified, this information is

forwarded to the Analysis component for further processing. Collectd [3] and Na-

gios [46] are examples of tools that can be used for monitoring computer systems.

• The Analysis component analyzes the information passed to it from the Monitoring

component and has mechanisms to correlate and model complex scenarios. This

component uses predetermined pattern recognition techniciues to quickly identify

18

arising issues drawn from the monitoring data then passes the issues to the Plan­

ning component to plan for actions. Other techniques for modeling complex sce­

narios include parametric models such as regression models investigated in [80,101]

and performance models e.g. queuing theory based models in [18,95,96].

• The Planning component compiles the best set of actions to address the raised

issues from the Analysis component. The planning stage serves as a solution

center which can quickly identify an optimal solution for a problem and uses policy

information to execute its work [9,82]. Two common methods for planning and

optimizing system performance are by searching in continuous space or searching

in discrete space [59]. The identified solution is then forwarded to the Execution

component.

• The Execution component is responsible for implementing the solution it receives

from the Planning component. This component has the predefined instructions

to perform according to the guidelines specified in the solution delivered from

the planning component. An example is where controllers were used in [8,71] to

maintain the VM utilization at a particular percentage.

• The Knowledge component mediates the above four components during the auto­

nomic life cycle. It constantly accumulates knowledge from the on-going system

operations and can be queried by any component at different stages of autonomic

management. This knowledge component can also accept high level guidelines

from human operators.

Biology inspired autonomic computing has been dominated by wider computer sci­

ence areas, from ubiquitous computing to large scale distributed systems such as grids

and clusters [64]. These areas that strive to bring the feature of autonomicity face

common challenges such as state-flapping, performance evaluation and development of

robust software engineering architecture [64]. State-flapping is where the optimal op-

19

eration of the managed element is diminished by oscillation between states or policies.

Performance evaluation refers to measuring how well an autonomic system performs, and

it usually yields to other priorities such as the ability of a system to meet the given SLA.

The ability to carry out robust software engineering to allow interoperability between

autonomic systems is another challenge in the area of autonomic computing.

Autonomic computing is a necessary aspect to build self-managing networks that can

perform resource sharing function efficiently and effectively. This section has introduced

autonomic computing, discussed functional areas, architecture structure and current

research.

2.4.3 Predictive Approaches

Predicting resource demands is a key issue in cloud resource management and it is not

an easy task for enterprises to forecast and determine their future requirements for a

resource [75]. Many autonomic management systems for the cloud employ the predictive

approaches to understand how much resources are likely to be required in the next period,

and have shown promising prediction accuracy based on experimentation. We introduce

several important works on cloud resource prediction in this section.

Islam et al [66] introduced an empirical model for predicting resource demands in the

cloud. The motivation of their work comes from the problem of the delays in starting

new virtual instances in the cloud on demand. By predicting the demand and making

an allocation in advance, they are able to provision the virtual machines without lags.

Their approach used both the Error Correction Neural Network and Linear Regression

for resource prediction, which are common machine learning techniques in time-series

analysis. The evaluation of the prediction approach is based on firstly using workload

generator implemented under the Transaction Processing Performance Council - Web

(TPC-W) benchmarking specification to generate demands, and secondly, using histori­

cal data to train the prediction system. Their results show that Neural Network model

with sliding window technique demonstrates superior prediction accuracy compared to

20

Linear Regression. Islam’s work is limited to predicting resource demands in the cloud,

but did not consider how certain prediction errors can be managed by a cloud resource

allocation system.

Gong et al [61] introduced the PRESS prediction approach for forecasting cloud

resource usages in order to avoid over-provisioning and under-provisioning scenarios.

The PRESS approach targets on elastically adjusting the resource usage cap assigned

to each virtual instance according to a prediction. In such case, the allocation for the

running applications does not result in resource waste or costly penalty due to SLA

violations. A prediction model based on two types of workloads are implemented in

PRESS. For the first type where the workloads show repeating patterns, they employ a

pattern recognition technique to identify signatures from historical resource usage and

make a prediction. For the second type for applications without repeating patterns, they

use a discrete-time Markov chain with a finite number of states to build a short-term

prediction. The outcome of a prediction for the second type suggests a new system

state specifying a range of resource demand values (e.g. 10 to 20). The evaluation of

PRESS is based on the data generated by a benchmarking system called RUBiS and the

traces from Google clusters. The results showed that PRESS outperformed the other

prediction techniques (such as moving average and auto-correlation [61]) in terms of the

reduction in SLA violations, reduction in wasted resources and prediction accuracy.

Wu et al revealed a two-period reservation mechanism for IT resources to handle

bursts in demand [128]. This is a coordinated approach for predicting resource demands

where a broker was introduced to accept the prediction of resource demands from the

resource consumers. The resource consumers submits the prediction in the first period,

and pays a price at the second period for the actual resource consumption. Resource

over-consumption and under-consumption is charged at a reduced cost and this approach

is analogical to social insurance. One key issue to note however, is that this approach is

based on a probability that users would need resources in period 2 but this probability is

an unstable factor which can be difficult for the coordinator to manage. Wu’s work was

21

evaluated empirically by [105] and the evaluation suggested that honesty is an important

factor for both the resource users and coordinator where an increased level of honesty

can make both users and coordinators profitable and reduce costs. Rirther investigation

by Rogers in [106] extended the simulation so that the market underwent a period of

high or low availability simulating non uniform variations. This was to investigate how

the coordinator and users behave under such conditions and results show that there is an

optimum honesty that occurs when there is no surplus or deficit of resource purchased

by the coordinator.

Caron et al addressed the resource allocation problem from the point of resource

scaling and used a pattern matching technique for forecasting grid and cloud computing

on-demand resources [35]. This approach is based on observing similar patterns in the

historical set to predict the future. The prediction algorithm is based on the modification

of Knuth-Morris-Pratt (KMP) which is an algorithm used for pattern matching. The

results from their research showed the prediction is good but unstable and can yield

high prediction errors in certain data sets. Caron’s work did not include a method by

which the prediction errors can be handled. England et al presented a resource leasing

policy for on-demand computing [45]. This work discovered a relationship between the

number of leased resources and the optimal costs and evaluation showed that under

significantly fluctuating demands, resource over-provisioning delivers better results than

under-provisioning. Doyle in [40] presents a model based utility resource management

solution by using coordinated provisioning of memory and storage resources. In order

to predict the value of candidate resource allotments under changing load conditions he

used in internal models of service behavior.

In [70] the authors present a solution to model and predict cloud VM demands using a

temporal data mining system called ASAP (A Self-Adaptive Prediction System). A cloud

prediction cost algorithm is proposed to encode the constraints and cost to the cloud

and also guide the training of the prediction algorithms. Results using historical IBM

data show that use of ASAP significantly improves the cloud service quality. Genetic

22

programming and fuzzy logic theory were used by Andrzej ak et al in [13] to predict the

resource usage. The prediction is based on the scenario when resources are scarce, non­

stationary and expensive to obtain and the prediction algorithm based on GA and fuzzy

logic showed better accuracy than other non-linear techniques such as decision trees.

Forecasting how much resources are required in future also enables efficient energy

management and Buyya studied the issue of energy efficient management of cloud re­

sources [31]. Buyya presented the energy saving trade-offs by reducing the number of

active cloud resources and the potential of SLA violations. The reduced quantity of

active cloud resources improves resource utilization efficiency however increases the like­

lihood of SLA violation for not being able to cope with the resource demands. Buyya’s

work showed intriguing evidence of a balance for resource management efficiency, how­

ever this work did not discuss the mechanism for dealing with SLA violations. Almeida

in [10] investigates two issues, namely the short term resource allocation problem and

long term capacity planning problem (forecasting). They propose an optimization model

to identify the optimal resource allocation by satisfying the customers QoS constraints

while maximizing the provider’s revenues and minimizing resource usage cost.

The autonomic resource allocation systems in the cloud that focus on predictive al­

gorithms have the following advantages. The first advantage is in budget monitoring and

planning, making the system owners aware of the current and future operation costs.

The second advantage is in resource provisioning speed, allowing more instant access to

the resources that have been prepared and allocated in advance. The third advantage is

in mitigating the problem of resource over-provisioning and under-provisioning by elasti­

cally adjusting the resource usage cap. However, an autonomic system that solely relies

on predictive approach for managing resource allocation in cloud can not operate at an

optimal state [20]. The prediction errors that exist in almost every prediction system

must be further monitored and corrected by the other components of the autonomic

systems, especially those systems having hard SLA constrains [100]. In our research, the

resource management system in the platform providers can not rely on the predictive

23

methods for allocating resources from infrastructure providers to host applications and

services. In an under-provisioning scenario, the platform providers can not access addi­

tional resources to overcome the unfulfilled demands unless the resource usage limit is

reconfigured. Therefore resource management system must be capable of reactive ad­

justment of its resource usage cap, regardless of expected or unexpected fluctuations in

resource demands, in order to maintain the normal platform services. We fully discuss

the reactive approaches in the next section.

2.4.4 Reactive Approaches

According to Patel et al [94], cloud services are subject to load fluctuations and these

fluctuations are unpredictable and dramatic. Unexpected load on the cloud services

may result in significant degradation in service quality (sometimes almost equivalent to

rejection), poor resource utilization or SLA violations. In this section we cover the area

in which a reactive approach is taken to manage resource allocation in cloud systems

under unpredictable demands.

Eyraud-Dubois et al [48] proposed VM migration based on bin-packing algorithm

and VM consolidation based on ^-asymptotic approximation algorithm to ensure each

physical machine is not overloaded hence the SLA for each virtual machine is sufficiently

met. Meanwhile, this approach aims to deliver good resource utilization efficiency. Their

solution in handling SLA violations is attained by performing a fast and accurate mi­

gration to return a VM to a valid state therefore they can minimize the time spent in

SLA violations. Their work was based on one resource type scenario (i.e. CPU usage)

but they discussed the possibility of extending their model to a multi-resource model.

Shen et al [112] proposed the CloudScale approach in handling prediction errors

result from their prediction system PRESS [61]. CloudScale implements the elasticity

of resource scaling based on two mechanisms, online adaptive padding and fast under­

estimation correction. The online adaptive padding technique reserves a resource cap

over the actual demand slightly to deal with bursts in demand. And the fast under-

24

estimation correction technique raises the resource cap by a small increment each time

until the SLA goals are attained. In addition, in case of a resource conflict where a

physical server is completely overloaded, CloudScale offers a solution to migrate virtual

machines from the overloaded server to an idle server.

Emeakaroha et al [43] proposed a unique solution called DeSVi towards the au­

tonomic detection of SLA violations in cloud infrastructures. DeSVi is an laaS level

architecture implemented for the infrastructure providers, and consists of three compo­

nents, the application deployer, the automated emulation framework and the monitor.

The application deployer manages application level scheduling and the automated emu­

lation framework serves as the virtualized infrastructure manager. The monitor which is

based on LoM2HiS [42] is core to detecting SLA violations. The monitor uses a two-step

mechanism. Firstly the monitor adopts a rule-based mapping to match hardware level

QoS parameters against user level QoS parameters, in order to quantify the threshold

of a potential SLA violation. Secondly the monitor employs the open source monitor­

ing agent named Ganlia to produce hardware level metrics in XML format and then

uses the SAX XML parser to extract relevant information [43]. The information ex­

tracted from the monitoring agent is compared to the SLA violation threshold. In case

SLA violation threats are detected, it notifies the knowledge component for preventative

actions. Emeakaroha et al highlighted the tradeoffs between the cost of measurement

intervals and cost of failing to detect SLA violations. They concluded that the bal­

ance between the two costs is application dependent. Emeakaroha’s work emphasizes

the aspect of an infrastructure provider, which is usually considered to own abundant

hardware resources, therefore SLA violations can always be avoided by allocating addi­

tional resources to their clients. For a platform provider however, it must consider its

own limit in resource acquisition in order to provision its services. Thus, in order for a

platform provider to prevent SLA violations (AP-SLA) for the services it provides to the

application providers, it has to take additional actions to reconfigure its SLA (IP-SLA)

signed with the infrastructure providers.

25

Research has also been done by Brandic et al in [27] and [74], which discuss the impor­

tance of self-manageable cloud services in the conditions of SLA violations. In Brandic’s

work, a full MAPE-K autonomic model is projected to a proposed cloud architecture.

Brandic proposed a negotiation bootstrapping and service mediation approach along the

self-management procedure. In [113], a complex negotiation architecture for distributing

resources through brokers is proposed. The agents can start multiple concurrent negoti­

ation with the brokers and the article proposed a negotiation algorithm that can select

the best offer from the market. Anandasivam in [11] introduced a heuristic approach for

capacity control in clouds. In this case resource providers are assumed to have limited

capacity but have to maximize the revenue through price setting. This work compared

a set of price setting policies for different resource demands. Yeo in [130] proposed Li-

braSLA framework for cluster computing based admission control policies to manage

SLAs, handle penalties and enhance utilities. Given the parameters such as deadline,

budget and penalty, LibraSLA calculates the expected utility value for each job and

therefore maximizes the revenue through scheduling.

A body of research on reactive approaches in autonomic clouds has been focusing on

the management of virtual machines across physical servers. These works only offer so­

lutions to automatically detect SLA violations at the VM level and resolve the violations

through adjustment of VM resource usage cap or VM migration. But these approaches

cannot fully address the resource allocation issues in the PaaS context, where we consider

different platform providers operating on the global cloud infrastructure with potentially

hundreds of thousands of clusters. The platform providers in this case must manage both

AP-SLAs and IP-SLAs at the same time. We assume the platform providers deliver the

best effort to avoid quality degradation in their services and address the resource al­

location issues through IP-SLA reconfiguration. The IP-SLA reconfiguration allows a

platform provider to reset the resource usage limit, or to cancel the current SLA and

start a new SLA on a different set of terms. However, such reconfiguration may be con­

sidered as unilaterall}'^ violating the SLA by a platform provider. Therefore the platform

26

provider is liable to pay a penalty fee to the infrastructure provider. A similar scenario

is discussed in [78] where the work suggested that the resource consumer must pay for

increasing the resource quota and such mechanism is called elasticity and fairness during

performance isolation. The work in [79] thoroughly discusses the term elasticity which

is the ability of systems to dynamically scale the resources provided to clients depending

on their work load. Elasticity is a key benefit of cloud computing and the research pro­

vides a definition of resource elasticity based on the context of virtualization and cloud

computing. The research defines elasticity of execution platforms as consisting of the

temporal and quantitative properties of runtime resource provisioning and unprovision­

ing, performed by the execution platform; execution platform elasticity depends on the

state of the platform and on the state of the platform-hosted applications.

Nonetheless, many of the works discussed in this section are very important and

related to our research, because they provide essential references to the construct of

autonomic clouds at the laaS level. However, we can not directly apply these solutions to

forming an elastic and self-manageable PaaS cloud because of the scale and complexity

in the PaaS environment. The solution for this problem space has to come from a

research body where models for global resource management are established. According

to Ferguson et al [51], resource allocation in large-scale distributed systems requires the

incorporation of modern economics, through which the performance of applications may

potentially be altered by trading one resource for another. In the next section we fully

compare various economic models that are used in resource allocation for cloud and grid

systems.

27

2.5 Economic Approaches for Allocating Resources in Cloud

and Grid Systems

2.5.1 Introduction

In the previous sections, we have pictured a resource provisioning environment where the

platform providers must manage AP-SLAs and IP-SLAs. Our research focuses on inves­

tigating a plausible solution for a platform provider to self-manage resource allocation,

so that the resource quota acquired from the IP-SLAs can sufficiently and efficiently

support the services described in the AP-SLAs. The approaches studied in the previous

sections did not fully consider the application of global resource management, which

enables platform providers to inter-change their resource quotas. By enabling collabo­

rations, the platform providers may have the opportunity to strengthen the elasticity of

their services, ensuring that the QoS delivered by their services is not undermined by

sudden bursts in demand [32].

The basic principle of the global resource management among platform providers is

that some platform providers may have idle resources that the others need at a par­

ticular time, and can be borrowed temporarily upon certain conditions. Such unused

resources to be shared are called Spot market resources [120]. Early examples of Spot

market resource sharing models are Spawn [123] and Popcorn market [102]. In contrast

to Spot market resources, the majority of resources that the platform providers have

reserved from the infrastructure providers through IP-SLAs are called the Future mar­

ket resources [120]. The management of global resource allocation is a non-trivial issue.

The resource sharing mechanism must be well regulated to ensure fairness and efficiency.

To achieve this goal, computational economy frameworks have been widely proposed to

grid computing [30] and later adopted by cloud computing [57].

The economic models that are studied for resource allocation problems can generally

be separated into two categories, which are price-based and non-price based [98]. Price-

based models are commonly referred to as market-oriented models and the resource

28

allocation using these models is driven by demand and supply [55]. The exchange of

resources is mediated by the real world currency such that each resource has a price

at certain time. As a result, buying and selling resources will cost and gain money

respectively. There are several types of price-based models and they mainly include

commodity market and auctions [98]. Non-price based models do not use monetary

measures in exchanging resources, instead there are various incentive measures such as

credits, tokens or just a generic utility expression [30]. Game-theoretical approaches

where autonomous agents interact to bid for an outcome of resource allocation are a

dominant area of study for non-price based models [98]. Agents which are involved in

negotiating resource allocation are commonly assumed to be selfish and non-cooperative,

and each agent tries to maximize its own utility. Another area of study in non-price based

models is cooperative allocation approach [98]. In the cooperative allocation models, the

participants are assumed to be non-selfish or less-selfish. They collaborate to allocate

resources in a goal to maximize overall utility. These models are also referred to as social

models [36]. We introduce each of these economic models in this section and identify

potential solutions for addressing resource allocation challenges in the PaaS context.

2.5.2 Commodity Market

Commodity market is a popular price-based economic model for allocating computa­

tional resources. In a commodity market, consumers and producers of resources transact

based on a market price, which is analyzed by a pricing method. The market price is

believed to reflect the demand and supply equilibrium of a particular resource in the

market [126]. The information about the demand and supply is aggregated from all the

prices at which the consumers and producers are willing to buy and sell respectively,

and the quantities to be asked or offered at such prices [125].

An important aspect of using the commodity market as an approach to systematically

allocate resources in large scale distributed systems is the study of the pricing algorithms.

A popular stream of this study is based on the adaptation of Smale’s method [17,115,126].

29

The Smale’s method uses multivariable calculus aiming to produce a trajectory for the

prices to follow, and it relies on polling the entire market for aggregate supply and

demand repeatedly to obtain the partial derivatives of the excess demand functions [126].

The other pricing method involves the tatonnement process [37,126]. With tdtonnement,

each individual price is raised or lowered according to whether that commodity’s excess

demand is positive or negative, and it is an iterative process [126].

The advantage of a commodity market for resource allocation, as compared to a Vick­

rey auction, is that it shows better price stability and resource utilization efficiency [126].

However according to Wolski [125], a strong discipline in the commodity markets dictates

there must be no single participant in the market representing a large enough market

share to affect the prices unilaterally. Since we do not want to force this assumption into

our study of PaaS resource allocation, we do not consider the use of commodity markets

for our resource allocation problems.

2.5.3 Auctions

In contrast to commodity markets, auction-based mechanisms for resource allocation

problems are believed easier to implement [125]. Auctions are conducted by a single

auctioneer, which has the authority to gather bids and offers on each resource listed and

enforce the commitment to each auction result. There are many auction models available,

most of which are derived from the real world auctions. They include English auction,

first-price sealed-bid auction, Dutch auction, Vickrey auction and double auction [30].

In an English auction, bidders make open bids for the resource announced and only

the highest bidder wins [30]. In this auction model, bidders know about each others’ bids

and compete against each other by announcing a higher bid at each time until no bidders

are willing to raise the bids further. English auctions usually result in the overvalued

resource sold to the winning bidder therefore this approach favors the resource sellers

over the buyers [62].

The first-price sealed-bid auction is similar to the English auction except that each

30

bidder only makes one bid for each auction and they do not know about each others’

bids [30]. Although this approach reduces the competition comparing to the English

auction, it still favors the resource sellers as the buyers still have to compete for the

highest bid [62].

In a Dutch auction, the auctioneer starts at a high price and lower the price at each

time until the price is accepted by the first taker [30]. This auction model allows the

auctioned resource to be sold to match the demand. In comparison, English auctions

start at a low price and Dutch auctions start at a high price. Because Dutch auctions

better reflect the market demands, this approach favors the resource buyers over the

sellers.

In a Vickrey auction, each bidder submits one bid without knowing the others’ bids,

and the highest bidder wins the resource at the price of the second highest bidder [30].

Therefore this approach favors the resource buyers over the sellers [62].

The above auction models are all one-to-many auction models and they favor either

the buyers or the sellers [62], therefore they are less attractive solutions for addressing

resource allocation problems. Double auction models however, implement a many-to-

many relationship and favor neither of the buyers or sellers [62]. In a double auction,

many sellers make offers of their resources at different prices and many buyers make bids

for the resources. The price for each auction is determined by a double auction pricing

method based on the prices that both sides submitted [62]. Double auctions can be of

two types and they are Continuous Double Auctions (CDA) and Clearing House Double

Auction. In the Clearing House Auctions, the auctions have a predefined time frame

when the participants can submit their offers. In the CDAs, the offers are submitted

continuously until a match between an ask and a bid is achieved, or until the auction is

canceled [99].

In double auctions, the bidding strategies taken by the participants (also referred to

as agents) play an important role [122]. According to Vytelingum et al [122], there is

no known dominant strategy. Thus, many strategies have been developed as heuristic-

31

based, decision-making algorithms that attempt to best exploit the observable market

information available to the agents in order to maximize their profits. Zero-Intelligence

(ZI) bidding strategy is one of the most referenced bidding strategies in the literature [60].

A ZI agent makes an uninformed decision regardless of the observed market information.

In particular, a ZI buyer or seller submits an offer drawn from a uniform distribution in

a price range allowed in the market. The work in [60] showed CD As populated by these

non-intelligent trading agents were still highly efficient, leading to a conclusion that the

high market efficiency was principally due to the structure of the market mechanism

rather than how intelligent the agents were. However, Cliff [38] showed that at least a

minimal intelligence is necessary to achieve efficiency that is comparable to that of CDAs

with human traders. The Zero-Intelligence Plus(ZIP) strategy was developed and was

shown to considerably outperform the ZI strategy. ZIP distinguishes itself from ZI as it

learns to increase or decrease the profit margin based on market information. Both ZI

and ZIP strategies are commonly used as benchmarks for comparison such as in [63,122].

The double auction resource allocation approach seems to be a good candidate for

addressing the problems in the PaaS context. Through the double auction mechanism,

the platform providers which have over-provisioned resources can sell while the platform

providers which have under-provisioned resources can buy. The sellers are compensated

for the resources shared to the buyers while achieve a better resource utilization efficiency.

The buyers pay considerably less money to secure resources needed in the short term to

meet their demands than having to pay costly penalties to the infrastructure providers

for a full SLA reconfiguration. Therefore a Spot market based on double auction is

formed to enable fair and efficient resource management in PaaS. The drawbacks of

using double auction include the price instability such that the platform providers may

have limited budget in purchasing resources while the market price is high, and the

centralized protocol where all platform providers must submit their bids to the central

auctioneer [30].

32

2.5.4 Game Theoretical Approaches

The use of a resource market to distribute resources among platform providers is a poten­

tial approach to address our problems while the use of non-price based mechanisms are

discussed in this section. It is common for a resource sharing distributed system to en­

able resource distribution among the individual entities through bilateral or multi-party

negotiations without a monetary system [14,124]. In such resource sharing systems, each

entity often makes tradeoffs to degrade the quality of certain resources while upgrade the

quality of other resources [50]. The tradeoffs approach is sometimes referred to as the

bartering approach meaning that resources are exchanged without the use of money [30].

The works in this area often borrow the notion of autonomous agents from the field of

game theory, where they emphasize on the construction of a negotiation protocol and the

study of agent behaviors [69]. The outcome of the negotiations using game theoretical

approaches is considered a Nash Equilibrium [14,124], in which no agent can further

improve its utility without decreasing the other agents’ utility.

The negotiation protocol confines the rules which each agent must follow during nego­

tiation, and they often involves the initiation, negotiation and commitment phases [93].

In the initiation phase, agents can self-discover resources and explore their interests in

them. In the negotiation phase, agents often have to follow a turn based mechanism

where one makes a proposal while the other makes a counter proposal until an overlap

between two proposals is found hence an agreement is made. In the commitment phase,

the agents which have agreed upon certain resource sharing terms continue on to execute

these terms. Although the entire process sometimes requires a centralized coordination,

agents are often designed to a high degree of autonomy that they can self-manage without

external assistance. The use of this approach benefits from greater scalability because the

process is not subject to centralized control. FIFA [91] is an example of agent communi­

cation standard, which also supports agent management and agent-software integration.

In FIFA framework, agents can communicate via standardized communication acts (e.g.

33

request, propose, agree, reject, etc), which specify the structure of messages. As well

the FIPA communication framework offers a number of standardized negotiation proto­

cols, from simple protocols such as FIPA-request and FIPA-query to complex protocols

such as FIPA-contract-net protocol and FIPA-Auction-English protocol. FIPA does not

limit the protocols to preexisting protocols in the specification, but requires any protocol

implemented using the standardized protocols conform to the specification.

The design and implementation of agent behaviors are a much more challenging

task. Many of the agent implementations inherit from the Believe-Desire-Intention

(BDI) model proposed in Artificial Intelligence (AI) [127]. The agents in the field of

game theoretical study are often thought to be selfish and non-cooperative [69]. Firstly

they try to maximize their own individual utility by making proposals with more gains

and less losses. Secondly, they are not willing to reveal their own information or nego­

tiation objectives thus they have to make assumptions about each other based on their

rationality [49]. Thirdly, they are less willing to concede during the negotiation. As a

result, computational complexity and communication overheads are common challenges

in game theoretical approaches [69]. The assumptions the agents make on the others

may form a very large problem space and the computation becomes a heavy burden on

the executing platform, and the unbounded proposal exchanges and high rate of abor­

tion in negotiation increase the communication overheads significantly [83]. Although

many researches in this area have tried to eliminate these issues by designing more in­

telligent agents [68] and imposing time constrains [77] on the negotiation, the results of

the negotiation may lead to a less optimal outcome.

Nonetheless, the PaaS resource sharing problems can potentially be addressed by

deploying agents we discussed in this area to negotiate resource allocation. Agents can

self-explore available resources and make tradeoffs to negotiate a resource allocation bi­

laterally [50]. By leveraging the tradeoffs, the platform providers have an opportunity to

collaborate based on self-interests to tackle unpredictable resource demands. The draw­

back of this approach however is the potential latency resulting from the communication

34

and computational overheads.

2.5.5 Social Approaches

To address the problem of complexity in resource allocation games, cooperative agents

are studied and the results showed that cooperative agents are more time efficient [76].

In contrast to non-cooperative agents, cooperative agents are less selfish and prioritize

the maximization of social welfare. Meanwhile they are more willing to share informa­

tion with each other. By gaining perfect information, the agents can eliminate a large

computational burden used for assumptions calculations. In addition they are more will­

ing to make a concession in the conflicts of interests and they use heuristic approaches

for negotiation, which aim to produce a good enough outcome rather than an optimal

outcome [69]. As a result, the negotiation has a better chance for reaching an agreement

and can provide better response time. This section introduces the social approaches,

where the environment is populated with inter-related cooperative agents, for resource

allocation.

In social-based resource allocation systems, agents establish longer relationships with

each other to form a resource sharing society, and collectively handle unpredictable

resource demands by contributing some of their idle resources and accessing additional

resources urgently required from the resource pool offered in the community [97]. Such

sharing mechanism is still a form of tradeoffs [50] but with less selfishness. However the

social approaches face two common challenges, which are incentive design, and trust and

risk management [36].

A good incentive design does not only provide motivations for agents to join and

remain in the society, but also ensure that the resource sharing is fair and each agent is

compensated for the contribution it makes [36]. Credits, tokens, reputation and other

social incentives have been proposed in [36] to enable a social based cloud computing

system to be shared by users. In the PaaS resource sharing context, each platform

provider starts with an endowment of resources, and may shift to a completely new

35

resource state after making a tradeoff with another platform provider in the social group.

To capture the differences in the resource states, the Cobb-Douglas function, which is

commonly used as a utility fuction in Microeconomics [85], can serve to represent the

utility of a platform provider. Therefore we assume the incentive for a platform provider

to share resources using social based approach is to achieve no less utility through a

tradeoff in the community.

The trust and risk management is a very tricky problem in social approaches [36].

The fundamental aspect of a social relationship is based on honesty, where each agent

must fully trust each other and assumes every agent would truthfully reveal its own

information. The risk associated with such trust is that some agents in the social group

may not play by the rules and gain unfair advantages in resource sharing by dishonestly

producing fake information. Therefore a trust manager must be implemented in every

social based system to closely monitor if each agent is honest, and to alert the community

if a dishonest agent is discovered. The trust manager can be implemented in different

ways. The first way is to use a reputation system [104], where each agent is given an

initial rating (e.g. 1000). When an agent is found producing fake information (either

by random inspection or peer report), the rating is deducted according to the severity

of the incidence. An agent which has poor rating would be very likely rejected in the

community when requesting resource shares. Another approach for trust manager imple­

mentation is through information validation. When two agents are interested in social

resource tradeoffs, either agent is able to validate the information produced by the other

with the trust manager. If the validation does not pass, an agent immediately aborts

the negotiation and reports to the community. The agent which produced untruthful

information can be ejected from the social group. The first approach is more efficient

that it requires less communication however it does not well detect misbehavior in short

time. The second approach is easier to implement and can immediately determine a

trust breach, but it requires each agent to verify information with each other in every

resource tradeoffs.

36

Despite the challenges discussed above, social approaches are still a very attractive

solution for addressing resource provisioning problems in the PaaS context. We summa­

rize all the candidates for addressing our problems and suggest the best solution in the

next section.

2.5.6 Comparison

In the previous sections, we have identified three potential candidates for addressing the

PaaS resource allocation problems. The first candidate is the double auction mechanism,

which is a market-oriented solution. The second candidate is the game theoretical ap­

proach, which is a non-price based solution. The third candidate is the social approach,

which is also non-price based. We fully compare all three candidates based on a num­

ber of important characteristics and recommend the best solution for the thesis. The

comparison is illustrated in table 2.1.

Firstly we look at the incentive design. We believe all three candidates are well

motivated. In a double auction, the platform providers can buy or sell resources at a

price, which is based on the bidding information produced by the market of buyers and

sellers [30]. In both game theory and social approaches, utility functions are common

form to specify if one state of resource allocation for a platform provider is better than

another [85].

Secondly all candidates for resource allocation have different objectives. The allo­

cation objective for a double auction is the market equilibrium [122], where the price

for a particular resource correctly reflects the supply and demand of the current mar­

ket. Meanwhile, game theoretical approaches and social approaches have the opposite

allocation objectives [69]. In game theoretical approaches, non-cooperative agents are

interested in maximizing individual utilities. On the contrary, cooperative agents’s goal

in social approaches is to maximize the social welfare. The allocation outcome using

the game theoretical approaches is also an equilibrium called Nash equilibrium [14,124],

such that each agent has played its best response and can not achieve a better utility

37

Table 2.1: Model Comparison for PaaS Resource Allocation

C haracter ist ics Double auction Game theory Social

Incentives Price Utility Utility/Social rewards

Allocation objec­

tive

Market equilibrium Maximize individ­

ual gains

Maximize social utility

Architecture Centralized Decentralized Distributed and central­

ized coordination

Computational

and communica­
tion complexity

Minimized High overheads Moderate

Scalablility Limited Flexible Flexible

Resource discov- Auctioneer Self-explore /Aided- Pre-existing social rela-

ery explore tions

Limitations Budget Negotiation over­

heads

Trust and security

38

without decreasing the other agents’ utility. The best response is a strategy devised by

an agent that is rational and does not have complete information. The chosen strategy

is based on making rational assumptions about the other agents’ actions. The resource

allocation outcome in social approaches is not optimal because of the heuristic allocation

method [69]. Often the platform providers must consider the cost of SLA penalty for not

meeting the resource requirements, therefore an optimal allocation in the Spot economy

becomes less important.

Thirdly we investigate the resource sharing architecture in the Spot economy for

the three candidates. Double auction is a centralized resource allocation approach that

the entire process is conducted by a single auctioneer. Therefore it is a potential single

point of failure and may have scalability issues. In game theory, all agents are highly au­

tonomous and are allowed to roam freely to discover available resources to negotiate for.

Therefore it is a highly decentralized architecture in nature that is not subject to single

point of failure. In social systems, due to the fact that all agents share resources based

on mutual trust, which can not be guaranteed unless a commonly agreed authority called

trust manager is implemented. Therefore despite the agents in the social approaches can

still autonomously discover resources in a decentralized manner, they must regularly co­

ordinate with the trust manager to ensure the opponent is not deceitful. Therefore the

social approaches are neither fully decentralized nor fully centralized architecture.

Fourthly we examine the computational and communication complexity in the three

candidates. The complexity in double auctions is minimized because in each auction,

only one bid is placed by each participant. However, if there are multiple resource types

in the PaaS granularity, each resource type requires an auction. This can potentially be

a heavy burden for the auctioneer. The complexity for game theoretical approaches is

high [76], because the agents are not willing to cooperate during the negotiations. Time

delays caused in such systems are usually higher than the social approaches, where agents

are more cooperative. Still cooperative agents have to heuristically seek an allocation

outcome that are acceptable and the negotiation process is subject to the coordination

39

with the trust manager. Therefore we believe the social approaches have a moderate

complexity, and is comparable to double auctions.

The next characteristic to examine is the scalability. Due to the centralized nature

of double auction systems, auction based approaches have limited scalability. On the

contrary, game theoretical systems and social systems have greater scalability because of

their decentralized negotiation process. The scalability challenge for social approaches is

in the trust manager which must monitor the honesty for the entire community. However

we believe the impact of the trust manager on the scalability characteristic for the social

approaches is not significant.

Furthermore we compare the resource discovery methods used by three candidates.

In double auctions, all resources on auctions are announced by the auctioneer therefore

it is the only component in the system for resource discovery. In game theory, agents are

capable of self-exploring resources to be negotiated for, or can sometimes be assisted by

resource brokers. In social approaches, agents can only share resources in pre-existing

social relationships. The establishment of social relationships requires additional steps,

which include firstly to apply for a social membership and secondly to introduce the new

member to the community. Therefore game theoretical approaches have an advantage

on this characteristic.

Finally we discuss the key limitations that exist in the three candidates. An impor­

tant limitation for double auctions is that some platform providers may have greater

budget constrains, and sometimes may not afford to pay for additional resources in the

auctions if the market demand is high. The key limitation for the game theoretical

approaches is apparently in the negotiation overheads which may cause significant time

delay in resource provisioning. Meanwhile, the limitation in the social approaches is in

the trust and security issues. Social members have to trust each other based on the as­

sumption that no member would exploit the trust relationship to gain unfair advantages

in resource sharing. Also truthfully revealing information may lead to security concerns.

As a result, social approaches require an effective trust manager to protect the common

40

interests of the social members.

In PaaS resource sharing environment, it is important to establish a Spot economy for

the platform providers to share resources that is fair, affordable, responsive and secure.

Based on the characteristics presented and compared above, social approaches are the

best candidate for addressing the resource allocation problems in PaaS. We believe by

introducing a trust manager component in the system, the security can be managed to

protect the social members. In the next section we introduce the Edgeworth Box model

as the negotiation method for the social-based resource sharing in PaaS.

2.6 Edgeworth Box Model

The Irish philosopher Francis Ysidro Edgeworth invented the Edgeworth Box model [41]

which is an economic model for resource allocation between two people over two goods

i.e. it is a means of representing the distribution of resources between the two parties.

His original model was depicted with two axes and this was expanded to a box diagram

by Pareto [92]. Edgeworth Box model has been applied to resource allocation problems

in [50,108]. It is a model naturally designed for resource allocation between two resource

owners and offers a negotiation space in which a different resource allocation outcome

may benefit both. We believe this model is suitable as a negotiation model to be adopted

by the social agents to allocate resources in the Spot economy. We introduced the use

of Cobb-Douglas function as a utility function for a platform provider [85], and it can

be written as U = -f Uy, where cj^and uy are the amount of resource X and Y

respectively. A and B are Cobb-Douglas parameters and they are generally summed

to 1 in Microeconomics [85], such that A + B = 1. Although Edgeworth Box model is

originally proposed in a two resource scenario, it can be further generalized to support

any number of resource types [116]. We discuss the two resource types Edgeworth Box

model.

If we assume two people A and B, each with an initial endowment of goods X and

41

Y, we can construct a box with the length of axes based on the total amount of goods

X and Y both people have. If the view of A is from the bottom left corner and the

view of B is from the top right corner and A has initial endowment of ujx of good X

and ujy of good Y, and B has initial endowment of lox of good X and LOy of good Y

then we can represent the endowment of goods X and Y for A and B hy

and = {u!^,uJy) respectively. The utility function represents the preferences of

the consumer and we can represent the utility function of ^ as Ua{Xa,Ya) where Xa

represents the consumption of good X by ^ and Ya represents the consumption of good

Y by A. The utility function of B is Ub{Xb',Yb) where Xb represents the consumption

of good X hy B and Yb represents the consumption of good Y hy B. The total amount

of good X is given by X = + cOx while the total amount of good Y is given by

r =

An endowment allocation refers to the amount of X or F goods allocated to A and

B and is only valid if it does not exceed the overall total amount of that particular

good. However all points in the Edgeworth box are feasible endowment points. In the

Edgeworth model, an indifference curve represents the family of all consumption plans

with the same utility i.e.in utility terms, all points on the curve are equally satisfactory.

The indifference curves of A are bent outwards i.e. convex to the origin and the larger

the distance between the curve and the origin, the better off A is i.e. the higher the

level of satisfaction of A. Similarly for B, the larger the distance between the curve

and the top right corner, the better off B is i.e. the higher the level of satisfaction of

B. The slope of an indifference curve represents the rate at which the person [A or

B) willingly exchanges one good for another without loss of utility and the Marginal

Rate of Substitution value MRSa,b for A or i? is the absolute value of the slope of the

indifference curve for A or B.

When the two indifference curves belonging to the two people meet at two separate

points, this forms an eye-shaped core which is also called the lens of trade (Figure 2.2).

Any point of allocation within the core will allow both A and B to be better off, which

42

Fig. 2.2: Edgeworth l)ox (figure extracted and modified from [23])

43

Fig. 2.3: The core (figure extracted and niodihed from [23])

means tlie utility score for both people increase by adjusting their allocation from their

initial endowment to anywhere within the dark eye-shaped area illustrated in Figure 2.3.

When discussing the Edgeworth box model, one concept to be discussed is Pareto ef­

ficiency. An equilibrium point exists whenever the indifference curves for the two parties

A and D meet at a tangent and at this equilibrium point, any further adjustments or

negotiations in trade will result in a worse situation for either or both parties. Equilib­

rium points are also known as Pareto efficient points and a Pareto efficient allocation is

one where neither party can be made better off without making the second party worse

off.

A set of pareto efficient points is called a Pareto Set or Contract Curve and this

stretches from the origin of one person to the origin of the other person . This curve

represents all possible mutually advantageous outcomes however the final selected out­

come is dependent on the initial endowment. In the example given using pareto points.

44

a feasible outcome is limited to the section of the curve that falls between the lens, i.e.

the core (see Figure 2.3). The use of pareto points to determine feasible outcomes has

a limitation in that it severely reduces the number of feasible outcomes to only those

located on the core. This implies that use of pareto points will provide a rigid solution

whereas in this thesis, in order to ensure a more flexible solution, the solution space is

expanded to allow any outcome in the contract lens as a feasible solution. A heuristic

based approach such as the Zeuthen concession making strategy [107] can be used to

explore a resource allocation outcome in the contract lens.

This section has discussed the Edgeworth box model as a means of representing

the distribution of resources between the two parties. Pareto optimality has also been

discussed as well as the limitation in using pareto points to provide a flexible resource

allocation solution. This thesis proposes a solution to this limitation to enable a feasible

and flexible resource allocation solution.

2.7 Motivation

High availability systems such as the platform provider in the PaaS model suffer volatile

resource demands as well as high costs in provisioning resources to the clients due to

prediction errors and penalties introduced by SLA violations. Elasticity for the platform

providers when provisioning resources must be provided to realize autonomic resource

management. Such platform services must be able to handle prediction errors in resource

forecasting and must have a reaction mechanism while executing autonomic manage­

ment. The current research literature does not clearly have a full solution to address

these concerns in the PaaS context. This thesis therefore seeks to close this gap by

advocating a social-based economic mechanism based on the Edgeworth Box approach

to allow resource sharing among participating platform providers during the process of

autonomic resource management.

45

Chapter 3

Platform as a Service Resource

Provisioning Model

3.1 Introduction

In the previous chapter, the PaaS resource provisioning context was described and the

research issues w'ere identified along with a proposed solution. To address these issues,

we must firstly model the resource allocation problem in further detail and secondly

apply the proposed solution to the problem model. The objective of this chapter is

to provide a definitive representation of the PaaS model, based on which the problems

in the resource allocation process can be demonstrated. This design is not intended

to be representative of the complete PaaS resource sharing paradigm, but to a certain

extent serves as a self-confined resource allocation context. Such context is primarily

established by stating the various stake holders or participants in the environment, as

well as providing a clear definition of their relationships in terms of resource provisioning

and consumption. This conceptual PaaS model is fundamental for establishing a solution

towards the resource allocation problems.

This chapter is organized into four sections where section one outlines the participants

46

in the PaaS model and how resources are distributed from the physical data centers

to the end users on the edges of the Internet. The second section offers a resource

granularity model so that resources can be quantified during allocation. The third

section presents the resource allocation mechanism including the allocation methods

available to a platform provider and a resource allocation process that is followed by the

participants. The last section demonstrates 5 different scenarios of resource allocation

by a platform provider under such resource allocation context.

3.2 Platform as a Service Constituency

The resource provisioning mechanism in the center of the PaaS model uniquely requires

an active role of a platform provider, which offers the platform environment as a com­

puting utility (analogous to using the electricity). Therefore the participation by the

platform providers in this resource sharing mechanism forms a unique constituency. The

conceptual PaaS model proposed by the thesis draws the PaaS composition by eliciting

the participants and their specific roles. This PaaS model constitutes multiple infras­

tructure providers, multiple platform providers and multiple application providers (or

end users) therefore this number and type of participants is sufficient for investigating

the resource allocation problems in the PaaS context.

3.2.1 Resource Supplier

The infrastructure providers, which operate on large scale physical infrastructures, for

example data centers, are the primary participants in the laaS paradigm and their role

of provisioning hardware resources is inherently adaptable to the PaaS model proposed

by this thesis. The infrastructure providers in the PaaS paradigm also maintain the

ownership of the computer resources, however they also have a particular focus on leasing

the resources to the platform providers. The computer resources are virtualized from a

myriad of physical machines and these virtual instances can be created and manipulated

47

by the platform providers under certain constraints. For instance, the infrastructure

providers in the new context must be aware of the resource quota which is available to

a particular platform provider, before any virtualized resources are provisioned.

Assumption 1: In this model, all the infrastructure providers offer standardized

resource access interface. We do not consider resource heterogeneity and cloud interop-

eratiblity issues in our model. Also, the model assumes that the resource provisioning

by potentially many infrastructure providers has reached a perfect market equilibrium

and the resources are leased to the platform providers at a standard cost. In this sce­

nario, the resource provisioning services provided by all the infrastructure providers are

abstracted as a transparent resource access interface to a pool of unlimited virtualized

physical resources, such that the number of physical machines n ~ oo for the scale of

the context. Therefore an infrastructure provider in our model is indifferent from an­

other and all infrastructure providers can be viewed transparently as a solitary resource

provisioning entity.

The concerns of the resource supplier in the PaaS context are then formalized as

follows. Let P = {pi,P2)P3) •••Pn} be the overall set of physical machines available from

the infrastructure provider I. For each physical machine p,, resources can be virtualized

to operate a set of virtual machines Vt = {vii,Vi2,Vi3, ...Vim}-

3.2.2 Intermediary Resource Provider

A platform provider, which is the indispensable participant in the PaaS paradigm, is

concerned with offering an abstraction of the virtualized physical resources from the

infrastructure provider (see section 3.2.1) as a computational environment to the appli­

cation providers (see section 3.2.3). It therefore serves as an intermediary component

between the resource consumers, i.e. the application providers and the resource provider,

i.e. the infrastructure provider. As shown in figure 3.1, a platform provider firstly ob­

tains access to a virtual instance residing in one of the physical machines owned by the

infrastructure provider. Secondly, the platform provider deploys platform service pack-

48

ages onto the virtual instance. Thirdly, the access to the platform service hosted on the

virtual instance is given to an application provider.

Physical Machine

Virtual Instance

Virtual Instance Access

Platform Service Deployment

Platform Service Access

Platform Provider System

Application Provider System

Fig. 3.1 : Platform Service Access

The operation of the platform services on a virtual instance consumes server re­

sources. The role of the platform provider in this PaaS model is focused on the man­

agement of the resource acquisition from the resource supplier to facilitate the service

demands from the resource consumers. Each application provider has a set of resource

requirements and it varies from time to time. The platform provider gathers all the

resource requirements from its clients, and makes appropriate resource acquisition from

the infrastructure provider. Therefore each platform provider has certain resource limits

to operate its services and these limits can be adjusted under constraints.

Definition 1 Resource Demand: The resource demand is the total present re­

quirement of physical server resources from all the application providers associated with

49

a platform provider, and is denoted by d„.

Definition 2 Resource Quota: The resource quota is the total present access limit

to physical server resources that a platform provider can allocate maximally to the entire

collection of its platform services, and is denoted by qn-

Assumption 2: A platform provider is assumed to understand how much physical

resources needed at present to provide sufficient platform services to its clients. Under

this assumption, the quota of physical resources that a platform provider has access

to can guarantee high availability (e.g. 99.9%) to its clients. Therefore, the resource

volumes can be quantified in the same scale for both acquisition and provisioning, and

that the high availability platform services can be represented as:

Qn ^ dn (3.1)

3.2.3 Resource Consumer

The end consumers of the resource demands are modeled as application providers. De­

spite the fact that the Internet users who are accessing the cloud applications are the

ultimate resource consumers, this thesis does not try to disambiguate this driving force

of the resource demands other than considering them as the clients of the platform

providers. To disambiguate application providers from the cloud end users is the con­

cern of the SaaS paradigm and in this case, an application provider develops the cloud

based applications to be deployed onto a virtual instance offered by a platform provider.

An application provider must reach an agreement with a specific platform provider over

how much resources should be allocated to its own virtual instance. An application

provider may also request for an upgrade or downgrade of a virtual instance over time

as the demand changes. The participation of application providers in this PaaS model

is merely concerned with generating fluctuating resource demands for a large set of vir­

tual instances and these volatile demands for resources ultimately drive the resource

allocation by the platform providers.

50

3.3 Resource Granularity

Physical resources offered by the infrastructure provider in the PaaS model have complex

details, and can be viewed from different perspectives in different resource allocation

systems. Typical concerns over physical resources are about the CPUs, RAM, hard

disks, network, etc. Each of these concerns can be further expanded. For instance,

the resources of the CPU can be viewed as number of CPU cores, clock speed for each

core, processing time, etc. In a resource allocation model, however, the granularity

of physical resources must be defined, so that it provides consistent semantics for the

participants during allocation. The semantics of a granularity model must specify the

types of resource and the respective value quantification.

A resource granularity model in a resource allocation system is closely related to the

concerns over the performance impact by allocating additional resources. A performance

benchmark is a complex factor, however, it is generally accepted that the more resources

are available to a computer system, the better marginal performance it delivers.

Moreover, the computer resources are constantly in the process of evolution, therefore

there can be no permanent value quantification for a resource granularity model. Each

type of resource in a model must be referenced to the modern server side computer

hardware when quantifying its value. In addition, the cloud system consists of a large

pool of server resources, and the vertical and horizontal scale of resources must be

considered during value quantification for a granularity model. Firstly, the vertical

scale of resource volume can be quantified within a value range. Secondly, this thesis

considers the quantification of the horizontal scale (by adding more instances) as a linear

combination of individual instance resource capacity specified in the quantification of

vertical scale.

51

3.3.1 Generalized Resource Granularity Model

A PaaS resource allocation system must be able to flexibly work with any resource gran­

ularity model, depending on what can be agreed by the participants. When resources

are modeled with finer granularity, it does not remove the necessity of providing a defi­

nition for each resource type, as well as a respective value quantification. For instance,

in a granularity model including resources of CPU and RAM, we may define the value

of 1000 in CPU resource as the processing power equivalent to a standard dual-core 3.5

GHz CPU and the value of 1000 in RAM as a capacity equivalent to a standard 16 GB

RAM.

In a generalized resource granularity, the resource capacity on a physical machine

can be represented as Rj = with the resource granularity of x type

of resources. Each resource type t, it has a unique value quantification, and R\ is a value

representing the resource capacity of this resource type for machine p,;. Considering the

horizontal scale, the total resource capacity is R = Ri + R2 + R3... -I- R,m for m physical

machines, therefore R* = R\ +R2 + R\-.- + R\n for each resource type t 6 {tl, t2, <3, ...tx}.

3.4 Resource Allocation Mechanism

Resource allocation between an infrastructure provider and a platform provider is the

provisioning of virtualized physical resources from the infrastructure provider to the

platform provider under certain regulations. The previous section has provided a defini­

tion of resource granularity, which is a description of what can be offered by the resource

provisioning service. This section draws a general framework of the resource alloca­

tion mechanism, which is a description of the regulations of the resource provisioning

service. The mechanism must be understood by the platform providers when making

adaptive decisions to meet their resource demands. The design of this resource allocation

mechanism is established based on the following two prerequisites.

Physical Server Resource Limit The first prerequisite is to allow server resources to

52

be subdivided to support a virtualized instance which operates within the server.

This is an indispensable requirement in the context of cloud computing and a vir­

tualized server can be allocated up to the maximum resources available on the

physical server. In a typical scenario, a physical server subdivides its hardware

resources to operate multiple virtual instances. As such, the total resource ca­

pacity of a physical server is the linear combination of the resources allocated

to the virtual servers residing in the physical server and the idle resources. Let

V = {v\,V2,V'i, ...Vn] represent a set of virtual machines operating on a physi­

cal machine. Let rt = ,rf‘, ...rY) represent the resource bundle (with the

granularity of x types) allocated to the VM vi which is operating on the physical

machine. Thus, the total resource capacity already allocated on a physical machine

fallow Is:

Roilow = ^n(rP,rp,rf,...r(-^) (3.2)
1=1

This prerequisite requires that the overall allocated resource capacity must not

exceed the total resource capacity R on that physical machine:

R-allow ^ R (3.3)

SLA Resource Limit The second prerequisite is to allow server resources potentially

shared by many platform providers to be accounted. The infrastructure providers

operate a large number of physical servers. An SLA can be signed with a platform

provider to set certain resource quota aside for them. The resource quota defines

the maximum resource volume a platform provider can access and allocate the

resources to a number of virtual machines. Since this thesis models only one

unified infrastructure provider, the total resource capacity of the infrastructure

is considered to be infinity. However, a platform provider must obtain an SLA

53

with certain resource quota. Let 5 = {si, S2, ss, •••Sn} denote a set of the SLA

signed by the infrastructure provider I with all the platform providers PP —

{ppi,pp2iPP3^ ■■■PPrt}- For example, s; is the SLA signed between the infrastructure

provider and the platform provider ppi. Let Q = {91,92,®, •••9n} be the resource

quota specified by the equivalent SLA set S. For example, qt is the resource quota

specified in the SLA Sj. Let Vi = {vii,Vi2,Vi3, ...Vim} represent a set of virtual

machines instantiated and allocated to a platform provider ppi under the SLA Sj.

A virtual machine vij could reside in any of the physical machines. Let =

...rlj) represent the resource bundle allocated to the VM vij. Total

resource capacity allocated to all the m virtual machines by a platform provider

must be under the resource quota, such that

Qi — ^ ^ ^'ij
j=l

(3.4)

3.4.1 Dynamic and Static Allocation

An SLA document agreed between an infrastructure provider and a platform provider

must specify whether to allocate resources through a dynamic provisioning mechanism

or a static provisioning mechanism and although a platform provider is allowed to switch

between the two allocation mechanisms, it is subject to penalties in some cases.

Definition 5: A dynamic allocation mechanism is a flexible approach for a platform

provider to acquire physical resources from an infrastructure provider in an on-demand

manner.

Resources provisioned using the dynamic mechanism are billed at a high unit cost

Cd however using this allocation mechanism, a platform provider can have access to a

considerable amount of resources at any time and is not bound to a minimum contract,

such that 9, = 00 and tend = 0, where tend is the contract finish time for the current SLA

9j. This means the SLA can be terminated or amended at anytime without constraints.

54

Therefore the total cost C to the platform provider for operating its services is equal

to the cost or value of the resource units purchased from the infrastructure provider and

is

C = Cd*N (3.5)

where N = n is the average resource units used within the short time

interval i.

Definition 6: A static allocation mechanism is a reserve-based allocation approach

for a platform provider to acquire a fixed amount of resources over a period of time,

subject to a minimum contract.

Resources provisioned using this static mechanism are billed at a lower unit cost

Cs, but can result in penalties for canceling the reservation or amending the specified

resource volume within the contract period. The Platform Provider requests for a quota

of physical resources over certain amount of time which is usually a minimum of an

hour or day depending on the infrastructure provider but can be renewed after contract

expiry.

Platform providers pay a fixed amount over the contract period regardless of whether

the reserved resources are fully utilized or not. The cost for the resource units is C, where

C — c.nt (3.6)

Note c is the unit cost per unit period, n is the resource quantity and t is the

contractual period. In the static method, the resource quantity n is a fixed quantity and

is the resource quota Qn specified by the SLA. Since t is measured discretely such as per

hour or per 30 minutes, the total resource cost C can also be written as
t

C = ^csn (3.7)

Resource volume specified in a static SLA is a hard limit beyond which resources

cannot be consumed unless this reservation is amended or canceled. Hence, the resource

55

quota qn specified in the static SLA is

(3.8)

This is based on the resource granularity of x resource types and the platform provider

is subject to the SLA quota limit (Equation 3.4). Moreover, with the static allocation

method, the contract finish time tend is always initialized to the value when the SLA is

created, where tc is the current time and T is the minimum contract time required by

the static method.

^end — te T (3.9)

An amendment allows the reservation to be adjusted to a new volume to meet the

new demands while cancellation of a reservation automatically switches the SLA back

to a djmamic allocation mechanism.

In a static SLA, the quota can be amended in two cases. In the first case the

quota can be amended if the new resource demands exceed the current quota. Lack of

sufficient resource quota will prevent the platform provider from being able to service

their customer needs and the assumption is that since the initial quota purchased includes

a buffer or headroom to cater for any bursts in resource demands, once the demand

exceeds the purchased resource quota the SLA needs to be amended.

The second case for quota amendment is if the current demand is much less than the

reserved quota. In this case maintaining the initial reserved quota will result in inefficient

use of resources by the platform provider and it may be more cost effective to reduce

the reserved quota instead of incurring additional maintenance costs for resources that

are not utilized. If we assume the current quota is q,;, the new quota after amendment is

Qn and d„ represents the new resource demand then we can calculate the new resource

quota in Equation 3.10.

56

(In = (3.10)
dn, {dn > qi or dn « Qi) and tc < tend

Qii dji < Qi

where tc is the current time and tend is when the static SLA shall be finished.

The cost incurred due to an amendment has two aspects, the penalty cost due to

the infrastructure provider because of breach of SLA and then the cost of the addi­

tional resources (in case of increasing the quota). In a static SLA, the penalty cost is

proportional to the total cost of initial resources so if the percentage penalty cost is

represented as Pp and the total cost of resources is in equation 3.7 then the penalty cost

for one transaction is

P — Pp ^ ^ (^s n (3.11)

In the case of addition of resources, if we combine the penalty cost and cost of

additional resources, the total cost incurred by the platform provider for a penalty

transaction at time t — i is given by Equation 3.12 where n is the adjusted resource

quantity.

t t

Total cost per penalty = Pp CgU + Cgfi (3.12)
2=0 t=i

In this SLA design, an infrastructure provider allows a platform provider to choose

one resource allocation mechanism when signing up an SLA, and to switch from one to

the other at a later time according to the new resource demands. Generally, platform

providers will select a static allocation mechanism for relatively stable resource demands.

However, a dynamic allocation mechanism would be a more suitable option if the resource

demands exhibit high fluctuations and since the pattern of resource demands can change

from one period of time to another, the allocation mechanism may at times also need to

change to adapt to the demand pattern.

57

Switching from a dynamic allocation mechanism to a static allocation mechanism is

welcomed by an infrastructure provider and therefore a platform provider currently on

a dynamic SLA can switch to a static SLA at any time without penalties. The platform

provider must agree with the infrastructure provider on the resource quota allocated,

resource unit cost and the contract time. Such a switch in the SLA does not affect the

ongoing resource consumption however, once a static SLA is formed, a platform provider

has to fulfill its obligations such as the resource quota restriction and the contract time

restriction. Such a switch is a good option if a platform provider sees rather stable

resource demands.

Switching from a static allocation mechanism to a dynamic allocation mechanism

is inevitably required if a platform provider receives highly volatile resource demands

that can no longer be managed under the static mechanism. The switch from a static

allocation mechanism to a dynamic allocation mechanism is not a free option because

the bearing platform provider is bound to the contract time. If such switch has to be

made before the contract expires, the platform provider receives a penalty, which is

the same as Equation 3.11. Therefore a platform provider must evaluate the cost of

the penalty charge before making such a switch however the switch is free of charge

if the contract time has been completely fulfilled. Although it is undesirable for an

infrastructure provider to offer such a switch, the penalty charge can compensate for the

change in the SLA.

This reservation-based mechanism offers an advantage in that the resource reserved

is isolated and is always available for the platform provider over the contract period.

However, it is a challenge for the platform provider to make an accurate reservation

and insufficient reservation will result in platform providers being unable to handle

peak loads while excessive reservations to deal with projected peak load can result in

unused resources which cause losses and in the long run make the platform provider less

competitive in the Cloud market.

58

3.4.2 Resource Allocation Process

A PaaS resource provisioning model must include a resource allocation process so that

this process can be followed by the participants. The resource allocation process pro­

posed by the thesis does not address all the engineering problems, but serves as a basic

protocol for resource allocation. This process is a partial implementation of the auto­

nomic MAPE-K model [73], and is presented in a sequence diagram (see figure 3.2) and

with textiial descriptions.

Fig. 3.2 : PaaS Resource Allocation Process

1. An application provider a submits a service request e to a platform provider pp

with certain resource requirements. The service request e can be of several types.

One type is the new service allocation for a VM set V. The service request type

can also be others such as scale up the current service (for the set of VMs), scale

down the current service or stop the current service.

59

2. The platform provider pp receives the request and examines its current SLA. If the

platform provider is on a dynamic SLA, it may process the request immediately,

by performing step 5. If the platform provider is on a static SLA, it must verify

if the resource quota is sufficient for the new demands d„, so that

Additional adaptive resource quota management can be implemented at this step,

which is discussed in the next chapter.

3. This step is optional, and is carried out only if an amendment to the current SLA

is required. This step can involve one of the two amendment types. One type is

to switch between SLA types, i.e. between a static SLA and a dynamic SLA. The

other type is to amend the resource quota for a static SLA.

4. The new resource quota is agreed between the infrastructure provider and the

platform provider. After the amendment, the platform provider must be able to

fulfill the service request e.

5. The platform provider now has sufficient resource quota for serving the request

e. It asks the infrastructure provider to perform the according operations on the

per-VM basis.

6. The infrastructure provider confirms the allocation and calculates the bills for the

platform provider on the transaction.

7. The platform provider deploys necessary platform software packages, and finally

the access to the VM set after the operation is granted to the requesting client a.

From a platform provider perspective, step 1 belongs to the monitoring autonomic

component, such that an allocation event is detected. Step 2 is the analysis autonomic

component where the resource management system decides whether actions are required

to respond to the allocation event. Step 3 and 4 are the planning and execution auto­

nomic components where the resource management system deliberates on a course of

actions and execute the actions. The rest of the steps are normal system functions.

60

3.5 Resource Allocation Scenarios

Cloud services are subject to unpredictable and dramatic load fluctuations [94]. Based

on the the previous deflnition of the PaaS constituency, resource granularity and alloca­

tion mechanism design, this section demonstrates five hypothetical resource allocation

scenarios leading towards a discussion of the resource allocation problems for a platform

provider.

3.5.1 Scenario 1

A new application provider a newly arrives at time t to operate using the platform

services offered by a platform provider pp. The application provider requests a set of

virtual machines V = {ui,^2, us, ...u„}to be instantiated with full software packages,

and requires the resource capacity for the VMs as r = {?'i,r2,r3, ..;r„}, where r, is the

resource capacity required for the VM Vi, and can be presented as rt = (r^, rp, rp, ...rp)

for a resource bundle using the granularity of x resource types. In this scenario, two cases

are considered which both result in a successful outcome of this service request.

Case 1: The platform provider pp is on a dynamic SLA with the infrastructure

provider I. Therefore the platform provider is entitled to access unrestricted quota

q = oo without contract time obligations tend = 0. The platform provider immediately

serves the request from the application provider a and asks the infrastructure provider

for the creation of the VM set V. In turn, the infrastructure provider processes the

request from the platform provider by creating the VMs across a number of available

physical machines P = {pi,P2,P3, -.-Pr}- Note that more than one VMs can reside in one

physical machine p. Access to these VMs are then issued to the platform provider pp,

which installs its default platform and software packages. Finally, the platform provider

grants access to these VMs to the application provider a.

In this transaction, the infrastructure provider adds a new bill Ct the platform

provider pp for the resource consumption of the VM set V at time t. The bill Ct can be

61

written as Ct = CdT = c^ri, where n is the number of VMs requested.

Case 2: The platform provider pp is on a static SLA s with the infrastructure

provider I. Note that the static SLA s specifies the maximum resource quota that can

be accessed by the platform provider pp is q = with the resource

granularity of x types and the contract is due to finish at time tend where t < t^nd- In

this scenario, it is assumed that the platform provider pp has consumed the resources

bundle qc = lO’c ^ ^nd strictly > 9* + s^ch resource type,

where is the total resource volume of type t requested by all the new' VM set

V. This means that the platform provider has sufficient resource quota for the new

allocation. The infrastructure provider creates the VM set using the same procedure as

in Case 1 and and access to the VMs are granted to the application provider.

In this transaction, the infrastructure provider updates the new consumed resource

quota qcnetu for the platform provider pp, such that qcnew = Qc + J'- At this stage, the

bill for the platform provider does not change (see Equation 3.7).

3.5.2 Scenario 2

An existing application provider o currently operates a set of VM V — {ui, U2) ^’3,

using the platform services offered by a platform provider pp at time t. The resource

capacity for the VMs as r = {ri, r2, ra, ...rn}, where is the resource capacity required

for the VM Vi, and can be presented as rt = ,r*^,rf‘, for a resource bundle

using granularity of x resource types. At time H, the application provider requests the

set of VM Vto be upgraded with higher capacity rt. In this scenario, two cases are

considered which both result in a successful outcome of this service request.

Case 1: The platform provider pp is on a dynamic SLA with the infrastructure

provider I. Therefore the platform provider is entitled to access unrestricted quota

q = 00 without contract time obligations t^nd = 0. The platform provider immediately

serves the request from the application provider a and asks the infrastructure provider

for upgrading of the VM set V to the new capacity r/. Then the infrastructure provider

62

processes the request from the platform provider by upgrading the VMs on their residing

physical machines P = {pi,P2tP3i ■■■Pr}- Upon successful upgrade, the new information

about these VMs aj-e then returned to the platform provider pp. The platform provider

verifies the upgrade and finally the platform provider informs the application provider

a about the upgrade.

In this transaction, the infrastructure provider adds a new bill Cff the platform

provider pp for the additional resource consumption at time H. The bill cp can be

written as cp — c^irl — r) — Cd{rp — n), where n is the number of VMs requested.

Case 2: The platform provider pp is on a static SLA s with the infrastructure

provider I. Note that the static SLA s specifies the maximum resource quota that can

be accessed by the platform provider pp is q = {q*^with the resource

granularity of x types and the contract is due to finish at time tend where t < tend- Li

this scenario, it is assumed that the platform provider pp has consumed the resources

bundle qc = iq*c^,q*J^,qc^,---q*f), and strictly q* > resource

granularity type, w'here — r-) is the total resource volume of type tx requested

to be upgraded by the VM set V. This means that the platform provider has sufficient

resource quota for the new allocation. The infrastructure provider upgrades the VM set

using the same procedure as in Case 1 and and application provider is informed about

the successful upgrade.

In this transaction, the infrastructure provider updates the new consumed resource

quota qcnew for the platform provider pp, such that qcnew = 9c + (r' — r). At this stage,

the bill for the platform provider does not change (see Equation 3.7).

3.5.3 Scenario 3

An existing application provider a currently operates a set of VM V = {vi,V2,V3, ...u„}

using the platform services offered by a platform provider pp at time t. The resource

capacity for the VMs as r = {ri,r2,r3, ...r„}, where r* is the resource capacity required

for the VM Vi, and can be presented as r* = (r|\rp,rP, ...r-^) for a resource bundle

63

using granularity of x resource types. At time U, the application provider requests the set

of VM Vto be upgraded with higher capacity rf. In this scenario, the platform provider

is assumed to be using a static SLA however the remaining resource quota allowed in

the SLA can not fulfill the upgrade request from the client, such that for at least one

resource quota of type t, q* < ql + across total n virtual machines. The

platform provider may consider one of the following two options.

The platform provider may request an amendment to the existing static SLA to a

new resource quota qnew that can fulfill the upgrade request. The infrastructure provider

calculates the penalty charge for the platform provider according to Equation 3.12.

Alternatively, the platform provider may request a cancellation to the existing static

SLA and automatically switch back to a dynamic SLA. The infrastructure provider

calculates the penalty charge for the platform provider according to Equation 3.11.

Problem 1: A platform provider may experience sudden surges in the resource

demands from time t to time V. In order to guarantee the high availability in its platform

services, a platform provider inevitably breaches the static SLA with the infrastructure

provider and is subject to high penalty costs.

3.5.4 Scenario 4

An existing application provider a currently operates a set of VM V = {vi,V2,V3, ...Vn}

using the platform services offered by a platform provider pp at time t. The resource

capacity for the VMs as r = {ri,r2,r3, ...r„}, where r, is the resource capacity required

for the VM Vi, and can be presented as Vi = (r*^, rp, rp, ...r-^) for a resource bundle

using granularity of x resource types. At time U, the application provider requests a set

of VM Vto be downgraded with much lower capacity rf. In this scenario, the platform

provider is assumed to be using a static SLA with resource quota qn and the drop in

the resource demands results in insufficient use of the resource quota that dnew « qn-

Despite the fact that the platform provider can fulfill the service request as normal,

it must consider the penalty charge P for amending the resource quota down to suit

64

the new demands (according to Equation 3.12), and the cost of leaving idle resources

Cwaste — ^s{Qn ~ dnew) for the remaining time tend — tf. In this case it is assumed

that Cnjaste ^ ^•

Problem 2: A platform provider may experience constant decline in its resource

demands and may result in significantly insufficient use of resource quota reserved in

a static SLA. Apart from judging the cost saved after amending the static SLA, the

platform provider must also consider the Problem which arose in Scenario 3 in the short

future, if it reduces the resource quota significantly.

3.5.5 Scenario 5

A platform provider offers platform services to a set of application providers A via the

operations on the VM set V = {vi,V2,V3, ...Vn}. In this scenario, the platform provider

is assumed to be operating under a dynamic SLA, however, the demands for the VM set

in total has exhibited a very stable pattern.

Problem 3: A platform provider may be delivering its services via dynamic SLA

at high unit cost Cd where Cd » c,,. However, the platform provider can be receiving

constant demand levels therefore it operates its services at a much higher cost than its

competitors.

3.5.6 Resource Allocation Problem

In circumstances when the fluctuation occurs in the resource demands for a platform

provider over a short period, it can either result in a large amount of over-provisioning or

under-provisioning of resources that it reserved within the time period via a static SLA.

This causes either frequent penalty charges or significantly insufficient use of physical re­

sources. On the other hand, the dynamic allocation mechanism promises great flexibility

for resource allocation. But it is charged at much higher unit costs and is not suitable for

demands that exhibit stable pattern. A platform provider requires more sophisticated

autonomic resource management capability to deal with the above scenarios.

65

3.6 Summary

This chapter has presented the PaaS resource allocation context. Firstly a constituency

of the PaaS model is discussed to allow an understanding of each participants. Sec­

ondly the resource granularity model is proposed based on a generalized model of x re­

source types. Thirdly, the resource allocation mechanism is described in detail. Finally,

five resource allocation scenarios are demonstrated and the general resource allocation

problems are discussed. The next chapter will present the resource allocation solution

proposed by the thesis to address these problems.

66

Chapter 4

The Sharex Resource Allocation

Approach

4.1 Introduction

The PaaS resource sharing model can be used by various platform providers to offer

highly integrated on-demand platform related services to their customers. One key

challenge faced by these platform providers is satisfying the customer requirements dur­

ing times of volatile resource demands by providing sufficient physical resources while

avoiding resource under-provisioning or over-provisioning. Since the platform providers

operate at a relatively large commercial scale, direct monitoring and management of

the resource allocation process by humans is not the most efficient or effective tech­

nique. This therefore dictates the need for fully autonomic resource allocation, that is,

the platform provider systems must be capable of self-managing to adapt to the various

conditions of resource demands.

Standard autonomic management of resource allocation does not fully deliver a sat­

isfactory resource provisioning model because of prediction errors, which are an in­

evitable factor during resource forecasting, can lead to resource over-provisioning or

67

under-provisioning. This chapter introduces the Sharex resource allocation approach

based on the context established in the previous chapter. The Sharex approach enables

a community of platform providers to exchange resources based on the Edgeworth Box

model in order to reduce SLA violations which increase the overall cost to the platform

provider and customer.

This chapter is divided into three sections with the first section introducing the

flexibility allowed in the PaaS resource allocation context for platform providers to share

resource quota. The second section depicts a resource allocation management method

in the PaaS context combining both predictive and reactive allocation management, and

guarantees high resource provisioning availability. The third section presents the Sharex

allocation approach incorporated into the resource allocation management method.

4.2 Resource Sharing Flexibility

In section 2.3 we discussed the flexibility allowed in the Amazon EC2 reserved instance

based on the Amazon marketplace [7], and suggested similar flexibility mechanism can

be allowed for platform providers under static SLAs in our PaaS context, but achieved

through the sharing of unused resource quota to form a Spot economy [120]. In this

section we introduce resource sharing flexibility only allowed to a platform provider

which is on a static SLA. Although the static allocation mechanism is considered a

cost-saving resource allocation approach for both the infrastructure provider and the

platform provider, it is a risky choice for a platform provider due to the penalty related

restrictions. Resource demands in the clouds are highly volatile and can be momentarily

stable but sudden surges or drops can occur and this inevitably leads to the violation of

the SLA unilaterally by a platform provider. As a result, the platform provider’s risk of

receiving penalties for signing on to a static allocation mechanism is significant.

Consider two platform providers ppi and pp2 operating under static SLA si and S2

respectively. The platform provider pp\ has the resource quota qi and resource demands

68

di, while the platform provider pp2 has the resource quota q2 and resource demands d2

at time t. Both platform providers have enough resource quota to fulfill their services,

such that gi > di and q2 > d2. At time t', the platform provider ppi has a new set of

resource demands d[and the platform provider pp2 has a new set of resource demands ^2-

Both platform providers are assumed to be under-provisioning under the new demands,

so that for at least one resource type, d[> q\ and d'2 > q2- Let T = {t^,

be the resource granularity of x types. The platform provider pp\ has a set of resource

types t\ E T that are under-provisioned, and the platform provider pp2 has a set of

resource types <2 € T that are under-provisioned. In this scenario, it is assumed that

two platform providers have surges in the resource demands of different resource types

and the resource quota for both platform providers combined can still meet the overall

combined demands, such that fl ^2 = 0 ^nd q\ + q2> d\ + d'2.

Design Decision: Two platform providers under the above resource under-provisioning

scenario can share their resource quota for a short period of time to fulfill their service

demands.

The sharing of resource quota must satisfy the following conditions.

• First, the resource sharing can only take place between two platform providers who

have signed up for a static SLA.

• Second, a platform provider must have sufficient remaining resource quota in order

to share with another platform provider which needs such resources. The platform

provider who offers spare resources to another will experience the equivalent re­

duction in its resource quota.

• Third, the sharing must have a deadline which must be earlier than any of plat­

form providers’ the contract expiry time. When the sharing deadline arrives, the

shared resource quota must be returned and this is enforced by the infrastructure

providers. A platform provider however can negotiate a new resource share with

the others.

69

• The platform providers only need to pay a small commission fee for such quota

sharing to the infrastructure providers, which is proportional to the value of the

shared resources. Such a commission fee is insignificant compared to a standard

penalty charge. The commission fee charge is referenced to the Amazon market­

place [7], where a 12% of service charge is applied to the upfront cost of the reserved

instance traded in the market.

Based on the above scenario, two platform providers can negotiate an exchange of

resource quota over two resource set t\ and t2, where nt2 = 0- For platform provider

pp\, it receives additional resource quota in the resource types belonging to set ti but

gives away resource quota in the resource types belonging to t2- On the contrary, the

platform provider pp2 receives additional resource quota in the resource types belonging

to set t2 but gives away resource quota in the resource types belonging to ti. We assume

such resource exchange only occurs when two platform providers have complementary

needs, because if a platform provider does not need additional resource to overcome an

under-provisioning scenario, it has to pay for a commission fee that is associated wdth

the exchange.

A successful exchange of resources occurs when the end result will ensure both plat­

form providers have sufficient resources to meet their demands. For example if we

consider a successful exchange of resources between two platform providers ppi and pp2

with initial resource quota qi = ...) and 92 = (•••i ^2^ •••’•••) respectively

and we assume platform provider pp\ requires additional resources in set t\ while plat­

form provider pp2 requires additional resources in set ^2) Equations 4.1 - 4.3 represent

the resource quota after a successful negotiation and exchange of resources.

Q\r = {...,q\^+Aq*\...,q\^-Aq^\...) (4.1)

q2new = (•■■,72* -) (4.2)

70

<7lr ^— Qlrnin B-nd Q2new ^— Q2mi (4.3)

Where qinew and q2new are the new resource quota for platform providers ppi and

PP2 respectively, Aq^^ is the amount of resource that was exchanged in set ti, Aq*'^ is

the amount of resource that was exchanged in set t2 and qimin and q2min refer to the

minimum resource quota that need to be maintained on platform providers pp\ and pp2

respectively. When exchanging resources, a commission or exchange fee is required to be

paid to the infrastructure provider and this fee is proportional to the amount of resources

being exchanged i.e. Aq^'^ + if we represent the exchange commission percentage

as e and then the exchange fee per transaction is given by Equation 4.4.

Ce-e(Ag‘' +Ag'2) (4.4)

4.3 PaaS Autonomic Resource Allocation Management

This section introduces a resource allocation management mechanism situated in the

PaaS context for a platform provider. This resource management strategy combines the

Planning and Execution function in the MAPE-K model and guarantees high resource

provisioning availability. The decision making process implemented by this allocation

management is fitted to the Step 2 from the PaaS resource allocation process (see figure

3.2 in Chapter 3). The execution of a decision outcome is fitted to the Step 3 from the

PaaS resource allocation process.

4.3.1 Predictive Resource Management

Predicting the resource demands in the near future is a non-trivial problem. If the

prediction fails for example by predicting less demand that what is actually required,

this can result in a penalty charge. A prediction has to consider possible surges in

the resource demands and therefore this predictive approach must reserve additional

71

resource quota to allow for certain fluctuations otherwise the penalty charges will be

very frequent and costly. However, if too much additional resource quota is reserved,

the solution results in inefficient use of resources and huge costs.

The Planning stage of autonomic resource allocation management plays a key role in

forecasting the resources required in the next stage and evaluating the trade-offs among

different possible actions. There are two possible decisions that should be delivered and

the outcome of the decision making process is a decision as well as certain accumulative

parameters. The available decisions are to either to take immediate action to amend

the SLA or to take a deferred action and continue to monitor these parameters. If im­

mediate action is required, the execution component is required to execute the action

to deal with the current demands while in the case of a deferred action, if resources are

not met at a later stage, the deferred action can be activated. In both cases, the knowl­

edge component is required as it mediates through several stages of resource allocation,

constantly archives the resource demands and has certain parameters to be consulted as

reference when an action has to be taken at a later stage.

The decision making process must take into consideration the context of the resource

allocation method, which is described in the previous chapter. Essentially it has to

decide which type of SLA is suitable for the predicted resource demands. If the resource

demands will have significant fluctuations then the best option would be to opt for a

dynamic SLA to obtain on-demand resource quota at a higher unit cost. On the other

hand, if the resource demands exhibit a relatively stable pattern, the best option is to

select a static SLA so the unit cost is much lower although there would be penalties in

case of SLA violations in this case.

The various possible decision outcomes are summarized in Table 4.1. This decision

table is inspired by CloudScale [112], which was discussed in section 2.4.4. The decision

table must provide choices for the resource management system to perform fast error

corrections, and is considered comprehensive because it has included all possible changes

of SLAs in the PaaS context. By issuing such commands the platform providers are able

72

to self-adjust to a satisfactory state.

Table 4.1: Decision Outcome

No SLA Migration Description

1. DYNAMIC TO STATIC Switch SLA from an on-demand SLA to a static

SLA immediately.

2. STATIC TO DYNAMIC IM- Switch SLA from a static SLA to an on-demand

MEDIATE SLA immediately.

3. STATIC TO DYNAMIC DE- Switch SLA from a static SLA to an on-demand

FERRED SLA at the next occurrence of SLA violation.

4. STATIC AMENDMENT IM- Amend static SLA to meet the current demands

MEDIATE immediately.

5. STATIC AMENDMENT DE- Amend static SLA to meet the current demands

FERRED at the next occurrence of SLA violation.

6. SLA SET EXTENSION SLA extension request needs to be sent to the

broker.

A decision is accompanied by a parameter called the flexibility ratio which serves

to suggest how much additional resources are required to service the current resource

demands. For example, let 7 denote the flexibility ratio. If the current amount of

resources is q and a decision is made to change to a static SLA from a dynamic SLA

then including the 7 parameter, the new value of resources to service the current demands

would be

9 = 9(1+ 7) (4.5)

The ratio 7 is an accumulative value affected by the fluctuation ratio 6 which is used

73

to represent the change of resource demands in the current period in proportion to the

previous period. If Q is significantly high, this implies that the resource demands in the

current period are significantly higher than those in the previous period and therefore

the ratio 7 is incremented by a fixed fraction rj. If 0 is relatively low, this implies there

is no significant change between the resource demands in the current period and the

resource demands in the previous period and therefore the ratio 7 is decremented by a

fixed fraction r].

The ratio 9 is also used during a dynamic SLA to determine whether to switch to a

static SLA. During a dynamic SLA, 0 is used to monitor the resource demands and if the

average value of 0 is relatively small, this indicates fairly stable resource requirements

and can therefore facilitate a decision to switch to a static SLA.

Since there are only two possible SLAs that can exist between a platform provider

and infrastructure provider ie static or dynamic SLA, in the case of predictive resource

management, depending on the current SLA implemented and the current environment

two algorithms are proposed to evaluate the decision. These two algorithms are now

discussed further.

If a dynamic SLA is currently implemented, a decision regarding whether to switch

to a static SLA needs to be made depending on the resource demands and value of 0.

However it is key to note that before a decision is made, the platform provider should

have been on the dynamic SLA for longer than the observation period Tg and Algorithm

1 presents this decision process.

74

Algorithm 1 Prediction Algorithm to Evaluate if to Switch from a Dynamic to a Static

SLA___
Require: s = DYNAMIC Mo > To {The observation period must be greater or equal to the minimum observation

period.}

6» ^ 0
for t = tcurrent tO tcurrent do

e^e + e,
end for
n e"avq — t t'■current 'o

if 9a.vg < S then

D r- SWITCH TO STATIC SLA IMMEDIATELY

else

D r- null

end if

If a static SLA is currently in effect, there are various actions that can be implemented

(see actions 2-5 in Table 4.1) and Algorithm 2 is used to evaluate all possible decisions.

75

Algorithm 2 Prediction Algorithm to Evaluate Possible Decisions While on a Static

SLA___
Require: s = STATIC

o ^ |rt-rt_i|

D ^ NULL

if 6i > 7 then

if 7 > n then

D ^ SWITCH TO DYNAMIC SLA IMMEDIATELY

return

else

7 = 7 + '?
end if

else if 6t < 'r then

if 7 > u,’ then

7 = 7-'?

else

7 = ai

end if

end if

if tcurrent ^ ^expiry then

D ^ EXTEND STATIC SLA

return

end if

{fl is the highest accumulated fluctuation tolerance for 7, and a; is the lowest accumulated fluctuation value

for 7.}

{Check if current reserved resource quota is too much above the required resource demands, c is the static unit

cost, d is the current resource requirement, Cw is the estimated waste, 5 is the penalty proportion and Cp is the

estimated penalty cost if to amend the SLA. }

if « < q * (1 — 7) then

Cpj =(q*(l 7) d) * C * {texpiry ^current)

Cp = Q * C * ttoi * d

if Cw > Cp then

D ^ AMEND STATIC SLA IMMEDIATELY

return

end if

end if

(If the number of penalties occurred within one observation period exceeds the maximum allowed penalty

times.}

D ^ SWITCH TO DYNAMIC SLA DEFERRED

end if

return 76

Both algorithms may yield a decision to modify the SLA either by amendment or

migration based on the recent trend of resource demands. If the resource demands are

highly volatile, the SLA is more likely to be a dynamic SLA however if the resource

demands are relatively stable, the SLA is more likely to be a static SLA. In addition,

the static SLA can be amended to adjust the resource quota to facilitate sudden surge

or drop in the demands.

The outcome of a decision can either be directly accepted by the reactive resource

management module and becomes become effective immediately, or a deferred decision

is taken by the reactive management module and the decision is then implemented when

the SLA is violated at a later stage. The reason for a deferred decision is that the cost

of constantly modifying an SLA is expensive due to the penalty charge so sometimes

the most reasonable solution is to defer action to a later time. The demands history

as well as the parameter values such as the flexibility ratio 7 are constantly monitored

and this information is used to improve the decision making process. The next section

discusses reactive resource management which will work together with the predictive

resource management approach.

4.3.2 Reactive Resource Management

The reactive resource management module is an important layer in the autonomic archi­

tecture which implements the execution component in the MAPE-K model. This module

is designed to follow the guidelines from the predictive resource management module as

well as react to unforeseen circumstances in the resource demands. This module is indis­

pensable due to the fact that prediction errors always occur and the role of this module

is to make necessary amendments to the SLA to ensure that the resource quota is always

sufficient for the ongoing demands. This module is mainly active when a static SLA is

being used and can be passively activated to serve when relevant situations arise. The

events that activate this reactive resource management module are either the arrival of

a new predictive command, static SLA expiry or a resource shortage alarm in a static

77

SLA.

The basic operating procedure for the reactive resource management module is de­

scribed next:

1. The module verifies whether any high level commands require immediate execution,

for example switch between the two SLA types from dynamic to static or from

static to dynamic, or amend the resource quota immediately for a static SLA.

2. The module verifies whether the current SLA is a static SLA or a dynamic SLA.

• In the case of a dynamic SLA, no further action will be taken.

• In the case of a static SLA, the expiry date of the current SLA is checked

and if the SLA has expired and there are no guidelines to renew this SLA,

the module automatically switches to a dynamic SLA since the contract has

been fulfilled. In this case there is no penalty charge.

3. If a resource quota alarm is received indicating that the current resource quota

reserved in a static SLA cannot meet the new demands, the module must take ac­

tion to resolve this incident. First it checks for deferred SLA amendment decisions

and if there is a deferred decision in place then this decision become an immediate

action. In case there is no deferred decision in place then the resource quota of the

SLA is amended according to the new requirements. Extra reservations are also

made in accordance with the flexibility ratio 7 and in such SLA amendment cases,

a penalty is charged.

The reactive resource management guarantees high resource provisioning availability

but inevitably leads to penalty charges, however, this can be potentially mitigated by

utilizing the flexibility allowed in the SLA context, i.e., sharing of resource quota between

two platform providers. A negotiation process for exchanging resource quota can be

performed before the reactive resource management module considers a deferred SLA

amendment decision in Step 3.

78

This negotiation mechanism has several requirements in order to be effective and

these are presented below:

• A protocol of negotiation must be agreed between the platform providers to allow'

for effective exchange of interests in the negotiation and resolution of their inci­

dents. FIFA [91] offers a standard agent based communication framework and was

discussed in section 2.5.4. A negotiation protocol that is compliant to standards

such as FIFA benefits from wider compatibility such that it can embrace more

platform providers which are interested in joining the social group.

• In the negotiation, the platform providers are not allowed to make unlimited bids

to get an optimal outcome. Constrains must be incorporated into their bidding

strategy, so that when the maximum allowed bids have reached or the delay is too

long, the negotiation is rejected.

• The platform providers can only accept a resource negotiation outcome if it will

resolve the incident. The bidding strategy must also take into consideration of the

utility value to ensure a resource exchange satisfies the incentive design.

The next section presents the Sharex resource allocation approach based on the

Edgeworth box model where the outcome of a negotiation for sharing resources improves

the well-being of both platform providers.

4.4 Sharex Resource Allocation Approach

The Sharex resource allocation mechanism is an allocation approach allowing platform

providers to bilaterally share physical resources through negotiation. This approach

derives from the Edgeworth Box model, where two negotiating parties with different

amounts of resources can improve their utility by exchanging resources.

The Edgeworth Box model opens a space for negotiation called the contract lens

and any negotiation outcome that falls in the contract lens is thought to be improv-

79

ing the well-being for both negotiating parties. However, unlimited bargaining for the

resource allocation share can lead to significant delays in arriving at a common resolu­

tion [69]. This thesis adopts the concession making technique based on heuristics such

as the Zeuthen approach [107] in achieving agreement during negotiations. The Zeuthen

approach proposed limited rounds of bargaining among players which make a sequence

of successive concessions to reach a common solution. This technique is employed to be

highly cooperative and is proposed because the commission charge for sharing resources

for short time is significantly less than paying for the penalty charge that would be in­

curred by amending the SLA. We substantiate the costs for a penalty and a commission

charge where an exchange takes place based on the equation 3.12 and 4.4. We assume

that both participants have an SLA with total contract time of 10 hours and have 5

hours remaining. The cost of static resource provisioning is 1 dollar per hour per re­

source unit and the penalty and commission charge percentages are at 10%. Table 4.2

shows that both platform providers would have to pay the penalties for 2500 dollars and

5500 dollars respectively if an exchange did not take place, instead they managed to

agree on an exchange and paid 70 dollars each.

Table 4.2: Commission charge and penalty charge example

Participants PPi PP2

Resource type CPU RAM CPU RAM

Endowed 1000 3000 2000 2000

Required 1200 2300 1500 2500

New allocation 1200 2500 1800 2500

Commission charge 70 70

Penalty charge otherwise 2500 5500

80

4.4.1 Sharex Resource Exchange Protocol

The implementation of the resource exchange protocol allows platform providers to carry

out the resource exchange based on the Edgeworth box model. The resource exchange

is mediated by a Resource Exchange Coordinator, which acts as a registry and the

trust manager for the interested platform providers. The trust manager implements

the information validation approach, which was discussed in section 2.5.5, so that fake

information can be immediately detected. This section introduces the Sharex resource

exchange protocol, which includes registration, initiation, negotiation and commitment

for resource exchanges. Current FIFA protocol standards do not fully support the Sharex

communication requirements, therefore we propose and describe this exchange protocol.

However, the messages used in Sharex are compliant with the FIFA communication acts.

1. Registration: A platform provider which is interested in participating in this re­

source quota sharing mechanism registers with the coordinator by sending a FIFA-

request message (see figure 4.1). The platform provider immediately receives a

FIFA-inform message containing a list of the other platform providers which have

already registered for resource quota exchange. Meanwhile, the coordinator sends

a broadcast message (FIFA-inform) to inform all the existing platform providers

about the new registrant.

2. Initiation: If a platform provider is on a static SLA but the resource quota specified

by the SLA does not meet the current resource demands, it initiates the resource

exchange process, and also listens to the other platform providers with initiation

requests. In initiation, the platform provider (ppl) firstly randomly selects a plat­

form provider (pp2) from the registration list, and sends an initialization request

(FIFA-inform) to pp2. The initiation request must specify the resource quota q

and the utility preference (see section 4.4.2). Secondly, pp2 which receives the

request evaluates the request based on the condition presented in the demand

scenario from section 4.2, and it sends an information validation message (FIFA-

81

Register

f
Broadcast

C
^Broadcast

Coordinator Platform Provider

Fig. 4.1: Sharex Registration Phase

query) to the coordinator to verify if the information provided by ppl is correct.

The coordinator replies with a FIPA-inform message stating the truthfulness of

the information. Thirdly, if the information is successfully verified by the coordi­

nator and the initialization request is accepted, pp2 replies with an FIPA-inform

message containing its own exchange information to ppl. Since pp2 has the infor­

mation from ppl, it is certain that the exchange scenario will also be accepted by

ppl. However ppl still has to verify the information it just received by sending a

FIPA-query to the coordinator. If all validations pass, the two platform providers

enter the negotiation phase. Otherwise the ppl picks another random platform

provider from the list until one agrees to start negotiation. Finally two platform

providers which are about to start negotiation blocks all the other initiation re­

quests. The initiation phase is illustrated in figure 4.2, where P2 is the initiator.

P2 has two initiation requests blocked by platform providers P3 and P4 before it

successfully establishes a negotiation with P6. When an initialization request is

blocked, it means the recipient does not have the resources demanded to offer, or

82

it concludes based on the information received that any exchange outcome is not

favorable. Platform providers are allowed to consider multiple offers simultane­

ously. If a platform provider is found producing false information, the coordinator

removes the platform provider from the registration and sends a broadcast message

(FIPA-inform) to all the members.

P4 PI

P2

P6

P5 P3

P2 initiator Blocked Initiation

Established Initiation

Fig. 4.2: Sharex Initiation Phase

3. Negotiation: The negotiation process is carried out over a limited rounds. The

initiator first sends an offer (FIPA-propose) of a new allocation scheme to the

invited and receives a response. The response can be an acceptance (FIPA-agree),

a counter offer (FIPA-propose) or a rejection (FIPA-cancel). If the offer is accepted,

they proceed to the next phase. If the invited returns a counter offer, the initiator

evaluates the counter offer and may send back a counter offer, an acceptance

or a rejection to the invited. This process repeats until an agreement is made,

maximum rounds have reached or the negotiation is aborted. If a negotiation is

aborted, both platform providers return to the previous phase. The negotiation

83

strategy is presented in section 4.4.2.

4. Commitment: When two platform providers agree to exchange resources, the initia­

tor sends a resource exchange request (FIPA-request) to the infrastructure provider

(see figure 4.3). The infrastructure provider verifies the request with the invited

platform provider. If successfully verified, the infrastructure provider approves the

request by sending a FIPA-agree and bills both platform providers for the exchange

commission according to equation 4.4. Finally, the initiator sends a confirmation

message (FIPA-inform) to the invited. At this stage, both platform providers

record this swap agreement and continues the resource allocation process.

IP

P2 Initiator P6 Invited IP Infrastructure Provider

Fig. 4.3 : Sharex Commitment Phase

4.4.2 The Concession Making Negotiation Strategy

Negotiation is an important aspect in the Edgeworth box model so to arrive at an ami­

cable agreement, both parties have to make concessions to each other to avoid deadlocks

which would lead to an abortion of the negotiations. Thus, both parties have to clearly

understand the negotiation space by calculating the boundaries. The boundaries of

the negotiation are an overlapping area between the Edgeworth contract lens and the

resource requirements level. This is illustrated in Figure 4.4 using a two resource exam-

84

pie where D'^ and indicate the scale of resource quota for resource D for platform

provider A {PPa) and platform provider B {PPb) and P-^ and P^ indicate the scale of

resource quota for resource P for PPa and PPb-

Fig. 4.4: Edgeworth box model

The contract lens is illustrated by the greyed out lens-shape formed by the intersec­

tion of the indifference curves of platform provider A (PPa) shown in green and platform

provider B {PPb) shown in blue. Both platform providers negotiating for resources must

understand the context of the negotiation by truthfully exchanging total resource quota

values and their utility function. It is the nature of the Edgeworth box model to al­

low calculations based on knowledge of the sum of different resources and their utility

function so that the contract lens can be computed. If this approach is based on inac­

curate disclosure of such information, it will require both platform providers to make

assumptions regarding the total resources available as well as the other’s utility function

which can become inefficient and time consuming. Therefore this thesis proposes the

open negotiation approach.

The utility function of a platform provider for possessing a bundle of resources is

the Cobb-Douglas function U — [85]. The value of q is a floating point value

between 0 and 1 exclusively. The assumption made in this case is that the value of a

85

is a dynamic value determined by the ongoing resource demands, but has an interval

based on two conditions. For example, if a platform provider is short of one type of

resource, e.g. X, while has spare quota of the other type, e.g. Y, then the value of a is

a random value between 0.5 to 1 exclusively. This means that to obtain an additional

resource quota of X while giving up certain amount of resources Y can increase value of

the utility score. On the other hand, where the platform provider is short of resource Y

but has spare resource X, the value of a is between 0 and 0.5. If two platform providers

were to negotiate resources, there would therefore be two utility functions Ui = X°‘Y^~°'

and U2 = X^Y^~^. Therefore in order for an Edgeworth box to be constructed, both

platform providers have to truthfully reveal their holding of X and Y as well as their

Cobb-Douglas parameters a and 0. The value of a and 0 are always in different intervals

for example, if a is between 0 and 0.5, 0 must be between 0.5 and 1. The size of the

interval between the two parameters is an indication of how eager the two platform

providers are to exchange resources i.e. a large interval indicates both platform provider

are eager to exchange resources and therefore the larger the contract lens is.

For a context to be established, both platform providers must have opposite resource

requirements, otherwise a negotiation cannot be initiated. For example, if both platform

providers need extra resources of X and are willing to give up certain amount of resource

of Y, the negotiation cannot take place, because any outcome of a reallocation will not

improve both platform provider’s utility and solve their problems of resource shortage.

Once the context has been established, both platform providers are aware of the precise

dimensions of the eye-shaped contract lens. A negotiation outcome is required to make

at least one platform provider better off however both platform provider’s resource re­

quirements have to be fulfilled. The resource requirements of the two platform providers

forms a square box where the square box and the eye-shaped contract lens always have

an overlapping area, which is where the outcome of the negotiation will be (see Fig 4.4).

In [116], a generalized utility representation of Cobb-Douglas function is discussed

and is presented in equation 4.6.

86

U{Ri, i?2, i?3,. ■ •, Rx) = R^^RTRT-• -R? (4.6)

where ai + 02 + 03... + = l.This utility function has the same property as the

the basic two-resource-type case, and the assumption for diminishing marginal utility is

consistent. Therefore the general utility function can be applied to the general resource

granularity model. The value of ai to are the weighing parameters affecting the

utility gains or losses over all resources. The distribution of the weighing parameters is

separated as two sets:

{
Y^a, € [0.51,0.99],Vf 6 Ti

(4.7)
G [0.01,0.49],Vo^ Ti

where T\ is the under-provisioned resource set. Such distribution of weighing pa­

rameters assumes the platform providers are more willing to make an exchange with

abundant resources for what are currently under-provisioned. The distribution for indi­

vidual parameters within each set is random.

The negotiation process takes place by making limited rounds of offers and counter

offers. In order to achieve autonomic negotiation, both platform providers must have

an algorithm for negotiating the resource allocation and there are two algorithms in

this process. One algorithm is used by the platform provider that actively initiates a

negotiation while the second algorithm is used by the platform provider who passively

accepts the negotiation.

87

Algorithm 3 Negotiation Algorithm for the First Order Negotiator
Require: a € (0.5,1) A /3 £ (0,0.5)

u(x, y) <—greater(required x and y, or best utility x and y)

remainingreonnds <— A/

while {revnainingrounds > 0) do

send offer «— (x, y)

receive response —► D, {xc,yc)

if D = accept then

proceed to commitment

return

else if D = reject then

proceed to abortion

return

else if D = counteroffer then

if Xc,yc satisfies required x and y then

accept the counter offer

proceed to commitment

return

else if X, y greater than required x and y then

{x, y) ^ (x * {1 — c),y * (1 — c)) or minimally required (x,y)

send counteroffer

else

reject offer

proceed to abortion

return

end if

end if

end while

return

88

Algorithm 4 Negotiation Algorithm for the Second Order Negotiator
Require: Q £ (0.5,1) A /3 £ (0, 0.5)

remainingreounds <— M

while {remainingrounds > 0) do

receive offer —>• D,{xo,yo)

if D = accept then

proceed to commitment

return

else if D = reject then

proceed to abortion

return

else if jD = counteroffer then

if Xo,yo satisfies required x and y then

accept the counter offer

proceed to commitment

return

else if x, y greater than minimally required x and y then

(x. y) ■>— {x * {1 — c). y * (1 — c)) or minimally required (x,y)

send counteroffer

else

reject offer

proceed to abortion

return

end if

end if

end while

return

Both algorithms are designed to be cooperative, which means the platform providers

are willing to exchange resources in order to satisfy the resource requirements, provided

that the exchange solves the resource shortage for both and makes at least one of them

better off but not worse off.

In terms of the validity time for an exchange, the time that resources can be ex­

changed between platform providers cannot be violated. Both platform providers have

to fulfill the exchange agreement with each other and if one platform provider has to

change the SLA, the unfinished exchange agreement is still accounted for the consump-

89

tion of the platform provider. There is no minimal time required for this exchange

agreement and therefore both platform providers can agree to exchange resources based

on very short intervals, e.g. 5 minutes.

4.5 Conclusion

This chapter presents the autonomic management of resource allocation by the platform

providers. The planning and execution functions are implemented here as the core of

the resource allocation management, which guarantees high resource availability for a

platform provider. The planning component works to manage the SLA by monitoring

the recent demand history while the execution component serves to react to various

conditions following the guidelines from the planning components. This management

approach incorporates the Sharex resource allocation mechanism which is an Edgeworth

Box based system wide negotiation protocol suite for a community of platform providers

to share resources temporarily when faced with sudden changes in the resource demands.

This approach is based on the hypothesis that in the case of sudden resource surges, it

is likely some platform providers will have excess resources available for sharing. Nego­

tiation for resources solves the resource shortage for both platform providers and makes

at least one platform provider better off.

90

Chapter 5

PCRAT Implementation

5.1 Introduction

This thesis seeks to evaluate the proposed resource allocation approach based on a simu­

lated environment. There are existing cloud simulation environments such as CloudSim

[34]. However most of the simulation environments are based on the laaS model and none

of them satisfies the resource allocation requirements in the PaaS context. The simula­

tion for laaS context is focused on virtualization and VM optimization. The simulation

for PaaS context requires a larger scale of laaS environment that allows multiple plat­

form providers to manage and share resources quotas. The Platform-as-a-service Cloud

Resource Allocation Test-bed (PCRAT) is an experimental platform implemented to

simulate the condition in which a PaaS SLA needs to be adjusted to avoid resource over­

provisioning or under-provisioning at a scale with relative reality. This platform will

simulate the presence of multiple SLAs concurrently managed by the platform providers

which have varying resource needs. The Sharex allocation approach and the double

auction approach are both tested under this implementation. PCRAT is a multi-process

simulation environment implemented in C programming language with an underlying

communication model based on the service-oriented architecture (SOA) [47] supported

91

by the libcsoap and libxml2 open source library.

This chapter is separated into several sections, including service implementation,

resource granularity model, time series model, laaS simulation, Sharex implementation,

double auction implementation, limitations and summary.

5.2 Service Implementation

The realization for two processes to exchange information in this simulation framework is

through the Service Oriented Client-Server communication model (see Figure 5.1). The

benefits of using this communication model across the entire framework are twofold.

First, it allows the reuse of some common functionality and design patterns which helps

to reduce the development effort and improve reliability. Second, the service oriented

messaging model is an advanced communication model based on XML, which largely

helps to separate the higher level protocol from the building blocks of the core managerial

logic. This model is founded on the open source library libcsoap and libxml2, which

provide most of the networking APIs which can be harnessed by the allocation protocol.

Above this open source soap development library, Sharex protocol and double auction

protocol implementations are developed to compose each service interface. The interface

specifies how each of the allocation messages is structured in SOAP format. The protocol

implementation involves marshaling and un-marshaling of the allocation messages from

both client side and server side, therefore communicating with a remote interface appears

to be just a function invocation.

92

Protocol Implementation

nanohttp-client Iibxml2

LIbcsoap Client

Protocol
Definition

Service Deployment Service Deployment Service Deployment

Protocol Implementationl

nanohttp-serv libxrnC

LIbcsoap Host

Fig. 5.1: Service-oriented Request and Response Communication Model

5.3 Resource Granularity Model

PCRAT is designed to support different resource granularity models. The flexibility in

the resource granularity model is important for the simulation to be performed under

various type of resources inputs. In our simulation, we carried out experiments for both

Sharex and double auction under 2, 3, 4 and 5 resource types. The simulation results are

presented in the next chapter. This work assumes that all parties in the environment

have agreed on a granularity model when the negotiations take place. The resource

granularity in PCRAT requires a configuration file before a simulation run and each

process in the simulation extracts the granularity configuration in order to construct

resource management models and communication models. Figure 5.2 shows an example

of the configuration file which is written in a formatted plain text.

93

1 RESOURCE
2 resource"
3 resource"
4 resource"
resource"

o resource"
7 resource"
8 resource"
9 resource"
10 resource’

.10=90000
NAME=cpu
10=90001
NAME=bytes_in
10=90002
NAME=bytes_out
10=90003
NAME=memory
10=90004
NAME=disk

Fig. 5.2: Configuration File for Resonrce Grannlarity

5.4 Time Series Model

There are generally two approaches to perform a sinmlation in clone! comi)nting. One

api)roach is to deploy a gennine application on functional clouds such as Amazon EC2 [1]

or ClondSim [34]. Such method depends on using benchmarking standards such as TPC-

W [87] to generate real workloads (e.g. 50 wet) requests per minute) and redirecting the

workloads into the tested system. The performance results of the simulated system

are gathered based on monitoring software. This apiiroach is adopted by w’ork [61,66].

The advantage of this approach is that the results are more accurate and c:an better

reflect the real operating environment. However, such simulation technique is limited

to simulate small scale systems and can not be used for global resource management

involving a large number of machines. The second apj^roach is to use the Time Series

Analysis teclmicpies [26] with a charge-back method to present historical data directly

for simulation. In this approach, there is no need to generate real workloads and it only

requires a simulator to extract the data from the historical data sets into the compatible

forms and feed directly into simulation. Using such time series model benefits from the

ability to run simulations at a larger scale and is suitable for the PaaS context in onr

94

thesis. This simulation approach is also used in work [56], where the traces from the

PlanetLab systems are extracted for evaluations.

The Resource Demand Generator is implemented to extract the historical data and

drive the entire simulation according to the data. This module consists of three major

components: data extraction component, process management component and exper­

iment control component. The data extraction component extracts resource demands

from its local data source written in CSV format for each platform provider on a per-

VIM basis. The source of demands are batch monitoring data extracted from real op­

erating environment over a period of time. The process management component can

fork new' process to run any module in this simulation framework, e.g. an infrastruc­

ture provider process. This component is capable of starting the equivalent number of

platform providers according to the number of data series extracted from local source

and this component is capable of demolishing the processes after a simulation. The

experiment control component is responsible for sending the resource demands to each

platform provider and a timing signal to the broker at each time period.

5.5 laaS Simulation

The laaS simulation offers a meaning of cloud resource provisioning at the physical and

virtualization levels, and more importantly allows the laaS resource providers to enforce

the SLA constrains for the simulation. Although the laaS simulation component may

overlap with some existing simulation frameworks, our development has focused on the

SLA management and enforcement. The laaS simulation in PCRAT mainly includes two

modules, which are the infrastructure provider and the SLA broker. The SLA broker

is in fact a part of the infrastructure provider’s system, but was separated as an inde­

pendent process so that it’s easier to understand the responsibilities of each process. As

a result, we can consider the infrastructure provider and the SLA broker as a resource

provider system. The Infrastructure Provider module aims at providing a simulation of

95

a large scale cloud infrastructure which operates upon a spectrum of physical hardware

and realizes the resource provisioning functionality through virtualization. The imple­

mentation of this module has focused on management operations of virtual instances

and physical machines.

A physical machine in PCRAT is an entity to represent a real-world physical ma­

chine with quantifiable resource capacity. The resource capacity of these machines are

specified in the configuration files and the infrastructure provider is configured to op­

erate a spectrum of physical machines with various resource capacities. The resource

configuration needs to be compatible with the resource granularity configuration.

A virtual machine in PCRAT is an entity representing a virtualized instance with an

allocation of resource volume on a physical machine. The resource volume of a virtual

machine is measured in the same quantification specified in the physical machine. The

resource broker requests for a virtual machine to be created for a demanding platform

provider. Such requests for creation of a virtual machine have specifications regarding

resource volume and are allocated by one immediately available physical machine. Each

virtual machine has a unique identifier called VM tag, which consists of a series of

randomly generated alphabetic characters and is generated during creation of the VM.

The main services deployed on the infrastructure provider module are the VM man­

agement services, which offer an interface for executing management operations for vir­

tual machines. The management operations are as follows.

• VM creation allows a virtual machine to be created with specified resource volume.

During the creation process, the infrastructure provider finds an available physical

machine for such allocation and if allocated successfully, a randomly generated tag

for this virtual image is returned. This VM tag is a unique identifier for the new

VM. The VM creation operation results in the reduction of available resources on

the physical machine hosting the VM.

• VM deletion allows an existing virtual machine to be removed using the VM tag as

96

the unique identifier. The removal of a virtual machine results in the destruction

of the entity in the simulation environment and an increase in the total resource

availability on the physical machine where the virtual machine resides for the

equivalent amount of resources allocated to this virtual machine.

• VM scale up allows an existing virtual machine to be allocated extra resources.

This scale up operation requires the VM tag as the unique identifier and a spec­

ification to indicate the additional resources to be added to this virtual machine.

If the physical machine where the virtual machine is residing does not have suf­

ficient resource availability for the specified allocation, the migration process will

be triggered.

• VM scale down allows an existing virtual machine to reduce the allocated resources.

This scale down operation requires the VM tag, as well as a specification to indi­

cate the amount of resources to be reduced. The reduction in the VM allocated

resources will result in availability of the equivalent amount of resources on the

hosting physical machine.

A monitoring service is also offered on the infrastructure provider to allow the broker

query the current status, such as the total resource capacity, available resource volume,

etc. A maintenance worker is also implemented to periodically inspect the efficiency

of the placement of the virtual images across all the physical machines. The essential

objective of the maintenance worker is to reduce the number of active physical machines

and this is achieved by migrating certain virtual images from one physical machine to

another and putting the idle physical machines into an inactive state. However this is

not a frequent process and does not seek the optimal efficiency of placement.

The SLA broker acts on behalf of the infrastructure provider to lease resources to the

platform providers. The implementation of this module has focused on the management

operations of the SLA, as well as enforcing the QoS specified in the SLAs.

The SLA management operations in this module enable the platform providers to

97

(lyiiaiiiically modify their SLAs and generates bills with accordance with the SLAs in each

time period. The billing information as well as the QoS are periodically recorded by the

SLA broker onto a local CSV file for each platform provider. The management operations

can be invoked through the SLA management service interface and a description of the

service functions is outlined below.

SLA Creation enables the establishment of a SLA document in the broker after receipt

of a request from a platform provider. In the request, the jilatform provider needs

to provide its ID as a unique identifier and the details of the SLA document such as

SLA type and QoS. The broker then checks the validity of the recpiest and registers

the new established SLA with the billing system. A sample message for request

and response is presented in Figure 5.3.

POST /SLABroker/SLAManagement HTTP/1.1
Host: Tocalhost
Content-Type: application/soap+xml; charset=utf-8

<?xml version="l.0"?>
<soap:Envelope

: xmlns: soap="http ;//wvav.w3 .org/2001/12/soap-envelope"
soap; encodlngStyle="http;//www.w3.org/2001/12/soap-encoding">

<soap;Body>
, <ra:SLACreationRequest>

<m;ID>PP001</m;ID>
<m;SLAType>Static</m:SLAType>
<m;Cont ractTime>60</m:Cont ractTime>

1 <m;ResourceQuota>
<m:CPU>lO00</m:CPU>

' <ni: RAM>1000</m: RAM>
I </m:ResourceQuota>
j </m;SLACreationRequest>

j <in; SLACreationResponse>
<ra:ID>PPO01</m;ID>
<ra:Status>Successfull</m:Status>

! </m:SLACreationResponse>
</soap:Body>

</soap:Envelope>

Fig. 5.3: SLA Creation Message

SLA Amendment allows a platform provider to dynamically modify the SLA docu-

98

ineiit to meet its volatile resource demands. This amendment function includes

options for changing the SLA type as well as the QoS. If an amendment is made

to an existing static SLA, a penalty charge is applied. The amendment function

requires the ID to identify the SLA document and the details of the modifications

to the SLA. A sample message for request and response is presented in Figure 5.4.

POST /SLABroker/SLAManagement HTTP/1.1
Host: locaThost
Content-Type: application/soap+xml; charset=utf-8

<?xml version="l.0"?>
<sodp:Envelope
xmlns: soap="http :/7wwvv.w3 .org/2001/12/soap-envelope"
soap: encodingStyle=''http: //www.w3 .org/2O01.'12/soap-encoding">

<soap;Body>
<m;SLAAmendmentRequest>

<ra;ID>PP0Ol</m;ID>
<m:SLAType>Dynamic</m;SLAType>
<m:ResourceQuota>

<m:CPU>0</ni:CPU>
<ra:RAM>0</m:RAM>

</m;ResourceQuota>
</ni; SLAAmendmentRequest>

<m;SLAAmendmentResponse>
<ni; ID>PP001</m: ID>
<ra:Status>Successfull</m:Status>

</m: SLAAmendinentResponse>
</soap:Body>

</soap;Envelop6>

Fig. 5.4: SLA Amendment Message

SLA Resource Exchange carries out a resource exchange between two platform providers

at the request of one of them. A request for this function requires the ID of the

request originator and the ID of the platform provider whose resources are to be

exchanged with the originator. In addition, the originator needs to specify the

details of the exchange, including type of resource, the volume and a duration for

which the exchange is valid. A commission charge is generated as part of this

invocation and the static bills for both platform providers are unaffected by the

presence of a resource exchange. A sample message for recpiest and response is

99

presented in Figure 5.5.

POST /SLABroker/SLAManagement HTTP/1.1
Host: TocaThost
Content-Type: appTication/soap+xml; charset=utf-8

<?xmX version="l.0"?>
<soap;Envelope
xmlns:soap="http://WWW.w3.org/2001/12/soap-envelope"
soap:encodingStylG="http:'/www.wB.org/2001/12/soap-encoding">

<soap;Body>
<m:SLAExchangeRequest>

<ni: InitiatedBy>PP001</in: InitiatGdBy>
<Tn: AcceptedBy>PP002</in; AcceptedBy>
<m:ExchangeTime>l</m:ExchangGTime>
<m:ResourcGQuota>

<m;CPU>300</m:CPU>
<m;RAM>-5O0</m:RAM>

</m; ResourceQuota>
</m:SLAExchangeRequest>

<ni; SLAExchangeResponse>
<m;InltiatGdBy>PP001</m:InitiatedBy>
<m:AcceptedBy>PP0O2</m:AcceptedBy>
<m:Status>Successfull</m:Status>

</m;SLAExchangGRGsponsG>
</soap:Body>

</soap;Envelope>

Fig. 5.5: SLA Exchange Message

SLA Set Extension offers an option for the existing SLA holders to request an ex­

tension of their contract prior to the e/xpiry of their current SLAs. This function

requires the ID of the jilatfonn provider as well as the new QoS to be updated

after the expiry of the current SLA. The transition from an expired SLA to an

extended SLA does not impose any penalty however the bill for the extended SLA

will depend on the new QoS requested in the extension. The extension request is

possible at any time prior to the expiry but an extension request recphres the same

minimum contract term as the standard static SLA. A platform provider with a

renewed static contract has the same obligation to resource usage and billing rules

and if an extension request is absent, on the expiry of the current SLA, the SLA is

automatically switched back to an on-demand SLA. A sample message for request

100

and response is presented in Figure 5.6.

POST /SLABpoker/SLAManagement HTTP/1.1
Host: locaThost
Content-Type: appTlcation/soap+xmT; charset=utf-8

<?xinl VG rsion=" 1.0" ?>
<soap;Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http:. /www.w3.org/2001/12/soap-encoding">

<soap;Body>
<ni: SLAExtensionRequest>
<m;ID>PP001</m;ID>
<ra; Cont ractTimG>60</m:Cont ractTime>
<m; ResourcGQuota>

<m; CPU>2000</iii: CPU>
<m;RAM>20O0</m:RAM>

</ni; ResourceOuota>
</miSLAExtGnsionRequest>

<m:SLAExtensionResponse>
<m;ID>PPO01</m; ID>
<m;Status>SuccGssfull</m;Status>

</iii: SLAExtensionResponse>
</soap:Body>

</soap;EnvGlope>

Fig. 5.6; SLA Extension Message

5.6 Sharex Implementation

Sliarex re,source exchange mechanism is implemented in PCRAT and it includes two

important modnles, which are the platform provider module and the Sharex resource

exchange coordinator module. This .section shows the implementation details for each

of these two modules.

The resource exchange coordinator is implemented to coordinate the process of re­

source exchange in this simulation framework to facilitate interaction between the plat­

form providers. This module is part of the resource provider system which also includes

the infrastructure provider and the SLA broker. The coordinator acts as a social au­

thority in the environment and offers trust management validation function. It can also

register a platform provider which is interested in joining the social group and introduce

101

the platform provider to the social group. It offers the registration interface to allow

a platform provider to register its ID and listening address. Since there are more than

one [ffatform provider running in the system, each platform provider process is bound

to a uniciue listening address. Once the registration is complete, the coordinator replies

with a response me.ssage to the new member, and this message includes the information

about the social group. Meanwhile the coordinator multicasts a notification message to

the social group al:)out the new member. A sample request and response message for

social registration is presented in Figure 5.7.

POST /Coordinator/Registration HTTP/1.1
Host: Tocathost
Content-Type: appTication/soap-^xmT ; charset=utf-8

<?xml verslon="l .0''?>
<sodp:Envelope
xinlns: soap="http ://www.w3 .org/2001, 12/soap-envelope"
soap; encodings!yle="http/WWW.w3 .oi'g/2001/12/soap-encoding">

<soap;Body>
<m;SocialRegist rationRequest>

<m:ID>PP001</m: ID>
<m: ListeningPort>10000<m: ListeningPort>

</tn; Social Regist rationRequest>

<m:SocialRegist rationResponse>
<m:Status>Accepted</m;Status>
<ni: ID>PP002</ni: ID>
<m: ListeningPort>10001<ni: ListeningPort>
<tn: ID>PP003</ni: ID>
<m:ListeningPort>10002<ra:ListeningPort>

</in: SocialRegist rationResponse>
</soap;Body>

</soap;Envelope>

Fig. 5.7 : Sharex Registration Message

The TrustManagement interface offered by the coordinator requires the ID of the

platform provider to be verified, along with its resource quota. If the provided informa­

tion is successfully verified by the coordinator, the coordinator replies with a response

message with a True status, otherwise False. A sample request and response message

for information validation is presented in Figure 5.8.

102

POST /Coordinator/TrustManagement HTTP/1.1
Host: locaThost
Content-Type: appTication/soap-^xml; charset=utf-8

<?xml version="l.0"?>
<soap;Envelope
xmlns: soap=''http://www.w3 .org/2001 '12/soap-envelope"
soap; encodings! yle="http :/iVww.w3 .org/2G01/12/soap-encoding “>

<soap:Body>
<miSLAInfoValidationRequest>

<m;ID>PP001</m;ID>
<m;ResourceQuota>

<m;CPU>2000</in:CPU>
<in; RAM>2000</m: RAM>

</in: ResourceOuota>
</m:SLAInfoValidationRequest>

<m:SLAInfoValidationResponse>
<in; ID>PP001</m; ID>
<m;Status>T rue<m:Status>

</ni; SLAInfoValidationR6sponse>
</soap;Body>

</soap;EnvGlope>

Fig. 5.8: Ti’iist Management Message

The platform provider implements the antonomic resource management mechanisms

di.scnssed in chapter 4. The PCRAT deploys mnlti])le platform provider instances and

once the simulation starts, the demand generator sends the resource demands jieriodi-

cally to eac'h platform provider in the environment. The platform providers coordinate

with the resource exchange coordinator and among themselves under various load con­

ditions. At each time period, each platform provider logs its QoS, provisioning costs

and provisioning responsiveness onto a local CSV file. The CSV files are collected in

the end of an experiment and can lie analyzed for each experiment. The provisioning

responsiveness is a timing measure for how fast the entire resource exchange process

(from negotiation initiation to completion) can complete in the need of a negotiation.

There are two interfaces offered by the platform provider module, which are the social

notification interface and resource exchange interface. The social notification interface

allows the coordinator to introduce a new social member when the social member reg-

103

isters. The message inclvides the ID of the new member as well as its unique listening

address. A sample request and response message for social notification is presented in

Figure 5.9.

POST /PlatformProvider/SocialNotification HTTP/1.1
Host: Tocalhost
Content-Typo: apptication/soap+xml; charset=utf-8

<?xml version="l.0"?>
<soap;Envelope
xmtns:soap="http://WWW.w3.0rg/2001/12/soap-envelope"
soap: encodings! yle="http : ' .^www.w3 .org/2001/12/soap-encoding “>

<soap;Body>
<m:SocialNotificationRequest>

<ni: ID>PP001</m; ID>
<ra:ListeningPort>10000<ra:ListeningPort>

</m;SocialNotificationRequest>

<m:SocialNotificationResponse>
<m: Status>OK</ni; Status>

</m;SocialNotificationResponse>
</soap:Body>

</soap:Envelope>

Fig. 5.9: Sharex Notification Message

The resource exchange interface allows the resource exchange to be initiated and

negotiated. The initiation function allows a platform provider to request another j)lat-

form provider to start the jrrocess of resource exchange ba.sed on the Edgeworth box

model. This function requires the ID of the negotiating platform provider, its current

entitlement to resources and its exchange preference. This function examines the need of

resource types for each other, performs information validation with the coordinator and

makes a decision on whether or not the negotiation process should start. If the condition

satisfies the model in the previous chapter, a negotiation process is activated for both

negotiating parties. The activation of the negotiation process results in the construction

of a negotiation object, a negotiation context and the negotiator’s profile. In the current

implementation, the negotiation object is used to record the sequence of a negotiation

and prevent the occurrence of multiple negotiations taking place in one platform irrovider

104

at a time. This object is associated with the negotiation context which keeps the meta

information about the Edgeworth box model between the two parties. The negotiator’s

information is also recorded and irrespective of whether the initiation of negotiations is

successful or not, both platform providers mark each other as already negotiated with

and would not attempt to re-negotiate with each other in the current time period (in

the case where initiation of negotiations is unsuccessful). This is because both platform

providers have come to a conclusion at this stage that under the Edgeworth box model,

any allocation outcome can not satisfy the requirements for at least one of them. How­

ever, this does not impede two platform providers to exchange resources in the future

time period. A sample of the Sharex initialization message is presented in Figure 5.10.

105

POST /PTatformProvider/ResourceExchange HTTP/1.1
Host: Tocalhost
Content-Type: appTication/soap+xmT; charset=utf-8

<?xml version="l.0"?>
<soap;Envelope
xmlns:soap="http://www.w3.org/20Gl/12/soap-envelope"
soap: encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>
<m:SLAExchangeInitializationRequest>

<m:ID>PP0Ol</m:ID>
<m:ResourceQuota>

<m;CPU>2000</[n;CPU>
<m;RAM>2000</m;RAM>

</m:ResourcGOuota>
<111; CobbDougl asPa ram>

<m:CPU>0.7</ra;CPU>
<m;RAM>0.3</m;RAM>

</in; CobbDouglasParam>
</m;SLAExchangeInitializationRequest>

<m;SLAExchangeInitializationResponse>
<m;ID>PP002</m: ID>
<m;Status>Accept<m;Status>
<m; RGSourceQuota>

<m:CPU>3000</m:CPU>
<m:RAM>1000</m;RAM>

</ni; RGSourceOuota>
<m;CobbDouglasParam>

<m:CPU>0.35</tn;CPU>
<111: RAM>0.65</m; RAM>

</m:CobbDouglasParam>
</in: SLAExchange Ini tiali2ationRGsponsG>

</soap:Body>

</soap:Envelope>

Fig. 5.10: Sharex Initialization Message

During the resource exchange negotiation, the negotiation function allows a request

to lie entered liy the parties involved in the current negotiation. This function provides

a response in a format similar to a recjnest message and both a request and response

can be of the following four types: acceptance of previous offer, an offer (counter offer),

confirmation or abort negotiation. Parameters included in the messages include the ID

of the originating platform provider, the message type, the suggested new allocation

scheme in the Edgeworth box context, and how long the resource exchange is valid for.

The ID and message types are mandatory fields while the rest are optional depending

106

on tlie type of the message. An offer is recorded in an array, which is associated with

the current negotiation object and the negotiation object and its associated entities are

destroyed when a negotiation is completed. A sam])le of the Sharex negotiation message

is presented in Figure 5.11.

POST /PTatformProvider/RQSourceExchange HTTP/1.1
Host: localhost
Content-Type: application/soap+xml; charset=utf-8

<?xinT version="l .0"?>
<sodp;Envelope
xmlns:soap="http;. /ww^.wS.org/2001/12/soap-envelope"
soap: encodingStyle="http; / /www.w3 .org/2001.'12/soap-encoding ">

<soap;Body>
<m: SLAExchangGNegotiationRequest>

<m:ID>PP001</m; ID>
<in: Status>ProposG<m; Status>
<ni: Allocation>

<ni:CPU>2500</m:CPU>
<m;RAM>1500</m: RAM>

<1 m: Allocation>
</m;SLAExchangeNegotiationRequGSt>

<m:SLAExchangeNGgotiationResponsG>
<m: ID>PP0O2</ni: ID>
<m;Status>P roposesm: Status>
<in: Allocation>

<ra:CPU>2300</m;CPU>
<ra:RAM>1500</m;RAM>

</m;Allocation>
</ni: SLAExchangGNegotiationResponse>

</soap;Body>

</soap;Envelope>

Fig. 5.11: Sharex Negotiation Message

5.7 Double Auction Implementation

We implemented a double auction mechanism within the PCRAT framework, which al­

lows us to compare the Sharex approach against the classical approach. The double

auction mechanism implemented in PCRAT is a realization of the Clearing House Dou­

ble Auction prescribed in work [62]. This Clearing House Double Auction mechanism

features a periodic auction market, which is compatible with the time .series model used

107

in PCRAT. The double auction mechanism reuses most of the resource provisioning

infrastructure offered by the laaS simulation and the resource demand generator. In

the implementation, the platform provider functionality is modified so that it performs

double auction instead of Sharex negotiation. During the resource allocation, a platform

provider sells the idle resource quotas and buys the required resource quotas. All the

buying and selling information is encoded into a single bidding message. Meanwhile,

two bidding strategies are implemented in the platform provider module, which are the

ZI strategy and the ZIP strategy [122]. ZI strategy does not consider the market infor­

mation and makes a random bid within an allowed value range and ZIP strategy takes

the market information into consideration. Both strategies are proven to be effective in

double auctions [122].

The realization of a double auction mechanism requires a key module which is the

auctioneer. The auctioneer is a centralized process responsible for conducting an auction

market for each resource type specified in the granularity model for each time period.

The auctioneer in this mechanism is considered a part of the resource provisioning sys­

tem, which also includes the infrastructure provider and the SLA broker. Therefore an

auctioneer has the authority to enforce an auction result based on the bids submitted

by all the platform providers. The auctioneer performs the following work at each time

period. At each time period, it firstly gather all the bidding information from the plat­

form providers. Secondly, it iterates through each type of resources, extracts bidding

information for each auction market and starts each auction market. Thirdly, for each

auction market, the auctioneer sorts the buyers’ bids and sellers’ bids into a buyer’s

queue (from high price to low price) and seller’s queue (from low price to high price)

respectively. Next, the auctioneer determines the market price based on the algorithm

specified in work [62]. After a market price is set, the auctioneer processes the auction

result, by matching the buyers and sellers in the sorted order (i.e. the highest bidder

firstly gets to buy resource from the lowest seller at the market price). Then the auc­

tioneer enforces such auction result by notifying the SLA broker in the form of an SLA

108

exchange (reused interface). Finally the auctioneer publishes the auction results and

notifies all the platform providers. This process continues until all the resource auctions

are finished. An illustration of this auctioneer workflow is presented in Figure 5.12.

Fig. 5.12: Flowchart for auctioneer

The auctioneer offers an interface to allow bids to be placed. The interface requires

the platform provider ID, as well as a specification of how many resources are to be

sold/bought at a bidding price. A positive number indicates it is a buy while a negative

number indicates it is a sell. A sample message for auction bid is presented in Figure

5.13.

109

POST /AuctionGGr/Bidding HTTP/1.1
Host: Tocalhost
Content-TypG: application/soap+xml; charsGt=utf-8

<?xmT version="l.0"?>
<sodp;EnvoiopG
xmlns:soap="http ;//www.w3.org/2001/12/soap-onvgIope"
soap:GncodingStylG="http://www.wB.org/2001/12/soap-encoding">

<sodp;Body>
<m:AuctionBidRequGSt>

<m;ID>PP001</m;1D>
<m;ResourceQuota>

<m: CPU>100</ni; CPU>
<m: PriCG>2.2</ni; PricG>
<m;RAM>-50O</m;RAM>
<mi PricG>3.6</m; Price>

</m: ResourcGQuota>
</ni; AuctionBidRGquest>

<ni; AuctionBidRGsponse>
<m;ID>PP001</m; ID>
<m:Status>OK</m;Status>

</in; AuctionBidRGSponse>
</soap:Body>

</soap:EnvGlopG>

Fig. 5.13: Double Auction Bidding Message

Meanwhile, the platform provider has an interface to receive auction results. An

auction result message would include all the auction details. A double auction is a

many-to-many economic model, therefore a platform provider may buy or sell resources

from/to many others. The auction residt message contains the market price for this

auction, and the auction details reveals whom the resource is traded with as well as

the quantity of resource traded. A positive number in the resource field indicates the

recipient of the message bought resource from the platform provider s]Tecified in the

message, and vice versa. A sample auction result message is presented in Figure 5.14.

no

POST /PlatformProvider/AuctionResuTt HTTP/1.1
Host; locaThost
Content-Type: appTication/soap+xmT; charset=utf-8

<?xml version="l .0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001.'12/soap-envelope"
soap; encodingStyle="http :/.^www.w3.0 rg/2001/12/soap-encoding">

<soap:Body>
<ni: Auc t ionResul t Request >

<m; AuctionPrice>
<ni: CPU>3.0</in: CPU>
<n): RAM>2.8</m: RAM>

</m:AuctionPrice>
<01; Auc t IonResul t>

<m: ID>PP001</ni; ID>
<oi: ResourceQuota>

<m:CPU>80</m:CPU>
<01: RAM>-30</oi; RAM>

</oi; ResourceOuota>
</oi; AuctionResult>
<oi: AuctionResult>

<oi: ID>PP0O2</oi; ID>
<oi: ResourceQuota>

<m: CPU>0</io: CPU>
<oi: RAM>- 100</m; RAM>

</oi; ResourceOuota>
</oi; Auc t ionResul t>

</m:AuctionResultRequest>

<01; Auc t ionResul tResponse>
<ra: Status>OK</oi: Status>

</oi: Auc t ionResul tResponse>
</soap:Body>

</soap;Envelope>

Fig. 5.14; Double Auction Result Message

5.8 Limitations

The PCRAT impleinentatioii simulates the resource allocation process in a PaaS con­

text and demonstrates the possibility for exchanging resources to overcome resource

imbalances however, it is subject to certain limitations.

The resource demands in the PCRAT are reconstructed based on historical monitor­

ing data, and are injected into the framework in artificial time periods. This approach

111

is easier than generating continuous real time demands, because using continuous real

time demands compared to discrete time demands requires a variety of realistic demand

models. Such realistic demand models are rather difficult to obtain, and require the

simulation to be implemented on larger scale experimental infrastructure. This thesis

adopts the discrete time demand model but admits certain limits about answering fur­

ther questions. Since the simulation process is synchronized by artificial time signals,

the need for carrying out resource exchange can be understood as precisely at the same

time. In the real world, real time demands can exhibit different characteristics from

sampled demand data and the need for carrying out the resource exchange may be more

frequent. In a continuous time model, the resource exchange activity for some platform

providers can be much more intensive but they may not be able to find suitable candi­

dates for exchange. Also, in a continuous time model, the valid duration for an exchange

agreement is hard to decide because a longer duration will mean more obligation but

shorter duration would mean more frequent need for exchange. This however may be

addressed by allowing a platform provider to have multiple exchange agreements but in

this case, a platform provider would need to optimize the exchange decision for further

exchanges.

In addition, although the design of Sharex negotiation model includes the require­

ments for the communication messages to be compliant with the FIFA communication

acts, the current implementation can not fully ensure the compliance due to the time

limitations. Therefore we would include the FIFA compatibility integration into the

future work.

5.9 Summary

This section has presented the anatomy of the simulation framework by discussing the

constituent modules in the FCRAT model which includes infrastructure provider, SLA

broker, resource allocation coordinator, platform provider, and resource demand gen-

112

erator modules. The infrastructure provider is responsible for providing the physical

resources while the service level agreement broker acts on behalf of the infrastructure

provider to lease resources to the platform providers. The resource allocation coordinator

facilitates the process of resource exchanges between the platform providers and in this

simulation, the platform providers carry out simultaneous resource allocation while the

resource demand generator is responsible for generating the resource requests necessary

for the simulation by using historical data. In addition, the double auction approach is

also implemented using part of the PCRAT modules for comparison. This chapter has

discussed the resource allocation process and the limitations of the framework and the

next chapter presents and analyzes the results of the experiment.

113

Chapter 6

Evaluation

This chapter presents evidence based on the PCRAT framework described in Chapter

5 to evaluate the feasibility of the approach proposed by this thesis. Using the Sharex

model proposed, this section explores the effect on resource allocation using the workload

traces we can obtain. We also offer a side-to-side comparison between our solution and

the double auction approach using the same set of data.

6.1 Experiment Setup

This section offers an overview about the experiment parameters used during setup of

the simulation.

6.1.1 Experiment Input

The experiments presented in this thesis are based on workload traces gathered from a

large scale grid hosting environment similar to the PaaS scenario. Although the Grid and

Cloud concepts are conceived at different stages in the process of IT development, they

share common characteristics and challenges of resource provisioning [53]. As such, we

made the best attempt by acquiring the most appropriate historic monitoring data for the

European Grid Infrastructure (EGI) through the Grid Observatory (GO) Portal [58].

114

Among the comprehensive attributes recorded on the observed systems, we identified

and extracted 5 data sets that represent the resource consumption for 5 resource types

on the grid servers. Each resource set comes with two groups of values which are the

monitored information and machine property. Monitored information is dynamic and

changes from minute to minute, while the machine property is static and describes the

hardware specification on all grid servers. We provide the details of the data sets in

table 6.1.

Table 6.1: Information Extracted from GO Historical Data

Resource Descrip­

tion

Monitored Informa­

tion

Machine Property

CPU Consumption one minute load average number of cores and

core speed

In-flow Network Con­

sumption

bytes in per minute None

Out-flow Network Con­

sumption

bytes out per minute None

Memory Consumption memory free, memory

cached,

memory buffered

memory total

Disk Consumption disk free disk total

All the GO monitoring attributes are stored in a proprietary XML schema, each of

which is referenced by a unique machine ID and a sensor ID. For each attribute, the per-

minute time stamp and the associated monitoring value are assembled as an XML node.

A daily monitoring data sheet aggregates 1440 (24*60) data nodes for each sensor, i.e.

server attribute and there is one data sheet generated for each observed Grid machine.

In the data extraction process, a SAX-based script was used to parse the GO XML files

115

and convert the target data into the equivalent number of CSV files in order to feed the

experiment.

Some of the data such as the network-in and network-out can directly represent the

network resource workloads. But the others are not directly available for use. We made

our best effort to compute the CPU consumption data based on equation 6.1, memory

consumption data based on equation 6.2, and disk consumption data based on equation

6.3. These resource consumption models offer moderate fidelity for projecting resource

demands from one grid server to one platform provider. The result of such projection is

not perfectly accurate however reflects the relative load conditions of each server. Thus

we believe the data derived from the model is consistent for all platform providers and is

valid input. Finally, we adjust the scale of the input value appropriately across the entire

data set in order to balance the differences in resource values from different resources.

Rcpu = num.cores * core^speed * load-one (6.1)

Rmnnory = meni-total — {merri-free + mem-cached -f mem-buffered) (6.2)

Rdisk — disk.total — disk-free (6.3)

We performed our simulation based on various resource granularity models, including

2, 3, 4 and 5 resource scenarios. The details of the resource selection for each granularity

model is presented in table 6.2. In each experiment, a set of resources extracted from one

grid server is randomly selected and is matched to the input for one platform provider.

Therefore in an experiment, the group of platform providers can operate under the same

load conditions experienced by the sampled grid servers on that particular day. To

best eliminate the noises using such sampling technique, we carried out the experiments

using varying number of platform providers. For each resource granularity model, we

performed experiments using the number of platform providers ranging from 40 to 120,

and the number of platform providers increases by 10 in each experiment.

116

Table 6.2: Resource Granularity Configuration

Granularity Resource Names

2 cpu, network inbound

3 cpu, network inbound, network outbound

4 cpu, network inbound, network outbound, memory

5 cpu, network inbound, network outbound, memory, disk

6.1.2 Framework Configurations

The experiment framework requires certain configurations which can affect the decisions

during the resource allocation for a platform provider in the simulation. The set of

configurations is related to the Service Level Agreement (SLA) set by the resource broker,

and is described in Table 6.3. Related to the previous section, although the historical

data sets are used to simulate the resource demands, they are not intended to map the

demands to very precise hardware specifications. The scale of such a cost scheme is

comparable to the Amazon EC2 Pricing Scheme [2] where the reserved Amazon EC2

instances reduce the unit cost significantly and this also requires an upfront payment.

On-demand instances, on the other hand have no upfront costs. Such upfront payments

are also proportional to the value of the reservation, which is introduced as penalty in

this thesis. Amazon offers a market place to allow reserved instances to be traded while

it charges certain fees proportional to the deal.

117

Table 6.3: Broker Service Level Agreement Configurations

Configuration Description Value

per unit cost over 1 period for any resource under a reserva­

tion

1

per unit cost over 1 period for any resource with on-demand

provisioning

2

minimum periods required for a reservation 30

penalty charges if a reservation has to be altered or canceled,

proportional to the contract value (%)

10

commission charge to both platform providers swapping re­

sources, proportional to the value of the resource volume

swapped (%)

5

6.2 Evaluation Criteria

We present the evaluation criteria in this section, which include the Reduction in SLA

Violations (RSV), response time, penalty rate. Resource Utilization Efficiency (RUE),

and average cost.

6.2.1 Reduction in SLA Violations (RSV)

The RSV is an important measurement for Sharex. It indicates the effectiveness for

the exchange-enabled allocation approach, without which would lead to violations of the

SLAs, and is an important characteristic of resource provisioning elasticity. The RSV

is observed based on equation 6.4. The occurrences of commission charges and penalty

charges can be extracted from the aggregated log files. It is also important to note

that the Sharex approach does not completely eliminate the SLA violations but helps to

118

reduce the SLA violations to a certain degree.

RSV =
no. of commission charges counted

no. of commission charges counted + no. of penalty charges counted
(6.4)

6.2.2 Response Time

Response time is an important figure for a resource provisioning system. Under Sharex,

a platform provider system must be able to seek for a solution in a responsive manner.

We have identified two concerning issues in the current implementation, where the ne­

gotiation selection is based on random choice and the negotiation object does not allow

concurrent access. The measure of response time can help answering the questions about

whether such shortcomings have a big impact on the viability of Sharex. The response

time is an average of the negotiation time recorded by the platform providers in the

aggregated log file.

6.2.3 Penalty Rate

Penalty rate is a similar evaluation criteria to RSV measurement, and is described in

equation 6.5. It allows the observation of an overall effectiveness of an approach, and

in this case, we offer a direct comparison between Sharex and double auction on this

attribute.

RSV
no. of penalty charges counted

total number of aggregated log entries

6.2.4 Resource Utilization Efficiency (RUE)

(6.5)

RUE is an indicator about how well each resource type is utilized in the resource provi­

sioning process (see equation 6.6). An imperative requirement for the platform providers

is to guarantee high-availability in their resource provisioning, which suggests a plat­

form provider should rather over-provision resources than under-provision resources.

119

The RUE indicator enables observation over the degree to which resources are over­

provisioned to satisfy the high-availability requirements, and how efficient an approach

is to utilize computer resources and reduce global power consumption.

RUE = total resource demanded
total resource allocated

(6.6)

6.2.5 Average Cost

Cost is another important factor that must be taken into consideration when evaluating

a resource allocation approach. It is an indication of the economic efficiency of an

allocation approach. The evaluation is based on calculating the average cost per resource

unit, which is represented in equation 6.7. Since the unit cost price is applied consistently

across all resource types, the total cost can be evenly divided over the summation of total

resource demands for all resources.

average cost — total cost
total resource demanded (6.7)

6.3 Results

The results are analyzed based on the output produced by the experiments and the

results are relatively consistent for all the platform providers. The results showed that

the performance of Sharex under various evaluation criteria is comparable to the double

auction approach.

6.3.1 Reduction in SLA Violations (RSV)

The graph in Figure 6.1 shows the RSV values for platform providers under 2, 3, 4 and 5

resource granularity models. From the graph we can observe that the Sharex approach

achieves the RSV value from around 12% at minimum to near 30% at maximum. Mean­

while, as the number of platform providers increases, the RSV value also increases in

120

a nearly linear trend. In addition, the RSV shows a general decline at around 3% as

the resource granularity model increases the complexity. Based on the observation, we

conclude that the Sharex has played a significant role during the resource allocation in

helping to reduce the SLA violations, and the effectiveness of Sharex benefits from a

larger population.

40 60 80 100

Number of Platform Providers

120

Fig. 6.1: Penalty Reduction Rate for Sharex

6.3.2 Response Time

The data for response time measured in the experiments is presented in Figure 6.2.

The results in the graph have shown good responsiveness despite the concerns over the

performance issues raised in our model. Based on the graph, most Sharex negotiation

process can be finished within the 2 seconds boundary on average, and with less than 80

121

platform providers, most negotiation process can be finished within 1.5 seconds boundary

on average. The response time for all granularity models shows a consistent pattern

as the number of platform provider increases. It is observable that under 100 platform

providers, the responsiveness deteriorates at a low speed with the expansion of the social

group, however beyond 100 platform providers, the response time starts to increase at

a much more notable speed. This does suggest that the issues in our model can cause

scalability problems when the social group gets large. Therefore our conclusion is that

the Sharex approach under current construction is efficient for a social group under 100

members. We will explore a much more efficient social relationship during the negotiation

and seek a solution applicable to larger social groups in our future work. Finally, it is

worth noting that as the granularity model expands from 2 resources to 5 resources, the

response time increases up to 0.5 seconds.

122

Fig. 6.2; Response Time for Sharex

6.3.3 Penalty Rate

The penalty rate is presented in several graphs (Figures 6.3,6.4,6.5,6.6), each of which

represents the data for one resource granularity model. In each graph, the comparison

between the Sharex and double auction is presented on this criteria. Each experiment in

double auctions is conducted in two runs, one of which employs the ZI bidding strategy

while the other employs the ZIP strategy.

In all data sets, the penalty rate shows a relatively consistent pattern, with the values

enclosed in the range between 12% to 17%. The differences on this criteria among Sharex,

ZI and ZIP are insignificant. It is however notable that ZIP generally outperforms ZI,

and ZI outperforms the Sharex. However, the penalty rate decreases more in Sharex

123

than in ZI or ZIP as the number of platform providers increases. This suggests that

Sharex benefits more than a double auction from a larger economic group.

Fig. 6.3: Penalty Occurrence Rate for 2 Resources

124

a
CC
4)

6
a

L

-A- Shanex
■a- ZIP
X Zl

~r-
40 60 80 100

Number of Platform Providers

120

Fig. 6.4: Penalty Occurrence Rate for 3 Resources

125

Number of Platform Providers

Fig. 6.5: Penalty Occurrence Rate for 4 Resources

126

n
DCd)

6

-A- Sharex
-o- ZIP

X ZI

—f-

40
------------------ 1-------------- 1
60 80 100

Number of Platform Providers

—T”

120

Fig. 6.6: Penalty Occurrence Rate for 5 Resources

6.3.4 Resource Utilization Efficiency (RUE)

The RUE data is also presented in several graphs (see Figure 6.7,6.8,6.9,6.10). These

data sets have shown mixed results. In the resource granularity model for 2 resources,

Sharex shows a very close performance to ZIP under this criteria. Both solutions offer

the RUE at around 53%, however they both fall below the ZI solution by around 2%.

In other resource granularity models, the Sharex has demonstrated an advantage over

ZI and ZIP. Sharex in the latter scenarios outperforms ZI by around 5% and ZIP by

around 10%. Our interpretation on such outcome is that the double auction approach

may achieve a lower penalty rate, however it was at the cost of over-provisioning resources

therefore shows a lower performance in RUE. Meanwhile, the complexity of the resource

127

granularity model has greater impact on double auctions than on Sharex from the RUE

perspective. Therefore we can speculate that the volatility in a resource market is a

factor that may affect the price-based approaches in delivering good RUE results. As

the resource granularity model increases from 2 resources to 5 resources, so is the market

dimensions, such that the volatility associated with each market has an accumulative

effect that ultimately results in poorer resource utilization in market based allocation

systems. The Sharex approach however, does not rely on a resource market but seeks

heuristic allocation among social members.

Furthermore, we examine the relationship between number of platform providers and

the RUE values across four resource granularity models for all three approaches. The

graphs show that the RUE values may increase or decrease as the number of platform

providers increase for all three approaches. We highlight that the RUE for the Sharex

approach has a small tendency of deterioration as the number of platform providers

increase. For resource granularity models of 3 resources and 4 resources, the RUE

values for Sharex fall below ZI for more than 90 and 100 platform providers respectively.

However, in the resource granularity model of 5 resources, the RUE values for Sharex

regain higher position in comparison to ZI approach as the number of platform providers

increase. Based on the results, Sharex shows an absolute advantage over ZIP and has

an overall advantage over ZI.

128

Fig, 6. 7: Resource Utilization Efficiency for 2 Resources

129

Fig. 6.8: Resource Utilization Efficiency for 3 Resources

130

Number of Platform Providers

Fig. 6.9. Resource Utilization Efficiency for 4 Resources

131

Fig. 6.10: Resource Utilization Efficiency for 5 Resources

6.3.5 Average Cost

The results for average cost are presented in four gi'aphs, where Figure 6.11 shows the

results for 2 resource granularity model, Figure 6.12 shows the results for 3 resource

granularity model, Figure 6.13 shows the results for 4 resource granularity model and

Figure 6.14 shows the results for 5 resource granularity model. It is intriguing to observe

that the data in average cost has displayed similar pattern to RUE results. First of

all, Sharex operates at a higher cost under the 2 resource model comparing to both

ZI and ZIP. Secondly, Sharex begins to demonstrate an advantage on provisioning cost

over ZI and ZIP for 3, 4 and 5 resource models. Thirdly, the resource granularity

complexity seems to have a greater impact on auction based approaches than in the

132

Sharex approach. We had interpreted this result pattern in the previous section. But we

would like to present an additional fact that the ZIP strategy takes market information

into consideration, while the ZI strategy does not. A sample graph for the CPU market

price produced by the ZI population is presented Figure 6.16 and a sample graph for the

CPU market price produced by the ZIP population is presented in Figure 6.15. In the

ZIP graph, we often see the market price bounces around 2 while there are high prices

from time to time. In ZI, the market price constantly changes. Based on this fact, we can

strengthen our speculation that market oriented approaches suffer from higher market

dimensions as the volatility in each market dimension may accumulate and may reduce

the efficiency for such approaches. To conclude in this section, Sharex approach is a more

cost-saving resource allocation approach compared to the double auction approaches.

Z5

2
0)tr

oo
O)

‘c
O
Vi

'>

9
Q_
4)

?
><

Fig. 6.11: Resource Provisioning Cost for 2 Resources

133

Z)
1)
2

CE

o
O

2
CL.

<

40 60 80 100

Number of Platform Providers

120

Fig. 6.12: Resource Provisioning Cost for 3 Resources

134

r50)
2

D
CC

O
O

Number of Platform Providers

Fig. 6.13; Resource Provisioning Cost for 4 Resources

135

ZD9)
2

<D
CL

Oo

2
0.
<D

>
<

Fig. 6.14: Resource Provisioning Cost for 5 Resources

136

Fig. 6.15: A Sample Market Price for CPU with ZIP Bidding Strategy

137

Z)
Q.
O o

o
ru

1-------- 1-------- 1-------- !-------- 1-------- 1-------- 1-------- r
0 200 400 600 800 1000 1200 1400

Time

Fig. 6.16; A Sample Market Price for CPU with ZI Bidding Strategy

6.4 Summary

Based on the data gathered from the simulation and various evaluation criteria, the

Sharex approach has been proven to be capable of providing an effective and respon­

sive resource allocation mechanism for the PaaS paradigm. Under comparison, Sharex

outperforms both double auction mechanisms directed by ZI and ZIP agents on RUE

and average cost data. Although Sharex did not achieve as good results as ZI and ZIP

in penalty rate data, the difference is within 3% typically which is insignificant. The

current implementation in Sharex has limited scalability and we will seek to address this

issue in our future work.

138

Chapter 7

Conclusion and Future Work

Cloud computing reduces the cost and complexity of operating computer networks and

have additional benefits such as scalability, efficiency and reliability through use of shared

resources such as data storage space, networks, computer processing power and special­

ized user and corporate applications. There are three service models used in cloud

computing: Infrastructure as a Service (laaS), Platform as a Service (PaaS) and Soft­

ware as a Service (SaaS).In the faaS model, the provider only provides the hardware

and network capabilities while the client installs and manages their own applications,

software and operating systems. In the PaaS model the provider handles the platform

capabilities including the operating system, network and hardware while the client is

responsible for management of the applications. In the SaaS model, the IT operational

functions and infrastructure are abstracted away from the consumer or client. In this

model, business process and applications as well as other consumer software is provided

in addition to the operating system hardware and network.

With the growth in cloud computing there is additional complexity introduced in

cloud systems and therefore there is a need for more efficient resource allocation. This

has given rise to the field of Autonomic Computing which is a promising approach for

resource allocation that advocates for self-managing ability whereby the system can

139

allocate resources for its own need without the intervention from human. Various ap­

proaches have been used to implement efficient resource allocation in autonomic systems

and these have been discussed extensively in chapter 2.

In the PaaS model platform providers suffer volatile resource demands and high pro­

visioning costs due to resource prediction errors and penalties that arise due to SLA

violations therefore the platform services need to display elasticity in provisioning ser­

vices in order to provide affordable solutions for their clients. Such platform services

must be able to handle prediction errors that occur during resource forecasting and must

also have a reaction mechanism while executing autonomic management. The current

research literature does not clearly have a full solution to connect the planning and ex­

ecution of the MAPE-K model in the PaaS context and this has been the goal of our

thesis.

The thesis investigates the problem of autonomic resource allocation in the PaaS

cloud to prevent resource over-provisioning and under-provisioning by the high-availability

platform provider systems. The key issues to be addressed by this research are to de­

termine whether during resource allocation, a collaborative and social model based ap­

proach between the planning and execution modules in the MAPE-K model can provide

a feasible and affordable solution to address the over-provisioning and under-provisioning

challenges faced by high-availability platform providers.

In order to ensure more effective resource allocation the Sharex approach is proposed

which allows platform providers to exchange resources with each other for limited periods

of time. In this coordinated approach for organizing system-wide resource exchanges a

resource exchange coordinator is proposed to help all the platform providers who are

interested in exchanging resources and each platform provider who exchanges resources

receives a commission that can be used to offset any penalties.

The solution was implemented using a social model based on the Edgeworth box

model and tested using the Platform-as-a-service Cloud Resource Allocation Test-bed

(PCRAT). PCRAT is an experimental platform implemented to simulate the conditions

140

under which a Service Level Agreement (SLA) needs to be adjusted to avoid resource

over-provisioning or under-provisioning at a scale relative to reality.

Analysis of the results indicates that in terms of resource utilization efficiency and

average resource provisioning cost, our proposed model performs better than the double

auction approaches with ZI and ZIP bidding strategies. Meanwhile, our model performs

comparably with the double auction approaches in terms of the penalty occurrence rate.

In addition, the Sharex approach reduces the penalties by approximately between 12%

to 30% which is a significant improvement on standard autonomic allocation systems.

Finally, the resource provisioning mechanism proposed in our model has demonstrated

good responsiveness with the turnaround time between 1 second and 3 seconds in our

simulation. These results allow us to conclude that the Sharex approach has proved to

be a feasible model for autonomic resource allocation.

Future work in this area will include testing the model with real-world data to evalu­

ate the model performance under a variety of realistic and live demand models, expansion

of the model to include other types of resources and enhancing the model to allow for

simultaneous negotiations with different platform providers. Testing the model with real

world data will allow observation of the model behavior while receiving continuous data

streams and we will also be able to further analyze the impact of various load conditions

on the model. Another area of research is to establish a better structured social relation­

ship as well as to allow concurrent negotiations to address the scalability issue and further

improve the chance for a successful exchange. Further work can be done in concurrently

evaluating multiple exchange scenarios with different agents to reduce the occurrences

of blocked resource exchange initializations. Finally, the future research should focus on

Sharex protocol integration with existing negotiation and communication standards.

141

Bibliography

[1] Amazon elastic computing cloud, http://aws.amazon.com/ec2/, 2012.

[2] Amazon ec2 pricing scheme http://aws.amazon.com/ec2/pricing/, 2013.

[3] collectd the system statistics collection daemon, http://collectd.org/, 2013.

[4] Oracle on demand, http://www.oracle.com/in/products/ondemand/index.html,

2013.

[5] Salesforce, http://www.salesforce.com/, 2013.

[6] Amazon ec2 sla, https://aws.amazon.com/ec2/sla/, 2015.

[7] Amazon reserved instance market place, https://aws.amazon.com/ec2/purchasing-

options/reserved-instances/marketplace/, 2015.

[8] Abdelzaher, T. F., Shin, K. G., and Bhatti, N. Performance guarantees for

web server end-systems: A control-theoretical approach. Parallel and Distributed

Systems, IEEE Transactions on 13, 1 (2002), 80-96.

[9] Aiber, S., Gilat, D., Landau, A., Razinkov, N., Sela, A., and

Wasserkrug, S. Autonomic self-optimization according to business objectives.

In Autonomic Computing, 2004- Proceedings. International Conference on (2004),

IEEE, pp. 206-213.

142

[10] Almeida, J., Almeida, V., Ardagna, D., Francalanci, C., and Trubian,

M. Resource management in the autonomic service-oriented architecture. In Au­

tonomic Computing, 2006. ICAC ’06. IEEE International Conference on (2006),

pp. 84-92.

[11] Anandasivam, a., Buschek, S., and Buyya, R. a heuristic approach for ca­

pacity control in clouds. In Commerce and Enterprise Computing, 2009. CEC’09.

IEEE Conference on (2009), IEEE, pp. 90-97.

[12] Andrieux, a., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H.,

Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M. Web

services agreement specification (ws-agreement). In Open Grid Eorum (2007),

vol. 128, p. 216.

[13] Andrze,iak, a., Graupner, S., and Plantikow, S. Predicting resource de­

mand in dynamic utility computing environments. In Autonomic and Autonomous

Systems, 2006. ICAS’06. 2006 International Conference on (2006), IEEE, pp. 6- 6.

[14] Ardagna, D., Panicucci, B., and Pass.agantando, M. A game theoretic

formulation of the service provisioning problem in cloud systems. In Proceedings

of the 20th international conference on World wide web (2011), ACM, pp. 177-186.

[15] Ardagna, D., Panicucci, B., Trubian, M., and Zhang, L. Energy-aware

autonomic resource allocation in multitier virtualized environments. Services Com­

puting, IEEE Transactions on 5, 1 (2012), 2-19.

[16] Ardagna, D., Trubian, M., and Zhang, L. Sla based resource allocation

policies in autonomic environments. Journal of Parallel and Distributed Computing

67, 3 (2007), 259 - 270.

[17] Area, R., Hellinckx, P., and Broeckhove, J. Modeling resource prices in

143

grid markets. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

2012 Seventh International Conference on (2012), IEEE, pp. 5-11.

[18] Badidi, E., Esmahi, L., and Serhani, M. A. A queuing model for service

selection of multi-classes qos-aware web services. In Web Services, 2005. ECOWS

2005. Third IEEE European Conference on (2005), IEEE, pp. 9-pp.

[19] Balan, R. K., Satyanarayanan, M., Park, S. Y., .4ND Okoshi, T. Tactics-

based remote execution for mobile computing. In Proceedings of the 1st inter­

national conference on Mobile systems, applications and services (2003), ACM,

pp. 273-286.

[20] Beloglazov, a., and Buyya, R. Managing overloaded hosts for dynamic con­

solidation of virtual machines in cloud data centers under quality of service con­

straints. Parallel and Distributed Systems, IEEE Transactions on 24, 7 (2013),

1366-1379.

[21] Bennani, M., and Menasce, D. Resource allocation for autonomic data centers

using analytic performance models. In Autonomic Computing, 2005. ICAC 2005.

Proceedings. Second International Conference on (2005), pp. 229-240.

[22] Bennani, M. N., and Menasce, D. A. Assessing the robustness of self-managing

computer systems under highly variable workloads. In Autonomic Computing,

2004- Proceedings. International Conference on (2004), IEEE, pp. 62-69.

[23] Bergstrom, T. Economics 100b chapter 29 - exchange. Lecture Notes in Eco­

nomics, Economics Department, University of California Santa Barbara (2002).

[24] Bernstein, P. A. Middleware: a model for distributed system services. Commun.

ACM 39, 2 (Feb. 1996), 86-98.

[25] Boniface, M., Nasser, B., Papay, J., Phillips, S. C., Servin, A., Yang,

X., Zlatev, Z., Gogouvitis, S. V., Katsaros, G., Konstanteli, K., et al.

144

Platform-as-a-service architecture for real-time quality of service management in

clouds. In Internet and Web Applications and Services (ICIW), 2010 Fifth Inter­

national Conference on (2010), IEEE, pp. 155-160.

[26] Box, G. E., Jenkins, G. M., and Reinsel, G. G. Time series analysis:

forecasting and control, vol. 734. John Wiley & Sons, 2011.

[27] Brandic, I. Towards self-manageable cloud services. In 2009 33rd Annual IEEE

International Computer Software and Applications Conference (2009), IEEE,

pp. 128-133.

[28] Brandic, I., Music, D., Leitner, P., and Dustdar, S. Vieslaf framework:

Enabling adaptive and versatile sla-management. In Grid Economics and Business

Models. Springer, 2009, pp. 60-73.

[29] Brun, Y., Marzo Serugendo, G., Gacek, G., Giese, H., Kienle, H.,

Litoiu, M., Mller, H., Pezz, M., and Shaw, M. Engineering Self-Adaptive

Systems through Feedback Loops, vol. 5525 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2009.

[30] Buyya, R., Abramson, D., Giddy, J., and Stockinger, H. Economic models

for resource management and scheduling in grid computing. Concurrency and

computation: practice and experience 14, 13-15 (2002), 1507-1542.

[31] Buyya, R., Beloglazov, A., and Abawajy, J. Energy-efficient management

of data center resources for cloud computing: A vision, architectural elements, and

open challenges. arXiv preprint arXiv:1006.0308 (2010).

[32] Buyya, R., Ranjan, R., and Calheiros, R. N. Intercloud: Utility-oriented

federation of cloud computing environments for scaling of application services. In

Algorithms and architectures for parallel processing. Springer, 2010, pp. 13-31.

145

[33] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. Cloud

computing and emerging it platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation Computer Systems 25, 6 (June

2009), 599-616.

[34] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and

Buyya, R. Cloudsim: a toolkit for modeling and simulation of cloud comput­

ing environments and evaluation of resource provisioning algorithms. Software:

Practice and Experience 4ft ^ (2011), 23-50.

[35] Caron, E., Desprez, F., and Muresan, A. Forecasting for grid and cloud

computing on-demand resources based on pattern matching. In Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second International Conference

on (2010), IEEE, pp. 456-463.

[36] Chard, K., Bubendorfer, K., Caton, S., and Rana, O. F. Social cloud

computing: A vision for socially motivated re.source sharing. Services Computing,

IEEE Transactions on 5, 4 (2012), 551-563.

[37] Chourou, L., Jemni, M., and Elleuch, A. An equilibrium pricing model

for large scale computational markets. In Electrical Engineering and Software

Applications (ICEESA), 2013 International Conference on (2013), IEEE, pp. 1-6.

[38] Cli, D. Minimal-intelligence agents for bargaining behaviors in market-based

environments. Hewlett-Packard Labs Technical Reports (1997).

[39] CzAjKOwsKi, K., Foster, I., Kesselman, C., Sander, V., and Tuecke,

S. Snap: A protocol for negotiating service level agreements and coordinating re­

source management in distributed systems. In Job scheduling strategies for parallel

processing (2002), Springer, pp. 153-183.

146

[40] Doyle, R. P., Chase, J. S., Asad, O. M., Jin, W., and Vahdat, A. Model-

based resource provisioning in a web service utility. In USENIX Symposium on

Internet Technologies and Systems (2003).

[41] Edgeworth, F. Y. Mathematical psychics: An essay on the application of math­

ematics to the moral sciences. No. 10. C. Kegan Paul & Company, 1881.

[42] Emeakaroha, V. C., Brandic, L, Maurer, M., and Dustdar, S. Low level

metrics to high level slas-lom2his framework: Bridging the gap between monitored

metrics and sla parameters in cloud environments. In High Performance Computing

and Simulation (HPCS), 2010 International Conference on (2010), IEEE, pp. 48-

54.

[43] Emeakaroha, V. C., Netto, M. A., Calheiros, R. N., Brandic, L, Buyya,

R., AND De Rose, C. A. Towards autonomic detection of sla violations in cloud

infrastructures. Future Generation Computer Systems 28, 7 (2012), 1017-1029.

[44] Endo, P., de Almeida Palhares, A., Pereira, N., Goncalves, G., Sadok,

D., Keener, J., Melander, B., and Mangs, J. Resource allocation for dis­

tributed cloud: concepts and research challenges. Network, IEEE 25, 4 (july-august

2011), 42 -46.

[45] England, D., and Weissman, J. A resource leasing policy for on-demand

computing. International Journal of High Performance Computing Applications

20, 1 (2006), 91-101.

[46] Enterprises, N. Nagios. Online: http://www. nagios. org/, Letzer Zugriff am f

(2009).

[47] Erl, T. Service-oriented architecture. Prentice Hall Englewood Cliffs, 2004.

[48] Eyraud-Dubois, L., and Larcheveque, H. Optimizing resource allocation

while handling sla violations in cloud computing platforms. In Parallel & Dis-

147

tributed Processing (IPDPS), 2013 IEEE 27th International Symposium on (2013),

IEEE, pp. 79-87.

[49] Faratin, P., Klein, M., Sayama, H., and Bar-Yam, Y. Simple negotiating

agents in complex games: Emergent equilibria and dominance of strategies. In

Intelligent Agents VIII, J.-J. Meyer and M. Tambe, Eds., vol. 2333 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 367-376.

[50] Faratin, P., Sierra, C., and Jennings, N. R. Using similarity criteria to make

issue trade-offs in automated negotiations, artificial Intelligence 142, 2 (2002),

205-237.

[51] Ferguson, D. F., Nikolaou, C., Sairamesh, J., and Yemini, Y. Economic

models for allocating resources in computer systems. Market-based control: a

paradigm for distributed resource allocation (1996), 156-183.

[52] Foster, I., Kesselman, C., and Tuecke, S. The anatomy of the grid: En­

abling scalable virtual organizations. International Journal of High Performance

Computing Applications 15, 3 (2001), 200.

[53] Foster, I., Zhao, Y., Raicu, I., and Lu, S. Cloud computing and grid com­

puting 360-degree compared. In Grid Computing Environments Workshop, 2008.

GCE ’08 (Nov. 2008), pp. 1-10.

[54] Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,

Patterson, D., Rabkin, A., and Stoica, I. Above the clouds: A berkeley

view of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University

of California, Berkeley, Rep. UCB/EECS 28 (2009).

[55] Garg, S. K., and Buyya, R. Market-oriented resource management and schedul­

ing: A taxonomy and survey. Cooperative Networking (2011), 277-306.

148

[56] Garg, S. K., Gopalaiyengar, S. K., and Buyya, R. Sla-based resource

provisioning for heterogeneous workloads in a virtualized cloud datacenter. In

Algorithms and Architectures for Parallel Processing. Springer, 2011, pp. 371-384.

[57] Garg, S. K., Vecchiola, C., and Buyya, R. Mandi: a market exchange for

trading utility and cloud computing services. The Journal of Supercomputing 64,

3 (2013), 1153-1174.

[58] Germain-Renaud, C., and Nauroy, J. Green computing observatory technical

documentation v3.0. Tech, rep.. Grid Observatory (www.grid-observatory.org),

2012.

[59] GHANBARI, H. Autonomic mechanisms in cloud computing ecosystems. De­

partment of Computer Science and Engineering, York University, Toronto, On­

tario, 2011.

[60] Code, D. K., and Sunder, S. Allocative efficiency of markets with zero-

intelligence traders: Market as a partial substitute for individual rationality. Jour­

nal of political economij (1993), 119-137.

[61] Gong, Z., Gu, X., and Wilkes, J. Press: Predictive elastic resource scaling for

cloud systems. In Network and Service Management (CNSM), 2010 International

Conference on (2010), IEEE, pp. 9-16.

[62] Grosu, D., and Das, A. Auctioning resources in grids: model and protocols.

Concurrency and Computation: Practice and Experience 18, 15 (2006), 1909-1927.

[63] He, M., Leung, H.-f., and Jennings, N. R. A fuzzy-logic based bidding

strategy for autonomous agents in continuous double auctions. Knowledge and

Data Engineering, IEEE Transactions on 15, 6 (2003), 1345-1363.

[64] Huebscher, M., and MgCann, J. A survey of autonomic computing-degrees,

models, and applications. ACM Computing Surveys (CSUR) fO, 3 (2008), 7.

149

[65] IBM. An architectural blueprint for autonomic computing white paper. IBM, 2005.

[66] Islam, S., Keung, J., Lee, K., and Liu, A. Empirical prediction models for

adaptive resource provisioning in the cloud. Future Generation Computer Systems

28, 1 (2012), 155-162.

[67] Jacob, B., Lanyon-Hogg, R., Nadgir, D. K., and Yassin, A. F. A Practical

Guide to the IBM Autonomic Computing Toolkit. IBM International Technical

Support Organizationn (April 2004).

[68] Jalaparti, V., and Nguyen, G. D. Cloud resource allocation games. Tech,

rep., 2010.

[69] Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Wooldridge,

M. J., AND SlERR.\, C. Automated negotiation: prospects, methods and chal­

lenges. Group Decision and Negotiation 10, 2 (2001), 199-215.

[70] Jiang, Y., suing Perng, C., Li, T., and Chang, R. Asap: A self-adaptive

prediction system for instant cloud resource demand provisioning. In Data Mining

(ICDM), 2011 IEEE 11th International Conference on (2011), pp. 1104-1109.

[71] Kalyvianaki, E., Charalambous, T., and Hand, S. Self-adaptive and self-

configured cpu resource provisioning for virtualized servers using kalman filters. In

Proceedings of the 6th international conference on Autonomic computing (2009),

ACM, pp. 117-126.

[72] Keller, A., and Ludwig, H. The wsla framework: Specifying and monitor­

ing service level agreements for web services. Journal of Network and Systems

Management 11, 1 (2003), 57-81.

[73] Kephart, j., and Chess, D. The vision of autonomic computing. Computer

36, 1 (2003), 41-50.

150

[74] Kert^z, a., Kecskemeti, G., and Brandic, I. Autonomic sla-aware service

virtualization for distributed systems. In Parallel, Distributed and Network-Based

Processing (PDP), 2011 19th Euromicro International Conference on (2011),

IEEE, pp. 503-510.

[75] Khajeh-Hosseini, A., Sommerville, I., and Sriram, I. Research challenges

for enterprise cloud computing. arXiv preprint arXiv:1001.3257 (2010).

[76] Khan, S. U., and Ahmad, I. Non-cooperative, semi-cooperative, and coopera­

tive games-based grid resource allocation. In Parallel and Distributed Processing

Symposium, 2006. IPDPS 2006. 20th International (2006), IEEE, pp. 10-pp.

[77] Kraus, S., Wilkenfeld, J., and Zlotkin, G. Multiagent negotiation under

time constraints. Artificial intelligence 75, 2 (1995), 297-345.

[78] Krebs, R., Momm, G., and Kounev, S. Metrics and techniques for quantifying

performance isolation in cloud environments. Science of Computer Programming

90 (2014), 116-134.

[79] Kuperberg, M., Herbst, N., von Kistowski, j., and Reussner, R. Defin­

ing and quantifying elasticity of resources in cloud computing and scalable plat­

forms. KIT, Fakultat fur Informatik, 2011.

[80] Kutner, M. H., Nachtsheim, G., Neter, J., et al. Applied linear regression

models. McGraw-Hill New York, 2004.

[81] Litoiu, M., Woodside, M., Wong, J., Ng, J., and Iszlai, G. A business

driven cloud optimization architecture. In Proceedings of the 2010 ACM Sympo­

sium on Applied Computing (2010), ACM, pp. 380-385.

[82] Litoiu, M., Woodside, M., and Zheng, T. Hierarchical model-based auto­

nomic control of software systems. In ACM SIGSOFT Software Engineering Notes

(2005), vol. 30, ACM, pp. 1-7.

151

[83] Lomuscio, a., Wooldridge, M., and Jennings, N. A classification scheme

for negotiation in electronic commerce. In Agent Mediated Electronic Commerce,

F. Dignum and C. Sierra, Eds., vol. 1991 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2001, pp. 19-33.

[84] Loyall, J. P., Schantz, R. E., Zinky, J. A., and Barren, D. E. Specifying

and measuring quality of service in distributed object systems. In Object-Oriented

Real-time Distributed Computing, 1998.(ISORC 98) Proceedings. 1998 First In­

ternational Symposium on (1998), IEEE, pp. 43-52.

[85] Mas-Colell, a., Whinston, M. D., Green, J. R., et al. Microeconomic

theory, vol. 1. Oxford university press New York, 1995.

[86] Maximilien, M., Ranabahu, A., Engehausen, R., and Anderson, L. Ibm

altocumulus: A cross-cloud middleware and platform. In 24th ACM SIGPLAN

Conference Companion on Object Oriented Programming Systems Languages and

Applications, 2009. OOPSLA ’09. ACM Conference on (2009), ACM, pp. 805-806.

[87] Menasce, D., et al. Tpc-w: A benchmark for e-commerce. Internet Computing,

IEEE 6, 3 (2002), 83-87.

[88] Mesnier, M., Theresra, E., Ganger, G. R., Ellard, D., and Seltzer,

M. File classification in self-* storage systems. In Autonomic Computing, 2004-

Proceedings. International Conference on (2004), IEEE, pp. 44-51.

[89] NIST. Nist defnition of cloud computing vl5.

[90] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn,

J., AND Walrer, K. R. Agile application-aware adaptation for mobility. In ACM

SIGOPS Operating Systems Review (1997), vol. 31, ACM, pp. 276-287.

[91] O’Brien, P. D., and Nicol, R. C. Fipatowards a standard for software agents.

BT Technology Journal 16, 3 (1998), 51-59.

152

[92] Pareto, V. Manual of political economy, trans. Ann S. Schwier. New York:

Augustus M. Kelley (1971).

[93] PARSONS, S., SIERRA, C., and JENNINGS, N. Agents that reason and

negotiate by arguing. Journal of Logic and Computation 8, 3 (1998), 261-292.

[94] Patel, P., Ranabahu, A. H., and Sheth, A. P. Service level agreement in

cloud computing.

[95] Petriu, D. C. Approximate mean value analysis of client-server systems with

multi-class requests. ACM SIGMETRICS Performance Evaluation Review 22, 1

(1994), 77-86.

[96] Petriu, D. C., and Woodside, C. M. Approximate mean value analysis based

on markov chain aggregation by composition. Linear algebra and its applications

386 (2004), 335-358.

[97] PIERANTONI, G., COGHLAN, B., AND Kenny, E. Agent-based societies for the

sharing, brokerage and allocation of grid resources. In Applied Parallel Computing.

State of the Art in Scientific Computing. Springer, 2007, pp. 830-839.

[98] PouREBRAHiMi, B., Bertels, K., Kandru, G., AND Vassiliadis, S. Market-

based resource allocation in grids. In e-Science (2006), p. 80.

[99] Prodan, R., Wieczorek, M., and Fard, H. M. Double auction-based schedul­

ing of scientific applications in distributed grid and cloud environments. Journal

of Grid Computing 9, 4 (2011), 531-548.

[100] Raj, H., Nathuji, R., Singh, A., and England, P. Resource management

for isolation enhanced cloud services. In Proceedings of the 2009 ACM workshop

on Cloud computing security (2009), ACM, pp. 77-84.

[101] Ratkowsky, D. a., and Giles, D. E. Handbook of nonlinear regression models.

Marcel Dekker New York, 1990.

153

[102] Regev, O., and Nisan, N. The popcorn market, online markets for computa­

tional resources. Decision Support Systems 28, 1 (2000), 177-189.

[103] Reig, G., Alonso, J., and Guitart, J. Prediction of job resource require­

ments for deadline schedulers to manage high-level slas on the cloud. In Network

Computing and Applications (NCA), 2010 9th IEEE International Symposium on

(2010), IEEE, pp. 162-167.

[104] Resnick, P., and Zeckhauser, R. Trust among strangers in internet trans­

actions: Empirical analysis of ebays reputation system. The Economics of the

Internet and E-commerce 11, 2 (2002), 23-25.

[105] Rogers, O., and Gliff, D. The effects of truthfulness on a computing resource

options market. In Proceedings of the 2nd Annual International Conference on

Advances in Distributed and Parallel Computing (2010), vol. 2, pp. 330-335.

[106] Rogers, O., and Cliff, D. The effects of market demand on truthfulness in a

computing resource options market. In ICAART (2) (2011), pp. 330-335.

[107] Rosenschein, j. S., and Zlotkin, G. Rules of encounter: designing conventions

for automated negotiation among computers. MIT press, 1994.

[108] Sairamesh, j., Ferguson, D. F., and Yemini, Y. An approach to pricing,

optimal allocation and quality of service provisioning in high-speed packet net­

works. In INFOCOM’95. Fourteenth Annual Joint Conference of the IEEE Com­

puter and Communications Societies. Bringing Information to People. Proceedings.

IEEE (1995), IEEE, pp. 1111-1119.

[109] Sanderson, D. Programming Google App Engine: Rough Cuts Version. OReilly,

2008.

[110] Sefraoui, O., Aissaoui, M., and Eleuldj, M. Openstack; toward an open-

154

source solution for cloud computing. International Journal of Computer Applica­

tions 55, 3 (2012), 38-42.

[111] Sellami, M., Yangui, S., Mohamed, M., and Tata, S. Paas-independent

provisioning and management of applications in the cloud. In Cloud Computing

(CLOUD), 2013 IEEE Sixth International Conference on (2013), IEEE, pp. 693-

700.

[112] Shew, Z., Subbiah, S., Gu, X., and Wilkes, J. Cloudscale: elastic resource

scaling for multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium

on Cloud Computing (2011), ACM, p. 5.

[113] Sim, K. Towards complex negotiation for cloud economy. Advances in Grid and

Pervasive Computing (2010), 395-406.

[114] Sterritt, R. Autonomic computing. Innovations in Systems and Software En­

gineering 1, 1 (Apr. 2005), 79-88.

[115] Stuer, G., Vanmechelen, K., and Broeckhove, J. a commodity market

algorithm for pricing substitutable grid resources. Future Generation Computer

System.s 23, 5 (2007), 688-701.

[116] Syds^eter, K., Hammond, P., and Seierstad, A. Further mathematics for

economic analysis. Pearson education, 2008.

[117] Tesauro, G., Das, R., Walsh, W., and Kephart, J. Utility-function-driven

resource allocation in autonomic systems. In Autonomic Computing, 2005. ICAC

2005. Proceedings. Second International Conference on (2005), pp. 342-343.

[118] Tesauro, G., Jong, N., Das, R., and Bennani, M. A hybrid reinforcement

learning approach to autonomic resource allocation. In Autonomic Computing,

2006. ICAC ’06. IEEE International Conference on (2006), pp. 65-73.

155

[119] Theilmann, W., Happe, J., Kotsokalis, C., Edmonds, A., Kearney, K.,

AND Lambea, J. a reference architecture for multi-level sla management. Journal

of Internet Engineering 4, 1 (2010), 289-298.

[120] Vanmechelen, K., Depoorter, W., and Broeckhove, j. Combining futures

and spot markets: A hybrid market approach to economic grid resource manage­

ment. Journal of Grid Computing 9, 1 (2011), 81-94.

[121] Vaquero, L. M., Rodero-Merino, L., Caceres, j., and Lindner, M. A

break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.

Rev. 39, 1 (2009), 50-55.

[122] Vytelingum, P., Cliff, D., and Jennings, N. R. Strategic bidding in con­

tinuous double auctions. Artificial Intelligence 172, 14 (2008), 1700-1729.

[123] Waldspurger, C., Hogg, T., Huberman, B., Kephart, J. O., Storn,

W. S., ET AL. Spawn: A distributed computational economy. Software Engi­

neering, IEEE Transactions on 18, 2 (1992), 103-117.

[124] Wei, G., Vasilakos, A. V., Zheng, Y., and Xiong, N. A game-theoretic

method of fair resource allocation for cloud computing services. The journal of

.supercomputing 54, 2 (2010), 252-269.

[125] WoLSKi, R., Brevik, j.. Plank, J. S., and Bryan, T. Grid resource allocation

and control using computational economies. Grid Computing: Making The Global

Infrastructure a Reality. John Wiley & Sons (2003).

[126] WOLSKi, R., Plank, J. S., Brevik, J., and Bryan, T. Analyzing market-based

resource allocation strategies for the computational grid. International Journal of

High Performance Computing Applications 15, 3 (2001), 258-281.

[127] Wooldridge, M., and Jennings, N. Intelligent Agents: Theory and Practice.

The Knowledge Engineering Review 10, 2 (1995), 115-152.

156

[128] Wu, F., Zhang, L., and Huberman, B. A. Tnith-telling reservations. Algo-

rithmica 52, 1 (2008), 65-79.

[129] Wu, L., AND Buyya, R. Service level agreement (sla) in utility computing

systems. IGI Global (2012).

[130] Yeo, C. S., and Buyya, R. Service level agreement based allocation of cluster

resources: Handling penalty to enhance utility. In Cluster Computing, 2005. IEEE

International (2005), IEEE, pp. 1-10.

[131] Zhang, Q., Cheng, L., and Boutaba, R. Cloud computing: state-of-the-art

and research challenges. Journal of Internet Services and Applications 1, 1 (2010),

7-18.

157

