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Spin-orbit interaction is an important vehicle for spin relaxation. At finite temperature lattice vibrations
modulate the spin-orbit interaction and thus generate a mechanism for spin-phonon coupling, which needs
to be incorporated in any quantitative analysis of spin transport. Starting from a density functional theory
ab initio electronic structure, we calculate spin-phonon matrix elements over the basis of maximally localized
Wannier functions. Such coupling terms form an effective Hamiltonian to be used to extract thermodynamic
quantities, within a multiscale approach particularly suitable for organic crystals. The symmetry of the various
matrix elements is analyzed by using the �-point phonon modes of a one-dimensional chain of Pb atoms. Then
the method is employed to extract the spin-phonon coupling of solid durene, a high-mobility crystal organic
semiconductor. Owing to the small masses of carbon and hydrogen spin orbit is weak in durene and so is
the spin-phonon coupling. Most importantly, we demonstrate that the largest contribution to the spin-phonon
interaction originates from Holstein-like phonons, namely, from internal molecular vibrations.
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I. INTRODUCTION

In a nonmagnetic material the electrical resistance expe-
rienced by a charge carrier is independent of its spin. In
contrast, when the material is magnetic, the resistance typi-
cally depends on the relative orientation of the carrier spin
and the local magnetization [1]. This observation inspired
the advent of the field of spin electronics, or spintronics [2],
which concerns the injection, manipulation, and detection of
spins in a solid-state environment. A prototype spintronic
device, the spin valve [3], consists of two ferromagnetic
layers sandwiching a nonmagnetic spacer [4], which can dis-
play a metallic [5,6], insulating [7], or semiconducting [8,9]
electronic structure. The carriers, which are spin polarized
by one ferromagnet, travel through the spacer to the other
ferromagnet. If the spin direction is maintained during such
a transfer, then the total resistance of the device will depend
on the mutual orientation of the magnetization vectors of the
two ferromagnets. It is then crucial to understand how the spin
direction evolves during the motion of the carriers through the
spacer and, in particular, to understand how this is preserved.

There are multiple possible sources of spin relaxation in a
material, such as the presence of impurities, hyperfine interac-
tion, and spin-orbit (SO) coupling. A theoretical description
of all such phenomena is needed for an accurate evaluation
of the quantities related to spin relaxation. The relative dom-
inance of one interaction over the others is typically highly
dependent on the specific material. In this work, we shall
focus on SO interaction, more specifically, on the modulation
of such interaction due to lattice vibrations. The spin of an
electron interacts with the magnetic field generated by the
relative motion of the nucleus about the electron, giving rise
to SO interaction. At finite temperature the atoms of a solid
vibrate with respect to their equilibrium positions with the
amplitudes of such vibrations increasing with temperature.

Such vibrations, the phonons, change the potential felt by
the electrons, including the component due to SO coupling
[10]. This effectively generates a mechanism for spin-phonon
coupling [11], which is key for the calculation of quantities
related to spin relaxation in many systems. Thus, the term
“spin-phonon coupling” has been used here to indicate only
the modulation of the spin-orbit interaction originating from
the ionic movement. This has to be distinguished from the
term “spin-phonon coupling,” which, in the study of multifer-
roics, is used to indicate the modulation of phonon frequencies
due to changes in magnetic ordering [12–17]. Here we are
interested in the opposite, namely, in the change in electronic
structure brought by the vibrations, in particular for the case
of organic crystals. Furthermore, it has to be noted that in
organic compounds bearing permanent spin moments, such
as molecular magnets crystals, there is a second mechanism
for spin-phonon coupling, where the ions modulate the spin-
spin dipolar interaction. Such a mechanism is unlikely to be
relevant for high-mobility organic crystals since they do not
present localized moments.

Recent years have witnessed growing interest in exploring
the possibility of using organic crystal semiconductors for
electronic and spintronic applications [18–22]. This stems
from the high degree of mechanical flexibility, the light weight
and the ease of synthesis, and the patterning that character-
ize organic compounds. In these systems covalently bonded
organic molecules are held together by weak van der Waals
interactions. Due to the weak bonds between the individual
molecules, vibrational motions are prominent in organic crys-
tals, and the coupling of the vibrations to the charge carriers
plays a crucial role [23] in the transport properties of such
materials.

The presence of experimental evidence in support of dif-
ferent transport regimes [24–28] has generated a significant
debate on whether the transport in organic crystals is dom-
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inated by delocalized bandlike transport, as in covalently
bonded inorganic semiconductors, by localized hopping, or
by a combination of both. The relative dominance of different
transport-mechanisms could very well depend on the specific
crystal and the experimental conditions, such as the temper-
ature. Typically, in organic crystals the vibrational degrees
of freedom are thought to introduce significant dynamical
disorder [29,30] and thereby to have paramount influence on
the transport properties. Since the typical energies associated
with lattice vibrations in organics are of the same order of
magnitude of the electronic bandwidth, the coupling between
carriers and phonons cannot be treated by perturbation theory.
Thus, in general, formulating a complete theoretical frame-
work for the description of transport in organic crystals is
more challenging than that for covalently bonded inorganic
semiconductors [23,31]. Even more complex is the situation
concerning spin transport, for which the theoretical descrip-
tion often relies on parameters extracted from experiments
[32] or on approximate spin Hamiltonians [33]

One viable option towards a complete ab initio descrip-
tion of spin transport consists of constructing a multiscale
approach, where information about the electronic and vibra-
tional properties calculated with first-principles techniques
is mapped onto an effective Hamiltonian retaining only the
relevant degrees of freedom. For instance, this is the strat-
egy for constructing effective giant-spin Hamiltonians with
spin-phonon coupling for the study of spin relaxation in
molecular magnets [34,35]. The approach presented here
instead consists of projecting the electronic structure over
appropriately chosen maximally localized Wannier functions
(MLWFs) [36], which effectively define a tight-binding (TB)
Hamiltonian. In a previous work [37] we described a compu-
tationally convenient scheme for extracting the SO coupling
matrix elements for MLWFs. Here we extend the method
to the computation of the spin-phonon matrix elements. Our
derived Hamiltonian can be readily used to compute spin-
transport quantities, such as the spin relaxation length. The
effect of spin-phonon coupling on such quantities is expected
to depend heavily on the material and the temperature.

This paper is organized as follows. In the next section
we introduce our computational approach and describe the
specific implementation used. Then we present our results.
We analyze first the symmetry of the various matrix elements
by considering the simple case of a linear atomic chain of
Pb atoms. Then we move to the most complex case of the
durene crystal, a popular high-mobility organic semiconduc-
tor. Finally, we conclude.

II. METHOD

Wannier functions, which form the basis functions of
the proposed TB Hamiltonian, are essentially the weighted
Fourier transforms of the Bloch states of a crystal. From a
set of N ′ isolated Bloch states {|ψmk〉}, which, for instance,
can be the Kohn-Sham (KS) eigenstates of a density func-
tional theory (DFT) calculation, one can obtain N ′ Wannier
functions. The nth Wannier ket centered at the lattice site R,
|wnR〉, is found from the prescription

|wnR〉 = V

(2π )3

∫
BZ

[
N∑

m=1

Uk
mn |ψmk〉

]
e−ik·Rdk, (1)

where V is the volume of the primitive cell, |ψmk〉 is the mth
Bloch vector, and the integration is performed over the first
Brillouin zone (BZ). Here Uk is a unitary operator that mixes
the Bloch states. In order to fix the gauge choice brought by
Uk one minimizes the spread of a Wannier function, which is
defined as

� =
∑

n

[〈wn0| r2 |wn0〉 − | 〈wn0| r |wn0〉 |2]. (2)

Such a choice defines the so-called MLWFs [38]. We use the
code WANNIER90 [39] to construct such MLWFs.

Before introducing the spin-phonon coupling, we shall
briefly discuss electron-phonon coupling, which is known to
play a crucial role in charge transport [40–43]. Since the TB
Hamiltonian operator Ĥ depends on the ionic positions, the
ionic motions give rise to changes in Ĥ . In addition, since
the MLWFs are constructed from the Bloch states, which
themselves depend on the ionic coordinates, lattice vibrations
result in a change in the MLWFs as well. Therefore, the
change in the Hamiltonian matrix elements due to the ionic
motion, namely, the on-site energies and hopping integrals,
originates from the combined action of (1) the change in Ĥ

and (2) the change in the MLWFs basis. Hence, in the MLWF
TB picture the variation of the matrix element εnm due to an
ionic displacement is given by

�εnm = 〈
wf

n

∣∣Ĥ f
∣∣wf

m

〉 − 〈
wi

n

∣∣Ĥ i
∣∣wi

m

〉
, (3)

where wi
m (wf

m) and Ĥ i (Ĥ f ) are the initial (final) MLWF and
the Hamiltonian operator, respectively. Equation (3) describes
the variation of on-site energy or a hopping integral depending
on whether |wm〉 and |wn〉 are located on the same site or
on different sites. Since any general lattice vibration can be
expanded as a linear combination of normal modes, one is
typically interested in calculating �εnm due to vibrations
along the normal-mode coordinates. In order to quantify the
rate of such change, we define the electron-phonon coupling
parameter gλ

mn for the λth phonon mode as the rate of change
�εmn of εmn with respect to a displacement �Qλ along such
a normal mode, namely,

gλ
mn = ∂εmn

∂Q

∣∣∣∣
Q→Q+�Qλ

. (4)

Here Q describes the system’s geometry, so that Q → Q +
�Qλ indicates that the partial derivative is to be taken with
respect to the atomic displacement along the phonon eigen-
vector corresponding to mode λ.

This coupling constant is fundamentally different from that
defined in a conventional TB formulation. In that case the
electron-phonon coupling is simply defined as

αλ
nm = ∂

(〈
φi

n

∣∣Ĥ f − Ĥ i
∣∣φi

m

〉)
∂Q

∣∣∣∣
Q→Q+�Qλ

, (5)

where |φi
n〉 is the nth basis function before the motion. Note

that, at variance with Eq. (3), which takes into account the
changes in both the operator and the basis set, in Eq. (5) only
the Hamiltonian operator is modified, and the matrix element
is evaluated with respect to the basis set corresponding to
the equilibrium structure. Depending on the context, either
of the quantities g and α can be important. Since, in the
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present case, we are interested in the modulation of the on-site
(hopping) parameter associated with a site (set of sites), for
the remainder of this paper, unless stated otherwise, electron-
phonon coupling will always refer to the first description, i.e.,
gλ

mn of Eq. (4).
All matrix elements, including those associated with the

SO coupling, depend on the ionic coordinates. In a previous
paper [37] we described a method to calculate the SO matrix
elements associated with the MLWF basis 〈ws1

mR|V̂SO|ws2
nR′ 〉

from those computed over the spin-polarized Bloch states
〈ψs1

m,k|V̂SO|ψs2
n,k′ 〉 (the superscript denotes the magnetic spin

quantum number). The presence of SO coupling changes the
MLWFs [44]. However, note that here the MLWFs computed
in the absence of SO coupling are used as basis functions
since they span the entire relevant Hilbert space. The term
〈ψs1

m,k|V̂SO|ψs2
n,k′ 〉 can be, in principle, calculated from any

DFT implementation that incorporates SO coupling. Our
choice is the SIESTA code [45], which uses an on-site approx-
imation [46] for the SO coupling and gives the SO elements
in terms of a set of localized atomic orbitals {|φs

μ,Rl
〉} [47].

Hence, the basic flowchart for such calculation follows the
general prescription〈

φ
s1
μ,Rj

∣∣V̂SO

∣∣φs2
ν,Rl

〉→〈ψs1
m,k

∣∣V̂SO|ψs2
n,k′

〉→ 〈
w

s1
mR

∣∣V̂SO

∣∣ws2
nR′

〉
;

(6)

namely, from the SO matrix elements calculated for the SIESTA

local orbitals one computes those over the Bloch functions and
then the ones over the MLWFs.

Once the matrix elements 〈ws1
mR|V̂SO|ws2

nR′ 〉 are known, it is
possible to determine the spin-phonon coupling by following
a prescription similar to that used for computing the electron-
phonon coupling in Eq. (4),

gs1s2(λ)
m,n = ∂ε

s1s2
(SO)mn

∂Q

∣∣∣∣
Q→Q+�Qλ

, (7)

where ε
s1s2
(SO)mn is the SO matrix element between the MLWFs

|ws1
m〉 and |ws2

n 〉, Q denotes the atomic positions, and �Q

refers to an infinitesimal displacement of the coordinates
along the λth phonon mode. As noted earlier, a change in
atomic coordinates results in a change in the MLWFs, and
such a change must be taken into account when calculating
the difference in the SO elements �ε

s1s2
(SO)mn. We use the same

symbol g to denote both the electron-phonon and spin-phonon
couplings since they can be distinguished by the presence or
absence of the spin indices.

In practice, when calculating both the electron-phonon
and spin-phonon couplings, each atom i in the unit cell is
infinitesimally displaced by �Qλei

λ along the direction of
the corresponding phonon eigenvector ei

λ. Then the electron-
phonon (spin-phonon) coupling is calculated as �εmn/�Qλ

(�ε
s1s2
(SO)mn/�Qλ), i.e., from finite differences. If �Qλ is too

large, then the harmonic approximation, which is the basis
of this approach, breaks down. In contrast, if �Qλ is too
small, then the quantity will have a significant numerical error.
Hence, for any system studied, one must evaluate the coupling
term for a range of �Qλ and, from a plot of coupling terms vs
�Qλ, choose the most suitable value of �Qλ. It is important
to note that the coupling terms so defined have the dimension
of energy/length. This is consistent with the semiclassical

FIG. 1. The unit cell of the Pb chain containing two atoms. The
figures in the top panel show isovalue plots of the three MLWFs
(from left to right, |w1,0〉, |w2,0〉, and |w3,0〉) centered on the first
atom. The bottom panel indicates the directions of the atomic motion
corresponding to the three phonon modes (mode 1, mode 2, and
mode 3, from left to right).

TB Hamiltonian used, for example, in Ref. [48] for treating
transport in organic crystals with significant dynamic disor-
der. However, various other definitions and dimensions for
the electron-phonon coupling can be found in the literature
[43,49–51].

III. RESULTS AND DISCUSSION

A. One-dimensional Pb chain

A linear chain of Pb atoms with a diatomic unit cell has
six phonon modes for each wave vector q. For simplicity
we restrict our calculations to the � point, q = 0, so that
equivalent atoms in all unit cells have the same displacements
with respect to their equilibrium positions. Since for the
acoustic modes there is no relative displacement between the
atoms of a unit cell, we are left with three optical modes
of vibration, as shown in the bottom panel of Fig. 1. The
electronic band structure of a diatomic Pb chain calculated
with a single-ζ basis function is shown in Fig. 2. Note that two
of the bands marked in red are composed mostly of p-orbital
π bonding and are doubly degenerate. Thus, as expected, the
band structure contains eight bands in total. The MLWFs are
constructed by omitting the lowest two bands (mostly made of
s orbitals) and retaining the remaining six bands. This gives
us six MLWFs per unit cell, three centered on each atom.
For each of the three modes, we evaluate the coupling matrix
elements between the MLWFs of the same unit cell for a range
of �Qλ. By analyzing these results we find that �Qλ = 0.03
is an acceptable value for such fractional displacement.

The top panel of Fig. 1 shows the MLWFs corresponding
to the first atom of the unit cell at the equilibrium geometry.
From Fig. 1 one can see that |w1,0〉, |w2,0〉, and |w3,0〉 closely
resemble the p orbitals of the first atom, which we can
denote arbitrarily (the definition of the axes is arbitrary) as pz,
px , and py , respectively. By symmetry, |w4,0〉, |w5,0〉, |w6,0〉
can be associated with the pz, px , and py orbitals located
on the second atom. However, it is important to note that
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FIG. 2. Band structure of a diatomic Pb chain calculated with a
minimal basis set in SIESTA. The black and red lines correspond to
bands omitted from and included in the construction of the MLWFs,
respectively.

such similarity between the MLWFs and the orbital angular
momentum eigenstates does not mean that they are equivalent.
In order to appreciate this point, note the following:

(1) 〈wi,0|wj,0〉 = 0,∀i �= j , but this is not necessarily true
for 〈pm,1|pn,2〉, where |pm,1〉 and |pn,2〉 are orbital angular
momentum eigenkets centered on the first and second atoms,
respectively.

(2) When an atom is displaced from its equilibrium posi-
tion, the p orbitals (e.g., the basis orbitals of SIESTA) experi-
ence only a rigid shift but do not change in shape. In contrast,
the MLWFs change in shape along with being displaced.

(3) Most importantly, in the on-site SO approximation used
in SIESTA, the hopping term for SO coupling, i.e., the SO
matrix element between two orbitals located on two different
atoms, is always zero. As for the on-site term, the SO matrix
element between two orbitals of the same atom is independent
of the position of the other atom. Thus, the spin-phonon
matrix elements are always zero when calculated with the
on-site SO approximation over the SIESTA basis set. This is
not the case for the MLWFs. Even when used in conjunction
with an on-site SO approximation, the spin-phonon coupling

TABLE I. The nonvanishing electron-phonon coupling matrix
elements for the �-point phonon modes of the Pb chain with a
diatomic unit cell. Here [wμ|wν] denotes the electron-phonon cou-
pling matrix element between the MLWFs |wμ〉 and |wν〉. One must
keep in mind that the matrix elements are real, and the remaining
nonvanishing ones not reported here can be found from the relation
[wμ|wν] = [wν |wμ]. See Fig. 1 for a diagram of the modes and the
MLWFs.

Mode Element Value (meV/Å)

Mode 1 [w3|w4] −0.85

Mode 2 [w1|w4] 4.03
[w2|w5] −1.51
[w3|w6] −1.51

Mode 3 [w2|w4] −0.85

TABLE II. Spin-phonon coupling matrix elements for the �-
point phonon modes of the Pb chain with a diatomic unit cell. Here
[ws1

μ |ws2
ν ] denotes the complex spin-phonon coupling matrix element

between the MLWFs |ws1
μ 〉 and |ws2

ν 〉. The remaining nonvanishing
matrix elements can be found from the relations in Eq. (8). The
phonon modes and the MLWFs are shown in Fig. 1.

Mode Element Value (meV/Å)

Mode 1 [w↑
1 |w↑

5 ] (0.0,−0.07)

[w↑
2 |w↑

4 ] (0.0,0.07)

[w↑
2 |w↓

6 ] (−0.19, 0.0)

[w↑
3 |w↓

5 ] (0.19,0.0)

Mode 2 [w↑
1 |w↓

5 ] (0.05,0.0)

[w↑
2 |w↓

4 ] (−0.05, 0.0)

[w↑
1 |w↓

6 ] (0.0,−0.05)

[w↑
3 |w↓

4 ] (0.0,0.05)

Mode 3 [w↑
1 |w↑

6 ] (0.0,0.07)

[w↑
3 |w↑

4 ] (0.0,−0.07)

[w↑
2 |w↓

6 ] (0.0,−0.19)

[w↑
3 |w↓

5 ] (0.00,0.19)

is typically nonzero for a MLWF basis owing to the change in
the basis functions upon ionic displacement.

Before calculating the spin-phonon coupling, let us take a
brief look at the electron-phonon coupling matrix elements
for the three phonon modes. The nonzero matrix elements
are presented in Table I for each of the normal modes. It
is interesting to note that the change in overlap between the
associated “p” orbitals due to the atomic displacements cor-
responding to the normal modes can be intuitively expected to
have the same trend as the electron-phonon coupling matrix
elements calculated with respect to the MLWFs (since the
MLWFs closely resemble p orbitals). For example, for an
atomic motion along mode 3 (see Fig. 1), 〈py,1|pz,2〉 must be
zero since |pz,2〉 always has equal overlap with the positive
and negative lobes of |py,1〉. Keeping in mind that modes 1, 2,
and 3 correspond, respectively, to a motion in the y, z, and x

directions, one can easily show that

� 〈pz,1|pz,2〉mode:2 > �〈pz,1|px,2〉mode:3,

� 〈pz,1|px,2〉mode:3 = �〈px,1|pz,2〉mode:3

= �〈py,1|pz,2〉mode:1,

� 〈px,1|py,2〉mode:1 = � 〈px,1|pz,2〉mode:2

= � 〈py,1|pz,2〉mode:3

= 0,

where � denotes a change in the overlap of the orbitals due to
their corresponding atomic motion.

Now we proceed to present our results for the spin-phonon
coupling. At variance with the electron-phonon coupling ma-
trix elements, the spin-phonon ones are not necessarily real
valued. For each of the three modes, the inequivalent nonzero
spin-phonon coupling matrix elements are tabulated in Ta-
ble II. We denote the spin-phonon matrix element between
|ws1

μ 〉 and |ws2
ν 〉 as [ws1

μ |ws2
ν ]. All other (equivalent) nonzero
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spin-phonon matrix elements can be found from those
presented in Table II by using the following relations:

[w↑
μ|w↓

ν ] = −[w↓
μ|w↑

ν ]∗,

[w↑
μ|w↓

ν ] = [w↓
ν |w↑

μ]∗,

Im[w↑
μ|w↑

ν ] = −Im[w↓
μ|w↓

ν ]. (8)

Also, from the symmetry of the MLWFs, it is easy to show
that

[w↑
1 |w↑

5 ]Mode1 = −[w↑
2 |w↑

4 ]Mode1, (9)

[w↑
1 |w↑

6 ]Mode3 = −[w↑
3 |w↑

4 ]Mode3. (10)

We have noted that in the on-site approximation, the spin-
phonon coupling (according to our definition) of the Pb chain
should be zero when calculated over the SIESTA basis set.
However, if such an on-site approximation is relaxed, one
will be able to determine a number of analytical expressions
for these coupling elements in terms of the change in orbital
overlaps. It is interesting to note that the analytical expressions
calculated in this way share many qualitative similarities with
those presented in Table II. We summarize the findings of
this section by noting that the spin-phonon couplings matrix
elements corresponding to the two equivalent normal modes
show the expected symmetry. We have also seen that the
nonzero spin-phonon coupling matrix elements for mode 2
are, in general, smaller than those for the symmetry-equivalent
modes 1 and 3.

B. Durene crystal

Finally, we are in the position to discuss the spin-phonon
coupling in a real organic crystal, namely, in durene. In an
electron-phonon or spin-phonon coupling calculation, one
needs to make sure that the construction of the MLWFs
converges to a global minimum; otherwise, the various dis-
placed geometries may correspond to different local minima,
resulting in the description of a different energy landscape.
Typically, a MLWF calculation with a dense k mesh is likely
to converge to a local minimum, while a calculation with a
coarse k mesh has a higher probability of giving the global
minimum (�-point calculation always converges to the global
minimum). However, a coarse k mesh translates to a small
period for the Born-von Kármán boundary conditions, i.e., a
poorer description of the crystal. In our calculation, we use
a 4 × 4 × 4 k grid and construct the MLWFs from the top
four valence bands. This enables the calculation to converge
to a global minimum, identified by vanishing or negligible
imaginary elements in the Hamiltonian matrix. In Fig. 3(a)
we show a plot of the durene band structure (within a large
energy window), and in Fig. 3(b), we show the band structure
corresponding to the four bands used to construct MLWFs.
These are plotted from the DFT SIESTA eigenvalues and by
diagonalizing the tight-binding Hamiltonian constructed over
the MLWFs.

Since the unit cell of durene contains two molecules, the
four valence bands give us four MLWFs per unit cell, so
that each molecule has two associated MLWFs. In Fig. 4 we
show an isovalue plot of the four MLWFs corresponding to

(a)

(b)

-15

-10

-5

0

5

Z Z' Y B B' Y A'

FIG. 3. Band structure of the durene crystal. (a) All the occupied
and many unoccupied bands. MLWFs are constructed from the
four highest occupied bands, which are plotted in black. (b) The
magnified structure of these four bands plotted with SIESTA (green
line) and obtained from the MLWFs computed with WANNIER90 (red
circles).

R = 0. We see that unlike |w3,0〉 and |w4,0〉, which are situated
on the same molecule, |w1,0〉 and |w2,0〉 are on different but
equivalent molecules displaced by a primitive lattice vector
a2. Thus, |w1,0〉 and |w2,R′ 〉 are on the same molecule for
R′ = −a2, where {a1, a2, a3} is the set of primitive vectors.
This means that for our tight-binding picture 〈w1,0|Ĥ |w2,0〉

(b)

(c) (d)

(a)

FIG. 4. Isovalue plots for MLWFs of the four topmost valence
bands of a durene crystal: (a) |w1,0〉, (b) |w2,0〉, (c) |w3,0〉, and
(d) |w4,0〉.
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corresponds to a nonlocal (hopping) matrix element, whereas
〈w1,0|Ĥ |w2,R′ 〉 is a local (on-site) energy term. In the follow-
ing, we shall calculate the electron-phonon and spin-phonon
couplings corresponding to various modes of the durene crys-
tal and compare (1) the relative contribution of the different
modes and (2) for each mode, the relative contribution of the
local and nonlocal terms.

Since the unit cell contains two molecules, each with 24
atoms (48 atoms in the unit cell), a �-point phonon calculation
will give us 144 modes, with 141 being nontrivial. Among
these, 12 will be predominantly intermolecular modes (3
translational and 9 rotational modes, where the molecules
move rigidly with respect to each other), and the remaining
ones will have a predominantly intramolecular nature. Here
we shall consider only the phonon modes with an energy less
than 75 meV, as the modes with higher energy are accessible
only at high temperature [43]. Thus, we take into account
25 modes, of which the first 12 are intermolecular (these
are lower in energy) and the rest are symmetry-inequivalent
intramolecular ones [52].

In order to compare the contributions of the different
phonon modes and of the local (Holstein-type) and nonlocal
(Peierls-type) contributions, we calculate the following effec-
tive electron-phonon coupling parameters:

GL
λ =

∑
m,n

∣∣gλ
mn

∣∣2
, (11)

where m and n are functions centered on the same molecule,
and

GN
λ =

∑
m�=n

∣∣gλ
mn

∣∣2
, (12)

where m and n are on different molecules.
Here the superscripts L and N stand for local and nonlocal,

respectively. A crucial point to be noted for treating bulk crys-
tals is that in WANNIER90, the direct lattice points, where the
MLWFs are calculated, are the lattice points of the Wigner-
Seitz cell about the cell origin, R = 0. Typically, one should
expect the number of such lattice points to be the same as the
number of k points in reciprocal space. However, in a three-
dimensional crystal it is possible to have lattice points which
are equidistant from the R = 0 cell and (say) n other cells.
This means that such a lattice point is shared by Wigner-Seitz
cells of n + 1 cells. In this case, this degenerate lattice point
is taken into consideration by WANNIER90, but a degeneracy
weight of 1/(n + 1) is associated with it. Consequently, in
further calculations (such as the band structure interpolation),
its contribution carries a factor of 1/(n + 1). Keeping this in
mind, we multiply the contributions from the MLWFs of de-
generate direct lattice points by their corresponding weighting
factors. Figure 5 shows a histogram of the Gλ terms as a
function of the phonon energy. It must be kept in mind that
the coupling matrix elements are strongly dependent on the
MLWFs. Therefore, constructing Wannier functions from a
different set of Bloch states can, in principle, result in different
values of Gλ. We see that in our case, most of the modes with
high Gλ(= GL

λ + GN
λ ) are located at high phonon energies.

Also, the electron-phonon couplings for modes with lower Gλ

are dominated by the nonlocal contributions, while those with
higher Gλ are dominated by local contributions.

FIG. 5. Histogram of the effective electron-phonon coupling as a
function of the phonon energy. The local and nonlocal contributions
are denoted by green and red bars, respectively.

Concerning the spin-phonon coupling, we can define spin-
dependent Gλ terms, namely, the effective spin-phonon cou-
plings,

G
L(s1s2 )
λ =

∑
m,n

∣∣gs1s2(λ)
mn

∣∣2
, (13)

where m and n are on same molecule, and

G
N(s1s2 )
λ =

∑
m�=n

∣∣gs1s2(λ)
mn

∣∣2
, (14)

where m and n are on different molecules.
In Fig. 6, we plot these effective spin-phonon coupling

terms, and we break down the local and nonlocal con-
tributions. The top and bottom panels correspond to the
(s1 = ↑, s2 = ↑) and (s1 =↑, s2 =↓) cases, respectively.
As expected, the spin-phonon coupling terms are extremely
small (about four orders of magnitude smaller than those of
the Pb chain), owing to the small atomic masses in the crystal
(the SO coupling is small). As in the case of the electron-
phonon interaction, the effective spin-phonon coupling terms
are dominated by nonlocal contributions for low G

(s1s2 )
λ =

G
L(s1s2 )
λ + G

N(s1s2 )
λ and by local contributions for high Gλ. We

also see that the spin-phonon coupling (for the same spin,
as well as for different spins) is very small for the first few
modes, which represent intermolecular motions. This is fully
consistent with the short-range nature of SO coupling. An
important message emerging from these results is that phonon
modes with high effective electron-phonon coupling do not
necessarily have high effective spin-phonon coupling and vice
versa. This means that the knowledge of the phonon spectrum
says little a priori about the spin-phonon coupling, so that any
quantitative theory of spin relaxation cannot proceed unless a
detailed analysis along the lines outlined here is performed.

In conclusion, we have discovered that both the electron-
phonon and spin-phonon coupling constants are, in general,
dominated by the local modes, as expected from the short-
range nature of the SO coupling. However, modes with
very small effective coupling tend to have a larger relative
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FIG. 6. Histogram of the effective spin-phonon coupling param-
eters G

(s1s2 )
λ as a function of the phonon energy. The top panel

corresponds to the s1 = s2 case (same spins), while the bottom
panel corresponds to s1 �= s2 (different spins). The local and nonlocal
contributions are denoted by green and red bars, respectively.

contribution arising from nonlocal modes. No apparent corre-
lation can be found between the effective coupling constants
pertaining to various phonon modes for the electron-phonon
coupling and those for the spin-phonon coupling.

IV. CONCLUSION

Based on our previous work concerning the calculation of
the SO matrix elements with respect to MLWFs basis sets,
we have presented calculations of the spin-phonon coupling
matrix elements of periodic systems. Although a quantity of
mostly computational interest, such coupling terms can be
incorporated within a multiscale approach for constructing
a model Hamiltonian, which, in turn, can be solved to find
quantities of practical and technological importance such as
the spin-relaxation length/time. We note that, in order to be
useful in such a multiscale approach, the electron-phonon and
spin-phonon couplings are not to be calculated in terms of a
fixed set of MLWFs. Instead, one must take into account the
change in the MLWFs as a result of the ionic motions. The
coupling matrix elements for a given phonon mode are cal-
culated by displacing atoms from the ground-state geometry
along that phonon eigenvector and by taking finite differences.
For phonon modes at the � point, we have calculated the
electron-phonon and spin-phonon coupling elements of a one-
dimensional chain of Pb atoms with two atoms per unit cell
and of a bulk durene crystal. The latter is a widely studied and
well-known organic semiconductor. The spin-phonon cou-
pling matrix elements of the Pb chain obey the expected sym-
metry relations. For durene we have observed that, in general,
the spin-phonon coupling is dominated by local contributions
(Holstein modes), although for phonon modes with a small
net effective coupling, the nonlocal part seems to dominate.
Our calculations of spin-phonon coupling matrix elements are
expected to be valuable in the construction of an effective
Hamiltonian to compute transport-related quantities. This is
particularly welcome in the case of organic crystals, where
ab initio computation of transport properties is a challenging
task.
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