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L2 and L∞ stability analysis of heterogeneous traffic

with application to parameter optimisation for the

control of automated vehicles

Julien Monteil1, Mélanie Bouroche2, Douglas J. Leith2

Abstract

The presence of (partially) automated vehicles on the roads presents an op-
portunity to compensate the unstable behaviour of conventional vehicles.
Vehicles subject to perturbations should (i) recover their equilibrium speed,
(ii) react not to propagate but absorb perturbations. In this work, we start
with considering vehicle systems consisting of heterogeneous vehicles updat-
ing their dynamics according to realistic behavioural car-following models.
Definitions of all types of stability that are of interest in the vehicle system,
namely input-output stability, scalability, weak and strict string stability, are
introduced based on recent studies. Then, frequency domain linear stability
analyses are conducted after linearisation of the modelled system of vehicles,
leading to conditions for input-output stability, strict and weak string sta-
bility over the behavioural parameters of the system, for finite and infinite
systems of homogeneous and heterogeneous vehicles. This provides a solid
basis that was missing for car-following model-based control design in mixed
traffic systems where only a proportion of vehicles can be controlled. After
visualisation of the theoretical results in simulation, we formulate an opti-
misation strategy with LMI constraints to tune the behavioural parameters
of the automated vehicles in order to maximise the L∞ string stability of
the mixed traffic flow while considering the comfort of automated driving.
The optimisation strategy systematically leads to increased traffic flow sta-
bility. We show that very few automated vehicles are required to prevent the
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propagation of realistic disturbances.

Keywords: L2 and L∞ stability analysis, L∞ string stability, Linear
Matrix Inequalities, automated vehicles, heterogeneous traffic.

1. Introduction

Interest is growing in how to control (partially) automated vehicles, i.e.
vehicles equipped with Automated Driving Systems (ADS) such as Adap-
tive Cruise Control (ACC), Cooperative Adaptive Cruise Control (CACC),
or any autopilot system, to increase traffic flow stability and safety in mixed
traffic contexts, when (partially) automated vehicles and conventional vehi-
cles coexist on the road. A recent report has underlined the unsafe nature
of automated vehicles, which are five times more likely to crash than con-
ventional vehicles, even though they are almost never to blame when a crash
does occur Schoettle and Sivak (2015). In this context, one can assume that
automated vehicles should behave similarly to surrounding drivers in order
not to surprise them and, when automation is only partial, similarly to the
in-vehicle driver in order to increase driving comfort and facilitate switch-
ing between automated and conventional modes. As a result, the modelling
and understanding of conventional vehicles dynamics is particularly relevant
for the design of driver-dependent, comfortable, and safe controllers for the
acceleration dynamics of automated vehicles.

Regarding automated vehicle dynamics, a lot of attention has been put
into the study of platoon systems, i.e. systems composed of automated vehi-
cles that behave according to some distributed control protocol. Two stabil-
ity objectives, namely stability and string stability, are commonly considered
when designing distributed control protocols for some given communication
topologies, see e.g. Knorn et al. (2014); Ploeg et al. (2014b). In particular,
while stability characterises the convergence of the platooning system towards
a desired equilibrium configuration, string stability refers to the attenuation
of disturbances along the vehicle string. Note that, despite a number of early
works Sheikholeslam and Desoer (1990, 1993); Zhou and Hui (2010); Naus
et al. (2010), the lack of a unified definition for string stability was identified
in Ploeg et al. (2014b), where a definition of Lp string stability was proposed
for interconnected systems, and several of its implications were discussed.
In the field of platoon systems, pioneering work was made in the context of
the Automated Highway System (AHS) effort of the California Path Pro-
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gram Shladover et al. (1991); Varaiya and Shladover (1991). Among the
contributions were the formulations of lateral and longitudinal control laws
for stable, safe and comfortable platoon maneuvres, see Li et al. (1997);
Frankel et al. (1996) for example, the development of a control system ar-
chitecture for platooning, see Hedrick et al. (1994) for instance, and the San
Diego demonstration in 1997 Tan et al. (1998). Since then, several linear con-
trol protocols have been proposed over the years to address the stability and
string stability of platoons, see e.g. Swaroop and Hedrick (1995); Liu et al.
(2001). Very recently, the string stable behaviour of a linear CACC system
via H∞ control was demonstrated Ploeg et al. (2014a), the stable platooning
of a linear control protocol considering communication delays was proved
using the Lyapunov-Razumikhin theorem di Bernardo et al. (2015), a novel
condition for the design of nonlinear control protocols for stable platooning
was proposed Monteil and Russo (2017), and a protocol with nonlinear con-
trol terms was proved to lead to string stable platooning via energy-based
arguments Knorn et al. (2014).

Regarding conventional vehicle dynamics, the longitudinal microscopic
behaviour of vehicles is usually approximated using car-following models,
where vehicles only react to the behaviour of their leaders. Car-following
models are continuous time models that can be either delay-free Kesting
et al. (2010a); Treiber and Kesting (2013) or delayed Newell (2002); Rakha
et al. (2009). These models have been shown to accurately represent traffic
flow features such as speed and headway distributions as well as stop and go
waves, using real world datasets Treiber and Kesting (2012); Monteil et al.
(2014a); Punzo et al. (2012), and are therefore a solid base for further devel-
opments on stability analysis and controller synthesis. The string stability
characterisation of these models has received some recent attention. One key
work is the one of Wilson and Ward (2011), where the behaviour of a uniform
flow of vehicles with car-following dynamics was investigated. After lineari-
sation of the dynamics of the infinite homogeneous system it is shown via
Fourier analysis that conventional vehicles can have a string stable or string
unstable behaviour depending on the traffic regime and their behavioural pa-
rameters. One of the early works to use a similar approach appeared in Bando
et al. (1995), and this was recently utilised to study weakly non-linear con-
gestion patterns of bilateral multi-anticipative traffic Monteil et al. (2014b)
as well as multi-anticipative traffic introducing time-delays Ngoduy (2015).
However, the string stability of car-following dynamics remains not well un-
derstood in the case of finite systems of homogeneous vehicles as well as in
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the case of systems of heterogeneous vehicles, i.e. with vehicles exhibiting
different car-following behaviour.

Contributions of the paper

in the context of the above literature, we propose a number of key novel-
ties and contributions. First, we believe that the key and novel idea of this
paper is that in mixed traffic environments (partially) automated vehicles can
be used to compensate the string unstable behaviour of conventional vehi-
cles. Differently to the problem of designing control protocols for automated
platoon systems, here we focus on mixed vehicle systems where the dynam-
ics of conventional vehicles are heterogeneous, follow realistic car-following
behaviour and cannot be controlled. Furthermore, we work with the hy-
pothesis that the automated vehicles should behave in a similar way to the
conventional vehicles to maximise driving comfort and compliance with the
automated system, and to minimise the occurrences of unusual behaviour.
In such a context, the contributions in comparison with existing works are
as follows: (i) we formalise the definition of weak stability that is relevant
in mixed traffic environments made of automated and conventional vehicles;
(ii) we investigate the stability of the heterogeneous systems of vehicles with
linearised car-following dynamics in the frequency domain, making use of
L2 linear control theory, which is widely used in the platoon literature; (iii)
we provide conditions for input-output and string stability of heterogeneous
traffic, for single and multiple considered outputs; (iv) we provide a relation
between L2 and L∞ string stability for the considered dynamics; (v) we show
that the equivalence between string stability and asymptotic stability does
not hold for closed loop systems; (vi) we extensively discuss those results in
simulation, showing the critical features of nonlinearities; (vii) based on the
weak stability condition, we propose an optimisation strategy to tune the be-
havioural parameters of the automated vehicles, which has a Linear Matrix
Inequalities (LMI) formulation; (viii) we apply the optimisation strategy to
realistic data which yields very promising results: a very small proportion of
automated vehicles can greatly and systematically contribute to increasing
traffic flow stability.

Organisation of the paper

Section 2 lists the notation used in the paper. Section 3 recalls the general
form of car-following models, and describes the linearisation of the heteroge-
neous vehicle system. Section 4 presents the definition of input-output sta-
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bility, strict and weak string stability for heterogeneous systems of vehicles.
We introduce the definition of weak stability, relevant to mixed traffic envi-
ronments. In Section 5, the definitions are applied to the system of vehicles
providing a list of necessary and sufficient conditions when possible, sufficient
conditions otherwise, for input-output, strict and weak string stability, for
both homogeneous and heterogeneous traffic. In Section 6, we visualise these
results in simulation, and discuss linear vs non-linear stability. In Section 7,
we provide an optimisation strategy to tune the behavioural parameters of
the (partially) automated vehicles in the traffic system so as to increase weak
string stability while considering the comfort of driving. We formulate the
constraints as LMI, and solve the optimisation using its convex structure.
We show that using our approach automated vehicles consistently contribute
to increasing traffic flow stability of heterogeneous traffic. We conclude with
a summary of our findings.

2. Notations

The notation used throughout this paper is as follows.

N Set of natural numbers.

R Set of real numbers.

R+ Set of positive real numbers.

R∗+ Set of strictly positive real numbers.

Rp×q Set of matrices with coefficients in R, p and q ∈ N.

||.||2 L2 norm of a vector in Rn, with n ∈ N.

Lp Space of functions f : R → R such that t → |f(t)|p is integrable
over R, here p = 2,∞.

||.||Lp Lp norm of a Lp function, here p = 2,∞.

Yi(s) Laplace transform of yi(t).

Di(s) Laplace transform of di(t).

||.||H∞ H∞ norm of a defined Laplace transform.
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Re(z) Real part of complex number z.

K Class of continuous functions h, defined such as h(·) : R+ → R+,
h(0) = 0 and h(·) is strictly increasing.

3. General form of car-following models and corresponding system
equation

Consider a system of m > 1 vehicles with indices n ∈ {1, ...,m}. The first
vehicle of the vehicle system (n = 1) follows a virtual reference vehicle (n = 0)
which keeps a constant speed ẋ0(t) = veq. The other vehicles (1 ≤ n ≤ m)
behave according to a car-following model.

3.1. Car-following models

Car-following models describe the dynamics of a vehicle in response to
the trajectory of its leading vehicle, taking into account the technical fea-
tures of the car and the behaviour of the driver through vehicle behavioural
parameters.

3.1.1. Selection of the state vector

before presenting the models we introduce xn ∈ R2 the state vector of
vehicle n defined as:

xn =

(
∆xn
vn

)
, (1)

where ∆xn = xn−1 − xn is the space headway or distance between vehicle n
and its leading vehicle n− 1, and vn is the speed of vehicle n.

3.1.2. Delay-free car-following models

delay-free continuous time models are the most well-known type of car-
following models in the literature. For a vehicle n, the vehicle dynamics are
as follows:

∆ẋn = vn−1 − vn, (2)

v̇n = fn(vn,∆xn, vn−1 − vn, θn) + dn, (3)

where v̇n is the acceleration of the vehicle n ∈ {1, ...,m}, ∆xn = xn−1 − xn
the distance to the vehicle in front (headway), ∆ẋn = ẋn−1 − ẋn the relative
velocity, θn ∈ Rl the vector of the behavioural parameters, with l ∈ N∗ the
number of parameters, and fn the acceleration function of the car following

6



model which captures the non linear dynamics of the vehicle. The term dn
captures the effect of external disturbances.

Note that, in this paper, we restrict our analysis to delay-free car-following
models, but the presented approach could be readily extended to the consid-
eration of delayed car-following models.

3.2. Linearisation of the vehicle state

For any vehicle n ∈ {1, ...,m}, an acceleration input perturbation on
vehicle i ∈ {1, ..., n} generates responses ẋn, ∆xn, ∆ẋn that can be written
as perturbations about the equilibrium values ẋn,eq, ∆xn,eq, ∆ẋn,eq

xn(t) = xn,eq(t) + yn(t), (4)

ẋn(t) = ẋn,eq + ẏn(t), (5)

∆xn(t) = ∆xn,eq(t) + ∆yn(t), (6)

where perturbations yn(t) = xn(t)−xn,eq(t) and ∆yn(t) = yn−1(t)−yn(t). At
equilibrium, we also have ∆ẋn,eq = 0, ẋn,eq = veq and ẍn(t) = ÿn(t). When
ẏn, ∆yn, and ∆ẏn are small enough, the following approximation is valid:

ÿn ≈ ẏnfn,1 + ∆ynfn,2 + ∆ẏnfn,3 + dn, (7)

where fn,1 = ∂fn(ẋn,eq,∆xn,eq, 0)/∂ẋn, fn,2 = ∂fn(ẋn,eq,∆xn,eq, 0)/∂∆xn,
and fn,3 = ∂fn(ẋn,eq,∆xn,eq, 0)/∂∆ẋn. Note that, as mentioned in Wilson
and Ward (2011), equation (7) has a physical meaning in traffic. When the
speed deviation ẏn is increased, the vehicle tends to decelerate to return to
the equilibrium speed; when the relative distance ∆yn or relative speed ∆ẏn
is increased, it tends to accelerate to return to the equilibrium speed. These
considerations lead to the following conditions: ∀n ∈ {1, ...,m},

fn,1 < 0, fn,2 > 0, fn,3 > 0. (8)

3.3. State-space dynamics

By analogy with (1), we have yn ∈ R2 the perturbed state vector defined
as:

yn =

(
∆yn
ẏn

)
. (9)

The relation (7) can then be rewritten equivalently as:

ẏn = an,0yn−1 + an,1yn + bvdn, (10)
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where dn ∈ R is the external acceleration input, bv ∈ R2 is the following
vector,

bv =

(
0
1

)
, (11)

and the an,0 and an,1 ∈ R2×2(R) are the matrices:

an,0 =

(
0 1
0 fn,3

)
, (12)

an,1 =

(
0 −1
fn,2 fn,1 − fn,3

)
. (13)

Note that the form of vector bv enforces a zero speed input, as the actuator
is assumed to be the throttle pedal which only acts upon acceleration.

3.4. Linearisation of the vehicle system equation

Let d ∈ Rm be the vector of disturbances:

d =

d1
...
dm

 , (14)

and y ∈ R2m the state vector:

y =

y1
...

ym

 . (15)

For the leader of the system (n = 1), there is only a fictitious vehicle ahead
(n = 0). The equation of motion of vehicle 0 is:

ẏ0 = ãy0, (16)

with ã ∈ R2×2 the matrix:

ã =

(
0 1
0 0

)
. (17)

The linearised dynamics of the system are:

ẏ = ay + bd, (18)

h = cy, (19)
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where h ∈ R2m is the vector of outputs, c ∈ R2m×2m is the observation
matrix, and the matrix b ∈ R2m×2m is:

b =


bv 0 . . . 0
0 bv . . . 0
...

. . . . . . 0
0 . . . 0 bv

 , (20)

where bv is given by equation (11) and matrix a ∈ R2m×2m has a 2× 2 block
form:

a =


a1,0 a1,1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 am,0 am,1

 . (21)

The equilibrium state of the linear system is defined as yeq, which is also
the zero vector ∈ R2m (since d is zero in equilibrium), and heq = cyeq is the
equilibrium output. hn ∈ R2 is the output of vehicle n, and hn,eq ∈ R2 is
the equilibrium output of vehicle n. Note that the form of the observation
matrix c depends on the characteristics of the observer. For a centralised
observer c would be the identity matrix ∈ R2m×2m. However, a decentralised
observer such as a vehicle only sees a local part of the full state vector.

4. Stability definitions and remarks

In this section, we assume yeq = 0 for the sake of simplicity.
Definition 1 (Stability and exponential stability), see Gibson and An-

naswamy (2015). Consider the linear system defined in equations (18), (19).
The vehicle system of m > 1 vehicles is said to be stable if for a given t0 > 0,
∀ε > 0, ∃ δ = δ(ε) > 0 such that when ||y(t0)||2 < δ, then ∀t ≥ t0, ||y||Lp < ε;
and the system is said to be exponentially stable if for every δ ≥ 0 there exists
α, β ∈ R∗+ such that if ||y(t0)||2 < δ, then ‖y‖Lp ≤ α‖y(t0)‖2e−β(t−t0).

Note that in the case of the linear system of equation (18), (19), the sys-
tem is exponentially stable iff ∀λ ∈ {Spectrum(a)}, Re(λ) < 0, see e.g. Hes-
panha (2009).

Definition 2 (Input-output stability), see e.g. Ploeg et al. (2014b), Monteil
and Russo (2017). Consider the linear system defined in equations (18), (19).
The vehicle system of m > 1 vehicles is said to be input-output stable if there
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exists class K functions α : [0, a) 7→ [0,∞) and β : [0, b) 7→ [0,∞), a and
b ∈ R, such that, for any initial state y(t0) ∈ R2m and any input d ∈ Lp,
then ∀n ∈ {1, ...,m},

||hn||Lp ≤ α(‖d‖Lp) + β(||h(t0)||2) (22)

Remark 1. For linear systems when input-output stability holds element-
wise then it holds for all inputs, i.e. when the system is input-output stable
for inputs d ∈ Rm such that di, i ∈ {1, ...,m}, is the only non-zero component
of d then it also holds for all inputs (by superposition).

Note that for fully controllable and observable linear systems, exponential
stability is equivalent to input-output stability, i.e. matrix a is Hurwitz,
and that for non-linear systems, exponential stability implies input-output
stability, see e.g. Hespanha (2009).

Remark 2. If the input-output property holds ∀m ∈ N \ {1}, i.e. the
class K functions α and β do not depend on m, then from the literature the
vehicle system is said to be string stable, or scalable Ploeg et al. (2014b);
Darbha and Rajagopal (2005). We will use the term scalable to avoid any
confusion.

We now give the definition of Lp strict string stability, adapted from Ploeg
et al. (2014b), with p = 2 or p =∞, see Section 2. Note that, as mentioned
in Klinge and Middleton (2009) for instance, the major part of the string
stability analyses in the literature deal with the L2 norm which is easier to
work with, as it can rewritten immediately as a condition on the H∞ norm of
the corresponding transfer function. However, the L∞ norm has a stronger
physical meaning as it deals with the peak of the deviations, and therefore
L∞ strict string stability can be directly related to a condition for collision
avoidance.

Definition 3 (Lp strict string stability). We apply the definition of strict
string stability in Ploeg et al. (2014b) to the linear system defined in equa-
tions (18), (19). The vehicle system of m > 1 vehicles is said to be Lp strictly
string stable if it is input-output stable and if, in addition, for inputs d ∈ Rm

such that di, ∀i ∈ {1, ...,m}, is the only non-zero component and y(t0) = 0,
then ∀n ∈ {i+ 1, ...,m},

||hn||Lp ≤ ||hn−1||Lp . (23)

We now formalise the definition of weak string stability which was first
intuitively mentioned in Naus et al. (2010).
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Definition 4 (Lp weak string stability). Consider the linear system defined
in equations (18), (19). Let the vehicle system of m > 1 vehicles be input-
output stable and consider inputs d ∈ Rm such that di, ∀i ∈ {1, ...,m}, is
the only non-zero component and y(t0) = 0. Then, for given l ∈ {i, ...,m}
and n ∈ {l, ...,m}, the vehicle system is said to be (l, n) weakly string stable
if

||hn||Lp ≤ ||hl||Lp . (24)

Remark 3. For linear systems when string stability holds element-wise
then it holds for all inputs, i.e. when the system is string stable for inputs
d ∈ Rm such that di, i ∈ {1, ...,m}, is the only non-zero component of d
then it also holds for all inputs (by superposition).

Remark 4. The weak string stability definition is introduced to handle
mixed traffic situations where vehicle systems are composed of conventional
vehicles and automated vehicles. The idea is to achieve the weak string
stability condition by only acting upon the controllable automated vehicles.
Note that for a given i ∈ {1, ...,m − 2}, we may have (i, i + 2) weak string
stability, i.e. ||hi+2||L2 ≤ ||hi||L2 , but strict string stability does not hold.

5. Stability results

In this section we investigate the stability properties of the linearised
system dynamics. We consider an input d such that only element di is non-
zero, i.e. dn(t) = 0 for n 6= i, and note that yj(t) = 0 for j < i since there is
no input to these vehicles and the initial conditions are zero.

5.1. Laplace transforms of the vehicle system dynamics

Taking Laplace transforms and rearranging, equation (10) yields:

Yi(s) = (sI− ai,1)
−1bvDi(s), (25)

i.e.
Yi(s) = Gi(s)Di(s), (26)

where I ∈ R2×2 is the identity matrix, and where transfer function Gi(s) is

Gi(s) =
1

Ui(s)

(
−1
s

)
, (27)

where
Ui(s) = s2 + s(fi,3 − fi,1) + fi,2. (28)
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For vehicles n > i we also have

Yn(s) = Γn(s)Yn−1(s) =

(
n∏

j=i+1

Γj(s)

)
Yi(s), (29)

where
Γn(s) = (sI− an,1)

−1an,0. (30)

Hence,

Yn(s) =

(
n∏

j=i+1

Γj(s)

)
Gi(s)Di(s). (31)

5.2. Input-output stability and scalability

We know that, e.g. see page 26 of Desoer and Vidyasagar (2009), the
L2-induced norm of the linear map di → yi is the H∞ norm of Gi. By
definition, the H∞ norm of Gi is

||Gi||H∞ = sup
ω∈R

σmax(Gi(jω)), (32)

where σmax is the maximum singular value of the matrix. The inequality

||yi||L2 ≤ ||Gi(s)||H∞ ||di||L2 (33)

holds, and ||yi||L2 can be made equal to ||Gi(s)||H∞||di||L2 by appropriate
selection of input ||di||L2 . In addition, for n > i, the inequality

||yn||L2 ≤ ||Γn||H∞||yn−1||L2 (34)

follows from equation (29), and we have,

||yn||L2 ≤
n∏

j=i+1

‖Γj‖H∞ ||Gi||H∞||di||L2 . (35)

Therefore, the existence of maxi∈N∗ ||Gi(s)||H∞ and maxi∈N∗ ||Γi(s)||H∞ is a
sufficient condition for input-output stability of the vehicle system. In ad-
dition, with regard to Remark 2, the existence of supi∈N∗ ||Gi(s)||H∞ and
supi∈N∗

∏i
j=2 ‖Γj‖H∞ is a sufficient condition for the scalability of the vehicle

system. Finally, in the case of an homogeneous system with Single Input Sin-
gle Output (SISO) transfer functions, we recall that the conditions ||G1||H∞
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bounded and ||Γ2||H∞ ≤ 1 become necessary and sufficient conditions for
scalability, see the work of Ploeg et al. (2014b).

In the case of our system, following equations (18-21), the system matrix
a is block diagonal and so the eigenvalues of a are the eigenvalues of the m
block matrices on the diagonal. The eigenvalues of the matrices (an,1)1≤n≤m
are

(
fn,1 − fn,3 ±

√
∆n

)
/2, where ∆n = (fn,1 − fn,3)2 − 4fn,2. If we consider

the realistic driving constraints of equation (8) to be satisfied, the eigenvalues
have negative real parts, i.e. (an,1)1≤n≤m are Hurwitz matrices, and therefore
the system is always exponentially stable.

5.3. String stability of the vehicle system

We start the discussion with L2 string stability before addressing L∞
string stability.

5.3.1. L2 strict string stability

applying Definition 3, if we have input-output stability, a sufficient con-
dition for L2 strict string stability follows from equation (34), as mentioned
in Sheikholeslam and Desoer (1993):

||Γn||H∞ ≤ 1, ∀n ∈ {2, ...,m}. (36)

In the case of our system, following equations (18-21), we obtain by develop-
ing equation (30):

Γn(s) =
1

Un(s)

(
0 s− fn,1
0 sfn,3 + fn,2

)
. (37)

The structure of the cascaded system can be summarised in Figure 1 for a
perturbation d1 on the first vehicle. G1,1 and G1,2 are the elements of G1,
see equation (27). Yn is the Laplace transform of yn. We write Yn,1 and Yn,2
the Laplace transforms of ∆yn and ẏn, and Γn,1 and Γn,2 the SISO headway
to headway and speed to speed transfer functions. We have:

Yn,1 = Γn,1Yn−1,1, Yn,2 = Γn,2Yn−1,2, (38)

Finally, Γn,(1,2) and Γn,(2,2) are the terms of the second column in equa-
tion (37), and we have:

Yn,1 = Γn,(1,2)Yn−1,2, Yn,2 = Γn,(2,2)Yn−1,2. (39)
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Figure 1: MIMO and SISO transfer functions of the studied cascaded system.

In the rest of the Section, we are interested in capturing the propagation
of the headway and speed perturbations, which can be done by looking at
either the MIMO transfer function or the SISO transfer functions.

a) Multiple Inputs Multiple Outputs (MIMO) system: the full MIMO
system is represented by transfer function Γn, see Figure 1. We calculate
the singular values of Γn(jω) to obtain its H∞ norm, following the defini-
tion of equation (32). After some manipulation, see Appendix A, sufficient
conditions for strict string stability are:

fn,1 = 0, (40)

−2fn,2 − 1 ≥ 0. (41)

It can be seen that the sufficient conditions for strict string stability of the
MIMO system are not useful in practice, as they are not compatible with the
realistic driving constraints presented in equation (8).

b) Single Input Single Output (SISO) systems: given the conservativeness
of equations (40), (41), the strict string stability analysis of the SISO systems
is critical. From equation (37-39) we immediately have the speed to speed
transfer function:

Γn,2 =
sfn3 + fn2

s2 + s(fn,3 − fn,1) + fn,2
. (42)

However, the propagation of the headway perturbations is not readily obtain-
able, and following equation (39), we need to express Yn−1,1 as a function of
Yn−1,2 to have an expression of Γn,1. As we remark that Yn−1,2−Yn,2 = sYn,1,
following equation (38), we have

Yn−1,2 =
sΓn,2

1− Γn,2
Yn−1,1, (43)

which reduces to

Yn−1,2 =
sfn,3 + fn,2
s− fn,2

Yn−1,1. (44)
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We therefore have the headway to headway transfer function:

Γn,1 =
sfn3 + fn2

s2 + s(fn,3 − fn,1) + fn,2
, (45)

which is the same as the speed to speed transfer function, see equation (42).
The transfer functions Γn,k, with k ∈ {1, 2}, have second order dynamics,

therefore we can get an analytical condition for L2 strict string stability. The
H∞ norm of Γn,k is the maximum gain |Γn,k(jω)| across all frequencies. We
have:

|Γn,k(jω)| =

√
ω2f 2

n,3 + f 2
n,2

(fn,2 − ω2)2 + ω2(fn,3 − fn,1)2
. (46)

Condition |Γn,k(jω)| ≤ 1 leads to equation

ω4 + ω2(f 2
n,1 − 2fn,3fn,1 − 2fn,2) ≥ 0. (47)

That is, the L2 strict string stability condition is a simple condition on the
partial derivatives of the system: ∀ω ∈ R+,

|Γn,k(jω)| ≤ 1⇔ f 2
n,1 − 2fn,1fn,3 − 2fn,2 ≥ 0. (48)

Note that these conditions are the same conditions as the well-known string
stability conditions derived for an infinite homogeneous traffic Wilson and
Ward (2011). Note also that the discrepancy observed between the MIMO
and SISO analysis may stem from the conservativeness of condition (34), and
the fact that in the MIMO set-up the outputs are headway and speed and
the input is just the speed of the previous vehicle.

5.3.2. L2 weak string stability

applying Definition 4, for a given l ∈ {i, ...,m} and n ∈ {l, ...,m}, a
sufficient condition for (l, n) weak string stability is:∥∥∥∥∥

n∏
i=l+1

Γi

∥∥∥∥∥
H∞

≤ 1. (49)

As an example, consider a system consisting of 3 vehicles, with a dis-
turbance on vehicle 1. We work with the following partial derivative val-
ues: f21 = −0.075, f22 = 0.091, f23 = 0.55, and f31 = −0.26, f32 = 0.10,
f33 = 0.64, which correspond to realistic parameter values of the Intelligent
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Driver Model (IDM), a well-known physical model for reproducing realistic
traffic Kesting et al. (2010a). The L2 speed gains are ||Γ2,2||H∞ = 1.06,
||Γ3,2||H∞ = 1 and ||Γ2,2Γ3,2||H∞ = 1, as we can observe in Figure 2. The sys-
tem is therefore (1,3) weakly string stable but not proved to be strict string
stable. The automated vehicle (here vehicle 3) could compensate instabilities
generated by the conventional vehicle (here vehicle 2). However, analytical
conditions for achieving weak string stability are not easy to obtain as solving
inequality (49) requires solving an 8 degree polynomial equation.

Figure 2: System of 3 vehicles: Bode plots of |Γ2,2(jω)|, |Γ3,2(jω)| and |Γ2,2(jω)Γ3,2(jω)|.

Remark 5. Note that, ∀k ∈ {1, 2},
∥∥∏n

i=l+1 Γi,k
∥∥
H∞
≤ 1 is equivalent to∥∥∏n

i=l+1 Γi,k
∥∥
H∞

= 1, as ∀i ∈ {1, ..,m}, we have |Γi,k(0)| = 1.

5.3.3. L∞ strict string stability

as discussed in Section 4, L∞ string stability is more practical than L2

string stability as it deals with the peak values of the perturbations. One
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of the early works to introduce the L∞-induced norm of a linear map, that
is the L1 norm of its impulse response, are the ones of Vidyasagar (1986);
Dahleh and Pearson (1987). This means that the condition to guarantee L∞
strict string stability is to have the L1 norm of the impulse response less
than 1. It is known from Boyd and Barratt (????) that the H∞ norm is
upper bounded by the L∞-induced norm, and that for non-negative impulse
responses, those norms are identical. Therefore, if we look at the transfer
functions of equations (42), (45), necessary and sufficient conditions for hav-
ing a monotonic step response are non-imaginary poles and negative zeros,
which leads to:

(fn,3 − fn,1)2 − 4fn,2 ≥ 0, (50)

−fn,2
fn,3

< 0. (51)

Note that the conditions (51) is always verified due to the physical rela-
tion (8). It is interesting to investigate which equation is the most conser-
vative between (48) and (50). In fact, by substracting equation (48) from
equation (50), we can verify that the L2 strict stability condition is stronger
than the condition for the equality of the norms if f 2

n,3 ≥ 2fn,2, which we ex-
pect to be almost always verified for realistic parameter values. In summary,
we have:

f 2
n,3 ≥ 2fn,2 ⇒ (L∞ stability = L2 stability) , (52)

and if condition (52) is not verified we only have L∞ stability⇒ L2 stability.
To our knowledge, whereas equation (48) is well-known to the traffic flow
theory community, equations (45), (50) and (52) are novel conditions for the
investigated car-following dynamics of equations (2) and (3).

5.4. Closed vehicle systems

We conclude the Section on stability results with the particular case of
closed systems. Closed vehicle systems, where vehicle 1 follows vehicle m,
have often been studied to interpret congestion as they enable easy field
experiments, see e.g. Sugiyama et al. (2008), and as it seems intuitive that
the asymptotic instability of the closed system is linked to the string stability
of the open system, see e.g. Wilson and Ward (2011). Here we present novel
analytical results highlighting the difference between string and asymptotic
stability in such systems.
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By analogy with equation (21), the system matrix ac ∈ R2(m+1)×2(m+1)

for a closed system can be written as

ac =


a1,1 0 . . . 0 a1,0

a2,0
. . . . . . . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 am,0 am,1

 . (53)

For disturbance input di at vehicle i, where i > 2, we no longer have yn(t) = 0
for n < i since now the vehicles n < i are affected by the disturbance on
vehicle i. The dynamics of vehicle i are now written as

Yi(s) = Γi(s)Yi−1(s) + (sI− ai,1)
−1Di(s). (54)

In the case where the disturbance d1 in on vehicle 1, we have Y1(s) =
Γ1(s)Ym(s) + (sI − a1,1)

−1D1(s), where Γ1(s) is the transfer function for
vehicle m to vehicle 1. We then have

Yi(s) =
m∏
j=1

Γj(s)Yj(s) + (sI− ai,1)
−1Di(s), (55)

and finally, with di, ∀i ∈ {1, ...,m}, being the only non-zero component, we
have

Yi(s) =

(
I−

m∏
j=1

Γj(s)

)−1
Gi(s)Di(s). (56)

5.4.1. SISO homogeneous case

we investigate the particular case where di ∈ R, i ≥ 1, yn ∈ R, ∀n ∈
{1, . . . ,m}, ∀k ∈ {1, 2}, Γn,k = Γ1. Following Remark 1 and equation (56),
as (an,1) is a Hurwitz matrix, exponential stability is achieved when the poles
of (1− Γn1 )−1 have negative real parts. We factorise (1− Γn1 ) as

1− Γn1 = (1− Γ1)
m−1∏
k=1

(
Γ1 − e

2ikπ
m

)
, (57)

and developing from equation (42), the denominator Dc of (1−Γn1 )−1 is equal
to

Dc =

m−1∏
k=0

(
s2 − s

(
f1 + f3

(
e

2ikπ
m − 1

))
− f2

(
e

2ikπ
m − 1

))
. (58)
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Note that this expression closely resembles the condition for string stability
in the infinite homogeneous case derived using the Fourier perturbation tech-
nique Wilson and Ward (2011). The infinite homogeneous system is said to
be stable iff ∀k ∈ [0, 2π], s2−s

(
f1 + f3

(
eik − 1

))
−f2

(
eik − 1

)
has negative

real parts. This condition can be shown to be equivalent to the L2 strict
stability condition of equation (48), see Monteil et al. (2014b).

5.4.2. General case

in the general case, exponential stability is achieved when the transfer
function in equation (56) has poles with negative real parts. From equa-
tion (37), we have

m∏
j=1

Γj(s) =
1∏m

j=1 γj(s)

(
0 P1(s)
0 P2(s)

)
, (59)

where γi(s) = s2 + s(fj,3 − fj,1) + fj,2, and P1(s) and P2(s) are polynomials
of degree m, with

P2(s) =
m∏
i=1

(fi2 + sfi3). (60)

Given that ∀i ∈ {1, ...,m}, the solutions of γi(s) = 0 have negative real parts,
the system is exponentially stable iff the solutions of the following equation

m∏
i=1

γi(s)− P2(s) = 0, (61)

have negative real parts.
Remark 6. There are situations for which the closed vehicle system is

asymptotically stable but not strict string stable, i.e. equation (48) is not
verified. For example, for 3 homogeneous vehicles, choosing fn,1 = −0.075,
fn,2 = 0.091, fn,3 = 0.55 as in Section 5.3.2, with n ∈ {1, ..., 3}, we have
||Γn||H∞ > 1 while the eigenvalues of matrix ac have negative real parts.

6. Simulation

In this section we illustrate the previous analytical results regarding string
stability using simulations.
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6.1. Model selection and parameter distributions

The Intelligent Driver Model (IDM) Kesting et al. (2010b) defines func-
tion fn of equation (3) as:

fn(ẋn,∆xn,∆ẋn) = a

[
1−

(
ẋn

Vmax,n

)4

−
(
s?(ẋn,∆ẋn)

∆xn − ln

)2
]
, (62)

where

s?(ẋn,∆ẋn) = s0,n + max

(
0, ẋnTn −

ẋn∆ẋn

2
√
anbn

)
, (63)

where the following behavioural parameters are specific to vehicle n: Vmax,n is
the desired free-flow speed, Tn is the safe time headway, an is the maximum
tolerated acceleration, bn is the comfortable deceleration, and s0,n is the
minimum stopping distance.

In order to reproduce realistic heterogeneous traffic in simulation, we have
developed a complete methodology to perform robust offline parameter iden-
tification starting from noisy trajectory data Monteil and Bouroche (????),
which involves sensitivity analysis, point estimation and interval estimation.
The parameter estimates we use here are the outputs of this methodology,
for the 3 most left lanes of the well-known US101 NGSIM dataset IEEE
(2005), during morning peak time (7:50am to 8:05am). The estimates were
found to fit log-normal distributions for parameters a and b and normal
distributions for parameters T and s0. The mean and standard deviations
are ma = 0.77 m s−2, σa = 0.42 m s−2, mb = 1.1 m s−2, σb = 0.43 m s−2,
mT = 1.5 s, σT = 0.57 s, ms0 = 2 m, and σs0 = 0.5 m. To reproduce heteroge-
nous traffic, the parameters are sampled from these distributions truncated
at the physical bounds chosen as in the literature: a ∈ [0.3, 3], b ∈ [0.3, 3],
T ∈ [0.3, 3], s0 ∈ [0.5, 3.5] Punzo et al. (2015). With Vmax = 33 m s−1

roughly corresponding to the speed limit of the section, see Punzo et al.
(2015), and taking for instance an equilibrium speed of Veq = Vmax/2, this
gives for an average vehicle n f 2

n,1− 2fn,1fn,3− 2fn,2 = −0.063, meaning that
parameters are distributed so that the L2 string stability condition is not
verified for a number of vehicles. In the remainder of the paper we write
Sn := f 2

n1 − 2fn,1fn,3 − 2fn,2.

6.2. Homogeneous traffic: L2 strict string stability

We focus on homogeneous traffic first, i.e. when the behavioural param-
eters are the same for all vehicles.
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6.2.1. Relevance of the strict string stability condition

since the automated vehicles obey the IDM car-following model, it is of
interest to investigate the parameter space for which the model exhibits strict
and weak string stable behaviour. In this subsection we focus on the evolution
of the two most sensitive parameters, parameters a and T , see Punzo et al.
(2015), to gain insights on the possibilities to reach string stable behaviour
with realistic parameters values. The rest of the parameters are chosen to
have realistic values, see Section 6.1, i.e. b = 1.1 m s−2, s0 = 2 m and
Vmax = 33 m s−1.

(a) (b)

Figure 3: Contour lines of the string stability coefficient Sn for (a) Veq = 2Vmax/3, (b)
Veq = Vmax/3.

Figure 3 plots the contour lines of the string stability coefficient Sn. It
can be seen that the limit between string stability and string instability de-
pends on the traffic equilibrium speed. For low equilibrium speeds of Vmax/3,
which roughly corresponds to the value observed for the NGSIM data set,
we approximately need a ≥ 1.1 m s−2 with T ≥ 1.6 s to have a string stable
system (positive Sn). The instability domain is increased as we move towards
lower equilibrium speeds.

6.2.2. Strictly string stable vs strictly string unstable traffic

for the previously defined parameters, with T = 1.5 s, Veq = Vmax/2,
consider a string unstable system with a = 0.47 m s−2, and so Sn = −0.018 <
0; and a string stable system for a = 0.87 m s−2, and so Sn > 0. A disturbance
is introduced on vehicle 1 in the form of a unit step of −1 m s−2 between
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t1 = 5 s and t2 = 10 s. Note that this actually corresponds to the sum of two
opposed input steps, one happening at t1 = 5 s and one at t2 = 10 s.

(a) (b)

Figure 4: Evolution of the speed perturbations under a disturbance of A = −1 m s−2 as
function of the vehicle number for string stable and string unstable systems: (a) L2 norm;
(b) L∞ norm.

(a) (b)

Figure 5: Evolution of the speed perturbation following a disturbance of A = −1 m s−2

for (a) a strictly string stable system, (b) a strictly string unstable system.

The L2 norms of the speed perturbations are computed using an Euler
sum over the simulation time steps. It can be seen from Figure 4 that, in
the strictly string stable case, the L2 and L∞ norms monotonically decrease
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with the vehicle number. Conversely, in the strictly string unstable case, it
can be seen that while the L∞ norm initially decreases, both norms tend to
increase after a certain vehicle number is reached. This is in accordance with
the conclusions of Section 5.3. Figure 5 displays the evolution of the speed
perturbation for all the vehicles in both strictly string stable and strictly
string unstable cases. The string stability property means that the pertur-
bation fades away. Note that we could have focused on the evolution of the
headway perturbation equivalently as it leads to similar observations, as per
equations (42), (45).

A last remark is made in the light of Figures 4 and 5. It is observed that
the perturbation does not completely vanish, i.e. the bounded disturbance
is not attenuated to a perfect zero L2 norm as we move downstream. This is
related to the fact that ||Γn,2||H∞ asymptotically converges towards Γn,2(0) =
1, see equation (48) and Figure 2, and that (34) is not a strict inequality,
which means that the strict string stability condition does not require long-
wave perturbations to be attenuated at a specific rate. Therefore, a stronger
condition than L2 strict string stability would be to force a sharper decrease
of the Bode plot for low frequencies, see Figure 2.

6.2.3. Nonlinear vs linear string stability: empirical observations

let us now briefly discuss the dependence of string stability on the size
of the disturbance. For the situation where a = 1.55 m s−2, and T = 0.8 s,
b = 1.7 m s−2, we have Sn = 0.0038 > 0. Figure 6a presents the evolution of
the time-position diagram for a disturbance of −7 m s−2 between t1 and t2
and Figure 6b presents the evolution of the L2 norm of the speed perturbation
for varying disturbances.

It can be seen that, for disturbances of −5 m s−2 and −7 m s−2, the values
of the L2 norm of the speed perturbation are growing as we move downstream
the vehicle system. This contradicts the string stability condition (48). We
see that, for a disturbance of −7 m s−2, the perturbation is being amplified
until the vehicles completely stop, and the L2 norm seems to be unbounded.
For other disturbances, Figure 6b shows that the slope of the L2 norm curve
seems to be decreasing as we move downstream the vehicle system. Finally,
when the intensity of the disturbance is kept within realistic values, i.e. A <
−5 m s−2, the L2 norms appear to remain bounded as the number of vehicles
in the system is increased.

Such observations are related to nonlinear effects and to the non-validity
of the linearisation hypothesis. If the low speed area spreads through the
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(a) (b)

Figure 6: Evolution of the (a) time vs position diagram for a string stable system following
a disturbance of A = −7 m s−2; (b) L2 norm of the speed perturbation for a string stable
system and varying accelerations inputs.

time-space, the linearised dynamics which satisfy the string stability condi-
tion is not valid anymore, and another linearisation about a lower equilib-
rium speed would indicate string instability, as Figure 3 suggests. Besides,
the car-following formulation we consider does not deal with the zero speed
constraint, i.e. the fact that vehicles cannot have negative speeds.

6.3. Heterogeneous traffic: L2 weak strict string stability

In this section we present an example that highlights the relevance of
verifying the weak string stability condition, see equation (49). We consider a
system composed of 30 vehicles having different behaviour, and we introduce
a disturbance of −1 m s−2 on vehicle 1 between t1 and t2. The variability
in the vehicle system is introduced by sampling parameters a and T from
truncated distributions as described in Section 6.1. For instance, we can
get a (0, 30) weakly string stable system, i.e.

∏30
i=1 ||Γi,2||H∞ ≤ 1, when

a and T are sampled from the distributions presented in Section 6.1 but
defining a ∈ [0.5, 3] and T ∈ [1.1, 3]; and we can get a (0, 30) weakly string
unstable system, i.e.

∏30
i=1 ||Γi,2||H∞ = 1.94 > 1, by defining a ∈ [0.3, 1]

and T ∈ [0.3, 2]. Note that the (0, 30) weakly string stable and weakly
string unstable systems are obtained for particular samples of the truncated
distributions.

Figure 7 shows the evolution of the speed perturbations within the vehicle
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(a) (b)

Figure 7: Evolution of the speed perturbation for successive vehicles in the case of: (a)
(0, 30) weak string stability; (b) (0, 30) weak string instability.

system. It appears that the speed deviation is being damped in the weakly
string stable case, despite the presence of 8 strictly string unstable vehicles
in the considered vehicle system, and is being amplified in the weakly string
unstable case, despite the presence of 9 strictly string stable vehicles.

In the remainder of this paper, we will investigate how to tune the be-
havioural parameters of the automated vehicles so as to increase the weak
string stability of the traffic flow.

7. Parameter optimisation

In this section, the automated vehicles update their longitudinal dynam-
ics according to the IDM car-following model. We formulate the following
optimisation problem: the vehicle behavioural parameters of each automated
vehicle are picked to maximise the strict/weak string stability of the system,
while minimising the distance between their parameter values and the vehicle
behavioural parameters when there is no control, e.g. in the case of a par-
tially automated vehicle with automated and non-automated driving modes,
when the automated mode is deactivated. Note that we have made available
a simple example of the code at this hyperlink.

Remark 7. Note that we make the choice to rely on in-vehicle sensors
to estimate the vehicle behavioural parameters, and to use those estimated
parameters to design the optimisation policy so as to increase string stability.
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Another way of increasing string stability is to utilise the car-following model
structure itself to integrate V2V communication, see Monteil et al. (2014b);
Ngoduy (2015) for instance, however by doing that the safe structure of
car-following dynamics is lost, i.e. collisions may occur. Our approach of op-
timising the car-following parameters is key to preserving the safe structure
of the car-following dynamics. This enables the design of safe ACC systems
that takes into consideration the driving behaviour of the surrounding vehi-
cles in heterogeneous traffic as well as the driving comfort of the driver in
the automated vehicle.

7.1. Generic formulation of the optimisation problem

Let T denote the joint distribution of the car-following parameters. The
vector of parameters θi ∈ Rl, i ∈ {1, ...,m}, defining the dynamics of each
vehicle i is sampled from this distribution. We write the covariance matrix of
T as ΣT ∈ Rk×k(R). When there is no correlation between parameters, as in
Section 6.1, ΣT is diagonal, and the elements of the diagonal are the inverses
of the standard deviations of each parameter. For each automated vehicle
indexed n, we seek to optimise the k ∈ {1, ..., l} parameters θn, with Θ ⊂ Rk

denoting the admissible set of parameter values, e.g. the physical bounds of
the parameters defined in section 6.1. Therefore we have θn ∈ Θ. In the
case of a partially-automated vehicle, θ̂n denotes the estimated behavioural
parameters for vehicle n when the automated mode is deactivated; in the
case of a fully-automated vehicle, θ̂n designates average comfortable driving
parameters.

7.1.1. Relaxation of weak string stability

in Section 5.3.2, we discussed how automated vehicles can be used to
achieve weak string stability. However, there exist situations for which this
is not possible: for example, consider a system of 3 vehicles with parameters
a1 = 0.58 m s−2, a2 = 0.35 m s−2, a3 = 0.39 m s−2, and T1 = 1.76 s, T2 =
1.26 s, T3 = 1.43 s. The rest of the parameters are chosen as Vmax = 33 m s−1,
b = 1.1 m s−2, and s0 = 2 m as in Section 6.1, and Veq = Vmax/3. For this
situation, we have

∏3
i=1 ||Γi,2||H∞ = 1.12 > 1, and after numerical simulations

we find no values of a4 ∈ [0.3, 3] and T4 ∈ [0.3, 3] leading to
∏4

i=1 ||Γi,2||H∞ =
1. This means that the weak string stability constraint of equation (49) can
not be used as a hard constraint to an optimisation policy. Consequently, in
the next sections we relax constraint

∏4
i=1 ||Γi,2||H∞ = 1 to

∏4
i=1 ||Γi,2||H∞ <

γ, with γ ∈ R, γ ≥ 1.
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7.1.2. Optimisation problem

let i and j be the farthest upstream and downstream vehicles for which
parameter estimates θ̂i and θ̂j are known. We have 1 ≤ i ≤ n ≤ j ≤
m. If there is no knowledge of the behaviour of upstream and downstream
vehicles, then i = j = n. Constraints are placed on the L2 gain between
the speed perturbation of vehicle i− 1 and the speed perturbation of vehicle
j, i.e reflecting our aim of achieving (i − 1, j) weak string instability, see
equation (49). The decision variables are the behavioural parameters θn of
the partially-automated vehicle n.

We propose the following optimisation problem to capture these design
requirements:

min
θn,γ

αγ +
1

k

(
θn − θ̂n

)
Σ−1T

(
θn − θ̂n

)T
, (64)

s.t.


θn ∈ Θ,
∀(i, j) ∈ Nn,
||Γi,2 · · ·Γj,2||H∞ ≤ γ

(65)

where the objective is to minimise the distance between the optimised param-
eters θn and the vector of parameters of the vehicle θ̂n when the automation
mode is deactivated, as well as to minimise γ. Constant α ∈ R∗+ is a de-
sign parameter. Nn designates the set of pairs of neighbouring upstream
and downstream vehicles for which parameter estimates (θ̂i)i∈Nn are known,
with i ≤ n ≤ j. The (i − 1, j) weak string stability condition is relaxed as
discussed in Section 7.1.1.

Remark 8. Note that the minimisation of the H∞ norm of the input-
output transfer function ||Gi,2Γi+1,2 · · ·Γj,2||H∞ could be formulated as an-
other constraint.

Remark 9. Regarding the values of i and j, in practice, automated vehicles
are equipped with sensors which can enable parameter estimation for only a
few leading/following vehicles. Looking at equation (3), the acceleration and
speed of vehicle n, and the relative positions and speeds between vehicle n and
vehicle n−1 need to be tracked to be able to estimate θn via static parameter
estimation techniques, see e.g. Monteil et al. (2015). Considering that only
the positions and speeds of 2 upstream and downstream vehicles can be
tracked with in-vehicle sensors, we rarely have i < n−1 and j > n+2 unless
behavioural parameter data is transmitted via communication channels.
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7.1.3. Limitations of weak string stability

when the knowledge of behavioural parameters is limited to only a few
leaders and followers, there exist situations for which the (i−1, j) weak string
stability constraint is verified but the (i− 1− i1, j + j1) weak string stability
constraint is not, for given i1, j1 ∈ N. For example, taking i = j = n, we have
||Γn,2||H∞ = 1 and ||Γn,2Γn−1,2||H∞ > 1 for the following parameter values:
an = 0.9 m s−2, bn = 0.9 m s−2, Tn = 2.5 s, an−1 = 0.5 m s−2, bn−1 = 1.7 m s−2,
Tn−1 = 0.8 s, with Vmax = 33 m s−1, s0 = 2 m, and Veq = Vmax/3. This means
that the verification of the (i− 1, j) weak string stability is not sufficient to
ensure a (0,m) weakly string stable system. However, there exist two ways
to address this issue in order to provide a more stable system dynamics. The
first one consists in considering the minimisation of the input-output L2 gain
as well, that is the minimisation of ‖Gn,2‖H∞ . The second one consists in
adding one (or various) fictitious unstable leading or following vehicle(s), i.e
worst case vehicle(s), which will eventually lead to more extreme parameter
values compensating the fictitious instabilities. For instance, let us consider
the case where the parameters of only vehicle n and vehicle n−1 are known.
Then, introducing a worst case vehicle with parameters θwc, we now perform
the minimisation of ||Γwc,2Γn,2Γn−1,2||H∞ .

7.2. LMI formulation of the optimisation problem

We can rewrite constraints (65) as Linear Matrix Inequalities Boyd et al.
(1994). Starting from equation (10) and combining the linearised dynamics
of cars i,...,j, with i, j ∈ Nn and i ≤ j, we write the following linearised
system dynamics:

ẏi,j = Ai,jyi,j + bi,jui,j, (66)

hi,j = ci,jyi,j (67)

where yTi,j = [yTi ,y
T
i+1, · · · ,yTj ], uTi,j = [uTi ,u

T
i+1, · · · ,uTj ], bi,j ∈ R2(j−i+1)×2(j−i+1)

and ci,j ∈ R2(j−i+1)×2(j−i+1) are the input weighting and observation matrices,
and

Ai,j =


ai,1 0 . . . . . . 0

ai+1,0
. . . . . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 aj,0 aj,1

 . (68)
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As the speed ẏj is observed, we have

ci,j =


0 . . . . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . 0 0
0 . . . . . . 0 1

 . (69)

The stability constraint is on the L2 gain between speed perturbation ẏi−1
and speed perturbation ẏj. We consider the input as yi−1. Following equa-
tion (10), since the first column of matrix ai,0 consists of zeros, only ẏi−1
acts as input to the yj dynamics, i.e. the ∆yi−1 term has no effect since it
is multiplied by the zeros in the first column of ai,0, which makes it a SISO
system. We can therefore write

bi,j,1 =


0 1 0 . . . 0
... fi,3 0

. . .
...

...
. . . 0

. . .
...

...
. . . . . . . . .

...
0 . . . . . . . . . 0

 . (70)

Therefore, using the LMI characterisation of the L2 gain, see Boyd et al.
(1994); Isidori (2011), we can reformulate the optimisation problem (64), (65)
as:

min
θn,Xi,j ,γ

αγ +
1

k

(
θn − θ̂n

)
ΣT

−1
(
θn − θ̂n

)
(71)

s.t.



θn ∈ Θ,
∀(i, j) ∈ Nn,AT

i,jXi,j + Xi,jAi,j Xi,jbi,j,1 cTi,j
bTi,j,1Xi,j −γIi,j 0

ci,j 0 −γIi,j

 ≺ 0,

Xi,j � 0,

(72)

where the matrices Ai,j depend on θn, see equations (12), (13), (68), Xi,j ∈
R2(j−i+1)×2(j−i+1), and Ii,j ∈ R2(j−i+1)×2(j−i+1) is the identity matrix. This
optimisation problem is convex in Xi,j, γ, but not in the parameters of the

29



car-following model θn, and not jointly convex in Aij and Xij. Even af-
ter linearising or convexifying the car-following model, assuming ΣT

−1 to
be positive semi-definite, we would still be facing a biconvex optimisation
problem. In this paper, we explore the car-following model parameter space
using simulated annealing and solve the convex part of the optimisation using
cvx Grant and Boyd (2015) to obtain Xi,j and γ at each iteration. Note that
other heuristics such as the Alternate Convex Search (ACS) Gorski et al.
(2007) may be of use.

Remark 10. The constraint concerning the minimisation of the L2 gain
between the disturbance di and the speed perturbation ẏj, mentioned in
Remark 8, can also be formulated as LMI.

7.3. Simulation analyses and main results

7.3.1. Scenario and stochastic variables

although we performed numerous simulation experiments, in this section,
we only show the results obtained for a representative example. We consider
a system of 30 vehicles, i.e. m = 30, and vehicle n = 0 evolving at an
equilibrium speed Veq = Vmax/3, as roughly observed in the NGSIM data
set, see section 6.2.1. Vehicle car-following parameters are sampled from the
joint distribution T , as defined in section 6.1. We introduce an acceleration
perturbation to vehicle 1, which is forced to be a non-automated vehicle.
This perturbation takes the form of a PRBS input sequence of amplitude
[−1,+1], which remains constant over time intervals ranging from 2 s to 5 s
and has a duration of 1 min. The simulation length is set to 4 min as, given
the considered perturbation, this is the time needed to cover all of the effects
of perturbation propagation on the 30 vehicle trajectories. The stochastic
variables are the sampled parameters of the 30 vehicles, the acceleration
PRBS inputs, the position of the automated vehicles in the vehicle system,
and the number of automated vehicles in the vehicle system. Then, we
perform 25 × 4 simulations: we repeat the simulation 25 times to consider
the effects of stochastic variables; and for each of the 25 simulations we fix the
seed of the introduced randomness, and consider 4 different configurations
of the optimisation strategy (72), e.g. different proportions of automated
vehicles.
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7.3.2. Evolution of the L2 norm of the speed perturbation and distribution of
optimised parameters

we focus on tuning parameters a, b, and T for the automated vehicles
according to optimisation (72), i.e. the tolerated acceleration, comfortable
deceleration and safe time headway parameters. We choose α = 103, and
work with i = n− 1 and j = n+ 2, see Section 7.1.2.

Figure 8: Evolution of the L2 norm of the speed perturbation in the vehicle system for
growing proportions of automated vehicles: 0%, 10%, 20%, 30%.

First, Figure 8 displays the influence of the optimisation strategy (72) on
the evolution of the L2 norm of the speed perturbation in the system, fol-
lowing the introduced PRBS acceleration inputs, for different proportion of
automated vehicles. We plot the average values and errors bars of ±1 stan-
dard deviation over the 25 simulations. The error bars show the impact of
the stochastic variables over the outcome of the minimisation. The positive
effects are clearly visible: an increasing percentage of automated vehicles con-
sistently leads to lower average values and standard deviations of the L2 norm
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of the speed perturbation. Here the (0, 30) weak string stability condition,
i.e. decrease of the L2 norm of the speed perturbation, is verified when 30%
vehicles are automated, which makes sense as the (n− 2, n+ 2) weak string
stability condition of (72) involves a total of 4 vehicles, which means that
an average of 1/4 = 25% of automated vehicles should be enough to guar-
antee (0, 30) weak string stability provided the automated vehicles are well
dispersed. Note that the PRBS input considered is actually a linear combi-
nation of step inputs of ±2 m s−2, which are strong deceleration/acceleration
inputs in realistic traffic. Note also that it was observed in section 6.2.3 and
Figure 6 that for such inputs the verification of the strict string stability for
homogeneous traffic still leads to a decrease of the L2 norm of the speed
perturbation.

Figure 9: Evolution of the relative L2 norm of the speed perturbation in the vehicle system
for different proportions of automated vehicles: 10%, 20%, 30%.

Second, it is worth exploring whether the proposed optimisation strategy
systematically leads to positive outcomes. Figure 9 displays the average,
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minimum and maximum values of the deviation from the value of the L2

norm of the speed perturbation without any automated vehicles, for 3, 6 and
9 automated vehicles, i.e. proportions of 10%, 20% and 30%. We observe
that the automated vehicles with parameters derived from the optimisation
strategy (72) contribute to systematically decrease the value of the L2 norm
of the speed perturbation, i.e. negative relative L2 norms. In that sense, the
proposed optimisation algorithm (72) consistently increases the traffic flow
stability of the heterogeneous system.

Figure 10: Standard vs optimised distributions of automated vehicle parameter a.

Finally, we look at the distributions of the optimised parameters ã, T̃ and
b̃, displayed in Figures 10, 11, 12. As might be expected, the distributions
are shifted but are still realistic, i.e. lead to reasonable driving behaviour
by the automated vehicles. We observe that the optimisation strategy (72)
pushes parameters a and T towards higher values and parameter b towards
lower values. This is in accordance with physical considerations: a longer
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Figure 11: Standard vs optimised distributions of automated vehicle parameter T .

safe time headway T gives more time for vehicles to damp perturbations;
a higher tolerated acceleration helps recover the equilibrium speed faster; a
smaller comfortable deceleration results in less sharp braking and helps to
smooth perturbations.

We can also observe that parameters b and T are sometimes pushed to-
wards the limits of the selected physical bounds, i.e. in this case T = 3s
and b = 0.3m s2. When this is the case, one idea to provide more flexibility
to guarantee weak string stability, see Section 7.1.1, is to increase the upper
bound Tup of the safe time headway parameter T , which is not a critical
parameter as it does not depend on the capabilities of the vehicle or does not
affect driving comfort as much as other parameters.
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Figure 12: Standard vs optimised distributions of automated vehicle parameter b.

7.3.3. Systematically enforcing more stable dynamics with very few auto-
mated vehicles

with very few automated vehicles in the vehicle system, and when the
parameters of only a few leading and following vehicles are known, we might
be interested in investigating how to enforce an even more stable dynamics.
To do so we can introduce fictitious unstable vehicles, see section 7.1.3.

We consider i = n − 1 and j = n − 2, and 3 automated vehicles in the
system, i.e. NbAut = 3. A fictitious worst case unstable vehicle n − 2 is
introduced with parameters an−2 = 0.3 m s−2, Tn−2 = 0.3 s, bn−2 = 3 m s−2.

Figure 13 shows the results of the optimisation without and with the ficti-
tious introduced vehicle, for 2 different admissible upper values of parameter
Tup, Tup = 3 s and Tup = 5 s. It is visible that adding one fictitious unstable
vehicle consistently increases weak string stability in the system. However,
the limitations in the stabilisation effect of automated vehicles come from
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Figure 13: Evolution of the L2 norm of the speed perturbation in the vehicle system with
no automated vehicle; 3 automated vehicles and no fictitious vehicle; 3 automated vehicles,
1 fictitious vehicle and Tup = 3 s; 3 automated vehicles, 1 fictitious vehicle and Tup = 5 s.

the admissible set of parameter values Θ. By increasing the upper bound of
the admissible safe time headway Tn, we are able to bypass this limitation
and reach (0, 30) weak string stability with only 3 automated vehicles in the
vehicle system. This strategy may lead to less realistic and less comfortable
driving behaviour, as parameters tend to move towards their upper/lower
admissible bounds. However the physical bounds can be selected appropri-
ately, as for instance parameter T is less critical than parameters a and b in
terms of vehicle capabilities and driving comfort, although increasing T may
encourage vehicles to change lanes and enter the empty slots created.

Finally, the overall conclusion is that the number of automated vehicles
needed to prevent perturbation growth can be reduced depending on the
following parameters of the optimisation strategy: the number of vehicles for
which the behavioural parameters are known, i.e. parameters i and j, the

36



set of admissible parameters Θ, and the parameters of introduced fictitious
unstable vehicles. Given a string of vehicles, a small number of automated
vehicles is enough to damp the effect of realistic perturbations that would
otherwise grow.

8. Conclusion

This paper applies L2 linear control theory to linearised systems of vehi-
cles moving according to realistic car-following models. The contributions are
the following: a general framework for investigating the stability and string
stability of heterogeneous traffic in the frequency domain is introduced (most
previous studies assume homogeneous traffic); the definition of weak stabil-
ity is introduced and its relevance in a traffic environment with a mix of
automated and non-automated vehicles is highlighted; conditions for input-
output stability and string stability are given for heterogeneous traffic, and
for single and multiple outputs; the relation between L2 and L∞ string sta-
bility is presented; the equivalence between string stability and asymptotic
stability is showed not to hold for closed loop systems; simulations under-
line the critical feature of nonlinearities; an optimisation strategy to tune
the behavioural parameters is proposed as well as its LMI formulation; the
optimisation is applied to realistic data yielding promising results: a small
proportion of automated vehicles, that behave similarly to their drivers, can
greatly and systematically contribute to increasing traffic flow stability.

With regard to future work, (i) the impact of the non-linear dynamics,
and (ii) the reasons for perturbation growth and boundedness under high
acceleration inputs as the number of vehicles increases remain open questions.
Regarding optimisation, (iii) the formulated LMI optimisation problem may
be solved more efficiently. Finally, regarding control, (iv) the mapping of this
work with online parameter identification of drivers’ behavioural parameters,
and the consideration of parameters uncertainty for the design of control
strategies remain to be studied.

Appendix A.

Singular values σmax are defined as follows. For any F ∈ R2×2,

σmax(F(jω)) =
√
λmax(F(jω)∗F(jω)),
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where F(jω)∗ is the conjugate transpose of F(jω) and λmax(F(jω)∗F(jω))
denotes the maximum of the nonzero eigenvalues of F(jω)∗F(jω).

Following equation (37), the product Γ∗n(jω)Γn(jω) is written:

Γ∗nΓn =
1

D∗nDn

(
0 0
0 ω2(1 + f 2

n,3) + f 2
n,1 + f 2

n,2

)
, (A.1)

where D∗nDn is equal to:

D∗nDn = ω4 + ω2
(
(fn,3 − fn,1)2 − 2fn,2

)
+ f 2

n,2. (A.2)

The two eigenvalues λ1 and λ2 of Γ∗n(jω)Γn(jω) immediately follow:

λ1(ω) = 0, (A.3)

λ2(ω) =
ω2(1 + f 2

n,3) + f 2
n,2 + f 2

n,1

ω4 + ω2 ((fn,3 − fn,1)2 − 2fn,2) + f 2
n,2

. (A.4)

which gives
σmax(Γn(jω)) =

√
λ2(ω). (A.5)

We recall that, by definition, see equation (32), we have

||Γn||H∞ = sup
ω∈R

σmax(Γn(jω)).

The sufficient condition for strict string stability is written ||Γn||H∞ ≤ 1, see
equation (36), which is equivalent to λ2(ω) ≤ 1.

Developing λ2(ω) ≤ 1, and writing Ω = ω2, we obtain a polynomial of
order 2 in Ω:

Ω2 + Ω(f 2
n,1 − 2fn,1fn,3 − 2fn,2 − 1)− f 2

n,1 ≥ 0. (A.6)

As this inequality must be verified ∀Ω ∈ R+, we must have fn,1 = 0, and the
following sufficient conditions follow:

fn,1 = 0, (A.7)

−2fn,2 − 1 ≥ 0. (A.8)
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