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ABSTRACT

The growing use of virtual humans demands generating increas-
ingly realistic behavior for them while minimizing cost and time.
Gestures are a key ingredient for realistic and engaging virtual
agents and consequently automatized gesture generation has been
a popular area of research. So far, good gesture generation has
relied on explicit formulation of if-then rules and probabilistic mod-
elling of annotated features. Machine learning approaches have
yielded only marginal success, indicating a high complexity of the
speech-to-motion learning task. In this work, we explore the use
of transfer learning using previous motion modelling research to
improve learning outcomes for gesture generation from speech. We
use a recurrent network with an encoder-decoder structure that
takes in prosodic speech features and generates a short sequence of
gesture motion. We pre-train the network with a motion modelling
task. We recorded a large multimodal database of conversational
speech for the purpose of this work.
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1 INTRODUCTION

Virtual humans are becoming more and more popular for many
applications, such as video games, human-computer interfaces (e.g.,
virtual museum guides [35]), virtual reality entertainment, and per-
sonalized training (e.g., virtual patients for medical training [19]),
including training of interpersonal skills. Interaction with virtual
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agents is more engaging when their verbal output is coupled with
appropriate gesturing behavior [33], and realistic gestures are es-
sential for adequately mimicking real human interactions, in which
non-verbal behaviour plays a major role in conveying information
[16, 32]. Furthermore, users can detect whether a virtual human’s
gestures are consistent with the produced speech [13].

Classic approaches to animating conversing virtual humans con-
sist of specifically recording motion or hand-crafting animations
for predefined utterances (e.g., [11, 18]), which can be both time-
consuming and expensive. As an alternative approach, research has
explored methods to automatically generate animation for virtual
humans from speech. Speech and speech-accompanying motion is
said to arise from the same internal process and reflect the same
semantic meaning [5, 26], suggesting the theoretical potential to
infer one from the other to some extent. Inferring gesture motion
directly from speech has however proven to be a very complex
learning task with limited success.

In our work, we apply research of human motion modelling
and define the speech-to-gesture learning objective as a transfer
learning task. Namely, we pre-train part of our network with a state-
of-the-art human motion modelling approach before training the
final speech-to-gesture model. We compare two recurrent network
architectures.

Additionally, we recorded a multimodal dataset of conversational
speech, containing 4 hours of audio, motion, and video data from
one actor.

2 RELATED WORK

The research into automatic motion generation for speech can
largely be divided into three categories, namely rule-based systems,
statistical modelling methods, and machine learning approaches.

Rule-based systems require the explicit formulation of phrase-to-
gesture rules and can generate expressive gestures. The advantage
of rule-based systems is the possibility to capture semantic content,
allowing for meaningful and even rhetorical gestures (examples
include [6, 24, 37]). However, their expressiveness is directly limited
by the number of rules created, with the gesture behavior based on
the ideas of the rule creator rather than actual human gesturing
behavior. A more sophisticated approach uses cognitive models that
rely on building a multimodal memory representing visual-spatial
properties of phrases, another time-intensive approach that allows
for semantic coordination of speech and gesture [1].

Statistical modelling methods use estimated conditional proba-
bilities of certain speech features co-occuring with specific motion
features. For example, in a work by Neff et al. [29], a video corpus
is annotated using approximately 90 semantic tags for the speech
channel, and 30 gesture tags, including information such as which
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spoken word is associated with the tagged gesture. With this, a
statistical model is computed that can subsequently take in new,
annotated text representing the speech, and generate meaningful,
naturalistic gestures. In a similar approach, Bergmann and Kopp
[2, 3] have used Baysian decision networks.

Machine learning approaches for gestures can learn from mo-
tion data produced by conversing humans and, like statistical mod-
els, do not rely on the explicit formulation of if-then rules. These
approaches have largely focused on the generation of so-called
beat gestures, simple, repetitive motions that accompany speech
rhythm. The kinematics of beat gestures (e.g., speed and acceler-
ation) have been shown to correlate with the prosodic features
of speech. Prosodic speech features can be extracted quickly and
easily, and contain information such as emphasis and emotion. Beat
gesture systems rely purely on analysis of such prosodic features
from speech without extraction of semantic content [4, 7, 8, 21, 22].
A variety of machine learning models have been used in this do-
main, including hidden Markov models and conditional random
fields. Related works have used similar methods for generating head
motion, which can be seen as a similar type of speech motion as it
is comprised of simple beat-like movements. In this line of work,
the yaw, pitch and roll of the head are modelled based on prosodic
speech features. Good results for head motion generation have
been obtained with deep neural networks [12], and more recently
bidirectional recurrent network architectures [17].

Going beyond beat gestures, Chiu and Marsella [9] have pub-
lished work that models more complex gestures using deep learning
without explicit rules. The authors combine a deep neural network
with conditional random fields to model the temporal dynamics
of gesture motion. This method showed improvement compared
to previous work on gesture prediction. However, the authors rely
on predicting a small set of predefined gestural signs, limiting the
gesture output to this set. Furthermore, gestural signs needed to be
hand-annotated in the training set, limiting the amount of training
data that can be feasibly acquired. A recent work by Takeuchi et
al. [36] also used a network architecture with temporal modelling
capacity, generating gesture motion from Japanese speech. Their
architecture is similar to the head motion model of Greenwood et
al. [17], using a bidirectional recurrent network to generate motion
directly from speech, however with only marginal success.

Gesture generation has been shown by this previous research
to be a very complex problem and we may need to model the
underlying speech and gesture processes for good results. In this
work, we investigate whether modelling of the gesture motion may
improve the speech-to-gesture prediction abilities of a network.

We explored the potential benefit of exploiting the extensive
research done in the area of human motion modelling for improving
the speech-to-motion modelling objective. We considered gesture
generation from speech as a transfer learning task where a model is
pre-trained with a motion-to-motion task before training the final
speech-to-motion task. Transfer learning allows knowledge gained
from training one problem to be applied to a related problem. For
example, an image classifier trained on a large publicly available
image dataset could be re-utilized for learning to label objects in
a smaller, domain specific dataset. Transfer learning has shown
success in a variety of domains, such as machine translation [38],
image classification [31], and visual emotion recognition [30]. In
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this work, our pre-training task is predicting the next few frames
of a motion sequence, receiving as an input the preceding motion
sequence. This requires a modelling of the dynamics of human
motion.

State-of-the-art work has shown the potential of recurrent neu-
ral networks for modelling human motion [15, 20, 25]. Recurrent
networks can model sequential data by using recurrent connec-
tions between network activations at consecutive timesteps. For
human motion modelling, recurrent networks seem to be able to
capture the dynamics of a motion pattern well. Here, we apply the
motion model proposed by Martinez et al. [25], which yielded good
results with a relatively simple and fast-training architecture. We
hoped that applying previous knowledge about the motion domain
could decrease the complexity of the notoriously hard to model
speech-to-motion relationship.

Recurrent networks have furthermore shown outstanding suc-
cess in language modeling (e.g., [27]), specifically tasks such as
machine translation (e.g., [23, 34]), which takes a sequence of text
in language A and generates the same sequence for language B. We
can consider the task of generating gestures from speech as a kind
of machine translation where the audio signal is language A, and
the synchronous motion is language B.

3 SPEECH AND GESTURE DATABASE

Previous research into speech gesture generation has used small
datasets [7, 8], non-English datasets [36], or hand-annotated video
data [9, 28]. No large, freely available corpus of multi-modal record-
ings of English conversational speech was known to us and we
hence recorded our own dataset for the purpose of modelling the
speech-motion relationship. The dataset consists of 244 minutes of
high-quality motion capture, audio, and video data.

3.1 Data collection

We invited a single male actor for multiple recording sessions. The
actor is a male native English speaker producing spontaneous and
natural conversational speech without interruptions, i.e., without
verbal cues from a conversation partner. The actor was instructed to
speak freely and spontaneously about any topic he chose, including
hobbies, daily activities, and movies. The actor speaks in a colloquial
manner with a happy disposition and includes a large quantity of
gesture motions.

The actor was addressing a person situated behind the camera in
order to give him the visual feedback of a conversation partner. Each
recording take was approximately ten minutes long. We captured
23 takes, totalling 244 minutes of data. Two additional takes of eight
minutes each are available of video and audio data, without motion
capture.

The actor’s motion was captured with a 53 marker setup and
20 Vicon cameras at 59.94 Frames per Second (FPS). Audio was
recorded at 44 kHz. Video was captured with a single HD camera
placed between the actor and the person he was addressing.

3.2 Data processing

We experimented with different representations of the motion for
our learning task, such as Euler angles and quaternions, but finally
used the raw joint angles in exponential map format, as proposed
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Figure 1: View of the camera in the multimodal conversa-
tional speech database. The actor is always addressing a lis-
tener situated right behind the camera. The actor was al-
lowed to move freely with the restriction to stay in good
view of the camera.

by Fragkiadaki et al. [15] and used by Martinez et al. [25]. Two
takes were selected as validation data, representing about 8% of
the total data. During each validation step, 8 seeds are randomly
selected from the validation set to compute the validation loss.

We explored different audio features, but in the final version of
this work used the log of the 27 values of the Mel-scaled spectro-
gram with no cosine transforms, computed from FFT magnitude.
The more primitive mel-frequency filter bank values have outper-
formed MFCC features in previous works in both pure speech
modelling [10] and speech to motion modelling [12]. We extracted
the audio features with openSMILE [14].

4 RECURRENT SPEECH-MOTION MODEL

We experimented with two variations of a sequence-to-sequence
architecture for learning the speech to motion prediction task. In
the first setup, we predict a motion sequence directly from a speech
sequence, with both modalities sharing one embedding between
encoder and decoder. In the second setup, we insert an additional
recurrent layer between speech encoder and motion decoder. Our
architectures are based on the motion modelling network proposed
by Martinez et al. [25]. We downsample our data to 50 frames per
second.

4.1 Speech to motion

Both encoder and decoder consist of a single recurrent cell (a gated
recurrent unit (GRU)) of size 1024 with residual connections be-
tween the output and input of each cell. The residual connections
are skip connections that allow a copy of the input to skip the
encoder cell to directly feed into the output of the cell. The loss is
computed as the Euclidean distance between the predicted motion
sequence and the ground truth in angle space.

We first pre-train the network on a motion prediction task with
residual connections modelling motion velocity, as described in
Martinez et al. [25]. However, we do not tie weights between en-
coder and decoder, allowing encoder and decoder weights to be
updated separately. We train this sequence-to-sequence architec-
ture to predict the next 15 motion frames based on an input motion
sequence of 200 frames. We use our complete set of motion data
for this training task. We train the network for 11,000 iterations,
results are visualized in Figure 2. We then take the learned weights
of the decoder and reuse for the final speech-to-motion training
task.

In the speech-to-motion training task, we predict 20 motion
frames based on both the corresponding 20 audio frames and 180
preceding audio frames. Hence at each prediction step, the network
gets a context of 4 seconds, and predicts the final 0.4 seconds of
gesture motion. We empirically found prediction of longer motion
sequences hard to learn, but outputs of multiple overlapping speech
sequences could theoretically be concatenated into longer motion
sequences.

We run the same network without motion pre-training to evalu-
ate the benefits of transferring the motion model knowledge to the
speech to motion models.

4.2 Deep speech to motion

In our second architecture, we added an additional recurrent layer
as connection between audio encoding and a motion decoding. The
additional layer consists of a single recurrent cell (also a GRU) of
size 1024, also with residual connections. The output state of this
additional cell is passed to a motion decoder that was pre-trained
on a motion modelling task as described in the previous section.

We again compare the results of the pre-trained versus not pre-
trained model.

4.3 Results

We first run pre-training for an initial 10 thousand iterations as
suggested by the model’s authors [25], we then continue training for
a thousand iterations at a time to check for possible improvements.
The results of this are plotted in Figure 2. We train the model for
100 thousand iterations, after which training has slowed down
and significant further improvement would take an unreasonable
amount of time. We use the resulting model weights for initializing
the decoder of our speech to motion models.

We train both of our architectures for 100 thousand iterations.
For the deep speech to motion architecture, we first experimented
with fixing the weights of the motion decoder and only trained the
preceding layers. This was to try and focus on learning a motion
representation from speech. However, this did not result in a good
learning trajectory and we hence let the model update all weights
during training. Though loss and validation loss still appeared to
be dropping for both models after 100 thousand iterations, training
has stagnated at that point. Both networks reached a minimum of
approximately 0.38 in angle loss error at that point. The evolution
of the training errors is shown in Figure 3.

We compare our pre-trained network’s performances to the same
architectures without motion pre-training. Surprisingly, as we can
see in Figure 4, pre-training only appears to help at the beginning of
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Figure 2: Results of motion pre-training. Plotted is the mean
angle loss over one evaluation period, and the validation
loss at the evaluation step. One evaluation period consists
of x = 10° iterations. We train the model for 100 thousand
iterations.
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Figure 3: Training results of the speech to motion models af-
ter pre-training with motion modelling. Plotted is the mean
angle loss over one evaluation period, and the validation
loss at the evaluation step. One evaluation period consists
of x + 10° iterations.

the training, essentially speeding up convergence, before stagnating
at approximately the same error value.
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Figure 4: Left: Results of training the deep speech to motion
model with fixed decoder weights. Right: Results of training
both speech to motion models without prior motion mod-
elling. Plotted is the mean angle loss over one evaluation
period, and the validation loss at the evaluation step. One
evaluation period consists of x * 10% iterations.

174 210
Figure 5: Example of a predicted motion sequence from the
speech-to-motion model. Annotated is the respective frame,
prediction starts at frame 180.

5 DISCUSSION

Our models reach a relatively low error for short-term motion pre-
diction from speech, and we do not observe a significant difference
in performance between our two network architectures. Both the
speech to motion, and the deep speech to motion network converge
to similar error results. Notably, for the deep network, we were
forced to open the decoder weights to further updating during train-
ing, as the pre-trained weights did not yield good results. The poor
performance of the pre-trained motion decoder becomes further
apparent when comparing network performance with and without
prior motion modelling. We found no large advantage of training
our networks on a pure motion modelling task before attempting
the speech to motion prediction task.

It is interesting that transfer learning of a motion model did
not help our recurrent network’s performance much. It is possible
that the pre-training did not actually learn a good enough motion
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embedding. This would be supported by the finding that plugging
the pre-trained model’s decoder into our deep model and only
training the encoding and connection layer did not yield good
results. Martinez et al. [25] do note in their work that aperiodic
motion such as during a discussion (as opposed to periodic motion
such as walking), remain hard to model in general. The dynamics
of gesture motion might be better understood by focusing on the
actual speech flow, as opposed to modelling an inherent motion
representation (i.e., gestural motion may not be well suited for
modelling without the context of speech flow).

The work of Martinez et al. [25] also suggests that the motion
model may be improved by jointly learning on multiple different
actions. We only trained our model on gesture motion and hence
incorporating data from multi-action databases might improve the
outcome.

It is possible that the speech to motion learning task is not as re-
lated to the motion-to-motion task as we had assumed. The speech
to motion ‘translation’ is arguably more complex than motion fore-
casting and might require much more than a rudimentary under-
standing of human motion dynamics.

We succeeded to some extent in generating short term motion
generation and the output of multiple overlapping speech input
sequences could theoretically build a longer term gesture sequence.
However, we have yet to test how this method of motion generation
holds up over longer speech sequences, and how the predicted
motion is perceived by human observers. The results for short term
prediction indicate that gesture generation directly from speech
does work to some extent; a basis upon which more sophisticated
future versions of the model can be built. In our work, we do not
distinguish between generation of beat gestures and semantically
meaningful gestures. However, production of iconic (e.g., outlining
a round shape when describing a round object), symbolic (e.g., a
thumbs up), and deictic (e.g., pointing) gestures would arguably
require more elaborate modelling or a large dataset rich in these
gestures.

We intend to share our large multimodal database with the re-
search community. Our dataset could be useful not only for human
motion research, but is also applicable for video and image recogni-
tion, as well as speech research.

6 FUTURE WORK

In future work, we would like to investigate the potential benefit
of language modelling over motion modelling. We may view the
speech to motion learning task as more of a translation between
two, if very different, languages, rather than a motion modelling
problem. Exploring the use of state-of-the-art speech recognition
or translation models that have been trained on very large datasets
could help reduce the complexity of modelling the speech to motion
relationship.

While the motion model itself might benefit from a larger variety
of actions to model as previously mentioned, our speech to motion
model might also improve with a larger variety of conversational
data. We currently only have data from one actor and it is difficult to
measure how well this specific person’s gestures can be modelled.
Further research is needed for devising the ‘perfect’ dataset for

speech gesture modelling and combining of researchers’ resources
may be helpful.

7 CONCLUSION

In conclusion, we do not find a significant benefit of applying trans-
fer learning from a motion model. We showed some success in short
term gesture generation from speech features, and would like to
build upon these findings by better understanding the factors that
make up the complexity of the task.

We contribute a multimodal database of conversational speech,
containing about 4 hours of audio, motion, and video data of a
single actor.
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