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On the suitability of the Generalised Pareto to model extreme waves

ABSTRACT

Dealing with extreme events implies working with events that have low probability of occurrence. To characterize
these, the Peak-over-threshold method alongside the Generalised Pareto distribution is commonly applied. However,
when it comes to significant wave heights, references dissuading this approach are found. In this context, a discussion
on the mentioned application is presented based on data collected around the coast of Ireland. A careful choice
of threshold takes place, and a new methodology to establish the threshold level is introduced. Five indicators to
evaluate the fitting are considered to compare the different statistical models. No evidence was identified to justify
the rejection of the Generalised Pareto distribution to model exceedances. Results show that it may be statistically
less, equally or more adequate, depending on the Peak-over-threshold implementation. Nevertheless, the Generalised
Pareto bounded character is of elementary interest for wave statistics. In some circumstances not considering it might
lead to unrealistic significant wave return levels.

Keywords: ocean engineering, hydraulics of renewable energy systems, extremes, statistical theories and
models, peak-over-threshold, significant wave height

1 Introduction

The statistical theory of extreme events is a topic of growing interest in all the fields of science
and engineering. The changes currently experienced by the world, in all economic and environmen-
tal context, have emphasized the importance of dealing with extreme occurrences with improved
accuracy.

Under this assumption, the present paper addresses this added need of dealing and modelling
extreme events with improved precision, and analyses the methodologies used to statistically char-
acterize the significant wave heights (Hs) in the particular case of offshore engineering.

Characterizing extreme events in a statistical way is commonly conducted through extreme
values theory. According to extreme values theory the maxima occurrences from a sample of order
statistics with size n coming from a population with a given distribution function follows a known
distribution. For the limit case of a sample of independent maxima taken from a population the
relations between parent distributions and domains of attractions are fully characterized (Castillo,
Hadi, Balakrishnan, and Sarabia, 2005).

However, it is not always of interest to use the limit cases for order statistics. An efficient
characterization of the extreme occurrences located in a tail can be obtained by focusing on the
analysis of occurrences that exceed a certain threshold value of u. This alternative is of relevance
to model extreme occurrences with precision as it may allow the usage of more data points than
when using the limit distributions of order statistics.

This is the case when considering significant wave heights (Hs), for which taking into account
large values other than the maximum is important to overcome any limitation that may be origi-
nated by the high temporal variability naturally subjacent to the ocean waves.

The most common technique to model extremes considering the exceedances over a certain
threshold u is the Peak-over-threshold (POT). This technique, which involves truncating indepen-
dent occurrences that respect the condition Hs > u, demands a cautious analysis.

For the case of Hs, application of different statistical distributions can be found in the literature
(Castillo, O’Connor, Nogal, and Calvino, 2014; Nogal, Castillo, Calvino, and O’Connor, 2016). One
case of particular interest is the preference given in some reference documents to other statistical
distributions in relation to the Generalised Pareto (GP) distribution, e.g. DNV (2014b), as the
main alternatives to model the exceedances of Hs over a certain threshold u.

For instance, it is appropriate to investigate the reason of discouraging the use of GP with 2
degrees of freedom (DOF), when favouring the application of a GP with 1 DOF (i.e., exponential
model), considering that the first is likely to better fit the observed data.
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Under this assumption, the current paper proposes then to address the application of the GP to
characterize exceedances of Hs over a certain threshold u.

The present paper provides a discussion on the topic under the motivation of setting an unified
conclusion about the application of the GP distribution to model Hs exceedances. Therefore, the
current work settles the discussion related to the validity of applying the GP distribution to model
exceedances of Hs by comparing its application with other widely accepted models such as the
2-parameter Weibull or the Exponential distributions. Records from four oceanographic buoys
located in Irish waters were assessed in the study.

To address the proposed challenge five additional sections are defined. Section 2 introduces and
identifies the work undertaken in characterizing extreme waves modelling exceedances. Section 3
briefly explains the theoretical background behind modelling the exceedances and evaluating the
efficiency of how a statistical model fits a specific set of data. Section 4 and Section 5 present
the analysis of the data, the respective results and their discussion. Finally, the most relevant
conclusions are compiled in Section 6.

2 POT statistical characterization of Hs

A first approach in reviewing and comparing the different methods to extrapolate wave heights was
presented in Muir and El-Shaarawi (1986). Modelling the exceedances of wave heights was addressed
and application of the GP distribution to fit the statistical tail of wave data was mentioned as
untried and unproven. Although, in this work the GP distribution was not considered as a solution
to model independent exceedance over a certain threshold u, modelling exceedance is discussed
through the application of compound distributions, such as the Poisson-Rayleigh or the Poisson-
Gumbell distributions.

Due to the initial lack of an uniform approach, in 1994 experts in the statistical treatment of
wave data were gathered by the International Association for Hydro-Environment Engineering
and Research (IAHR) to discuss and standardize the modelling of extreme wave heights. The
POT methodology and Weibull distribution were recommended as the reasonable choices for most
oceans. Although, it is highlighted in the technical document produced that there is no theoretical
argument to indicate a preferred model distribution to fit the observations of maxima. The main
findings were published in a recommended practice for extreme wave analysis (Mathiesen, Goda,
Hawkes, Mansard, Mart́ın, Peltier, Thompson, and Van Vledder, 1994).

Several standards and practices can also be found to guide the design of offshore structures.
While, some of them present generic considerations related to the definition of the extreme Hs

occurrences, e.g. emphasizing the need of reliable and robust estimations, other, provide specific
recommendations about the techniques to use when modelling extreme Hs. Det Norske Veritas
recommended practice on environmental conditions and environmental loads DNV (2014b) previ-
ously rejected the application of the GP to model exceedances of Hs. This recommendation, used
as reference for offshore standards as DNV (2014a), was recently amended. The application of the
GP distribution continues to not be equated at the same level of efficiency of other alternatives,
being characterized as of sensitive choice and, little justification is provided to dissuade its use.

Ferreira and Soares (1998) compared the application of the Exponential and the GP distribution
to fit Hs POT data and decided on the application of the former.

In opposition to DNV recommendations, Hawkes, Gonzalez-Marco, Sánchez-Arcilla, and Prinos
(2008) state that the GP distribution appears to be the optimal regional fit for the extreme wave
heights in the North Sea. Regional Frequency Analysis is applied in Van Gelder and Mai (2008)
to analyse extreme wave heights in Dutch North Sea Coasts in which five different statistical
distribution were evaluated in a fitting process. Wave data are analysed with POT. Results showed
that GP distribution fitted better the data analysed when comparing with the other distributions
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used.
In Méndez, Menéndez, Luceño, and Losada (2006) the POT is used in combination with the GP

distribution to evaluate the long term trends in the frequency and intensity of severe storm waves.
With the same basis, in Cañellas, Orfila, Méndez, Menéndez, Gómez-Pujol, and Tintoré (2007) the
GP distribution is applied to statistically model extreme wave heights in the Balearic Sea.

The motivation that worked as a background for the current paper was to understand the reason
behind the identified disparities in application of the GP distribution when the POT methodology
is used. As shown, if in some cases the GP distribution is widely applied to model exceedances of
Hs in other cases its application is discouraged when compared with other distributions, as the
Weibull or the Exponential.

3 Modelling exceedances

The POT methodology assumes that the exceedances over a certain threshold follow a Poisson
process. This presumes that the occurrences over a certain u shall follow a purely random process,
or in other words, that each occurrence is independent. Extreme Hs over a certain threshold u are
very likely to occur in clusters. Therefore, when analysing the data is then mandatory to guarantee
that in each event (when the threshold u level is surpassed) the extracted data are independent.

3.1 Independence of data

To ensure independence different methodologies are available. The most common techniques consist
in setting temporal parameters, usually based on the minimal time lag between two events. In
Van Gelder and Mai (2008) a filter of 48 hours is used to extract independent wave data from the
POT methodology. A time interval of two to four days is recommended as sufficient to guarantee
independent data in Mathiesen et al. (1994). As an alternative, the auto-correlation function can be
used for a more meticulous evaluation of the independence between observations. In a review of the
framework for dealing with environmental extremes, Bernardara, Mazas, Kergadallan, and Hamm
(2014) refer that for the North sea a time lag of 24 hours is sufficient to guarantee independence
between storm events. It is also stated that a time lag higher than 24 hours may lead to loss of
information, which should be avoided when modelling extreme occurrences. Additional examples
of application to extreme Hs are presented in the same work. Van Gelder (2000) uses a value of 48
hours to model exceedances in several North sea locations. It is important to highlight that some
authors define the time lag as the minimum time between two storm events, while others define
it as the minimum time between two storm peaks. In the present work a time period of 48 hours
between two storm events is used to decluster the data. For the proposed goal of fitting a statistical
model to POT data, the value of 48 hours ensures that a sufficient margin over the 24 hours is
used so that the number of observations above the threshold are independent and the erroneous
loss of data is not significant. To confirm the adequacy of the 48 hours to guarantee independence
of data, the average values of threshold were compared with the minimum average of 12 hours in
between storms. When the decrease in average Hs for the period of 12 hours was significant, the
storm was considered finished. As the threshold was increased for further studies, independence
was ensured even if two peaks occurred separated by more than 48 hours within the same storm
using a priori knowledge on the storm duration. If less than 48 hours exist between two events,
then they are considered the same storm. A sensitivity analysis of the effect of the decluster time
is presented later.
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3.2 Statistical models

The Weibull distribution is a statistical distribution of wide applicability Weibull (1951). In the
field of classical extreme value theory it is also one of the specific cases of the Generalised Extreme
Value distribution for minima. Its continuous CDF formula is given by

F (Hs, u, σ, ζ) = 1− exp

[
−
(
Hs − u
σ

)ζ]
, (1)

where ζ and σ are the shape and scale parameters. For the current case where the distribution is
truncated and only the independent events are taken into account, the three parameter Weibull
distribution is reduced to a two parameter Weibull distribution by setting Hs − u as Hs(>u), i.e.
the exceedances obtained from the POT methodology.

The GP distribution was presented initially to model the conditional probability of high order
statistics, in other words, probability of an observation being greater than x, given the condition
that x ≥ u Pickands III (1975). Usually it appears as a combined Poisson model, where the
exceedance events are assumed to follow a Poisson distribution with expected number of occurrences
λ. Its continuous CDF appears in two main forms, depending on the shape parameter ζ.

F (Hs(>u), σ, ζ) =


1−

(
1 +

ζHs(>u)
σ

)− 1

ζ

, ζ 6= 0,

1− exp
(
−Hs(>u)

σ

)
, ζ = 0,

(2)

again, ζ and σ are the shape and scale parameters of the function and Hs(>u) is the exceedances
of Hs over u. When ζ = 0 the GP distribution takes the Exponential distribution form.

The set of statistical distributions presented depends on unknown parameters which need to be
estimated from the data.

The fitting evaluating indicators proposed in Section 3.3 provide adequate evaluation of the good-
ness of fit of the distributions Sheskin (2003). Nevertheless, the estimation of the model parameters
of a given dataset and the validation of the fitting, can be also attained by splitting the dataset
into two subsets, one for fitting the parameters, and other for validation. Using a cross-validation
methodology could be also required, mainly for small sample sizes associated with high values of
the threshold.

Different methodologies exist for estimating the unknown parameters of the distributions from
a sample of data, thus, different parameter estimating techniques may be applied to determine
the statistical models. Several review papers can be found addressing the topic of estimating the
parameters of the cited distributions. An extensive discussion of the fitting methodologies is pre-
sented in Castillo et al. (2005). Some of these methodologies are extensively discussed for the case
of GP distribution in Castillo and Hadi (1997).

Due to the nature of the problem studied, estimation of the statistical model parameters has a key
role in the analysis. For comparative purposes the maximum likelihood estimation (MLE) technique
is applied to find the unknown parameters of all the Weibull, GP and Exponential distributions.
Sánchez-Arcilla, Gomez Aguar, Egozcue, Ortego, Galiatsatou, and Prinos (2008) compares the
repercussion on the extrapolation procedure caused by estimation techniques, in the case MLE
and a Bayesian approach. No major divergences were found in the return levels estimated.

It is necessary to highlight that the parameter estimates are of major importance when checking a
statistical model adequacy for physical modelling.This is the case of unbounded distributions in the
right tail, which may not be adequate to model naturally bounded events as Hs. Ortego, Tolosana-
Delgado, Gibergans-Báguena, Egozcue, and Sánchez-Arcilla (2012) highlight the importance of
modelling waves as a bounded event by using a GP distribution model that is constrained to be
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upper bounded.

3.3 Evaluation of the fitting

The process of evaluating the fitting of a statistical model to a set of data is still a subject of
discussion. There are no standards or guidelines that establish in an unquestionable way how
this process should be undertaken. Evaluating the quality of the fitting usually compares the
real distribution against the fitted theoretical distribution. There are several tests to evaluate the
confidence of a statistical fitting frequently denominated as Goodness-of-fit (GoF) tests.

A GoF test consists in evaluating the hypotheses H0 and Ha that a certain sample of data may
come or not from a parent known distribution. Under this assumption the hypothesis may or not
be rejected with a specified level of confidence p.

The present work applies therefore five methodologies, three GoF tests and two comparative
analyses, to evaluate the fit of the statistical model to the available data. The wide number of
comparative measures considered ensures robust results when comparing the fitting of different
statistical models. To evaluate the statistical fit the most common tests are the Chi-Squared (χ2)
GoF test and the Kolmogorov-Smirnov (KS) test. The application of the first is limited for the
current analysis as in the tail occurrences are scarce and the conditions of the test cannot be
fulfilled.

The KS GoF test, in an opposite way to the χ2 GoF is mainly used to compare continuous data
sets. It is based in the evaluation of the i and i− 1 order statistic of the empirical CDF with the
respective i value given by the estimated statistical model. For a double-sided test the KS follows
(3).

KSstat = max(D+, D−),

D+ = |Fecdf (xi)− F (xi, θ)| and D− = |Fecdf (xi−1)− F (xi, θ)|,
(3)

where Fecdf (xi) is the empirical cumulative distribution and F (xi, θ) the statistical cumulative
distribution used to describe the empirical data. The terms D+ and D− are the differences that
represent the test statistics and are calculated from the comparison of the two mentioned models
in the i and i− 1 order statistics.

The KS statistic overestimates the quality of the fitting when the unknown parameters are
estimated from the set of data used to evaluate the fitting. Stephens (1970) and Lilliefors (1969)
tackle this limitation presenting two distinct methodologies.

The discrepancy between hypothetical distribution and its empirical form can be evaluated also
by application of quadratic statistics. Cramér von-Mises (W ) GoF test is representative of a test
that compares the empirical and the hypothetical distributions by applying quadratic statistics.

W =

∫ ∞
−∞

(Fecdf (x)− F (x, θ))2ψ(x)dx, (4)

where the ψ(x) is a weight function that in case of the the Cramér von-Mises is equal to 1. A
variant of the Cramér von-Mises GoF is the Anderson-Darling (A-D) GoF test, which is given by
manipulating the function ψ(x) and forcing it to be more sensible to variations in the tail of the
distribution Stephens (1979). Extensive work on these test statistics and the respective asymptotic
values of the test statistic depending on the size of the sample is given in the following works.
In Stephens (1976) asymptotic results for the exponential distribution with unknown parameters
are presented. In Lockhart, O’Reilly, and Stephens (1985) the 3 parameter Weibull distribution
is evaluated and the asymptotic values of the test statistic defined. In Choulakian and Stephens
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(2001) the limit results for the test statistic are presented for the GP distribution with unknown
parameters.

Probability-Probability (P-P) and Quantile-Quantile (Q-Q) plots can be applied to analyse the
fitting. Several examples of analysis of fitting with P-P and Q-Q plots are found in Castillo and
Hadi (1997).

Measuring the fitting adequacy with quadratic differences is not exclusive to the W GoF test. The
root mean square error (RMSE) also evaluates the quadratic differences and evaluate the fitting
adequacy by a measure of the dispersion of the results. It is important to highlight that the last
two indicators of the quality of the fit presented are not under a hypothesis testing methodology.

4 Wave data

The wave data used in the following study was collected in four locations around the Irish coast
by Met Éireann in different periods of time during an interval of 14 years. The approximate and
exact(Degrees, Minutes and Seconds) location of the buoys M1, M4, M5 and M6 can be found in
Figure 1 and Table 1. The records of wave data start in the year of 2000 and end in the year of

Figure 1 Map with the approximate location of the Met-Éireann oceanographic buoys.Only data from buoys M1, M4, M5 and
M6 were used in the analysis.(Adapted from Google Maps.)

2015. The periods of time and the availability of the records in the time frame are also presented
in the Table 1. The data was collected in hourly averages and registered at HH1.

Buoy M6 is representative of Atlantic West deep waters, while the buoy M1 and M4 is likely to
represent a similar wave climate but in shallower waters. M4 is located north of M1 and M6, where
the wave climate is more energetic. Buoy M5 is representative of the wave climate of the Irish

1Averaged records from 15 minutes before the hour; e.g. 01:00 PM record will correspond to the previous 15 minutes average.
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Table 1 Met Éireann buoys location, periods of operation and availability.

Buoy Degree Minutes Seconds (DMS) General Location Period of Activity Availability Sample Size
(no. of points)

M1 53◦ 07’ 36” N Off the Galway coast 2000-2007 89% 47065
11◦ 12’ 00” W

M4 55◦ 00’ 00” N Off the Donegal coast 2007-2015 69% 51343
10◦ 00’ 00” W

M5 51◦ 41’ 24” N Off the south Wexford coast 2004-2015 76% 81667
06◦ 42’ 16” W

M6 52◦ 59’ 09” N Deep Atlantic 2006-2015 78% 58187
15◦ 52’ 00” W

Sea, being therefore representative of less energetic wave states. In all the cases the more energetic
events are mainly confined to two periods of the year, January-April and October-December.

Modelling measured wave data requires a careful analysis due to its statistical and physical
nature. (Sánchez-Arcilla et al., 2008) and (Vanem, Huseby, and Natvig, 2012) model Hs using a
logarithm transformation. The logarithm transformation removes the heteroscedasticity common
to Hs data and is expected to improve the trend of analysis for the extreme sample.

In addition to the modelling of Hs using the different statistical models presented it is then of
interest to model wave data using a logarithmic transformation. Results from modelling wave data
using a logarithm transformation and a GP distribution using the criteria presented in (Vanem
et al., 2012) are presented to complement the comparison of the different statistical models.

5 GP as an alternative to model POT exceedances

When dealing with exceedances in the POT, the first step is to analyse the value of the threshold
u that should be used to truncate the data.

5.1 Choice of threshold u

Setting an optimal threshold of a POT methodology is a very complex and difficult task (Embrechts,
Resnick, and Samorodnitsky, 1999). Several methodologies and rules of thumb exist to this end.

More than one approach can be used to select the threshold level. It can depend on physical
considerations, such as setting the Hs level that can be considered as a threat, or based on straight
mathematical considerations (Lang, Ouarda, and Bobée, 1999). An extensive discussion of the
choice of the threshold to model exceedances over a specified u is presented with specific application
to environmental data and with specific application to the GP distribution in Bommier (2014).

In Scarrott and MacDonald (2012) the process of choice of threshold is reviewed, with reference
to the multiple threshold approaches and automated threshold methodologies.

In Sánchez-Arcilla et al. (2008) a careful selection of the threshold is proposed. Implementing a
Bayesian approach, it is shown that uncertainty can be reduced and support to the management
of coastal infrastructures improved.

Two of the most common graphical methodologies to choose the threshold value are; the parame-
ter stability plots and the mean residual life (MRL) plots. The first, applied to the GP distribution,
is used to choose the threshold in combination with the θ vector of parameters. The threshold is
then picked as a function of the variation of θ with u. The results of the choice of threshold based
on the stability of θ are shown in Figure 2(a), with the respective 95% confidence intervals for the
estimation. Due to the decreased number of data extracted as the value of u increases the stability
plots became unstable for high values of u, and the uncertainty in the estimation rises significantly.
The same occurs when the value of u approaches 0.

As a graphical alternative methodology the MRL plot, Figure 2(b), can be used to set the

8



January 2, 2018 Journal of Hydraulic Research tJHR˙format˙Journal˙Paper˙FINAL

threshold value (Davison and Smith, 1990). It consists in picking the value of u which represents the
lowest level where all the higher threshold based sample mean excesses are consistent with a straight
line (Scarrott and MacDonald, 2012). Despite their wide application, graphical methodologies can

(a)

(b)

Figure 2 Choice of threshold results for the parameter stability of the GP distribution (a) and the MRL plot (b).

be challenging to interpret. Comparing the previous graphical representations it is possible to infer
that different plateaus for u can be obtained. For instance, if for the MRL plot this choice falls
into a multiple threshold category with minimum value between 3 and 4; for the stability of the
parameters the parameter u is almost impossible to set without high uncertainty.

A very common and widely applied rule of thumb when choosing the threshold is considering
only the occurrence over a certain order statistic, e.g. the 90% quantile. The 10% upper tail
increases the threshold value to 5 in M1, M4, M6 and to 3.5 in the case of M5. Although of
immediate implementation, this methodology was proven theoretically non-adequate (Scarrott and
MacDonald, 2012).
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5.2 Selection of threshold using the derivatives of the empirical PDF

Due to the lack of uniformity in the methods identified a new methodology is introduced here to
calculate the value of u. For it, we assume that a tail of a distribution starts in the point where the
curvature of the PDF reaches its maximum positive value after the peak of the PDF distribution
is attained. At a certain point there will be an inflection in the curvature of the PDF due to the
approach of the tail and due to the fact we are moving away from the “bulk” of the data. Here the
maximum value of the curvature, after the inflection point, is picked.

The idea that supports this approach is not only the need to assure the negative slope required for
the tail, but also to guarantee that these points follow the same curvature trend as the distribution
used to fit the POT data set. The calculation is then performed through the combination of
the empirical cumulative function and a finite differences scheme to calculate the higher order
derivatives. Results are shown in Figure 3. The values of u for the different buoys are pointed in

Figure 3 Calculation of u for the four studied buoys based on the analysis of the second derivative (δ2[eFPDF(Hs)]) of the

empirical density function PDF.

the graphic by the maximum of the second order derivative that correspond to the beginning of
the tail region. The u levels obtained show good agreement with other methodologies analysed.
In addition, the direct usage of the empirical PDF function ensures an explicit analysis of the
tail region, ensuring a better comprehension of the process and reducing the risk of erroneously
selecting a u level that is inappropriate for the shape of the empirical PDF function tail. When
analysing other graphical measures studied it is possible to infer that a significant advantage is to
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get a quantified u value with minimum bias.
For a more understandable analysis of the following results, the different levels of threshold

considered in the present study of GoF and the respective number of points after truncation by
the POT methodology are represented by the trimmed (red) lines.

The following subsection presents the central research of the work undertaken and investigates
to which extent the GP distribution is less appropriate than other commonly applied distributions,
the two parameter Weibull and the Exponential, to be used when a POT methodology is applied
to Hs data.

5.3 Goodness of Fit results

The minimum value of u for analysis of the statistical fitting was set to be variable depending
on the analysis of Section 5.2. In addition, more robust results can be achieved by using a wide
range of thresholds in the analysis. Table 2 and Table 3 present the results for the statistical
fitting parameters for each case and the results for the three GoF and the two fitting indicators
considered. The KS GoF gives a measure of the biggest deviation in the fit, being very useful

Table 2 Statistical parameters obtained from the fitting proccess for the
different distributions and levels u of truncation.

u(m) Weibull Exponential GenPareto log() GenPareto
σ ζ σ ζ σ ζ σ

Buoy M1
4.5 2.009 0.987 2.021 -0.009 2.039 -0.322 0.442
5 2.149 1.04 2.115 -0.096 2.32 -0.381 0.446
5.5 2.273 1.077 2.209 -0.192 2.646 -0.453 0.455
6 2.599 1.277 2.411 -0.353 3.28 -0.597 0.508
6.5 2.369 1.179 2.247 -0.336 3.024 -0.566 0.442
7 2.498 1.437 2.261 -0.423 3.242 -0.651 0.445
7.5 2.003 1.191 1.883 -0.256 2.385 -0.463 0.315
8 2.021 1.245 1.878 -0.352 2.585 -0.507 0.326

Buoy M4
4.5 1.963 0.93 2.033 0.13 1.774 -0.19 0.39
5 2.193 0.975 2.218 0.043 2.122 -0.257 0.412
5.5 2.202 0.972 2.23 0.05 2.12 -0.245 0.38
6 2.519 1.072 2.449 -0.072 2.627 -0.349 0.422
6.5 2.398 0.988 2.41 -0.063 2.563 -0.336 0.387
7 2.918 1.242 2.717 -0.256 3.426 -0.527 0.472
7.5 2.379 1.016 2.363 -0.106 2.619 -0.361 0.348
8 2.583 1.109 2.492 -0.236 3.103 -0.503 0.39

Buoy M5
3 1.683 1.188 1.581 -0.082 1.709 -0.314 0.496
3.5 1.61 1.161 1.523 -0.065 1.621 -0.28 0.417
4 1.547 1.1 1.492 -0.054 1.571 -0.255 0.362
4.5 1.465 1.129 1.397 -0.019 1.423 -0.206 0.299
5 1.419 1.117 1.356 0.014 1.336 -0.166 0.257
5.5 1.437 1.051 1.407 0.027 1.369 -0.154 0.242
6 1.323 1.018 1.311 0.115 1.161 -0.059 0.192
6.5 1.456 0.985 1.466 0.123 1.288 -0.07 0.199
7 1.856 1.107 1.782 -0.069 1.907 -0.314 0.28
7.5 1.375 0.908 1.45 0.331 1.011 0.138 0.14

Buoy M6
5 2.297 0.976 2.322 0.019 2.277 -0.295 0.442
5.5 2.504 1.038 2.466 -0.072 2.645 -0.35 0.453
6 2.457 0.984 2.474 -0.094 2.71 -0.356 0.427
6.5 2.784 1.138 2.66 -0.211 3.229 -0.428 0.45
7 2.777 1.178 2.624 -0.23 3.232 -0.432 0.421
7.5 2.7 1.181 2.549 -0.236 3.155 -0.426 0.387
8 2.692 1.189 2.542 -0.268 3.223 -0.445 0.372
9 2.433 1.185 2.297 -0.254 2.885 -0.412 0.303

to detect outliers. Considering that it aims to identify the biggest difference between the real and
the estimated curves, in the present case its application is well complemented by the tests that
work with mean values and weighted averages of the error, which is the case of the remaining
tests applied. An increased value of the test statistic is representative of a smaller p− value, and
consequently a worse fit to the data.

The KS GoF for a single sample was initially developed for the case of a completely specified
θ. The need for a correction of the KS statistic is justified by the fact that since the θ vector
was obtained from the sample it is very likely for the estimated model to approximate better
the real distribution when compared with the case where θ is not estimated from the data. The
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Table 3 GoF results for the three test statistic K-S, W and A-D and the two GoF indicators studied for the Weibull, Exponential

and GP Distribution. The p-values in % are given for the test statistics performed. Underlined values correspond to the
appropriate level u as specified in Section 5.1. Results for the log transformation are shown for the GP distribution between

brackets.
u(m) 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 9

Weibull Distribution
M1

K − S(p%) - - - 67.8 58.0 55.5 72.8 57.8 85.3 98.4 90.7 -
W (p%) - - - 58.2 46.3 46.2 65.7 62.4 57.3 65.2 49.1 -
A−D(p%) - - - 11.1 13.9 14.7 44.0 21.0 38.9 47.6 40.1 -
P − P (◦) - - - 44.99 45.01 45.13 45.06 45.2 44.64 44.93 44.91 -
RMSE - - - 0.027 0.034 0.038 0.031 0.038 0.037 0.032 0.047 -

M4
K − S(p%) - - - 79.8 94.8 90.2 75.0 87.2 96.5 91.8 87.3 -
W (p%) - - - 56.7 62.1 54.1 49.7 54.9 59.7 62.0 55.9 -
A−D(p%) - - - 13.0 35.7 28.5 28.7 32.1 46.5 39.7 33.4 -
P − P (◦) - - - 44.83 44.86 44.91 44.88 45.2 44.64 45.08 44.82 -
MSE - - - 0.022 0.022 0.027 0.032 0.033 0.030 0.035 0.039 -

M5
K − S(p%) 17.3 13.7 56.4 46.3 27.2 75.4 77.7 72.4 61.5 66.4 - -
W (p%) 62.5 60.7 66.1 58.7 34.8 37.3 22.0 35.7 14.2 11.4 - -
A−D(p%) < 1.0 1.6 4.7 12.5 < 1.0 9.2 8.1 18.4 10.6 9.3 - -
P − P (◦) 44.69 44.66 44.69 44.38 44.11 44.15 43.68 43.82 43.77 43.72 - -
RMSE 0.024 0.028 0.028 0.029 0.046 0.045 0.057 0.064 0.010 0.104 - -

M6
K − S(p%) - - - - 56.9 46.1 70.9 96.4 92.3 87.9 85.0 77.4
W (p%) - - - - 52.2 44.8 55.0 76.7 68.3 59.5 71.3 61.2
A−D(p%) - - - - 11.6 10.5 10.7 61.6 51.9 37.2 50.5 45.2
P − P (◦) - - - - 45.02 45.03 45.33 45.15 45.1 45.12 45.26 45.26
RMSE - - - - 0.023 0.027 0.025 0.017 0.023 0.029 0.026 0.035

Exponential Distribution
M1

K − S(p%) - - - 52.3 48.3 29.6 7.1 7.4 2.9 86.2 70.1 -
W (p%) - - - 65.6 70.9 70.8 47.9 53.6 35.0 82 68.9 -
A−D(p%) - - - 26.1 40.3 39.5 15.2 22.3 3.3 48.9 42.3 -
P − P (◦) - - - 44.97 45.07 45.25 45.41 45.43 45.29 45.34 45.49 -
RMSE - - - 0.028 0.029 0.034 0.056 0.058 0.081 0.035 0.046 -

M4
K − S(p%) - - - 21.7 81.4 71.2 86.9 81.4 32.6 80.8 51.6 -
W (p%) - - - 34.3 65.3 56.8 70.9 66.2 40.7 72.2 57.3 -
A−D(p%) - - - 6.4 45.3 37.3 50.4 47.1 26.1 56.1 39.5 -
P − P (◦) - - - 44.61 44.79 44.82 45.08 45.17 45.32 45.14 45.17 -
RMSE - - - 0.036 0.025 0.032 0.027 0.034 0.053 0.035 0.050 -

M5
K − S(p%) < 1.0 6.5 6.2 28.6 12.2 50.2 63.1 66.5 33.1 40.1 - -
W (p%) 73.2 72.5 64.3 70.1 58.6 53.0 43.6 49.7 40.7 18.9 - -
A−D(p%) < 1.0 1.4 7.9 10 7.1 25.4 26.9 35.9 30.3 18.0 - -
P − P (◦) 44.82 44.81 44.8 44.6 44.37 44.31 43.76 43.74 44.29 43.1 - -
RMSE 0.037 0.036 0.040 0.039 0.049 0.049 0.055 0.065 0.096 0.121 - -

M6
K − S(p%) - - - - 29.5 56.7 53.7 79.7 76.4 69.2 55.6 55.7
W (p%) - - - - 54.9 71.5 64.8 67.1 61.9 62.1 53.2 69.0
A−D(p%) - - - - 20.4 37.7 25.5 44.3 36.9 37.7 39.0 47.1
P − P (◦) - - - - 44.98 45.12 45.29 45.47 45.51 45.53 45.64 45.53
RMSE - - - - 0.027 0.022 0.027 0.027 0.031 0.032 0.041 0.040

Generalised Pareto Distribution
M1

K − S(p%) - - - 50.6
(53.9)

36.1
(40.3)

53.0
(60.5)

68.2
(62.7)

60.9
(56.6)

28.8
(25.8)

88.3
(81.4)

70.3
(62.0)

-

W (p%) - - - 54.5
(51.3)

43.8
(45.2)

45.0
(49.0)

67.8
(60.3)

61.9
(55.5)

37.1
(25.7)

61.9
(55.0)

41.6
(30.0)

-

A−D(p%) - - - 13.7
(12.1)

18.3
(20.1)

22.5
(26.1)

51.2
(39.6)

38.7
(32.4)

9.5
(2.8)

46.6
(39.9)

34.0
(23.9)

-

P − P (◦) - - - 44.95
(44.83)

44.86
(44.75)

44.82
(44.7)

44.61
(44.46)

44.63
(44.45)

44.21
(43.95)

44.62
(44.42)

44.42
(44.09)

-

RMSE - - - 0.028
(0.029)

0.035
(0.033)

0.037
(0.033)

0.028
(0.028)

0.034
(0.035)

0.053
(0.051)

0.035
(0.039)

0.051
(0.057)

-

M4
K − S(p%) - - - 67.0

(67.8)
93.6
(90.3)

84.3
(82.7)

77
(81.0)

71.7
(73.2)

63.0
(60.1)

88.5
(88.4)

81.3
(83.6)

-

W (p%) - - - 64.0
(60.5)

66.9
(65.0)

58.2
(55.4)

58.1
(55.8)

54.3
(51.8)

42.7
(29.8)

60.2
(53.2)

39.5
(24.8)

-

A−D(p%) - - - 28.4
(23.7)

48.2
(45.2)

40.5
(37.0)

40.9
(36.8)

33.3
(30.6)

34.2
(22.9)

44.1
(37.7)

31.7
(21.0)

-

P − P (◦) - - - 45.01
(44.91)

44.92
(44.83)

44.98
(44.86)

44.85
(44.73)

44.96
(44.81)

44.43
(44.19)

44.76
(44.55)

44.3
(43.96)

-

RMSE - - - 0.021
(0.021)

0.021
(0.021)

0.027
(0.027)

0.029
(0.028)

0.035
(0.034)

0.038
(0.044)

0.035
(0.037)

0.047
(0.054)

-

M5
K − S(p%) 1.7

(< 1.0)
12.6
(4.2)

12.5
(5.0)

31.7
(22.8)

11
(8.8)

43.9
(40.2)

45.6
(44.7)

50.8
(51.8)

40.3
(44.7)

76.2
(75.2)

- -

W (p%) 74.0
(52.8)

70.2
(56.7)

61.1
(47.5)

62.7
(55.1)

49.0
(44.4)

42.2
(37.2)

43.8
(41.0)

56.3
(52.7)

23.4
(15.7)

41.5
(35.7)

- -

A−D(p%) 27.8
(< 1.0)

3.6
(58.3)

3.8
(1.7)

2.2
(< 1.0)

< 1.0
(2.3)

14.4
(9.7)

20.9
(17.4)

35.7
(32.2)

19.1
(14.0)

35.5
(30.6)

- -

P − P (◦) 44.70
(44.69)

44.69
(44.70)

44.69
(44.69)

44.55
(44.55)

44.42
(44.42)

44.41
(44.42)

44.23
(44.22)

44.29
(44.24)

44.01
(43.76)

44.47
(44.39)

- -

RMSE 0.029
(0.027)

0.030
(0.028)

0.034
(0.033)

0.037
(0.033)

0.049
(0.042)

0.051
(0.052)

0.055
(0.055)

0.055
(0.056)

0.098
(0.097)

0.086
(0.090)

- -

M6
K − S(p%) - - - - 38.5

(38.5)
33.0
(47.1)

39.8
(47.4)

98.3
(95.6)

97.9
(98.3)

96.2
(97.5)

95.9
(96.3)

86.8
(85.8)

W (p%) - - - - 50.1
(49.7)

47.4
(56.4)

43.8
(51.5)

78.5
(81.3)

75.0
(76.9)

70.6
(73.6)

77.9
(75.4)

70.1
(71.9)

A−D(p%) - - - - 15.2
(15.3)

16.8
(22.9)

3.9
(8.7)

73.0
(70.1)

64.2
(59.7)

55.3
(54.3)

71.2
(67.1)

62.2
(61.5)

P − P (◦) - - - - 45.03
(44.91)

44.92
(44.87)

45.02
(44.98)

44.88
(44.96)

44.88
(44.95)

44.91
(44.96)

44.98
(45.02)

44.96
(44.94)

RMSE - - - - 0.025
(0.024)

0.028
(0.023)

0.031
(0.026)

0.016
(0.014)

0.019
(0.017)

0.022
(0.020)

0.020
(0.020)

0.028
(0.026)
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Lilliefors test p− values are then expected to decrease for the same asymptotic values of the test
statistic. For the current implementation it is expected that the results of the KS will hold relevant
comparative results of GoF. Although it is important to understand that for practical applications
of not rejecting any of the statistical models as valid for representation of the empirical distribution,
the GoF results need to consider the estimation of θ.

The p − value was also used as a reference to compare the GoF results for the W and A-D
statistics. Extensive tables that evaluate the W and the A-D GoF are available in the literature.

The calculation of the p− value for each test statistics involves interpolating and extrapolating
techniques. A 3rd degree polynomial function was fitted to the asymptotic points to calculate
the p− values, as their variation with the test statistic is clearly non-linear. The variation of the
confidence of the fit with the test statistic for the considered distributions can be found in Stephens
(1976,7,7) and Spineili and Stephens (1987).

The 2-parameter Weibull distribution, when the location parameter is known, needs to be tested
against a type I GEV distribution (Lockhart and Stephens, 1993). A transformation of variable
needs then to be applied to the exceedance values to test against a type I GEV.

To allow a quantified comparison of the P-P plots, the slope of the curves was used as a measure-
ment of the GoF. Ideally, the fit should generate a curve with a slope of 45(◦). Forcing the curve
to go through the origin and calculating its deviation when compared to the ideal slope is applied
in the current work as a measure of the fit. With the F (x,θ) in the x axis; if the deviation is
positive, the fitted model is underestimating Fecdf (x); if the deviation is negative, the fitted model
is overestimating Fecdf (x).

It is interesting to notice that for the buoy M4 in the reference threshold the GP distribution
produces better fitting results in four of the five indicators used for comparison. Nevertheless, the
GP distribution is unbounded for this case as ζ > 0. For M5, the same happens in two of the
five indicators. In the case of buoys M1 and M6, the two-parameter Weibull and the Exponential
distributions achieved, respectively, better fitting results in three and two of the five indicators
used for comparison.

One of the concerns highlighted when using the Generalised Pareto to model physically limited
events, is to ensure that the distribution is bounded. As mentioned, this happens when the shape (ζ)
parameter is smaller than 0. In the present case, no significant improvement of the fitting indicators
occurs when a logarithmic transformation is applied. Still, one of the interesting points of using a
logarithmic transformation is that it ensures the ζ parameter to be negative, thus bounded for the
Generalised Pareto. As example, GP fits for non transformed data with unbounded domain occur
for values of u close to the reference value in the case of the buoys M4 and M6. This should be
avoided on a design basis approach.

It is important to notice that the Weibull and Exponential distributions have support in the in-
terval [0,+∞). Therefore, due to the physical character of the waves, even considering the following
comparison of GoF the GP should be applied primarily when its right tail is bounded.

As regard of the other threshold values considered, cases where the GP distribution presents
better indicators than the other two statistical distributions can be found, e.g. all the cases above
the threshold of 6.5m meters in the buoy M6, where the GP distribution is bounded.

Nonetheless, relevant levels of u where the GP has no better value of fitting in the five indicators
used can be identified; instances are M1 with u = 4.5 or M6 u = 5, among other examples.

Under the discussed fluctuation in the results it is then of additional interest to understand, in
order to identify any limitation from the use of the GP distribution as a statistical model to fit the
exceedances of Hs, how the results vary with different decoupling times in the application of the
POT.

13



January 2, 2018 Journal of Hydraulic Research tJHR˙format˙Journal˙Paper˙FINAL

5.4 Influence of the decoupling time

The analysis of the decoupling process that guarantees independent data is of major importance
to ensure the validity of the study and the robustness of the results obtained. It was seen that
the methodology to ensure independence involved the application of a minimum period of time
between storm events.

One GoF test and a fitting indicator were considered here for studying the influence of the
decoupling time in the GoF results, i.e., Kolmogorov-Smirnov and the RMSE. The choice of these
two test statistics is justified by the two quantities evaluated in the tests, while the KS test evaluates
the maximum deviation from the real function and calculates the confidence of the fit based on that
value, the RMSE considers an averaged value of deviation from the real distribution, taking into
account all the points of the CDF. Figures 4 and 5 show, respectively, the results for the variation
of the GoF with the variation of the decoupling time.

Figure 4 Influence of the decoupling time in the KS results. The trimmed (red) line represents the reference value of 48 hours.

The results show similar trends for all the statistical distributions. In M1 the p − values are
stable to the point that the acceptance of the fitting is never doubted (never inferior to 25%). In
M4, the increase of the decoupling time increases the quality of the fit in the KS test. The GP has
lower averaged deviation from the empirical distribution. In M5, the results indicate that probably
a more detailed analysis of choice of the u may be needed as the quality of the fit in average seems
to improve substantially with the decoupling time. This buoy is particularly distinct from the other
buoys due to its location. It has a low number of points with Hs bigger than 8 meters and high
number of points with Hs between 3 and 5 meters. For M5, as the decoupling time increases the GP
averaged deviation decreases. For the decoupling time used, the Weibull presents better average
deviation results. Finally, in M6 the quality of the fit is more variable with the decoupling time
but not enough to question the acceptance of any of the distributions studied. The RMSE results
for M6 are do not change significantly for different decoupling times.

The quality of the fit fluctuates and all of the three distributions compared may produce a better
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Figure 5 Influence of the decoupling time in the RMSE results. The trimmed (red) line represents the reference value of 48
hours.

fit than the others under specified circumstances.
The analysis of the decoupling time is a methodology that trains the statistical model to some

extent. Even though, on a design basis context the training the methodology implemented as
presented in Section 3.2 may complement the analysis of fitting. This can contribute to more
robust results and confidence in the fitting procedure underpinned.

5.5 Return periods of Hs

Frequently the necessity to fit a statistical model to a known set of data is created by the need to
extrapolate the occurrence of a certain event to a pre-specified return period Tr. This is the case for
offshore wind turbines, where some of the standards that regulate the design of these equipments
e.g. IEC (2009), demand the extrapolation of the environmental conditions to return periods of
between 20 and 50 years.

Extrapolating long-term occurrences is achieved by knowing the yearly average number of events
λ. With the knowledge of λ it is possible to estimate the probability of exceeding in average a
certain Hs level in 20 or 50 years of occurrences. No higher return levels were considered due to
the amount of data available in the records. As a rule of thumb in the industry applications, it is
commonly considered that the minimum amount of the data to extrapolate a certain Tr corresponds
to a period of time of at least its value divided by four. The 50 years period, which is out of this
limit, is considered due to its importance in most of the offshore sectors.

Different values of Hs with return level Tr depending on u are shown in Table 4. The reference u
level for each buoy is highlighted in the table. The relative difference to the GP extrapolated non-
transformed data value is shown between brackets for the respective 20 and 50 year extrapolations.
As expected, in the majority of the cases the return periods do not vary substantially.
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Table 4 20yr and 50yr return levels of Hs as a function of u and the statistical model applied. Shadowed values correspond to

the appropriate level u as specified in Section 5.1.

Weibull Exponential GenPareto
Return Level (m) Hs log(Hs)

Tr20 Tr50 Tr20 Tr50 Tr20 Tr50 Tr20 Tr50

M1 u = 4.5 17.12 (+2.7%) 19.03 (+3.3%) 16.90 (+1.4%) 18.75 (+1.7%) 16.67 18.43 14.68 15.42
M1 u = 5 17.03 (+9.3%) 18.79 (+12.3%) 17.68 (+13.5%) 19.62 (+17.27%) 15.58 16.73 14.29 14.8
M1 u = 5.5 17.17 (+16.2%) 18.87 (+21.7%) 18.37 (+24.4%) 20.39 (+31.5%) 14.77 15.50 13.99 14.32
M1 u = 6 16.18 (+21.2%) 17.44 (+15.2%) 19.79 (+40.8%) 22.0 (+52.9%) 14.05 14.39 13.65 13.85

M4 u = 4.5 18.51 (-14.0%) 20.74 (-18.3%) 17.16 (-20.3%) 19.02 (-25.1%) 21.52 25.40 18.72 20.7
M4 u = 5 18.87 (-4.0%) 21.03 (-5.4%) 18.39 (-6.4%) 20.43 (-8.1%) 19.65 22.22 17.71 19.02
M4 u = 5.5 19.21 (-4.0%) 21.40 (-6.0%) 18.70 (-7.0%) 20.74 (-8.9%) 20.10 22.77 18.06 19.44
M4 u = 6 18.96 (+2.9%) 20.86 (+4.5%) 20.18 (+9.5%) 22.43 (+12.4%) 18.43 19.96 17.11 17.88

M5 u = 3 10.84 (-4.3%) 11.80 (-3.5%) 12.84 (+13.3%) 14.29 (+16.8%) 11.33 12.23 11.63 12.30
M5 u = 3.5 11.13 (-4.5%) 12.11 (-4.0%) 12.77 (+13.3%) 14.17 (+16.8%) 11.65 12.62 11.82 12.57
M5 u = 4 11.71 (-1.5%) 12.8 (-0.9%) 12.73 (+7.1%) 14.10 (+9.1%) 11.89 12.92 12.01 12.83
M5 u = 4.5 11.32 (-7.0%) 12.29 (-7.8%) 12.44 (+2.2%) 13.72 (+2.9%) 12.44 13.33 12.21 13.21
M5 u = 5 11.36 (-8.5%) 12.33 (-10.3%) 12.25 (-1.4%) 13.49 (-1.9%) 12.42 13.75 12.45 13.62

M6 u = 5 20.13 (-0.6%) 22.39 (-1.1%) 19.62 (-3.1%) 21.74 (+3.9%) 20.25 22.63 17.68 18.69
M6 u = 5.5 19.93 (+6.8%) 21.99 (+9.0%) 20.69 (+10.9%) 22.94 (+13.7%) 18.66 20.17 17.25 17.98
M6 u = 6 21.37 1(+15.2%) 23.73 (+19.3%) 21.02 (+13.4%) 23.29 (+17.1%) 18.54 19.89 17.25 17.98
M6 u = 6.5 19.74 1(+15.6%) 21.54 (+18.7%) 22.19 (+27.7%) 24.63 (+35.7%) 17.38 18.15 17.34 18.02

Results show that the logarithmic transformation tends to stabilize the extrapolation with the
GP. This may be connected to the shape parameter that, for the logarithmic transformation, Table
2, sets the GP to be bounded.

In buoy M1, despite the fact that the GP distribution has no better fitting results for the reference
level of u, the values extrapolated are similar for the non-logarithmic results. However, when
the value of the threshold increases, the two-parameter Weibull distribution and the Generalised
Pareto distribution show a trend to decrease the values extrapolated for the return levels of Hs.
This decrease was discussed in Gōda (2010) as one of the points of criticism of the POT. As the
threshold increases the sample standard variation decreases. The fact that these two distributions
have one more DOF than the Exponential distribution might be connected to this decreasing trend.
This implies an additional capacity to adapt to the data set to be fitted. This may suffice further
research on the homogeneity of data when comparing with the logarithm transformed results.
Considering that the maximum value of Hs in the data set is of 13.5m it is very likely that the
logarithmic data set is extrapolating the results more accurately in the whole range of threshold
while the Exponential distribution is overestimating the return level.

Nonetheless, the reference values are in accordance with the ones given by HSE (2002) indicating
that the extrapolation for the reference level may hold valid results for all the cases.

One case of particular concern happens in the reference u level of M4. Here, the values of Hs

extrapolated are substantially higher with the GP statistical model. Accordingly to Table 3 and
the discussion developed previously, this is one of the cases where the GP distribution has better
fitting indicators in four of the five used. Although the GP is, as the other two distributions,
unbounded for this case and despite the better fitting indicators, a unrealistic extrapolation level
may have been attained. Again, using a logarithmic transformation avoids this unrealistic estimate
while maintaining better fitting indicators for all the measures used for comparison.

Important to notice that, considering that the the logarithmic transformed GP produces more
realistic results, the Exponential extrapolation results are non-conservative for the reference level
and thus, of high risk on a design basis approach.

In M5, the results of both GP cases and the two-parameter Weibull do not deviate much from
each other. The Exponential presents higher estimates of the return level. M5 is the other case
where the GP distribution demonstrates better fitting indicators while maintaining its bounded
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character, see Tables 2 and 3.
In the case of M6, the same decreasing trend was found in the value extrapolated for Hs as

the u increases. In this case, the fitness indicators calculated point to the application of the two-
parameter Weibull or the Exponential distributions. As the maximum occurrence registered is of
17.2m, the usage of the logarithmic transformation may results in underestimating the real return
level and the usage of the Weibull and the Exponential in overestimating it. This again may be
related to the support of these distributions.

The analysis held focuses substantially on the descriptive comparison of the different statistical
models. Nevertheless, the overall goal of the going through the procedure implemented has the
ultimate goal of being implemented in a design basis approach. Vrijling and Van Gelder (1999)
presents a rationale on how to approach the optimal design basis when considering the need to
extrapolate values. Important to highlight that the practical risks of implementing an analysis such
as the one presented need to be addressed in the design approach.

Generalization of the results may be obtained using the methodology implemented in Van Gelder
(2000), where a sampling process is implemented to study the selection of a probability distribution
to model probability exceedance comparing five 3-parameter distributions using samples from a
GP distribution.

Considering the results of the return periods when different conditions are met (e.g. increase in
u), it is unreasonable to discard the GP as a potential solution to fit exceedance data. In fact,
the GP distribution, considering both, transformation and no transformation, should be always
considered to use with the POT methodology. More critically even when physically limited data is
being modelled.

6 Conclusion

The main purpose of the current work was to investigate on the rejection of the Generalised Pareto
distribution over the preferential application of the two-parameter Weibull and the Exponential
distributions for the extrapolation of significant wave heights.

Results of the GoF analysis and extrapolation showed that there is no evidence to reject the GP
distribution over the two-parameter Weibull and the Exponential distributions. Additionally, the
support of the GP distribution and its bounded character is expected to contribute to a physically
more realistic extrapolation process. Nevertheless, attention should be given to the selection and
fitting process when applying POT to model Hs exceedances. Results showed that when using a
POT approach the user should be careful during the selection of the u level that will be used to
truncate the Hs data.

The u level is the variable of major influence in the outcome results of the POT application.
The method used to ensure independence and the number of the field points do not show the same
decisive influence in the results as the level u. A contribution to the choice of threshold was added
through the introduction of a new methodology to define the threshold level in a straightforward
way. It consists in settling the u value by analysing the three derivatives of the cumulative density
function.

For the studied data set, it is impossible to generalize the findings from which of the three
distributions is going to produce a better fit. The process should be evaluated in conjunction
with a sensitivity analysis of the parameters of the study; level u, decoupling time, and fitting
methodology; so that a definitive conclusion can be drawn. With the variation of these parameters,
no indicators to reject the Generalised Pareto were found. On the contrary, strong evidence was
found that backs its application. In particular when analysing the statistical support of the models
analysed.

Using a logarithmic transformation of the data when applying the Generalised Pareto distribution
to model a physical limited phenomena was adequate for the present case, and therefore must be
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considered for future studies of wave data.
The analysis of Hs associated to specific the return periods showed that special attention should

be given when fitting the tail with a multi-parameter distribution as the return levels might be
underestimated or overestimated. The current work is representative of a data set of the Irish coast,
which in turn is representative of the north Atlantic and the Irish Sea. It is of interest to extended
the presented analysis to other areas.

To conclude, it is important to emphasize the interest of the presented probabilistic based
methodology to extrapolate the values of Hs and its relevance for highlighting the role of the
different parameters in the extrapolation process. The methodology implemented can be used to
produce robust results on a design basis approach.
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Notation

A-D = Anderson-Darling
CDF = Cumulative distribution function
DOF = Degree-of-Freedom
DNV = Det Norske Veritas
exp = Exponential function
F = Cumulative distribution function
Fecdf = Empirical cumulative distribution
Fepdf = Empirical probability density distribution
GEV = Generalised extreme value distribution
GoF = Goodness-of-fit
GP = Generalised Pareto
Hs = Significant wave height (m)
Hs(>u) = Exceedances of significant wave height over threshold level (m)
i = Generic indicator of order statistic
KS = Kolmogorov-Smirnov GoF
max = maximum
ML = Maximum Likelihood
MRL = Mean residual life
MRL = Mean residual life
PDF = Probability density function
POT = Peak-over-threshold
P − P = Probability plot
p = p− value significance indicator (%)
RMSE = Root mean square error (-)
u = Threshold level (m)
Tr = Return period (years)
W = Cramér von-Mises
x = Generic data variable
λ = Average number of storms in reference interval
ζ = Distribution function model shape paremeter (-)
θ = Distribution function model parameter vector
σ = Distribution function model scale parameter (m)
ψ = Weight function
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