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Abstract. The present work researches on the definition of the load spectra 

used for offshore wind turbine low SN slope materials’ fatigue design.   

Uncertainty in the sample sized used to scale fatigue life is analyzed for the 

tower component. Damage density is investigated for different environmental 

conditions in order to understand the importance of the different regimes of op-

eration. Damage density is identified to be a heterogeneous function of the load-

ing environmental conditions. In some cases, even for low SN slope materials, 

most of the damage occurs due to high load ranges. To study on the influence of 

this heterogeneity, different statistical tail fits are used to compare the influence 

of accurately defining the tail region on a reference design time (𝑇).    

Results show that OWT fatigue is highly dependent on the 𝑡 shorter that 𝑇 time 

used to approximate 𝑇. This is mainly related to the fact that fatigue design de-

pends not only on scaling stress ranges, but also cycle counts. Effort on the de-

sign phase should be applied in the definition of the uncertainty of the load 

spectra due to the limitation imposed by using low sample sizes to cover the ex-

tensive joint distribution of environmental parameters.  
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1 Introduction 

Structural fatigue on OWTs is mainly divided in two major problems. For materials 

with high SN slopes (here considered as materials with SN slope m > 10) the problem 

of fatigue approaches a problem of extrapolation, where the high loads contribute for 

almost all the fatigue damage density (% of Miner’s fatigue contribution). Whereas 

for low slope materials (here considered as materials with SN slope m < 6), fatigue 

damage density is spread over different loading ranges. 

Wide research on fatigue analysis of OWT has focused on the definition of the ex-

trapolation techniques for composite materials [1-3]. For low SN slope materials, such 

as steels, knowledge on fatigue design techniques were transferred from the one al-

ready existing on offshore engineering. In particular, [3] reported that no additional 

accuracy was attained by spending effort on definition of the load spectra tail for low 

m materials. To note that the authors use a sample size per environmental loading 

condition larger than the recommended by the current design standards.   



2 

The current paper proposes to research on how the sample size influences fatigue 

calculations. Additionally, as the tail region is identified to be influent in some opera-

tional points, the trade-off of spending time on defining it is studied. To fulfill this 

goal, Section 2 presents the fatigue design calculation process, Section 3 presents the 

results on its uncertainty for 25 points of operation, and Section 4 presents the main 

conclusions.  

2 Fatigue design methodology 

Design of offshore wind turbine (OWT) towers to structural fatigue is an effort de-

manding procedure.  The current design practices recommend the definition of load 

distributions, extrapolation of loads and cycles when required, to be used with the 

widely known linear damage summation rule, Equation 1 [4, 5]. 

𝐷𝑇 = ∑
𝑛𝐸(𝑆𝑖)

𝑛𝑆𝑁(𝑆𝑖)

𝑆𝑘

𝑖=1

                                                        (1) 

𝑛𝐸(𝑆𝑖) is the number of cycles at a certain stress range 𝑆𝑖, which is compared with the 

admissible number of cycles  𝑛𝑆𝑁(𝑆𝑖) at that same stress range. 𝑛𝑆𝑁(𝑆𝑖) is calculated 

based on the a material specified SN curve and  𝑘  is the total number of stress ranges.   

The calculation of 𝑛𝐸(𝑆𝑖) frequently involves using a cycle counting technique, be-

ing the most common the rainflow cycle counting technique. Cycle counting tech-

niques allow for the definition of a stress or load range spectra. Furthermore, as it is 

not feasible to perform the calculations replicating all the operational states an OWT 

may experience during its T lifetime, calculations are performed for a limited number 

of environmental conditions and then scaled up for T.  

The definition of the load spectra enables the assessment of 𝐷𝑇  using an integration 

technique, Equation 2.  

𝐷𝑇 =  ∫ ∫
𝑓(Θ)𝑓(𝑆|Θ)

𝑛𝑆𝑁(𝑆)𝑆

 
Θ

𝑑𝑆 𝑑Θ                                (2) 

being 𝑓(Θ) the distribution function of operational conditions that load the OWT. 

This distribution is integrated along with the distribution of stress ranges 𝑓(𝑆|Θ). 

𝑓(𝑆|Θ) is estimated from the stresses and cycles obtained at Θ, being conditional on 

it. As multiple Θ load the OWT, the calculation procedure is expensive even when 

𝑓(𝑆|Θ) is defined with small sample sizes.  

 

2.1 OWT model 

The analysis presented uses the NREL 5MW baseline turbine installed on a monopile 

[6]. As a non-linear coupled code, it replicates the randomness of the OWT tower 

operational loading. Its non-linear behavior is of relevance to replicate non-linear 

loading behavior that may be of relevance for structural fatigue design. This is partic-

ularly important for high SN slope materials. However, it may be also of relevance for 

low SN slope materials.  
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[4, 5] recommend the usage of at least six distinct seeds in order to define the design 

loads of OWTs to operational fatigue. Lower frequency loading effects have negligi-

ble influence on fatigue life [7]. Damage that occurs within this reference time t of 

600s much shorter than T is identified as 𝐷𝑡 .  

3  Analysis of fatigue load spectra uncertainty 

Short term fatigue follows a lognormal distribution. As many repetitions occur within 

the T period, cumulated fatigue converges to a single value that is related to the mean 

of 𝑓(𝑆|Θ). Most of the times defining the mean value of  𝑓(𝑆|Θ) maintaining practi-

cable computational effort results in uncertainty in the estimation.  

The approximation of the fatigue design calculations to a problem of mean value 

was considered before for wind turbines in [2]. Figure 1 presents the uncertainty in 

the calculation of the mean using 8 repetitions (𝑛𝑟 = 8) of six different seeds for the 

cumulative damage calculation. The mean wind speed (U) and the turbulence intensi-

ty (I) were selected to compute the results as these are expected to be the most influ-

ential variables in terms of fatigue of the tower [8].  

 

Figure 1 – Uncertainty in the cumulated damage (𝐷𝑡) resulting of 6 seeded simulations of 

600𝑠 for 𝑛𝑟 = 8. (a) – Simulated Points. (I-III) – SN m = 3, 4, 5 respectively.  

It can be seen in Figure 1 that the variability of the mean within the 𝑛𝑟 calculations 

can be relatively high when using 6 seeds. In particular for high values of I this varia-

bility is more prominent. To note that offshore I is correlated negatively with U, 

therefore, the most turbulent operational states are expected to occur at less damaging 
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winds. Nevertheless, even for the Θ where the variability of 𝐷𝑡  is relatively smaller 

(near the cut-out speed of 25 m/s) deviations of ±10% are frequently identified. The 

calculations at 𝐷𝑡  are used to scale up 𝐷𝑇  depending on the occurrences of 𝑓(Θ). 

Thus, eventual errors in the estimation of the 𝐷𝑡  will be propagated to 𝐷𝑇 . These er-

rors are expected to average over 0, however, if an inefficient description of 𝑓(Θ) oc-

curs, or important fatigue damaging states are underestimated, relevant errors may be 

propagated to the design value 𝐷𝑇 .   

As the value of m increases, the uncertainty in the cumulated damage increases for 

the same initial sample. This is connected to the influence of the higher quantiles of 

stress range. Figure 2 presents the damage density of the lower 95% quantile of the 

stress ranges (𝐷𝑡:𝑄95) compared with the respective cumulative 𝐷𝑡  using 6 seeds, and 

its variability for 𝑛𝑟.  

 
Figure 2 – Density of 𝐷𝑡 for the lower 95% stress ranges and respective variation within 𝑛𝑟 

repetitions. (I-III) – SN m = 3, 4, 5 respectively. 

As m increases, influence of larger stress ranges increase. The variation of this per-

centage within the different simulated points is relatively low, which indicates that it 

is characteristic of each Θ. Damage density in the tail can be as high as 95%. It is then 

of interest to infer if design effort on the tail region should be spent for all the opera-

tional states, or even some, in order to have more accurate predictions of the 𝐷𝑇 .  
Characterization of the load spectra tail can be performed through extreme value 

theory or data truncation, being the second well accepted for wind engineering [3]. 

The challenge of extrapolation with truncation of data has been widely discussed 

before [3,9,10]. It is commonly assumed that low SN materials do not require the 

usage of extrapolation techniques to fit the tail distribution. Results from scaling the 

load spectra, considering and not considering extrapolation, from t with 6 seeded 

simulations to T equal to 50 simulations are discussed for low SN materials in the 
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following section. The question to answer is if there is a significant advantage in 

terms of accuracy from adding the extra effort on an accurate load spectra tail estima-

tion.  

 

3.1 Scaled results of 𝑫 from 𝒕 = 𝟑𝟔𝟎𝟎𝒔 to 𝑻 = 𝟔𝟎𝟎𝟎𝟎𝒔 

Comparative results from approximating the 100 points 𝐷𝑇  using t of 6 seeded simu-

lations at the same Θ state are presented in Table 1. The Peak-Over-Threshold (POT) 

methodology is applied and loading quantiles of 95% and 99% as threshold (u) value. 

Extensive considerations about the POT procedure are given in [10]. The choice of 

these quantiles, previously identified as inappropriate [9], is due the systematic char-

acter required for the procedure.  

Table 1 – Estimation of 𝐷 for 𝑇 = 30000𝑠 using 𝑡 = 3600s.  𝐷𝐺𝑃, 𝐷𝑊 and 𝐷𝐸 are relative 

to the tail fit with the Generalised Pareto, the Weibull and the Exponential distributions. 

 𝒎 =  𝟑 𝒎 =  𝟓 

 × 𝑻/𝒕 𝒖 = 𝑸𝟗𝟓 𝒖 = 𝑸𝟗𝟗 × 𝑻/𝒕 𝒖 = 𝑸𝟗𝟓 𝒖 = 𝑸𝟗𝟗 

𝚯 𝑫 𝑫𝑮𝑷 𝑫𝑾 𝑫𝑬 𝑫𝑮𝑷 𝑫𝑾 𝑫𝑬 𝑫 𝑫𝑮𝑷 𝑫𝑾 𝑫𝑬 𝑫𝑮𝑷 𝑫𝑾 𝑫𝑬 

1 0.94 1.04 1.02 1.05 0.95 0.95 0.95 0.92 1.39 1.20 1.45 0.96 0.97 0.97 

2 0.86 1.30 1.45 1.12 0.88 0.88 0.89 0.86 3.96 6.46 2.06 0.92 0.94 1.00 

3 1.06 1.68 2.33 1.36 1.11 1.13 1.13 1.29 5.90 18.86 2.63 1.55 1.59 1.72 

4 0.95 1.63 1.43 1.71 1.02 1.07 1.05 0.93 3.70 2.33 4.35 1.20 1.34 1.48 

5 1.12 2.34 2.07 2.09 1.19 1.19 1.28 1.45 8.18 5.88 6.05 1.70 1.67 2.51 

6 1.00 1.99 2.87 1.40 1.13 1.18 1.22 1.12 5.19 13.77 2.18 1.48 1.59 2.14 

7 0.95 1.59 1.28 1.62 1.00 1.01 1.05 0.76 2.96 1.41 3.16 0.89 0.90 1.15 

8 1.20 1.86 1.79 3.08 1.26 1.28 1.26 1.25 3.28 2.51 12.61 1.39 1.43 1.41 

9 0.79 0.99 0.97 1.36 0.80 0.81 0.80 0.65 1.03 0.97 2.90 0.68 0.69 0.67 

10 0.88 1.00 0.97 1.03 0.89 0.89 0.89 0.84 1.17 1.03 1.34 0.86 0.87 0.86 

11 0.83 0.93 0.91 0.97 0.84 0.84 0.84 0.78 1.02 0.93 1.24 0.79 0.79 0.79 

12 0.85 1.00 0.98 1.20 0.86 0.86 0.86 0.79 1.13 1.08 2.24 0.80 0.80 0.80 

13 0.91 1.12 1.10 1.26 0.92 0.92 0.92 0.76 1.32 1.18 2.07 0.78 0.79 0.82 

14 0.98 1.25 1.20 1.41 1.00 0.99 1.00 0.97 1.76 1.46 2.80 1.01 1.00 1.05 

15 1.06 1.20 1.17 1.25 1.07 1.08 1.07 1.02 1.47 1.33 1.77 1.06 1.08 1.07 

16 0.96 1.18 1.13 1.24 0.99 1.00 1.00 0.98 1.79 1.42 2.24 1.05 1.07 1.07 

17 0.97 1.17 1.11 1.16 0.99 0.99 0.99 0.89 1.65 1.29 1.60 0.94 0.94 0.93 

18 1.06 1.37 1.32 1.56 1.10 1.07 1.13 1.29 2.55 2.15 4.30 1.45 1.33 1.77 

19 0.93 1.04 1.04 1.11 0.94 0.94 0.94 0.90 1.30 1.22 1.78 0.92 0.92 0.92 

20 0.95 1.06 1.05 1.14 0.96 0.96 0.96 0.95 1.30 1.25 1.84 0.97 0.98 0.99 

21 0.91 1.03 0.98 1.01 0.92 0.92 0.92 0.86 1.44 1.09 1.28 0.89 0.89 0.90 

22 1.03 1.15 1.13 1.17 1.04 1.05 1.04 1.01 1.49 1.33 1.64 1.06 1.09 1.07 

23 1.05 1.12 1.11 1.15 1.05 1.05 1.06 1.08 1.39 1.28 1.55 1.11 1.09 1.11 

24 0.98 1.06 1.04 1.07 0.99 0.99 0.99 0.99 1.32 1.16 1.39 1.01 1.01 1.01 

25 1.02 1.08 1.07 1.11 1.02 1.03 1.03 1.02 1.24 1.20 1.42 1.04 1.06 1.05 

 

The u value of 95% can significantly overestimate the approximation to the tail, Θ =5 

,8. The challenge of extrapolation for OWT is that of accurately predicting, not only 

the tail loading, but also the number of cycles.  As a result, the confidence in the ex-

trapolation is bounded to the number of initial samples applied. In the case of dealing 

with the tail region, six was proven to not be adequate by [3]. Up to 30 simulations 

the mean number of loading occurrences above the 99% quantile is highly variable. In 

most cases, no significant improvements occur in accuracy of the extra effort of stud-

ying the tail spectra region for the tower component. In the cases 9-12, where the 

simple scale up of the load spectra for 
𝑇

𝑡
 is non-conservative, the usage of the POT 

with 95% quantile u improves the estimation at T. Nonetheless, due to the complexity 

of analyzing with the POT, and variability in the accuracy, it may be more interesting 

to direct the design effort to quantify the uncertainty in the initial t used. Further 

works, also for high m values, should discuss the approximation of the extrapolated 
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stress ranges and cycles simultaneously. It may be of interest to study the definition of 

u based not only on quantiles of loading but also, or jointly, on a minimum number of 

expected cycles in order to implement extrapolation.  

4 Conclusions 

The current paper investigated uncertainty in the definition of loading spectra for 

offshore wind turbine tower component fatigue calculations. Variability due to sample 

statistical significance, with reference to the design standards, was studied. Damage 

density for different environmental conditions was also analyzed jointly with the im-

provement in accuracy resulting from the application of different statistical approxi-

mations. This was justified due to the heterogeneity of the damage density for differ-

ent environmental conditions.  

Results showed that, if practicality limits the design effort, resources should be fo-

cused on assessing uncertainty in the load spectra due to the sample size used to de-

fine it. Usage of complex statistical techniques, such as extrapolation, in certain cir-

cumstances improves the design accuracy, however, on its own, does not contribute 

for a robust design procedure and the resulting accuracy is highly case-specific.  
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