The Inner and Outer Algebras of Unified
Concurrency™

Andrew Butterﬁeld[0000—0002—2337— 2101]

Trinity College Dublin, Ireland,
butrfeld@tcd.ie
http://www.scss.tced.ie/

Abstract. Algebras have always played a critical role in Unifying The-
ories of Programming, especially in their role in providing the “laws”
of programming. The algebraic laws form a triad with two other forms,
namely operational and denotational semantics. In this paper we demon-
strate that algebras are not just for providing external laws for reasoning
about programs. In addition, they can be very beneficial for assisting in
the development of theoretical models, most notably denotational se-
mantics. We refer to the algebras used to develop a denotational model
as “inner algebras”, while the resulting algebraic semantics we consider
to be an “outer algebra”. In this paper we present a number of inner alge-
bras that arose in the development of a fully compositional denotational
semantics, called UTCP, for shared-state concurrency. We explore how
these algebras helped to develop (and debug!) the theory, and discuss
how they may assist in the ultimate aim of exposing the outer algebra of
UTCP, which we expect to be very similar to Concurrent Kleene Algebra.

Keywords: Unifying Theories of Programming - Inner Algebras - Outer
Algebras - Shared-Variable Concurrency - Concurrent Kleene Algebras

1 Introduction

The work reported here has been inspired by the “Views” paper [9], which de-
scribes how a range of approaches to reasoning about shared-variable concur-
rency can be mapped down onto instantiations of commutative semi-groups and
monoids. The paper introduced a simple language of syntactic commands, and
used it as a baseline to connect a wide variety of formal approaches to con-
currency. Approaches covered in [9] include various Separation logics [8], type-
theories, Owicki-Gries [20], and Rely-Guarantee [I7], among others. Our inten-
tion in developing a UTP semantics of this command language is to be able to
use it as a foundation on which to build UTP theories of the above approaches
that will be easy to link together. In effect we hope to use the results of the
Views paper as a conceptual architecture to organise our work.

* This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094
to Lero - the Irish Software Engineering Research Centre (www.lero.ie)

http://www.scss.tcd.ie/

2 A. Butterfield

Work we did developing a denotational semantics called “Unifying Theory of
Concurrent Programs” (UTCP), for the Views command language, using near-
homogeneous relations [6], exposed the need for well-defined semantic building
blocks, with very well defined properties. Validating the theory as it was de-
veloped required a lot of test calculations, to uncover its final form, to such an
extent that a rapid “prototyping” calculator was developed to assist in this en-
deavour [5]. This calculator depended crucially on having well-defined laws and
algebras for the semantic building blocks. We use the adjective “inner” to refer
to these, and the term “outer” applies to the top-level laws and algebras of the
language that is under study.

Most investigations into the relationship between algebraic, and denotational
or operational semantics for a language focus on how they relate at the top-level
(e.g., [26l25]). In this paper, we focus mainly on those small inner algebras that
are very helpful in producing a denotational semantics, against which an (outer)
algebraic semantics may be compared.

We next present background material in Section [2] on the Views command
language, and other approaches to the semantics of shared-state concurrency. In
Section [3] we give a high level overview of the architecture of UTCP, explaining
why we have the inner algebras that we do. In Section 4] we explore the inner
algebra and laws of UTCP, which we then follow up on in Section [5] with discus-
sion of the state of the outer theory. In Section [f] we look at related work, with
an emphasis on those in which there is clear evidence of these inner algebras or
laws. Finally, we conclude (Section [7)).

2 Background

2.1 View Command Language

The baseline command language from the Views paper assumes an abstract no-
tion of shared state s, and a notion of atomic actions a that non-deterministically
modify s. The language syntax then takes atomic commands augmented with
skip as a building block and introduces operators for sequencing (;;), choice (+),
parallel composition (||) and iteration (*), where all choices are non-deterministic
[9):

Cu=(a)|skip|C;;C|C+C|C|C|C*

An operational semantics is then defined based on the notion of interleaving
of atomic actions. Our notation differs slightly from that in [9] in that we write
“(a)” and “;” instead of “a” and “;” respectively, for reasons explained in Section

2.2 Denotational Semantics

The UTP theory of concurrent programs (UTCP), whose algebras we discuss
here, gives a denotational semantics to the command language above [6]. De-
notational semantics of shared variable concurrency are not new, with notable

Inner & Outer Algebras 3

work in this area having been done by de Boer [I] and Brookes [2]. This resulted
in semantics based on the notion of transition traces (T'T), which are sequences
of state-pairs. A state pair (sq,sp) denotes the occurrence of some atomic ac-
tion that transformed state s, into state s,. A transition trace is a sequence of
such pairs, with no requirement for the second state of one pair to match the
first state of the next. So, if s; for i € 1...4 denotes four different states, then
((s1,82), (s3,84)) is valid. It states that the command to which it refers first
altered s; to so, and then something else in the environment ran, changing the
state to s3 along the way, so that when the command resumed to perform its
second atomic action, it saw s3, which it duly converted to s4. This is basically
how the interference of the environment is modelled. The denotational semantics
of a command is a set of such traces, with three important healthiness conditions
that describe closures:

— Stuttering: for any trace (..., (s1,82), (83,84),.-.)
there is also a trace (..., (s1, $2), (8, $)(83,84),...) for arbitrary s.
— Mumbling: for any trace (..., (s1,82),(s3,S4),...) where so = s3
then there is also a trace (..., (s1,54),...).
— Interference: for any trace (..., (s1,$2), (3, 84),-..)
there is also a trace (..., (s1,82), (S5, 56)(83, 84), .. .) for arbitrary s5 and sg.

So the semantics is a set of transition traces closed by adding every possible
stuttering action, all possible mumblings, and all possible interference by any
possible environment. With the exception of the semantics of a single atomic
action, these are all infinitely large sets of traces. These closed sets are fine, when
their purpose is to prove that the desired algebraic laws hold for the language
under consideration. There is a UTP treatment of Views by van Staden [23] in
which he makes use of finite transition traces within an operational calculus.

Another interesting approach to a denotational semantics for shared state
concurrency was that reported by Lamport [18]. It is based on the use of temporal
logic along with five key ideas, some his, some from others:

1. Being able to identify “who” performs an action

2. Statement assertions true only if true of every program containing that state-
ment.

3. Being able to transform an assertion about a statement into one about a
larger statement that contains it.

4. Defining relations between control points as aliasing relations among vari-
ables.

5. Allowing stuttering actions, to facilitate decomposing atomic actions.

The UTCP theory we describe here was developed before Lamport’s work was
discovered, but it is interesting to note how our semantics required the re-
discovery of concepts analogous to some of the ideas above.

2.3 UTP Action Semantics

A UTP semantics for parallel programming (UTPP) was developed by Woodcock
and Hughes [24], that considered a language that required all atomic actions, and

4 A. Butterfield

some instances of composite commands to have unique labels. They mapped the
language into an action system, where every atomic command became a guarded
action, with the guard asserting that the action’s label was “enabled”, this being
modelled by it being present in a global label-set Is. Each guarded action, when
enabled, would perform its atomic state-change, remove its enabling label from
ls and then add in labels to enable other guarded actions. In effect, the global
label set was used to manage flow of control. This theory has the following
observations:

s,s" : State (1)
Is,ls" : P Lbl (2)

An atomic action, described as a relation a : State < State with label go,
followed by some “after-label” next (say) would exhibit the following behaviour:

go€lsNanls = (Is\{go}) U{next} (3)

An action-system is a loop that makes a non-deterministic choice, on each it-
eration, of one of the currently enabled actions to run. The chosen action will
change the state, disable itself, and enable something else.

3 Approach

Our goal for a UTP semantics was to obtain one that was not only compositional
(denotational), but was also “local”, in the sense that the semantics would only
talk about the behaviour of the command under consideration, without being
required to also explicitly mention all possible interference. This goal was in-
spired by the success of separation logic at being able to scale to automatically
check very large codebases for pointer errors [21I]. A key enabler of that success
is that separation logic allows the reasoner to focus on the few pointers actually
being manipulated by a program, rather than having to consider (or quantify
over) all possible heaps.

We now present a high-level overview of how UTCP is structured, using a
simple running example, where a, b and ¢ are arbitrary atomic actions:

({@) 3 (0)) Il () (4)

The occurrence of action ¢ will be non-deterministically interleaved with those of
a and b. Action a will occur before action b. The three possible action sequences
(traces) we might observe, assuming no outside interference, are:

a;b;e a;eb cyazb

Here we have represented the sequences using sequential composition (;) which
is typically defined in UTP, using O to stand for all observation variables, as:

P;Q = 30,, P[0y /O'] A Q[Om /O]

Inner & Outer Algebras 5

lgl lg]:
Rgi::/g]
m out
in out
O e B O
ng ng:
Fig. 1. Atomic action (a). Fig. 2. Parallel composition P || Q.

This then raises the question of why we use ;; in our command syntax for se-
quencing. The simple reason is that ;; is not sequential composition as defined
in Eqn. p] because that definition not only requires the starting state of @ to
be the ending state of P, but it also implies that no interference can occur be-
tween the end of P and the start of Q. In our example, an execution of {(¢) can
come between (a) and (b). In effect, in any programming language that admits
concurrent threads and shared variables, the semantics of sequencing (;;) is not
sequential composition as defined above. Instead, it is a form of “loose” sequenc-
ing in that its first component must terminate before the second can start, but
it places no constraints on how the state might be altered in between.

3.1 Labels and Generators

We provide a semantics based on shared-state s and control-flow label-sets Is,
in a fashion similar to Eqn. This explains why we use (a) to denote the
atomic command that performs atomic state-change a, as the latter modifies
only s, while the former modifies both s and [s. Unlike UTPP, we do not have
explicit labels in our command syntax, but instead we allow the semantic rules
to generate appropriate unique labels, in a very controlled fashion.

We assume that two label-valued observation variables are associated with
every command (atomic or composite), called in and out. The command starts
executing when the label that is the value of in is put into the global label set
ls. As the command executes, label in will be removed from [s, and eventually,
as the command terminates, label out will appear in [s’. The simplest instance
of this is an atomic action, represented symbolically in Fig. [I, with a simplified
version of its behaviour shown in Eqn.

in€lsNhanls’ = (ls\ {in}) U {out} (5)

The term above is quite complex, so we introduce a the following shorthand,
where E and N are label-sets, and a is an atomic action:

A(Ela|[N)=EClsAaAnls'=(Is\E)UN (6)

We typically write E or N by listing the labels, without full set-notation, writing
A(in|alout) rather than A({in}|a|{out}).

6 A. Butterfield

In order to give semantics to composite commands, we need to utilise a
way to generate labels that guarantees their uniqueness. We require two ways
to use any given generator G : Gen: one that generates a label and a new
generator (new : Gen — Lbl x Gen), while the other splits a generator into two
(split : Gen — Gen x Gen). We frequently wish to single out one or other of the
components of the result pairs of both the above functions, and so have defined
a very compact shorthand notation.

G € Gen :=¢g the “root” generator
| G. generator after label produced from G
| G; first generator from split of G
| G2 second generator from split of G
L € Lbl ::= ¢z label produced by generator G

So, for example, £,.5 is shorthand for:
(fst o new o snd o split o snd o new)(g)

Here Gen is an unusual expression language in that it has only one variable g, and
three postfix operators, _., .1, and _». Even more unusual is the label expression
language Lbl, which consists solely of the application of prefix function £_ to a
generator, to get the label it generates. Given a generator G we can (i) get a
new label and generator: G — (¢, G.), or (ii) split a generator: G — (G1,G>).

3.2 Semantics with Generators

The way we use generators in our semantics is to introduce a new observation
variable g that denotes a label generator that is available. The intuition behind
its use is that a composite construct will use g to generate labels for its own use,
and split it and pass the resulting generators into its subcomponents. Passing
generator G into sub-component P is simply achieved using substitution: P[G/g].
In general, a composite may also need to add some control-flow actions, which
modify Is, but do not alter s. These perform an identity action (i7) on state:

W=s =s (7)

Let us now consider sequencing (a) and (b). In effect, we want to arrange it so
that the out label of (a) is the same as the in label of (b). We do this by taking
generator g, and applying the prefix ¢ operator to obtain label ¢,, which then
is substituted appropriately. We then take the disjunction of the two modified
atomic actions, which treats both actions as being part of a non-deterministic
choice, as is done in UTPP [24].

(@)[lg/out] v (b)[tg/in] (®)

= A(in|alout)[ly/out] V A(in|blout)[l,/in] (9)
= A(inlally) V A(Ly|blout) (10)

Inner & Outer Algebras 7

This is not the full picture as there are healthiness conditions to be applied, and
one of them is decidedly non-trivial in its effects. These will be presented and
discussed later.

Now, consider putting (c) in parallel with (a) ;; (b). We show the general case
for arbitrary commands P and @ in Fig. |2l In effect we split a generator, denoted
by ¢ into two (g1, g2), generate two labels from each to replace the in and out
of P and @@ and then add two special control-flow actions. The first replaces
the in label for the parallel construct as a whole, by the two generated in-labels
(I41,142). The second replaces the two generated out-labels ({41.,l42.) by the out
label of the whole construct. In essence, given P and @Q to be put into parallel,
we make useﬂ of the following disjunction of two control actions and the two
components with appropriate label and generator substitutions:

A(inlii)lg, lg2)
\ P[gl::, lgl; lgl;/g, in, Out]

V Qlga::, lg2, Zg2:/g, in, out]
V A(lg1:, lg2:|ii|out)

In our running example, P would be our semantics for (a) ;; (b) and @ would be
(c). The latter, after substitution, would appear as A(lg2|c|ly2). The former will
contain A(lg1]allg1..) and A(€g1..|b|lg1.), as well as extra components introduced
by the healthiness conditions.

3.3 Static and Dynamic Observables

In summary, in addition to observables s, s’,[s,ls’, we have added in, out, and
g. However, this new trio of variables is quite distinct in character, in that they
are used within composites to put sub-components into context, by performing
substitutions on generators and labels. This contextualisation is static, in that
it depends on the structure of the program, and it does not change over time.
By contrast, observables like s and ls are dynamic: they track observables whose
values change over time. This distinction is key to making the semantics work.

We now proceed to define sequential composition in our theory in the stan-
dard way, provided that we only reference dynamic variables:

P;Q = 38y, 18, Plsi, 180/, 18" A Qsm, 1sm /s, 1s] (11)

We can also introduce our notion of Skip (IT) which is an identity for sequential
composition:
IH=s=snls'=ls (12)

No mention is made in either of the above definitions of in, out, or g — these
are static, and have no dashed counterparts.
We can now present a complete definition of the alphabet of UTCP predi-
cates:
s, s’ : State Is,1s’ : PLbl in, out : Lbl g:Gen

! We have to apply healthiness conditions as well, discussed later.

8 A. Butterfield

3.4 Wheels-within-Wheels

Another point to note is that our semantics converts any command into a large
disjunction (non-deterministic choice) of atomic and control-flow actions, which
precisely correspond to the guarded actions produced in the UTPP semantics
[24]. In UTPP, a predicate transformer (run) is applied to the disjunction which
initialises the Is and then iterates until/if a distinguished termination label ap-
pears in it, generating all possible complete execution traces. This disjunction,
produced by both UTPP and UTCP, is static, and in UTPP, run effectively
produces the dynamic behaviour. In UTCP, we wanted the predicates generated
at every level to capture both static structure, and dynamic behaviour. The in-
tuition was to find a way to “run” at every level in a command program. Each
atomic action would be trying to spin continually, awakening when its in label
appeared in the label set [s. We need a healthiness condition, to ensure that
atomic actions within iterations “stay alive”, which basically says the possible
behaviour of a command is logically equivalent to making a non-deterministic
choice to iterate it zero or more times This healthiness condition has to be applied
to the semantics of every command, atomic and composite, leading us to call it
“Wheels within Wheels” (WwW). Getting the definition of WwW right was a
major challenge, that drove the development of the rapid-prototype calculator
reported in [5]. The key was that we needed to iterate PV II, which effectively
means adding in the possibility of a stuttering step everywhere, leading to the
following definition:

=] (13)

ptlz=p.p (14)

WwW(P)=\/ P’ (15)
1€EN

One key observation here is that with UTCP we need fairly ubiquitous stutter-
ing, just as found in the other compositional theories discussed earlier. Another
somewhat striking observation is that we produce a potentially infinite disjunc-
tion of P sequentially composed with itself multiple times! This presents quite
a challenge for the use of this semantics, and was a key motivation for the UTP
Calculator development [5], but it is key to making things work. Given iteration-
free programs, the number of iterations actually required is bounded.

Importantly, for a healthiness condition, WwW is indeed both idempotent
and monotonic:

PCQ = WwW(P)C WwW(Q) (16)
WwW(WwW(P)) = WwW(P) (17)
3.5 Label Healthiness

We also need some healthiness conditions on labels, generators, and the global
label-set Is. One, “Disjoint labels” (DL), requires that in # out, and neither in

Inner & Outer Algebras 9

nor out appear in labs(g). We introduce more shorthand, using {L1|Ls|...|L,}
for LW LaW- - -WL,, and using G as a shorthand for labs(g) in a context where a
label-set is expected rather than a generator. This allows us to write the disjoint
label condition as {in|g|lout}. This is a static invariant that needs to be satisfied
by all healthy P:

DL(P) = P A {in|g|out} (18)

Another, “Label Exclusivity” (LE), requires that labels in, out can never occur
together in s, and also never when any member of labs(g) is present. Again, we
introduce a shorthand [L1|Ls| . ..|L,] which asserts for any two different L; and
Lj, that L; Nls # 0 = L;Nls = (. We also use [L1|Ls|...|L,] to denote
the above assertion with Is replaced by Is’ throughout. This is now a dynamic
invariant that needs to be satisfied by all healthy P:

LE(P) = P A [in|g|out] A [in|g|out]’ (19)

Both DL and LE are clearly idempotent and monotonic w.r.t refinement.
We can now define a top-level healthiness condition called W:

W(P) 2 DL(LE(WwW (P))) (20)

So our full definitions of (a) and P || @, and the other constructs, for com-
pleteness, can now be shown in Fig.

(a) = W(A(in|alout)) (21)
skip = (i) (22)
P53 Q= W(Plga,ly/g,0ut] V Qlg:2,4/g, in]) (23)

P Q= W(A(inlii|lg1,lg2) V

Plgi::,£g1,%41:/g,in, out] V

Qlg2::, L2, Lg2:/ g, in, out] V

A(Lg1:, Lg2:|ii|out)) (24)
P +Q = W(A(inlii|lg1) V A(inlii|y) V

Plg1::/g] V Qlg2::/g] v

A(Lg1:|ii|out) V A(Lga:|it]out)) (25)

P* = W(A(inlii|lty) V

A(Lglii|ly:) Vv

A(Lg|ii|out) V

Plg.:,£g:,£g/g,in,0ut]) (26)

Fig. 3. Command semantics in UTCP

In the following sections, we look at in more detail to uncover the laws and
algebras that underpin the semantics just described.

10 A. Butterfield

4 Inner Algebras

Here we present some of the algebras and laws that characterise the underlying
semantic domains of UTCP.

4.1 Labels and Generators

We need to be sure that however we implement, or model, label generation, that
we are sure that unique labels are produced. We can give a minimal specification
by positing a function labs that takes a generator as input, and returns the set
of all labels it could possibly generate, and then requiring that: (i) any label
produced from a call to new can never occur in the modified generator returned
by that call, and (ii) the two generators produced by split have disjoint label-sets:

labs : Gen — P Lbl (27)
Lo ¢ labs(G)) (28)
labs(G1) Nlabs(Ga) =0 (29)

There is a simple way to model/interpret such generators and labels that auto-
matically satisfies the above requirements, plus the following stricter one (W is
disjoint union):

labs(G) = {lg} Wlabs(G.) Wlabs(G1) W labs(G2) (30)

We simply take labels and generators to be generator expressions themselves,
interpreted as strings starting with ‘g’ and followed by zero or more ‘:’, ‘1’; and
‘2’. The ¢ operator returns the generator string as the label. The :, 1, and 2 oper-
ators append ‘', ‘1’, and ‘2’ respectively to the end of the generator stringﬂ The
advantages of this are two-fold. First, it’s simple to describe (and implement,if
needed), compared to trying to produce labels as natural numbers (say), that
satisfy the requirements above. In particular, there is no need to have a central
pool of already generated labels that can be accessed by all the generators that
result from new and splits. Secondly, this interpretation of labels as sequences
of symbols that basically record how they were generated from some ‘root’ gen-
erator g, gives us a very easy way to support some of the ideas of Lamport [I§],
(notably [1I3] and[4] on g3). Given a top-level command P that mentions atomic
action A({glallg.), then G, as a string, identifies the path from the top-level
down to that atomic action, so answering the “who” question (idea .
Performing a substitution of G, for g in G (Gy[G4/9]) is equivalent to gener-
ator string concatentation, resulting in G4p. Given two generator strings G, and
G, associated with commands P and @ say, we can answer questions such as: (i)
is P a sub-component of) (G, a prefix of G,,)? or (ii) do P and) have a parent
component in common, other than the top-level (G, and G, have a common
prefix)? A key point to understand about the semantics is that the way sub-
stitutions for g, in and out are used maintains this simple relationship between
components and sub-components, which makes it easy to facilitate Lamport’s

idea 3l

2 A form of Herbrand interpretation!

Inner & Outer Algebras 11

4.2 Ground Expressions

The distinction between the dynamic observables (s,s’,ls,ls’) and the static ones
(in,out,g) is crucial. In particular, the relationship between substitution and
sequential composition is key. Consider applying a substitution ¢ to the results of
a sequential composition of P and (). On what circumstances should substitution
distribute in through such a composition?

(P;Q)o =2 Po; Qo

If o involves dynamic observations, then this should clearly not hold. However,
all the substitutions in our semantics are used to modify labels in a systematic
way down through a sub-component. So if ¢ only involves static observations,
then we do want this distributive property.

Another is issue is our use of the healthiness condition WwW in our se-
mantics. This effectively replaces P by a nondeterministic iteration of PV II,
which performs an arbitrary number (zero or more) of sequential compositions.
We want certain predicates, and substitutions, to distribute through WwW.

To this end, we first define the notion of a ground term, as one that only refers
to the static observables g, in, and out. A notable example from our semantics
is the invariant {in|glout} associated with the DL healthiness condition.

Ground predicates K distribute freely through semantic sequential composi-
tion:

KAP;Q)=(KAP);Q (31)
=P (KAQ) (32)
=(KAP); (KNQ) (33)

These are all an easy consequence of the way in which we defined sequential
composition to only involve the dynamic observables. We also note that sequen-
tial composition is idempotent on ground predicates, which clearly indicates that
the observables in, out, and g, are truly unchanging.

K:K=K (34)

Finally, we can show that ground predicates K freely distribute in and out of
WwW:

K AWwWW(P) = WwW (K A P) (35)

A ground substitution =y is one where the target variables are static, and all
the replacement terms (G, I,0) are ground. Such a substitution will have the
following most general form:

v =[G, 1,0/g,in,out] (36)

A key property of ground substitutions is that they distribute through sequential
composition (and also have no effect on IT):

(P;Q)y=Py; Qv (37)

I~y =1I (38)

12 A. Butterfield

They also distribute into the label-set healthiness conditions.

{Li...|La}y = {L1]. .. |Lav} (39)
[La] | La)y = [L13] - | L] (40)

We also have the result that the composition of two ground substitutions is itself
ground:

[G1,11,01/g,in, out]ya = [G17y2, [1y2, O172/ 9, in, out] (41)

4.3 Sound Substitutions

Consider the ground substitution [g, ¢y, {4/g, in, out] applied to the label disjoint-
edness assertion {in|glout}. We obtain the result {¢4]g|¢,}, which violates the
DL healthiness condition. To prevent this we need the notion of a sound substi-
tution ¢, which is a ground substitution where the three replacement expressions
themselves collectively satisfy DL:

¢ =1|G,1,0/g,in,out] where {I|G|O} (42)

We note that soundness is also preserved by substitution composition, and also
that every substitution used in the semantics is sound.

The disjoint-label healthiness condition predicate is ground, so DL distributes
through sequential composition

DL(P; Q) = DL(P) ; DL(Q) (43)

The label exclusivity invariant mentions dynamic observables ls and Is’, so we
only get a weaker form of distributivity:

LE(P) ; LE(Q) = LE(LE(P) ; LE(Q)) (44)
= LE(P; LE(Q)) (45)

4.4 Actions

The core of the UTCP semantics is the notion of a labelled atomic action
A(E|a|N). It is enabled when E C Is, and if “chosen” to execute, performs a
state change s — s’ that is consistent with the relation a. The semantics of any
command reduces to a tree of disjunctions of these, wrapped in the healthiness
conditions at every level. The effect of WwW is to perform lots of sequential
compositions of these with themselves. What is of considerable importance, con-
sequently, is how labelled atomic actions interact with sequential composition.
We start by considering an action composed with itself:

A(E|a|N) ; A(E|a|N) = E C N A A(E|a?|N) (46)

Inner & Outer Algebras 13

All atomic actions in the semantics use labelled actions that satisfy DL, in which
case we have ENN = (). For these actions the above self-composition yields false.
If we consider the full semantics for {(a):

DL(LE(WwW (A(in|alout))))

then the computation of A(in|ajout)? required by WwW is false, because
we have invariant {in|g|lout}, and so are all the subsequent compositions. So
WwW (A(in|a|out)) becomes IT V A(in|alout), giving the result:

(a) = {in|glout} A [in|glout] A (II V A(in]alout))

Unfortunately, our labelled atomic actions are not closed under sequential
composition, except under certain conditions, the most notable being when the
two actions have no labels in common. In most cases however, we have to in-
troduce an extended form, that differentiates between the enabling labels (E)
and those then removed (R). Our basic labelled action is then defined setting
R=F.

X(El|a|R|A)=EClsNhanls’=(Is\R)UA (47)
A(FEla|N) = X (E|a|E|N) (48)
We can calculate that the composition of two extended actions is an extended

action, provided the label-sets involved satisfy certain conditions that basically
ensure that the second action is enabled after the first one runs.

X (E1|a|R1]A1); X (E2|b|Re|As) (49)
=FEyN(R1\A1) =10
/\X(E1 U (EQ\Al) | a ;g b | R1 U Ry | (A1\R2) UAQ)

Here we introduce sequential composition restricted to s and s':
a;,b=3s,, ealsy,/s'] Ablsm/s], (50)
i ,a=a=a;,il (51)

The result for composing two original atomic actions to produce an extended
one is then easily obtained.

A(E1|a[Ny) 5 A(E2[b|N2) (52)
= EQ N (El\Nl) == @
/\X(El U (EQ\Nl) | a g b | E1 UE2 | (Nl\EQ) UNQ)

We finish actions by noting that ground substitutions distribute into their
labels:
A(E|a|N)vy = A(E~|a|N~) «-A-gamma-subs-»
X(Ela|R|A)y = X(E~|a|Ry|Av)

14 A. Butterfield

4.5 Invariants

Healthiness conditions DL and LE introduce invariants such as {in|g|out},
[in|glout] and/or [in|g|out]’. The execution of an atomic action cannot alter
the truth of the first one, but it can effect the other two. We require atomic
action commands, including control-flow actions, to preserve the LE invariant.
For basic atomic actions, this is straightforward, and we can show it holds un-
der any sound substitution ¢, which covers all the uses of atomic actions as
sub-components of composite commands.

{in|glout}s A [in|g|out]s A A(in|a|out)s = [in|g|out]'s (53)

Finally, given extended actions X; and X5, we have a law about how they
interact with law invariants (I; and I):

(Il A Xl) ; (12 A XQ) =L A Ig[(lS\Rl) U A1/l$] A (Xl ; XQ) (54)
= 112 VAN (X1 3 X2) (55)
where Iij = Iz A I][(IS\Rz) @] AZ/ZS] (56)

Given that invariants are preserved, as a result of careful theory construction,
we might ask if they can be dropped to simplify matters, especially LE whose
distributivity is limited. Unfortunately, we can’t omit them, as they are very
useful when doing calculations. It turns out that every instance of X(...) that
is left over, can be converted back into an equivalent instance of A(...), because
the invariant gives extra information to allow this simplification. A canonical
example of this is X (Lq|a|L1, La|L3) given invariant [Li|Ls|...]. The action
is enabled if Ly C [s, removes L1 and Lo from [ls, and adds in Lz. However
the invariant forbids Lo from being in Is when this action is enabled, so the
removal of Lo is superfluous. So when enabled, the above action is equivalent to
X (L1|a|L1|L3), which is the same as A(Lq|a|L3), by Eqn.

5 Outer Algebras

The notion of Concurrent Kleene Algebra (CKA) (A, +,%,;,®,©,0,1) is being
put forward as a baseline for the semantics of all programming languages[16],
and is defined as a bi-Kleene algebra over concurrent monoid (A4, *,;,1,<). In
that paper, a following rough correspondence between CKA operators and those
of CSP are given: + is non-deterministic choice, ; is sequential composition, * is
some form of parallelism, < is refinement, 1 is SKIP, 0 is miracle, and the circled
operators are iterated parallel and sequential composition.

The command language does not have all of those operators, and so we cannot
claim that its semantics forms a CKA. If we define

skip = (i7) (57)
PCQZP=P+Q (58)

Inner & Outer Algebras 15

Lai ler:

in O—< O out

then we can posit the following laws:

skip;; P=P
P skip=P
P (@QuR)=(P3Q) R
PllQ=Q|P
PIQIR)=®F[Q)IR
P+P=P
P+Q=Q+P
P+(Q+R)=(P+Q)+R
P+QCP

PEQ=(P+Q)=0Q

P* =skip+ P;; P*

P (P || P3s) T (Prs; Po) || Ps
P ;RCP | P

Here we discuss how we might proceed to prove that these laws are a consequence
of our semantics. The best approach is to explore simple examples of the above
laws using atomic actions. We will consider the follow three in order, chosen to
reveal key issues we have to tackle.

(@) 1| (&) = (b) I (@) (59)
(@) 5 ((0) 53 () = ({a) 5 (b)) 3 (€) (60)
(@) + {a) = {a) (61)

The semantics of parallel can be pictured as per Figure[2Jon The instantiation
of this for both sides of the parallel commutativity law example (Eqn. are
shown in Figures E| and [5| We can see that the only difference is that the £, n,
labels have been swapped around. This suggests that we should either ignore
the particular labels and just look at the structure, of perhaps assume that any
bijective mapping of labels has no effect on behaviour.

When we consider the associativity of sequencing (Eqn. , the two sides
are shown in Figures [6] and [7]] Again there is an obvious one-to-one mapping
from labels that makes them equivalent.

16 A. Butterfield

in out

o—] a |—o—~|l b |—o—|1“ c F—o

Fig. 6. (a) ;; ((b) 3; ().

Zgl Ia_l Zg]:
|
in out
| a | in out
Zg2 Zg2:
Fig. 8. {(a) + (a). Fig. 9. (a).

Things get more complicated when we compare the diagrams (Figures
and E[) for the third example, the idempotence of choice (Eqn. . This requires
more thought: only one of the atomic actions in the lefthand side will run. Unlike
the parallel example, where the “production” of both £4; and {45 result from the
consumption of in, here we have have two distinct “edges” from label in, so once
in is in ls, both edges are enabled, but only one is chosen non-deterministically,
so either f4; or {4 are enabled, but not both. As in will be removed from Is,
so there is no immediate chance of the other option being enabled. What we
have to realise is that control-flow actions are important but from an external
observer’s perspective, as long as they are well-behaved, the precise details do
not matter. In effect this means that our notion of similarity of these graphs
needs to be based on a form of bijection-like relation between non-empty sets of
labels, where sets being related may not have the same size. The bijection-like
aspect would arise in that if Ly and Ly are related, then none of the elements of
either set may occur in any other pair of related sets. In this example we would
propose the relation:

{({in, ly1, g2}, {in}), ({€g1:, g2, out}, {out})}

The upshot of all of this, is that on possible plan to prove the laws has two steps:
the first is to show that the laws always induce pairs of graphs like the above
related by some relational bijection. The second is to show that these graphs
induce the behaviour that results from calculating with the semantics.

There is another alternative to be considered: the UTCP semantics define
predicates, but their structure is very graph-like. We can view the labelled nodes
as vertices of the graph, and labelled actions as action-labelled edges connecting
a set of “input” vertices to a set of “output” vertices. We can imagine a vertex
coloured black or white to indicate if its label is present in ls. With this graph
interpretation of the denotational semantics (predicate) rules, we should be able

Inner & Outer Algebras 17

to produce an operational semantics. This may provide an alternative route to
proving the laws.

6 Related Work

The most obvious use of inner algebras in UTP can be found in those theories,
usually of concurrency, that make use of trace observations. We can find these
in the UTP book, for example the definition of the trace merge operator [15]
Defn 8.19, p203]. We also see a variant of it used in Circus[19]. It is particulary
notable in any work adding time to traces, such as Circus-time [22], “slotted”-
Circus[7IT3|T4], and recent work on trace algebras being used for hybrid semantics
[10]. A particularly interesting example of inner algebras and laws, comes from
work mechanising UTP in Isabelle/HOL [12]. In this, the traditional pre/post
divide becomes a pre/peri/post divide, in which the behaviours when waiting for
an external event are captured as distinct peri-conditions [I1]. Certain idioms
commonly used when defining pre-, peri-, and post-conditions are abstracted out
and shown to obey useful laws. These prove to be very valuable for high speed
automated proof.

7 Conclusions

While describing work to develop and validate a denotational semantics for
the command language in UTP, we have discovered the value of algebra as a
tool to help develop such theories. This has been driven by the need to man-
age the complexity inherent in the underlying semantic domains. It is partic-
ularly helpful when the area has conceptual difficulties, and you need health-
iness conditions, such as WwW| that are highly counter-intuitive. The need
for some automation to help assess emerging theories drove the development
of the “UTP calculator” described in [5]. What became very clear from that
work is that good algebra design leads to very effective and fast calculation,
with a lot of scope for automation. The calculator can have been considered a
stop-gap measure, but has inspired a complete re-design of the Saoithin/UTP2
theorem prover, originally described in [34]. This new version, being developed
at |https://github.com/andrewbutterfield /reasonEq will support both proof and
calculation, with scope for considerable automation.

References

1. de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: The failure of failures
in a paradigm for asynchronous communication. In: Baeten, J.C.M., Groote, J.F.
(eds.) CONCUR ’91, 2nd International Conference on Concurrency Theory, Ams-
terdam, The Netherlands, August 26-29, 1991, Proceedings. Lecture Notes in Com-
puter Science, vol. 527, pp. 111-126. Springer (1991). |https://doi.org/10.1007/3-
540-54430-5 84, |http://dx.doi.org/10.1007/3-540-54430-5_84

https://github.com/andrewbutterfield/reasonEq
https://doi.org/10.1007/3-540-54430-5_84
https://doi.org/10.1007/3-540-54430-5_84
http://dx.doi.org/10.1007/3-540-54430-5_84

18

10.

11.

12.

A. Butterfield

. Brookes, S.D.: Full abstraction for a shared-variable parallel language. Inf. Com-

put. 127(2), 145-163 (1996). https://doi.org/10.1006/inco.1996.0056, http://dx.
doi.org/10.1006/inco.1996.0056

Butterfield, A.: Saoithin: A theorem prover for UTP. In: Unifying Theories of Pro-
gramming - Third International Symposium, UTP 2010, Shanghai, China, Novem-
ber 15-16, 2010. Proceedings. pp. 137-156 (2010). https://doi.org/10.1007,/978-3-
642-16690-7°6, http://dx.doi.org/10.1007/978-3-642-16690-7_6

Butterfield, A.: The logic of U ~(TP)2. In: Unifying Theories of Programming, 4th
International Symposium, UTP 2012, Paris, France, August 27-28, 2012, Revised
Selected Papers. pp. 124-143 (2012). https://doi.org/10.1007/978-3-642-35705-3 6,
http: //dx.doi.org/10.1007/978-3-642-35705-3_6

Butterfield, A.: UTPCalc - A Calculator for UTP Predicates. In: Bowen, J.P.,
Zhu, H. (eds.) Unifying Theories of Programming - 6th International Sym-
posium, UTP 2016, Reykjavik, Iceland, June 4-5, 2016, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 10134, pp. 197-216. Springer
(2016). |https://doi.org/10.1007/978-3-319-52228-9°10, https://doi.org/10.1007/
978-3-319-52228-9_10

Butterfield, A.: UTCP: compositional semantics for shared-variable concurrency.
In: da Costa Cavalheiro, S.A.; Fiadeiro, J.L. (eds.) Formal Methods: Foundations
and Applications - 20th Brazilian Symposium, SBMF 2017, Recife, Brazil, Novem-
ber 29 - December 1, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10623, pp. 253-270. Springer (2017). https://doi.org/10.1007/978-3-319-70848-
5_16, |https://doi.org/10.1007/978-3-319-70848-5_16

Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: Davies, J., Gibbons,
J. (eds.) Integrated Formal Methods, 6th International Conference, IFM 2007,
Oxford, UK, July 2-5, 2007, Proceedings. Lecture Notes in Computer Science,
vol. 4591, pp. 75-97. Springer (2007). https://doi.org/10.1007/978-3-540-73210-
5.5, https://doi.org/10.1007/978-3-540-73210-5_5

Calcagno, C., O’'Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July
2007, Wroclaw, Poland, Proceedings. pp. 366-378. IEEE Computer Society (2007)
Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Giacobazzi, R., Cousot, R.
(eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. pp.
287-300. ACM (2013). |https://doi.org/10.1145/2480359.2429104

Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of
time with generalised reactive processes. Inf. Process. Lett. 135, 47-52
(2018). https://doi.org/10.1016/].ip.2018.02.017, https://doi.org/10.1016/j.ipl.
2018.02.017

Foster, S., Ye, K., Cavalcanti, A., Woodcock, J.: Calculational verification of re-
active programs with reactive relations and kleene algebra. In: Desharnais, J.,
Guttmann, W., Joosten, S. (eds.) Relational and Algebraic Methods in Computer
Science - 17th International Conference, RAMiCS 2018, Groningen, The Nether-
lands, October 29 - November 1, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11194, pp. 205-224. Springer (2018). https://doi.org/10.1007/978-3-
030-02149-8_13, https://doi.org/10.1007/978-3-030-02149-8_13

Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engi-
neering framework. In: Naumann, D. (ed.) Unifying Theories of Programming -

https://doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1006/inco.1996.0056
http://dx.doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-642-16690-7_6
https://doi.org/10.1007/978-3-642-16690-7_6
http://dx.doi.org/10.1007/978-3-642-16690-7_6
https://doi.org/10.1007/978-3-642-35705-3_6
http://dx.doi.org/10.1007/978-3-642-35705-3_6
https://doi.org/10.1007/978-3-319-52228-9_10
https://doi.org/10.1007/978-3-319-52228-9_10
https://doi.org/10.1007/978-3-319-52228-9_10
https://doi.org/10.1007/978-3-319-70848-5_16
https://doi.org/10.1007/978-3-319-70848-5_16
https://doi.org/10.1007/978-3-319-70848-5_16
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1145/2480359.2429104
https://doi.org/10.1016/j.ipl.2018.02.017
https://doi.org/10.1016/j.ipl.2018.02.017
https://doi.org/10.1016/j.ipl.2018.02.017
https://doi.org/10.1007/978-3-030-02149-8_13
https://doi.org/10.1007/978-3-030-02149-8_13
https://doi.org/10.1007/978-3-030-02149-8_13

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Inner & Outer Algebras 19

5th International Symposium, UTP 2014, Singapore, May 13, 2014, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 8963, pp. 21-41. Springer
(2014). https://doi.org/10.1007/978-3-319-14806-9°2, http://dx.doi.org/10.1007/
978-3-319-14806-9_2

Gancarski, P., Butterfield, A.: The Denotational Semantics of slotted-Circus.
In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods, Second World
Congress, FEindhoven, The Netherlands, November 2-6, 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5850, pp. 451-466. Springer (2009).
https://doi.org/10.1007 /978-3-642-05089-3_29

Gancarski, P., Butterfield, A.: Prioritized slotted-Circus. In: Cavalcanti, A.,
Déharbe, D., Gaudel, M., Woodcock, J. (eds.) Theoretical Aspects of Computing
- ICTAC 2010, 7th International Colloquium, Natal, Rio Grande do Norte, Brazil,
September 1-3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6255,
pp- 91-105. Springer (2010). https://doi.org/10.1007/978-3-642-14808-8_7

Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
Hoare, C.A.R., Mdéller, B., Struth, G., Wehrman, I.: Concurrent kleene algebra and
its foundations. The Journal of Logic and Algebraic Programming 80(6), 266 — 296
(2011). https://doi.org/https://doi.org/10.1016/j.jlap.2011.04.005, http://www.
sciencedirect.com/science/article/pii/S1567832611000166), relations and Kleene
Algebras in Computer Science

Jones, C.B.: Tentative steps toward a development method for interfer-
ing programs. ACM Trans. Program. Lang. Syst. 5(4), 596-619 (1983).
https://doi.org/10.1145/69575.69577, |http://doi.acm.org/10.1145/69575.69577
Lamport, L.: An Axiomatic Semantics of Concurrent Programming Lan-
guages, pp. 77-122. Springer Berlin Heidelberg, Berlin, Heidelberg (1985).
https://doi.org/10.1007/978-3-642-82453-1'4, https://doi.org/10.1007/
978-3-642-82453-1_4

Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput 21(1-2), 3-32 (2009), http://dx.doi.org/10.1007/s00165-007-0052-5
Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319-340 (1976). https://doi.org/10.1007/BF00268134, https://doi.org/10.
1007/BF00268134

Pym, D., Spring, J.M., O’Hearn, P.: Why separation logic works. Philosophy &
Technology (May 2018). https://doi.org/10.1007/s13347-018-0312-8

Sherif, A., He, J.: Towards a time model for circus. In: George, C., Miao, H.
(eds.) Formal Methods and Software Engineering, 4th International Conference
on Formal Engineering Methods, ICFEM 2002 Shanghai, China, October 21-
25, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2495, pp. 613—
624. Springer (2002). https://doi.org/10.1007/3-540-36103-0-62, https://doi.org/
10.1007/3-540-36103-0_62

van Staden, S.: Constructing the views framework. In: Naumann, D. (ed.) Unify-
ing Theories of Programming - 5th International Symposium, UTP 2014, Singa-
pore, May 13, 2014, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8963, pp. 62-83. Springer (2014). https://doi.org/10.1007/978-3-319-14806-
9'4, |http://dx.doi.org/10.1007/978-3-319-14806-9_4

Woodcock, J., Hughes, A.P.: Unifying theories of parallel programming. In: George,
C., Miao, H. (eds.) Formal Methods and Software Engineering, 4th International
Conference on Formal Engineering Methods, ICFEM 2002 Shanghai, China, Oc-
tober 21-25, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2495, pp.
24-37. Springer (2002). https://doi.org/10.1007/3-540-36103-0°5

https://doi.org/10.1007/978-3-319-14806-9_2
http://dx.doi.org/10.1007/978-3-319-14806-9_2
http://dx.doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/978-3-642-05089-3_29
https://doi.org/10.1007/978-3-642-14808-8_7
https://doi.org/https://doi.org/10.1016/j.jlap.2011.04.005
http://www.sciencedirect.com/science/article/pii/S1567832611000166
http://www.sciencedirect.com/science/article/pii/S1567832611000166
https://doi.org/10.1145/69575.69577
http://doi.acm.org/10.1145/69575.69577
https://doi.org/10.1007/978-3-642-82453-1_4
https://doi.org/10.1007/978-3-642-82453-1_4
https://doi.org/10.1007/978-3-642-82453-1_4
http://dx.doi.org/10.1007/s00165-007-0052-5
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/s13347-018-0312-8
https://doi.org/10.1007/3-540-36103-0_62
https://doi.org/10.1007/3-540-36103-0_62
https://doi.org/10.1007/3-540-36103-0_62
https://doi.org/10.1007/978-3-319-14806-9_4
https://doi.org/10.1007/978-3-319-14806-9_4
http://dx.doi.org/10.1007/978-3-319-14806-9_4
https://doi.org/10.1007/3-540-36103-0_5

20

25.

26.

A. Butterfield

Zhu, H., He, J., Qin, S., Brooke, P.J.: Denotational semantics and its algebraic
derivation for an event-driven system-level language. Formal Asp. Comput 27(1),
133-166 (2015), |http://dx.doi.org/10.1007/s00165-014-0309-8

Zhu, H., Yang, F., He, J.: Generating denotational semantics from algebraic se-
mantics for event-driven system-level language. In: Qin, S. (ed.) Unifying The-
ories of Programming - Third International Symposium, UTP 2010, Shanghai,
China, November 15-16, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6445, pp. 286-308. Springer (2010). https://doi.org/10.1007/978-3-642-16690-
7°15, |https://doi.org/10.1007/978-3-642-16690-7_15

http://dx.doi.org/10.1007/s00165-014-0309-8
https://doi.org/10.1007/978-3-642-16690-7_15
https://doi.org/10.1007/978-3-642-16690-7_15
https://doi.org/10.1007/978-3-642-16690-7_15

	The Inner and Outer Algebras of Unified Concurrency

