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Abstract. In this paper, we introduce Circus2CSP, a tool that auto-
matically translates Circus into CSPM , with an implementation based on
a published manual translation scheme. This scheme includes new and
modified translation rules that emerged as a result of experimentation.
We addressed issues with FDR state-space explosion, by optimising our
models using the Circus Refinement Laws. We briefly describe the usage
of Circus2CSP along with a discussion of some experiments comparing
our tool with the literature.

1 Introduction

Among the range of verification techniques, model checking is used for exploring
all the possible states a reactive system can reach. In other words, the algorithms
used for model-checking will evaluate all possible scenarios of a system, which
may eventually reach an undesired one, depending on the property that is being
evaluated. Moreover, the focus of model-checking is on the system’s behaviour
rather than how the model would manage its data. Therefore, a system whose
behaviour strongly relies on its data may become difficult to check, since the
data may range over infinite domains.

There has been an effort from the community in order to design a systematic
approach for model-checking Circus, which due to its combination of formalisms,
is quite a challenge. Circus [34] is a formal language that combines structural
aspects of a system using the Z language [36] and the behavioural aspects us-
ing CSP [32], along with the refinement calculus [22] and Dijkstra’s guarded
commands [7]. Its semantics is based on the Unifying Theories of Programming
(UTP) [15]. As an initial attempt to model-check Circus, we participated in the
ABZ’16 haemodialysis case study [12], producing a Circus specification, manually
translating it into CSPM , which we then checked with FDR[9]. Moreover, when
translating Circus into CSP, we adapted the Circus model to map the structural
Z parts into appropriate CSP.

Unlike in Circus processes, an explicit notion of state variables is not present
in CSP processes. Therefore, in order to translate Circus state, we would either



translate it into a memory process [23,17,29], allowing other processes to read
and write the values by synchronising on memory ‘get’ and ‘put‘ events, or to
transform the state variables into process parameters, as used by Beg [4]. For
instance, we captured the state-based features of Circus in CSP using a memory
process synchronising on channels for reading and updating the values of the
state variables. Such an approach was also used while model checking [10] the
ARINC 653 [2] architecture.

In this paper, we present Circus2CSP3 [13], a tool capable of model-checking
specifications designed in Circus using FDR. It was developed by extending
JAZA [33], a Z animator written in Haskell, in order to cover the Circus ab-
stract syntax. The rest of the paper is organized as follows: In Sec. 2, we discuss
the main goal of this work. A brief description of some experiments using Cir-
cus2CSP is presented in Sec. 3. The paper is concluded in Sec. 4.

2 Circus2CSP: Requirements and Goals

Our translation is based on that developed by Oliveira in the
Compass project [26,27], which is based on repeated application of carefully
selected Circus refinement laws, all of which happen to be equivalences. Such a
translation uses set of rules for refining state-rich Circus into stateless processes
that can be mapped into CSPM .

Our focus while model-checking Circus is to produce a model in CSPM where
FDR can evaluate using as little computing resources as possible. As such, we
provide a refined model from the strategy presented by Oliveira et al.[26], where
our tool is capable of producing CSPM models from larger specifications and
making it possible for model-checking them using FDR. We highlight that be-
cause FDR is a refinement checker, it is not possible to perform temporal logic
checks, which is further discussed by Lowe [20].

The entire toolset is developed as an extension of JAZA, which parses Z
specifications written in LATEX, the same input used by the Community Z Tools.
Our goal was to produce a framework using the infrastructure available from
JAZA, where the parser for Z was extended and now supports Circus and from
there, we include new modules like the translation tool and the refinement calcu-
lator for Circus. Moreover, our tool is linked to FDR, and may also be integrated
with other tools in the future. Our contribution here is mainly related to the
fulfilment of a tool for automatically model-checking Circus.

The reason we adopted the translation presented by Oliveira et al., is that,
even though it is a manual translation, with no tool support involved, each trans-
lation step is justified by the Circus refinement laws, which have been formally
proved to be correct. Currently, their approach covers a subset of Circus. How-
ever, our investigation [14] through experiments with the implementation of such
rules demonstrated that such an initial and theoretical approach was restricted
to a subset of the possible Circus specifications: those dealing with only one same
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type for all variables within the state of those processes. Thus, we had to im-
plement not only a tool for the translation but also to refine that translation
strategy in order to support a more realistic set of specifications: those using
mixed types among their state variables.

We also experimented with the efficiency of FDR concerning the scale of the
specifications. For such, we used the haemodialysis case study [12,3], a com-
plex system which behaves according to the values of dozens of state variables.
Thus, we refined the memory model in order to optimise the task of reading and
updating the state variables from the Circus processes.

The outcome is that we now have a mechanised translator from Circus to
CSPM that produces tractable models, and allows the use of FDR on larger
case studies than have been possible up to now. The new developed approach,
as described in this paper, is sound since we were able to prove, by hand as well
as using FDR as a refinement checker, that the memory model from Oliveira et
al. is refined by the model discussed here [11, p. 77].

As part of the translation, we implemented an automatic refinement calcu-
lator for Circus2CSP, which handles a selected set of Circus refinement laws used
according to [26, Appendix A, p. 147]. Moreover, we experimented with a strat-
egy for refining Z schemas into ”schema-free” Circus actions using Z Refinement
Calculus [6].

Deliverables In summary, our research towards model checking Circus resulted
in the following contributions:

– A tool for automatically translating a subset of Circus into CSPM :
Implementation of a tool based on the work of Oliveira et al. [26] where one
is able to translate Circus models written in LATEX into CSPM , and then, be
able to perform model-checking and refinement checks using FDR.

– An automatic Circus refinement calculator: As part of the translation
strategy, the Circus refinement laws are applied to the processes and actions.
In order to automate the translation as much as possible, we provide an
automatic Circus refinement calculator.

– A transformation of some Z schemas into appropriate Circus con-
structs for translating into CSPM : The translation approach presented
by Oliveira does not handle Z schemas directly, but only after normalisation.
However, such a translation was not yet formally proved to be correct. We
explore ways of translating Z schemas into Circus actions, specifically, those
schemas where the translation results in a set of assignments.

– An improved Circus model that supports multiple types within a
specification: The generated CSPM model from Oliveira et al. using multi-
ple types is not supported by FDR, since it contains some auxiliary functions
that are seen by FDR as polymorphic functions, which are not supported by
such a tool. We, however, introduce a new data structure that treats each
type with its own set of auxiliary functions.

– A refinement of the memory model from Oliveira et al. [26]: We
provide a refined memory model with distributed memory cells updating and



retrieving the values of the state variables, allowing FDR to handle a large
number of state variables in a process, optimizing FDR’s effort to check such
models.

– New rules for mapping Circus to CSPM : We extended the mapping
functions for expressions and predicates from Z, as well as mapping functions
for those actions specifically related to the Memory model.

– A mechanism that integrates Circus2CSP with FDR: We connected
our tool to the ”terminal-mode” interface of FDR, in order to be able to
run checks straight from our tool. Unfortunately, we have no direct access
to the code of FDR, and thus, we have to manually parse the results from
the execution of FDR’s ”refine” command.

– An automatic assertion generator for checking with FDR: Our tool
is able to generate assertion checks for refinement, deadlock, livelock and
determinism checks for the loaded specification.

Tool Restrictions Our tool expects Circus specifications as input, written as a
sequence of LATEX block environments, very similar to the way Z paragraphs are
written in LATEX, which is a de facto standard for writing Circus specifications.
However, we assume that the Circus document is already type checked by existing
tools [21].

Our tool supports most of the Circus syntax, avoiding those constructs not
handled in [26, p78] such as: no writting to input variables; external choice only
among prefixed actions (those guaranteed to participate in an event before doing
anything else, such as assignment); and no miraculous specifications.

Furthermore, some features are not yet supported such as: dealing with state
invariants or preconditions in the Z schemas; non-determinism of data is not
supported; and the consequences of nested parallelism and hiding with non-
disjoint name sets have not been handled yet. These are a consequence of this
being an automated translation, rather than the manual one prescribed in [26].
Finally, the translation of Z schemas used as Circus actions is restricted to those
resulting in assignments.

3 Experiments with Circus2CSP

During our research we performed tests using our tool, Circus2CSP, exploring
ways of overcoming any limitations from FDR, as well as comparing our approach
with others from the literature.

Firstly, we explore the interference of invariants and preconditions in CSPM ,
using the chronometer model from Oliveira [25, p.34-41], comparing the model
from Circus2CSP with the translation from Oliveira [26]. We identified that using
Circus2CSP the time spent by FDR to check for deadlock freedom, for example,
with a model with the natural numbers ranging from zero to sixty (0..60), was of
around 3 minutes. However, using Oliveira’s approach it took nearly three hours.
In terms of states visited, FDR explored around 25 thousand states, compared
with 99 million using the approach of Oliveira. In general, the CSPM models



translated using our tool were evaluated by FDR using a much smaller state
space and were checked in up to 95% less time than all the other models we
tried derived from Oliveira’s. However, we observed no correlation between time
and state visited, in spite of the use (or not) of compression by default in FDR.

Then, we compare the translation of the haemodialysis case study using
Circus2CSP with the Circus model from [12], which was manually translated into
CSPM for model-checking. We observed a reduction of over 91% of the state
explored, as well as the execution time. Moreover, the manual translation didn’t
allow us to run FDR with a larger range of values for natural numbers, usually
ranging from 0 up to 2. However, with Circus2CSP, we were able to go beyond
the range 0 up to 90 in less than a minute. Such a result demonstrated that our
approach is capable of handling large-scale case studies like the haemodialysis
machine [12] and the ring buffer [38,26].

We also the effects of using some compression techniques available in FDR us-
ing the haemodialysis case study as an example. Although the states/transition-
s/plys visited were considerably reduced using the compression techniques such
as sbisim, which determines the maximal strong bisimulation [5], and wbisim,
which computes the maximal weak bisimulation, there was little impact on over-
all execution time, and the number of states visited are independent of the range
of natural numbers used, while the number of transitions grows slowly. However,
it is difficult to identify which compression technique will be most effective in a
general case, and indeed, further experiments are required.

Finally, we compare different approaches for modeling the Ring Buffer case
study[26,38], using FDR, in order to test the capabilities of our tool while model-
checking the translated models, in contrast to the limitations of ProB [19]. Unfor-
tunately, the structure defined for our translation strategy is not fully supported
by ProB, which was used to test the model generated with the translation strat-
egy from Ye [38]. ProB is another model-checker, which was originally developed
for the B language, and was extended to support CSP, Z, Event-B [1], as well as
combined languages such as CSP||B. We observed that some of the constructs
used in our CSPM model, such as subtype, are not yet supported by ProB. Nev-
ertheless, we were able to use ProB’s animator and to execute the same assertion
check, as in FDR, obtaining similar results.

However, the tests performed with the CSPM specification of Ye using FDR
failed to checks for deadlock freedom and determinism. The results obtained from
ProB can be related to what we obtained in FDR in terms of the behavior of the
system: the counterexample given from FDR can be used to animate the CSP||B
model in ProB, causing the same effect: deadlock. Although, our experiment was
limited since CSP||B takes into account the system state in ProB. In such model,
the CSPM file generated from Ye captures only the behavior of the system, but
does not captures the system state. We reckon that the deadlock was caused
because the state (modeled in B) can interfere in the system behavior in order
to avoid deadlocks.



4 Conclusions

In this paper, we briefly introduced Circus2CSP, a tool capable of model-checking
Circus specifications using FDR, through a translation strategy from Circus into
CSPM . It comprises a series of translation rules, combined with Circus refinement
laws. One can perform refinement checks using FDR directly from Circus2CSP’s
command-line. The tool can be downloaded freely from https://bitbucket.

org/circusmodelcheck/.
We improved Oliveira’s [26] translation strategy in a few ways: handling a

wider mix of datatypes; translating Z schemas easily “compiled” to assignments;
coping better with potentially large state spaces; and close integration with FDR.
Some of the equivalence laws used in the translation have side-conditions that
lead to proof obligations. Our tool does not discharge these, leaving them to the
user to handle by other means.

The modifications for the memory model developed for our tool are similar
to what was presented by Mota et al. [24], where interleaving between processes,
one for each state variable, was proposed. In fact, the memory model used in [26]
was based on the one by Mota et al., and was expanded with the inclusion of a
terminate signal, and, rather than one process for each variable, it would offer
all possible mget and mset for all state variables at the same time.

However, after implementing Oliveira’s memory model, we identified that
such an approach tends to make the job of FDR harder and expensive, leading
to state space explosion, when using several state variables on the same memory
model. In our research, we also seek ways of optimising the CSPM model in order
to obtain a more efficient analysis. Therefore, even though the terminate event
is used for synchronising the end of the Memory execution, the parallel com-
position of all possible mgets and msets leads to a possible exponential growth
of the state space. However, such a problem does not occur while using inter-
leaving. Moreover, Mota et al. also argues that the use of interleaving helps the
compression algorithms built in FDR [30] to reduce the state space exploration
while analysing such models.

A key principle in critical software development methods is that all global
variables should be intialised pretty much immediately [2]. In a Circus context,
if all the assignments are done are before any observable event occurs, then
its behaviour is that of a (simultaneous) assignment s ′ = sinit , where s is the
(aggregated) global state. This allows us to introduce an additional translation
step that replaces a non-deterministic choice over all possible starting values
of s by one arbitrary choice of starting value for s. This is normally a proper
refinement, but with initialisation as above, results in being an equivalence. This
trick dramatically improved the performance of FDR.

Some related work on techniques for model-checking Circus was presented
by Freitas [8] where a refinement model checker based on automata theory [16]
and the operational semantics of Circus [35] was formalised in Z/Eves [31]. He
also prototyped a model checker in Java. However, Freita’s Circus model checker
is restricted to a subset of Circus actions and does not support the notion of
Circus processes. Moreover, Nogueira et al. [23] also presented a prototype of a
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model checker based on the operational semantics of Circus within the Microsoft
FORMULA [18] framework. However, they could not provide a formal proof of
the soundness of their approach, since FORMULA does not have an available
formal semantics.

Yet another approach for model-checking Circus was defined by Ye and Wood-
cock [37], who defined a link from Circus to CSP‖B with model-checking using
ProB [28]. However, ProB is a limited tool in terms of processing capabilities: it
does not support multiprocessors nor multithreading, and therefore, it is unlikely
that it would support larger models such as those checked using Circus2CSP.
Moreover, the translation proposed by Ye produces a specification split in two
languages: B for the state machine and CSP for the behaviour of the model.
However, such an approach is limited to be checked by ProB while ours isn’t
limited to FDR: we can indeed load our CSPM translated models in ProB, and
still perform model-checking. Finally, Beg [4] prototyped and investigated an
automatic translation that supports a subset of Circus constructs, supporting
only Skip, prefixing action, sequential composition, assignments, if statements,
and guards with simple predicates.

For future work, we have plans for specifying a translation strategy for Z
schemas used as Circus actions within a process. The best approach would be to
use Z Refinement Calculus [6]. For now, our tool deals only with those schemas
that in fact can be translated into assignments. We intend to explore the oper-
ators for Z schemas and the refinement laws that can be applied accordingly.
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