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Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces
in application to the reorganization effects in graphene-adsorbed pentacene
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Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a
basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends
on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional
Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we
derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization.
We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT)
package ONETEP, and we have used constrained DFT to calculate the reorganization energy of a pentacene
molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections
for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially
invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when
based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions.
Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that
the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase.
We attribute this effect to steric hindrance.
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I. INTRODUCTION

Across a wide range of electronic-structure theory methods,
such as constrained density functional theory (cDFT) [1,2],
density functional theory plus Hubbard U (DFT+U ) [3,4],
DFT combined with dynamical mean-field theory (DMFT)
[5,6], wave-function embedding [7,8], and some perturbative
approaches in quantum chemistry [9], the population of a
particular subspace is physically relevant and the total energy
depends explicitly upon it. Thus, the ability to define appro-
priate subspaces for population analysis is of considerable
importance. This is exemplified by sustained efforts in recent
years in the development of physically motivated orbitals such
as maximally localized Wannier functions (MLWFs) [10],
nonorthogonal localized molecular orbitals (NOLMOs) [11],
muffin-tin orbitals (MTOs) [12], and natural bond orbitals
(NBOs) [13] for use in system-dependent, adaptive population
analysis. Population analysis by means of projection of orbital-
based subspaces has attracted detailed investigation in recent
years [14,15]; in particular, the effects of projector orbital
ambiguity in DFT+U [16,17] and DFT+DMFT [18] have
been investigated in detail.

In calculations in which the total energy depends explicitly
upon localized orbitals that are centered on atoms, Pulay
terms [19,20] arise in the Hellmann-Feynman forces due to
spatial translations of the orbitals. It is, however, less known,
although previously identified [21,22], that additional Pulay
terms emerge when the total energy also depends on the
overlap matrix of such orbitals. This is necessary for correct
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population analysis using nonorthogonal orbitals. In fact, these
forces are present for any multicenter atomic projection of the
density or the Kohn-Sham density matrix. They exist when
using orthonormal orbitals such as MLWFs, for example,
since any ionic movement typically breaks the orthonormality.
Thus, unless the forces take into account that the orbitals
are regenerated or orthonormalized following a translation,
a condition that is difficult to encode, then unconventional
nonorthogonality Pulay forces arise even for orbitals that are
defined as orthonormal.

Approaches for calculating the necessary corrections, based
on a Löwdin orthonormalized representation of the subspace
projection, invariably encounter a cumbersome, difficult to
solve, Sylvester equation [23] of the form

dO
dRi

= O1/2 dO1/2

dRi

+ dO1/2

dRi

O1/2 or

− dO
dRi

= O1/2 dO−1/2

dRi

+ dO−1/2

dRi

O1/2, (1)

where O is the projector orbital overlap matrix and Ri is a
Cartesian component of the ionic position. Here the solution for
O1/2 is required. An approximate method for working around
this problem, based on neglecting off-diagonal matrix elements
in O−1/2, has been recently proposed in Ref. [22]. Reference
[21] instead provides a formula for the full matrix dO1/2/dRi ,
which makes use of the basis of the shared eigenvectors of
O and O1/2. This necessitates matrix diagonalization. The
applicability and practicality of these two approaches depend
on the details of the force calculations to be undertaken.

In this work, we use nonorthogonal basis functions and their
appropriate tensor notation following a long-standing tradition
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in electronic-structure theory [24–29]. We furthermore use the
modern tensorially invariant population analysis [30], which
has appeared in various contexts [14,15] including that of
cDFT [31,32]. We extend this to calculate an exact, simple,
and intuitive expression for the nonorthogonality Pulay forces,
which circumvents orbital orthonormalization and overlap
matrix diagonalization entirely. This expression is applicable
to real- and complex-valued orbitals alike, and whether or
not they are orthonormal at the point of force evaluation.
Avoiding matrix diagonalization ensures its applicability to
large systems using linear-scaling DFT. We put our scheme
to the test here by calculating the reorganization energy of a
pentacene molecule physisorbed on a graphene sheet.

The paper is organized as follows. In the next section,
we will define the physical problem addressed by our work,
namely the calculation of the energies needed for extracting the
reorganization energy of a molecular absorbate on a metallic
substrate. Then we will describe our computational methods,
focusing on the derivation of the forces in orbital-based cDFT,
the performance of orbital-based population analysis, and a
number of practical considerations addressed using the ONETEP

code. Our results for pentacene on graphene will be presented
next, followed by our conclusions.

II. PHYSICAL PROBLEM: REORGANIZATION OF A
CHARGED MOLECULE PHYSISORBED ON

A METALLIC SURFACE

The reorganization energy holds paramount importance
in charge-transport calculations. Semiclassical Marcus theory
[33] at high temperature, T , computes the probability per unit
time of an electron hopping, kET, from Fermi’s golden rule as
[34,35]

kET = |〈i|Ĥ |f 〉|2
h̄

√
π

λkBT
exp

[
− (λ + �G0)2

4λkBT

]
, (2)

where Ĥ is the Hamiltonian, |i〉 and |f 〉 are the initial and
final electronic states, respectively, and �G0 is the change
in Gibbs’ free energy associated with the charge-transfer
process. The reorganization energy, which enters the expo-
nential term defining kET, is thus an important ingredient
[36–38] for the calculation of the charge hopping. In this
work, we compute the reorganization energy of a pentacene
molecule. In its crystalline solid-state form, pentacene is a
p-type semiconductor [39] with a high hole mobility [40].
Thus, ionization reorganization effects in pentacene-based
systems are of significant interest, being the subject of several
theoretical and experimental studies [41–43].

Let us define the reorganization energy precisely. The
ionic coordinates of any system depend on its electronic
occupation. For instance, if an electron is removed from a
neutral molecule, such as in photoemission spectroscopy, its
ionic coordinates will readjust to a new geometry due to the
local electron-phonon coupling [44,45]. Figure 1 shows two
parabolic curves that represent the energy surface of the neutral
molecule and that of the singly ionized one, as a function
of some collective atomic coordinates. We define as λ0 the
energy difference between the ground-state geometry and the
ground-state geometry of the charged configuration [46] when
the molecule is neutral. In contrast, λ+ is the same quantity but
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FIG. 1. Schematic diagram of the energy as a function of the ionic
coordinates for a charged and a neutral molecule. The reorganization
energy is defined as λ0 + λ+.

calculated for the ionized system. The reorganization energy,
λ, for the molecule undergoing electron removal is defined as

λ = λ0 + λ+, (3)

where similar definitions can be given for the case in which
the molecule receives an extra electron.

Theoretical approaches to compute the reorganization en-
ergy typically consist of either calculating the energy differ-
ence from the adiabatic potential energy surface, or of indi-
rectly evaluating the molecule’s normal modes [47]. Here we
adopt the former approach. For an isolated pentacene molecule,
an electron removal can be simulated with unconstrained DFT,
and therefore it does not require the aforementioned force
terms. However, this approach is not viable for the study of
reorganization in systems relevant to organic semiconductor
devices, where organic molecules are typically adsorbed on
metallic electrodes. When a molecule is adsorbed on a metallic
substrate and its highest occupied molecular orbital (HOMO)
lies below the Fermi level, the hole must be prevented from
migrating to the energetically favorable location of the sub-
strate. We achieve this by using cDFT to force the hole onto
the adsorbate.

cDFT has been widely applied to the study of charge transfer
in organic compounds [48–56]. Recently, cDFT has been used
to estimate charge-transfer excitations in bulk pentacene in
the infinite-crystal limit [31]. The present work utilizes the
same underlying linear-scaling cDFT implementation, itself
an extension of a linear-scaling implementation of DFT+U

[57] using nonorthogonal generalized Wannier functions. Also
relevant to this work is that cDFT has been used to simulate
the removal or addition of electrons from an adsorbed molecule
in the context of calculating charge-transfer energies [58,59].
Here we use cDFT in conjunction with nonorthogonality Pulay
forces to calculate the reorganization energy of a pentacene
molecule physisorbed on a flake of graphene. The energy of
a system as a function of its geometry can contain multiple
local minima, and this is particularly the case for the incom-
mensurate corrugated system at hand. The proposed method,
in conjunction with efficient sampling techniques such as
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simulated annealing [60], basin hopping [61], etc., could be
used to explore such energy landscapes in the presence of
orbital-based constraints. We note that a more complex system,
consisting of a film of weakly bound pentacene molecules
adsorbed on highly oriented pyrolytic graphite (HOPG), has
been the subject of several theoretical and experimental studies
[62–64]. It has been shown, in the experimental work of
Ref. [62], that the reorganization energy of pentacene is there,
remarkably, higher than that in the gas phase.

III. THEORETICAL PROBLEM: POPULATION ANALYSIS
AND FORCES BASED ON NONORTHOGONAL ORBITALS

In cDFT, to date, real-space partitioning has prevailed
over orbital-based population analysis methods. Central to
the viability of using more chemically motivated orbitals
to define the constrained population in cDFT, and perhaps
hindering their adoption, is the proper treatment of their
nonorthogonality. In particular, historically there has been
some uncertainty [65,66] as to how subspace populations
should be defined in terms of nonorthogonal orbitals, which
typically (but not necessarily by any means) form a subset of
the basis set for the Kohn-Sham states. This uncertainty has
previously been conclusively resolved within the context of
DFT+U [30], and the correct procedure has recently been
pioneered in cDFT for calculating charge-transfer energies
in solid pentacene [31]. We will numerically investigate the
performance of this tensorially consistent procedure for cDFT
in the present work. A separate problem, which we also will
touch upon in this work, is the arbitrary choice of the un-
derlying projection orbitals in terms of their particular spatial
profile.

The canonical orbital-based population analyses in quantum
chemistry are due to Löwdin and Mulliken, and these are
both unsuitable for cDFT. cDFT population analyses based on
orbitals that are globally Löwdin orthonormalized, meaning
that the entire basis set is orthonormalized before a subset
is selected out, typically collect density contributions from
all atoms in the simulation cell, regardless of how distant
they may be from the region of interest. Mulliken population
analysis, constructed using the global orbital overlap matrix,
has the same problem [30]. In a nutshell, both methods have
the fundamental difficulty that the measured population is
arbitrary with respect to linear transformations among the
selected subset of the orbitals (an example of broken tensorial
invariance).

A tensorially invariant population analysis [30,31] instead
gathers density contributions and applies constraining po-
tentials only within the region of interest. We will demon-
strate here that this can provide very reasonable electronic
populations for a physisorbed molecule when using either
pseudoatomic orbitals or generalized Wannier functions. Phys-
ically motivated orbitals can thus compete with real-space
weight functions in cDFT when treated appropriately. Their
use may be particularly advantageous in situations in which
the system or observable of interest does not readily admit a
real-space partitioning, such as when constraining the popu-
lation of an atom in a crystal, or that of a group of single-
particle states based on their principal angular momentum
character.

IV. METHODOLOGY

A. Constrained density-functional theory forces

In DFT the ground-state (GS) electron density, ρ0, uniquely
specifies all the GS properties of a system, including its GS en-
ergy [67]. This can thus be found by variationally minimizing
an approximate energy functional, E[ρ̂], where ρ̂ is the density
operator. In cDFT, instead, one seeks to find the GS of the
system subject to a constraint, for example the constraint that
a given number of electrons is found in a particular subspace.
This simple constraint has the mathematical form

Tr[ρ̂P̂] − Nc = 0, (4)

where P̂ is the projection operator for the subspace of interest
and Nc is the target number of electrons (here “Tr” indicates the
trace of the operator, computed over an appropriate basis set).
To find the density corresponding to such a constrained ground
state, one finds the stationary point [1,68] of the functional
W [ρ̂,Vc], where Vc is a Lagrange multiplier and

W [ρ̂,Vc] = E[ρ̂] + Vc(Tr[ρ̂P̂] − Nc). (5)

For a given Vc, the Kohn-Sham potential is modified by the
addition of the term VcP̂, and W [ρ̂,Vc] is minimized as a
functional of ρ̂ as usual. Considering just the global minima
for each Vc, W can be regarded as a function W (Vc) of Vc alone
[1] (strictly speaking, constrained systems can be constructed
where it is a multiple-valued non-function [68]). The stationary
points of W (Vc) yield the (potentially degenerate) ground-state
densities of the system subject to the given constraint. In
particular, the stability of a ground state ensures that W (Vc)
attains a maximum [68] with respect to Vc. At the stationary
point W [ρ̂,Vc] = E[ρ̂], since Eq. (5) is satisfied.

In general, E[ρ̂] is not stationary at a nontrivially con-
strained density, hence the Hellmann-Feynman theorem cannot
be applied to E[ρ̂] alone. It is applied instead to W [ρ̂,Vc] in
order to find the ionic force

Fi = −dW

dRi

= −∂W

∂Ri

− Tr

[
∂W

∂ρ̂

dρ̂

dRi

]
− ∂W

∂Vc

dVc

dRi

, (6)

where the index “i” is collective for the ion number and the
Cartesian direction indexes. Here the term containing the trace
vanishes at any stable ground state by virtue of the Hellmann-
Feynman theorem [68], and the final term vanishes at the cDFT
stationary points, i.e., where ∂W/∂Vc = 0. The force is thus
given, in practice, by

Fi = −∂W

∂Ri

= −∂E[ρ̂]

∂Ri

− VcTr

[
ρ̂

∂P̂

∂Ri

]
. (7)

The first term on the right-hand side is the contribution from the
conventional DFT external potential of the constrained density
[69], while the second term, which we will denote by F c

i , is
the Pulay force due to the constraint. Before evaluating this
contribution, we must next discuss how the subspace projection
operator P̂ is constructed.

B. Tensorially invariant population analysis

When defining P̂ in terms of nonorthogonal orbitals, such
as atomic orbitals centered on atoms, let us label them |φm〉,
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it is a commonplace and usually unnecessary practice to or-
thonormalize them by Löwdin transformation. This generates

orbitals of the form |φ̃j 〉 = ∑
m |φm〉O− 1

2
mj , where O is an orbital

overlap matrix. The matrix fractional power is most easily
calculated by diagonalizing O, taking the corresponding power
of the eigenvalues, and by performing the inverse of the original
diagonalizing transformation to arrive at O− 1

2 .
In methods dealing with the population of orbital-based

subspaces such as cDFT and DFT+U , it has been shown [30]
to be quite incorrect to use, for O, the overlap matrix S of any
larger set that the projector orbitals |φm〉 may be chosen from,
since then the orthonormalized functions |φ̃j 〉 extend across the
larger subspace. Instead, if the projection orbitals |φm〉 used to
span a cDFT subspace happen to be selected from a larger set
of basis orbitals (e.g., the one spanning the entire Kohn-Sham
space), then the subspace overlap matrix O must be extracted
as a sub-block from the full overlap matrix S before being
diagonalized [31].

As an example, let us imagine a bipartite system composed
of natural but nontrivially overlapping source and drain regions
for a charge-transfer excitation to be accessed using cDFT. If
the source-region orbitals |φ̃j 〉 are built using S, then they will
extend to some amount over the drain region, and vice versa,
in an uncontrolled manner. This pathology will not arise if
separate, smaller subspace overlap matrices O are defined for
each of the source and drain regions. This also ensures tensorial
invariance and, in particular, physical occupancy eigenvalues
(i.e., 0 � λj � 1) for the projected density matrices of each
constrained subspace [30].

By defining the subspace population as the trace over such
orthonormalized functions, we obtain

Tr[ρ̂P̂] =
∑

j

〈φ̃j |ρ̂|φ̃j 〉

=
∑
mn

〈φm|ρ̂|φn〉
∑

j

O
− 1

2
nj O

− 1
2

jm . (8)

Equation (8) suggests a straightforward alternative approach,
albeit one that is not available if the index j does not run
over the same orbital count as n and m (such as when the
delocalizing global matrix S is used). Instead of performing
a Löwdin orthonormalization, we may accept the nonorthog-
onality of the projectors and define the subspace population
as a tensor contraction over the nonorthogonal set of |ϕm〉
and their biorthogonal complements |ϕm〉, defined through
〈ϕm|ϕn〉 = δm

n. This gives the transformations

|ϕm〉 = |ϕn〉Onm ⇔ |ϕm〉 = |ϕn〉Onm, (9)

where we have adopted the Einstein summation convention for
contracting over paired indices, and whereOmn is an element of
the matrix O−1 with Omn = 〈ϕm|ϕn〉. If the functions |ϕm〉 are
chosen to be localized over a particular spatial region, then also
the functions |ϕm〉 will be. The required subspace occupancy
is then given by

Tr[ρ̂P̂] = Tr[ρ̂|ϕm〉〈ϕm|] = 〈ϕm|ρ̂|ϕn〉Onm, (10)

which is equivalent to Eq. (8). Next, we look at how the Pulay
force of cDFT appears when we make this simplification, i.e.,

when we use the contraction
∑

j O
− 1

2
nj O

− 1
2

jm = Onm before the
ionic-position derivative is taken.

C. Nonorthogonality Pulay forces

A change in the degree of nonorthogonality between pro-
jecting orbitals centered on atoms is a natural occurrence in
calculations involving ionic displacements. To account for this,
the final term of Eq. (7) may be expanded, in view of Eq. (10),
as

F c
i = −Vc

[〈
∂ϕm

∂Ri

∣∣∣∣ρ̂|ϕn〉Onm + 〈ϕm|ρ̂
∣∣∣∣∂ϕn

∂Ri

〉
Onm

+ 〈ϕm|ρ̂|ϕn〉∂Onm

∂Ri

]
. (11)

The first and the second term on the right-hand side represent
the force due to the change in the projectors as a result of
the ionic displacements, while the third term represents that
due to a change in the mutual overlap of the projectors. If the
projectors are localized orbitals centered on the atoms, then
the third term is exclusively due to the relative motion of the
atoms that define the subspace. The first term may be written
as Tr[ρ̂X̂], defining the operator X̂ = |ϕn〉Onm〈∂ϕm/∂Ri |.
Similarly, the second term on the right-hand side in Eq. (11) is
Tr[X̂†ρ̂]. For the calculation of this latter term, see Ref. [57].

To evaluate the third term, we shall use the following matrix
identity for invertible matrices M:

0 = d

dRi

[1] = d

dRi

[MM−1] = dM
dRi

M−1 + M
dM−1

dRi

⇒ dM−1

dRi

= −M−1 dM
dRi

M−1,

where 0 is the null matrix. By applying this identity to the
overlap matrix O, the third term of Eq. (11) can be rewritten
as

〈ϕm|ρ̂|ϕn〉∂Onm

∂Ri

= −〈ϕm|ρ̂|ϕn〉Onn′
[〈

∂ϕn′

∂Ri

|ϕm′

〉
+

〈
ϕn′ |∂ϕm′

∂Ri

〉]
Om′m

= −
〈
ϕn′ |∂ϕm′

∂Ri

〉
Om′m〈ϕm|ρ̂|ϕn〉〈ϕn|ϕn′ 〉 + c.c.

= −Tr[X̂†ρ̂P̂] + c.c., (12)

where the projectors obey P̂
†
P̂ = P̂P̂ = P̂.

If we now bring all the terms together, the nonorthogonality-
respecting Pulay force will be given by the remarkably simple
expression

F c
i = − VcTr[ρ̂X̂ + X̂†ρ̂ − X̂†ρ̂P̂ − P̂ρ̂X̂]

= − 2VcRe Tr[ρ̂X̂(1̂ − P̂)]. (13)

The final factor, (1̂ − P̂), in this expression is a projector onto
the space complementary to the constrained one. The effect
of variable nonorthogonality thus becomes clear. It generates

205120-4



WANNIER-FUNCTION-BASED CONSTRAINED DFT WITH … PHYSICAL REVIEW B 97, 205120 (2018)

an extra projection factor that cancels any component of the
Pulay force associated with orbital derivatives that are not
related to changes in the projected subspace. In other words,
it cancels contributions related to changes that cannot cause
a variation of the measured occupancy. If the operator X̂

applies a linear transformation among the projector orbitals,
then X̂ = X̂P̂ and the Pulay force will vanish entirely. In
contrast, if 〈∂ϕm/∂Ri |ϕn〉 = 0 for all m and n, then X̂P̂ = 0̂
and the expression will reduce to the ordinary Pulay force. It
is possible that the projection factor in Eq. (13) is a useful
addition to Pulay force calculations in general, since even
when orbital nonorthogonality is not expected to arise or vary,
numerical noise may cause slight variations from the condition
〈∂ϕm/∂Ri |ϕn〉 = 0. An example where this may arise is in
force calculations involving atom-centered pseudopotentials
defined on a radial grid, which are projected onto a real-
or reciprocal-space Cartesian grid prior to integration with
Kohn-Sham states.

D. Implementation and procedure for calculation

We have implemented the nonorthogonality Pulay forces in
the linear-scaling DFT code ONETEP [70], which uses strictly
localized, variationally optimized nonorthogonal generalized
Wannier functions (NGWFs) [28,71,72], |φμ〉, as a basis set.
The NGWFs are, in turn, expressed as a linear combination
of highly localized orthonormal psinc functions, which are
essentially Fourier transforms of plane waves specified with a
maximum cutoff energy. For a given DFT calculation, ONETEP

optimizes the NGWFs using a conjugate-gradient (CG) method
in order to minimize the total energy. Within each iteration of
such optimization, it minimizes [73] the total-energy functional
with respect to the density kernel Kαβ, which builds the single-
particle density matrix by means of ρ(r,r′) = φα(r)Kαβφβ(r′)
[73]. Thus, for a geometry optimization in the presence of a
constraint of the form contained in Eq. (4), we run the following
nested optimization loops:

(i) Optimization of the ionic geometry.
(ii) Conjugate-gradient optimization of the NGWFs |φα〉

within ensemble DFT.
(iii) Conjugate-gradient optimization of the Lagrange mul-

tiplier, Vc.
(iv) Optimization of the density kernel Kαβ within ensemble

DFT.
We note that, although we use the NGWFs as optimized

basis functions and as cDFT projectors in this work, the expres-
sion for the Pulay forces remains valid for any nonorthogonal
set of projector functions. The scheme that we follow for
calculating the reorganization energy of a pentacene molecule
adsorbed on a flake of graphene can be summarized as
follows:

(i) Optimize the geometry of the neutral system and calcu-
late the GS energy with a DFT run. This gives the geometry
G0 and the energy E0

@G0.
(ii) Run cDFT for singly ionized pentacene at the geometry

G0 in order to obtain the energy E+
@G0.

(iii) Run a constrained geometry optimization to find the
nuclear coordinates for the charged pentacene and the corre-
sponding energy. This gives us a geometry G+ and an energy
E+

@G+.

(iv) Run DFT on neutral pentacene with geometry G+
to find the energy E0

@G+ of the neutral configuration at the
geometry of the charged state.

The reorganization energy λ is then given by

λ = λ0 + λ+,

= (
E0

@G+ − E0
@G0

) + (E+
@G0 − E+

@G+). (14)

Geometry relaxation is performed only on the pentacene
molecule, keeping the graphene flake fixed. In other words,
the reorganization energies so obtained correspond to pen-
tacene only. Our calculations have been performed with
the Perdew-Burke-Ernzerhof (PBE) [74] parametrization of
the generalized-gradient approximation of the exchange-
correlation functional and norm-conserving pseudopotentials.
The NGWF cutoff radius was set to 9a0. It was found that
a very high plane-wave cutoff energy of 1500 eV is needed
to avoid small changes in energy due to the egg-box effect.
cDFT optimization is performed with conjugate gradient with
the convergence threshold of 10−5 e/eV for the Lagrange
multiplier gradient. This translates to an error of <4 × 10−4%
in the population of the pentacene molecule. Geometry relax-
ation is performed with a quasi-Newton method [75] using the
Broyden-Fletcher-Goldfarb-Shanno algorithm [76] with Pulay
corrected forces (including correction for any residual NGWF
nonconvergence [69]) and an energy convergence threshold of
2.5 × 10−6 eV per atom. Some additional features employed
in our calculations are described in the following subsections.

A numerical evaluation of the orbitals used to con-
struct the constrained pentacene subspace follows below, but
by default we have adopted the well-established practice
[16,22,31,32,77,78] of using Wannier functions centered on
the appropriate atoms (in this case the pentacene carbon and
hydrogen) for the projectors |ϕm〉. In particular, these were
chosen as a subset of the NGWFs variationally optimized
for the valence manifold of the unconstrained, relaxed neutral
ground state of the pentacene-graphene system, following the
protocol proposed in Ref. [16] and first applied to cDFT in
Ref. [31].

1. Ensemble density-functional theory

The occupation number of states in the vicinity of the
Fermi level is ill-conditioned in the case of a high degree
of degeneracy, as in metals and near-metals like graphene. In
other words, significant fluctuations in the occupation numbers
and in the electron density take place despite tiny energy
changes. In these situations, the number of self-consistent steps
necessary for converging the ground state can be large. To
circumvent this problem, we employ the finite-temperature
ensemble DFT (and cDFT) formalism [79] as implemented
within ONETEP [80]. Here, instead of the energy, one minimizes
the Helmholtz free energy

A[T ,{εi},{|ψi〉}] =
∑

i

fi〈ψi | − 1

2
∇2|ψi〉

+
∫

dr vn(r)ρ(r) + J [ρ] + Exc[ρα,ρβ ]

−T S[{fi(εi)}], (15)
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where S[{fi}] is the entropy of the system given by [81]

S[{fi}] = −kB

∑
i

[fi lnfi + (1 − fi)ln(1 − fi)]. (16)

Here, the occupation number fi(εi) is that of the i th KS state,
and it follows the Fermi-Dirac distribution

fi(εi) =
(

1 − exp

[
εi − μ

kBT

])−1

, (17)

with μ being the chemical potential, kB the Boltzmann con-
stant, and T the temperature. In all our calculations, we have
used T = 300 K.

2. Correction for periodic boundary conditions

Since ONETEP uses the fast Fourier transform to solve the
Poisson equation, it requires the use of periodic boundary
conditions. For isolated systems one then constructs artificial
periodic replica of the simulation cell. This gives rise to
undesired interactions between the cells. To correct such a
shortcoming, we have used the Martyna-Tuckerman scheme
[82] of replacing the Coulomb interaction from the periodic
images of the simulation cell with a minimum image conven-
tion technique. This essentially adds a screening potential term
to approximately cancel the Coulomb interactions from neigh-
boring cells [83]. We used the Martyna-Tuckerman parameter
of 7.0a0 that is recommended in Ref. [82].

3. Dispersion correction

Dispersion interactions, which are poorly accounted for in
semilocal exchange and correlation functionals, are expected to
be dominant between the pentacene molecule and the graphene
flake. Hence, we use an empirical correction, Edisp(rij ), to the
total energy in the form of a damped London term summing
over all pairs of atoms (i,j ) with an interatomic distance of rij ,
given by

Edisp(rij ) = −
∑
i>j

fdamp(rij )
C6,ij

r6
ij

, (18)

where C6,ij depends on the particular pair of atoms, and the
damping term is given by [84]

fdamp(rij ) = {1 − exp[−cdamp(rij /R0,ij )7]}4. (19)

The parameters, cdamp and R0
ij , used here have been generated

and implemented previously in the ONETEP code by fitting a
set of 60 complexes with significant dispersion [85].

V. RESULTS

A. Test of the forces on isolated pentacene

To demonstrate the role and necessity of using nonorthog-
onality Pulay corrections, we first present some tests on a
very simple system consisting of one isolated, charge-neutral
pentacene molecule. We run three independent geometry
relaxations:

(i) An unconstrained DFT geometry optimization starting
from an idealized initial guess for the ionic geometry of the
neutral molecule. This provides a benchmark level of geometry
optimization performance on the test system.

(ii) A geometry optimization with the same initial guess
as (i), while applying a fixed constraint potential of strength
Vc to the predefined pentacene space and relaxing without the
force correction for the derivative of projector overlap [i.e., by
omitting the last term on the right-hand side of Eq. (11)].

(iii) The same relaxation as (ii), but including the exact
expression of the Pulay forces given in Eq. (11).

A fixed, minimal set of valence pseudo-orbitals (the initial
guesses for the NGWFs prior to optimization, i.e., H 1s and
C 2p and 2p) was used to define the constrained subspace,
with tensorially consistent population analysis. In Fig. 2 we
plot the maximum displacement, the change in energy per ion,
and the maximum force as a function of the iteration number for
the aforementioned calculations performed with two different
Vc, namely 1 and 2.5 eV. For Vc = 1 eV, the three calculations
differ only slightly since the force correction is small. However,
for Vc = 2.5 eV we see that the behavior of the calculation
using the incorrect force (red line) differs significantly from
the other two, especially for the maximum force on any atom.
To quantify the difference in force between the cDFT runs
with and without force correction, we calculate the root-mean-
squared (RMS) difference between the two quantities, given
by √√√√1

n

∑
i

(
F i

C − F i
U

F i
C

)2

, (20)

where F i
C and F i

U are, respectively, the corrected and un-
corrected total ionic forces on the i th iteration. Here, n is
the total number of iterations, and, clearly, the potential that
generates these forces differs except upon the first iteration.
The atom with the largest force may also change from iteration
to iteration. In percentage terms, the RMS force differences
are a very significant 121.73% and 112.65% for 1 and 2.5 eV
constraint potentials, respectively.

B. Reorganization energy of graphene-adsorbed pentacene

In this section, we present and discuss our results concerning
the reorganization energy of pentacene molecules adsorbed
on a flake of graphene. The molecule is positioned above the
graphene flake at its center and is oriented parallel to it. We
have performed our calculations with two different shapes and
sizes of a hydrogen-passivated graphene flake, one containing
358 atoms (hereafter referred to as the smaller flake) and
another 474 (hereafter referred to as the larger flake). The
geometry of the smaller flake has been relaxed in isolation.
However, for the larger flake we use the geometry of an
infinite graphene sheet so that the positions of the carbon atoms
are symmetric with respect to each other in order to better
emulate an infinite graphene sheet. The system is shown in
the left-hand-side panel of Fig. 3, while the right-hand-side
panel shows a plot of the highest occupied molecular orbital
(HOMO) of the entire system. Since the HOMO is mostly
localized on the graphene flake (at its edges), simply running
a DFT calculation with one less electron is not an option as
an electron will be removed from the graphene flake. Thus we
use cDFT to constrain a unit positive charge on the pentacene.
We emphasize that we do not treat the reorganization effect
due to pentacene-graphene charge transfer, but rather the
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FIG. 2. The maximum displacement of any atom, the change in energy per atom, and the maximum force on any atom, plotted against the
iteration number in a geometry relaxation calculation. The black, blue, and red curves show the plots for a regular DFT run, a constrained run
without the properly corrected forces, and one with the proper correction for forces, respectively. The constrained calculations are separately
performed with a fixed constant potential Vc = 1 eV (left column) and Vc = 2.5 eV (right column). See the main text for details.

photoemission reorganization effect, in which an electron is
removed from the pentacene molecule. This leaves the simula-
tion cell with a net positive charge. The monopole interactions
between the periodic replica of the charged unit cells are
neutralized by the periodic boundary correction mentioned in
Sec. IV D.

1. Orbital-based population analysis

In the cDFT calculations, we intend to remove one electron
from the pentacene molecule. It is therefore necessary to carry

FIG. 3. The left-hand-side panel shows the system of interest,
namely a pentacene molecule adsorbed on a graphene flake. The right-
hand-side panel shows an isovalue plot of the HOMO of the neutral
Kohn-Sham system. It is clear that the HOMO is confined to the
graphene flake, with most of its amplitude located at its edges.

out a population analysis for the uncharged ground state in
order to find the number of electrons in the molecule and
to define the constraining potential. This population depends
on the choice of projectors used to represent the subspace
assigned to the molecule. In ONETEP it is possible to use
as projectors the atomic pseudo-orbitals (generated from a
self-consistent pseudoatomic solver) or the optimized NGWFs
from a previous successful run (in our case a DFT run for the
same system). In both cases, only the NGWFs associated with
the relevant atoms, which here are all the pentacene atoms, are
considered. Once the choice of projectors is made, ONETEP al-
lows predominantly two kinds of population analysis on the set
of target atoms. The first technique (the “Summed” analysis)
essentially calculates the populations on each individual atom
and then sums them up. This population is defined as

NSummed =
∑

I

∑
mm′

〈
ϕI

m

∣∣ρ̂∣∣ϕI
m′

〉
Om′m

I , (21)

where I is an atom in the desired set and Om′m
I are the elements

of the inverse of the overlap matrix of the projectors |ϕI
m〉 and

|ϕI
m′ 〉 belonging to atom I (this is very close to a Kronecker

δ matrix in the case of the pseudoatomic orbitals). The
second one (the “Unified” technique) calculates the tensorially
invariant population of the entire subspace as

NUnified =
∑
mm′

〈ϕm|ρ̂|ϕm′ 〉Om′m, (22)
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FIG. 4. Plot of 〈r|P̂|r〉 for the pentacene molecule adsorbed on
graphene in the neutral state. The top and bottom panels correspond,
respectively, to the “Summed” analysis, which calculates population
on individual atoms separately before adding them up, and the
“Unified” analysis, which calculates population of the entire subspace
as a whole, respectively. In the case of the Summed method, significant
brightness in the interstitial space between atoms indicates double-
counting in the region of orbital overlap. Clearly, this is not the case
for the Unified method.

where the sum is over all the orbitals of the given subspace and
the inverse overlap matrix is constructed accordingly [30,31].
The “Unified” technique is expected to be much more reliable,
since the other double-counts the population shared by the
projectors belonging to different atoms. This is clearly seen in
Fig. 4, which shows a plot of 〈r|P̂|r〉 for the neutral pentacene
molecule adsorbed on the graphene flake, where the positions r

lie on a plane passing close to all of the pentacene atoms. Using
the Summed scheme (top panel), we see significant positive
values of 〈r|P̂|r〉 in the interstitial region between the atoms,
indicating the aforementioned double-counting. As expected,
this is not present in the plot for the Unified scheme (bottom
panel).

In Table I, we tabulate the populations calculated with
the different techniques/projectors on the pentacene molecule,
which is adsorbed on a flake of graphene. Noting that an

TABLE I. Number of electrons on the pentacene molecule cal-
culated by using different choices of projectors and for different
population analysis methods. An isolated pentacene molecule has
102 valence electrons. See the text in Sec. V B 1 for the definitions
of “Summed” and “Unified.”

Projector Analysis Population

Atomic orbitals Summed 171.56
Atomic orbitals Unified 100.74
Optimized NGWFs Summed 172.72
Optimized NGWFs Unified 102.11

FIG. 5. Plot of isovalues of the change in charge density upon
the removal of an electron from the molecule as calculated with
cDFT. Blue and red denote positive and negative charge densities,
respectively.

isolated pentacene molecule has 102 valence electrons, we
see that the combination of optimized NGWFs with the
Unified scheme reproduces this count to 0.1%, and so we use
this population analysis for further calculations. The residual
0.1% is due to hybridization with the graphene substrate (a
very slight chemisorption effect). We note that pseudoatomic
population analysis exhibits an undercount of approximately
1%, but that this is small compared to the error of “Summed,”
or sometimes known as “on-site,” population analysis. The
significance of this result is that even pseudoatomic orbitals can
provide a reasonable population analysis device for cDFT if the
nonorthogonality or equivalent Löwdin treatment is tensorially
invariant (if it uses O).

2. Calculation of the reorganization energy

Once the population of the molecule, N , is determined, the
target population for the cDFT calculation is defined as Nc =
N × 101/102. Figure 5 shows the charge density on the system
after the removal of an electron from the molecule. As seen
in the picture, a molecule with a net positive charge induces a
negative charge in the region of the graphene flake immediately
beneath the molecule. This is the image charge.

We follow the steps outlined in Sec. IV D to calculate the
reorganization energy of the pentacene molecule adsorbed
on the graphene flake. Since the final energy of a ONETEP

calculation is dependent, albeit very weakly, on the initial
NGWFs, we ensure that both the calculations used for com-
puting each instance of λ0 or λ+ use optimized NGWFs of as
similar a provenance as possible. The main problem with such
calculation is the existence of multiple configurational local
minima differing only slightly in energy. The local minimum to
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which a structural relaxation converges depends largely on the
initial geometry. Therefore, we find the reorganization energy
corresponding to the two local minima (one for the uncharged
system and another for the charged one).

As the opposite image charge formed on the flake results
in a Coulomb attraction between the molecule and the flake,
in the charged state geometry G+ the molecule is closer to
the flake than in the uncharged geometry G0. We also notice
that the directions of the in-plane displacements of the atoms
of the pentacene molecule upon charging are very similar
for the isolated molecule and for the molecule adsorbed on
the graphene flake, as can be seen in Fig. 6. Furthermore,
the average bond length of the relaxed pentacene molecule
is smaller for the charged case, for both the isolated and the
adsorbed molecule. This indicates a shrinking of the molecule
upon electron emission. Such a change in the average bond
length is larger for the isolated pentacene than for the adsorbed
one, as indicated by the length of the arrows in Fig. 6. This can
be attributed to steric effects due to the presence of graphene.
However, as mentioned earlier, one must keep in mind that
these properties can, in principle, be specific to the pair of
local geometry minima pertaining to the calculation. For a
different pair of minima, these values could be different in
principle.

In Table II we summarize our results for the reorganization
energy for two different cutoff energies and different sizes
of the graphene flake. We have also included the reorganiza-
tion energy of an isolated pentacene molecule (flake=none)
for comparison. Note that our results for isolated pentacene
matches with that obtained with the MP2 method in an earlier
theoretical study [41]. As mentioned in Eq. (3), λ0, λ+, and
λ refer to the reorganization energy contributions from the
uncharged molecule, the positively charged molecule, and the
total reorganization energy, respectively.

FIG. 6. Pentacene molecular geometry. The arrows show the
directions and magnitudes of the in-plane displacement of the atoms
in response to the removal of one electron. The top and bottom figures
correspond to an isolated pentacene and one deposited on a graphene
flake, respectively. The graphene substrate introduces an effective
steric hindrance, which reduces the reorganization effect and energy.

TABLE II. Reorganization energies (corresponding to local min-
ima in the geometry) of a pentacene molecule as a function of the
cutoff energy and the size of the graphene flake. �Vc denotes the
difference in the cDFT Lagrange multipliers corresponding to the
two different geometries. All energies are in meV. The smaller and
the larger flakes contain 358 and 474 atoms at the optimized and
idealized positions, respectively.

Cutoff energy (eV) Flake λ0 λ+ λ �Vc

900 none 29 27 56 N.A.
900 smaller 23 26 49 44
900 larger 20 20 39 50
1500 none 29 27 56 N.A.
1500 smaller 25 25 51 45
1500 larger 17 23 40 33

Since the reorganization energy is very small in general,
minute fluctuations (per atom) arising due to diverse local
geometry minima or differences in the NGWF initial state can
change the results considerably. As a result of exhaustive cal-
culations using different NGWF restart protocols, we estimate
the root-mean-square value of error caused by such deviations
to be approximately 6 meV for each instance of λ0 or λ+.
Therefore, in Table II, we focus predominantly on the general
trend in the results, which we consider to be quite robust, rather
than the precise values. A surprising effect to observe here is
that the total reorganization energy λ appears to be insensitive
to changes in the kinetic cutoff energy, relative to its separate
components λ0 and λ+. It is not possible to conclude that this
is more generally the case based on the available evidence.
The take-home message of the table is that the reorganization
energy of the isolated molecule is generally greater than that of
the same molecule on graphene. This can be attributed to steric
effects for the latter case, namely to the fact that an adsorbed
molecule has less freedom for ionic relaxation.

The reorganization energy is lower for the larger flake. We
attribute this to two possible mechanisms: (i) the freedom
of ionic motion of the molecule may be more restricted for
a larger substrate; (ii) since, as mentioned earlier, the bond
lengths in the smaller flake are not all equal, adsorption on
this flake is likely to result in a more uneven energy landscape
for the pentacene molecule. It is worth noting that we have
analyzed the different contributions due to Hartree, exchange
and correlation, pseudopotentials, and kinetic energy to the
reorganization energy. However, the relatively small reorga-
nization energy turns out to be the result of the substantial
cancellation of large variations in these individual terms. It
is noteworthy that experimental studies [62,63] on a rather
different system of graphene-adsorbed pentacene, namely
a thin film of pentacene deposited on HOPG, conversely
exhibits an increase in reorganization energy with respect to
the isolated pentacene molecule. This points to the possibility
that intermolecular relaxation in the film contributes to the
reorganization energy and more than compensates for the
effects of steric hindrance.

Here we note that, since, strictly speaking, the polarizability
of the neutral molecule is different from that of the charged
one, using the same form of empirical vdW correction for the
molecule-flake interface in both cases may introduce some
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bias in the numerical results. To obtain an estimate for such
error, we calculate, without using any vdW correction, the
reorganization energy of pentacene adsorbed on the smaller
flake using a plane-wave cutoff of 900 eV. We see that the
results so obtained (λ0 = 23 meV and λ+ = 29 meV) are
similar to those obtained with vdW corrections, and that
the difference is within the range of fluctuations caused by
local minima and in the NGWF restart protocol. We infer
that the inclusion of the vdW corrections does not alter the
reorganization energy significantly.

We finally note that the Lagrange multiplier Vc for one-
electron removal may be interpreted as an unscreened approx-
imate subspace-local ionization potential, and that the extent
of the screening may be assumed to be independent of small
changes in the ionic geometry. Therefore, the difference, �Vc,
between the converged Lagrange multipliers for the charged
pentacene in geometries G0 and G+ can be taken as an approx-
imation for the reorganization energy. Also, since this quantity
is evaluated explicitly only on the basis of the occupancy of
the adsorbate, we may expect it to be relatively free (that is,
compared to the true reorganization energy) from numerical
errors in the optimized ionic positions of distant atoms in the
graphene flake. Consequently, in Table II, we find that �Vc is
slightly less dependent on the nature of the substrate than the
true reorganization energy is, but, in contrast, it seems to be too
sensitive to the plane-wave energy cutoff for practical utility.

VI. CONCLUSION

We have presented a method for calculating self-consistent
forces in conjunction with constrained DFT in first-principles
calculations employing atom-centered functions. We have
investigated a very accurate population analysis constructed
over Wannier functions and a tensorially consistent treat-
ment of nonorthogonality. This is shown to yield an exact
expression for force containing a Pulay term for the change
in nonorthogonality, which circumvents the need for overlap

matrix diagonalization and is compatible with complex-valued
orbitals. We have implemented this expression for the force in
the DFT code ONETEP and have shown that the contribution
to the force arising from the change in mutual overlap of
the nonorthogonal projector orbitals of the subspace exerts
significant influence on the geometry relaxation.

To show a novel practical application of such forces, we
perform a hyperaccurate geometry optimization with numer-
ous extra features to capture the reorganization energy of a
pentacene molecule adsorbed on a flake of graphene. We have
argued that the Lagrange multiplier itself can be used to provide
a local estimate of the reorganization energy in systems in
which the principal change to the system is spatially localized.
Since the geometry of such a system has multiple local minima
closely related in energy, the reorganization energy can, in
principle, be calculated only over such local minima. These
depend on the initial geometry. We show that for the minima
obtained in our calculations, the reorganization energy of the
molecule adsorbed on a graphene flake is typically smaller
than that of the isolated molecule, a fact that is consistent with
a steric hindrance effect.
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