
Hybrid Machine Learning EDFA Model 
 

Shengxiang Zhu1, Craig Gutterman2, Alan Diaz Montiel3, Jiakai Yu1,  
Marco Ruffini3, Gil Zussman2, Daniel Kilper1 

 (1) University of Arizona, (2) Columbia University, (3) Trinity College Dublin 
szhu@email.arizona.edu 

 
Abstract: A hybrid machine learning (HML) model combining a-priori and a-posteriori knowledge 
is implemented and tested, which is shown to reduce the prediction error and training complexity, 
compared to an analytical or neural network learning model. 
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1. Introduction 
The traffic and latency demands in 5G backhaul and data center interconnection (DCI) networks has kept growing. It 
would be beneficial for optical networks to have dynamic channel reconfigurability to accommodate the changing 
traffic pattern and minimize the latency and power consumption. Within the fiber links, erbium doped fiber amplifiers 
(EDFA) are widely used to compensate for the signal loss due to the insertion loss of fiber and reconfigurable optical 
add-drop multiplexer (ROADM) components. In transparent optical networks, optical signals transmitted through 
network nodes are not regenerated and as a result the quality of the optical signals needs to be estimated before an 
optical channel is provisioned. Since optical channels share the same fiber, the add/drop operation of optical channels 
may have impact on other channels, such as crosstalk, fiber nonlinearity, and channel power excursion. Wavelength 
dependent gain in EDFAs is a significant source of variation and uncertainty in channel performance estimation. 
Recently there has been much interest in developing machine learning based models to account for the detailed EDFA 
behavior [1-3], replacing lookup tables or analytical models [4-9]. However, these machine learning models are built 
solely from a-posteriori knowledge which is trained from the experimental data, ignoring the existing a-priori 
knowledge. In this paper, we proposed a hybrid machine learning (HML) model for EDFAs, which combines an 
analytical model with a neural network machine learning model to achieve higher prediction accuracy while reducing 
the training complexity, in both the training time and the size of the training sample data sets. 

1.1. Analytical models of EDFA – a-priori knowledge 

The EDFA gain spectrum can be modelled using a center of mass function based on single channel and fully channel 
loaded ripple functions, shown in Eq. 1 [5]. 
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In this expression, 𝑔"(𝜆%) is the wavelength dependent gain of wavelength 𝜆% when a set of wavelengths {𝜆8,… , 𝜆6} is 
input to the EDFA. 𝑔-𝜆<0 is the wavelength division multiplexed (WDM) gain spectrum, i.e., the gain spectrum when 
all WDM input channels are input to the amplifier at the desired signal power and mean gain value. 𝑔=-𝜆<0 is the 
measured single channel gain at	𝜆< . An example of measured 𝑔-𝜆<0 and 𝑔=-𝜆<0 is shown in Fig. 1. This center of mass 
equation provides an estimate of the wavelength dependent gain based on simple EDFA measurements, but it does 
not capture many important features of the EDFA wavelength dependent gain and its behavior over the full operating 
range.  

1.2. Machine learning models of EDFA – a-posteriori knowledge 

Recent research on ML based EDFA modeling uses deep neural networks often implemented in TensorFlow. A 
typical deep neural network contains an input layer, multiple hidden layers, and an output layer. The input layer 
contains information regarding the input and configuration of the EDFA, e.g. input channel power, gain and tilt 
settings. The output layer contains the gain or output power spectrum. Since the gain spectrum is a relatively smooth 
function of wavelength, a few sample channels can be used to quickly find the gain profile [8]. When enough samples 
are collected and neural network parameters (e.g. activation function, batch size, learning rate) are carefully chosen, 
the prediction accuracy of ML models were shown to outperform analytical models [6, 7].  

2.  Hybrid machine learning model 

A supervised machine learning algorithm is designed to train a neural network model of EDFAs to predict the gain 
spectrum based on the input power spectrum. The Neural Network (NN) architecture is implemented with TensorFlow. 



For the regular ML model, ninety features are used as the input to the NN, representing the power levels of each of 
the 90 channels. The resulting parameters for the NN architecture are described as follows. All power levels are 
converted into decimal power levels and normalized. Each neural network has 4 hidden layers and an output layer 
with artificial neuron transfer function of ReLU (rectified linear unit), Linear, ReLU, Linear, and ReLU. Each of the 
first 4 layers contain 90 neurons and the last layer contains 1 neuron. The full NN architecture is shown in Fig. 2(a). 

For the hybrid ML model, one hundred eighty features are used as the input to the NN. The first ninety features 
represent the power levels of each of the 90 channels. The second 90 features are the predicted output power levels 
determined by the analytical model. All power levels are converted into decimal power levels and normalized. Each 
neural network has 4 hidden layers and an output layer with artificial neuron transfer functions of ReLU (rectified 
linear unit), Linear, ReLU, Linear, and ReLU. Each layer contains 180 neurons, 90 neurons, 90 neurons, 45 neurons, 
and 1 neuron, respectively. The full NN architecture can be seen in Fig. 2(b). 

A separate NN is created for each output channel. Data is divided into 3 classes: training data, validation data, and 
test data. The training data is used to train the NN to minimize the Mean Square Error (MSE) loss function. The 
validation data is used to determine which parameters provide optimal performance after using the training data. The 
test data is used to evaluate the trained model. The model is trained by minimizing the MSE loss function using 
stochastic gradient descent with backpropagation with m = 60 mini batch size and a learning rate alpha = 0.00025.  

3.  Experimental Setup  
As shown in Fig. 3, optical channels are generated by a comb source, which is filtered by wavelength selective switch 
(WSS) to select the active channels and fine tune the channel power. EDFA is the device under test (DUT) and has 
setting of 3 dB tilt and 18 dB gain (other EDFA settings are also tested, which have similar results). Automatic gain 
control (AGC) mode is used by the EDFA to ensure the total gain is 18 dB. Optical channel monitors (OCM) are 
used to capture the input and output channel powers. A controller is used to remotely control all the devices and 
automate the data capturing process.  

4.  Results  
In the experiment, the EDFA is configured to have 18 dB gain and the input channels are randomly set to be ‘on’ or 
‘off’, with -18 dBm +/- 6 dB variation in optical channel power for each “on” channel. Three dimensions of machine 
learning system performance are evaluated, as shown below. 

First is the accuracy of HML model with abundant data samples (12000 samples is used) and unlimited training time 
(25000 iterations is used). The mean square error (MSE) of the predicted channel power is 0.362 dB (analytical), 
0.160 dB (ML), 0.144 dB (HML), in which HML has a 10.5% reduction of error, compared with ML model. In the 
worst case, HML has 1.15% of high error (error > 0.5 dB), which is lower than ML (1.63%). As a result, the ultimate 
performance of HML is slightly better than ML given unlimited data and time. However, when data and time are 
limited, HML has a much better performance than ML. In Fig. 4, the normalized frequency density of error shows 
that HML has much narrower error distribution than ML, when the number of iterations is limited to 5000 (originally 
25000, training sample size is the same as original). From Fig. 5(a), the convergence process of the models is shown, 

Fig. 1 EDFA gain spectrum  

          (a)                                                                (b)                     
Fig. 2 Structure of machine learning and hybrid machine learning model. In ML model, 90 
features (x1-x90) of input channel power are used and 4 hidden layers have 90 neurons 
each. The output is the optical channel power. In HML model, 90 features (x1-x90) of input 
channel power and another 90 features (x91-x180) of gain spectrum predicted by analytical 
model are used. The hidden layers have 180, 90, 90, 45 neurons. Fig. 3 Data capturing setup 



where the HML has a faster speed. In fact, considering a target MSE of 0.2 dB, HML requires 37% less time than 
the ML model (with the same ML configuration).  

The third dimension is the number of training samples required. In Fig. 5(b), the MSE with different numbers of 
samples are shown for the three models. With fewer training samples, HML can achieve the same performance as 
ML. For example, to achieve the ultimate 0.134 dB MSE by the ML model, HML needs 33% fewer training samples. 
In another example, in order to surpass the prediction accuracy of the analytical model, HML needs 17% fewer 
training samples than the ML model.  
Greater accuracy in the channel power prediction for EDFAs is expected to improve the accuracy of channel 
performance or QoT estimation, which is critical for the control and management of optical systems. In a typical 
optical system, the accuracy of power control and measurement is usually around 0.1 dB, which means that the 0.144 
dB prediction error of the HML model is close to the system limitation. Although the HML can largely reduce the 
training sample size and training time relative to the ML approach, it still requires a longer data capturing process, 
compared to the analytical model, and further progress is needed to reduce this training process, for example through 
the use of transfer learning. 

5.  Conclusion 

In this paper, we examined a hybrid machine learning model which takes advantage of an analytical model as input to 
the machine learning model. Based on experimental measurements, this HML model is shown to increase prediction 
accuracy of the output optical power spectrum of an EDFA by 10.5%, reduce the training sample size by 33% and 
reduce the training time by 37%. 
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Fig. 5 Comparison of models in convergence speed and size of samples. 

Fig. 4 Normalized Frequency Density of 
Analytical, ML, HML after 5000 iterations. 


