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Executive Summary

This report describes the application of numerical 
weather prediction (NWP) simulations to develop 
high-quality, long-term, gridded climate datasets 
of hydro-climate variables for Ireland, covering the 
period 1981–2016. There is constant demand for such 
datasets from industry, research and governmental 
agencies for use in fields such as agriculture, water 
resource estimation and management, hydrology and 
hydrogeology, public health, energy and planning 
and studies on observed climate change trends and 
vulnerability. Variables such as evapotranspiration 
and soil moisture conditions are crucial factors 
in estimating water sustainability, understanding 
groundwater recharge, agronomic management and 
the management of flood and drought risk. However, 
with the exception of temperature and precipitation, 
spatially and temporally homogeneous, multi-decadal, 
gridded observational climate datasets are not readily 
available for hydro-climatic research applications in 
Ireland.

One approach to generating the requisite gridded 
datasets is through the use of NWP downscaled 
simulations. NWP models use mathematical models 
of the atmosphere to forecast weather based on 
current weather conditions. NWPs can also be used 
to “reanalyse” historical weather conditions, whereby 
past weather observations such as satellite, surface 
and upper-air conditions are used as model inputs. 
This report describes the application of downscaled 
NWP models to produce gridded climate datasets of 
key hydro-climate variables for Ireland.

In this research the performances of three NWP 
models (COSMO-CLM, WRF and MÉRA) are 
compared and analysed to assess their ability to 
accurately represent hydro-climate variables, focusing 
on reference evapotranspiration (ET0) as calculated 
using the Food and Agriculture Organization of the 
United Nations (FAO) Penman–Monteith equation. 
Two of the NWP datasets assessed were produced 
by researchers at the Irish Centre for High-End 
Computing (ICHEC) using the COSMO-CLM5 and 
WRF v3.7.1 models. The third dataset (MÉRA) 
is derived from a 36-year (1981–2016) regional 

reanalysis of the Irish climate carried out by Met 
Éireann using the HARMONIE model and the ALADIN-
HIRLAM NWP system. The MÉRA simulation included 
a data assimilation component. All NWP models of the 
current study downscaled the European Centre for 
Medium-Range Weather Forecasts (ECMWF) ERA-
Interim global reanalyses dataset.

Modelled ET0 data are analysed and validated against 
ET0 data calculated from meteorological observations 
at 22 Met Éireann synoptic stations across Ireland. 
Least squared estimator monthly correction factors 
were applied to all three raw datasets to improve 
the output. Using these ET0 datasets, actual 
evapotranspiration (ETa) and soil moisture deficits 
(SMDs) have been derived using the hybrid soil 
moisture deficit (HSMD) model, created by Teagasc 
and in use in Ireland since 2006. The current project 
employed a more up-to-date model with five drainage 
classes. The following datasets were derived using 
MÉRA input variables containing daily, monthly, 
seasonal and yearly time steps:

●● ET0;
●● ETa (five drainage classes);
●● SMDs (five drainage classes).

The datasets described above are also available 
for the COSMO-CLM and WRF models with 1.5-km 
and 2-km grid spacing, respectively. Additionally, 
the Teagasc Indicative Soil Drainage Map has been 
implemented to capture the actual soil conditions 
throughout the country. All datasets are available for 
download through the ICHEC ERDDAP server, which 
can be found at https://erddap.ichec.ie/erddap/files/
EPA_Hydroclimate.

Across all three models, the MÉRA model is the best 
performer for ET0. Using a weighted average across 
22 synoptic stations, root mean square errors equated 
to 0.337 mm/day for the MÉRA model compared with 
0.402 mm/day and 0.442 mm/day for the WRF and 
COSMO-CLM models, respectively. The MÉRA model 
also performs best for the ETa and SMD variables and 
therefore the MÉRA datasets are the recommended 
datasets to be used as indicative maps for Ireland.

https://erddap.ichec.ie/erddap/files/EPA_Hydroclimate
https://erddap.ichec.ie/erddap/files/EPA_Hydroclimate
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An additional project output was to facilitate an update 
to the Agroclimatic Atlas for Ireland. Met Éireann high-
resolution (1-km) daily gridded datasets of temperature 
and precipitation were used to derive agro-climate 
variables such as the Standardised Precipitation Index 

(SPI) and growing season. Gridded datasets of the 
SPI for intervals of 1, 2, 3, 6, 12, 24 and 48 months 
have been derived for 1981–2016 using both the 
observational datasets and the NWP models specified 
above.
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1	 Introduction

There is constant demand from industry and research 
and governmental agencies for high-quality, long-
term, gridded datasets with high spatial and temporal 
resolution for conducting climate research. These 
data have the potential to be used in a wide variety 
of fields such as agriculture (Collins and Cummins, 
1996; Perry and Hollis, 2005; Olesen et al., 2007; 
Abatzoglou, 2013; Jones and Thornton, 2013), 
hydrology and hydrogeology (Hay et al., 2002; Analitis 
et al., 2008; Rajeevan and Bhate, 2009; Keshta and 
Elshorbagy, 2011; Di Luca et al., 2012; Duethmann 
et al., 2013; Williams et al., 2013; Merz et al., 2014; 
Schamm et al., 2014; Seyyedi et al., 2014), public 
health (Kunkel et al., 1999; D’Ippoliti et al., 2010; 
Vautard et al., 2013), energy (Troen and Petersen, 
1989; SEAI, 2016; Gallagher et al., 2014; Gallagher 
et al., 2016; Slater, 2016) and planning (Holman et 
al., 2005; Bouwer, 2011) and in studies on observed 
climate change trends and vulnerability (IPCC, 2014; 
Bollmeyer, 2015). The need for spatially represented 
hydro-climate variables is a prerequisite for many 
aspects of hydrological and ecological assessment. 
Variables such as evapotranspiration and soil moisture 
conditions are crucial factors in estimating water 
sustainability, understanding groundwater recharge, 
agronomic management and the management of 
flood and drought risk. However, at present gridded 
observational climate datasets are not readily available 
in Ireland, except for temperature and precipitation 
(Walsh, 2012).

In order to characterise groundwater and surface 
water systems, and to facilitate climate adaptation, a 
greater understanding of the primary processes driving 
energy and water exchanges within the hydrological 
cycle is required. It is therefore necessary to provide 
the evidence needed to inform policymakers, planners 
and stakeholders of potential climate change-related 
issues in Ireland. Such studies also support the 
development of pre-emptive mitigation strategies 
necessary to contribute towards developing a climate-
resilient Ireland. To fully comprehend future climate 

change, a thorough analysis of the observational past 
is required.

As mentioned above, the only readily available 
gridded climate datasets available in Ireland are those 
for precipitation and temperature (Bollmeyer et al., 
2015) and these variables alone are insufficient to 
enable scientists and policymakers across all sectors 
to make well-informed decisions. The lack of up-to-
date gridded hydrological datasets, particularly for 
evapotranspiration, represents a serious information 
gap in Irish meteorology and agro-climate studies. 
This gap was outlined in the 2012 Catchment Flood 
Risk Assessment and Management (CFRAM) National 
Preliminary Flood Risk Assessment (PFRA) (CFRAM, 
2012), which stated that “the information required 
to undertake a predictive analysis of the potential 
flood risk impacts of climate change is not currently 
available, but is under development and once available 
will be used to review the PFRA outcomes”. The gap 
was also highlighted in the context of groundwater 
recharge assessment and the Water Framework 
Directive quantitative status characterisation (Williams 
et al., 2013). The datasets produced as part of the 
current project will allow scientists, engineers and 
policymakers to study observed changes and patterns 
in hydrological/hydrogeological datasets to an extent 
not covered before in Ireland and mitigate against 
the projected adverse effects in the coming decades. 
The performances of (1) the COSMO-CLM5 model, 
developed by Consortium for Small-scale Modelling 
and Climate Limited-area Modelling Community, (2) 
the Weather Research and Forecasting (WRF) model 
and (3) the Met Éireann Re-Analysis (MÉRA) datasets 
are compared and analysed to assess their ability 
to accurately represent hydro-climate variables. The 
overall goal of this project was to produce definitive 
gridded datasets of hydro-climate variables including 
reference (ET0) and actual (ETa) evapotranspiration, 
soil moisture deficits (SMDs), rainfall intensity and the 
Standardised Precipitation Index (SPI) for the period 
1981–2016 for use by industry, policymakers, the 
general public and researchers.
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2	 Literature Review

2.1	 Use of Regional Climate Models 
for Gridded Data Generation

One approach to generating homogeneous, long-term 
gridded datasets is using numerical weather prediction 
(NWP) hindcast simulations. NWP models use 
mathematical models of the atmosphere to forecast 
weather based on current weather conditions. NWPs 
can also be used to reanalyse historical weather 
conditions, whereby past weather observations 
such as satellite, surface and upper-air conditions 
are used as model inputs. Using data assimilation 
methods, a complete estimate of the atmospheric 
state is computed that is both dynamically consistent 
and close to observations. The primary advantage 
of using reanalysis data is that they provide the best 
estimate of the four-dimensional atmospheric state, 
for both observed variables and essential climate 
variables, which are not often measured (Dee et al., 
2014; Bollmeyer et al., 2015). Such examples of global 
reanalysis datasets include ERA-Interim (Dee et al., 
2011) from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) and the National 
Center for Atmospheric Research (NCEP) Climate 
Forecasting Systems Reanalysis. However, these 
global reanalysis datasets have resolutions of the 
order of 80 km, which is too coarse to be of use in 
regional studies.

To address this problem, a regional climate NWP 
model (RCM) is typically employed to dynamically 
downscale the coarse global reanalysis datasets at 
a higher resolution over the area of interest. This 
downscaling can also include the assimilation of local 
observations, known as a regional reanalysis. If these 
local observations are not available a more general 
RCM approach is implemented. The constraints 
imposed by local observations should yield a more 
accurate analysis than the general RCM approach, 
which lacks these local observations. However, 
the data assimilation systems of the NWP model 
do not exactly follow observations because of a 
broader constraint requiring physical and dynamical 
consistency over the three-dimensional volume of the 
atmosphere. Both approaches have value, particularly 
when multiple NWP models are employed.

The overall basis of the RCM method is to dynamically 
downscale the coarse information provided by the 
global reanalysis data and provide high-resolution 
information on a sub-domain of interest. All models 
from global down to regional scale have errors, 
however, and more errors are introduced from the 
boundaries of the regional models. Numerous studies 
have demonstrated that high-resolution RCMs 
improve the simulation of precipitation (Rajeevan and 
Bhate, 2009; Saha et al., 2010; Di Luca et al., 2012; 
Lucas-Picher et al., 2012; Duethmann et al., 2013; 
Kendon et al., 2012; Kendon et al., 2014; Bieniek et 
al., 2016; McGrath and Nolan, 2016) and topography-
influenced phenomena and extremes with relatively 
small spatial or short temporal character (Feser et 
al., 2011; Feser and Barcikowska, 2012; Shkol’nik et 
al., 2012; Flato et al., 2013). An additional advantage 
is that the physically based RCMs explicitly resolve 
more small-scale atmospheric features and provide 
a better representation of convective precipitation 
(Rauscher et al., 2010) and extreme precipitation 
(Kanada et al., 2008). Other examples of the added 
value of RCMs include improved simulation of 
near-surface temperature (Feser, 2006; Di Luca et 
al., 2016). The latest Intergovernmental Panel on 
Climate Change (IPCC) report has concluded that 
there is “high confidence that downscaling adds value 
to the simulation of spatial climate detail in regions 
with highly variable topography and for mesoscale 
phenomena and extremes” (Stocker et al., 2013).

2.2	 Regional Climate Model Data for 
Ireland

Researchers at the Irish Centre for High-End 
Computing (ICHEC) completed two high-resolution 
historical simulations of the Irish climate, by 
downscaling ERA-Interim data for the period 1980 to 
present using the COSMO-CLM5 (Rockel et al., 2008) 
and WRF v3.7.1 (Skamarock et al., 2008) RCMs, 
with maximum spatial resolutions of 1.5 km and 2 km, 
respectively. The WRF nested model domains have 
18-km, 6-km and 2-km grid spacings and are shown in 
Figure 2.1. The COSMO-CLM domains have the same 
resolution apart from the innermost domain (1.5 km) 
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and are slightly larger than the corresponding WRF 
domains.

In 2017, Met Éireann completed a 36-year 
(1981–2016) regional reanalysis of the Irish climate 
using the HARMONIE model and the ALADIN-
HIRLAM NWP system, called MÉRA (Whelan et 
al., 2016; Gleeson et al., 2017). In contrast to the 
COSMO-CLM and WRF simulations, MÉRA includes 
data assimilation, utilising time series of surface 
observations (Whelan et al., 2015), and has a different 
projection. MÉRA has performed with high accuracy, 
with small biases in temperatures, pressure and 
10-m wind speeds, and outperformed “ERA-Interim 
reanalysis particularly in terms of standard deviations 
in screen-level temperatures and surface winds” 
(Gleeson et al., 2017) and compares well with surface 
observations. Because of the data assimilation 
component, the MÉRA model exhibits better skill 
than the WRF and COSMO-CLM models despite the 
lower resolution. However, the WRF and COSMO-
CLM models add value given their finer spatial 
resolutions. The comparison of these different models 
provides information on the relative skill of the RCM 
methodologies.

In the current study, the COSMO-CLM, WRF and 
MÉRA datasets are compared and analysed to 
assess their ability to accurately represent hydro-
climate variables. The overall goal of this project 
was to produce definitive gridded climate datasets of 

hydro-climate variables such as ET0 and ETa, SMDs, 
rainfall intensity and the SPI for the period 1981–2016 
for use by industry, policymakers, the general public 
and researchers. Data for 2017 are made available for 
COSMO-CLM and WRF.

2.3	 Hydroclimate Indices

2.3.1	 ET0

Evapotranspiration is the transfer of water from the 
land to the atmosphere through a combination of 
two separate processes, evaporation from the land 
surface and transpiration from vegetation. Although 
evapotranspiration can be measured directly, 
meteorological agencies generally use calculation 
methods to determine a “reference” evapotranspiration 
(ET0), which is evapotranspiration from a reference 
surface that is not water limited. The reference crop 
is typically taken as grass with an assumed height 
of 0.12 m, a fixed surface resistance of 70 s/m and 
an albedo of 0.23 (Allen et al., 1998). The potential 
evapotranspiration of any crop can be calculated by 
multiplying this value by a crop coefficient, Kc, which 
depends on the crop type and time of growth.

There have been many developments and 
improvements in the calculation of evapotranspiration 
over time as it plays an important role in the field of 
agro- and hydro-meteorology. It is a crucial factor in 
estimating water sustainability and understanding 
agronomic management, is of more importance in a 
changing climate and is important in the management 
of flood and drought risk. Numerous methods of 
calculating evapotranspiration exist, including pan-
based coefficient methods, such as described in Allen 
et al. (1998), and the Pereira models (Pereira et al., 
1995). These methods will not be considered for this 
study, as ET0 in Ireland is typically calculated from 
observed meteorological data recorded at synoptic 
stations.

There are numerous approaches for estimating ET0, 
based on empirical, mass transfer, temperature, 
radiation and combination and direct measurement 
methods (Blaney and Criddle, 1950; Makkink, 1957; 
WMO, 1966; Mahringer, 1970; Priestley and Taylor, 
1972; Szász, 1973; Doorenbos and Pruitt, 1977; 
Burman and Pochop, 1994). Direct measurements of 
ET0 are severely limited in Ireland and so these were 
not considered in this study; they are recommended 

Figure 2.1. WRF domains of 18 km, 6 km and 2 km.
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more over monthly or longer time periods. Prior to 
2006, Met Éireann employed the radiation-based 
Makkink methodology for estimating ET0 (Keith 
Lambkin, Met Éireann, 2017, personal communication; 
https://www.met.ie/climate/services). Subsequently, 
the combination method of the Food and Agriculture 
Organization of the United Nations (FAO) Penman–
Monteith equation has been used for ET0 estimation. 
The Penman-Monteith method is recommended 
by the World Meteorological Organization as the 
sole standard method for estimating ET0, as it has 
been shown to have a strong likelihood of correctly 
predicting ET0 in a wide range of locations and 
climates. Studies such as that by Rácz et al. (2013), 
which compared 10 different ET0 methodologies, found 
that the Penman–Monteith equation provided the best 
estimates.

Penman (1948) developed a method of calculating 
ET0 by combining the energy balance with the mass 
transfer method and derived the equation to compute 
open source evaporation from standard climatological 
records of sunshine, temperature, humidity and wind 
speed. The method has been further developed, 
resulting in the Penman–Monteith ET0 formula, given 
as:

ET0 =
0.408∆ Rn −G( ) + γ 900

Tav + 273
u2 es − ea( )

∆+ γ 1+ 0.34u2( ) �(2.1)

where ET0 is the measure in mm/day, Rn is the net 
surface radiation (MJ/m2/day), G is the soil heat flux 
(MJ/m2/day), Tav is the mean daily 2-m temperature 
(°C), u2 is the mean daily 2-m wind speed (m/s), es 
is the daily saturation vapour pressure (kPa), ea is 
the daily actual vapour pressure (kPa), Δ is the slope 
of the vapour pressure curve (kPa/°C) and γ is the 
psychometric constant (kPa/°C).

In line with international best practice and current 
practices at Met Éireann, the FAO Penman–Monteith 
equation has been used for calculating ET0 in this 
study.

Other notable methodologies for estimating ET0, 
including the Thornthwaite (1948), Hargreaves and 
Samani (1985) and Penman (1948) methods, can 
be used in place of the Penman–Monteith equation 
when all required input variables are not available 
(Hargreaves and Allen, 2003; Chen et al., 2005). 
Methods such as these have significant advantages 
over the Penman–Monteith equation when data are 
limited as they require fewer input parameters and 

are relatively easy to calculate. The quantity of input 
variables in the Penman–Monteith equation has its 
issues as many locations worldwide do not record all 
of the required meteorological variables. Appropriate 
documentation is available (Allen et al., 1998) for when 
this occurs.

Following the estimation of evapotranspiration for the 
grass reference crop outlined in Allen et al. (1998) and 
Zotarelli et al. (2010), to obtain evapotranspiration for 
a certain crop, a crop coefficient, Kc, must be applied:

ETc = Kc ⋅ET0 � (2.2)

where ETc is the evapotranspiration from disease-
free, well-fertilised crops, grown in large fields 
under optimum soil water conditions and achieving 
full production under the given climatic conditions. 
Depending on the crop and time of year, different Kc 
values are applied, and are typically employed for 
areas where irrigation is a prominent activity. A full list 
of the different Kc values is outlined in Chapter 6 in 
Allen et al. (1998).

2.3.2	 ETa and SMDs

The calculation of ET0 is determined by the available 
energy supply and is based on the assumption that 
the system is not water limited, i.e. an ample supply 
of water is available. However, the actual rate of 
water loss from a vegetated surface does not always 
proceed at the potential rate ET0. When vegetation is 
unable to extract water from the soil column, ETa falls 
below the potential rate ET0. This difference between 
potential and actual rates is dependent on the soil 
moisture content.

When a soil is saturated it will not hold any more 
water, and any further rainfall is drained via run-off 
or percolation to groundwater. When rainfall ceases, 
the soil becomes unsaturated until it reaches “field 
capacity”, the water that the soil can hold against the 
force of gravity. When the soil moisture is at or above 
field capacity, evapotranspiration can occur at the 
potential rate (ETa = ET0). In the absence of further 
rainfall, soil moisture gradually becomes depleted 
to produce a SMD, defined as the amount of water 
required to restore the soil to field capacity. As the 
SMD increases, water becomes more difficult for 
vegetation to access and ETa becomes progressively 
less than ET0.

https://www.met.ie/climate/services
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Actual evapotranspiration is of particular interest 
to agriculturalists and hydrologists for groundwater 
research for the purposes of monitoring decreases 
in crop productivity and producing groundwater 
recharge maps, respectively (Burke, 1962; Brereton 
and Keane, 1982; Williams et al., 2013). In Ireland, 
ETa and SMD are typically not directly measured but 
are instead estimated from measurements of ET0 and 
precipitation. In a broadly similar climate to Ireland, the 
UK Meteorological Office has established a regular 
procedure for evaluating agricultural water shortage 
in Britain using the water budget approach. The 
UK’s Meteorological Office Rainfall and Evaporation 
Calculation System (MORECS; Thompson et al., 
1981) (discussed further in section 2.4.) is applied 
to grid cells of size 40 × 40 km and employs regularly 
collected meteorological data to estimate ETa 
using a modified Penman equation that accounts 
for both meteorological conditions and vegetation 
characteristics.

Several studies have used remote sensing (RS) to 
estimate ETa rather than physical observations (Soer, 
1980; Carlson et al., 1995; Timmermans and Meijerink, 
1999; Wu et al., 2006; Senay et al., 2007; Gao et al., 
2008; Teixeira, 2010; Elhag et al., 2011; Glenn et al., 
2011a,b). There are some advantages to this as ETa 
can be determined on a large scale rather than by 
point measurement analysis. However, each captured 
image is still a snapshot and the temporal resolutions 
can vary between satellites. Field data are usually 
required in interpreting and calibrating RS imagery, 
and validating models for large areas, but extensive 
fieldwork in such cases is not necessarily required 
(Kite and Droogers, 2000). RS is mostly prominent in 
areas where irrigation is a key activity.

No single method of measuring or calculating 
evapotranspiration is without fault as some point 
analysis methods are difficult to apply spatially (Wu 
et al., 2006), and traditionally ETa has been computed 
as a residual in water balance equations. Estimates of 
ET0 are derived by means of a ratio or indirectly from 
field measurements at meteorological stations (Kite 
and Droogers, 2000).

In Ireland, ETa and SMD are not widely monitored 
directly (Mills, 2000) but are instead calculated 
using the hybrid soil moisture deficit (HSMD) model 
implemented by Met Éireann in 2006 (Schulte et al., 
2005; Keith Lambkin, Met Éireann, 2017, personal 

communication; https://www.met.ie/climate/services), 
with a newer version described in Schulte et al. (2015). 
In this model ETa is assumed to reduce linearly to zero 
as SMD approaches a theoretical maximum value, 
beyond which ETa is assumed to be zero. In the Met 
Éireann model ETa is given by:

ETa = ET0
SMDmax −SMDt−1
SMDmax −SMDc

� (2.3)

where SMDmax is a theoretical maximum SMD value, 
SMDt–1 is the SMD at time t–1 and SMDc is a critical 
value above which moisture availability is no longer 
a limiting factor (Aslyng, 1965). When SMD is less 
than SMDc, moisture is not limiting respiration and is 
assumed to equal ET0. For SMD values below this 
critical level, it is assumed that ET0 decreases linearly 
to zero as the SMD approaches the critical maximum 
value.

Soil moisture conditions are an important interface 
between agriculture and the environment because of 
their impact on the length of the grazing season, grass 
growth conditions and nutrient uptake. The balance 
exchange is driven by the hydrological cycle, one of 
the most fundamental cycles in the earth–atmosphere 
system. The hydrological cycle refers to the passage 
of water in gaseous, liquid and solid forms between the 
oceans, atmosphere, lithosphere and biosphere. It can 
easily be expressed as a water budget, accounting for 
precipitation (P), evapotranspiration (E), run-off (R) 
and the fluctuations in the water stored in the soil (DS) 
as:

P −E −R = ∆S � (2.4)

The difference between evapotranspiration and 
precipitation represents differences in water stored 
within the soil. For a saturated soil, run-off will be 
generated, and the saturation of the soil is often 
represented by the “field capacity”, the depth of water 
that can be held in the soil against the force of gravity. 
When a soil is at field capacity, any excess water runs 
off overland or percolates downwards through the soil. 
Measures for countrywide SMDs and soil moisture 
content are not common; however, the European 
Space Agency (ESA) has been monitoring global 
soil moisture using active and passive microwave 
instruments (Silvestrin et al., 2001; Mecklenburg et 
al., 2012). A number of studies have also derived soil 
moisture datasets from radar and satellite imagery 
(Ulaby, 1974; Huisman et al., 2003; Wagner et 
al., 2007). A number of international studies have 

https://www.met.ie/climate/services
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attempted to estimate SMDs using meteorological 
models (Lockwood et al., 1989). In Ireland, attempts 
have been made to evaluate the soil moisture and 
deficit in the context of the water budget and soil 
associations (Gardiner and Radford, 1980). Some of 
the most notable attempts involved the implementation 
of a 5 × 5 km grid superimposed onto Ireland using 
measured meteorological variables (precipitation, 
temperature, sunshine hours) to calculate each of the 
water budget terms (Mills, 2000) and to calculate ET0 
and SMDs for North County Dublin from 1950 to 1961 
using the Penman method (Burke, 1962). However, 
with recent advances in climate modelling and 
observations, this can be improved on.

In Ireland, a method for estimating SMDs across the 
whole country, the HSMD model (Schulte et al., 2005), 
was derived by Teagasc, which has been used at Met 
Éireann since 2006. The preliminary calculations are 
described as:

SMDt = SMDt−1 −Rain +ETa +Drain � (2.5)

where SMDt and SMDt–1 are the SMDs on day t 
and day t–1 respectively, Rain is the daily incoming 
precipitation, ETa is the daily ETa and Drain is the 
amount of water drained daily by percolation and/
or overland flow, which is dependent on the soil 
drainage capacity. There are three soil drainage 
classes, outlined in Table 2.1. As with the water budget 
equation, SMDs and surpluses are computed from 
differences between rainfall, ETa and drainage, with 
soil moisture surpluses assumed to be removed by 
drainage and surface run-off over time.

Since the implementation of this model, an updated 
and higher resolution version has been developed, 
the HSMD model version 2 (Hallett et al., 2014; 
Schulte et al., 2015). The new model includes two 
new soil drainage classes as well as an optional 
module to account for the topographic wetness index 

at any location (Lewis and Holden, 2012; Schulte et 
al., 2015). The two new drainage classes included 
are “excessive” and “imperfect”. The new classes 
follow the same characteristics as for the older 
corresponding classes, with the exception of the 
excessive class, for which the SMDmax value is 50 mm. 
The imperfect class has a drainage of 3 mm, with other 
characteristics similar to those for the moderately and 
poorly drained classes. The topographic wetness index 
is used in locations that receive water from both direct 
precipitation and adjacent areas via overland flow. 
The only difference in the equations is the topographic 
wetness index, from which a Y modifier is derived and 
put as a denominator to the drain term.

Other methods of calculating SMDs include methods 
from the FAO (Allen et al., 1998) and the Penman–
Grindley model (Grindley, 1969). These models 
calculate ETa using alternative methods to represent 
the crop stress factor. For the standard Penman–
Grindley approach, the potential evapotranspiration 
term (taken to be the same as ET0) is reduced once 
the SMD reaches a so-called rooting constant, the 
value below which evapotranspiration may occur at 
its maximum rate. When this occurs, ETa is instantly 
reduced to 10% of potential evapotranspiration, during 
a period in which the crop is stressed. During this time, 
the SMD is less than the crop rooting constant, beyond 
which transpiration reduces. The point beyond which 
transpiration ceases is known as the wilting point. The 
FAO assumes that ETa decreases linearly from the 
rooting constant to the wilting point. The difference 
from the Schulte model is the inclusion of the rooting 
constant and wilting points. For practical reasons, 
the updated Schulte model will be implemented in 
this study. The primary reasoning is the inclusion 
of different soil drainage characteristics, which the 
Penman–Grindley model does not implement. Second, 
the Penman–Grindley method uses the Penman ET0 
method as an input instead of the Penman–Monteith 

Table 2.1. Overview of soil drainage classes in the HSMD model version 1 from Schulte et al. (2005)

Variable Well drained Moderately drained Poorly drained

SMDmax 110 mm 110 mm 110 mm

SMDmin 0 mm –10 mm –10 mm

Drainage – 10 mm/day 0.5 mm/day

Comments Soil never saturates, remaining 
at field capacity even on very 
wet winter days

Soil may saturate on wet 
winter days, but returns to field 
capacity on first dry day

Soil saturates on wet winter 
days, with water surplus 
drained at very slow rates
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method, which is used by Met Éireann for calculating 
ET0. Finally, the Penman–Grindley method is believed 
to not operate satisfactorily when the surface or the 
subsurface run-off is a significant part of the soil water 
balance (Mackenzie et al., 1991).

Soil moisture deficits are an effective way of 
monitoring the soil conditions and a measure of 
the difference between water in the soil and the 
amount that the soil can actually hold. As mentioned 
previously, this is known as the field capacity of the 
soil and can be considered as one of the most viable 
options for ascertaining soil moisture conditions. One 
study has gone further to develop a SMD index and 
evapotranspiration deficit index for agricultural drought 
monitoring, based on weekly values (Narasimhan and 
Srinivasan, 2005). They work in a similar way to the 
SPI (McKee et al., 1993) and represent conditions 
from extremely dry to extremely wet. The study by 
Narasimhan and Srinivasan (2005) includes the 
acknowledgement that the drought indices introduced 
needed to be aggregated at spatial and temporal 
scales for comparison with other drought indices. 
Droughts are rare in Ireland; however, the drought 
during the summer months of 2018 makes this a more 
viable option as the impacts of climate change become 
more apparent in Ireland. The applications of the SPI  
are further discussed in the following section.

2.3.3	 Precipitation

Rainfall intensities

Rainfall intensities are used primarily in run-off 
analysis and are of huge importance in agricultural and 
groundwater monitoring (Allen et al., 1998; Williams et 
al., 2013). When rain falls, the first drops of water are 
intercepted by the leaves and stems of the vegetation, 
usually referred to as the “interception storage”’. As 
the rain continues, water reaching the ground surface 
infiltrates into the soil until it reaches a stage where 
the rate of rainfall (the intensity) exceeds the infiltration 
capacity of the soil. After this time, surface ponding 
occurs and depression areas are filled, after which run-
off is generated. The infiltration capacity of the soil is 
dependent on its structure and texture, as well as the 
soil moisture content as a result of previous rainfall or 
dry periods. The main factors that affect run-off are soil 
type, vegetation cover, the slope and the catchment 
size. The details of these factors are outside the scope 

of this project and are more applicable to end users of 
rainfall intensity datasets.

Additionally, rainfall intensities have been utilised in 
intensity–duration–frequency curves (Linsley, 1958; 
Jalee and Farawn, 2014; Liew et al., 2014), which are 
common tools used by insurance industries and in 
water resources engineering for the planning, design 
and operation of water resources projects. These 
curves typically go down to timescales of 15 minutes 
or less, which goes beyond the scope of the datasets 
being produced, which have a maximum temporal 
resolution of 1 hour.

Standardised Precipitation Index

The SPI has been accepted as the best practice 
standard for monitoring drought events since its 
inception in 1993 (McKee et al., 1993) and it has 
replaced the Palmer Drought Severity Index (PDSI) 
(Palmer, 1965; WAMIS, 2012). The SPI allows an 
analyst to determine the rarity of a drought at a given 
timescale of interest for any rainfall station with long-
term historical datasets. The SPI is typically used over 
timescales ranging from months to years but can be 
updated daily to provide a moving window approach. 
Timescales of less than 3 months can be used to 
assess drought severity.

Advantages of the SPI include its simplicity, its being 
based solely on rainfall, its ability to describe drought 
at different timescales and its comparability across 
different climatic regimes, and its probabilistic nature 
provides a historical context that is well suited for 
decision making (Bussay et al., 1999). Its simplicity is 
also a disadvantage, as calculation is based solely on 
precipitation; there is no soil–water balance component 
and no ability to calculate evapotranspiration ratios. 
An updated version, developed in 2010 (Vicente-
Serrano et al., 2010), attempts to address this latter 
issue of evapotranspiration and will be covered 
later in this section. Studies of the SPI’s usage 
have been carried out in Hungary (Edwards, 1997; 
Szalai and Szinell, 2000) and Greece (Karavatis et 
al., 2011), with streamflow best described with 2- to 
6-month timescales. At 5–24 months there were good 
relationships to groundwater levels and agricultural 
drought was well represented at scales of 2–3 months 
in the Hungary examples. In Greece, where drought 
is becoming more of a concern, the SPI described 
drought conditions very well, establishing the onset, 



8

High-resolution Gridded Datasets of Hydro-climate Indices for Ireland

ending and severity levels of exceptional drought 
events.

Mathematically, the SPI is based on the cumulative 
probability of a given rainfall event occurring at a 
location. The historical rainfall data are fitted to a 
gamma distribution, through a process of maximum 
likelihood estimation of the gamma distribution 
parameters α and β. The probability density function is 
defined as:

g x( ) = 1
βαΓ α( ) x

α−1e
−x

β � (2.6)

where α and β are shape and scale parameters, 
respectively, and x is the amount of precipitation. The 
gamma function Γ(α) is defined as: 

Γ α( ) = lim
n→∞

v=0

n−1

∏ n!ny−1

y +v
≡

0

∞

∫yα−1e−y  dy � (2.7)

Simplified approximations for the α and β parameters 
are given by:

α = 1
4A

1+ 1+ 4A
3

⎛

⎝
⎜

⎞

⎠
⎟ � (2.8)

β = x
α

� (2.9)

where:

A = ln x( ) −  ∑ln x( )
n

� (2.10)

and n is the number of observations (Lana et al., 
2001). There are a number of other approximations 
to calculate these parameters, which depend on 
practicality and size of dataset.

The SPI is measured on a scale of –3 to +3, with zero 
representing normal conditions, values less than –2 
representing severe drought and values greater than 
+2 representing severe wet conditions.

Despite SPI being typically used as a drought index, 
recent studies have demonstrated its use in flood risk 
management. One such study focused on recurrent 
floods in the southern Cordoba Province in Argentina 
(Seiler et al., 2002). The results showed that the SPI 
was able to satisfactorily explain the development of 
conditions leading up to three major flood events in the 
region from 1979 to 1998. The results indicated the 
potential for SPI as a tool for monitoring hydrological 
conditions and flood risk and the potential of 
incorporating SPI analysis into a regional system for 

climate risk monitoring as part of a comprehensive 
flood mitigation programme.

The different time periods over which the SPI is 
calculated enhances the analysis capacity, as it allows 
the estimation of different antecedent conditions in the 
soils. Shorter scales of 3–6 months quantify superficial 
soil water, which bears significance for agriculture. In 
contrast, longer accumulation scales indicate the state 
of subsurface moisture, as well as other surface and 
subsurface water resources.

The lack of consideration in the SPI of other variables 
such as evapotranspiration was addressed by 
Vicente-Serrano et al. (2010), with the Standardised 
Precipitation Evapotranspiration Index (SPEI). The 
SPEI is based on both precipitation and temperature 
data and has the advantage of combining multi-scalar 
character with the capacity to include the effects of 
temperature variability on drought assessment. The 
SPEI differs from the SPI as it includes a climatic 
water balance, the accumulation of water deficit and 
surpluses at different timescales and the adjustment 
to a log-log logistic probability distribution. The SPEI 
performed well under global warming conditions 
and identified an increase in drought severity 
associated with higher water demand as a result of 
evapotranspiration. The SPEI study (Vicente-Serrano 
et al., 2010) used the Thornthwaite (1948) method of 
calculating evapotranspiration because of its simplicity, 
which is given as:

ET = 16 N
12

⎛
⎝⎜

⎞
⎠⎟
NDM
30

⎛
⎝⎜

⎞
⎠⎟
10T
I

⎛
⎝⎜

⎞
⎠⎟

m

� (2.11)

where T is the monthly mean temperature in °C; m is 
a cubic equation coefficient based on the value I (see 
Vicente-Serrano et al., 2010); NDM is the number of 
days in a month; N is the maximum number of sun 
hours calculated from the hourly angle of sun rising, 
the latitude and solar declination; and I is a heat index. 
This heat index is calculated as the sum of 12 monthly 
index values, i, which is derived from:

i = T
5

⎛
⎝⎜

⎞
⎠⎟

1.514

� (2.12)

Both the SPI and the SPEI have great potential for 
application in Ireland, for example in the analysis of 
droughts and winter floods. These indexes have not 
been applied in Ireland or many places worldwide and 
can be used to establish Ireland’s place in a warming 
world.
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2.4	 International Methodologies

As evapotranspiration and soil moisture contents are 
critical hydroclimate variables, many nations have 
derived methodologies for spatially observing and 
modelling these variables. This section will focus 
on relevant methodologies, which include systems 
implemented in the UK, USA, Australia and New 
Zealand.

2.4.1	 UK

The UK Meteorological Office Rainfall and Evaporation 
Calculation System was implemented in the UK in 
1978 as a replacement for the estimated soil moisture 
deficit (ESMD) and was updated in 1995 (Hough and 
Jones, 1997). Compared with methods currently in use 
in Ireland, the availability of digitalized soil databases 
across the UK allowed MORECS access to the soil 
data for calculations of actual soil moisture rather than 
soil drainage type. This highlights the need for actual 
soil moisture measurements across the different soil 
types in Ireland. MORECS is produced in a grid square 
format of 40 × 40 km and uses daily synoptic weather 
data to provide estimates of weekly and monthly 
evaporation and SMD in the form of averages. The 
potential evapotranspiration is calculated for each grid 
square for a range of surface covers from bare soil to 
forest, using a modified form of the Penman–Monteith 
equation (Monteith and Unsworth, 1990). Estimates of 
potential evapotranspiration are converted to estimates 
of ETa by progressively reducing the rate of water loss 
from the potential value to zero as the available water 
decreases from a fraction of its maximum value to 
zero.

Crop models are also used in MORECS, but it should 
be noted that they are idealised representations of 
crop growth. The models describe aspects such as 
plant development through the growth stages, the 
leaf area index, crop height, variation of crop canopy 
resistance with weather and crop age. The water in 
the soil available for plant growth has been the subject 
of wide-ranging research over the last 40+ years in 
the UK. Difficulties arise in estimating the amount of 
water available for plant growth because of variables 
such as rooting depths and in simulating the process 
by which roots extract water from the soil. MORECS is 
based on suctions (measured in kPa); the lower limit 
of ≈5 kPa approximates to field capacity and the higher 
value of ≈1500 kPa indicates the wilting point. The 

system outlines two classes of water availability based 
on these values. For values between 5 and 200 kPa, 
the retention is termed “easily available water” (EAW). 
For suctions between 200 and 1500 kPa, it is termed 
“restricted available water” (RAW). The summation 
of these two terms provides the total available water 
(TAW) or available water capacity.

Soil available water data are extracted from the Land 
Information System, which contains unique soil and 
related environmental data for England and Wales, 
the UK’s National Soil Map and a National Catalogue 
of Soils that cover a wide range of properties from 
water retention to density measurements (Ragg and 
Proctor, 1983; Hallett et al., 1996). The data are taken 
from large samples and have an overall resolution 
of 100 m × 100 m and overall available water content 
(AWC) values for grid squares of 1 km × 1 km. Systems 
such as MORECS show the complicated overall 
structure of an evapotranspiration and soil moisture 
network required to yield a more sophisticated 
network.

Other UK datasets are CHESS (Climate, Hydrological 
and Ecological research Support System), JULES 
(Joint UK Land Environment Simulator) and 
COSMO-UK. The first of these draws mainly on 
MORECS data (temperature, humidity, wind speeds, 
sunshine hours) downscaled to 1-km resolution. 
The CHESS datasets can be used with rainfall 
datasets to drive the JULES model, a land surface 
model that includes soil moisture, soil temperature 
and evaporation. Finally, the COSMOS-UK dataset 
is a network of soil monitoring stations for the UK 
that provides near-real-time soil moisture data for 
use in a variety of applications including farming, 
water resources, flood forecasting and land surface 
modelling. Networks and datasets such as these, 
which have real-time applications, should be seen as a 
matter of high importance for Ireland in the near future.

2.4.2	 USA

In the USA, the evapotranspiration network is 
estimated using a regression with climate and 
land cover data (Sanford and Selnick, 2013). 
Precipitation and streamflow records were compiled 
for 838 watersheds for the period 1971–2000 to 
obtain long-term estimates of ETa. Precipitation and 
temperatures were used from the PRISM datasets 
and land cover from the US Geological Survey 
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(USGS) National Land Cover Dataset. The system 
has been developed since its inception and at present 
ArcGIS actual evapotranspiration layers are available 
at 1-km cell size, derived from the MOD16 Global 
Evapotranspiration Product and MODIS satellite 
imagery. However, despite using the Penman–
Monteith equation, the methodology uses satellite RS 
data rather than physical observations and at present 
the data cover only the period 2000–2010 (Mu et al. 
2013 ). Additionally, the USGS has evapotranspiration 
networks on a state-by-state basis rather than 
across the whole country. Soil moisture estimates in 
the USA are surprisingly limited at present but new 
measures are being put in place to monitor droughts. 
Puerto Rico obtains excellent evapotranspiration 
and countrywide soil moisture monitoring from the 
GOES-PRWEB satellite, which provides near-real-time 
maps of ET0, ETa, soil moisture content and radiation 
(PRAGWATER).

2.4.3	 New Zealand

In New Zealand, the National Institute of Water 
and Atmospheric Research (NIWA) employs a 
virtual climate station network that produces daily 
datasets based on the spatial interpolation of actual 
data observations made at climate stations across 
the country. These observations include rainfall, 

potential evapotranspiration and soil moisture and are 
interpolated using a spline model (Tait et al., 2006; Tait 
and Woods, 2007). In addition to evapotranspiration, 
SMDs, soil moisture anomalies and the SPI over 
30- and 60-day timescales are updated daily, with 
comparisons made from averages and the previous 
year. The evapotranspiration values in New Zealand 
are calculated using the Penman method (Penman, 
1963; Westerhoff, 2015).

2.4.4	 Australia

In Australia, the Bureau of Meteorology and the 
Cooperative Research Centre for Catchment 
Hydrology released a set of evapotranspiration 
maps for Australia in 2001 as part of the Bureau’s 
Climatic Atlas series (Australia Bureau of 
Meteorology and Wang, 2001; Chiew et al., 2002). 
These maps provide average monthly and annual 
values of three evapotranspiration variables: point 
and areal evapotranspiration and areal actual 
evapotranspiration. The evapotranspiration estimates 
are based on the Morton relationship (Morton, 1983). 
However, these maps are not used day to day by the 
Bureau of Meteorology. Instead, a map of point values 
is provided showing 7-day ET0 sums, with monthly 
data also available, which is similar to the approach 
employed in Ireland.
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3	 Methodology

3.1	 Study Area and Data

The study area was taken over the island of Ireland, 
using three downscaled NWP models, at three 
different spatial resolutions (1.5, 2 and 2.5 km). Two 
of the datasets were produced by researchers at the 
ICHEC, with nested domains, using the COSMO-
CLM5 and WRF v3.7.1 models, and the third dataset, 
MÉRA, was produced by Met Éireann. MÉRA includes 
a data assimilation component, utilising time series of 
surface observations. An overview of the variables that 
are produced by each of these models is available in 
Appendix 1. Validation data for hydro-climate indices 
(ET0, ETa, SMD and SPI) were obtained from the Met 
Éireann network of synoptic stations (22 in total).

3.2	 Methods and Bias Corrections

3.2.1	 ET0

Reference evapotranspiration was calculated from 
the following RCM input variables: 2-m temperature, 
humidity/dew point temperature, 10-m wind speed, 
surface pressure and surface short-wave and 
long-wave radiation. As long-wave radiation was 
not available in the WRF model variables, it was 
calculated using the Julian day and solar declination 
methodology.

3.2.2	 ET0 bias correction

In their raw format, the variables produced from 
the NWP models have biases. Two approaches 
to correcting these biases were considered: bias 
correction of the constituent time series used in the 
estimation of ET0 and an overall bias correction of the 
calculated ET0 series.

A sensitivity analysis was undertaken to establish 
the sensitivity of the component variables of ET0. 
It was found that the most sensitive variables were 
humidity and radiation. Additionally, it was found that 
the errors in ET0 using previously corrected input 
variables showed very little difference compared 
with raw input variables, with root mean square error 
(RMSE) differences of only ±0.01 mm. Therefore, ET0 

was calculated using raw model data and a correction 
factor was then applied to ET0.

Two correction methodologies were tested: bias 
correction and least squared estimator methods. The 
bias correction technique, developed by Hawkins et al. 
(2013), is given as:

MBC =OREF +
σO_REF

σM _REF

⎛

⎝
⎜

⎞

⎠
⎟ MREF t( ) −MREF( ) � (3.1)

where MBC is the bias-corrected model, OREF are the 
observations taken over a reference period and MlREF 
are the model data taken over the same reference 
period.

The advantages of this technique are its simplicity and 
the inclusion of standard deviations of both model and 
reference period. The second method, least squared 
estimator, is given as:

â =  n=1

N

∑ xnyn −Nxy

n=1

N

∑ xn
2 −Nx 2

� (3.2)

b̂ = y − âx � (3.3)

ŷ = âx + b̂ � (3.4)

The variables x and y are the input model data and 
observational datasets, respectively, and ŷ is the 
corrected data or “line of best fit”. Of the two methods 
tested, it was determined that the least squared 
estimator method produced the lowest errors. As ET0 
varies considerably throughout the year, a best line fit 
for each month was derived. The regression analysis 
was carried out at all stations where ET0 is calculated 
from meteorological observations (22 in total) and so 
a more complete countrywide profile was achieved. 
The locations of these stations are shown in Figure 
3.1, with blue stations referring to those stations 
where data are available from 1981. The corrections 
were calculated for all stations for the period 2006 to 
present.

Once the regression coefficients (a, b) were calculated 
at all stations, the values were interpolated onto the 
corresponding model grids. These gridded datasets 
were then used to correct the corresponding gridded 
ET0 datasets. This method was repeated for each 
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month and applied to the full dataset (1981–2016). 
Figure 3.2, which presents yearly ET0 sums for 
Dublin Airport and Valentia Observatory, shows the 
improvement of the corrected data compared with the 
raw output. For the raw WRF data, in particular, there 
was shown to be a consistent overestimation of ET0 
over the whole country, of between 50 and 100 mm 
depending on the station. Figure 3.3 shows the 
difference between the raw output and corrected ET0 
for Dublin Airport and Valentia.

3.2.3	 ETa and SMDs

Time series of ETa and SMD were generated using 
the HSMD model. Inputs to the model were the 
bias-corrected ET0 data and gridded observational 
precipitation datasets provided by Met Éireann. 
Observed rather than modelled precipitation data were 
used because of the uncertainties in precipitation 
in all three RCM models, and observed data were 
considered to provide a better representation of 

historical precipitation patterns. These data extended 
only to 2016 and so ETa and SMD series are limited to 
this date.

In order to start a HSMD model run, an initial value 
is required for SMD. Uncertainty in the initial model 
outputs can be reduced by initialising the model at 
a time when soils are at field capacity. In December 
1980, there was a major rainfall event that caused all 
eight long-term synoptic stations in operation to be 
at field capacity. It was assumed that soils were at 
field capacity on this date across the country and so 
December 1980 was taken as the start time for the 
SMD model.

National datasets for ETa and SMD were derived for 
the five separate drainage classes described in the 
HSMD model. A single combined dataset was also 
produced, which used the Teagasc Indicative Soil 
Drainage Map for Ireland (Creamer et al., 2016) to 
assign a drainage type and corresponding ETa and 
SMD series to each grid square.

Figure 3.1. Locations of synoptic stations used in hydro-climate model calibration and validation.
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Figure 3.3. Difference in ET0 yearly sums between corrected and original ET0 values for Dublin Airport 
and Valentia Observatory.

Figure 3.2. Raw output and corrected output for annual ET0 sums at Dublin Airport and Valentia 
Observatory.
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4	 Results and Validations

4.1	 Reference Evapotranspiration

The primary variable analysed, ET0, was calculated 
over multiple time periods. These include annual, 
seasonal, monthly and daily time periods, with both 
sums and averages calculated for the three models. 
The following sections will investigate the performance 
of all three models, which underwent correction using 
the methods described in Chapter 3. Following bias 
corrections, all models were found to perform with a 
high degree of accuracy and were in good agreement 
with observations. Prior to validation, it was expected 
that MÉRA would outperform both the WRF dataset 
and the COSMO-CLM dataset because of the 
advantage of data assimilation. The COSMO-CLM and 
WRF datasets were expected to add value because of 
the higher resolutions (1.5 km and 2 km, respectively) 
than in the MÉRA dataset (2.5 km).

4.1.1	 Daily and annual analysis

The models were validated over a 37-year period 
(1981–2017) for COSMO-CLM and WRF and over a 
36-year period for MÉRA (1981–2016) at 22 stations. 
As a result of the corrections, bias values were 
minimised. Table 4.1 shows the errors associated with 
daily ET0 values for all three models. The MÉRA model 

outperformed both the WRF and the COSMO-CLM 
models for RMSE and correlation coefficients but was 
outperformed by the COSMO-CLM model for standard 
deviation. This is of less importance because of the 
variability of ET0 throughout the course of the year. 
Analysis in the following sections investigates the 
variability in monthly values. Figure 4.1 shows scatter 
plots at Dublin Airport and Valentia Observatory.

As shown in Figure 4.1, the MÉRA data show the 
best fit, with the majority of values within 1 mm of the 
calculated values. The WRF and COSMO-CLM data 
are slightly more varied as shown in both Figure 4.1 
and Table 4.1.

Among the more important tests is the performance of 
ET0 on an annual basis and whether modelled values 
can pick up more abrupt changes. Figure 4.2 shows 
yearly sums of ET0 at Dublin Airport and Valentia 
Observatory dating back to 1981. As mentioned 
previously, the corrections factors were generated 
using data from 2006 to 2017, with the resulting best 
line fits being applied back to 1981.

As shown in Figure 4.2, there is a good match 
between synoptic values and each of the models. For 
some stations, however, sudden drops or increases 
in ET0 highlight an issue of the least squared 

Table 4.1. Errors in daily ET0 values for selected stations from 1981 to 2017 and using an overall weighted 
average across 22 stations

Station RMSE (mm) Standard deviation (mm) Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 0.42 0.389 0.32 0.838 0.917 0.869 0.884 0.908 0.934

Casement 0.46 0.417 0.343 0.928 0.958 0.954 0.889 0.910 0.939

Cork Airport 0.495 0.432 0.395 0.934 0.964 0.98 0.884 0.913 0.928

Dublin Airport 0.451 0.418 0.343 0.912 0.927 0.949 0.893 0.909 0.939

Malin Head 0.422 0.398 0.321 0.719 0.826 0.775 0.861 0.884 0.922

Mullingar 0.426 0.390 0.330 0.941 0.959 0.967 0.911 0.926 0.948

Shannon Airport 0.455 0.430 0.362 0.959 1.057 0.989 0.904 0.918 0.941

Valentia 0.451 0.401 0.339 0.832 0.888 0.876 0.877 0.905 0.933

All 0.442 0.402 0.337 0.882 0.937 0.924 0.892 0.913 0.939

The best and worst performers are colour coded green and red, respectively.
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estimator method being unable to correct distinct 
outliers. Nevertheless, all models are able to capture 
ET0 to within 10% of values calculated from station 
measurements for all stations analysed. Table 4.2 
shows associated errors in ET0 for annual summed 
values for each station analysed above. The pattern 
is similar to the daily values presented in Table 4.1 
However, the difference in ET0 between the nested 
models (WRF, COSMO-CLM) and data-assimilated 
model (MÉRA) is small.

Figure 4.3 shows corrected maps of ET0 for all three 
models and is one of the datasets provided for 
download. A breakdown of individual year sums for 
each model has also been produced. All three models 

show high values around coastlines, urban areas and 
the mouth of the Shannon River. The WRF model 
better resolves the urban centres because of the 
enhanced dynamics of its urban model. The MÉRA 
model shows a better fit to the calculated observations 
than the higher resolution models of COSMO-CLM 
and WRF.

4.1.2	 Monthly and seasonal analysis

Analysis of monthly evapotranspiration values 
is of importance because of the variability of 
evapotranspiration throughout the year. Figures 4.4 
and 4.5 show the average monthly sums of ET0 at 
synoptic stations and countrywide, respectively.

Figure 4.1. Scatter plots of daily ET0 values for each model at Dublin Airport and Valentia Observatory. 
The colour coding represents deviation from a one-to-one relationship.

Figure 4.2. Annual ET0 sums for Dublin Airport and Valentia Observatory from 1981 to 2017. The solid 
black line shows the Met Éireann-calculated values from observations, with a ±10% interval shown by the 
dashed black line.
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Table 4.2. Errors in yearly summed values of ET0 at selected stations from 1981 to 2017 using an overall 
weighted average across 22 stations

Station RMSE (mm) Standard deviation (mm) Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 23.646 23.565 20.479 11.492 14.600 15.532 0.554 0.555 0.679

Casement 20.844 17.937 15.279 12.391 14.642 17.044 0.715 0.798 0.877

Cork Airport 36.967 31.98 33.576 14.554 18.54 21.516 0.667 0.805 0.769

Dublin Airport 32.156 31.514 27.048 10.72 13.065 15.741 0.458 0.489 0.681

Malin Head 19.698 21.543 18.733 9.198 13.94 12.069 0.521 0.415 0.596

Mullingar 17.666 17.318 18.849 12.143 13.807 15.604 0.783 0.798 0.813

Shannon Airport 26.508 19.071 22.622 14.011 16.482 16.076 0.698 0.78 0.836

Valentia 26.868 24.485 19.757 13.423 17.644 16.853 0.545 0.655 0.801

All 24.164 21.293 20.402 12.301 14.035 14.813 0.561 0.678 0.755

The best and worst performers are colour coded green and red, respectively.

Figure 4.3. Average annual ET0 maps for the COSMO-CLM and WRF (1981–2017) and MÉRA (1981–2016) 
models. The MÉRA model shows the best fit to observations and the WRF model performs the best of the 
higher resolution models.

Figure 4.4. Average monthly sums of ET0 at selected stations for the WRF and COSMO-CLM (1981–2017) 
and MÉRA (1981–2016) models.
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As shown in Figures 4.4 and 4.5, there is good 
agreement between models and calculated 
observations. The largest differences between models 
were noted around the Shannon region between April 
and July (see Figure 4.5). The WRF model produces 
the largest ET0 value, with values approximately 
10 mm greater than in the MÉRA model (see Figures 
4.4 and 4.5). Averaging out the monthly sums and 
daily values for all stations gives the errors shown in 
Table 4.3. To quantify an overall view of the model 
performance, weighted averages are implemented, 
given by:

x =
i=1

n

∑wixi � (4.1)

where x is the error at a station and w is the weight 
assigned to that station. Depending on the time period 
of the dataset at each station, a different weight is 
assigned. Those with data covering the full model 
time period (1981–2016) will have a higher weight 
and therefore exert more influence on the weighted 
average. With all stations considered, weighted 
averages show that MÉRA model outperforms the 
WRF model, which outperforms the COSMO-CLM 
model. For standard deviations, the COSMO-CLM 
model performs the best for 11 of the 12 months, and 
the MÉRA model is outperformed by both the WRF 
and the COSMO-CLM models for 10 months, reflecting 
the performance seen in the yearly sums of Table 4.2. 
For correlation coefficients, the MÉRA model performs 
best, followed by the WRF model.

4.2	 Actual Evapotranspiration

Given the small error of the ET0 series described in 
section 4.1, and the use of observational precipitation 
data, it follows that the corresponding ETa and SMD 
series would be a close match for observed records.

Actual evapotranspiration depends on the drainage 
of the soil, and at present there are five soil drainage 
types identified in Ireland, from excessively drained 
to poorly drained. A combined dataset for ETa was 
calculated using the Teagasc soil map to assign soil 
drainage classes to each grid square. However, the 
majority of datasets presented in the following sections 
show calculated soil moisture conditions using a single 
soil drainage type for each grid square.

The selection of synoptic stations used previously still 
applies for ETa; however, only well-drained, moderately 
drained and poorly drained soil drainage types are 
calculated from ET0 and precipitation using the HSMD 
model at synoptic stations. Because of the nature 
of the model, ETa for moderately drained and well-
drained soils was found to be nearly identical, so only 
well-drained and poorly drained soils are described in 
the following sections. Moderately drained soils are 
analysed in more detail in section 4.3 for SMDs.

4.2.1	 Well-drained soils

For well-drained soils, ETa is equal to ET0 when the 
SMD at time t–1 is equal to 0. In the HSMD model, 
well-drained soils never saturate and remain at field 

Table 4.3. RMSEs of monthly summed ET0 values and daily ET0 values for each month (1981–2017) using 
an overall weighted average across 22 stations 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monthly
COSMO-
CLM

2.644 2.724 2.8 4.272 5.733 5.956 6.363 5.073 3.334 2.353 2.398 2.73

WRF 2.895 2.797 2.446 3.795 4.82 5.505 5.437 4.005 2.649 2.324 2.78 3.048

MÉRA 2.458 2.397 2.437 2.617 3.929 4.016 4.232 3.701 2.812 2.119 2.311 2.625

Daily
COSMO-
CLM

0.22 0.232 0.324 0.465 0.605 0.7 0.65 0.532 0.405 0.264 0.217 0.224

WRF 0.217 0.218 0.277 0.402 0.559 0.642 0.603 0.484 0.337 0.227 0.215 0.226

MÉRA 0.197 0.202 0.265 0.338 0.433 0.499 0.489 0.419 0.318 0.221 0.197 0.199

The best and worst performers are colour coded green and red, respectively.
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capacity even on very wet days in winter. For all times 
when SMD > 0 mm, ETa is less than ET0, and this has 
a large effect on the actual values. The difference in 
the well-drained soil ETa value relative to the ET0 value 
varies substantially across the country, with the largest 
differences in the central and south-eastern regions. 
To the west and north, where it is generally wetter and 
more mountainous, the difference is smaller, as soil 
saturation is high enough to result in ETa being equal 
to ET0 more often. Differences such as these have 
large effects on the outputs of models that require 
evapotranspiration as an input. This is reflected in 
Figure 4.6, which presents ET0 – ETa at Dublin Airport. 
Encouragingly, most of the data points for all three 
models lie within 0.5 mm of a one-to-one relationship. 
The precipitation data used in the HSMD model (used 

in turn to produce ETa values) extend to 2016 only. 
Figure 4.7 shows scatter plots of daily ETa values at 
Dublin Airport.

Table 4.4 shows errors in the ETa values for the eight 
long-term synoptic stations and overall weighted 
averages of all 22 stations. There is very little 
difference in the relative performance of the models, 
with the MÉRA model outperforming the WRF model, 
which in turn outperforms the COSMO-CLM model. As 
previously noted, the COSMO-CLM model performs 
best for standard deviations. Reflecting the decrease 
in ETa values relative to ET0, RMSE and standard 
deviation values have also decreased. Figure 4.8 
shows yearly sums from 1981 to 2016 for Dublin 
Airport and Valentia Observatory.

Figure 4.6. Difference between ET0 and ETa for Dublin Airport for the WRF, COSMO-CLM and MÉRA 
models (1981–2016).

Figure 4.7. Scatter plots of daily ETa values for well-drained soils for each model at Dublin Airport. The 
colour coding represents deviation from a one-to-one relationship.
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Figure 4.8 shows a good match between all modelled 
ETa and calculated ETa values as derived through 
the HSMD model. Here, the errors are lower, with 
higher correlation coefficients also noted. Unlike 
for ET0, where the models occasionally missed out 
on significant drops, for the most part modelled ETa 
values are better represented. For the eight long-
term synoptic stations, there is a consistent small 
increase in annual sums of 0.73–0.83 mm/year from 

1981 to 2016. Table 4.5 shows an increase in these 
annual ETa sums per year at each synoptic station, 
which estimated ET0 back to 1981. This is particularly 
evident in stations such as Belmullet and Valentia in 
Figure 4.8.

As mentioned previously, there is an improvement in 
the performance of the models compared to the ET0 
equivalent, with a better fit and lower errors overall, 

Table 4.4. Errors in yearly summed values of ETa at selected stations and overall weighted averages for 
22 stations from 1981 to 2016 

Station RMSE (mm) Standard deviation (mm) Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 0.376 0.344 0.288 0.704 0.748 0.724 0.867 0.894 0.923

Casement 0.366 0.334 0.275 0.675 0.684 0.686 0.864 0.887 0.924

Cork Airport 0.418 0.38 0.334 0.763 0.773 0.78 0.868 0.892 0.918

Dublin Airport 0.363 0.341 0.279 0.673 0.677 0.686 0.867 0.883 0.923

Malin Head 0.376 0.356 0.291 0.599 0.669 0.638 0.836 0.861 0.906

Mullingar 0.357 0.33 0.276 0.762 0.766 0.771 0.9 0.915 0.942

Shannon Airport 0.375 0.358 0.298 0.733 0.787 0.751 0.884 0.899 0.928

Valentia 0.31 0.268 0.237 0.713 0.74 0.741 0.86 0.891 0.922

All 0.378 0.347 0.291 0.713 0.740 0.735 0.874 0.896 0.927

The best and worst performers are colour coded green and red, respectively.

Figure 4.8. Annual ETa sums for Dublin Airport and Valentia Observatory synoptic stations from 1981 
to 2016. The solid black line shows the Met Éireann-calculated values from observations, with a ±10% 
interval shown by the dashed black line.

Table 4.5. Increase in ETa (mm/year) for each station for each model (1981–2016) 

Model Belmullet Casement Cork 
Airport

Dublin 
Airport

Malin 
Head

Mullingar Shannon 
Airport

Valentia All

COSMO-CLM 0.532 0.753 0.626 0.586 0.732 0.785 1.115 0.710 0.730

WRF 0.512 0.836 0.494 0.562 0.843 0.807 1.082 0.769 0.738

MÉRA 0.588 0.735 0.810 0.581 0.640 0.973 1.223 1.134 0.836
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as shown in Table 4.6. Regarding the overall average 
annual sums, there are large differences between ETa 
and ET0. This is further illustrated in Figure 4.9, with 
the highest values over to the west rather than the 
east as with ET0. However, it must be noted throughout 
that these datasets are not necessarily representative 

of the soil type at each location. The indicative 
ETa datasets, which use the Teagasc soil drainage 
datasets, are discussed in section 4.2.4. Annual sums 
for the eight long-term synoptic stations are shown 
in Figure 4.10 and average monthly sums across the 
country are shown in Figure 4.11.

Table 4.6. Errors in yearly summed values of ETa for well-drained soils at selected stations from 1981 to 
2016 using an overall weighted average across 22 stations 

Station RMSE (mm) Standard deviation (mm) Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 21.016 20.029 18.315 17.217 16.957 16.322 0.597 0.596 0.674

Casement 14.664 12.283 10.142 34.175 32.668 30.499 0.937 0.934 0.945

Cork Airport 25.403 24.385 25.59 22.299 20.093 21.075 0.555 0.642 0.626

Dublin Airport 20.423 20.496 18.182 28.935 26.848 26.927 0.867 0.883 0.923

Malin Head 18.137 17.918 17.225 18.601 19.785 16.038 0.706 0.623 0.677

Mullingar 10.429 10.018 10.856 23.891 22.37 21.596 0.906 0.917 0.921

Shannon Airport 17.514 15.667 14.781 34.744 34.262 35.677 0.745 0.785 0.805

Valentia 27.724 20.912 19.449 16.54 15.174 18.881 0.693 0.805 0.833

All 18.024 16.148 15.597 22.759 21.624 20.947 0.745 0.785 0.805

The best and worst performers are colour coded green and red, respectively.

Figure 4.9. Average annual ETa maps for well-drained soils for the COSMO-CLM, WRF and MÉRA models 
(1981–2016).

Figure 4.10. Average monthly sums of ETa for well-drained soils at Dublin Airport and Valentia 
Observatory for the COSMO-CLM, WRF and MÉRA models (1981–2016).
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As shown in Figures 4.10 and 4.11, there is a notable 
difference between ETa and ET0 across the country 
because of the lack of moisture in the soils during 
the summer months. During the winter months, as 
expected, there is very little difference noted between 
the models. During the summer months, particularly 
June and July, there is a notable difference between 
the WRF model and the other two models, which 
show higher values, particularly in the south and 
western regions. Table 4.7, which presents the 
errors on a monthly basis, shows that, once again, 
the MÉRA model is the best performer. Errors have 
also decreased for most months compared with the 
ET0 equivalent of this table (see Table 4.3). Errors in 
monthly sums have decreased by over 1 mm during 
the summer months for all models and daily value 
errors have decreased by up to 0.15 mm during the 
summer months. The errors for winter months have 

stayed consistent because of the low values of ETa 
during these months.

4.2.2	 Poorly drained soils

The difference in evapotranspiration between 
well-drained and poorly drained soils varies across 
the country, from approximately 15 mm/year in 
mountainous regions in the north and west to 25 mm/
year in the eastern and southern regions. As poorly 
drained soils hold more water than well-drained soils, 
yearly sums of ETa are greater in poorly drained soils 
than in well-drained soils.

Tables 4.8 and 4.9 shows the errors for daily and 
yearly summed ETa values for poorly drained 
soils, respectively. Validation results thus far have 
demonstrated that the MÉRA model consistently 
outperforms both the WRF model and the 

Table 4.7. RMSEs of monthly summed ETa and daily ETa values for each month (1981–2016) using an 
overall weighted average across 22 stations for well-drained soils 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monthly
COSMO-
CLM

2.666 2.617 2.644 3.672 4.116 4.541 4.058 3.700 2.53 2.13 2.354 2.735

WRF 2.88 2.677 2.255 3.149 3.515 4.046 3.741 3.176 2.142 2.085 2.677 3.066

MÉRA 2.453 2.281 2.291 2.145 2.788 3.094 2.950 2.854 2.251 1.914 2.263 2.579

Daily
COSMO-
CLM

0.217 0.227 0.306 0.426 0.514 0.567 0.510 0.446 0.353 0.249 0.212 0.224

WRF 0.215 0.213 0.266 0.367 0.478 0.523 0.479 0.410 0.299 0.216 0.210 0.226

MÉRA 0.195 0.198 0.255 0.307 0.368 0.402 0.386 0.350 0.277 0.210 0.195 0.197

 The best and worst performers are colour coded green and red, respectively.

Table 4.8. Errors in daily values of ETa at selected stations and using overall weighted averages for 22 
stations (1981–2016) for poorly drained soils

Station RMSE (mm) Standard deviation (mm) Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 0.396 0.377 0.329 0.76 0.811 0.804 0.867 0.889 0.917

Casement 0.386 0.352 0.297 0.731 0.742 0.769 0.87 0.893 0.926

Cork Airport 0.444 0.404 0.357 0.829 0.843 0.872 0.874 0.897 0.921

Dublin Airport 0.383 0.359 0.299 0.728 0.734 0.765 0.873 0.890 0.926

Malin Head 0.396 0.374 0.309 0.650 0.730 0.714 0.846 0.870 0.912

Mullingar 0.377 0.349 0.295 0.822 0.829 0.855 0.905 0.919 0.943

Shannon Airport 0.397 0.38 0.321 0.794 0.851 0.836 0.889 0.902 0.929

Valentia 0.431 0.384 0.329 0.773 0.809 0.825 0.868 0.897 0.927

All 0.399 0.368 0.313 0.771 0.803 0.818 0.879 0.900 0.929

The best and worst performers are colour coded green and red, respectively.
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COSMO-CLM model. However, for yearly sums, the 
average RMSE best performer is the WRF model (a 
possible explanation is provided in section 4.3.3). 
As mentioned previously, ETa for poorly drained 
soils is expected to be greater than for well-drained 
soils and this is confirmed by Figure 4.12. The high 
evapotranspiration regions observed in the yearly 
well-drained soil maps of Figure 4.10 remain similar. 
The main difference is in the centre of the country, 

with values in the region of 30 mm/year greater than 
for well-drained soils. However, it must be stressed 
that these maps assume that all soils in the country 
are of the same drainage class and do not necessarily 
reflect the actual evapotranspiration at that location, 
so dataset end users must be aware of the regional 
drainage qualities of soil before utilising them at a 
specific location. Figure 4.13 shows the average 
monthly sums of ETa for poorly drained soils at Dublin 

Table 4.9. Errors in yearly summed values of ETa at selected stations and using overall weighted 
averages for 22 stations (1981–2016) for poorly drained soils 

Station RMSE (mm) Standard deviation (mm) Correlation coefficient
COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 35.263 31.564 34.649 18.774 19.679 18.41 0.558 0.527 0.604

Casement 14.107 11.866 12.732 39.107 37.453 36.39 0.957 0.952 0.952

Cork Airport 27.381 26.351 25.339 24.549 22.469 24.719 0.578 0.659 0.649

Dublin Airport 21.302 21.569 20.502 33.542 31.385 32.768 0.79 0.773 0.819

Malin Head 18.419 18.817 21.157 20.719 22.504 19.197 0.746 0.672 0.736

Mullingar 10.982 10.658 10.382 26.065 24.581 24.982 0.912 0.923 0.919

Shannon Airport 19.209 17.627 15.363 34.744 34.262 35.677 0.873 0.900 0.905

Valentia 28.444 22.061 23.781 16.464 16.324 20.477 0.698 0.803 0.852

All 20.034 18.111 19.229 24.972 24.161 24.052 0.758 0.792 0.813

The best and worst performers are colour coded green and red, respectively.

Figure 4.12. Average annual ETa maps for poorly drained soils for the COSMO-CLM, WRF and MÉRA 
models (1981–2016).

Figure 4.13. Average monthly sums of ETa for poorly drained soils at Dublin Airport and Valentia 
Observatory stations from 1981 to 2016.
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Airport and Valentia Observatory, Figure 4.14 shows 
the monthly sums countrywide for poorly drained soils 
and Table 4.10 shows RMSEs of monthly summed and 
daily ETa values for the same soil class for each month 
(1981–2016).

4.2.3	 Excessively and imperfectly drained 
soils

Excessively and imperfectly drained soils are the 
newest additions to the Irish soil drainage classes, but 
SMDs for these drainage classes are not calculated 
from observed weather parameters at present. Figures 
4.15 and 4.16 show the excessively and imperfectly 

Table 4.10. RMSEs of monthly summed and daily ETa values for poorly drained soil for each month (1981–
2016) using an overall weighted average across 22 stations 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monthly
COSMO-
CLM

2.702 2.748 2.802 4.133 4.721 5.177 4.615 4.129 2.758 2.224 2.400 2.779

WRF 2.925 2.815 2.450 3.69 4.316 4.718 4.307 3.626 2.405 2.189 2.738 3.124

MÉRA 2.481 2.389 2.459 3.125 4.036 4.646 4.207 3.519 2.613 2.041 2.295 2.621

Daily
COSMO-
CLM

0.219 0.232 0.317 0.455 0.554 0.608 0.541 0.467 0.37 0.256 0.214 0.226

WRF 0.217 0.218 0.276 0.395 0.521 0.563 0.509 0.432 0.313 0.221 0.212 0.229

MÉRA 0.197 0.202 0.265 0.338 0.401 0.449 0.423 0.373 0.293 0.215 0.197 0.199

The best and worst performers are colour coded green and red, respectively.

Figure 4.15. Average annual ETa maps for excessively drained soils for the COSMO-CLM, WRF and MÉRA 
models (1981–2016).

Figure 4.16. Average annual ETa maps for imperfectly drained soils for the COSMO-CLM, WRF and MÉRA 
models (1981–2016).
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drained average annual ETa sums, respectively. The 
imperfectly drained datasets shown in Figure 4.16 
are very similar to the poorly drained datasets shown 
in Figure 4.12. This is because the only significant 
difference between the soils is the drainage term, 
which assumes maximum drainage for poorly and 
imperfectly drained soils of 0.5 and 3 mm, respectively. 
This equates to a difference of 5 mm/year on average.

4.2.4	 Indicative ETa maps

Individual maps, prepared under the assumption that 
all areas are of the same drainage class, are useful if 
the user knows explicitly the type of soil at the specific 
location of interest. In a previous EPA project (Creamer 
et al., 2016), high-resolution soil property maps of Irish 
soils were prepared and sorted into their associated 
drainage classes. This dataset was acquired from 
Teagasc and scaled up to the resolution of the three 
models in the current study. The dataset contains all 
five soil drainage classes and also includes urban, 
bare rock and peat environments. These latter classes 

are not included in the current analysis as they are not 
classified under any drainage class. Figure 4.17 shows 
an indicative ETa map, which incorporates the spatially 
variable soil drainage classes. Although the enhanced 
spatial resolution of the WRF and COSMO-CLM 
models may have advantages for certain applications, 
based on the performance of the MÉRA model, we 
recommend that the ETa MÉRA dataset (as presented 
in Figure 4.17c) should be taken as an official national 
dataset for Ireland.

4.3	 Soil Moisture Deficits

The following sections will investigate the performance 
of the HSMD model in the calculation of SMDs in 
well-drained, moderately drained and poorly drained 
soils. Because of the nature of the variable, summed 
values are not applicable, so monthly averages will be 
analysed. The number of field capacity days per year 
are also investigated and the results are presented in 
Appendix 2.

Figure 4.17. Average annual ETa maps incorporating the Teagasc National Soil Map of soil drainage 
classes for the COSMO-CLM, WRF and MÉRA models (1981–2016).
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4.3.1	 Well-drained SMD

For well-drained soils, the maximum SMD possible is 
110 mm, although this is rarely observed in Ireland. 
Looking at overall daily values, as shown in Figure 
4.18 and Table 4.11, the SMDs are in very good 
agreement with the synoptic values for all models, 
with all showing very high correlation coefficients. 

The MÉRA model is marginally the better performer. 
A preliminary calculation of uncorrected SMDs, using 
modelled precipitation data as the input, resulted in 
poor correlations and skill scores. Therefore, it was 
decided to use Met Éireann observational precipitation 
gridded datasets, which results in a reliable and usable 
SMD dataset.

Figure 4.18. Scatter plots of daily SMD values for well-drained soils for Dublin Airport and Valentia 
Observatory for all models (1981–2016).

Table 4.11. Errors in daily values of SMDs (mm) (well drained) at selected stations from 1981 to 2016 
using an overall weighted average across 22 stations

Station RMSE Standard deviation Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 2.256 2.335 2.066 10.931 12.018 11.152 0.98 0.982 0.984

Casement 2.686 2.696 2.609 18.381 18.691 18.121 0.989 0.99 0.991

Cork Airport 2.998 2.48 2.361 14.096 14.874 14.776 0.986 0.988 0.989

Dublin Airport 3.057 2.694 2.839 17.401 17.536 17.705 0.987 0.988 0.990

Malin Head 2.441 2.124 2.124 10.909 11.942 11.449 0.982 0.984 0.985

Mullingar 2.454 2.252 2.274 13.938 14.161 14.035 0.989 0.99 0.991

Shannon Airport 2.949 2.844 2.642 16.252 17.176 16.448 0.986 0.986 0.989

Valentia 2.48 2.158 2.152 10.168 11.072 10.649 0.977 0.981 0.982

All 2.615 2.375 2.299 12.993 13.672 13.346 0.976 0.980 0.983

 The best and worst performers are colour coded green and red, respectively.
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Figures 4.19–4.21 show yearly averages, monthly 
averages at synoptic stations and a comparison of 
monthly averages for all models for the whole country, 
respectively. Although monthly analysis is more 
relevant, yearly average datasets can help determine 

the drier regions. Figure 4.21 shows the similarity 
of SMD across the country using all three models 
for each month. As differences between models are 
so small, the higher resolution models, WRF and 
COSMO-CLM, can be used as a secondary option to 

Figure 4.19. Average annual mean SMD maps for well-drained soils for the COSMO-CLM, WRF and MÉRA 
models (1981–2016).

Figure 4.20. SMD average monthly means for well-drained soils at Dublin Airport and Valentia 
Observatory (1981–2016).



30

High-resolution Gridded Datasets of Hydro-climate Indices for Ireland

Fi
gu

re
 4

.2
1.

 A
ve

ra
ge

 m
on

th
ly

 m
ea

ns
 o

f S
M

D
 fo

r w
el

l-d
ra

in
ed

 s
oi

ls
 u

si
ng

 th
e 

C
O

SM
O

-C
LM

, W
R

F 
an

d 
M

ÉR
A 

m
od

el
s 

(1
98

1–
20

16
).



31

C. Werner et al. (2016-W-DS-29)

the MÉRA model. This is further shown in Table 4.12, 
which shows weighted RMSE averages for monthly 
and daily values.

4.3.2	 Moderately drained SMD

Moderately drained soils are most commonly found in 
the centre of the country and extend to the northern 
counties of Dublin and Louth. For moderately drained 
soils, the minimum SMD is –10 mm; soils may saturate 

on wet winter days but return to field capacity on the 
first dry day. RMSE errors are subsequently greater for 
moderately drained soils than for well-drained soils, as 
shown in Table 4.13.

For moderately drained soils, a small variability in 
errors is noted between models, with the WRF model 
outperforming the MÉRA model on occasion. The 
COSMO-CLM model is consistently outperformed 
by the other models for RMSE and correlation 
coefficients. Table 4.14 and Figure 4.22 demonstrate 

Table 4.12. RMSEs of monthly average SMD (well drained) (mm) and daily values for each month (1981–
2016) using an overall weighted average across 22 stations

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Monthly
COSMO-
CLM

0.374 0.754 0.893 1.434 2.219 2.998 2.912 2.875 2.457 1.166 0.389 0.377

WRF 0.411 0.81 0.877 1.3 1.918 2.554 2.452 2.301 1.956 1.069 0.512 0.454
MÉRA 0.339 0.668 0.796 1.274 1.84 2.354 2.24 2.301 2.077 1.027 0.407 0.407
Daily
COSMO-
CLM

0.642 1.132 1.628 2.333 3.07 3.995 3.77 3.842 3.338 1.892 0.765 0.677

WRF 0.675 1.145 1.542 2.155 2.801 3.556 3.427 3.35 2.909 1.782 0.863 0.767
MÉRA 0.591 1.014 1.489 2.127 2.705 3.353 3.246 3.329 3.015 1.758 0.758 0.701

The best and worst performers are colour coded green and red, respectively.

Table 4.13. Errors in daily values of SMD (mm) (moderately drained) at selected stations from 1981 to 
2017 using an overall weighted average across 22 stations 

Station RMSE Standard deviation Correlation coefficient
COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 3.18 3.218 3.122 12.364 13.424 12.653 0.969 0.971 0.970
Casement 3.165 3.188 3.209 19.084 19.405 18.949 0.986 0.986 0.986
Cork Airport 3.822 3.404 3.373 15.406 16.168 16.194 0.977 0.980 0.980
Dublin Airport 3.457 3.311 3.180 18.101 18.247 18.528 0.983 0.985 0.986
Malin Head 3.21 2.996 3.033 12.195 13.220 12.830 0.972 0.974 0.974
Mullingar 3.115 2.904 2.943 12.862 13.188 13.444 0.976 0.978 0.977
Shannon Airport 3.545 3.459 3.467 17.309 18.266 17.543 0.982 0.982 0.982
Valentia 3.636 3.383 3.399 11.884 12.742 12.439 0.96 0.965 0.964
All 3.363 3.171 3.177 13.982 14.663 14.453 0.968 0.971 0.972

The best and worst performers are colour coded green and red, respectively.

Table 4.14. RMSEs of monthly average SMD (moderately drained) and daily values for each month (1981–
2016) using an overall weighted average across 22 stations

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Monthly
COSMO-
CLM

0.492 0.84 0.908 1.463 2.224 3.097 2.922 2.812 2.398 1.172 0.491 0.525

WRF 0.558 0.912 0.916 1.375 1.896 2.54 2.427 2.299 1.921 1.113 0.634 0.63
MÉRA 0.485 0.77 0.909 1.322 1.974 2.374 2.604 2.279 2.021 1.081 0.513 0.562
Daily
COSMO-
CLM

2.619 2.517 2.543 2.932 3.447 4.367 4.100 4.391 3.897 3.149 2.544 2.62

WRF 2.649 2.552 2.509 2.814 3.179 3.855 3.745 3.975 3.554 3.08 2.606 2.674
MÉRA 2.607 2.47 2.488 2.764 3.235 3.689 4.084 3.94 3.612 3.119 2.548 2.62

The best and worst performers are colour coded green and red, respectively.
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that all models have performed well and there is only a 
small difference in model errors. The monthly maps in 
Figure 4.22 show very little difference between models 
for all months.

4.3.3	 Poorly drained SMD 

For poorly drained soils, water surplus is drained at 
0.5 mm/day, resulting in soils being at field capacity 
for larger portions of the year. Poorly drained soils are 
particularly common around Cavan, Leitrim, Limerick 
and Mayo. The change in water surplus and drainage 
rates results in a large difference between the model 
performance statistics. This is illustrated in the yearly 
averages shown in Figure 4.23, with the MÉRA model 
showing substantially lower SMDs than the WRF and 

COSMO-CLM models, particularly in the north and 
west. Table 4.15 shows that, in contrast to all previous 
analysis and tables, the MÉRA model is the worst 
performer because of having SMDs nearly consistently 
at field capacity during the winter months. To further 
emphasise the errors highlighted in Table 4.15, 
Figure 4.24 presents daily values of SMD for poorly 
drained soils at four locations. The scatter plots show 
large differences between the MÉRA model and the 
other two models, with the MÉRA model consistently 
underestimating the SMD. The poor performance 
of the MÉRA model for poorly drained soils may be 
attributed to the lower spatial resolution of the MÉRA 
data or the transformation of 1-km gridded precipitation 
to a 2.5-km grid.

Figure 4.23. Average annual mean SMD maps for poorly drained soils for the COSMO-CLM, WRF and 
MÉRA models (1981–2016).

Table 4.15. Errors in daily values of SMD (poorly drained) at selected stations from 1981 to 2016 using an 
overall weighted average across 22 stations

Station RMSE Standard deviation Correlation coefficient

COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA COSMO-
CLM

WRF MÉRA

Belmullet 2.752 2.93 3.945 14.774 16.038 14.69 0.983 0.985 0.974

Casement 3.111 3.115 5.205 23.031 23.353 23.263 0.991 0.991 0.983

Cork Airport 3.423 2.858 4.617 17.843 18.705 18.649 0.988 0.989 0.981

Dublin Airport 3.317 2.944 4.868 20.245 20.582 21.309 0.990 0.992 0.985

Malin Head 2.776 2.542 4.341 14.558 15.694 14.878 0.986 0.987 0.976

Mullingar 2.853 2.664 4.272 17.956 18.176 18.155 0.990 0.991 0.985

Shannon Airport 3.569 3.528 4.905 20.692 21.767 21.192 0.987 0.987 0.981

Valentia 2.896 2.493 3.754 13.121 14.209 13.426 0.981 0.985 0.976

All 3.149 2.886 4.470 16.864 17.671 17.297 0.985 0.987 0.977

The best and worst performers are colour coded green and red, respectively.
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Figure 4.25 highlights the negative bias of monthly 
MÉRA SMD values, with the largest underestimations 
noted for the winter months. Countrywide weighted 
averages for monthly and daily values are shown in 

Table 4.16, with errors in the MÉRA model consistently 
higher than those in the WRF and COSMO-CLM 
models. Despite this, as the MÉRA model is the best 
performer across all other drainage classes and 

Figure 4.24. Scatter plots of daily SMD values for poorly drained soils at Dublin Airport and Valentia 
Observatory for all models (1981–2016).

Figure 4.25. Average monthly SMD means for poorly drained soils at Dublin Airport and Valentia 
Observatory (1981–2016).

Table 4.16 RMSEs of monthly average SMD (poorly drained) and daily values for each month (1981–2016) 
using an overall weighted average across 22 stations 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Monthly
COSMO-
CLM

0.577 0.713 1.001 1.731 2.599 3.561 3.468 3.574 3.159 1.529 0.454 0.383

WRF 0.635 0.765 0.957 1.616 2.343 3.15 2.995 2.91 2.586 1.381 0.558 0.486
MÉRA 2.017 3.318 4.28 4.557 4.204 3.92 3.902 3.904 3.865 3.54 2.083 2.012
Daily
COSMO-
CLM

0.965 1.262 1.857 2.683 3.552 4.661 4.498 4.674 4.174 2.522 1.054 0.937

WRF 1.018 1.275 1.766 2.516 3.293 4.237 4.126 4.087 3.648 2.379 1.125 1.029
MÉRA 2.601 4.211 5.256 5.18 4.901 4.803 4.941 4.861 4.795 4.554 2.816 2.88

The best and worst performers are colour coded green and red, respectively.
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demonstrates the highest skill in the representation 
of ET0 and ETa, the MÉRA dataset should still be 
considered as the definitive SMD dataset for Ireland. 
Figure 4.26 shows comparisons of monthly means of 
poorly drained SMDs across the whole country.

As discussed throughout this section, in contrast 
to well-drained and moderately drained soils, the 
MÉRA model has not performed as well for poorly 
drained soils. This is highlighted further in Figure 
4.27, which shows daily SMDs for the three drainage 
classes analysed at Dublin Airport. The bottom right 
window of Figure 4.27 shows a greater proportion of 
underestimated values for the MÉRA model compared 
with the COSMO-CLM and WRF models. These errors 
should be taken into account when utilising the MÉRA 

poorly drained soils dataset, and in particular the 
indicative SMD dataset.

4.3.4	 Excessively and imperfectly  
drained SMD

Similarly to ETa, excessively and imperfectly drained 
SMDs calculated from observed meteorological values 
are not currently available and it is therefore not 
possible to validate the models. Excessively drained 
soils have a SMD limit of 50 mm and are confined to a 
small area around Wexford. Imperfectly drained soils 
have a maximum drainage of 3 mm and are confined 
to areas in Wicklow, Laois and Westmeath. Figures 
4.28 and 4.29 show annual average SMD maps for 
excessively and imperfectly drained soils, respectively.

Figure 4.27. Comparison of daily SMDs for (A) well-drained, (B) moderately drained and (C) poorly 
drained soils for Dublin Airport (1981–2016).
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Figure 4.28. Average annual mean SMD maps for excessively drained soils for the COSMO-CLM, WRF 
and MÉRA models (1981–2016).

Figure 4.29. Average annual mean SMD maps for imperfectly drained soils for the COSMO-CLM, WRF and 
MÉRA models (1981–2016).

4.3.5.	 Indicative SMD maps

As with ETa, SMD datasets were derived using the 
Teagasc Indicative Soil Drainage Maps. Knowledge 

of the soil drainage class at the location of interest 
is required by the end user prior to utilising these 
datasets. Figure 4.30 shows indicative SMD maps for 
all drainage classes for each month.
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4.4	 Standardised Precipitation Index

The SPI has been derived for Ireland using gridded 
observational datasets of precipitation.

Gridded datasets have been produced for the period 
1981–2016 (an example of which is shown in Figure 
4.31 for December 2016) at 1-, 2-, 3-, 6-, 12- and 
24-month timescales.

Additionally, a script has been written allowing the end 
user to enter a latitude and longitude of interest and 
return the SPI values at that location for 1981–2016. 
An example of the output is provided in Figure 4.32. 
Additional station plots are presented in Appendix 2. 
The SPI script is shown in Appendix 3.

Figure 4.31. Gridded SPI sample for December 2016 for six different timescales.

Figure 4.32. SPI sample focused on Valentia Observatory for 1 month and 24 months.
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4.5	 Agroclimatic Atlas of Ireland

In 1996, Collins and Cummins produced the 
Agroclimatic Atlas of Ireland, which included maps of 
Irish agricultural climatology and geomorphology. One 
of the project aims was to facilitate an update to these 
maps.

Met Éireann provided historical gridded datasets 
of precipitation and temperature at 1-km resolution 
from 1981 to 2016. For all agro-climatic variables, 
the 30-year period 1981–2010 is considered, 
corresponding to the current climate normals. The 
large network of temperature and precipitation 
observations allowed for the development of such 
high-resolution datasets. The agro-climatic variables 
that have been derived to facilitate an update of the 
Agroclimatic Atlas of Ireland are as follows:

1.	 mean annual precipitation;

2.	 mean monthly precipitation;

3.	 number of wet days per year (varying thresholds);

4.	 mean daily temperatures;

5.	 mean monthly temperatures;

6.	 maximum/minimum temperatures for specific 
months;

7.	 number of frost days;

8.	 ET0;

9.	 ETa;

10.	 SMDs;

11.	 number of field capacity days (derived from the 
MÉRA dataset);

12.	 growing season length and start and end dates;

13.	 SPI (varying thresholds).

Unless stated otherwise, all datasets were derived 
using the Met Éireann observed gridded rainfall and 
temperature datasets with 1-km grid spacings. For 
more detail and maps of the gridded datasets above, 
see Appendix 2.
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High-resolution gridded datasets of ET0, ETa and 
SMDs have been produced using inputs from three 
RCMs. ET0 was calculated using RCM data as 
input to the FAO Penman–Monteith equation, in 
line with international best practice and the current 
ET0 calculation method used by Met Éireann. The 
datasets were validated against Met Éireann synoptic 
station measurements and outputs of a SMD model 
at 22 locations across the country. Of the three RCM 
datasets analysed, COSMO-CLM5, WRF v3.7.1 and 
MÉRA, the MÉRA model has been shown to be the 
best performer across most categories. The advantage 
of the MÉRA model can largely be attributed to the 
inclusion of data assimilation during model simulation. 
It is recommended that the reference gridded national 
datasets for ET0, ETa and SMD are those derived from 
the MÉRA dataset.

However, despite the WRF and COSMO-CLM 
models not performing as well as the MÉRA model, 
both datasets complement the MÉRA model well in 
estimating the hydro-climate variables and have the 
advantage of higher resolution (2 km and 1.5 km, 
respectively) than the MÉRA model (2.5 km). This 
advantage was highlighted when validating SMDs 
for poorly drained soils, with the MÉRA model 
underestimating SMDs for the winter months, resulting 
in higher errors. For climate studies and academic 
purposes, the WRF dataset is recommended as the 

next best option, having the next lowest errors and 
correlation coefficients. However, for a definitive 
dataset for each variable and to avoid internal 
inconsistencies, particularly with the combined maps 
and datasets, it is recommended that the MÉRA 
dataset should be used.

The research also facilitated an update of the 
Agroclimatic Atlas of Ireland, by preparing a 
number of additional datasets using Met Éireann 
gridded observational datasets of temperature and 
precipitation. The derived agro-climate datasets 
include the number of wet days at different thresholds 
(1, 5, 10, 15, 20, 30 mm), the number of frost days, 
growing season lengths and the SPI at varying time 
intervals.

The research described in this report is based solely 
on calculated values for evapotranspiration and does 
not include validation against direct observations. 
The lack of adequate observational infrastructure 
for evapotranspiration and soil moisture conditions 
has been recognised as a significant limitation and 
source of uncertainty in hydro-meteorological studies 
in Ireland. Developing such infrastructure would 
be of great benefit to future hydro-climate research 
in Ireland, as well as providing baseline data for 
the future assessment and development of the 
methodologies and datasets described in this report.
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CHESS	 Climate, Hydrological and Ecological research Support System
ET0	 Reference evapotranspiration
ETa	 Actual evapotranspiration
FAO	 Food and Agriculture Organization of the United Nations
HSMD	 Hybrid soil moisture deficit
ICHEC	 Irish Centre for High-End Computing
JULES	 Joint UK Land Environment Simulator
MÉRA	 Met Éireann Re-Analysis
MORECS	 Meteorological Office Rainfall and Evaporation Calculation System
NWP	 Numerical weather prediction
PFRA	 Preliminary Flood Risk Assessment
RCM	 Regional climate NWP model
RMSE	 Root mean square error
RS	 Remote sensing
SMD	 Soil moisture deficit
SPEI	 Standardised Precipitation Evapotranspiration Index
SPI	 Standardised Precipitation Index
USGS	 US Geological Survey
WRF	 Weather Research and Forecasting
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Appendix 1	 List of Archived Variables from Each Model

Table A1.1. List of variables from the COSMO-CLM5 dataset produced by ICHEC researchers

Variable Units Variable Units

Surface pressure Pa Surface lifted index K

Mean sea level pressure Pa Showalter Index K

Surface temperature K Surface net downward SW radiation W/m2

2-m temperature K Averaged surface net downward SW radiation W/m2

2-m dew point temperature K Direct surface downward SW radiation W/m2

U-component of 10-m wind m/s Averaged direct surface downward SW 
radiation

W/m2

V-component of 10-m wind m/s Averaged surface diffuse downward SW 
radiation

W/m2

Surface roughness length m Averaged surface diffuse upward SW 
radiation

W/m2

Maximum 10-m wind speed m/s Averaged downward LW radiation at the 
surface

W/m2

Surface specific humidity kg/kg Averaged upward LW radiation at the surface W/m2

2-m specific humidity kg/kg Averaged surface net downward LW radiation W/m2

2-m relative humidity % Averaged surface photosynthetic active 
radiation

W/m2

Snow surface temperature K Surface albedo 0–1

Thickness of snow m Surface latent heat flux W/m2

Height of freezing level m Surface sensible heat flux W/m2

Precipitation rate kg/m2/s Surface evaporation kg/m2

Large-scale rainfall kg/m2 Total precipitation amount kg/m2

Convective rainfall kg/m2 Soil temperature (eight levels) K

Large-scale snowfall kg/m2 Soil water content (eight levels) m

Convective snowfall kg/m2 Daily average 2-m temperature K

Large-scale graupel kg/m2 Daily maximum 2-m temperature K

Surface run-off kg/m2 Daily minimum 2-m temperature K

Subsurface run-off kg/m2 Daily duration of sunshine s

Vertical integrated water vapour kg/m2 Daily relative duration of sunshine s

Vertical integrated cloud ice kg/m2 Below variables archived at 20, 40, . . . 200 m:

Vertical integrated cloud water kg/m2 	 U-component of wind m/s

Total cloud cover 0–1 	 V-component of wind m/s

Low cloud cover 0–1 	 Air density kg/m3

Medium cloud cover 0–1 	 Wind speed m/s

High cloud cover 0–1 	 Cube wind speed m3/s3

CAPE 3 km J/kg 	 Wind direction Degrees

CAPE, convective available potential energy; LW, long wave; SW, short wave.
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Table A1.2. List of variables from the WRF dataset (v 3.7.1) produced by ICHEC researchers

Variable Units Variable Units

Surface temperature K Air density at lowest model level kg/m3

Surface pressure Pa U-component of wind (Earth) at 40, 60, 80, 
100, 120 m

m/s

Sea level pressure Pa V-component of wind (Earth) at 40, 60, 80, 100, 
120 m

m/s

Sea level pressure Pa SW flux downward at surface instant W/m2

2-m temperature °C SW flux downward at surface accumulated W/m2

Total cloud fraction 0–1 Bucket SW flux downward at surface 
accumulated

W/m2

Time varying roughness height m Friction velocity m/s

Water vapour mixing ratio at 2 m kg/kg Liquid path water kg/m2

Relative humidity at 2 m % Ice path water kg/m2

U-component of wind at 10 m m/s Ground heat flux W/m2

V-component of wind at 10 m m/s Physical snow depth m

Maximum 10-m wind speed previous 
output time

m/s Water evaporation flux at surface kg/m2

Total precipitation mm Soil temperature, at four levels K

Accumulated snowfall mm Soil moisture, at four levels m3/m3

SW, short wave.

Table A1.3. List of variables from the MÉRA dataset produced by Met Éireann

Variable Units Variable Units

Surface pressure Pa Cloud base m

Mean sea level pressure Pa Cloud top m

Surface temperature K Momentum flux, v-component N/m2

2-m temperature K Momentum flux, u-component N/m2

2-m relative humidity % Height of T´w = 0 isotherm m

U-component of 10-m wind m/s Height of 0° isotherm m

V-component of 10-m wind m/s Total precipitation kg/m2

Total cloud cover 0–1 Rain kg/m2

High cloud cover 0–1 Graupel kg/m2

Medium cloud cover 0–1 Snow kg/m2

Low cloud cover 0–1 Sensible heat flux J/m2

Mixed layer depth m Latent heat flux of evaporation J/m2

Direct SW irradiance W/m2 Latent heat flux of sublimation J/kg

LW irradiance W/m2 Water evaporation kg/m2

Snow depth kg/m2 Snow sublimation kg/m2

Total cloud cover (fog) 0–1 Net SW irradiance J/m2

Visibility m Net LW irradiance J/m2

Icing index – Direct SW irradiance J/m2

Precipitation type – LW irradiance J/m2

Global irradiance J/m2 U-component of wind m/s

Direct normal irradiance J/m2 V-component of wind m/s

Lightning m3 Vertical velocity m/s
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Variable Units Variable Units

Hail diagnostic kg/m2 Relative humidity %

Maximum temperature K Cloud ice kg/m2

Minimum temperature K Cloud water kg/m2

Gust, u-component m/s Cloud top temperature (infrared) K

Gust, v-component m/s Tb (water vapour) K

Direct SW irradiance J/m2 Tb (water vapour) + cloud correction K

Net SW irradiance J/m2 Cloud water reflectivity (visible) –

Net SW irradiance (accumulated) J/m2 Precipitable water kg/m2

Net LW irradiance J/m2 Rain kg/m2

Net LW irradiance (accumulated) J/m2 Snow kg/m2

Temperature K Graupel kg/m2

U-component of wind m/s Cloud ice kg/m2

V-component of wind m/s Cloud water kg/m2

Relative humidity % Soil temperature (two levels) J/m2

Geopotential m2/s2 Soil moisture content (three levels) J/m2

Precipitation type K Surface soil ice (three levels) J/m2

LW, long wave; SW, short wave.

Table A1.3. Continued
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Appendix 2	 Agroclimatic Atlas of Ireland

The following agro-climate datasets were prepared for the Agroclimatic Atlas of Ireland:

1.	 mean annual precipitation;

2.	 mean monthly precipitation;

3.	 number of wet days per year (varying thresholds);

4.	 mean daily temperatures;

5.	 mean monthly temperatures;

6.	 maximum/minimum temperatures for specific months;

7.	 number of frost days;

8.	 ET0;

9.	 ETa;

10.	 SMDs;

11.	 number of field capacity days (derived from the MÉRA dataset);

12.	 growing season length and start and end dates;

13.	 SPI (varying thresholds).

For all agro-climate variables, the current climate normal period of 1981–2010 is considered. Unless stated 
otherwise, all datasets were derived using the Met Éireann observed gridded rainfall and temperature datasets, 
with 1-km grid spacings. First, for no. 7, it should be noted that the number of days of well-drained soils at field 
capacity is equal to that for excessively drained soils. Second, the field capacities have been taken to be 0.1 
instead of 0 for well-drained soils and –9.9 for all other soil types. This is to accommodate regions where the soils 
are very nearly at field capacity, allowing for SMD = 0.001, for example, to be registered as a field capacity day. 
Example figures of agroclimate outputs are shown in Figures A2.1–A.2.12.



53

C. Werner et al. (2016-W-DS-29)

Figure A2.3. Grass-growing season: (a) mean season start date, (b) mean season end date and (c) mean 
season length in days per year (1981–2010).

Figure A2.2. Mean January minimum temperatures in 1981–2010 (left) and mean July maximum 
temperatures in 1981–2010 (right).

Figure A2.1. Mean daily temperature (left) and mean daily temperature range (right) for 1981–2010.
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Figure A2.6. Mean annual precipitation (mm/year) 
from Met Éireann gridded observational datasets 
(1981–2010).

Figure A2.5. Average number of frost days per year 
(1981–2010).

Figure A2.4. Mean daily temperatures for individual months (1981–2010).
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Figure A2.8. Number of wet days at different thresholds: ≥ 1, ≥ 5, ≥ 10,  ≥ 15, ≥ 20 and ≥ 30 mm (1981–2010).

Figure A2.7. Mean monthly precipitation (mm/month) from Met Éireann gridded observational datasets 
(1981–2010).
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Figure A2.10. SPI windows from 1981 to 2016 for Casement Aerodrome (left) and Dublin Airport (right).

Figure A2.9. SPI windows from 1981 to 2016 for Belmullet (left) and Cork Airport (right).
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Figure A2.12. SPI windows from 1981 to 2016 for Shannon Airport (left) and Valentia Observatory (right).

Figure A2.11. SPI windows from 1981 to 2016 for Malin Head (left) and Mullingar (right).
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Appendix 3	 Accessing the Datasets

The datasets are made available through the ICHEC 
ERRDAP server:  https://erddap.ichec.ie/erddap/files/
EPA_Hydroclimate/.

The data for all models are available over the island of 
Ireland. At present, the data are available in netCDF 
format only. The files available for download are 
outlined in Table A3.1 and the file structure on the 
ERDDAP server is outlined in Figure A3.1.

An SPI time series for any location can be extracted 
using the cdo (climate data operators) program and a 
simple script whereby the user specifies a longitude 
and latitude location and a time interval (1–48 months). 
The script is provided in Figure A3.2.

Queries on the datasets and applied usage 
should be made to christopher.werner@ichec.ie, 
paul.nolan@ichec.ie or naughto@tcd.ie. Queries 
regarding the ERDDAP server should be directed to 
alastair.mckinstry@ichec.ie.

For the ETa and SMD datasets, the folder and file 
notations for each of the soil drainage classes are as 
follows:

●● ED = excessively drained;
●● WD = well drained;
●● MD = moderately drained;
●● ID = imperfectly drained;
●● PD = poorly drained.

Table A3.1. List of variables available for download at ICHEC’s ERDDAP server

File name Description Variables

(Model)_(variable)-daily.nc Daily dataset from 1981 to 2016 ET0,
a ETa, SMD

(Model)_(variable)-monthlysums.nc Monthly sums from 1981 to 2016 (432 time steps) ET0,
a ETa

(Model)_(variable)-monthsumavg.nc Average of monthly sums 1981 to 2016 (12 time steps) ET0,
a ETa

(Model)_(variable)-seasonsum.nc Seasonal sums from 1981 to 2016 (108 time steps) ET0,
a ETa

(Model)_(variable)-seasonsumavg.nc Average of seasonal sums 1981 to 2016 (4 time steps) ET0,
a ETa

(Model)_(variable)-yearlysums.nc Yearly sums from 1981 to 2016 (36 time steps) ET0,
a ETa

(Model)_(variable)-yearlysumavg.nc Average of yearly sums 1981 to 2016 (1 time step) ET0,
a ETa

aSignifies data for COSMO-CLM and WRF available for 2017.

Figure A3.1. Hierarchy of files in ICHEC’s ERDDAP server.

https://erddap.ichec.ie/erddap/files/EPA_Hydroclimate/
https://erddap.ichec.ie/erddap/files/EPA_Hydroclimate/
mailto:christopher.werner@ichec.ie
mailto:paul.nolan@ichec.ie
mailto:naughto@tcd.ie
mailto:alastair.mckinstry@ichec.ie
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###		  User Input		  ###

RCM = OBS		     		  ## Dataset

lon =-7.36; lat=53.54; 		  ## Lat / Lon Location

len_month=48		     		  ## SPI run period

###	     End of User Input 		 ###

cdo –s remapnn,lon=${lon}_lat=${lat} –selname,SPI_M${len_month} SPI_${RCM}_1981-2016.nc temp.nc

cdo –s infon temp.nc > a1

sed –i ‘/9.9692e+36/d’ a1

awk ‘{print $1,$3,$9}’ a1 > a2 && rm a1

sed ‘s/-/ /g’ a2 > a3 && rm a2

tail –n +2 a3 > a4 && rm a3

echo “M${len_month}=[“ > top

echo “];” > end

cat top a4 end > SPI_M${len_month}_${RCM}_lat${lat}_lon${lon}.m

Figure A3.2. Script using cdo (climate data operators) to obtain the SPI at a user-specified location from 
the SPI dataset.



AN GHNÍOMHAIREACHT UM CHAOMHNÚ COMHSHAOIL
Tá an Ghníomhaireacht um Chaomhnú Comhshaoil (GCC) freagrach as an 
gcomhshaol a chaomhnú agus a fheabhsú mar shócmhainn luachmhar do 
mhuintir na hÉireann. Táimid tiomanta do dhaoine agus don chomhshaol a 
chosaint ó éifeachtaí díobhálacha na radaíochta agus an truaillithe.

Is féidir obair na Gníomhaireachta a  
roinnt ina trí phríomhréimse:

Rialú: Déanaimid córais éifeachtacha rialaithe agus comhlíonta 
comhshaoil a chur i bhfeidhm chun torthaí maithe comhshaoil a 
sholáthar agus chun díriú orthu siúd nach gcloíonn leis na córais sin.

Eolas: Soláthraímid sonraí, faisnéis agus measúnú comhshaoil atá 
ar ardchaighdeán, spriocdhírithe agus tráthúil chun bonn eolais a 
chur faoin gcinnteoireacht ar gach leibhéal.

Tacaíocht: Bímid ag saothrú i gcomhar le grúpaí eile chun tacú 
le comhshaol atá glan, táirgiúil agus cosanta go maith, agus le 
hiompar a chuirfidh le comhshaol inbhuanaithe.

Ár bhFreagrachtaí

Ceadúnú
Déanaimid na gníomhaíochtaí seo a leanas a rialú ionas nach 
ndéanann siad dochar do shláinte an phobail ná don chomhshaol:
•  saoráidí dramhaíola (m.sh. láithreáin líonta talún, loisceoirí, 

stáisiúin aistrithe dramhaíola);
•  gníomhaíochtaí tionsclaíocha ar scála mór (m.sh. déantúsaíocht 

cógaisíochta, déantúsaíocht stroighne, stáisiúin chumhachta);
•  an diantalmhaíocht (m.sh. muca, éanlaith);
•  úsáid shrianta agus scaoileadh rialaithe Orgánach 

Géinmhodhnaithe (OGM);
•  foinsí radaíochta ianúcháin (m.sh. trealamh x-gha agus 

radaiteiripe, foinsí tionsclaíocha);
•  áiseanna móra stórála peitril;
•  scardadh dramhuisce;
•  gníomhaíochtaí dumpála ar farraige.

Forfheidhmiú Náisiúnta i leith Cúrsaí Comhshaoil
•  Clár náisiúnta iniúchtaí agus cigireachtaí a dhéanamh gach 

bliain ar shaoráidí a bhfuil ceadúnas ón nGníomhaireacht acu.
•  Maoirseacht a dhéanamh ar fhreagrachtaí cosanta comhshaoil na 

n-údarás áitiúil.
•  Caighdeán an uisce óil, arna sholáthar ag soláthraithe uisce 

phoiblí, a mhaoirsiú.
• Obair le húdaráis áitiúla agus le gníomhaireachtaí eile chun dul 

i ngleic le coireanna comhshaoil trí chomhordú a dhéanamh ar 
líonra forfheidhmiúcháin náisiúnta, trí dhíriú ar chiontóirí, agus 
trí mhaoirsiú a dhéanamh ar leasúchán.

•  Cur i bhfeidhm rialachán ar nós na Rialachán um 
Dhramhthrealamh Leictreach agus Leictreonach (DTLL), um 
Shrian ar Shubstaintí Guaiseacha agus na Rialachán um rialú ar 
shubstaintí a ídíonn an ciseal ózóin.

•  An dlí a chur orthu siúd a bhriseann dlí an chomhshaoil agus a 
dhéanann dochar don chomhshaol.

Bainistíocht Uisce
•  Monatóireacht agus tuairisciú a dhéanamh ar cháilíocht 

aibhneacha, lochanna, uiscí idirchriosacha agus cósta na 
hÉireann, agus screamhuiscí; leibhéil uisce agus sruthanna 
aibhneacha a thomhas.

•  Comhordú náisiúnta agus maoirsiú a dhéanamh ar an gCreat-
Treoir Uisce.

•  Monatóireacht agus tuairisciú a dhéanamh ar Cháilíocht an 
Uisce Snámha.

Monatóireacht, Anailís agus Tuairisciú ar  
an gComhshaol
•  Monatóireacht a dhéanamh ar cháilíocht an aeir agus Treoir an AE 

maidir le hAer Glan don Eoraip (CAFÉ) a chur chun feidhme.
•  Tuairisciú neamhspleách le cabhrú le cinnteoireacht an rialtais 

náisiúnta agus na n-údarás áitiúil (m.sh. tuairisciú tréimhsiúil ar 
staid Chomhshaol na hÉireann agus Tuarascálacha ar Tháscairí).

Rialú Astaíochtaí na nGás Ceaptha Teasa in Éirinn
•  Fardail agus réamh-mheastacháin na hÉireann maidir le gáis 

cheaptha teasa a ullmhú.
•  An Treoir maidir le Trádáil Astaíochtaí a chur chun feidhme i gcomhair 

breis agus 100 de na táirgeoirí dé-ocsaíde carbóin is mó in Éirinn.

Taighde agus Forbairt Comhshaoil
•  Taighde comhshaoil a chistiú chun brúnna a shainaithint, bonn 

eolais a chur faoi bheartais, agus réitigh a sholáthar i réimsí na 
haeráide, an uisce agus na hinbhuanaitheachta.

Measúnacht Straitéiseach Timpeallachta
•  Measúnacht a dhéanamh ar thionchar pleananna agus clár beartaithe 

ar an gcomhshaol in Éirinn (m.sh. mórphleananna forbartha).

Cosaint Raideolaíoch
•  Monatóireacht a dhéanamh ar leibhéil radaíochta, measúnacht a 

dhéanamh ar nochtadh mhuintir na hÉireann don radaíocht ianúcháin.
•  Cabhrú le pleananna náisiúnta a fhorbairt le haghaidh éigeandálaí 

ag eascairt as taismí núicléacha.
•  Monatóireacht a dhéanamh ar fhorbairtí thar lear a bhaineann le 

saoráidí núicléacha agus leis an tsábháilteacht raideolaíochta.
•  Sainseirbhísí cosanta ar an radaíocht a sholáthar, nó maoirsiú a 

dhéanamh ar sholáthar na seirbhísí sin.

Treoir, Faisnéis Inrochtana agus Oideachas
•  Comhairle agus treoir a chur ar fáil d’earnáil na tionsclaíochta 

agus don phobal maidir le hábhair a bhaineann le caomhnú an 
chomhshaoil agus leis an gcosaint raideolaíoch.

•  Faisnéis thráthúil ar an gcomhshaol ar a bhfuil fáil éasca a 
chur ar fáil chun rannpháirtíocht an phobail a spreagadh sa 
chinnteoireacht i ndáil leis an gcomhshaol (m.sh. Timpeall an Tí, 
léarscáileanna radóin).

•  Comhairle a chur ar fáil don Rialtas maidir le hábhair a 
bhaineann leis an tsábháilteacht raideolaíoch agus le cúrsaí 
práinnfhreagartha.

•  Plean Náisiúnta Bainistíochta Dramhaíola Guaisí a fhorbairt chun 
dramhaíl ghuaiseach a chosc agus a bhainistiú.

Múscailt Feasachta agus Athrú Iompraíochta
•  Feasacht chomhshaoil níos fearr a ghiniúint agus dul i bhfeidhm 

ar athrú iompraíochta dearfach trí thacú le gnóthais, le pobail 
agus le teaghlaigh a bheith níos éifeachtúla ar acmhainní.

•  Tástáil le haghaidh radóin a chur chun cinn i dtithe agus in ionaid 
oibre, agus gníomhartha leasúcháin a spreagadh nuair is gá.

Bainistíocht agus struchtúr na Gníomhaireachta um 
Chaomhnú Comhshaoil
Tá an ghníomhaíocht á bainistiú ag Bord lánaimseartha, ar a bhfuil 
Ard-Stiúrthóir agus cúigear Stiúrthóirí. Déantar an obair ar fud cúig 
cinn d’Oifigí:
• An Oifig um Inmharthanacht Comhshaoil
• An Oifig Forfheidhmithe i leith cúrsaí Comhshaoil
• An Oifig um Fianaise is Measúnú
• Oifig um Chosaint Radaíochta agus Monatóireachta Comhshaoil
• An Oifig Cumarsáide agus Seirbhísí Corparáideacha
Tá Coiste Comhairleach ag an nGníomhaireacht le cabhrú léi. Tá 
dáréag comhaltaí air agus tagann siad le chéile go rialta le plé a 
dhéanamh ar ábhair imní agus le comhairle a chur ar an mBord.
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Identifying Pressures
Key stakeholders in water resource management, such as the 
Office of Public Works (OPW), Irish Water, the Environmental 
Protection Agency (EPA) and Geological Survey Ireland (GSI), 
share a common challenge in managing and protecting 
the aquatic environment, particularly in the face of climate 
variability, land use and demographic change, pollution 
and the demand for natural resources. These challenges 
are exacerbated by a warming climate, which is expected 
to result in an increase in drought and flooding events in 
Ireland. The EPA Research Programme specifically calls for 
support for development of the analysis of the fundamental 
processes that drive the rate and extent of climate change. 
Such analysis is necessary to provide the evidence base 
to inform relevant national policymakers, planners and 
stakeholders of potential climate-related issues and enable 
the development of pre-emptive mitigation strategies as 
called for under the National Climate Change Adaptation 
Framework (NCCAF). However, the datasets required for 
such research have not been available in Ireland.

Informing Policy
Under the Water Framework Directive (WFD), the state is 
responsible for protecting and maintaining groundwater 
bodies and catchment areas and ensuring the long-term 
sustainability of water resources. Hydro-climate variables 
such as evapotranspiration and soil moisture conditions 
are crucial factors in ensuring water sustainability, 
understanding groundwater recharge, agronomic 
management and the management of flood and drought. 
The research and datasets resulting from this project will 
assist Ireland to meet its obligations under EU directives 
such as the WFD.

The knowledge gained, and hydro-climate datasets 
generated, through this research will contribute towards 
the long-term goal of mitigating and adapting to climate 
change and developing a climate-resilient Ireland by 
2050, as set out in the EPA Climate Research Strategy 
2014–2020. To facilitate climate change policy, a greater 
understanding of the primary processes driving energy 

and water exchanges within the hydrological cycle is 
required for hydro-climate trend analysis and prediction. 
This research will inform climate change policy through 
the provision of long-term high-resolution datasets of key 
hydro-climate meteorological variables – a fundamental 
foundation for the interpretation of climate change trends 
in Irish hydro-climatology.

Developing Solutions
The research presents an important data resource for 
Irish researchers, policymakers and industry by providing, 
for the first time, high-resolution gridded datasets of 
hydro-climate variables.  It is envisaged that the datasets 
will lead to a better understanding not only of the physical 
climate system but also of the interaction between 
climate and Irish society. In addition, it is envisaged that 
the datasets will be used as a basis for more-focused 
hydro-climate impact studies. To promote the use of the 
data and enhance climate research in Ireland, the datasets 
are made publicly available to researchers, policymakers, 
the general public and Irish industry through the Irish 
Centre for High-End Computing (ICHEC) ERDDAP server.

This study has produced high-resolution gridded datasets 
of hydro-climate variables, including:

•	 reference evapotranspiration;

•	 actual evapotranspiration (five drainage classes);

•	 soil moisture deficits (five drainage classes);

•	 Standardised Precipitation Index for various intervals.

In addition, the evapotranspiration and soil moisture 
deficit datasets were improved by incorporating the 
Teagasc Indicative Soil Drainage Map, resulting in a 
more accurate representation of actual soil conditions 
throughout the country.
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