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Abstract

Participatory sensing is a paradigm through which mobile device users (or par-

ticipants) collect and share data about their environments. The data captured

by participants is typically submitted to an intermediary (the service provider)

who will build a service based upon this data.

For a participatory sensing system to attract the data submissions it requires,

its users often need to be incentivised. Such an incentivisation mechanism typ-

ically requires users to at least partially disclose their identity to be able to

reward them, and to ensure that they are only rewarded for truthful submis-

sions (called incentive compatibility). This, however, might deter privacy con-

scious users from participating. Therefore, an incentivisation mechanism needs

to support anonymous and unlinkable data submission and untraceable and

unlinkable rewarding while also ensuring data truthfulness (An incentivisation

scheme is not in and of itself incentive compatible but should be able to facilitate

incentive compatibility). Furthermore, as an environment can quickly and sud-

denly change (for example, an accident causing elevated pollution levels and a

buildup of tra�c), the value of a given data item to the service provider is likely

to change signi�cantly over time, and therefore an incentivisation scheme must

be able to adapt the rewards it o�ers in real-time to match the environmental

conditions and current participation rates, thereby optimising the consumption

of the service provider's budget.

There are numerous approaches in the state of the art in the areas of iden-

tity privacy and incentivisation for participatory sensing. For example, one

approach proposes a digital currency to enable participants to make data sub-

missions without disclosing their privacy, while another approach devises tokens

to exchange data and rewards in a privacy-preserving fashion. However, while

basic identity privacy may be preserved in these approaches, other forms of iden-

tity privacy such as behavioural habits and frequent trajectories can be inferred

from the submitted data, with some proposed solutions actually increasing the

threat of such inference attacks occurring. Furthermore, none of the approaches

in the state of the art support adapting the reward to match the environmental

conditions.

This thesis presents Privacy-Aware Incentivisation (PAI), which is a decen-

tralised peer-to-peer exchange to enable anonymous and unlinkable data submis-

sion, untraceable and unlinkable reward allocation and spending, and adaptive

incentive-compatible reward computation. This is achieved through the modi�-
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cation and extension of the concept of decentralised trading for cryptocurrencies

to make payments (i.e. rewards) sent to a recipient (i.e. the participant) un-

traceable. Furthermore, the use of the Di�e-Hellman Exchange Protocol is

modi�ed to enable participants to create their own untraceable reward currency

in the form of tokens to which the service provider can then assign value. Fi-

nally, the Lyapunov Optimisation method is used to create an adaptive reward

allocation model that optimises the consumption of the service provider's bud-

get.

The principal contributions of PAI are:

1. A platform for anonymous and unlinkable data submission and untraceable

and unlinkable rewarding that is robust to inference attacks from semi-

honest service providers and other potential attackers.

2. A privacy-aware adaptive incentive-compatible incentivisation scheme.

PAI is evaluated by proof and by comparing the approach to the most relevant

approaches in the state of the art. The privacy robustness of PAI is demon-

strated by proofs showing that participants can make anonymous and unlinkable

data submissions to the service provider and receive untraceable and unlinkable

rewards in return. The incentive compatibility of PAI is also demonstrated by

proofs showing that rewards will not be allocated for data submissions that are

deemed to be non truthful with the privacy preserving character of the incen-

tive compatibility approach also being proven. The adaptiveness and budget

consumption of PAI's adaptive reward allocation method is compared with the

most relevant approaches in the state of the art for reward computation using

experiments carried out in a simulated participatory sensing environment. The

results of these experiments are, in general, favorable with the reward allocation

method adapting in a more timely fashion compared to similar approaches. Ex-

periments are also conducted to compare the performance and computational

complexity of PAI with the most relevant privacy preserving incentivisation

methods proposed in the state of the art. The results of these experiments

�nd that, in general, PAI's energy consumption is less than that of other pri-

vacy preserving incentivisation methods while its core algorithms require less

resources.

ii



Publications Related to this PhD

� Martin Connolly, Ivana Dusparic, Georgios Iosi�dis and Mélanie Bouroche,

Privacy-Aware Incentivization for Participatory Sensing, In MDPI Sen-

sors, 2019.

� Martin Connolly, Ivana Dusparic, Georgios Iosi�dis and Mélanie Bouroche,

An Identity Privacy Preserving Incentivization Scheme for Participatory

Sensing, In IEEE 11th International Conference on Mobile Computing and

Ubiquitous Networking (ICMU), Auckland, New Zealand, October 2018.

� Martin Connolly, Ivana Dusparic, Georgios Iosi�dis and Mélanie Bouroche,

Adaptive Reward Allocation for Participatory Sensing. In Wireless Com-

munications and Mobile Computing, 2018.

iii



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Participatory Sensing . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Participatory Sensing & Privacy . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Context & Related Work . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Goals & Contribution . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Assumptions & Scope . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Problem De�nition 14

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Incentivisation Scheme for Participatory Sensing . . . . . 14

2.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Participatory Sensing Threat Model . . . . . . . . . . . . . . . . 17

2.2.1 External Attacks . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Internal Attacks . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Threat Model Addressed . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Related Work 25

3.1 Incentivisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Economic Approaches to Incentivisation . . . . . . . . . . 26

iv



3.1.1.1 Auctions . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1.2 Contract Theory . . . . . . . . . . . . . . . . . . 29

3.1.1.3 Game Theory . . . . . . . . . . . . . . . . . . . 30

3.1.1.4 Other Microeconomic Concepts . . . . . . . . . . 32

3.1.2 Statistical & Machine Learning Approaches to Incentivi-

sation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2.1 Optimisation . . . . . . . . . . . . . . . . . . . . 33

3.1.2.2 Other Statistical & Machine Learning Methods . 35

3.1.3 Incentivisation: Summary . . . . . . . . . . . . . . . . . . 37

3.2 Privacy Preservation . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Privacy Preserving Methods for Incentivisation . . . . . . 39

3.2.1.1 Privacy Preservation using Pseudonyms . . . . . 39

3.2.1.2 Use of Third Party Components . . . . . . . . . 40

3.2.1.3 Anonymisation . . . . . . . . . . . . . . . . . . . 41

3.2.1.4 Encryption & Statistics . . . . . . . . . . . . . . 42

3.2.1.5 Methods for Privacy Preservation: Summary . . 42

3.2.2 Medium for Reward Allocation . . . . . . . . . . . . . . . 43

3.2.2.1 Cryptocurrencies . . . . . . . . . . . . . . . . . . 43

3.2.2.2 Reward Tokens . . . . . . . . . . . . . . . . . . . 44

3.2.2.3 Medium for Reward Allocation: Summary . . . 46

3.3 Incentive Compatibility . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Trust & Reputation Management . . . . . . . . . . . . . . 46

3.3.2 Data Truthfulness . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Incentive Compatibility: Summary . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Design 52

4.1 Privacy Preservation for the PAI Platform . . . . . . . . . . . . . 54

4.1.1 Meeting the Privacy Requirements . . . . . . . . . . . . . 54

4.1.2 Anonymous, Unlinkable & Protected Data Submission (R1) 58

4.1.3 Untraceable & Unlinkable Reward Allocation (R2) . . . . 59

4.1.4 Untraceable & Unlinkable Reward Spending (R3) . . . . . 62

4.2 Incentive Compatibility (R4) . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Choosing an Approach for Estimating Data Truthfulness 65

4.2.2 Adapting an Approach for Estimating Data Truthfulness 67

4.3 Adaptive & Tunable Reward Allocation (R5) . . . . . . . . . . . 69

4.3.1 Modeling ARA as a Stochastic Process . . . . . . . . . . . 72

v



4.3.1.1 Estimating the Number of Responses . . . . . . 74

4.3.1.2 Modeling the Environment for Reward Determi-

nation . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1.3 Modeling the Environment for Budget Optimi-

sation . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Formulating the O�ine Problem . . . . . . . . . . . . . . 81

4.3.2.1 Complete Future Information . . . . . . . . . . . 81

4.3.2.2 Stochastic Future Information . . . . . . . . . . 83

4.3.2.3 Analysing the Benchmarks . . . . . . . . . . . . 83

4.3.3 Online Budget Consumption Optimisation Problem . . . 84

4.3.4 Designing the Reward Algorithm . . . . . . . . . . . . . . 84

4.3.5 Incorporating Data Utility . . . . . . . . . . . . . . . . . . 87

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Evaluation 92

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Implementing Privacy Preservation (R1, R2 & R3) . . . . 94

5.1.2 Implementing Incentive Compatibility (R4) . . . . . . . . 96

5.1.3 Implementing Adaptive & Tunable Reward Allocation (R5) 97

5.1.4 Implementing a Simulated Environment for Participatory

Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Analysis & Validation . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Anonymous, Unlinkable & Protected Data Submission (R1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.2 Untraceable & Unlinkable Reward Allocation (R2) . . . . 101

5.2.3 Untraceable & Unlinkable Reward Spending (R3) . . . . 102

5.2.4 Incentive Compatibility (R4) . . . . . . . . . . . . . . . . 102

5.2.5 Adaptive & Tunable Reward Allocation (R5) . . . . . . . 103

5.2.5.1 Experimental Setup . . . . . . . . . . . . . . . . 103

5.2.5.2 Adaptiveness & Utility . . . . . . . . . . . . . . 106

5.2.5.3 Budget Consumption . . . . . . . . . . . . . . . 113

5.2.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Cryptographic Primitives used for Privacy Preserving Re-

quirements R1, R2 & R3 . . . . . . . . . . . . . . . . . . . 119

5.3.2 Computational Complexity . . . . . . . . . . . . . . . . . 121

5.4 Summary & Discussion of Results . . . . . . . . . . . . . . . . . . 124

vi



6 Conclusions & Future Work 126

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Possible Directions for Future Work . . . . . . . . . . . . . . . . 128

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



List of Figures

2.1 A Typical Participatory Sensing System . . . . . . . . . . . 16

2.2 Threats to Participatory Sensing Systems . . . . . . . . . . 19

3.1 Auction in Participatory Sensing . . . . . . . . . . . . . . . 27

4.1 The PAI Platform . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Operation of a Typical Decentralised Cryptocurrency

Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Privacy Preservation in the IPPI Platform . . . . . . . . . 60

4.4 The Data Truthfulness Estimation Approach . . . . . . . . 70

4.5 ARA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Implementation of the PAI Approach . . . . . . . . . . . . 95

5.2 Adapting the Reward to the Response Rate . . . . . . . . 108

5.3 ARAAdaptiveness (High Response Environment, Rolling

Regression Window=100, No. Simulations=1) . . . . . . . 109

5.4 ARAAdaptiveness (High Response Environment, Rolling

Regression Window=100, No. Simulations=10) . . . . . . 109

5.5 ARA Adaptiveness (Low Response Environment) . . . . . 110

5.6 ARA Adaptiveness (Low Response Environment, V =

1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 STOC-PISCES Adaptiveness (High Response Environ-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8 STOC-PISCES Adaptiveness (Low Response Environ-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.9 ARAAdaptiveness (High Response Environment, Rolling

Regression Window=50, No. Simulations=1) . . . . . . . 112

viii



5.10 ARAAdaptiveness (High Response Environment, Rolling

Regression Window=50, No. Simulations=10) . . . . . . . 112

5.11 Average Reward . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.12 Total No. Responses . . . . . . . . . . . . . . . . . . . . . . . 116

5.13 Total No. O�ers . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.14 Rate of Budget Consumption (High Response Environ-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.15 Rate of Budget Consumption (Low Response Environ-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



List of Tables

4.1 Additional Notations for Reward Computation Algorithm 90

5.1 Simulation Parameters for Requirement R5 . . . . . . . . 107

5.2 Resource Consumption of Cryptographic Primitives . . . 121

x



List of Algorithms

1 Allocating the Reward . . . . . . . . . . . . . . . . . . . . . . . 64

2 Spending the Reward . . . . . . . . . . . . . . . . . . . . . . . 65

3 Estimating Data Truthfulness . . . . . . . . . . . . . . . . . . 71

4 Reward Computation . . . . . . . . . . . . . . . . . . . . . . . 89

xi



Chapter 1

Introduction

This chapter introduces the �eld of research for this thesis. The background to

the thesis, speci�cally, the concept of participatory sensing, is introduced in Sec-

tion 1.1. The motivation for the research undertaken in this thesis is presented

in Section 1.2 while Section 1.3 discusses its context and brie�y presents related

work in the area. The challenges to be addressed are discussed in Section 1.4

while Section 1.5 introduces the proposed approach to be taken. The goals of

the research and the principal contributions made by the approach are explored

in Section 1.6. Section 1.7 outlines the assumptions made as well as the scope

of the threat model while a roadmap for the rest of this thesis is presented in

Section 1.8. Section 1.9 summarises this chapter.

1.1 Background

This section provides background information in the area of participatory sens-

ing, the domain for which the research in this thesis is being undertaken. Section

1.1.1 explores the concept of participatory sensing while Section 1.1.2 discusses

the importance of privacy for participatory sensing campaigns.

1.1.1 Participatory Sensing

Mobile devices such as smart phones are now ubiquitous and have a number of

embedded sensor types that enable them to capture, classify and transmit data

such as environmental readings, images, acoustic measurements and location,

either interactively or autonomously. In addition, the ever increasing processing

1



and storage capacity of such devices gives them the potential to act as sensor

nodes and location-aware data collection instruments. As a result, smartphones

are becoming very powerful mobile sensor platforms and location-aware data

collection instruments that accompany users during their daily lives (Predic

et al., 2013). The potential of these devices to enable users to gather, analyse

and share data is known as participatory sensing (Burke et al., 2006), a form

of crowdsourcing whereby individuals and communities submit scalar and/or

multimedia data from mobile devices such as personal smart phones. The sub-

mitted data can be GPS coordinates revealing location or trajectory, a sensed

data measurement or multimedia content such as photos, sound clips or video.

A typical participatory sensing application (or app) consists of a client on

the participatory sensing device (for example, a SmartPhone) which connects

to a server that resides in the Cloud (the participatory sensing app service).

Participants can submit data (i.e. act as data submitters) and/or consume

information derived by the service provider from submitted data (i.e. act as

data consumers). One of the goals for a service provider is to ensure that as

many participants as possible are data submitters as well as data consumers.

The wide range of data that can be captured by participatory sensing is

re�ected in the diversity of its potential applications including, among others,

smart cities (Szabo et al., 2013), air pollution exposure (Predic et al., 2013),

noise pollution (Coulson et al., 2018), health (Clarke and Steele, 2014b), crime

reporting (Cilliers and Flowerday, 2014) and agriculture (Mohite et al., 2015).

Participatory sensing campaigns are currently being undertaken across the world

in, for example, Amsterdam1 where sensed data is shared among people living in

a particular neighbourhood as well as with the police authorities. Participatory

sensing campaigns for health monitoring are also common. For example, the

city of Louisville, Kentucky2 used participatory sensing for its (now completed)

asthma hotspot monitoring project.

1.1.2 Participatory Sensing & Privacy

Privacy is a key consideration for participatory sensing systems given their re-

liance upon mobile devices, in particular, their use of a mobile application.

Moreover, the privacy consciousness of mobile users has the potential to di-

rectly impact upon the use of participatory sensing applications. For example,

1See https://amsterdamsmartcity.com/products/buur
2See https://www.airlouisville.com.
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the surveys carried out by Boyles et al. [2012] and Brandtzaeg et al. [2018] both

found that more than half of surveyed users were deterred from using a mobile

app because they did not want to share their information while Hutton et al.

[2014] and Almuhimedi et al. [2015] point out user concerns when location access

is sought by mobile applications. These �ndings are of concern to participatory

sensing given that the essence of the paradigm is the sharing of readings that

may reveal con�dential data pertaining to, for example, participant location or

behaviour. Some potential participants may thus be deterred by this possibility

of their privacy being compromised. and, indeed, privacy concerns have been

found to hinder the e�ectiveness of some participatory sensing campaigns. For

example, Ogie [2016] cites the example of a �ood reporting participatory sensing

service for Jakarta where potential participants living in temporary waterfront

dwellings are deterred by fears that they will be traced by the government and

punished for living in what are illegal settlements.

Privacy concerns with respect to mobile applications have been found to be

particularly acute in the case of participatory sensing. For instance, the survey

carried out by Christin et al. [2013a] found that potential users of participatory

sensing applications rated the importance of privacy very highly. These �ndings

are borne out by the work undertaken by Shilton and Martin [2013] which

highlights the selling of data to an exchange (which is what submitting data to

a participatory sensing service provider actually is) as having a negative e�ect

on the privacy perceptions of mobile users. The authors also point out that

mobile users expect more privacy from a third party data collector. This �nding

is particularly pertinent to participatory sensing applications as their operation

typically comprises of submissions of data such as location and images to a third

party service provider. However, despite these �ndings, participant privacy is

frequently not taken into account in participatory sensing campaigns (Kounadi

and Resch, 2018). Furthermore, the issue of privacy, which can be crucial to

potential participants, needs to reconciled with that of data accuracy which is

identi�ed by potential data collectors and service providers as being of critical

importance (Jiang et al., 2018).

1.2 Motivation

The key to the success of a participatory sensing application is attracting a

critical mass of relevant data which meets the service provider's quality require-

3



ments. To achieve this, the service provider must attract a su�cient number of

participants. In the majority of participatory sensing campaigns, participants

may be willing to make data submissions but will, in general, expect some

form of tangible (monetary or non-monetary) reward in return (Christin et al.,

2013a, Christin et al., 2014, Mohite et al., 2015, Zaman et al., 2015, Arakawa

and Matsuda, 2016, Restuccia et al., 2016 and Khoi et al., 2018). Moreover,

participants expect to be compensated for costs such as battery consumption

(Jin et al., 2015). By identifying a number of participatory sensing applications

that have failed to attract su�cient participation rates, Xu et al. [2018] high-

light the need for an e�ective incentivisation and reward allocation scheme that

enables the service provider to attain a meaningful dataset.

In addition to its role in attracting participants, the issue of incentivisation

also has direct implications for the quality of a service provider's dataset. In the

case of participatory sensing and other similar data sharing environments, it has

been found that proper incentive allocation improves data quality. For example,

Wang et al. [2012] point out that content from data sharing is suboptimal with-

out proper incentives, a claim that has its basis in economic theory while Gao

et al. [2015a] highlight the scope that exists to improve data quality through

proper incentive allocation. It should also be noted that incentivisation plays

a key role in ensuring data submissions are timely as well as being of su�cient

quality as users who are paid for assigned tasks complete them signi�cantly

more quickly than volunteer users (Mao et al., 2013).

While incentivisation schemes are critical to the success of participatory

sensing campaigns, they face a number of challenges to ensure that the service

provider's dataset is relevant and timely. In particular, the conditions in a

participatory sensing environment can suddenly change, for example, a bridge

connecting two areas of a city being closed due to high winds would result in

a buildup of tra�c. As a result of such sudden changes, the utility value of

a particular type of data submission to the service provider can also change

signi�cantly over time. Moreover, as participation rates will vary over time, the

service provider needs the ability to adapt the level of reward it o�ers to match

the current response rate. At the same time, a service provider will have a �nite

budget and will want to optimise its consumption of this budget. This is not

only of bene�t to the service provider but also to those participants who want

to consume the data and will therefore want it to be as relevant and timely as

possible.

Crucially, it must also be noted that the incentivisation scheme, and in par-
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ticular, the allocation of rewards, is a point of privacy violation as participants

then need to disclose their identity to receive this reward, thus potentially deter-

ring privacy conscious users from participating (as discussed in Section 1.1.2).

At the same time, privacy preservation should not prevent the service provider

from allocating the rewards it needs to o�er to attract and incentivise users.

Moreover, the service provider must be able to evaluate whether the data sub-

mission is a truthful and accurate one, a concept known as incentive compatibil-

ity3 (Koutsopoulos, 2013). Both reward allocation and incentive compatibility

are very challenging tasks if the service provider has no access to participant

identity. Thus, the principal focus of this thesis is to investigate whether it

is possible to provide an incentivisation scheme for participatory sensing cam-

paigns that can allocate rewards in a way that protects participant identity

privacy.

1.3 Context & Related Work

As attracting a su�cient level of participation is key to the success of a par-

ticipatory sensing campaign, incentivisation for participatory sensing has been

considered extensively in the state of the art. Incentivisation schemes for partic-

ipatory sensing are, however, sometimes implemented without regard for partic-

ipant privacy. For example, the bidding process used in auctions requires access

to participant information. In addition, certain approaches require participant

information such as past bidding history and geographic location (for example,

Li et al., 2018). Other microeconomic-based incentivisation approaches (for ex-

ample, Game Theory) are also vulnerable to privacy leakage through the use of

traceable credit tokens and third party components. Statistical-based methods

are also subject to privacy vulnerabilities. For example, access to participants'

private information is fundamental to the task assignment mechanism used by

CrowdMind (Xiong et al., 2017). Other statistical approaches display short-

comings in considering all facets of an incentivisation scheme. For instance, the

approach taken by Yang et al. [2015] does not consider budget consumption

3Incentive compatibility, an economic concept that addresses how players in an economic
system can achieve the best outcomes (trustworthy data for the service provider and a reward
for the participant in the case of participatory sensing) for themselves by acting truthfully
(Hurwicz, 1973), is important in interactions in which a player has access to information that
is inaccessible to at least one other player. Such interactions need to be structured so that the
player with more information is motivated to act in the interest of the other party, resulting
in incentive compatibility.
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optimisation.

Like incentivisation, privacy preservation for participatory sensing is widely

addressed in the state of the art. However, this is sometimes achieved in a way

that negatively impacts other aspects pertinent to participatory sensing. Specif-

ically, privacy preservation methods such as perturbation provide participant

privacy at the expense of the quality of the service provider's dataset. More-

over, anonymisation methods such as k -Anonymity and Di�erential Privacy are

vulnerable to inference attacks (for example, To et al., 2014). Other methods,

for example, the coarsening of the participant's location (Wiesner et al., 2014)

also reduce the quality of the data for the service provider.

Other privacy-preserving approaches provide direct identity privacy (i.e.

they prevent access to a participant's true identity) without impacting data

quality but do not provide full participant privacy. Speci�cally, they are prone

to inference attacks that enable the service provider or a third party to track

a participant's behaviours and activities. This tracking can be facilitated by,

for example, the use of a third party component that is itself a point of privacy

vulnerability (for example, De Cristofaro and Soriente, 2013) or pseudonyms

(for example, Zhang et al. [2012b]). Those approaches that seek to provide

anonymous reward allocation are also prone to such attacks. For example, the

credit token system proposed by Li and Cao [2016] incorporates a direct link

to a participant's ID while the approach proposed by Niu et al. [2014] also has

the potential to be used to trace participants. Other approaches do address

privacy preservation when allocating rewards but do not address the potential

for reward spending to be tracked, for example, Liu et al., 2018 and Dimitriou,

2018a. Cryptocurrencies such as Bitcoin (Nakamoto, 2008) are not an alterna-

tive to address this issue as, despite o�ering anonymity, they do not prevent the

tracking of users.

Providing e�ective privacy preservation for incentivisation is not a straight-

forward task because of the need to allocate rewards to participants and facil-

itate the spending of these rewards. While there are many approaches in the

state of the art such as source anonymous message authentication (Li et al.,

2015a) that provide privacy preservation, the underlying methods used make

it impossible to know which participants should be rewarded. This issue also

impacts incentive compatibility as the evaluation of the validity of submitted

data becomes more di�cult if the credibility of the data submitter cannot be

assessed. Indeed, many of the approaches in the state of the art that seek to

provide incentive compatibility (for example, Zhou et al., 2017) do not take par-
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ticipant privacy into account with those that do being vulnerable to inference

attacks (for example, Tanas et al., 2015 and Wang et al., 2018c)

1.4 Challenges

The key question to be addressed when designing a privacy-preserving incen-

tivisation scheme is resolving how the need to link participant submissions so

as to reward them and the need to break this link to ensure privacy preserva-

tion can be reconciled (Li et al., 2018). This results in a number of challenges

that need to be addressed with respect to privacy preservation as the use of an

incentivisation scheme in itself leads to a number of potential points of privacy

vulnerability.

The �rst point of potential privacy vulnerability occurs when participants

are making data submissions. To ensure identity privacy for participants, it is

necessary to hide their real identity by considering the means by which partic-

ipants can submit data anonymously. However, while this prevents disclosure

of a participant's identity, anonymity in itself is insu�cient in preventing the

service provider or a third party from carrying out an inference attack to gain

further private information about participants such as their habitual behaviour,

location and trajectory. For this reason, the pseudonymous monitoring of par-

ticipant activities must be prevented by ensuring that no links can be made

between multiple data submissions made by the same participant. In addi-

tion, the service provider must have the ability to reward participants without

knowing who they are.

Another potential point of privacy leakage that must be addressed occurs

when a participant receives a reward. When seeking to prevent an inference

attack from occurring, a signi�cant challenge is how to design an approach that

ensures that the service provider cannot identify a participant, cannot link the

allocated reward to the participant's data submission, cannot trace participant

activity and behaviour and cannot infer further information about that partic-

ipant from the allocation of a reward. This protection for the participant must

also hold when the reward is being spent.

In addition to ensuring privacy preservation, another key challenge is deter-

mining how the participatory sensing incentivisation scheme ensures that the

service provider's budget is not consumed in a wasteful fashion by, for example,

allocating rewards for inaccurate or untruthful data submissions. The scheme
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should therefore ensure that data submissions received by the service provider

are evaluated to determine whether they are truthful ones. Moreover, this has to

be achieved without impinging upon the participant's privacy through, for ex-

ample, linking the participant's data submissions to a reputation score. The dy-

namic environments in which participatory sensing campaigns may potentially

operate should also be taken into account. Speci�cally, the rewards o�ered by

the service provider must be set at a level that matches current environmental

conditions and current participation rates. It is also critical that such a scheme

seeks to optimise the consumption of the service provider's budget and gives the

service provider the �exibility to tune the importance and utility of the data

being sought.

1.5 The Approach

This thesis presents Privacy-Aware Incentivisation (PAI), a privacy-preserving

approach to participatory sensing incentivisation and reward allocation. PAI

provides a means of allocating untraceable and unlinkable rewards to attract

data submissions that re�ect the dynamic changes occurring in the participatory

sensing environment; preserves the identity privacy of participants; prevents the

inference of participant activity such as behavioural habits and frequently vis-

ited locations and ensures incentive compatibility for the service provider. The

core of the approach is a peer-to-peer decentralised exchange platform that

enables participants to anonymously make unlinkable data submissions in ex-

change for an untraceable and unlinkable reward from the service provider.

O�ers to which participants can respond are published on the modi�ed equiv-

alent of a cryptocurrency OrderBook which lists all o�ers made by the service

provider. Participants who elect to make data submissions in response to these

o�ers publish their acceptance on the OrderBook. As the OrderBook is hosted

on multiple peer devices, the platform does not necessitate the use of a Trusted

Third Party or other potential means of tracking participant activity and be-

haviour. As a result, the approach is robust to inference attacks.

To preserve identity privacy, the use of the Di�e-Hellman Exchange Protocol

is modi�ed to create the concept of a One-Time Key which is composed of public

and private key components. The public key is used as a means of identifying the

o�er acceptance published by the participant on the OrderBook while the private

component is held solely by the participant. As the One-Time Key is only used
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once in response to a particular o�er, the service provider or other third party

cannot trace participants using the public key component. In addition, the data

included in the o�er acceptance is encrypted using the service provider's public

key to ensure that the service provider has sole access to the data for which it

has paid.

Once the service provider decrypts the data submission, it evaluates it to

see if it meets the terms of the o�er. To address the potential of rewards being

allocated to non-truthful data submissions, the Maximum Likelihood Estima-

tion method is used to provide incentive compatibility. The service provider

then indicates whether the participant should receive a reward by publishing an

update to this e�ect on the OrderBook. The OrderBook generates an encrypted

spendable reward if the service provider has deemed the data submission to be

valid. The participant has sole access to this reward using the private part of

the One-Time Key. Rewards are not only untraceable when they are allocated

but also when they are spent as the OrderBook holds an identity certi�cate for

the service provider. This ensures that the service provider cannot change its

signature to track spendable rewards.

To enable the computation of rewards that re�ect changing environmental

conditions and participation rates, the incentive mechanism is modeled using

the stochastic Lyapunov Optimisation technique. Through the ongoing com-

putation of the reward level, the incentive mechanism can adapt to changes

in the sensed environment and participants' response rates by adjusting the

reward level whilst balancing budget consumption with the importance of the

data being sought.

PAI is evaluated by proof and by comparing the approach to the most rel-

evant approaches in the state of the art. The privacy robustness of PAI, and

in particular, robustness to inference attacks is demonstrated by proof. These

theorems prove that participants can make anonymous and unlinkable data

submissions to the service provider and receive untraceable and unlinkable re-

wards in return. Similarly, the e�ectiveness of PAI's incentive compatibility is

demonstrated by proof to show that data submissions that are considered to be

non-truthful will not receive a reward whilst, at the same time, not violating

participant privacy. A simulated participatory sensing environment is used to

conduct experiments evaluating the adaptiveness and budget consumption of

PAI's adaptive reward allocation method in comparison to the most relevant

approaches in the state of art for participatory sensing reward computation. In

addition, the approach is evaluated using experiments assessing the performance
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and computational complexity of the overall approach using the most relevant

approaches in the state of the art in privacy preserving reward allocation as

baselines.

1.6 Goals & Contribution

As highlighted by research undertaken by authors such as Christin et al. [2013a],

an incentivisation scheme whose means of reward allocation ensures privacy for

potential participants increases the probability of the service provider attaining

a critical mass of participants given that privacy conscious users are more likely

to participate. At the same time, participant privacy must not be at the expense

of the service provider who will want to have sole access to the data submis-

sions being paid for. In addition, current conditions and activities in the sensing

environment need to be taken into account. Speci�cally, the response rate to

previous requests made by the service provider and the utility of the data being

submitted need to be considered when computing the reward o�ered to partic-

ipants for data submissions. Incentive compatibility must also be considered so

that participants are motivated to make truthful data submissions.

The goal of this thesis, therefore, is to investigate whether a participatory

sensing service provider can o�er incentive-compatible untraceable and unlink-

able rewards to encourage anonymous, unlinkable and protected data submis-

sions that re�ect relevant changes in the environment, whilst ensuring iden-

tity privacy for participants and in particular, preserving behavioural privacy

through the prevention of inference attacks.

The principal contributions of this thesis are:

1. A decentralised platform that provides a data submission mechanism for

participatory sensing that meets the privacy requirements of the partici-

pant by ensuring that data is submitted anonymously and cannot be linked

to any data submissions previously made by the same participant. This

mechanism also meets the privacy requirements of the service provider by

ensuring that the submitted data can only be accessed by this party.

2. A means of allocating rewards to participants without their having to

cede their identity privacy. Speci�cally, rewards allocated to participants

cannot be used to trace the activity of participants and cannot be used to

link participants to their data submissions. In addition, rewards are also

untraceable and unlinkable when participants spend them. This ensures
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robustness to inference attacks from service providers and other potential

attackers.

3. A privacy preserving reward computation mechanism and incentivisation

scheme that adapts to participation rates and environmental conditions,

seeks to optimise budget consumption and enables the service provider to

tune the scheme so as to balance data capture and budget consumption.

4. The incorporation of a mechanism that assesses the truthfulness of data

submissions made without violating participant privacy, thereby demon-

strating that the approach facilitates incentive compatibility.

Proofs and experiments are used to evaluate these contributions. Proofs are used

to demonstrate that the integrated approach provides anonymous and unlink-

able data submission, untraceable and unlinkable reward allocation and spend-

ing and privacy preserving incentive compatibility. A simulated participatory

sensing environment is also provided to compare the e�ectiveness of the reward

computation mechanism with the state of the art in adapting to changes in the

participatory sensing environment and balancing budget consumption with data

capture. In addition, a simulation is provided to evaluate the energy consump-

tion and computational complexity of the integrated approach in comparison

with the most relevant approaches in the state of the art.

1.7 Assumptions & Scope

Participatory sensing systems have two principal actors, the service provider

and the participant. The goal of the service provider is to attract data to build

a dataset that it will, for example, disseminate to other users or analyse to learn

about the environment being monitored. Participants will capture and submit

this data using mobile devices such as smart phones, typically in expectation of a

reward. PAI assumes that higher rewards attract a larger number of responses

with participants only receiving these rewards when a sensing task has been

completed in full. Furthermore, the budget for rewarding the sensing activity

is assumed to be �nite.

To meet the goals of this thesis, a service provider's rewards must be pri-

vacy preserving, both when being allocated and when being spent. PAI thus

seeks to achieve a level of privacy preservation that not only prevents direct

privacy violation but also prevents inference attacks by a semi-honest service
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provider i.e. one who will seek sensed data in return for genuine rewards but

will seek to use that data and the allocation and spending of rewards to violate

participant privacy by attempting to obtain further information about partici-

pant behaviour and activity without that person's consent. For this reason, the

Semi-Honest Threat Model is the principal privacy model that must be ad-

dressed so as to prevent the tracking of participant activity and behaviour. To

ensure that increased participant privacy is not achieved at the expense of the

service provider's budget consumption through the rewarding of false or spuri-

ous data, the potential for False Data Injection Attacks is also addressed

by PAI.

1.8 Roadmap

The remainder of this thesis is organised as follows:

� Chapter 2 discusses the problem to be addressed by PAI in terms of the

system and threat models to be used and de�nes the requirements that

need to be ful�lled.

� Chapter 3 considers related work in the areas of incentivisation, privacy

preservation and incentive compatibility with research gaps in these areas

being identi�ed.

� Chapter 4 introduces PAI, the main contribution of this thesis. It de-

scribes the design of the decentralised platform used to allocate incentive

compatible, untraceable and unlinkable rewards in return for anonymous

and unlinkable data submissions. The design of a reward computation

mechanism that facilitates adaptive reward allocation is also considered

in this chapter.

� Chapter 5 describes the implementation of PAI. The evaluation of PAI is

also discussed in terms of how well the approach addresses the require-

ments. The performance, computational complexity, privacy robustness

and data truthfulness of the approach is also analysed.

� Chapter 6 concludes this thesis and o�ers possible directions for future

work.
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1.9 Summary

This chapter introduces the work to be undertaken in this thesis. Participatory

sensing and privacy for the area is introduced with the need for a participa-

tory sensing incentivisation scheme that is robust to inference attacks seeking

to learn about participant behaviour and activity also being discussed. The

context for developing such an incentivisation scheme is then explored with the

shortcomings of current approaches in the state of the art being identi�ed. Hav-

ing identi�ed the challenges that are posed by the research to be undertaken in

this thesis, Privacy-Aware Incentivisation (PAI), the approach described in this

thesis, is then introduced. The goals and contributions made by this approach

are also explored. The scope of the work to be undertaken is then outlined in

terms of the assumptions made for the participatory sensing model as well as

the scope of the threat model to be addressed. The chapter concludes with a

roadmap outlining the remainder of this thesis.
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Chapter 2

Problem De�nition

This chapter de�nes the problem to be addressed in this thesis and outlines its

scope. Section 2.1 describes the participatory sensing system model used. The

participatory sensing threat model is described in Section 2.2 while the threat

model to be addressed by the approach is discussed in Section 2.3. The require-

ments to be ful�lled are then discussed in Section 2.4. Section 2.5 summarises

this chapter.

2.1 System Model

This section considers the participatory sensing system model. Section 2.1.1

describes the incentivisation scheme to be used while the assumptions made for

the participatory sensing system model are discussed and justi�ed in Section

2.1.2.

2.1.1 Incentivisation Scheme for Participatory Sensing

Figure 2.1 presents the architecture and operation of a typical participatory

sensing system. A participatory sensing system comprises two actors, the ser-

vice provider and the participant. The goal of the former is to capture data.

This data can then be used for di�erent purposes, for example, publication for

consumption by other users or the building of a data set on which statistical

analysis is conducted. The service provider initiates data collection campaigns

by issuing o�ers indicating the type and scope of the sensed data being sought

(e.g. air quality levels in a particular area of a city between 5pm and 7pm)
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and the corresponding reward that participants will receive for making data

submissions matching the criteria outlined in the o�er.

Participants will typically use mobile devices such as smart phones, tablet

computers, wearable devices or smart vehicles which have embedded sensors to

capture data. The data captured by these smart devices can be scalar (e.g.

temperature, air quality levels or GPS coordinates) or multimedia (e.g. photos

or video). Once captured, data is submitted to the service provider in antici-

pation of a reward. In addition to submitting data, participants may also be

consumers of the data captured by a service provider.

Once the service provider issues an o�er, participants can then elect whether

or not to respond to it. As participants are assumed to incur costs (for example,

battery consumption, mobile data consumption) when making data submissions,

many participants cannot be expected to respond without incentivisation. Par-

ticipants are thus modeled as having a reward threshold beyond which they will

consider making a data submission. If the reward is greater than or equal to this

threshold value, the participant will decide whether to make a data submission

in response to this o�er having taken issues such as battery consumption into

account.

The fundamental problem being addressed by a participatory sensing incen-

tivisation scheme can be considered to be a time average cost minimisation one

as the service provider is seeking to set the o�ered reward and corresponding

budget consumption at the minimum level that will attract an acceptable level

of relevant and timely responses from participants that meet the quality criteria

set by the service provider. To model this problem, it is assumed that the ser-

vice provider operates in discrete time over slots t∈1,2... with the reward level

being reviewed at the start of each time slot. This review is necessary as the

dynamic nature of participatory sensing environments means that participation

rates and the data being sought by service providers changes over time. Once

the reward level is computed for a particular time slot, t, the service provider

can issue one or more o�ers seeking data submissions. O�ers can be categorised

by di�erent levels of granularity of the service provider's choosing, for example,

location accuracy. A participant only receives a reward on full completion of

a sensing task with rewards only being allocated until the service provider has

received its desired number of responses.
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Figure 2.1: A Typical Participatory Sensing System

2.1.2 Assumptions

A number of assumptions are made for the participatory sensing system con-

sidered in this thesis. These are listed as follows:

� When considering the issue of reward allocation, it is assumed that par-

ticipants are rational i.e. the higher the reward o�ered for a particular

type of data, the larger the number of responses (assuming other factors

such as privacy perceptions remain constant).

� The incentivisation budget held by the service provider for allocating these

rewards is assumed to be �nite with this budget either being a monetary

one or consisting of tangible rewards (for example, Wi-Fi access).

� The service provider is also assumed to be rational and will not undertake

actions that would adversely a�ect the success of its participatory sensing

campaigns.

Other assumptions made pertain to the scalability and scope of the participatory

sensing system and do not diminish the core contributions described in this

thesis:

� It is assumed that there is only one service provider. This is done so as

to simplify implementation and evaluation. Any evaluation results would

still hold even if multiple service providers are incorporated.

� Scalability is also restricted through the assumption that participants re-

spond to o�ers made by the service provider and do not make unsolicited

data submissions. While this assumption simpli�es the problem to be

addressed, it does not diminish the core contribution of the thesis as par-

ticipants making unsolicited data submissions could do so in the same

privacy preserving fashion as they would in response to o�ers.
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Other assumptions de�ne the scope of the participatory sensing system in terms

of functionality:

� It is assumed that parameters such as the number of responses to reward

are con�gurable. This can be considered to be reasonable as the service

provider may wish to do such con�guration itself on the basis of its knowl-

edge of the domain for which it is seeking sensed data. While it would

be possible to automate the adaptive reward allocation mechanism to set

these parameters on an ongoing basis, this is regarded to be outside the

scope of this thesis.

� Only scalar data submissions are considered as the allocation of untrace-

able and unlinkable rewards would be carried out in the same fashion for

multimedia data submissions.

� The potential to illegitimately use privacy-disclosing attributes (such as

location or journey trajectory) in the data content of a single data sub-

mission to derive further information about a participant is outside the

scope of this thesis as there are several approaches in the state of the art

to address this issue through the use of, for example, obfuscation (Bettini

and Riboni, 2015).

� While the participatory sensing paradigm relies upon the use of distributed

computer networks, the addressing of networking issues such as reliability

and communication failures is not considered as this would not be a core

contribution in meeting the goals of this thesis.

2.2 Participatory Sensing Threat Model

The attack surface in a typical participatory sensing system is a large one with

the sensing device, service provider infrastructure, third party components used

by the service provider and the Internet communication all being potential

points of attack. There are inherent threats, therefore, that have the poten-

tial to compromise participants' privacy as well as the integrity of the data

held by the service provider. Those parties who threaten the system (known as

adversaries), the participants or the service provider can be either malicious

or semi-honest in their intent (these terms are de�ned in work undertaken

by, among others, Cramer [1998]). As the term implies, a malicious adversary

intends to do harm to the system or a party within the system. On the other
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hand, a semi-honest adversary will be one of the parties within the system and

follows the protocol speci�cation exactly. However, it may try to learn more in-

formation than intended by examining data that it receives. Figure 2.2 presents

the threats faced by a typical participatory sensing system. It can be seen from

the diagram that threats in participatory sensing can be external or internal

to the system.

It should be noted that this diagram format is used as existing formal

methods for modeling threats on computer systems (for example, Attack Trees

[Schneier, 1999] and STRIDE [Shostack, 2014]) would not re�ect the multiple

points of vulnerability at which a number of threats exist. For example, the

unauthorised disclosure of data could be an internal or external attack that

takes place within the participatory sensing app, while the data is in transit or

within the service provider's infrastructure.

2.2.1 External Attacks

External attacks by malicious adversaries can take place when submitted data

is in transit over an external network to the service provider, when the partic-

ipatory sensing app is compromised or when attempts are made to gain access

to or disrupt the service provider's infrastructure. The many attacks that can

be carried out by external third parties include eavesdropping, data disclosure,

unauthorized access, data misuse, tampering, spoo�ng and denial of service

(Chang et al., 2013, De Cristofaro and Soriente, 2013 and Qiu et al., 2013).

While such attacks can have serious consequences, there are a number of solu-

tions available to prevent them such as end-to-end encryption (see, for example,

Li and Cao, 2015) and host hardening (see, for example, Shimeall and Spring,

2013).

2.2.2 Internal Attacks

Internal attacks can be carried out by malicious participants, semi-honest par-

ticipants or the service provider. Malicious participants can carry out collu-

sion attacks by sharing information from the participatory sensing system, thus

enabling them to gain access to more information than they are entitled to

(Günther et al., 2014). There is also the potential for malicious participants to

submit false or corrupted data to the service provider. The participatory sensing

application itself is also a possible source of internal threats. A malicious appli-

cation could potentially disclose or infer data without the participant's consent;

18



Figure 2.2: Threats to Participatory Sensing Systems
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could tamper or damage the device by, for example, encrypting all its data thus

denying access to the device owner or could deny service access to the device.

It can be seen from Figure 2.2 that there are many potential internal threats

from the service provider. The service provider can potentially misuse data

without the participant's consent or could deliberately or accidentally disclose

or grant access to that data to an unauthorized third party inside or outside

its organisation. When carrying out such actions, the service provider falls

under the de�nition of a malicious adversary. There is also potential for the

service provider to carry out an inference attack that analyses the dataset to

illegitimately gain further knowledge about the participant without that party's

consent. The service provider acts as a semi-honest adversary in this scenario.

Similarly, a semi-honest service provider or participant could also use potentially

privacy disclosing attributes from the data submission content to illegitimately

gain further knowledge about a particular participant.

2.3 Threat Model Addressed

Section 2.2 describes the wide range of threats within a participatory sensing

environment. This section identi�es those threats that would directly impact

upon the issue of privacy preserving incentivisation and de�nes the threat model

to be addressed in this thesis.

The de�nition of identity privacy used in this thesis is based upon the legal

principles of Personally Identi�able Information (PII). PII is any information

which relates to an identi�ed or identi�able person. The concept is enshrined in

privacy law legislation in many jurisdictions, for example, the European Com-

mission's General Data Protection Regulation1. In the context of participatory

sensing, PII requires that participants must be protected not only from disclo-

sure of their identity but also attacks that use their participation in the system

to discover or infer information about them (i.e. an inference attack). Using

the concept of PII, identity privacy in this thesis is therefore de�ned as any data

that can disclose who a person is, where that person is located and what that

person is doing in terms of their behaviour, activities and habits.

Meeting this de�nition of identity privacy requires that participant data

is secured from unauthorized intrusions by the service provider, a challenge

that is more demanding than preventing external attacks (Qiu et al., 2013).

1See http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.
pdf
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Speci�cally, the fact that the service provider has full access to participants'

sensing records means that it can potentially infer or obtain private data such as

location, trajectory or identity. The focus of this thesis is therefore on preventing

the service provider from potentially using participants' data submissions or

allocated rewards to carry out an inference attack to obtain further information

which the participant does not wish to disclose, for example, the frequency of

sensing activity in a particular location.

The potential for the service provider to act in a semi-honest fashion by

using data submissions and rewards to gain unauthorised private information

is the key threat to be addressed when considering privacy preserving reward

allocation. The Semi-Honest Service Provider Threat Model is therefore

the privacy model that must be addressed in order to ful�ll the goals of this

thesis, speci�cally, to prevent inference attacks tracking participants' activity

and behaviour through their data submissions, reward allocations and reward

spending. Other threats such as malicious apps and collusion attacks, while

serious, can be addressed independently of privacy preserving incentivisation2.

For this reason, such attacks are not considered to be within the scope of this

thesis. In addition, as outlined in Section 1.7, the potential of the content in the

data submission to be a point of privacy vulnerability is not within the scope of

this thesis.

While the Semi-Honest Service Provider Threat Model addresses participant

privacy, it also increases the potential for malicious participants to deceive the

service provider and gain unearned rewards by submitting false or spurious

data without penalty. This also a�ects participants who consume the service

provider's dataset as its overall quality is degraded. The Semi-Honest Service

Provider Threat Model must therefore be addressed in a way that does not

open up the possibility of the quality of the service provider's dataset being

diminished. For this reason, False Data Injection Attacks also fall within

the threat model addressed in this thesis.

2.4 Requirements

This section considers the requirements that must be met to ful�ll the goals of

this thesis. These requirements are organised around the need to address the

2For example, the potential for malicious apps to conduct attacks has been addressed in
the approach outlined by Wang et al. [2018a] while Amintoosi et al. [2014] and Günther et al.
[2014] propose approaches for combating collusion attacks.
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Semi-Honest Service Provider Threat Model, False Data Injection Attacks and

the dynamic nature of the participatory sensing environment. The requirements

outlined in this section stem from the motivation for this thesis as outlined in

Section 1.2 as well as the the threat model discussed in Section 2.3 i.e. to provide

a privacy preserving incentive compatible incentivisation scheme that addresses

the potential for both inference attacks and the submission of false or corrupted

data.

To ensure privacy preservation, several potential points of privacy vulner-

ability must be addressed. The �rst point of vulnerability under the Semi-

Honest Service Provider Threat Model occurs when the participant is making a

data submission. Participants must therefore be able to make data submissions

anonymously without any scope for the service provider to infer further informa-

tion about that participant by, for example, linking multiple data submissions

from the same participant. At the same time, the data submission should not

be devalued for the service provider by making it potentially accessible to other

parties. This leads to the �rst requirement to be addressed in this thesis:

Anonymous, Unlinkable & Protected Data Submission (R1)

Participants must be able to make anonymous, unlinkable and protected data

submissions to the service provider that preserve identity privacy. Speci�cally:

� The service provider cannot identify participants from the data submis-

sions they make.

� The service provider cannot link multiple data submissions made by the

same participant.

� The data submission should only be accessible by the service provider.
�

The next point of privacy vulnerability under the Semi-Honest Service Provider

Threat Model occurs when participants are given a reward by the service provider.

To meet the level of identity privacy de�ned in this thesis, reward allocation must

not enable the service provider to identify participants or trace their activities

and behaviours. This is considered in the second requirement to be addressed

in this thesis:
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Untraceable & Unlinkable Reward Allocation (R2)

Participants must receive untraceable and unlinkable rewards that preserve

their identity privacy. In addition, the service provider or a third party should

not be able to conduct an inference attack to gain further private information

about participants such as their habitual behaviour, location and trajectory.

Speci�cally:

� The service provider cannot identify a participant through the allocation

of a reward.

� The service provider cannot trace participant activity and behaviour, or

infer further information about that participant, from the allocation of

a reward.
�

The privacy standard identi�ed for reward allocation must also hold when the

reward is being spent i.e. the service provider should not be able to identify

participants or trace their activities when they spend the rewards they have

been given. This leads to the next requirement to be addressed in this thesis:

Untraceable & Unlinkable Reward Spending (R3)

� The service provider or a third party should not be able to conduct an

inference attack when a reward is being spent.
�

As the potential for False Data Injection Attacks falls within the scope of the

threat model de�ned in Section 2.3, the potential for participants to make non-

truthful data submissions must also be addressed:

Incentive Compatibility (R4)

For the participatory sensing system model and threat model identi�ed in

Section 2.1 and Section 2.3, incentive compatibility must ensure that:

� only data submissions that are truthful and accurate receive rewards

from the service provider.

� the requirement for Untraceable and Unlinkable Reward Allocation (R2).

is not violated.
�

The incentivisation scheme discussed in Section 2.1.1 recognises the dynamic na-

ture of the environment in which participatory sensing systems operate. To en-
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sure the timely capture of the most relevant data, therefore, the service provider

needs a mechanism that periodically recomputes the level of reward to o�er.

This is considered in the �nal requirement to be addressed in this thesis:

Adaptive & Tunable Reward Allocation (R5)

The incentivisation scheme used to motivate participation must:

� be able to adapt the rewards it o�ers in real-time to match current envi-

ronmental conditions and current participation rates, thereby optimising

the consumption of the service provider's budget.

� be tunable to enable the service provider to balance data capture with

budget consumption optimisation and vice versa.

� adhere to the requirement for Untraceable and Unlinkable Reward Allo-

cation (R2).

� not impair the service provider's quality requirementsa.

aWhile methods from the state of the art that are used to preserve participant privacy
with respect to the content of a single data submission may diminish the quality of this
data, the approach in this thesis will not.

2.5 Summary

This chapter de�nes the participatory sensing model as well as the assumptions

pertaining to participant behaviour and service provider incentivisation activ-

ity that are made for this model. The attack surface for participatory sensing

is then discussed with the need to address the Semi-Honest Service Provider

Threat Model and False Data Injection Attacks being identi�ed. Having de�ned

the system and threat models, the requirements for Anonymous, Unlinkable and

Protected Data Submission (R1), Untraceable and Unlinkable Reward Allocation

(R2), Untraceable and Unlinkable Reward Spending (R3), Incentive Compatibil-

ity (R4) and Adaptive and Tunable Reward Allocation (R5), all of which need

to be ful�lled to meet the goals of this thesis, are then outlined.
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Chapter 3

Related Work

Having de�ned the scope of the problem to be addressed in this thesis, Chap-

ter 2 identi�ed the need to ful�ll requirements for Anonymous, Unlinkable and

Protected Data Submission (R1), Untraceable and Unlinkable Reward Allocation

(R2), Untraceable and Unlinkable Reward Spending (R3), Incentive Compatibil-

ity (R4) and Adaptive and Tunable Reward Allocation (R5). This chapter eval-

uates approaches in the state of the art that address incentivisation, privacy

preservation and incentive compatibility, the areas most pertinent to the work

undertaken in this thesis, in light of these requirements. The incentivisation

schemes for participatory sensing that are proposed for the state of the art are

discussed in Section 3.1 while the issue of privacy preservation is explored in

Section 3.2. Approaches to incentive compatibility are outlined in Section 3.3.

Section 3.4 summarises this chapter.

3.1 Incentivisation

The goal of incentivisation is to motivate a su�cient number of participants to

make data submissions that meet the service provider's requirements. Balancing

the needs of privacy preservation and incentivisation is a challenge as, in some

cases, the means of incentivisation is itself a point of privacy leakage. At the

same time, any e�ort to preserve participant privacy must not occur at the

expense of pertinent issues such as data utility, response rate and participation

rate.

The majority of incentivisation schemes can be categorised according to
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the academic discipline used as the basis for their design and implementation,

speci�cally, microeconomics, statistics or a combination of both. For this rea-

son, participatory sensing incentivisation schemes are categorised into economic

and statistical approaches and are discussed in Section 3.1.1 and Section 3.1.2

respectively.

3.1.1 Economic Approaches to Incentivisation

This section considers approaches to incentivisation that are based upon mi-

croeconomic concepts. Section 3.1.1.1 considers those approaches that are based

upon auctions, where an auctioneer sells some goods to a group of bidders who

place bids to buy these goods. Incentivisation approaches based upon the mi-

croeconomic concept of Contract Theory, the study of how economic actors

make contractual arrangements in the presence of asymmetrical information

where one party has access to more information than the other, are then ex-

plored in Section 3.1.1.2. The use of Game Theory, a microeconomic concept

de�ned as a bargaining game concerned with how to divide surpluses between

two players (Luo et al., 2017), is discussed in Section 3.1.1.3 while the use of

other microeconomic concepts to design participatory sensing incentivisation

schemes is considered in Section 3.1.1.4.

3.1.1.1 Auctions

Auctions are a means of incentivisation that is used extensively in the state of

the art (Luo et al., 2017). In the case of participatory sensing, the auctioneer

corresponds to the service provider who, rather than selling goods, o�ers a

reward for the completion of a task to sense data. The bidders, in this case,

are the participants who place bids to denote the reward they are seeking in

exchange for a data submission. A number of approaches in the state of the art

use reverse auctions, whose reversal of the traditional roles of buyer and seller

is particularly appropriate for participatory sensing systems as a single buyer

(i.e. the service provider) can o�er out a contract (the sensed data it is seeking)

for bidding by multiple sellers (participants). Figure 3.1 presents a high level

overview of how an auction would operate for a participatory sensing campaign.

Auctions entail a high level of overhead (Kumar and Feldman, 1998). For a

participatory sensing environment, this means that the service provider will typ-

ically need to gather all bids before deciding which participants to select. This in

turn leaves participants vulnerable to privacy violations as, even if pseudonyms
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Figure 3.1: Auction in Participatory Sensing

are used, the service provider can monitor participants' bid activity. The bid

process is thus a key point of privacy leakage for auction-based approaches (see,

for example, Koutsopoulos, 2013, Feng et al., 2014b, Zhang et al., 2014, Jin

et al., 2015, Duan et al., 2016, Dai et al., 2018 and Li et al., 2019a). Moreover,

certain approaches exacerbate vulnerability to privacy leakage through their re-

quirement for further information as they incorporate mechanisms that require

access to additional information such as participant identi�cation, active sens-

ing time and social network contacts (Feng et al., 2014a, Wei et al., 2015, Sun

et al., 2016, Guo et al., 2017, Jin et al., 2017b, Mukhopadhyay et al., 2017,

Cai et al., 2018, Li et al., 2018, Niu et al., 2018a, Restuccia et al., 2018a and

Xu et al., 2018). Other approaches have attributes such as credit tokens and

reputation scores that further enable participant activity to be tracked (Jaimes

et al., 2015b, Luo et al., 2015, Xu et al., 2017b, Jaimes and Calderon, 2018 and

Yu et al., 2019). The combining of auctions with other techniques such as evo-

lutionary algorithms and linear programming does not alleviate these concerns

and, in several cases, introduces other avenues for inference attacks because of,

for example, the retention of participant selection history (Singla and Krause,

2013a, Kumrai et al., 2014, Gao et al., 2015a, Zheng et al., 2016, Chen et al.,

2017a and Shi et al., 2018). In addition, it should also be noted that auctions

can be vulnerable to collusion attacks (Sandholm, 2000). In a participatory

sensing environment, this means that colluding participants could consume a

disproportionate amount of the service provider's budget, thus diminishing the

quality of the overall dataset. This violates the requirement for Adaptive and
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Tunable Reward Allocation (R5), which seeks to ensure that the service provider

attracts data that meets its desired quality standards. It should be noted that

this is a potential problem for several auction-based approaches in the state of

the art which assume that participants will not engage in collusion attacks prior

to bidding, for example, the approach proposed by Liu et al. [2019].

Some approaches do claim privacy protection for their auction-based scheme,

for example, the approaches proposed by Jin et al. [2016a] and Wang et al.

[2016b]. However, in both cases, the privacy protection is intended to enable

privacy between participants and, indeed, access to private information such

as participants' bid activity is required. In addition, there are a number of

auction-based approaches to incentivisation that claim privacy preservation but

actually facilitate the trading of privacy and do not address the potential for

further private information to be accessed, for example, the approaches taken

by Holzbauer and Bulut [2012], Jin et al. [2016b] and Wang et al. [2018c]. Other

approaches do seek to provide privacy preservation between the participant and

service provider but nevertheless do not meet the requirement for Anonymous,

Unlinkable and Protected Data Submission (R1). For example, the approach

taken by Sun and Ma [2014], a �rst price sealed bid auction1 that uses oblivious

transfer to preserve privacy, does not address the potential for inference attacks

and further exacerbates privacy vulnerabilities by the use of a bulletin board

displaying all bids in the auction. Similarly, while Jin and Zhang [2018] claim

privacy preservation for their approach, their reverse auction has no privacy

preserving attributes that could prevent the tracking of participant activity.

Other auction-based approaches seek to preserve privacy through the use of

a third party component (for example, Dimitriou and Krontiris, 2017). How-

ever, such a component could itself be a point of privacy violation through, for

example, attacks, database leaks or seizure by governments (Ziegeldorf et al.,

2017), given the con�dential nature of the data that is often stored. For in-

stance, the approach proposed by Li et al. [2017b], who explicitly state that

the third party component used in their approach is semi-honest, incorporates

a cryptographic key generator that has access to participants' IDs, a potential

point of privacy leakage.

There are a number of auction-based approaches that would partially ad-

dress the requirement for Anonymous, Unlinkable and Protected Data Submis-

1Easley and Kleinberg [2010] de�ne a �rst-price sealed-bid auction, also known as a blind
auction, as one where each bidder submits a bid to the seller that is hidden from other bidders.
The highest bidder wins and pays the bid made for the good.
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sion (R1). For example, the use of di�erent pseudonyms in di�erent auctions

for the approach proposed by Dimitriou and Krontiris [2017] ensures that bids

made by the same participant in multiple auctions cannot be tracked. However,

this method still o�ers scope to monitor participant activity as it is possible to

track multiple bids made by a participant during a single auction. As a result,

this approach does not fully meet requirement R1 and, in addition, would not

meet the requirement for Untraceable and Unlinkable Reward Allocation (R2).

To conclude, while there are many auction-based incentivisation schemes

in the state of the art, the bidding process means that such schemes cannot

meet requirement R1. This also applies to those auction-based schemes that

claim privacy preservation as, in general, such approaches do not address the

fundamental privacy vulnerabilities presented by the bidding process.

3.1.1.2 Contract Theory

Contract theory de�nes two players who take very di�erent roles (Luo et al.,

2017). For participatory sensing, the principal, the player who has all the

bargaining power and spells out the terms of the contract, corresponds to the

service provider. The agent, who can only accept or reject the contract and

cannot make a counter-o�er, corresponds to the participant.

There are two main contract models. In the adverse selection model, the

agent has certain hidden information that the principal tries to elicit. In partic-

ipatory sensing, this corresponds to the service provider attempting to obtain

sensed data (i.e. the hidden information) from the participant. In the moral

hazard model, the agent could exert some hidden e�ort that is of economic

value to the principal while the principal tries to induce a desired e�ort level at

a minimal cost. For participatory sensing, the moral hazard model introduces

the concept of value for data submissions. In this case, the service provider

attempts to obtain the data at the minimal reward level possible.

Contract Theory has merits in terms of enhancing the quality of data sub-

missions and ensuring data truthfulness, particularly through the use of the

moral hazard model. Furthermore, the absence of a bidding and participant

selection process removes a potential point of privacy vulnerability. However,

the nature of the approach, which entails the exchange of contracts between

participant and service provider, makes it di�cult to achieve a level of privacy

preservation that would ful�ll the requirement for Anonymous, Unlinkable and

Protected Data Submission (R1). For example, the moral hazard model of Con-
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tract Theory is used by Zhang et al. [2018a] to devise an incentivisation approach

that focuses on data quality by ensuring that participants are rewarded through

the evaluation of their task completion performance from multiple perspectives

(or dimensions). However, while linking the participant's reward to task per-

formance has merit in attracting better quality data submissions, the approach

gives the service provider direct access to the participant's behaviour and activ-

ities. The moral hazard model-based approach proposed by Zhao et al. [2017]

also exhibits privacy vulnerabilities as its linking of a contract issued to the

participant with a data submission results in the participant being vulnerable

to inference attacks. The incentive compatible approach outlined by Chen et al.

[2017b] is more robust from a privacy preservation perspective in that it could

be extended to incorporate anonymous data submission with some modi�cation

of the core algorithm. However, data submissions made by the same participant

would be linkable.

The user matching mechanism for the Broker-less Participatory Sensing

Scheme proposed by Oide et al. [2016], which uses a Contract Theory-based

approach to match consumers and providers of sensing information, is more ro-

bust from a privacy preservation perspective as it uses a peer-to-peer approach

that removes the need for a central server and thus avoids many of the pitfalls

of privacy leakage to the service provider. However, this approach would not

ful�ll the requirement for Anonymous, Unlinkable and Protected Data Submis-

sion (R1) as the sensed data cannot be stored by the service provider. While

the authors assert that sensed data does not need to be stored anywhere, this

will not be the case for many service providers and would not meet the needs

of the participatory sensing model presented in Section 2.1.

Other approaches that consider privacy preservation do so from the perspec-

tive of privacy trade-o�s. For example, the contracts issued between participant

and service provider by REAP (Zhang et al., 2018b), while seeking to compen-

sate participants for loss of privacy, gives the service provider the potential

to conduct inference attacks by monitoring the nature and frequency of these

contracts.

3.1.1.3 Game Theory

In the case of participatory sensing, the players in Game Theory correspond to

the participant and service provider. Two main bargaining models have been

identi�ed (Luo et al., 2017). The Rubinstein bargaining model takes a strategic
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approach by modeling the bargaining procedure as a sequential game, in which

the two players alternately propose o�ers until one accepts the o�er proposed

by the other while the Nash bargaining model focuses on deriving an outcome

that satis�es certain mathematical conditions (or axioms).

Like Contract Theory-based approaches, the Game Theory-based incentivi-

sation mechanisms outlined in the state of the art for participatory sensing have

inherent attributes that make them vulnerable to unauthorised privacy disclo-

sure. For example, the authors of the QUOIN incentivisation scheme (Ota et al.,

2018), which uses the Stackelberg Game Theory model to maximise the util-

ity of the data a service provider collects from participants, point out that their

method is prone to privacy leakages while Theseus (Jin et al., 2017a), which uses

Game Theory for its payment mechanism, retains details tracking the quality

of participants' data submissions.

Incentivisation schemes that combine Game Theory with other methods ex-

hibit similar vulnerabilities to privacy leakage. For instance, Stable-GRS (Az-

zam et al., 2018), which uses both genetic algorithms and Game Theory to

recruit and incentivise participants respectively, requires signi�cant access to

participants' private information, speci�cally GPS locations and mobility pat-

terns. Similarly, the Nash bargaining model-based approach outlined by Zhan

et al. [2018b], which envisages the use of credits that can be later used by the

participant to claim a reward, is vulnerable to inference attacks and, specif-

ically does not meet the requirement for Untraceable and Unlinkable Reward

Allocation (R2) as allocated rewards can be used to track participants.

Other approaches use Game Theory to o�er a di�erent perspective on incen-

tivisation. For example, the approach proposed by Wang et al. [2012] considers

the incentive mechanism in networks such as participatory sensing systems as a

system rule whose goal is to in�uence participants to behave in a certain manner.

The authors propose what they term evolutionary Game Theory (EGT)-based

incentive mechanisms, which, for participatory sensing, would mean that par-

ticipants could imitate other participants' behaviours so as to increase their

rewards. However, such an approach would not be viable from a privacy preser-

vation perspective as it requires access to all participant activity. The approach

outlined by Yang et al. [2017a] also uses Game Theory in a di�erent way to other

incentivisation approaches in the state of the art. In this case, participants are

not o�ered tangible rewards. Instead, the authors purport to incentivise par-

ticipation through social relationships and performance ranking, both potential

sources of privacy leakage. Privacy is considered by the Stackelberg Game-based
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incentive mechanism proposed by Koh et al. [2018]. However, this is in terms

of privacy trade-o�s as participant rewards are determined on the basis of the

location granularity of their data submission.

3.1.1.4 Other Microeconomic Concepts

A wide diversity of other microeconomic concepts are used to design incentivi-

sation schemes with the core tenet of supply and demand being used in many

approaches. Unfortunately, like incentivisation schemes based upon auctions,

Contract Theory and Game Theory, some of these approaches exhibit privacy

vulnerabilities that prevent them from meeting the requirement for Anonymous,

Unlinkable and Protected Data Submission (R1). For example, the supply and

demand-based approach outlined by He et al. [2017], which uses Walrasian Equi-

librium to devise a vector of rewards, selects and recruits individual participants

rather than making a general o�er that could be responded to anonymously.

Moreover, the privacy preservation claims of the approach proposed by Zhan

et al. [2018a], which seeks to maximise social welfare2, are undermined by the

fact that participants must register an ID and their location with the service

provider who can also track participant activity through reputational quality

scores. Similarly, Pournaras et al. [2016], who use supply and demand to build

a market mechanism for participatory sensing, acknowledge that the poten-

tial for inference attacks is an open issue for their approach. SEQTGREEDY

(Singla and Krause, 2013b), which uses marginal utility to maximise the ser-

vice provider's marginal gain, also considers privacy preservation. However, the

authors assume that, regardless of their privacy concerns, participants are will-

ing to share what they term certain non-sensitive private information (which is

not de�ned). It should also be noted that the use of obfuscation and random

perturbation by this approach to devise what is called a 'privacy pro�le' is not

robust against certain types of inference attacks such as distribution analysis3.

While many of the approaches in the state of the art that use microeconomic

concepts exhibit privacy leakage, there is no reason why the use of these concepts

should preclude meeting the privacy preserving requirements for Anonymous,

Unlinkable and Protected Data Submission (R1), Untraceable and Unlinkable

Reward Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3).

2As previously noted, social welfare is an economic concept that, in the case of participatory
sensing, measures the bene�ts accrued by both the participant and the service provider.

3A distribution analysis attack entails reconstructing the probability density function of a
dataset, which, in some cases, can lead to privacy disclosure (Liu et al., 2008).
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For example, SenseUtil (Tsujimori et al., 2014 and Thepvilojanapong et al.,

2013), which uses the principles of supply and demand in conjunction with

marginal utility to determine the value of sensed data, does not consider privacy

but could be integrated with a appropriate method of privacy preservation. It

must be noted, however, that SenseUtil cannot be directly adapted for the work

addressed in this thesis as it does not meet the requirement for Adaptive &

Tunable Reward Allocation (R5). Speci�cally, the approach does not attempt

to optimise rewards to determine a level at which data submissions will be made

below that value.

3.1.2 Statistical & Machine Learning Approaches to In-

centivisation

There are a wide variety of statistical-based incentivisation approaches in the

state of the art for participatory sensing. Given the nature of incentivisation

schemes, it is unsurprising that optimisation methods are used for computing

the reward level in several schemes. These are considered in Section 3.1.2.1.

In addition to optimisation, there are also a number of approaches that use

a variety of techniques such as probability and machine learning. These are

discussed in Section 3.1.2.2.

3.1.2.1 Optimisation

Optimisation is used to design incentive schemes in a wide range of domains

in the state of the art (Huang et al., 2016). However, while these approaches

have diverse goals such as optimising budget consumption or increasing partic-

ipation rates, a number of these approaches would not meet the requirement

for Anonymous, Unlinkable and Protected Data Submission (R1) as they seek

to enhance data quality by ensuring the selection of those participants who are

best placed to meet the service provider's data requirements and, in many cases,

require additional participant information such as trajectories and expertise (for

example, Karaliopoulos et al., 2016, Xiong et al., 2016, Back et al., 2017, Xiong

et al., 2017 and Sun and Liu, 2018)4. Other approaches have goals that are not

consistent with those of requirement R1, for example, the trading of rather than

the preservation of privacy (Alsheikh et al., 2017).

4See also the approaches taken by Han and Zhu [2014], Luo et al. [2014], Song et al. [2014],
Amintoosi et al. [2015] and Ren et al. [2015].
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There are a number of optimisation approaches in the state of the art that

do not require participants' private information but nevertheless prevent par-

ticipant anonymity when submitting data. For example, the approach taken

by Wang et al. [2016a], which addresses incentivisation by formulating a multi-

objective optimisation problem to maximise both the received data quality and

participants' bene�ts, utilises a reputation framework (that is integral to their

approach) which can be used to monitor participant performance and behaviour.

Similarly, Wang et al. [2014], who use optimisation to build a stochastic5 Markov

model6 for urban tra�c modeling, state that the potential for inference attacks

is an open issue for their approach. Both privacy trade-o�s and privacy preser-

vation are taken into account in the case of the approach taken by Messaoud

et al. [2016], which applies an optimisation technique to balance the trade-o�

between privacy leakage and data utility as well as obfuscating the data sub-

mission. However, the use of a third party component by this approach can

serve as the basis for an inference attack. Similarly, Anonymous, Unlinkable

and Protected Data Submission (R1) is not possible under the approach taken

by Li and Zhu [2018] as participant activity is visible to other participants and

the service provider.

While many of the approaches in the state of art would not ful�ll the re-

quirement for Anonymous, Unlinkable and Protected Data Submission (R1), it

must be noted that many of the underlying methods are indeed suitable for the

ful�llment of requirement R1 and, indeed, the other privacy preserving require-

ments for Untraceable and Unlinkable Reward Allocation (R2) and Untraceable

and Unlinkable Reward Spending (R3). This is re�ected in several approaches in

the state of the art. For instance, the optimisation method used by the Quality

Utilization Aware Data Gathering (QUADG) scheme (Ren et al., 2018)7, the

Expectation Maximization Algorithm used by Peng et al. [2018], the budget con-

strained simulated annealing technique that is used by EPPI (Niu et al., 2014)

and the formulation of participant incentivisation as a multi-objective optimi-

sation problem for the Time and Location Correlation Incentive (TLCI) scheme

(Ma et al., 2018) would not violate requirements R1, R2 and R3. Similarly,

Lyapunov Optimisation, which is used by Liu et al. [2017c] to strike a balance

between social welfare maximization8 and the sensed data queues in vehicular

5http://www.businessdictionary.com de�nes stochastics as a modeling approach for pro-
cesses that are continuously evolving over time in a random (i.e. uncertain) fashion.

6A Markov model is a stochastic model used to model randomly changing systems.
7This approach is in�uenced by the work carried out by Zhao and Zhu [2014].
8The economic concept of social welfare is used to determine the bene�ts accruing to the
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participatory sensing systems, could also serve as the basis for an incentivisa-

tion scheme that ful�lls these requirements. The approaches taken by Yang

et al. [2015] and Han et al. [2014], which use Lyapunov Optimisation in con-

junction with other techniques such as Mechanism Design, are also compatible

with requirements R1, R2 and R3.

Unfortunately, however, while these approaches address the privacy preserv-

ing requirements R1, R2 and R3, some are incompatible with the participatory

sensing model discussed in Section 2.1. For example, the approaches taken by

Liu et al. [2017c] and Ren et al. [2018] are only suitable for vehicular partici-

patory sensing systems while the approach taken by Peng et al. [2018] is only

suitable for certain categories of sensed data such as noise decibel levels. Simi-

larly, the Distributed Utility-Maximizing Algorithm (Han et al., 2014) places a

burden on the participant's mobile device as the correlated scheduling algorithm

requires it to detect its context (for example, location) and monitor the queue

of sensing tasks to be carried out on behalf of the service provider.

There are other approaches which could ful�ll privacy preserving require-

ments R1, R2 and R3 but do not meet the requirement for Adaptive and Tun-

able Reward Allocation (R5). For example, EPPI (Niu et al., 2014) and the

`Backpressure Meets Taxes' (BMT) mechanism (Yang et al., 2015) do not ful�ll

requirement R5 as they do not consider issues such as the current participation

rate (EPPI), the dynamic environmental changes that may occur (EPPI) and

budget optimisation (BMT). TLCI (Ma et al., 2018) better addresses require-

ment R5 as data quality, response rates and participation rates are all considered

by, for example, taking the number of users in di�erent times and locations, the

data sensing cost and willingness to participate into account. However, while

the approach is adaptive, it is not tunable, as it is unable to prioritise e�cient

budget consumption over data capture and vice versa.

3.1.2.2 Other Statistical & Machine Learning Methods

A number of incentivisation schemes are based upon the use of descriptive statis-

tics9 and/or probability. However, a number of these approaches would not

ful�ll the requirement for Anonymous, Unlinkable and Protected Data Submis-

sion (R1). For example, the incentivisation scheme outlined by Sun and Tham

participatory sensing system.
9http://www.businessdictionary.com de�nes descriptive statistics as a set of mathemat-

ical quantities (such as mean, median and standard deviation) that summarise and interpret
some of the properties of a sample dataset but do not infer the properties of the population
from which the sample was drawn.
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[2015a] (also described in Sun and Tham, 2015b), which uses descriptive statis-

tics and probability distributions to evaluate data contributions from two cat-

egories of participants (those who contribute data from speci�c locations and

those who contribute aggregated sensed data that is captured throughout the

monitored area), not only necessitates participant selection but also records

participant reputation scores, which can be a potential source of privacy leak-

age. Descriptive statistics are also used by the NoiseMap mobile application

(Schweizer et al., 2012), in this case to address participant retention by giving

participants motivational feedback and publicly ranking their performance but

at the expense of their privacy. The descriptive statistics used by the approach

proposed by Ji et al. [2017] to outline a series of varied incentivisation strate-

gies for participatory sensing that seek to increase participation rates do not

consider privacy preservation. For example, the ranking system used to mea-

sure participant contributions requires privacy disclosure. Approaches that use

other methods also exhibit privacy vulnerabilities. For example, the approach

taken by Liu et al. [2016b], which uses the Minimum Cut of a graph from graph

theory and the machine learning concept of support vector machine (SVM)-

based pattern recognition, to determine the utility of a particular participant's

potential sensed data, does not provide anonymous and unlinkable data submis-

sion as participant utility is evaluated by grouping those in similar geographical

locations.

However, while many of the statistical based incentivisation approaches in

the state of the art have privacy vulnerabilities that render them unsuitable in

meeting the requirement for Anonymous, Unlinkable and Protected Data Sub-

mission (R1), the use of statistical methods in and of itself does not preclude

the ful�lling of the privacy preserving requirements for Anonymous, Unlink-

able and Protected Data Submission (R1), Untraceable and Unlinkable Reward

Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3). Prob-

abilistic based methods such as those advocated by the Bayesian Truth Serum

used by Radanovic and Faltings [2015] to evaluate the data submitted using a

probabilistic scoring system and the Gur Game-based approach10 proposed by

Liu et al. [2011] would not violate these requirements. This is also true for the

binary search and the Multi-Armed Bandit (MAB) Framework11 used by the

STOC-PISCES algorithm (Biswas et al., 2015). Machine learning approaches

10This is a mathematical modeling of what is termed reward and punishment.
11The Multi-Armed Bandit (MAB) Framework is a probabilistic method of resource alloca-

tion.
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could also potentially be used to ful�ll requirements R1, R2 and R3. For ex-

ample, the supervised machine learning approach proposed by Sun et al. [2018]

could be adapted to meet these requirements.

Adapting these approaches from the state of the art for the work to be un-

dertaken in this thesis would not, however, address the requirement for Adaptive

and Tunable Reward Allocation (R5). The approaches taken by Liu et al. [2011]

and Radanovic and Faltings [2015] do not address optimal budget consumption

or reward level adaptiveness. While STOC-PISCES (Biswas et al., 2015) does

adapt the reward level, it does not take budget constraints into account. The

approach taken by Sun et al. [2018] is also unsuitable as it is speci�cally de-

signed for the multi-label classi�cation problem and cannot be used for other

types of participatory sensing activity.

3.1.3 Incentivisation: Summary

While there are a wide variety of economic-based incentivisation schemes pro-

posed in the state of the art, the nature of approaches such as auctions, Con-

tract Theory and Game Theory means that they cannot ful�ll the requirement

for Anonymous, Unlinkable and Protected Data Submission (R1). For exam-

ple, the bidding process used by auctions grants the service provider access to

participant activities. It should be noted, however, that other microeconomic

concepts such as supply and demand could be used without violating the pri-

vacy preserving requirements for Anonymous, Unlinkable and Protected Data

Submission (R1), Untraceable and Unlinkable Reward Allocation (R2) and Un-

traceable and Unlinkable Reward Spending (R3). For example, the adoption

of SenseUtil (Thepvilojanapong et al., 2013 and Tsujimori et al., 2014) would

not violate these requirements (though, as noted in Section 3.1.1.4, it does not

address requirement R5 ). Statistical methods are of more promise in meeting

the needs of the question addressed in this thesis. Although statistical-based

methods such as the STOC-PISCES algorithm (Biswas et al., 2015) at best only

partially address the requirement for Adaptive and Tunable Reward Allocation

(R5), the inherent nature of methods such as Lyapunov Optimisation does not

preclude their use in meeting requirements R1, R2 and R3. These require-

ments could therefore be facilitated through the use of a statistical method that

computes and allocates rewards without impinging upon a participant's pri-

vate information, for example, location. Given that many participatory sensing

systems operate in fast changing dynamic environments, the modeling of the
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incentivisation scheme as a stochastic process (i.e. one which randomly changes

over time) that facilitates privacy preservation, adapts to environmental changes

such as participation rates, optimises budget consumption and enables the pri-

oritisation of data collection or budget consumption optimisation to be chosen

would be of particular relevance to the requirements to be addressed in this

thesis and is therefore a very promising approach.

3.2 Privacy Preservation

The inherent con�ict to be addressed when designing a privacy-preserving incen-

tivisation scheme is, on the one hand, the need to link participant submissions

so as to reward them, and on the other, the need to break this link to ensure

privacy preservation (Christin, 2015). Reconciling this con�ict is a challenge be-

cause, as seen in Section 3.1, the attributes of many of the underlying methods

used in the design of incentivisation schemes mean that they cannot ful�ll the

privacy preserving requirements for Anonymous, Unlinkable and Protected Data

Submission (R1), Untraceable and Unlinkable Reward Allocation (R2) and Un-

traceable and Unlinkable Reward Spending (R3). At the same time, any privacy

preservation method should diminish data quality as little as possible so that the

requirement for Adaptive and Tunable Reward Allocation (R5) is met12. This

section explores the means by which privacy preservation for incentivisation can

be addressed and discusses approaches in the state of the art that are pertinent

to the area.

As outlined in Section 3.1.3, statistical methods in and of themselves do not

impinge upon identity privacy. This raises the question of whether the privacy

preservation approaches in the state of the art could be adapted in conjunction

with the use of a statistical method for incentivisation to address the work to be

undertaken in this thesis. To this end, Section 3.2.1 explores the appropriateness

of the privacy preserving methods used in the state of the art in addressing

requirements R1, R2 and R3, their potential for adoption for a privacy-aware

incentivisation scheme and their compatibility with the requirement for Adaptive

and Tunable Reward Allocation (R5). The other key challenge to be addressed

for a privacy-aware incentivisation scheme is to ensure that the medium for

reward allocation is not itself a point of privacy violation. The state of the art

12This importance of data quality being unimpaired by the privacy preservation method
used is also identi�ed in work undertaken by Vergara-Laurens et al. [2013] and Jaimes et al.
[2015a].
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in this area is discussed in Section 3.2.2.

3.2.1 Privacy Preserving Methods for Incentivisation

There are a number of approaches that o�er a potential architecture for pri-

vacy preserving incentivisation but do not present a fully �edged incentivisa-

tion scheme, for example, Saremi and Abdelzaher [2016] whose work considers

how varying the nature of the incentivisation scheme can serve to increase par-

ticipation rates. However, several of these approaches have inherent goals and

attributes that mean that they cannot meet the privacy preserving requirements

for Anonymous, Unlinkable and Protected Data Submission (R1), Untraceable

and Unlinkable Reward Allocation (R2) and Untraceable and Unlinkable Reward

Spending (R3). For example, some approaches address privacy trade-o�s rather

than privacy preservation (Wang et al., 2014, Katsomallos et al., 2017, Liu

et al., 2017b and Chi et al., 2018). In addition, some approaches do not provide

full participant privacy. For instance, Chen et al. [2014] point out that their

approach has some degree of location privacy leakage in the interests of data

quality while the approach taken by Gao et al. [2015b], an anonymisation-based

location privacy method, envisages the selection of partners by the participant.

This section considers the di�erent categories of privacy preservation that are

used in the state of the art for participatory sensing. The use of pseudonyms and

third party components in privacy preservation are discussed in Section 3.2.1.1

and Section 3.2.1.2 respectively while the use of anonymisation is explored in

Section 3.2.1.3. Section 3.2.1.4 considers the use of encryption and statistical-

based methods for privacy preservation.

3.2.1.1 Privacy Preservation using Pseudonyms

While the use of pseudonyms prevents direct access to participants' identities,

the use of pseudonyms would not provide the level of identity privacy de�ned

in Section 2.3 as they can be used by the service provider to track activity

and behaviour (see, for example, Zhang et al., 2012b, Clarke and Steele, 2014b,

Gisdakis et al., 2014, Lim and Abumuhfouz, 2015 and Yao et al., 2015). As

a result, the requirement for Anonymous, Unlinkable and Protected Data Sub-

mission (R1) cannot be met. Moreover, there are some methods that claim to

preserve identity privacy but actually seek to monitor participant activities and

behaviours. For example, while Niu et al. [2018b] correctly assert that their

privacy-preserving identi�cation mechanism does not reveal the actual identity
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of a participant, the two-layer neural network used in their approach not only

has access to participants' pseudonyms and/or IDs, it is used to learn partic-

ipants' behaviours and activities with the objective of generating an identity

feature database.

Other privacy preserving methods used in the state of the art such as mix-

networks13 also require the use of pseudonyms. While the mix-network based

TrPF (Gao et al., 2013) uses two pseudonyms for participants on entering and

leaving a region, this necessitates the use of a third party component which con-

tains a listing of all participants and their pseudonyms. The approach proposed

by Clarke and Steele [2014a], which uses mix networks to collect aggregated

health data, is more robust from a privacy perspective and could be adapted

to meet the requirement for Anonymous, Unlinkable and Protected Data Sub-

mission (R1). However, it cannot be extended to reward participants and thus

cannot ful�ll the requirement for Untraceable and Unlinkable Reward Allocation

(R2). Other privacy preserving approaches, while not using pseudonyms per se,

have attributes that enable pseudonymous tracking of participants. For exam-

ple, the use of participant selection and ranking by Tian et al. [2017] in their

Secure Multi Party Computation-based approach and the use of a bulletin board

to tag locations by Techu (Agadakos et al., 2017) enables tracking of behaviour

and activity.

3.2.1.2 Use of Third Party Components

While, as noted in Section 3.1.1.1, third party components can themselves be

points of privacy vulnerability, there are several approaches that seek to o�er

privacy through the use of trusted third party components and publicly avail-

able third party software that, for example, register both participants and the

service provider and can track when participants join and leave the system. (for

example, De Cristofaro and Soriente, 2013, Li et al., 2017c, Kim et al., 2017,

Xu et al., 2017a, Zhuo, 2017, Zhuo et al., 2017 and Chen et al., 2018)14. FIDES

(Restuccia and Das, 2014) is itself a third party component that accesses all par-

ticipant data while the PAMPAS (Privacy-Aware Mobile Participatory Sensing)

approach (That et al., 2016), not only uses a third party component but also

requires the enhancement of participants' sensing devices with bespoke secure
13Mix networks facilitate the transmission of data anonymously.
14Other examples of approaches that use third party components include those proposed

by Chakraborty et al. [2012], Wang and Ku [2012], Xiao et al. [2012], Zhang et al. [2012b],
Günther et al. [2014], Haderer et al. [2014], Saleem et al. [2014], Krontiris and Dimitriou
[2015], Li et al. [2015b] and Zeng et al. [2016].
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hardware. This is not consistent with the participatory sensing model outlined

in Section 2.1 which only assumes that, at most, a mobile app is installed on

participant devices.

It must be noted that while, in general, many of the third party components

outlined for approaches in the state of the art mean that the requirement for

Anonymous, Unlinkable and Protected Data Submission (R1) cannot be met,

there are a number of privacy preserving approaches for data aggregation that

incorporate third party components that have no access to a participant's private

information (Erfani et al., 2013, Li and Cao, 2013a, Chen and Ma, 2014, Li et al.,

2015a, Zhang et al., 2016b, Zhang et al., 2016a and Zhang et al., 2017) . Such

approaches, therefore, could potentially meet the requirement. However, the

use of, for example, homomorphic encryption by these approaches ensures that

they cannot reward participants. As a result, the requirement for Untraceable

and Unlinkable Reward Allocation (R2) cannot be met.

3.2.1.3 Anonymisation

Anonymisation is widely used in the state of the art, in particular, k -Anonymity

and Di�erential Privacy. k -Anonymity, which eliminates the uniqueness of par-

ticipants' information by merging the information for k (i.e. a number of)

participants, is used in several privacy preserving approaches for participatory

sensing (Rodhe et al., 2012, Vu et al., 2012, Alswailim et al., 2014, Lakshmi et al.,

2017 and Wang et al., 2018b). Di�erential Privacy extends the k -Anonymity

model by o�ering a formal technique to ensure that a computation does not

reveal whether any one person participated in the input to the computation or

not and is used in the approaches proposed by To et al. [2014] and Han et al.

[2018]. However, neither k -Anonymity nor Di�erential Privacy are robust to

inference attacks (Sun et al., 2014 and Liu et al., 2016a respectively) meaning

that participant activity can be pseudonymously monitored, a violation of the

requirement for Anonymous, Unlinkable and Protected Data Submission (R1).

Some approaches use anonymisation in conjunction with other methods, For

example, in SLICER (Qiu et al., 2013, also discussed in Qiu et al., 2014), k -

Anonymity is used to ensure that the service provider cannot identify the gen-

erator of the sensing record from at least k participants while encryption is used

to secure data submission. In addition to using anonymisation, the approach

taken by Liu et al. [2012] uses machine learning to classify sensed data. How-

ever, despite the use of additional methods, these approaches are still prone to
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inference attacks and would thus fail to meet privacy preserving requirements

R1, R2 and R3.

3.2.1.4 Encryption & Statistics

Encryption-based approaches have the potential to meet the requirement for

Anonymous, Unlinkable and Protected Data Submission (R1), However, they

would ful�ll requirement R1 at the expense of Untraceable and Unlinkable Re-

ward Allocation (R2) as the one-way communication used means that it is not

possible to allocate rewards to participants (Biswas and Vidyasankar, 2012, Liu

et al., 2013, Liu et al., 2017a, Shen et al., 2017, Xing et al., 2017, Yan et al.,

2017, Perez and Zeadally, 2018 and Wang and Huang, 2018). Other, statistical-

based, approaches also ful�ll requirement R1 but cannot be adapted to provide

reward allocation (Sabrina and Murshed, 2012, Drosatos et al., 2012, Xing et al.,

2013, Drosatos et al., 2014, Tan et al., 2016, Xiao et al., 2017 and Ziegeldorf

et al., 2017) .

In addition, there are a number of approaches that achieve privacy preserva-

tion at the expense of Adaptive and Tunable Reward Allocation (R5) given this

requirement's expectation that the quality of the service provider's dataset is

una�ected by the privacy preservation method used. For example, approaches

that use perturbation cannot ful�ll requirement R5 given that this method en-

tails the modi�cation of data to preserve its submitter's privacy (Zhang et al.,

2012a, Lyu et al., 2016 and Lyu et al., 2018). The use of negative surveys15 in the

approaches taken by Aoki et al. [2012] and Groat et al. [2013], also has the po-

tential to impair the ful�llment of requirement R5 as perturbation is integral to

the method. Similarly, privacy preservation through the coarsening and/or dis-

guising of the participant's location using methods such as obfuscation, Laplace

noise (a statistical method that modi�es data) and dummy locations is not con-

sistent with the data quality goals of the requirement (Boutsis and Kalogeraki,

2013, Gao et al., 2013, Agir et al., 2014, Mun et al., 2014, Wei et al., 2014,

Wiesner et al., 2014, Bettini and Riboni, 2015 and Li et al., 2017a).

3.2.1.5 Methods for Privacy Preservation: Summary

This section has considered the wide variety of privacy preservation methods in

the state of the art with a view to evaluating their potential appropriateness for
15This is a privacy-aware probabilistic method that keeps the target data undisclosed by

asking participants to instead make a series of decisions with the data in mind (Esponda,
2006).
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the work undertaken in this thesis. However, while many of these approaches

o�er anonymity, the vulnerability of pseudonyms, third party components and

anonymisation to inference attacks means that such methods cannot provide

the level of identity privacy de�ned in Section 2.3 and hence cannot ful�ll the

privacy preserving requirements for Anonymous, Unlinkable and Protected Data

Submission (R1), Untraceable and Unlinkable Reward Allocation (R2) and Un-

traceable and Unlinkable Reward Spending (R3). Other approaches that use

encryption and statistics facilitate the requirement for Anonymous, Unlinkable

and Protected Data Submission (R1) but make it impossible to allocate rewards

to participants. Similarly, approaches using techniques such as perturbation

have the potential to meet requirement R1, but in this case, at the expense of

data quality, a violation of the requirement for Adaptive and Tunable Reward

Allocation (R5). It must therefore be concluded that there is no current privacy

preserving approach in the state of the art that could be adapted to meet the

requirements pertaining to privacy preservation and data quality that have been

identi�ed for the work to be undertaken in this thesis.

3.2.2 Medium for Reward Allocation

The medium for reward allocation is a crucial question to be addressed when

designing a privacy-preserving incentivisation scheme for participatory sensing.

Reward allocation is typically addressed in the state of the art through the use of

existing cryptocurrencies or the creation of reward tokens. These are discussed

in Section 3.2.2.1 and Section 3.2.2.2 respectively.

3.2.2.1 Cryptocurrencies

Some approaches in the state of the art seek to achieve privacy-preserving in-

centivisation by using cryptocurrencies to allocate rewards. Cryptocurrencies,

electronic forms of value exchange, have the potential to be used for online pur-

chases, trading and transactions. They use cryptographic methods to protect

the integrity of transactions and of the currency itself. However, while cryp-

tocurrencies such as Bitcoin (Nakamoto, 2008) were developed to protect the

privacy of those engaging in transactions, the creators of Bitcoin point out that

the cryptocurrency o�ers anonymity but does not prevent its users from being

pseudonymously tracked. Speci�cally, the address at which a payee receives Bit-

coins acts as a pseudonym with every transaction involving that address being

stored in the BlockChain. For example, PaySense (Tanas et al., 2015) uses the
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participant's Bitcoin address as a pseudonym. While cryptocurrency 'mixer'

services can be used to make Bitcoins impossible to trace by enabling users to

swap Bitcoins with each other, this necessitates the trusting of what is often

an anonymous third party service. The approach proposed by Spathoulas et al.

[2017], whose architecture necessitates the use of a third party component, also

uses Bitcoin to reward participants. The use of Bitcoin, therefore, does not

provide the level of identity privacy de�ned in Section 2.2 and will not ful�ll

the requirements for Untraceable and Unlinkable Reward Allocation (R2) and

Untraceable and Unlinkable Reward Spending (R3).

Alternatives to Bitcoin such as Monero16 and DASH17 also have weaknesses

that would prevent rewards from being untraceable. Miller et al. [2017] indicate

that there are weaknesses in Monero in its use of fake coins, called mixins, to

obscure transaction behaviour but which, in fact, make transactions linkable

under certain conditions as the mixins are sampled from a distribution that

does not resemble real transaction inputs. In the case of DASH, an anonymous

paper18, approved by the currency's promoters, points out that it is necessary

to anonymise network tra�c over the Tor anonymity network in order to ensure

that DASH can be used securely and anonymously. In addition, the third party

MasterNode mixing service provided by a third party component increases the

probability of tracing a payment, especially if there are few other users to swap

coins with.

3.2.2.2 Reward Tokens

There are several approaches in the state of the art that use tokens, which are

mappable to a tangible monetary or non-monetary item of value, to allocate

rewards. However, this is sometimes at the cost of privacy preservation through

the use of third parties (Zhang et al., 2012b and Li et al., 2017c) and pseudonyms

(Zhang et al., 2012b). The credit token system proposed by Li and Cao [2016]

(also described in Li and Cao, 2013b and Li and Cao, 2015) does attempt to ad-

dress the challenges of anonymous reward allocation by using a blind signature

to break the link between the credit token and what is termed the pseudo-credit

so as to ensure that the service provider does not know the data submission for

which the credit is earned. However, this approach does not address inference

attacks as each credit token is directly linked to the participant's ID. This is

16See https://getmonero.org
17See https://www.dash.org
18See https://dashpay.atlassian.net/wiki/display/DOC/Dash+Security-Privacy+Paper
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acknowledged by the authors themselves who point out that the approach is

vulnerable to a credit-based inference attack as the service provider may infer

if participants have submitted data for a task from the number of credits that

they have, a violation of the requirement for Untraceable and Unlinkable Reward

Allocation (R2). EPPI (Niu et al., 2014), which allocates rewards using token-

based E-Cents, an exchangeable and untraceable unit bearer currency, also fails

to meet the requirement for Untraceable and Unlinkable Reward Allocation (R2).

This is because the approach's 'mix zone', which is used to enable participants

to anonymously exchange E-Cents so as to ensure untraceability, requires the

use of a pseudonym on the part of the participant and is itself a potential source

of privacy violations if it is compromised. The privacy evaluation experiments

carried out by the authors also indicate that the approach is, in certain circum-

stances, vulnerable to inference attacks. For example, a tracing probability of

23% is reported when the participant pledge, which functions as a motivation

for the participant to submit truthful data (as the participant will forfeit the

E-Cents if they submit false data), is set to 20 E-Cents. An evolution of EPPI

(Niu et al., 2018a) also notes the same vulnerability in terms of tracing prob-

ability. In addition, as highlighted in Section 3.2.1.1, this approach introduces

other potential points of privacy vulnerability.

The credit token scheme proposed by Dimitriou [2018a] is more robust as

participants are issued with a single token that accumulates rewards and is not

linkable to a particular data submission. However, participants are required to

reveal their identity when redeeming rewards which means that their spending

can be tracked. While an extension to this approach (Dimitriou, 2018b) does

not appear to require participants to reveal their identity, it must be noted

that the user ID is embedded in the single token, a point of privacy violation

if the token is illegitimately accessed. Moreover, the user ID will be disclosed

in the case of double spending, even in the case when this is accidental on

the participant's part. Similarly, while the credit tokens issued by the scheme

proposed by Liu et al. [2018] cannot be linked to data submissions, participants

are required to reveal their identity when depositing them. Indeed, the authors

admit that there is a possibility of linkages with data submissions being made if

a participant deposits multiple credit tokens simultaneously. As a result, while

these approaches do address the requirement for Untraceable and Unlinkable

Reward Allocation (R2) to a certain extent, they do not ful�ll the requirement

for Untraceable and Unlinkable Reward Spending (R3).
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3.2.2.3 Medium for Reward Allocation: Summary

The options for reward allocation in participatory sensing incentivisation schemes

can be categorised into cryptocurrencies and credit tokens. Cryptocurrencies are

unsuitable in meeting the goals of this thesis as their pseudonymous attributes

preclude them from ful�lling the requirement for Untraceable and Unlinkable

Reward Allocation (R2). Similarly, the approaches in the state of the art that

use reward tokens at best only partially address this requirement while there is

no approach that meets the requirement for Untraceable and Unlinkable Reward

Spending (R3). Nevertheless, tokens represent the most promising means of ad-

dressing the privacy preserving requirements of this thesis if they are used in a

way that does not necessitate the use of third party components and pseudonyms

and, crucially, provide a level of untraceability that meets the level of identity

privacy de�ned in this thesis.

3.3 Incentive Compatibility

In the area of participatory sensing, incentive compatibility seeks to address the

question of whether the service provider can trust the data it receives from par-

ticipants. In order to meet the privacy preserving requirements for Anonymous,

Unlinkable and Protected Data Submission (R1), Untraceable and Unlinkable Re-

ward Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3),

this must be achieved without violating participant privacy. Ensuring both pri-

vacy preservation and data trustworthiness is a key challenge of participatory

sensing systems as the implementation of one can compromise the other (Maru-

sic et al., 2014). The incentive compatibility approaches taken in the state of

the art are either reputation management systems that evaluate how trustwor-

thy participants are, considered in Section 3.3.1, or methods to evaluate data

truthfulness independently of who submitted it, discussed in Section 3.3.2.

3.3.1 Trust & Reputation Management

There are several approaches in the state of the art that claim incentive com-

patibility through the design of reputation management systems. Such systems

function by assigning a reputational value to each participant as a measure of

the trust placed on data submitted by that participant. Reputation manage-

ment is thus used to evaluate the trustworthiness of data submitters. However,
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the computation of a participant's reputation score is often at the expense of

participant privacy as access to, for example, participants' past performance and

ability is required (Yang et al., 2011, Alswailim et al., 2016, Guo et al., 2016, Lu

et al., 2017, Mousa et al. 2017, Xiang et al., 2017, Zenonos et al., 2017 and Zhou

et al., 2017). Other reputation management systems incorporate mechanisms

that increase privacy vulnerabilities through, for example, the use of third party

components that can monitor participant activity or the granting of access of

private information to other participants (Amintoosi et al., 2014, Ren et al.,

2015, Haider et al., 2016, Gao et al., 2017, Mihaita et al., 2017, Pouryazdan

et al., 2017, Sun et al., 2017 and Restuccia et al., 2018b).

Several approaches claim privacy-preserving incentive compatibility through

the design of privacy-preserving reputation management systems. However,

while many of these privacy-preserving trust and reputation management sys-

tems o�er anonymity, several approaches enable pseudonymous tracking of par-

ticipant activity (Christin et al., 2014, Michalas and Komninos, 2014, Tanas

et al., 2015 and Wang et al., 2018c). Some approaches do seek to address the

vulnerability of pseudonyms to tracking through for example, the generation of

a unique pseudonym for each data submission. However, these necessitate the

use of third party components that could themselves be points of privacy vulner-

ability (Huang et al., 2012, Chang et al., 2013 and Christin et al., 2013b). For

instance, the third party component used in the approach proposed by Chang

et al. [2013] holds a list of mappings between the participant's real identity and

all the participant's pseudonyms. Other approaches seek to protect the par-

ticipant against inference attacks but do so at the expense of other aspects of

privacy by, for example, assuming that participants are willing to share location

information with each other (Kalui et al., 2016 and Hu et al., 2018). As a result,

none of these approaches meet the requirement for Anonymous, Unlinkable and

Protected Data Submission (R1).

There are a number of approaches that go further in addressing the poten-

tial for inference attacks in reputation management systems. For example, the

TAPAS (Trustworthy Privacy-Aware Participatory Sensing scheme) protocol

(Kazemi and Shahabi, 2013) addresses the problem of participants being identi-

�ed by their location but will only meet meet the requirement for Anonymous,

Unlinkable and Protected Data Submission (R1) if there is a critical mass of

participants in a particular location. Similarly, ARTSense (Wang et al., 2013),

which separates the data reporting and reputation update processes and uses a

di�erent unlinkable blinded ID for each submission, also requires a critical mass
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of participants to ensure privacy.

3.3.2 Data Truthfulness

Rather than recording participants' reputations and trustworthiness, a number

of approaches in the state of the art seek to address incentive compatibility by

evaluating data truthfulness. For example, the approach proposed by Farokhi

et al. [2015] uses Game Theory to model interactions between participants and

service providers as a strategic game that ultimately encourages truthful data

submissions, albeit without addressing how to actually evaluate the truthfulness

of the submitted data.

Some approaches claim data truthfulness through the incentivisation mecha-

nism used. This particularly applies for auction-based approaches (for example,

the sealed-bid online auction used by Sun and Ma [2014]) although in some

cases this pertains to participants' bids rather than the data submissions they

make (Zhang et al., 2014). However, while claims that auctions are inherently

incentive compatible are supported by some in the �eld of economics (Smith,

1977), there is not unanimous agreement on this point (for example, Brubaker,

1980). Crucially, as previously noted in Section 3.1.1.1, the use of auctions

does not meet the requirement for Anonymous, Unlinkable and Protected Data

Submission (R1). Other approaches that evaluate data truthfulness are also in

con�ict with requirement R1 through the need for reputation scores (Jin et al.,

2017a), third party components (Gisdakis et al., 2015, Miao et al., 2017 and

Zhang et al., 2018b) and direct access to private participant information such

as location and sensing activity (Bhattacharjee et al., 2017, Cheng et al., 2017,

Gong and Shro�, 2017 and Gong and Shro�, 2018). While there are a number

of approaches that do provide direct identity privacy, they do not address the

potential for inference attacks. For example, Yang et al. [2017b] envisage one

of their approach's core algorithms being used to reward and reprimand users

without addressing how this can be done in a privacy preserving manner.

There are a number of approaches that do ensure data truthfulness without

violating participant privacy. For example, incentive compatibility is claimed

by the approach proposed by Yang et al. [2015] through the use of mechanism

design as participants ultimately make losses if they make untruthful data sub-

missions. However, this is at the expense of the service provider as there are

losses in the meantime through the rewarding of untruthful data which is not

initially detected, a violation of the requirement for Adaptive and Tunable Re-
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ward Allocation (R5) which seeks to optimise the service provider's budget. On

the other hand, the approach outlined by Xiang et al. [2015] (also considered

in Xiang et al., 2013) would not con�ict with requirement R5. Furthermore,

while the focus of this approach on calibrating sensing devices for the purpose

of monitoring pollution sources does not meet the needs of the participatory

sensing model presented in Section 2.1, the Expectation Maximisation statis-

tical method it uses to create a model that evaluates data truthfulness would

not violate the privacy preserving requirements for Anonymous, Unlinkable and

Protected Data Submission (R1), Untraceable and Unlinkable Reward Allocation

(R2) and Untraceable and Unlinkable Reward Spending (R3). CLOR (Zhou

et al., 2016) also facilitates privacy preservation. However, the focus of this

approach on clustering data solely on the basis of location would make it dif-

�cult to adapt or extend to meet the needs of the participatory sensing model

presented in Section 2.1.

3.3.3 Incentive Compatibility: Summary

The majority of approaches in the state of the art for incentive compatibil-

ity do not preserve participant privacy (Feng et al., 2017). The monitoring

of participant behaviour and activity in most reputation management systems

violates the requirement for Anonymous, Unlinkable and Protected Data Sub-

mission (R1). Those reputation management systems that do seek to address

privacy preservation are also incompatible with requirement R1 as, for exam-

ple, the facilitation of pseudonymous participant tracking results in linkable data

submissions and traceable and linkable reward allocation. Many methods that

seek to evaluate data truthfulness exhibit similar shortcomings from a privacy

preservation perspective through their use of auctions, reputation scores and

third party components. However, statistical based approaches have the poten-

tial to meet the requirement for Incentive Compatibility (R4) and would not

hinder the requirements for Anonymous, Unlinkable and Protected Data Sub-

mission (R1), Untraceable and Unlinkable Reward Allocation (R2), Untraceable

and Unlinkable Reward Spending (R3) and Adaptive and Tunable Reward Allo-

cation (R5). For example, the use of the Expectation Maximisation statistical

method in the approach proposed by Xiang et al. [2015] would be appropriate

for the work to be undertaken in this thesis.
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3.4 Summary

This chapter evaluates related work in the areas of incentivisation, privacy

preservation and incentive compatibility for participatory sensing in terms of

meeting the requirements of this thesis for Anonymous, Unlinkable and Pro-

tected Data Submission (R1), Untraceable and Unlinkable Reward Allocation

(R2), Untraceable and Unlinkable Reward Spending (R3), Incentive Compatibil-

ity (R4) and Adaptive and Tunable Reward Allocation (R5). While there has

been work in the area of privacy-preserving incentivisation, the approaches to

date do not address the potential for inference attacks to be carried out by the

service provider and thus do not provide the level of identity privacy de�ned

in this thesis. Therefore, while the privacy preserving incentivisation mecha-

nisms outlined by Niu et al. [2014], Li and Cao [2016] and Dimitriou [2018b]

come closest to addressing requirements R1, R2 and R3, there is no scheme in

the state of the art that fully addresses all of the privacy preserving require-

ments. In addition, it should also be noted that, although the STOC-PISCES

algorithm (Biswas et al., 2015) and SenseUtil (Thepvilojanapong et al., 2013

and Tsujimori et al., 2014) partially address the requirement for Adaptive and

Tunable Reward Allocation (R5), there is no incentivisation approach that fully

addresses requirement R5. There is therefore a need for a privacy-preserving

incentivisation approach that is adaptable to current environmental conditions

and participation rates; can be tuned by the service provider; is robust with

respect to inference attacks; is not itself a point of privacy vulnerability and

facilitates incentive compatibility in a privacy-preserving manner.

The use of stochastics to model the incentivisation scheme is of interest as

such methods model random changes in an environment. Lyapunov Optimisa-

tion which is, as was outlined in Section 3.1.2.1, used by some incentivisation

schemes in the state of the art, is suitable for modeling rapid changes over time

in an environment and can be tuned to prioritise di�erent goals. It therefore has

particular promise as a method that would meet the requirement for Adaptive

and Tunable Reward Allocation (R5).

Stochastic methods do not have inherent privacy vulnerabilities but in and of

themselves do not address the challenge of Untraceable and Unlinkable Reward

Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3). While

cryptocurrencies do not meet these requirements, the underlying BlockChain

technology and decentralised exchanges used by these digital assets o�er inter-

esting possibilities in meeting both these requirements and the requirement for
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Anonymous and Unlinkable Data Submission (R1). Lastly, as noted in Section

3.3.3, there are a number of statistical methods that could be used to meet the

requirement for Incentive Compatibility, for example, an Expectation Maximi-

sation method such as Maximum Likelihood Estimation.
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Chapter 4

Design

This chapter discusses the design of the Privacy-Aware Incentivisation (PAI)

approach. As outlined in Chapter 2, PAI must address �ve requirements to meet

the goal of providing privacy preserving reward allocation and spending that is

adaptive to the environment and the needs of the service provider. To achieve

privacy preservation, PAI meets the requirements for Anonymous,Unlinkable

and Protected Data Submission (R1), Untraceable & Unlinkable Reward Allo-

cation (R2) and Untraceable & Unlinkable Reward Spending (R3) by using a

decentralised platform, referred to as Identity Privacy Preserving Incentivisa-

tion (IPPI). Section 4.1 describes how IPPI addresses requirements R1, R2 and

R3. The requirement for Incentive Compatibility (R4), achieved through the

development of a Data Truthfulness Estimation (DTE) algorithm, is discussed

in Section 4.2. Finally, the requirement for Adaptive and Tunable Reward Allo-

cation (R5) is met through the development of a Lyapunov Optimisation-based

model, referred to as Adaptive Reward Allocation (ARA) and is described in

Section 4.3. Section 4.4 summarises this chapter. Notations used in the chapter

are de�ned as they are introduced as well as in the nomenclature as the end of

this thesis.

Figure 4.1 presents the PAI platform and the core components (IPPI, DTE

and ARA) that are used to meet the requirements for privacy preservation,

reward allocation and incentive compatibility respectively.
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Figure 4.1: The PAI Platform
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4.1 Privacy Preservation for the PAI Platform

This section discusses how PAI's privacy preserving requirements are addressed.

Section 4.1.1 discusses the suitability of di�erent privacy preserving methods

used in other domains1 in meeting the requirements for Anonymous, Unlink-

able and Protected Data Submission (R1), Untraceable and Unlinkable Reward

Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3). The

design of the Identity Privacy Preserving Incentivisation (IPPI) decentralised

exchange model used to address requirement R1 is discussed in Section 4.1.2.

Section 4.1.3 introduces the concept of the One-Time Key and how this is used

to ful�ll requirement R2. Finally, Section 4.1.4 discusses how IPPI meets re-

quirement R3.

4.1.1 Meeting the Privacy Requirements

As discussed in Chapter 3, many of the underlying approaches in the state

of the art have attributes that fail to meet PAI's privacy preserving require-

ments, R1, R2 and R3. due to, for instance, the use of pseudonyms, third

party components and techniques that are vulnerable to inference attacks such

as anonymisation. There are a number of approaches considered in the state

of the art in other domains that could preserve participant privacy, for exam-

ple, Virtual Private Networks (Sharma and Yadav, 2015). However, like some

approaches in the state of the art for participatory sensing (for example, the

source anonymous message authentication used by Li et al., 2015a), these ap-

proaches would disguise the provenance of a data submission but would make it

impossible to actually allocate rewards to participants, thus in turn making it

impossible to ful�ll requirements R2 and R3. Similarly, the use of an encryption

method would address the Semi-Honest Threat Model discussed in Section 2.3

but would prevent reward allocation unless that use is modi�ed.

Other approaches such as data obfuscation can also disguise data but do not

address the privacy preservation of data submissions in transit, leading to the

potential viewing of submissions by third parties other than the service provider.

This violates requirement R1, which seeks to protect data submissions so that

they can only be viewed by the service provider. Similarly, steganography is

vulnerable to stegananalysis attacks (Mishra and Bhanodiya, 2015) that, in the

1As discussed in Chapter 3, the privacy preserving methods from the state of the art for
participatory sensing do not meet the goals of this thesis.
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case of participatory sensing, would potentially reveal both the data submissions

and the rewards.

As pseudonyms and third party components cannot be used to meet PAI's

privacy preserving requirements, a decentralised rather than centralised ap-

proach would be of promise in ensuring that there is no central server, third

party component or other means of tracing and linking participants' data sub-

missions and rewards. While, as discussed in Section 3.2.2.1, the use of cryp-

tocurrencies is unsuitable for PAI, the fundamental architecture used by de-

centralised cryptocurrency exchanges is of interest given that such approaches

do not use any central components. Decentralized cryptocurrency exchanges

such as CryptoNote (See https://cryptonote.org) are peer-to-peer (P2P)

networks consisting of computers known as nodes with all exchange users shar-

ing responsibility for payment processing and recording. There is no central

authority, coordinating entity or middlemen2.

The fundamental operation of decentralised exchanges is the peer-to-peer

trading of cryptocurrencies i.e. trading one cryptocurrency for another. Trans-

actions are listed on a distributed ledger called the OrderBook (Hileman and

Rauchs, 2017), a database that resides on multiple peer devices (Mills et al.,

2016). In addition to recording completed transactions, the OrderBook is

used to validate and/or authenticate these transactions. Furthermore, as this

database is a distributed one, there is no single point of failure and, in particular,

there is no central third party component that could be the target of an inference

attack. Typically, individual transactions are stored as blocks that are linked

using cryptography with multiple blocks together forming a blockchain. Trans-

actions cannot be modi�ed or removed once they are recorded in the blockchain.

Figure 4.2 presents the operation of a typical decentralised cryptocurrency

exchange. When a party (the sender in the diagram) makes a request to trade

one cryptocurrency for another, that trade is broadcast to the P2P network.

The request can be broadcast to all potential parties who would potentially be

willing to make the trade or forwarded to a recipient (for simplicity this scenario

is depicted in Figure 4.2 with the recipient being referred to as the receiver) who

then accepts or rejects this transaction. On acceptance of a trading request, the

receiver broadcasts con�rmation to this e�ect to the P2P network. The P2P

network then validates the transaction and, typically, combines the transaction

2While decentralised approaches for participatory sensing have been considered in the state
of the art (for example, Tsolovos et al., 2018), the focus of these approaches is on securing the
sensed data from potential attacks rather than privacy preserving reward allocation.
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with other transactions to create a new block of data that is added to the

existing blockchain on the OrderBook.

While the peer-to-peer trading of cryptocurrencies means that two parties

can interact directly with each other without the involvement of a central author-

ity, the fundamental trading operation in participatory sensing (the rewarding

of participants by the service provider in exchange for a data submission) must

be conducted without leakage of the participant's identity privacy. Therefore,

while this architecture can serve as a basis for the IPPI platform, it must be

modi�ed to ful�ll the properties of untraceability and unlinkability sought by

PAI.

In particular, the role of the OrderBook is solely for publishing transac-

tions, with the service provider (equivalent to the receiver in Figure 4.2) being

responsible for validating data submissions. While these listed transactions con-

tain encrypted data, they do not necessarily have to be stored in a blockchain as

a distributed database would su�ce in meeting the privacy preserving require-

ments. In addition, all data submission rejections as well as acceptances from

the service provider are published on the OrderBook so as to indicate whether

participants (the equivalent to the sender in Figure 4.2) are to be rewarded or

not. Furthermore, while the OrderBook plays a key role in privacy preservation

in removing the need for direct communication between the participant and the

service provider and in providing untraceable and unlinkable rewards, crypto-

graphic operations must also be conducted by these parties to meet the privacy

preserving requirements of PAI. Finally, it should be noted that, unlike decen-

tralised cryptocurrency exchanges, the service provider must not have access to

any pseudonym identifying the participant (while still being able to allocate a

reward).

A decentralised exchange would play a fundamental role in addressing the

requirement for Anonymous, Unlinkable and Protected Data Submission (R1).

However, it would not in and of itself address the requirements for Untraceable

and Unlinkable Reward Allocation (R2) and Untraceable and Unlinkable Reward

Spending (R3). As discussed in Chapter 3, crypocurrencies are not a suitable

medium of allocation in addressing the goals of this thesis as their pseudonymous

nature means that they can be used to track participant behaviour and activity.

While the token-based approaches for reward allocation in the state of the art

have similar tracing vulnerabilities, a reward token that is both untraceable

and unlinkable would ful�ll requirements R2 and R3. By being unlinkable,

such a token would also be robust to side information attacks (de�ned by, for
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Figure 4.2: Operation of a Typical Decentralised Cryptocurrency Ex-
change
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example, Tang and Ren [2015]) as the absence of an ID tied to the participant's

identity means that potential attackers cannot use side information to link data

submissions to a particular participant.

4.1.2 Anonymous, Unlinkable & Protected Data Submis-

sion (R1)

The concept of a decentralised exchange presents a number of attributes that

facilitate IPPI in its privacy preserving approach. In particular, the peer-to-

peer architecture facilitates the requirement for Anonymous, Unlinkable and

Protected Data Submission (R1) without the need to hold any private data

pertaining to participants by removing the need for direct communication be-

tween participants and the service provider. This prevents the service provider

from tracing a participant through, for example, an IP address. Moreover, this

is achieved without the introduction of any potentially privacy compromising

third party components3. As IPPI's architecture necessitates the use of peers,

these peers can be incentivised to host the service provider's data submission

and reward information by receiving a payment or being granted access to the

service provided. It should be noted that, as outlined in Section 2.1.2, the ad-

dressing of networking issues is regarded as being outside the scope of this thesis.

For this reason, potential issues such as ensuring data consistency between peer

devices are not considered.

While the basic network architecture remains the same, the other core con-

cepts used for decentralised cryptocurrency exchanges are modi�ed for the pur-

poses of IPPI to ensure anonymous and unlinkable data submission as well as

untraceable reward allocation. The OrderBook, which is used to record expres-

sions of interest by both buyers and sellers of currency trades, is used by the

service provider to publish requests for data submissions and allocate rewards

and by participants to make anonymous data submissions and receive untrace-

able rewards. O�ers, which contain details of the data requested and the reward

being o�ered, are published on the OrderBook by the service provider. All par-

ticipants are aware of the existence of an o�er when it is generated and can elect

to respond to it by submitting data and a reward token. Rewards are allocated

until the desired number of responses is achieved or when the o�er expires.

3This absence of a central server also diminishes the potential for other external attacks
such as Distributed Denial of Service (DDOS) as all nodes hosting the network would have to
be targets.
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Figure 4.3 presents an overview of how the IPPI platform provides privacy

preservation.

4.1.3 Untraceable & Unlinkable Reward Allocation (R2)

The concept of the One-Time Key, which is used in cryptocurrency exchanges to

ensure that multiple payments received by the same payee cannot be linked4 is

modi�ed by IPPI to ensure that the service provider (the equivalent of the payer

in a cryptocurrency exchange) does not have access to the participant's real or

pseudonymous identity, thereby providing untraceable rewards to participants

and preventing inference attacks.

The One-Time Key used in decentralised cryptocurrency exchanges is based

on the Di�e-Hellman Key Exchange Protocol (Di�e and Hellman, 1976). Di�e-

Hellman is a cryptographic algorithm that allows two parties to produce a com-

mon secret key derived from their public keys. This shared secret is then used

to exchange cryptography keys for use in symmetric encryption algorithms such

as AES. In the modi�ed use of the Di�e-Hellman Key Exchange adopted in

decentralised cryptocurrency exchanges, the sender (i.e. the payer) uses the

receiver's (i.e. the payee's) public address to compute a One-Time Key for the

payment. As the sender and receiver can compute only the public and private

parts of this key respectively, only the receiver can access and transfer the funds

after the transaction is committed with the private part of the One-Time Key

being used to con�rm that the transaction indeed belongs to this receiver. As

the receiver is the only party with access to the private key component, no other

party can con�rm the transaction and hence link the One-Time Key with the

receiver's unique public address.

As used in decentralised cryptocurrency exchanges, the concept of the One-

Time Key is not suitable for IPPI as the sender requires access to the receiver's

public address. In the equivalent participatory sensing scenario, this would

mean that the service provider would need access to the participant's identity

(or pseudonym) for reward allocation. Therefore, IPPI modi�es the use of the

One-Time Key's underlying Di�e-Hellman Key Exchange Protocol to create a

One-Time Key to provide untraceable rewards. The use of the Di�e-Hellman

protocol is modi�ed for IPPI to enable the participant to publish the public

component of the One-Time Key on the OrderBook whilst retaining the private

component i.e. the participant holds both parts of the One-Time Key.

4See, for example, https://cryptonote.org.
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Figure 4.3: Privacy Preservation in the IPPI Platform
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The service provider makes participants aware of its o�er by publishing an

o�er token, TO on the OrderBook.

TO = {δ, rO, iSP, iO} (4.1)

where δ comprises the type and granularity of the data being sought as well as

other conditions such as location, the number of data submissions sought and

when the o�er expires, rO is the amount of the reward o�ered, iSP is the ID of

the service provider and iO is the ID of the o�er token. The o�er token, TO

is published on the OrderBook as part of a listing, LO, to which participants'

responses are appended.

A participant who accepts the o�er token, TO, then generates a One-Time

Key, KO (consisting of aKO
and a∗KO

) and an o�er acceptance

AO = {{d}bSP
, aKO

, iO, iAO
} (4.2)

where aKO
5 is the public part of the generated key KO. As the service provider

may not want a peer, or indeed another potential service provider, to view the

data it is paying for, the participant is required to take the service provider's

privacy requirements into account by encrypting the data submission d in the

o�er acceptance using the service provider's public key bSP. AO also contains

the ID of the corresponding o�er token, iO. iAO
is AO's unique ID and is assigned

by the OrderBook on receipt of AO. To ensure untraceability, the participant

does not assign any ID to AO.

AO is appended to the o�er listing, LO, on the OrderBook and is then

forwarded to the service provider who, after decrypting {d}bSP
using its private

key b∗SP, determines whether the data submission merits a reward. This entails

verifying that the data submission matches the criteria set out in the o�er token,

TO, and assessing the truthfulness of the data submitted (as will be discussed

in Section 4.2). The service provider has no means of determining the identity

of the data submitter when this evaluation is taking place.

Having evaluated the data, d, in AO, the service provider generates a vali-

dation token

TV = {iV, iAO , v}b∗
SP

(4.3)

5The symbols used correspond to those used in the approach proposed by Di�e and Hell-
man [1976].
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which includes TV's unique ID, iV,, the o�er acceptance ID iAOand a �ag v which

denotes whether the data submission merits a reward. The service provider signs

TV using its private key, b∗SP, and publishes it on the OrderBook. It is assumed

that the service provider is not a malicious one and will honestly allocate re-

wards to those data submissions that merit one. This is consistent with the

assumption that the service provider is rational as, while depriving legitimate

data submissions of rewards may lead to some short terms savings in terms of

budget consumption, it will ultimately demotivate participants and impair the

service provider in attracting the quality of data submissions it requires.

4.1.4 Untraceable & Unlinkable Reward Spending (R3)

As discussed in Section 3.2.2, the service provider may seek to track partici-

pants not only through the allocation of a reward but also the spending of that

reward. To prevent this potentiality and ful�ll the requirement for Untraceable

and Unlinkable Reward Spending (R3), the OrderBook �rst generates a unique

spendable reward ID iS, and uses the public part of the One-Time Key, aKO
, to

encrypt a spendable reward token

rS = {iS, iV, rO}aKO
(4.4)

which is comprised of iS, the associated ID of the validation token, iV and the

reward value, rO. It then appends the validation token TV and the encrypted

spendable reward rs to the o�er listing LO on the order book.

When a participant wants to spend a reward, it retrieves the encrypted

spendable reward rs from the o�er listing, LO, decrypts it thanks to a∗KO
, the

private part of the One-Time Key, KO, and sends it to the OrderBook. The

OrderBook checks the validity of the ID provided, iS, checks that it has not

been spent previously and then veri�es the signature of the associated valida-

tion token, TV, using the service provider's public key bSP, to ensure that the

validation token was indeed generated by the service provider. It then permits

spending of the reward and, to prevent the problem of double spending, logs it

as spent.

While all participants can see that a data submission has been given a re-

ward, only the participant who made the data submission can spend the reward

allocated by decrypting the spendable reward, rs, using the private part of the

One-Time Key, a∗KO
. Other participants are unable to forge this veri�cation.

Moreover, so as to ensure that the service provider cannot change its signature
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to track spendable rewards, the OrderBook holds an identity certi�cate signed

by a peer to con�rm that the service provider is the owner of the public key,

bSP, used to verify all rewards issued by the service provider.

Algorithm 1 presents the algorithm used to ensure that participants are

allocated untraceable rewards in exchange for an anonymous data submission.

The algorithm is initiated when a service provider publishes an o�er token and

a participant accepts this o�er. Algorithm 2 presents the algorithm used when

spending the reward.

4.2 Incentive Compatibility (R4)

Economic theory states that, when resources are being allocated among a group,

individuals may �nd it in their interest to distort the information they provide

so that they can acquire more of the resources than they should be entitled to

(Ledyard, 1977). These distortions in turn may lead to a suboptimal situation

for the group as a whole as resources are inappropriately allocated. For partic-

ipatory sensing, such a situation would occur if the service provider allocates

rewards to participants who submit false or inaccurate data submissions. The

service provider su�ers under this situation as its budget is wasted and the qual-

ity of its dataset is diminished. Other honest participants su�er as the budget

for legitimate data submissions is e�ectively reduced meaning that they could

be deprived of rewards they would otherwise receive.

As outlined in Chapter 3, the potential for dishonest behaviour is addressed

by the economic concept of incentive compatibility. As discussed in that chap-

ter, the use of incentive compatibility for participatory sensing seeks to ensure

that rewards are only allocated by the service provider in return for truthful

data. In this context, a truthful data submission is de�ned as one which accu-

rately re�ects the environmental measurement(s) being sought. An `untruthful'

data submission might not necessarily re�ect dishonesty on the data submitter's

part (for example, the submission could contain inaccurate readings due to a

hardware problem in the participant's device) but nonetheless would not merit

a reward from the service provider.

The requirement for Incentive Compatibility (R4) is achieved for PAI by

estimating the truthfulness of the data submitted to the service provider. A

data submission can contain one or more categories of measurement values. As

the majority of participatory sensing data are scalar numeric readings, it is

63



1 [Service Provider publishes an o�er token TO]
2 // OrderBook operation.
3 Append TO to o�er listing, LO.
4 �
5 [On acceptance of TO by a participant]
6 Capture d
7 // Generate One-Time Key's public and private parts
8 Generate aKO

and a∗KO

9 Encrypt d using service provider's public key bSP

10 // Create o�er acceptance, AO.
11 AO = {{d}bSP

, aKO
, iO, iAO

}
12 // Participant retains One-Time Key as the private key, a∗KO

, is used to
13 // claim reward.
14 // [aKO

, a∗KO
] denotes the set of One-Time Keys held.

15 [aKO , a
∗
KO

]+= {aKO , a
∗
KO
}

16 Publish AO on OrderBook
17 �
18 // OrderBook Operation.
19 // Append AO to LO

20 LO+= AO

21 Forward AO to Service Provider
22 �
23 // Service Provider Operation.
24 [On receipt of AO]
25 // Decrypt the data submission.
26 Decrypt {d}bSPusing b

∗
SP

27 v= Validate AO

28 if v then
29 // Allocate the reward
30 Log allocation of rO

31 TV = {iV, iAO
, v}b∗

SP

32 // Publish TV on OrderBook by appending it to LO.
33 LO+ = TV

34 // OrderBook generates encrypted spendable reward.
35 rS = {iS, iV, rO}aKO

36 end if
Algorithm 1: Allocating the Reward
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1 [Participant wants to spend the reward]
2 Decrypt rs using a∗KO

3 Forward rs to OrderBook
4 �
5 [OrderBook operation]
6 // Verify that the associated validation token was signed by the service
7 // provider.
8 Verify signature of TV (identi�ed by iV entry in rs)
9 if veri�cation passes then

10 Check that is is not already recorded as spent
11 if is is not recorded as spent then
12 Permit spending
13 Record is as spent
14 end if
15 end if

Algorithm 2: Spending the Reward

this category of data that is addressed by the proposed incentive compatibility

method. There are a number of statistical methods that can be used to estimate

data truthfulness for scalar data. Section 4.2.1 discusses the choice of approach

for estimating data truthfulness while Section 4.2.2 describes the design and

implementation of this approach.

4.2.1 Choosing an Approach for Estimating Data Truth-

fulness

As noted in Section 3.3, the use of statistical techniques could ensure data

truthfulness without impinging upon the privacy requirements of the partic-

ipant. In statistical terms, data truthfulness can be considered as a case of

incomplete data i.e. the truthfulness of the data submission cannot be known

with 100% certainty. There are a number of statistical methods that can be

used to make estimations for incomplete probabilistic models. For instance, the

Gradient Descent algorithm, an optimisation algorithm which has been used to

train neural networks (Bottou, 2012) could be used for this purpose. However,

this method is reported to be slow (Johnson and Zhang, 2013) and would hin-

der both the scalability and performance of PAI. While the Newton-Raphson

method, a well-established technique for solving non-linear algebraic equations

(Ypma, 1995), could be adapted for the purposes of estimating data truthful-

ness, its e�ectiveness is dependent on the accuracy of an initial 'guess'. The
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Method of Moments, another possible approach for estimating population pa-

rameters such as the mean or standard deviation, has been found to be less

precise than the Maximum Likelihood Estimation (MLE) method (Eisenhauer

et al., 2015). For this reason, MLE is used to quantify the correctness of data

submission measurements.

Economic theory acknowledges that full incentive compatibility cannot be

guaranteed for all categories of exchanges between parties (Roberts and Postle-

waite, 1976). In this case of limiting incentive compatibility, there is the

potential for a party to gain from misrepresentation. This is the case here as the

MLE method computes a range that does not provide a de�nitive evaluation of

data truthfulness but rather is used to estimate whether the data submission

is truthful or not. Hence, there is the potential for participants to make false

data submissions within the de�ned range i.e. false positives could be rewarded.

In addition, there is also a potential for false negatives. For example, a valid

submission from a participant may be deemed to be untruthful as it falls outside

the current range.

While the absence of full incentive compatibility means that the approach

can never fully guarantee that a data submission is truthful, this is unavoidable

as economic theory states that it is impossible to implement full incentive com-

patibility in �nite economies (Groves and Ledyard, 1987) i.e. a market where

there is a limited number of participants. This is the case for participatory

sensing where there is a �nite number of participants willing to make data sub-

missions. However, the presence of an incentive compatibility approach does

reduce the probability of untruthful data submissions being rewarded. This

probability further diminishes as the number of participants increases and the

service provider's dataset grows and improves in quality. This is because the

latter will be able to calculate narrower acceptable ranges for data truthfulness,

making it more di�cult for dishonest participants to submit spurious data. The

narrower range will also ensure PAI robustness with respect to incentive com-

patibility even in those participatory sensing campaigns where there is a high

number of malicious participants submitting untruthful data.

It must be acknowledged that, given that the core aim of the work under-

taken in this thesis is to preserve identity privacy for participants when receiving

and spending rewards, a dishonest participant who is rewarded for a data sub-

mission that is subsequently found to be untruthful will not be prevented from

future participation in the system. While this is indeed an unfortunate side

e�ect of providing a high level of identity privacy, it should also be noted that
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precluding a malicious participant from, for example, a participatory sensing

system that use pseudonyms, does not guarantee that the participant will not

subsequently rejoin using a new pseudonym. In addition, there are a number

of strategies a service provider could further adopt to prevent a high level of

false data submissions from being rewarded. For example, like the approach un-

dertaken by Luo et al. [2019], the service provider could cross validate data by

publishing another o�er seeking con�rmation of the submitted data. Depending

on the service provider's needs, other approaches such as managing the areas of

interest as neighbouring grids [Kong et al., 2019] could also be used to further

address the potential for dishonest participants.

4.2.2 Adapting an Approach for Estimating Data Truth-

fulness

This section describes the operation of the Data Truthfulness Estimation (DTE)

algorithm that is used by PAI to estimate data truthfulness. Data truthfulness

is assessed for each category of measurement value, c, received in the partici-

pant's data submission, d. The algorithm exits if it considers any measurement

value for a category, mc, to be untruthful. If this occurs, the validation status,

v, is assigned a value of false and the validation token, TV, published on the Or-

derBook denotes that the data submission is an invalid one. This of course then

means that the participant will not receive a reward. The high level operation

of the DTE approach is presented in Figure 4.4.

As shown in Figure 4.4., once a measurement value for c, mc, is read, it is

then checked to see whether it falls within the minimum and maximum threshold

limits,mcmin
andmcmax

, set by the service provider for c. If it is not, v is assigned

a value of false. The next step in this process is to read the relevant data, [dc],

that is held by the service provider for c. Depending on the measurement

category, this could be the entire dataset, a subset of the dataset from a recent

time period as determined by the service provider (for example, readings in the

last hour), the last n number of readings where n is a number determined by the

service provider or the last n number of readings at, for instance, a particular

time and/or location, The height, h, of the probability density function (PDF)

for [dc] is then computed to assess how close the data values are to each other

and is then used to formulate the natural logarithm to be used for the Maximum

Likelihood Estimation (MLE) method, known as the Log Likelihood Function

(LLF). Once initial estimates are set for the mean and standard deviation of
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the data value set (µe and σe respectively), the MLE method is applied using

these initial estimates and the LLF. The application of MLE results in the

computation of an estimate for the mean, µ, and the standard deviation, σ, for

which the normal distribution best describes this set of data values.

To prevent outliers and other potentially interesting (and valid) data being

miscategorised as non-truthful data submissions and thus being discarded, the

service provider can con�gure a scaling factor, fσ, that is applied to σ to create

σscaled. By adding and subtracting σscaled to and from µ respectively, the scaled

limits, lmin and lmax, are computed for mc, as highlighted in Figure 4.4. mc is

then evaluated and if it is not between lmin and lmax, v is assigned a value of

false. This process is repeated for all measurement categories [c]. If each mc

is considered to be truthful, d is considered to be truthful and v is assigned a

value of true.

Algorithm 3 presents the Data Truthfulness Estimation (DTE) algorithm.

This algorithm is applied for every measurement value contained in a data sub-

mission made to the service provider. The dynamic participatory sensing en-

vironment means that the data will be ever changing and evolving. As the

dataset is changing with each data submission, the MLE parameters are thus

either recomputed every time a change in the dataset occurs or periodically with

the service provider setting the recomputation interval in the latter case. This

ensures that the incentive compatibility approach not only provides a means

of estimating data truthfulness but does so in a way that re�ects changes that

have been captured in the service provider's dataset. The con�gurable scal-

ing factor also ensures that potentially interesting patterns and outliers that

are re�ected in incoming data streams are not inadvertently disregarded by the

service provider. This further ensures that the requirement for the dataset to

be re�ective of changes in the dynamic participatory sensing environment is

met. It should also be noted that the estimation of data truthfulness does not

require any disclosure of identity privacy by the participant as the data submit-

ted to the service provider contains no reference to the participant who made

the submission. Therefore, while the participant who makes a non-truthful data

submission does not receive a reward, the requirement for identity privacy is not

violated.

It should be noted that the underlying MLE method has a number of lim-

itations. For instance, it is only suitable for scalar data and cannot be used

to evaluate the truthfulness of multimedia data content. This is unsurprising

given that many statistical methods are only appropriate for scalar data. In
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addition, as noted in Section 2.1.2, sensed multimedia data is not considered

in this thesis. The e�ectiveness of MLE has also been found to be limited in a

number of situations, for example, when the percentage of censored data (i.e.

when the value of a measurement is only partially known) is large and the sam-

ple size is small (Jain and Wang, 2008). Nevertheless, it can be concluded that

DTE does ful�ll the requirement for Incentive Compatibility (R4) as it seeks to

demonstrate how incentive compatibility can be facilitated without impinging

upon identity privacy. The goal of requirement R4 is to demonstrate that PAI

can facilitate incentive compatibility in a privacy preserving manner and the

use of the MLE method has achieved this. It should be noted that it is possible

to adopt a variant of MLE without violating the requirement. For example, the

modi�ed MLE methods proposed in Li et al., 2019b and Wang and Chan, 2018

have the potential to serve as the basis for an MLE method that could cater for

censored data.

4.3 Adaptive & Tunable Reward Allocation (R5)

This section describes how PAI meets the requirement for Adaptive and Tunable

Reward Allocation (R5) through the development of the Adaptive Reward Al-

location (ARA) model. The options for modeling ARA as a stochastic process

and the rationale for adopting Lyapunov Optimisation are discussed in Section

4.3.1. In order to formulate the optimal trade-o� between budget consumption

and reward level, Lyapunov Optimisation requires a dataset consisting of the

number of responses given in return for the di�erent reward levels. Section

4.3.1 therefore discusses the design of the prediction model used to estimate the

number of responses for the di�erent reward levels and then models the envi-

ronment for the purposes of reward determination and budget optimisation. To

establish benchmarks for evaluating ARA, the formulation of the o�ine budget

optimisation problem is presented in Section 4.3.2 with the time average budget

consumption of online reward allocation policy being de�ned in Section 4.3.3.

The design of the reward algorithm to minimise this time average budget con-

sumption is then presented in Section 4.3.4. Lastly, the incorporation of data

utility in the model is discussed in Section 4.3.5.
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Figure 4.4: The Data Truthfulness Estimation Approach

70



1 [Service Provider receives a data submission d]
2 // Evaluate data truthfulness for each category of measurement
3 foreach c in d
4 // Check if the measurement value for this category is within the
5 // limits set by the service provider. If not, set the validation
6 // status to false and exit the algorithm.
7 if mc < mcmin

or mc > mcmax
then

8 v = false
9 return v

10 end if
11 // Read the previously held data for this category of
12 // measurement.
13 Read data [dc] for c
14 // Compute the height of the dataset's PDF.
15 Get h from [dc]'s PDF
16 // Compute the Log Likelihood Function.
17 LLF = h− sum(log(h))
18 // Use initial estimates for the mean and standard deviation.
19 Use initial estimates µe and σe

20 // Use MLE to estimate the two parameters (mean and standard
21 // deviation) for which the normal distribution best describes the
22 // data.
23 Compute µ and σ by applying MLE using LLF, µe and σe
24 // Read the standard deviation factor for this measurement
25 // category, compute the scaled standard deviation setting
26 // and set the threshold limits.
27 Read fσ
28 σscaled = σ ∗ fσ
29 lmin = µ− σscaled

30 lmax = µ+ σscaled

31 // Check if the measurement value is within the threshold limits.
32 // If not, set the validation status to false and exit the algorithm.
33 if mc < lmin or mc > lmax then
34 v = false
35 return v
36 end if
37 end foreach
38 // If the loop has �nished without exiting the algorithm, the data
39 // submission is a valid one.
40 v = true
41 return v

Algorithm 3: Estimating Data Truthfulness
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4.3.1 Modeling ARA as a Stochastic Process

As discussed in Chapter 3, the modeling of ARA as a stochastic process is of

particular interest in addressing requirement R5 as such a method would not

impinge upon participant privacy and would take account of the fast changing

dynamic environments in which participatory sensing systems operate. In addi-

tion, stochastic optimisation processes can be used to optimise the trade-o� of

con�icting objectives. While there are many multi-objective optimisation meth-

ods that can be used to optimise the trade-o� between con�icting objectives,

these have limitations that make them inappropriate for addressing requirement

R5. For example, Tsai and Chen [2014] note that mathematical programming

methods can be limited in terms of their scalability while other methods such as

the Order-Weighted Average (OWA) optimisation technique have been found to

lead to non-optimal solutions. Similarly, evolutionary multi-objective optimisa-

tion methods have also been found to have issues that would lead to requirement

R5 not being ful�lled (Emmerich and Deutz, 2018). For example, it can be dif-

�cult to achieve regular spacing of solutions (i.e. a consistent set of solutions

for the optimisation of a particular problem) using Pareto-based optimisation

methods.

There are a number of stochastic modeling techniques that have been used

for incentive design in the state of the art in other �elds. For instance, the ap-

proach proposed by Huang et al. [2016] uses a Markov Decision Process model

to design an incentive scheme for shopping coupons that re�ects users' privacy

sensitivities while Stochastic Resource Auctions are used for pricing wind power

(Tang and Jain, 2015). However, the Markov Decision Process is used for mod-

eling problems where the outcome is partly under the control of the decision

maker. This is not the case in participatory sensing as the service provider has

no control over whether a participant accepts an o�er or not. While the option

of using a Stochastic Resource Auction has more promise in that it facilitates

dynamic and scalable incentive computation, it necessitates the use of an auc-

tion which, as was noted in Chapter 3, would lead to privacy vulnerabilities

that would violate PAI's privacy requirements. Stochastic Submodular Max-

imisation, which is used by Singla and Krause [2013b] for privacy trade-o�s in

participatory sensing, has an inherent assumption of diminishing returns (i.e.

incremental returns are lower over time). This is not appropriate for meeting

requirement R5 as the service provider expects equal or better data submissions

over time at a lower cost per submission.
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In contrast, Lyapunov Optimisation, a stochastic technique that seeks to

push the backlog of queues in dynamic systems toward a lower congestion state

with a view to achieving network (i.e. system) stability (Neely, 2010), is a

method that is particularly suitable for the controlling of dynamic systems. It is

used for the computation of incentives and pricing in communication networks

and has been previously used for incentive design for participatory sensing,

though not for reward computation (for example, Han et al., 2014). It can

be used to minimise dynamic costs (Liu et al., 2015) and is suitable for rapid

changes over time in the environment in which it is applied (Urgaonkar et al.,

2010). These attributes are directly relevant given the desire by service providers

that budget consumption be optimised. For this reason, the ARA model of

reward allocation is based upon this method.

Lyapunov Optimisation is particularly appropriate for ARA as the approach

seeks to dynamically adapt rewards so as to respond to sudden and rapid changes

in an environment with the nature, accuracy, quality and level of detail of the

data varying depending on the circumstances. Furthermore, the fact that a

Lyapunov Optimisation solution at any one time a�ects the constraint to be

applied the next time the optimisation is carried out is important for ARA as

the service provider's budget is being consumed with each optimisation solution

that results in accepted o�ers. Finally, the use of Lyapunov Optimisation does

not require future knowledge of the rate of response to o�ers made by the service

provider. This is crucial for ARA's reward model.

As Lyapunov Optimisation is principally used for resource allocation prob-

lems in domains such as computer networking (Lee and Heo, 2016), its use must

be modi�ed for the problem PAI is seeking to address. This is principally be-

cause there are a number of di�erentiating attributes of an economic market

in participatory sensing. In particular, the data being sought by the service

provider (equivalent to the product in other economic markets) can potentially

change suddenly and its value to the service provider will change depending on

that party's needs at a particular point in time. While demand may change in

other price optimisation scenarios such as wind power or cloud infrastructure

rental, the product does not. In participatory sensing, the `product' (type of

data sought) not only changes over time but is time sensitive and needs to match

the information sought by the service provider (Tham and Luo, 2015). It is thus

an appropriate candidate for a market-based model.

There are three facets to modeling ARA as a stochastic process. The es-

timation of the number of responses for the di�erent reward levels and the
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formulation of the statistical prediction model to use is described in Section

4.3.1.1. Having de�ned the prediction model, the problem to be addressed,

and, in particular, the trade-o� to be optimised, is de�ned in Section 4.3.1.2.

This trade-o� is then used to model the environment for budget optimisation

in Section 4.3.1.3.

Figure 4.5 presents a high level overview of the operation of the ARA model.

The reward computation for a particular category of data submission takes place

at the beginning of each timeslot, t, and is applied to all o�ers during that

timeslot.

4.3.1.1 Estimating the Number of Responses

The reward included in the o�er published by the service provider is a key factor

in determining the number of responses in a particular timeslot, NO(t), for each

o�er O. It is therefore assumed that NO(t) is a function f of the o�ered reward

in a particular timeslot, denoted rO(t):

NO(t) = f(rO(t)) (4.5)

To estimate NO(t), ARA requires a dataset that it can use to compute the

appropriate value for rO(t). In microeconomic terms, this is the reservation

price at which the participant is willing to 'sell' data. While the reservation

price is typically computed by methods such as the Conjoint Analysis (Kalish

and Nelson, 1991) and Contingent Valuation methods (Lee and Heo, 2016),

these methods are dependent upon surveying potential customers (or partici-

pants in this case) which is not a practical option for meeting the requirement

for Adaptive and Tunable Reward Allocation (R5) in a participatory sensing

environment. Instead, ARA builds up a picture of participants' willingness to

accept o�ers at particular rates from supply curves that use previous data sub-

missions from the service provider's existing dataset. Previous data submissions

thus act as a substitute for a survey to present an ongoing evolving picture of

the willingness to accept o�ers at particular levels of reward.

As the level of reward set by the service provider is a key determinant of

the number of data submissions it obtains in response to an o�er, the above

function can be modeled using the microeconomic concept of a supply curve.

The formal de�nition of a supply curve is a graphic representation of the rela-

tionship between product price and the quantity of the product that a seller is

willing and able to supply. In terms of the model used for ARA, a number of
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Figure 4.5: ARA Operation
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supply curves are used to estimate the relationship between the reward o�ered

and the number of responses di�erent categories of o�ers attract from partic-

ipants. These supply curves evolve over time as more o�ers are made by the

service provider and more responses to o�ers are received. The relationship be-

tween the number of responses and the reward level thus serves as ever evolving

training data (a set of data used to discover relationships) to enable the service

provider to more accurately estimate the reward that will generate its desired

number of responses.

Each supply curve is modeled using regression analysis to predict the willing-

ness of participants to accept o�ers at di�erent reward levels. Typically, both

demand and supply are modeled as a function of price and cost respectively

using linear regression in the �eld of Econometrics (Hill, 2011, see also, for ex-

ample Labandeira et al., 2017). However, to facilitate the incorporation of other

predictors that will not necessarily have a linear relationship (for example, the

e�ort involved in capturing the data), a non-linear multiple regression method is

used to predict the number of responses, Npredict. Speci�cally, a rolling window

time series regression model is used to construct the prediction model so that

only the most recent data is taken into account. The size of the rolling window

used can be altered depending on the circumstances in the participatory sensing

environment without impacting the algorithm. Indeed, any form of predictive

modeling technique can be used to update the supply curves, thus allowing the

service provider to evaluate which is the best predictive model to use (Martini

and Spezzaferri, 1984).

As noted in Section 2.1, the participant will incur costs when submitting

data resulting in di�erent willingness to make data submissions. These costs

can be considered as random e�ects that are summarised as a cost parameter

C, which is random, i.i.d (independent and identically distributed) and varies

between time slots. When the cost is high (for example, the smartphone is

required for the user's own needs; the battery is low), the user needs a higher

reward to participate. When C is low (for example, the device is idle; the

user has time to complete the task) then even a low reward might be enough.

While the service provider does not have access to each individual participant's

circumstances during a particular time slot, it can nevertheless estimate C in

terms of, for example, battery consumption, data transmission costs and latency

i.e. the time taken to accept a task, carry out a task, make a data submission

and receive the reward for the completion of the task.

The number of current active participants P in each time slot t is another
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parameter of interest when predicting the number of responses. For example,

when there are many active participants, a small reward that can motivate only

10% of these users might be enough in order to ensure the required number

of responses. On the other hand, a higher per user reward is necessary for a

participatory system with less active participants.

Therefore, Npredict can be de�ned in terms of the rewards o�ered r, the

cost of carrying out the task, −C, and the ratio of the number of responses

sought to the current number of participants, Pratio. Using X to denote this

set of predictors as a vector and β to denote a vector of parameter coe�cients,

Npredict can be expressed as follows:

Npredict = f(X,β) + ε (4.6)

where ε is an error term.

Equation 4.6 can be expanded to incorporate r, −C and Pratio. In addition,

while the problem is non-linear, it can be expressed in epigraph form as follows:

Npredict = β0r − β1C + β2Pratio (4.7)

where β0 is the regression coe�cient for r.

β1 is the regression coe�cient for �C.

β2 is the regression coe�cient for Pratio.

Equation 4.7 can be extended by the service provider to incorporate other

coe�cients if there are other factors that determine the number of responses,

for example, the level of privacy to be ceded. In addition, the service provider

can remove what it deems to be irrelevant predictors without impacting the

underlying reward model. For example, a service provider who is only seeking

scalar data such as temperature might consider the task cost to be broadly

similar between time slots.

It should be noted that if the number of responses is greater than that

desired by the service provider in a particular timeslot, Ndesired(t), it will only be

desirable from the service provider's perspective to reward some of the responses

to an o�er. Moreover, while it may be possible to attract Ndesired(t), this might

necessitate a reward level that is not consistent with optimal consumption of

the service provider's budget. Hence, while the supply curves can be used to

determine reward levels, the trade-o� between achieving Ndesired(t), and budget

consumption must be addressed. It is thus necessary to model this trade-o� for

the participatory sensing environment.
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4.3.1.2 Modeling the Environment for Reward Determination

The relationship assumed by Equation 4.5 is used to build up a picture of the

(estimated) number of participant responses to a particular reward. However,

there will be a point at which increasing the reward will not lead to an increase

in the number of responses even if parameters such as C remain unchanged.

This is because the maximum number of responses is equal to the number of

participants in the participatory sensing system, P (t), and varies over time

as participants join and leave the system (either by formally deregistering or

ceasing to participate). Thus for every time slot t:

0≤NO(t)≤P (t) (4.8)

rP(t) denotes the reward level when the number of responses equals the

number of participants i.e. when demand equals supply in economic terms:

NO(t) = P (t) (4.9)

P (t) is upper bounded by a constant, Pmax, which corresponds to the maxi-

mum number of participants potentially active on the system. This leads to the

following constraint for every time slot t:

0 ≤ P (t) ≤ Pmax (4.10)

Using the supply curves, PAI can estimate the number of responses that

should be received at di�erent levels of rewards for di�erent categories of data.

For example, the service provider estimates that it will receive NO number of

responses when the reward level is set to rO. Taking Equation 4.9 and Equation

4.10 into account, rO should not exceed rP(t) as exceeding rp(t) will not increase

the number of responses:

0≤rO≤rP(t) (4.11)

As the supply curves evolve over time, the process of updating each curve

is undertaken at the beginning of each time slot when reviewing the reward

level. The service provider uses the reward-response data it has observed over

previous time periods and, accordingly, updates the supply curve for this time

slot.

The problem PAI is seeking to address can thus be de�ned as follows:
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Problem De�nition

For a given number of responses in a time slot, t, that follows an i.i.d.

process with mean cost C, and for a certain level of minimum participants that

the system should recruit, design a dynamic algorithm that �nds the optimal

level of reward so as to satisfy the above constraints while minimising the budget

consumption of the service provider.

To achieve a trade-o� between minimising the number of o�ers forfeited due

to too low a reward and optimising budget consumption, the former is de�ned

as a queue for a time slot t, Zforfeit(t)
6. The number of forfeited responses is

what is termed a 'virtual queue'. As the name implies, virtual queues do not

exist in reality and are only implemented in software to facilitate the de�nition

of the Lyapunov Optimisation-based model (Neely, 2010).

Zforfeit(t) is computed in terms of the number of responses desired by the

service provider, Ndesired(t). Thus, in any time slot, t, Zforfeit(t) is the di�erence

between the actual number of responses received, Nreceived(t), and Ndesired(t)7:

Zforfeit(t) =

0 if Nreceived(t) ≥ Ndesired(t)

min(Ndesired(t), P (t))−Nreceived(t) Nreceived(t) < Ndesired(t)

(4.12)

4.3.1.3 Modeling the Environment for Budget Optimisation

As originally formulated, Lyapunov Optimisation is used to minimise the back-

log of a queue for the purposes of optimising resource allocation [Neely, 2010]. In

mathematical terms, the method is the sum of squares of the queue (multiplied

by ½) arising from a resourcing problem:

L(t) = (
1

2
)
∑
i

Zi(t)
2 (4.13)

Equation 4.13 measures the queue backlog for the system model, the queue

being the number of forfeited responses as de�ned by Equation 4.12.

The computation of Ndesired(t) is dependent upon the requirements of the

service provider. While the nature of participatory sensing campaigns means

that di�erent service providers could have diverse needs, two options are consid-

6Z is used to denote a virtual queue as this notation corresponds to that used in the work
undertaken by Neely [2010].

7Or P (t) where this is less than Ndesired(t).
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ered in this thesis. Firstly, in a fast changing environment, the service provider

could decide that its desired number of responses is determined by its needs at

a particular time, i.e. for every time slot t, the desired number of responses is

independent of previous timeslots:

Ndesired(t)⊥Ndesired(t− 1) (4.14)

In such a case, it is assumed that Ndesired(t) is i.i.d. over the time slots.

Furthermore, unlike other scenarios typically modeled using Lyapunov Opti-

misation (for example, Liu et al., 2015), Zforfeit(t) is, for every time slot t,

independent of queue backlogs from previous timeslots:

Zforfeit(t)⊥Zforfeit(t− 1) (4.15)

Alternatively, the second option is that the service provider may decide that,

if, for a previous timeslot t − 1, Ndesired(t − 1) < Nreceived(t − 1), Ndesired(t) is

determined by Ndesired(t− 1) i.e. for every time slot t:

Ndesired(t) = Ndesired(t− 1)−Nreceived(t− 1)

s.t. Ndesired(t− 1) > Nreceived(t− 1) (4.16)

This then implies that the value of Zforfeit(t) is determined by Zforfeit(t− 1)

i.e.

Zforfeit(t) = f(Zforfeit(t− 1)) (4.17)

While the underlying probability distribution and other statistical character-

istics ofNdesired(t) are not known by the service provider and are not required for

Lyapunov Optimisation, it must be assumed that its maximum value is �nite:

0≤Ndesired(t)≤Ndesiredmax (4.18)

Moreover, a further assumption is that the number of received responses to

o�ers is bounded by the number of potentially active participants in the system.

Thus, the expected values (the long run average values) of Ndesired(t + 1) and

P (t) adhere to the following rule:
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E(Ndesired(t+ 1))≤E(P (t)) (4.19)

This inequality ensures that there is a reward allocation schedule that ensures

the stability of Zforfeit(t). Using the rate stability theorem (Neely, 2010), Z̄forfeitk

is used to denote the time average queue backlog for the forfeited responses. The

stability of the queue is equal by de�nition as follows:

Z̄forfeitk , lim
t�∞

1

t

t−1∑
t=0

E{Zforfeitk(t)} <∞ (4.20)

It is assumed that the reward is upper bounded by a constant rmax. This

means that for all time slots t:

0≤r(t)≤rmax (4.21)

In addition, the service provider can also set a maximum value for the pro-

portion of the budget, Bproportionmax
, that can be consumed for an o�er in a

given time slot8:

0 ≤ N(t)r(t) ≤ Bproportionmax
(4.22)

4.3.2 Formulating the O�ine Problem

Before modeling the budget consumption problem for ARA, it is necessary to

establish benchmarks to evaluate the approach. This section formulates the

problem of reward allocation as two o�ine problems with complete future in-

formation (Section 4.3.2.1) and stochastic information (Section 4.3.2.2) respec-

tively as benchmarks. These benchmark cases assume information symmetry

i.e. the service provider knows the response rate for a particular reward in the

case of full information and knows the budget consumption under di�erent sce-

narios in the case of stochastic future information. Analysis of the benchmarks

is presented in Section 4.3.2.3.

4.3.2.1 Complete Future Information

With complete future information, the service provider can determine the re-

sponse rate jointly in all time slots to minimise budget consumption. To for-

8To simplify the model, it is assumed that this proportion is not altered between timeslots.
This could be done without impacting the core contribution of the ARA model.
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mulate the o�ine budget consumption problem, Τ is de�ned as the set of all

time slots 1..tn during the sensing period where tn represents the �nal time slot.

As no linear relationship is assumed between the number of responses and the

reward o�ered, the problem is a nonlinear convex optimisation problem and can

be formulated as follows for an individual timeslot t for the reward range:

min
t∈T
{Nmin(t)rmin(t). . .Nmax(t)rmax(t)}

s.t.

r(t) ≥ rmin

r(t)≤rmax

N(t)≥Ndesired

N(t)r(t)≤Bremain (4.23)

where rmin is the minimum reward.

rmax is the maximum reward.

Nmin is the number of responses received for rmin.

Nmax is the number of responses received for rmax.

Bremain is the remaining budget.

The problem of minimising the budget consumption over the entire set of

time slots Τ, is subject to the same constraints and is formulated as follows:

1

t

∑
t∈T

N(t)r(t) (4.24)

The o�ine reward allocation problem solved in Equation 4.24 incorporates

the explicit response rate of every time slot in advance. There are a wide range of

optimisation methods that can be used to solve Equation 4.24, for example, the

�rst �t and best �t algorithms, nonlinear programming methods, mixed integer

linear programming methods (by formulating the problem in linear epigraph

form) or, by using linear programming relaxation, the simplex method or KKT

analysis (Gao et al., 2015a).

The formulation and solving of Equation 4.24 requires complete knowledge of

the future response rate in every time slot t, which is obviously impractical. For

this reason, a model which only requires certain future information is de�ned.
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4.3.2.2 Stochastic Future Information

This section proposes a benchmark based on stochastic future information where

the response rate for each time slot follows the same probability space. With

stochastic information only, the service provider cannot decide the reward for a

timeslot in advance as it does not have complete future information. This case

focuses on the expected budget consumption optimisation based on stochastic

information. Θ de�nes the set of possible scenarios (or information realisations)

that can occur when a service provider makes an o�er at a particular reward

level, r. r(θ) and N(θ) respectively denote the reward level and the number

of expected responses to that reward under a particular information realization

θ. Budget consumption under θ is N(θ)r(θ). Therefore, the expected budget

optimisation problem can be de�ned as follows:

min

ˆ

θ∈Θ

N(θ)r(θ) (4.25)

Like Equation 4.24, Equation 4.25 is an o�ine problem subject to the same

constraints that in this case de�nes a contingency plan which speci�es the budget

consumption under each information realisation, θ. It is a nonlinear program-

ming problem with an in�nite number of variables as θ is continuous (Gao et al.,

2015a). It should be noted that formulating and solving Equation 4.24 requires

certain (stochastic) future information, which may not be available in practice.

4.3.2.3 Analysing the Benchmarks

The next step is to analyse the gap between the minimum budget consumption

with complete future information derived from Equation 4.24 and the minimum

budget consumption with stochastic future information derived from Equation

4.25. These are denoted by Bο and B∗ respectively. As indicated in the state

of the art (Gao et al., 2015a), this can be expressed formally as follows:

Lemma 1

if T →∞, then Bο → B∗ (4.26)

Lemma 1 indicates that, as long as the total sensing period T is of su�cient

length, the diminution in budget consumption optimality caused by the loss of

complete future information is negligible. Hence, both Bο and B∗ can serve as

the same benchmark for an online policy that does not require future informa-

tion. An online policy is necessary as the stochastic future information required
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by Equation 4.25 may not be available in practice. ARA's reward mechanism

is thus modeled as an online problem of reward allocation i.e. with no future

information. The o�ine problem serves as a benchmark only.

4.3.3 Online Budget Consumption Optimisation Problem

The Lyapunov Optimisation-based budget optimisation problem formulated in

this section relies only on past response rates to particular rewards and does not

require any future information. The goal of the service provider is to minimise

the time average reward and hence optimise its budget consumption. The service

provider's budget (B) consumed in time slot t is given by:

B(t) = N(t)r(t) (4.27)

Lyapunov Optimisation requires a control decision. For ARA, the control

decision refers to the setting of an optimal reward level, r(t), for a particular

time slot t. Thus, r(t) is the control decision made in time slot t. The resultant

reward allocation policy arising from r(t) must meet the constraints presented

in Equations 4.18, 4.19, 4.20 and 4.21.

The time average budget consumption of this policy can then be de�ned as:

BAV, lim
t�∞

1

t

t−1∑
t=0

E{N(t)r(t)} (4.28)

The goal of ARA's reward model is to determine a reward level r(t) that

minimises the time average budget consumption subject to the constraints pre-

sented in Equations 4.18, 4.19, 4.21 and 4.22.

4.3.4 Designing the Reward Algorithm

The virtual queue, Zforfeit(t), in the modeled system is the dimension that has

to be considered to achieve an optimal reward for a time slot t. As a result,

from Equation 4.13, the Lyapunov Function for t can then be de�ned as:

L(t) ,
1

2
Zforfeit(t)

2 (4.29)

Equation 4.29 is a quadratic Lyapunov function, a scalar measure of the total

queue backlog in the participatory sensing system. The expected change in the

Lyapunov function over one time slot t is referred to as the one-slot conditional
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Lyapunov drift and is de�ned as:

4(t),L(t+ 1)− L(t) (4.30)

To achieve adaptive reward allocation that minimises the reward o�ered for

a data submission (and thus optimises budget consumption) and still obtain

meaningful and timely responses for the service provider's dataset, Equation

4.30 must be greedily minimised for each timeslot t (i.e. the solution that is the

best for the current timeslot is chosen) so as to minimise the queue backlog. In

queuing theory terms, this means that the queue backlogs are pushed towards

a lower congestion state on an ongoing basis with the goal of achieving queue

stability. Therefore the budget consumption term B(t) is incorporated into

Equation 4.30 to produce a drift-plus-penalty expression:

4(t) + V {B(t)} (4.31)

Given that the overall objective is to minimise budget consumption, it should

be minimised at the same time as the queue backlog is being minimised. This

minimisation objective is known as a penalty under Lyapunov Optimisation.

The fundamental objective of Lyapunov Optimisation is to minimise the bound

(limit) on the drift-plus-penalty expression (Neely, 2010). V is a non-negative

control parameter that is used to incorporate the weighted budget consumption

term in the control decision. This facilitates the trade-o� required by the service

provider between reducing the backlog of Zforfeit(t) and minimising B(t). Thus,

in statistical terms, the goal is to �nd the upper bound for Equation 4.31, which

will then be minimised to determine the optimal trade-o� between the number

of forfeited responses (i.e. the queue backlog) and the budget optimisation.

The drift-plus-penalty bound for a general case (Neely, 2010) can be ex-

tended for the environment in which PAI operates. For the purposes of this

model, the number of responses received for an o�er, Nreceived(t), is assumed

to be i.i.d. over time slots. Therefore, under any control algorithm that seeks

to minimise the reward allocated, r(t), the drift-plus-penalty expression used

for Lyapunov Optimisation (Neely, 2010) can be formulated for ARA with the

following upper bound:

4(t)+V {B(t)}≤Bconstant(t)+VE{B(t) Z(t)}+Z(t)E{Nreceived(t−1)−Ndesired(t) Z(t)}
(4.32)
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It should be noted thatBconstant(t) is a positive number used in the Lyapunov

Optimisation computation and is de�ned by:

Bconstant(t),
1

2
(Nreceived(t− 1)−Ndesired(t))2 (4.33)

Like other Lyapunov Optimisation-based models (Neely, 2010), the objective

of the reward allocation algorithm presented for PAI is not to directly minimise

Equation 4.31. The goal rather is to minimise the upper bound on the right hand

side of Equation 4.32. Therefore, the reward allocation algorithm observes the

queue backlog Z(t) in every time slot t and adapts the Lyapunov Optimisation

approach (Neely, 2010) to choose the budget consumption B(t) as the solution

to the following problem:

min N(t)(V r(t) + Z(t)) (4.34)

As was noted in Equation 4.5, N(t) is a function of r(t). This constraint is

ensured by the supply curves and thus the solution to Equation 4.34 must be

one of the rewards depicted on the relevant curve for the current time slot. This

means that the reward to be allocated, r(t), can only be one of a number of

possible values for each time slot t i.e. it is a discrete variable. The algorithm

evaluates Equation 4.34 for all possible levels of budget consumption and selects

the reward corresponding to the optimal level of consumption. After this reward

is selected, the responses are processed and rewarded by the service provider.

The appropriate supply curve is then updated to re�ect N(t), the number of

responses obtained. The execution of the algorithm is repeated for every time

slot in which an o�er is made.

A typical Lyapunov Optimisation model only requires the current system

state. This is modi�ed for PAI as the algorithm determines the reward r(t) to

o�er on the basis of the number of responses received in previous timeslots. In

other words, the algorithm o�ers higher rewards when the backlog for Zforfeit

is large and lowers the level of reward to o�er when the backlog for Zforfeit is

small.

The optimality of Equation 4.34 can be proven using standard Lyapunov

Optimisation theory (Neely, 2010). B†(t) denotes the budget consumption for

the online model in a timeslot t. Using B∗, the budget consumption bench-

mark that assumes stochastic future information, the following theorem can be

presented.

86



Theorem 1 (Adapted from Neely, 2010)

lim
t�∞

∑
t∈Τ

E(B†(t)) ≥ B∗ − Bconstant(t)

Φ
(4.35)

Equation 4.35 implies that the formulation for the online budget consump-

tion optimisation converges to the minimum budget consumption asymptotically

(as time tends towards in�nity), with a controllable error bound O( 1
Φ ).

4.3.5 Incorporating Data Utility

The value of V is a key factor in devising an optimal budget consumption policy

(Urgaonkar et al., 2010). Speci�cally, if B∗av is the objective value of the time

average maximisation problem under an optimal policy the following theorem

holds (Neely and Urgaonkar, 2008):

Theorem 2 (Adapted from Neely and Urgaonkar, 2008)

Suppose the number of responses received in a previous timeslot, Nreceived(t−
1), and the number of desired responses, Ndesired(t), are i.i.d. for each time slot.

If there exists an γ > 0 such that:

E{Nreceived(t− 1)}≤E{Ndesired(t)} − γ (4.36)

The following performance guarantees are then realised:

lim
t�∞

1

t

t−1∑
t=0

E{p(t)N(t)} < B∗av +
Bconstant(t)

V

Z̄, lim
t�∞

1

t

t−1∑
t=0

E{Z(t)}≤Bconstant(t) +
Bconstant(t) + V rmaxPmax

ε
+Nmax

(4.37)

p(t) is the penalty used for achieving queue stability in Lyapunov Optimi-

sation (budget consumption in this case) while ε represents a constant > 0.

Theorem 2 indicates that, by choosing a large value for V , the budget con-

sumption can be arbitrarily close to the optimal solution. However, the average

queue backlogs increase as the value of V is increased. This means that there is

a trade-o� between budget consumption and the size of Z(t) that can be tuned

by the service provider depending on the signi�cance of the data it is seeking in
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a particular timeslot, t.

As the importance of data being sought will vary for the service provider, it

can set a utility weighting, U , for these data submissions. The utility weighting

increases with the importance of the data to the service provider and can be

used to capture dynamic changes in the participatory sensing environment. To

re�ect the importance of the data being sought, the value of U is mapped to

that of V . Speci�cally, the value of V is increased in accordance with the data

utility weighting so as to prioritise attracting data submissions over budget

consumption i.e.

U ∝ 1

V
(4.38)

Utility weighting can thus be used to capture dynamic changes in the partic-

ipatory sensing environment. It should be noted that the predictive model could

also be used to tune the utility of the sought data submission without the need

to modify the PAI algorithm. For example, the most recent data received could

be weighted when constructing the predictive model if data is being sought on

the basis of the most recent submissions.

Algorithm 4 presents the algorithm for reward computation. Table 4.1

presents the additional notations used in this algorithm.

4.4 Summary

This chapter describes the design of PAI and presents the algorithms for the

approach. The fundamental architecture of the decentralised cryptocurrency

exchange has been modi�ed to meet PAI's privacy preservation requirements.

Speci�cally, the concept of the OrderBook is modi�ed in the Identity Pri-

vacy Preserving Incentivisation (IPPI) platform to enable participants to make

anonymous data submissions that are only accessible by the service provider,

thus meeting the requirement for Anonymous, Unlinkable and Protected Data

Submission (R1). The concept of the One-Time Key, and the use of the underly-

ing Di�e-Hellman Exchange Protocol, is also modi�ed to enable participants to

assign once-o�, untraceable and linkable IDs to their data submissions in order

to receive rewards. Through the use of the One-Time Key, the requirement for

Untraceable and Unlinkable Reward Allocation (R2) has been met. The One-

Time Key is also used to ensure that the participant can spend rewards in a

privacy preserving manner, thus meeting the requirement for Untraceable and

Unlinkable Reward Spending (R3).
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1 // Construct a Linear Regression model from the supply curve.
2 Create Supply Curve for {[Nactual], r} from Historical Dataset
3 Mpredict= Linear Regression Model for Supply Curve {[Nactual], r}
4 // Predict the responses for di�erent reward levels for this timeslot t.
5 [r] = 0..rmax

6 [Npredict(t), r] = predict(Mpredict, [r])
7 // Construct the queuing state variables for each reward.
8 foreach r
9 Zforfeit(t) = Npredict(t)−Ndesired(t)

10 {[r,Npredict(t), Zforfeit(t))]}+ = [r,Npredict(t), Zforfeit(t)]
11 end foreach
12 // Compute the constant used for Lyapunov Optimisation.
13 B(t)constant = 1

2 ∗ (Nreceived(t− 1)−Ndesired(t))2

14 // Map the data utility weighting U to the value of V .
15 V = [U, V ]
16 // Evaluate each reward using Lyapunov Optimisation.
17 foreach [r,Npredict, Zforfeit(t)]
18 // Compute the Budget used by this reward.
19 B(t) = r ∗Npredict(t)
20 // Check that the budget consumption does not exceed the set
21 // maximum.
22 if B(t) > Bproportionmax

then
23 break
24 end if
25 // Carry out the Lyapunov Optimisation computation.
26 L = 1

2 ∗ Zforfeit(t)
2

27 // Compute the one slot conditional Lyapunov drift.
28 ∆(t) = L− Llast(r)
29 // Evaluate the drift plus penalty expression.
30 DPPLHS = ∆(t) + (V ∗B)
31 DPPRHS = B(t)constant + (V ∗B) + Z(t)(Nreceived(t− 1)
32 −Ndesired(t)))
33 if DPPLHS >= DPPRHSthen
34 continue
35 end if
36 // Evaluate the current optimisation computation.
37 OPTcurrent = Npredict ∗ ((V ∗ r) + Z(t))
38 if OPTcurrent > OPTsolution then
39 OPTsolution = OPTcurrent

40 roptimal = r
41 end if
42 end foreach

Algorithm 4: Reward Computation
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Notation Meaning

DPPLHS Left hand side of Drift Plus Penalty
expression.

DPPRHS Right hand side of Drift Plus Penalty
expression.

Llast(r) Last Lyapunov function calculated for
a particular reward.

OPTcurrent Current Lyapunov Optimisation
calculation.

OPTsolution Lyapunov Optimisation solution.
Mpredict Linear Regression prediction model.
roptimal The optimal value for the reward.
[r] Set of possible reward values.
r(t) The optimal reward to o�er in a

particular timeslot, t.
[r,Npredict, Zforfeit(t)] Reward, number of predicted responses

and queuing state variable for this
reward.

{[r,Npredict, Zforfeit(t)]} The set of rewards, their respective
queuing state variables
and number of predicted responses.

{[Nactual], r} Actual responses for the di�erent
reward levels.

[Npredict, r] The number of predicted responses for
the di�erent reward levels.

[U, V ] A map of data utility weightings and
the constant V used for computing
the Lyapunov Drift.

∆(t) One-slot conditional Lyapunov Drift.

Table 4.1: Additional Notations for Reward Computation Algorithm
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PAI also facilitates limiting Incentive Compatibility (R4) in a privacy pre-

serving manner. Through the adoption of the Maximum Likelihood Estimation

method, the Data Truthfulness Estimation (DTE) algorithm estimates whether

a data submission is truthful or not, thus ensuring that only those rewards that

were deemed to be valid receive a reward from the service provider. This facili-

tates the service provider in optimising the consumption of the budget set aside

for the participatory sensing campaign as does the Adaptive and Tunable Re-

ward Allocation (R5) provided by PAI. The meeting of this requirement ensures

that the reward given to participants is re�ective of the current response rate.

The Adaptive Reward Allocation (ARA) model can also be tuned by the service

provider to prioritise data capture over budget consumption and vice versa. The

reward allocation mechanism uses linear regression and microeconomic supply

curves to build up a picture of the response rate for di�erent data categories.

Using Lyapunov Optimisation, the method calculates the reward that is most

likely to garner the required number of responses. This process is repeated for

each time slot. The service provider then publishes its o�er on the OrderBook

at this reward level.
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Chapter 5

Evaluation

This chapter evaluates the Privacy-Aware Incentivisation (PAI) approach pro-

posed in this thesis. The implementation carried out to evaluate PAI is de-

scribed in Section 5.1. PAI is evaluated by proof and by comparing the ap-

proach to the most relevant approaches in the state of the art with Section

5.2 discussing how the design proposed in Chapter 4 meets the requirements

for Anonymous, Unlinkable and Protected Data Submission (R1), Untraceable

and Unlinkable Reward Allocation (R2), Untraceable and Unlinkable Reward

Spending (R3), Incentive Compatibility (R4) and Adaptive and Tunable Reward

Allocation (R5). Proofs are presented to illustrate how PAI meets privacy pre-

serving requirements R1, R2 and R3 as well as the approach's facilitation of the

requirement for Incentive Compatibility (R4) in a privacy preserving manner.

Requirement R5 uses a simulated participatory sensing environment to carry

out experiments evaluating the adaptiveness and tunability of PAI's adaptive

reward allocation method in comparison to the most relevant approaches in the

state of art for participatory sensing reward computation. Experiments are also

carried out to evaluate the overall performance of the system using the most

relevant approaches in the state of the art in privacy preserving reward alloca-

tion as baselines, described in Section 5.3. Section 5.4 discusses the results of

the evaluation and summarises the chapter.
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5.1 Implementation

PAI is implemented using the C++ and statistical R programming languages.

The goal of this implementation is to validate the design of PAI and the pre-

sented theorems and conduct the experiments evaluating requirement R5. The

implementation is organised around three core components representing the par-

ticipant (the Participant Component (CC1)), the OrderBook (the OrderBook

Component (CC2)) and the service provider (the Service Provider Component

(CC3)). Each core component is implemented as a C++ class.

As discussed in Section 4.1.1, PAI is a decentralised exchange platform that

uses peer devices to host the contents of the OrderBook (CC2 in the implemen-

tation). The number of peers on which CC2 resides is con�gurable for di�erent

runs of the implementation. The service provider is also con�gurable with the

initial reward to o�er, the maximum reward to o�er, the number of responses

sought, the initial response rate, the rolling regression window to use for fore-

casting the di�erent response rates, the service provider's budget and the data

utility all being adjustable. These are set in and accessed from the system's

Con�guration.

The core components use four supporting components for token creation (the

Token Library (SC1)), cryptographic functionality (the Cryptographic Library

(SC2)), statistical operations (the Statistical Library (SC3)) and the storage

of the number of responses for di�erent reward levels as well as, of course, the

data submissions themselves (Storage (SC4)). The supporting components are

organised into libraries containing C++ structures and classes. In addition,

the statistical library, SC3, also contains a number of programs written in the

statistical R programming language1 while the storage, SC4, is implemented

using MongoDB database software2. While SC1 is directly accessible by the

core components, SC2, SC3 and SC4 are accessed using a C++ interface3. This

is done so as to separate the implementation from the third party components

used.

Figure 5.1 presents the components used to implement PAI and identi�es

the dependencies and associations between these di�erent components. The

role of these components in implementing the privacy preserving requirements

1Statistical R is chosen to implement SC3 as the toolkits it provides address the majority
of techniques available in the statistics domain, including all the methods used in this thesis.
See https://www.r-project.org

2See https://www.mongodb.com
3An interface written in Statistical R is also used for requirements R4 and R5.
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for Anonymous, Unlinkable and Protected Data Submission (R1), Untraceable

and Unlinkable Reward Allocation (R2) and Untraceable and Unlinkable Reward

Spending (R3) is described in Section 5.1.1 while the implementation of the

requirement for Incentive Compatibility (R4) and Adaptive and Tunable Reward

Allocation (R5) is explored in Section 5.1.2 and Section 5.1.3 respectively. The

simulated participatory sensing environment that is used to evaluate PAI is

described in Section 5.1.4.

5.1.1 Implementing Privacy Preservation (R1, R2 & R3)

The Token Library, (SC1 ) contains the tokens and structures used by PAI,

as outlined in Section 4.1.2, Section 4.1.3 and Section 4.1.4. These artifacts

are required to achieve the privacy preserving requirements for Anonymous,

Unlinkable and Protected Data Submission (R1), Untraceable and Unlinkable

Reward Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3).

Structures written in C++ are used to de�ne the o�er token, TO, used by the

Service Provider Component (CC3) to publish an o�er, the o�er listing, LO,

published by the OrderBook Component (CC2), the o�er acceptance, AO, used

by the Participant Component (CC1), the validation token, TV, published by

CC3 on CC2 to denote whether the o�er is to receive a reward or not and the

spendable reward token, rS, allocated to CC1. Those structures de�ned in SC1,

TO, LO, AO, TV and rS, are identi�ed in Figure 5.1 as SC1.1, SC1.2, SC1.3,

SC1.4 and SC1.5 respectively.

Similarly, the Cryptographic Library (SC2) is also required to implement re-

quirements R1, R2 and R3. The cryptographic primitives required to implement

the modi�ed use of the Di�e-Hellman Key Exchange and generate the One-Time

Key, KO, use CryptoPP4, a C++ library of cryptographic schemes. This gen-

eration of KO is carried out by a One-Time Key Generator C++ class (SC1.2 )

which is invoked by the Participant Component, CC1. The other cryptographic

operations used for PAI are also reliant upon this library. RSA5 encryption is

used for the encryption of the participant's data submission, d, in AO using the

service provider's public key, bSP, and the encryption of the spendable reward

token, rS, by the OrderBook using the public part of the participant's One-Time

Key, aKO
. The corresponding decryption operations, the decryption of d by the

service provider using its private key, b∗SP, and the decryption of rS by the par-

4See https://www.cryptopp.com
5RSA is named after its creators, Ron Rivest, Adi Shamir and Leonard Adleman.
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Figure 5.1: Implementation of the PAI Approach
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ticipant using the private part of the One-Time Key, a∗KO
, are also implemented

using this library with both encryption and decryption being undertaken by the

Encryption Manager C++ class (SC2.2 ). RSA is also used for digital signature

operations, speci�cally, the digital signing of TV by the service provider using its

private key, b∗SP, and the veri�cation of this signature by the OrderBook using

the corresponding public key, bSP. The Digital Signature Manager C++ class

(SC2.3 ) is responsible for these operations.

The steps taken by Algorithm 16 to allocate rewards to participants in a pri-

vacy preserving fashion are implemented by the Participant Component (CC1),

the OrderBook Component (CC2 ) and the Service Provider Component (CC3).

CC1 generates KO and publishes o�er acceptances, [AO], on the OrderBook,

CC2. CC2, which publishes the service provider's o�er listing, LO, updates

LO with [AO] and the validation tokens for each AO, [TV], with each TV being

created by CC3. Algorithm 2, which ensures that rewards are spent in a pri-

vacy preserving manner, is implemented in CC2, which generates rS and logs

its spending.

5.1.2 Implementing Incentive Compatibility (R4)

Having decrypted the data submission, d, in AO, the service provider must then

estimate the truthfulness of this data submission. To meet the requirement for

Incentive Compatibility (R4), a program written in the statistical R program-

ming language, named the Maximum Likelihood Estimator (SC3.4), is used to

implement the Maximum Likelihood Estimation (MLE) method that was iden-

ti�ed in Section 4.2 as the basis for this requirement. This program is invoked

as needed by the Service Provider Component (CC3) through the Data Truth-

fulness Estimator (SC3.1), a C++ class that has been implemented to estimate

data truthfulness.

SC3.1 in turn uses the Statistical R Interface C++ Class (SC3.3 ) to invoke

the R program implementing Algorithm 3, the algorithm proposed in Section

4.2.2 for estimating data truthfulness. This program initially connects to the

MongoDB Storage (SC4) via an interface, retrieves the measurement values for

the pertinent data categories and stores this data in a dataframe structure. This

data is then formatted into a vector array which is used to formulate the log-

likelihood function, LLF , whose natural logarithm output is used in turn as a

parameter when calling statistical R's mle function. As the name implies, this

6All algorithms are described and presented in Chapter 4.
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function is used to estimate the mean, µ, and standard deviation, σ, for which

the normal distribution best describes the data. Once computed, the values are

returned to SC3.1. SC3.1 then uses σ to compute the scaled standard deviation,

σscaled, using the scaling factor, fσ, set in the Con�guration. σscaled and µ are

then used to determine whether the submitted data value falls within the scaled

limits and thus estimate whether the data submission is a truthful one.

5.1.3 Implementing Adaptive & Tunable Reward Alloca-

tion (R5)

The core operation for a participatory sensing environment is the publishing

of o�ers on the OrderBook by the service provider and the response to these

o�ers by participants. For the service provider, the key decision to be made

when publishing an o�er is the level of reward to allocate. This requirement for

Adaptive and Tunable Reward Allocation (R5) is implemented in the Statistical

Library, (SC3), using both the C++ and R programming languages. The reward

allocator is implemented as a C++ class, named Reward Allocator (SC3.2), with

Algorithm 4, the Lyapunov Optimisation-based reward computation algorithm,

being the key function of this class.

To generate the predicted responses for the di�erent reward levels for a par-

ticular category of measurement, SC3.2 uses the Statistical R Interface C++

Class (SC3.4 ) to call the Predicted Responses Generator (SC3.5), an R pro-

gram that connects to the MongoDB Storage (SC4). Having connected to the

database, the program then reads the last n number of rows of reward levels

and corresponding responses for this measurement (n corresponds to the value

set for the rolling regression window in the system Con�guration). After using

the Graph Plotter (SC3.6), to plot the supply curves depicting the relationship

between the number of responses and the di�erent reward levels, the program

then uses statistical R's nlsLM function to construct a non-linear regression

model. This model serves as a parameter for statistical R's predict function. In

conjunction with a dataframe containing the di�erent reward levels, this func-

tion is used to predict the number of responses for di�erent reward levels, up to

the maximum reward set in the Con�guration.

The predicted output is written to a CSV7 �le that is read by the Reward Al-

locator (SC3.2). These values are then used to compute Zforfeit(t). As discussed

in Section 4.3.1.2, Zforfeit(t), the number of forfeited responses at a particular

7CSV, a �le format, stands for Comma Separated Values.
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reward level, is the queue backlog for the Lyapunov Optimisation system for a

timeslot, t. Having computed Zforfeit(t) for the di�erent reward levels, SC3.2

then implements the rest of Algorithm 4 to determine the reward that repre-

sents the optimal trade-o� between response rate and budget consumption. This

process is repeated for each timeslot t, the duration of which is de�ned in the

con�guration. The reward for a particular timeslot, r(t), is published as part

of any o�er token, TO, listed on the OrderBook Component (CC2) during that

timeslot.

Algorithm 4, which computes the reward in an adaptive and tunable fashion,

is implemented by the Service Provider Component (CC3).

5.1.4 Implementing a Simulated Environment for Partic-

ipatory Sensing

In addition to the core and supporting components implemented for require-

ments R1, R2, R3, R4 and R5, a simulated participatory sensing environment

has been implemented in C++ to evaluate these components and the overall

PAI approach. The simulator models a typical participatory sensing scenario

where a service provider publishes its o�ers on the OrderBook with partici-

pants responding to these o�ers. The goal of this simulator is to validate the

algorithms (Algorithms 1, 2 and 3) that have been proposed in Chapter 4 to

meet the requirements (R1, R2, R3, R4 ) pertaining to privacy preservation and

incentive compatibility. The performance of the Adaptive Reward Allocation

(ARA) model that is proposed in Chapter 4 to meet requirement R5 is also

evaluated using the simulator.

The simulator is con�gurable as the duration of the simulation and the num-

ber of participants and OrderBook hosts can be set prior to runtime. These val-

ues, like those for the OrderBook Component (CC2) and the Service Provider

Component (CC3), are accessed from the system Con�guration. On initial

startup, a simulation creates the desired number of Participant Components

(CC1), the desired number of distributed hosts for the OrderBook Component

(CC2) and the Service Provider Component (CC3).

The simulator can also be used to populate the Storage (SC4). On initial

startup. SC4 may contain no data. As training data is required to facilitate the

ARA model in the learning it needs to predict response rates for the di�erent

reward levels, the absence of such data would hinder the ability of the approach

in making these predictions. For this reason, a con�gurable option is used to
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denote whether data pertaining to the number of responses for di�erent reward

levels is to be generated. This is achieved by using a uniform discrete probability

distribution to generate the number of responses for di�erent reward levels up

to the maximum reward level.

5.2 Analysis & Validation

This section analyses PAI to evaluate whether it meets the requirements identi-

�ed in Chapter 2. Requirements R1, R2, R3 and R4 are evaluated by proof in

Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4 respectively. Requirement R5 is evaluated

in a simulated participatory sensing environment. The simulation setup and the

experiments conducted for this requirement are described in Section 5.2.5.

5.2.1 Anonymous, Unlinkable & Protected Data Submis-

sion (R1)

Requirement R1 is demonstrated through showing that participants make data

submissions to the service provider anonymously (Theorem 3), illustrating that

the data submissions made by participants are unlinkable (Theorem 4) and

showing that only the service provider can access these data submissions (The-

orem 5).

Theorem 3 Participants make data submissions to the service provider

anonymously.

Proof To obtain the data it needs, the service provider publishes a series

of o�er tokens [TO] on PAI's decentralised OrderBook denoting the data being

sought, δ, and the reward being o�ered, rO. Each o�er token, TO, is published

as a listing, LO, to which the acceptances of the participants, [AO], are ap-

pended. The OrderBook is accessible to all participants and service providers.

A participant can then choose to make a data submission, d, in return for the

o�ered reward, rO.

When issuing the o�er token, TO, the service provider has no direct commu-

nication with any of the participants. Similarly, a participant does not commu-

nicate directly with the service provider when publishing the o�er acceptance,

AO, which contains the data submission, d. Instead, AO is appended to the

o�er listing, LO, and published on the OrderBook. The o�er acceptance, AO,
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and its constituent components, the ID of the o�er being responded to, iO, the

data submission, d (unless the participant willingly submits privacy-ceding at-

tributes) and the public part of the generated key, aKO , do not contain any link

to the participant's identity or any anonymised ID or pseudonym that could be

used to identify the participant. In addition, as the o�er acceptance's unique

ID, iAO , is only assigned on receipt of the acceptance by the OrderBook, it

cannot be traced back to the participant.

The service provider is noti�ed of the data submission when AO is forwarded

to it. While it can access and evaluate the data, d , contained therein, it has

no means of linking the submission to the participant's identity. Therefore,

the participant makes its data submission to the service provider anonymously

without disclosure of identity8. �

Theorem 4 Participants make unlinkable data submissions to the service

provider.

Proof The public part of the One-Time Key, aKO
, is used to identify the

data submission made by a participant. In addition to containing no link to

the participant's identity, a di�erent aKO
is generated for each data submission.

As each data submission is an independent transaction with a di�erent ID,

the service provider has no means of linking data submissions made by the

same participant. It should also be noted that data submission unlinkability is

facilitated by the fact that data can be submitted anonymously, as demonstrated

by Theorem 3. �

Theorem 5 Data Submissions can only be accessed by the Service Provider

Proof When a participant publishes an o�er acceptance, AO, on the Or-

derBook, the data submitted is encrypted using the service provider's public

key, bSP. This encrypted data, {d}bSP
, cannot be accessed by any peer hosting

the OrderBook or any other participant or service provider as it can only be

accessed through decryption using the service provider's private key, b∗SP. �

8Similarly, a peer listing the data submission cannot determine the participant's identity
from AO. The participant can also take further steps to hide their device ID or, if necessary,
their IP address through the use of, for example, a Virtual Private Network (VPN).
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5.2.2 Untraceable & Unlinkable Reward Allocation (R2)

Requirement R2 is demonstrated through showing that participants receive re-

wards that are untraceable (Theorem 6) and unlinkable (Theorem 7).

Theorem 6 Participants receive untraceable rewards.

Proof The public part of the One-Time Key, aKO
, is published on the Order-

Book as part of the o�er acceptance, AO. A participant's aKO
cannot be traced

back to the participant who generated the corresponding One-Time Key, KO,

as it has no relationship with the participant's identity.

The service provider publishes a �ag v for AO on the OrderBook as part

of a validation token, TV, indicating its decision with respect to whether AO

should be rewarded. iAO , the ID of the o�er acceptance, is used to indicate the

reward's recipient. As iAO is generated by the OrderBook, it cannot be linked

to the participant. Once TV is published on the OrderBook, an encrypted

spendable reward rs is created for AO using aKO . Only the owner of AO can

access and consume rs as it is the only party that holds the private part of the

One-Time Key, a∗K. Thus, a participant can make a valid data submission and

receive an untraceable reward without disclosure of identity. �

Theorem 7 Participants receive unlinkable rewards.

Proof A One-Time Key, KO, is used only for one o�er acceptance, AO, so

cannot be used to link a participant's set of o�er acceptances, [AO]. In addition,

the ID of the spendable reward, iS, which is generated by the OrderBook, is

neither linkable to the participant nor to the public part of the One-Time Key

itself, aKO
. Moreover, the service provider cannot connect rs and its ID, iS, to

a participant or to aKO
. This is because rs is only decrypted when it is being

spent. Therefore, neither aKO
nor the rs encrypted using aKO

can be used to

establish linkages between the data submissions of a particular participant.

The absence of any linkable ID in a participant's set of o�er acceptances,

[AO], set of public One-Time Key components, [aKO
] or set of spendable rewards,

[rs] therefore means that the service provider has no means of inferring any data

about that participant's behavior and activity beyond what is contained in the

data submission itself. �
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5.2.3 Untraceable & Unlinkable Reward Spending (R3)

Requirement R3 is demonstrated by Theorem 8, which shows that participants'

reward spending is untraceable and unlinkable.

Theorem 8 Participants' reward spending is untraceable and unlinkable.

Proof The service provider has no role in the publishing of the o�er accep-

tance, AO, or the allocation of the reward o�ered, rO. Speci�cally, the fact that

the service provider cannot assign traceable IDs to AO means it cannot trace

participant activity on the participatory sensing system subsequent to reward

allocation through the assignment of rO.

AO has no �xed ID. While the OrderBook assigns a unique ID, iAO , on

receipt of AO, this ID cannot be used to trace the participant. In addition,

as the One-Time Key, KO, is only used once and then discarded, the service

provider has no means of linking participant activity through the publication of

the latter's o�er acceptances, [AO]. Moreover, the spendable reward, rs, cannot

be connected to AO as it is only decrypted when it is being spent. Therefore, a

participant's set of spendable rewards, [rs], is untraceable and unlinkable as is

the spending of these rewards. �

5.2.4 Incentive Compatibility (R4)

Requirement R4 is demonstrated through showing that data submissions that

are considered to be non-truthful do not receive a reward (Theorem 9) and illus-

trating that the incentive compatibility method is privacy preserving (Theorem

10).

Theorem 9 Data submissions that are considered to be non-truthful do not

receive a reward.

Proof The service provider sets the minimum and maximum threshold lim-

its, mcmin and mcmax and also con�gures a scaling factor, fσ, that is used to

compute the interval between the scaled limits, lmin and lmax, that is deemed to

contain valid values for a measurement category, mc. Participants have no role

in determining these parameters. Any measurement category in a sensed data

submission, d, that fails either of these two tests results in d as a whole being

considered untruthful and, consequently, not receiving a reward. �
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Theorem 10 The incentive compatibility method is privacy preserving.

Proof The service provider receives the sensed data, d, as part of the o�er

acceptance, AO. Prior to approving the reward allocation, the service provider

ensures that d matches the criteria of the o�er represented by iO and can then

evaluate the truthfulness of d using the Data Truthfulness Estimation (DTE)

algorithm described in Chapter 4. While this ensures that the service provider

does not allocate rewards for non-truthful data submissions, it does not violate

identity privacy as the service provider has no access to the participant's identity.

At the same time, the fact that the validation token, TV, is published for every

o�er acceptance ID, iAO , ensures that participants can see that a non-truthful

data submission has been rejected. �

5.2.5 Adaptive & Tunable Reward Allocation (R5)

This section evaluates PAI's requirement for Adaptive and Tunable Reward Allo-

cation (R5). Section 5.2.5.1 describes the experimental setup for the simulated

participatory sensing environment that is used to evaluate the adaptiveness,

utility and budget consumption of PAI's reward allocation model. The experi-

ments and results evaluating adaptiveness and utility are presented in Section

5.2.5.2 with Section 5.2.5.3 presenting the experiments and results evaluating

budget consumption. It should be noted that requirement R5 's speci�cation

that data quality not be impaired is met through the ful�llment of requirements

R1, R2, R3 and R4 (as these requirements do not alter, or otherwise diminish,

the quality of the submitted data).

As outlined in Chapter 3, incentivisation has been extensively considered

in the state of the art with SenseUtil (Tsujimori et al., 2014) and the STOC-

PISCES (Biswas et al., 2015) approaches in particular addressing the need to

consider participation rates and data utility. Given their similarity in intent to

PAI's ARA component, these approaches are used as baselines for comparison

in the evaluation of requirement R5.

5.2.5.1 Experimental Setup

The Adaptive Reward Allocation (ARA) component that has been designed

to meet PAI's requirement for Adaptive and Tunable Reward Allocation (R5)

is evaluated in a simulated participatory sensing environment. The service

provider makes a series of o�ers over the duration of the simulation with 100
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responses being sought for each o�er. This �gure is chosen to facilitate ease of

response rate computation and to re�ect a participatory sensing environment

where the service provider is seeking to build a large dataset. Furthermore,

while the number of responses sought will vary among participatory sensing

applications as well as over time, this �gure is also chosen to clearly determine

whether the reward level is adapting to the response rate and the utility of the

data sought. The minimum and maximum reward to be set for an o�er are 10

and 200 units respectively as this range should produce diverse reward levels

that will demonstrate the adaptiveness and tunability of the ARA model. To

generate a comprehensive dataset, each simulation runs for one hour with o�ers

being generated every 5 seconds9. Each simulation thus generates reward and

response rate pairings for over 700 o�ers on average. For the purposes of the

simulation, it is assumed that each o�er corresponds to one timeslot t (i.e. one

o�er is produced per timeslot) with the reward being re-evaluated with each

o�er.

The simulation is run in two types of environment, one with a high ini-

tial number of responses (referred to as the `High Response Environment') and

one with a low initial number of responses (referred to as the `Low Response

Environment'). The high response environment is modeled so as to ascertain

whether ARA takes the high response rate into account by lowering the reward

o�ered while the low response environment is modeled to determine whether

ARA responds to a low response rate by increasing the o�ered reward in or-

der to attract a higher number of responses, The initial response rate ranges

between 70% and 200% and 10% and 50% respectively for these environments.

The participant response rate is generated using a continuous uniform dis-

tribution. The simulation model varies this response rate using a randomly

generated increment to evaluate how the reward adapts to these changes in the

response rate. This randomness is incorporated to re�ect other factors in the

participatory sensing environment that may a�ect the response rate. The range

for a randomly generated increment (also using a continuous uniform distribu-

tion) is set between 20 and 40 responses for a high response environment and 5

and 10 responses for a low response environment in the simulation con�guration.

These ranges are chosen to ascertain the ARA model's e�ectiveness in detecting

the type of participatory sensing environment in which it is currently operating.

For the purposes of the simulation, the response rate is calculated simply as the

9The same simulation setup parameters are used for the baselines, STOC-PISCES (Biswas
et al., 2015) and SenseUtil (Tsujimori et al., 2014).
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ratio of the number of responses submitted to the number of responses sought.

However, the response rate could be de�ned using other metrics such as the

coverage of a particular area (Girolami et al., 2016 and Girolami et al., 2017)

without impacting the underlying algorithm.

As noted in Section 4.3.5, the value of V , the non-negative control parameter

that is used to tune the prioritisation of the budget consumption over data

capture and vice versa for the Lyapunov Optimisation model, can be tuned to

re�ect the data attributes that are of most interest to a service provider at a

particular point in time. For the purposes of the evaluation, the value of V

for each o�er is set either to 0 to prioritise attracting data submissions or 1000

to prioritise budget consumption. The �gure of 1000 is chosen as it should be

su�ciently high enough to clearly demonstrate the e�ect of prioritising budget

optimisation over data capture. As V is set to 0 for the majority of experiments,

the value of V is only indicated when its value is 1000. Finally, the size of the

rolling regression window used for predicting the number of responses is set

to the last 100 responses for the majority of the experiments carried out. In

addition, the last 50 responses are used for a number of experiments to determine

the e�ect of changing the value of the rolling regression window. These values are

chosen so as to model a dynamic environment where the most recent responses to

a service provider's o�ers are the most relevant in determining the reward level.

For example, this would be the case for an environmental sensing application.

The service provider can, of course, con�gure di�erent regression rolling window

values for other types of participatory sensing environments, for example, a lower

�gure may be appropriate when the data collection is more infrequent and/or

sparse. Finally, the budget is set to 50,000 units for those experiments that

evaluate budget consumption. This �gure, which is 250 times the value of the

maximum reward of 200 units, is used so as to assess the e�ectiveness of the ARA

model's budget consumption over time compared with similar approaches from

the state of the art. Table 5.1 presents the parameters used for the simulation.

While the similar objectives of ARA and STOC-PISCES (Biswas et al., 2015)

means that the latter can be integrated in the modeled participatory sensing

environment without customization of the underlying algorithm, this is not the

case for SenseUtil (Tsujimori et al., 2014) as the latter does not adapt rewards

to the response rate. Rather, SenseUtil determines the reward to o�er on the

basis of the number of potential participants. To ensure a valid comparison,

the SenseUtil model is simulated in a participatory sensing environment with

the number of potential participants set to 50 (the �gure used by the authors)
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and 100 (which, according to the authors of the approach, should lead to lower

rewards) respectively. The authors assume that these �gures remain constant

for the duration of the participatory sensing campaign. The computed utility,

as is the case for the simulation used by the authors, is mapped on a one-to-one

basis to an economic point system. Using this system, points accumulated by

participants can be used to request sensed data from the service provider10.

Alternatively, the authors state that any kind of monetary or virtual currency

can be applied to SenseUtil for payments and rewards. A one-to-one mapping

between the economic point system and the reward to be o�ered is used for

the simulation with the utility range being set from 10 to 200 to correspond to

the reward range used for ARA and STOC-PISCES. As SenseUtil is designed

for location based participatory sensing, the approach computes the utility of a

data submission on the basis of its distance from the location requested by the

service provider. The distance threshold used to compute this location utility

in the simulation is (like the authors' simulation) set to 50m and 100m. As

SenseUtil di�ers from ARA in its reliance upon distance in its reward compu-

tation mechanism, it is only used as a basis of comparison when comparing the

average reward o�ered by the approaches.

5.2.5.2 Adaptiveness & Utility

Figure 5.2 presents the adaptiveness of ARA to the response rate. It can be

seen from the graph that the reward is increased so as to attract more data

submissions at low response rates while the reward is reduced where the response

rate approaches or exceeds 100%. Moreover, the reward settles on a value over

time that generates a response rate close to 100%. It should be noted that

the reward is not always immediately adapted after a change in the response

rate for a particular o�er as the regression model used for the supply curves

ensures that the focus is on changes that occur over time rather than sudden

changes that may be outliers, thus ensuring that the budget is not needlessly

consumed. Figures 5.3-5.8 compare the adaptiveness of ARA with the STOC-

PISCES algorithm. The number of initial trials used by STOC-PISCES is set to

10, which is the �gure used by the approach's authors in their evaluation. As the

STOC-PISCES algorithm initially runs a number of trials o�ering an initially

higher reward at the median (105 for a range of 10-200), the initial reward for

ARA is set to an initial value of 105 units to ensure a fair comparison. It can be

10i.e. data sensed by other participants.
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Parameter Value/Range

No. Of Simulations 10
Simulation Duration 3600 seconds
O�er Interval 5 seconds
No. Of Responding Participants 10-200
Initial Reward 105
No Of Responses Sought 100
Initial Response Rate
- High Response Environment 70%-200%
- Low Response Environment 10%-50%
Response Increment
- High Response Environment 20-40
- Low Response Environment 5-10
Minimum Reward for an O�er 10
Maximum Reward for an O�er 200
Service Provider Budget 50,000
V 0, 1000
Rolling Window for Regression 100, 50

Table 5.1: Simulation Parameters for Requirement R5

seen from Figure 5.4 and Figure 5.7 that STOC-PISCES adapts to the response

rate at a much slower rate than ARA in a high response environment. This is

re�ected in the average reward o�ered by STOC-PISCES which, at 102.87 units

is almost four times higher than the �gure of 26.33 units for ARA. It should also

be noted that the error bars in Figure 5.4, re�ecting standard deviation, show

that the variability of the data becomes steady over time as ARA determines a

reward with a response rate at or approaching 100%.

The �ndings for a low response environment for ARA and STOC-PISCES

are presented in Figure 5.5 and Figure 5.8 respectively. In this environment,

STOC-PISCES rapidly and substantially increases the reward it o�ers so as

to attract more submissions. This leads to much higher rewards being o�ered

for the equivalent response rate received by ARA. ARA o�ers a substantially

higher average reward of 48.26 units in this environment compared to the high

response environment but this �gure is, nonetheless, still three and a half times

lower than the average of 175.25 units o�ered by STOC-PISCES. The error

bars in Figure 5.5 indicate that the reward eventually settles at a level that

attracts a response rate above 80%, ultimately approaching and exceeding a

100% response rate.
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Figure 5.2: Adapting the Reward to the Response Rate

Figure 5.6 shows that the average reward is signi�cantly lower (11.08 units)

when, by setting the value of V to 1000, budget consumption is prioritized over

attracting data submissions in a low response environment. This highlights how

ARA not only adapts its reward to response rates but also uses the value of V

to take data utility into account.

It should be noted that the reward level increases noticeably on a consistent

basis at and around o�er number 100 for both Figure 5.3 and Figure 5.4 which

depict a single simulation and the average results over 10 simulations respec-

tively. This appears to occur as a result of the rolling regression window being

set to 100, as the point at which the reward level increases roughly corresponds

to the value of this window. Figure 5.9 and Figure 5.10 depict a high response

environment over one and ten simulations respectively with the rolling regres-

sion window being set to 50. In this case, the reward level increases noticeably at

and around o�er 50. It should be noted that the higher average reward of 41.09

re�ects a more volatile environment in which the regression window is set to a

smaller value. This would be appropriate in, for example, a tra�c monitoring

application in a congested city.
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Figure 5.3: ARA Adaptiveness (High Response Environment, Rolling
Regression Window=100, No. Simulations=1)

Figure 5.4: ARA Adaptiveness (High Response Environment, Rolling
Regression Window=100, No. Simulations=10)
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Figure 5.5: ARA Adaptiveness (Low Response Environment)

Figure 5.6: ARA Adaptiveness (Low Response Environment, V =
1000)
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Figure 5.7: STOC-PISCES Adaptiveness (High Response Environ-
ment)

Figure 5.8: STOC-PISCES Adaptiveness (Low Response Environ-
ment)
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Figure 5.9: ARA Adaptiveness (High Response Environment, Rolling
Regression Window=50, No. Simulations=1)

Figure 5.10: ARA Adaptiveness (High Response Environment,
Rolling Regression Window=50, No. Simulations=10)
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5.2.5.3 Budget Consumption

This section evaluates the budget consumption of PAI compared to that of

STOC-PISCES and SenseUtil. As the level of reward o�ered is a key factor in

the rate of budget consumption, the average reward is assessed for each approach

in both a high and low response environment. As the service provider will wish to

generate as many o�ers and resultant responses as possible, experiments are also

conducted to determine whether PAI generates more o�ers and responses than

STOC-PISCES11 for the same budget. Finally, the rate of budget consumption

is evaluated to see whether ARA uses its budget more e�ectively than STOC-

PISCES.

Figure 5.11 presents the average reward for ARA, STOC-PISCES and SenseU-

til. It can be seen that the average reward for ARA is lower than that computed

by the other two approaches. This is the case even in a low response environment

with V being set to zero so as to attract as many responses as possible. Figures

5.12, 5.13, 5.14 and 5.15 present a comparison of the budget consumption by

ARA and the STOC-PISCES algorithm. The SenseUtil approach is not used for

this experiment as integrating adaptiveness to the response rate would require

modi�cation and extension of the underlying algorithm. Each simulation has

been run until the allocated budget has been consumed. It can be seen from

Figure 5.12 that, with a budget of 50,000 units, ARA generates 3325 responses

in a high response environment. This �gure is over �ve and a half times larger

than that for STOC-PISCES at 598. Moreover, in a low response environment,

ARA generates over 3682 responses, albeit with a much higher number of of-

fers than in the high response environment. It should also be noted that, in

both the low and high response environment, the budget optimisation of ARA

is superior to that of STOC-PISCES as the former generates a higher number

of o�ers with the same budget. As shown in Figure 5.13, the number of o�ers is

31 and 102 respectively for ARA; the number of o�ers is 6 (�ve times less) and

13 (almost eight times less) respectively for STOC-PISCES. The higher num-

ber of responses generated by ARA appears to result from STOC-PISCES not

taking budget consumption into account. Speci�cally, the o�ering of the same

reward for a number of trials regardless of the response rate results in a higher

overall average reward and more rapid budget consumption. In contrast, ARA

reduces the reward it o�ers more quickly in a high response environment and

while it does increase its reward in a low response environment, it does so more

11The goals of SenseUtil mean that a similar comparison cannot be made.
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prudently than STOC-PISCES which tends to raise the level of reward o�ered

close to the maximum reward more quickly than ARA. This is borne out by the

budget consumption which is much steadier for ARA in both a high and a low

response environment as shown in Figure 5.14 and Figure 5.15.

It should be noted that the budget does not incorporate the cost of provi-

sioning the service provider for any of the approaches discussed in this section,

including PAI. In addition, the cost of incentivising the peer devices is not con-

sidered for PAI. However, this would potentially be o�set by the savings made

by the reduced infrastructure requirements for the service provider when using

the approach.

5.2.5.4 Summary

Section 5.2.5 evaluates the performance of the approach used to implement the

requirement for Adaptive and Tunable Reward Allocation (R5). The ability of

ARA to adapt to changes in the response rate is demonstrated in Section 5.2.5.2

for both a low and high response environment. The ability to tune ARA to

prioritise budget consumption over data capture is also explored in this section.

The STOC-PISCES approach is used as a basis of comparison with experiments

showing that ARA adapts more rapidly to the response rate in both a low and

high response environment. In addition, the average reward o�ered by ARA

is lower than that of both STOC-PISCES and SenseUtil in both a high and

low response environment. Budget consumption is further explored in Section

5.2.5.3 which shows that ARA generates a higher number of o�ers and receives a

higher number of responses than STOC-PISCES. As a result, the rate of budget

consumption in both a high and low response environment is superior to that

of STOC-PISCES12. The average reward o�ered by ARA compared to that of

STOC-PISCES has been found to be 73.92% and 72.46% lower in a high and

low response environment respectively. In addition, ARA generates 82.02% and

83.76% more o�ers using the same budget as STOC-PISCES in these respective

environments. Overall, the metrics used to evaluate the two approaches �nd

that the performance of ARA is, on average, 79.16% better than that of STOC-

PISCES.
12The performance of STOC-PISCES was not found to be equal to or better than ARA in

any of the experiments carried out for this thesis.
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Figure 5.11: Average Reward
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Figure 5.12: Total No. Responses

5.3 Performance Evaluation

This section evaluates the performance of PAI, focusing on resource consumption

in terms of time, energy and processing requirements. The most likely potential

resource consumption bottleneck for any privacy preservation approach pertains

to its use of cryptographic primitives for the privacy preserving requirements

for Anonymous, Unlinkable and Protected Data Submission (R1), Untraceable

and Unlinkable Reward Allocation (R2) and Untraceable and Unlinkable Reward

Spending (R3). Thus, Section 5.3.1 evaluates the performance of those primi-

tives used by PAI. To analyse the level of processing resources required by the

algorithms as a whole, Section 5.3.2 assesses the computational complexity of

PAI's four algorithms.

The approaches taken by Li and Cao [2016] and Dimitriou [2018b], both of

which seek to provide anonymous reward allocation, are the approaches in the

state of the art that are most similar in intent to PAI with respect to privacy

preservation. These approaches, unlike STOC-PISCES (Biswas et al., 2015)

and SenseUtil (Tsujimori et al., 2014), seek to provide privacy preserving reward

allocation. However, they do not propose a mechanism to compute such rewards.
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Figure 5.13: Total No. O�ers
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Figure 5.14: Rate of Budget Consumption (High Response Environ-
ment)

Figure 5.15: Rate of Budget Consumption (Low Response Environ-
ment)
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While PAI seeks to progress beyond these approaches in providing untraceable

and unlinkable reward allocation and spending, this should not come at an

excessive performance cost. For this reason, these approaches will be used as

the bases of comparison when evaluating PAI's performance. EPPI (Niu et al.,

2014) is also used as a basis of comparison when evaluating the computational

complexity of PAI. However, this approach is not considered when assessing

energy consumption as the authors do not discuss the cryptographic algorithms

used.

5.3.1 Cryptographic Primitives used for Privacy Preserv-

ing Requirements R1, R2 & R3

In order to evaluate the energy and resource consumption of PAI, the privacy

preserving requirements (R1, R2 and R3) have also been implemented for the

Android mobile operating system using the Java programming language13 with

the cryptographic primitives for the participant and OrderBook peers being im-

plemented using the SpongyCastle API14. The DSA15 algorithm using the SHA-

1 message digest algorithm is used to specify the digital signature. The peer's

veri�cation and decryption primitives are also implemented for the Windows 10

operating system using the Java Programming language and the BouncyCastle

API16. The latter implementation is carried out as a peer may elect to support

the OrderBook on �xed nodes such as a Laptop or PC Server rather than a mo-

bile device. Energy consumption is not measured for this latter implementation

as it tends not to be a critical concern for such devices.

Using these implementations, the running time and power consumption of

the cryptographic primitives for the submitter and a typical peer are measured

on a Samsung Galaxy S7 Edge Android Smartphone (Android 7.0, 4GB RAM,

Quadcore 2.3 and Quadcore 1.6 GHz CPU) and, in the case of a peer using a

�xed device, on an 8GB Lenovo T450s ThinkPad Laptop computer (8GB RAM,

Intel Core i7-5600 2.6GHz CPU). The results of these experiments are presented

in Table 5.2.

The cryptographic primitives used by the data submitter and the peer (both

of which have to use resources when data submissions are made) in PAI's algo-

rithms pertain to generation of the One-Time Key, the encryption of the data

13This is in addition to the C++ simulated environment discussed in Section 5.1.
14See https://rtyley.github.io/spongycastle
15DSA denotes digital signature algorithm.
16See https://www.bouncycastle.org
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submission, the veri�cation of the reward token by the peer when the user wants

to spend the reward and the decryption of the spendable reward. The running

time of the cryptographic primitives for PAI is evaluated by executing the as-

sociated algorithm over 100 times and computing the average time taken. The

time taken for the submitter when generating the One-Time Key and encrypting

the data submission is 4.12ms on average while the time taken for peer veri�ca-

tion (when the user wants to spend the reward) and ID decryption operations

is under 1ms. This compares favorably to participant resource consumption for

the token-based approach used by Li and Cao [2016] which, on average, takes

12.5% longer. The overall time taken by the cryptographic primitives used by

PAI is also substantially lower than that taken for participants in the approach

taken by Dimitriou [2018b], whether the peer hosts the OrderBook on a Laptop

or a SmartPhone. The time taken by this approach is 257.5 and 3.8 times more

than PAI when the peer hosts the OrderBook on a Laptop and SmartPhone

respectively.

However, the time taken for the veri�cation of the reward token by the peer

when it is being spent is more expensive than the approach taken by Li and

Cao [2016] in terms of time (339ms) when the peer hosts the OrderBook on a

SmartPhone. With the data encryption and ID decryption taking 0.120ms and

0.146ms on average respectively, the total running time for the cryptographic

primitives of 343.266ms is 57 times that of the token-based approach taken by

Li and Cao [2016]. The reward token veri�cation is responsible for the majority

of this cost which is nevertheless well under half a second, a �gure that is

substantially lower than the 2 seconds commonly cited as the upper limit users

expect for response time (Nah, 2004 and Hong et al., 2018). This veri�cation

process is a core part of the mechanism to decouple the reward allocation and

reward spending process and thus ensures that, unlike the approach used by Li

and Cao [2016], the data submitter cannot be the victim of inference attacks.

Moreover, this only applies in the case of SmartPhone hosting of peer operations.

If the service provider wants to encourage hosting on �xed nodes, it has the

option to o�er higher reward levels for those peers who do so.

PAI's SmartPhone power consumption for the data submitter is 71% lower

than the approach taken by Li and Cao [2016]. Crucially, it should be noted that

the resource consumption totals of 6.004ms and 0.29J for the method used by Li

and Cao [2016] pertain solely to the data submitter. In these terms, the resource

consumption of 4.12ms and 0.025J is much less for the data submitter under

PAI as the majority of the cost is borne by the peer. Energy consumption is also
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Time (ms) Power (J)

Submitter (Android Phone)
- One-Time Key 4.000 0.023
- Data Encryption 0.120 0.002
Peer (Laptop)
- Veri�cation 0.944 N/A
- Decryption 0.005 N/A
Peer (SmartPhone)
- Veri�cation 339.000 3.290
- Decryption 0.146 0.002
Total (Laptop) 5.069 0.025
Total (SmartPhone) 343.266 3.317
Total (Li and Cao, 2016, Laptop) 5.704 N/A
Total (Li and Cao, 2016, SmartPhone) 6.004 0.290
Total (Dimitriou, 2018b) 1305.500 12.612

Table 5.2: Resource Consumption of Cryptographic Primitives

substantially lower than the approach taken by Dimitriou [2018b], 3.8 and 504.48

times lower for a SmartPhone-hosted and Laptop-hosted peer respectively.

5.3.2 Computational Complexity

Computational complexity involves the study of the e�ciency of algorithms

based on the time and memory space required to solve a problem of a particular

size (Rosen, 2007). Complexities are expressed using the Big O notation.

The majority of the computation for Algorithm 1 (Reward Allocation) is of

the order O(1) i.e. the cost of these operations are independent of the input.

The generation of the digital signature by the service provider is dependent

on the size of the service provider's private key, b∗SP, used to sign the o�ered

reward, rO. Hence, using k to denote the size of b∗SP, the complexity of this

operation is O(k). Similarly, the generation of rs (the encrypted spendable

reward) and {d}bSP (the encryption of the data submitted) is dependent on

the size of the message block, m, to be encrypted so the complexity for these

operations can be expressed as O(m). It should be noted that, in both cases,

neither k nor m would be of a signi�cant size as they entail digital signing using

the service provider's private key and the encryption of the spendable reward

or data submission respectively.

The runtime of the majority of the operations for generating the One-Time-
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Key is O(1). The generation of the key pair used for the reward ID depends on

the size of the keys. Assuming both keys are of the same size k, computational

complexity can be expressed as O(2k). The most expensive part of the operation

is the use of modular exponentiation which entails the use of two digits of size

n and an exponent of size k bits. A multiplication algorithm M is also used.

The computational complexity of the modular exponentiation operation can be

expressed as O(M(n)k) (Knuth, 1997). As this is the most expensive part of

the operation, the Big O notation for Algorithm 1 can thus be expressed as

O(M(n)k).

The most computationally expensive parts of Algorithm 2 (Reward Spend-

ing) pertain to the veri�cation of rO, KO (the One-Time Key), the size of bSP

(the service provider's public key) and a∗KO
(the private part of the One-Time

Key) respectively. Assuming the size of bSP and a∗KO
are k1 and k2, computa-

tional complexity can be expressed as O(k1) and O(k2) respectively. Likewise,

the computational complexity when decrypting the spendable reward, rs, de-

pends on the size of the message block m and so can be expressed as O(m).

As this is the most expensive part of the operation, the Big O notation for

Algorithm 2 can thus be expressed as O(m).

Algorithm 3, which is used to estimate data truthfulness, is potentially a

computationally expensive algorithm as its computational complexity is depen-

dent on the number of measurement categories |c| and the number of items read

from the dataset pertaining to this measurement category |[dc]|. For a single

category, therefore, the computational complexity can be expressed as O(|[dc]|).
Assuming the total number of items read from the dataset is |[d]|, the overall
computational complexity of the algorithm can be expressed as O(|[d]|). The po-
tential computational expense of Algorithm 3 is due to the need to read at least

a subset of the dataset [dc] for each measurement category c so as to estimate

the mean and standard deviation using the Maximum Likelihood Estimation

(MLE) method. This expense can be o�set by carrying out this computation

periodically and by reducing the size of the subset to be read from the dataset.

The computational complexity of the core operations for Algorithm 4 (Re-

ward Computation) depends on the range of rewards to be o�ered by the ser-

vice provider i.e. from zero to the maximum reward level, rmax. Assuming the

number of possible rewards the service provider could o�er is |r|17, the Big O

notation for this aspect of Algorithm 4 can be expressed as O(|r|). The most

17As outlined in Section 4.3.4, r is a discrete variable.
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expensive part of Algorithm 4 pertains to the regression method used to con-

struct the supply curves for each category of measurement, c. Assuming that

the number of elements for a particular c is |nc| and the number of coe�cients

for the regression equation is |l|, the computational complexity for the equation
is O(|l|2 ∗ (|nc| + |l|)). This is because the underlying operation of regression

analysis entails matrix multiplication. Given that most service providers should

have a relatively small number of predictors (for example, cost) to include as

coe�cients when using a regression model to predict the number of responses18,

|l| should be a comparatively low number.

The computational complexity of PAI compares favourably to that of the

approach taken by Li and Cao [2016] as the modular exponentiation scheme

used for the RSA19-based blind signature algorithm used by this approach has

computationally expensive operations pertaining to the public key, private key

and key generation that can be expressed as O(k2), O(k3) and O(k4) respec-

tively20. Thus, the Big O notation for the approach taken by Li and Cao [2016]

can be expressed as O(k4) which is much larger than those for PAI's Algorithm

1 and Algorithm 2.

The computational complexity of EPPI (Niu et al., 2014) can be expressed

in terms of its public key encryption and private key signature. Assuming the

size of the E-Cent to be encrypted is s and that of the private key is k, the most

expensive parts of the operation of this scheme can be expressed as O(k) and

O(s) respectively. This compares favourably to both the approach proposed by

Li and Cao [2016] and PAI. However, depending on the asymmetric encryption

scheme used for EPPI (for example, RSA), computational complexity can be

up to O(k4), which is much larger than the worst case for PAI's algorithms.

Similarly, computational complexity of PAI is favourable when compared with

the approach outlined by Dimitriou [2018b]. This approach relies upon zero

knowledge proofs which can have computational complexity of O(|x|n) assuming

a problem instance x and error probability 2−n (Cramer and Damgard, 2009).

It should be noted that, while none of the approaches used for comparison

have an algorithm that is potentially as computationally expensive as Algorithm

3, these approaches do not address the issue of incentive compatibility and data

truthfulness evaluation.
18See Section 4.3.1.1 for considerations typically used as regression coe�cients.
19As previously noted, RSA is named after its authors Rivest, Shamir and Adleman.
20See http://www.rsasecurity.com
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5.4 Summary & Discussion of Results

This chapter evaluates how PAI meets its requirements. PAI's privacy preserv-

ing requirements for Anonymous, Unlinkable and Protected Data Submission

(R1), Untraceable and Unlinkable Reward Allocation (R2) and Untraceable and

Unlinkable Reward Spending (R3) are evaluated by proof in Section 5.2 with the-

orems being presented to demonstrate that participants make unlinkable data

submissions to the service provider anonymously (R1), receive untraceable and

unlinkable rewards (R2) and can spend these rewards in an untraceable and

unlinkable manner (R3). The requirement for Incentive Compatibility (R4) is

also evaluated by proof with two theorems being presented to demonstrate that

data submissions that are considered to be non-truthful do not receive a reward

and that the incentive compatibility method is privacy preserving.

The requirement for Adaptive and Tunable Reward Allocation (R5) is eval-

uated by means of experiments conducted in a simulated participatory sens-

ing environment. Using STOC-PISCES (Biswas et al., 2015) as a baseline for

comparison, it is demonstrated in Section 5.2.5.2 that PAI's Adaptive Reward

Allocation (ARA) component adapts more rapidly to conditions in the partici-

patory sensing environment and o�ers a lower average reward in return for the

same or better response rate. In addition, Section 5.2.5.2 also shows how ARA's

Lyapunov Optimisation model can be tuned by the service provider to prioritise

data capture over budget consumption and vice versa. The budget consumption

of ARA is compared to STOC-PISCES and SenseUtil (Tsujimori et al. [2014])

in Section 5.2.5.3. This section illustrates how the average reward for ARA is

lower than that computed by the other two approaches, even in a low response

environment. The superior budget consumption of ARA is also demonstrated

given its ability to generate a far larger number of responses in both a high

response and low response participatory sensing environment.

The overall performance of PAI is evaluated in Section 5.3. Section 5.3.1

describes how the time taken and energy consumed by PAI's cryptographic

primitives is superior to the results found for the approaches taken by Li and Cao

[2016] and Dimitriou [2018b], which are used as the baselines for comparison.

These two approaches are also used as bases for comparison when evaluating

PAI's computational complexity in Section 5.3.2. In general, the computational

complexity of the four algorithms designed for PAI compares favourably to the

approaches taken by not only Li and Cao [2016] and Dimitriou [2018b] but also

Niu et al. [2014].
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Unlike other approaches, PAI o�ers incentive compatibility. This has con-

sequences in terms of computational complexity as Algorithm 3 for estimating

data truthfulness is potentially more expensive than any of the operations in

these other approaches. However, it should be noted that, by reducing the fre-

quency of its computation and the size of the dataset used, the computational

complexity of this algorithm can be reduced.
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Chapter 6

Conclusions & Future Work

This chapter concludes this thesis. The contributions made by this thesis are

outlined in Section 6.1 while possible directions for future work are discussed in

Section 6.2. Section 6.3 summarises this chapter.

6.1 Contributions

The motivation for the work described in this thesis arose from the need to pro-

vide privacy preserving rewards for participatory sensing tasks by making these

rewards untraceable and unlinkable, thus preventing inference attacks. From

the service provider's perspective, this privacy preservation needs to be done

in a way that still enables the truthfulness of submitted data to be evaluated

and computes the rewards to o�er in a way that takes budget consumption and

participation rates into account.

To address the problem of providing untraceable and unlinkable rewards,

�ve key requirements have been identi�ed in this thesis. The requirement for

Anonymous, Unlinkable and Protected Data Submission (R1) speci�es that any

data submission made to a service provider can only be accessible by that party

and cannot be used to identify a participant's identity, activities or behaviours.

The vulnerability of participants to identi�cation when receiving or spending

rewards is addressed by the requirements for Untraceable and Unlinkable Re-

ward Allocation (R2) and Untraceable and Unlinkable Reward Spending (R3).

In addition, privacy preservation must be carried out without impinging upon

the service provider's ability to attract data submissions of su�cient quality.
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This is acknowledged by the requirements for Incentive Compatibility (R4) and

Adaptive and Tunable Reward Allocation (R5), which address the need for evalu-

ating data truthfulness and computing rewards that re�ect current environmen-

tal conditions and current participation rates respectively. A review of existing

work has shown that none of these requirements have been fully met. More-

over, there is no existing approach in the state of the art that can be directly

adapted to meet these requirements. For example, many of the methods for

privacy preservation proposed in the state of the art would make it impossible

to reward participants.

To meet these requirements, this thesis proposes Privacy-Aware Incentivi-

sation (PAI), a decentralised platform that allocates rewards to participants

without compromising their identity privacy. The platform consists of three

key components. Firstly, Identity Privacy Preservation (IPPI) is a privacy pre-

serving mechanism that ensures data submission anonymity as well as reward

allocation and spending untraceability and unlinkability. This is principally

achieved through the use of a One-Time Key, a cryptographic public and pri-

vate key pair that is generated by the participant. The public component of the

One-Time Key serves as an identi�er for any data submissions made by the par-

ticipant and is used to assign rewards to that party. Identity privacy is ensured

as this key is generated randomly, used only once and cannot be connected to

the participant. Rewards can only be spent by the participant using the private

component of the One-Time Key, solely held by that party. All transactions

including o�ers made by the service provider and data submissions made by the

participant are published on the OrderBook, a distributed ledger that is hosted

by multiple peer devices, thus ensuring that there is no single point of failure

or privacy vulnerability.

The needs of the service provider for incentive compatibility and an incen-

tivisation scheme are served through the provision of the Data Truthfulness

Estimation (DTE) and Adaptive Reward Allocation (ARA) components, based

on the Maximum Likelihood and Lyapunov Optimisation statistical methods

respectively. Four algorithms are proposed based on the design of these compo-

nents. Speci�cally, these algorithms are for Untraceable and Unlinkable Reward

Allocation, Untraceable and Unlinkable Reward Spending, Data Truthfulness Es-

timation and Reward Computation.

The evaluation of the approach is in two parts, proof and experiment. Proofs

are presented to assess how the approach meets the privacy preserving require-

ments for Anonymous, Unlinkable and Protected Data Submission (R1), Un-
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traceable and Unlinkable Reward Allocation (R2) and Untraceable and Unlink-

able Reward Spending (R3). Similarly, the requirement for Incentive Compat-

ibility (R4) is also evaluated by proof while experiments are used to evaluate

the implementation of the requirement for Adaptive and Tunable Reward Allo-

cation (R5) using a simulated participatory sensing environment written in the

C++ and statistical R programming languages. The experiments carried out

to evaluate the adaptiveness and budget consumption of ARA, the component

implementing requirement R5, demonstrate a faster rate of adaptiveness in re-

sponse to participation rates and better budget consumption compared with

similar work in the state of the art. The overall performance of PAI is evaluated

using an implementation written for the Android Operating System, with the

performance of the cryptographic primitives used for the privacy preserving re-

quirements and the computational complexity of the proposed algorithms both

being favourable compared with other approaches in the state of the art that are

similar in intent to PAI. To conclude, PAI not only progresses beyond the cur-

rent state of the art in terms of providing privacy preserving incentivisation but

also demonstrates a level of performance that is superior to existing approaches.

6.2 Possible Directions for Future Work

There are a number of possible directions that can be taken in further developing

PAI. Currently, PAI is suitable for scalar data submissions only. As multimedia

data submissions such as images or videos would be of potential interest for

some participatory sensing campaigns, one possible avenue for future work is

the extension of PAI to facilitate multimedia data submissions. The key chal-

lenge for such work would be ensuring that PAI's requirements are both met

and adhered to for multimedia data. Speci�cally, the requirement for Incen-

tive Compatibility (R4) would have to be expanded to incorporate a method

for estimating data truthfulness for multimedia data submissions. Challenges

here range from the detection of content manipulation to similarity comparisons

of di�erent multimedia content to evaluate their consistency. Similarly, the re-

quirement for Adaptive and Tunable Reward Allocation (R5) would have to be

extended to incorporate a method for categorising the di�erent forms of multi-

media content sought by a service provider. It should also be noted that while

the underlying Maximum Likelihood Estimation method used for requirement

R4 demonstrates that PAI facilitates incentive compatibility in a privacy pre-
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serving manner, there is scope to enhance this method, for example, to better

cater for censored data.

Further challenges to be addressed include the evaluation of alternative

methods to the regression method used for predicting the response rate for

a particular reward. While regression analysis is an established technique for

forecasting, there are many other methods from the �elds of statistics and Arti�-

cial Intelligence that could be used. For instance, Kalman Filtering (also known

as Linear Quadratic Estimation) is used in many domains to make predictions

using historical data. The evaluation of the e�ectiveness of these methods for

predicting the response rate at di�erent reward levels and their appropriateness

for di�erent participatory sensing environments and di�erent categories of mul-

timedia and scalar data would be an avenue of further research in determining

whether di�erent prediction methods would be appropriate for Adaptive and

Tunable Reward Allocation (R5) in di�erent types of participatory sensing envi-

ronments. Other challenges to be addressed in this area include the predicting

of response rates when the service provider has a small dataset and investigating

whether di�erent forecasting methods are appropriate at a particular point, for

example, when a particular volume of data is held by the service provider.

This thesis has evaluated PAI in a simulated participatory sensing environ-

ment. The evaluation of the implementation in a real-world environment would

be an interesting area of future work as this may identify participant behaviours

and performance issues that would not be apparent in a simulation. For exam-

ple, it could be the case that some types of requested data might attract a very

low response rate no matter what level of reward is o�ered. The di�erent means

by which peer devices could be motivated to host the OrderBook could also be

investigated. By extending PAI to address these challenges, it is possible that

the approach could serve as the basis for a privacy preserving marketplace for

participatory sensing and, potentially, other forms of crowdsourcing.

6.3 Summary

This chapter summarises the motivation for, and the signi�cant contributions

of, the work described in this thesis. In particular, the design, implementation

and evaluation of the requirements identi�ed to provide privacy preserving re-

ward allocation and spending for participatory sensing are discussed in Section

6.1. Possible directions for future work, speci�cally, the facilitation of multi-
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media data submissions, further research into response rate prediction and the

deployment of the approach in a real-world environment, are explored in Section

6.2.
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Nomenclature

[c] Set of measurement categories

[dc] Dataset for a measurement category

[Npredict, r] Number of predicted responses for the di�erent reward levels

[r,Npredict, Zforfeit(t)] Reward, number of predicted responses and queuing state

variable for this reward

[r] Set of possible reward values

[U, V ] A map of data utility weightings and the constant used for computing

the Lyapunov drift

Z̄forfeitk Average queue backlog for the number of forfeited responses

β0 Regression coe�cient for the reward

β1 Regression coe�cient for the costs of making a data submission

β2 Regression coe�cient for the ratio of the number of responses sought to

the current number of participants

β Vector of parameter coe�cients

δ Data Type and Granularity and O�er Conditions

ε Positive number used in Equation 3 (which de�nes performance guaran-

tees)

γ Positive number used in Theorem 2

∞ In�nity

µe Initial estimated mean (used for Maximum Likelihood Estimation method)
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µ Estimated mean (used for Maximum Likelihood Estimation method)

σ Estimated standard deviation (used for Maximum Likelihood Estimation

method)

σe Initial estimated standard deviation (used for Maximum Likelihood Esti-

mation method)

σscaled Scaled mean (used for Maximum Likelihood Estimation method)

Θ Set of possible scenarios that can occur when a service provider makes an

o�er at a particular reward level

θ Information realisation (scenario)

4(t) One-Slot Conditional Lyapunov Drift

ε Error term used when formulating number of predicted responses

Φ Used for controllable error bound in Theorem 1

{[Nactual], r} Actual responses for the di�erent reward levels

{[r,Npredict, Zforfeit(t)]} Set of rewards, their respective queuing state variables

and number of predicted responses

{d}bSP
Data Submission encrypted using Service Provider's public key

aKO
Public part of One-Time Key

a∗KO
Private part of One-Time Key

AO O�er Acceptance

B(t) Budget consumption in a particular timeslot

B†(t) Budget consumption for the online model in a particular timeslot (used

for Theorem 1)

B∗ Minimum budget consumption with stochastic future information

Bo Minimum budget consumption with complete future information

B∗av Objective value of the time average maximisation problem under an opti-

mal budget policy
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BAV Time average budget consumption

Bconstant(t) Positive number used in the Lyapunov Optimisation computation

Bproportionmax Maximum proportion of the budget that can be consumed for an

o�er in a particular timeslot

Bremain Remaining budget

b∗SP Service provider's private key

bSP Service provider's public key.

B Service provider's budget

C Cost parameter summarising the costs incurred by participants when mak-

ing data submissions.

c Measurement category

DPPLHS Left hand side of Drift Plus Penalty Expression

DPPRHS Right hand side of Drift Plus Penalty Expression

d Data Submission

fσ Scaling factor (used for Maximum Likelihood Estimation method)

f Denotes a function

iO O�er Token ID

iSP Service Provider ID

iAO O�er Acceptance ID

iS Spendable reward ID

iV, Validation Token ID

KO One-Time Key

L(t) Lyapunov Function

L(t+ 1) Lyapunov functon in the next timeslot

Llast(r) Last Lyapunov function calculated for a particular reward
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lmax Maximum scaled limit (used for Maximum Likelihood Estimation method)

lmin Minimum scaled limit (used for Maximum Likelihood Estimation method)

LO O�er Listing

mcmax
Maximum threshold value for a measurement category

mcmin
Minimum threshold value for a measurement category

mc Value for a measurement category

Mpredict Linear regression prediction model

N(θ) Number of responses under a particular information realisation/scenario

Ndesiredmax
Maximum for desired number of responses

Ndesired(t) Number of desired responses for a particular timeslot

Ndesired(t+ 1) Number of desired responses in the next timeslot

Ndesired(t− 1) Number of desired responses in the previous timeslot

Nmax Number of responses received for the maximum reward level

Nmin Number of responses received for the mnimum reward level

NO(t) Number of responses to an o�er in a particular timeslot

Npredict Predicted number of responses

Nreceived(t) Number of responses received in a particular timeslot

Nreceived(t− 1) Number of responses received in the previous timeslot

n Number of measurement readings

OPTcurrent Current Lyapunov Optimisation calculation

OPTsolution Lyapunov Optimisation solution

O O�er

P (t) Number of active participants in a particular timeslot

p(t) Penalty used for achieving queue stabillity in Lyapunov Optimisation
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Pmax Maximum number of participants potentially active on the system

Pratio Ratio of the number of responses sought to the current number of partic-

ipants

P Number of current active participants

r(θ) Reward level under a particular information realisation/scenario

rO Reward amount o�ered

rmax Maximum reward level

rmin Minimum reward level

rO(t) Reward set for an o�er in a particular timeslot

rP(t) Reward level in a particular timeslot when the number of responses equals

the number of participants

rs Encrypted spendable reward

TO O�er Token.

TV Validation Token

tn Final timeslot

T Set of all timeslots

t Timeslot

U Utility weighting for data submission

V Non-negative control parameter used to incorporate the weighted budget

terms in the Lyapunov Optimisation control decision

v Validation Flag

X Set of predictors used to predict the number of responses

Zforfeit(t) Number of forfeited responses in a particular timeslot

Zforfeit(t− 1) Number of forfeited repsonses in the previous timeslot

Zforfeit Virtual queue representing the number of forfeited responses
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