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CHEMISTRY

A unified picture of the covalent bond within
quantum-accurate force fields: From organic
molecules to metallic complexes’ reactivity

Alessandro Lunghi* and Stefano Sanvito*

Computational studies of chemical processes taking place over extended size and time scales are inaccessible
by electronic structure theories and can be tackled only by atomistic models such as force fields. These have
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evolved over the years to describe the most diverse systems. However, as we improve the performance of a
force field for a particular physical/chemical situation, we are also moving away from a unified description. Here,
we demonstrate that a unified picture of the covalent bond is achievable within the framework of machine
learning-based force fields. Ridge regression, together with a representation of the atomic environment in terms
of bispectrum components, can be used to map a general potential energy surface for molecular systems at
chemical accuracy. This protocol sets the ground for the generation of an accurate and universal class of potentials
for both organic and organometallic compounds with no specific assumptions on the chemistry involved.

INTRODUCTION

The covalent bond represents the essential building block for chemistry,
and its rationalization has been one of the main driving forces for the
development of chemical sciences. The reorganization of electrons
among atoms and the formation of molecules are complex and multi-
faceted processes, whose full description is only possible within the
boundaries of quantum mechanics (QM). In this respect, density func-
tional theory (DFT) represents the most common choice for routine
ground-state calculations, but it becomes readily unsuitable when one
needs to sample extended size and time scales. This situation is often
encountered in important modern chemistry-related fields and in bio-
logical sciences, and it requires the development of computational
approaches capable of capturing a restricted but essential number of
chemical features in favor of a reduced computational cost.

Multiscale approaches are essential for an efficient implementation
of high-throughput (I) and molecular docking screening frameworks
(2). In these frameworks, the exact ground-state potential energy surface
(PES) is represented in terms of simplified atomistic models called force
fields (FFs). An FF consists of an analytical function of the atoms’
positions, which in general depends on a number of unknown param-
eters to be determined. An ideal FF offers an exact representation of the
quantum mechanical PES. The most crucial part in the development of
an FF is the initial choice of its own mathematical form. The construc-
tion of a general FF, able to describe on an equal footing any chemical
system, represents a long-standing open problem in quantum chemis-
try. Its solution would represent a fundamental step forward in
narrowing the existing accuracy gap between a first-principles and an
FF representation of a general PES.

FFs are traditionally conceived for a restricted portion of the config-
urational space and use simple functions, mainly inspired by the chem-
ical understanding of the system under investigation. Such an approach,
when possible, can be quite efficient. However, it generally lacks the nec-
essary flexibility and accuracy to describe the broad spectrum of inter-
actions that falls under the definition of covalent bond. In particular, the
coordination bond represents a challenge for FFs due to its nature,
which is intermediate between that of covalent directional bonds, com-
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monly encountered in organic materials, and that of the more spheri-
cally symmetric metallic bonds. To date, a satisfactory model to describe
coordination complexes is still missing (3), a shortfall that hinders an
efficient description of highly relevant compounds and phenomena
such as organometallic complexes, metalloproteins, enzymes, and cat-
alytic reactions. Such a deficiency can be only resolved by an FF, whose
analytical form is able to account for the three-dimensional and many-
body nature of the chemical bond. These are features ultimately shared
by any covalent bond, but they reach their maximum complexity with
metallic complexes.

In recent years, machine learning frameworks have witnessed an
increasing attention as possibly revolutionary computational ap-
proaches. Chemistry makes no exception to this trend (4). In particular,
machine learning has been demonstrated applicable to the prediction
of complex PESs by means of generalized regression methods such as
neural networks and kernel regression (5-20). These methods share
the fundamental feature of being able to represent a general continuous
function with no limitations. They require an arbitrarily large number
of parameters and a suitable representation of the atomic chemical
environment.

In this work, we demonstrate that ridge regression-based FFs com-
bined with a bispectrum function representation of the atomic distribu-
tion (5), also called the spectral neighbor analysis potentials (SNAPs)
(21), are able to account for any fundamental feature of the covalent
bond in a natural fashion and without any assumption on the chemistry
of the bonds considered. The FFs predict a smooth PES and thus stable
molecular dynamics.

We will first give an overview of the method used to generate and
test the FF. Then, we will demonstrate its performances on model sys-
tems composed of organic and inorganic molecules comprising
o bonds, © bonds, and the most common geometries encountered in
metallic complexes. The natural emergence of Jahn-Teller distortion in
the model will also be shown. We will apply the method to generate
three FFs for three chemical molecules of fundamental importance
for materials science and biology. These are, respectively, ferrocene, a
metallorganic molecule with applications in catalysis, fuel additives,
and nanomedicine; dioxo-Fe**(porphyrin), the hemoglobin functional
unit, regulating oxygen delivery in all vertebrates and alanine, the fun-
damental chemical unit for the alanine-glucose cycle that regulates the
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glucose metabolism of the human body. Last, we will use the MD-17
benchmark set to compare our model with the state-of-the-art deep
learning machine learning potentials.

RESULTS

PES parameterization

The representation of a quantum mechanical PES, E({R;}), de-
pending on the set of nuclear coordinates, {R;}, by means of an FF,
EFF({R}}, {o;}), requires three fundamental steps: (i) the definition
of a feature vector to describe the system geometry, (ii) the defi-
nition of the relation between this vector and the energy of the
system, and (iii) the determination of the unknown coefficients,
{a;}, that minimize the difference betweenE(?M ({R;})and E* ({Ry},
{a}). Let us now describe how our method addresses these three
requirements.

The chemical environment of a given atom contained within a radial
cutoff can be conveniently described in terms of the bispectrum com-
ponents B;({R}) (5). These functions are efficiently calculated from the
sole atoms’ Cartesian coordinates. The values of the coefficients as-
sociated to each term of the B({R;}) series comprise the feature vector.
This represents the fingerprint of the N-body atomic environment, and
thus, it overcomes the common assumption on the 2- or 3-body terms
of the interaction. The number of functions in the series (IN,;) can be
tuned by increasing their maximum order, 2J. Expanding the chemical
environment over a growing number of bispectrum components im-
proves the accuracy of the description in a variational fashion. This def-
inition of the feature vector satisfies the fundamental symmetries of the
system such as rotational and translational invariance and the swap in-
variance of chemically equivalent atoms.

The SNAPs used here use these functions as building blocks for the
FF. The crucial assumption is that the total energy of a system con-
taining Nyom atoms can be decomposed into the sum of atomic energies,
E({R}, {a,}), which in turn can be written as a linear function of their
bispectral components, namely

Natom Natom N2y

ET({R} o)) = 2 E({R} (o)) = 2 2aB({R)) (1)

There is no rigorous mathematical proof that the total energy
can be written as a sum of atomic energies. However, this formula-
tion provides a highly flexible way to represent the PES, whose accu-
racy can be validated with the accuracy of the predictions made. Similar
to first-principles calculations, this class of FFs does not attempt to pa-
rameterize the chemical bond but rather to predict its existence as a
consequence of the knowledge of the PES’s shape. As a consequence, a
large degree of flexibility in the FF is required. This translates to a need
to use a large number of degrees of freedom, that is, a large number of
coefficients a,. Crucially, since the energy is linearly dependent on the
0;s (see Eq. 1), their determination can proceed by simple least-square
fit, at variance with conventional FFs, which do not depend linearly on
the parameters.

Ridge regression, expressed by Eq. 2, is here used to solve the
problem. The constant A is the regularization parameter, and it has
to be determined to minimize the error on the validation set while
using the training set for the fitting. The introduction of a regular-
ization term has the effect of selecting the smoothest solution among
the many quasi-degenerate solutions of the simple linear least-square
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problem. This becomes crucial when the number of parameters to be
determined is larger compared to the number of QM reference energy
values.

Min [ [ESM((RY) — ET((RY, {or}) [P+ 2ll{en} IF] (2

Equation 2 can be identically used to train the model against either
conformations’ total energy or atomic forces. These reference quantities
can be computed by means of any quantum mechanical method able to
describe a smooth PES. The DFT functional or the post Hartree-Fock
method used will be chosen according to the complexity of the problem
at hand. Our fitting strategy then follows a relatively canonical four-step
procedure: (i) the generation of the training, validation, and test sets by
quantum mechanical methods (here DFT); (ii) the fitting of the FF by
solving Eq. 2 for energies and/or forces; (iii) the benchmarking of the FF
on the test set, which comprises only configurations not contained in
the training and validation sets (configurations that the FF has never
seen before); and (iv) the enlargement of the number of configurations
in the training set until the results on the test set are satisfactory.

In particular, this last step is fundamental as machine learning—
based FFs are able to interpolate to a high degree of accuracy those areas
of the phase space included in the training set, but they know little of
chemical structures not included in the training set (22). This means
that a low error over the training and test sets does not ensure the FF
to be of good quality. One must ensure that thermal fluctuations will not
bring the system in region of the phase space totally unexplored by the
training set. A very powerful method to enforce the self-consistency of
the training set consists of using the FF obtained after the third step to
generate a molecular dynamics trajectory. Then, one can extract a num-
ber of configurations that are classified distant enough from those in-
cluded in the training set (23, 24) and reintroduce these in the training
set itself. The newly enlarged training set is then used to construct a new
FF (second step). The Gaussian metric of Eq. 3 has been chosen to de-
termine the distance between two local environments of an atom [

a(IB(RY) ~ B(RY) 1)
—op(-ZE(R) - KRN ) O

where o is a hyperparameter that sets the procedure selectivity.

General covalent bonds description

We now demonstrate that the SNAPs can provide an extremely accu-
rate description of the covalent bond without relying on any assumption
on the bond geometry. To achieve this goal, we have selected eight
prototypical examples of covalent bond geometries, namely two simple
organic molecules and six transition metal complexes: methane (CH,),
benzene (C4Hy), [FeCly]*", [MnCls]*, [MnCls]*, [NiCl,]*", [ZnCL]*,
and [VOCL,)*". For each of these systems, we generate 800 distorted con-
figurations by applying random atomic displacements to the vacuum-
optimized structure. The displacements are applied to every atom, and
their magnitude is constrained to be smaller than 0.2 A for 400 con-
figurations and smaller than 0.1 A for the remaining 400. We take
200 geometries of the training set and use them as validation and test sets.
In the case of benzene and methane, we apply displacements of 0.1 and
0.05 A, by virtue of the fact that they present smaller interatomic
distances. We find that 56 coefficients for each chemical species,
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corresponding to 2] = 8, are enough to achieve sufficient accuracy (see
details below). This choice results in moderate computational over-
heads, since a larger number of parameters will require a substantially
larger training set, that is, more DFT calculations.

Figure 1 shows the quality of the SNAP description of the PES for
[FeCly]®". The figure reports the mean error on the total energy for the
training, validation, or test set as function of the number of configura-
tions included in the training set, a curve called the training curve. The
overall error on both the training and the test sets is outstandingly small
and shows clear convergence as the number of configurations gets larger.
At full convergence, one expects that the training set error will be equal to
that on the test one, a condition that allows us to extrapolate an asymptotic
error in the region of 0.015 kcal/mol. This is as small as the DFT error,
meaning that the SNAP PES is indistinguishable from the DFT one. Figure
2 reports the error on the energy calculated for the training, validation, and
test sets for all the eight molecules considered, demonstrating that
extremely high accuracy can be achieved regardless of the molecule
geometry. The training curves for all molecules look similar to that in
Fig. 1 and are reported in the Supplementary Materials for completeness.

Note that, in this formalism, the coordination bond is naturally de-
scribed without any approximation coming from the introduction of
the notion of bonds and topology. For instance, Jahn-Teller distortion
is here automatically included in the model and arises as consequence of
the symmetry and shape of the PES. In many FFs, it is only possible to
introduce Jahn-Teller effects by artificially imposing a lower symmetry
on the metal’s coordination shell or by explicitly introducing the d elec-
trons in the model (25, 26). Figure 3 shows the energy profile of [FeClg]*~
and [MnClg]>, along a distortion going from the perfect O, symmetry
toward configurations that break the E; d orbitals’ degeneracy. As
expected, the complex [FeClg]’", having a d° valence electronic con-
figuration, does not show any Jahn-Teller distortion. In contrast,
[MnClg]*", having four electrons in the d shell, is correctly predicted
to undergo a spontaneous distortion along the selected normal modes
to minimize the crystal field energy.

Hapticity and coordination: Ferrocene
As the first example of a chemically relevant complex, we choose fer-
rocene. Ferrocene and its derivatives have no wide-scale applications
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Fig. 1. FF training curve for the octahedral [FeCls]*"complex. The deviation be-
tween the DFT and the FF total energy of [FeCI5]3’ is plotted as function of the number
of configurations included in the training set. The validation and test sets are always
composed of the same 200 configurations. Note that an asymptotic error of the order
of 0.015 kcal/mol is achieved. RMSE, root mean square error.
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yet, but they have been intensively investigated as possible catalysts (27),
fuel additives, and in nanomedicine (28). In ferrocene, the Fe*? ion is
sandwiched between two cyclopentadienyl (Cp) molecules, [CsHs] ™
The Fe* ion has a coordination geometry where the m electron cloud
of the aromatic rings acts as a single ligand. To make the nature of this
bond even more interesting and complex, there is a virtually absent ro-
tational barrier (1.0 kcal/mol from DFT) between two different con-
formers: one where the two [CsH;] ™ rings are eclipsed and one where
they are staggered. This is a typical situation where FFs, to be effective,
need to be constructed by making specific assumptions on the bond
geometry.

The same recipe described in the previous section has been used here
to generate a starting training set for the isolated FeCp molecule for both
the staggered and eclipsed conformations for a total of 1600 configura-
tions. The errors on the training, validation, and test sets are 2.94, 4.41,
and 3.78 kcal/mol, respectively. Furthermore, 100 configurations
from a molecular dynamics run at 300 K and 12 configurations from
one at 500 K are included to guarantee the stability of the structure
against the high-energy fluctuations encountered in the molecular
dynamics. To emphasize the ability of this approach to predict a smooth
and accurate PES, we show in Fig. 4 the energy profile for the reciprocal
rotation of the two Cp rings around the metal ion. The rather small
energy difference between the staggered and eclipsed configurations is
well reproduced with an error of only 0.3 kcal/mol. Note that configura-
tions specifically exploring the rotation were not explicitly included in
the training set, so that the knowledge of these fine details of the PES is
provided by the configurations generated by molecular dynamics.

Dioxo-Fe?*(porphyrin)

Next, we want to demonstrate the ability of SNAP to describe chemical
reactions. This is another hard challenge for conventional FFs, which
generally fail in describing bond breaking. Reactive FFs are currently
available (29), but they typically require a large number of parameters.
These FF parameters enter in the definition of the energy in a highly
nonlinear form, so the construction of accurate potentials for molecules
containing several atomic species is often an insurmountable task
(30). The system chosen for this task is the Fe2+(porphyrin) molecule
coordinated with hystidine (Hys) and molecular oxygen. This coordination
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Fig. 2. SNAP performances for organic and coordination bonds with respect to
DFT. For each molecule, we report the RMSE on the total energy for the training, val-
idation, and test sets. The molecules span a broad range of bond type. The symmetry of
the bond and the symmetry of the coordination environment are reported on top of
the plot for the organic and inorganic molecules, respectively.
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mimics the active site of the heme group. The impact of the ability to
model the O, binding and dissociation is enormous, since it is the mech-
anism at play for oxygen exchange in all vertebrates.

Upon O, binding to the Fe**(porphyrin)(Hys) complex, one elec-
tron is transferred from the Fe>* ion to O,, and at the same time, a spin
crossover transition is observed. This transforms the starting 25+ 1 =
7 spin state into a 25 + 1 = 1 ground state (31, 32). Predicting this spin
crossover phenomenon is already rather challenging at the DFT level
(33), and a precise estimation of the energetics involved is beyond the
scope of this work. Here, we restrict our study to the reaction occurring
along the singlet Born-Oppenheimer surface, selected as representing
ground state for dioxo-Fe™*(porphyrin)(Hys) and correctly showing
the charge transfer reversibility along the oxygen dissociation.

A set of 150:20:30 configurations (training:validation:test) has been
generated by applying random displacements of 0.05 and 0.1 A to the
optimized structure of dioxo-Fe**(porphyrin)(Hys). To include infor-
mation about the oxygen reactivity, we have also scanned the reaction
pathway by performing eight DFT constraint optimizations with Fe-O
distances between 1.6 and 3.0 A. The structures optimized along the
reaction path have been used to generate additional 750:120:120 con-
figurations with random displacements of 0.05 and 0.1 A. Last, the mo-
lecular dynamics refinement at 100, 200, and 300 K has been carried
out for a total of ~400 new structures, spanning both the energy minima
of the reaction and the transition state. The final model contains 448 pa-
rameters and several chemical species, but it has been successfully trained
with less than ~1500 configurations. The overall errors on the training,
validation, and test sets are 1.18, 1.38, and 2.42 kcal/mol, respectively.
This is an accuracy comparable with DFT.

Figure 5 shows that the energetics of the reaction are perfectly re-
produced. From a structural point of view, upon dissociation, the O,
bond length goes from 1.27 to 1.20 A, and at the same time, the Fe™
ion slightly moves out of the porphyrin plane, passing from an octahedral
coordination to a square pyramidal one. This is in perfect agreement

20

Energy (Hartree)

-5 P———
0% 0.6

0.0
QOy.O 0.6 Q

Fig. 3. FF prediction of the energy profile for Jahn-Teller-active and Jahn-Teller-
inactive octahedral complexes. The concave (purple/green) and the convex (blue/
yellow) surfaces represent the PESs for [FeCls]>~ and [MnClg]>, respectively. The PES
has been scanned in the two-dimensional space defined by the normal modes of
vibration with symmetry representation E; of the O, group. The point (Q,,Q,) = (0,0)
corresponds to a structure optimized under the constraint of having a perfect Oy,
symmetry. Note that [FeClg]>~ maintains a minimum at the undistorted Oy, symmetry,
while [MnClg>~ undergoes Jahn-Teller distortion.
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with DFT results. All these fine structural rearrangements are of many-
body nature, and they are well reproduced by the SNAP with great
accuracy and without any a priori knowledge of the model.

The same methodology applied to predict energy changes upon
conformational distortion can be applied to the prediction of any scalar
molecular quantity such as the atomic charges and the spin densities.
Here, we test this possibility by building a predictive model for the Fe
spin density. For any DFT total energy calculation included in the
training or validation set, we also perform a Miilliken population
analysis to extract the spin density of the Fe ion. Then, using Eq. 1,
we train a model, which expresses the Fe spin density as a function of
the bispectrum components, in total analogy to the method used to pre-
dict the energy. The comparison between the DFT and SNAP predic-
tions for the spin density upon O, dissociation is also reported in Fig. 5,
showing the local Fe spin crossover process.

Molecular dynamics for alanine

The amino acid molecule alanine has been chosen as a prototypical
organic molecule because of its ubiquitous relevance in biology. The
various alanine derivatives are used in the biosynthesis of proteins
and occur both in polypeptides in some bacterial cell walls and in peptide
antibiotics. In mammals, alanine is key for the glucose-alanine cycle,
which links the glucose production in the liver to the energy production
in other tissues. Alanine presents a challenge for conventional FFs as it
contains chemical species with different local environments and degrees
of freedom, whose dynamics spans quite different time scales.

The starting configurations for constructing the FF are 1000 for the
training set and 100 for the validation and test sets, respectively. These
are constructed by applying random displacements of 0.05 and 0.1 A to
the optimized alanine structure in four different conformers. Additional
691:150:150 (training:validation:test) configurations extracted from
molecular dynamics trajectory runs at temperatures between 100 and
400 K are also included in the training set to guarantee a complete
sampling of the configurational space of the system. This time, because
of the large number of molecular dynamics configurations included at
the refinement stage, we have also extended the validation and test sets
to some molecular dynamics configurations. This guarantees an un-
biased estimation of the FF error. The total energy regression root mean
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o (9
Fig. 4. Rotational barrier energy profile for the Cp rings of ferrocene. The
energy profile for the complete reciprocal rotation of the two Cp rings around
the Fe*? ion is calculated with both DFT (green line and points) and FF (purple
line and points). Note that SNAP describes the energy barrier with an accuracy of
about 0.3 kcal/mol.

4 of 7

0202 ‘¥T Areniga- uo /Bio Bewassusios saouenpe//:diny wolj papeojumoqd


http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

square error (RMSE) is only 2.34 kcal/mol for all the three configuration
sets, that is similar to that obtained previously for the simpler benzene
and methane molecules.

Machine learning potentials, although successfully applied to organic
compounds, are still in their infancy, and they are not widely used for
molecular dynamics acquisition runs. Instead, the AMBER family of FFs
represents the common choice for the chemistry community involved in
molecular dynamics of biological systems, and a comparison with it is
crucial. Here, we compare the accuracy of SNAP against that of the
general AMBER FF (GAFF) (34). The test is performed by comparing
the FF total energy against the DFT one for 450 structures randomly
sampled from molecular dynamics at 200, 300, and 400 K. These are
all configurations not included in either the training or the validation
set. A linear regression analysis, reported in fig. S8, shows that the SNAP
is in good agreement with DFT. The RMSE is 1.82 kcal/mol, and the
slope of the DFT versus FF energy curve is 1.032. In contrast, the linear
regression of GAFF has a slope of 0.812, highlighting a systematic energy
overestimation. This is particularly true as the size of the distortions in-
creases, that is, as one considers largely anharmonic displacements. SNAP
is able to account for anharmonic contributions to the PES, which are
relevant even at relatively low temperatures. This benchmark also offers
the chance to compare the computational performance of SNAP with
respect to broadly used harmonic potentials. Testing the two potentials
on the alanine benchmark, the SNAP potential is only ~100x more ex-
pensive than GAFF. Moreover, the time needed for a single SNAP
potential energy evaluation scales linearly with the number of central pro-
cessing units in parallel runs for large systems (21), suggesting that the
extended size and time scales of common harmonic potentials are still
within the reach of this machine learning FF.

Comparison with deep learning potentials

Last, we want to present a comparison between the model discussed
here and the state-of-the-art machine learning potentials. In recent
years, several variants of neural networks and kernel regression
methods have been developed and tested on organic molecular com-
pounds (9, 12, 13, 16). Along with these studies, benchmark sets have
been developed to assess the accuracy of the machine learning potentials.
The MD-17 benchmark set contains 0.1 to 1 M conformations for eight
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Fig. 5. Energy and Fe spin density profile for oxygen bonding reaction with
Fe?*(porphyrin). The lines correspond to the SNAP-predicted total energy (blue
line and left-hand side scale) and Fe spin density (red line and right-hand side
scale), while the symbols are for the DFT results. Here, energy and spin density
are computed along the O, dissociation path.
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small organic molecules, as obtained from ab initio molecular dynamics
at 500 K (9). Figure 6 shows the accuracy of the SNAP and the SchNet
potentials in predicting the conformational energies of the MD-17
benchmark set. The SchNet potential represents the state-of-the-art deep
learning models (13). Training SNAP is rather fast, and the model
reaches its optimal accuracy of 1 kcal/mol or below using only 1000
or less energy values for the training. Using training sets of such a small
size, SNAP outperforms the SchNet potential. However, the latter, being
more complex, is able to reach higher accuracies when trained over
many more conformations or when atomic forces are used besides en-
ergies (13). The same consideration applies to the energy-conserving
gradient-domain potentials (9). The possibility to reach the threshold
accuracy (1 kcal/mol) using just conformational energies is an impor-
tant aspect. It enables the possibility to parameterize the PESs by means
of quantum chemistry methods for whom the calculation of analytical
forces is not available. This is the common case of high-accuracy post
Hartree-Fock methods.

DISCUSSION AND CONCLUSIONS
The search for a universal FF capable of describing any chemical system
within the same formalism has been a long-standing open problem in
chemistry, physics, biology, and materials science. The advent of machine
learning methods raises the expectation that such an achievement is
possible when a simple and chemically sound form of FF is replaced
with a complex and flexible one. The gain in accuracy achieved by
this complex formalism, however, comes at the price of requiring a
large number of first-principles reference points to train the model.
These are often more than 10* even for one- or two-element materials
(6, 13, 35, 36), posing severe limitations to the widespread use of ma-
chine learning FFs to systems containing several chemical species.
In this arena, SNAP has shown a very fast convergence with respect
to the size of the training set even for complex systems containing
several chemical species and multiple-minima PESs. The accuracy
obtained with SNAP is always comparable with that of more demand-
ing models such as neural networks or kernel regression (9, 12). More-
over, we here showed that a protocol almost free of human intervention,

100 ¢ T T T T T T T
F SNAP (N = 1k)
SchNet (N = 1k) m——
SchNet (N = 50k
10 3 E
= E 1
g
=
m
<
=
0.1 F E
0.01

1 2 3 4 5 6 7 8

Fig. 6. SNAP and SchNet potentials’ performances for the MD-17 benchmark set.
The MD-17 set contains the molecules benzene (1), toluene (2), malonaldehyde (3),
salicylic acid (4), aspirin (5), ethanol (6), uracil (7), and naphthalene (8). The mean
absolute error (MAE) is reported for three different scenarios: the training of SNAP
and that of SchNet on small-size training sets (73) and the training of SchNet on
large training sets (13).
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based on a random sampling of configurations near the ground state
followed by a selective molecular dynamics refinement, is able to deliver
an FF robust enough to withstand molecular dynamics runs. This is an
essential property that must be ensured if any real application of the
model is intended.

Given the great capabilities of SNAP, further development of this
potential should be pursued. In this study, we derived molecule-
dedicated potentials without seeking for the exportability or the univer-
sality of the SNAP parameters. A thorough study of SNAP’s capabilities
in describing different chemical environments with the same set of
parameters and bond breaking represents the natural extension of this
work. The current definition of SNAP only includes local interactions.
This has been proved to be ideal to represent covalent bonds, but it
needs to be merged to the description of long-range electrostatic and
dispersion interactions to describe condensed-phase materials. The task
can be achieved through several strategies. A possibility is to combine
SNAP with point charges and Lennard-Jones parameters, as it is
commonly done for organic compounds (34). A more refined strategy
would involve the use of SNAP to predict local charges, dipoles, and
dispersion coefficients and use them to compute long-range inter-
actions on the fly (16). Our test, predicting the local spin density for
Fe*"(porphyrin), suggests that this is possible.

In conclusion, we have demonstrated that machine learning poten-
tials, under the SNAP framework, make it possible to describe covalent
bonds and their reactivity, as occurring in both organic molecules and
coordination compounds, under a unified picture and with an accuracy
comparable to first-principles calculations. To the best of our knowl-
edge, this is the first time that the universality of an FF has been demon-
strated upon this variety of molecular geometries, including subtle
features such as Jahn-Teller distortions and many-body effects. In par-
ticular, while the application of neural networks to a general class of
organic compounds has been recently demonstrated (12, 16), the
possibility to accurately describe coordination compounds has been
proved here for the first time. The training of the model is particu-
larly simple and automatized and only requires a limited number of
quantum chemistry calculations. These properties, together with the
fact that SNAP potentials are already implemented in high-performance
simulation packages (37), make this approach extremely appealing for a
fast development of unified classes of FFs for both biological and
materials sciences.

MATERIALS AND METHODS

DFT calculations

All the DFT calculations were performed with the ORCA software (38).
The dioxo—Fe*z(porphyrin)(Hys) was simulated with the B3LYP
functional and the def2-TZVP basis set for all the elements and the
RIJCOSX approximation. All other systems were simulated with the
Perdew-Burke-Ernzerhof (PBE) functional, including Grimme’s D3
van der Waals corrections (39, 40), basis set def2-TZVP and by applying
the resolution of identity (RI) approximation.

SNAP fitting and simulations

The fitting and refinement of the SNAP potentials were done through
the Fortran code fitsnap. Such a code uses large-scale atomic/molecular
massively parallel simulator (LAMMPS) (37) as an external library to
generate the bispectrum components for all atoms and to according-
ly calculate molecular dynamics runs. In all cases, the order 2] = 8 for
the bispectrum components, corresponding to 56 elements for each
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atomic kind, was used. Thus, except for Fe**(porphyrin), we defined the
atomic kinds as identical to the chemical elements, even when the same
element appears in a different chemical environment. The dioxo-
Fe™*(porphyrin)(Hys) system was simulated with a redundant num-
ber of kinds. In particular, chemically inequivalent elements in the
porphyrin ring and the hystidine moiety were defined as different kinds
to give more flexibility to the model. The radial cutoff used to build the
bispectrum components was optimized to minimize the overall error on
the training and validation set. The radial cutoff for hydrogen was
always reduced by a factor of 0.6 with respect to the other elements.
The definition of bispectrum components gives the possibility to differ-
entiate different atomic kinds with weights (21). In this work, we set all
the weights to unity.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaaw2210/DC1

Fig. S1. FF training curve for methane.

Fig. S2. FF training curve for benzene.

Fig. S3. FF training curve for the distorted octahedral [MnClg]*~ complex.
Fig. S4. FF training curve for the trigonal bipyramidal [MnCls]*~ complex.
Fig. S5. FF training curve for the square pyramidal [VOCI,]*~ complex.
Fig. S6. FF training curve for the square planar [NiCl,]*~ complex.

Fig. S7. FF training curve for the tetrahedral [ZnCl,]*~ complex.

Fig. S8. Alanine molecular dynamics blind test.
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