
MASTER THESIS

Achieving Low Delay & High Rate in
802.11ac Edge Networks

HAMID HASSANI

School of Computer Science and Statistics
Trinity College Dublin

Supervisor: Prof. DOUGLAS LEITH

A thesis submitted in fulfillment of the requirements
for the degree of Master by Research

2020

https://www.scss.tcd.ie/
http://www.tcd.ie/

i

Declaration of Authorship

• I declare that this thesis has not been submitted as an exercise for a degree at this
or any other university, it is entirely my own work and contains nothing which is
the outcome of work done in collaboration with others, except as specified in the
text.

• I agree to deposit this thesis in the University’s open access institutional repos-
itory or allow the library to do so on my behalf, subject to Irish Copyright
Legislation and Trinity College Library conditions of use and acknowledgement.

Signed:

Date:

ii

“As you start to walk on the way, the way appears.”

Jalal ad-Din Muhammad Rumi

iii

TRINITY COLLEGE DUBLIN

Abstract
School of Computer Science and Statistics

Master by Research

Achieving Low Delay & High Rate in 802.11ac Edge Networks

by HAMID HASSANI

Provision of connections with low end-to-end latency is one of the most
challenging requirements in 5G. In most use cases the target is for <
100ms latency, while for some applications it is < 10ms. In part, this
reflects the fact that low latency is already coming to the fore in network
services, but the requirement for low latency also reflects the needs of
next generation applications such as augmented reality, virtual reality
and the tactile internet.

In this thesis we analyze the end-to-end latency in an edge network
where an 802.11ac wireless hop is the bottleneck and queueing delay
at the AP is the main source of latency. We demonstrate that queueing
delay is coupled to the aggregation level in 802.11ac WLANs and that
we can manage the delay by controlling the aggregation level. We
implement this algorithm with a simple feedback loop on Linux using
MAC timestamps. We also propose and implement a machine learning
technique to infer aggregation level from kernel timestamps on Android
OS where we do not have access to MAC timestamps. We demonstrate
that the aggregation-based rate control policy selects a rate between that
of Cubic and BBR. Importantly, the end-to-end one-way delay is more
than 20 times lower than that with Cubic and BBR while it induces very
few losses. We also propose a passive technique using logistic regression
to detect the location of the path bottleneck, i.e. whether the bottleneck
is the backhaul link or the wireless hop, and show how measurement
of the aggregation level can be used for this purpose. We show that
this approach has more than 90% accuracy across a range of different
network configurations.

HTTP://WWW.TCD.IE/
https://www.scss.tcd.ie/

iv

Acknowledgements

I would like to express my deepest appreciation to my supervisor,
Prof. Douglas Leith, for the unparalleled support, valuable advice, and
extensive knowledge. His willingness to give his time so generously has
been very much appreciated.

I gratefully acknowledge Dr. Francesco Gringoli, at University of
Brescia, Italy, for his helpful collaboration and constructive advice to
conduct this research.

I would also like to extend my deepest gratitude to my parents and
to my sister for providing me with unfailing support and continuous
encouragement throughout my years of study. This accomplishment
would not have been possible without them.

In addition, there are my friends in the laboratory, Pavlos, Kariem and
Apostolos, who were of great support in deliberating over our problems
and findings, as well as providing happy distraction to rest my mind
outside of my research during these years.

My special thanks should also go to Mr. M. Nazeri for his valuable
guidance.

Finally, I would like to thank Aisling, Barney, Darragh , and Niamh
, the lovely Irish family that I lived with during my studies abroad, for

sharing me with the warm and welcoming atmosphere at home.

This research was supported by Science Foundation Ireland under
Grant No. 13/RC/2077.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Contributions . 3
1.2 Structure . 3
1.3 Publications . 4

2 Background 5
2.1 Brief Overview of 802.11ac 5
2.2 Aggregation in 802.11n, 802.11ac etc 5
2.3 Edge Computing . 6

3 Literature Review 7
3.1 Userspace Transport Protocols 7
3.2 Detecting Queue Build-up 8
3.3 Congestion Control . 8

3.3.1 Loss-based Congestion Control 8
3.3.2 Delay-based Congestion Control 9

3.4 Measuring Network Capacity 10
3.5 Detecting Bottleneck Location 11

3.5.1 Computer Networks 11
3.5.2 Cellular Networks 11

4 Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 13
4.1 Introduction . 13
4.2 Preliminaries . 13

4.2.1 Measuring Aggregation 13
4.2.1.1 Link Layer Retransmission Book-keeping 14

4.3 Low Delay High-Rate Operation 14
4.3.1 Controlling Delay 17
4.3.2 Multiple Stations: Equal Airtime Fairness 18
4.3.3 Selecting Design Parameters ∆ and K0 18

4.3.3.1 Convergence Rate 18
4.3.3.2 Disturbance Rejection 18
4.3.3.3 Responding to Channel Changes 20

4.3.4 Fairness With High Rate & Low Delay 20
4.3.4.1 Clients Same Distance From AP 20

vi

4.3.4.2 Randomly Located Clients 21
4.3.4.3 Coexistence With Legacy WLANs 22

4.4 Non-rooted Mobile Handsets 24
4.4.1 Estimating Aggregation Level: Logistic Regression 26
4.4.2 Improving Accuracy At High Network Loads: SVM 28
4.4.3 Effect of CPU Load On Estimator Performance . . 30
4.4.4 Robustness of Estimator 31
4.4.5 Performance Comparison With TCP Cubic & BBR 31

4.5 Detecting Bottleneck Location 32
4.5.1 Experimental Setup 33
4.5.2 Bottleneck Classification: Ethernet Rate Limiting . 33

4.5.2.1 Feature Selection 33
4.5.2.2 Classifier Performance 34

4.5.3 Bottleneck Classification: Cross-Traffic 35
4.6 Hardware & Software Setup 37

4.6.1 Experimental Testbed 37
4.6.2 Prototype Rate Allocation Implementation 38
4.6.3 NS3 Simulator Implementation 38

4.7 Summary & Conclusions 38

5 Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 40
5.1 Introduction . 40
5.2 Modeling Aggregation Level & Delay 40

5.2.1 Basic Setup . 41
5.2.2 Frame Transmission Timing 42
5.2.3 Mean Aggregation Level 43
5.2.4 Mean Delay . 44
5.2.5 Invertibility of Map From Rate To Aggregation Level 45
5.2.6 Validation Of Mean Model 45
5.2.7 Fluctuations Around Mean 47

5.2.7.1 Approximate Model 47
5.2.7.2 Time-Scale of Dynamics 48

5.2.8 Measurement Noise & Main Source Of Model Un-
certainty . 48
5.2.8.1 Measurement Noise 48
5.2.8.2 Model Uncertainty 49

5.3 Proportional Fair Low Delay Rate Allocation 49
5.3.1 Utility Fair Optimization 49
5.3.2 Characterizing The Proportional Fair Solution . . 50
5.3.3 Examples . 51

5.4 Inner-Outer Feedback Control 52
5.4.1 Inner Loop Controller 53

5.4.1.1 Converting Between Slots and Frames . 54
5.4.1.2 Linearizing Action of Controller 54
5.4.1.3 Robust Stability 55
5.4.1.4 Selecting Controller Gain K1 56
5.4.1.5 Adapting c 57

5.4.2 Outer Loop Controller 58
5.4.2.1 Sufficient Conditions For Stability 58

vii

5.4.2.2 Selecting Control Gain K2 60
5.5 Experimental Measurements 62

5.5.1 Prototype Implementation 62
5.5.1.1 Implementation on Linux 62
5.5.1.2 Implementation on Android 62

5.5.2 Evaluation with Single Client 63
5.5.3 Evaluation with Multiple Clients 64
5.5.4 Experimental Testbed 64

5.6 Summary & Conclusions 67

6 Conclusion 68
6.1 Summary & Conclusions 68
6.2 Future Work . 68

Bibliography 70

viii

List of Figures

1.1 (a) Cloudlet-based edge transport architecture with bot-
tleneck in the WLAN hop and (b) Illustrating low-latency
high-rate operation in an 802.11ac WLAN. 2

3.1 Performance of the Ping-Pair algorithm [22] in an 802.11ac
WLAN as the send rate of a downlink UDP flow to a
mobile handset is varied. 9

3.2 Schematic of a cloudlet-based edge transport architecture
used for experimental setup. 11

4.1 MAC timestamp measurements for UDP packets trans-
mitted over an 802.11ac downlink to two client stations. . 14

4.2 Experimental measurements illustrating typical 802.11ac
link layer packet loss and retransmission behavior. 15

4.3 Measurements of average aggregation level, one-way
packet delay and packet loss vs the send rate for a range
of network conditions. 15

4.4 Illustrating connections between queueing, packet delay
and frame aggregation at the AP. 17

4.5 Convergence rate vs feedback gain K0 and update interval
∆. 19

4.6 Noise rejection vs feedback gain K0 and update interval ∆. 19
4.7 Illustrating adaption of send rate by feedback algorithm

in response to a change in channel conditions. 20
4.8 Sum-goodput and delay vs number of receivers and cor-

responding distribution of aggregation level about the
target value of Nε = 32. 21

4.9 Performance with 8 receivers placed randomly in a square
of side 40m. 22

4.10 NS3 simulations, K0 = 1, ∆ = 500ms, Nmax = 64. 23
4.11 Kernel and MAC timestamp measurements for UDP pack-

ets transmitted to a mobile handset over 802.11ac. 25
4.12 Performance of logistic regression estimator. 27
4.13 Frame boundaries predicted by the logistic regression

estimator and time histories of estimated aggregation level. 29
4.14 Illustrating the accuracy of prediction for different CPU

loads. 30
4.15 Compare the performance of aggregation-based rate con-

trol algorithm with TCP Cubic and BBR. 31
4.16 System model used in our testbed to do measurement

when the backhaul is bandwidth bottleneck, 802.11ac. . . 33

ix

4.17 Performance of the logistic regression classifier vs the
number n of input features and packets p used. 34

4.18 Performance of the logistic regression classifier, n = 5,
p = 100. 35

4.19 Performance of logistic regression classifier as the bottle-
neck moves between WLAN and backhaul due to cross-
traffic. 36

4.20 Schematic of scheduler architecture. 38

5.1 Example time histories of frame aggregation level and
packet delay as send rate is varied. 40

5.2 Packets arriving at the AP for transmission to station i. . 41
5.3 Comparison of model (5.8) with measurements. 46
5.4 (a) Comparison of the standard deviation of ηN f calcu-

lated using the model (5.14) with measurements from NS3.
(b) time constant of dynamics (5.14) as the number n of
stations is varied between 1 and 20. 48

5.5 Schematic of inner feedback loop. 54
5.6 Impact of control gain K1 on transient dynamics of aggre-

gation level and send rate. 55
5.7 (a) Impact of control gain K1 on standard deviation of fluc-

tuations in aggregation level. (b) Illustrating c estimator
(5.40) tracking a sharp change in the number of stations. 57

5.8 Schematic of coupled feedback loops. 58
5.9 (a) Impact of outer loop gain K2 on convergence time, (b)

adapting Ntarget to regulate delay to below T̄ as MCS is
varied, (c), (d) send rate and delay measurements corre-
sponding to (b). 61

5.10 A cloudlet-based edge transport architecture used for ex-
perimental setup with single client. 63

5.11 Compare the performance of nonlinear controller with
simple linear controller. 65

5.12 A cloudlet-based edge transport architecture used for ex-
perimental setup with multiple clients. 65

5.13 Managing an edge network using the nonlinear feedback
controller. 66

1

Chapter 1

Introduction

While much attention in 5G has been focussed on the physical and link
layers, it is increasingly being realized that a wider redesign of network
protocols is also needed in order to meet 5G requirements. Transport
protocols are of particular relevance for end-to-end performance, includ-
ing end-to-end latency. For example, ETSI has recently set up a working
group to study next generation protocols for 5G [1]. The requirement
for major upgrades to current transport protocols is also reflected in
initiatives such as Google QUIC [2], Coded TCP [3] and the Open Fast
Path Alliance [4].

In this thesis we consider next generation edge transport architectures
of the type illustrated in Figure 1.1(a). Traffic to and from client stations
is routed via a proxy located close to the network edge (e.g. within a
cloudlet). This creates the freedom to implement new transport layer
behavior over the path between proxy and clients, which in particular
includes the last wireless hop. One great advantage of this architecture
is its ease of rollout since the new transport can be implemented as an
app on the clients and no changes are required to existing servers.

Our interest is in achieving high rate, low latency communication.
One of the most challenging requirements in 5G is the provision of
connections with low end-to-end latency. In most use cases the target
is for <100ms latency, while for some applications it is <10ms [5, Table
1]. In part, this reflects the fact that low latency is already coming to the
fore in network services, for example Amazon estimates that a 100ms
increase in delay reduces its revenue by 1% [6], Google measured a 0.74%
drop in web searches when delay was artificially increased by 400ms [7]
while Bing saw a 1.2% reduction in per-user revenue when the service
delay was increased by 500ms [8]. However, the requirement for low
latency also reflects the needs of next generation applications such as
augmented reality and the tactile internet.

As can be seen from Figure 1.1(a), the transmission delay of a packet
sent over the downlink is composed of two main components: (i) queue-
ing delay at the AP and (ii) MAC channel access time. The MAC channel
access time is determined by the WLAN channel access mechanism and
is typically small, so the main challenge is to regulate the queueing delay.
We would like to select a downlink send rate which is as high as possible
yet ensures that a persistent queue backlog does not develop at the AP.

While measurements of one-way delay might be used to infer the
onset of queueing and adjust the send rate, measuring one-way is known

Chapter 1. Introduction 2

(a)

0 20 40 60 80 100

Time (sec)

0

100

200

300

400

500

600

R
e
c
e
iv

e
 R

a
te

 (
M

b
p
s
)

0

1

2

3

4

5

D
e
la

y
 (

m
s
)

Receive Rate

One-way Delay

(b)

FIGURE 1.1: (a) Cloudlet-based edge transport architecture with bottleneck in the WLAN
hop (therefore queueing of downlink packets occurs at the AP as indicated on schematic)
and (b) Illustrating low-latency high-rate operation in an 802.11ac WLAN (measurements

are from a hardware testbed located in an office environment, see Section 4.6).

to be challenging1 as is inference of queueing from one-way delay2. Use
of round-trip time (RTT) to estimate the onset of queueing is also known
to be inaccurate when there is queueing in the reverse path. In this thesis
we avoid these difficulties by using measurements of the aggregation
level of the frames transmitted by the AP. Use of aggregation is ubiq-
uitous in modern WLANs since it brings goodput near to line-rate by
reducing the relative time spent in accessing the channel when transmit-
ting several packets to the same destination. As we will see, the number
of packets aggregated in a frame is relatively easy to measure accurately
and reliably at the receiver. Intuitively, the level of aggregation is cou-
pled to queueing. Namely, when only a few packets are queued then
there are not enough to allow large aggregated frames to be assembled
for transmission. Conversely, when there is a persistent queue back-
log then there is a plentiful supply of packets and large frames can be
consistently assembled. We show that by regulating the downlink send
rate so as to maintain an appropriate aggregation level it is possible to
avoid queue build up at the AP and so to realize high rate, low latency
communication in a robust and practical fashion.

Figure 1.1(b) shows typical results obtained by regulating the aggre-
gation level. These measurements are from a hardware testbed located
in an office environment. It can be seen that the one-way delay is low, at
around 2ms, while the send rate is high, at around 500Mbps (this data is
for an 802.11ac downlink using two spatial streams and MCS 9 [9]). In-
creasing the send rate further leads to sustained queueing at the AP and
an increase in delay, but the results in Figure 1.1(b) illustrate the practical
feasibility of operation in the regime where the rate is maximized but
the onset of sustained queueing is avoided.

1For example, due to clock offset and skew between sender and receiver.
2For example, the transmission delay across a wireless hop can change significantly over time depending

on the number of active stations, e.g. if a single station is active and then a second station starts transmitting
the time between transmission opportunities for the original station may double, and it is difficult to
distinguish changes in delay due to queueing and changes due to factors such as this.

Chapter 1. Introduction 3

1.1 Contributions

The main contributions of this work are as follows:

1. Analyzing end-to-end delay in 802.11ac edge networks using aggre-
gation

2. Proposing a machine learning approach to infer aggregation level
using kernel timestamps on non-rooted Android devices

3. Introducing a novel transport layer approach for achieving high
rate, low delay in 802.11ac edge networks using aggregation

4. Designing a logistic regression model to detect the bottleneck loca-
tion

5. Modeling aggregation and delay behavior at access points in 802.11ac
edge networks

6. Proposing a proportional fair low delay rate allocation scheme in
802.11ac edge networks using aggregation

7. Constructing a nonlinear inner-outer feedback controller to achieve
low delay and high rate in 802.11ac edge networks

Some of the NS3 simulations presented in this thesis have been carried
out by Prof. Francesco Gringoli from University of Brescia, Italy.

1.2 Structure

The structure of this thesis is as follows:

• In Chapter 2 we provide a brief overview of some of the concepts
and technical terms that are used throughout this thesis.

• In Chapter 3 we review the literature in userspace transport proto-
cols, congestion control and network monitoring methods in wire-
less networks and address the limitations of proposed algorithms.

• In Chapter 4 we analyze the end-to-end delay in 802.11ac edge
networks where the bottleneck lies in the last wireless hop. We
show that the aggregation in 802.11ac is coupled to delay and can
be measured precisely using MAC timestamps. We also propose a
machine learning approach to infer aggregation level using kernel
timestamps on non-rooted Android devices. We then introduce a
novel transport layer approach based on aggregation to have low
delay and high rate communications in 802.11ac edge networks. We
evaluate the performance of proposed algorithm in NS3 network
simulator and implement it in our testbed on Linux and Android
and compare the performance to Cubic and BBR.

• In Chapter 5 we model the aggregation and delay behavior at access
points in an edge network where an 802.11ac wireless hop is the
bottleneck. We propose a proportional fair rate allocation algorithm

Chapter 1. Introduction 4

to achieve high rate while maintaining low delay using aggregation
in form of a convex optimization problem. We then construct a non-
linear inner-outer feedback controller to solve the online solution of
the optimization problem and find the optimum send rates. Follow-
ing analyzing the stability of the proposed closed-loop controller,
we implement and evaluate the performance on NS3 and in our
testbed with multiple Linux and Android clients.

• In Chapter 6 the concluding remarks are given along with a discus-
sion on limitations and future work.

1.3 Publications

The following journal and conference papers are under submission
during the course of this master by research program.

1. Hamid Hassani, Francesco Gringoli, Douglas J. Leith, "Quick &
Plenty: Achieving Low Latency & High Rate in 802.11ac Edge
Networks", Submitted to IEEE Transactions on Mobile Computing.

2. Hamid Hassani, Francesco Gringoli, Douglas J. Leith, "Regulating
Queueing Delay in 802.11ac WLANs: Nonlinear Controller Analysis
& Design", Submitted to IEEE Transactions on Control Systems
Technology.

3. Hamid Hassani, Francesco Gringoli, Douglas J. Leith, "Analyzing
Delay in 802.11ac Edge Networks", Prepared to be Submitted to
ICC 2020 Conference.

5

Chapter 2

Background

In this chapter, we provide an overview of the preliminary knowledge
of networking that would be help understanding the concepts that we
present in this thesis.

2.1 Brief Overview of 802.11ac

Wireless LANs based on the 802.11 family of standards are ubiquitous at
the network edge. They use CSMA/CA to share access to the wireless
channel amongst the stations in a WLAN. Briefly, in CSMA/CA each
station maintains a contention window (CW) variable. Time is slotted
and when a station wishes to transmit it initializes a counter to a value
uniformly at random in interval [0, CW - 1], decreases this counter
for each slot that the channel is detected to be idle and then transmits
once the counter reaches zero. This countdown is paused when the
channel is detected to be busy, and so the MAC slots at which the
counter is decremented are variable size and tend to become longer
as more stations share the channel.

Most modern WLANs now use 802.11ac, an extension of 802.11n
that allows use of MIMO (transmission and reception using multiple
antennas), higher modulation and coding scheme (MCS) rates (the rates
at which data in a wireless frame is transmitted) and wider wireless
channel widths of up to 80MHz. With three antennas, a transmitter can
use up to three spatial streams for transmission i.e. the number of spatial
streams (NSS) can vary from 1 to 3. The MCS rates are indexed form 0 to
9, e.g. with an 80MHz channel and NSS = 3 the MSC rates vary from 87
to 1170Mbps.

2.2 Aggregation in 802.11n, 802.11ac etc

Since 2009, when the 802.11n standard was introduced, all WLANs make
use of aggregation to improve efficiency. That is, transmitted frames
may carry multiple packets, thereby amortizing the fixed PHY/MAC
overheads over multiple packets. This is essential for achieving high
throughputs. Since the PHY overheads are largely of fixed duration,
increasing the data rate reduces the time spent transmitting the frame
payload but leaves the PHY overhead unchanged. Hence, the efficiency,
as measured by the ratio of the time spent transmitting user data to
the time spent transmitting an 802.11 frame, decreases as the data rate

Chapter 2. Background 6

increases unless the frame payload is also increased, i.e. several data
packets are aggregated and transmitted in a single frame. To facilitate
aggregation packets destined for different stations are queued separately
at the transmitter. When a transmission opportunity occurs a frame is
typically formed by aggregating the queued packets, up to the maxi-
mum allowed level Nmax (typically 64 packets or 5.5ms frame duration,
whichever is smallest), and so the level of aggregation used is closely
linked to the size of the queue backlog at the transmitter.

2.3 Edge Computing

Increasing demand for low delay and high rate is encouraging move-
ment of latency-critical services from the cloud to the network edge.
This architecture, referred as to edge computing, is considered to be
a key technology for realizing various visions for the next-generation
Internet, such as Tactile Internet and Internet of Things (IoT) [10]. In
edge computing, computational and data storage resources are located
close to the end users in order to decrease the propagation delay and
save bandwidth.

In this paradigm, a cloudlet is a concept used for the network equip-
ment located at the network edge which provides computing resources
for use by applications. A cloudlet can be viewed as a small cloud data
center used for achieving low end-to-end delay and high rate communi-
cations for edge services, such as virtual reality and augmented reality
that offload computation to the cloudlet [11].

7

Chapter 3

Literature Review

In this chapter, we discuss some of userspace transport protocols and
congestion control mechanisms. We also review algorithms proposed
for queue build-up detection, capacity measurement and bottleneck
detection in wireless networks.

3.1 Userspace Transport Protocols

In recent years there has been an upsurge in interest in userspace trans-
ports due to their flexibility and support for innovation combined with
ease of rollout. This has been greatly facilitated by the high efficiency
possible in userspace with the support of modern kernels. Notable ex-
amples of new transports developed in this way include Google QUIC
[2], UDT [12] and Coded TCP [3, 13, 14]. ETSI has also recently set up a
working group to study next generation protocols for 5G [1]. The use of
performance enhancing proxies, including in the context of WLANs, is
also not new e.g. RFC3135 [15] provides an entry point into this litera-
ture. However, none of these exploit the use of aggregation in WLANs
to achieve high rate, low delay communication.

Interest in using aggregation in WLANs pre-dates the development of
the 802.11n standard in 2009 but has primarily focused on analysis and
design for wireless efficiency, managing loss etc. For a recent survey see
for example [16]. The literature on throughput modeling of WLANs is
extensive but much of it focuses on so-called saturated operation, where
transmitters always have a packet to send, see for example [17] for early
work on saturated throughput modeling of 802.11n with aggregation.
When stations are not saturated (so-called finite-load operation) then for
WLANs which use aggregation (802.11n and later) most studies resort
to the use of simulations to evaluate performance due to the complex
interaction between arrivals, queueing and aggregation with CSMA/CA
service. Notable exceptions include [18, 19] which adopt a bulk service
queueing model that assumes a fixed, constant level of aggregation and
[20] which extends the finite load approach of [21] for 802.11a/b/g but
again assumes a fixed level of aggregation.

Chapter 3. Literature Review 8

3.2 Detecting Queue Build-up

While measurement of round-trip time is relatively straightforward since
it uses the same clock (at the sender) to measure when a packet is trans-
mitted and when its corresponding acknowledgement is received1, due
to queueing in the reverse path and delay asymmetry between forward
and reverse paths the measured RTT can be an unreliable indicator of
queueing in the forward path, see for example [22]. Furthermore, using
RTT to detect queueing is known to give inaccurate results in 802.11
networks [23], due to ACK aggregation strategy, aggregation in uplink
etc. Accurately measuring one-way delay is also known in general to be
challenging2.

Recently, [24] proposes an elegant Ping-Pair method for detecting
queue build up in 802.11ac APs. In this approach, which is now used by
Skype, a wireless client sends a pair of back-to-back ICMP echo requests
to the AP with high and normal priorities specified by DSCP value,
respectively. The high priority packets are queued separately from the
normal priority packets at the AP, and serviced more quickly. Hence, the
difference in RTTs between the two pings can provide an indication of
queueing at the AP and [24] proposes thresholding this difference based
on a predefined threshold inferred from a decision tree classifier in order
to detect the queue build-up. However, this active probing approach
creates significant load on the network and so itself can cause queue
buildup. For example, Figure 3.1(a) plots the measured one-way delay
and loss with and without ping-pairs as the send rate at which UDP
data packets are sent from server to client is varied. Figure 3.1(b) plots
the corresponding goodput (the rate at which packets are received at
the client, i.e. after queue overflow losses at the AP). It can be seen that
use of ping-pairs causes packet loss to start to occur for send rates above
200Mbps compared to send rates above 400Mbps without packet pairs,
and similarly the one-way delay is roughly doubled with ping-pairs for
send rates above 400Mbps.

3.3 Congestion Control

In computer networks, congestion control is needed when network
capacity is less than the resource demands [25]. Various congestion
control algorithms have been proposed since 1988 [26] which mostly use
two indicators to detect congestion in the network: loss and delay.

3.3.1 Loss-based Congestion Control

In loss-based congestion control protocols, the congestion window size
(cwnd) is reduced following one or more packet losses then increased
using a window growth function. For example, TCP NewReno [27],

1Although still subject to “noise” due to use of client powersave, interrupt mitigation by the network
interface, TSO and other offload to the NIC, kernel scheduling delays, and so on.

2The impact of clock offset and skew between sender and receiver applies to all network paths. In
addition, when a wireless hop is the bottleneck then the transmission delay can also change significantly
over time depending on the number of active stations e.g. if a single station is active and then a second
station starts transmitting the time between transmission opportunities for the original station may double.

Chapter 3. Literature Review 9

10 100 200 300 400 500 600

Send Rate (Mbps)

0

5

10

15

O
n
e
-w

a
y
 D

e
la

y
 (

m
s
)

0

10

20

30

40

50

P
a
c
k
e
t
L
o
s
s
 (

%
)

OWD (UDP)

OWD (UDP + Ping-Pair)

Loss (UDP)

Loss (UDP + Ping-Pair)

(a)

10 100 200 300 400 500 600

Send Rate (Mbps)

0

100

200

300

400

500

600

700

R
e
c
e
iv

e
 R

a
te

 (
M

b
p
s
)

Receive Rate (UDP)

Receive Rate (UDP + Ping-Pair)

(b)

FIGURE 3.1: Performance of the Ping-Pair algorithm [22] in an 802.11ac WLAN as the send
rate of a downlink UDP flow to a mobile handset is varied. Experimental data, setup in

Section 4.6, AMDSU aggregation.

adopted by Google QUIC [2], uses the received ACKs to detect the
packet loss and reduce the send rate. Then the growth function of
TCP NewReno climbs linearly until detecting the next congestion event
[28]. TCP Cubic [29] is the current default congestion control algorithm
in Linux. TCP Cubic adjusts cwnd based on a cubic function of time
since the last congestion event rather than RTT. H-TCP [30] also uses
the elapsed time since the last packet loss event and also the ratio of
minimum and maximum RTTs to adjust the send rate. However, the
window growth function of H-TCP is a quadratic function of the elapsed
time since the last congestion event.

3.3.2 Delay-based Congestion Control

In delay-based congestion control mechanisms, round-trip time is used
to estimate the onset of queueing and adjust the send rate. As we dis-
cussed in Section 3.2, measurement of round-trip time can be unreliable
indicator of queueing in the forward path. For example, TCP Vegas
[31] uses the minimum observed RTT during the connection as the base
delay then estimates the queue size using the current cwnd and the RTT
of previous packet. A similar concept is applied in other variants of TCP
such as the TCP Veno [32] and TCP FAST [33].

TCP BBR [34] is currently being developed by Google to achieve
high rate and low delay communications.The BBR algorithm updates
the minimum observed RTT in specific probing intervals and tries to
estimate the bottleneck bandwidth and adapt the send rate accordingly
to try to avoid queue buildup. The delivery rate in BBR is defined as
the ratio of the in-flight data when a packet departed the server to the
elapsed time when its ACK is received. This may be inappropriate,
however, when the bottleneck is a WLAN hop since aggregation can
mean that increases in rate need not correspond to increases in delay
plus a small queue at the AP can be beneficial for aggregation and so
throughput. Currently, Google is developing the next version of BBR to
address some issues of the earlier version such as weak performance in

Chapter 3. Literature Review 10

802.11ac WLANs reported in the BBR community forum [35] and also
observed in our testbed, see Section 4.4.5.

3.4 Measuring Network Capacity

A variety of models have been proposed for measuring end-to-end
network capacity. Pathchar [36] (and its Linux reimplementation Pchar
[37]) sends probe packets with different sizes and TTLs then waits for
the ICMP Time-Exceeded messages from different Layer-3 nodes along
the path. Then Pathchar uses the minimum observed RTT to calculate
the capacity of each hop. A key issue with this algorithm is that it
needs a long time to measure the bandwidth since it involves sending
a significant number of packets [38] to successfully find at least one
packet that does not face any queuing delays. Furthermore, Layer-2
store-and-forward devices that do not decrease the TTL value [39], but
can increase the delay due to queueing (serialization latency) [40] can
cause Pathchar to misunderstand the location of the path bottleneck.
Another problem of this method is that some routers either rate-limit or
filter ICMP messages [41].

Pathchar is quite an old algorithm so to investigate its use in modern
edge networks we implemented Pchar in the testbed illustrated in Figure
3.2, where the wireless link is the bottleneck. This testbed uses an Asus
RT-AC86U Access Point (which uses a Broadcom 4366E chipset and
supports 802.11ac MIMO) and configured to use the 5GHz frequency
band with 20MHz channel bandwidth. A Linux server is connected to
this AP via a gigabit Ethernet link to communicate with a Linux client
which uses a Broadcom BCM4360 802.11ac NIC that supports MCS11.
Using root privilege, we ran Pchar with default settings in the server
to estimate the capacity of the edge network. Following 20 minutes of
probing, the estimated capacity was 114Mbps. Note that the maximum
receive rate in this setup is around 180Mbps (tested by iperf 2.5).

Packet-pair techniques send pairs of probe packets back-to-back to the
client and measure the inter-packet arrival time to estimate the capacity
of a path. This solution can cope with invisible Layer-2 devices since it
does not rely on ICMP messages. However, the packet-pair approach is
not robust to cross-traffic because it assumes that the transmitted probe
packets are always queued together. Therefore, in the presence of cross
traffic, it is probable that other packets are placed between the probing
packet pairs in a queue and so reduce the accuracy of this method. To
solve this issue, some algorithms have been proposed such as Nettimer
[42] and Pathrate [43] which mostly use statistical approaches to remove
the effect of cross traffic but these algorithms do not always give accurate
results [41].

To investigate performance of the packet-pair idea, we also applied
the Pathrate algorithm in the testbed shown in Figure 3.2 Note that
Pchar is a server-side application, but Pathrate needs to run on both the
server and the client. Using a similar setup and following 18 minutes
of probing without any cross-traffic, the estimated capacity by Pathrate
was in the range of 265Mbps to 320Mbps.

Chapter 3. Literature Review 11

FIGURE 3.2: Schematic of a cloudlet-based edge transport architecture used for experimen-
tal setup.

An important reason why these algorithms, i.e. Pchar and Pathrate,
have inaccurate results in our testbed is due to the aggregation in the
downlink and uplink introduced in modern 802.11n/ac routers. In
the downlink, the AP may aggregate probe packets in the packet-pair
technique into the same frame so that these packets reach the destination
NIC in the same time. Therefore, the inter-packet arrival time measured
in the application layer is just the OS noise (when kernel reads the
packets from NIC’s buffer). Also aggregation in the uplink and ACK
aggregation can increase the delay in the reverse path so that using RTT
to measure the capacity in the one-packet technique may not give precise
results.

3.5 Detecting Bottleneck Location

Having information about the location of queue build-up is important
for network monitoring. For example, measurements show that the
cellular link is the bottleneck in 68.9% cases for 3G users and 25.7% for
LTE users [44]. In this section, we review the literature on detecting the
location of the bandwidth bottleneck in computer and cellular networks.

3.5.1 Computer Networks

The open-source firmware proposed in [45], includes an algorithm to
implement in APs in order to detect whether the bottleneck is in the
backhaul link or in the WLAN. It measures two parameters, i.e. the
coefficient of the variation of the inter-packet arrival time of packets
received from the backhaul link and the round-trip time of packets
transmitted over the wireless hop. As a passive measurement tool,
it requires enough data traffic to be transmitted over the network to
accurately detect the location of path bottleneck. This sensing time can
be as high as a few seconds. Furthermore, the necessity for updating the
firmware of routers to probe the network traffic, makes this technique not
widely implementable. As described in [45], the predefined thresholds
in this approach depend on the system configuration such as the device
driver of NIC and also some other hardware configurations.

3.5.2 Cellular Networks

The BurstTracker algorithm [38] assumes that the scheduler in LTE
prefers to assign all of the resource blocks in a millisecond to a sin-
gle user when the LTE network is congested. Hence, assigning more

Chapter 3. Literature Review 12

than 90% of resources to a single user is considered as an indication of
sustained queueing in the base station by this approach. In addition,
the pattern of assigned resource blocks to a user in each millisecond
is an important element to detect the queue status. For example, if a
silent millisecond follows a millisecond of transmission with less than
40% of resources allocated to that user, the BurstTracker algorithm will
assume that the queue is empty with 93% accuracy. However, this algo-
rithm needs root privilege to access the debug information in the mobile
handset which includes the trace of resource blocks allocated to the user
during active milliseconds (when the queue is not empty in the base
station).

QProbe [44] is an active probing algorithm that sends small probe
packets in a burst and takes advantage of the proportional fair (PF)
scheduler in cellular networks to detect the location of path bottleneck
on the user side, i.e. backhaul or cellular last hop (3G or LTE). Here, the
elegant idea is that when the probe packets are queued in the backhaul,
then the inter-packet arrival time could be large but if congestion oc-
curred in the base station then inter-packet arrival time would be very
small. This happens because when the PF scheduler selects a UE for
downlink transmission, multiple packets can be scheduled back-to-back
in consecutive time slots during congestion events. The results show
that the QProbe technique can detect the location of path bottleneck with
more than 85% accuracy for both 3G and LTE networks.

13

Chapter 4

Quick & Plenty: Achieving Low
Delay & High Rate
in 802.11ac Edge Networks

4.1 Introduction

We consider transport layer approaches for achieving high rate, low de-
lay communication over edge paths where the bottleneck is an 802.11ac
WLAN. We first show that by regulating send rate so as to maintain
a target aggregation level it is possible to realize high rate, low delay
communication over 802.11ac WLANs. We then address two important
practical issues arising in production networks, namely that (i) many
client devices are non-rooted mobile handsets/tablets and (ii) the bot-
tleneck may lie in the backhaul rather than the WLAN, or indeed vary
between the two over time. We show that both these issues can be re-
solved by use of simple and robust machine learning techniques. We
present a prototype transport layer implementation of our low delay
rate allocation approach and use this to evaluate performance under real
radio conditions.

In summary, our main contributions in this chapter are as follows.
Firstly, we establish that regulating send rate so as to maintain a target
aggregation level can indeed be used to realize high rate, low latency
communication over 802.11ac WLANs. Secondly we address two im-
portant practical issues arising in production networks, namely that (i)
many client devices are non-rooted mobile handsets/tablets and (ii) the
bottleneck may lie in the backhaul rather than the WLAN, or indeed
vary between the two over time. We show that both these issues can
be resolved by use of simple and robust machine learning techniques.
Thirdly, we present a prototype transport layer implementation of our
low latency rate allocation approach and use this to evaluate perfor-
mance under real radio channel conditions.

4.2 Preliminaries

4.2.1 Measuring Aggregation

The level of aggregation can be readily measured at a receiver using
packet MAC timestamps. Namely, a timestamp is typically added by
the NIC to each packet recording the time when it is received. This

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 14

(a) 10Mbps send rate (b) 200Mbps send rate

FIGURE 4.1: MAC timestamp measurements for UDP packets transmitted over an 802.11ac
downlink to two client stations. Packets transmitted in the same frame have the same
MAC timestamp, and it can be seen from (a) that while there tends to be only one packet
per frame at a 10Mbps send rate this increases in (b) to around 10 packets per frame at
200Mbps. The same downlink send rate is used for both client stations, data is shown for

one client station. Experimental data, setup in Section 4.6.

timestamp is derived from the WLAN MAC and has microsecond gran-
ularity1. When a frame carrying multiple packets is received then those
packets have the same MAC timestamp and so this can be used to infer
which packets were sent in the same frame.

For example, Figure 4.1 shows measured packet timestamps for two
different downlink send rates. The experimental setup used is described
in Section 4.6. It can be seen from Figure 4.1(a) that when the UDP arrival
rate at the AP is relatively low each received packet has a distinct times-
tamp whereas at higher arrival rates, see Figure 4.1(b), packets start to
be received in bursts having the same timestamp. This behavior reflects
the use by the AP of aggregation at higher arrival rates, as confirmed by
inspection of the radio headers in the corresponding tcpdump data.

4.2.1.1 Link Layer Retransmission Book-keeping

The 802.11ac link layer retransmits lost packets. Our measurements
indicate that these retransmissions usually occur in a dedicated frame
in which case the aggregation level of that frame is often lower than for
regular frames, e.g. see Figure 4.2. Losses also mean that the number
of received packets in a frame is lower than the number transmitted.
Fortunately, by inserting a unique sequence number into the payload of
each packet we can infer both losses and retransmissions since they re-
spectively appear as “holes” in the received stream of sequence numbers
and as out of order delivery. We can therefore adjust our book-keeping
to compensate for these when estimating the aggregation level.

4.3 Low Delay High-Rate Operation

Figure 4.3 shows measurements of the mean aggregation level, packet
delay and loss vs the send rate to a client station for a range of network

1Note that, as will be discussed in more detail later, a second timestamp is also added by the kernel but
this is recorded at a later stage in the packet processing chain and so is significantly less accurate.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 15

FIGURE 4.2: Experimental measurements illustrating typical 802.11ac link layer packet loss
and retransmission behavior. In the first frame a burst of five packets are lost and retrans-
mitted in the second frame. In the third frame the first packet is lost and retransmitted in

the fourth frame.

(a) One station, NS3 (b) 10 stations, NS3

(c) One station & uplink tx’s, NS3 (d) One station, testbed

FIGURE 4.3: Measurements of average aggregation level, one-way packet delay and packet
loss vs the send rate for a range of network conditions. (a) downlink flow to one client
station, (b) 10 downlink flows to each of 10 client stations, data shown is for one of these
flows, (c) setup as in (a) but with contention from an uplink flow, (d) setup as in (a) but

measurements are from a hardware testbed located in an office environment.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 16

configurations. A number of features are evident. Firstly, as the send rate
is increased the aggregation level increases monotonically until it reaches
the maximum value Nmax supported by the MAC (for the data shown
Nmax = 64 packets). Secondly, the packet delay increases monotonically
with send rate, initially increasing slowly but then increasing sharply as
the send rate approaches the downlink capacity. Observe that the sharp
increase in delay coincides with aggregation level approaching its upper
limit of 64 packets and with the onset of packet loss. Note that all packet
loss in this data is due to queue overflow since we verified that link layer
retransmissions repair channel losses.

We can understand the behavior in Figure 4.3 in more detail by refer-
ence to the schematic in Figure 4.4. Packets are transmitted by the sender
in a paced fashion. On arriving at the AP they are queued until a trans-
mission opportunity occurs. The queue occupancy increases roughly
linearly since the arriving packets are paced (have roughly constant inter-
arrival times). Upon a transmission opportunity the queued packets
are assembled into an aggregated frame and transmitted. Provided the
queue is less than Nmax the queue backlog is cleared by this transmission.
For example, consider the shaded frame in Figure 4.3. This frame is
transmitted at the end of time interval T2 and the packets indicated by
the shaded area on the queueing plot are aggregated into this frame. The
oldest packet in this frame could have arrived just after interval T1 and
so may have waited up to T2 seconds before transmission. Later arriving
packets will, of course, experience less delay than this. The intervals
T1, T2 etc between frame transmissions are random variables due to
the randomized channel access mechanism used by 802.11 transmitters.
Importantly, these intervals depend on the aggregation level, i.e. the
duration T2 depends on the time taken to send the frame aggregated
from packets arriving in interval T1 etc, and in turn the aggregation level
depends on the interval duration since more packets arrive in a longer
interval. The delay and aggregation level are therefore coupled to one
another and this is what we see in Figure 4.3. Note that the intervals
between transmissions may also vary due to contention with other trans-
mitters (uplink transmissions by clients, transmissions by other WLANs
sharing the same channel etc), link layer retransmissions, transmissions
by the AP to other clients (recall modern APs use per station queueing
so the coupling is only via these intervals) and so on but the basic setup
remains unchanged and this is also reflected in Figure 4.3.

The data in Figure 4.3 suggests that if we could operate the system
at an aggregation level of, for example, around 32 packets then we
can obtain a high transmit rate while maintaining low delay. It is this
observation that underlies the approach we propose here. Note that
the AP transmit efficiency increases with the aggregation level since the
overheads on a frame transmission are effectively fixed and so sending
more packets in a frame increases efficiency. Hence, operating at less
than the maximum possible aggregation level Nmax incurs a throughput
cost and there is therefore a trade-off between delay and rate. However,
Figure 4.3 indicates that this trade-off is quite favorable, namely that
low delay comes at the cost of only a relatively small reduction in rate
compared to the maximum possible.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 17

FIGURE 4.4: Illustrating connections between queueing, packet delay and frame aggrega-
tion at the AP. Packets arriving at the AP are queued for transmission, the queue growing
roughly linearly over time as packets arrive in a paced fashion. When a transmission
opportunity occurs an aggregated frame is constructed from the queued packets. Provided
the number of queued packets is less than the maximum frame aggregation level Nmax
then the queue backlog is cleared by the transmission. The delay of the oldest packet in a

frame is upper bounded by the time between transmission opportunities.

4.3.1 Controlling Delay

We proceed by introducing a simple feedback loop that adjusts the
sender transmit rate (corresponding to the AP arrival rate, assuming no
losses between sender and AP) to maintain a specified target aggregation
level. Namely, time is partitioned into slots of duration ∆ seconds and
we let Ti,k denote the set of frames transmitted to station i in slot k.
Station i measures the number of packets Ni, f aggregated in frame f
and reports the average µNi(k) := 1

|Ti,k| ∑ f∈Ti,k
Ni, f back to the sender.

The sender then uses proportional-integral (PI) feedback2 to increase its
transmit rate xi if the observed aggregation level µNi(k) is less than the
target value Nε and decrease it if µNi(k) > Nε. This can be implemented
using the pseudo-code shown in Algorithm 1. Note that this feedback
loop involves three design parameters, update interval ∆, feedback gain
K and target aggregation level Nε. We consider the choice of these
parameters in more detail shortly but typical values are ∆ = 500ms or
1000ms, K = K0/n with K0 = 1 (where n is the number of client stations
in the WLAN) and Nε = 32 packets.

Algorithm 1 Feedback loop adjusting transmit rate xi to regulate aggregation
level µNi .
k = 1
while 1 do

µNi ←
1
|Ti,k | ∑ f∈Ti,k

Ni, f

xi ← xi − K(µNi − Nε)
k← k + 1

end while

We implemented this feedback loop in our experimental testbed, see
Section 4.6 for details, and Figure 1.1(b) shows typical results obtained
by regulating the aggregation level.

2While design of more sophisticated control strategies is of interest, this is an undertaking in its own right
and we leave this to future work.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 18

4.3.2 Multiple Stations: Equal Airtime Fairness

When there are multiple client stations we can modify Algorithm 1 as
follows to allocate roughly equal airtime to each station. Recall that the
airtime used to transmit the payload of station i is Ti = µNi L/µRi , where
L is the number of bits in a packet, µNi is the number of packets in a
frame and µRi is the MCS rate used to transmit the frame in bits/s. So
selecting µNi = µRi /µRi∗ makes the airtime equal with Ti = Ti∗ for all
stations. Letting x denote the vector of downlink send rates to ensure
equal airtimes we therefore increase the rate xi∗ of the station i∗ with
highest MCS rate µRi(k) when its observed aggregation level µNi(k) is
less than the target value Nε and decreases xi∗ when µNi(k) > Nε, i.e. at
slot k

xi∗(k + 1) = xi∗(k)− K(µNi(k)− Nε) (4.1)

The rates of the other stations are then assigned proportionally,

xi(k + 1) = xi∗(k + 1)
µRi

µRi∗
, i = 1, . . . , n (4.2)

Note that the update (4.1)-(4.2) only uses readily available observa-
tions. Namely, the frame aggregation level Ni, f and the MCS rate Ri, f ,
both of which can be observed in userspace by packet sniffing on client
i.

4.3.3 Selecting Design Parameters ∆ and K0

4.3.3.1 Convergence Rate

We expect that the speed at which the aggregation level and send rate
converge to their target values when a station first starts transmitting is
affected by the choice of feedback gain K0 and update interval ∆. Figure
4.5 plots measurements showing the transient following startup of a
station vs the choice of K0 and ∆.

It can be seen from Figure 4.5(a) that as gain K0 is increased (while
holding ∆ fixed) the time to converge to the target aggregation level
Nε = 32 decreases. However, as the gain is increased the feedback
loop eventually becomes unstable. Indeed, not shown in the plot is the
data for K0 = 10 which shows large, sustained oscillations that would
obscure the other data on the plot. Similarly, it can be seen from Figure
4.5(b) that as the update interval ∆ is decreased the convergence time
decreases.

4.3.3.2 Disturbance Rejection

Observe in Figure 4.5 that while the convergence time decreases as K0 is
increased the corresponding error bars indicated on the plots increase.
As well as the convergence time we are also interested in how well
the controller regulates the aggregation level about the target value Nε.
Intuitively, when the gain K0 is too low then the controller is slow to
respond to changes in the channel and the aggregation level will thereby

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 19

(a) Impact of K0 (with ∆ = 1000ms) (b) Impact of ∆ (with K0 = 1)

FIGURE 4.5: Convergence rate vs feedback gain K0 and update interval ∆. Mean and
standard deviation from 10 runs at each parameter value. One client, 802.11ac, Nε = 32.

Experimental data, setup in Section 4.6, Nmax = 64.

(a) Impact of K0 (∆ = 1000ms). (b) Impact of ∆ (K0 = 1).

FIGURE 4.6: Noise rejection (as measured by standard deviation of µN) vs feedback gain
K0 and update interval ∆. One client, 802.11ac, Nε = 32. Experimental data, setup in

Section 4.6, Nmax = 64.

show large fluctuations. When K0 is increased we expect feedback loop
is also able to respond more quickly to genuine changes in channel
behavior.

This behavior can be seen in Figure 4.6(a) which plots measurements
of the standard deviation of the aggregation level µN (where the empiri-
cal mean is calculated over the update interval ∆ of the feedback loop)
as the control gain K0 is varied. When the update interval ∆ is made
smaller we expect that the observations µNi(k) and µRi(k) will tend to
become more noisy (since they are based on fewer frames) which may
also tend to cause the aggregation level to fluctuate more. However, the
feedback loop is also able to respond more quickly to genuine changes
in channel behavior. Conversely, as ∆ increases the estimation noise falls
but the feedback loop becomes more sluggish.

Figure 4.6(b) plots measurements of the standard deviation of the
aggregation level µN as ∆ is varied. It can be seen that due to the inter-
play between these two effects the standard deviation of µN increases
when ∆ selected too small or too large, with a sweet spot for ∆ around
1250-2000ms.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 20

FIGURE 4.7: Illustrating adaption of send rate by feedback algorithm in response to a
change in channel conditions (from use of 2 spatial streams down to 1 spatial stream). NS3

simulation, single client station, MCS 9, K0 = 1, ∆ = 500ms, Nε = 32, Nmax = 64.

4.3.3.3 Responding to Channel Changes

The feedback algorithm used by the sender regulates the send rate to
maintain a target aggregation level. It therefore adapts automatically to
changing channel conditions. To investigate this we change to using NS3
simulations since this allows us to change the channel in a controlled
manner (we also have experimental measurements showing adaptation
to changing channel conditions, not shown here, but in this case we do
not know ground truth).

Fig. 4.7 illustrates typical behavior of the feedback algorithm. Initially
the AP uses 2 spatial streams and then at t = Ta = 20s it switches
to 1 spatial stream. For ∆t1 = 2.24s all AMPDUs hit the maximum
aggregation level of 64 packets and we start observing losses. During
this time it can be seen that the algorithm, which updates the send rate
twice per second (∆ = 500ms), is slowing down the sending rate. It takes
four rounds to reach a rate compatible with the channel, but it takes a
little bit more to stabilize the aggregation level at the AP in t = Tb. After
another three rounds (for approximately ∆t2 = 1.26s) it can be seen that
the sending rate settles at its new value in t = Tc.

4.3.4 Fairness With High Rate & Low Delay

We now explore performance with multiple client stations. We begin
by considering a symmetric network configuration where client stations
are all located at the same distance from the AP. We then move on to
consider asymmetric situations where the channel between AP and client
is different for each client. Again we use NS3 simulations in this section
since this facilitates studying the performance with larger numbers of
clients.

4.3.4.1 Clients Same Distance From AP

We begin by considering a network configuration where client stations
are all located two meters from the AP. Fig. 4.8 (top) shows measure-
ments of the aggregated application layer goodput and average delay vs
the number of receivers.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 21

FIGURE 4.8: Sum-goodput and delay vs number of receivers (top) and corresponding
distribution of aggregation level about the target value of Nε = 32 (bottom). In the top
plot the GP theory line (GP, goodput) is a theoretical upper limit computed by assuming an
AMPDU with Nε = 32 packets, 10 feedback packets per second per receiver, 10 beacons

per second, and no collisions. NS3 simulations, K0 = 1, ∆ = 500ms, Nmax = 64.

It can be seen that the aggregated goodput measured at the receivers
is close to the theoretical limit supported by the channel (MCS) configu-
ration, being only a few Kb/s below this for 20 receivers. This goodput
is evenly shared by the receivers (the measured Jain’s Fairness Index
is always 1). The average delay increases almost linearly at the rate
of 350µs per additional station. The lower plot in Fig. 4.8 shows the
measured distribution of frame aggregation level, with the edges of the
boxes indicating the 25th and 75th percentiles. It can be seen that the
feedback algorithm tightly concentrates the aggregation level around
the target value of Nε = 32. As expected, since the delay is regulated to
a low level we did not observe any losses.

4.3.4.2 Randomly Located Clients

We now consider a scenario where the client stations are randomly
located in a square of side 40m and the AP is located in its centre. We
configured MinstrelHT algorithm as the rate controller, this adjusts the
MCS used by each client station based on its channel conditions (better
for stations closer to the AP, worse for those further away). To ease
visualization we use NSS=1 which helps to reduce the MCS fluctuations
generated by Minstrel. We ran experiments with eight receivers until
we collected 200 points where the rate controller converged to a stable
choice for all receivers, i.e., with more than 85% of frames received with
the same MCS. We group receivers by MCS and report statistics on Nε

for each group as boxplots in the top-left plot in Figure 4.7. The thick
circles indicate the choice of rate allocation that assigns equal airtime
to all receivers, and it can be seen that the measured rate allocation is
maintained close to those values by the feedback algorithm.

In clockwise order Figure 4.7 then shows the ECDF of losses, aggre-
gated goodput and delay. Observe that losses occur in this configuration
because of far away nodes not being able to correctly decode all packets.
The aggregate goodput can drop as low as 150Mb/s when MinstrelHT
selects MCS4 for all receivers, but converges to 300Mb/s with MCS 9

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 22

FIGURE 4.9: Performance with 8 receivers placed randomly in a square of side 40m: MCS
is chosen by MinstrelHT algorithm, NSS = 1. NS3 simulations, K0 = 1, ∆ = 500ms,

Nmax = 64.

(the theoretical maximum goodput with MCS 9, NSS 1 and Nε = 32 is
307Mb/s). Delay is consistently less than 6ms.

4.3.4.3 Coexistence With Legacy WLANs

We next analyze the performance of stations which regulate the aggrega-
tion level when they co-exist with legacy stations.

Figures 4.10(a)-4.10(b) show the measured delay and performance for
a setup with two WLANs sharing the same channel. The first WLAN
contains stations that regulate the aggregation level on the downlink
while in the second WLAN the AP has a persistent backlog and so
always has packets to send to each station. We hold the total number
of client stations constant at 10 but vary the fraction which regulate the
aggregation level, as indicated on the x-axis of the plots.

When the number of new controlled stations is zero, i.e. there are
10 saturated legacy stations sharing the same AP, then the aggregated
goodput shown in Figures 4.10(a) is close to the theoretical prediction
for when the aggregation level is 64 packets (approximately 615Mb/s).
When the number of controlled stations is 10, i.e. there are 10 controlled
stations sharing the same AP, then it can be seen that the aggregated
goodput is around 515Mbps, close to the theory value when the aggre-
gation level is 32 packets (which is the target value for the controlled
stations).

When there is a mix of controlled and legacy stations it can be seen
that the legacy stations gain a higher fraction of the total goodput than
the stations which control aggregation level, as expected since the legacy
stations use the maximum possible aggregation level Nmax = 64. How-
ever, this gain in goodput comes at the price of higher delays for the
legacy stations. If we compare the delay achieved for the same number
of stations in the two groups, it can be seen that the delay of the legacy

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 23

(a) Goodput Comparison, 2 BSSs (b) Delay Comparison, 2 BSSs

(c) Goodput Comparison, 1 BSS (d) Delay Comparison, 1 BSS

FIGURE 4.10: Top: comparison of Goodput (left) and Delay (right) when Controlled and
Legacy stations form two BSSs with separate APs. Bottom: same comparison when all

stations are joined to the same AP. NS3 simulations, K0 = 1, ∆ = 500ms, Nmax = 64.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 24

stations is approximately four times that of stations that regulate the
throughput. The goodput fraction is (almost) invariant with the number
of stations since the 802.11 MAC assigns an equal number of transmis-
sion opportunities to each AP regardless of the number of clients in each
WLAN.

This data confirms that WLANs where stations regulate their aggrega-
tion level can coexist successfully with legacy WLANs. Namely, legacy
WLANs are not penalized and the new controlled stations are still able
to achieve low delay at reasonably high rates.

Figures 4.10(c)-4.10(d) show corresponding measurements when the
legacy stations share the same WLAN as the new controlled stations.

Now the fraction of goodput allocated to each class of station changes
as the number of controlled stations is varied. This is because both
legacy and controlled stations share the same AP and this uses round-
robin scheduling. Once again, as expected legacy stations achieve higher
goodput than stations which regulate the aggregation level. The high
aggregation level used by the legacy stations means that their trans-
missions take more airtime. This induces delay for the new controlled
stations since they must wait for the legacy station transmissions to
complete due to the round-robin scheduling used by the AP: still the
delay for the controlled stations is always less than 12ms even in the
worst case with a single controlled station against 9 legacy stations and
it falls to 7ms when all stations are controlled.

4.4 Non-rooted Mobile Handsets

The results in the previous section make use of MAC timestamps to mea-
sure the aggregation level of frames received at WLAN clients. However,
access to MAC timestamps is via prism/radiotap libpcap headers and
typically requires root privilege. While this is fine for devices running
operating systems such as Linux or OS X, it is problematic for mobile
handsets and tablets since root privilege is generally not enabled for
users on Android and iOS. Mobile handsets/tablets are, of course, the
primary means of accessing the internet for many users and so for our
low latency approach to be of practical use it is important that it is
compatible with these.

Potentially we can sidestep this constraint by use of a separate net-
work sniffer with root access. But this is unappealing for at least two
major reasons. Firstly, it entails installation of additional infrastructure,
with associated cost and maintenance and unfavorable economics as
cell sizes shrink. Secondly, sniffing in monitor mode is itself becoming
increasingly complex due to use of MIMO (the directionality makes it
difficult to achieve monitor coverage) and very high rate PHYs (making
sniffing liable to error/corruption). Similarly, deploying measurement
mechanisms on the AP may not be an option: manufacturers, in fact,
restrict access to their devices and the update cycle can be much slower
than in the case of a proxy software running on an edge- or cloud- server.

With the above in mind, we note that the kernel adds timestamps
to received packets and these are accessible on mobile handsets via the

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 25

(a) 100Mbps (b) 300Mbps

FIGURE 4.11: Kernel and MAC timestamp measurements for UDP packets transmitted to a
mobile handset over 802.11ac. In (a) the arrival rate of packets at the AP is 100Mbps and in
(b) 300Mbps. Experimental data, setup in Section 4.6, AMDSU aggregation (Nmax = 128).

SO_TIMESTAMP or SO_TIMESTAMPNS3 socket options without root privi-
lege. However, the kernel timestamp for a packet is recorded when the
received packet is moved to the receive ring buffer and so is subject
to significant “noise” associated with driver scheduling e.g. interrupt
mitigation may lead to a switch to polled operation when under load.

Note that we tried tcpdump on a rooted Google Pixel 2 phone but
found that monitor mode does not enable. We also tried the SO_TIMESTAMPING
socket option with root privilege to capture MAC timestamps using the
recvmsg Linux utility with related flags such as SOF_TIMESTAMPING_RX_HARDWARE
and SOF_TIMESTAMPING_RAW_HARDWARE but the MAC timestamps are not
reported. Therefore, MAC time-stamping is not supported by all hand-
sets and having root access does not guarantee accessing this information
on mobile phones.

Typical kernel timestamp “noise” is shown, for example, in Figure
4.11. When the arrival rate at the AP is relatively low, it can be seen from
Figure 4.11(a) that two or three packets share each MAC timestamp and
so are aggregated into the same frame. While the kernel timestamps
differ for packets transmitted in the same frame (see plot inset), there is
nevertheless a clear jump in the kernel timestamps between frames and
this can be used to cluster packets sharing the same frame. Figure 4.11(b)
shows corresponding measurements taken at a higher network load. It
can be seen that now many more packets are aggregated into each MAC
frame, as might be expected. However, there is now no longer a clear
pattern between the jumps in kernel timestamp values and the frame
boundaries: sometimes there are large jumps within a frame. Although
not shown in this plot, it can also happen that no clear jump in kernel
timestamps is present at boundary between frames. We believe this is
due to the action of NAPI interrupt mitigation, which causes the kernel
to switch from interrupt to driver polling at higher network loads.

In this section we explore whether, despite their noisy nature, kernel
packet timestamps can still be successfully used to estimate the aggrega-
tion level of frames received on a mobile handset.

3Same timestamping mechanism as SO_TIMESTAMP, but reports the timestamp in ns resolution rather
than µs. [46]

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 26

4.4.1 Estimating Aggregation Level: Logistic Regression

To estimate the aggregation level using noisy kernel timestamps we
adopt a supervised learning approach. For training purposes we have
ground truth available via the sniffer, although we require the resulting
estimator to be robust enough to be used across a wide range of network
conditions without retraining.

As our main input features we use the inter-packet arrival times of
last m received packets, derived from their kernel timestamps, plus
their standard deviation. Parameter m is a design parameter that we
will select shortly. The input feature vector X(i) associated with the ith
packet is therefore:

X(i) = [ti−m+1 ti−m+2 . . . ti σi]
T (4.3)

where ti is the arrival time difference (in microseconds) between ith and
(i− 1)th packets received and σi is the standard deviation of the last m
inter-packet arrival times. We define target variable Y(i) as taking value
1 when the ith packet is the first packet in an aggregated frame and 0
otherwise.

While the OS polling noise is challenging to model and the relation
between MAC and kernel timestamps is complex, surprisingly it turns
out that we can quite effectively estimate Y(i) using the following simple
logistic model:

P(Y(i) = 1|X(i) = X) =
1

(1 + e−θ0−θT X)
(4.4)

where θ = (θ1 . . . , θm+1)
T ∈ Rm+1 plus θ0 are the m + 2 (unknown)

model parameters.
To train this model we use timestamp data collected for a range

of send rates from 100Mbps to 600Mbps where at each rate 250,000
packets are collected. We use the F1 metric, which combines accuracy
and precision, to measure performance at predicting label Y(i) for each
packet. We use the Scikit-learn library [47] to train the model using this
data, applying 20-fold cross-validation to estimate error bars. We found
the standard deviation to be consistently less than 0.01 and since it is
hard to see such small error bars on our plots these are omitted.

Figure 4.12(a) plots the measured F1 score vs the number m of input
features. Data is shown both for logistic regression and SVM cost func-
tions and also when the standard deviation σi is and is not included in
the feature vector. From this data we can make the following observa-
tions. For m greater than about 40 features the performance of all of
the estimators is much the same, but for m less than 40 addition of σi
boosts performance by around 5%. Note that use of a small value of m
is desirable since we need to wait for m packets in order to generate an
estimate for Y(i) and so the latency of the estimator increases with m.
The performance with the logistic regression and SVM cost functions
is similar, as might be expected, but we adopt the logistic regression
choice of parameters as the predictions have slightly better performance.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 27

1 10 20 30 40 50 60 70 80 90

m

0

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

Logistic Regression with

Logistic Regression without

SVM (Linear Kernel) without

(a) F1 Score vs. m

10 100 200 300 400 500 600 700

Send Rate (Mbps)

0

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

Logistic Regression, m = 20

Logistic Regression, m = 1

50Mbps

(b) F1 Score vs. Send Rate

10 100 200 300 400 500 600 700

Send Rate (Mbps)

0

10

20

30

40

50

60

70

R
M

S
E

Logistic Reg, m = 1

Logistic Reg, m = 20

Kernel SVM, d = 5

(c) RMSE of Predicted Aggregation Level vs. Send
Rate

0 20 40 60 80 100 120

Predicted Aggregation Level

0

25

50

75

100

125

150

T
ru

e
 A

g
g
re

g
a
ti
o
n
 L

e
v
e
l

(d)

FIGURE 4.12: Performance of logistic regression estimator vs (a) number m of features and
(b), (c) send rate; (d) actual vs predicted aggregation level. Experimental data, Samsung

Galaxy handset, setup in Section 4.6, AMDSU aggregation (so Nmax = 128).

Unless otherwise stated, hereafter we use m = 20 plus feature σi. Note
also that the same set of parameter values (θ, θ0) is used for all send
rates i.e. a single estimator is used across the full range of operation.

Figure 4.12(b) plots the performance of this estimator vs the downlink
send rate. It can be seen that the prediction accuracy is high for rates up
to about 500Mbps, but then starts to drop sharply. This is the accuracy of
predicting the label Y(i) of each packet, but of course our real interest is
in predicting the aggregation level. The aggregation level can be directly
derived from the Y(i) labels (its just the number of packets between
those labelled with Y(i) = 1, capped at Nmax). Figure 4.12(c) shows the
measured aggregation level prediction accuracy vs the downlink send
rate. It can be seen that, as might be expected, it shows quite similar
behavior to Figure 4.12(b). A notable exception is at send rates above
700Mbps where the accuracy of the aggregation level improves. This is
because at such high rates the aggregation level has hit the upper limit
Nmax and the estimator simply predicts Nmax as the aggregation level.
We will consider the causes for the drop in accuracy at rates between
500-700Mbps in more detail shortly, but note briefly that it is directly
related to the load-related “noise” on kernel timestamps (recall Figure
4.11(b)).

As a baseline for comparison Figures 4.12(b)-(c) also shows the per-
formance of the logistic regression estimator when m = 1 (and without

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 28

σi). The latter corresponds to an estimator that labels packets by simply
thresholding on the inter-packet arrival time i.e. when the time between
the current and previous packet exceeds a threshold we label the current
packet as the first in a new MAC frame. The threshold level used is
optimized to maximize prediction accuracy on the training data. From
Figure 4.11(a) we can expect that under lightly loaded conditions this
approach is quite effective, but Figure 4.11(b) also tells us that it is likely
to degrade as the load increases and indeed it can be seen from Figures
4.12(b)-(c) that the performance of this baseline estimator degrades for
rates above about 300Mbps (compared to rates above about 500Mbps
with m = 20). It can also be seen that the accuracy drops sharply at a rate
of 50Mbps. This is because at this send rate the inter-packet send time is
close to the simple threshold used in the baseline estimator. Hence the
logistic regression estimator with m = 20 offers significant performance
gains over this baseline estimator.

4.4.2 Improving Accuracy At High Network Loads: SVM

As already noted, the accuracy of the logistic regression estimator falls
for send rates in the range 500-700Mbps, see Figures 4.12(b)-(c). The
reason for this can be seen from Figure 4.13. Figure 4.13(a) shows the
frame boundaries predicted by the estimator when the arrival rate at
the AP is 300Mbps. The true frame boundaries can be inferred from
the MAC timestamps, which are also shown in this plot. Observe that
even although there are jumps between the kernel timestamps of packets
sharing the same frame the estimator is still able to accurately predict the
frame boundaries. Figure 4.13(b) shows the corresponding data when
the arrival rate is increased to 600Mbps. It can be seen that there are
now many jumps in the kernel timestamps of packets sharing the same
MAC frame and sometime no jump in timestamps between packets
transmitted in different frames (e.g. see the frame towards the right-
hand edge of the plot). As a result the estimator makes many mistakes
when trying to predict the frame boundaries.

Figures 4.13(c)-(d) show time histories of the estimated aggregation
level. Observe in Figure 4.13(d) that there is a fairly consistent offset
between the predicted and actual aggregation level. While this figure is
for a single send rate of 600Mbps, Figure 4.12(d) plots the relationship
between predicted and actual aggregation level for a range of send rates.
Since the error is fairly consistent the potential exists to improve the
estimator for send rates in the 500-600Mbps range. We explored various
approaches for this and found the most effective is to combine the logistic
regression estimator with a radial-basis function kernel SVM with the
following input features,

X(i) = [µN̂δi−d+1
. . . µN̂δi

σ
δi

A
δi]

T (4.5)

where we partition time into 100ms slots and µN̂δi
is the empirical aver-

age of the aggregation level predicted by the logistic regression estimator
over the i slot, σ

δi
the empirical variance and A

δi
the number of frames.

The averaging over slots reduces the noise and significantly improves

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 29

5000 5020 5040 5060 5080 5100

Packet Number

195

196

197

198

199

200

A
rr

iv
a
l
T

im
e
 (

m
s
)

Kernel Timestamps

MAC Timestamps

Predicted Frame Boundary

(a) 300Mbps

2100 2200 2300 2400 2500

Packet Number

42

44

46

48

50

52

A
rr

iv
a
l
T

im
e
 (

m
s
)

Kernel Timestamps

MAC Timestamps

Predicted Frame Boundary

(b) 600Mbps

1140 1150 1160 1170 1180

#Frame

15

20

25

30

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l

Ground Truth

Logistic Regression

(c) 300Mbps

2000 2010 2020 2030

#Frame

20

40

60

80

100

120

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l

Ground Truth

Logistic Regression

(d) 600Mbps

FIGURE 4.13: Frame boundaries predicted by the logistic regression estimator for (a)
medium and (b) high network loads, and corresponding kernel and MAC timestamp
measurements. Also time histories of estimated aggregation level for (a) medium and (b)
high network loads. Experimental data, Samsung Galaxy handset, setup in Section 4.6,

AMDSU aggregation (Nmax = 128).

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 30

2.2 2.22 2.24 2.26 2.28 2.3

Time (sec)

0

20

40

60

80

A
g
g
re

a
g
ti
o
n
 L

e
v
e
l

Ground Truth

Prediction

(a) 400Mbps - Low Load (≈ 30%)

2.2 2.22 2.24 2.26 2.28 2.3

Time (sec)

0

20

40

60

80

A
g
g
re

a
g
ti
o
n
 L

e
v
e
l

Ground Truth

Prediction

(b) 400Mbps - High Load (≈ 55%)

FIGURE 4.14: Illustrating the accuracy of prediction for different CPU loads. Experimental
data, Samsung Galaxy handset, setup in Section 4.6, AMDSU aggregation (Nmax = 128).

performance. The output of the SVM is the predicted aggregation level.
We trained this SVM using the measured aggregation level averaged
over each slot (again to reduce noise during training) and using cross-
validation selected d = 5. Figure 4.12(c) plots the RMSE of the predic-
tions vs send rate when the logistic regression estimator is augmented
with this SVM. It can be seen that the performance is considerably im-
proved for send rates in the 500-600Mbps range, with the the RMSE now
no more than 8 packets compared with a value of around 40 packets
when the logistic regression estimator is used on its own.

Note that since it operates over 100ms slots the SVM estimator is less
responsive that the logistic regression estimator, but since the controller
only updates the send rate every ∆ seconds with ∆ typically 0.5 or 1s then
the 100ms delay introduced by the SVM estimator is minor. However,
since the SVM estimator is relatively computationally expensive and the
logistic regression estimator is sufficiently accurate for the low delay
operating regime of interest here (where the rates are less than 500Mbps),
so in the rest of the chapter we confine use to the logistic regression
estimator unless otherwise stated.

4.4.3 Effect of CPU Load On Estimator Performance

To understand whether the noise on kernel timestamps is affected by
system CPU load as well as network load we collected packet timestamp
measurements while varying the CPU load by playing a 4K video in
full screen mode. We found that CPU load makes little difference to the
accuracy of the aggregation level estimator. For example, Figure 4.14
shows two typical time histories of measured and estimated aggregation
level. Figure 4.14(a) is when the CPU load is around 30% and Figure
4.14(a) when the CPU load is around 55%. Even with a fairly high
network load of 400Mbps it can be seen that the aggregation levels
predicted by the estimator agree well with the actual aggregation level
regardless of the CPU load.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 31

(a) Receive Rate (b) One-way Delay

0 20 40 60 80 100

Time (sec)

0

20

40

60

80

100

120

140

#
P

a
c
k
e
t
L
o
s
s
 (

/1
0
0
0
)

Cubic

BBR

Agg, N = 60

(c) #Packet loss

FIGURE 4.15: Compare the performance of aggregation-based rate control algorithm with
TCP Cubic and BBR. The one-way delay in (b) is averaged over 100ms intervals. K0 = 1,
∆ = 1000ms, Nε = 60. Experimental data, Samsung Galaxy handset, setup in Section 4.6,

AMDSU aggregation (Nmax = 128).

4.4.4 Robustness of Estimator

While the foregoing measurements are for a Samsung Galaxy tablet
we obtained similar results (using the same trained estimator, without
changing the parameter values) when using a Google Pixel 2 handset.
We also obtained similar results when there are multiple WLAN clients,
as might be expected since per client queueing is used by 802.11ac APs
i.e packets to different clients queued separately.

4.4.5 Performance Comparison With TCP Cubic & BBR

We extended the client-side code in our prototype implementation of the
rate allocation approach in Section 4.3 to make use of kernel timestamps
and the logistic regression estimator of aggregation level. The code is
written in C and could be directly cross-compiled for use on the Samsung
Galaxy tablet.

As might be expected, we obtain similar results to those shown in
Section 4.3 when using MAC timestamps and so do not reproduce these
here. Instead we take the opportunity to compare the performance of our
proposed aggregation-based rate control algorithm with TCP Cubic [29],
the default congestion control algorithm used by Linux and Android. In
addition, we compare performance against TCP BBR [34] since this is a

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 32

state-of-the-art congestion control algorithm currently being developed
by Google and which also targets high rate and low latency.

Since TCP Cubic is implemented on Android we use the Samsung
Galaxy as client. However, TCP BBR is not currently available for An-
droid and so we use a Linux box (Debian Stretch, 4.9.0-7-amd64 kernel)
as the BBR client.

Figure 4.15 shows typical receive rate and one-way delay time histo-
ries measured for the three algorithms. It can be seen from Figure 4.15(a)
that Cubic selects the highest rate (around 600Mbps) but from Figure
4.15(b) that this comes at the cost of high one-way delay (around 50ms).
This is as expected since Cubic uses loss-based congestion control and
so increases the send rate until queue overflow (and so a large queue
backlog and high queueing delay at the AP) occurs. As confirmation,
Figure 4.15(c) plots the number of packet losses vs time and it can be
seen that these increase over time when using Cubic, each step increase
corresponding to a queue overflow event followed by backoff of the TCP
congestion window.

BBR selects the lowest rate (around 400Mbps) of the three algorithms,
but surprisingly also has the highest end-to-end one-way delay (around
75ms). High delay when using BBR has also previously been noted
by e.g. [48] where the authors propose that high delay is due to end-
host latency within the BBR kernel implementation at both sender and
receiver. However, since our focus is not on BBR we do not pursue
this further here but note that the BBR Development team at Google is
currently developing a new version of BBR v2.

Our low delay aggregation-based approach selects a rate (around 480
Mbps), between that of Cubic and BBR, consistent with the analysis in
earlier sections. Importantly, the end-to-end one-way delay is around
2ms i.e. more than 20 times lower than that with Cubic and BBR. It can
also be seen from Figure 4.15(c) that it induces very few losses (a handful
out of the around 4M packets sent over the 100s interval shown).

4.5 Detecting Bottleneck Location

The foregoing analysis applies to edge networks where the wireless hop
is the bottleneck. For robust deployment, however, we need to be able
to detect when this is violated i.e. when the bottleneck is the backhaul
link. In this section we show how measurement of the aggregation level
can be used for this purpose also. Note that this is of interest in its own
right for network monitoring and management, separately from its use
with our aggregation-based low delay rate control approach.

The basic idea is as follows. When the AP is the bottleneck then a
queue backlog will develop there and so an elevated level of aggregation
will be used in transmitted frames. Conversely, when the bottleneck is
the backhaul link then we will observe delay and loss but a low level of
packet aggregation. Hence we can use aggregation level and loss/delay
as input features to a bottleneck location classifier. Note that this passive
probing approach creates no extra load on the network (unlike active

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 33

FIGURE 4.16: System model used in our testbed to do measurement when the backhaul is
bandwidth bottleneck, 802.11ac.

probing methods) and can also cope with bridged Layer-2 devices (such
as a bridged AP) which are invisible to ICMP probes.

4.5.1 Experimental Setup

To adjust the bottleneck location we modify the experimental setup de-
scribed in the Section 4.6 so that packets between the sender and the
AP are now routed via a middlebox which allows us to adjust the band-
width of the backhaul link, see Figure 4.16. We adjust the bandwidth
using two different techniques: (i) by forcing the ethernet link to operate
at either 100Mbps or 1000Mbps (using ethtool) and (ii) by generating
cross-traffic on the backhaul link. When adjusting the link rate we also
adjust the link queue size corresponding e.g. when changing to 100Mbps
we set txqueuelen to 100 packets.

As client stations within the WLAN we use a Samsung Galaxy Tab S3
(Client 1) and a Google Pixel 2 (Client 2).

4.5.2 Bottleneck Classification: Ethernet Rate Limiting

4.5.2.1 Feature Selection

We begin by considering when the bandwidth is limited by the ethernet
link rate. We use a supervised learning approach to try to build a
bottleneck classifier. To proceed we collect training data for a range of
send and link rates (the link ethernet rate is varied between 100Mbps and
1000Mbps using ethtool). Using timestamps for each 802.11ac frame
we extract the aggregation level and the number of packets lost. For
the latter we insert a packet id into the body of each packet and count
“holes” in the sequence of received id’s as losses – this is after accounting
for link layer retransmissions, so the losses are due to queue overflow.
We use these values for the last n frames as input features. That is, the
input feature vector associated with the i frame is:

X(i) = [Ni−n+1 Ni−n . . . Ni Lp
i]

T (4.6)

where Nj is aggregation of the jth frame and Lp
i is the fraction of observed

packets lost out of the last p packets received. We define target variable

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 34

1 5 10 15 20 25 30

n

0

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

p = 50

p = 100

p = 200

(a) F1 Score vs. n

50 100 200 300

p

0

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

n = 1

n = 5

n = 10

(b) F1 Score vs. p

FIGURE 4.17: Performance of the logistic regression classifier vs the number n of input
features and packets p used. MAC timestamps, experimental data, Samsung Galaxy
handset, setup in Section 4.5.1, AMDSU aggregation (Nmax = 128). Ethernet rate limiting

(100/1000Mbps).

Y(i) as taking value 1 when the bottleneck is in the backhaul link and 0
otherwise.

Once again we try to use logistic regression to perform the classi-
fication. Performance is measured as the F1 score, with 20-fold cross-
validation used. Figure 4.17 plots the measured performance vs the
number n of input features used and the number of packets p. Note
that for each value of n and p we hold the classifier parameters fixed i.e
we use the same classifier for the full range of send rates and network
configurations. Data is shown for when MAC timestamps are used to
measure the aggregation level Nj but the performance is similar when
kernel timestamps are used. The F1 score is above 90% for all values of n
and p but is slightly higher for p in the range 100-200 packets. Note that
the case of n = 1 corresponds to simply thresholding on the aggregation
level and loss rate of the current frame. We use n = 5 and p = 100 in the
following, but it can be seen that the results are not sensitive to these
choices.

4.5.2.2 Classifier Performance

Figure 4.18(a) plots the measured classification accuracy vs the send
rate when n = 5 and p = 100. Each point includes data collected for
100Mbps and 1000Mbps link rates. When the link rate is 100Mbps the
backhaul link acts as the bottleneck for send rates of 100Mbps and above,
when the link rate is 1000Mbps the WLAN acts as the bottleneck for
send rates of around 500Mbps and above. It can be seen the classification
accuracy is very high, close to 100% (we do not show data for send rates
above 300Mbps in Figure 4.18(a) but for higher send rates the accuracy
is also close to 100%).

We can gain some insight into this good performance from Figure
4.18(b), which plots the aggregation level vs the loss rate Li for a range
of send rates. The send rate is indicated beside each point and the
points marked by an × are when the backhaul is 1000Mbps while those
marked by • are when the backhaul is 100Mbps. When the backhaul is
1000Mbps it can be seen that the loss rate Li stays close to zero while

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 35

10 50 100 150 200 250 300

Send Rate (Mbps)

0

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

MAC Timestamps

Kernel Timestamps

(a) F1 Score vs. Send Rate

0 0.2 0.4 0.6 0.8 1

Loss Rate L
i

0

5

10

15

20

A
v
e
rg

a
e
 A

g
g
re

g
a
ti
o
n
 L

e
v
e
l

10M & 50M
100M

150M

200M

250M

300M

100M 150M 200M

250M

300M

1000Mbps

100Mbps

(b)

FIGURE 4.18: Performance of the logistic regression classifier, n = 5, p = 100. Experimental
data, Samsung Galaxy handset, setup in Section 4.5.1, AMDSU aggregation (Nmax = 128).

Ethernet rate limiting (100/1000Mbps).

the aggregation level increases with send rate. When the backhaul is
100Mbps it can be seen that the loss rate increases for send rates above
100Mbps while the aggregation level remains low at all rates. Hence, we
can easily separate the points at the top left and bottom right corners
of this plot, corresponding to higher send rates. At send rates around
100Mbps the points for 100Mbps and 1000Mbps backhaul are quite close
but the classifier is still accurate.

Similar performance is observed when the transmitting to two WLAN
clients as might be expected (as already noted, there is per station queue-
ing at the AP).

4.5.3 Bottleneck Classification: Cross-Traffic

We now consider situations where there is cross-traffic sharing the back-
haul link to the AP. When this cross-traffic is sufficiently high then the
bottleneck for the WLAN traffic shifts from the WLAN to the backhaul,
and vice versa when the level of cross-traffic falls.

We collect data for a setup where the backhaul link to the AP is gigabit
ethernet. When the WLAN is the bottleneck the send rate with a single
client station is around 500Mbps, e.g. see Figure 4.15. We use iperf to
generate UDP cross-traffic of 600Mbps to move the bottleneck from the
WLAN to the backhaul link. Figures 4.19(a)-(b) shows time histories
of the measured F1 score of the logistic regression bottleneck classifier
as the cross-traffic switches on and off, so moving the bottleneck back
and forth between backhaul and WLAN. The gray shaded areas indicate
when the bottleneck lies in the backhaul link i.e. when the cross-traffic
is active. Results are shown as the number n of features used and the
number of packets p used to estimate the loss rate are both varied. It can
be seen that the performance is insensitive to the choice of n and close to
100% when p ≥ 100.

Using n = 5 and p = 100 (the same as used in the previous section),
Figures 4.19(c)-(d) show more detail of the performance time histories.
Figure 4.19(c) shows the classifier output following a transition of the
bottleneck from the WLAN to the backhaul, and Figure 4.19(d) shows

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 36

(a) p = 100 (b) n = 5

(c) n = 5, p = 100 (d) n = 5, p = 100

FIGURE 4.19: Performance of logistic regression classifier as the bottleneck moves between
WLAN and backhaul due to cross-traffic (gray shaded areas indicate when the bottleneck
lies in the backhaul link i.e. when the cross-traffic is active). Experimental data, setup in

Section 4.5.1, AMDSU aggregation (Nmax = 128), gigabit ethernet backhaul.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 37

the output for a transition of the bottleneck from backhaul to WLAN. It
can be seen that the estimator detects the transitions within 100ms or less.
We observe similar performance under a range of network conditions,
including for data from a production eduroam network, but omit it here
since it adds little.

4.6 Hardware & Software Setup

4.6.1 Experimental Testbed

Our experimental testbed uses an Asus RT-AC86U Access Point (which
uses a Broadcom 4366E chipset and supports 802.11ac MIMO with up
to four spatial streams [49]). It is configured to use the 5GHz frequency
band with 80MHz channel bandwidth. This setup allows high spatial
usage (we observe that almost always three spatial streams are used) and
high data rates (up to MCS 9). Note that we also carried out experiments
with different chipsets at the AP (e.g., QCA chipsets) and did not ob-
serve any major differences. By default aggregation supports AMSDU’s
and allows up to 128 packets to be aggregated in a frame (namely 64
AMSDUs each containing two packets). In our tests in Section 4.3 we
disabled AMSDU’s to force AMPDU aggregation since this facilitates
monitoring, in which case up to 64 packets can be aggregated in a frame.

A Linux server connected to this AP via a gigabit switch uses iperf
2.0.5 to generate UDP downlink traffic to the WLAN clients. Iperf
inserts a sender-side timestamp into the packet payload and since the
various machines are tightly synchronized over a LAN this can be used
to estimate the one-way packet delay (the time between when a packet
is passed into the socket in the sender and when it is received). Note,
however, that in production networks accurate measurement of one-way
delay is typically not straightforward as it is difficult to maintain accurate
synchronization between server and client clocks (NTP typically only
synchronizes clocks to within a few tens of milliseconds).

In Section 4.3, where the clients use MAC timestamps to measure the
aggregation level of received frames, the WLAN clients are Linux boxes
running Debian Stretch and with Broadcom BCM4360 802.11ac NICs.

In Section 4.4 a non-rooted Samsung Galaxy Tab S3 running Android
Oreo is used as the client (we also carried out experiments using a non-
rooted Google Pixel 2 running Android Pie and did not observe any
significant differences). Due to the lack of root privilege this client is
restricted to using kernel timestamps to estimate the aggregation level
of received frames. A separate machine running Debian Stretch and
equipped with a Broadcom BCM4360 802.11ac NIC is used in monitor
mode to sniff network traffic and so provide “ground truth” since it
can log MAC timestamps. Iperf inserts a unique id number into the
packet payload and this is used to synchronize measurements taken by
the sniffer and by the mobile handset and in this way we can measure
both the handset kernel timestamp and the packet MAC timestamp. The
antennas of the sniffer are placed in the path between AP and handset
so as to improve reception with MIMO operation, and it is verified that
all frames are captured.

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 38

FIGURE 4.20: Schematic of scheduler architecture. Clients send reports of observed
aggregation level and MCS rate to proxy which then uses this information to adjust the

downlink send rate to each station.

4.6.2 Prototype Rate Allocation Implementation

We implemented feedback of measured aggregation level from the clients
to the sender using the software architecture illustrated in Figure 4.20.
Clients measure/estimate the aggregation level of received frames and
periodically report this data back to the sender at intervals of ∆ seconds
as the payload of a UDP packet. The sender uses a modified version
of iperf 2.0.5 where we implement the feedback collector and our rate
control algorithm (see later for details). Recall that we are considering
next generation edge transports and so the sender would typically be
located in the cloud close to the network edge. While it may be located on
the wireless access point this is not essential, and indeed we demonstrate
this feature in all of our experiments by making use of a proprietary
closed access point.

4.6.3 NS3 Simulator Implementation

While we mainly use experimental measurements, to allow performance
evaluation with larger numbers of client stations and with controlled
changes to channel conditions we also implemented our approach in the
NS3 simulator. Based on the received feedbacks it periodically config-
ures the sending rate of udp-client applications colocated at a single
node connected to an Access Point. Each wireless station receives a
UDP traffic flow at a udp-server application that we modified to col-
lect frame aggregation statistics and periodically transmit these to the
controller at intervals of ∆ ms. We configured 802.11ac to use a physical
layer operating over an 80MHz channel, VHT rates for data frames and
legacy rates for control frames, PHY MCS=9 and with the number of
spatial streams NSS = 2 i.e. similarly to the experimental setup. As
validation we reproduced a number of the simulation measurements in
our experimental testbed and found them to be in good agreement.

4.7 Summary & Conclusions

In this chapter we consider transport layer approaches for achieving
high rate, low delay communication over edge paths where the bottle-
neck is an 802.11ac WLAN which can aggregate multiple packets into
each frame. We first show that regulating send rate so as to maintain

Chapter 4. Quick & Plenty: Achieving Low Delay & High Rate
in 802.11ac Edge Networks 39

a target aggregation level can be used to realize high rate, low latency
communication over 802.11ac WLANs. We then address two important
practical issues arising in production networks, namely that (i) many
client devices are non-rooted mobile handsets/tablets and (ii) the bot-
tleneck may lie in the backhaul rather than the WLAN, or indeed vary
between the two over time. We show that both these issues can be re-
solved by use of simple and robust machine learning techniques. We
present a prototype transport layer implementation of our low latency
rate allocation approach and use this to evaluate performance under real
radio channel conditions.

40

Chapter 5

Regulating Queueing Delay in
802.11ac WLANs:
Nonlinear Controller Analysis &
Design

5.1 Introduction

In the previous chapter, we proposed a new transport layer approach
for achieving high rate and low delay communications over 802.11ac
WLANs using aggregation. In this chapter, we study and develop a
simple and useful analytic model of the dependence on send rate of
the mean aggregation level and delay and use this to refine the rate
allocation algorithm.

5.2 Modeling Aggregation Level & Delay

Figure 5.1 shows example time histories of the frame aggregation level
and delay as the send rate is increased from around 50 to 300Mbps.
These illustrate a number of features that will be of interest to us. Firstly,
observe in Figure 5.1(a) that the send rate is updated every 0.5s and
held constant in between updates, and this is the update interval that
we will use in our control design. While the send rate varies relatively

6 8 10 12 14 16

Time (s)

0

10

20

30

40

50

60

70

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

0

50

100

150

200

250

300

350

S
e
n
d
 R

a
te

 (
M

b
p
s
)

Aggregation Level

Send Rate

(a)

6 8 10 12 14 16

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
e
la

y
 (

m
s
)

(b)

FIGURE 5.1: Example time histories of frame aggregation level and packet delay as send
rate is varied. MCS 9, NSS 1, NS3 (see Section 5.5 for details).

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 41

FIGURE 5.2: Illustrating notation used. Packets arriving at the AP for transmission to
station i are indexed k = 1, 2, . . . with the time between packet k− 1 and packet k being
∆i,k. Frames transmitted by the AP to station i are indexed f = 1, 2, . . . and the set of

packets sent in frame f is Fi, f .

slowly it can be seen that there are rapid short-term fluctuations in
the aggregation level about a value that roughly tracks the send rate.
Observe that the magnitude of the fluctuations varies with the send rate
e.g. they are significantly lower in the early part of the time history
around 6-6.5s, where the send rate is lower, than from 10s onwards.
Hence, for control design we are interested in modeling the dependence
on send rate of both the mean aggregation level (where the mean is taken
over the short-term fluctuations) and the magnitude of the fluctuations
in aggregation level.

With regard to delay, it can be seen from Figure 5.1(b) that the delay
exhibits strikingly similar behavior to the aggregation level. This is not
by accident since, as already noted, both are intimately related.

In this section we develop simple analytic models of the dependence
on send rate of the mean aggregation level and delay suitable for control
design. We also characterize the dependence of the fluctuations in
aggregation level with send rate and network configuration.

5.2.1 Basic Setup

We consider downlink transmissions in a WLAN (so no collisions) with
n client stations indexed by i = 1, 2, . . . , n. Index the packets arriving at
the AP for transmission to station i by k = 1, 2, . . . and let ∆i,k denote
the inter-arrival time between packet k− 1 and packet k. Recall that we
control the packet sender and so for simplicity we assume that this uses
packet pacing. That is, the sender aims to transmit packets with fixed
spacing, although end host constraints typically mean that this aim is
only approximately achieved and the packet spacing has some jitter. We
can therefore assume that the ∆i,k are i.i.d. with E[∆i,k] = ∆i = 1/xi
where xi is the send rate to station i in packets/sec.

Packets are transmitted to station i by the AP within 802.11 frames.
Index these frames by f = 1, 2, . . . (f = 1 is the first frame sent, and so
on) and let Fi, f ⊂ {1, 2, . . . } denote the set of packets aggregated within
frame f transmitted to station i. Then Ni, f = |Fi, f | is the number of
packets aggregated. Since a minimum of one packet must be contained
within a frame and a maximum of Nmax (typically 32 or 64 packets) then
1 ≤ Ni, f ≤ Nmax. The setup is illustrated in Figure 5.2.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 42

5.2.2 Frame Transmission Timing

Suppose, for simplicity, that all packets are of length l bits (this can be
easily relaxed). The airtime used by frame f transmitted to station i is
then given by

Tair,i, f := Toh,i, f +
l + loh

Ri, f
Ni, f (5.1)

where Ri, f is the PHY rate used to transmit the payload of the frame,
Toh,i, f is the time used for transmission overheads which do not depend
on the aggregation level (namely, CSMA/CA channel access, PHY and
MAC headers plus transmission of the ACK by the receiver) and loh is
the MAC framing overhead (in bits) for each packet in the frame.

Assume that the AP transmits frames to stations in a round-robin
fashion. We will also assume that the packet arrival rate is high enough
that Ni, f ≥ 1, i = 1, . . . , n i.e. the AP transmits at least one packet to each
station in every round. This is reasonable since our primary interest here
is in the high rate operation needed for next generation edge-assisted
applications and Ni, f ≥ 1 is ensured for sufficiently high rates (we give
a lower bound on the rate needed at the end of the next section). Then
the duration Ω f of round f is given by,

Ω f =
n

∑
j=1

Tair,j, f = C f +
n

∑
j=1

(l + loh)

Rj, f
Nj, f (5.2)

where C f = ∑n
j=1 Toh,j, f . Index stations by the order in which they are

serviced by the AP scheduler, i.e. within a round the ith frame transmit-
ted is to station i. In general, the interval Ωi, f between transmission of
frames f and f + 1 to station i is not equal to Ω f , but under reasonable
assumptions Ωi, f has the same distribution as Ω f i.e. Ωi, f ∼ Ω f .

In more detail, we have that

Ωi, f =
n

∑
j=i

(Toh,j, f +
l + loh

Rj, f
Nj, f)

+
i−1

∑
j=1

(Toh,j, f+1 +
l + loh
Rj, f+1

Nj, f+1) (5.3)

The fixed CSMA/CA overhead Toh,j, f associated with channel access
etc is i.i.d across stations j and frames f by virtue of the 802.11 MAC
operation (fluctuations in Toh,j, f are due to the CSMA/CA channel ac-
cess which is uniformly distributed between 0 and CW − 1 MAC slots,
where CW is the 802.11 contention window). We therefore have that
∑n

j=i Toh,j, f + ∑i−1
j=1 Toh,j, f+1 ∼ C f . Assume the channel is stationary so

that the MCS rate Ri, f is identically distributed across frames f (but
of course may vary amongst stations). Assume also that changes in
the distribution of the aggregation level Ni, f occur at a much slower
time-scale than an AP scheduler round so that Ni, f and Nj, f+1 can be
approximated as being identically distributed. This is the key modeling

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 43

approximation that we make but, as will see later, the control actions
we consider which change the distribution of Ni, f occur on a time-scale
of 0.5-1s, whereas a scheduler round takes no more than 2-3ms, so this
assumption is reasonable. It then follows that Ωi, f ∼ Ω f .

Assuming Ni, f and Ri, f are independent and vary in an i.i.d. manner
across frames1 we now have that

E[Ωi, f] = E[Ω f] = c +
n

∑
j=1

l + loh
µRj

E[Nj, f]

= c + wTE[N f] (5.4)

where c := E[C f] = nE[Toh,j, f], µRj := 1/E[1
Rj, f

] (note that in general2

E[1
Rj, f

] 6= 1/E[Rj, f]), w = (l+loh
µR1

, . . . , l+loh
µRn

)T, N f = (N1, f , . . . , Nn, f)
T.

5.2.3 Mean Aggregation Level

To model the aggregation behavior we proceed as follows. Recall Ωi, f is
the interval between transmission of frame f and frame f + 1 to station
i. Let Pi, f denote the number of packets arriving at the AP during this
interval. When the time between packets is constant with ∆i,k = ∆i then
Pi, f = Ωi, f /∆i (ignoring quantization effects) but, as already noted, in
general we expect some jitter between packet arrivals even when the
sender paces its transmissions.

These packets are buffered in a queue at the AP until they can be
transmitted. Letting qi, f denote the queue occupancy at the time when
frame f is transmitted then qi, f = [qi, f−1 + Pi, f − Ni, f]

+. It is reasonable
to suppose that the AP aggregates as many as possible of these packets
queued for transmission into the next frame f , in which case Ni, f =
min{qi, f−1 + Pi, f , Nmax} and

qi, f = [qi, f−1 + Pi, f −min{qi, f−1 + Pi, f , Nmax}]+ (5.5)

= [qi, f−1 + Pi, f − Nmax]
+ (5.6)

There are three operating regimes to consider:

1. Firstly, when E[Pi, f] > Nmax then the queue is unstable. The queue
occupancy grows and so Ni, f = Nmax eventually for all frames f .
This regime is not of interest in the present work where our focus is
on low delay operation.

2. Secondly, our main interest is in the regime where the queue backlog
remains low i.e. Pi, f < Nmax. The queue is cleared by each frame
transmission so qi, f = 0 and Ni, f = Pi, f .

1 Variations in Ni, f across frames arise due to fluctuations in the time Ωi, f between transmission opportu-
nities as a result of the stochastic nature of the 802.11 MAC (when the time Ωi, f is longer then it is likely
that more packets have arrived and Ni, f is larger, conversely Ni, f tends to be smaller when Ωi, f is shorter).
Variations in PHY rate Ri, f primarily arise due to channel fluctuations. Hence, assuming independence
of Ni, f and Ri, f seems reasonable and is also consistent with our experimental measurements. Assuming
that the Ni, f , f = 1, . . . are i.i.d. is reasonable since the contention times Toh,j, f are i.i.d. Similarly, provided
channel variations are i.i.d then it is reasonable to assume the Ri, f , f = 1, . . . are i.i.d.

2Indeed, to first-order E[1
Rj, f

] ≈ 1
E[Rj, f]

+
Var(Rj, f)

E[Rj, f]
3 .

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 44

3. Thirdly, there is the transition regime between regimes one and two
where E[Pi, f] < Nmax but Pi, f may sometimes be greater than Nmax
and qi, f may be non-zero.

In regime two, Ni, f = Pi, f . Taking expectations E[Ni, f] = E[Pi, f] =
E[Ωi, f]/E[∆i,k] (by renewal-reward theory since the ∆i,k are i.i.d and
independent of Ωi, f). Let µN = (µN1 , . . . , µNn)

T with µNi := E[Ni, f],
and recall that xi := 1/E[∆i,k] = 1/∆i is the send rate of station i. Then
substituting from (5.4) it follows that µN = (c + wTµN)x. Rearranging
yields

µN =
cx

1−wTx
(5.7)

where x = (x1, . . . , xn)T is the vector of station send rates.
To simplify the analysis we assume that the third regime can be

lumped with regime two3. In regime three E[Pi, f] > Nmax and E[Ni, f] =
Nmax. Incorporating the Nmax constraint into (5.7) gives

µN = Π ◦ cx
1−wTx

= Π ◦ F(x) (5.8)

where Π denotes projection onto interval [1, Nmax] and F(x) := cx
1−wT x .

Note that xi ≥ 0, i = 1 . . . , n and wTx < 1 are required for rate vector
x to be feasible and so F(x) ≥ 0. Also that xi ≥ 1/(c + wi) ≥ (1−
∑i 6=j wixi)/(c + wi), i = 1 . . . , n is sufficient to ensure that F(x) ≥ 1.

5.2.4 Mean Delay

Recall Fi, f ⊂ {1, 2, . . . } is the set of packets in frame f sent to station
i and that these packets arrive with inter-arrival times ∆i,k, k ∈ Fi, f .
In operating regime two (see above), the queue is cleared after each
transmission. Hence, the first packet in frame f arrives to an empty
queue and must wait ∑k∈Fi, f

∆i,k seconds before the last packet in the
frame arrives at the AP and so becomes available for aggregation. The
delay experienced by the first packet in frame f (and so by all other
packets sharing this frame) is at most ∑k∈Fi, f

∆i,k. This upper bound is
attained if the frame is transmitted right before arrival of the first packet
sent in the next frame f + 1 since if frame f was transmitted later then
this packet would have been added to frame f . That is, mean packet
delay at the AP is upper bounded by,

µTi = E[∑
k∈Fi, f

∆i,k] = E[Ni, f]∆i =
µNi

xi
(5.9)

= max{min{ c
1−wTx

,
Nmax

xi
}, 1

xi
} (5.10)

3Our measurements in Section 5.2.6 support the validity of this simplifying assumption. In practice it
amounts to assuming that the system transitions quickly between operating regimes one and two, i.e. regime
three is only transient.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 45

where recall Ni, f = |Fi, f | is the number of packets in the frame and
xi = 1/∆i.

5.2.5 Invertibility of Map From Rate To Aggregation Level

Observe that F(x) is monotonically increasing for feasible rate vectors x

since ∂F′i (x)
∂xi

= c
(1−wT x)2 (1−wTx + wixi) > 0 and ∂F′i (x)

∂xj
= cwixi

(1−wT x)2 > 0

when xi ≥ 0 and wTx < 1. Hence, F(x) is one-to-one and so invertible.
In particular,

F−1(µN) =
µN

c + wTµN
(5.11)

and it can be verified that F(F−1(µN)) = µN .
Given rate vector x we can therefore obtain the corresponding aggre-

gation level from F(x) and, conversely, given aggregation level vector
µN we can obtain the corresponding rate vector from F−1(µN). This
will prove convenient in the analysis below since it means we can
freely change variables between x and µN . For example, substituting
x = F−1(µN) the term c

1−wT x in the mean delay (5.10) can be expressed
equivalently in terms of µN as,

c
1−wTx

= c + wTµN (5.12)

5.2.6 Validation Of Mean Model

As partial validation of the mean aggregation level model (5.8) in Figure
5.3(a) we compare its predictions against measurements from the NS3
detailed packet level simulator as the send rate is varied. Data is shown
for the case of a single client station and when there are two client sta-
tions both with the same send rate. The values of the model parameters
c and w are derived from the 802.11ac MAC/PHY settings (80MHz chan-
nel, MCS 9, NSS 2). It can be seen that the model is in remarkably good
agreement with the simulation data. We also collected measurements
of aggregation level vs send rate in an experimental testbed, see Section
5.5 for details. Figure 5.3(b) compares these experimental measurements
against the model predictions4 and again it can be seen that there is
excellent agreement between the model and the measurements.

The model (5.8) predicts that the aggregation level scales as the recip-
rocal of 1−wTx = 1− ∑n

i=1 L/µRi . Figure 5.3(c) compares the model
predictions as the MCS rate µRi is varied (for the 802.11ac setting used
µRi = 87.8Mbps at MCS index 0 increasing to 1170Mbps at MCS index
9). The model also predicts that for the ratio of the aggregation level
of two stations is proportional to the ratio of their send rates and this
behavior is evident in Figure 5.3(d) which plots the aggregation level
for two stations when the send rate to the first station is increased from

4802.11ac settings: NSS=3, 80Mhz channel, the MCS used fluctuates over time due to the action of the
802.11ac rate controller and so an average value is used. The model c and w parameter values used in Figure
5.3(b) are c = 270µs, µR = 585Mbps for the one station data and c = 320µs, µR = 850Mbps for the two
station data.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 46

0 200 400 600 800

Send Rate (Mbps)

0

10

20

30

40

50

60

70

M
e
a
n
 A

g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

NS3 (1 stn)

Model (1 stn)

NS3 (2 stns)

Model (2 stns)

(a) One and two stations (same send rate), MCS=9,
NSS=2, NS3.

0 200 400 600 800

Send Rate (Mbps)

0

10

20

30

40

50

60

70

M
e
a
n
 A

g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

Expt (1 stn)

Model (1 stn)

Expt (2 stns)

Model (2 stns)

(b) One and two stations (same send rate), testbed
data.

2 3 4 5 6 7 8 9

MCS Index

0

10

20

30

40

50

M
e
a
n
 A

g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

NS3

Model

100Mbps

300Mbps

200Mbps

(c) One station, MCS and send rate varied, NSS=3,
NS3.

0 100 200 300

Stn 1 Send Rate (Mbps)

0

10

20

30

40

50

60

70

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

NS stn 1

Model stn 1

NS stn 2

Model stn 2

(d) Two stations with different send rates and
MCSs. MCS 9 for station 1, MCS 3 for station 2,
NSS=1, NS3.

FIGURE 5.3: Comparison of model (5.8) with measurements. Data is shown for sending
UDP packets to one and two client stations, the same send rate being used to all stations
and indicated on the x-axes of the plots. Plots (a),(c),(d) compare the mean aggregation
level measured from NS3 simulations with the model, plot (b) compares measurements
from an experimental testbed, see Section 5.5 for details. In (a)-(c) when there are two
stations they have the same send rate, in (d) the stations have different send rates: the send
rate to station 1 increases from 5 to 310Mbps while the send rate to station 2 decreases from

100 to 5Mbps.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 47

5 to 310Mbps while that to the second station is decreased from 100 to
5Mbps.

In summary, the model (5.8) is in good agreement with measurements
with regard to the dependence of aggregation level on overall send rate,
MCS and ratio of station send rates.

5.2.7 Fluctuations Around Mean

5.2.7.1 Approximate Model

Equation (5.7) models the relationship between the arrival rate x and the
mean aggregation level µN when operating in regime two. We can also
get an approximate model, useful for control design, of the fluctuations
ηNi, f = Ni, f − µNi about the mean as follows. Neglecting the jitter in the
packet inter-arrival times then the number of packets Pi, f arriving at the
AP during round f is approximately Ωi, f xi. That is, the fluctuations in
Pi, f (and so Ni, f) are induced by fluctuations in the duration Ωi, f of the
scheduling round for station i. Neglecting the impact of the position of
each station within a round then Ωi, f ≈ Ω f (this is exact in the case of a
single station). Combining these we obtain the model

N f+1 = (C f + wT N f)x (5.13)

Since µN = (c + wTµN)x it follows that

ηN f+1 = xwTηN f + (C f − c)x (5.14)

where ηN f = [ηN1, f , . . . , ηNn, f]
T. Observe that ηN f evolves according

to first-order dynamics driven by i.i.d stochastic input (C f − c)x. In
802.11ac C f − c is a random variable uniformly distributed between 0
and 135µs (CWmin is 16 and a MAC slot is 9µs).

Figure 5.4(a) compares the predictions of the standard deviation of
ηN f calculated using the model (5.14) with measurements of the stan-
dard deviation of the aggregation level from NS3. Data is shown as
the send rate and MCS rate are varied. It can be seen that the model
predictions are in good agreement with the measurements except when
the aggregation level hits its maximum value Nmax, at which point the
standard deviation of the measured data falls sharply to zero. That
is, the model (5.14) is accurate within operating regime two but not in
operating regime three, as expected.

Observe that the standard deviation of ηN f increases with the send
rate, which is intuitive. The main source of the fluctuations in N f is the
randomness in the channel access time associated with the operation of
the CSMA/CA MAC. During a round where the channel access random-
ness leads to round being of longer than average duration then more
packets arrive than on average, with the number arriving increasing
with the send rate. At the next round these packets form the next frame,
which is therefore larger than average. The magnitude of the fluctuations
ηN f in the frame size therefore tends to increase with the send rate.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 48

0 200 400 600 800 1000

Send Rate (Mbps)

0

1

2

3

4

5

S
td

 D
e
v
 o

f
A

g
g
 L

e
v
e
l
(P

k
ts

)
NS3 MCS = 3

Model MCS = 3

NS3 MCS = 5

Model MSC = 5

NS3 MCS = 9

Model MSC = 9

(a)

0 2 4 6 8 10

MCS Index

0

0.05

0.1

0.15

T
im

e
 C

o
n
s
ta

n
t

 (
s
e
c
)

(b)

FIGURE 5.4: (a) Comparison of the standard deviation of ηN f calculated using the model
(5.14) with measurements from NS3, NSS=3. (b) time constant of dynamics (5.14) as the
number n of stations is varied between 1 and 20, NSS is varied from 1 to 3 and the MCS

index is varied fro 0 to 9 i.e. covering the full 802.11ac NSS/MCS range.

Note that larger frames also tends to make the next round longer than
average since they take longer than average to transmit. This creates
feedback whereby a random fluctuation in the duration of a round tends
to create changes that persist for several rounds. It is this feedback that
is reflected in the dynamics (5.14).

The measurement data in Figure 5.4(a) includes packet inter-arrival
jitter of ±6µs. We also collected measurements for other values of jitter
and found the standard deviation of ηN f to be largely insensitive to the
level of pacing jitter.

5.2.7.2 Time-Scale of Dynamics

The matrix xwT is rank one and has one zero eigenvalue wTx = ∑n
i=1 wixi =

∑n
i=1(l + loh)xi/µRi and an eigenvalue of zero with multiplicity n− 1.

The time constant of the dynamics is therefore τ : − = E[Ω f]/ log(wTx).
Substituting for E[Ω f] and from (5.11) for the send rate x then gives
τ = −(c + wT N)/ log(wT N/(c + wT N)). Figure 5.4(b) plots the value
of this time constant as the number of stations is varied from 1 to 20,
NSS is varied from 1 to 3 and the MCS index from 0 to 9. For each
configuration the aggregation level N is the minimum of Nmax and the
level for which the mean delay µT is 5ms. It can be seen that the time
constant is never more than about 0.12s, and tends to fall with increasing
MCS rate. As we will see later, the online rate allocation algorithm we
consider updates the packet send rate every ∆ seconds, with ∆ typically
0.5s or 1s and so operates at significantly longer time scales than the
dynamics (5.14).

5.2.8 Measurement Noise & Main Source Of Model Uncertainty

5.2.8.1 Measurement Noise

The aggregation level Ni, f can be observed at receiving station i via ra-
diotap/prism libpcap packet headers via MAC timestamps, see Chapter
4. As already noted, our online rate allocation algorithm updates the

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 49

packet send rate every ∆ seconds. We can therefore estimate the mean
aggregation level µNi via the empirical average µ̃Ni(k) = ∑ f Ni, f of
frames sent to station i over interval [0, ∆k), k = 1, 2, As discussed in
Section 5.2.7, Ni, f fluctuates due to the MAC channel access randomness
and this means that estimate µ̃Ni is subject to significant measurement
noise.

The model expressions (5.8) and (5.10) for the mean aggregation level
and delay involve parameter w = (l+loh

µR1
, . . . , l+loh

µRn
)T. The packet size l

and framing overhead loh are known and the MCS rate Ri, f used to send
frame f to station i can be observed by receiving station i (again via
radiotap/prism libpcap packet headers) and we can therefore estimate
µRi via the empirical average 1/µ̃Ri of the 1/Ri, f over interval ∆. This
estimate suffers from measurement noise induced by fluctuations in the
empirical mean of Ri, f over interval ∆. However, typically the channel
is fairly stable over short intervals and these fluctuations are small, thus
the level of this measurement noise is low.

5.2.8.2 Model Uncertainty

The model expressions (5.8) and (5.10) also involve parameter c = nµToh .
The number n of stations to which downlink transmissions are ongoing
is known but the mean channel access time µToh is harder to determine
accurately since it cannot be measured directly (since we consider the
transport layer we assume we do not have access to the MAC on the
AP) and it depends on the channel state and so may be strongly affected
by neighboring WLANs, interference etc. Hence, only a fairly rough
estimate of parameter c is generally available and this is the main source
of model uncertainty.

5.3 Proportional Fair Low Delay Rate Allocation

5.3.1 Utility Fair Optimization

Our interest is in achieving high rates while maintaining low delay at the
AP. Formally, we consider the proportional fair low delay rate allocation
that is the solution to the following optimization P:

max
x∈Rn

+

n

∑
i=1

log xi (5.15)

s.t. µTi(x) ≤ T̄, i = 1, . . . , n (5.16)
µNi(x) ≤ N̄, i = 1, . . . , n (5.17)

Constraint (5.16) ensures that the mean delay at the AP is no more than
upper limit T̄, where T̄ is a QoS parameter. Constraint (5.17) ensures
that we operate at an aggregation level no more than N̄ < Nmax and so
the AP can clear the queue at each transmission opportunity i.e. there is
no sustained queueing and we are operating in regime 2. Maximizing
objective (5.15) ensures utility fairness.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 50

Substituting from (5.10) the constraints (5.16) can be written5 as
c

1−wT x ≤ T̄. Rearranging gives c ≤ T̄(1−wTx) i.e. wTx ≤ 1− c/T̄. In
this form it can be seen that the constraint is linear, and so convex. Simi-
larly, substituting from (5.8) the constraints (5.17) can be written equiva-
lently as cxi

1−wT x ≤ N̄, i = 1, . . . , n. Rearranging gives cxi ≤ N̄(1−wTx)
i.e. cxi + N̄wTx ≤ N̄, which again is linear. Hence, optimization P can
be equivalently rewritten as optimization P′:

max
x∈Rn

+

n

∑
i=1

log xi (5.18)

s.t. wTx ≤ 1− c/T̄ (5.19)

cxi + N̄wTx ≤ N̄, i = 1, . . . , n (5.20)

which is convex.

5.3.2 Characterizing The Proportional Fair Solution

The Lagrangian of optimization P′ is−∑n
i=1 log xi + θ(wTx− (1− c/T̄))+

∑n
i=1 λi(cxi + N̄wTx− N̄) where θ and λi, i = 1, . . . , n are multipliers

associated with, respectively, (5.19) and (5.20).
Since the optimization is convex the KKT conditions are necessary

and sufficient for optimality. Namely, an optimal rate vector x∗ satisfies

− 1
x∗i

+ λic +
n

∑
j=1

λjN̄wi + θwi = 0 (5.21)

i.e.

x∗i =
1

λic + Dwi
(5.22)

where D := (N̄ ∑n
j=1 λj + θ).

Let U = {i : µNi(x∗) < N̄} denote the set of stations for which
the aggregation level is less than N̄ at the optimal rate allocation. By
complementary slackness λi = 0 for i ∈ U and so x∗i = 1/(Dwi). That is,

µNi =
cx∗i

(1−wT x∗) =
c

D(1−wT x∗)
1

wi
. Observe that the first term is invariant

with i and so the aggregation level of station i ∈ U is proportional to
1/wi = µRi /L i.e. to the mean MCS of the station. For stations j /∈ U the
aggregation level µN j(x∗) = N̄.

Putting these observations together, it follows that

µNi(x∗) = min{ c
D(1−wTx∗)

1
wi

, N̄}, i = 1, . . . , n (5.23)

5Note that constraint (5.17) ensures µNi (x) ≤ N̄ < Nmax and so µTi (x) < Nmax/xi . Since our interest is
primarily in applications requiring high rates we assume for simplicity that c

1−wT x ≥
1
xi

although this could

be added as the additional linear constraint cxi + wT x ≥ 1 if desired.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 51

Assume without loss that the station indices are sorted such that w1 ≥
w2 ≥ · · · ≥ wn. Then

µNi(x∗) = min{µN1(x∗)
w1

wi
, N̄}, i = 2, . . . , n (5.24)

Hence, once the optimal µN1(x∗) is determined we can find the optimal
aggregation levels for the rest of the stations. With these we can then use
inverse mapping (5.11) to recover the proportional fair rate allocation,
namely x∗i = µNi /(c + wTµN).

It remains to determine µN1 . We proceed as follows.

Lemma 1. At an optimum x∗ of P′ then either (i) µNi(x∗) = N̄ for all
i = 1, . . . , n or (ii) µTi(x∗) = T̄ for all i = 1, . . . , n.

Proof. We proceed by contradiction. Suppose at an optimum µNi(x∗) =
cx∗i

1−wT x∗ < N̄ for some i and µTi(x∗) = c
1−wT x∗ < T̄. Then we can increase

x∗i without violating the constraints (with this change c
1−wT x∗ and cx∗i

1−wT x∗
will both increase, but since the corresponding constraints are slack if the
increase in x∗i is sufficiently small then they will not be violated). Hence,
we can improve the objective which yields the desired contradiction
since we assumed optimality of x∗. Hence when µNi(x∗) < N̄ for at
least one station then µTi(x∗) = T̄. Alternatively, µNi(x∗) = N̄ for all
stations.

It follows from Lemma 1 that µN1 = min{T̄x∗1 , N̄}. Substituting into
(5.24) and combining with inverse mapping (5.11) it follows that

µN1 = min{T̄x∗1 , N̄} (5.25)

µNi = min{µN1

w1

wi
, N̄}, i = 2, . . . , n (5.26)

x∗ = F−1(µN) (5.27)

The complete vector µN can now be found by solving equations (5.25)-
(5.27).

5.3.3 Examples

We illustrate the nature of the proportional fair solution (5.25)-(5.27) via
some brief examples.

Example 1: N̄ = +∞

In this case there is no limit to the allowed aggregation level. It follows
from (5.25)-(5.27) that µNi = µN1

µRi
µR1

= T
µRi
µR1

x∗1 since N̄ does not act to
constrain the aggregation level. We know from Lemma 1 that the delay
constraint is tight, µTi(x∗) = T̄. That is, by (5.12), that c + wTµN = T.
Substituting for µN this yields c + ∑n

i=1
l+loh
µRi

T
µRi
µR1

x∗1 = c + n(l+loh)T
µR1

x∗1 =

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 52

T i.e x∗1 =
(T−c)µR1

nLT and so

µNi =
(T − c)

n(l + loh)
µRi (5.28)

i.e. the aggregation levels scale proportionally to the station MCS. The
corresponding rates are

xi =
µNi

c + wTµN
=

(T − c)
n(l + loh)T

µRi (5.29)

Recall that the mean airtime taken to send a frame to station i is c
n +

wixi =
c
n + (T−c)

nT which is the same for all stations i.e. the proportional
fair rate allocation is an equal airtime one. The overall delay is µTi =

c + wTµN = c + ∑n
i=1

l+loh
µRi

(T−c)
n(l+loh)

µRi = T i.e. equal to the target delay,
as already noted.

Example 2: T = +∞

Suppose now that the target delay T = +∞ i.e. we seek the rate allo-
cation that maintains the aggregation level at target value N̄ similar to
the feedback controller proposed in Chapter 4. From (5.25)-(5.27) we
have that the proportional fair rate allocation yields aggregation levels
that satisfy µNi = µN1

µRi
µR1

. Recall we assume the stations are ordered

such that w1 ≥ w2 ≥ · · · ≥ wn, and since wi = (l + loh)/µRi it follows
that µR1 ≤ µR2 ≤ · · · ≤ µRn i.e. station 1 has the lowest MCS rate and
n the highest. Hence, the aggregation level µNn of station n is largest.
We know that the aggregation levels of all stations are no more than N̄,
and in fact this limit will be attained since this maximises throughput.
Hence, µNn = N̄ and so

µNi = N̄
µRi

µRn

(5.30)

i.e. once again the aggregation levels scale proportionally to the station
MCS. The corresponding rates also scale proportionally to the station
MCS,

xi =
µNi

c + wTµN
= xn

µRi

µRn

(5.31)

The mean airtime taken to send a frame to station i is therefore c
n +wixi =

c
n + xn(l + loh)/µRn which is the same for all stations i.e. the proportional
fair rate allocation when T = +∞ is again an equal airtime one.

5.4 Inner-Outer Feedback Control

While we can solve convex optimization P′ using any standard online
algorithm, it turns out that we can use the extra insight into the structure

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 53

of the proportional fair solution gained in Section 5.3.2 to construct effi-
cient and robust feedback-based approaches for solving online solution
of P′.

In particular, from the solution structure (5.25)-(5.27) we have that
the proportional fair rate allocation is also the solution to the following
nested optimization,

N∗ ∈ arg min
N∈νW ,ν∈[1,∞)

(ν−min{T̄x∗1(N), N̄})2 (5.32)

s.t. x∗ ∈ arg min
x∈Rn

+

n

∑
i=1

(µNi(x)−min{N∗i , N̄})2 (5.33)

where W = [1, w1
w2

, . . . , w1
wn
]T. As we will shortly see, it turns out that this

reformulation lends itself to an elegant feedback control implementation.

5.4.1 Inner Loop Controller

We begin by considering inner optimization minx∈Rn
+

∑n
i=1(µNi(x) −

min{Ni, N̄})2. While the solution is trivial our interest is using the opti-
mization to derive a feedback update that is robust to model uncertainty.
With this in mind therefore we change variables to z = µNi(x). Then
the optimization becomes minz∈Rn

+
∑n

i=1(zi −min{Ni, N̄})2. Gradient
descent now yields the following iterative update,

z(k + 1) = z(k) + K1(N target − z(k)) (5.34)

where the ith element of vector N target equals min{Ni, N̄}, K1 is the step
size and time is slotted with z(k) denoting the value in slot k. Using
(5.11) we recover the rate from x(k) = F−1(z(k)) = z(k)/(c + wTz(k)).

We convert this update to a feedback control loop by substituting
the measured aggregation level for z(k) over time interval [0, ∆k), k =
1, 2, . . . , to obtain

z(k + 1) = z(k) + K1(N target − µ̃N(k)) (5.35)

x(k) = F−1(z(k)) = z(k)/(c + wTz(k)) (5.36)

where µ̃N(k) is the measured mean aggregation level over time slot k
when the send rate is held constant at x(k) over the slot.

It can be seen that update (5.35) is an integral controller that adjusts
z to try to regulate e = N target − µ̃N about zero. Namely, when e > 0
then z is increased, which in turn tends to increase µ̃N and so decrease e.
Conversely, when e < 0 then z is decreased which tends to increase e.
Since z etc are vectors (5.35)-(5.36) is a multiple-input multiple-output
(MIMO) feedback loop. Since µ̃N is a nonlinear function of the send rate
x(k) and x(k) is a nonlinear function of z(k) the feedback loop is also
nonlinear.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 54

FIGURE 5.5: Schematic of inner feedback loop. Controller updates occur at the start of time
slots [0, ∆k), k = 1, 2, Controller update z(k + 1) = z(k) + K1e(k), nonlinear function
F−1 is given by (5.11), H is a zero-order hold (i.e. holds the packet send rate constant at
x(k) for packets sent during slot [0, ∆k)), µN f is the mean frame aggregation level and ηN f

is the disturbance to this mean induced by MAC channel access randomness (see Section
5.2.7). H−1 maps from the sequence N f = µN f + ηN f , f = 1, 2 . . . of individual frame
aggregation levels to the empirical mean µ̃N(k) of the frame aggregation level over slots

[0, ∆k), k = 1, 2,

5.4.1.1 Converting Between Slots and Frames

Update (5.35)-(5.36) is in term of time slots [0, ∆k), k = 1, 2, To
embed it within the real system we given rate x(k) over slot k we fix the
sender inter-packet time between packets sent during interval [0, ∆k) to
be 1/x(k).

Conversely, given the sequence of observed individual frame aggre-
gation levels N f = [N1, f , . . . , Nn, f], f = 1, 2, . . . we calculate µ̃N(k) as
the empirical mean of the frames received during interval [0, ∆k). That
is,

µ̃Ni(k) =
1

|Φi(k)| ∑
f∈Φi(k)

Ni, f (5.37)

where Φi(k) is the set of frames received at station i during interval
[0, ∆k).

Figure 5.5 shows schematically the resulting feedback loop corre-
sponding to (5.35)-(5.36). H holds the sender inter-packet time equal
to 1/x(k) during controller update slot [0, ∆k). H−1 maps from the
sequence of individual frame aggregation levels N f to the empirical
average aggregation level µ̃N over slots [0, ∆k), k = 1, 2,

Since N f = µN f + ηN f the empirical meanµ̃N(k) over slot k is F̃k +

ηµ̃N (k) where F̃k =
1

|Φi(k)| ∑ f∈Φi(k) µN f and ηµ̃N (k) =
1

|Φi(k)| ∑ f∈Φi(k) ηN f .

That is, F̃k is the true mapping from rate to mean aggregation level at
send rate x(k) and ηµ̃N (k) is the measurement noise. Due to mismatches
between the model and the real system, in general F̃k 6= F.

5.4.1.2 Linearizing Action of Controller

It can be seen from Figure 5.5 that to compensate for the nonlinearity F̃k
we insert its (approximate) inverse F−1 so that µ̃N(k) = F̃k(F−1(z(k)))
and the system dynamics become

z(k + 1) = z(k) + K1(N target − F̃k(F−1(z(k)))) (5.38)

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 55

5 10 15 20 25 30

Time (s)

0

10

20

30

40

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

K
1
 = 0.1

K
1
 = 0.25

K
1
 = 0.5

K
1
 = 1.0

(a) n = 1 station

5 10 15 20 25 30

Time (s)

0

10

20

30

40

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

K
1
 = 0.1

K
1
 = 0.25

K
1
 = 0.5

K
1
 = 1

(b) n = 10 stations

5 10 15 20 25 30

Time (s)

0

100

200

300

400

S
e
n
d
 R

a
te

 (
M

b
p
s
)

K
1
 = 0.1

K
1
 = 0.25

K
1
 = 0.5

K
1
 = 1.0

(c) n = 1 station

5 10 15 20 25 30

Time (s)

0

20

40

60

80

100

S
e
n
d
 R

a
te

 (
M

b
p
s
)

K
1
 = 0.1

K
1
 = 0.25

K
1
 = 0.5

K
1
 = 1.0

(d) n = 10 stations

FIGURE 5.6: Impact of control gain K1 on transient dynamics of aggregation level and send
rate. Plots show average and standard deviation over 10 runs for each value of gain. NS3

simulation, setup as in Section 5.5: Ntarget = 32, NSS=1, MCS=9.

(neglecting the additive measurement noise ηµ̃N (k) for now). When
F̃k(F−1(z(k))) ≈ zk then the resulting linearized loop dynamics are
z(k + 1) ≈ z(k) + K1(N target − z(k)). That is, the controller transforms
the nonlinear system to have first-order linear dynamics.

5.4.1.3 Robust Stability

Recall that the main source of model uncertainty is parameter c. That
is, F(x) = cx

1−wT x whereas to a good approximation F̃k(x) = Π ◦ c̃(k)x
1−wT x

with c̃k 6= c (recall projection Π captures the saturation constraint that
µ̃N(k) ∈ [1, Nmax]). Hence, F̃k(F−1(z(k))) = Π ◦ (c̃(k)

c z(k)) and dynam-
ics (5.38) are

z(k + 1) = z(k) + K1(N target − Γ(k)z(k)) (5.39)

where Γ(k) = diag{γ1(k), . . . , γn(k)} and γi(k) =
Π◦(c̃(k)zi(k)/c)

zi(k)
.

Neglecting the input N target for the moment, it is easy to see6 that the
dynamics z(k + 1) = (I − Γ(k))z(k) are exponentially stable provided
0 < γi(k) < 2 for all i = 1, . . . , n. Note that this stability holds for
arbitrary time-variations in the γi(k). Projection Π satisfies 0 ≤ Π◦z

z ≤ 1
and c̃(k), c are both non-negative, so for stability it is sufficient that

6Try candidate Lyapunov function V(k) = zT(k)z(k). Then V(k + 1) = (I − Γ(k))T(I − Γ(k))V(k) (since
Γ(k) is diagonal) and so is strictly decreasing when 0 < γi(k) < 2.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 56

c̃(k)/c < 2. This condition is also necessary since for constant c̃(k) the
system will be unstable if this condition is violated.

In summary, time-variations in the γi(k) affect stability in a benign
fashion and control parameter c can safely be larger than the (uncertain)
plant gain c̃(k) (as this reduces the loop gain) but should not be too much
smaller (since this increases the loop gain).

Time-variations in the gains γi(k), i = 1, . . . , n also affect regulation
of the aggregation level at Ntarget. It can be seen that when γi(k) is con-
stant the equilibrium of dynamics (5.39) is zi(k) = Ntarget/γi(k). When
variations in γi(k) are sufficiently slow relative to the loop dynamics
then zi(k) will still roughly track this equilibrium [50] although faster
changes may lead to zi(k) only staying in a ball around it. Hence, when
γi(k) < 1 the aggregation level tends to be larger than the desired value
Ntarget, and vice versa when γi(k) < 1. Hence, adaptation of control
parameter c to maintain γi(k) close to 1 is desirable, and we will discuss
this in more detail shortly.

5.4.1.4 Selecting Controller Gain K1

Figure 5.6 plots the measured step response of the system aggregation
level and send rate x as the gain K1 and number of stations n are var-
ied. This data is for a detailed packet-level simulation, see Section 5.5
for details. It can be seen from Figures 5.6(a)-(b) that, as expected, the
aggregation level convergence time falls as K1 is increased although the
response starts to become oscillatory for larger values of K1. It can also
be seen from these figures that that step response is effectively invariant
with the number of stations due to the linearizing action of the controller.
Figures 5.6(c)-(d) show the send rate time histories corresponding to
Figures 5.6(a)-(b) and the impact of the nonlinearity F̃k relating aggrega-
tion level and send rate is evident with the send rate being an order of
magnitude smaller for the same aggregation level with n = 10 stations
compared to with n = 1 station. Similar results are obtained when the
MCS is varied.

Figure 5.7(a) plots the standard deviation of the frame aggregation
level when the system is in steady-state vs the gain K1. It can be seen that
the controller starts to amplify the fluctuations in frame aggregation level
as K1 gets closer to the stability boundary at K1 = 2 (indicated by the
dashed line on the figure) but otherwise the standard deviation is insen-
sitive to the choice of K1. Recall that the fluctuations in the aggregation
level are mainly induced by the randomness of the CSMA/CS channel
access and occur on time-scales which are too short to be regulated by
the controller, see Section 5.2.7.

In the remainder of this chapter we select K1 = 0.5 unless otherwise
stated since this strikes a reasonable balance between response time and
robustness to uncertainty in c (with K1 = 0.5 the value of c can be out by
a factor of 4, corresponding to a gain margin of 12 dB, and the system
dynamics will remain stable).

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 57

(a) (b)

FIGURE 5.7: (a) Impact of control gain K1 on standard deviation of fluctuations in aggre-
gation level. (b) Illustrating c estimator (5.40) tracking a sharp change in the number of
stations from n = 1 to n = 11 at time 15s. NS3 simulation, setup as in Section 5.5: one

client station, Ntarget = 32, NSS=1, MCS=9

5.4.1.5 Adapting c

The controller depends on parameter c = nµToh . The average channel
access time for each frame transmission is CW/2× S where CW is the
MAC contention window, typically 16 in 802.11ac, and S is the MAC slot
duration in seconds. The PHY slot length is typically 9µs, but the MAC
slot duration can be significantly longer when other transmitters share
the channel since the AP will defer access upon detecting the channel to
be busy and it is this which makes it challenging to estimate µToh .

Note that an exact value for c is not necessary since the feedback
loop can compensate for uncertainty in c, i.e. an estimator that roughly
tracks any large changes in c is sufficient. Recall that µNi =

cxi
1−wT x , i.e.

c =
µNi
xi
(1−wTx). Motivated by this observation we use the following

as an estimator of c,

ĉ(k + 1) = (1− β)ĉ(k) + βč(k) (5.40)

with č(k) :=
µ̃N1 (k)
x1(k)

(1−wTx(k)), where β is a design parameter which
controls the window over which the moving average is calculated (a
typical value is β = 0.05).

Figure 5.7(b) illustrates the ability of this estimator to track a fairly
significant change in the network conditions, namely 10 new stations
joining the WLAN at time 15s and starting downlink transmissions.
These new stations cause a change in c from a value of around 200µs to
around 2200µs i.e. a change of more than an order of magnitude. It can
be seen that estimator (5.40) tracks this large change without difficulty.
We observe similar tracking behavior for changes in MCS and also when
the channel is shared with other legacy WLANs.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 58

FIGURE 5.8: Schematic of coupled feedback loops. T̄ is the target delay, G(x(k)) =
min{T̄x1(k), N̄}, Couter denotes the outer control update (5.43) and W update (5.44). Other

quantities are as in Figure 5.5.

5.4.2 Outer Loop Controller

We turn now to the outer optimization minN∈{νW ,ν∈[1,∞)}(ν−min{T̄x∗1(N), N̄})2

in (5.32)-(5.33). The corresponding gradient descent update is

ν(k + 1) = max{ν(k)− K2(ν(k)− G(x∗(N(k)))), 1} (5.41)
N(k + 1) = ν(k + 1)W (5.42)

where G(x) = min{T̄x1, N̄} and W = [1, w1
w2

, . . . , w1
wn
]T. Step size K2 and

delay target T are design parameters and x∗1(N(k)) is the solution to
optimization (5.33) with N∗ = N(k).

Replacing x∗(N(k)) by x(k) = F−1(z(k)) from the inner loop and
projecting ν(k + 1)W onto interval [0, N̄] so that the input to the inner
loop is well-behaved, then we obtain the following coupled feedback
loops,

ν(k + 1) = max{ν(k) + K2(G(x(k))− ν(k)), 1} (5.43)
N target(k + 1) = min{ν(k + 1)W , N̄} (5.44)

z(k + 1) = z(k) + K1(N target(k)− µ̃N(k)) (5.45)

x(k + 1) = F−1(z(k + 1)) (5.46)

This setup is shown schematically in Figure 5.8. It can be seen that
we “bootstrap” from the inner loop and use G(x(k)) as the set point
for outer loop control variable ν(k). We then map from ν(k) to the
target aggregation level Ntarget using ν(k)W . Since the first element W1
of vector W equals 1 we can identify ν(k) with the target aggregation
level for station 1 i.e. the station with lowest MCS rate, and the target
aggregation levels of the other stations are proportional to ν(k).

5.4.2.1 Sufficient Conditions For Stability

Substituting from (5.39) the system dynamics (5.43)-(5.46) can be rewrit-
ten equivalently as,

ν(k + 1) = max{ν(k)− K2(ν(k)− G(F−1(z(k)))), 1} (5.47)
z(k + 1) = z(k) + K1(min{ν(k)W , N̄} − Γkz(k)) (5.48)

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 59

Assume the dynamics of the inner z loop are much faster than those
of the outer ν loop (e.g. by selecting K2 � K1) so that z(k) = ν(k)W .
Then the system dynamics simplify to

ν(k + 1)

= max{ν(k)− K2(ν(k)−min{T̄ ν(k)
c + ν(k)nw1

, N̄}), 1} (5.49)

= max{ν(k)− K2(ν(k)− γ0(k)T̄
ν(k)

c + ν(k)nw1
), 1} (5.50)

= max{(1− K2
c + ν(k)nw1 − γ0(k)T̄

c + ν(k)nw1
)ν(k), 1} (5.51)

where 0 < γ0(k) ≤ 1 captures the impact of the N̄ constraint i.e γ0(k)
equals 1 when T̄ ν(k)

c+ν(k)nw1
≤ N̄ and decreases as T̄ ν(k)

c+ν(k)nw1
increases

above N̄. We have also used the fact that wTW = nw1.
We can gain useful insight into the behaviour of the system dy-

namics from inspection of (5.51). Namely, ignoring the constraints
for the moment (i.e. γ0(k) = 1 and ν(k) ≥ 1) and assuming that
0 < K2 < 1 then it can be seen that when c + ν(k)nw1 − T̄ < 0 then
1−K2

c+ν(k)nw1−T̄
c+ν(k)nw1

) > 1 and so ν(k + 1) increases (since ν(k) ≥ 1). Hence
c + ν(k)nw1 − T̄ increases until it equals 0 or becomes positive. Con-
versely, when c + ν(k)nw1 − T̄ > 0 then 1− K2

c+ν(k)nw1−T̄
c+ν(k)nw1

) < 1 and
ν(k + 1) decreases. Hence, c + ν(k)nw1 − T̄ decreases until it equals 0 to
becomes negative. That is, the dynamics (5.51) force c + ν(k)nw1 − T̄ to
either converge to 0 or oscillate about 0.

With the above in mind the impact of the constraints is now easy to
see. When T̄ > c + N̄nw1 then the delay target is hit at an aggregation
level above N̄. It can be seen that c + ν(k)nw1 − T̄ < 0 for all admissible
ν(k) and so ν(k) increases until it equals N̄. When T̄ < c + nw1 then the
target delay is violated even when the aggregation level is the minimum
possible ν(k) = 1. It can be seen that c + ν(k)nw1 − T̄ > 0 for all
admissible ν(k) and so ν(k) decreases until it equals 1.

To establish stability we need to show that persistent oscillations
about c + ν(k)nw1 − T̄ = 0 cannot happen. We have the following
lemma:

Lemma 2. Suppose gain 0 < K2 < 1 and initial condition 1 ≤ ν(1) ≤ N̄.
Then for the dynamics (5.51) we have: (i) when c + nw1 < T̄ < c + N̄nw1
then ν(k) converges to (T̄ − c)/(nw1), (ii) when T̄ ≥ c + N̄nw1 then ν(k)
converges to upper limit N̄ and (iii) when T̄ < c + nw1 then ν(k) converges to
lower limit 1.

Proof. Case(i): c + nw1 < T̄ < c + N̄nw1. Try candidate Lyapunov func-
tion V(k) = (c + ν(k)nw1 − T̄)2/(nw1)

2. Letting ν∗ = (T̄ − c)/nw1
then this can be rewritten as V(k) = (ν(k)− ν∗)2 and since c + nw1 <
T̄ < c + N̄nw1 then 1 < ν∗ < N̄. In addition, to take care of gain
γ0(k) we will show by induction that γ0(k) = 1. By assumption 1 <

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 60

T̄ν(1)/(c + ν(1)nw1) ≤ N̄ and so γ0(1) = 1. Suppose γ0(k) = 1. Substi-
tuting from (5.51) it follows that

V(k + 1) = (ν(k + 1)− ν∗)2

= (max{(1− K2
c + ν(k)nw1 − T̄

c + ν(k)nw1
)ν(k), 1} − ν∗)2

(a)
≤ ((1− K2

c + ν(k)nw1 − T̄
c + ν(k)nw1

)ν(k)− ν∗)2

= ((1− K2
(c− T̄)/nw1 + ν(k)

c + ν(k)nw1
nw1)ν(k)− ν∗)2

= (ν(k)− K2
ν(k)− ν∗

c + ν(k)nw1
nw1ν(k)− ν∗)2

(b)
= (1− K2

ν(k)nw1

c + ν(k)nw1
)2V(k)

where (a) follows because ν∗ > 1. Since 0 < K2 < 2 and 0 < ν(k)nw1
c+ν(k)nw1

<

1 it follows from (b) that 0 < (1− K2
ν(k)nw1

c+ν(k)nw1
)2 < 1 and so V(k + 1)

is strictly decreasing unless V(k) = 0. Further, since K2 < 1 then
ν(k + 1) has the same sign as ν(k) i.e. ν(k + 1) > 0. Putting these
observations together, we have that ν(k + 1) is closer than ν(k) to ν∗ <
N̄. Since ν(1) ≤ N̄ then ν(2) < N̄, while when ν(k) ≤ N̄ for k > 1
then ν(k + 1) < N̄. So by induction ν(k) ≤ N̄ for all k ≥ 1 and thus
γ0(k) = 1 for all k ≥ 1. Since V(k + 1) < V(k) when V(k) > 0 then
V(k) decreases monotonically to 0 i.e. the system converges to the point
c + ν(k)nw1 − T̄ = 0 as claimed.

Cases (ii) and (iii). When T̄ ≥ c + N̄nw1, respectively T̄ < c + nw1,
then c + ν(k)nw1 − T̄ < 0, respectively c + ν(k)nw1 − T̄ > 0 for all
1 ≤ ν(k) ≤ N̄. The stated result now follows.

Note that while the above analysis makes use of time-scale separation
between z and ν so that z(k) = ν(k)W , in practice we observe that
the system is well behaved even when this assumption is violated and
conjecture that Lemma 2 also applies in such cases.

5.4.2.2 Selecting Control Gain K2

Figure 5.9(a) plots the measured step response of the system aggregation
level as the outer control gain K2 is varied. It can be seen that the rise
time falls with increasing gain, as expected. Although not shown on the
plot to reduce clutter, we observe that for K2 ≥ 1 the response becomes
increasing oscillatory suggesting that the sufficient condition for stability
K2 < 1 is in fact the stability boundary. In the rest of the chapter we select
K2 = 0.2 as striking a reasonable compromise between responsiveness
and robustness to uncertainty.

Figures 5.9(b)-(d) illustrate the adaptation by the outer feedback loop
of Ntarget so as to regulate the delay about the target value T̄. Figure
5.9(b) plots the aggregation level vs time, Figure 5.9(c) the send rate
and Figure 5.9(d) the delay. Measurements are shown for three MCS

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 61

5 10 15 20 25 30

Time (s)

0

5

10

15

20

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l
(P

k
ts

)

K
2
 = 0.05

K
2
 = 0.1

K
2
 = 0.2

K
2
 = 0.5

(a) MCS 2, T̄ = 2.5ms (b) K2 = 0.2, T̄ = 2.5ms

5 10 15 20 25 30

Time (s)

0

100

200

300

400

S
e
n
d
 r

a
te

 (
M

b
p
s
)

MCS=2

MCS=4

MCS=9

(c) K2 = 0.2, T̄ = 2.5ms

5 10 15 20 25 30

Time (s)

0

0.5

1

1.5

2

2.5

3

D
e
la

y
 (

m
s
)

MCS=2

MCS=4

MCS=9

(d) K2 = 0.2, T̄ = 2.5ms

FIGURE 5.9: (a) Impact of outer loop gain K2 on convergence time, (b) adapting Ntarget
to regulate delay to below T̄ as MCS is varied, (c), (d) send rate and delay measurements
corresponding to (b). Plots show average and standard deviation over 10 runs for each

value of gain. NS3, one client station, NSS=1, T̄ = 2.5ms, N̄ = 48.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 62

values. It can be seen that as the MCS rate increases both the aggregation
level and send rate increase while the delay is maintained close to the
target value T̄ = 2.5ms. This is as expected since the mean delay is just
the mean duration of a scheduling round c + wTµN . As the MCS rate
increases w decreases and so the aggregation level µN can increase while
keeping product wTµN (which is the overall time to transmit the frame
payloads) unchanged.

We can quickly verify the measurements as follows. For the network
configuration in Figures 5.9(b)-(d) fixed overhead c is around 200µs.
MCS index 2 with NSS=1 corresponds data rate 87.7Mbps, the packet
size l = 1500B, overhead loh = 48B and from Figure 5.9(b) the aggrega-
tion level is approximately 16 packets, so wTµN = (1500 + 48)× 8×
16/87.7× 106 = 2.3ms and adding c to this gives T̄ = 2.5ms. Similarly,
MCS index 4 with NSS=1 corresponds to a data rate of 175.5Mbps and
plugging this value into the previous expression along with aggrega-
tion level 23 packets again gives wTµN = 2.3ms. MCS index 9 with
NSS=1 corresponds to data rate 390Mbps. At this data rate we hit the
limit N̄ = 48 packets before delay target T̄ is reached (wTµN = 1.5ms
when the rate is 390Mbps and the aggregation level is 48 packets, adding
c = 200µs to this gives a delay of 1.7ms as can be seen in Figure 5.9(d)).

5.5 Experimental Measurements

In this section, we implement the inner-outer feedback controller de-
scribed in Algorithm 2 on Linux and Android and assess performance
in our testbed in two scenarios: single client and multiple clients.

5.5.1 Prototype Implementation

5.5.1.1 Implementation on Linux

To implement the inner-outer controller on linux, we wrote the server
and client codes in C and then compiled it using gcc Linux utility. Here,
we need root privilege to run the client code and capture MAC times-
tamps.

5.5.1.2 Implementation on Android

To extend the code to run on the Android OS, we use Android Studio
[51] developed by Google to cross-compile the client code (written in C
language) and build an application to install on Android devices. On
Android we cannot directly read MCS values in C but there is a method
in Java, i.e. the getLinkSpeed, that has access to this information without
needing root privilege. To access the getLinkSpeed method from native
code written in C, we use the Java Native Interface (JNI) which is an
interface programming framework that enables Java code running in a
Java Virtual Machine, to interact with the native code [52]. Applying this
procedure, we read MCS values every 100ms to reduce the CPU load.
In addition, we need to add the ACCESS_WIFI_STATE permission in the
application. Note that in [53], some privacy issues associated with this

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 63

Algorithm 2 Nonlinear feedback loop adjusting transmit rate to regulate aggregation
level.

k = 1
while 1 do

We assume that station 1 has the lowest MCS rate and n the highest.
for i← 1 to n do

inner loop:
zi ← zi + K1(Ntarget,i − µ̃Ni), check zi ∈ [1, N̄]

ĉ← (1− β)ĉ + β
µ̃N1
x1

(1−wTx)

xi ← F−1(zi) = zi
ĉ+wTz , check xi ∈ [1

ĉ+wTz , N̄
ĉ+wTz]

outer loop:
ν← max{ν + K2(min{T̄x1, N̄} − ν), 1}
Ntarget,i ← ν× w1

wi
, check Ntarget,i ∈ [1, N̄]

end for
k← k + 1

end while

FIGURE 5.10: Schematic of a cloudlet-based edge transport architecture used for experi-
mental setup with single client.

permission have been discussed, such as the possibility of detecting the
location of an end user by applications that do not have permission to
access to the GPS information.

5.5.2 Evaluation with Single Client

In Chapter 4, we show that the simple linear feedback loop outper-
forms Cubic and BBR in our testbed with an Android client, e.g. the
aggregation-based approach with Nε = 60 decreases the delay more
than 20 times compared to Cubic and BBR while its send rate is between
those algorithms. Here, we evaluate performance of the nonlinear feed-
back controller, Algorithm 2, and compare it with the linear feedback
controller, Algorithm 1, in our testbed depicted in Figure 5.10.

As we can see in Figure 5.11(a), the nonlinear controller has slightly
higher throughput, is more stable and converges faster than the linear
controller. The MCS is constant (866.7Mbps) in both cases during the
200sec of data transmission, see Figure 5.11(b). In Figure 5.11(c), the
packet one-way delay for both controllers is depicted. It can be seen
that the delay is extremely low (≈ 1ms) while the receive rate is around
400Mbps. As shown in Figure 5.11(d), the packet loss of the nonlinear
controller is almost half of the packet loss of the linear controller as
the nonlinear controller can efficiently adjust the send rate based on
the queue backlog inside the AP, channel conditions etc. However, the
packet loss of the linear controller is also very low around 0.15%. In
Figure 5.11(e), the performance of the feedback loop controllers to tune

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 64

TABLE 5.1: Summary of results with multiple clients, (µ± σ)

Case Rx Rate (Mbps) Delay (ms) MCS (Mbps) Aggregation
PC1 172 ± 25 4.3 ± 4.9 960 ± 35 29 ± 9
PC2 193 ± 30 4.4 ± 6.2 1247 ± 93 18 ± 5

Tablet 168 ± 26 4.0 ± 3.9 866 ± 0 30 ± 9

the aggregation level is shown. We can see that both controllers have
low fluctuations around the target aggregation level, but the nonlinear
controller converges faster compared to the linear controller. The estima-
tion of the average channel access time in a round-robin scheduler, c̄, is
illustrated in Figure 5.11(f).

5.5.3 Evaluation with Multiple Clients

We evaluate the performance of the inner-outer controller in an edge
architecture shown in Figure 5.12. This setup includes two desktop
PCs using MAC timestamps to capture the aggregation level and one
Android tablet using kernel timestamps to infer the aggregation level
using the logistic regression model described in Chapter 4. The setup is
described in more details in Section 5.5.4.

As we can see in Figure 5.13(a), PC2 has slightly higher throughput
compared to PC1 and the tablet. Also according to Figure 5.13(b), PC2
has higher MCS and because of that the nonlinear controller (precisely
the outer loop) selects a lower target aggregation level on average for
this user (≈ 20) while the average aggregation level for PC1 and the
tablet is around N̄ = 30, see Figure 5.13(e). In Figure 5.13(c), the one-way
delay for the clients is depicted which is usually below T̄ = 10ms. As
illustrated in Figure 5.13(d), the packet loss is quite low for all users but
PC1 has relatively higher losses due to more queue build-up at the AP,
see spikes in one-way delay or in aggregation level. The estimation of the
average channel access time in a round-robin scheduler, c̄, is illustrated
in Figure 5.13(f). The average results are also summarized in Table 5.1.

5.5.4 Experimental Testbed

Our setup uses an Asus RT-AC86U Access Point (which uses a Broad-
com 4366E chipset and supports 802.11ac MIMO with up to four spatial
streams [49]). It is configured to use the 5GHz frequency band with
80MHz channel bandwidth. Also, the firmware version of the Asus
Access Point is 3.0.0.4.384_32799. A Linux server running Ubuntu Bionic
18.04.2 LTS with Linux kernel 4.18.0-25 is connected to this AP via a
gigabit Ethernet link. The client in Figure 5.10 is a non-rooted Samsung
Galaxy Tab S3 running Android Oreo 8. Due to the lack of root privi-
lege, this client is restricted to using kernel timestamps to estimate the
aggregation level of the received frames using the logistic regression
model described in Chapter 4. In Figure 5.12, PC1 and PC2 are Linux
boxes running Ubuntu Bionic 18.04.3 LTS with Linux kernel 4.15.0-55
and equipped with Broadcom BCM4360 802.11ac NICs to capture MAC
timestamps.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 65

0 50 100 150 200

Time (sec)

0

100

200

300

400

500

R
e
c
e
iv

e
 R

a
te

 (
M

b
p
s
)

Nonlinear Controller

Linear Controller

(a) Receive Rate

0 50 100 150 200

Time (sec)

0

200

400

600

800

1000

1200

1400

M
C

S
 (

M
b
p
s
)

Nonlinear Controller

Linear Controller

(b) MCS

0 50 100 150 200

Time (sec)

0

1

2

3

4

5

6

O
n
e
-w

a
y
 D

e
la

y
 (

m
s
)

Nonlinear Controller

Linear Controller

(c) One-way Delay

0 50 100 150 200

Time (sec)

0

2

4

6

8

10

12

#
lo

s
s
 (

/1
0
0
0
)

Nonlinear Controller

Linear Controller

(d) #Packet Loss

0 50 100 150 200

Time (sec)

1

10

20

30

40

50

60

70

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l

Nonlinear Controller

Linear Controller

(e) Aggregation Level

50 100 150 200

Time (sec)

400

500

600

700

800

900

1000

C
 (

u
s
)

Nonlinear Controller

(f) C

FIGURE 5.11: Compare the performance of nonlinear controller with simple linear con-
troller. The one-way delay in (c) is averaged over 100ms intervals. For Linear Controller:
K = 0.5, Nε = 32, ∆ = 1000ms and for nonlinear controller: K1 = 0.5, K2 = 0.2, β =
0.05, T̄ = 5.0ms, N̄ = 32, ĉint = 200µs, ∆ = 1000ms. Experimental data, Samsung Galaxy

handset, setup in 5.5.4, (Nmax = 64).

FIGURE 5.12: Schematic of a cloudlet-based edge transport architecture used for experi-
mental setup with multiple clients.

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 66

0 50 100 150 200 250

Time (sec)

0

100

200

300

400

500

R
e
c
e
iv

e
 R

a
te

 (
M

b
p
s
)

PC
1

PC
2

Tablet

(a) Receive Rate

0 50 100 150 200 250

Time (sec)

0

500

1000

1500

M
C

S
 (

M
b
p
s
)

PC
1

PC
2

Tablet

(b) MCS

0 50 100 150 200 250

Time (sec)

0

20

40

60

80

O
n
e
-w

a
y
 D

e
la

y
 (

m
s
)

PC
1

PC
2

Tablet

(c) One-way Delay

0 50 100 150 200 250

Time (sec)

0

2

4

6

8

10

#
lo

s
s
 (

/1
0
0
0
)

PC
1

PC
2

Tablet

(d) #Packet Loss

0 50 100 150 200 250

Time (sec)

1

10

20

30

40

50

60

70

A
g
g
re

g
a
ti
o
n
 L

e
v
e
l

PC
1

PC
2

Tablet

(e) Aggregation Level

0 50 100 150 200 250

Time (sec)

200

400

600

800

1000

C
 (

u
s
)

(f) C

FIGURE 5.13: Managing an edge network using the nonlinear feedback controller. The
one-way delay in (c) and MCS values of tablet in (b) are averaged over 100ms intervals.
The nonlinear controller is configured as follows: K1 = 0.5, K2 = 0.2, β = 0.05, T̄ =
10.0ms, N̄ = 30, ĉint = 200µs, ∆ = 1000ms. Experimental data, PC1 and PC2 use MAC

timestamps and Samsung tablet uses kernel timestamps, setup in 5.5.4, (Nmax = 64).

Chapter 5. Regulating Queueing Delay in 802.11ac WLANs:
Nonlinear Controller Analysis & Design 67

5.6 Summary & Conclusions

In this chapter we consider transport layer approach for achieving low
delay and high rate in 802.11ac edge networks where the bottleneck
lies in the last wireless hop. We first derive and validate models of the
aggregation level and delay behavior in the downlink at the AP and
show the mean channel access time is the main source of uncertainty
of the models. We then propose a proportional fair low delay rate
allocation algorithm as the online solution of an optimization problem.
Using nested optimization techniques, we construct a nonlinear feedback
controller which includes inner and outer closed loop controllers in
a cascade structure. We then analyze the stability conditions of the
proposed controllers. The inner feedback loop is responsible to tune the
send rates for given target aggregation levels, specific for each client,
and outer loop adjusts the target aggregation levels to achieve the target
delay. We present a prototype transport layer implementation of our low
latency rate allocation approach and use this to evaluate performance
under real radio channel conditions.

68

Chapter 6

Conclusion

6.1 Summary & Conclusions

In this thesis, we design a transport layer approach for achieving low
delay, high rate communications over edge networks where an 802.11ac
wireless hop is the bottleneck. We begin by analyzing latency in 802.11ac
edge networks and demonstrate that aggregation is coupled to delay in
modern 802.11ac networks such that we can control the delay through
regulating aggregation level. Then we implement a simple closed-loop
controller on Linux (using MAC timestamps) to successfully adjust the
transmit rate to tune the aggregation level. To implement this algo-
rithm on non-rooted Android handsets, we apply logistic regression
and support vector machine models to precisely infer aggregation level
from kernel timestamps over a wide range of send rates. Later we im-
plement the feedback controller on an Android tablet and compare its
performance to TCP Cubic and Google BBR. We also propose a passive
technique based on a logistic regression model to detect the location of
the path bottleneck using aggregation level then implement it in our
testbed and evaluate its performance in various scenarios.

In addition, we build models of the aggregation and delay behavior
in 802.11ac access points with a round-robin network scheduler. We
also propose a proportional fair rate allocation algorithm to achieve low
delay, high rate in 802.11ac edge networks using aggregation where
the bottleneck lies in an 802.11ac WLAN. Then we construct a non-
linear inner-outer feedback controller to solve the online solution of this
approach. We implement the nonlinear controller on Linux and Android
and show that that the closed-loop controller converges faster than the
simple feedback loop and show a reliable performance in the presence
of channel fluctuations.

6.2 Future Work

The work in this thesis highlights a number of areas for future work as
follows:

• The logistic regression model introduced in Chapter 4 is trained
using the data collected from a Samsung Galaxy Tab S3 tablet with
Android Oreo 8. Assessing the performance of the model on a
Google Pixel 2 handset with both Android 8 and 9 and also on a
Samsung Galaxy S9 mobile phone with Android 9, reveals that the

Chapter 6. Conclusion 69

accuracy of the model depends on the Android version and the
hardware configuration of the handset. Hence, the parameters of
the model require to be tuned based on the handset.

• The work described throughout this thesis is based on use of pacing
at the sender because sending packets in a burst can cause queue
build-up at the AP. However, controlling the burstiness could be
a solution to overcome the aforementioned problem with the pro-
posed machine learning approach. For example, when we send
multiple packets, i.e. equal to the desired aggregation level, back-
to-back from the server to the AP in one go, it is more probable that
the AP aggregates all of these packets together and sends one large
frame instead. To evaluate this idea, we used the sendmmsg Linux
utility to transfer a burst of UDP packets, e.g. Nε = 32, to the AP via
a gigabit Ethernet link and measured the aggregation level at the
client side using MAC timestamps. We surprisingly find that most
of the time the AP sends a few frames with low aggregation levels,
e.g. one or two packets, followed by frames with high aggregation
levels (< 32). Therefore, sending in a burst without low aggregation
levels may require designing a new scheduler at the AP.

• In Chapter 5, we assume the server (or cloudlet) is connected to just
one 802.11ac WLAN. However, in enterprise settings or the like, it
is common that multiple APs cover an area with multiple clients.
Then we can consider a setup where users are under the control of
a central node or proxy located at the edge of network. Hence, we
can design a novel user/rate allocation algorithm on the proxy to
increase the network QoS, e.g. increase the throughput and decrease
the delay. In this scenario, we can also use the historical traffic data
to predict the network and user behavior, the geographical positions
of clients in the future etc to smartly map users to APs in order to
improve the network performance. We can also optimize the main
parameters of the nonlinear feedback controller such as the target
aggregation level (N̄) and the target delay (T̄) using the information
obtained from the prediction.

• In this thesis, we conduct a study on the benefits of aggregation
to achieve low delay and high rate communications over 802.11ac
edge networks. We also briefly investigated the presence of aggrega-
tion in cellular networks, i.e. LTE network, by taking measurements
using iperf 3.6 but we did not observe a strong look between aggre-
gation and queueing in LTE. However, it is probable that this will
be added to 5G networks to reduce the overheads and improve the
bandwidth efficiency. However, we did not have access to any 5G
equipment during this study.

70

Bibliography

[1] Next Generation Protocols – Market Drivers and Key Scenarios. European Telecom-
munications Standards Institute (ETSI), 2016.

[2] J. Iyengar and I. Swett. “QUIC: A UDP-Based Secure and Reliable Transport for
HTTP/2”. In: IETF Internet Draft (2015).

[3] MinJi Kim et al. “Congestion control for coded transport layers”. In: Proc. IEEE
International Conference on Communications (ICC). 2014.

[4] Open Fast Path. 2016. URL: http://www.openfastpath.org/.

[5] 5G White Paper. Next Generation Mobile Networks (NGMN) Alliance, 2015. URL:
https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.
pdf.

[6] Tobias Flach et al. “Reducing web latency: the virtue of gentle aggression”. In:
ACM SIGCOMM Computer Communication Review 43.4 (2013), pp. 159–170.

[7] Wenxuan Zhou et al. “ASAP: A low-latency transport layer”. In: Proc. of the
Seventh Conference on emerging Networking Experiments and Technologies. ACM.
2011, p. 20.

[8] S. Souders. “Velocity and the bottom line”. In: Velocity (Web Performance and
Operations Conference). 2009.

[9] Qualcomm Snapdragon 820. URL: https : / / www . qualcomm . com / products /
snapdragon-820-mobile-platform.

[10] Y. Mao et al. “A Survey on Mobile Edge Computing: The Communication Per-
spective”. In: IEEE Communications Surveys Tutorials 19.4 (2017), pp. 2322–2358.
ISSN: 1553-877X. DOI: 10.1109/COMST.2017.2745201.

[11] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: Computer
50.1 (Jan. 2017), pp. 30–39. ISSN: 0018-9162. DOI: 10.1109/MC.2017.9. URL:
https://doi.org/10.1109/MC.2017.9.

[12] Yunhong Gu and Robert L. Grossman. “UDT: UDP-based Data Transfer for High-
speed Wide Area Networks”. In: Computer Networks 51.7 (2007), pp. 1777–1799.
ISSN: 1389-1286. DOI: 10.1016/j.comnet.2006.11.009.

[13] Mohammad Karzand et al. “Design of FEC for Low Delay in 5G”. In: IEEE Journal
Selected Areas in Communications (JSAC) 35.8 (2016), pp. 1783–1793.

[14] Andres Garcia-Saavedra, Mohammad Karzand, and Douglas J. Leith. “Low
Delay Random Linear Coding and Scheduling Over Multiple Interfaces”. In:
IEEE Transactions on Mobile Computing 16.11 (2017), pp. 3100–3114.

[15] J. Border et al. Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations. RFC 3135. RFC Editor, 2001.

[16] R. Karmakar, S. Chattopadhyay, and S. Chakraborty. “Impact of IEEE 802.11n/ac
PHY/MAC High Throughput Enhancements on Transport and Application
Protocols: A Survey”. In: IEEE Communications Surveys Tutorials 19.4 (2017),
pp. 2050–2091. DOI: 10.1109/COMST.2017.2745052.

[17] T. Li et al. “Aggregation with Fragment Retransmission for Very High-Speed
WLANs”. In: IEEE/ACM Transactions on Networking 17.2 (2009), pp. 591–604.

[18] S. Kuppa and G.R. Dattatreya. “Modeling and Analysis of Frame Aggregation in
Unsaturated WLANs with Finite Buffer Stations”. In: IEEE International Conference
on Communications (ICC). 2006, pp. 967–972.

http://www.openfastpath.org/
https://www.ngmn.org/uploads/media/NGMN_5G _White_Paper_V1_0.pdf
https://www.ngmn.org/uploads/media/NGMN_5G _White_Paper_V1_0.pdf
https://www.qualcomm.com/products/snapdragon-820-mobile-platform
https://www.qualcomm.com/products/snapdragon-820-mobile-platform
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1016/j.comnet.2006.11.009
https://doi.org/10.1109/COMST.2017.2745052

Bibliography 71

[19] Boris Bellalta and Miquel Oliver. “A Space-time Batch-service Queueing Model
for Multi-user MIMO Communication Systems”. In: Proc. 12th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
MSWiM 09. Tenerife, Canary Islands, Spain: ACM, 2009, pp. 357–364. ISBN: 978-
1-60558-616-8. DOI: 10.1145/1641804.1641866. URL: http://doi.acm.org/10.
1145/1641804.1641866.

[20] B.S. Kim, H.Y. Hwang, and D.K. Sung. “Effect of Frame Aggregation on the
Throughput Performance of IEEE 802.11n”. In: IEEE Wireless Communications and
Networking Conference (WCNC). 2008, pp. 1740–1744.

[21] David Malone, Ken Duffy, and Doug Leith. “Modeling the 802.11 Distributed Co-
ordination Function in Nonsaturated Heterogeneous Conditions”. In: IEEE/ACM
Transactions on Networking 15.1 (2007), pp. 159–172. ISSN: 1063-6692. DOI: 10.
1109/TNET.2006.890136.

[22] Abhinav Pathak et al. “A Measurement Study of Internet Delay Asymmetry”.
In: Proc. 9th International Conference on Passive and Active Network Measurement.
PAM’08. Cleveland, OH, USA: Springer-Verlag, 2008, pp. 182–191. ISBN: 3-540-
79231-7, 978-3-540-79231-4.

[23] David Malone, Douglas J. Leith, and Ian Dangerfield. “Inferring Queue State
by Measuring Delay in a WiFi Network”. In: Traffic Monitoring and Analysis. Ed.
by Maria Papadopouli, Philippe Owezarski, and Aiko Pras. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 8–16. ISBN: 978-3-642-01645-5.

[24] Rajdeep Das et al. “Informed Bandwidth Adaptation in Wi-Fi Networks Using
Ping-Pair”. In: Proc. 17th ACM Conference on Emerging Networking Experiments and
Technologies (CONEXT). 2017, pp. 376–388.

[25] Network Congestion Control: Managing Internet Traffic. John Wiley & Sons, 2005.

[26] Van Jacobson. “Congestion Avoidance and Control”. In: Symposium Proceedings on
Communications Architectures and Protocols. SIGCOMM ’88. Stanford, California,
USA: ACM, 1988, pp. 314–329. ISBN: 0-89791-279-9. DOI: 10.1145/52324.52356.
URL: http://doi.acm.org/10.1145/52324.52356.

[27] T. Henderson et al. The NewReno Modification to TCP’s Fast Recovery Algorithm.
RFC 6582. RFC Editor, 2012.

[28] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. 5th. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2010. ISBN: 0132126958, 9780132126953.

[29] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: A New TCP-friendly High-
speed TCP Variant”. In: SIGOPS Operating Systems Review 42.5 (2008), pp. 64–74.
ISSN: 0163-5980. DOI: 10.1145/1400097.1400105.

[30] Douglas Leith and Robert Shorten. “H-TCP Protocol for High-Speed Long-
Distance Networks”. In: Proc. 2nd Workshop on Protocols for Fast Long Distance
Networks. Argonne, USA, 2004.

[31] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. “TCP Vegas: New
Techniques for Congestion Detection and Avoidance”. In: Proc. Conference on
Communications Architectures, Protocols and Applications. SIGCOMM ’94. London,
United Kingdom: ACM, 1994, pp. 24–35. ISBN: 0-89791-682-4. DOI: 10.1145/
190314.190317.

[32] Cheng Peng Fu and S. C. Liew. “TCP Veno: TCP enhancement for transmission
over wireless access networks”. In: IEEE Journal on Selected Areas in Communica-
tions (JSAC) 21.2 (2003), pp. 216–228. ISSN: 0733-8716. DOI: 10.1109/JSAC.2002.
807336.

[33] Sanjay Hegde et al. “FAST TCP in high-speed networks: An experimental study”.
In: In Proc. First International Workshop on Networks for Grid Applications. 2004.

[34] Neal Cardwell et al. “BBR: Congestion-based Congestion Control”. In: Communi-
cations of the ACM 60.2 (2017), pp. 58–66. ISSN: 0001-0782. DOI: 10.1145/3009824.

https://doi.org/10.1145/1641804.1641866
http://doi.acm.org/10.1145/1641804.1641866
http://doi.acm.org/10.1145/1641804.1641866
https://doi.org/10.1109/TNET.2006.890136
https://doi.org/10.1109/TNET.2006.890136
https://doi.org/10.1145/52324.52356
http://doi.acm.org/10.1145/52324.52356
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/190314.190317
https://doi.org/10.1145/190314.190317
https://doi.org/10.1109/JSAC.2002.807336
https://doi.org/10.1109/JSAC.2002.807336
https://doi.org/10.1145/3009824

Bibliography 72

[35] BBR Development Google Group. URL: https://groups.google.com/forum/\#
!forum/bbr-dev.

[36] Van Jacobson. pathchar. URL: ftp://ftp.ee.lbl.gov/pathchar.

[37] B. A. Mah. pchar: A tool for measuring internet path characteristics. URL: http:
//www.ca.sandia.gov/bmah/Software/pchar.

[38] Arjun Balasingam. “Detecting if LTE is the Bottleneck with BurstTracker”. In: to
be published. 2019.

[39] Kevin I-Sen. Lai and Mary Baker. “Measuring the bandwidth of packet switched
networks”. English. PhD thesis. 2002.

[40] R. S. Prasad, C. Dovrolis, and B. A. Mah. “The effect of layer-2 store-and-forward
devices on per-hop capacity estimation”. In: IEEE INFOCOM 2003. Vol. 3. 2003,
2090–2100 vol.3. DOI: 10.1109/INFCOM.2003.1209230.

[41] S. Shioda, Y. Yagi, and K. Mase. “A new approach to the bottleneck bandwidth
measurement for an end-to-end network path”. In: Proc. International Conference
on Communications (ICC). Vol. 1. 2005, 59–64 Vol. 1. DOI: 10.1109/ICC.2005.
1494321.

[42] K. Lai and M. Baker. “Nettimer: A tool for measuring bottleneck link bandwidth”.
In: Proc. USENIX Symposium on Internet Technologies and Systems. 2001.

[43] C. Dovrolis, P. Ramanathan, and D. Moore. “What do packet dispersion tech-
niques measure?” In: Proc. IEEE INFOCOM 2001. Vol. 2. 2001, 905–914 vol.2. DOI:
10.1109/INFCOM.2001.916282.

[44] Nimantha Baranasuriya et al. “QProbe: Locating the Bottleneck in Cellular Com-
munication”. In: Proc. 11th ACM Conference on Emerging Networking Experiments
and Technologies (CONEXT). CoNEXT ’15. Heidelberg, Germany: ACM, 2015,
33:1–33:7. ISBN: 978-1-4503-3412-9. DOI: 10.1145/2716281.2836118.

[45] Srikanth Sundaresan, Nick Feamster, and Renata Teixeira. “Home Network
or Access Link? Locating Last-Mile Downstream Throughput Bottlenecks”. In:
Passive and Active Measurement. Ed. by Thomas Karagiannis and Xenofontas
Dimitropoulos. Cham: Springer International Publishing, 2016, pp. 111–123.
ISBN: 978-3-319-30505-9.

[46] Linux Kernel. URL: https://www.kernel.org/doc/Documentation/networking/
timestamping.txt.

[47] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J. Machine
Learning Research 12 (2011), pp. 2825–2830.

[48] Youngbin Im et al. “I Sent It: Where Does Slow Data Go to Wait?” In: Proc. 14th
EuroSys Conference. EuroSys ’19. Dresden, Germany: ACM, 2019, 22:1–22:15. ISBN:
978-1-4503-6281-8. DOI: 10.1145/3302424.3303961.

[49] Broadcom 4366E. URL: https://www.broadcom.com/products/broadband/
xdsl/bcm4366e.

[50] D. J. Leith and W. E. Leithead. “Survey of Gain-Scheduling Analysis and Design”.
In: International Journal of Control 73.11 (2000), pp. 1001–1025.

[51] Android Studio. URL: https://developer.android.com/studio.

[52] Wikipedia contributors. Java Native Interface — Wikipedia, The Free Encyclopedia.
[Online; accessed 6-August-2019]. 2019. URL: https://en.wikipedia.org/w/
index.php?title=Java_Native_Interface&oldid=902520375.

[53] Jagdish Prasad Achara et al. “WifiLeaks: Underestimated privacy implications
of the ACCESS-WIFI-STATE android permission”. In: Proc. 7th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec) (July 2014). DOI:
10.1145/2627393.2627399.

https://groups.google.com/forum/\#!forum/bbr-dev
https://groups.google.com/forum/\#!forum/bbr-dev
ftp://ftp.ee.lbl.gov/pathchar
http://www.ca.sandia.gov/bmah/Software/pchar
http://www.ca.sandia.gov/bmah/Software/pchar
https://doi.org/10.1109/INFCOM.2003.1209230
https://doi.org/10.1109/ICC.2005.1494321
https://doi.org/10.1109/ICC.2005.1494321
https://doi.org/10.1109/INFCOM.2001.916282
https://doi.org/10.1145/2716281.2836118
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://doi.org/10.1145/3302424.3303961
https://www.broadcom.com/products/broadband/xdsl/bcm4366e
https://www.broadcom.com/products/broadband/xdsl/bcm4366e
https://developer.android.com/studio
https://en.wikipedia.org/w/index.php?title=Java_Native_Interface&oldid=902520375
https://en.wikipedia.org/w/index.php?title=Java_Native_Interface&oldid=902520375
https://doi.org/10.1145/2627393.2627399

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Contributions
	Structure
	Publications

	Background
	Brief Overview of 802.11ac
	Aggregation in 802.11n, 802.11ac etc
	Edge Computing

	Literature Review
	Userspace Transport Protocols
	Detecting Queue Build-up
	Congestion Control
	Loss-based Congestion Control
	Delay-based Congestion Control

	Measuring Network Capacity
	Detecting Bottleneck Location
	Computer Networks
	Cellular Networks

	Quick & Plenty: Achieving Low Delay & High Rate in 802.11ac Edge Networks
	Introduction
	Preliminaries
	Measuring Aggregation
	Link Layer Retransmission Book-keeping

	Low Delay High-Rate Operation
	Controlling Delay
	Multiple Stations: Equal Airtime Fairness
	Selecting Design Parameters and K0
	Convergence Rate
	Disturbance Rejection
	Responding to Channel Changes

	Fairness With High Rate & Low Delay
	Clients Same Distance From AP
	Randomly Located Clients
	Coexistence With Legacy WLANs

	Non-rooted Mobile Handsets
	Estimating Aggregation Level: Logistic Regression
	Improving Accuracy At High Network Loads: SVM
	Effect of CPU Load On Estimator Performance
	Robustness of Estimator
	Performance Comparison With TCP Cubic & BBR

	Detecting Bottleneck Location
	Experimental Setup
	Bottleneck Classification: Ethernet Rate Limiting
	Feature Selection
	Classifier Performance

	Bottleneck Classification: Cross-Traffic

	Hardware & Software Setup
	Experimental Testbed
	Prototype Rate Allocation Implementation
	NS3 Simulator Implementation

	Summary & Conclusions

	Regulating Queueing Delay in 802.11ac WLANs: Nonlinear Controller Analysis & Design
	Introduction
	Modeling Aggregation Level & Delay
	Basic Setup
	Frame Transmission Timing
	Mean Aggregation Level
	Mean Delay
	Invertibility of Map From Rate To Aggregation Level
	Validation Of Mean Model
	Fluctuations Around Mean
	Approximate Model
	Time-Scale of Dynamics

	Measurement Noise & Main Source Of Model Uncertainty
	Measurement Noise
	Model Uncertainty

	Proportional Fair Low Delay Rate Allocation
	Utility Fair Optimization
	Characterizing The Proportional Fair Solution
	Examples

	Inner-Outer Feedback Control
	Inner Loop Controller
	Converting Between Slots and Frames
	Linearizing Action of Controller
	Robust Stability
	Selecting Controller Gain K1
	Adapting c

	Outer Loop Controller
	Sufficient Conditions For Stability
	Selecting Control Gain K2

	Experimental Measurements
	Prototype Implementation
	Implementation on Linux
	Implementation on Android

	Evaluation with Single Client
	Evaluation with Multiple Clients
	Experimental Testbed

	Summary & Conclusions

	Conclusion
	Summary & Conclusions
	Future Work

	Bibliography

