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Abstract

Purpose - The purpose of this paper is to introduce a model for identi-
fying, storing, and sharing contextual information across smartphone apps
that uses the native device services. We present the idea of using user input
and interaction within an app as contextual information; and how each app
can identify and store contextual information.
Design/methodology/approach - Contexts are modelled as hierarchical
objects that can be stored and shared by applications using native mech-
anisms. A proof-of-concept implementation of the model for the Android
platform demonstrates contexts modelled as hierarchical objects stored and
shared by applications using native mechanisms.
Findings - The model was found to be practically viable by implemented
sample apps that share context and through a performance analysis of the
system.
Practical implications - The contextual data-sharing model enables the
creation of smart apps and services without being tied to any vendors cloud
services.
Originality/value - This paper introduces a new approach for sharing con-
text in smartphone applications that does not require cloud services.
Keywords Mobile middleware, Context, Context-aware, Context manage-
ment, Database, Android
Paper type Research paper
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1 Introduction

Smartphone apps offer a large variety and choice of options to perform dedi-
cated tasks such as movie booking or messaging. Their convenienve in terms
of functionality form the core of the user’s smartphone experience. Such
apps often compete on features and functionality based on how well they can
help the user perform a particular task. Apps that offer more functional-
ity have a higher chance of user adoption. With market saturation of apps
with similar functionality, app developers are increasingly looking to cre-
ate smart apps(Elgan 2013) that can adapt to the user’s requirements and
provide better services. Such apps use contextual information to model ser-
vices and present information to the user. Personal assistants such as Google
Now(Google Now 2014) and Siri(Siri 2014) use the available contextual infor-
mation to present targeted services to the user. For example, Google Now can
show weather and traffic information for upcoming events identified within
the user’s emails. This gives an incentive to use such apps and services and
requires other app developers to develop comparable services for their apps
to remain viable.

The basis of creating a smart app or a smart service is the availability of
contextual information, which is then used to model or predict information
that is most useful to the user. Without access to contextual information,
apps and services can only offer a rigid functionality that does not adapt
to the user’s tasks. As a consequence of this, the user experience becomes
disjoint when using several apps. An example of this is presented in Fig. 1
where tasks commonly associated with watching a movie are presented along
with the user experience when using different apps within the given context.

A key problem identified through this example is the inability of applica-
tions to share data with each other due to the sandboxing (Au et al. 2011)
security model. The user is forced to duplicate information represented in
the form of information or even a set of choices as in the case of adding the
movie event to the calendar, or sharing the ticket details with friends. Cer-
tain apps that provide such services, for example Google Now, require the
user to be a member of their ecosystem of services. This limits the choice for
the user to choose different services, and is detrimental to other developers
who lack access to the aggregated contextual information.

Some apps leverage this drawback by coupling other popular services
in order to increase their functionality. Sunrise(Sunrise Calendar 2014),
which is a calendar app, offers integrations to a large number of services
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Figure 1: Movie Use Case

such as Facebook and Wunderlist, which are popular amongst users. It also
provides navigation features for locations stored within events, though this
requires the user to go through the app to access this feature. Reminders
from only supported services are synced and shown within the calendar. This
reduces the user’s choice, and increases the pressure on app developers to
integrate more services. The lack of a framework supporting implicit sharing
of information forces each app developer to depend on explicitly knowing
another app’s services in order to use them. This has led to efforts such
as X-Callback-Url (x-callback-url - iOS interapp communication 2014) that
provides documentation for an app’s services that can be integrated in other
apps, but does not provide a way to share contextual information.

In this paper, we discuss how information present within apps can be
modelled as contextual information, and can be used to develop a frame-
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work that supports apps to declare and use contexts within the smartphone
environment. The contextual model described is motivated by three key chal-
lenges in the area of context-awareness: identifying and accessing contexts
along with defining a practicle and usable contextual data store for use by
apps. An implementation for the model is demonstrated using Android and
native technologies, and is shown to be practically viable and effective.

2 Background and Related Information

The background and related work is divided into sub-sections based on the
three key challenges mentioned at the end of Section 1. Section 2.1 shows the
previous work done in defining context and context-aware computing. Sec-
tion 2.2 discusses the various ways to share data in mobile operating systems
and its impact on contextual sharing. Section 2.3 discusses utilizing cloud to
offer contextual services. Section 2.4 contains a comparison of different ways
for representing contexts.

2.1 Context-aware computing

The term context-aware computing was first introduced by Schilt et al. (Schilit,
Adams, and Want 1994) in 1994 and was defined as “software that adapts
according to its location of use, the collection of nearby people and objects, as
well as changes to those objects over time”. The word context, derived from
Latin con meaning with or together, and textere meaning to weave, denotes
context not just as a profile, but as an active process dealing with the way
humans weave their experiences within their whole environment to give it
meaning.

Many approaches defining the notion of context have been proposed and
several adaptive and personalized applications have been designed and im-
plemented by introducing the notion of user profile and context (Bolchini et
al. 2007). Dey (Dey 2001) gives an operational definition of context and dis-
cusses the different ways context can be used by context-aware applications.
Three categories of features that a context-aware application can support
are given as: presentation of information and services to the user, automatic
execution of a service for a user, and tagging of context to information to
support later retrieval. Zimmermann et al. (Zimmermann, Lorenz, and Op-
permann 2007) introduce two extensions to available context definitions that
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define how the task itself is also part of the context as it characterizes the
situation of the user. This central role of task is shared by Crowley et al.
(Crowley et al. 2002) and Kofod-Petersen et al. (Kofod-petersen and Cassens
2006), who assume that the user’s actions are generally goal driven. Hen-
ricksen (Henricksen and Indulska 2006) makes task central in her definition
of context. Abowd et al. (Abowd et al. 1999) discuss how context has been
considered not simply as a state, but as part of a process in which users are
involved.

Surveys and comparisons of context-aware systems and models are pre-
sented in (Bolchini et al. 2007). Chihani and Bertin (Chihani, Bertin, and
Crespi 2011) give a new approach for classifying context-aware communica-
tion systems, where adaptation is performed based on how context is used.
They identify services as Instant or Deferred and On Device or On Cloud
based on their implementation instead of their functionalities. They discuss
how high level knowledge can be derived from raw contextual information to
give a better understanding of the user. Yau et al. (Yau et al. 2002) describe
RCSM, a system that creates ad hoc communication between devices to fa-
cilitate information exchange. They present two categories of middleware in
pervasive computing based on interaction between devices or entities.

The fact that information such as user input and choice, which is inter-
preted and stored by apps can also represent actionable contexts has not been
given much attention. The various approaches that enable interpreting raw
contextual information such as time and location to form higher or complex
contexts do not actively share it with other apps. This places a limit on the
amount of contextual information an app can utilize, and has a direct effect
on the nature of contextual services it provides.

2.2 Data Sharing in Mobile Operating Systems

The two most popular smartphone operating systems in use today are An-
droid and iOS. Apps form an integral part of the user experience on both
platforms, which allows the user the choice of using various apps to perform
tasks based on preference or the features provided. Apps can access loca-
tion and other sensor data available through system APIs. While Android
supports sharing data explicitly between apps, iOS (version 8.1) has no such
feature (Data Management in iOS 2014). Data sharing on both platforms is
limited to the app’s process due to sandboxing, however both platforms allow
the explicit use of another app’s services through custom URIs (x-callback-url
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- iOS interapp communication 2014; Chin et al. 2011) which provide features
specifically developed for other apps to use. This increases the effort as ser-
vices need to be integrated within an app, and exposes potential instability
as used third-party APIs and services can change in the future.

2.3 Context and Cloud

Much of the research done previously on contextual models has been cloud-
based, where the cloud is utilized to offer services not possible on a mobile
device and to share information between multiple devices. Offloading work
to the cloud enables services not previously possible on mobile devices (Chun
et al. 2011; Cuervo et al. 2010; Fahim, Mtibaa, and Harras 2013; Fernando,
Loke, and Rahayu 2013; Kumar and Lu 2010). One such approach related
to this research is COSMOS (Sankaranarayanan, Hacigumus, and Tatemura
2011), which describes a cloud-based PaaS system that provides infrastruc-
ture for mobile apps to share data. The authors emphasize the incentive for
mobile apps’ to share information with one another on a large scale through
a service based in the cloud and hosting the mobile apps’ datasets. They pro-
vide an implementation model that hosts app data in the cloud and provides
seamless experience by sharing that data with multiple apps. An example
provided is that of a user going to a conference, where his conference date and
location is used to book airline tickets and the hotel room. The COSMOS
data sets provide all the information required without the user specifying
these requirements. For all services to work, the app must be hosted in
COSMOS and must use its architecture.

Intelligent personal assistants such as Google Now (Google Now 2014),
Siri (Siri 2014) and Cortana (Cortana 2014) perform tasks and services based
on user input and information gathered from the user’s device and a variety
of online sources. Google Now and Cortana are based on leveraging the user
information gathered from the maker’s ecosystem of services to anticipate
information the user most likely requires. Siri can act to delegate tasks for
activities such as restaurant booking by having partnerships with service
providers. Microsoft’s Cortana stores personal information such as interests
and location data in a contextual datastore called Notebook which is used
to learn the user’s behavior. It is not possible for other apps to create and
access such services owing to the lack of access to contextual data.
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3 Contextual Sharing Model

The Contextual Data Sharing Model as depicted in Fig. 2 consists of three
parts - the Context Database that stores the contexts, the Context Manager
that acts as middleware between the app and the Context database, and the
Context Definitions that provide a uniform representation of contexts.

Figure 2: System Model

3.1 Context Definition

We extend Dey’s (Dey 2001) definition of context to include all information
related to a user’s task across applications, using the following as a working
definition of context for the purpose of our research: context comprises of
any information related to or affecting the users activities and tasks. This
information includes time, location, weather, sensor information, and all
information the user is presented with or enters.
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Movie -context

‘extends ’ Event -context

Title

Date / Time

‘embeds ’ Location -context

Place name

Co -ordinates

‘embeds ’ Contacts -context

{ ... }

URI

TicketID

Seats

Offers

Listing 1: Movie context information

For all apps to store contexts and query information in an uniform way,
each app must represent context in the same way irrespective of how it has
been generated or acquired. Different types of context have different schema
based on the information they represent. Each schema has a unique name
and a fixed set of fields, which becomes its definition. Apps use this definition
to instantiate context objects for that particular type of context. This allows
identification and usage of different types of context across apps.

In Listing 1, the Movie context schema or definition is divided into two
parts with some fields designated under Event context. Contextually, Movie
is an Event, which means that some information related to Movie also belongs
to Event. Therefore, we can say that Movie is an extension of Event or that
the Movie context has been extended from the Event context. This means
that all the fields within Event schema are implicitly included in the Movie
schema.

If we structure the contexts according to how they are extended, we get
a tree representative of the hierarchy of contexts. The root of this tree is an
abstract Context that acts as a common ancestor, and allows for generaliza-
tion of contexts. As each context can extend only one other context, this
keeps the definition and usage simple, and prevents the problems associated
with multiple parents (Venners 1998). As we move from the top to the bot-
tom of the tree, each context is an extension of the context directly above it.
This allows for use cases like the one depicted in Fig. 3 that allow reusing of
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services handled by a parent context to all its children.

Figure 3: Extending Contexts

A context can embed other contexts in its schema. These are called
sub-contexts. The schema for Movie contains a reference to the Location
schema, which makes Location a part of Movie definition, and therefore its
sub-context. It is important to note the difference between extend and em-
bed, where extend is used to add additional information or generalize another
context, an embed is used to add a context as a field in another context’s def-
inition. This can be more clearly demonstrated by how information is related
when we say the contextual information related to a Movie is an Event, and
a Movie contains a Location. Fig. 4 depicts how different apps use the Con-
tact and Location sub-contexts within the Event context to provide services
related to the user’s task.

Figure 4: Embedding Contexts
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We can create a hierarchy of contexts based on how other contexts embed
them. The contexts that do not embed any other contexts are called Simple
contexts; and those that are further down the tree are called Complex con-
texts. Using a complex context requires knowledge about all the sub-contexts
it embeds. Conversely, an app handling a simple context does not need to be
aware of how other contexts embed it. Therefore, apps that provide services
for a particular context can provide services to all contexts below it in the
hierarchy without being aware of those contexts.

Apps can access a context without knowledge of how other contexts em-
bed it. For example, Map applications (Apple Maps 2014; Google Maps 2014)
that handle the Location context do not need to know about Event and Movie
contexts that embed it in order to provide them with location services. This
allows re-use of functionality without requiring the app or context schema to
be modified. In general, an app that targets its services for contexts higher
in the hierarchy can provide its services to all contexts situated below it.
This allows for some apps to handle common contexts and specialized apps
to target specific contexts. Apps that target contexts further down in the
hierarchy can re-use the services related to contexts situated above it in the
hierarchy. Such apps only have to provide services for the fields added or
changed from the context it was extended from.

In the Movie ticket booking use case, the Booking app would instantiate
a context object of type Movie, and fill in the Movie title, date, time, theater
location, ticket and seat information. Apps such as Calendar (Calendar
Apps on Google Play 2014), that can provide notifications and management
features for Event contexts, will also provide these same services to Movie
contexts due to Movie being extended from the Event context. Since the app
sees the Movie context object as an Event context, it has access to the fields
(title, date, time and location) declared in the Event schema but not to the
other fields (ticket and seats) from Movie schema.

While we do not provide any recommendation for who should maintain
the context definitions, it is important to note that the definitions need to be
present on the device along with the contextual data sharing model. Putting
the definitions and other context related features in an API and implementing
the Context database may require support from the mobile operating system.
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3.2 Context database

We use a Context database that stores contexts centrally for sharing between
smartphone applications. Having a central repository makes it easier for apps
to query and use contexts. The Context database is a system-managed data
store located outside the locality of an app, which maintains independence
from any particular app, and allows the persistence of contexts even after the
app has been uninstalled. Being a system-managed database also safeguards
against any malicious process that may corrupt data.

Since apps will constantly access the Context database, operations and
complex queries can affect the user experience with respect to the time they
take. This restricts the database type and operations permissible on a device,
and requires the implementation of simple designs that will not impact the
system performance.

Apps can insert or query contexts from the database, but are prohibited
from deleting them explicitly. The system manages deletion of contexts from
the database when required. This is done to prevent malicious apps from
deleting contexts, and also to prevent an app from deleting a context when
it might be useful for another app.

All access from apps to the Context database is through the Context
Manager, which acts as a mediator between the apps and the database. The
Context Manager’s responsibility is to perform the query on the Context
database and to interpret the response in a format requested by the app. It is
also responsible for performing any checks and verifications on the correctness
of a context. Instead of implementing the Context Manager as a middleware
service, it is embedded in the app itself as a module or a library. This
makes each app hold its own instance of the Context Manager, and creates
greater abstraction between apps and the contextual processes. The Context
Manager is executed as part of the app, which leads to all faults and errors
being generated in the app’s process. This increases the stability and security
of the context sharing.

Going back to the movie example used in section 1, the Context database
will hold all information related to the Movie context. The Booking app that
generates the movie context object stores it in the Context database. This
will then be queried by other apps to access contextual information such as
seat information and the theater location.

The size of the Context database will have an impact on performance as
queries take more time when a large number of contexts have accumulated.
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It becomes necessary in such cases to trim the database to an acceptable size
to keep the query time in an acceptable range. The time taken by a query to
successfully execute depends on number of records, device configuration and
app usage. A high specification device can execute complex queries faster
than a comparably lower specification device. Multiple apps accessing the
Context database simultaneously will also have an impact on its performance.
Taking such effects into considerations a policy to delete contexts must be
implemented whenever the size of the database or the number of contexts
reaches some threshold value t that determines the maximum size of the
database for which query times are acceptable. The value t will vary between
devices depending on the specification, use of apps and available space.

The contextual sharing model discussed in this paper does not recommend
the use of any particular database software as long as it provides the features
and services required by the model.

3.3 Contextual Sharing Model

Apps that wish to use the contextual data sharing model will need to use the
Context Manager to store and retrieve contexts from the Context database.
All means of sharing will be indirect, so the apps do not have to interact
directly with one another, but through the Context database whose purpose
is to share the contextual information across applications. The contextual
sharing model enables the collection of information related to a context in
a single structure, and enables apps to provide services using context. This
allows users to seamlessly carry over tasks across different apps by sharing
contextual information related to their actions.

In the Movie booking example discussed in section 1, the task required the
use of several apps, with each app requiring duplication of information and
effort. With the contextual sharing model, each app can design its services
to let the user choose a particular context, or provide services related to
the context most likely to be used. Once the booking app has created the
Movie context, other apps can access it and provide services based on the
information saved within it.

The possible actions the user might perform related to the movie context
are to forward the movie details to other attendees, to find a route on a map
to the theater, and accessing seat information once at the theater. When
each app that provides these services uses the Context database to gain in-
formation about the Movie context, the services provided are directly related
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to the user’s task, and hence more useful. The messaging app can provide
a way to insert the Movie context details such as title, date and theater
location in the message similar to how contact details can be inserted. To
make it easier for the user to access required information, the messaging app
can provide access to recently used contexts. By providing information in
an easily usable format, the user is more likely to complete the task in fewer
steps. When the user opens the Maps application, it can provide a list of
upcoming Events and utilize the Location embedded within them to provide
routes to the destination selected by the user. This would save searching and
typing the address as all information is stored within the relevant context.

Some calendar applications (Fantastical 2014; Sunrise Calendar 2014)
that provide a map in their interface do so only in interactions with the
application. A map application that provides routes for upcoming events
requires fewer steps to accomplish the same goal, while giving a user the
freedom to change the route or perform other map-related actions, which
are not possible when other apps embed maps in their interface. At the
theater location, an app that provides location-based reminders can show a
notification containing the Ticket and Seat information with a link to open
it in the Booking app. For the user, the default screen of the app changes to
reflect the task they are most likely to perform, and if the user chooses, they
can perform other actions in the app not related to the context.

The Context Manager queries the database to retrieve context objects
requested by the app. By providing a limiting parameter the queries can be
used for specific needs in apps which leads to more services, and allows apps
to specify the nature of contexts they require from the Context database. For
example, an app that generates a daily planner can query for Event contexts
occurring on the current date, or a restaurant app can query the Context
database to check for events and their location to provide recommendations
in a nearby area. By filtering contexts, apps can tailor specific services based
on the results. Another example, mentioned previously with reference to
the messaging app, was to show recently added contexts to the user, which
would limit the contexts based on the time of when they were added to the
database.

An app has no ownership or control over the context after it is stored in
the Context database. Apps can update or modify contexts in the database
irrespective of whether the context was added by them. Since each context
is stored independently in the database, and no duplicates are allowed, the
modified context is reflected in all contexts that contains it. This allows
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apps to modify contexts and update information without changing the entire
context that embeds it. For example, a Map app can update the Location
context and modify its co-ordinates to a more accurate value, and all contexts
that use that particular location will contain the updated values. This allows
any app to update its part of the context information, while still providing
all apps with the updated information.

The contextual nature of information stored in the Context database
can lead to security concerns such as maintaining privacy and preventing
corruption of data. Permissions can be utilized to restrict use of contexts and
accessing the Context database. We propose that apps be required to provide
explicit read-write permissions for each kind of context they intend to use so
that the system and the user are aware of applications’ access to information
before installation. By separating read and write permissions, apps that want
to use context, but are not generating them will be prevented from writing
to the Context database. A malicious app can still take advantage of the
security system and corrupt the app, but by enforcing permissions, an app
can be scrutinized more carefully.

4 Implementation

We built a proof-of-concept model as depicted in Fig. 5 for demonstrating
the contextual data sharing using Android as the implementation platform.
The choice of mobile operating system was made given the openness and
ease of modification which Android provides. It uses Java classes to model
the context definitions, SQLite for the Context database and a static Java
class for the Context Manager. The model is platform independent and can
be ported with minor adjustments to other platforms. A link to the code
repository of this project can be found here.1

4.1 Context Definition

Contexts can be represented and implemented in a number of ways on a
smartphone device as long as the entire context is provided as a single ob-
ject that can be serialized and used natively in the code. We represent the
context definitions through Java Classes which are then instantiated into
Java Objects. This simplifies the code as there is no parsing or extraction,

1https://github.com/coolharsh55/ContentProvider
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Figure 5: Android Implementation

and all related functions such as error-checks and marshaling can be en-
capsulated into the class itself. Since Android has a native Java runtime
environment, using Java objects for contexts provides better management of
code and memory during execution and makes it easier for developers to use
data structures and manage code.

Apps such as Calendar that handle Event contexts also provide services
for contexts such as Movie, Lunch, Meeting, etc. that extend it. Specific
apps like Movie Booking will offer services for the particular type of context
that they use. When the user books a movie ticket through the app, the
contextual information is shared to Calendar, which provides notifications,
reminders and planning features for the movie designated as an event. This
allows one app to focus its services on the contextual information it has
access to, while other apps can provide different services related to the same
context.

Generalizing an object of the derived class to its parent class increases
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re-usability of code in applications and allows the creation of apps that target
contexts higher in the hierarchy, but work for all contexts that are below it.
This allows functions written to accept Event objects to work with Movie
objects as the system casts Movie to Event during runtime.

A field that stores URI links is defined in some context definitions, and
is used for storing links to related information. A URI in Android can refer
to websites as well as apps. For Events, the link can point to the event
website or an app that holds this information. Apps that want to handle a
particular URI scheme need to register it in the manifest. The system reads
the manifest during installation and associates the app with that particular
scheme. For example, an app registering the URI scheme http:// will be
opened every time the user visits a web page. Similarly, apps can store a
URI linking the context to some information or service they provide. For
example, a restaurant booking app can link the URI in a dinner context to
the booking information. Clicking the link will take the user to the app’s
user interface elements related to that particular booking. These URI’s can
be opened or triggered inside any app as the system opens the correct app to
handle the context. This allows apps to provide links to information stored
within other apps and allows the use of related services without explicitly
switching apps.

4.2 Context Database

Android’s Content Providers (Android - Content Provider 2014) provide ac-
cess and encapsulation of structured data and provide mechanisms for defin-
ing data security. The Context database in our implementation of the model
utilizes SQLite version 3.7.11, which is pre-installed in Android version 4.4.4
(Kit-Kat).

The SQLite database is instantiated with a distinct table for every context
type. In cases where a context extends another context, only fields that were
added or changed are stored in the extended context’s table, with the rest
of the fields stored in the parent context’s table. This allows a query to
receive all kinds of events without implementing joins or multiple queries.
This increases the usability of contexts and services an app can provide by
being compatible with newer contexts that may be introduced. Where a
context includes a sub-context in its definition, each relation is stored in a
separate table to keep information distinct belonging to different contexts.

An app requesting entries for a particular context receives a subset of
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contexts to avoid the cost of retrieving all objects in every query, and en-
courages apps to only query contexts that are relevant. For example, a query
can request Events occurring in the current week in or around a particular
location by providing the date and location range values.

4.3 Context Manager

The Context Manager is a static Java class instantiated in the user app’s
process and is responsible for querying the Context database through the
Content Provider and to interpret the results returned. Every app has its
own instance of the Context Manager, which acts independent of the Con-
text database. All apps use the API for methods in Context Manager to
insert or retrieve contexts. Except for the actual database queries, all other
operations such as field-checking, marshaling and error-checks are performed
by the Context Manager in the user app’s process. This reduces the burden
on the database system and allows faster, simultaneous access by multiple
apps. Also, any errors resulting from an operation are handled in the user
app’s process, which prevents affecting other ongoing operations. This also
provides a level of security by shifting potential crashes in Context Manager
from the system to the user app.

When inserting or updating a context object, the Context Manager will
check for errors and completeness of fields and information before instan-
tiating the query. When an app requests contexts from the database, the
Context Manager retrieves the results from the database and creates con-
text objects locally before returning them to the app. Since the objects are
created locally in the app’s data, all garbage collection and lifetimes are re-
stricted to the app’s process. This follows the sandboxing model in Android
and allows the app to safely use objects without them being shared. Since
the contexts are instantiated in the app’s data space, their lifetime is re-
stricted to the lifetime of the app. When an app’s data is cleared after it is
closed, or removed from the stack, the context objects are removed from the
memory as well. Along with the Context Manager class, the required API’s
and class definitions are bundled together into a library which the developers
must include in their projects in order to interact with the Context database.
Using a library makes it easy to integrate the functionality and definitions
in projects.
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4.4 Demonstration of concept

In our demonstration, we show the movie booking use case using apps that
interact with the Context database. The movie booking app (Fig. 8) accepts
user input and creates a new Movie context containing the movie title, the
date/time of the show, the theater’s location, the ticket and seat information
and a link to information websites such as IMDb. It then adds the Movie to
the Context database through the Context Manager. This information is now
available to other apps that can retrieve it by querying the Context database.
The calendar app queries the Context database to retrieve upcoming events.
The results include the movie event added by the booking app, which the
user can edit to change the date/time and add contacts. This saves the
user the effort of entering the information as the app retrieves it from the
database, and also allows contacts to be added to the contextual information
of the movie event. The messaging app (Fig. 9) allows inserting contextual
information in messages by querying contexts in the Context database. The
user can choose the fields to be inserted from a list of contexts displayed
in a menu. If a context contains contacts, these contacts are added to the
recipient field and the information from other fields is added to the message
body. By selecting the movie context from the list, the user can send the
movie details to all contacts attending the movie without having to type the
information in the message.

The maps app (Fig. 6) displays upcoming events with a location by query-
ing the Context database. When the user selects a particular entry, the loca-
tion from that context is used as destination to provide navigational features.
This allows the user to navigate to the theater by selecting the movie con-
text from the list, and saves the effort of entering the address and selecting
a location. The reminder app (Fig. 7) is used for displaying notifications
based on time or location. When the user reaches the theater, the reminder
app identifies the location and displays a notification containing the ticket
and seat information. The user does not have to enter the contextual in-
formation as it is queried from the Context database. The ticket and seat
information is used as the notification contents and the location is used as a
trigger. Each app used in the demonstration belongs to a separate package
and uses different developer signatures to isolate their identities from one
another. This is used to prevent any implicit sharing of data between the
apps, and to demonstrate how contextual information is shared through the
Context database. The apps used the Context Manager to insert and query
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Figure 6: Booking app saves Movie
Context

Figure 7: Messaging app can send
Movie info

the Context database, and receive context objects as results which they use
to provide services. The user has to enter significantly less information as the
apps retrieve the related contextual information from the Context database.

Since the information is generated and consumed by apps installed on a
smartphone, having the Context database situated on the device is beneficial
as all related information is generated, stored and consumed in the same
ecosystem. It is possible to use cloud offloading to offer more functionalities
and resources based on contexts not stored in the device database, but such
functionality will form an extension to the model.

4.5 Privacy and Security

Android’s permissions model provides some degree of privacy and security
by requiring apps to declare the required resources such as camera, location,
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Figure 8: Maps app can show up-
coming event locations

Figure 9: Calendar can show con-
textual notifications

and telephony through its manifest. When the app requests access to that
particular resource, the system checks the permissions at runtime and grants
access to the specified resource. The user is made aware of these permissions
during the installtion of the app.

The permissions model can be extended for the Contextual Data Sharing
Model by implementing changes to the system code that handles the per-
missions mechanisms. Each context type would be considered as a seperate
resource, and would require the app to declare its use before it can access
the information in the Context database. This would require the application
to declare all context types it would be accessing during installation, which
can then be displayed to the user to provide awareness about the app’s acess
to sensitive information. By seperating the permissions for accessing and
updating/writing to the Context database, further control over the privacy
and security can be achieved. Since the Context Manager is a seperate sys-
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tem component that connects to the Context Database, it would be easy to
achieve a fine granularity of control over the information made available to
apps.

5 Metrics and Performance

The proof-of-concept experiments were carried out on a Nexus 7 running
Android version 4.4.4 (KitKat). Test results were gathered using timestamps
from logging at important points in the code. The number of entries (records)
in the Context Database have an impact on the time required to complete
each operation.

The following tables show the time taken for various operations to com-
plete for different number of Event entries in the database. The operations
were run multiple times (n = 100) in standard operating conditions. In the
tables, tmin depicts the minimum value, tmax the maximum value, tavg the
average, and tstdev the standard deviation.

Table 1 shows the time taken to insert one Event object using Context
Manager. The total time is inclusive of the time spent performing error and
validation checks, IPC between user app and Content Provider, checking
for duplicates, and inserting the entry in the database. Table 2 shows the
time taken for Context Manager to retrieve Event entries from the database.
This includes the time required to execute the database query, perform IPC
between Content Provider and user app, and instantiate the Event objects.

Table 1: Time taken by Context Manager to insert one Event object into
the database.
entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)
100 1 25 1.7 3.1
500 2 47 2.9 5.01
1000 5 58 6.77 7.41
5000 25 243 35.8 34.02
10000 51 491 62.34 48.86
50000 74 783 89.02 89.18
100000 100 1176 130.2 137.6
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Table 2: Time taken by Context Manager to retrieve Event entries from the
database
entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)
100 10 39 16.72 4.6
500 100 198 120.61 10.05
1000 200 388 240.95 16.28
5000 500 1781 663.56 115.86
10000 2000 4896 2265.74 364.46
50000 5000 10192 6681.94 712.68
100000 10024 18094 11459.12 1429.04

Table 3 shows the time required to execute the query for inserting one
Event entry in the database. The total time is inclusive of the time required
for unmarshalling values, inserting Contact, Location, Event entries in their
respective tables, creating relational entries in various tables, and checking for
duplicates. Table 4 shows the time taken to execute the query for retrieving
all Event entries from the database. The query performs joins over the
Event, Contact, Location and relation tables to put all associated information
together in the result.

Table 3: Time required to execute query for inserting one Event context into
the database.
entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)
100 1 5 1.65 0.81
500 1 5 1.72 1.02
1000 1 5 2.03 1.14
5000 2 9 4.21 1.6
10000 4 19 6 2.28
50000 9 49 12.19 6.51
100000 20 119 42.55 12.08

A comparison of insert and retrieval times for Event objects using Context
Manager is given in Fig. 10. The graph shows a range of values containing
the minimum (tmin), maximum (tmax) and average time (tavg) required for
an operation based on the number of entries in the database. Analyzing

22



Table 4: Time required to execute query for retrieving Event entries from
the database
entries tmin(ms) tmax(ms) tavg(ms) tstdev(ms)
100 1 5 1.87 0.87
500 1 5 2.11 0.94
1000 1 5 2.34 1.13
5000 3 10 5.42 1.95
10000 9 39 12.05 4.29
50000 10 49 15.83 6.98
100000 20 137 31.51 15.73

the graph shows how the cost of inserting objects increases almost linearly
with the number of entries in the database. While tmin and tavg at large
the database sizes are within an acceptable range for responsiveness in UI
(0-100ms (Jovic and Hauswirth 2010)), the variations can be seen through
tmax. The time required to retrieve Event objects from the database increases
much more rapidly with the size of the database. The value of tavg reaches
5000ms with 35000 entries in the database, which is outside the range of
acceptable values. If the number of entries is restricted to 100, tavg equals
120ms, which is just outside the acceptable range. Further analysis of these
values can be used to limit the number of entries returned in response to a
query in order to keep the performance of the operation under permissible
values.

The CPU load resulting from Context Manager requesting 10000 Event
objects from the database is shown in Fig. 11. The horizontal axis depicts
the running time given in seconds, and the vertical axis depicts the CPU
usage in percent. The app that is responsible for the request draws Event
objects on screen using a list view. At about t = 3.1s, the app requests the
Context Manager to retrieve all Event objects. The Context Manager sends
this request to the Content Provider in the database’s process. the database
executes the appropriate queries from t = 3.2s to t = 3.5s and retrieves all
Event entries along with the related information. It then sends this data
back to the Context Manager in the app’s process. The context-manager
constructs the Event objects from this data from t = 3.8s to t = 5.5s. The
app then draws the GUI with the Event objects from t = 6.0s to t = 10.3s.
The total duration from sending the request till drawing the list view is about
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Figure 10: Comparison of time required to insert/retrieve Event objects with
number of entries in the database.

t = 7.5s, which is well outside the acceptable range for UI interactions. If the
number of entries retrieved from the database is restricted to 100 using the
analysis of Fig. 10, it would further reduce the CPU time and memory used
and would allow more fluid user interactions. The average CPU load at all
times is well below 50%, which can be considered as not being under stress.
This allows the CPU to run other apps and operations in the background.

6 Conclusion and Future Works

In this paper, we introduce a Contextual Data Sharing Model for smartphone
applications that structures contexts using definitions and shares contexts
through a Context Database. Apps query the Context Database to retrieve
contextual information which saves the effort of entering related information
in multiple apps used within the same context. This leads to better fea-
tures and an improved user experience due to the availability of contextual
information across apps.

An implementation on Android is used to demonstrate the contextual
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Figure 11: CPU load caused by ContextManager creating 10000 Event ob-
jects retrieved from the database

data sharing model. It uses Java classes for Context Definitions, which pro-
vide uniform context representations across apps and devices, and are in-
stantiated as Java objects on device. The Context Database uses Android’s
Content Provider interface with SQLite as the storage backend for context
entries. The Context Manager acts as a middleware between apps and the
Context Database is implemented as a static Java class in the app’s pro-
cess. The Context Definitions and the Context Manager class are bundled
together into a library which the developers can include in their project to
use contexts and interact with the Context Database.

The time required to complete various database operations relative to
the size of the database in the implementation is analyzed to identify its
impacts on performance and usability. Conclusions regarding optimization
of performance regarding queries are also discussed. The impact of running
operations on device was analyzed and presented no hindrance to other apps
on the device.

Concerns and considerations such as security and performance are dis-
cussed in relation to the implementation on Android. The main concern of
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adapting Android’s security and permission model for the contextual data
sharing model is also discussed.

The main goal of this research is to enable apps to query contextual infor-
mation stored on the device to access contextual information. This allows the
apps to present users with services they most likely require and saves the ef-
fort of entering related information multiple times. By offloading operations
and Context Database to the cloud, additional features such as analyzing
and mediating contexts between different devices can be achieved. More
powerful and useful services can be developed in the cloud using contextual
information accessible from various sources. This can be used to provide
users access to services or information that is relevant to their contexts, but
not present on the device. The local datastore on the device can act as a
cache for the datastore based in the cloud, allowing operations that execute
faster by querying the local datastore, and will also allow the app to work
without network dependence.

The Context Database used can be optimized based on the nature of
queries being performed. A NoSQL graph database for mobile devices can
be used to store relations between contexts, which can lead to new and
interesting features. Utilizing database features like narrowing search results
and ordering based on parameters give apps more ways to utilize contexts.

By introducing or re-using more use cases in the Context Definitions, new
services based on the user’s context can be created that were not previously
possible. For example, by including weather and traffic information within
an Event context, apps can present this information without querying for
weather or traffic data themselves. This allows apps to share services present
on the device to provide related information in more useful ways.
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