
Trinity College Dublin

School of Computer Science and Statistics

M.Sc. by Research in Statistics

2020

Modelling the Distribution of Grouped Survival Data

via Dependent Neutral-to-the-Right Priors

Author:

Fearghal Donaghy

Supervisor:

Dr. Bernardo Nipoti

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow

the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College

Library conditions of use and acknowledgement.

I consent to the examiner retaining a copy of the thesis beyond the examining period, should

they so wish (EU GDPR May 2018).

Signed:

Fearghal Donaghy

2

Summary

The key methods used in this thesis are rooted in Bayesian nonparametric statistics. We

construct a model for the analysis of right censored survival data. The data the model is

built to analyse is discrete, separated into distinct groups, and features dependence between

groups. In addition, the total number of censored observations in each group is unobservable.

We use neutral-to-the-right priors to specify our model and express the interdependence

using superposition of completely random measures. In particular, the distribution of each

group a priori is characterised by the linear combination of two completely random measures:

one which is unique to that group and one which is common to all groups.

Our main theoretical results in Section 4 feature a characterisation of the posterior dis-

tribution and from there the derivation of each group’s posterior mean distribution given a

number of auxiliary variables. This derivation is carried out both for a general distribution

and after we specify the completely random measures using a one-parameter Gamma base

measure and a σ-stable density.

We construct a method for obtaining pointwise estimates of the posterior mean by marginal-

ising with respect to the aforementioned auxiliary variables using a Gibbs sampler. Within

this sampler, we use a Metropolis-Hastings algorithm to sample from the more complex full

conditionals.

In order to test our model, we perform a simulation study using data generated from a

number of combinations of Dirichlet processes. Then the model is applied to real data from

our motivating illustration. These data comprise the report times of bugs in various releases

of Mozilla Firefox’s internet browser.

For both the simulated data and the real data, we calculate pointwise estimates for the

posterior means and associated credible intervals for each group.

Our study demonstrates the advantages of borrowing of information across groups in the

above described way. For instance, it allows us to model more effectively the distribution of

groups for which there is a lack of exact observations because that group’s censoring time is

particularly early.

3

All computation was carried out using the R programming language.

4

Acknowledgements

Massive and sincere thanks are due to my supervisor, Dr. Nipoti, who gave hugely of his time,

patience, and expertise throughout this project. His constant guidance has been invaluable

to me. For going beyond the call of duty and affording me unique opportunities to learn and

to better myself, I owe him hugely.

Without the unwavering support of my parents, I would never have come as far as I have.

Each of my academic milestones serves as a testament to their belief in my potential. Their

unbounded capacity for understanding and love has always sustained me. For this and for

loads more besides, I will always be grateful.

Many kinds of support can often go overlooked or be taken for granted. I want to take

this opportunity, therefore, to offer enormous thanks to my friends who gave freely of their

company, their advice, their encouragement, and in some cases their apartments during this

project. You know who you are.

It has been a pleasure to write this dissertation for many reasons. Two of those reasons are

named Carly and Alan, who kept me in good cheer throughout the writing process. Thank

you both kindly for your help.

5

Contents

1 Introduction 8

1.1 Motivation . 9

2 Background 11

2.1 Completely Random Measures . 11

2.2 Neutral-to-the-Right Priors . 13

2.3 Survival Analysis . 14

2.3.1 Survival Data . 14

3 Model specification 16

4 Main Results 20

4.1 Characterisation of the posterior distribution of F̃ 20

4.2 Specifying a Lévy Intensity . 32

4.3 Specifying a Base Measure . 32

5 Posterior Sampling 36

5.1 Gibbs sampling . 36

5.2 Full conditionals . 36

5.3 Sampling from the full conditionals . 39

5.3.1 Metropolis-Hastings for Np . 39

5.3.2 Monte Carlo evaluation . 41

6 Data Analysis 44

6.1 Simulation study . 44

6.1.1 How the Data Are Generated . 44

6.1.2 Results of Analysis . 46

6.2 Real data . 55

6.3 Sampler diagnostics . 58

6

7 Discussion 59

7.1 Censoring times . 59

7.2 Choice of Lévy intensity . 59

7.3 Using all the information . 59

7.4 Discrete versus continuous data . 60

References 61

A Code for data simulation 63

B Code for data analysis 68

7

1 Introduction

A typical framework for statistical inference assumes that the data yi, i = 1, 2, . . . , n are

drawn independently from an underlying distribution function G. A parametric approach

further assumes that the probability density function g of G belongs to a family G = {gθ :

θ ∈ Θ} labelled by a set of parameters θ belonging to an index set Θ.

When introducing the field of Bayesian nonparametric statistics, Müller et al. (2015)

explain that constraining inference to a specific parametric form in this way can limit the scope

of the resulting model. Ghosal and Van der Vaart (2017) agree, telling us that nonparametric

models can allow us to avoid “the arbitrary and possibly unverifiable assumptions inherent

in parametric models”.

Our project will be carried out using Bayesian nonparametric analysis for this reason and

because of the variety of useful tools available in this domain. For instance, we will make

much use of neutral-to-the-right (NTR) processes, introduced by Doksum (1974). NTR priors

are especially useful in survival analysis due to their structural conjugacy property in the case

of right-censored data.

Completely random measures (CRMs) will feature heavily in our project, not least be-

cause of the useful mathematical relation they bear to NTR processes. First introduced by

Kingman (1967), CRMs can readily characterise NTR processes and vice-versa. Their ana-

lytical tractibility and the mathematical convenience of their Lévy-Khintchine representation

make them ideal for our purposes.

In our motivating illustration, the data comprise the report times of bugs across different

Firefox software releases. Modelling interdependence between these releases is a fundamental

aspect of our model. We will draw on the work of Lijoi and Nipoti (2014) when we establish

this interdependence through superposition of CRMs.

Once our model is specified, we derive the results necessary to sample from the posterior

and test these results using data simulated from known distributions.

8

1.1 Motivation

The data which motivates our model describes the discovery times of software failures or

bugs in various releases of Mozilla Firefox’s internet browser. This same dataset was anal-

ysed by Wilson and Ó’Ŕıordáin (2018), who also took a Bayesian approach, though not a

nonparametric one. This data is publically available from the Bugzilla tracking system at

bugzilla.mozilla.org, where newly discovered bugs in Firefox software are reported and their

details are freely available.

Approximately every 42 days, Firefox release a new version of their browser. We work

with the bug report times for each release between June 2011 and July 2013. The cumulative

number of bugs reported for each version and their corresponding release dates are illustrated

in Figure 1.

The data we analyse is discrete, with times of big reports known down to the hour. This

discreteness allows for ties within and between releases, a feature of the data we will not only

accommodate but use to our advantage.

0

25

50

75

2011−07 2012−01 2012−07 2013−01 2013−07

N
um

be
r

of
 b

ug
s

Release

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Figure 1: Mozilla Firefox bug report data

The problem facing us is how to describe data of this form, that is data with the following

9

properties:

• Observations come from a discrete distribution and thus show ties with positive prob-

ability.

• The total number of censored obervations in the data is unobservable.

• The data is not easily described by existing parametric models.

• Data might be characterised by homogeneity within each release-specific sample but by

heterogeneity across samples.

• There may exist dependence between releases of this data which we wish to exploit.

The second point above introduces an element of randomness which makes the issue

of sampling from our posterior distributions non-trivial. We will need to marginalise with

respect to a number of random variables in order to gain a posterior we can sample from.

We will construct our model using the tools and framework of Bayesian nonparametrics.

In particular, we will make use of neutral-to-the-right priors and introduce prior dependence

between distinct software releases.

Before we can achieve any of this, we will familiarise ourselves with the necessary tools.

10

2 Background

Bayesian nonparametrics is the statistical framework within which we build our model. In

Bayesian statistics, we assume a prior for a certain model and incorporate the information

gleaned from the data using the likelihood. We then derive the posterior distribution through

the product of these objects.

In Bayesian nonparametrics, the principles of this practice remain in place but we dispense

with the assumption that our model follows a parametric distribution. Instead, we allow the

distributions, both prior and posterior, to exist outside the restrictions of, say, a Gamma

or Normal distribution. Instead, the distribution may be composed of a potentially infinite

combination of distributions.

More formally, we say that a model is nonparametric if the corresponding parameter space

has infinite dimension. We call the field nonparametric but infinitely parametric may be a

more appropriate description.

In this section we provide an overview of the various tools we borrow from Bayesian

nonparametrics and how they relate to one another.

2.1 Completely Random Measures

We begin with the definition of Kingman’s completely random measures (1967). Let X be

a complete and separable metric space endowed with Borel σ-algebra H . We denote by

MX the space of boundedly finite measures on (X,H) and by MX the corresponding Borel

σ-algebra on MX.

Definition 1 (Completely random measure). Let µ̃ be a measurable mapping from proba-

bility space (Ω,F ,P) into (MX,MX) such that for any mutually exclusive A1, A2, . . . , An

in H , the random variables µ̃(A1), µ̃(A2), . . . , µ̃(An) are mutually independent. Then µ̃ is a

completely random measure (CRM).

CRMs play an important role in Bayesian nonparametrics because they can be used to

define nonparametric priors, as demonstrated by Lijoi and Prünster (2009). As detailed by

11

Griffin and Leisen (2014), we can always represent a CRM onX as the sum of two components.

One is itself a completely random measure µ̃c =
∑∞

i=1 JiδXi , where both the positive jumps Ji

and their locations Xi in X are random. The other is a measure whose masses V1, V2, . . . , VM

are again random but appear at fixed locations x1, x2, . . . , xM ∈ X. Accordingly

µ̃ = µ̃c +
M∑
i=1

Viδxi . (1)

The random variables V1, V2, . . . , VM are mutually independent and independent of µ̃c

and M ∈ {1, 2, . . . } ∪ {∞}.

It is important to note that µ̃c is characterised by the Lévy-Khintchine representation,

which states that

E
[
e−
∫
X
f(x)µ̃c(dx)

]
= exp

{
−
∫
R+×X

[
1− e−sf(x)

]
ν(ds, dx)

}
(2)

where f : X→ R is a measurable function such that
∫
|f |dµ̃c <∞ with probability one and

ν is a measure on R+ ×X such that∫
B

∫
R+

min{s, 1}ν(ds, dx) <∞

for any B in H .

The measure ν is called the Lévy intensity of µ̃c and fully characterises it. It will be useful

too to express ν in terms of its two parts, which contain the information about µ̃c’s jumps

and their locations respectively:

ν(ds, dx) = ρx(ds)α(dx).

For our purposes, it will be sufficient to consider the case where ρx = ρ and so the

distribution of the jumps of µ̃c is independent of their location. In this case we say both ν

and µ̃c are homogeneous:

ν(ds, dx) = ρ(s)dsα(dx). (3)

CRMs are useful to us as building blocks for our model largely because of their relation

to neutral-to-the-right processes, which we explore in the following section.

12

2.2 Neutral-to-the-Right Priors

Neutral-to-the-right processes provide a method of reconciling CRMs with the distribution

functions which directly describe the behaviour of our data.

Definition 2. A random distribution function F̃ on R+ is neutral-to-the-right (NTR) if, for

any 0 ≤ t1 < t2 < · · · < tk <∞ and any k ≥ 1, the random variables

F̃ (t1),
F̃ (t2)− F̃ (t1)

1− F̃ (t1)
, . . . ,

F̃ (tk)− F̃ (tk−1)

1− F̃ (tk−1)

are independent.

It is not immediately apparent from this definition how NTR processes might relate to

CRMs. The following theorem by Doksum (1974) reveals a crucial connection.

Theorem 1. A random distribution function F̃ = {F̃ (t) : t ≥ 0} is NTR if and only if it

has the same probability density (p.d.) as the process {1− e−µ̃((0,t]) : t ≥ 0}, for some CRM

µ̃ on X = R+ such that P [limt→∞ µ̃((0, t]) =∞] = 1.

This result means it is possible for us to characterise the prior distribution of F̃ in terms

of the Lévy intensity ν corresponding to µ̃. Here we note that the CRM µ̃ we consider for

the prior distribution of F̃ is without fixed points of discontinuity.

The corresponding posterior, however, will contain jumps at fixed points, as per the

following theorem, again proved by Doksum (1974).

Theorem 2. If F̃ is NTR(µ̃), then the posterior distribution of F̃ , given the data X1, X2, . . . , Xn,

is NTR(µ̃∗) where µ̃∗ is a CRM with fixed points of discontinuity.

This useful and powerful property of NTR priors is known as structural conjugacy. Here

it is important to note that this does not imply parametric conjugacy. Parametric conjugacy

occurs when the posterior process has the same probability distribution as the prior process

but with updated parameters.

The more general structural conjugacy describes the case where the posterior process be-

longs to the same class of random probability measures as its prior process. While parametric

13

conjugacy implies structural conjugacy, the converse is not true in general. This distinction

is made clear in Lijoi and Prünster (2009).

Putting these elements together, we can see already how this framework might be useful

by simply considering the expected value of some NTR prior F̃ , whose corresponding CRM

µ̃ is homogeneous.

E
[
F̃ (t)

]
= 1− E

[
e−µ̃((0,t])

]
= 1− e

−
∫
(0,t]

∫
R+ [1−e−s]ρ(ds)α(dx)

. (4)

This kind of transformation will be used extensively when we derive our main results in

section 4.

2.3 Survival Analysis

Now we depart momentarily from Bayesian nonparametrics and turn our attention to survival

analysis. To understand the purpose of survival analysis, we first consider the properties of

survival data.

2.3.1 Survival Data

Survival data takes values on the positive real line. Each data point usually defines some

“time to failure”. This may describe the onset of a disease, the death of a patient, or, in

the case of our motivating example, the discovery of a bug in software. Consider a group

of N entities, with failure times x1, x2, . . . , xN . We model these using random variables

X1, X2, . . . , XN .

A key aspect of survival analysis is the concept of censoring. Experiments in survival

analysis are often hindered by circumstance in how much data can be measured exactly.

Typically, there is a certain window of time inside which a number M ≤ N of exact failure

times are observed. Failure times which are not observed inside this window are censored.

The most common type of censoring in survival analysis, and the one we shall confine

ourselves to here, is right censoring. In this case, each data point has an associated censoring

timeWi. Censored data are those observations whose exact failure times are unknown because

14

they have occured after their censoring times. We now must consider a new set of random

variables T1, T2, . . . , TN where

Ti = min{Xi,Wi}, i = 1, 2, . . . , N.

The data itself may be continuous or discrete and usually comprises the total number of

data points N , the exact failure times of M data points T1, T2, . . . , TM , and the censoring

times Wi. We have that Wi ≥ Ti > 0, i = 1, 2, . . . ,M .

The type of data we wish to describe is subtly different in two respects. Firstly, our

data comes from a number r ≥ 1 of distinct groups. Each group has a censoring time Wl.

Secondly, the total number of data points Nl in the lth group is unobservable and so must be

treated by the model as a random variable.

In the case of the Firefox data, Nl is not observable because it represents the total number

of bugs in an extensive software package which is only tested and used during a very limited

period of time.

15

3 Model specification

We consider r releases of the same software and call respectively Nl and Ml the (unknown)

total number of bugs and the observed number of discovered bugs for the lth release, with

l = 1, 2, . . . , r and Nl ≥ Ml. We suppose that the observation window for the lth release is

(0,Wl], meaning that the lth software release was tested starting from time 0 (e.g. this could

be the moment the version was released) to some fixed time Wl.

The Ml observations for the lth release are (T1,l, T2,l, . . . , TMl,l) where

T1,l ≤ T2,l ≤ . . . ≤ TMl,l ≤Wl.

We denote the Nl discovery times for the lth release by X1,l ≤ X2,l ≤ . . . ≤ XNl,l and recall

that all these observations are subject to deterministic right-censoring at Wl. Thus, in order

to link the two sets of notation we introduced, we have

Tj,l = min{Xj,l,Wl} for j = 1, 2, . . . , Nl,

where the firstMl observations are exact and the remainingNl−Ml (unobserved) observations

are right-censored and they all coincide to Wl, that is TMl+1,l = TMl+2,l = . . . = TNl,l = Wl.

For future convenience we also introduce the notation N ′l = Nl −Ml, to denote the unob-

served number of censored bugs of the lth release.

The main idea is to replicate the model of Wilson and Samaniego (2007) in a multivariate

setting by allowing borrowing of information across releases in order to better model the

discovery distributions of subsequent releases. To this end we will make use of Griffith-

Milne (GM) dependent neutral-to-the-right priors defined in Nipoti (2011) (see also Lijoi

et al. (2014) for allied approach, and Epifani and Lijoi (2010) for an alternative definition

of dependent NTR priors based on the use of Lévy copulas). Namely we define dependent

nonparametric priors for distribution functions Fl, with l = 1, 2, . . . , r, as

F̃l(t) = 1− exp{−µ̃l((0, t])} = 1− exp{−µl((0, t])− µ0((0, t])}, (5)

16

where the completely random measures µ0, µ1, . . . , µr are independent and such that µ1, µ2, . . . , µr

are all identically distributed with Lévy intensity zν(ds, dy), whereas the Lévy intensity of

µ0 is (1 − z)ν(ds, dy), for some z ∈ (0, 1). This leads to a sequence of r completely random

measures µ̃1, µ̃2, . . . , µ̃r that are dependent and identically distributed.

The purpose of the parameter z is to provide further control over the model, specifically

the degree of information sharing we wish to allow. Consider (5). As z approaches 1, the

measure µ0, which is common to each Fl, l = 1, 2, . . . , r, loses significance and we approach

independence between groups. Conversely, as z approaches 0, µ1, µ2, . . . , µr lose significance

and we grow closer to complete exchangeability of random variables within and between

groups.

The joint independence of increments of the vector (µ̃1, µ̃2, . . . , µ̃r) guarantees analytical

tractability. We will consider homogeneous completely random measures, that is we assume

that ν admits the following factorisation

ν(ds, dy) = ρ(s)dsα(dy),

for some kernel ρ and some measure α = cP0, where P0 is a probability distribution defined

on R+.

The model can be written as

Tj,1 | F̃1
iid∼ F̃1 for j = 1, 2, . . . , N1

Tj,2 | F̃2
iid∼ F̃2 for j = 1, 2, . . . , N2

... (6)

Tj,r | F̃r
iid∼ F̃r for j = 1, 2, . . . , Nr

(Tj1,1, Tj2,2, . . . , Tjr,r) | F̃1, F̃2, . . . , F̃r ∼ F̃1 × F̃2 × · · · × F̃r

for jl = 1, 2, . . . , Nl and l = 1, 2, . . . , r.

Assuming this is equivalent to assuming a partially exchangeable framework where the ob-

servations are exchangeable within but not across releases. The last line of model (6) says

17

that, conditionally on the random distribution functions F̃1, F̃2, . . . , F̃r, discovery times from

different releases are independent. The dependency is introduced when defining the random

distribution functions by using the common completely random measure µ0. At the same

time, the release-specific components µ1, µ2, . . . , µr take into account the heterogeneity char-

acterising different software releases.

For the sake of compactness we introduce the following notation:

µ̃ = (µ̃1, µ̃2, . . . , µ̃r)

F̃ = (F̃1, F̃2, . . . , F̃r)

N = (N1, N2, . . . , Nr)

M = (M1,M2, . . . ,Mr)

W = (W1,W2, . . . ,Wr)

T
(Ml)
l = (T1,l, T2,l, . . . , TMl,l) for l = 1, 2, . . . , r

T(M) = (T
(M1)
1 ,T

(M2)
2 , . . . ,T(Mr)

r)

T
(Nl)
l = (T1,l, T2,l, . . . , TMl,l, TMl+1,l = Wi, . . . , TNl,l = Wl) for l = 1, 2, . . . , r

T(N) = (T
(N1)
1 ,T

(N2)
2 , . . . ,T(Nr)

r)

Notice that while T
(Ml)
l refers to the Ml-dimensional vector of observed discovery times,

T
(Nl)
l is Nl-dimensional and composed by the observed Ml discovery times together with the

unobserved N ′l right-censored discovery times, with N ′l being unobservable.

Similarly to Wilson and Samaniego (2007), given N and F̃, for any l = 1, 2, . . . , r, the

number of discovery times Ml observed not later than Wl is assumed as being binomial

with probability parameter equal to F̃l(Wl), where F̃l(Wl) is the probability that an event

distributed according to F̃l occurs before Wl, that is the probability for a bug of the lth release

to be actually observed. Given this, we can write the likelihood for the data T(M) as

L(F̃,N | T(M)) =
r∏
l=1

Nl!

N ′l !
(1− F̃l(Wl))

N ′l

Ml∏
j=1

(F̃l(Tj,l)− F̃l(T−j,l)),

18

where F̃l(T
−) = limε→0+ F̃l(T − ε).

We complete the model specification by assigning a prior distribution to the vector N.

As in Wilson and Samaniego (2007), for the sake of simplicity we assume that such vector is

independent of F̃. We assume that the total numbers of bugs of each release are independent

and identically distributed Poisson random variables.

Nl
iid∼ Pois(λ) for l = 1, 2, . . . , r.

It is straightforward to extend the model to a case where different priors (that is different λ)

are specified for different releases.

19

4 Main Results

The final goal of our inference is the pointwise estimation of E[F̃l(t) | T(M)], for every

l = 1, 2, . . . , r. The main result that will allow us to achieve this goal is a characterisation

of the posterior distribution of F̃l. Namely, after introducing some set of suitable auxiliary

random variables V, we will derive a closed form expression for E[F̃l(t) | T(M),N,V]. In

order to marginalise with respect to the (unobservable) random vectors N and V and thus

evaluate E[F̃l(t) | T(M)], we will devise a Gibbs sampling algorithm exploiting the availability

of the full conditional distributions of N and V.

4.1 Characterisation of the posterior distribution of F̃

We derive here a characterisation of the posterior distribution of F̃. To this end we start by

observing that the almost sure discreteness of the elements of µ̃ implies that the corresponding

random distributions in F̃ are almost surely discrete and, thus, for i 6= j, P [Ti,l = Tj,l] > 0

for every l = 1, 2, . . . , r and i, j = 1, 2, . . . ,Ml. Moreover, by definition, the elements of the

vector µ̃ share a common component µ0 and, therefore, for l1 6= l2, P [Ti,l1 = Tj,l2] > 0, for

any i = 1, 2, . . . ,Ml1 and j = 1, 2, . . . ,Ml2 .

Possible coincidences among the observations induce a partition structure within the

vector T(M) (and thus within the vector of observed and unobserved data T(N)): let us

assume that there are k distinct observations, including censoring times Wl, among T(N) and

record them in an increasing order as T ∗1 < T ∗2 < . . . < T ∗k . We call ni,l ≥ 0 the number

of exact observations referring to the lth release, with l = 1, 2, . . . , r, that coincide with T ∗i .

We introduce the notation n̄i :=
∑r

l=1 ni,l and observe that n̄i > 0 for every i = 1, 2, . . . , k,

that
∑k

i=1 ni,l = Ml. For future convenience we set T ∗0 := 0 and we introduce the notation

n̄j,l :=
∑k−1

i=j ni,l.

Finally we partition the set of indices {1, 2, . . . , k} into r + 1 subsets, namely

1. I0 = {j : ∃ l1, l2 s.t. l1 6= l2, nj,l1nj,l2 > 0}

2. Il = {j : nj,l > 0,
∑r

g=1, g 6=l nj,g = 0}, for l = 1, 2, . . . , r.

20

3. IW = {j :
∑r

g=1 nj,g = 0}.

That is we have one subset I0 consisting of all the distinct values that are shared by at

least two releases, a subset Il consisting of all the distinct values that appear only in the

lth release for every l = 1, 2, . . . , r, and a subset of distinct values coinciding with no exact

observations but only with censoring times Wl, l = 1, 2, . . . , r.

We introduce r vectors of sequences of Bernoulli auxiliary random variables Vl = (Vjl,l)jl≥1,

with l = 1, 2, . . . , r, such that

P [Vjl,l = 0] = 1− P [Vjl,l = 1] = z for l = 1, 2, . . . , r; jl = 1, 2, . . .

We further introduce the notation V = (V1,V2, . . . ,Vr) for the vector of sequences of

auxiliary random variables. The next result provides a characterisation of the posterior

distribution of F̃, specifically it provides the distribution of F̃ conditionally on T(M), N and

V.

Theorem 3. Let F̃ be a vector of dependent neutral-to-the-right random distributions defined

as in (5). Given T(M), N, and V, the posterior distribution of F̃ coincides with the distri-

bution of a vector of neutral-to-the-right random distribution functions F̃′ = (F̃ ′1, F̃
′
2, . . . , F̃

′
r)

such that, for l = 1, 2, . . . , r, F̃ ′l (t) = 1− exp{−µ̃′l((0, t])}, where

(µ̃′1, µ̃
′
2, . . . , µ̃

′
r) = (µ̃∗1, µ̃

∗
2, . . . , µ̃

∗
r)

+
r∑
l=1

∑
i∈Il

Vi,l, . . . , Vi,l︸ ︷︷ ︸
l−1

, 1, Vi,l, . . . , Vi,l︸ ︷︷ ︸
r−l

 Ji,lδT ∗i +
∑
i∈I0

1, 1, . . . , 1︸ ︷︷ ︸
r

 Ji,0δT ∗i , (7)

where (µ̃∗1, µ̃
∗
2, . . . , µ̃

∗
r) are CRMs without fixed points of discontinuity and such that

µ̃∗l = µ∗l + µ∗0, for l = 1, 2, . . . , r,

with µ∗0, µ
∗
1, . . . , µ

∗
r being independent and such that each µ∗l , for l = 0, 1, . . . , r, has Lévy

intensity ν∗l defined as

ν∗0(ds, dy) = (1− z)e−s
∑k

i=1

∑r
l=1(n̄i,l+N

′
l1{i≤kl})1(t∗i−1

,t∗
i
](y)
ν(ds, dy)

21

ν∗l (ds, dy) = ze
−s
∑k

i=1(n̄i,l+N
′
l1{i≤kl})1(t∗i−1

,t∗
i
](y)
ν(ds, dy), l = 1, 2, . . . , r.

Moreover the jumps Ji,l, with l = 0, 1, . . . , r and i = 1, 2, . . . , kl are mutually independent and

independent of (µ̃∗1, µ̃
∗
2, . . . , µ̃

∗
r). For every l = 1, 2, . . . , r and i = 1, 2, . . . , kl, the jump Ji,l

has density fJi,l(s) proportional to

e
−s
(
n̄i,l+N

′
l1{i≤kl}+Vi,l

∑r
j=1, j 6=l

(
n̄i,j+N ′j1{i≤kj}

))
(es − 1)ni,l ρ(s),

while, for i = 1, 2, . . . , k0, the jump Ji,0 has density fJi,0(s) proportional to

e−s
∑r

l=1(n̄i,l+N
′
l1{i≤kl}) (es − 1)n̄i ρ(s),

where we recall that n̄i :=
∑r

l=1 ni,l.

Proof. The joint distribution of (µ̃l, Ti,l) is given, for every l = 1, 2, . . . , r, by

p(µ̃l, Ti,l) = p(Ti,l | µ̃l)p(µ̃l)

= exp{−µ̃l(0, Ti,l]}
(
1{i≤Ml}(exp {µ̃l(T−i,l, Ti,l]} − 1) + 1{i>Ml}

)
p(µ̃l).

where we define T−i,l := Ti,l − ε, for ε arbitrarily small.

The joint distribution of (µ̃,N,T(M)) is given, for every l = 1, 2, . . . , r, by

p(µ̃,N,T(M)) = L(µ̃,N | T(M))p(µ̃)p(N)

=
r∏
l=1

(N ′l +Ml)!

N ′l !
exp{−N ′l µ̃l(0,Wl]}

×
k−1∏
i=1

exp{−ni,lµ̃l(0, T ∗i]}
(
exp{µ̃l(T ∗−i , T ∗i]} − 1

)ni,l p(µ̃)p(N).

We want to characterize the distribution of µ̃ given T(M) and N, via its Laplace functional

transform. This is obtained if one can determine

E

[
r∏
l=1

exp{−µ̃l(fl)} | N,T(M)

]
=
E
[∏r

l=1 exp{−µ̃l(fl)}p(T(M) | µ̃,N)
]

E
[
p(T(M) | µ̃,N)

] ,

for every set of measurable functions (f1, f2, . . . , fr) from R+ to R, where the expectations

are taken with respect to µ̃. We confine ourselves to consider fl(t) = λl1(0,t], that is

E
[
exp {−

∑r
l=1 λlµ̃l(0, t]} p(T(M) | µ̃,N)

]
E
[
p(T(M) | µ̃,N)

] , (8)

22

and observe that this characterises the conditional distribution of µ̃ given N and T(M) since

µ̃ has jointly independent increments.

In the following we set T ∗0 := 0 and, for any i = 1, . . . , k, define

Ii := (T ∗i−1, T
∗−
i] and Li := (T ∗−i , T ∗i].

Moreover, we set Ik+1 := (T ∗k ,∞). Since ε is arbitrarily small, time t may either coincide

with some observation T ∗i , for i = 1, . . . , k, or be in some interval Ii, with i = 1, . . . , k + 1.

Both situations may be tackled with the same technique. We focus on the second case as

it is the one that requires more care, giving rise to a finer partition of the interval (0,∞).

Assume that t ∈ Ii0 for some i0 ∈ {1, . . . , k + 1}, that is T ∗i0−1 < t ≤ T ∗−i0 , and consider the

partition of (0,∞) defined as

(0,∞) =
(
∪k+1
i=1, i 6=i0Ii

)
∪
(
∪ki=1Li

)
∪ (T ∗i0−1, t] ∪ (t, T ∗−i0].

Then, for every l = 1, 2, . . . , r, we can write µ̃l(0, t] as

µ̃l(0, t] =

i0−1∑
i=1

(µ̃l(Ii) + µ̃l(Li)) + µ̃l(T
∗
i0−1, t]. (9)

Similarly for any j = 1, 2, . . . , k we can write µ̃l(0, T
∗
j] as

µ̃l(0, T
∗
j] =

j∑
i=1, i 6=i0

µ̃l(Ii) +

j∑
i=1

µ̃l(Li) +
(
µ̃l(T

∗
i0−1, t] + µ̃l(t, T

∗−
i0

]
)
1{i0≤j}. (10)

We now define kl such that T ∗kl = Wl. Using (9) and (10) we can rewrite the numerator of

(8) as

r∏
l=1

(N ′l +Ml)!

N ′l !
E

[
exp{−G(µ̃,N,T(M))}

k−1∏
i=1

r∏
l=1

(exp{µ̃l(Li)} − 1)ni,l | µ̃,T(M)

]
, (11)

where G(µ̃,N,T(M)) is defined as

G(µ̃,N,T(M)) =
r∑
l=1

[
λl

(
i0−1∑
i=1

(µ̃l(Ii) + µ̃l(Li)) + µ̃l(T
∗
i0−1, t]

)

23

+

k−1∑
i=1

ni,l

 i∑
j=1, j 6=i0

µ̃l(Ij) +

i∑
j=1

µ̃l(Lj) +
(
µ̃l(T

∗
i0−1, t] + µ̃l(t, T

∗−
i0

]
)
1{i0≤i}


+N ′l

 kl∑
i=1, i 6=i0

µ̃l(Ii) +

kl∑
i=1

µ̃l(Li) +
(
µ̃l(T

∗
i0−1, t] + µ̃l(t, T

∗−
i0

]
)
1{i0≤kl}


=

r∑
l=1

λl
 k−1∑
i=1, i 6=i0

1{i≤i0−1}µ̃l(Ii) +
k−1∑
i=1

1{i≤i0−1}µ̃l(Li) + µ̃l(T
∗
i0−1, t]


+

k−1∑
i=1, i 6=i0

k−1∑
j=i

nj,lµ̃l(Ii) +
k−1∑
i=1

k−1∑
j=i

nj,lµ̃l(Li) +
k−1∑
j=i0

nj,lµ̃l(T
∗
i0−1, t] +

k−1∑
j=i0

nj,lµ̃l(t, T
∗−
i0

]

+N ′l

 kl∑
i=1, i 6=i0

µ̃l(Ii) +

kl∑
i=1

µ̃l(Li) + 1{i0≤kl}µ̃l(T
∗
i0−1, t] + 1{i0≤kl}µ̃l(t, T

∗−
i0

]

 .
We recall the notation n̄j,l =

∑k−1
i=j ni,l, with the proviso that n̄k,l = n̄k+1,l = 0, and we

rewrite G(µ̃,N,T(M)) as

r∑
l=1

 k∑
i=1, i 6=i0

µ̃l(Ii)
(
λl1{i≤i0−1} + n̄i,l +N ′l1{i≤kl}

)
+

k∑
i=1

µ̃l(Li)
(
λl1{i≤i0−1} + n̄i,l +N ′l1{i≤kl}

)
+ µ̃l(T

∗
i0−1, t]

(
λl + n̄i0,l +N ′l1{i0≤kl}

)
+µ̃l(t, T

∗−
i0

]
(
n̄i0,l +N ′l1{i0≤kl}

)]

Thus, by exploiting the independence of increments of µ̃l, we can write (11) as

r∏
l=1

(N ′l +Ml)!

N ′l !

k∏
i=1, i 6=i0

E

[
r∏
l=1

exp{−µ̃l(Ii)
(
λl1{i≤i0−1} + n̄i,l +N ′l1{i≤kl}

)
}

]

×
k∏
i=1

E

[
r∏
l=1

exp{−µ̃l(Li)
(
λl1{i≤i0−1} + n̄i,l +N ′l1{i≤kl}

)
} (exp{µ̃l(Li)} − 1)ni,l

]

× E

[
r∏
l=1

exp{−µ̃l(T ∗i0−1, t]
(
λl + n̄i0,l +N ′l1{i0≤kl}

)
}

]

× E

[
r∏
l=1

exp{−µ̃l(t, T ∗−i0]
(
n̄i0,l +N ′l1{i0≤kl}

)
}

]
. (12)

24

Next we proceed by considering separately all the expected values appearing in (12) that, as

a matter of fact, is composed by two types of quantity, namely

E

[
r∏
l=1

exp{−µ̃l(I)al}

]
and E

[
r∏
l=1

exp{−µ̃l(I)al} (exp{µ̃l(I)} − 1)ml

]
, (13)

with al being real numbers, I a real interval and ml nonnegative integers. The first type coin-

cides with the joint Laplace functional transform of (µ̃1, µ̃2, . . . , µ̃r) evaluated at (a11I , a21I , . . . , ar1I).

The vector of GM-dependent completely random measures (µ̃1, µ̃2, . . . , µ̃r) has known closed

form joint Laplace transform (see Lijoi et al. (2014)) that leads to

E

[
r∏
l=1

exp{−µ̃l(I)al}

]
= exp

{
−zα(I)

r∑
l=1

∫ ∞
0

(1− exp{−sal}) ρ(s)ds

−(1− z)α(I)

∫ ∞
0

(
1− exp

{
−s

r∑
l=1

al

})
ρ(s)ds

}
.

Similarly, the second expected value in (13) can be thought of as the sum of joint Laplace

functional transforms:

E

[
r∏
l=1

exp{−µ̃l(I)al} (exp{µ̃l(I)} − 1)ml

]

=

m1∑
i1=0

· · ·
mr∑
ir=0

(−1)
∑r

l=1 il

(
m1

i1

)
· · ·
(
mr

ir

)
E

[
r∏
l=1

exp{−(al −ml + il)µ̃l(I)}

]
.

Moreover, for every i = 1, . . . , k, the infinitesimal nature of Li allows us to use a first order

approximation of the exponential function and write

E

[
r∏
l=1

exp{−µ̃l(Li)
(
λl1{i≤i0−1} + n̄i,l +N ′l1{i≤kl}

)
} (exp{µ̃l(Li)} − 1)ni,l

]

=

ni,1∑
i1=0

· · ·
ni,r∑
ir=0

(−1)
∑r

l=1 il

(
ni,1
i1

)
· · ·
(
ni,r
ir

)

×

[
1− zα(Li)

r∑
l=1

∫ ∞
0

(
1− e−s(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl}−ni,l+il)

)
ρ(s)ds

−(1− z)α(Li)

∫ ∞
0

(
1− e−s

∑r
l=1(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl}−ni,l+il)

)
ρ(s)ds

]
+ o (α(Li)) .

25

Here we stop and consider the possibility that
∑r

l=1 ni,l = 0 for some i. This case corresponds

to an absence of exact observations at T ∗i . In other words, only censoring times occur at this

point.

We consider separately two cases. In the first, ni,l = 0 for each l. The above expression

then reduces to

1− zα(Li)

r∑
l=1

∫ ∞
0

(
1− e−s(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

− (1− z)α(Li)

∫ ∞
0

(
1− e−s

∑r
l=1(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds+ o (α(Li))

In the second case,
∑r

l=1 ni,l > 0 and we get

α(Li)

[
z

r∑
l=1

∫ ∞
0

e−s(λl1{i≤i0−1}+n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l ρ(s)ds1{ni,l>0∧ni,j=0, j 6=l}

+(1− z)
∫ ∞

0
e−s

∑r
l=1(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s)ds

]
+ o (α(Li))

Thus (12) can be written as

r∏
l=1

(N ′l +Ml)!

N ′l !

k∏
i=1, i 6=i0

exp

{
−zα(Ii)

r∑
l=1

∫ ∞
0

(
1− e−s(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−(1− z)α(Ii)

∫ ∞
0

(
1− e−s

∑r
l=1(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

}
×

k∏
i=1

([
1− zα(Li)

r∑
l=1

∫ ∞
0

(
1− e−s(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−(1− z)α(Li)

∫ ∞
0

(
1− e−s

∑r
l=1(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

]
1{n̄i=0}

+α(Li)

[
z

r∑
l=1

∫ ∞
0

e−s(λl1{i≤i0−1}+n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l ρ(s)ds1{ni,l>0∧ni,j=0, j 6=l}

+(1− z)
∫ ∞

0
e−s

∑r
l=1(λl1{i≤i0−1}+n̄i,l+N

′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s)ds

]
1{n̄i>0}

)
× exp

{
−zα(T ∗i0−1, t]

r∑
l=1

∫ ∞
0

(
1− e−s(λl+n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

−(1− z)α(T ∗i0−1, t]

∫ ∞
0

(
1− e−s

∑r
l=1(λl+n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

}
26

× exp

{
−zα(t, T ∗−i0]

r∑
l=1

∫ ∞
0

(
1− e−s(n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

−(1− z)α(t, T ∗−i0]

∫ ∞
0

(
1− e−s

∑r
l=1(n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

}
+ o

(
k∏
i=1

α(Li)

)
. (14)

Similarly we can show that the denominator of (8) coincides with

r∏
l=1

(N ′l +Ml)!

N ′l !

k∏
i=1

exp

{
−zα(Ii)

r∑
l=1

∫ ∞
0

(
1− e−s(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−(1− z)α(Ii)

∫ ∞
0

(
1− e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

}
×

k∏
i=1

([
1− zα(Li)

r∑
l=1

∫ ∞
0

(
1− e−s(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−(1− z)α(Li)

∫ ∞
0

(
1− e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

]
1{n̄i=0}

+α(Li)

[
z

r∑
l=1

∫ ∞
0

e−s(n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l ρ(s)ds1{ni,l>0∧ni,j=0, j 6=l}

+(1− z)
∫ ∞

0
e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s)ds

]
1{n̄i>0}

)
+ o

(
k∏
i=1

α(Li)

)
. (15)

By combining (14) and (15) we can rewrite (8) as

i0−1∏
i=1

exp

{
−zα(Ii)

r∑
l=1

[∫ ∞
0

(
1− e−s(λl+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−
∫ ∞

0

(
1− e−s(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

]
−(1− z)α(Ii)

[∫ ∞
0

(
1− e−s

∑r
l=1(λl+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−
∫ ∞

0

(
1− e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

]}
× exp

{
−zα(T ∗i0−1, t]

r∑
l=1

[∫ ∞
0

(
1− e−s(λl+n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

−
∫ ∞

0

(
1− e−s(n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

]
−(1− z)α(T ∗i0−1, t]

[∫ ∞
0

(
1− e−s

∑r
l=1(λl+n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

27

−
∫ ∞

0

(
1− e−s

∑r
l=1(n̄i0,l

+N ′l1{i0≤kl})
)
ρ(s)ds

]}
×
i0−1∏
i=1

{([
1− zα(Li)

r∑
l=1

∫ ∞
0

(
1− e−s(λl+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−(1− z)α(Li)

∫ ∞
0

(
1− e−s

∑r
l=1(λl+n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

]
1{n̄i=0}

+

[
z

r∑
l=1

∫ ∞
0

e−s(λl+n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l ρ(s)ds1{ni,l>0∧ni,j=0, j 6=l}

+(1− z)
∫ ∞

0
e−s

∑r
l=1(λl+n̄i,l+N

′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s)ds

]
1{n̄i>0}

)
×

([
1− zα(Li)

r∑
l=1

∫ ∞
0

(
1− e−s(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

−(1− z)α(Li)

∫ ∞
0

(
1− e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

]
1{n̄i=0}

+α(Li)

[
z

r∑
l=1

∫ ∞
0

e−s(n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l ρ(s)ds1{ni,l>0∧ni,j=0, j 6=l}

+(1− z)
∫ ∞

0
e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s)ds

]
1{n̄i>0}

)−1
}

+o

(
k∏
i=1

α(Li)

)
.

(16)

We now can let ε→ 0, so that each α(Li) goes to 0 and (I1, I2, . . . , Ik+1) becomes a partition

of (0,∞). So we obtain an exact expression for (8).

It is important to note that now the terms in the second product of the above expression

which appear only when n̄i = 0 are now each equal to 1. We now consider (16) as the product

of two parts. In the first one we can recognise the Laplace functional transform of a vector

of completely random measures (µ̃∗1, µ̃
∗
2, . . . , µ̃

∗
r) such that the lth component is defined as

µ̃∗l = µ∗l + µ∗0,

for l = 1, 2, . . . , r, such that the completely random measures (µ∗0, µ
∗
1, µ
∗
2, . . . , µ

∗
r) are inde-

pendent with Lévy intensities respectively equal to (ν∗0 , ν
∗
1 , . . . , ν

∗
r), where

ν∗0(ds, dy) = (1− z)e−s
∑k

i=1

∑r
l=1(n̄i,l+N

′
l1{i≤kl})1(t∗i−1

,t∗
i
](y)
ν(ds, dy)

ν∗l (ds, dy) = ze
−s
∑k

i=1(n̄i,l+N
′
l1{i≤kl})1(t∗i−1

,t∗
i
](y)
ν(ds, dy).

28

As for the second part of (16) we consider two distinct cases, namely

1. ni,l > 0 only for one index l = l0 for some l0 = 1, 2, . . . , r.

2. There exist at least two indexes l1, l2 such that l1 6= l2 and ni,l1ni,l2 > 0.

Thus,

1. If ni,l0 > 0 while ni,l = 0 for every l 6= l0, then

z

∫ ∞
0

e
−s
(
λl0+n̄i,l0

+N ′l0
1{i≤kl0

}

)
(es − 1)ni,l0 ρ(s)ds1{ni,l0

>0∧ni,l=0, l 6=l0}

+ (1− z)
∫ ∞

0
e−s

∑r
l=1(λl+n̄i,l+N

′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s)ds

is the expected value of∫ ∞
0

e
−s
(
λl0+n̄i,l0

+N ′l0
1{i≤kl0

}

)
−sVi,l0

∑r
l=1, l 6=l0

(λl+n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l0 ρ(s)ds

and therefore we recognise in the last part of (16) the Laplace transform of the random

vector ∑
i∈Il0

(
J

(i,l0)
1 δT ∗i , . . . , J

(i,l0)
l0−1 δT ∗i , J

(i,l0)
l0

δT ∗i , J
(i,l0)
l0+1 δT ∗i , . . . , J

(i,l0)
r δT ∗i

)
,

where, for each i = 1, . . . , kl0 , the random jumps
(
J

(i,l0)
1 , . . . , J

(i,l0)
l0−1 , J

(i,l0)
l0

, J
(i,l0)
l0+1 , . . . , J

(i,l0)
r

)
are such that

(
J

(i,l0)
1 , . . . , J

(i,l0)
l0−1 , J

(i,l0)
l0

, J
(i,l0)
l0+1 , . . . , J

(i,l0)
r

)
d
= (Vi,l0Ji,l0 , . . . , Vi,l0Ji,l0 , Ji,l0 , Vi,l0Ji,l0 , . . . , Vi,l0Ji,l0)

and every Ji,l0 has density proportional to

e
−s
(
n̄i,l0

+N ′l0
1{i≤kl0

}

)
−sVi,l0

∑r
l=1, l 6=l0

(n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l0 ρ(s).

2. There exist two indexes l1, l2 such that l1 6= l2 and ni,l1ni,l2 > 0. In this case

z

∫ ∞
0

e−s(λl+n̄i,l+N
′
l1{i≤kl}) (es − 1)ni,l ρ(s)ds1{ni,l>0∧ni,j=0, j 6=l}

29

+ (1− z)
∫ ∞

0
e
−s
∑r

j=1

(
λj+n̄i,j+N ′j1{i≤kj}

)
(es − 1)

∑r
j=1 ni,j ρ(s)ds

= (1− z)
∫ ∞

0
e
−s
∑r

j=1

(
λj+n̄i,j+N ′j1{i≤kj}

)
(es − 1)

∑r
j=1 ni,j ρ(s)ds

coincides, up to a proportionality constant, to the Laplace transform of the random

vector ∑
i∈I0

(
J

(i,0)
1 δT ∗i , J

(i,0)
2 δT ∗i , . . . , J

(i)
r δT ∗i

)
,

where, for each i = 1, . . . , k0, the random jumps
(
J

(i,0)
1 , J

(i,0)
2 , . . . , J

(i,0)
r

)
are such that(

J
(i,0)
1 , J

(i,0)
2 , . . . , J (i,0)

r

)
d
= (Ji,0, Ji,0, . . . , Ji,0)

and every Ji,0 has density proportional to

e−s
∑r

l=1(n̄i,l+N
′
l1{i≤kl}) (es − 1)

∑r
l=1 ni,l ρ(s).

Now we use this result to obtain an expression for the posterior mean of F̃l(t).

Corollary 1. Assuming a square loss function, the estimator of F̃l(t), for any l = 1, 2, . . . , r

and t > 0, conditionally on T(M), N and V coincides with

1− exp

{
−z
∫
R+×(0,t]

(
1− e−s

)
e
−s
∑k

i=1(n̄i,l+N
′
l1{i≤kl})1(t∗i−1

,t∗
i
](y)
ν(ds, dy)

}

× exp

{
−(1− z)

∫
R+×(0,t]

(
1− e−s

)
e
−s
∑k

i=1

∑r
j=1

(
n̄i,j+N ′j1{i≤kj}

)
1(t∗

i−1
,t∗
i
](y)
ν(ds, dy)

}

×
∏
i∈Il

∫ ∞
0

e
−s
(
1[T∗

i
,∞)(t)+n̄i,l+N

′
l1{i≤kl}+Vi,l

∑r
j=1, j 6=l

(
n̄i,j+N ′j1{i≤kj}

))
(es − 1)ni,l ρ(s)ds

×
∏
j 6=l

∏
i∈Ij

∫ ∞
0

e
−s
(
n̄i,j+N ′j1{i≤kj}+Vi,j

[
1[T∗

i
,∞)(t)+

∑r
J=1, J 6=j(n̄i,J+N ′J1{i≤kJ})

])
(es − 1)ni,j ρ(s)ds

×
∏
i∈I0

∫ ∞
0

e
−s
(
1[T∗

i
,∞)(t)+

∑r
j=1

(
n̄i,j+N ′j1{i≤kj}

))
(es − 1)n̄i ρ(s)ds. (17)

30

Proof. We exploit Theorem 3, equation (4), and the mutual independence of µ∗l and Ji,l, with

l = 0, 1, . . . , r and i = 1, 2, . . . , kl to rewrite E[F̃l(t) | T(M),N,V] as follows.

E[F̃l(t) | T(M),N,V] = E[F̃ ′l (t)] = 1− E[e−µ̃
′
l(0,t]]

= 1− E
[
e−µ

∗
l (0,t]

]
E
[
e−µ

∗
0(0,t]

] ∏
i∈Il

E
[
e
−Ji,l1[T∗

i
,∞)(t)

]
×
∏
j 6=l

∏
i∈Ij

E
[
e
−Vi,jJi,j1[T∗

i
,∞)(t)

] ∏
i∈I0

E
[
e
−Ji,01[T∗

i
,∞)(t)

]
. (18)

The proof then boils down to the evaluation of the expected values appearing in (18).

We evaluate the first two expected values using the Lévy-Khintchine representation we

used in equation (4):

E
[
e−µ

∗
l (0,t]

]
= exp

{
−z
∫
R+×(0,t]

(
1− e−s

)
e
−s
∑k

i=1(n̄i,l+N
′
l1{i≤kl})1(t∗i−1

,t∗
i
](y)
ν(ds, dy)

}
. (19)

E
[
e−µ

∗
0(0,t]

]
= exp

{
−(1− z)

∫
R+×(0,t]

(
1− e−s

)
e
−s
∑k

i=1

∑r
j=1

(
n̄i,j+N ′j1{i≤kj}

)
1(t∗

i−1
,t∗
i
](y)
ν(ds, dy)

}
(20)

The other expected values can be evaluated using the densities of the jumps Ji,l derived in

Theorem 3.

E
[
e
−Ji,l1[T∗

i
,∞)(t)

]
=

∫ ∞
0

e
−s
(
1[T∗

i
,∞)(t)+n̄i,l+N

′
l1{i≤kl}+Vi,l

∑r
j=1, j 6=l

(
n̄i,j+N ′j1{i≤kj}

))
(es − 1)ni,l ρ(s)ds (21)

E
[
e
−Vi,jJi,j1[T∗

i
,∞)(t)

]
=

∫ ∞
0

e
−s
(
n̄i,j+N ′j1{i≤kj}+Vi,j

[
1[T∗

i
,∞)(t)+

∑r
J=1, J 6=j(n̄i,J+N ′J1{i≤kJ})

])
(es − 1)ni,j ρ(s)ds (22)

E
[
e
−Ji,01[T∗

i
,∞)(t)

]
=

∫ ∞
0

e
−s
(
1[T∗

i
,∞)(t)+

∑r
j=1

(
n̄i,j+N ′j1{i≤kj}

))
(es − 1)n̄i ρ(s)ds. (23)

Combining (19), (20), (21), (22) and (23) with (18) completes the proof.

31

4.2 Specifying a Lévy Intensity

In the application we will further assume that the underlying CRMs have σ-stable distribu-

tion, with 0 < σ < 1, that is

ν(ds, dy) =
σ

Γ(1− σ)
s−1−σds α(dy). (24)

Plugging the specified form for ν into Theorem 3 shows how the characterisation of the

posterior distribution F̃l simplifies under the additional assumptions.

Under the assumption (24), the density fJi,l(s) of Ji,l coincides with

σ

Γ(1− σ)

e
−s
(
n̄i,l+N

′
l1{i≤kl}+Vi,l

∑r
j=1, j 6=l

(
n̄i,j+N ′j1{i≤kj}

))
(es − 1)ni,l s−1−σ∑ni,l

m=0(−1)ni,l−m+1
(
ni,l
m

) (
n̄i,l +N ′l1{i≤kl} + Vi,l

∑r
j=1, j 6=l

(
n̄i,j +N ′j1{i≤kj}

)
−m

)σ
and the density fJi,0(s) of Ji,0 coincides with

σ

Γ(1− σ)

e−s
∑r

l=1(n̄i,l+N
′
l1{i≤kl}) (es − 1)n̄i s−1−σ∑n̄i

m=0(−1)n̄i−m+1
(
n̄i
m

) (∑r
l=1

(
n̄i,l +N ′l1{i≤kl}

)
−m

)σ .
These expressions are obtained by letting ρ(s)ds = σ

Γ(1−σ)s
−1−σds as in (24) and calculating

the normalising constants of fJi,l(s) and fJi,0(s).

Next, under the assumption (24) we derive a closed-form expression for the expected value

of F̃l(t) for any l = 1, 2, . . . , r and t > 0, conditionally on T(M), N and V.

4.3 Specifying a Base Measure

We can further specify the intensity ν by imposing that α = cP0, with P0 a one-parameter

Gamma distribution with parameter γ, that is

ν(ds, dy) =
σ

Γ(1− σ)
s−1−σds c

γγ

Γ(γ)
yγ−1e−γydy. (25)

Proposition 1. Assuming a Lévy intensity as in (25), the estimator of F̃l(t), for any l =

1, 2, . . . , r and t > 0, conditionally on T(M), N and V coincides with

1− exp

{
−c

i0−1∑
i=1

(Fγ(T ∗i)− Fγ(T ∗i−1))
(
z[(1 + n̄i,l +N ′l1{i≤kl})

σ − (n̄i,l +N ′l1{i≤kl})
σ]

32

+(1− z)

1 +

r∑
j=1

(n̄i,j +N ′j1{i≤kj})

σ

−

 r∑
j=1

(n̄i,j +N ′j1{i≤kj})

σ
−c1{1,2,...,k}(i0)(Fγ(t)− Fγ(T ∗i0−1))

(
z[(1 + n̄i0,l +N ′l1{i0≤kl})

σ − (n̄i0,l +N ′l1{i0≤kl})
σ]

+(1− z)

1 +

r∑
j=1

(n̄i0,j +N ′j1{i0≤kj})

σ

−

 r∑
j=1

(n̄i0,l +N ′j1{i0≤kj})

σ
−c1{k+1}(i0)(Fγ(t)− Fγ(T ∗k))

}
×
∏
i∈Il

(1− Vi,l)

∑ni,l

m=0(−1)m
(
ni,l
m

) (
1[T ∗i ,∞)(t) + n̄i,l +N ′l1{i≤kl} −m

)σ
∑ni,l

m=0(−1)m
(
ni,l
m

) (
n̄i,l +N ′l1{i≤kl} −m

)σ
+Vi,l

∑ni,l

m=0(−1)m
(
ni,l
m

) (
1[T ∗i ,∞)(t) +

∑r
j=1

(
n̄i,j +N ′j1{i≤kj}

)
−m

)σ
∑ni,l

m=0(−1)m
(
ni,l
m

) (∑r
j=1

(
n̄i,j +N ′j1{i≤kj}

)
−m

)σ


×
∏
j 6=l

∏
i∈Ij

(1− Vi,j) + Vi,j

∑ni,j

m=0(−1)m
(
ni,j
m

) (
1[T ∗i ,∞)(t) +

∑r
J=1

(
n̄i,J +N ′J1{i≤kj}

)
−m

)σ
∑ni,j

m=0(−1)m
(
ni,j
m

) (∑r
J=1

(
n̄i,J +N ′J1{i≤kj}

)
−m

)σ


×
∏
i∈I0

∑n̄i
m=0(−1)m

(
n̄i
m

) (
1[T ∗i ,∞)(t) +

∑r
j=1

(
n̄i,j +N ′j1{i≤kj}

)
−m

)σ
∑n̄i

m=0(−1)m
(
n̄i
m

) (∑r
j=1

(
n̄i,j +N ′j1{i≤kj}

)
−m

)σ
 . (26)

where Fγ is the distribution function of a one-parameter Gamma distribution with shape and

rate equal to γ.

Proof. We begin with our specified Lévy intensity from (25) and evaluate the expected values

as in Corollary 1.

ν(ds, dy) = ρ(s)dsα(dy) =
σ

Γ(1− σ)
s−1−σds c

γγ

Γ(γ)
yγ−1e−γydy.

We obtain

E
[
e−µ

∗
l (0,t]

]
= exp

{
−cz

i0−1∑
i=1

[(
1 + n̄i,l +N ′l1{i≤kl}

)σ − (n̄i,l +N ′l1{i≤kl}
)σ]

×
(
Fγ(T ∗i)− Fγ(T ∗i−1)

)
−c1{1,2,...,k}(i0)

(
z[(1 + n̄i0,l +N ′l1{i≤kl})

σ − (n̄i0,l +N ′l1{i≤kl})
σ]
)

(Fγ(t)− Fγ(T ∗i0−1))

33

−cz1{k+1}(i0)(Fγ(t)− Fγ(T ∗k))
}
. (27)

Similarly,

E
[
e−µ

∗
0(0,t]

]
= exp

−c(1− z)
i0−1∑
i=1

1 +

r∑
j=1

n̄i,j +N ′j1{i≤kj}

σ

−

 r∑
j=1

n̄i,j +N ′j1{i≤kj}

σ
×(Fγ(T ∗i)− Fγ(T ∗i−1))

−c1{1,2,...,k}(i0)(1− z)

1 +
r∑
j=1

(n̄i0,j +N ′j1{i0≤kj})

σ

−

 r∑
j=1

(n̄i0,l +N ′j1{i0≤kj})

σ
×(Fγ(t)− Fγ(T ∗i0−1))

−c1{k+1}(i0)(1− z)(Fγ(t)− Fγ(T ∗k))
}

(28)

E
[
e
−Ji,l1[T∗

i
,∞)(t)

]
=

∑ni,l

m=0(−1)m
(
ni,l
m

) (
1[T ∗i ,∞)(t) +m+ n̄i,l +N ′l1{i≤kl} + Vi,l

∑r
j=1,j 6=l

(
n̄i,j +N ′j1{i≤kj}

))σ
∑ni,l

m=0(−1)m
(
ni,l
m

) (
m+ n̄i,l +N ′l1{i≤kl} + Vi,l

∑r
j=1,j 6=l

(
n̄i,j +N ′j1{i≤kj}

))σ
= (1− Vi,l)

∑ni,l

m=0(−1)m
(
ni,l
m

) (
1[T ∗i ,∞)(t) +m+ n̄i,l +N ′l1{i≤kl}

)σ
∑ni,l

m=0(−1)m
(
ni,l
m

) (
m+ n̄i,l +N ′l1{i≤kl}

)σ
+ Vi,l

∑ni,l

m=0(−1)m
(
ni,l
m

) (
1[T ∗i ,∞)(t) +m+

∑r
j=1

(
n̄i,j +N ′j1{i≤kj}

))σ
∑ni,l

m=0(−1)m
(
ni,l
m

) (
m+

∑r
j=1

(
n̄i,j +N ′j1{i≤kj}

))σ (29)

E
[
e
−Vi,jJi,j1[T∗

i
,∞)(t)

]
=

∑ni,j

m=0(−1)m
(
ni,j
m

) (
m+ n̄i,j +N ′j1{i≤kj} + Vi,j

(
1[T ∗i ,∞)(t) +

∑r
l=1, l 6=j

(
n̄i,l +N ′l1{i≤kl}

)))σ
∑ni,j

m=0(−1)m
(
ni,j
m

) (
m+ n̄i,j +N ′j1{i≤kj} + Vi,j

∑r
l=1, l 6=j

(
n̄i,l +N ′l1{i≤kl}

))σ
= (1− Vi,j) + Vi,j

∑ni,j

m=0(−1)m
(
ni,j
m

) (
1[T ∗i ,∞)(t) +m+

∑r
l=1

(
n̄i,l +N ′l1{i≤kl}

))σ
∑ni,j

m=0(−1)m
(
ni,j
m

) (
m+

∑r
l=1

(
n̄i,l +N ′l1{i≤kl}

))σ (30)

E
[
e
−Ji,01[T∗

i
,∞)(t)

]
=

∑n̄i
m=0(−1)m

(
n̄i
m

) (
1[T ∗i ,∞)(t) +m+

∑r
l=1

(
n̄i,l +N ′l1{i≤kl}

))σ
∑n̄i

m=0(−1)m
(
n̄i
m

) (
m+

∑r
l=1

(
n̄i,l +N ′l1{i≤kl}

))σ . (31)

34

The estimator provided in Proposition 1 can be evaluated exactly, conditionally on the

realisation of (unobservable) latent variables N and V. In order to marginalise with respect

to these variables we will devise a Gibbs sampler in section 5.

35

5 Posterior Sampling

We proceed using the Lévy intensity specified in (25) and the corresponding expression for

F̃l(t | T(N),N,V) derived in the previous section. Our goal is to use this expression to

estimate the posterior mean F̃l(t | T(M)). We achieve this by marginalising with respect to

sequences of unobservable variables by means of a Gibbs sampler.

5.1 Gibbs sampling

Chapter 9 of Robert and Casella (2004) offers a thorough explanation of Gibbs sampling.

The purpose of our Gibbs sampler is to marginalise (26) with respect to N and V . We do

this by first deriving the full conditional distributions of these random variables and of the

relevant parameters from the joint distribution of (N,T(M),V), which will be derived in the

next section.

Once we have the full conditionals and can sample from them, we can begin Gibbs sam-

pling. We consider these variables and parameters, apart from T(M), as entries in one vector

Y. We have Y(0), the entries’ initial values, and we sample further values as follows.

Y
(1)

1 ∼ p(Y1 | T(M), Y
(0)

2 , Y
(0)

3 , . . .)

Y
(1)

2 ∼ p(Y2 | T(M), Y
(1)

1 , Y
(0)

3 , Y
(0)

4 , . . .)

...

and repeat the process for Y(2) and so on for a large number of iterations. After a suitably

chosen burn-in period, we can record these realisations and use each Y (j) to calculate Fl(t |

N,T(M),V)(j). Then we average the values produced over a grid of t values to obtain

pointwise estimations and credible intervals of F̃l(t | T(M)).

5.2 Full conditionals

In order to derive full conditional distributions for N, V, and the hyperparameters involved,

we start from the joint distribution of (N,T(M),V). This can be obtained starting from (15).

Specifically, we write

36

p(T(M),N,V) = p(T(M) | V,N)p(V)p(N)

=
k∏
i=1

exp

{
−zα(Ii)

r∑
l=1

∫ ∞
0

(
1− e−s(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

− (1− z)α(Ii)

∫ ∞
0

(
1− e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl})

)
ρ(s)ds

}
×

r∏
l=1

∏
i∈Il

α(Li)

∫ ∞
0

e
−s(n̄i,l+N

′
l1{i≤kl})−sVi,l

∑r
j=1,j 6=l(n̄i,j+N ′j1{i≤kj})(es − 1)ni,lρ(s)ds

×
∏
i∈I0

α(Li)(1− z)
∫ ∞

0
e−s

∑r
l=1(n̄i,l+N

′
l1{i≤kl})(es − 1)n̄iρ(s)ds

× z
∑k

i=1

∑r
l=1(1−Vi,l)(1− z)

∑k
i=1

∑r
l=1 Vi,l

r∏
l=1

(N ′l +Ml)!

N ′l !
p(N).

Now we attribute the σ-stable distribution to ρ and specify α as a one-parameter Gamma

base measure with parameter γ. We thus obtain

k∏
i=1

α(dt∗i)(1− z)#I0
k∏
i=1

exp

{
−z(Fγ(T ∗i)− Fγ(T ∗i−1))

r∑
l=1

(n̄i,l +N ′l1{i≤kl})
σ

− (1− z)(Fγ(T ∗i)− Fγ(T ∗i−1))

(
r∑
l=1

(n̄i,l +N ′l1{i≤kl})

)σ}

×
r∏
l=1

∏
i∈Il

 ni,l∑
J=0

(−1)ni,l−J+1

(
ni,l
J

)n̄i,l +N ′l1{i≤kl} + Vi,l

r∑
j=1,j 6=l

(n̄i,j +N ′j1{i≤kj})− J

σ
×
∏
i∈I0

(
n̄i∑
J=0

(−1)n̄i−J+1

(
n̄i
J

)(r∑
l=1

(n̄i,l +N ′l1{i≤kl})− J

)σ)

× z
∑k

i=1

∑r
l=1(1−Vi,l)(1− z)

∑k
i=1

∑r
l=1 Vi,lp

r∏
l=1

(N ′l +Ml)!

N ′l !
p(N), (32)

where #I0 is the number of indices in I0.

From the joint distribution above, we derive the following expression, which defines the

full conditional distribution of the lth element of N up to a multiplicative constant. We recall

our prior assumption that Nl ∼ Pois(λ) and obtain

p(Nl|N−l,T(N),V) ∝
(N ′l +Ml)!

N ′l !

k∏
i=1

exp
{
−(Fγ(T ∗i)− Fγ(T ∗i−1))

37

×

z(n̄i,l +N ′l1{i≤kl})
σ + (1− z)

 r∑
j=1

(n̄i,j +N ′j1{i≤kj})

σ
×

r∏
j=1

∏
i∈Ij

(ni,j∑
J=0

(−1)ni,j−J+1

(
ni,j
J

)(
n̄i,j +N ′j1{i≤kj}+

Vi,j

r∑
m=1,m 6=l

(n̄i,m +N ′m1{i≤km})− J

σ
×
∏
i∈I0

(
n̄i∑
J=0

(−1)n̄i−J+1

(
n̄i
J

)(r∑
m=1

(n̄i,m +N ′m1{i≤km})− J

)σ)
λNl

Nl!
(33)

where N−p is the vector N with the pth value deleted.

The full conditional distribution of the (p, q)th element of V is given by

p(Vi,l|N,T(N),V−(i,l)) ∝
ni,l∑
J=0

(−1)ni,l−J+1

(
ni,l
J

)

×

n̄i,l +N ′l1{i≤kl} + Vi,l

r∑
j=1,j 6=l

(n̄i,j +N ′j1{i≤kj})− J

σ

z1−Vi,l(1− z)Vi,l

for i ∈ Il, some l = 1, 2, . . . , r.

We denote by π = (c, σ, γ, ...) the vector of hyperparameters of the model. The full

conditional for the total mass c is given by

p(c | . . .) ∝ p(c)p(T(N),N,V | π)

∝ p(c)ck−1 exp

{
−c

k∑
i=1

(Fγ(T ∗i)− Fγ(T ∗i−1))

×

[
z

r∑
l=1

(n̄i,l +N ′l1{i≤kl})
σ + (1− z)

(
r∑
l=1

(n̄i,l +N ′l1{i≤kl})

)σ]}
.

This implies that, if p(c) is gamma, that is a priori c ∼ Gamma(a, b), where a and b are,

respectively, shape and rate parameter, then

c | . . . ∼ Gamma

(
a+ k − 1, b+

k∑
i=1

(Fγ(T ∗i)− Fγ(T ∗i−1))

×

[
z

r∑
l=1

(n̄i,l +N ′l1{i≤kl})
σ + (1− z)

(
r∑
l=1

(n̄i,l +N ′l1{i≤kl})

)σ])
.

38

The full conditional distribution of σ with a uniform prior is given by

p(σ|N,T(N),V) ∝
k∏
i=1

exp

{
−z(Fγ(T ∗i)− Fγ(T ∗i−1))

r∑
l=1

(n̄i,l +N ′l1{i≤kl})
σ

− (1− z)(Fγ(T ∗i)− Fγ(T ∗i−1))

(
r∑
l=1

(n̄i,l +N ′l1{i≤kl})

)σ}

×
r∏
l=1

∏
i∈Il

 ni,l∑
J=0

(−1)ni,l−J+1

(
ni,l
J

)n̄i,l +N ′l1{i≤kl} + Vi,l

r∑
j=1,j 6=l

(n̄i,j +N ′j1{i≤kj})− J

σ
×
∏
i∈I0

(
n̄i∑
J=0

(−1)n̄i−J+1

(
n̄i
J

)(r∑
l=1

(n̄i,l +N ′l1{i≤kl})− J

)σ)
.

We attriute a Gamma prior to γ and obtain the full conditional

p(γ|N,T(N),V) ∝
k∏
i=1

exp

{
−z(Fγ(T ∗i)− Fγ(T ∗i−1))

r∑
l=1

(n̄i,l +N ′l1{i≤kl})
σ

− (1− z)(Fγ(T ∗i)− Fγ(T ∗i−1))

(
r∑
l=1

(n̄i,l +N ′l1{i≤kl})

)σ}
pγ(γ).

5.3 Sampling from the full conditionals

Some of the full conditional distributions we have derived require delicate treatment during

sampling. In this section we go into the detail of how we approached various issues we

encountered during the sampling process.

5.3.1 Metropolis-Hastings for Np

We propose a Metropolis-Hastings strategy, as detailed in chapter 7 of Robert and Casella

(2004), to sample from the full conditional for Np, given in (33). It will be numerically

convenient to consider the logarithm of such full conditional, that is

log p(Np | Np,T
(M),V) = const + log p(Np) + log Γ(Np + 1)− log Γ(Np −Mp + 1)

−
k∑
i=1

(Fγ(T ∗i)− Fγ(T ∗i−1))
(
z(n̄i,p + (Np −Mp)1{i≤kp})

σ

+(1− z)

(
r∑
l=1

(n̄i,l + (Nl −Ml)1{i≤kl})

))

39

+
r∑
l=1

∑
i∈Il

log

(ni,l∑
J=0

(−1)ni,l−J+1

(
ni,l
J

)(
n̄i,l + (Nl −Ml)1{i≤kl}

+Vi,l

r∑
j=1,j 6=l

(n̄i,j + (Nj −Mj)1{i≤kj})− J

σ
+
∑
i∈I0

log

(
n̄i∑
J=0

(−1)n̄i−J+1

(
n̄i
J

)(r∑
l=1

(n̄i,l + (Nl −Ml)1{i≤kl})− J

)σ)
. (34)

Suppose that at the rth iteration Np takes value N . Given N , we propose a new value N∗

distributed as N∗ = N +X where X = Y − ϕ and Y ∼ Pois(ϕ), for some positive integer ϕ.

That is the random variable X has support on {−ϕ,−ϕ + 1, . . .}, has mean 0 and variance

ϕ and has probability mass function g given by

g(x) =


e−ϕ ϕϕ+x

Γ(ϕ+x+1) if x ∈ {−ϕ,−ϕ+ 1, . . .},

0 otherwise.

Equivalently, we say that N∗ is generated from q(N∗ | N) = g(N∗ −N). Once we generate

N∗ we accept it with probability

α(N,N∗) = min

{
1,

p(N∗ | . . .)g(N −N∗)
p(N | . . .)g(N∗ −N)

}
. (35)

Observe that, by definition of g, the proposed value N∗ takes values in {N−ϕ,N−ϕ+1, . . .},

which implies that (N∗−N) takes values in {−ϕ,−ϕ+1, . . .} and that (N−N∗) takes values

in {. . . , ϕ−1, ϕ}. This means that, whatever the proposed value N∗ is, g(N∗−N) > 0, that is

the acceptance probability in (35) is well defined. Notice that, if N∗ < Mp or if N∗ > N +ϕ,

then α(N,N∗) = 0.

The resulting algorithm is composed of the following steps:

1. sample Y ∼ Pois(ϕ),

2. if Y < ϕ−N +Mp or Y > 2ϕ set N
(r+1)
p = N and go to step 7,

3. set N∗ = N + Y − ϕ,

40

4. set α = p(N∗ | . . .)g(N −N∗)/(p(N | . . .)g(N∗ −N)),

5. sample U ∼ Unif(0, 1),

6. if U < α set N
(r+1)
p = N∗, otherwise set N

(r+1)
p = N ,

7. return N
(r+1)
p .

In order to work only with the logarithm of the full conditional of Np, given in (34), one

can replace points 4 and 6 in the previous algorithm by

4′. set logα = log p(N∗ | . . .)− log p(N | . . .) + log g(N −N∗)− log g(N∗ −N),

6′. if logU < logα set N
(r+1)
p = N∗, otherwise set N

(r+1)
p = N ,

where

log g(x) = −ϕ+ (ϕ+ x) log(ϕ)− log Γ(ϕ+ x+ 1).

5.3.2 Monte Carlo evaluation

In Proposition 1, we derive (26), an expression for F̃l(t | T(M),N,V). Evaluating this

expression numerically is non-trivial because it contains ratios of the form∑n
m=0(−1)m−n

(
n
m

)
(1 +A−m)σ∑n

m=0(−1)m−n
(
n
m

)
(A−m)σ

. (36)

with A ≥ n + 1. The problem is that both parts of the ratio go to 0 quickly and this poses

numerical instability.

For convenience, let

I(n,A) =
n∑

m=0

(−1)m−n
(
n

m

)
(A−m)σ.

The goal is to compute the ratio
I(n,A+ 1)

I(n,A)
.

We claim that I(n,A) can be expressed as the solution of an integral, specifically

I(n,A) = − σ

Γ(1− σ)

∫ ∞
0

e−sA(es − 1)ns−1−σds. (37)

This can be proved by induction on n.

41

1. First we consider the case where n = 1. We write the Gamma function Γ(1− σ) in its

integral form
∫∞

0 s−σe−sds and obtain

I(1, A) = σ

∫ ∞
0

e−s(A−1)(es − 1)s−1.

This reduces to the difference of exponential integrals which yield the required result.

2. Now suppose the relation holds for n = n0

3. We prove it for the n = n0 + 1 case.

I(n0 + 1, A) = − σ

Γ(1− σ)

∫ ∞
0

e−sA(es − 1)n0+1s−1−σds

= − σ

Γ(1− σ)

[∫ ∞
0

e−s(A−1)(es − 1)n0s−1−σds−
∫ ∞

0
e−sA(es − 1)n0s−1−σds

]
= I(n0, A− 1)− I(n0, A)

=

n0∑
m=0

(−1)m−n0

(
n0

m

)
(A− (m+ 1))σ −

n0∑
m=0

(−1)m−n0

(
n0

m

)
(A−m)σ.

Here we shift the indices in the first sum by 1 and factor out the (A−m)σ term, which

after some manipulation yields

n0∑
m=1

(−1)m−(n0+1)(A−m)σ
(
n0 + 1

m

)
+(−1)n0+1−(n0+1)(A−(n0+1))σ+(−1)−(n0+1)Aσ

=

n0+1∑
m=0

(−1)m−(n0+1)

(
n0 + 1

m

)
(A−m)σ,

as required.

The integral (37) can be rewritten as

− σ

Γ(1− σ)

∫ ∞
0

e−s(A−n)(1− e−s)ns−1−σds

=− σ

Γ(1− σ)

∫ 0

1
y(A−n)(1− y)n(− log(y))−1−σ(−1

y
)dy

=− σ

Γ(1− σ)

∫ 1

0
y(A−n)−1(1− y)n(− log(y))−1−σdy,

where we performed the change of variable y = exp{−s}, which imples − log(y) = s and

ds = − 1
ydy.

42

Our proposed solution is to devise an importance sampling approach whereby we evaluate

the ratio (36) by sampling from a Beta proposal distribution. Let Y ∼ Beta(A − n, n + 1)

with density f(y;A− n, n+ 1) and observe that

I(n,A) = − σ

Γ(1− σ)

∫ 1

0
y(A−n)−1(1− y)n(− log(y))−1−σdy

= − σ

Γ(1− σ)
B(A− n, n+ 1)

∫ 1

0
f(y;A− n, n+ 1)(− log(y))−1−σdy

= − σ

Γ(1− σ)
B(A− n, n+ 1)E[(− log(Y))−1−σ].

Moreover, keeping the distribution of Y fixed, we have

I(n,A+ 1) = − σ

Γ(1− σ)

∫ 1

0
yA−n(1− y)n(− log(y))−1−σdy

= − σ

Γ(1− σ)
B(A− n+ 1, n+ 1)

∫ 1

0
f(y;A− n+ 1, n+ 1)(− log(y))−1−σdy

= − σ

Γ(1− σ)
B(A− n+ 1, n+ 1)

×
∫ 1

0
f(y;A− n, n+ 1)

f(y;A− n+ 1, n+ 1)

f(y;A− n, n+ 1)
(− log(y))−1−σdy

= − σ

Γ(1− σ)
B(A− n, n+ 1)E[Y (− log(Y))−1−σ].

If y1, . . . , yN is a sample from Y , then

I(n,A) ≈ − σ

Γ(1− σ)
B(A− n, n+ 1)

1

N

N∑
j=−1

(− log(yj))
−1−σ

and

I(n,A+ 1) ≈ − σ

Γ(1− σ)
B(A− n, n+ 1)

1

N

N∑
j=1

yj(− log(yj))
−1−σ.

Thus

I(n,A+ 1)

I(n,A)
≈
∑N

j=1 yj(− log(yj))
−1−σ∑N

j=1(− log(yj))−1−σ
.

While not strictly necessary, we noticed that the use of the same sample for both numer-

ator and denominator guarantees numerical stability. The intuition is that the Monte Carlo

error goes in the same direction on both parts of the ratio.

43

6 Data Analysis

In this section, we apply our theoretical results to data and thus gauge the performance of

the model. First we generate data from a known distribution so that we can compare the

results to the true distribution. Then we will turn our attention towards the real data that

motivated our project.

In both cases, we will calculate pointwise estimates of the posterior mean derived in

Proposition 1 as well as credible intervals for those estimates.

6.1 Simulation study

6.1.1 How the Data Are Generated

Our goal is to generate multiple groups of discrete survival data where there exists some

dependence between groups that our model might infer using sharing of information.

We construct the necessary dependent processes using combinations of independent Dirich-

let processes. Consider four such processes:

Q0 ∼ DP(G0, c)

Q1 ∼ DP(G1, c)

Q2 ∼ DP(G2, c)

Q3 ∼ DP(G3, c).

Now we construct and sample from three dependent processes given by

P1 = 0.5×Q0 + 0.5×Q1

P2 = 0.5×Q0 + 0.5×Q2

P3 = 0.5×Q0 + 0.5×Q3.

From linearity and the properties of the Dirichlet process, we write down the expected values

of these processes:

E[Pl] = 0.5× E[Q0] + 0.5× E[Ql] (38)

44

= 0.5×G0 + 0.5×Gl l = 1, 2, 3. (39)

This is useful to us because we can now judge the performance of the model by properly

comparing its results to the objects it is estimating.

It remains to specify a value for the total mass c and appropriate distributions for the

base measures Gj , j = 0, 1, 2, 3. For each measure, we choose a Weibull distribution.

Even though the Weibull is a continuous distribution, our simulated data will be effectively

discrete. This is because of a property of the Dirichlet process, whereby samples which have

already been drawn can be redrawn with positive probability.

There are a number of variables whose values we need either to specify or to provide a

prior distribution for. As for this section the model is specified as follows:

p(σ) ∼ Unif(0, 1)

p(γ) ∼ Gamma(aγ , bγ); aγ = 1; bγ = 0.2

p(Nl) ∼ Pois(λ); λ = maxl(Ml)

p(c) ∼ Gamma(ac, bc); ac = bc = 1

z = 0.5,

where the value of z was here chosen to reflect the degree of dependence we want the model

to infer. We will return to this point in the discussion section.

φ, the parameter of the Poisson distribution used in the proposal stage of Nl’s Metropolis-

Hastings algorithm, needs to be tuned on the fly so as to ensure adequate mixing of the

algorithm, as per Roberts et al. (1997).

Another important quantity we need to consider is the number of samples we draw from

each process Pl, l = 1, 2, 3; in other words, we need to set Nl, l = 1, 2, 3. Part of our approach

is seeing how the model’s behaviour changes with the number of observations.

Censoring times for each group also have to be specified but first we specify the parameters

of the Weibull base measures of our Dirichlet processes:

G0 ∼Weibull(k0 = 5, λ0 = 2.5)

45

G1 ∼Weibull(k1 = 2, λ1 = 1)

G2 ∼Weibull(k2 = 3, λ2 = 1.5)

G3 ∼Weibull(k3 = 4, λ3 = 2)

We want to test the capacity of the model to use sharing of information to calculate esti-

mates. To this end, we simulate our data in a way that allows us to censor many observations

from the shared component for group 1, say. Ideally our model would infer the behaviour of

group 1 nonetheless by borrowing information from groups 2 and 3.

This idea is illustrated in Figure 2. The censoring times for groups 2 and 3 are then

chosen so as to censor approximately 5-10% of data.

6.1.2 Results of Analysis

The three values of n we consider are 30, 100, and 200. We will examine how varying the

sample size affects the degree to which information is shared and the sizes of the estimates’

credible intervals.

An important consideration is that our model’s estimation of Nl is very sensitive to the

prior distribution we attribute to it.

For instance, if the mean λ of a Poisson prior is too low, Nl is generally underestimated

for those releases with shorter censoring times. This leads to the corresponding posterior

mean estimates sharply increasing and departing from the true distribution.

Conversely, a high value for λ results in overestimation of Nl for the releases with longer

censoring times, leading to the opposite problem. We set λ = maxl(Ml) as this seems to be

the best compromise.

Under ideal circumstances, the prior placed on Nl is informative, reliable, and based on

expert opinion. Outside of such circumstances however, one risks encountering problems of

identifiability.

At the same time it is worth stressing that the goal of our model is not to extrapolate

beyond the maximum censoring time maxl(Ml) but rather to exploit borrowing of information

across releases in order to get more accurate estimates of the survival curves in the interval

46

0.0

0.2

0.4

0.6

0 1 2 3 4

time

P
D

F
s

Groups

1

2

3

Figure 2: Mean probability densities and censoring times of generated data

(0,maxl(Ml)).

We consider two cases. First, in order to eliminate any erroneous effects arising from

identifiability issues with Nl, we specify an “oracle” prior, fixing Nl, l = 1, 2, 3 to their true

values. Then we consider the Poisson prior for Nl specified in section 3.

Figure 2 depicts the densities specified in (38). These densities correspond to the distri-

butions we attempt to estimate.

Analysis with oracle prior

First we generate 30 values from each Pl, l = 1, 2, 3. In Figure 3, the estimates of each of our

three groups’ posterior mean distributions are plotted along with the corresponding Kaplan-

Meier estimates and true distributions. Figures 4 and 5 show the same plots for the cases

47

where we draw 100 and 200 values respectively.

It seems clear that the estimates and the empirical distribution grow closer when more

information is available. This makes sense, especially given that the empirical distribution

will more closely approximate the true distribution, and therefore a smooth distribution, with

more samples.

We note also that credible bounds are smaller when more information is available. Indeed

this is how we would expect a statistical model to react when it is given more data.

When there is a dearth of data (see Figure 3), the estimates seem to drift towards each

other. That is the estimates for F̃1 err on the low side of its empirical distribution and the

estimates for F̃2 and F̃3 err on the high side of theirs, as though they are approaching one

another.

We might speculate that this is because of an increased reliance on sharing of information

in the absence of exact observations. However, there is insufficient evidence to confirm this.

Of course it is important that we consider the behaviour of the model in the case of F̃1,

where the earlier censoring time imposed that less than half of that group’s original sample

was available to inform the posterior. We observe that the shape of the F̃1 posterior estimate

is very similar to those of F̃2 and F̃3 in Figures 3, 4, and 5. In fact it lies quite close to the

true distribution in each case. We can appreciate here that the borrowing of information

between groups has benefitted the model’s performance.

Analysis with Poisson prior

Now we examine the case where the Nl are considered random. These results will be more

reflective of the model’s performance in practice.

We notice immedately in Figures 6, 7, and 8 that the credible intervals for these results

are much larger than in the previous case. This makes sense because the Nl are no longer

constant and so there is greater fluctuation in the estimates produced by the Gibbs sampler.

Nonetheless, the intervals shrink, as before, given more information.

Another similarity to the oracle prior case is that there is “drifting” between the groups

in the case where fewer data are available, that is, in Figure 6, for instance. In addition, we

48

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
1

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
2

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
3

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

Figure 3: Model estimates for n = 30 and true Nl

49

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
1

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
2

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
3

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

Figure 4: Model estimates for n = 100 and true Nl

50

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
1

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
2

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
3

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

Figure 5: Model estimates for n = 200 and true Nl

51

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
1

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
2

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
3

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

Figure 6: Model estimates for n = 30 and random Nl

52

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
1

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
2

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
3

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

Figure 7: Model estimates for n = 100 and random Nl

53

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
1

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
2

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

0.00

0.25

0.50

0.75

1.00

0 1 2 3

time

F
3

po
st

er
io

r legend

empirical CDF

model estimates

true CDF

Figure 8: Model estimates for n = 200 and random Nl

54

again see the borrowing of information at work in Figures 6, 7, 8, informing the posterior

estimates of F̃1 after its early censoring time in each case.

It should be noted that in both of the above cases the Kaplan-Meier estimates are “cheat-

ing” in that these estimates are informed by the pre-censored data whereas, in this second

part of our analysis, our model only has the censored data to work with.

6.2 Real data

Shown in Figure 9 are examples of the estimates we obtained for three of the 19 Firefox

releases we analysed. While we cannot compare our modelling of the Firefox bug data with

any “true” distributions, there are comments we can make.

For example, we look at how the model seems to react when confronted with shorter

censoring times, as we did in the simulation case. The data in releases 24 and 25, the latest

two in our dataset, are cut short by earlier censoring times than others because the dataset

was composed before further observations could be recorded.

The third plot in Figure 9 depicts the estimated posterior mean distribution for release 24

and the model continues smoothly past the censoring time, seemingly relying on information

borrowed from its peers, as expected.

In all three plots in Figure 9, the credible bounds widen with time, as we saw in the

simulation study results.

Figure 10 depicts the estimated posterior distribution functions of all 19 releases that were

analysed. The vertical dotted lines highlight their release dates and each release’s censoring

time is shown by the dashed lines of the estimates after those points.

A notable feature of Figure 10 is that many of the estimated distribution functions appear

to plateau before getting close to 1. This is not necessarily an issue. We have seen credible

bounds grow wider with time and so it is possible that the upper bounds grow towards 1.

Alternatively this behaviour could be a feature of the Lévy intensity specifying the model in

this case.

55

0.00

0.25

0.50

0.75

1.00

0 1000 2000

time (hours since release)

F
15

 p
os

te
rio

r

0.00

0.25

0.50

0.75

1.00

0 1000 2000

time (hours since release)

F
20

 p
os

te
rio

r

0.00

0.25

0.50

0.75

1.00

0 1000 2000

time (hours since release)

F
24

 p
os

te
rio

r

Figure 9: Model estimates and credible intervals of Firefox data distributions for the 15th,

20th, and 24th releases

56

0.00

0.25

0.50

0.75

1.00

2012 2013 2014

year

P
os

te
rio

r
di

st
rib

ut
io

n
es

tim
at

es

Release

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

7

8

9

Figure 10: Model estimates pre and post censoring for releases 7-25

0 500 1000 1500 2000 2500 3000

20
30

40
50

60

Index

N
_1

0 500 1000 1500 2000 2500 3000

12
0

16
0

20
0

24
0

Index

N
_1

Figure 11: Trace plots of N1 for sample sizes n = 30 (left) and n = 200 (right)

57

6.3 Sampler diagnostics

It is important to note that the results illustrated in this section are specious if our Gibbs

sampler is for some reason unreliable or malfunctioning. Therefore we examine the estimates

of all variables produced in order to ensure convergence is achieved.

Nl, l = 1, . . . , r are key quantities in the sampling process. Traceplots produced for N1

in the simulation study can be seen in Figure 11. On visual inspection, convergence and

adequate mixing of the Metropolis-Hastings algorithm are apparent.

Only values realised after a burn-in period of 2000 iterations were used to calculate esti-

mates. This measure is taken to give the sampler time to reach equilibrium.

We noted that the time required to run the sampler and to compute the results increased

with the size of the dataset, as expected. It also rose sharply with the number of groups of

data. For the simulated data (3 groups), the process took 5 minutes for the N = 30 case and

10 minutes for the N = 200 case. For the real data (19 groups and 766 observations), the

time taken was over 3 hours.

The results were obtained using RStudio on a machine with 8 GB RAM and an i5 dual-

core processor.

58

7 Discussion

Our model as per the above results has been shown to perform on our chosen simulation study

and on our real data. It remains to discuss its advantages, its drawbacks, and its potential

improvements going forward.

7.1 Censoring times

One of the main advantages of the model was that it is able to predict the behaviour of releases

with earlier censoring times more accurately because it was allowed to borrow information

from those releases’ late censored counterparts. We see this feature of the model in Figure 7,

for instance.

7.2 Choice of Lévy intensity

Our choice of prior Lévy intensity ν(ds, dy) was a homogeneous one with σ-stable density

ρ and one-parameter Gamma measure α. These decisions were chiefly for numerical conve-

nience. Theorem 3 and Corollary 1, however, hold for any homogeneous Lévy intensity. This

offers the model a great degree of flexibility.

The only potential difficulty is the evaluation of the integrals in (17). Indeed our choice

of Lévy intensity required delicate treatment when obtaining an expression for the posterior

estimator in Proposition 1.

7.3 Using all the information

One aspect of our motivating illustration which did not inform our model was the fact that

the releases in the Firefox data are time-ordered. One could undertake to construct a model

which accounted for time-ordering of the releases but this was not our goal in this project.

Our goal was rather to construct a model under the assumption that the releases are

exchangeable and identically distributed a priori. As such, our model can be applied to data

whose “releases” may simply be distinct groups with some underlying interdependence which

we wish to describe.

59

7.4 Discrete versus continuous data

Our model is built for discrete data. Hence, as highlighted in Theorem 3, the occurence of

ties in the data is given positive probability and used to inform the posterior. The data we

analysed comprised bug report times per hour. There was a positive probability of finding

ties in the data and indeed, we discovered ties which helped to inform the model.

We believe the model could work with data which is continuous but in order for the model

to work well, this data may require discretisation. Here, the question arises of how wide or

narrow to make the intervals into which the data is discretised. If they are too wide, we lose

too much information and the model will be poorly informed. If they are too narrow, we

encounter difficulty sharing information. So a balance must be struck.

60

References

Doksum, K. (1974). Tailfree and neutral random probabilities and their posterior distribu-

tions. The Annals of Probability, 183–201.

Epifani, I., and Lijoi, A. (2010). Nonparametric priors for vectors of survival functions.

Statistica Sinica, 1455–1484.

Ghosal, S. and Van der Vaart, A. (2017). Fundamentals of nonparametric Bayesian

inference. Cambridge University Press, 44.

Griffin, J. E. and Leisen, F. (2014). Compound random measures and their use in

Bayesian nonparametrics. arXiv:1410.0611v3 [stat.ME] 2 Sep 2015.

Kingman, J. F. C. (1967). Completely random measures. Pacific Journal of Mathematics

21(1), 59–78.

Lijoi, A. and Nipoti, B. (2014). A class of hazard rate mixtures for combining survival data

from different experiments. Journal of the American Statistical Association, 109(506), 802–

814.

Lijoi, A., Nipoti, B., and Prünster, I. (2014). Bayesian inference with dependent nor-

malized completely random measures. Bernoulli, 20(3), 1260–1291.

Lijoi, A. and Prünster, I. (2009). Models beyond the Dirichlet process. Carlo Alberto

Notebooks 129.

Müller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015). Bayesian nonparametric

data analysis. New York: Springer, 18.

Nipoti, B. (2011). Dependent completely random measures and statistical applications.

Doctoral Thesis, Department of Mathematics, University of Pavia.

Robert, C. P. and Casella, G. (2004). Monte Carlo statistical methods. New York:

Springer.

61

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal

scaling of random walk Metropolis algorithms. The Annals of Probability, 7(1), 110–120.

Wilson, S. P. and Ó’Ŕıordáin, S. (2018). Optimal software testing across version releases.

Analytic Methods in Systems and Software Testing, 65–80.

Wilson, S. P. and Samaniego, F. J. (2007). Nonparametric analysis of the order-statistic

model in software reliability. Software Engineering, IEEE Transactions, 33(3), 198–208.

62

A Code for data simulation

set.seed(5)

#Total mass DP (larger values of cDP induce less ties and

#therefore an empirical CDF which is closer to the base

#measure)

cDP<-6

#Function to generate n exchangeable observations from

a DP with base measure weibull with parameters shapeG

#and scaleG, and total mass c

rDPwbl <- function(n,a,shapeG,scaleG){

genvec<-rep(0,n)

gennew<-rweibull(n, shape=shapeG, scale=scaleG)

genvec[1]<-gennew[1]

j<-2

while (j<=n){

pick<-rmultinom(1,1,c(a/(a+j-1),rep(1/(a+j-1),j-1)))

i<-1

while (i<=j){

if (pick[i]==1){

ind<-i

i<-j+1

}

else{i<-i+1}

}

if (ind==1){

genvec[j]<-gennew[j]

63

}else{

genvec[j]<-genvec[ind-1]

}

j<-j+1

}

return(genvec)

}

#Generating data (these need to be set)

shape0 <- 5

scale0 <- 2.5

shape1 <- 2

scale1 <- 1

shape2 <- 3

scale2 <- 1.5

shape3 <- 4

scale3 <- 2

#This is half of the total sample size

sstotal <- 15

r0 <- rDPwbl(3*sstotal,cDP,shape=shape0, scale=scale0)

r1temp <- rDPwbl(sstotal,cDP,shape=shape1, scale=scale1)

r2temp <- rDPwbl(sstotal,cDP,shape=shape2, scale=scale2)

r3temp <- rDPwbl(sstotal,cDP,shape=shape3, scale=scale3)

r1 <- c(r1temp,r0[1:sstotal])

r2 <- c(r2temp,r0[(sstotal+1):(2*sstotal)])

r3 <- c(r3temp,r0[(2*sstotal+1):(3*sstotal)])

64

#ECDFs

plot(ecdf(r2), col="green", main="Empirical CDFs",ylim=c(0,1))

lines(ecdf(r1), col="blue")

lines(ecdf(r3), col="red")

#PDFs

s <- seq(from=0.1, to=3.5, by=0.1)

pdf1 <- 0.5*dweibull(s, shape=shape1, scale=scale1)+

0.5*dweibull(s, shape=shape0, scale=scale0)

pdf2 <- 0.5*dweibull(s, shape=shape2, scale=scale2)+

0.5*dweibull(s, shape=shape0, scale=scale0)

pdf3 <- 0.5*dweibull(s, shape=shape3, scale=scale3)+

0.5*dweibull(s, shape=shape0, scale=scale0)

#For plots

sim <- data.frame(s, pdf1, pdf2, pdf3)

sim<-setNames(sim, c("time", "PDFs", "pdf2", "pdf3"))

cols <- c("1"="darkgreen", "2"="blue", "3"="red")

simplot <- ggplot(sim, xlab="PDFs",

colour=c(PDFs, pdf2, pdf3))

simplot_out<-simplot+

geom_line(data=sim[s<=cen[1]+0.001,],

aes(x=time, y=PDFs, colour="1"))+

geom_line(data=sim[s>=cen[1]-0.001,],

65

aes(x=time, y=PDFs, colour="1"),

linetype="dashed")+

geom_line(data=sim[s<=cen[2]+0.001,],

aes(x=time, y=pdf2, colour="2"))+

geom_line(data=sim[s>=cen[2]-0.001,],

aes(x=time, y=pdf2, colour="2"),

linetype="dashed")+

geom_line(data=sim[s<=cen[3]+0.001,],

aes(x=time, y=pdf3, colour="3"))+

geom_line(data=sim[s>=cen[3]-0.001,],

aes(x=time, y=pdf3, colour="3"),

linetype="dashed")+

geom_vline(xintercept=cen[1], linetype="twodash",

color="darkgreen")+

geom_vline(xintercept=cen[2], linetype="twodash",

color="darkred")+

scale_colour_manual(name="Groups", values=cols)+

ylab("PDFs")

pdf(file="simdata.pdf", width=7, height=5)

simplot_out

dev.off()

#CDFs

cdf1 <- 0.5*pweibull(s, shape=shape1, scale=scale1)+

0.5*pweibull(s, shape=shape0, scale=scale0)

cdf2 <- 0.5*pweibull(s, shape=shape2, scale=scale2)+

0.5*pweibull(s, shape=shape0, scale=scale0)

cdf3 <- 0.5*pweibull(s, shape=shape3, scale=scale3)+

66

0.5*pweibull(s, shape=shape0, scale=scale0)

#for the ecdf at the end

r1t <- r1

r2t <- r2

r3t <- r3

#censoring

cen <- c(1.8, 2.8, 2.8)

r1<-r1[r1<cen[1]]

r2<-r2[r2<cen[2]]

r3<-r3[r3<cen[3]]

meen <- mean(c(r1, r2, r3))

r1 <- r1/meen

r2 <- r2/meen

r3 <- r3/meen

R <- data.frame(t=c(r1, r2, r3),

release=c(rep(1, length.out=length(r1)),

rep(2, length.out=length(r2)),

rep(3, length.out=length(r3))))

67

B Code for data analysis

library("plyr")

library("ggplot2")

r=3 #number of releases

M <- sapply(1:r, FUN=function(ll){

return(sum(R$release==ll))})

#numbers of uncensored observations in each release

C <- count(R, vars=c("t", "release")) #tallies of data

dis_T <- c(0, C$t, cen/meen)

dis_T <- dis_T[!duplicated(dis_T)] #distinct observations

dis_T <- dis_T[order(dis_T)] #dis_T order failsafe

k <- length(dis_T[-1]) #number of distinct observations

#indices of group censoring times

k_l <- sapply(1:r, function(l_){

return(which(dis_T%in%(cen[l_]/meen)))})

n_f <- function(i, l){

return(sum(C$freq[C$t==dis_T[i+1] & C$release==l]))}

n_mat <- outer(1:k, 1:r, FUN=Vectorize(n_f))

#Boolean variables indicating whether distinct observations are

#unique to release l or shared between multiple releases

sort_I<- function(rel){

68

u <- C$t[C$release==rel & !C$t%in%

intersect(C$t[C$release==rel], C$t[C$release!=rel])]

return(dis_T[-1] %in% u)

}

I_mat <- sapply(X=1:r, FUN=sort_I)

I_mat <- cbind(I_mat, rowSums(I_mat)==0)

n_bar <- rowSums(n_mat)

n_bar_mat <- function(j, l){

if(j==k){return(0)}else{return(sum(n_mat[j:(k-1), l]))}

}

n_bar_mat <- Vectorize(n_bar_mat)

n_bar_mat <- outer(1:k, 1:r, FUN = n_bar_mat)

#for convenience

#Full conditional functions

MC_ratio <- function(A_, n_, N_=N_MC, sig){

y_vec <- rbeta(N_, A_-n_+1, n_+1)

num_vec <- (-log(y_vec))^(-1-sig)

den_vec <- (1/y_vec)*num_vec

return(sum(num_vec)/sum(den_vec))

}#Monte Carlo approximation of tricky ratio

MC_term <- function(A_, n_, N_=N_MC, sig){

y_vec <- rbeta(N_, A_-n_+1, n_+1)

num_vec <- (-log(y_vec))^(-1-sig)

lconst <- log(sig) -lgamma(1-sig) + lbeta(A_-n_+1, n_+1) -

log(N_) + log(sum(num_vec))

69

ans <- exp(lconst)

return(ans)

}

log_lambda_post <- function(lamb, N_vec, V_mat, sigm, c_){

arg <- function(i){

return(dgamma(dis_T[i+1],rate=lamb,shape=lamb,log = TRUE)-

(c_*(pgamma(dis_T[i+1],rate=lamb,shape=lamb)-

pgamma(dis_T[i],rate=lamb,shape=lamb)))*

((z*sum((n_bar_mat[i,]+N_vec-M)^sigm))

+(1-z)*(sum(n_bar_mat[i,]+N_vec-M))^sigm))

}

sumterm <- sapply(X=1:k, FUN=arg)

sumterm <- sumterm+dgamma(lamb, shape=a_l, rate=b_l)

#gamma prior term

return(sum(sumterm))

}

draw_l_post <- function(grd, Nd, Vd, sw, cw){

log_weights <- sapply(X=grd, FUN=log_lambda_post,

N_vec=Nd, V_mat=Vd, sigm=sw, c_=cw)

log_weights <- log_weights-mean(log_weights)

weights <- exp(log_weights)

return(sample(grd, size=1, prob=weights))

}

log_sigma_post <- function(sgm, lmd, cc, N_ve, V_ma){

llp <- log_lambda_post(lamb=lmd, N_vec=N_ve,

V_mat=V_ma, sigm=sgm, c_=cc)

return(llp + A_u(Nloc=N_ve, Vloc = V_ma, sg=sgm) +

70

A_s(N_ve, sg=sgm))

}

draw_s_post <- function(grd, Nd, Vd, lw, cw){

log_weights <- sapply(X=grd, FUN=log_sigma_post,

N_ve=Nd, V_ma=Vd, lmd=lw, cc=cw)

log_weights <- log_weights-max(log_weights)

weights <- exp(log_weights)

return(sample(grd, size=1, prob=weights))

}

A_u <- function(Nloc, Vloc, sg){

prod_term_u <- function(i_prod){

l_prod <- which(n_mat[i_prod,]!=0)

AuA <- n_bar_mat[i_prod, l_prod]+

(Nloc[l_prod]-M[l_prod])*(i_prod<=k_l[l_prod])+

Vloc[i_prod,l_prod]*

(sum(n_bar_mat[i_prod, -l_prod])+

sum((Nloc[-l_prod]-M[-l_prod])*(i_prod<=k_l[-l_prod])))

Aun <- n_mat[i_prod, l_prod]

Au_term <- MC_term(A_ = AuA, n_ = Aun, sig=sg)

return(Au_term)

}

tes <- sapply(X=which(!I_mat[,r+1]), FUN=prod_term_u)

return(sum(log(tes)))

}

A_s <- function(Nvec, sg){

prod_term_s <- function(i_prod){

As_term <- MC_term(A_=sum(n_bar_mat[i_prod,]+(Nvec-M)*

71

(i_prod<=k_l)),

n_=n_bar[i_prod], sig=sg)

return(As_term)

}

if(length(which(I_mat[,r+1]))==1)return(0)

this <- sapply(X=which(I_mat[,r+1])[-sum(I_mat[,r+1])],

FUN=prod_term_s)

return(sum(log(this)))

}

N_fc_2 <- function(N_arg, N_vec, L, V_mat, c_, si, la){

N_vec[L] <- N_arg

arg <- function(i){

l1 <- n_bar_mat[i, L]+(N_arg-M[L])*(i<=k_l[L])

l2 <- sum(n_bar_mat[i,]+(N_vec-M)*(i<=k_l))

if(l1<0)stop(paste("l1", l1))

if(l2<0)stop(matrix(c(N_vec, M)))

return(-(c_*(pgamma(dis_T[i+1],rate=la,shape=la)-

pgamma(dis_T[i],rate=la,shape=la)))*

((z*(n_bar_mat[i, L]+(N_arg-M[L])*(i<=k_l[L]))^si)

+(1-z)*(sum(n_bar_mat[i,]+(N_vec-M)*(i<=k_l)))^si))

}

presum <- sapply(1:k, FUN=arg)

term1 <- sum(presum)

term2 <- A_u(N_vec, V_mat, sg=si)

term3 <- A_s(N_vec, sg=si)

term4 <- -plambda+(N_arg)*log(plambda)-lgamma(N_arg+1)

72

log_Nfc <- lgamma(N_arg+1)-lgamma(N_arg+1-M[L]) +

term1+term2+term3+term4

if(is.nan(log_Nfc))stop(paste("up here", N_arg, lgamma(N_arg+1),

lgamma(N_arg+1-M[L]),

term1, term2, term3, term4))

return(log_Nfc)

}

#log full conditional of N times Poisson prior

draw_N_2 <- function(N_v, L_, V_v, c_d, s_d, l_d){

Y <- rpois(1, phi)

log_g <- function(x){

if(phi+x+1<1)stop(paste("lgamma argument less than 1:",

phi+x+1))

return(-phi+(phi+x)*log(phi)-lgamma(phi+x+1))

}

if(Y<phi-N_v[L_]+M[L_] | Y >2*phi)return(N_v[L_])else{

Nstar <- N_v[L_]+Y-phi

if(Nstar<M[L_])return(N_v[L_])

log_alpha <- N_fc_2(Nstar, N_vec = N_v, L=L_, V_mat=V_v,

c_=c_d, si=s_d, la=l_d) -

N_fc_2(N_v[L_], N_vec = N_v, L=L_, V_mat=V_v, c_=c_d,

si=s_d, la=l_d) +

log_g(N_v[L_]-Nstar) - log_g(Nstar-N_v[L_])

if(log(runif(1))<log_alpha){

arc[L_] <- arc[L_]+1

return(Nstar)

}else{return(N_v[L_])}

}

73

}

V_fc_u <- function(Nloc, Vloc, ploc, s_v){

qloc <- which(n_mat[ploc,]!=0)

Vfc_term <- MC_term(A_ <- n_bar_mat[ploc, qloc]+

(Nloc[qloc]-M[qloc])*

(ploc<=k_l[qloc])+

Vloc[ploc, qloc]*

(sum(n_bar_mat[ploc, -qloc])+

sum((Nloc[-qloc]-M[-qloc])*

(ploc<=k_l[-qloc]))),

n_ <- n_mat[ploc, qloc], sig=s_v)

return(Vfc_term)

}

#full conditional of V

draw_V <- function(p_, q_, Ns, Vs, sd){

if (p_ %in% which(I_mat[,r+1])){

return(rbinom(1, size=1, prob=1-z))

}

else{

Vs[p_,q_] <- 0

V_f1 <- V_fc_u(Ns, Vs, p_, s_v=sd)

if(V_f1<0 | is.na(V_f1))stop(paste("pointA", V_f1))

lower <- V_f1*z

Vs[p_,q_] <- 1

V_f2 <- V_fc_u(Ns, Vs, p_, s_v=sd)

if(V_f2<0 | is.na(V_f2))stop(paste("pointB", V_f2))

upper <- V_f2*(1-z)

74

prob_V<-upper/(lower+upper)

return(rbinom(1, size=1, prob=prob_V))

}

}

draw_V <- Vectorize(draw_V, vectorize.args = c("p_", "q_"))

#draws V; weights determined by V_fc_u

#Estimator for F_l posterior

post_dist <- function(t, N, V, l, c_, spd, lpd){

i_0 <- max(which(dis_T<t))

I <- I_mat[,l]

f1 <- function(i_f1){

t1 <- c_*(pgamma(dis_T[i_f1+1],rate=lpd,shape=lpd)-

pgamma(dis_T[i_f1],rate=lpd,shape=lpd))

t2 <- z*((1+n_bar_mat[i_f1, l]+(N[l]-M[l])*

(i_f1<=k_l[l]))^spd -

(n_bar_mat[i_f1, l]+(N[l]-M[l])*

(i_f1<=k_l[l]))^spd)+

(1-z)*((1+sum(n_bar_mat[i_f1,]+(N-M)*(i_f1<=k_l)))^spd -

(sum(n_bar_mat[i_f1,]+(N-M)*(i_f1<=k_l)))^spd)

ans <- t1*t2

return(ans)

}

f2 <- function(i_f2){

if(i_f2==1)return(0)else{

return(sum(sapply(X=1:(i_f2-1), FUN=f1)))

}

75

}

f3 <- function(i_f3){

t1 <- c_*(pgamma(t,rate=lpd,shape=lpd)-

pgamma(dis_T[i_f3],rate=lpd,shape=lpd))

t2 <- z*((1+n_bar_mat[i_f3, l]+(N[l]-M[l])*

(i_f3<=k_l[l]))^spd -

(n_bar_mat[i_f3, l]+(N[l]-M[l])*

(i_f3<=k_l[l]))^spd) +

(1-z)*((1+sum(n_bar_mat[i_f3,]+(N-M)*

(i_f3<=k_l)))^spd -

(sum(n_bar_mat[i_f3,]+(N-M)*

(i_f3<=k_l)))^spd)

return(t1*t2)

}

if(i_0<=k){

arg1 <- f2(i_0) + f3(i_0)

} else {

arg1 <- f2(i_0) + (c_*(pgamma(t,rate=lpd,shape=lpd)-

pgamma(dis_T[k+1],rate=lpd,shape=lpd)))

}

g1 <- function(i_){

return(MC_ratio(A_=n_bar_mat[i_, l]+

(N[l]-M[l])*(i_<=k_l[l]),

n_=n_mat[i_, l], sig=spd))

}

76

g2 <- function(i_, j){

return(MC_ratio(A_=sum(n_bar_mat[i_,]+(N-M)*(i_<=k_l)),

n_=n_mat[i_, j], sig=spd))

}

g3 <- function(i_){

return(MC_ratio(A_=sum(n_bar_mat[i_,]+(N-M)*(i_<=k_l)),

n_=n_bar[i_], sig=spd))

}

h1 <- function(i){

if(t<dis_T[i+1]){return(1)} else {

if(i %in% which(I)){

if(i==k & t<dis_T[k+1]){print(1)}

if(V[i, l]==0){

if(g1(i_=i)<0){stop("point1")}

return(g1(i_=i))

} else if(V[i, l]==1) {

if(g2(i_=i, j=l)<0){stop(paste("point2", g2(i_=i, j=l)))}

return(g2(i_=i, j=l))

}

} else if (i %in% which(I_mat[,r+1])){

if(i==k & t<dis_T[k+1]){print(2)}

return(g3(i_=i))

} else if (V[i, which(I_mat[i,])]==1){

if(i==k & t<dis_T[k+1]){print(3)}

if(g2(i_=i, j=which(I_mat[i,]))<0){stop("point3")}

return(g2(i_=i, j=which(I_mat[i,])))

} else {

77

return(1)

}

}

}

ter <- sapply(X=1:(k-1), FUN=h1)

#print(str(ter))

arg2 <- prod(ter)

if(is.nan(arg2))stop("hmm")

if(arg2>exp(arg1)){print(paste(which(ter>1),

"<- index of term making arg2>exp(arg1)"))}

if(arg2<0){print(paste(which(ter<0) ,

"<- index of term making arg2<0"))}

answer <- 1-exp(-arg1)*arg2

return(answer)

}

#posterior distribution of F_l given N, V, and data

#Gibbs sampler

burnin <-2000

sample_size <- 1000

end <- burnin+sample_size

#Metropolis-Hastings parameter

phi <- 20

#Markov chain sample size

78

N_MC=50

#alpha base measure scale parameter c (we use a Gamma prior)

c_init <- 1 # initial value for c

a <- 1

b_init <- 1

#prior values

s_init <- 0.5 # initial value for sigma

l_init <- 0.5 # initial value for gamma

a_post <- a+k-1

#posterior a value (b is updated

iteratively as it depends on N)

z <- 0.5 #parameter determining weight given to "shared" data

plambda<-max(M) # parameter for Poisson prior on N

N <- matrix(rep(NA, end*r), ncol = r)

V <- array(rep(NA, end*r*k), dim = c(k, r, end))

c_vec <- rep(NA, end)

sig_vec <- rep(NA, end)

lam_vec <- rep(NA, end)

N[1,] <- M

V[,,1] <- matrix(rbinom(r*k, 1, 0.5), nrow=r)

c_vec[1] <- c_init

sig_vec[1] <- s_init

lam_vec[1] <- l_init

79

N_slice <- N[1,]

V_slice <- V[,,1]

c_slice <- c_vec[1]

b_slice <- b_init

s_slice <- sig_vec[1]

l_slice <- lam_vec[1]

#values over which to evaluate the posteriors

#of sigma and gamma

griddy_s <- seq(from=0.1, to=0.9, by=0.1)

griddy_l <- seq(from=0.1, to=10, by=0.5)

a_l <- 1 #shape and rate for prior on lambda (phi)

b_l <- 0.2

s1 <- function(i_s){

t1 <- (pgamma(dis_T[i_s+1],rate=l_slice,shape=l_slice)-

pgamma(dis_T[i_s],rate=l_slice,shape=l_slice))

t2 <- z*sum((n_bar_mat[i_s,]+

(N_slice-M)*(i_s<=k_l))^s_slice) +

(1-z)*(sum(n_bar_mat[i_s,]+

(N_slice-M)*(i_s<=k_l)))^s_slice

return(t1*t2)

}#function used in Gibbs sampling

for(iter in 2:end){

N_slice <- sapply(1:r, FUN=draw_N_2, N_v=N_slice,

V_v=V_slice, c_d=c_slice,

s_d=s_slice, l_d=l_slice)

V_slice <- base::outer(1:k, 1:r, FUN=draw_V, Ns=N_slice,

80

Vs=V_slice, sd=s_slice)

sum <- sapply(X=1:k, FUN=s1)

b_slice <- b_init + sum(sum)

c_slice <- rgamma(1, shape=a_post, rate=b_slice)

s_slice <- draw_s_post(grd=griddy_s, Nd=N_slice,

Vd=V_slice, lw=l_slice, cw=c_slice)

l_slice <- draw_l_post(grd=griddy_l, Nd=N_slice,

Vd=V_slice, sw=s_slice, cw=c_slice)

N[iter,] <- N_slice

V[,,iter] <- V_slice

c_vec[iter] <- c_slice

sig_vec[iter] <- s_slice

lam_vec[iter] <- l_slice

}

hist(lam_vec[(burnin+1):end], breaks=20)

hist(sig_vec[(burnin+1):end], breaks=20)

plot(N[,1], main="N_1")

plot(N[,2], main="N_2")

plot(N[,3], main="N_3")

#Estimator of F_l given N and V results from Gibbs sampler

Gibbs_t <- function(t_){

f_it <- function(ite, l_){

if(true_N==TRUE){

prob <- post_dist(t_, rep(sstotal*2, r), V[,,ite], l_,

c_=c_vec[ite], spd=sig_vec[ite], lpd=lam_vec[ite])

81

}else {prob <- post_dist(t_, N[ite,], V[,,ite], l_, c_=c_vec[ite],

spd=sig_vec[ite], lpd=lam_vec[ite])}

return(as.numeric(prob))

}

F_it <- Vectorize(f_it)

#returns F_l posterior for N, V from

particular Gibbs sampler iteration

F_mat <- outer((burnin+1):end, 1:r, FUN=F_it)

CI <- function(l_){return(quantile(F_mat[,l_],

c(0.025, 0.975)))}

#credible interval for F_l posterior mean

CIs <- sapply(1:r, FUN=CI)

df <- data.frame(t_, t(colMeans(F_mat)), t(c(CIs)))

names_f <- sapply(1:r,

FUN=function(i){return(paste0("F", i))})

names_ci <- sapply(1:r, FUN=function(i){

return(append(paste0("F", i, "_lower"),

paste0("F", i, "_upper")))})

names_ci <- c(names_ci)

names <- c("time", names_f, names_ci)

df <- setNames(df, names)

return(df)

}

true_N <- FALSE #Do we use the true N values?

82

#Otherwise the Gibbs sampler random values are used.

result <- ldply(s/meen, .fun = Gibbs_t)

result <- rbind(rep(0,7),result)

#data frame containing F_l mean and

#credible intervals for each t in t_grid

s_cen <- list()

for(ll in 1:r){s_cen[[ll]] <- s[round(s, 1)<=cen[ll]]}

#plots

pl1 <- ggplot(result, aes(x=time*meen, y=F1)) +

geom_point() + geom_errorbar(aes(ymin=F1_lower,

ymax=F1_upper))+

xlab("time")+ylab("F1 posterior")

p1<-pl1 + geom_point(data=data.frame(tr=cdf1),

aes(x=s, y=tr, color="true CDF")) +

geom_step(mapping=aes(x=c(0,s_cen[[1]]), y=ecd,

color="empirical CDF"),

data=data.frame(ecd=c(0,

ecdf(r1t)(s)[1:length(s_cen[[1]])])))+

geom_vline(xintercept=cen[1], linetype="longdash")

pdf(file="F130False.pdf", width=10, height=5)

p1

dev.off()

pl2 <- ggplot(result, aes(x=time*meen, y=F2)) +

geom_point() + geom_errorbar(aes(ymin=F2_lower,

ymax=F2_upper))+

83

xlab("time")+ylab("F2 posterior")

p2<-pl2 + geom_point(data=data.frame(tr=cdf2),

aes(x=s, y=tr, color="true CDF")) +

geom_step(mapping=aes(x=c(0,s_cen[[2]]), y=ecd,

color="empirical CDF"),

data=data.frame(ecd=c(0,ecdf(r2t)(s)[1:length(s_cen[[2]])])))+

geom_vline(xintercept=cen[2], linetype="longdash")

pdf(file="F230False.pdf", width=10, height=5)

p2

dev.off()

pl3 <- ggplot(result, aes(x=time*meen, y=F3)) +

geom_point() + geom_errorbar(aes(ymin=F3_lower,

ymax=F3_upper))+

xlab("time")+ylab("F3 posterior")

p3<-pl3 + geom_point(data=data.frame(tr=cdf3),

aes(x=s, y=tr, color="true CDF"))+

geom_step(mapping=aes(x=c(0,s_cen[[3]]), y=ecd,

color="empirical CDF"),

data=data.frame(ecd=c(0,ecdf(r3t)(s)[1:length(s_cen[[3]])])))+

geom_vline(xintercept=cen[3], linetype="longdash")

pdf(file="F330False.pdf", width=10, height=5)

p3

dev.off()

#traceplots

pdf(file="gamma30False.pdf", width=5, height=4)

plot(lam_vec, ylab="gamma")

dev.off()

84

pdf(file="sigma30False.pdf", width=5, height=4)

plot(sig_vec, ylab="sigma")

dev.off()

pdf(file="c30False.pdf", width=5, height=4)

plot(c_vec, ylab="c")

dev.off()

pdf(file="N130False.pdf", width=5, height=4)

plot(N[,1], ylab="N_1")

dev.off()

pdf(file="N230False.pdf", width=5, height=4)

plot(N[,2], ylab="N_2")

dev.off()

pdf(file="N330False.pdf", width=5, height=4)

plot(N[,3], ylab="N_3")

dev.off()

85

