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Abstract

Magnetic materials are of fundamental importance for the next generation of sensing

and storage applications. The operating principle of such devices is based upon

manipulating the orientation of the atomic magnetic moments. The dynamics of the

latter can be efficiently driven through the injection of spin-polarised currents that

generate effective torques, by spin conservation. These are commonly known as spin

torques. State-of-the-art devices employ two ferromagnets sandwiching an insulating

spacer, i.e. a magnetic tunnel junction, where information is stored in the mutual

orientation of the two magnetisations. These structures are engineered so that the

magnetisation vector of one magnetic layer is kept fixed along a given direction, while

the magnetisation of the other ferromagnet, also known as free layer, can be reversed

with an electric current. The elevated sensitivity of the magnetisation switching to

factors such as the properties of the ferromagnet, the quality of the interfaces and

temperature fluctuations makes the search of novel materials for these applications a

troublesome task. Here we present a multi-scale study of the magnetisation switching

in Fe/MgO-based magnetic tunnel junctions for different compositions of the free

magnetic layer. We begin by investigating the atom-dependence of the spin torques

with the objective of determining the factors that define their materials dependence.

This is done by the means of quantum transport calculations performed with a

combination of non-equilibrium Green’s functions and density functional theory. The

calculated spin torques are then used as input for spin dynamics simulations at the

atomistic scale, in order to compare the current-driven magnetisation switching in the

different systems at different temperatures. We find that the general spatial profile of
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the spin torques for a given free layer can be predicted from the band structure of the

ferromagnet. However, in many cases the presence of additional interfaces or non-

uniform magnetic textures drastically modifies the predicted profile. Nevertheless,

the details of the decay of the spin torques do not imply significant modifications of

the switching properties. In fact, we find that the critical voltage required to obtain

magnetisation reversal is essentially dictated by the total torque acting on the free

layer. We continue with a study of antiferromagnetism in the Mn3Ga and Fe2MnGa

Heusler compounds, in which magnetic properties are dominated by the moments

at the Mn sites. Antiferromagnetic materials are of great interest for spintronic

applications, since they may push the spin dynamics in the THz range, as opposed

to the GHz range of the one in ferromagnets. Our results show that the spin model

for Mn3Ga displays an extremely high-frequency oscillation mode, which is found to

be characteristic of this system. In contrast, we find that the induced moments at

the Fe sites in Fe2MnGa are extremely sensitive to the presence of interfaces and to

the alignment of the neighbouring Mn atoms. This is observed through both spin

dynamics simulations and first principles quantum transport calculations. Finally,

we derive a novel parameter-free method for the estimation of the Gilbert damping

from first principles simulations.
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Chapter 1

Magnetic random access memories

“The story so far: in the beginning the Universe was created.

This has made many people very angry and has been widely

regarded as a bad move.”

- Douglas Adams

The continuous miniaturisation and performance enhancement of electronic com-

ponents have been essential to improve the quality of our everyday life. The advent of

portable electronic devices led to a growing inclusion of technology in daily tasks and

consequently to an increasing demand of efficient tools for data processing and stor-

age. Modern computers largely rely on dynamic random-access memory (DRAM)

technologies for computing power. These devices store data in the charge state of a

capacitor made of two metallic plates separated by a dielectric (mostly Si). Although

information can be efficiently written by simply modifying the amount of charge ac-

cumulated in the capacitor, the reading procedure is more energetically expensive,

since it requires deleting and rewriting the charge state. In addition, charge leakage

implies the need of a frequent charge refresh to prevent the loss of information, and

such effect grows as the capacitor size is reduced. The destructive read protocol, the

issue of charge refresh and the need of a constant power supply to maintain the stored

data imply elevated power consumption and poor scalability. Therefore, these draw-

backs are likely to eventually make DRAMs unable to offer the performances that
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Chapter 1 Magnetic random access memories

will be required for future technological developments. Improvements of DRAMs

are still considered to be possible thanks to the introduction of three-dimensional

structures and materials with high relative dielectric constant [1], but their intrinsic

limitations encourage the search of alternative technologies.

The idea of replacing DRAMs with memories that do not require constant power

to retain data, i.e. that are non-volatile, is particularly attractive due to the low

energy operational costs. Among the memories currently available to the public,

flash memory is the only one which is non-volatile and at the same time has ad-

equate read/write speed to replace DRAMs. Flash memories store information in

the charge state of a transistor that is electrically isolated to preserve the non-

volatility. Nevertheless, the device integrity deteriorates after a relatively low num-

ber of program-erase cycles. Together with their high fabrication costs, the reduced

durability of flash memories makes them unsuitable to be used as main processing

units. In order to bypass the low endurance of flash memories and the scalability

and volatility issues of DRAMs, various memory prototypes that do not use charge

states to store information were proposed. Ferroelectric memories (FeRAMs) [2]

have a structure, which is similar to DRAMs, but they replace the dielectric layer

with a ferroelectric slab, i.e. made of a material with a spontaneous electric polar-

ization. The charged/discharged capacitor configurations that embody the “0” and

“1” states in DRAMs are here represented by the two opposite orientations of the

electric polarisation in the active layer, which can be controlled by external electric

fields. As an alternative, an analogous role can be played by the different phases of

a material, provided that the phase transformation can be efficiently and accurately

performed. State-of-the-art phase changing memories (PCMs) [3] adopt a slab of

GeSbTe as active layer. In fact, it is possible to liquefy GeSbTe through heating

to then obtain either an amorphous or crystalline phase by controlling the rapid-

ity of its cooling. Both the latter two prototypes are considered to be promising

candidates for future non-volatile memories. On the one hand, FeMRAMs have ex-

ceptional write speed, high endurance and ultra-low power consumption. However,

similarly to DRAMs, they suffer from low integration density. On the other hand,
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PCMs offer good scalability and at the same time fast data access and write/erase

speeds, but their operational temperature range is rather limited. Neither of these

devices is thus suitable for applications such as automotive vehicles that require en-

ergy efficient, high density and durable memories, that must also be able to maintain

satisfactory performances at high temperatures.

Magnetic random-access memories (MRAMs) are currently believed to be the

technology that is more likely to be able to satisfy such requirements. Such devices

store data in the direction of the magnetisation vector of a magnetic layer: if the “0”

state is represented by a specific orientation of such vector, the opposite direction will

represent the “1” state. Their working principle is routed in the use of spin polarised

electric currents to perform both the reading and the writing procedures. This

allows for extremely low energy consumption, high durability and fast operation.

Furthermore, the appropriate choice of the magnetic material yields natural non-

volatility, high scalability and elevated resistance to radiation and high temperatures.

These reasons make MRAMs also potential candidates for a “universal memory”, i.e.

capable of replacing the functions currently covered by the simultaneous employment

of DRAMs, flash and static RAMs (SRAMs).

This chapter begins with a review of the main discoveries that made the real-

isation of magnetic memories possible, together with the physical phenomena that

underpin their operating principles. An analysis of the possible material choices for

efficient MRAMs follows, including a description of the relative issues and challenges.

In conclusion, an overview of the contents of the rest of this thesis will be presented.

1.1 The development of STT-MRAMs

1.1.1 Giant magnetoresistance and the advent of spintronics

The working principles of electronic devices rely on the manipulation of electrons

through their intrinsic charge. It is then only natural to wonder whether it is pos-

sible to exploit at the same time the electron intrinsic spin angular momentum. In
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the field of spin electronics, or spintronics, magnetic materials are embedded into

electronic components to generate spin polarised electrical currents and increase the

capability and the functionality of electronic devices. The idea that the spin state

of electrons influences their mobility can be traced back to Mott’s early work on the

spin dependence of the conduction properties of ferromagnets [4]. The general spin

state of an electron is defined as a 3-component vector with modulus ~/2, hence can

be represented as the linear combination of two fundamental states. It is customary

to identify these two states with the directions parallel and anti-parallel to the spin

quantisation axis, thus call them as the spin-↑ and spin-↓ state. Since ferromag-

nets are characterised by an asymmetry in the population of the two spin states,

the latter are also known as majority- and minority-spin states. In particular, Mott

proposed that electrons in spin-↑ and spin-↓ states constitute two independent con-

ducting channels. Since the electrical resistivity depends on the density of states

at the Fermi level, the spin asymmetry in the electronic population of ferromagnets

generates a difference in the resistivity of the two spin channels. Such prediction

was later observed experimentally through conduction measurements in doped Ni

[5]. These findings already suggest that the magnetic state of a material plays a role

in its electrical resistance, although such effect is not pronounced for the scale and

systems considered in Refs. [4, 5].

The advent of deposition techniques, such as molecular beam epitaxy (MBE),

in the 1980s made it possible the fabrication of thin films down to the nm scale.

This proved to be vital for the discovery of new magnetoresistance phenomena that

appear where the layer thicknesses are comparable to the mean free path of elec-

trons. In the early years of research on magnetic thin films, multilayers composed of

alternating Fe and Cr layers emerged as the ideal system where the relative orienta-

tion of magnetisations of adjacent layers could be controlled. Although the presence

of antiferromagnetic layer-exchange couplings favours the anti-parallel alignment of

the magnetisations [6], the parallel alignment can be realised by applying external

magnetic fields. The electrical resistance offered by the system when adjacent mag-

netisations are parallel was found significantly lower than that of the anti-parallel
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alignment. The difference in the two resistances is essentially due to the change

in available states throughout the stack for each spin channel, as represented in

Fig. 1.1. If the magnetisations are all parallel, the majority spin state will have

the same direction, say ↑, for all magnetic layers. As a consequence, the constantly

higher number of states close to the Fermi energy available by spin-↑ electrons im-

plies that the resistivity for the spin-↑ channel will be significantly lower than the

one for the spin-↓ channel. On the contrary, in the anti-parallel configuration the

majority spin state alternates direction between adjacent magnetic layers, and so

does the number of available states for each spin channel. The conductivity of spin-↑

and spin-↓ electrons is thus equally suppressed in the antiparallel state. This ef-

fect is commonly known as giant magnetoresistance (GMR) and was simultaneously

discovered by Albert Fert and Peter Grünberg [7, 8], reason for which they were

jointly awarded the Nobel price for physics in 2007. Early studies on GMR were

Figure 1.1: (a) Graphic representation of the density of states of a ferromagnet

around the Fermi energy. (b) Schematic illustration of the GMR effect. The green

arrows represent the orientation of the magnetisation vectors, while red (blue) arrows

represent the intensity of the transmission for the majority (minority) spin channel.

For parallel magnetisations (left) the conductivity is enhanced for one spin channel

and suppressed for the other, so that the short-circuit through the former channel

implies a reduced resistance. On the contrary, in the anti-parallel state (right) the two

spin channels have the same conductivity, hence the resistance is higher compared

to the parallel magnetisation state.
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all performed with current flowing along the layers direction, i.e. with the geometry

that is nowadays known as “current in plane” (CIP). However, geometries where the

current is driven parallel to the stacking direction, i.e. in the “current perpendicular

to plane” (CPP) geometry, were found more convenient for applications [9, 10]. First

of all, the difference between the resistances in the parallel (P), RP , and antiparallel

(AP) configurations, usually quantified through the GMR ratio,

GMR =
RAP −RP

RP

, (1.1)

is more pronounced in the CPP geometry with respect to the CIP one [9]. Accord-

ing to theoretical investigations [11], this is due to the reduced spin-asymmetry of

interfacial scattering in the CIP geometry.

GMR devices represent one of the first prototypes of magnetic memories. How-

ever, magnetisation switching in metallic spin valves is not efficient enough to offer

a competitive alternative. Nevertheless, the GMR effect is widely used to this day

to construct efficient magnetic field sensors.

1.1.2 Magnetic tunnelling junctions

The separation of two magnetic layers with an insulating barrier, i. e. employing a

magnetic tunnelling junction (MTJ), offers an alternative to metallic junctions since

the spacer strongly suppresses interlayer couplings. MTJs were found to have magne-

toresistive properties as early as 1975 by Julliére [12]. In fact, thin enough insulating

barriers allow the flow of electric currents between the two ferromagnetic electrodes

thanks to the establishment of a tunnelling regime. These experiments proved that

magnetic tunnelling junctions exhibit an effect similar to the giant magnetoresis-

tance, nowadays known as tunnelling magnetoresistance (TMR). The TMR effect

was explained by Julliére neglecting spin-flip phenomena and using a two current

model analogous to the one adopted above for explaining the GMR [Fig. 1.1 (b)].

The argument is based on estimating the conductance in terms of the transmission

amplitudes for each spin channel. If t1 and t2 are the tunnelling probabilities for

electrons in the majority spin state in ferromagnet 1 and 2, respectively, minority
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spin electrons will have tunnelling probabilities 1− t1 and 1− t2, respectively. Hence,

the total conductance, GP, GAP, in the two possible magnetic configuration are given

by

GP = t1t2 + (1− t1)(1− t2) =
1 + P1P2

2
, (1.2)

GAP = t1(1− t2) + (1− t1)t2 =
1− P1P2

2
, (1.3)

where Pi = 2ti−1 denotes the spin polarisation of the i-th ferromagnet, with i = 1, 2.

Since by definition 0 ≤ Pi ≤ 1, we find that the conductance is higher in the P con-

figuration than in the AP one, as in the case of GMR. Moreover, Eqs. (1.2) and (1.3)

can be easily combined to yield an expression for the tunnelling magnetoresistance

ratio in terms of the spin polarisations, i.e.

TMR ≡ GP −GAP

GAP

=
2P1P2

1− P1P2

. (1.4)

This equation is known as the Julliére formula for the TMR ratio and its validity is

limited to cases, where spin-flip processes are negligible. Since spin excitations imply

a breakdown of the independence of the two spin channels, conditions that favour

their presence (high voltages, elevated temperatures or concentration of defects) will

unavoidably cause a deterioration of the TMR. Nevertheless, Eq. (1.4) shows that

the TMR is maximised for P1 = P2 = 1, thus implying that a high degree of spin

polarisation of the current is essential to obtain high TMRs.

In his experiments Julliére employed Fe/GeO/Co junctions with barrier thick-

nesses ranging between 10 and 15 nm, measuring TMR ratios of about 14% at low

temperatures. The modest magnitude of such effect was due to the relatively low

spin polarisation of the magnetic electrodes, the large spacer thickness and the amor-

phous barrier. Hence, the discovery of the TMR effect did not attract much attention

at the time. The interest in MTJs was renewed with the development of GMR, and

in the mid 1990s room temperature (RT) TMRs of 11.8% and 18% were observed in

FeCo/Al2O3/Co and Fe/Al2O3/Fe MTJs by Moodera [14] and Miyazaki [15], respec-

tively. The tunnelling barriers in these cases had thicknesses below 5 nm and were

amorphous. However, later studies showed that a crystalline insulating spacer can
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strongly enhance the TMR ratio, if it is well matched with the electronic structure

of the ferromagnets. In fact, tunnelling properties across crystalline insulators were

shown to be remarkably influenced by the spatial symmetry of the Bloch states,

meaning that the barrier favours the tunnelling of electrons in states with certain

symmetries (Fig. 1.2). As a consequence, if the occupation of the electronic states

which tunnelling is more favourable is higher for one spin state than for the other,

the transmission probabilities for the two spin channels will be remarkably different.

In other terms, the insulator can effectively select electrons depending on their spin

state, i.e. acting as a spin filter.

The first prediction of the so-called spin filtering effect is due to Butler et al.

[17] and Mathlon et al. [18] who calculated the electronic, magnetic and transport

properties of Fe(100)/MgO(100)/Fe(100) tunnelling junctions. The authors show

that in such structures the conductance is dominated by electrons with wave-vectors

orthogonal to the current direction, and that Bloch states with a particular symme-

try have particularly low decay rate across MgO. The latter feature can be evinced

Figure 1.2: Schematic of the difference tunnelling properties in crystalline MgO

and amorphous Al2O3 barriers. In Fe/MgO/Fe tunnelling is enhanced for electrons

of a ∆1 symmetry state, while Bloch state symmetries do not play a role in the

determination of tunnelling probabilities across amorphous barriers. Image credit:

[13] .
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by comparing the (real) band structure of Fe with the complex band structure of

MgO [panels (a) to (d) of Fig. 1.3]. Although in infinite solid state systems the

Schrödinger equation admits solutions only for real momentum vectors, k, solutions

corresponding to purely imaginary vectors, κ, appear in the presence of interfaces.

Their physical meaning relates to vanishing states propagating from the interface

within the material. In particular, states with elevated imaginary wavenumber, iden-

tified with κ2 = |κ|2, will have a lower probability of tunnelling across the barrier,

hence κ2 quantifies the decay factor in the insulator. Panel (a) of Fig. 1.3 highlights

the difference in symmetry states of different segments of the first Brillouin Zone

in the calculated real band structure of MgO, while panel (b) displays the associ-

ated complex bands. For simplicity, we assume here that the transport direction

is aligned with the z axis. Given that electrons propagating orthogonally to the

stacking direction constitute most of the current, only the corresponding direction

in k-space is displayed. By convention, ∆1 states transform like linear combinations

of functions with 1, z and 2z2− x2− y2 symmetry; ∆5 denotes symmetry properties

of linear combinations of functions with zx and zy symmetry, ∆2′ of functions with

Figure 1.3: Comparison between the real (a) and complex (b) band structure of

MgO and the majority (c) and minority (d) spin real band structure of bcc Fe.

Image credit: [16].
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y2 − z2 symmetry. From [Fig. 1.3 (b)] it is then evident that the decay rate at the

Fermi level of ∆1 states is significantly smaller than that of states with ∆5 or ∆2′

symmetries. Importantly, the majority spin band structure of Fe [Fig. 1.3 (c)] has

a ∆1 band crossing the Fermi level, while the same does not hold for the minority

spin bands [Fig. 1.3 (d)]. In conclusion, the symmetry match between the complex

bands in MgO and the real bands in Fe allows for a strongly spin polarised current

across the barrier, hence a large TMR ratio, in Fe/MgO/Fe junctions.

The findings presented by Butler et al. were later confirmed with the observation

of room temperatures TMRs as large as 180% for single-crystal Fe/MgO/Fe [19] and

220% for polycrystalline MTJs [20]. It must be noted, however, that all measured

TMRs in Fe/MgO/Fe MTJs at both low and high temperature are systematically

lower than the theoretical estimations of several 1000%. The cause of this disagree-

ment is related to the presence of a wide range of deviations from epitaxy at the

Fe/MgO interfaces [21, 22]. For example, the formation of an interfacial FeO layer

was shown to strongly deteriorate the spin filtering properties [23]. In conclusion, the

optimisation the TMR of Fe/MgO/Fe MTJs ultimately translates into an engineering

of Fe/MgO interfaces.

The realisation of high TMRs at room temperatures made it possible to use MTJs

to store information, since the TMR can be exploited to efficiently read the mag-

netic state (P or AP). Nevertheless, writing procedures relying on the application of

magnetic fields imply a high power consumption because of the large fields required

to switch the magnetisations between the two states. Furthermore, the difficulties in

realising strictly localised magnetic fields considerably reduce the affordable integra-

tion density. Hence, an alternative writing protocol is needed for efficient memories.

1.1.3 Spin transfer torque random access memories

The possibility of inducing magnetisation dynamics through the use of spin polarised

currents was first theorised by Slonczewski [24] and Berger [25] independently. The

two authors proposed the idea that a spin polarised current injected in a magnetic

film can induce spin excitations, and hence spin dynamics, by transferring angular

10
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Figure 1.4: Schematic representation of the mechanism that gives rise to a spin-

transfer torque in an MTJ. If an electric current is flowing from left to right, it

enters the free (right hand side) layer with the spin polarisation of the reference

(left hand side) magnetic layer. The exchange interaction causes electrons emerging

from the barrier to adapt their spins to the static local magnetisation, MFree, thus

transferring angular momentum to the free layer. As a result of spin conservation,

the local magnetisation vector is driven to align with the spin polarisation of the

current, i.e. it experiences an effective spin torque.

momentum to the local magnetisation. In particular, the effect is such that the static

magnetisation vector is driven towards the alignment with the spin polarisation of

the current. In other terms, a spin polarised current effectively exerts a spin transfer

torque (STT) on the static magnetisation vector and can be exploited to control its

orientation.

In order to elucidate this mechanism we consider a magnetic tunnelling junction

where the magnetisations of the two magnetic layers are misaligned, as shown in

Fig. 1.4. In these conditions a current flowing from the left-hand side to the right-

hand side enters the barrier with a spin polarisation, which is aligned with the

magnetisation of the former. For the moment, the spacer is assumed to yield a

perfectly spin-polarised current. However, a similar argument holds for cases such

as metallic spacers where the polarisation of the injected current is not 100%. The

current entering the right (or free) layer is then entirely populated by electrons with
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spins aligned with the magnetisation of the left layer,MRef. Given the magnetisation

misalignment, the spin quantisation axis of the transport electrons is not the same

of the one of the free layer. As a consequence, the exchange interaction between

the spins of the transport electrons and the static magnetisation, MFree, causes the

former to align with the latter. In turn, the magnetisation vector of the free layer is

driven to align with the direction of the current, i. e.MRef, by spin conservation, and

such effect corresponds to the spin transfer torque. Since the angular momentum

carried by the current is provided by the left-hand side layer, MRef also feels a

torque because of an analogous mechanism, and by spin conservation it has the

same intensity but opposite sign than the torque acting MFree. Nevertheless, the

multilayered structure can be engineered so that reference layer can act as reservoir

for angular momentum. Hence, its magnetisation vector can be kept constant and

exploited as reference, while the free layer can be driven to align or antialign with

the former by applying the current in a verse or the other.

The exploitation of the TMR and STT effects thus allow to effectively read and

write the magnetic state of an MTJ by the means of an electric current, and em-

bodies the operational principle of spin-transfer torques random-access memories

(STT-MRAMs). Such prototypes represent a significant improvement with respect

to field-switched MRAMs for their potentially lower energy consumption and en-

hanced scalability, since STT-MRAM cells can reach sub-20 nm size compared to the

60 nm×150 nm limit for field-switched MRAMs. The realisation of high performance

memories depends, however, on a thorough engineering of the stack containing the

magnetic tunnelling junction. The goal of the structure design is to obtain devices

with high TMR at room temperature, where magnetisation reversal can be realised

with the lowest current intensity possible and remains stable to thermal fluctuations.

The accomplishment of such objective requires, however, an understanding of which

properties influence the magnetisation switching.

The dynamics of the global magnetisation vector, M , in the presence of spin

torques is commonly described by the Landau-Lifshitz-Gilbert-Slonczewski equation

12
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Figure 1.5: Schematic representation of current-driven magnetisation dynamics. The

field-like torque and the interaction with the effective field, Heff, induce a precession

aroundHeff, while the spin-transfer torque and damping effects control the alignment

between the magnetisation vector, m, and Heff. Image credit: [26].

(LLGS),
∂M

∂t
= −γM ×Heff − αM × ∂M

∂t
+ T . (1.5)

Here we will limit the discussion of this equation to a qualitative description of the

defining features of spin dynamics in STT-MRAMs, while a more detailed analysis

will be presented in § 4. The first term of Eq. (1.5) describes the precession motion

of the magnetisation, M , around the effective field acting on M ,

Heff = − 1

|M |
∂E

∂M
= − 1

|M |
∂

∂M

[
Eexch + Eapp + Eani

]
(1.6)

with γ denoting the gyromagnetic ratio for the electron. The last term of Eq. (1.6)

describes the contributions of the total magnetic energy that are relevant for the dy-

namics here considered. The exchange energy, Eexch, arises from the local spin-spin

quantum-mechanical exchange interactions; Eapp quantifies the interaction with an

external magnetic field, and the anisotropy energy, Eani, favours the alignment of

the magnetisation along a certain direction. The latter is normally represented by

13



Chapter 1 Magnetic random access memories

the so-called easy axis and is determined by various factors, ranging from the geo-

metrical shape of single crystal magnets to the presence of interfaces and spin-orbit

mediated interactions between atomic spins and the crystal structure (magnetocrys-

talline anisotropy). The second term in Eq. (1.5) is a “friction” term that drives the

tendency of the magnetisation to align along its equilibrium orientation, i. e. the

easy axis. The strength of this torque is quantified by the phenomenological damping

parameter, α, known as Gilbert damping. Such quantity is fundamental to deter-

mine the magnetisation switching times since it embodies the friction-like effect to

be overcome by the spin torque in order to achieve the magnetisation reversal. Let

us note that the current-induced torques are introduced as a vectorial quantity, T ,

which is traditionally divided into two components, one contributing to the reversal

motion, one to the precession [Fig. 1.5]. The former corresponds to the spin-transfer

torque described above, and is also known as in-plane torque since it does not drive

the magnetisation vector out of the plane defined by the magnetisations of the two

magnetic layers. In contrast, the out-of-plane or field-like torque is parallel to the

precession term of Eq. (1.5) and it is normally attributed to phenomena such as the

precession of electronic spins or the presence of transport electrons with minority

spin state. Although the field-like torque does not influence directly the magnetisa-

tion reversal, it was argued that its interplay with the in-plane component plays a

role in the stability of the switching process [27, 26]. Nevertheless, the out-of-plane

component can be exploited to force the magnetisation into a constant precession

with frequencies in the microwave range, hence to realise spin torque nano-oscillators

(STNOs) [28].

1.2 Designing magnetic tunnel junctions for high-

performance memories

In the last section we showed that the use of MTJs in memory applications of-

fers natural non-volatility and potentially high integration density. Moreover, spin-

14
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transfer torque writing can potentially allow for extremely low energy consumption

and switching times of the order of the ns. The realisation of such potential into

efficient STT-MRAMs requires, however, the minimisation of bit sizes and of the

current intensities, while maintaining high performances at elevated temperatures.

This translates in the search for multilayered structures with reduced cross sections,

with high TMRs at room temperature (> 150%) for efficient reading and that can be

written with low current intensity. The exceptional spin filtering performed by MgO

barriers matched with bcc Fe layers has made Fe/MgO/Fe the most chosen starting

material composition for the fabrication of high TMR MTJs. Nevertheless, the high

Gilbert damping of Fe makes junctions with perpendicular geometry and efficient

switching troublesome to realise. In addition, the spin polarisation induced by a

pure Fe layer suffers of the presence of parasitic tunnelling of ∆2 and ∆5 symmetry

electrons, pushing the search for material alternatives. Contrarily to Fe, in bcc Co

only ∆1 states populate the majority band at the Fermi level hence the higher spin

polarisation grants Co/MgO/Co junctions a higher predicted TMR than Fe-based

MTJs [29]. Furthermore, the higher magnetic anisotropy of Co implies enhanced

stability of the magnetic properties to thermal fluctuations. Nevertheless, when Co

is deposited on MgO it nucleates in a non uniform island-like pattern rather than

growing in a regular bcc lattice. Such deviation from an ideal crystalline structure

strongly reduces the achievable spin polarisation, since it favours the formation of in-

terfacial resonant states that in turn enhance the tunnelling of spin-down electrons.

The use of CoxFe1–x alloys offers improved spin polarisation and crystalline order

compared to elemental crystals. Although the optimal Co concentration is debated,

rich Co compositions are normally preferred for higher stability to temperature fluc-

tuations. The resulting TMR then depends on the amount of defects and disorder at

the magnet/insulator interfaces, since any additional source of scattering alters the

predicted electronic states and hence yields deviations from ideal spin filtering. The

key objective to be achieved in order to realise high TMR MTJs is thus to engineer

multilayered structures that can be grown while keeping the ferromagnet/insulator

interfaces as clean as possible. State-of-the-art Fe/MgO based-MTJs are deposited
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Figure 1.6: Typical multilayered stack including a magnetic tunnel junction with an

in-plane magnetisation geometry for STT-MRAM applications.

in an amorphous phase, and crystallisation and epitaxy are then obtained through

annealing. This is possible thanks to the high stability of the MgO rock salt-like

structure, which dictates the crystal phase of the stack during the high temperature

annealing [30]. Moreover, the addition of B to CoxFe1–x was found to help the crys-

tallisation of the electrodes on MgO and TMRs beyond 200% at room temperature

were observed in (CoFe)80B20/MgO/(CoFe)80B20 MTJs [31].

Nevertheless, the capability of fabricating high TMR junctions alone is not suf-

ficient to realise efficient STT-MRAMs. The key challenge is in fact to achieve low

write currents and good data retention at the same time, meaning that the free

layer magnetisation is required to be stable to thermal noise but reversible with low

current intensities. Moreover, the reliability of the reading and writing procedures

heavily depends on how effectively the magnetisation of the reference layer can be

constrained. In early prototypes of STT-MRAMs magnetisation pinning was re-

alised exploiting the exchange bias coupling exhorted by an antiferromagnetic layer

to form a synthetic ferrimagnet (SyF). Fig. 1.6 shows the typical multilayered struc-

ture adopted with such a purpose. Starting from the bottom of the stack, a thick (∼

15 nm) layer of an antiferromagnetic (AF) material, such as PtMn or IrMn, is grown
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in a fcc structure oriented along the (111) on top of a seed layer usually made of

Ru or Ta. The 3-fold in-plane symmetry of fcc (111) lattices is commonly adopted

because of its consolidated reliability for pinning structures and growth techniques

for Si-based substrates. A relatively thin layer of the fcc CoFe is deposited on the

AF, so that the interlayer exchange coupling strongly bounds the magnetisation of

the former in a given direction. In particular, the whole structure aims to force the

magnetisations to lie in the plane defined by the films, i.e. adopting an in-plane

geometry for the magnetisations. In fact, the thickness of the ferromagnetic layers is

kept to a minimum and the pillar is edged in an elliptical pattern so that shape con-

tributions to the magnetic anisotropy aid the pinning of the magnetisations within

the plane along a single axis. As explained above, MgO offers efficient spin filtering

to currents where majority-spin electrons have the ∆1 state symmetry. The use of a

ferromagnet in a crystal phase with symmetry properties analogous to MgO, i. e. with

a 4-fold in-plane symmetry, is thus essential to achieve high spin polarisations. A

metallic layer of Ru or Ta is normally interposed between the fcc FeCo layer and the

FeCoB/MgO/FeCoB junction. In this way the post-annealing crystalline structure

of the MTJ is dictated by the MgO rather than by the substrate. Furthermore, the

thickness of the metallic layer is usually kept below 1 nm so that the inter-layer ex-

change between the fcc FeCo and the bcc FeCoB layers yields an antiferromagnetic

coupling. The choice of Ru or Ta for the metallic layers is also made because they

attract B and Mn atoms during annealing [30]. This helps to prevent such atoms to

diffuse towards the interfaces with the ferromagnets and hence deteriorate the device

performances.

Although the in-plane magnetisation geometry offers a good thermal stability for

reading, it is not advantageous for energy efficient switching. In fact, the intrinsic

anisotropy field induced by the shape of the free layer adds to the anisotropy contri-

butions external to such layer, hence enhancing the energy barrier to be overcome

to achieve magnetisation reversal. This can be seen by examining an approximated
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formula for the critical current intensity,

I‖c =
2αeMSV

~P
µ0

(
H
‖
ani +

MS

2

)
, (1.7)

which can be evinced from the LLGS equation (see Ref. [32] for more details). Here e

indicates the electronic charge, while µ0 is the vacuum permeability. This expression

clearly shows that the critical current depends linearly on the Gilbert damping,

α, on the saturation magnetisation of the free layer, MS, and on its volume, V ,

while it is inversely proportional to the spin polarisation of the current, P . The

terms in brackets embody the effective magnetic field, where H
‖
ani is the anisotropy

contribution, while the second represents the demagnetising field. Importantly, the

two contributions have the same sign, meaning that the out-of-plane precession that

the magnetisation undergoes to while switching is obstructed by the magnetising

field, hence yielding a penalty to Ic. This, however, does not occur when the easy axis

of the free layer is aligned along the stacking direction, namely it is in a perpendicular-

to-plane geometry. In this condition the critical current becomes

I⊥c =
2αeMSV

~P
µ0

(
H⊥ani −MS

)
, (1.8)

where the anisotropy field is here denoted as H⊥ani to highlight its different intensity

as compared to the one characteristic of in-plane geometries, H
‖
ani. Importantly, the

demagnetising field contribution has opposite sign with respect to Eq. (1.7), meaning

that the demagnetising field in this case favours the out-of-plane precession and hence

lowers the critical current.

These considerations brought to the realisation of MRAMs based on junctions

with a perpendicular-to-plane magnetisation geometry (pMTJs) [33]. In contrast

to in-plane geometry devices, pinning is not obtained through inter-layer exchange

bias but the perpendicular magnetic anisotropy (PMA) arising at the CoFeB/MgO

interfaces is exploited instead. It was in fact shown that the overlap between O-pz

and hybridised transition metal dz2 orbitals at the magnetic metal/oxide interfaces

enhances the spin-orbit coupling induced splitting around the Fermi energy, thus pro-

ducing a strong perpendicular anisotropy [34]. In these conditions a strong in-plane
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Figure 1.7: Typical multilayered stack including a magnetic tunnel junction with a

perpendicular-to-plane magnetisation geometry for STT-MRAM applications.

anisotropy is no longer needed, hence a circular shape of the nano-pillar contain-

ing the junction becomes more convenient than the elliptical one adopted for the

in-plane geometry. Moreover, the pinning layers can be eliminated from the multi-

layered structure that is thus significantly simplified [Fig. 1.7]. The magnetic tunnel

junction is here deposited directly to a Ta/Ru/Ta buffer layer that promotes the

transition to the bcc structure of CoFeB and attracts B during annealing. The thick-

nesses of the magnetic layers are then further reduced to enhance the out-of-plane

anisotropy. This also diminishes the critical switching current given its linear depen-

dence with the volume of the free layer, as shown in Eq. (1.8). Such equation also

demonstrate that a low Gilbert damping parameter helps efficient switching. The

latter is known to grow larger with the intensity of the spin-orbit interaction, which

increases with the atomic number. Hence relatively heavy atoms such as Pt or Pd

are normally avoided in the stack.

19



Chapter 1 Magnetic random access memories

1.2.1 Current challenges and perspectives

Perpendicular STT-MRAMs based on CoFeB/MgO MTJs constitute the current

state-of-the-art of magnetic memories. Their diameter can be shrank down to below

20 nm and they can be switched with currents with densities as low as 19 MAcm−1

[35]. Smaller cross sections are possible but become of troublesome realisation be-

cause of the edge damage caused by etching. Nevertheless, these prototypes do not

offer the level of reliability and thermal scalability required by automotive-vehicle or

internet of things applications. The main remaining challenges are to reduce the tem-

perature dependence of the magnetic anisotropy and to lower the critical currents to

improve the device endurance. Perpendicular anisotropy can be enhanced by adopt-

ing materials with high magnetocrystalline anisotropy. However, the latter increases

with the strength of the spin-orbit coupling and hence it implies an increase of the

Gilbert damping. Further improvements can be made by adopting double barrier

MTJs, which allows for enhanced thermal stability. However, the pillars are more

difficult to etch and the reduced epitaxy deteriorates the TMR [36].

The only alternative to a further optimisation of the current multi-layered struc-

ture is to look for a different magnet/insulator combination with improved capabili-

ties with respect to the established CoFeB/MgO. This translates into the search for

a tunnelling barrier where the symmetries of the electronic states are similar to MgO

and for a magnetic material with compatible crystal structure and state symmetries

dominating the majority spin state around the Fermi level. However, the chemical

and structural simplicity of magnesium oxide makes its replacement troublesome.

Most of the alternatives proposed in literature are based on modifications of MgO

(e. g. see Ref. [37]), but for the moment none of such candidates comes close to the

efficiency of the original barrier. The simplest option is then to search for a differ-

ent ferromagnet with improved spin polarisation. Half-metallic compounds, namely

ferromagnets that are conducting in one spin channel and insulating in the other,

constitute a particularly attractive alternative because of their intrinsically perfect

spin polarisation. Nevertheless, a suitable replacement of FeCoB is yet to be found.
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In recent years, many efforts have been focused on exploring a different mecha-

nism to induce magnetisation reversal by driving an electric current along the plane of

ferromagnet/non-magnet (NM) bilayers. Spin-orbit effects at the FM/NM interface

generate transverse spin currents, which allow one to manipulate the magnetisation

of a FM layer by the means of spin-orbit torques (SOTs). This effect was shown to

be capable of efficiently controlling a number of magnetic ordering, including domain

walls and skyrmions. Devices operated by driving the current in-plane, rather than

out-of-plane, are particularly attractive since they offer decoupled read/write paths.

Large currents flowing across an MTJ can in fact lead to the breakdown of the in-

sulating barrier. This problematic is not relevant in SOT-based memories since a

minimal current intensity is required for reading, hence they allow for better thermal

stability than that of STT-MRAMs.

A second research topic with great promises for spintronics applications is the

one of antiferromagnetic materials. The anti-alignment of atomic spins, as opposed

to the alignment in ferromagnets, yield a locally magnetic environment but with a

total zero magnetisation. This implies, on one hand, the absence of stray fields that

can interact with neighbouring layers and make the use of ferromagnetic material

more troublesome. On the other hand, the typical time scales of spin dynamics in

antiferromagnets of the order of 1 fs, that is three orders of magnitude faster than

the one in ferromagnets. Although electrical switching in such materials was experi-

mentally demonstrated [38], their practical use still require a number of technological

advancements [39].

1.3 Summary and thesis overview

Devices based on magnetic materials are promising candidates for the next genera-

tion of random access memories. Among their most relevant features, their writing

procedure based on current-driven spin torques allows for improved switching times

and energy-efficiency. Advancement with respect to existing prototypes requires the

further optimisation of the growth techniques for CoFeB/MgO junctions or the use
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of novel material combinations. Nevertheless, the high number of factors to be con-

sidered to assess the performances of a given structure makes the individuation of

material candidates rather complicated.

The main goal of this thesis is to develop and use a computational scheme to

probe the features of current-driven magnetisation switching in a range of magnetic

materials, in order to understand its material dependence and aid the material opti-

misation of magnetic memories. Spin dynamics is considered at the atomistic scale

as the numerical solution of the atomic LLG equation within a classical spin Hamil-

tonian [40]. The spin model is tailored to a given system by specifying a number

of parameters of quantum mechanical nature, including atomic magnetic moments,

inter-atomic exchange constants, magnetic anisotropy, Gilbert damping and spin

transfer torques. Ideally, each of the latter is to be assessed within the same level of

approximation for each system, since a consistent parameterisation favours the com-

parison of different systems. First principles approaches based on density functional

theory allow to calculate ground state and transport properties of a structure given

only the atomic positions and relative species. The main concepts and methods for

electronic structure calculations will be presented in Chapter 2, together with the

implementation techniques that will be adopted throughout the rest of the thesis.

Chapter 3 contains results for spin-dependent quantum transport calculations

in Fe/MgO based MTJs, where different material compositions for the free layer

are considered. Particular attention is dedicated to the estimation of spin transfer

torques in such structures, in the attempt of determining the factors that define the

material dependence of the STT. We begin by considering free layers composed by Fe,

Co and Ni, and we discuss the link between the spatial profile of the spin torques with

the band structure of each material. We then move to study the influence of partially

oxidised interfaces, of magnetic layers contacted with non-magnetic electrodes and

of the induced moments in L10 FePt layers. The obtained data is then employed

in Chapter 4, where the results of current-driven spin dynamics calculations are

presented. The Chapter begins with a description of the simulation method for

atomistic spin modelling, along with a discussion on the spin Hamiltonian to model
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the magnetic properties of bcc Fe. We then detail an approach to extend the spin

dynamics to the case of time-dependent spin lengths, which is then adopted to analyse

the properties of L10 FePt. The spin models for Fe and FePt are then combined with

the spin torques calculated from first principles to study the magnetisation switching

for different free layers at finite temperatures and for a range of applied voltages.

We continue in Chapter 5 with an analysis of the magnetic properties of the

antiferromagnetically ordered Mn3Ga and Fe2MnGa Heusler alloys. The formulation

of a spin Hamiltonian to reproduce the thermodynamical magnetic properties of the

former is presented and employed to study of spin excitations in such material. The

peculiarity of Fe2MnGa lies on the fact that magnetic properties are determined

by the moments at Mn sites, while spins at Fe sites behave as induced moments

with length strongly dependent to the orientation of Mn moments. We formulate

a spin model to describe the magnetic ground-state configuration, that corresponds

to antiferromagnetically coupled Mn atoms and non-magnetic Fe atoms. We then

present results of spin transport calculations on a Fe/MgO/Fe2MnGa junction, and

discuss the differences between the case of aligned and anti-aligned moments at Mn

sites.

We conclude in Chapter 6 by discussing the derivation of a novel approach to

estimate the Gilbert damping parameter within first principle simulations that does

not require the input of external parameters.
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Chapter 2

Ground-state and transport properties of

magnetic materials

“The best way is to use the abstract field idea. That it is

abstract is unfortunate, but necessary. ”

- Richard P. Feynman

An accurate estimation of the electronic structure of a material is of key impor-

tance for the prediction of its magnetic properties. In fact, magnetism is caused by

the asymmetry between the energies of spin-↑ and spin-↓ states that essentially orig-

inates from the Pauli exclusion principle. In the simple case of a two electron system

this can be shown by imposing the anti-symmetry of the total wavefunction, Ψ(1, 2),

under the exchange of the two electrons, 1 ↔ 2. Assuming that a single-particle

wavefunction, ψ, can be factorised as the product between a spatial component, ϕ,

and a spin component, χ, i.e. neglecting relativistic corrections, the possible resulting

total wavefunctions are

ΨS(1, 2) =
1

2
[ϕa(1)ϕb(2) + ϕa(2)ϕb(1)][χ↑(1)χ↓(2)− χ↑(1)χ↓(2)], (2.1)

ΨT (1, 2) =
1

2
[ϕa(1)ϕb(2)− ϕa(2)ϕb(1)]


χ↑(1)χ↑(2)

χ↑(1)χ↓(2) + χ↑(2)χ↓(1)

χ↓(1)χ↓(2)

. (2.2)
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Importantly, the spatial component of the “singlet”, ΨS, and of the “triplet”, ΨT ,

states are respectively symmetric and anti-symmetric under coordinates swap, while

the opposite holds for the spin states so that the anti-symmetry of the total function

is obtained. It is then straightforward to evaluate the expectation value of the

Hamiltonian of the system, Ĥ, and find that the energies of the two eigenstates are

ES = C + J and ET = C − J , (2.3)

where the level separation is given by the exchange integral,

J =

∫
d1d2 ϕ∗a(1)ϕ∗b(2)Ĥϕa(2)ϕb(1) . (2.4)

High exchange energies, however, are not sufficient to grant magnetic properties in

extended systems, since a major role is played by the number of electronic states

at the Fermi energy, N(EF ). In fact, ferromagnetism arises in solids only when

the exchange energy is stronger than the kinetic energy at the Fermi level, hence

favouring the splitting of the energy levels of different spin states. This condition

is typically expressed by the means of the phenomenological Stoner criterion, that

predicts the emergence of ferromagnetic properties upon the satisfaction of the con-

dition N(EF )J > 1. In this context J is known as the Stoner exchange parameter

and has a definition, which is analogous to that of Eq. (2.4), chosen to embody a

uniform energy splitting between spin-↑ and spin-↓ energies in an extended system

[41].

A uniform exchange however provides only a qualitative description of ferromag-

netism, hence quantitative studies require a material-specific analysis of the elec-

tronic structure. An exact estimation of the latter corresponds to the exact solution

of the full interacting many-body problem, which is not practically possible in any

case of interest. A popular alternative to overcome this limitation is to use model

Hamiltonians, i.e. Hamiltonians formulated to reproduce the electronic structure of

the material of interest and defined by several system-dependent parameters. The

need of an external parameterisation thus makes these approaches more suitable to

perform qualitative analyses rather than systematic studies of large sets of materials.
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On the contrary, first principles methods based on density functional theory (DFT)

provide a stand-alone theoretical framework capable of providing material-specific

properties given as sole input the atomic species in a system and their coordinates.

The remainder of this chapter begins with a general description of the electronic

structure methods that are most relevant to this dissertation, starting with spin-

dependent model Hamiltonians for the study of 3d transition metals to move on to

the basics and implementation techniques used in density functional theory. The

next section is then focused on the explanation of the non-equilibrium Green’s func-

tions (NEGF) approach to calculate electronic structure properties under steady

state currents. Particular attention will be dedicated to detailing the SIESTA [42]

and SMEAGOL [43, 44] packages, since these were the main tools used to produce

the results presented here.

2.1 Electronic structure theory

The knowledge of the electronic structure of a material enables access to a number of

its properties, not only of mechanical but also of thermodynamical or optical nature.

However, to gain such information from a theoretical point of view one has to solve

the many-body problem for N electrons interacting with one another and with the

atomic nuclei. Throughout this thesis we will assume that the nuclear and electronic

motions can be treated separately, i.e. we will work within the Born-Oppenheimer

approximation. Moreover, since we will be interested into equilibrium electronic

properties, the atomic dynamics will be completely neglected. Under these conditions

the complete many-electron problem can be written in terms of the Schrödinger

Hamiltonian

H =
∑
i

[
− ~2

2me

∇2
i + Vion(ri)

]
+
e2

2

∑
i,j

1

|ri − rj|
. (2.5)

Here ri for i, j = 1, . . . , N labels the electronic coordinates, e and me are the elec-

tronic charge and mass, respectively. The first term represents the kinetic energy, T ,

the second the interaction potential of the i-th electron with the ions and the last
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addend is the electron-electron Coulomb interaction, Vel. A complete solution of such

problem corresponds to the determination of all the possible states, ψσn, with their

respective energies, εσn. Here we explicitly denote separately the spatial quantum

numbers with the single symbol, n, and the spin state, σ =↑, ↓, to mark its relevance

for the present dissertation. Magnetic systems are characterised by the presence of

an asymmetry in the occupation of electronic states with different spin orientation.

This is attributed to the presence of strong interactions between electrons occupying

the highest energy levels, i.e. at the Fermi energy. Note, however, that all interac-

tions considered in Eq. (2.5) are not spin-dependent. This holds only if one neglects

relativistic corrections, a fact that is acceptable in a large number of cases. If this

is not possible, one needs to replace the Schrödinger Hamiltonian Eq. (2.5) with a

Dirac-like one. In practice, in most cases one can treat the relativistic corrections

within perturbation theory and include them in Eq. (2.5) by adding additional terms

expressing the interaction between the electronic orbital and spin angular momenta.

The latter is commonly known as spin-orbit coupling and it is of fundamental im-

portance to capture phenomena such as the magnetic crystalline anisotropy or the

Gilbert damping.

2.1.1 Model Hamiltonians

The many-body problem is of formidable difficulty and it is not exactly solvable

unless one considers an extremely reduced number of electrons. A number of methods

have been formulated to calculate approximate solutions, especially for cases where

electron-electron correlations are not particularly strong. An extensive introduction

and overview of the latter can be found in Ref. [45]. The vast majority of the

results that will be presented in this work are obtained with approaches based on the

Kohn-Sham (KS) formulation of density functional theory (DFT). DFT provides a

direct solution of the many-body problem by treating it as a non-interacting-particle

problem where electron-electron interactions are embodied by an effective single-

particle potential. DFT then allows to perform quantitative predictions of material-

specific properties, where the only input is the crystal structure of the system. The
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cost of such universality consists in a relatively elevated complexity of the numerical

implementation and computational costs. Moreover, obtaining accurate and reliable

results can be practically troublesome, given that a number of simulation parameters

depending on both the system and the properties of interest are to be specified and

monitored. Thus, in cases where one is after qualitative rather than quantitative

information the use of simplified models defined by a minimal number of variables

can be more convenient. Most of such models are based on the tight binding (TB)

approximation, namely on the assumption that each eigenstate, ψn(r), of an electron

in a periodic system an be written as a linear combination of atomic orbitals (LCAO),

ϕµ(r),

ψn(r) ≡ 1√
Nk

∑
k

ψk
n(r) =

1√
Nk

∑
µk

eik·rcknµϕµ(r). (2.6)

Here the sum on the Nk wavevectors, k, sampling the Brillouin zone represents a

Bloch state expansion, µ labels the different atomic orbitals and cknµ are the expansion

coefficients for the state n on the basis {ϕµ}. One can then express the electronic

structure of the system by considering an Hamiltonian such as

ĤTB =
∑
µ

εµâ
†
µâµ +

∑
µν

tµν â
†
µâν , (2.7)

where â†µ and âµ are the creation and destruction operators for the atomic state µ

that satisfy the fermionic anti-commutation rules,{
âµ, â

†
ν

}
= δµ,ν , and

{
â†µ, â

†
ν

}
= 0 =

{
âµ, âν

}
, (2.8)

for {Â, B̂} = ÂB̂ + B̂Â. The on-site energies, εµ, and the hopping parameters, tµν ,

are respectively defined as

εµ =

∫
d3rϕ∗µ(r)Hϕµ(r), (2.9)

tµν =

∫
d3rϕ∗µ(r −Rµ)Hϕν(r −Rν), (2.10)

where Rµ denotes the position of the site at which the atomic orbital ϕµ is centered.

These parameters are then to be specified in order to reproduce the electronic prop-

erties of the system of interest. For example, they can be obtained by fitting the
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band structure of the chosen material taken either from experiment or from a density

functional theory calculation. Note that parameters obtained by fitting implicitly

include many-body features at the mean-field level.

The above described Hamiltonian can then be used as a starting point to inves-

tigate more complex material properties. For example, the s − d or Kondo model

for ferromagnetism [46] introduces an inter-orbital exchange interaction and can be

used to explain the arising of localised magnetic moments in alloys based on 3d tran-

sition metals and rare-earth ions. In fact, magnetism in such materials is known to

be caused by the exchange coupling between itinerant conduction electrons and lo-

calised electrons, originating respectively from 4s and 3d orbitals in 3d metals and by

5s, 4d and 4f orbitals in rare-earth compounds. Such mechanism can be reproduced

by an Hamiltonian of the form

Ĥsd =
∑
ijσ

tij â
†
iσâjσ − J

∑
i

Ŝi · ŝi. (2.11)

where i, j label the atomic sites and σ =↑, ↓ denotes the electronic spin state. The

first term embodies the kinetic energy, where the operators âiσ, â†iσ destroy and

create electrons in s orbitals located at the i-th site and the hopping parameters tij

are assumed to be orbital independent. Since d electrons are strongly localised at the

atomic sites, their contribution to the kinetic energy is negligible when compared to

the one of itinerant s electrons, therefore it can be omitted. The second term accounts

for the on-site sd-exchange interaction between s electrons with spin operators

ŝi =
(
â†i↑âi↓+â

†
i↓âi↑

2
,

â†i↑âi↓−â
†
i↓âi↑

2i
,

â†i↑âi↑−â
†
i↓âi↓

2i

)T
(2.12)

and d electrons with spins, ŝi. The strength of this latter coupling is controlled by

the exchange parameter, J , that is defined in an analogous way to Eq. (2.4). The

Hamiltonian in Eq. (2.11) can then be used as starting point for investigation of

various spin-dependent properties in such systems, see for example Ref. [47].

The two Hamiltonians (2.7) and (2.11) represent two simple examples to show

how model Hamiltonians can be tailored to target a specific physical property in

a simplified framework. The applicability range of such models covers a variety of
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physical phenomena (see e. g. Refs. [48, 49]), although a growing complexity gener-

ally implies the need to specify additional parameters. The latter can be normally

determined by fitting data obtained from either experiments or first principles sim-

ulations. Such procedure becomes the more complicated the more quantities are

needed to define the model Hamiltonian. Hence it is not convenient for complex

chemical and/or crystalline structures. Moreover, the requirement of a parameteri-

sation from an external source makes model Hamiltonians not suitable to analyse a

large number of systems or to explore novel materials.

2.1.2 Density functional theory and the Kohn-Sham prob-

lem

The main goal of first principles, or ab-initio, methods in electronic structure theory

is to recover the properties of a certain system of electrons and atomic nuclei given

solely the knowledge of the coordinates and the species of each atom, together with

the values of the fundamental physical constants. This translates in the need of

solving the eigenproblem associated to the many-body Hamiltonian in Eq. (2.5) for

a ionic potential, Vion(r), that is uniquely determined by the atomic positions and

species. Most properties of each system are then encoded in its ground-state (GS)

electronic configuration that is defined by the 3N × 2-dimensional eigenfunctions

ψn(x, y, z) corresponding to the lowest eigenvalues, with N being the total number

of electrons. Modern first principles approaches are formulated in the framework

of density functional theory (DFT) which is based on the Hohemberg-Kohn (HK)

theorems [50]. The latter do not provide a practical recipe for the solution of the

many-body problem, but prove that it can be reformulated in terms of the total

electron density, ρ(r) ≡ ρ(x, y, z), thus drastically reducing its dimensionality from

3N×2 to 3. The theorems apply to any system of interacting particles in an external

potential, Vext(r), which in Eq. (2.5) is played by the ionic potential.

Hohember-Kohn theorem I. For any system of interacting particles in an ex-

ternal potential, Vext(r), the potential Vext(r) is determined uniquely, except for a
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constant, by the ground state particle density, ρ0(r).

Hohember-Kohn theorem II. A universal energy functional E[ρ] the electron

density, ρ(r), can be defined, valid for any external potential, Vext(r). For any par-

ticular Vext(r), the exact ground-state energy of the system is the global minimum

of this functional, and the density ρ(r) that minimises the functional is the exact

ground-state density, ρ0(r).

The content of the first theorem is not of any particular practical use, and it

implies that any property depending on ground- or excited states can be determined

given the knowledge of the sole ground-state density, ρ0(r). However, according to

the second HK theorem, the knowledge alone of the functional of the density, E[ρ],

is sufficient to determine the exact ground-state energy and density. Moreover, the

latter can also be viewed as a variational principle for the ground-state in terms of

the electron density. In summary, the Hohenberg-Kohn theorems state that for any

choice of a potential Vext(r) the ground-state of a system can be found by minimising

a unique functional of the electron density, obtaining an exact result if the adopted

functional is exact. This implies that the electronic system for any configuration of

the ions is completely determined given the knowledge of the universal functional,

E[ρ]. This is a rather powerful statement. However, the complexity of the problem

was simply moved to the determination of the functional that should account for the

full electron-electron correlations to be exact. A form for such functional is unknown,

hence the introduction of approximations is still required to make this formulation

practically tractable. Nevertheless, the variational principle can be exploited to

recover the ground-state electron density, hence the total energy and the remaining

ground-state properties of the system. As a matter of fact, the variational principle

holds not only for functional dependencies expressed in terms of the electron density,

but also for generalised densities [51].

By far the most widely used method that translates density functional theory

into an operative and computationally viable approach is based on the Kohn-Sham

ansatz, which is founded on two main assumptions:
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Kohn-Sham ansatz I (Non-interacting-V-representability). The exact ground-state

density can be represented as the ground-state density of an auxiliary system of non-

interacting particles.

Kohn-Sham ansatz II (Exchange-correlation (XC) potential). In the Hamiltonian

of the auxiliary system electron-electron interaction can be described by an effective

local potential, VXC(r), known the exchange-correlation potential.

The original interacting many-body problem is then reduced to an independent

particle problem, uniquely determined by the Kohn-Sham energy functional

EKS[ρ(r)] = T [ρ(r)] +

∫
d3r Vext(r)ρ(r) +

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
+ EXC[ρ(r)]. (2.13)

The function ρ now is the electron density of the auxiliary non-interacting system.

The first term contains the kinetic energy of the non-interacting system, the two

middle terms embody the electrostatic energy (the latter is also known as the Hartree

energy), while the last term is the exchange-correlation (XC) energy. It is evident

that the second and third terms are immediately known for a given choice of electron

density. This might not seem immediate for the kinetic energy, but it becomes so

if one expresses the electron density in terms of the electron eigenfunctions, ψn(r),

namely

ρ(r) =
N∑
n=1

|ψn(r)|2, (2.14)

since

T [ρ(r)] = − ~2

2m

N∑
n=1

〈ψn|∇2|ψn〉 = − ~2

2m

N∑
i=1

∫
d3r|∇ψi(r)|2. (2.15)

The remaining term is the XC energy, EXC, which contains electron-electron interac-

tion and for which an explicit exact form cannot be found. Note that this term does

not contain the difference between the kinetic energy of the interacting and non-

interacting systems. An approximated form of the latter is then used to make the

Kohn-Sham (KS) problem solvable. Before detailing the most common approxima-

tions, we reformulate the KS problem expressed as the energy functional in Eq. (2.13)

as a Schrödinger-like eigenproblem in terms of the eigenvectors, ψn(r), known as the
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KS wavefunctions. This is achievable by performing a functional differentiation with

respect to ψ∗n(r) of the Kohn-Sham energy, namely

δEKS

δψ∗n(r)
=

δT

δψ∗n(r)
+

[
δEext

δρ(r)
+
δEHartree

δρ(r)
+
δExc

δρ(r)

]
δρ(r)

δψ∗n(r)
= 0, (2.16)

where the last member of the latter equation descends directly from the second

HK theorem. We note that such expression corresponds to the stationary point

of the functional. Each of the functional derivatives in the square brackets cor-

responds to the definition of a potential acting on an electron at the position r,

i.e. V (r) = δE/δρ(r). In other terms, in Eq. (2.16) the variational principle was

exploited to define an effective single-particle potential acting on a non-interacting

(KS) wavefunction. As a result, the Kohn-Sham problem can be formulated in terms

of the Kohn-Sham equations (n = 1, . . . , N)

HKS(r)ψn(r) =

[
− ~2

2m
∇2 + Vext(r) + VHartree(r) + Vxc(r)

]
ψn(r) = εnψn(r), (2.17)

which constitute a Schrödinger-like problem for N non-interacting particles described

by the so-called Kohn-Sham Hamiltonian, HKS. The HK theorems along with the

KS ansatz then imply that given the exact form of Vxc(r), the respective eigen-

functions, ψn(r), can be used to construct the ground-state density matrix of the

original many-body Hamiltonian. However, there is no indication that each single

KS eigenstate corresponds to an eigenstate of the original problem, namely to a

physically-interpretable state. In other words, the individual KS states do not have

a straightforward physical meaning. Nevertheless, since the HK theorems guarantee

that the correct electron density is produced, the KS eigenstates must be usable to

construct physically meaningful quantities. Let us remark however that Eq. (2.17)

was obtained by using a variational principle based on the wavefunctions that con-

tribute to the electron density, i. e. corresponding to occupied electronic states, while

there was no specific mention of eigenfunctions of unoccupied (or virtual) states.

Therefore, we conclude that the solution of the KS equations do not yield physically

sound information on excited states. Moreover, the only quantity that can be de-

fined with the KS eigenvalues and that is well-defined by itself is the lowest occupied

molecular orbital (HOMO).

34



2.1 - Electronic structure theory Chapter 2

The key feature of the Kohn-Sham formulation is the use of the exchange-

correlation potential, VXC, to include electron-electron interactions. An exact deter-

mination of VXC equals to an exact solution of the original, full-interacting many-body

problem and it is not practically solvable as it is. As a consequence, approximated

forms of the XC energy are to be adopted in order to completely determine the KS

equations and their solution. The simplest approximation is based on the observa-

tion that in most solids the electrons can be considered as close to the limit of the

homogeneous electron gas. We can then approximate the exchange-correlation en-

ergy density of a generic system at each point, εXC(r), as the one of the homogeneous

electron gas, εhom
xc , with the same electron density. In other terms,

ELDA
XC [ρ(r)] =

∫
d3r ρ(r)εhom

xc (ρ(r)). (2.18)

This form of the XC energy is known as local density approximation (LDA). The most

straightforward improvement of the LDA functional introduces in the XC energy

density a dependence on the gradient of the electron density,

EGGA
XC [ρ(r)] =

∫
d3r ρ(r)εhom

xc (ρ(r), |∇ρ(r)|), (2.19)

and is known as generalised gradient approximation (GGA). The LDA and GGA

functionals can be considered to be local functionals, since they explicitly depend on

a single position vector, r. As a consequence, they both fail in situations where rel-

atively strong electron-electron correlation introduces non-locality, where fully non-

local potentials should be used [52]. In some situations it is possible to introduce

corrections to improve the estimation of specific physical properties, such as the

Hubbard U [53] and the self-interaction [45] corrections in the case of band gaps of

insulators. Nevertheless, the latter techniques introduce additional computational

costs, therefore they are generally employed only when both LDA and GGA provide

a strikingly wrong estimation of the property of interest. Although in many cases

the GGA exchange-correlation potential yields improved accuracy with respect to

LDA [54], in others the choice of the latter remains preferable.
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2.1.2.1 Spin density functional theory

The description of DFT provided so far is valid in cases where the spin degrees of

freedom do not play a relevant role for the system of interest, since the dependence

of the electronic structure on the electronic spin is completely neglected. In practice,

the inclusion of spin degrees of freedom implies the explicit functional dependence

of the energy upon the densities of spin-↑ and spin-↓ electrons, namely

E ≡ E[ρ↑(r), ρ↓(r)], where ρσ(r) =
N∑
i=1

|ψiσ|2. (2.20)

Hereon ψiσ(r) will denote the spin-σ =↑, ↓ component of the i-th electronic eigen-

function. In analogy to the spin-independent case, the Kohn-Sham equations for

spin-density functional theory (SDFT) can be obtained through functional deriva-

tives with respect to ψ∗iσ(r). We note here that the form of the functional depen-

dence chosen in Eq. (2.20) neglects the possibility of mixing between the two spin

channels. In fact, if the spin degrees of freedom are represented by 2 × 2 complex

matrices expanded in the basis {| ↑〉, | ↓〉}, in this formulation the electron density

is a diagonal matrix in spin space, namely ρσσ
′ ≡ δσσ

′
ρσ. As a consequence, the KS

Hamiltonian will have an analogous spin dependence and each spin state will admit

an equation analogous to Eq. (2.17). Although the generalisation of the external

and Hartree potentials to a spin-dependent system is trivial, the treatment of the

exchange-correlation term requires some precautions. Within the “collinear-spin”

approximation represented by Eq. (2.20), the spin-independent definitions of the

LDA and GGA exchange-correlation energies can be easily extended by introducing

the appropriate spin-density functional dependencies,

ELSDA
XC [ρ↑(r), ρ↓(r)] =

∫
d3 ρ(r)εhom

xc (ρ↑(r), ρ↓(r)), (2.21)

EGGA
XC [ρ↑(r), ρ↓(r)] =

∫
d3r ρ(r)εhom

xc (ρ↑(r), ρ↓(r), |∇ρ↓(r)|, |∇ρ↓(r)|). (2.22)

Difficulties, however, arise if the spin quantisation axis is allowed to vary, i. e. in

the “non-collinear spin” case. In these conditions the electron density has non-zero

off-diagonal spin components, and its spin dependence is often expressed in the basis
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for 2× 2 complex matrices defined by the Pauli matrices, σ = (σx σy σz)
T , namely

ρ =

ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 =

 n+ µz µx − iµy
µx + iµy n− µz

 ≡ n12 + µ · σ, (2.23)

where 12 is the 2x2 identity matrix and

n =
ρ↑↑ + ρ↓↓

2
, µx =

ρ↑↓ + ρ↓↑

2
, µy = i

ρ↑↓ − ρ↓↑

2
, µz =

ρ↑↑ − ρ↓↓

2
.

(2.24)

In this notation the spin-independent part of the electron density, n, is isolated from

the spin-dependent one, µ, and the direction of the local quantisation axis coincides

with the local direction of µ ≡ µ(r). Note that spin collinearity is recovered by

setting µx = µy = 0, since the spin quantisation axis is normally assumed to be

aligned along z by convention. The challenge of including a spatially varying spin

quantisation axis in the KS Hamiltonian comes down to finding a form of the XC

potential suitable to consider non-collinear electronic spins. By construction, the

LSDA energy of Eq. (2.21) is invariant for rotations of the quantisation axis, meaning

that it is functionally dependent solely on n(r) and |µ(r)|, as in the spin collinear

case. This implies that the same functional can be employed for both collinear and

non-collinear spin calculations. On the contrary, the functional dependence on the

gradients of the spin densities makes GGA potentials not easily adaptable to include

non-collinearity. In some SDFT implementations this limitation is neglected and

the GGA energy is assumed to be functionally dependent on n(r), |µ(r)| and their

derivatives, although this is not the most general and rotationally invariant functional

(e.g. see Ref. [55]). The inconsistency of GGA potentials with spin non-collinearity

then makes the choice of such formulations for the XC energy not appropriate for the

description of several complex magnetic systems. It must be noted that although

LDA is fully consistent with spin-collinearity, the resulting magnetisation vector

is everywhere parallel to the exchange-correlation field. This is problematic, for

example, to correctly describe the time evolution of the magnetisation dynamics

from a quantum mechanical point of view [56], and in such conditions non-local

exchange-correlation potentials are required [57, 58].
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Although spin non-collinearity allows for a spatially varying spin quantisation

axis, in the current level of approximation its direction remains entirely independent

from the crystal structure. In fact, the KS Hamiltonian considered so far is purely

non-relativistic, hence does not include any spin-orbit (SO) coupling ([L̂, Ŝ] = 0). A

full relativistic treatment of the KS problem would require to replace Schrödinger’s

equation with the Dirac equation. In practice, it is possible to describe the motion

of an electron in an external electric field, E(r), by using a two-component Dirac

equation within perturbation theory with respect to the electron velocity [59]. The

electric field generated by the atomic nucleus in its proximity can be assumed to be

generated by a spherical potential of the form V (r) = −Ze/r, Z being the atomic

number. This implies that the leading-order term that couples the spin angular

momentum with the electron velocity can be written as

µB
mec

S · (E(r)× p) =
µB
mec

1

r

dV (r)

dr
S · (r × p) = ξS ·L. (2.25)

The strength of the SO interaction is here controlled by the parameter, ξ, which is

directly proportional to the atomic number, Z. As a consequence, we can conclude

that spin-orbit coupling becomes more relevant for heavy atoms. This workaround,

hence, allows one to introduce SO interaction in the Schrödinger-like KS equation of

Eq. (2.17) by simply adding a factor of the form ξL · S.

2.1.2.2 Constrained density functional theory

The inclusion of spin-orbit coupling is fundamental to study properties such as the

magneto-crystalline anisotropy. In a simple way, this can be estimated by comparing

the total energy associated to different directions of the magnetisation with respect

to the lattice vectors. In practice this is not always possible with a standard (rel-

ativistic) DFT calculation. In fact, despite the atomic spin can be initialised in

arbitrary directions, it is likely that at convergence the orientation will differ from

the initial one. This is especially true when the chosen spin initialisation is strongly

energetically disfavored. To overcome this issue, it is possible to perform a con-

strained density functional theory (CDFT) simulation, thus limiting the explorable
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phase space to the electron densities that satisfy the desired condition [60, 61, 62, 63].

This is normally realised by adding a Lagrange multiplier that introduces a penalty

to the total energy if a certain condition is not met. For example, the total energy of

a system with total magnetisation constrained to form an angle, ϑ, with the z axis

can be defined as

E(ϑ) = max
λ

min
ρ

{
E[ρ(r)] + λ

(
cos−1

(
Mx

Mz

)
− ϑ
)}

, (2.26)

where the total magnetisation vector, M = (Mx,My,Mz), is to be calculated for

each given electron density. From Eq. (2.26) is clear that a CDFT calculation re-

quires two self-consistent cycles, one to minimise the energy with respect to the

electron density and one to maximise it with respect to the multiplier λ. In practice,

configurations corresponding to local minima can be often probed without the use

of CDFT, although this is possible only because the whole phase space is not being

thoroughly explored during the energy minimisation.

Spin non-collinearity and relativistic effects combined with CDFT schemes allow

one to sample a large number for magnetic configurations of a given system, but

do not cover all possible states. This limitation is due to the assumption that the

electronic ground-state can be expressed by a single Slater determinant formed by

the N single-particle KS eigenstates that minimise the total energy. Such states are

by construction eigenstates of {Ŝ
2
, Ŝz, L̂

2
, L̂z}. However, there are systems which

ground-state is not an eigenstate of either of the latter operators, hence they cannot

be correctly estimated within SDFT and bases including multiple Slater determinants

must be adopted [64].

2.1.3 The SIESTA code

A number of different numerical implementations of DFT are currently available

[65, 66, 55, 67, 68, 69]. The defining features of each code normally lies on the

basis set which expands the wavefunctions and a number of other approximations

that aim at a good compromise between efficiency and numerical accuracy. The

Siesta code adopts a basis set composed of non-orthogonal atomic orbitals and
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allows one to tackle systems of sizes up to few thousands atoms [42]. The local

character of the basis functions makes it particularly suitable to study atom-resolved

material properties, in opposition to basis functions such as plane waves which require

additional post processing to recover local information.

2.1.3.1 Pseudopotentials and relativistic corrections

The generation of the atomic orbitals basis plays a central rôle in a Siesta calcu-

lation. On the one hand, strictly localised orbitals, i. e. vanishing beyond a certain

radius, allow one to obtain good scaling with respect to system size. On the other

hand, the use of a basis set, which is not optimised for the system of interest, may

lead to non-physical results. In principle, one should include a basis element for each

atomic state of the electronic configuration of every atom in the system. This implies

a considerable size of the basis set, which in turn greatly increases the computational

costs especially in presence of heavy elements. However, in many cases electrons oc-

cupying inner electronic states do not actively participate to the chemical bond,

hence the corresponding atomic orbitals are not significantly modified by the pres-

ence of neighbouring atoms. Their contribution to the properties of the system then

consists only on the generation of an electrostatic potential that can be considered

to be independent on the environment. Hence, it is possible to reduce the computa-

tional costs of the calculation by considering explicitly only outer shells, i. e. valence,

electrons and by representing the presence of inner shells, i. e. core, electrons with

an effective electrostatic potential known as pseudopotential. Pseudopotentials can

be fitted from experiments or constructed in order to reproduce the results of a cal-

culation for the isolated atom considering core and valence electrons alike, i. e. an

all-electron calculation. This second method is normally preferable since it allows for

more accurate and transferable pseudopotentials, meaning that can yield the correct

electronic structure in a variety of chemical environments. Nevertheless, pseudopo-

tentials generally imply a reduced accuracy with respect to all-electron simulations

regardless of how they are generated, hence their use become disadvantageous in

studies where elevated numerical precision is essential.
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In Siesta pseudopotentials are employed in order to tackle systems of significant

sizes that are not computationally affordable otherwise. The pseudopotential to be

used for a given atomic orbital basis set consists in a set of effective atomic potentials,

VPS,l, for each valence electron type. All pseudopotentials used in this work are based

on the Troullier-Martins scheme [70] and are composed by wavefunctions that main-

tain the reciprocal orthogonality. The latter feature is known as norm-conservation,

and is sometimes sacrificed in favour of a potential of increased smoothness, or soft-

ness, to reduce computational costs. The pseudopotential component for an atomic

(valence) orbital with orbital quantum number, l, corresponds to the sum of the po-

tential generated by the nucleus and the core electrons, Veff,c, and the one produced

by the the rest of the valence electrons, Vv. Assuming that the total potential is

spherical, VPS,l is calculated by self-consistently solving the Kohn-Sham equation for

the radial part of the atomic wavefunction, Rnl(r),[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ Veff,c(r) + Vv(r)

]
rRnl(r) = εRnl(r), (2.27)

to then construct the corresponding pseudo-wavefunction, RPS,l(r), so that it satisfies

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ VPS,l(r) + Vv(r)

]
rRPS,l(r) = εRPS,l(r). (2.28)

The mapping between the atomic and the pseudo-wavefunctions is uniquely deter-

mined by a set of constrains. First of all, the two must correspond to the same

eigenvalue and must be identical beyond a user defined cutoff radius, rc, as shown

in Fig. 2.1. The only constrain imposed to RPS,l(r) in the region within rc is that it

must represent the same total charge as its atomic counterpart. Finally, the pseudo-

wavefunction is generated with no nodes for simplicity, in contrast with the n − 1

nodes of the atomic function with principal quantum number, n.

The procedure described above is correct in the absence of relativistic correc-

tions. Nevertheless, the latter can be easily included by considering the Dirac equa-

tion and extract the pseudopotential from its self-consistent solution as done in the

non-relativistic case [72]. The result is a pseudopotential including relativistic cor-

rections up to the second order in the fine structure constant. It is then possible to
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Figure 2.1: (a) Pseudo-wavefunction and all-electron wavefunction for the Fe-4s shell

and (b) corresponding pseudopotential. Image credit: [71]

express the spin-orbit coupling operator directly on the basis formed by the pseudo-

wavefunctions,

V̂ SO =
∑
jmj

V̄j|j,mj〉〈j,mj| =
∑
jM

[
V sc
l 12 + V SO

l L̂ · Ŝ
]
|l,M〉〈l,M |, (2.29)

where the total angular momentum states, |j,mj〉, are rewritten in the third member

in terms of the real spherical harmonics states, |l,M〉, with

V s c
l =

1

2l + 1

[
(l + 1)V̄l+ 1

2
+ lV̄l− 1

2

]
, (2.30)

V SO
l =

2

2l + 1

[
V̄l+ 1

2
− V̄l− 1

2

]
. (2.31)

This operation allows one to write the relativistic pseudopotential in a form that

is consistent with the non-relativistic PS (here contained in V sc
l ) and with the real

matrix representation of the Hamiltonian. The expression in Eq. (2.29) can then

be used to calculate the spin-orbit matrix elements on the atomic orbital basis set,

{|ϕi〉}i ≡ {|Rni,li〉 ⊗ |li,Mi〉}i, as

V SO
ij =

∑
a,la,Ma

〈ϕi|V SO
la L̂ · Ŝ|la,Ma〉〈la,Ma|ϕj〉. (2.32)

Here the sum expresses the complete relations of the real spherical harmonics cen-

tered at the a-th site, |la,Ma〉. Since the evaluation of all of such matrix elements
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would significantly increase the computational costs and since V SO
la

is rather short-

ranged, only the matrix elements involving orbitals centered on the same site are

usually taken into account. In other terms, the spin-orbit coupling can approxi-

mated as an on-site operator

V SO
ij ≈ 〈Rni,li |V SO

li
|Rni,li〉〈li,Mi|L̂ · Ŝ|lj,Mj〉δli,lj . (2.33)

The angular matrix elements can be evaluated analytically and can be found in

Ref. [73] together with extensive details on the implementation. In contrast, the

radial matrix elements depend on the specific choice of the radial part of the basis

functions, Rni,li ≡ ϕl(r).

2.1.3.2 Basis set

The atomic orbital basis set constitutes one of the defining features of SIESTA.

While the angular component of each basis atomic orbital is determined by the re-

spective orbital quantum number, the radial function, ϕl(r), must be determined

numerically. In SIESTA, the radial component is chosen as the numerical eigen-

function of the pseudopotential Vl(r) with eigenvalue εl + δεl, i. e. it satisfies the

equation [
−1

2r

d2

dr2
+
l(l + 1)

2r2
+ Vl(r)

]
ϕl(r) = (εl + δεl)ϕl(r). (2.34)

The energy shift, δεl, is set in order to control the cutoff radius, rcl , at which ϕl(r) has

its first node. Usually, one chooses an energy shift which is uniform for all orbitals to

obtain a well balanced basis. An alternative approach could be to define a common

cutoff radius instead. However, this would imply a different level of approximation

for each atomic orbital, since rcl depends on the angular momentum and on the

species of the atom the orbital is centered at. On the contrary, a common energy

shift yields a similar confinement for all orbitals and automatically determines the

corresponding cutoff radius for each basis function.

A basis set made of one basis element for each atomic orbital, however, proves to

often be not sufficient to guarantee accurate results. In fact, such minimal basis set is

often a too coarse approximation of a complete basis, hence the energy minimisation
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becomes troublesome and the obtained result lacks accuracy. The solution to such

problem is to adopt a number of copies of the same atomic orbitals with slightly

different radial components, an approach usually known as a multiple-ζ scheme.

The recipe employed in Siesta is described in Ref. [74] and is based on the “split-

valence” method that is widely used in quantum chemistry [75]. The starting point

of the latter is the orbital generated from Eq. (2.34), usually called first-ζ orbital and

denoted as ϕ1ζ
l (r). An additional basis element with the same angular dependence

of ϕ1ζ
l (r) is then called a second-ζ orbital and its radial component is defined as

ϕ2ζ
l (r) =

r
l(al − blr2) if r < rsl

ϕ1ζ
l (r) if r ≥ rsl

. (2.35)

In other terms, the tail of the orbital beyond a “split radius”, rsl , is kept the same

as the one of the first-ζ orbital, while a polynomial radial dependence is assumed for

the second-ζ for r < rsl . The parameters al and bl are determined by imposing the

continuity of ϕ2ζ
l (r) and its first derivative, while rsl is chosen by setting the norm of

ϕ1ζ
l (r) outside the split radius. The same procedure can be employed to generate an

arbitrary number of ζ orbitals, however this is often not sufficient to yield converged

results and orbitals with higher angular momentum must be included. Nevertheless,

it is not always possible to calculate the pseudopotential for such additional orbitals.

Hence, it is customary to consider the polarisation orbital that is obtained as the

solutions of the Schrödinger equation in presence of a small fictitious electric field,

[
− 1

2r

d2

dr2
r +

(l + 1)(l + 2)

2r2
+ Vl(r)− El

]
ϕl+1(r) = −rϕl(r). (2.36)

It must be noted that the total energy is not single-parameter variational with respect

to the basis set, meaning that a basis set with more elements than another is not

guaranteed to obtained more accurate results. Nevertheless, it was found that in

most cases the use of two ζ-orbitals with a polarisation (DZP) for a given atomic

orbital is normally satisfactory.
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2.1.3.3 Kohn-Sham Hamiltonian

Once the atomic orbitals are defined the KS Hamiltonian can be directly written in

terms of such basis, that will be denoted as {|ϕµ〉}. Each spin component, Ĥσσ′(r)

with σ, σ′ =↑, ↓, is represented as a No × No matrix where No is the total number

of atomic orbitals in the basis. Hence, the total spin-dependent Hamiltonian is a

2No × 2No matrix with elements

Hσσ′

µν =

∫
d3rϕ∗µ(r)

[
δσ,σ

′
(
− ~2

2m
∇+ VPP(r) + VHartree(r)

)
+ V σσ′

SO + V σσ′

xc (r)

]
ϕν(r).

(2.37)

In analogy, each electronic eigenstate is written as,

ψn(r) =
∑
µσ

cσnµϕµ(r) (2.38)

and satisfies the generalised eigenvalue equation,

∑
νσ′

(Hσσ′

µν − δσσ
′
εnSµν)ψ

σ′

n = 0. (2.39)

The overlap matrix, Sµν , is defined as,

Sµν =

∫
d3rϕµ(r)ϕν(r), (2.40)

and accounts for the non-orthogonality of the atomic orbitals centered on different

atoms. Since such two-center integrals depends solely on the atomic orbitals, they

can be calculated only once, before to the energy minimisation. In case of a periodic

system, one needs to consider not only integrals between orbitals in the unit cell, but

also all non-vanishing overlaps between each atomic orbitals in the unit cell, ϕµ, and

all the other atomic orbitals, ϕν′ , in an auxiliary supercell. The latter is constructed

large enough to contain all atoms whose basis orbitals have non-zero overlap with

the basis orbitals of the atoms in the unit cell. The sum of such contributions can

be expressed as a discrete Fourier transform,

ϕµ(r,k) =
∑
µ′≡µ

ϕµ′(r) =
∑
µ′≡µ

eik·Rµ′ϕµ(r −Rµ′), (2.41)
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where the sum is restricted to the orbitals in the supercell, µ′, that are equivalent to

the orbital, µ, in the unit cell. Here r is contained in the unit cell, Rµ′ is the center

of the orbital µ′ and the Bloch theorem is used in the last equality. In this way the

overlap matrix can be written as

Sk
µν =

∑
µ′≡µ

∑
ν′≡ν

eik·(Rν′−Rµ′ )Sµ′ν′ . (2.42)

Here µ′ (ν ′) denotes any basis orbital in the supercell that is equivalent to the basis

orbital µ (ν) in the unit cell. The Fourier transforms of the wavefunction and the

Hamiltonian will then have expressions analogous to those in Eqs. (2.41) and (2.42),

respectively. This allows one to define an eigenvalue equation as the one in Eq. (2.39)

for each vector in the Brillouin zone, k.

The information obtained by solving such eigenproblems can then be used to

construct the density matrix of the system. In general, the density matrix operator

is defined as

ρ̂σσ
′
=

N∑
i=1

ηn|ψσn〉〈ψσ
′

n |, (2.43)

where ηn is the occupation of the n-th eigenstate, and its matrix elements in terms

of the Siesta basis are

ρσσ
′

µν =
1

Nk

∑
k

ηknc
σk
nµc

σ′k
nν eik·(Rν′−Rµ′ ) (2.44)

It is straightforward to show that the trace over spin and spatial degrees of freedom

of the operator product ρ̂Ô yields the “expectation value”, 〈Ô〉 of any single-particle

operator, Ô. As a consequence, it is easy to demonstrate that, for example,

Nel =
∑
µσ

ρσσµµ, M =
∑
µ
σσ′

ρσσ
′

µµ σ
σ′σ, Etot =

∑
µν
σσ′

ρσσ
′

µν H
σ′σ
νµ . (2.45)

Moreover, the localisation of the basis set allows one to easily retrieve atom-resolved

information by restricting the trace to orbitals that are centered on the same atom,

a. In fact, the atomic magnetic moments can be calculated as

ma =
∑
µ∈a
σσ′

ρσσ
′

µµ σ
σ′σ. (2.46)
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Finally, the total KS energy can be estimated as

E =
∑
µν
σσ′

ρσσ
′

µν H
σ′σ
νµ −

1

2

∫
d3rVH(r)ρ(r) + Exc[ρ]−

∫
d3VXC(r) + Enuclei. (2.47)

2.1.4 Summary

Density functional theory allows one to calculate the electronic structure of a material

starting from the atomic species and positions. It relies on the assumption that

the electronic system can be mapped onto a non-interacting system and that the

XC potential correctly accounts for electron-electron correlation. The functional

dependence of the total energy with respect to the density allows to find the ground-

state density as the one that minimises the total energy. The use of the LDA or

the GGA approximations for the XC potential successfully reproduce the electronic

properties in many systems, although it fails in cases where electrons are delocalised

or in presence of spin degenerate states [76]. Nevertheless, the generality of DFT

makes it the ideal tool to consider a large number of materials within the same

framework and compare their properties. Moreover, it can be used as starting point

to explore phenomena beyond the ground-state properties, as explained in the next

section.

2.2 Green’s function method for electronic trans-

port

This section is dedicated to the derivation of the mathematical formalism at the

foundation of the adopted approach to evaluate transport properties of nanoscale

systems. The entire theory we are about to present has its foundations in the concept

of Green’s function (GF). Originally conceived as a mathematical tool to solve non-

homogeneous linear differential equations, the term is nowadays commonly used to

refer to different types of correlation functions. It is ubiquitous in many fields of

physics, ranging from quantum field theory to aerodynamics. Extensive descriptions
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of the application of Green’s functions in condensed matter physics are available in

a number of textbooks [77, 78, 79, 80, 81]. Here we will limit to an overview of the

features of the GFs that are essential in order to capture the physical meaning of

the approximations assumed in the transport approach.

In the specific case of the time-dependent (homogeneous) Schrödinger equation

for a system described by the Hamiltonian H(x, t),[
i~
∂

∂t
−H(x, t)

]
ψ(x, t) = 0, (2.48)

the Green’s function can be defined as[
i~
∂

∂t
−H(x, t)

]
G(x,x′; t, t′) = δ(x− x′)δ(t− t′). (2.49)

In presence of a perturbation, H1(x, t), Eq. (2.48) must be modified by inserting the

term H1(x, t)ψ(x, t) at the right-hand side. The solution of the resulting inhomoge-

neous differential equation can be elegantly written as

ψ(x, t) =

∫
dx′dt′G(x,x′; t, t′)H1(x′, t′)ψ(x′, t′). (2.50)

The above defined GF thus represents a two points correlation function that em-

bodies the linear response of the system at (x, t) to the generic perturbation H1 at

(x′, t′). Moreover, Eq. (2.50) also states that ψ(x, t) is the result of the temporal

and spatial evolution of the function ψ(x′, t′), for any (x′, t′), under the effects of

the perturbation. The Green’s function, G(x,x′; t, t′), thus describes the propaga-

tion of a solution ψ between the position-time pairs (x, t) and (x′, t′). Such point

of view is often adopted within quantum field theories, in which GFs are also called

propagators. Eqs. (2.48) and (2.49) are nothing but two different formulations of the

same problem in the case of a closed system. However, the inclusion of semi-infinite

reservoirs or thermal baths yields to an infinite-dimensional Schrödinger equation,

which cannot be easily cast into a practically solvable form. On the contrary, the

Green’s function problem for an open system can be expressed as a finite-dimensional

equation by introducing the self-energy functions to account for the coupling of the

system with the environment.
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The following treatment deals with electronic transport across a two-terminal

device, although it can be generalised to a generic number of contacts. The system

of interest will then be divided into three parts: two semi-infinite regions that will

act as electron reservoirs, hence called leads, and a central region. By construction,

the leads are to be free from any scattering phenomenon. In order to ensure such

condition, the central region, that will be referred to as scattering region (SR) or

extended molecule (EM), must include the system of interest as long as part of the

leads, as depicted in Fig. 2.2. This allows one to include all the modifications in

the electronic structure caused by the presence of interfaces in the scattering region,

and consider the leads made of pure bulk material in thermodynamic equilibrium.

Furthermore, the contacts can be thought to be semi-infinite chains of blocks, or

principal layers (PLs), each coupled exclusively with its nearest neighbours. If each

principal layer can be successfully described by a basis of M atomic orbitals, it can

be represented as a M ×M Hamiltonian matrix, H0. Inter-block interactions also

can be expressed by a M ×M matrix, H1 (H−1 = H†1). In a similar manner, we can

assume that the scattering region is defined by N atomic orbitals through a N ×N

matrix, HM . The interaction between the extended molecule and the first principal

Figure 2.2: Schematics of a two-terminal device. A lead can be represented by a semi-

infinite series of blocks described by Hamiltonians, H0, each interacting only with

adjacent blocks via the coupling matrix, H1 (H−1 = H†1). The extended molecule is

described by the Hamiltonian, HM , and with the first block of the left- (right-) hand

side lead through, HML (HMR), with HLM = H†ML (HRM = H†MR).
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layer of the left- (right-) hand side lead will then be contained in the N ×M matrix,

HML (HMR), with HLM = H†ML (HRM = H†MR). The Hamiltonian of the entire

system, comprising of leads and scattering region, can thus be written in the block

matrix form

H =



. . . . . . . . .
...

. . . H0 H1 0 · · ·

. . . H−1 H0 HLM 0 · · ·

. . . 0 HML HM HMR 0 · · ·
... 0 HRM H0 H1

. . .
... 0 H−1 H0

. . .
...

. . . . . . . . .


=


HL HLM 0

HML HM HMR

0 HRM HR

 . (2.51)

Italic characters will hereon denote infinite-dimensional objects. In particular, HL,R

refer to the Hamiltonians of the entire semi-infinite isolated leads, while HML =

(· · · 0 HML) andHMR = (HMR 0 · · · ) are the infinite-dimensional row vectors

of N×M matrices that contain the coupling between the extended molecule and the

leads. Since HM and H0 describe systems at equilibrium, they are hermitian. The

same does not hold, however, for the coupling matrices, namely H1 6= H†1 = H−1 and

HMα 6= H†Mα = HαM , α = L,R. The Green’s function defined by such Hamiltonian

will have the same dimensionality, i.e. will be infinite-dimensional, and is given by

[(E + iδ)S −H]G(E) = −K(E)G(E) = I. (2.52)

Here S accounts for the non-orthogonality of the basis set the wave-function of the

complete system is expanded on. In analogy to Eq. (2.51), S can be written as a block

diagonal matrix with elements the overlap matrices SL, SM and SR associated with

the left-hand side lead, the scattering region and right-hand side lead, respectively.

By its definition, K has the same block matrix structure of H, while I is the infinite-

dimensional identity matrix. The small imaginary part, δ, added to the energy, E,

is assumed to be positive and it is introduced in order to ensure the convergence of

the time/energy Fourier transform. More insights on its role and physical meaning

will be provided in the following subsection. Let us note that this equation can be
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obtained from Eq. (2.49) performing a time-Fourier transform and integrating over

the spatial degrees of freedom, which are now contained in the localisation of the

atomic orbital basis elements.

In order to make Eq. (2.52) practically solvable it is necessary to reformulate it

in order to eliminate the dependence from the leads degrees of freedom. In other

words, the presence of each lead must be included through a quantity, ΣL,R, called

surface self-energy, that is to be defined completely in terms of the atomic basis

of the extended molecule. In such way one can obtain a defining equation of the

scattering region Green’s function, GM , of the form,

[−KM(E)− ΣL(E)− ΣR(E)]GM(E) = IM , (2.53)

where all terms are N ×N matrices and the surface self-energy for lead α = L,R is

defined as

Σα = KMαGαKαM . (2.54)

The rest of this section will discuss how it is possible to use the Keldysh Green’s

functions formalism to calculate the Green’s functions for the leads GL, GR and

for the extended molecule GM , and how to combine them to yield the transport

properties of the system. Firstly, the fundamental notions on how the concept of

Green’s function can be applied in non-equilibrium conditions will be outlined. Next,

the main quantities and relations that form the essence of the NEGF approach will

be presented. In conclusion, the practical implementation techniques adopted in the

SMEAGOL code will be presented, along with some considerations on the limits of

validity of the present method.

2.2.1 Non-equilibrium Green’s functions theory

Here we outline here the fundamental conceptual steps necessary to define the quan-

tities involved in the NEGF method for transport. We start our dissertation by

discussing the evaluation of the quantum average of a time-dependent operator,

Ô(t). If the dynamics of a system can be described by the Schrödinger equation
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and the state at a time, t0, is |Ψ(t0)〉, the time-dependent expectation value of the

observable, O(t), is given by

O(t) =
〈Ψ(t)|Ô(t)|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

=
〈Ψ(t0)|Û(t0, t)Ô(t)Û(t, t0)|Ψ(t0)〉
〈Ψ(t0)|Û(t0, t)Û(t, t0)|Ψ(t0)〉

. (2.55)

Here Û(t, t′) dictates the time evolution of the system from time t to time t′. In

the last term the state at a general time, t, is rewritten in terms of the initial state.

Hence, one can estimate the quantum average at the time, t, given the knowledge of

the time evolution operator, Û(t, t0), and the state, |Ψ(t0)〉.

In ground-state quantum field theory, it is customary to consider inter-particle

interactions, Ĥ1(t), as a time-dependent perturbation that vanishes for long times

and to introduce the full many body correlations at t = 0. This is a formal procedure

known as adiabatic switching on, and it allows one to recover ground-state properties

of a full-interacting system once the ground-state of its respective non-interacting

system, |Φ〉, is known,

O(t) =
〈Φ|Û(+∞, t)Ô(t)Û(t,−∞)|Φ〉

〈Φ|Û(+∞,−∞)|Φ〉
. (2.56)

This result can be derived within the interaction picture, i. e. by assuming the

evolution expressed by Û is only dictated by the perturbation Hamiltonian, Ĥ1 [82].

The time evolution operator is commonly written in the form

Û(t, t′) =
∞∑
n=0

(
−i
~

)n
1

n!

∫ t

t′
dt1 . . .

∫ t

t′
dtnT

[
Ĥ1(t1), . . . , Ĥ1(tn)

]
= T

{
exp

[
−i
~

∫ t

t′
dt̄Ĥ1(t̄)

]}
, (2.57)

assuming t > t′. The symbol T here stands for the time-ordering operator, which

by definition arranges a sequence of operators according to the time at which they

are calculated, positioning the operators with later times at the left-hand side. It is

in fact essential that such ordering stands for all operators in the matrix element,

since it allows for the application of Wick’s theorem and the achievement of an

operationally useful result. In the case of Eq. (2.56) the operators are already in the

correct order. The same does not hold for Eq. (2.55), as the two evolution operators
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propagate from t to t0 and vice versa, therefore the correct time-ordering is verified

only if t = t0. However, if |Ψ(−∞)〉 = |Ψ(+∞)〉 then the group properties of Û

imply that

Û(−∞,+∞) = 1̂ and Û(t, t0) = Û(t,+∞)Û(+∞,−∞)Û(−∞, t0). (2.58)

Hence, assuming t0 < t, the time ordering is recovered. Nevertheless, this procedure

can be applied in equilibrium conditions only because one can safely assume that

the evolution does not depend on the specific way it is performed, namely on the

evolution path. In other terms, the history of the system does not influence its state

as far as it remains in equilibrium at all times. However, this assumption does not

hold when factors, such as interaction with an external reservoir, bring the system

out of equilibrium. In such cases the problem can be overcome by considering a

closed ordered contour going forward in time from t0 to +∞ to then proceed from

+∞ backwards in time up to t0, as depicted in Fig. 2.3. By definition, an operator

calculated at a time t = t+ belonging to the forward segment, (γ+), will have the

same value as one calculated at the equivalent time t = t− in the backwards segment

(γ−). In this way the same evolution path is followed twice but going in different

directions in time, so that the effects of the evolution are naturally cancelled out.

Using this contour Eq. (2.55) can be rewritten as

O(t) =
〈Ψ(t0)|Û(t+0 ,+∞)Û(+∞, t−)Ô(t−)Û(t−, t−0 )|Ψ(t0)〉
〈Ψ(t0)|Û(t+0 ,+∞)Û(+∞, t−)Û(t−, t−0 )|Ψ(t0)〉

. (2.59)

The closed path γ = γ+∪γ− was named Keldysh contour in honor of Leonid Keldysh,

who first adapted the notion of closed contour in the context of non-equilibrium

Green’s functions [83].

Let us now imagine the time variable, t, to be the real part of a complex quan-

tity, say z. Then the segment γ+ can be thought as lying on the positive complex

semiplane, in other words as the path (t, iδ) → (+∞, iδ), with δ being a positive

infinitesimal number. Likewise, γ− can be written as a path on the negative complex

semiplane, namely (+∞,−iδ)→ (t,−iδ). As a matter of fact, the notion of Keldysh

contour can be further generalised to comprise segments parallel to the imaginary
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Figure 2.3: Graphical representation of the Keldysh path as divided into two seg-

ments, γ±, with its orientation is given by the light blue arrows. The contour starts

at time t0 in the upper complex semiplane, it continues to +∞ to then return to

t0 from the lower complex semiplane. The position of a generic time t ≥ t0 on the

contour is also depicted. Quantities evaluated at equivalent times that belong to

different segments assume by definition the same value, hence the contour is a closed

line.

axis. As segments on the real axis represent time averages (Re z = t), segments on

the imaginary axis can represent ensemble averages (Im z = (kBT )−1). One can then

define the Green’s functions and other operators as dependent on such complex times

and design an entire theory that in principle can yield information on the evolution

of a fully out of equilibrium quantum system. A complete treatment of such theory

can be found in Ref. [81] and it goes far beyond our scope. In the following we will

focus only on quantities that are defined on the real time axis and that enter directly

in the algorithm for quantum transport calculations.

2.2.1.1 Green’s functions and self-energies on the Keldysh contour

The definition of Green’s functions and related quantities in the context of the

Keldysh formalism is analogous to the one adopted in the ground state framework,
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e. g. the one-particle correlator reads

G(1; 2) = −i
Tr
{
T
[
e−i

∫
γ Ĥ(z)dzψ̂(1)ψ̂†(2)

]}
Tr
{
T
[
e−i

∫
γ Ĥ(z)dz

]} . (2.60)

Here the numerical arguments stand for a pair of space-time variables, e.g. 1 =

(x1, z1), “Tr” represents the trace over all possible many-body states and ψ̂ (ψ̂†) is

the destruction (creation) one-body field operator. We assume that the Hamiltonian

has the form

Ĥ =

∫
d3x d3x′ ψ̂†(x)〈x|ĥ|x′〉ψ̂(x′) +

1

2

∫
d3x d3x′ v(x,x′)ψ̂†(x)ψ†(x′)ψ̂(x′)ψ̂(x),

(2.61)

where the time dependencies are omitted for simplicity, ĥ is the one-particle operator

and v is the electron-electron interaction. The equations of motion for G can be ob-

tained simply by deriving with respect to each of the time variables and by exploiting

the equation of motion for the field operators. As an example, differentiation with

respect to z1 yields to[
i
d

dz1

− h(1)

]
G(1; 1′) = δ(1, 1′) +

∫
d2 v(1; 2)G2(1, 2; 1′, 2+). (2.62)

The variable 2+ corresponds to the pair (x2, z2 + iδ), with δ being positive and in-

finitesimal. The definition of the two-particle Green’s function, G2, is similar to that

given in Eq. (2.60), only containing four field operators instead of two. In principle,

the equations of motion for the latter needs to be calculated to fully determine the

dynamics for G(1; 1′). However, that involves the three-particle Green’s function

and an entire hierarchy of equations can be constructed. In order to solve the equa-

tion the hierarchy must be truncated. If one neglects the possibility of formation of

two-particle bound states, G2 can be written in terms of the single-particle GF:

G2(1, 2; 1′, 2+) = G(1; 1′)G(2; 2+)−G(1; 2+)G(2; 1′)

=
[
δ(1; 2)VH(1) + iv(1; 2)G(1; 2+)

]
G(2; 1′)

≡ Σ(1; 2)G(2; 1′). (2.63)

The latter formula constitutes the Hartree-Fock approximation for the two-particle

Green’s function, as the Hartree and exchange interactions are recovered. In the
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last equality we implicitly define the function, Σ, that describes all the interactions

between an electron and the rest of the system. Such quantity is commonly called

self-energy, which constitutes a ubiquitous concept in quantum field theory. It can

represent a general space-time dependent correction to the electronic energies induced

by the presence of an interaction. Let us note that the surface self-energies mentioned

in Eq. (2.53) belong to the just described category. Furthermore, Eq. (2.63) indicates

that the self-energies are defined as combinations of single-particle Green’s functions

and time-independent operators. Therefore, any consideration on the properties of

G on the Keldysh contour will be naturally extendable to the respective self-energies.

2.2.1.2 Lesser, greater, retarded and advanced Green’s functions

The structure of the time dependence of the one-particle Green’s function, G(t, t′),

can be analysed by separating it into different components depending on the mutual

relation between t and t′. A first distinction is the one between the lesser and greater

components, denoted with G< and G>, respectively,

G(t, t′) ≡ ϑ(t− t′)G>(t, t′) + ϑ(t′ − t)G<(t, t′), (2.64)

where ϑ(t, t′) is the generalisation of Heaviside’s theta function defined over the

Keldysh contour. The latter components contain information on how the system

was initially prepared and how it evolves in time. A better intuition of their physical

meaning can be obtained by expressing the one-body G< in terms of the creation

and destruction operators, d̂† and d̂,

G<(t, t′) = i
∑
ij

〈ΨN,0|Û(t0, t
′)d̂†i Û(t′, t)d̂jÛ(t, t0)|ΨN,0〉

=
∑
ij

G<
ij(t, t

′), (2.65)

i, j labelling single particle states. We will limit our discussion to systems that

are initially prepared in a pure state with N particles, |ΨN,0〉, that can be either

the ground state or an excited one. Each matrix element embodies the probability

amplitudes that the removal of a particle with the state i at t′ yields the same
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Figure 2.4: Graphic representation of the two states obtained through the different

evolution patterns considered in Eq. (2.65). In the evolution path considered in the

top of the figure the final state is obtained through the destruction of a particle in

the state i at a time, t′, represented by the red circle. On the contrary, the evolution

pattern shown at the bottom is obtained by destroying a particle in the state j at

an intermediate time, t0 < t < t′. The resulting state is then evolved until the

final time, t′, and the “spreading” of the absence of the particle state with quantum

number j is represented with the irregular red shape in the bottom right figure.

evolution obtained by removing a particle in the j-th state at t to then evolve until

time t′. Fig. 2.4 is a graphic representation of what is described above. A non-zero

contribution is then obtained when j is no longer a good quantum number at time t′,

hence it “spreads” with time. Furthermore, the lesser Green’s function can be used

to calculate the time-dependent average of any one-body operator, Ô =
∑

ij ĉ
†
iOij ĉj,

by setting t = t′,

O(t) = −i
∑
ij

OijG
<
ji(t, t). (2.66)

Let us also note that, if Ô is the identity operator, we will recover the time-dependent

average of the density operator, and therefore O(t) becomes the time-dependent
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quantum average of the density matrix.

The above discussion holds for a general time-dependent Hamiltonian. In most

cases of interest, however, the system can be considered to be in a steady- state

regime, and hence it can be described by a time-independent Hamiltonian. This

assumption simplifies the form of the evolution operator and allows us to rewrite

Eq. (2.65) as

G<
ji(t, t

′) = i
∑
m

〈ΨN,0|d̂†i |ΨN−1,m〉〈ΨN−1,m|d̂j|ΨN,0〉e−i(EN,0−EN−1,m)(t′−t), (2.67)

where {|ΨN±1,m〉}m hereon denotes a complete set of eigenstates of Ĥ with N ± 1

particles. The formulation of the Green’s function in terms of eigenstate energies is

usually known as the Lehmann representation. Since the time-dependence is fully

contained in the exponential, the Fourier transform of G< can be simply performed

by replacing the latter with a Dirac delta, namely

G<
ji(ω) = 2πi

∑
m

〈ΨN,0|d̂†i |ΨN−1,m〉〈ΨN−1,m|d̂j|ΨN,0〉δ(ω − EN,0 + EN−1,m). (2.68)

Let us note however that if the Fourier transform is performed on the entire Green’s

function [Eq. (2.64)] instead, particular attention must be dedicated to the treatment

of the time integrals due to the presence of the Heaviside functions, ϑ(±t ∓ t′). In

order to ensure the convergence of the latter is indeed essential to add a small imag-

inary energy, ±iη, in the exponent, where η is a positive infinitesimal and the sign

depends on the ordering of the time arguments. In particular, a positive imaginary

energy is to be summed for t > t′, a negative one for t < t′. One can then define the

retarded and advanced Green’s functions, GR and GA, respectively as

ĜR(t, t′) = ϑ(t− t′)
[
Ĝ>(t, t′)− Ĝ<(t, t′)

]
, (2.69)

ĜA(t, t′) = −ϑ(t′ − t)
[
Ĝ>(t, t′)− Ĝ<(t, t′)

]
≡
[
ĜR(t′, t)

]†
. (2.70)

The Lehmann representation of the Fourier transform of such components can then

be calculated to be

GR,A
ji (ω) =

∑
m

〈ΨN,0|d̂j|ΨN+1,m〉〈ΨN+1,m|d̂†i |ΨN,0〉
ω − EN,0 + EN+1,m ± iη

. (2.71)
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It is important to notice that both functions have poles at frequencies corresponding

to single particle excitations. However, all the poles of the retarded Green’s func-

tion lie in the lower half of the complex frequency plane, while all the poles of GA

belong to the upper half. This suggests that the retarded and advanced functions

yield information on two separate kinds of propagation. The Heaviside function in

Eq. (2.69) implies that GR contains the response to a perturbation at time t that is

delayed by t− t′, in agreement with the causality principle. However, the same does

not hold for the advanced component, which describes effects that seem to violate

temporal causality. It is thus customary to interpret the retarded component as the

propagator for occupied states (electrons), while the advanced component is associ-

ated to the propagation of unoccupied electronic states, also referred to as holes. The

latter is an example of a quasi-particle, i. e. an emergent phenomenon that occurs in

the context of a many-particle system. Such concept is often adopted in solid state

physics since it allows to describe complex excitations of the interacting many-body

system as objects that behave more similarly to non-interacting particles. In the

case of stationary conditions one normally expresses all quantities in terms of the

retarded GF, since the advanced component can be simply written as GA = [GR]†.

Therefore, hereon we will work only with the retarded component, i. e. assuming for

simplicity the notation G ≡ GR unless stated otherwise.

As the retarded and advanced components can be expressed one in terms of

the other, the lesser Green’s function can be written in terms of the greater and vice

versa. In order to recover such relation one needs, however, to take into consideration

an ensemble average on top of a quantum average. The latter allows us to introduce

information on the occupation of the electronic states at a given energy, ω, and can

be introduced considering Keldysh path segments parallel to the imaginary axis as

mentioned in Section 2.2.1. All results on the Green’s function as defined on the

Keldysh contour still hold as presented for pure initial states, and for fermions one

finds [see Section 6.3.1 of Ref. [81] for more details]

Ĝ>(ω) = −eβ(ω−µ)Ĝ<. (2.72)
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Here we defined β = (kBT )−1 for a system at temperature, T , and with chemical

potential, µ (kB is the Boltzmann constant). Moreover, from the definitions of

Eqs. (2.69), (2.70) it is straightforward to obtain the relation

Ĝ>(ω)− Ĝ<(ω) = Ĝ(ω)− Ĝ†(ω), (2.73)

where G denotes the retarded Green’s function so that G† is the advanced one. The

combination of the latter with Eq. (2.72) yields the important result

Ĝ<(ω) = −f(ω − µ)
[
Ĝ(ω)− Ĝ†(ω)

]
, (2.74)

where f(ω) = [1 + exp(βω)]−1 is the Fermi-Dirac distribution. The above attained

equation embodies the so called fluctuation-dissipation theorem and provides an ex-

pression for the lesser Green’s function given a chemical potential, µ, and the retarded

Green’s function of the system, G. Let us now recall that G< is strictly related to

the density matrix [see Eq. (2.66)]. As a matter of fact, for a steady-state situation

one can easily prove that

ρ =
i

2π

∫
dω G<(ω). (2.75)

Thus, the fluctuation-dissipation theorem allows us to calculate the density matrix

of a system at steady-state given its retarded Green’s function. This is probably the

most important result of this subsection, since allows us to cast the solution of the

transport problem analogous to the one found for the ground state case. In the next

subsection we will show how the latter results can be adapted in the specific case of

a two terminal device as defined at the beginning of the current section [see Fig. 2.2].

2.2.2 The SMEAGOL code

We will now focus our attention on describing the fundamental implementation

scheme contained in the SMEAGOL code, mostly contained in Refs. [44, 16]. Once

again, we do not aim to provide a rigorous derivation of all quantities, but rather to

go through the relevant logical and procedural steps that are essential to detail the

computational procedure. We begin by analysing the computational scheme adopted

to calculate the surface self-energies, to then derive the operative formulas that yield
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the population of the electronic states and the intensity of the electric current in the

system in presence of a constant voltage.

2.2.2.1 Leads self-energies

The fundamental procedure that allows the practical solution of the transport prob-

lem consists in the calculation of the surface self-energies, ΣL,R, introduced in Eq. (2.53).

The first step of the algorithm is the solution of the Schrödinger equation for an in-

finite lead thought as a quasi-1D chain of principal layers, as introduced in Fig. 2.2.

The eigenstates then yield the Green’s function for the infinite system, from which

the surface Green’s function can be extracted by considering a truncation of the

chain. Once the GF is known, the estimation of the surface self-energy as expressed

in Eq. (2.54) is straightforward. In this context the surface self-energy contains in-

formation on how the semi-infinite chain couples to any material inserted at the

truncation site. In principle, it must be evaluated individually for each scattering

region. However, if one embeds a unit block of the leads at each side of the ex-

tended molecule, the calculation of the self-energies for some specific leads can be

performed independently of the choice of scatterer. This procedure thus allows one

to express the transport problem in terms of a finite number of degrees of freedom

by performing a single preliminary calculation for a fixed lead.

We start by considering an infinite chain of principal layers, each described by

an Hamiltonian, H0. Each principal layer interacts only with its nearest neigh-

bour principal layers, and such coupling is quantified by the matrices, H1 and H−1.

Moreover, we assume these three Hamiltonians to be N × N matrices defined on

a non-orthogonal basis with overlap matrix S, although the following results hold

regardless of the shape of S. The total Hamiltonian of the system will have a tradi-

tional expression of the form,

Hz,z′ = H0δz,z′ +H1δz,z′−1 +H−1δz,z′+1, (2.76)

with z, z′ labeling blocks along the transport direction, z. The overlap matrix conse-

quently takes a form analogous to the latter. The eigenproblem of such Hamiltonian

61



Chapter 2 Ground-state and transport properties of magnetic materials

has 2N solutions in the form of Bloch functions, ψz = eikzφ. Each of these, denoted

with φn, is associated to a complex wave vector, kn, and satisfies the eigenvalue

equation

(K0 +K1e
iknz +K−1e

iknz)φn = 0 (2.77)

where Kα = Hα − ESα (α = 0,±1). Note that for real energies K†α = Kα. The

functions φn are by definition the right eigenvectors of such equation, although similar

results can be obtained for the left eigenvectors. One can then prove [84] that the

Green’s function of the infinite chain can be cast in the form

gz,z′ =

Tz−z
′V−1 z ≥ z′

T̄z′−zV−1 z ≤ z′
with V = K−1(T−1 − T̄ ), (2.78)

where the transfer matrices T , T̄ are defined in terms of right-going (Re kn > 0)

solutions, φn, and of the left-going (Re k̄n < 0) solutions, φ̄n:

Tz =
N∑
n=1

φne
iknz(φ†n)−1 and T̄z =

N∑
n=1

φ̄ne
ik̄nz(φ̄†n)−1. (2.79)

Note that although the transfer matrices are always well defined, the same does not

hold for their inverse matrices in cases where K±1 are singular. This problem can

be overcome by making use of both left and right eigenvectors to define the Green’s

function. This workaround is simply a mathematical reformulation and does not add

any further physical approximation. Here is therefore omitted and any interested

reader can find further details in Refs. [16, 85].

The surface Green’s function, Gz,z′

L , of a semi-infinite lead terminating at z =

z0 − 1 from negative z can then be determined from gz,z′ imposing the condition

gz0,z0 = 0, which yields [84]

Gz,z′

L = gz,z′ − gz,z0Vgz0,z′ . (2.80)

In analogy, the consideration of a semi-infinite chain truncated at z = z0 that extends

for z > z0 will yield the Green’s function of a right-hand side lead, GR. The surface

self-energies are then given by Eq. (2.54). Note that the most computationally

expensive part of the above described procedure is the determination of the 2N
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eigenvectors, φn and φ̄n, through the solution of an equation equivalent to Eq. (2.77).

In this way one can examine the effects of the coupling between the extended molecule

and two reservoirs, each at thermodynamic equilibrium. A current will flow across

the system when the chemical potentials of the two leads, µR,L, differ. If these are

constant in time, the system will reach a stationary state and charge will redistribute

within the scattering region. The purpose of the next subsections is to derive a

computational scheme to self-consistently calculate the out-of-equilibrium occupation

of electronic levels and an expression for the intensity of the electric current flowing

across the EM.

2.2.2.2 Out-of-equilibrium density matrix

The construction of the density matrix for a system in equilibrium is rather straight-

forward. If the eigenstates of the Hamiltonian are known, the electronic states can be

populated according to the Fermi-Dirac distribution and the density matrix is given

by the definition provided in Eq. (2.43). However, the presence of a coupling between

the system and a set of reservoirs introduces modifications in the occupations of the

electronic states that are not easily quantifiable. Eq. (2.75) provides an alternative

formula to evaluate ρ, although it requires the knowledge of a form for the lesser

Green’s function of the scattering region, G<
M . To recover the latter, we partition

the wavefunction of the entire system, ψ, as a vector with three components, ψL,

ψM and ψR, which represent the part of ψ extending over the left-hand side lead,

the extended molecule and the right-hand side lead, respectively. At this point we

assume that the total density matrix of the scattering region, and consequently G<
M ,

can be calculated as the sum of contributions resulting from the components ψL,R,

namely

ρM = ρML + ρMR =
1

2πi

∫
dω G<

M(ω) =
1

2πi

∫
dω [G<

ML(ω) +G<
MR(ω)]. (2.81)

This assumption descends from the fact that the leads can be considered to have

a density of states, which is continuous in energy given their infinite size. As a

consequence, the scattering region will also have a continuum spectrum, if there are
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no states localised in the extended molecule, i. e. in the absence of bound states. If

the latter hypothesis is verified GM will have no poles, hence the limit δ → 0 can be

safely taken. However, bounds states are known to arise at interfaces in situations,

where the leads have no open channels at a given energy or for specific k-points in

the 2D Brillouin zone perpendicular to the transport direction. In these cases the

limit for vanishing δ cannot be taken and an additional correction is to be included

in order to take account for bound states. The procedure required to introduce the

latter is extensively described in Ref. [16] and its description is here omitted, since

it is not relevant for the scope of this thesis.

Therefore, we start from Eq. (2.81) and assume δ = 0, so that for the lesser GF

generated by states coming from the lead α = L,R we obtain

G<
Mα(ω) = −f(ω − µα)

[
GMα −G†Mα

]
= −f(ω − µα)GMα

[
(G†Mα)−1 − (GMα)−1

]
G†Mα. (2.82)

Here, we have used the fluctuation-dissipation theorem of Eq. (2.74) for GMα and

reformulated it with the help of the identities (G†Mα)−1 G†Mα = 1 = (GMα)−1 GMα.

We consider now the GF as written in Eq. (2.53). If we only consider contributions

to the Green’s functions originating from the lead α, in the limit δ → 0+ we have

(GMα)−1 = (E + iδ)SM −HM − ΣR − ΣL

= ESM −HM − Σα. (2.83)

The latter relation holds if the ψα component is not influenced by the self-energy Σβ

with β 6= α, i. e. if ψL and ψR are not coupled to the right-hand side and left-hand

side lead respectively. Note that both SM and HM are hermitian matrices, while Σα

is not. Therefore we find

G<
Mα = −f(ω − µα)GMα

[
(ESM −HM − Σ†α)− (ESM −HM − Σα)

]
G†Mα

= −f(ω − µα)GMα

[
Σα − Σ†α

]
G†Mα

≡ if(ω − µα)GMαΓαG
†
Mα. (2.84)
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In the last step we have defined the rate function for each lead, ΓL,R, which quantifies

the rate of electrons flowing from each lead. If again the component of ψ on one

lead is not influenced by the coupling with the other lead, products of the type

GMαΓβG
†
Mα vanish for α 6= β. As a consequence, we can sum the contributions to

the Green’s function from each lead to finally obtain

ρM =
1

2π

∫
dω G<

M(ω) =
1

2π

∫
dω GM [f(ω − µR)ΓR + f(ω − µL)ΓL]G†M . (2.85)

The latter equation can be easily generalised to an arbitrary number of leads, and

it is the final result that yields the electronic structure of the system in presence of

coupling with external reservoirs.

2.2.2.3 Electric current and transmission

The last key quantities to be introduced to complete the overview of the SMEAGOL

method for quantum transport are the transmission coefficients and the current in-

tensity. When the difference between the chemical potentials of the two leads is

constant in time, µL−µR = eV , a steady state current flows across the system. This

implies that the total charge is constant in time within the scattering region. More-

over, since the leads are by construction in thermodynamical equilibrium, charge

conservation for a wavefunction ψ = (ψL, ψM , ψR)T can be written in the form of a

continuity equation, i. e.

dqM
dt

=
∂

∂t

[
ψ†MSMψM

]
= 0, (2.86)

where we have omitted the contributions of ψL,R to the charge of the EM. We now

recall that the Schrödinger equation for the block Hamiltonian of the form (2.51)

can be written as Kψ = 0, where K = H − ES. Thus, for the ψM component one

finds

KLMψL +HMψM +KRMψR = ESMψM , (2.87)

which allows us to cast the time derivative of ψM into the form

e
i
~ tSM

∂ψM
∂t

= − i
~
ESMψM = − i

~
(KMLψL +HMψM +KMRψR). (2.88)
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Eq. (2.86) together with the latter and its adjoint allows one to achieve the result

dqM
dt

=
i

~
(ψ†LKLMψM − ψ†MKMLψL) +

i

~
(ψ†RKRMψM − ψ†MKMRψR)

= IL + IR = 0. (2.89)

Here the two terms HMψM cancel and the remaining ones have been rearranged

to yield the contributions to the current coming from the left-hand side and the

right-hand side lead, IL,R. We remark that here the subscript L indicates quantities

that contribute to the current flow from the left-hand side to the right-hand side,

while R denotes quantities flowing in the opposite direction. As expected from the

steady state conditions, the net probability current across the system is zero, i.e. the

current coming from the left lead, IL, has equal intensity but opposite sign to the

one coming from the right lead, IR. Now, the current from the left lead to the

EM, IL, is result of the propagation of wave functions originating in the left-hand

side lead, ψLL, that are connected to left-going wave functions in the right one, ψRL .

Here the superscripts, L,R, denote which lead the wave function, ψL,R, is electronic

eigenstate for. These eigenfunctions can be written in terms of each of the states in

the unperturbed leads, denoted as ϕL,n and ϕR,n, using an expression for the retarded

GF of the entire system discussed in Ref. [16], i.e.

ψL,nL =


1L +GLKLMGMKML

GMKML

GRKRMGMKML

ϕL,n, ψR,nL =


GLKLMGMKMR

GMKMR

1R +GRKRMGMKMR

ϕR,n.

(2.90)

These wavefunctions clearly extend over the entire system and each contain the

coupling with each lead. These expressions can also be used to quantify the contri-

bution to the current flowing from the left-hand side lead into the system for each

state originating from the left- or right-hand side lead as

IL,nL =
i

~
(ψL,nL

†
KLMψ

L,n
M − ψL,nM

†
KMLψ

L,n
L )

=
1

~
ϕL,n

†
KLMG

†
MΓRGMKMLϕ

L,n (2.91)
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and

IR,nL =
i

~
(ψR,nL

†
KLMψ

R,n
M − ψR,nM

†
KMLψ

R,n
L )

= −1

~
ϕR,n

†
KRMG

†
MΓLGMKMRϕ

R,n. (2.92)

These are the probability currents flowing from the left-hand side lead to the scat-

tering region due to the state n originating in the left and right lead respectively, at

a given energy E. In order to obtain the total current intensity I ≡ IL = −IR one

needs to sum over all NL,R(E) unperturbed states of the leads and integrate over all

possible energies. Note that Eqs. (2.91), (2.92) are already cast in a row vector -

matrix - column vector product, which is equivalent to a trace hereby denoted as Tr

. Eq. (2.91) can thus be employed to write

NL(E)∑
n=1

ηn,L(E)IL,nL = Tr

KML

NL(E)∑
n=1

ηn,L(E)ϕL,nϕL,n
†

KLMG
†
MΓRGM

 , (2.93)

where ηn,L(E) is the occupation of the n-th unperturbed state of the left lead at

energy E. As a matter of fact, the sum in the square bracket is easily identifiable

with the equilibrium definition of the density matrix for the left lead for a given

energy, ρL(E). Therefore, it can be replaced with its non-equilibrium counterpart,

−2πi G<
L [Eq. (2.66)]. We can then use the fluctuation-dissipation theorem given in

Eq. (2.74) and the definition of surface self-energy provided in Eq. (2.54) to find

KMLρLKLM = −2πi KMLG
<
LKLM = 2πi fLKML

[
GL −G†L

]
KLM

= 2πi
[
ΣL − Σ†L

]
= 2πΓL. (2.94)

In order to simplify the notation we have omitted all the energy dependence and

adopted the notation fL = f(E − µL). The argument of the trace in Eq. (2.93) can

consequently be cast in the compact form ΓLG
†
MΓRGM . A completely analogous

procedure can be performed for states originating from the right lead. These results
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can be used to finally write

I =

∫
dE

NL(E)∑
n=1

ηn,L(E)IL,nL +

NR(E)∑
n=1

ηn,R(E)IR,nL


=

1

h

∫
dE Tr

{
ΓLG

†
MΓRGM

}
[fL − fR]

=
∑
σ=↑,↓

1

h

∫
dE T σ(E)[fL − fR] ≡ I↑ + I↓. (2.95)

In the last line we have defined the transmission coefficient for the spin channel

σ =↑, ↓, T σ(E), by considering a partial trace over the spin degrees of freedom. This

allows us then to separately analyse the current deriving from electrons with different

spin states. Note that Eq. (2.95) gives us the probability current, I, while the electric

current is found by multiplying by the electric charge, i.e. Ie = eI. Moreover, in the

case of a constant transmission, T σ = T , the electric current becomes Ie = GcTV ,

where Gc = e2/h is known as the quantum conductance and V is the applied bias.

2.2.2.4 Self-consistency and influence of the bias voltage

The SMEAGOL code is an implementation of the results presented in this section

and is based upon the framework of the SIESTA code. In other words, the transport

properties are evaluated by generalising the SIESTA density matrix to include the

modifications of the electronic structure introduced by an applied bias voltage, V .

The essential steps of the self-consistent cycle are summarised in Algorithm 1. The

surface self-energies that couple the scattering region to the contacts are calculated

with preliminary, independent simulations. Given an input density matrix, often

taken as the DFT (equilibrium) density matrix of the EM, the effective Hamiltonian

of the open system is constructed and the bias is applied through an asymmetric

shift, ±eV , of the chemical potentials in the contacts. The retarded and lesser

components of the Green’s function are then constructed, and the non-equilibrium

density matrix for each step is obtained by performing the energy integration of

the Green’s function. The latter must be performed both along the imaginary and

real energy axes. The former integration evaluates the poles of the equilibrium
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Algorithm 1 Self-consistent transport calculation for an applied voltage V

Require: surface self-energies of the leads, ΣL,R . From leads calculation

1: ρin = DFT ground state of the EM

2: repeat . SCF cycle begins

3: for all k, E do . Points on BZ and energy sampling grids

4: ρ(k) = ρin(k)

5: Heff(k, E) = [HM [ρin] +H(V ) + ΣL + ΣR] (k, E) . leads coupling and

bias

6: GM(k, E) = [(E − iδ)S −Heff]−1(k, E) . Retarded GF (Eq. 2.54)

7: G<
M(k, E) = [GM(fLΓL − fRΓR)G†M ](k, E) . Lesser GF (Eq. 2.85)

8: end for

9: ρout = (2π)−1
∑

k,EG
<
M(k, E) . Non-equilibrium density matrix

10: until ||ρout − ρin|| < tolerance . Convergence condition

11: T σ(E) =
∑

k Tr{ΓLGMΓRG
†
M}(k, E) . k-points sum for transmission

coefficients

12: Iσ =
∑

E T
σ(E)[fL − fR] . Energy integration in bias window for current

contribution to the density matrix, while the latter samples energy points within the

bias window, [EF − eV,EF + eV ] [86]. Importantly, the Green’s function is the

smoother the further away from the real axis is calculated, hence a rather fine mesh

is normally required for the real energy integration. Therefore, transport calculations

performed in the limit of vanishing bias voltage, V → 0, hereon called simply zero-

bias calculations, are strikingly more computationally cheap than their finite bias

counterpart. In fact, since the bias window is infinitesimal, the expensive real energy

integration can be neglected within the zero-bias limit. Moreover, in many conditions

finite bias calculations need additional care because they require the introduction of

the so-called bound states corrections. The latter account for localised states in

the EM for which there are no open channels in the leads with the same energy.

These are not correctly estimated by the non-equilibrium Green’s function within

the assumptions here adopted, hence the NEGF must be reformulated accordingly.
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The details of such modifications are not relevant for this thesis and will not be

discussed, but can be found in Refs. [16, 71].

The additional complications and costs of finite bias calculations makes the use

of the zero-bias limit preferable when the explicit bias dependence of the transport

is not of interest. When the intensity of the voltage becomes relevant, it is often

convenient to avoid full self-consistent finite bias calculations. Instead, it is possible

to perform a self-consistent zero-bias calculation and introduce the bias dependence

by a single self-consistent cycle step. The main difference between the two approaches

consists in the determination of the electrostatic potential, VH , across the scattering

region. In a SCF calculation, VH is given by how charge distributes in response

to the bias and is updated together with the electron density. In contrast in a

non-self consistent (NSCF) calculation the electrostatic potential is assumed to drop

linearly across the scattering region, hence the profile of the electron density along

the transport direction follows. This assumption is particularly justified in the case

of magnetic tunnel junctions, where a finite bias (smaller than the band gap) is likely

to cause little no redistribution of electrons within the insulator.

2.2.3 Summary

We have presented an introduction to the Keldysh formalism of Green’s function,

that allows one to study an electronic system under non-equilibrium conditions. Such

formalism was then used to describe an implementation that yields the quantum-

mechanical transport properties of nano-scale systems for a finite applied bias poten-

tial. We note that, by construction, our approach has the same applicability range

of density functional theory. Hence, correct predictions of transport properties are

only possible where the KS Hamiltonian and the chosen form of the XC potential

correctly describe the ground-state electronic structure. Moreover, the transport for-

malism described above completely neglects inelastic scattering that may be caused

by electron-phonon or electron-photon scattering. Nevertheless, the advantage of

Smeagol with respect to other implementation is the possibility of calculations

within the non-collinear spin approximation. This is of essential importance for the
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estimation of the spin torques, as explained in the next Chapter.
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Chapter 3

Spin torques in Fe/MgO-based magnetic tunnel

junctions

“I think I can safely say that nobody understands quantum

mechanics.”

- Richard P. Feynman

The understanding of the material dependence of electronic and spin transport

phenomena in multilayered systems is fundamental to the development of efficient

spintronic applications. The performance of devices based on magnetic tunnel junc-

tions heavily relies on efficient magnetisation switching, which is characterised by

low switching times and critical currents. The key factor that controls the details

of the current-driven magnetisation dynamics in a given free magnetic layer is the

response of the static magnetic moments to the spin current, normally quantified

by the notion of spin transfer torque (STT) introduced in §1.1.3 . The aim of this

chapter is to investigate the alterations of the spatial profile of the spin torques in

a magnetic layer introduced by structural disorder and variations of its chemical

composition. The implications on the dynamics that different spatial torque profiles

have on the resulting spin dynamics will then be analysed in the next Chapter by

the means of atomistic simulations.

The simplest way to define the spin torques in a material is in terms of points

of discontinuity in the spin current. This Chapter begins by adopting this point
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of view to discuss some general properties of the STT and to predict the spatial

trend from the band structure of the magnetic layer. This perspective, however, is

only applicable in the case of uniform magnetic moments and in the absence of spin-

orbit interactions. We continue by presenting the approach developed by Nuñez and

MacDonald [87] that estimates the STT as the result of the interaction between the

static magnetisation and the spin of the transport electrons. The rest of the Chapter

contains results for the spin torques calculations in different MTJs performed with

an implementation of such method within the Smeagol code. All the junctions

considered here are based on the well-known Fe/MgO/Fe structure. This represents

a simplified version of the prototypical CoFeB/MgO/CoFeB multilayers, where the

complications introduced by the strong site-disorder in the CoFeB alloy is overcome

by replacing it with the well-known bcc Fe structure. The similarities between the

electronic structure of Fe and Co around the Fermi energy and the low concentration

of B atoms at the interfaces with MgO imply a strong similarity between the fea-

tures of spin transport in the two junctions. Nevertheless, disorder at the Fe/MgO

interfaces is known to strongly affect the spin filtering effect, hence it is likely to play

a role in the resulting magnetisation dynamics. We begin by considering a perfectly

ordered Fe/MgO/Fe junction in order to set a point of reference and discuss the

details of the approach and the simulation parameters. Next, a multi-scale approach

to assess the influence of the deviations from structural epitaxy in the magnetisa-

tion switching is presented, together with the results of spin torques calculations in

junctions with different barrier thicknesses and partially oxidised interfaces. In the

last section the material composition of the free layer is altered in order to study the

material dependence of the spin torques. The STT acting on a Fe free layer is then

compared to that of Co and Ni, and the differences between the spatial profiles will

be explained through the analysis of the state-symmetry resolved band structures

of each material (calculated by Emanuele Bosoni). We note that in practice infinite

magnetic layers cannot be realised, therefore we continue by considering the trun-

cation of the magnetic free layer with a non-metallic (Cu) electrode. The atomic

structure is here kept uniform across all the systems to allow for a better comparison
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between the different cases. We conclude with an analysis of the transport proper-

ties and the spin torques acting on FePt, FePt/Fe and Fe/FePt/Fe free layers. The

key difference between the different systems is the presence of the induced magnetic

moment on Pt. This will allow us to study the spin torques in non-uniform magnetic

structures.

3.1 Spin transfer torques: a theoretical overview

Spin transfer torques arise when the flow of a spin current is modified by the pres-

ence of magnetic textures where the atomic spins are misaligned with respect to

the spin polarisation of the current. This happens in the case of currents flowing

perpendicular to magnetic tunnel junctions with non-collinear magnetic layers, as

well as when spin-polarised electrons pass through a non-uniform magnetic distri-

bution. According to this definition the spin torque, T , acting on a magnetic layer

at a given position corresponds to the transverse component of the absorbed spin

current, namely

T = J s −
(
J s ·M

)
M . (3.1)

Here the vectors M and J s indicate the local direction and intensity of the static

magnetisation and of the spin-polarisation of the current, respectively. This torque

vector is the result of two contributions that can be defined in terms of the direction,

J0, of the spin polarisation of the current when it enters the magnetic layer,

T = T‖M × (J0 ×M ) + T⊥M × J0. (3.2)

We remark that in the case of a magnetic tunnel junction J0 coincides with the

direction of the magnetisation of the reference layer. The first term corresponds to

the spin-transfer torque predicted by Slonczewski [24], also known as the in-plane

torque since it induces the magnetisation vector to move within the plane defined by

M and J0. This is the component that competes against the Gilbert damping term

and it is responsible for the magnetisation switching. In contrast, the out-of-plane

component, T⊥, is often called field-like torque since it drives the magnetisation vec-
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tor into a precession around J s, in analogy to the effects of an applied magnetic

field. The out-of-plane torque can be related to the precession of the spins of the

transport electrons caused by the exchange field generated by the static magneti-

sation. In particular, T⊥ is caused by itinerant spins that either briefly precess at

the non-magnet/ferromagnet interface while being reflected or that undergo a rota-

tion while propagating in the ferromagnet [88, 89]. Such process clearly depends on

interfacial scattering, in particular on the phase of the reflection coefficient. These

quantities are particularly sensitive to the details of the electronic structure and their

estimation within a ballistic transport approach may be far from their real value.

This is because of the presence of inelastic scattering, temperature fluctuations and

deviations from ideal interfaces. In some conditions the out-of-plane torque is of

fundamental interest for device modelling. In fact, it is employed to manipulate the

precession frequency in spin-torque oscillations (STOs) applications and can induce

back-hopping in MTJs with an in-plane easy magnetisation axis [90, 91]. Never-

theless, it plays a minor role in the switching dynamics of perpendicular magnetic

tunnelling junctions, that are the system at the centre of this thesis. For such rea-

sons our analysis will focus on the material dependence of the in-plane torques, often

neglecting the consequences of the out-of-plane component.

A qualitative insight into the microscopical phenomenon that gives rise to the

spin torque can be obtained by considering an electron travelling in a non-magnetic

material along the z axis and that is transmitted into a magnetic layer. Following

Ref. [89] we assume that the spin quantisation axis is parallel to the static magneti-

sation, M , which is along the z axis. Denoting with ϑ and ϕ the angles in the x− z

and y − z planes, respectively, that the electronic spin forms with M while passing

through the normal layer, the incident electron wave-function is simply

ψin =

cos ϑ
2

exp
{
−iϕ

2
+ ik · r

}
sin ϑ

2
exp

{
+iϕ

2
+ ik · r

}
 . (3.3)

We note that in the normal layer the two spin channels propagate with the same wave-

vector, k. Since the transport properties are dominated by states at the Fermi energy,

the modulus of such vector corresponds to the Fermi wave-vector kF =
√

2meEF/~,
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where EF is the Fermi energy of the non-magnet. According to Eq. (3.1), spin

torques arise in presence of a local discontinuity of the spin current. We focus here

on the component of the spin current associated with electrons flowing along z and

with spin aligned along the x direction (orthogonal to M). The latter is defined as

Jxs =
~
2

∑
σσ′

Re

[
ψ∗σσ

σσ′

x

(
− i~

2me

)
d

dz
ψσ′

]
. (3.4)

It is then straightforward to calculate the incident spin current,

Jxs,in =
~
2
vz sinϑ cosϕ, (3.5)

where vz = ~kz/me is the electron velocity in the normal layer. Importantly, electrons

transmitted to the ferromagnet will propagate differently depending on their spin

orientation. We will denote with kσ the wave-vector associated with the spin state

σ =↑, ↓ within the ferromagnet. Since majority- and minority-spin bands in the

ferromagnet have different Fermi energies, Eσ
F , the modulus of these two wave-vector

will also differ, kσ =
√

2meEσ
F/~. Therefore, the transmitted wave-function is

ψtr =

t↑ cos
(
ϑ
2

)
exp

{
−iϕ

2
+ ik↑ · r

}
t↓ sin

(
ϑ
2

)
exp

{
+iϕ

2
+ ik↓ · r

}
 , (3.6)

where the spin-dependent transmission coefficients, t↑, t↓, will generally depend on

the specific state of the electron before entering the ferromagnet and on the avail-

able states in the latter. Similarly to the incident spin current, the correspondent

transmitted component can be found to be

Jxs,tr =
~
4

(v↑z + v↓z) sin(ϑ)Re
[
t∗↑t↓exp{iϕ+ i(k↓z − k↑z)z}

]
, (3.7)

where vσz = ~kσz /me is the electron velocity for spin-σ in the ferromagnet. We note

that the wave-vector difference can be written in terms of the z components only as

scattering from a flat interface conserves the components orthogonal to the transport

direction. Similarly, the corresponding reflected component of the spin current can

be estimated to be

Jxs,r = −~
4
|vz| sinϑRe

[
r∗↑r↓ exp [iϕ]

]
, (3.8)
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where rσ is the reflection coefficient for the spin-σ state. A comparison between

Eqs. (3.5), (3.7) and (3.8) shows that in this simple model the spin current develops

a discontinuity that corresponds to the presence of a spin torque. The expressions

derived here, despite their simplicity, allow us to infer which quantities are responsible

for the spatial trend of the spin torques in the magnetic layer. These are encoded

in the spatial dependence of the transmitted current in Eq. (3.7). First of all, Js,tr

is proportional to the sine of the angle between the spin of the incident electron

and the static magnetisation, as the in-plane component included in Eq. (3.2). It

is then clear that the transmitted spin current, hence the spin torque, is sensitive

to phase factors introduced by scattering from an interface, here included in the

transmission coefficients. Moreover, it can be evinced that the STT has spatial

oscillations with a frequency controlled by the difference between the z components

of the wave-vectors of the two spin states, ∆kz. The extension of this single-electron

model to a distribution of electrons also indicates that the same quantity dictates the

spatial decay of the spin torques within the ferromagnet. In such conditions the total

spin current is given by an integral over all the possible parallel wave-vectors, kσ‖ .

Ref. [89] then shows that a wide range of vectors kσ‖ promotes the self-cancellations

of the integrals defining the transverse spin components, namely Jxs,tr and Jys,tr. This

induces the transmitted spin currents to asymptotically decay with a rate controlled

by ∆kz calculated at the Fermi energy, namely

lim
z→∞

Jzs,tr(z) ∝
sin
[(
k↓z − k↑z

)
z
](

k↓z − k↑z
)
z

. (3.9)

We note that this mechanism is possible only when both majority- and minority-spin

channels are present at the Fermi energy in the magnetic layer. Namely, if transport

electrons can propagate along the majority-spin channel only their spin will quickly

align with the local quantisation axis. As a consequence, the misalignment of the

spin current with the static magnetisation, i.e. the spin torque, vanishes within a few

layers from the interface.
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3.1.1 Going from the continuum scale to ab-initio modelling

All the considerations made above indicate that the material dependence of the spin-

transfer torque is encoded in the details of the interfacial scattering and in the band

structure of the ferromagnet around the Fermi energy. So far, the magnetic moment

distribution was assumed to be uniform and the details of the atomic structure

of the magnetic material were completely ignored. First principle methods offer

a framework in which quantitative information on the material properties can be

calculated down to the atomic scale. The combination of DFT and NEGF provides

the capability of assessing the response of a material to the flow of a steady state

current, as shown in the previous Chapter. We present here a method described in

Refs. [87, 92] for a non-orthogonal basis set that is suitable for the SMEAGOL code.

We also present here an adaptation of the approach described in Refs. [87, 92] that is

suitable to be implemented in the SMEAGOL code. Such method evaluates the spin

torques by quantifying the interaction between the local static magnetisation and the

non-equilibrium spin accumulation, rather than following the flow and conservation

of the spin-angular momentum through the system, as discussed before. Thus, ab-

initio theory enables the study of spin torques acting on generally complex magnetic

structures, such as antiferromagnetic metals, and current-induced torques beyond

spin-transfer [93].

The final objective of the approach is to express the interaction between the local

magnetic moments and the spin current in terms of the electronic degrees of freedom.

The motion of an electronic system can be analysed by the means of the quantum

Liouville equation,

i~
∂ρ̂σσ

′

∂t
=
[
Ĥ, ρ̂

]σσ′
, (3.10)

where ρ̂ is the density matrix operator defined in Eq. (2.43) and Ĥ = Ĥ[ρ̂] is here

assumed to be the Kohn-Sham Hamiltonian, although the approach is valid for a

general Hamiltonian that is variationally dependent on the electron density. The

first step consists in isolating the contributions to the system dynamics that cause

a change in the orientation of the direction of the electronic spins, i.e. that can be
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interpreted as spin torques. Each operator, Ô, will be expanded in the SIESTA

basis, {|ϕµ〉}µ, with overlap matrix, Sµν = 〈ϕµ|ϕν〉, and the spin degrees of freedom

will be expressed within the Pauli notation introduced in Eq. (2.23). For simplic-

ity, we omit here the dependence upon the Brillouin zone wave-vectors, k. With

such conventions, the matrix elements of the density matrix and of the Hamiltonian

operators can be written as

ρσσ
′

µν = nµνδ
σσ′ + µµν · σσσ

′
and Hσσ′

µν = hµνδ
σσ′ + ∆µν · σσσ

′
, (3.11)

where

nµν =
∑
σ

ρσσµν and µµν =
∑
σσ′

ρσσ
′

µν σ
σ′σ. (3.12)

Although the Hamiltonian operator can take analogous definitions for its spin-independent

and -dependent contributions, we choose to define the latter in terms of the func-

tional derivative of the exchange-correlation energy with respect to the different

components of the density matrix, as

hµν =
δEXC

δnµν
and ∆µν =

δEXC

δµµν
. (3.13)

This helps to elucidate the physical meanings of such potentials. In particular, ∆

embodies the interaction potential generated by the static magnetisation and will be

of central importance in the calculation of the spin torques. As already pointed out

in §2.1.2, local approximations of the exchange-correlation fields, such as the LDA,

yield magnetisations that are always parallel to the local exchange-correlation field.

This implies that the exchange field, ∆, will be everywhere proportional to the local

magnetisation, namely

∆ = ∆0(ρ0, |µ|) µ
|µ|

, (3.14)

with ∆0 an appropriate parametrisation of the exchange correlation potential. By

inserting the expansions in Eq. (3.11) into the Liouville equation (3.10) we obtain

i~
∂n

∂t
+ i~

∂µ

∂t
· σ =

[
h, n

]
+
[
h,µ

]
· σ +

[
∆, n

]
· σ + 2i(∆× µ) · σ, (3.15)
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where the orbital dependencies are omitted for simplicity. The last term is obtained

by using the relation[
∆ασα, µβσβ

]
= ∆αµβδαβ + iεαβγ∆

αµβσγ − µβ∆αδαβ − iεβαγµβ∆ασγ

=
[
∆α, µα

]
δαβ + 2i

(
∆× µ

)γ · σγ, (3.16)

where α, β, γ = x, y, z. The first term in the last equation vanishes because of

Eq. (3.14). The first terms on the right- and left-hand sides of Eq. (3.15) govern

the dynamics of the spin-independent part of the density matrix. The second and

third terms on the left-hand side represent the spin-current flux and do not involve

any modification of the spin direction, hence do not contribute to the spin torques.

Finally, the remaining term expresses the interaction exerted by the static magneti-

sation, ∆, onto the local spin density, µ. Thus, the general matrix element of the

spin torques can be written as

T tot
µν =

2

~
(∆× µ)µν . (3.17)

We note that it is possible to prove that the total spin torques evaluated within

density functional theory are identically zero. This result is known as the zero-

torque theorem, and it stems from the fact that DFT considers the equilibrium

ground-state electron density. This generally holds for the total torque, although

it does not exclude the presence of local torques. Nevertheless, in case of local XC

potentials the local spin torques also vanish in a system in equilibrium. In fact, the

relation expressed in Eq. (3.14) indicates that the cross product between ∆ and µ is

identically zero. We can now limit our attention to systems where the electric current

does not significantly alter the electronic structure, hence the order parameter can

be assumed to have an adiabatic motion and change slowly in time with respect to

the electronic system. In other terms, we assume that the density matrix can be

partitioned into an equilibrium, ρ̂eq, and a transport contribution, ρ̂tr, such that the

latter component has negligible influence to the order parameter,

i~
∂ρ̂σσ

′

∂t
=
[
Ĥ[ρ̂], ρ̂eq + ρ̂tr

]σσ′
'
[
Ĥ[ρ̂], ρ̂eq

]σσ′
. (3.18)
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As a consequence, the current-induced contribution to the electron density, ρ̂CI, is

given by

i~
∂ρ̂σσ

′
CI

∂t
=
[
Ĥ[ρ̂]− Ĥ[ρ̂eq], ρ̂eq

]σσ′
. (3.19)

At this point, the same decomposition done in Eq. (3.15) can be performed for this

latter equation of motion. Hence the current-induced torques can be written as

T µν =
2

~
[
∆tr × µ

]
µν

=
2

~
[
(∆[ρ̂]−∆[ρ̂eq])× µ

]
µν
. (3.20)

These spin torques are the result of the exchange field generated by the transport

electron density, ρ̂tr = ρ̂ − ρ̂eq, acting on the equilibrium electrons, represented by

ρ̂eq. This must equal the interaction between the equilibrium exchange field and

the transport electron density, since the torque in the system is globally conserved.

This simple rearrangement allows us to obtain a formula that is simple to implement

within SMEAGOL. In fact, the static exchange field can be taken as the spin-

dependent Hamiltonian, result of a transport calculation in the limit of vanishing

bias voltage, ∆eq ≡ ∆(0). In turn, the quantities related to the transport electrons

can be calculated as the difference between the results of a V = 0 and a finite bias

calculation. Finally, the partial trace over all the orbitals centered on each atom, a,

yields an expression for the bias-dependent spin torque acting on a generic atomic

position,

T a(V ) =
2

~
∑

µ∈a,ν,η

∆µν(0)×
(
µηµ(V )− µηµ(0)

)
Sην . (3.21)

As a consequence, each finite-bias spin torque calculation will require two calculations

to be performed for each magnetic configuration: one within the V = 0 limit and

one at a finite bias, V .

The details of the bias dependence of the spin torque is, in principle, different for

different systems (further discussion on this will be presented in the next section).

This makes the comparison between the spatial profiles of the STT characteristics

of each junction more complicated. Therefore, it is useful to define the torque linear

response to a infinitesimally small bias, usually called torkance, as

τ a ≡ dT a

dV
=

2

~
∑

µ∈a,ν,η

∆µη(0)×
dµηµ
dV

∣∣∣
V=0

Sην . (3.22)
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Here the transport spin density is replaced by the derivative of the spin-dependent

part of the density matrix with respect to the bias centered at V = 0. Importantly,

the estimation of the torkance requires a single zero-bias calculation, where the bias

derivative is calculated within finite differences using an auxiliary density matrix

obtained by applying a tiny bias non-self-consistently. The torkance is equivalent to

the finite bias torque (apart from a constant) as far as the electric current depends

linearly on the applied bias voltage. However, it can be more sensitive to simula-

tion parameters and the definition here adopted was shown to yield an out-of-plane

torkance that is not gauge invariant for asymmetric junctions [94].

3.2 The Fe/MgO/Fe junction

We begin by discussing the features of the spin torques calculated with the approach

above presented on the prototypical Fe/MgO/Fe MTJ. The ground state and trans-

port properties in such system were thoroughly analysed with the same implemen-

tation in previous works [16, 71, 95, 96, 97]. In particular, all simulation parameters

here used were chosen according to the study contained in Ref. [71]. Hence, we will

limit the discussion of ground state and general transport properties to the definition

of the main features of this system as captured by the SMEAGOL code, focusing

on the aspects that are relevant to the spin torques.

Figure 3.1: Setup for a spin torque calculation of a Fe/MgO/Fe junction. The

different color of the spheres correspond to different atomic species: red for Fe, blue

for Mg and green for O. The green arrows represent the magnetisation of the two

magnetic layers.
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Chapter 3 Spin torques in Fe/MgO-based magnetic tunnel junctions

The typical junction considered in a transport calculation is represented in Fig. 3.1.

The Fe and MgO layers are considered in their equilibrium crystal structures, bcc

and salt-like, respectively. A number of different studies have been performed on

the formation of Fe/MgO interfaces, see e. g. Ref. [98] and references therein. The

magnetic electrodes are generally grown in the (001) direction, and from the litera-

ture it is clear that MgO barrier crystallises along the same direction but with the

in-plane lattice vectors that are rotated by 45◦ with respect to the lattice vectors of

bcc Fe. In particular, the equilibrium interfacial configuration was shown to have

the Fe atoms that are closest to the interface facing O atoms. We remark that

the Fe/MgO and MgO/Fe interfaces considered here (and shown in Fig. 3.1) are

identical, although they might appear different at a first glance. In fact, one might

argue that the positions of the O atoms at the two interfaces differ by a shift of

(a/2, a/2, 0), with a here denoting the in-plane lattice constant for the stack. This

is because the in-plane positions of O and Mg atoms alternate after each atomic

plane, therefore a stack composed of an even number of monolayers naturally has

asymmetric interfaces. Nevertheless, one must note that the left- and right-hand side

electrodes were also truncated in different ways, so that the atomic configuration at

both interfaces has O sites directly facing Fe sites, as predicted in the literature. It

was also shown that in real junctions a small difference between the in-plane lattice

vectors of the top and bottom electrodes often appears because of the strain due

to the lattice mismatch between Fe and MgO (∼ 3.9%). However, including such

effect would a require consideration of a large cross section, for which the calculation

becomes infeasible. In contrast, the assumption that the in-plane lattice vectors are

uniform throughout the system allows us to consider periodic boundary conditions

along the directions perpendicular to transport and use a minimal unit cell in the

direction perpendicular to the transport. Since the junction is assumed to be sand-

wiched between two semi-infinite bulk Fe leads, the in-plane constant of the entire

stack is set to the equilibrium lattice constant of bcc Fe, aFe = 2.866�A . This sets the

in-plane lattice constant of MgO to aMgO =
√

2aFe = 4.05�A, against its equilibrium

experimental value of 4.21�A. The out-of-plane lattice constants for both materials
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3.2 - The Fe/MgO/Fe junction Chapter 3

are chosen so to keep the unit cells cubic, i.e. cFe = aFe and cMgO =2.027�A. The

typical junction is then constructed with the magnetic layers formed by 5 mono-

layers (MLs) of bcc Fe and the insulating barrier containing 6 MLs (3 unit cells ∼

1.2 nm) of MgO. We remark here that the 4 atomic layers at the two boundaries of

the scattering region have, by construction, the same electronic structure of the bulk

material to ensure continuity with the semi-infinite electrodes. This might truncate

the tail of long decaying spin torques, hence in some cases thicker magnetic layers

are considered.

All calculations are performed by using a cutoff of 600 Ry for the real space mesh

and the 2D Brillouin zone (BZ) perpendicular to the transport direction is sampled

with a 15 × 15 Monkhorst pack grid. In general, the use of a GGA exchange-

correlation functional is more convenient than an LDA functional for calculations

of bcc Fe. This is because structure relaxations performed with LDA wrongly esti-

mate Fe to have a fcc equilibrium crystal structure, in contrast to the case of GGA.

Nevertheless, the band structure calculated within LDA assuming the correct crystal

structure has a good agreement with the experimental band structure. In addition,

the generalisation of the GGA functional to non-collinear spin calculations is not triv-

ial, and such potentials were not extensively tested in the version of SMEAGOL

employed for this thesis. For such reasons, the LDA approximation for the exchange-

correlation functional is chosen for all the systems considered in this Chapter. The

interested reader can find an extensive study of the electronic and transport prop-

erties of Fe/MgO/Fe calculated with both LDA and GGA in Ref. [71]. A double-ζ

basis is adopted for s and p orbitals of both Mg and O, with first-ζ orbitals with

radial cutoff of 4.0�A. The calculated band gap at the Γ point is of 4.64 eV, that is

significantly smaller than the experimental value of 7.8 eV. Nevertheless, the LDA

band gap remains rather large, hence this underestimation will not qualitatively in-

fluence the transport properties for small bias voltages. The s orbitals of Fe sites

are expressed by a double-ζ polarised (DZP) basis with cutoff radius for the first-ζ

of 6.5�A, while the d orbitals have a double-ζ basis with cutoff radius 5.6�A. The

transmission is evaluated on 500 energy points distributed within ±0.5 eV from the
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Figure 3.2: Panel (a) : majority (left panel) and minority (right panel) spin transmis-

sion coefficients at the Fermi energy plotted over the 2D Brillouin zone in Fe/MgO/Fe

for parallel (P) magnetisations. The colored scale indicates the intensity of the co-

efficient at a given k-vector (in logarithmic scale), with Γ positioned at the centre

of each square. Panel (b) : current density for different voltage in Fe/MgO/Fe for

parallel (P) and antiparallel (AP) magnetisations.

Fermi energy, using a finer k-points mesh (typically 100×100) than the one employed

during the self-consistent cycle.

Fig. 3.2 shows the transmission coefficients resolved over the 2D Brillouin zone

calculated at the Fermi energy for a Fe/MgO/Fe junction with parallel (P) mag-

netisations in the zero-bias limit. The color scale indicates the different intensity

of the transmission in a log scale for majority (left-hand side panel) and minority

spins (right-hand side panel) depending on the position in the Brillouin zone, with

Γ located at the centre of the squares. It is clear that the transmission for majority

spins mostly occurs at the center of the Brillouin zone, where, in contrast, the mi-

nority spins is strongly suppressed. In other terms, the transport in Fe/MgO/Fe can

be regarded as quasi-one dimensional, since electrons propagating in directions that

are not parallel to the transport direction are not likely to be transmitted through

the insulator. Such feature is a consequence of the spin filtering performed by MgO,

that also implies that the current is populated solely by electrons with ∆1 symme-

try. Another important message to be extracted from these results is that the vast
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majority of the electronic states that populate the current are characterised by very

long wavelengths. This implies that the propagation of the current is not influenced

by local alterations of the interface, therefore the ideal interfaces here considered

constitute a fair approximation for a realistic interface. These characteristics are

maintained when a finite bias is applied, as shown in Ref. [71]. Moreover, the cur-

rent grows linearly with the intensity of the applied voltage [Fig. 3.2 (b)]. This also

holds for the anti-parallel (AP) configuration, although small deviations to the linear

dependence appear at lower voltages.

We move now to discuss the spin torques acting on the Fe/MgO/Fe junction. In

order for the STT not to be identically zero, the magnetisation of the two magnetic

layers need to be misaligned with respect to each other. Since here spin-orbit cou-

pling is neglected, the spin quantisation axis of each layer is independent from the

orientation of the crystal structure. Hence, the only relevant quantity is the angle,

ϑ, between the magnetisation vector of the left-hand-side magnetic layer, assumed

to be pinned along z, and the one of the right-hand-side layer, that by convention

lies in the x − z plane. With this notation, the in-plane torque is parallel to the

z axis, while the out-of-plane corresponds to the y direction, as shown in Fig. 3.1.

All results presented here will assume that the two magnetisations are orthogonal,

i.e. ϑ = π/2. The calculated spin torques for different angles in fact show to follow

the same angular dependence given in Eq. (3.2) for similar systems [99]. Fig. 3.3 dis-

plays the calculated out-of-plane and in-plane components of the spin torques acting

on a Fe/MgO/Fe junction for ϑ = π/2. The out-of-plane component (panel (a)) is

non-zero in the proximity of both interfaces between Fe and MgO, which are here

indicated by the two vertical lines. This is probably due to the precession of the

reflected and transmitted spins induced by the exchange fields of the two magnetic

layers. We note that the trend in the torkance (black squares) is in this case different

from the one of its finite-bias counterpart (blue circles), that in this case is calculated

with a bias voltage of 0.5 V. In particular, the zero-bias torque is almost perfectly

symmetric in the two magnetic layers and alternates sign in adjacent monolayers in

proximity of the interfaces. In contrast, the finite-bias torque has opposite signs at
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Figure 3.3: In-plane [panel (a)] and out-of-plane [panel (b)] components of the

torkance in Fe/MgO/Fe in the zero-bias limit (black squares) and for a bias voltage

of 0.5 V (blue circles). These results were obtained for an angle ϑ = π/2 between

the magnetisations of the reference and free layer.

the two different interfaces and both its intensity and decay range differ in the two

magnetic layers. The same considerations, however, do no hold for the in-plane com-

ponents. In fact, in this case the finite-bias torque and the torkance have the same

trend. In particular, the spin-transfer torque can be found only at the MgO/free

layer interface, where the spin polarisation of the current is orthogonal to the local

magnetisation. While the field-like torkance oscillates in sign and vanishes within

few atomic planes, the in-plane component is sharply peaked at the interface and

has a faster decay rate. We note that the spatial dependence of the spin torques

are somewhat in contrast with the findings of Ref. [100], where the decay is less

pronounced and the two components are of similar magnitude. Nevertheless, in such

work the 2D Brillouin zone is sampled only at the Γ point, that is a severely reduced

mesh with respect to that adopted here. Moreover, the torkances are studied in a

Fe/MgO/Fe junction sandwiched between Cu contacts, fact that can significantly

alter the spatial trend of the STT, as will be shown later.

The total magnitude of the two components for different biases is shown in

Fig. 3.4. We note that the in-plane torque depends linearly on the bias voltage,

in contrast to the quadratic dependence of the out-of-plane component. This is in
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Figure 3.4: Bias dependence of the out-of-plane (a) and in-plane (b) component of the

spin torque in Fe/MgO/Fe integrated over the free layer. The spin density method

(DM) presented in the previous section is compared to the prediction obtained by the

means of conservation of the spin current (CM) and within the Slonczewski model

(S).

agreement with results obtained in other works (see e.g. [101]), although it was shown

that the quadratic bias dependence is a feature of symmetric interfaces [102, 103].

We also note that for very small biases (|V | <0.1 V) the in-plane and out-of-plane

torques have similar magnitude, although the damping-like torque becomes stronger

by more than an order of magnitude for higher biases. The sudden change in the

τ(V ) behaviour around 1.5 V can be attributed to a significant increase of the cur-

rent intensity for the minority spin channel for V >1.5 V. In general, the details the

bias dependence of transport-related properties in Fe/MgO/Fe have been shown to

strongly depend on the line-width of resonant interfacial states [71].

In conclusion, the in-plane spin torques in Fe/MgO/Fe vanish within few atomic

layers from the insulator/free layer interface. The out-of-plane component has longer

decay and generally lower intensity for low bias voltages. The latter then plays a

minimal role in determining the switching properties characteristic of a given mate-

rials stack, as will be also shown in more detail in Chapter 4. For such reasons, the

analysis in the next sections will only treat the in-plane component of the torque.
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Chapter 3 Spin torques in Fe/MgO-based magnetic tunnel junctions

3.3 Disorder at the Fe/MgO interface

The analysis of disorder effects in Fe/MgO/Fe offers a formidable challenge from

both the theoretical and experimental points of view. In fact, disorder effects are

most relevant when they are located in proximity of the metal/insulator interfaces,

hence in regions that are embedded in the device and therefore difficult to probe.

The most commonly studied effect has probably been the formation of an interfacial

FeO layer, that was firstly observed by the means of surface X-ray diffraction [22].

This was demonstrated to strongly suppress the efficiency of the spin filtering and

hence of the TMR [23]. In practice, it was shown that the interfacial oxidation is

generally not uniform and the oxygen concentration varies depending on the growth

technique [104]. The same work also showed that the MgO barrier thickness is not

Figure 3.5: Schematic representation of the cell adopted to simulate a disordered

barrier. The total cross section is divided into a number of different regions in which

the spin currents flow independently (in parallel). This allows us to combine the

results of spin torque calculations with different barriers and characterise the spin

torques on a larger system.
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constant but varies throughout the cross section. The concentration of defects is

normally different for the top and bottom interface because of the slight change in

the in-plane lattice constant and the diffusion of different elements from the substrate

or capping layers. These discrepancies are normally not desirable since asymmetric

interfaces are proven to drastically alter the spin currents, yielding in some cases

even negative TMRs [105]. Other disorder effects studied in previous works include

oxygen vacancies in the MgO barrier [97], misfit dislocations and contamination from

impurities (see Refs. [21, 106] for more details). In general, the long wavelengths of

the transport electrons imply that the transport properties should not be altered by

spatial roughness of the interface. Nevertheless, disorder at the interface may become

relevant if, for example, it induces the presence of additional transport channels,

therefore significantly modifying the features of the tunnelling current.

Having strong non-uniformity in interfacial defects in Fe/MgO implies that a wide

cross section is to be considered in order to realistically reproduce the sparsity of

disorder observed in experiments. Such sizes are generally too large to be considered

in first principles simulations. Nevertheless, the fact that the transmitted electrons
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Figure 3.6: Comparison of the in-plane torkance in Fe/MgO/Fe for barriers formed

by 4,5,6 and 7 MgO MLs. Panel (a) shows the in-plane torkances summed over the

free layer. The line is the result of our best fit to the function a exp(−b ∗ x), with

a = 787116 in the units of torkance and b = 1.61864. Panel (b) contains the spatial

distribution of the normalised in-plane torkance at the insulator/metal interface.
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travel parallel to the transport direction allows us to consider the cross section as a

number of smaller cells where the current flows relatively independently, namely in

parallel [Fig. 3.5]. In this work we consider a Fe/MgO/Fe MTJ where different regions

contain different kinds of disorder and analyse the effects on the spin dynamics

within the atomistic model described in the next chapter. In particular, we consider

regions with different barrier thicknesses and with partially (25%) oxidised MgO/Fe

interfaces. We present here the results of spin torques calculations on each different

structure, while the details and results of the spin dynamics simulations can be found

in §4.3.2.

Fig. 3.6 displays the results of torkance calculations on Fe/MgO/Fe junctions with

barriers formed by 4, 5, 6 and 7 monolayers (MLs), i.e. for thicknesses ranging from

0.663 nm to 1.326 nm. Since the current is in the tunnelling regime is maintained,

the transmitted current decays exponentially with increasing thickness and the total

torkance [panel (a)] follows the same trend. Nevertheless, the spatial decay of the

in-plane torkance remains the same for all the barriers considered, as shown in panel

(b). Therefore, we can conclude that fluctuations in the barrier thickness overall

alter the net amount of torque acting on the free layer but do not alter the spatial

dependence of the spin torques. This however does not hold for the case of (partially)

oxidised interfaces. In fact, Zhang et al. [23] showed that the presence of additional

O atoms at the Fe/MgO interface reduces the tunneling current of the ∆1 majority

spin electrons, and hence the TMR. Such alteration of the spin current is then likely

to yield spin torques that are qualitatively different to the case of an ideal interface.

Here we estimate the effects of interfacial oxidation on the spin torques by per-

forming a transport calculation on an Fe/MgO/Fe junction with partially oxidised

insulator/free layer interface. For such purpose we consider a supercell made of

2 × 2 × 1 unit cells of the Fe/MgO/Fe junction considered earlier in this Chapter.

This allows us to study a cross section formed by four different unit cells that are

repeated through the use of periodic boundary conditions. We then consider a par-

tially oxidised interface by inserting an extra oxygen atom in one of the four cells
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Figure 3.7: Oxidised interface as considered in the supercell calculations. The differ-

ent color of the spheres corresponds to different atomic species: red for Fe, blue for

Mg and green for O. The scheme on the right-hand side shows the notation adopted

to identify each unit cell in the cross section. We define the origin of the cartesian

axes as the origin for the oxidised cell, hereon also denoted as (0, 0). The remaining

unit cells are then identified according to the position of their origin in units of the

in-plane lattice constant, namely as (0, 1), (1, 0) and (1, 1).

as shown in Fig. 3.7, thus to obtain an interfacial FeOx layer with x = 0.25. The

formation of a uniform FeO layer throughout the entire cross section is in fact rather

unlikely. Moreover, the Fe magnetic moments in bulk FeO order antiferromagneti-

cally, hence the correct estimation of the electronic structure of a single ML of FeO

would strongly complicate the simulation. The coordinates of the oxidised interface

are chosen according to the findings presented in Ref. [23]. In such work different

experimental results are considered and combined to estimate the position of the

atoms at the interface. The distance between the O atom in the FeO layer and the

MgO is set to 2.18�A, while its distance from the Fe contact is chosen to be 2.06�A.

The Fe atoms belonging to the oxidised layer are then displaced by 0.4�A towards the

Fe contact. The simulation parameters and magnetic configuration for the torque

calculation are then kept the same as the ones considered for the ideal interface.

Fig. 3.8 compares the results of transport calculations of Fe/MgO/Fe junctions

with ideal (blue squares/lines) and oxidised (red circles/lines) insulator/free layer in-
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Figure 3.8: Results of transport calculations on Fe/MgO/Fe MTJs with a clean (blue

squares/lines) and a 25% oxidised (red circles/lines) insulator/free layer interface.

Left: planar average of the atomic magnetic moments in proximity of the interface

(centered at 0). Right: energy-dependent transmission coefficients for majority- (full

lines) and minority-spin (dashed lines).

terface. Panel (a) shows that the magnetic moments in the FeO layer are slightly en-

hanced in proximity of the barrier with respect to the clean interface. The difference

is particularly marked for Fe atoms in the first non-oxidised layer, and disappears

deep in the free layer, as expected from the screening in metals. The majority-spin

transmission for parallel magnetisations is very similar in the two cases, while the

minority-spin seems to be less energy dependent in the case of the oxidised inter-

face. Despite the similarities just described, the calculated in-plane torkance for the

disordered junction has a different spatial trend with respect to the ordered one. In

general, the decay is significantly longer-ranged and has different features depend-

ing on which portion of the 2 × 2 × 1 supercell is considered. The different panels

of Fig. 3.9 show the torkance acting on each section, where the labels refer to the

notation introduced in Fig. 3.7. The torkance for the oxidised (0,0) unit cell is dis-

played in panel (a), panels (b) and (d) are relative to the two sections adjacent to the

oxidised one and panel (d) to the opposite one (1,1). The decay range for sections

adjacent to the oxidised one is analogous to the one encountered for clean interfaces

[see Fig. 3.3 (a)]. The small oscillations of the torkance in the unit cells (0,1) and
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Figure 3.9: Calculated torkance per unit of µB/2 and area in a Fe/MgO/FeO0.25/Fe

junction. Each panel corresponds to a different region of the 2x2 supercell, where and

the two vertical dashed lines indicate the position of the MgO/FeO0.25 and FeO0.25/Fe

interfaces. The colored background indicates the atomic species: blue for O, green

for Mg and red for Fe.

(1,0) are in fact rather small and are likely due to magnetic moments that are less

homogeneous than the case of the ideal interface. The same consideration, however,

does not hold for the (0,0) and (1,1) regions, where the oscillations are remarkably

more pronounced and propagate further away from the interface. Interestingly, the

torkances in such regions have similar features despite the additional O atom is in

the (0,0) but not in the (1,1) region. We can then conclude that a local alteration

of the ideal barrier may influence the spin torques in a cross section larger than the

unitary cell.

The appearance of oscillations in some portions of the cross section indicates

that the partial oxidation introduces additional transport channels with respect to a

clean interface. In other words, the presence of the additional O atom is sufficient to

significantly alter the electronic structure of the atoms in proximity of the interface.

As explained before, the electronic states at the Fermi energy for each spin state

play an important role in the determination of the decay of the spin torques. This

feature is key to the prediction of the spin torques in a given material and will be

further analysed in the next section.
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3.4 Material dependence of the spin torques
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Figure 3.10: Study of the torkance in free layers composed by Fe (top left panel), Co

(top right panel), Ni (bottom left panel). In all the panels the colored background

indicates the atomic species: blue for O, green for Mg, red for Fe, light grey for Co,

violet for Ni. The top left, top right and bottom left figures display the relevant

components of [(a), (d), (g)] the exchange and correlation field, ∆, [(b), (e), (h)]

the non-equilibrium spin density, dm/dV , and [(c), (f), (i)] the torkance per unit of

µB/2 and area, τ . The bottom right figure shows the details of the decay of the non-

equilibrium spin density in (j) Fe, (k) Co and (l) Ni beyond the position indicated

by the dashed vertical line in the other figures (note the different scales). The green

line in panel (l) represents the best fit of the function in Eq. (3.23) to the underlying

data.

We focus here on the study of the spatial decay of the spin torques depending
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on the chemical composition of the magnetic free layer. For simplicity, the analysis

will be limited to the in-plane torkance acting on free layers positioned at the right-

hand side of a Fe/MgO stack where the magnetisation vectors are orthogonal to

each other. This allows us to examine the response of each magnetic material to

spin currents composed by electrons with the same band symmetry since the latter

is defined by the spin filtering of the MgO barrier. We start by comparing the

torkance acting on Fe, Co and Ni layers while maintaining the atomic coordinated

of the Fe/MgO/Fe system. We consider here free layers composed of 10 atomic

layers (2.866 nm) so that the magnetic moments are uniform throughout the stacks.

This also allows us to relate the spin torques to the band structure of each material

in a framework similar to the one discussed at the beginning of this chapter and

proposed in Ref. [89]. We remark that this is not a realistic approximation for Ni and

Co, since their equilibrium crystal structures are not bcc. The presence of a different

crystal structure in contact with MgO might however disrupt the spin filtering, hence

produce qualitatively different spin currents. Moreover, maintaining the same crystal

structure for all materials facilitates comparison between the different cases. Fig. 3.10

contains our results for the torkance in a Fe (top left), Co (top right) and Ni (bottom

left) free layer. Each sub-figure contains the relevant components of (top panels) the

exchange and correlation field, ∆, (middle panels) the non-equilibrium spin density,

dm/dV , and (bottom panels) the torkance, τ . We recall that the XC field is parallel

to the local magnetisation, hence it points along the x axis for ϑ = π/2 (see Fig. 3.1),

while the in-plane component of the torkance is parallel to the z direction. As a

consequence, the vector product in the torkance definition of Eq. (3.22) indicates that

the component of the non-equilibrium spin density that contributes to the in-plane

torkance is along the y axis. We note that the point-by-point vector product between

the displayed XC field and non-equilibrium spin density does not give the value of

the torkance reported in the figures. In fact, each spatial profile is obtained through

the partial trace over the orbitals centered at each atom (e.g. ∆a =
∑

µ∈a ∆µν),

hence the point-by-point product does not account for terms that are off-diagonal in

the orbital indices.

97



Chapter 3 Spin torques in Fe/MgO-based magnetic tunnel junctions

Our results show that the magnitude of the XC field is almost constant through-

out the free layer in all the three cases, with small deviations within a few atomic

planes from the interface with MgO. Both the non-equilibrium spin density and the

torkance are peaked at the interface and decay as the XC field becomes uniform, a

position indicated by the dotted vertical lines in the three figures. In such region

the torkance vanishes almost completely for Fe and Co [panels (c) and (f) respec-

tively]. In contrast, a much longer decay range characterises the STT in Ni [panel

(i)]. This difference is due to the absence of ∆1 minority bands at the Fermi energy

for k-vectors parallel to the transport direction for Fe and Co [Fig. 3.11]. In fact,

contributions from different points of the 2D Brillouin zone make the spin current

vanish quickly in the free layer. If both majority and minority states are available at

EF , the spin torque will oscillate with a frequency given by π/(k↓F − k
↑
F ) (see §3.1).

In order to further analyse the spatial decay of the torque deep in the free layers we

display the non-equilibrium spin density far enough from the MgO interface for the

three materials (bottom right of Fig. 3.10). Here the spin density was chosen instead

of the torque, since the latter is more sensitive to the small variations in magnitude

of the magnetic moments. These are in fact not exactly constant and such small

modifications are enough to produce the tiny oscillations observed for Fe [panel (j)]

and Co [panel (k)]. In contrast, the non-equilibrium spin density in Ni perfectly

follows the trend predicted by Ref. [89] [panel (l)]. The green line here represents

the result of our best fit to the function

dmy

dV
(z) =

A sin
(
∆k(z − z0)

)
∆k(z − z0)

, (3.23)

where ∆k = k↓F − k
↑
F . Our best fit estimates ∆k to be 0.19�A−1

, which differs from

the value of 0.45�A−1
that can be extracted from the band structure [panels (c) and

(g) of Fig. 3.11]. We attribute this inconsistency to a shift in the Fermi energy of

the junction with respect of the one of bulk Ni. In other words, the match of the

two quantities requires to evaluate the k-vector difference in the band structure of

bcc Ni at the energy corresponding to EF as calculated for the Fe/MgO/Ni junction.

We estimated the difference in the Fermi energies for the two systems to be around
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3.4 - Material dependence of the spin torques Chapter 3

Figure 3.11: Band structure of, from left to right, Fe, Co, Ni and FePt for majority

(top panels) and minority (bottom panels) spins for k-vectors parallel to the transport

direction. For all materials the in-plane lattice parameter is that of the junction,

i.e. of bcc Fe, and the structures for Fe, Co and Ni are all bcc. The production of the

data contained in this Figure and its realisation was performed by Emanuele Bosoni.

0.2 eV, which corresponds to ∆k=0.28�A−1
. Such value is closer to the one extracted

from the fit, but still inconsistent. Since our best fit seems to perfectly interpolate the

data and provides a very accurate estimate of ∆k (with error of 0.001%), we conclude

that the inconsistency is due to an incorrect extrapolation of the ∆k from the band

structure. Further investigation will then be necessary to confirm the accuracy of

the prediction of the oscillation frequency of STT provided by the best fit.
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Figure 3.12: Study of the torkance acting on Fe/MgO/Fe/Cu (left) and

Fe/MgO/Ni/Cu (right). The colored background indicates the different atomic

species: blue for O, green for Mg, red for Fe, purple for Ni and orange for Cu. The

top panels display the relevant components of the exchange and correlation field, ∆x,

the middle panels the non-equilibrium spin density, dmy/dV , and the bottom panels

the torkance per unit of µB/e and area, τz.

The long range decay of the torkance in Ni has been already reported in previous

calculations for Cu/Co/Cu/Ni/Cu multilayers [107, 108]. In such works the authors

show that the phase of such oscillations depends on the distance between the two

interfaces of Ni with Cu. It has been also shown that the insertion of a metallic seed

layer between the insulator and the free magnetic layer also modifies the intensity

of the in-plane torque, and the sign of its contribution can be controlled by varying

the thickness of such spacers [109].

In order to analyse the influence of non-magnet/ferromagnet interfaces we con-

sider free layers where the ferromagnet is contacted to a Cu electrode. We note that

such an interface is often present in experimental realisations of MTJs (see Fig. 1.7).

Since the torkance in Fe and Co has rather similar features, we only analyse the

Fe/Cu and Ni/Cu free layers. In both cases we consider the ferromagnetic to stacks

have a thickness of 8 MLs (1.146 nm). Consistently with our previous system choices,

the crystal structure for Cu layers is not adapted to the equilibrium structure of such

material but is kept bcc. The results displayed in Fig. show that in both cases the
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3.4 - Material dependence of the spin torques Chapter 3

magnetic moments vary slowly between the two interfaces [panels (a) and (d)]. This

is more evident for Fe, where the interfacial moment is enhanced at both interfaces.

In contrast, the Ni atoms at the Ni/Cu interface have a reduced moment compared

to the others. For a Ni/Cu free layer, the torkance (panel (f)) is found to be strik-

ingly similar to the one for a pure Ni layer. In contrast, the presence of the Cu

electrode remarkably alters the spatial profile of the torkance in the Fe stack [panel

(c)]. In Fe the decay is now significantly longer and oscillating, with the peak at

the interface with the insulator being of larger intensity. It is then clear that the

argument presented to explain the decay in the free layers made for a single material

is not applicable here. This is due to the formation of quantum well states within

the magnetic layer that significantly alter electron propagation. The details on how

the spin torque varies with the change the contacts will then depend on the details

of the magnet/non-magnet interface. This greatly complicates the prediction of the

material dependence of STT in presence of multiple interfaces.

3.4.1 The influence of induced magnetic moments in L10-

FePt

Our analysis so far has been focused on materials with a uniform magnetic texture.

We have shown that in the absence of additional interfaces the spatial profile of the

torque is determined by the position of the ∆1 majority and minority spin bands

with respect to the Fermi energy. We are here interested in exploring the torques in

a material whose unit cell includes atomic spins of different magnitudes and verify

whether the same arguments apply. With such purpose in mind we consider a series

of Fe/MgO/Fe junctions including a stack of L10 FePt in the free layer. The latter

has ∆1 bands for both spin channels crossing the Fermi level [panels (d) and (h) of

Fig. 3.11], hence the torque is expected to have some long range oscillations. The L10

ordered FePt alloy is of great interest for magnetic recording applications because

of its high easy-axis magnetocrystalline anisotropy (Ku = 7.0× 106 Jm−3) [110]. Its

bulk crystal structure is almost bcc where the two nonequivalent sites are occupied
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Chapter 3 Spin torques in Fe/MgO-based magnetic tunnel junctions

by different species [Fig. 3.13 (a)], with experimental in-plane lattice constant of

2.73�A and a slight distortion along the (001) direction (c/a = 0.98). Interestingly,

the presence of Fe induces a magnetic moment on the usually non-magnetic Pt atoms

that couples ferromagnetically to the spins on the Fe sites.

Despite the relevant difference in magnitude between the two moments (µPt ∼

0.4 µB, µPt ∼ 3.0 µB), the interplay between the two moments plays a significant

role in the thermodynamical and dynamical properties of the spin system. The

similarity of the crystal structure of FePt to bcc Fe makes L10 FePt suitable to be

embedded in Fe/MgO-based tunneling junctions, as it was already proposed both in

theoretical [111, 112] and experimental works [113]. Here we start by considering

a free layer composed entirely by FePt, to then examine the case of an FePt stack

inserted between MgO and a Fe electrode. A small seed layer (SL) is then interposed

between the FePt stack and the MgO barrier, as often done in experiment to better

nucleate the growth of FePt. The inclusion of FePt into Fe/MgO/Fe requires the

in-plane lattice constants to match throughout the stack. Hence, the in-plane lattice

constant of FePt is adapted to match the one of bcc Fe. The atomic coordinates to

construct different junctions are then chosen according to the studies contained in

Refs. [114, 113]. In particular the out-of-plane lattice constant of FePt is taken to

be 3.474�A, while the inter-plane distances at the MgO/FePt and Fe/FePt interfaces

are 2.2�A and 1.585�A, respectively. Since the atomic forces in the systems built with

such information are comparable to the ones in the Fe/MgO/Fe system, no structural

relaxation was performed here.

We start by comparing the energy-dependent transmission coefficients calculated

for a FePt (red), Fe (blue) and a FePt/Fe (green) free layer [Fig. 3.13 (b)]. The

transmission coefficient for majority spin (full lines) is found to be about 2 orders of

magnitude higher for a FePt contact than for an Fe electrode. The spin-up transmis-

sion is slightly higher in Fe than in FePt/Fe because of the presence of the additional

FePt/Fe interface. The difference between FePt and Fe contacts is less pronounced

for minority spin, which are however significantly higher than the FePt/Fe case.

These changes in the magnitude of the total transmission will then imply a dif-
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3.4 - Material dependence of the spin torques Chapter 3

Figure 3.13: Left: unit cell of L10 FePt with red (gray) spheres representing Fe

(Pt) atoms. Right: comparison of the energy dependent transmission coefficients for

majority (full lines) and minority (dashed lines) for junctions with FePt (red), Fe

(blue) and FePt/Fe (green) free layers.
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Figure 3.14: Study of the torkance in a FePt free layer in the case of the unrealistically

underestimated (left) and the realistic (right) MgO-FePt inter-plane distance. The

coloured background indicates the atomic species: blue for O, green for Mg, red for

Fe, grey for Pt. The relevant components of (a), (d) the exchange and correlation

field, ∆, (b), (e) the non-equilibrium spin density, dm/dV , and (c), (f) the torkance

per unit of µB/e and area, τ .
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Chapter 3 Spin torques in Fe/MgO-based magnetic tunnel junctions

ference in the intensity of the spin torques acting on the different junctions, and,

consequently, in the resulting spin dynamics. As a matter of fact, the cause of this

drastic difference in the total transmission was found to be an incorrect, strong un-

derestimation of the MgO-FePt inter-layer distance in the Fe/MgO/FePt system,

as compared to the (correct) one used for the other junctions. Consequently, the

results on the transport properties of the Fe/MgO/FePt junction shown in most of

this work are based on a unrealistic crystal structure. Nevertheless, this inconsis-

tency does not qualitatively modify the results here presented. This can be seen by

comparing the calculated torkance in the cases of the unrealistic and the realistic

interfaces, shown in panels (c) and (f), respectively, of Fig. 3.14. As for the other

free layers considered, the STT is peaked at the MgO/free layer interface because of

a change in the magnetic moment of the interfacial magnetic atom. The magnetic

moments then remain mostly constant within the layer and the torque decays with

long range oscillations, as it can be predicted from the presence of ∆1 bands at the

EF for both spin states [panels (d), (h) of Fig. 3.11]. In the case of the unrealis-

tic interface, such oscillations are strikingly smaller than the peak at the interface,

and are rather irregular. In contrast, the spatial profile becomes much more reg-

ular when the realistic inter-plane distance is adopted, although the overall torque

intensity is about two orders of magnitude smaller than the case of the incorrect

interface. We remark that this difference is perfectly consistent with the difference

in magnitude in the transmissions of the (unrealistic) Fe/MgO/FePt structure and

the other junctions shown in Fig. 3.13 (b).

Given the remarkably strong magnetic anisotropy of L10 FePt, the inclusion of a

thick stack of such material would make difficult to induce magnetisation reversal,

as it will be shown in Chapter 4. Therefore, we consider free layers where the FePt

stack is truncated by a bcc Fe electrode. The results displayed in Fig. 3.15 show

that the regular, long-range decay encountered for a pure FePt lead (with a realistic

interface) is partially suppressed by the Fe lead. In fact, the spin torque is constant

for all atoms in FePt that are not at the MgO interface and then quickly decays

in the Fe contact. This effect remains for different thicknesses of the FePt stack
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Figure 3.15: Study of the torkance in a FePt/Fe free layer. The coloured background

indicates the atomic species: red for Fe, grey for Pt, blue for O, green for Mg. Left

panel: the relevant components of (a) the exchange and correlation field, ∆, (b) the

non-equilibrium spin density, dm/dV , and (c) the torkance per unit of µB/e and

area, τ . Data points represent by black squares are the results of a non-relativistic

calculation, while blue circles represent results of a calculation including spin-orbit

interactions.

[panels (d), (e) and (f)], although the intensity seems to gradually decay for larger

thicknesses. Interestingly, here the sign of the torkance is consistently opposite on

Fe and Pt atoms. We attribute this change in the spatial profile of the torkance to

the formation of quantum well states within the FePt, in analogy to the case of a

Fe/Cu free layer. We note that in panels (a), (b) and (c) the blue circles show the

results of a non-relativistic calculation (black squares), which are compared to ones

where spin-orbit coupling is included (blue circles). It is then clear that the inclusion

of spin-orbit interactions does not bring any significant modification of the torkance.

This might be counter intuitive for a system including a heavy element such as Pt.

Nevertheless, in the systems of interest for this dissertation spin-orbit interactions

are typically of the order of tens of meV , in contrast to the exchange interaction

that is three orders of magnitude stronger [see e.g. Fig. 3.15 (a)].

Similar results are obtained when a thin Fe seed layer is interposed between MgO

and the FePt stack (Fig. 3.16). The oscillations are here of much smaller magnitude,
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Figure 3.16: Study of the torkance in a Fe/FePt/Fe free layer. In both sub figures the

coloured background indicates the atomic species: red for Fe, grey for Pt, blue for O,

green for Mg. Left panel: the relevant components of (a) the exchange and correlation

field, ∆, (b) the non-equilibrium spin density, dm/dV , and (c) the torkance per

unit of µB/e and area, τ . Black squares and blue circles indicate results obtained

without and with relativistic corrections, respectively. Right Panel: comparison of

the torkance per unit µB/e and area of MTJs with (d) 1, (e) 2, (f) 3 and (g) 4 Fe

MLs as seed layer.

when compared to those in FePt alone, and they vanish for thick enough seed layer

thickness (3 Fe MLs). In fact, the spin current rapidly decays in Fe (as explained

above), hence the spin current injected in the FePt gradually decays as the FePt

thickness increases. As a result, free layers with thick enough Fe SLs are subject to

the same spin torques acting on a pure Fe layer. This however does not hold for seed

layers made of materials that allow for long range oscillations, such as the bcc Ni,

already considered above. Fig. 3.17 displays the results of torkance calculations on

Fe/MgO/Ni/FePt/Fe junctions. As in the case of a Fe seed layer, the torque [panel

(c)] is strongly peaked at the MgO/Ni interface, but now it does not decay entirely

and thus a non-vanishing STT with an oscillatory behaviour persists into the FePt

layer. A closer look at the profile of ∆ across the junction [panel (a)] reveals that the

exchange and correlation field in Ni is about half of that of Fe [see Figure 3.16(a)]. As

a consequence, in Ni the spin accumulation does not relax along the local direction of
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Figure 3.17: Study of the torkance in a Ni/FePt/Fe free layer made of 4 FePt mono-

layers and a variable number of Fe monolayers inserted between MgO and FePt.

Left panel: the relevant components of (a) the exchange and correlation field, ∆,

(b) the non-equilibrium spin density, dm/dV and (c) the torkance per unit of µB/e

and area, τ . Black squares and blue circles indicate results obtained without and

with relativistic corrections, respectively. Right Panel: comparison of the torkance

per unit µB/e and area of MTJs with with a seed layer comprising (d) 1, (e) 2, 3 (f)

and 4 (g) Fe monolayers. In all panels the coloured background indicates the atomic

species: red for Fe, grey for Pt, blue for O, green for Mg.

the magnetization as efficiently as in Fe, a fact that can be appreciated by comparing

Fig. 3.17(b) with Fig. 3.16(b). Interestingly, the attenuation of the spin accumulation

and thus of the torque is not complete even for relatively thick Ni seed layers, as

can be seen in panels (d) through (f). A second interesting observation concerns the

phase of the oscillations of the STT in the FePt layer. In fact, for a junction where

FePt is in direct contact with the MgO barrier, the torque is positive at the Fe planes

and negative (although rather small) at the Pt ones. The same behaviour, although

with a much reduced torque is observed for Fe intercalation (in the presence of a Fe

seed layer). In contrast when the seed layer is made of Ni the sign of the STT on

the FePt layer changes, becoming negative at the Fe planes and positive (although

small) at the Pt ones. As a result the total integrated torque over the entire free

layer (seed layer plus FePt) for Ni intercalation is two thirds than that obtained with
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Chapter 3 Spin torques in Fe/MgO-based magnetic tunnel junctions

Fe intercalation.

3.5 Conclusions

In this Chapter we have analysed the spin torques acting on free layers of a vari-

ety of Fe/MgO-based magnetic tunnelling junctions by the means of first principles

simulations. Previous works predict that the persistence of the torque far from the

insulator/magnet interface depends on the presence of open channels for both mi-

nority and majority spins at the Fermi level. Since the transport here is dominated

by electrons with ∆1 band symmetry, the STT is short ranged in Fe and Co because

of the absence of a ∆1 minority spin band at the Fermi energy. In contrast, the ∆1

band crosses the Fermi level for both spin channels in the case of a Ni free layer. The

torque then oscillates with a frequency that is given by the difference of the Fermi

wavevectors for the two ∆1 bands. The same argument holds in the case of non-

uniform magnetic moments in L10 FePt, although the induced magnetic moments in

Pt make such system more complicated and the decay does not follow the predicted

sin(z)/z decay. Moreover, the presence of an additional interface in the stack (e.g. at

the end of the free layer) has been shown to considerably modify the spatial profile

of the torque. Finally, we have considered a partially oxidised MgO/Fe interface.

We find that a local alteration of the interface can modify the spatial profile of the

torkance in a cross section that is larger than the unitary cell.
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Chapter 4

Current-driven atomistic spin dynamics

“Chaos, panic and disorder. My work here is done.”

- Anonymous

The energy efficiency of a STT-MRAM prototype is essentially measured by the

critical current intensity, Ic, required to perform magnetisation switching. Analytical

expressions such as those in Eq. (1.7) and Eq. (1.8) provide only a qualitative and

coarse estimation, since they are derived from approximated solutions of the LLG

equation, by assumption spatially uniform magnetic properties. In contrast, numer-

ical solutions allow one to explicitly account for a number of additional factors such

as domain walls motion and material interfaces. For length scales ranging between

10 nm and a few µm the details of the magnetic properties of a system normally do

not depend on its atomic structure. In micromagnetics simulations the magnetisa-

tion is considered as a macroscopic, position-dependent vector, M(r), within the

continuum approximation. This is, however, not suitable for situations where the

reduced length scale or complex magnetic orderings play a significant role in the

magnetisation dynamics, or when magnetic phase transitions are of interest. Hence,

the electronic structure of the system is to be examined. Nevertheless, in many cases

the strong localisation of electrons responsible for the magnetic properties allows us

to consider the atomic magnetic moments as strictly localised on the atomic site

with dynamical properties that are weakly influenced by their quantum mechanical
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nature. As a consequence, they can be represented within a classical Heisenberg-like

spin model, where the quantum mechanical effects are represented by some material

dependent parameters to be provided as input.

This Chapter starts with a brief historical description of the LLG equation, to

then detail a computational approach for its solution in the framework of atomistic

classical spin dynamics. An overview of the quantities required for a full parametri-

sation of the spin dynamics is then presented, together with information on how they

can be extracted from first principle calculations and experimental measurements.

We then show the capabilities of the approach by studying the properties of the spin

models for bcc Fe and L10 FePt. Finally, we combine the results of the spin torques

calculations presented in the previous Chapter with the spin dynamics simulations

to study current-driven magnetisation switching in the different systems.

All results contained in this Chapter were obtained with a software developed by

Dr. Matthew Ellis.

4.1 Modelling the dynamical properties of atom-

istic spins

The simplest approach to investigate the dynamical magnetic properties of a ferro-

magnetic object analyses the motion of its total magnetisation vector,M , in response

to an applied magnetic field, Happ. Such dynamics can be decomposed into two sep-

arate components: a precession around the direction of the magnetic field and a

rotation leading to the alignment between M and Happ. The existence of the for-

mer can be evinced by considering the equation of motion of the expectation value

of the spin operator, Ŝ, interacting with the magnetic field. The spin Hamiltonian

in this case is simply given by the Zeeman energy,

ĤZeeman = −geµBŜ ·Happ. (4.1)

Hence Ehrenfest’s theorem yields

∂〈Ŝ〉
∂t

= − i
~
〈[Ŝ, ĤZeeman]〉 = −γ〈Ŝ〉 ×Happ. (4.2)
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The last term in the equality was obtained by exploiting the commutation relations

[Ŝi, Ŝj] = i~εijkŜk (i, j, k = x, y, z), and the gyromagnetic ratio of the electron is

denoted as γ = µBge/~, where ge = 2 is the Landéfactor for the electron.

A phenomenological equation of motion for M , combining the two contributions

to the magnetisation dynamics was first proposed by Landau and Lifshitz (LL) and

reads

∂M

∂t
= −γM ×H − λ

|M |2
M ×M ×H . (4.3)

In their original work [115] the effective magnetic field is defined as H = −∂F/∂M ,

i.e. as the derivative with respect to the magnetisation of the free energy of the

system, F . The first term clearly represents the precession, while the second is

constructed so that M is driven to point along the direction of the field. This

second term effectively adds a damping contribution, whose intensity is measured by

λ and accounts for relativistic effects that give rise to energy and angular momentum

dissipation. Unfortunately, the LL equation was found to be not suitable to describe

systems where strong damping is present. This observation was first made by Gilbert

[116], who proposed an alternative formulation of the LL equation, later known as

the Landau-Lifshitz-Gilbert (LLG) equation, based on a Lagrangian analysis. In this

case Eq. (4.3) is modified to become

∂M

∂t
= −γM ×H +

α

M
M × ∂M

∂t
. (4.4)

In this equation the role of the damping term is made clear by the explicit presence

of ∂M/∂t. The two formulations [Eqs. (4.3) and (4.4)] were proven to be mathe-

matically equivalent [117], and the newly defined damping, α, is commonly known as

Gilbert damping. It is in fact easy to show that the LLG equation can be expressed

in a form that is analogous to the LL equation, i.e. with the damping contribution

expressed as a triple cross product instead of in terms of the derivative of the mag-

netisation. This can be done by taking the cross product of both terms of Eq. (4.4)
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with M ,

M × ∂M

∂t
= −γM ×M ×H + αM ×M × ∂M

∂t

= −γM ×M ×H + α

[
M
(
M · ∂M

∂t

)
− ∂M

∂t
M2

]
, (4.5)

where the last term was obtained by employing the definition of the vector triple

product a × b × c = b(a · c) − c(b · b). Assuming that the magnitude of the

magnetisation is constant over time, the first term in the square bracket vanishes.

By inserting Eq. (4.5) back into Eq. (4.4) and by rearranging the terms, it is then

straightforward to obtain

∂M

∂t
= − γ

1 + α2
M ×

[
H + α

M

M
×H

]
. (4.6)

This second form is generally preferable since it can be propagated in time with

standard integration schemes for partial differential equations.

The discussion so far treated the magnetisation within the continuum approxi-

mation. However, the results can be easily adapted to a system of atomistic spins

by considering an LLG equation for each spin, Si, that will be hereon assumed to

be unitary for simplicity. The length of the spin vector can be re-cast into appropri-

ate definition of the spin-Hamiltonian parameters. The equations of motion of the

system will then be

∂Si
∂t

= −γ′Si ×H i − αγ′Si × (Si ×H i), (4.7)

where γ′ = γ/(1 +α2) is a renormalised gyromagnetic factor. The effective magnetic

field acting on the i-th spin vector, normalised by the respective saturation magnetic

moment, µs,i, takes of the form

H i = − 1

µs,i

∂H
∂Si

+ ξi, (4.8)

where H is the spin Hamiltonian and the second term is a stochastic process that

transforms the LLG to a Langevin equation. This allows one to include thermal

effects that arise from phenomena such as spin-phonon interaction, which are not

explicitly accounted for. Since the time correlation of the thermal fluctuations is
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normally significantly smaller than the time scale of the spin motion, one can adopt

the white noise limit and assume ξi to describe Gaussian processes defined by

〈ξiα(t)〉 = 0, (4.9)

〈ξiα(t)ξjβ(s)〉 =
2λkBT

γµs,i
δijδαβδ(t− s), (4.10)

with i, j denoting the spin indices, while α, β = x, y, z. In this dissertation the spin

Hamiltonian will be assumed to be

H = HZeeman +Hexch +Hani, (4.11)

where long-range interactions such as the magnetic dipole-dipole one are omitted

due to the relatively small length scales that will be considered. The first term

in Eq. (4.11) is the Zeeman energy defined in (Eq. 4.1), Hexch embodies spin-spin

couplings arising from the quantum mechanical exchange interaction introduced in

Eq. (2.4), while the last term represents the magnetic anisotropy contribution. The

exchange Hamiltonian can be generally written as

Hexch = −
∑
ij

SiJ ijSj (4.12)

= −
∑
ij

[
JijSi · Sj + SiJ sym

ij Sj +Dij · (Si × Sj)
]
. (4.13)

The isotropic exchange, Jij, is the average of the diagonal terms of the full tensor,

1/3TrJ ij, and expresses the tendency of spins to align with respect to each other

but do not specify a preferred spatial orientation. Nevertheless, factors such as the

presence of different non-equivalent sites in a unit cell can induce an asymmetry in the

diagonal terms of the exchange tensors. The correction to be introduced in these cases

is known as symmetric exchange or two-ion anisotropy, and is quantified by J sym
ij .

The remaining components of J ij, i.e. those corresponding to off-diagonal, anti-

symmetric part of the tensor, are known as Dzyaloshinskii-Moriya (DM) interaction.

The DM interaction between two spins originates from spin-orbit coupling and is

mediated by a third atom through the super-exchange mechanism [118]. It normally

arises in the presence of broken translational symmetry and heavy atoms, such as in
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transition metal/Pt bilayers [119]. In all the systems of interest for this thesis the

typical strength of the DMI interaction is about 3 orders of magnitude weaker than

the other components of the exchange tensor, which makes it relevant for length

scales beyond several tens of nm. Given the relatively reduced size of the systems

examined, DM interaction will be omitted throughout this thesis. The magnetic

anisotropy, Hani, is generally the result of a number of contributions due to both

the underlying electronic structure and the shape of the magnetic layer. It is often

modelled through the interplay between a uniaxial and a cubic term, respectively

with magnitudes ku and kc, as

Hani = −
∑
i

ku(Si · êu)2 −
∑
i

kc
2

(S4
ix + S4

iy + S4
iz). (4.14)

In particular, the sign of the uniaxial anisotropy constant, ku, determines whether

spins prefer to lie along the “easy” axis, êu, (ku > 0) or in the plane perpendicular

to êu (ku < 0), also known as the easy plane. The cubic anisotropy arises from

quadrupole-quadrupole interactions [120] and it is negligible for the systems consid-

ered here. The constants introduced above characterise the strength of the anisotropy

field at each site of the atomistic model, and in general depend on both the atomic

species and the chemical environment. The macroscopic uniaxial anisotropy con-

stant, Ku, plays a key role in magnetisation switching as it determines the energy

barrier, KuV , to be overcome in order to pass between two stable states, V being

the total volume of the magnet. The macroscopic anisotropy arises from the inter-

play between the atomistic anisotropy constants and thermal fluctuations, and its

temperature dependence usually that can be written as [121]

Ku(T )

Ku(0)
=

(
M(T )

M(0)

)3

, (4.15)

where M(T ) is the total magnetisation at a given temperature, T . This implies that

the anisotropy field is reduced at a faster rate than the magnetisation, meaning that

the energy barrier at high temperatures is significantly lower.
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4.1.1 Parameterising the spin Hamiltonian

The magnetic properties of systems can be explored through the numerical integra-

tion of Eq 4.5 which relies on a good parametrisation of the spin Hamiltonian and

the Gilbert damping. The results obtained here use an adaptation of the Heun inte-

gration scheme, as described in detail in Ref. [122]. However, it is essential to tailor

the characteristics of the spin model to each system in order to extract accurate

and reliable properties. Given the atomic coordinates and the magnetic moments of

a certain system, the model is completely determined by the choice of the Gilbert

damping parameter and the form and parameterisation of the spin Hamiltonian,

namely by the respective inter-atomic exchange and anisotropy constants. Among

the latter quantities the Gilbert damping is the most troublesome one to estimate

from a theoretical perspective, as it will be discussed in the next chapter. From an

experimental point of view, the damping parameter can be extracted from ferromag-

netic resonance (FMR) experiments. In FMR the magnetisation of the sample is

perturbed by an external magnetic field and driven into a precession motion, whose

frequency can be controlled by the field intensity. The damping constant can then

be extracted from the width of the resonant peak. However, such constant coincides

with the Gilbert damping only at 0 K because of the presence of spin wave scattering

at finite temperatures. Moreover, a number of different mechanisms (e.g. electron

transport) are known to modify the strength of damping and the relevance of each

contribution is often troublesome to estimate. These complications encourage us to

take the atomistic damping constant as a free parameter that is varied among a range

of reasonable values. In contrast, a number of methods is available to determine ex-

change and anisotropy constants from first principles, although their reliability is

often limited by the high level of numerical accuracy required.

4.1.1.1 Inter-atomic exchanges

Of all the quantities that characterise the spin model, the exchange constants are

probably the most relevant since they play a major role in determining the magnetic
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ground state of a system. In general, if the coupling between two spins, Si and Sj, is

expressed by a positive exchange constant, Jij > 0, the most energetically convenient

configuration will correspond to a perfect spin alignment, Si · Sj = 1, i.e. to a

ferromagnetic order. In contrast, a negative exchange constant, Jij < 0, favours their

anti-alignment, which is also referred to as a anti-ferromagnetic coupling. Given that

the interaction between classical, atomistic spins is a complex nanoscale quantity,

there is not a reliable experimental technique to estimate exchange constants for a

generic magnetic configuration. In the simple case of a ferromagnetic ordering in a

perfectly ordered crystal, the exchange constant can be estimated from the Curie

temperature by using a mean field expression,

Jij =
kBTC
εz

, (4.16)

where z is the number of first nearest neighbours of each atom and ε is a mean field

parameter that accounts for how the Curie temperature differs for different crystal

structures with the same first-nearest neighbour exchange [123]. This is, however, a

rather coarse approximation, since it assumes a uniform exchange at each site. In

most cases, the reproduction of the correct magnetic configuration is obtained by

specifying a different set of parameters for each non-equivalent pair of sites, each

including a number of nearest neighbours. A variety of methods based on DFT

calculations can be employed to estimate the desired exchange parameters. Here we

describe two of the most commonly used approaches that assume the equivalence

between the DFT energy of a given magnetic state and the energy of the classical

spin system for the same spin structure. Both these techniques essentially rely on

the accurate estimation of the difference between DFT total energies of separate

magnetic configurations, therefore they might become not reliable for weak exchange

couplings. In such cases, methods that do not rely on energy differences, such as

the Green’s functions based approach developed by Liechtenstein [124], may be more

convenient.

Total energy differences The easiest method to assess the inter-atomic exchange

coupling within density functional theory is by the means of differences between the
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total energy of different magnetic configurations. Energy differences analogous to

the ones discussed here can be used to assess a variety of magnetic properties, and

the validity of such techniques is guaranteed by the result known as the magnetic

force theorem [125]. In the simple case of two magnetic ions in the unit cell, the

energy of the system will depend on the mutual angle between the two atomic spins,

θ, and in our model such dependence is assumed to be

E(ϑ) = J12S1 · S2 ' J12|S1||S2| cos(ϑ). (4.17)

As such, one can perform two DFT calculations for two different angles between

the two spins, ϑ1 and ϑ2, and estimate the exchange coupling from the difference

between the respective total energies as

J12 =
E(ϑ1)− E(ϑ2)

cos(ϑ1)− cos(ϑ2)

1

|S1||S2|
, (4.18)

where for simplicity we have assumed that the intensity of the two spins are constant

with the angle. The obvious choice for one of the two angles is, naturally, ϑ1 = 0,

while it is common to set ϑ2 = π. This also makes the approach easily extendable

to an arbitrary number of spins, in the unit cell, N . In fact, one can perform a

calculation for each of the N2/2 possible configurations that different one another

by the flip of one spin. A numerical fit can then yield the values of the exchange

parameters that reproduce the set of total energies taken from such calculations.

This choice of angles however heavily relies on the hypothesis that the angle de-

pendence of the energy assumed in Eq. (4.18) corresponds to real one. In practice,

this does not always happen and it is not straightforward to verify whether such

condition is met or not. In order to overcome this issue it is possible to choose ϑ2 to

be small so that the model covers all angular dependencies that can be approximated

as cos(ϑ) for small angles, instead of assuming E(ϑ) to be strictly proportional to a

cosine. However, DFT calculations, where atomic moments are slightly misaligned

from their equilibrium configuration can be of troublesome realisation, since atomic

spins are likely to relax to their preferred direction during the DFT self-consistent

cycle. In principle, one can solve this issue by employing constrain density functional
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theory (CDFT), where a Lagrange multiplier scheme is employed to limit the phase

space to configurations with magnetic moments aligned in the desired direction. In

practice, the latter requires significantly increased computational costs and hence it

is not suitable to perform a large number of calculations. The other relevant difficulty

present in these methods is due to the relatively small energy differences involved,

which are often below 1 meV. Since one normally has to consider several magnetic

configurations in order to extract a sufficient number of exchange parameters, the

total computational costs can become rather elevated. Nevertheless, given a certain

set of simulation parameters the computational accuracy can be increased by consid-

ering the difference between each set of eigenvalues instead of total energies, namely

E(ϑ1)− E(ϑ2) ≡
∑
nk

[ηnk(ϑ1)εnk(ϑ1)− ηnk(ϑ2)εnk(ϑ2)] . (4.19)

Spin spiral The most common alternative to avoid the use of total energy differ-

ences relies on expressing the spin Hamiltonian as a sum of Fourier components in

terms of the wave-vectors, q. The Fourier transform of each spin can be written as

Si =
∑
q

eiq·RiSq, (4.20)

and the conservation of the spin length, |Si|, dictates that for a fixed wave-vector

each spin assumes the form

Si(q) =


cos(q ·Ri) sin(ϑ)

sin(q ·Ri) sin(ϑ)

cos(ϑ)

 . (4.21)

For simplicity, spins are assumed to be tilted from the z axis by a small angle,

ϑ, so that the dependence over the wave-vector in entirely contained is the angle

ϕiq = q · Ri. This implies that, for a given q, each atomic spin spatially precedes

along the z axis with a fixed angle ϑ, describing a “spin spiral” that gives the name

to the method. In the absence of spin-orbit coupling, it is possible to formulate

a generalised Bloch theorem in terms of the wave-vectors q. As a consequence,

each Fourier component can be treated within a unit cell calculation, where the
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q-dependence is introduced through a phase factor of the form exp(iq · Ri) [126].

The real-space exchange parameters can then be extracted by mean of a Fourier

transform with respect to the spin spiral wave-vectors, q.

The spin Hamiltonian written in terms of the Fourier transformed spins defined

in Eq. (4.20) takes the form

H = −
∑
ij

∑
qq′

JijSq · Sq′e
iq·Rieiq

′·Rj . (4.22)

For now we assume that the unit cell contains only one magnetic species. Since the

exchange parameters only depend on the mutual distance between the two spins, it

is convenient to rewrite the sum on j ≡ Rj as a sum in terms of the relative position

with respect to the i-th spin, d = Rj − Ri. The spin Hamiltonian can then be

rewritten as

H = −
∑
q

Jq|Sq||S−q| cos(ϑ) ≡
∑
q

E(ϑ, q), (4.23)

where

Jq =
1

N

∑
d

Jde
−iq·d. (4.24)

The energy contribution associated to each vector q and angle ϑ can then be calcu-

lated with DFT. For small ϑ, the cosine can be expanded in a Taylor series. Hence,

the Fourier component of the exchange parameter can be obtained by using the

relation

Jq = − 1

2|Sq||S−q|
∂2E(ϑ, q)

∂2ϑ
. (4.25)

This result can then be inserted into Eq. (4.24), which allows us to calculate the

exchange coupling between two spins at a generic distance, d. Such method can be

easily extended to the case of a generic number of magnetic species, in which the

Hamiltonian can be cast in the form

H = −
∑
ij

∑
αβ

Jαβij S
α
i · S

β
j , (4.26)

where the indices α and β run on the different non-equivalent spins in the unit

cell. The formal procedure described above can then be repeated for a fixed pair of
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magnetic species, when each new Fourier transform is performed on the sublattice

made of all spins of a given species in different cells.

Although this method is more accurate and convenient with respect to energy

differences based approaches, it is more computationally expensive for small systems

and requires the use of a constrained DFT scheme.

4.1.1.2 Anisotropy

The number of different contributions to magnetic anisotropy makes it a strongly sys-

tem dependent quantity. This holds also if one considers only the magneto-crystalline

contribution. In fact, the chemical environment of an atom is known to strongly in-

fluence the anisotropy field acting on its magnetic moment [127]. For example, this

is the case of an Fe layer deposited on MgO, where the interface induces a stronger

anisotropy on the neighbouring magnetic atoms. In general, the anisotropic field

is affected by any additional factor that breaks the symmetry of the atomic envi-

ronment, such as structural disorder and chemical impurities. As a consequence,

experimental values set a useful element of comparison for theoretical predictions,

but should be tailored to a given system for accurate results.

The most common way to experimentally determine the magnetic anisotropy of

a material is to measure the coercivity field, i.e. the field required to switch the

magnetisation between −M and +M . For strong enough fields, the switching will

be uniform, meaning that the coercive field coincides with the anisotropy field, Hk =

2K/Ms. Results of low temperature measurements can then be used to extrapolate

the 0 K value of the macroscopic anisotropy constant, which is related to the atomistic

constant by the relation

ku =
HkMsVatom

2
, (4.27)

where Vatom is the average atomic volume. From a theoretical point of view, ku

can be obtained as the difference in total energy between a calculation with the

magnetisation aligned along the easy axis and one parallel to the hard axis. Since

the typical energy scales for anisotropy constants are between 1µeV and 1 meV per

atom, as elevated numerical accuracy is essential to correctly capture such effects.
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4.2 Spin Hamiltonian for ferromagnetic materials

The purpose of this section is to describe the methodology to practically determine

the spin Hamiltonian that reproduces the properties of a given material. We will

start by discussing the parameterisation of a simple ferromagnetic material such as

bcc Fe. The spin Hamiltonian for this will then be adapted to the case of L10 FePt.

The induced magnetic moment on the Pt atoms makes such material qualitatively

different from pure Fe. This complication will be studied within two separate mod-

els: one using the approach presented in the previous section, where spin lengths

are kept constant, and one where longitudinal spin fluctuations are explicitly taken

into account. In conclusion, the formulation of a spin Hamiltonian to study the

antiferromagnetic Heusler alloy Mn3Ga will be presented.

4.2.1 bcc Fe

Bulk bcc Fe represents one of the prototypical ferromagnetic materials and its mag-

netic properties are relatively simple to study and well known. Being an elemental

crystal with strongly localised magnetic moments, it can be modelled as a system of

spins with uniform length (µFe =2.2µB) described by the spin Hamiltonian

HFe = −1

2

∑
ij

JFe-Fe
ij Si · Sj −

∑
i

kFe
u S

2
iz −

∑
i

µFe Si ·Happ. (4.28)

The lattice vectors of the cubic unitary cell are aligned along the cartesian coordi-

nates by assumption, and each of them corresponds to an easy axis. Nevertheless,

the interest of this section is simply to study the features of the model around

thermodynamical equilibrium, hence a single easy axis along the z direction is con-

sidered for simplicity. Moreover, the absence of asymmetry in the crystal structure

implies a rather low atomistic anisotropy, kFe
u = 5.65× 10−25 J = 3.5 µeV. For the

moment, only first nearest neighbour exchange parameters are considered (JFe-Fe
ij =

6.24× 10−21 J = 44 meV [128]).

In order to verify the suitability of the chosen parameterisation of the Hamiltonian

in Eq. (4.28), it is convenient to perform a set of simulations, where the spins are
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allowed to relax to their equilibrium configuration. Since the details of the dynamics

are here not of interest, the damping is set to an arbitrary (large) value of 0.1 in order

to save computational time. After a small transient the total magnetisation will start

to oscillate around its equilibrium value. Hence, it can be extracted by performing

a time average. This can be repeated for a range of different temperatures, allowing

us to estimate the Curie temperature, TC , of a given system by fitting to the formula

M(T )/M(0) =

(1− T/TC)n , T ≤ TC

0 , T > TC

, (4.29)

where the exponent, n, depends on the material and is roughly 1/3 for most cubic

structures. The comparison of the extracted TC with its experimental estimation is

then a useful measure of the accuracy of the properties predicted by the spin model.

Fig. 4.1 (a) displays the temperature dependence of the time averaged total mag-
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Figure 4.1: Total magnetisation of a bcc Fe cubic cell at different temperatures as

predicted by the atomistic model. In both panels the dashed vertical line denotes the

position of the experimental Curie temperature. Panel (a) shows results for cells of

sizes ranging between 43 (red) and 403 (blue) with first nearest neighbours exchange

parameters. In panel (b) the cell size is fixed to 203 and the range of the exchange

interaction is varied up to 6 nearest neighbours (red to blue circles) taken. The black

squares are obtained by using an effective first nearest neighbour exchange extracted

from Eq. (4.16).
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netisation for spins in cells of increasing size, that will be heron expressed in terms

of the number of unitary cells. Here we consider cubic systems of increasing size,

L3, with L going from 4 to 40, assuming periodic boundary conditions and including

only first nearest neighbour exchange parameters (taken from Ref. [128]). For low

temperatures, the cell size has little to no influence on the total magnetisation. The

differences become more relevant for temperatures close to TC , although the curves

for sizes above 203 are almost identical apart from their smoothness at T = TC .

It is easy to conclude that the Curie temperature for these simulation is estimated

to be around 950 K, against the experimentally measured value of 1043 K. In prin-

ciple, such underestimation can be corrected by including additional orders of the

exchange parameter, although a rather large order might be required. Fig. 4.1 (b)

shows the temperature dependence of the total magnetisation for a cell containing

(20)3 spins with a growing number of nearest neighbours (coloured circles). It is clear

that including extra neighbours does not necessarily improve the estimation of the

Curie temperature, and an elevated number of nearest neighbours is not normally

convenient because it implies more expensive calculations and requires a growing

number of exchange parameters to be calculated. In cases where the interest is lim-

ited to thermodynamical properties, it is useful to consider an effective first nearest

neighbour exchange parameter extracted from the relation in Eq. (4.16). This choice

yields, by construction, a Curie temperature rather close to the one provided as in-

put [black squares in Fig. 4.1 (b)] and allows us to formulate a simple model that

correctly reproduces the thermodynamics of the material.

The estimation of TC is a useful test of the static properties of the model, but its

dynamical properties can be probed by performing a ferromagnetic resonance (FMR)

simulation. Similarly to the experimental procedure, a magnetic field is applied along

the z direction and one can define the magnetisation correlation function as

Cxx(ω) =

∫
dte−iωt

〈Mx(0)Mx(t)〉
M2

. (4.30)

The latter can then be related to the dynamical susceptibility through the fluctuation-

dissipation theorem [129], which within linear response theory can be written as [130]
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Cxx(ω) =
2KBTα

1 + α2

(
ω2

0(1 + α2) + ω2

Ω4 + (2αω0ω)2

)
, (4.31)

where Ω2 = ω2
0(1 + α2) − ω2 and ω2

0 = γHz(1 + α2). This equation can be used

to fit the resonance peak and extract the Gilbert damping parameter, α, and the

anisotropy field,

HK =
K

2M
= Hz −Happ. (4.32)

The magnitude of the anisotropy field plays an important role in determining the

position of the resonant peak in the frequency domain. For low anisotropy systems

such as bulk Fe, this implies that the peak is normally found at rather low frequencies,

hence its estimation generally requires long simulation times. This problem can be

overcome by applying an external magnetic field, so that the resonant frequency

is moved away from the very low frequency region. Fig. 4.2 shows the calculated

dynamic correlation function for bcc Fe at different temperatures. Such results were

obtained with an applied field of 15 T and a simulation time of 1.5 ns. In order to

reduce the computational costs a 83 cubic cell is used. Hence, the Curie temperature
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Figure 4.2: Results of a FMR simulation for bcc Fe. Panel (a) shows the FMR

spectrum at 30 K (blue symbols) and 750 K (red symbols), where the black lines

represent the curves fitted with the function in Eq. (4.31). The figure on the right-

hand-side displays the temperature dependence of the total magnetisation (b), the

macroscopic anisotropy constant (c) and the Gilbert damping (d) as extracted from

the fit results.
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Figure 4.3: Dynamic structure factor for bcc Fe. The colour scale represents the

logarithm of the power spectral density (PSD).

is expected to be overestimated with respect to the experimental one (see Fig. 4.1).

Panel (a) of Fig. 4.2 shows an example where the position of the peak does not vary

significantly with the temperature. We note that the signal is here relatively noisy

and the resonant peaks are rather narrow because of the low Gilbert damping of bulk

Fe (∼ 0.001). This also explains the irregularities in the temperature dependence of

the extracted macroscopic anisotropy constant, K, and the Gilbert damping shown

in panels (c) and (d). However, it is clear that K vanishes more rapidly than the

saturation magnetisation, in agreement with Eq. (4.15), and the damping parameter

diverges near the TC .

Ferromagnetic resonance simulations allow us to probe oscillation modes of the

total magnetisation, i.e. where all spins oscillate in a coherent and uniform manner.

A more general picture of the spin wave spectrum can be obtained by calculating

the dynamic structure factor (DSF),

C(k, ω) =

∫
dte−iωt

∑
r,r′

e−ik·(r−r
′)
〈
Sx(r, 0)Sx(r

′, t)
〉
. (4.33)

From this formula it is clear that the magnetisation correlation function of Eq. (4.31)

correspond to the DSF for k ≡ Γ. Fig. 4.3 shows the calculated spin-wave spectrum
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at 10 K. The colors indicate the logarithm of the power spectral density (PSD),

|C(k, ω|2,that can be for different positions in the Brillouin Zone and at different

energies. The width of the branches is here rather narrow because of the small

Gilbert damping. Since the primitive cell for bcc Fe has a single spin, only an

acoustic magnon branch is obtained.

4.2.2 The inclusion of longitudinal spin fluctuations

We present here an extension of the atomistic spin model that allows the spin lengths

to vary during the dynamics, as opposed to having a fixed length as in the LLG

dynamics. This generalisation is particularly relevant in cases where the length of

some of the atomic spins is strongly related to the surrounding atomic moments. In

L10 FePt the Fe atoms cause the appearance of an induced magnetic moment on Pt

atoms, which are normally not magnetic. The magnitude of such moments depends

on the orientation of the spins at the neighbouring Fe sites. An atomistic spin model

accounting for such features was formulated by Mryasov et al. and can be found in

Ref. [131] together with all the values that will be employed here to parameterise

the spin Hamiltonian for FePt. In particular, first principles simulations show that

the magnitude and orientation of the Pt moments, SPt
i , depend linearly on the

surrounding Fe atoms and such relation can be expressed as

SPt
i =

χPt
i

µ0
Pt

∑
j

JFe-Pt
ij SFe

j , (4.34)

where χPt
i is the local Pt susceptibility constant and µ0

Pt = 0.36µB is the magnetic

moment of the Pt atoms when all the spins of the Fe sites are aligned (µ0
Fe = 2.86µB).

It is then possible to formulate an extended spin model (ESM) where the Pt degrees of

freedom are wrapped within the Fe ones, and FePt can be studied with the following

spin Hamiltonian

HESM
FePt = −

∑
ij

J̃ijS
Fe
i · SFe

j −
∑
i

kFe
u (SFe

iz )2 −
∑
ij

d
(2)
ij S

Fe
i · SFe

j +Happ. (4.35)

Importantly, the ESM Hamiltonian includes a symmetric exchange, d
(2)
ij , between Fe

spins in order to account for the anisotropy contribution introduced by the strong
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spin-orbit coupling interactions in Pt atoms. This factor is essential in order to

correctly reproduce the temperature dependence of the first-order (macroscopic)

anisotropy that is seen in experiment, to vary as K(T ) ∝M(T )n with an anomalous

n = 2.1 exponent, opposed to the n = 3 exponent predicted for uniaxial anisotropy

[132].

Although the ESM reproduces the correct thermodynamical properties of FePt, it

is not easily applicable to other materials, since they are likely to require an entirely

different parameterisation of the “non-dominant” moments. A valid alternative is

to explicitly consider all magnetic moments and relax the constrain on the spin

lengths. The LLG equation has then to be reformulated in order to allow for spin

length relaxation and now reads

∂Si
∂t

= −γSi ×H i + γλH i + ξi, (4.36)

where the same damping parameter, λ, is adopted to determine both the rotational

and the longitudinal dissipation. This equation will be hereon referred to as the

generalised spin equation of motion (GSE). The spin Hamiltonian now has the form

(α, β = Fe, Pt)

HLSF
FePt = −

∑
ij

∑
αβ

Jα−βij Sαi S
β
j −

∑
i

∑
α

kαu (Sαiz)
2 +Happ +Hl, (4.37)

where the easy axis is assumed to be along z and the anisotropy constant is dif-

ferent for the two species to account for the stronger SO interactions in Pt atoms

(kFe
u =−0.097 meV, kPt

u =1.427 meV). The longitudinal energy, Hl, is assumed to

have the Landau-like Hamiltonian

Hl =
∑
i

∑
α

[
Aα|Sαi |2 +Bα|Sαi |4 + Cα|Sαi |6

]
, (4.38)

where the parameters Aα, Bα and Cα are to be determined for each species, α = Fe,

Pt, since they depend on the local density of states, Dα(E). The set of parameters

for a given species can be estimated as the values fitting the function

Etot(M) =

∫ E↑F

−∞
dEEDα(E) +

∫ E↓F

−∞
dEEDα(E)− IM2

4
, (4.39)
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Figure 4.4: The variation of the energy and the probability distributions for the spin

length of L10 FePt during the dynamics described by the GSE. Left: the longitudinal

(hollow symbols) and total (full symbols) energies for Fe (blue) and Pt (orange)

depending on the respective spin length. The energy scale on the left-hand side

refers to Fe spins, the one on the right-hand side to Pt spins, are pointed out by the

coloured arrows. Right: probability distribution for the Fe (b) and Pt (c) local spins

for different temperatures. Image credit: [134].

where E↑F and E↓F are the Fermi energies for majority and minority spins, and the

Stoner parameter can be calculated as

I =
E↑F − E

↓
F

M
. (4.40)

The energy Etot(M) for a given total magnetisation, M , can be estimated within

first principles simulations and for bcc Fe this procedure yields AFe =−441.0 meV,

BFe =150.5 meV and CFe =50.7 meV [133]. The linear dependence between the Pt

and Fe moments expressed in Eq. (4.34) implies that the longitudinal energy for Pt

atoms in FePt must be approximately quadratic with the spin length, with energy

minimum at |SPt
i | ≡ SPt = 0. This implies that BPt = 0 and CPt = 0, while

the remaining parameter, APt, can be found by writing the equation of motion of
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Eq, (4.36) for a system of aligned spins in equilibrium,

∂SPt

∂t
= 0 = 2APtS

Pt −
∑
α

JPt−αSα − 2kPtSPt. (4.41)

Since the Fe spin length corresponding to the minimum energy is unitary, we can

conclude that the longitudinal energy for Pt is determined by

APt = kPt +
1

2

∑
α

JPt−α. (4.42)

Figure 4.4 (a) shows the total and longitudinal energy for each spin species depending

on the respective spin length. Hollow symbols show that the longitudinal energies

follow the desired trends, with energy minima around |S| = 1 for Fe (blue) and

|S| = 0 for Pt (blue). The remaining panels of the same figure display how the

spin length distributions change depending on the temperature. Fe spins [panel (b)]

have a rather homogeneous spin length at 100 K, while for higher temperatures the

peak of the distribution slightly shifts from |S| = 1 towards 0 as the left-hand side

tail grows longer. In the case of Pt spins [panel (c)] the distribution is significantly

Figure 4.5: Temperature dependence of the anisotropy predicted within the extended

spin model (blue squares), by using the Hamiltonian in Eq. (4.37) without the lon-

gitudinal energy and the standard LLG equation (orange circles), and by employing

the GSE (green triangles). Image credit: [134].
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broader and undergoes more rapid variations with increasing temperature, to the

point that at 300 K its peak almost coincides with |S| = 0. In summary, the param-

eterisation of the longitudinal fluctuations discussed here allows us to reproduce a

temperature dependence for the magnetic anisotropy, which is strikingly similar to

the one obtained within the ESM (Fig. 4.5). Both the latter models (blue squares

and green triangles) reproduce the same critical exponent, n = 2.17, which is rather

close to the experimental one of 2.1, in contrast to the value of 3.11 predicted with

a spin Hamiltonian with fixed spin lengths (orange circles). Additional comparisons

between these three models applied to FePt can be found in Ref. [134].

4.3 Spin-torque driven dynamics in Fe/MgO-based

junctions

In Chapter 3 the details of the spatial dependence of the spin torques were shown to

be strongly dependent on the material composition of the free layer. However, first

principles data alone is not sufficient to determine how the different decay ranges

affect the spin dynamics. Here we combine the results of the transport calculations

with the atomistic models discussed before to explore the material dependence of

the current-driven spin dynamics. The effect of the current on the motion of the

classical spin system can be introduced by adding a spin torque term to the LLG

equation of Eq. (4.7) to obtain

∂Si
∂t

= −γ′Si ×H i − αγ′Si × (Si ×H i) +
1

µi
T i(V, |{Si}). (4.43)

This is known as the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. There

are several ways to map the ab-initio spin torques onto the STT term added here.

The most general approach is based on calculating the spin torques for an arbitrary

number of bias voltages, V , and angles between the magnetisations, ϑ. This allows

us to perform a full two-dimensional interpolation of the data set and extrapolate

the STT acting on the i-th spin for any given voltage and angle. As an alternative,

one can assume the spin torques to a have linear dependence on the bias and have
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the same angular dependence predicted by Slonczewski, here contained in Eq. (3.2).

Under these hypothesis, the only result needed to characterise the STT is given by a

zero-bias calculation for ϑ = π/2. Between the two methods, a full-interpolation is

clearly preferable, since it has wider range of applicability. Nevertheless, the elevated

number of calculations necessary for the interpolation makes it not favorable to study

a large number of systems. Moreover, the two schemes were shown to give the same

critical voltages for a Co/MgO/Co/Cu junction for low values of the anisotropy and

Gilbert damping parameters [99]. For such reasons, here we will parameterise the

torques acting on a given free layer as

T (V,Si) = T ‖(V,Si) + T⊥(V,Si) ≡ V
[
τ i‖Si × Si × P̂ + τ i⊥Si × P̂

]
, (4.44)

where τ i‖ and τ i⊥ are the magnitude of the calculated torkance at the i-th site for

ϑ = π/2 and P̂ is the direction of the spin polarisation of the current. We note

however that this expression cannot be directly utilised in Eq. (4.43), since the latter

equals to the LLG equation in the LL form, i.e. the damping term is not expressed

through a time derivative. It is thus necessary to repeat the same derivation described

at the beginning of this Chapter by including explicitly the spin torque term, which

yields to the reformulation of the torques as

T i = −V γ′
[
(τ i‖ + ατ i⊥)Si × Si × P̂ + (τ⊥i + ατ i‖)Si × P̂

]
. (4.45)

Now, both components of the STT appear in both damping-like and field-like mo-

tions. Nevertheless, we note that the out-of-plane torque has little or no influence on

the switching dynamics, since its intensity, already smaller that the in-plane coun-

terpart, is multiplied by α that is generally between 0.001 and 0.01.

The objective of this section is to analyse the differences between the switching

dynamics in junctions with similar properties that are subject to qualitatively differ-

ent spin torques. This is the case, for example, of Fe and Fe/Cu free layers, where

the different electrodes resulted in a significant change in the distribution of the STT

of the Fe atoms. The first part of the analysis will focus on the estimation of the

critical voltage, Vc, needed for switching, the corresponding switching times and their
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temperature dependence. We are then interested into studying the oscillation modes

induced by different spatial profiles of the spin torques. These will clearly depend

on how the chosen voltage relates to the critical voltage of each junction. Therefore,

the analysis will be done by comparing the results of calculations for a voltage of

V = 1.2Vc. The entire study then critically depends on an accurate estimation of the

critical voltage. The latter can be indicatively estimated by performing calculations

for different biases, V , and identify the minimum value of V for which magnetisation

reversal occurs. Nevertheless, a more accurate estimate for Vc can be obtained by

fitting the bias dependence of the switching times with an analytical formula derived

assuming uniform switching. Thus, we consider the dynamics of a uniform mag-

netisation, Si ≡ M , in a magnetic field that is parallel to the z direction, namely

H = Hẑ =
(
Happ +HKmz

)
ẑ, (4.46)

where for simplicity we defined HK = 2Ku/Ms and mz = Mz/Ms. The z component

of the LLGS in this context becomes

∂mz

∂t
= −γ′α

(
H +

τ⊥i + ατ i‖
α

)
(m2

z − 1),= ω(mz + h)(1−m2
z) (4.47)

where the triple cross product rule a×b×c = b(a ·c)−c(a ·b) was used. Moreover,

the notation was simplified by defining ω = γ′αHK and

h ≡ h(V,Happ) =
1

HK

(
Happ +

τ
‖
i + ατ i⊥
α

)
. (4.48)

The equation can now be easily solved by separating the variable and integrating

both sides, which yields to the solution

ω(t− t0) = (1− h2) ln |mz + h| − (2 + 2h) ln |1−mz| − (2− 2h) ln |1 +mz|. (4.49)

The constants resulting from the two integrations were combined in the time t0 that

can be found by imposing the initial condition mz(0) = m0, and reads

t0 =
1

2ω(1− h2)
(−2 ln |m0 + h|+ (1− h) ln |1−m0|+ (1 + h) ln |1 +m0|). (4.50)
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Finally, we can define the switching time, ts, as the time at which the magnetisation

vector first crosses the z = 0 axis. Inserting this condition in the solution, the

switching time can be estimated to be

ts = t0 +
ln |h|

ω(1− h2)
T ‖, (4.51)

where here T ‖ quantifies the in-plane component of the torque as written in Eq. (4.45).

We remark that this expression depends on both the bias voltage and the applied

field. Eq. (4.47) indicates that switching is possible only if mz + h ≥ 0, which leads

to the condition

h(V,Happ) =
1

HK

(
Happ +

τ
‖
i + ατ i⊥
α

)
≥ −mz(0). (4.52)

Therefore, the critical voltage for vanishing applied field, Vc0, can be found by in-

verting the equation h(V, 0) = −mz(0) and reads

Vc0 = −αmz(0)Hk

τ ‖
, (4.53)

where the out-of-plane torques are omitted for simplicity. As expected, the critical

voltage is directly proportional to the anisotropy field and the Gilbert damping,

while it is inversely proportional to the strength of the in-plane torques. Moreover,

the critical voltage for a finite applied field can be estimated by inserting Eq. (4.53)

in the switching condition expressed by Eq. (4.47), namely

Vc(H) = Vc0

(
1− 1

mz(0)

Happ

HK

)
. (4.54)

4.3.1 Fe: different leads

We now move to analyse the current driven-dynamics in Fe and Fe/Cu free layers.

We consider a stack of eight atomic planes of bcc Fe with a cross section formed by

4×4 unit cells for 0 K simulations, that is increased to 32×32 for finite-temperature

ones. The out-of-plane size is here the same as the number of magnetic atoms con-

sidered in the torkance calculation for Fe/MgO/Fe/Cu [Fig. 3.4 (a)]. We note that

a bigger magnetic stack was considered for the pure Fe free layer [see Fig. 3.3 (b)].
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Figure 4.6: Bias dependence of the switching time in Fe (red) and Fe/Cu (blue)

free layers at 0 K. The lines represent the result of a fit to the function defined in

Eq. (4.51) the spin dynamics data (symbols).

However, the torkance in such case vanishes within a few atomic layers from the in-

terface with the tunnel barrier. Hence, such system can be truncated at an arbitrary

position deep enough in the magnetic layer. We remark, however, that in general

one should consider the change in the total Gilbert damping due to the reduction of

the layer thickness. We use here first nearest neighbour exchange parameters with

their intensity chosen so to reproduce the correct Curie temperature of Fe (see sec-

tion 4.2.1 for more details). Both the magnetic anisotropy constant and the Gilbert

damping are known to be significantly different for Fe atoms in bulk or in proximity

to an interface with MgO. In order to account for such effects we consider a uniaxial

anisotropy constant of 1.602× 10−23 J and a damping parameter of 0.005. These val-

ues are average estimations from the magnetic anisotropy calculations of Ref. [135]

and the FMR measurements of Ref. [136].

We start by studying the bias dependence of the dynamics at 0 K in both systems

for a range of bias voltages. Figure 4.6 shows the switching times calculated for a

simulation cell of 4×4×1 unit cells, with periodic boundary conditions applied only

within the plane. Since at 0 K there are no thermal fluctuations, the dynamics is
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deterministic, as opposed to stochastic as at finite temperatures. As a consequence,

the switching is rather uniform and a relatively small simulation cell can be adopted.

Eq. (4.51) is used here use to fit the data and to estimate the critical voltages. For

the Fe and Fe/Cu layers we find 1.75 V and 3.00 V, respectively. We remark that the

only difference between the two set of simulations is the value of the spin torques.

The simplest way to explain this difference is through an analysis of the total STT

acting on each layer. In fact, the total torque for a Fe electrode is found to be about

1.6 times larger than that for the Cu electrode. This factor is significantly close to

the inverse of the ratio between the two critical voltages, namely V Fe
c0 /V

Cu
c0 ∼ 1/1.7.

This coarse estimation seems to indicate that the critical voltage scales inversely

with the integrated spin torque.

We also note that both critical voltages are above 1.5 V, which defines the limit

of validity of the torkance approximation. This implies that the finite bias torques

should be actually employed to properly estimate the switching properties of the

MTJs. Nevertheless, voltages beyond 1.5 V are likely to drastically modify the tun-

nelling properties of the junction since at such voltages different orbital symmetries

contribute to the current. As a consequence, the STT at high voltages is likely

to have a different spatial trend than in the zero-bias limit. Note that the spin-

polarisation of the tunnelling current gets reduced for V & 1.5 V. Therefore, we

consider switching by applying an additional magnetic external field to reduce the

critical voltage to the range of validity of the torkance approximation.

The dependence of the critical voltage with respect to the applied field can be

extracted from Eq. (4.54), given the zero-field value, Vc0. We apply here a magnetic

field of 1 T along the z direction (parallel to the spin-current), so that the critical

voltage becomes 0.2955 V for Fe and 0.5066 V for Fe/Cu. We note that the chosen

applied field is comparable, but still weaker, than the macroscopic anisotropy field

that can be easily calculated (
∑

i 2kumi) to be 1.54 T. It is clear that the same voltage

applied to both junctions results in a rather different dynamics. Hence, instead

of studying the switching at fixed voltages common for both systems, we consider

the dynamics for voltages that correspond to a fixed fraction of the critical voltage
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Figure 4.7: Current-induced switching in Fe (a) and Fe/Cu (b) free layers at 0 K for

an applied field of 1 T and different voltages.

characteristic of each free layer. This allows one to better compare the influence of

the spin torques on the dynamics in the two cases. Figure 4.7 displays the time-

dependence of the z component of the total magnetisation in the two systems and

for different voltages, that are here quantified in terms of the critical voltage of the

specific system [as from Eq. 4.54]. This fact also holds for the switching at finite

temperatures, shown in Figure 4.8. In this case the switching is described through

a Langevin dynamics in order to include thermal fluctuations. As a consequence,

different simulations for the same set of parameters will not produce the same results.

Here we simulate the dynamics considering ten different trajectories for each given

system, voltage and temperature, that were then averaged to obtain the dashed

lines in figure 4.8. We note that the switching times are not remarkably affected

by the temperature and are distributed on a rather broad range. In the case of

Fe, this is particularly true for voltages close to the critical voltage, although more

uniform estimations are found for higher voltages. In addition, the average switching

times seem to decrease monotonically with both the temperature and the applied

voltage, and are rather uniform for temperatures of 200 K and above. In contrast,

the distribution of the switching times for a Fe/Cu free layer remains rather broad

for all biases considered. In addition, for low voltages the average switching times

are rather uniform for 100 K, 200 K and 300 K.
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Figure 4.8: Bias dependence of the switching times in (a) Fe and (b) Fe/Cu at 0 K

(black), 100 K (red), 200 K (blue), 300 K (green) and 400 K (purple). The dashed

lines show the trend of the average switching time for a given finite temperature.

In conclusion, the different trend of the spin torques has significant consequences

in the switching dynamics. In fact, we remind that the spin torques are the only

factor that is changed when moving from one free layer and the other. In particu-

lar, our results show that a sharply decaying torque (as in Fe) implies lower critical

voltage and better stability to thermal fluctuations, while the switching times are

generally lower for oscillating spin torques. In order to further analyse these differ-

ences we consider the time dependence of the correlation between spins at different

distances from the insulating barrier. This is quantified by the means of the spin-spin

correlation function,

Ci
α(t) =

∫
dωeiωtS̃α0 (ω)S̃αi (ω), (4.55)

Here α = x, y, z, i runs over the number of spins in the unit cell and the Fourier

transform of the orientation of the i-th spin in the unit cell is defined as

S̃αi (ω) =

∫
dt

2π
e−iωtSαi . (4.56)

This quantity allows us to analyse the change in orientation of each spin in the unit

cell, Si, with respect to the spin at the interface, that by convention is here denoted

as i = 0. We note that the time variable that the correlation function depends on

does not correspond to the real time, but can be interpreted as a measure of the
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Figure 4.9: Study of time-dependent spin correlations during the magnetisation

switching at 0 K for Fe (red) and Fe/Cu (blue) free layers. Left panel: (a) the

xx and (b) the zz component and (c) the total auto-correlation function for the spin

at the MgO/free layer interface. Right panel: (d) the xx and (e) the zz component

and (f) the total correlation function between the interfacial spin and all the others.

time delay. By construction, the spin correlation function is qualitatively different

for i = 0 and i 6= 0. For simplicity, the former case will be hereon called the “auto-

correlation” function, and the notation Ci
α will represent the correlation function for

i 6= 0.

Figure 4.9 shows the different components of the auto-correlation (left-hand side

panel) and the spin-spin correlation (right-hand side panel) functions as calculated

in the two cases at 0 K and for a voltage of 1.1Vc. Here the time is normalised over

the total simulation time to yield a easier comparison between different trajectories.

Since the system has perfect in-plane symmetry the x and y component of the corre-

lation functions are identical. The in-plane auto-correlation function for the the two

cases [panel (a)] shows that the different spin torques trends imply different phases

of the precession modes for the interfacial spin. The out-of-plane auto-correlation is

then very similar in the two cases and basically corresponds to the average switching

dynamics of the spins in the first layer. Similar considerations hold for the in-plane

and out-of-plane component of the spin-spin correlation [panels (d), (e)]. We note

that in this case the correlation functions for the different atoms, i = 1, · · · , 7, are
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Figure 4.10: Study of the bias dependence of the spin correlations for the switching

dynamics in (left panel) Fe and (right panel) Fe/Cu free layers. The top (bottom)

panels show the total auto- (spin-spin) correlation functions for each free layer for

voltages of (red lines) 1.1, (green lines) 1.5 and (blue lines) 2.0 in units of the critical

voltage.

virtually identical to one another. In particular, Ci
x oscillates with different phase

in the two cases, thus indicating that different spin torques imply different preces-

sion frequencies. Moreover, the trend of Ci
z shows that the first layers move out of

synchronisation with respect to the others, although at later times they eventually

become correlated. This is explained since the torque always peaks at the first layer.

We note that the features just discussed for the in-plane and out-of-plane correlation

functions can also be extracted from the total functions [panels (c) and (f)], defined

as

C0,i
tot = C0,i

x + C0,i
y + C0,i

z . (4.57)

In fact, it is clear that the out-of-plane component dictates the general profile of

C0,i
tot, while the in-plane modulate such trend by the means of small oscillations.

Figure 4.10 shows the total correlation functions for different bias voltages. The

instantaneous correlation, for t = 0, decreases for increasing voltage, meaning that

stronger V leads to the spins moving one against the other. Both the auto-correlation

and the spin-spin correlation has stronger oscillations for lower voltages. From the
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Figure 4.11: Study of the temperature dependence of the spin correlations for the

switching dynamics in (left) Fe and (right) Fe/Cu free layers. The top (bottom)

panels show the total auto- (spin-spin) correlation functions for each free layer for a

voltage of V = 1.1Vc at (red lines) 100 K, (green lines) 200 K, (blue lines) 300 K and

(purple lines) 400 K.

top panels we can evince that the spin at the interface has a stronger delay for higher

voltages that for V = 1.1Vc. In contrast, the spin-spin correlations [bottom panels]

approaches the zero-axis strikingly faster for higher voltages. We note that a weaker

correlation at the end of the trajectory seems to correspond to lower switching times.

We also note that the spin correlations for the two different electrodes are strikingly

similar.

We conclude our analysis of Fe and Fe/Cu junctions by discussing the spin cor-

relations at finite temperatures. For simplicity, we present the results for a single

trajectory for each temperature and voltage. In each case, we chose the trajectory

with switching time closer to the average one for the given simulation parameters,

and the respective correlation functions are shown in Fig. 4.11. The results for the

different temperatures are here not remarkably different, and no particular trend can

be evinced. This can be attributed to the broad distribution range of the switch-

ing times, and confirms the elevated temperature instability of the magnetisation

switching in Fe and Fe/Cu layers.
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Figure 4.12: Left panel: Graphical representation of the system setup for spin dynam-

ics simulations with disordered barrier. The inner core is here composed by MTJs

with a 5 MgO MLs, while 6 MLs are considered for the outer core. Right panel:

trajectories of the magnetisation switching at 10 K (purple) and 300 K (green) for

disk radii, R, of (b) 32 and (c) 16 unit cells. Courtesy of Dr. Matthew Ellis.

4.3.2 Disordered Fe/MgO/Fe

In the previous Chapter we have explained that the transport properties of Fe/MgO/Fe

are strongly influenced by disorder effects. In particular, the results of spin torque

calculations for different barrier thicknesses were presented [see Fig. 3.6]. Here such

results are combined with atomistic spin dynamics to explore the effects that varia-

tions in the barrier thickness have on the switching dynamics. We note that all results

here presented on disordered Fe/MgO/Fe structures have been obtained through sim-

ulations performed by Dr. Matthew Ellis as part of an on-going collaboration.

We consider a cylindrical simulation cell, where all spins are described by the

spin Hamiltonian developed for bcc Fe. The disorder is then introduced by assuming

that different regions of the cross section are subject to different spin torques, as

a consequence of a change in the barrier thickness. In fact, we have previously
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shown that the torkance, as the current, decays exponentially with the number of

monolayers in the MgO barrier. Here we assume that spins within a radius, r, from

the center are deposited above an MgO spacer of 5 MLs, while the rest of the cross

section is deposited on a thicker barrier, of 6 MLs [see Fig. 4.12 (a)]. We recall that all

the other junctions considered in this thesis contain 6 MgO monolayers. This implies

that the outer region will be subjected the same spin torques analysed above (for a

Fe electrode), while the STT will be stronger by almost a factor 10 [see Fig. 3.6] in

the inner region because of the increase in the tunnelling current. Here we consider

an inner region that corresponds to 50% of the total area, for cross sections with a

total radius, R, of 16 and 32 unit cells, i.e. R =9.2 nm and R =18.4 nm, respectively.

Figure 4.12 (b) shows the trajectories of the magnetisation for the two different

sizes at 10 K and 300 K. Here magnetisation reversal is achieved in the absence of an

applied field and for times lower to the ordered junction. Moreover, the switching

dynamics seems to be faster for larger systems. This indicates that in this case the

switching properties are essentially given by the amount of total torque that acts on

the free layer. In other words, the presence of the stronger spin torques in the core

region is enough to reduce the switching times and the critical voltage. In addition,

a fixed ratio between the inner and outer regions implies that larger systems will be

subjected to stronger spin torques. In this case this is true since the intensity of the

torkance for 5 MLs is more than twice than the one for 6 MLs. Therefore, for a fixed

ratio of 1:1 between the two regions, the total torkance increases with the size of the

total system.

A second general message that can be extracted from these simulations is that

switching occurs through a domain wall motion. The latter is activated by the

stronger torkances in the inner region, although the spin texture does not reflect

the difference in the thickness of the underlying barriers. This can be evinced from

Fig. 4.13, where we present different snapshots of the dynamics for the two disc sizes.

For the smallest cross section [top panels] the domain wall is not distinguishable

at 10 K, although some irregularities appear in the spin distribution at 300 K. In

contrast, the larger disk clearly displays the presence of a domain wall. The latter is
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rather regular and distinct at 10 K while it becomes significantly more irregular at

higher temperatures. We remark that in none of the spin distributions presented it

is possible to identify the regions with thinner insulating barriers.

4.3.3 L10 FePt

We conclude the Chapter by comparing the dynamics in a pure FePt lead and in

a FePt/Fe free layer. We consider the latter to be composed by 4 FePt and 4

Fe layers, since the torkance rapidly vanishes in Fe. In contrast, the torkance for

the FePt layer oscillates deep into the electrode. Nevertheless, the oscillations are

Figure 4.13: Snapshot of the switching dynamics in a disordered Fe/MgO/Fe nano-

pillar for a constant current of 50 GAm−1. The figures on the left-hand side represent

the z component of the atomic spins throughout the disc, where right-hand side

panels show the distribution of the current density. Here the linear size of the

disorder feature is 2 for the top panels and 4 for the bottom ones. Courtesy of

Dr. Matthew Ellis.
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rather small, hence a truncation far enough from the interface constitutes a fair

approximation. Similarly to the case of Fe and Fe/Cu, one should consider the

modifications to the Gilbert damping introduced by the truncation of the layer.

In order to allow for a better comparison between the different cases, we consider

also here a uniform damping parameter of 0.005. Here we consider a stack of six

FePt layers so the two systems will have the same amount of atoms (12). Both

spin models are constructed by using the parameterisation for bcc Fe and L10 FePt

described above, and longitudinal spin fluctuations will be explicitly included. The

details of the simulation methods are analogous to the ones described in the case of

Fe and Fe/Cu free layers.

At this point, we remind the reader that in Chapter 3 two sets of results of

spin torque calculations were shown for a pure FePt lead: one where the MgO-FePt

inter-plane distance is set accordingly to DFT results, and one where the distance

is strongly underestimated [see Fig. 3.14 and its discussion]. The most outstanding

difference between the two cases is that the torque for the realistic interface is two

orders of magnitude smaller than for the unrealistic structure. As a consequence, the

critical voltage for the unrealistic structure is expected to be strikingly lower than
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Figure 4.14: Bias dependence of the switching time in FePt (red) and FePt/Fe

(blue) free layers at 0 K. A field of 5.5 T was applied in the case of FePt/Fe, while

no external field was applied for the FePt layer. The lines represent the result of a

fit of the function defined in Eq. (4.51). The corresponding data are the symbols.
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for the realistic one, where the spin torques have roughly the same total intensity

as a pure bcc Fe layer. However, the magnetic anisotropy is strikingly different in

the two cases: the macroscopic anisotropy field at 0 K can be estimated to be of

15 T for FePt and a factor 10 lower in Fe. Therefore, the intensity of the applied

field required to obtain switching for a realistic Fe/MgO/FePt junction will be even

higher than the 1 T field employed to analyse the case of Fe and Fe/Cu free layers.

In particular, the simulations have shown that an applied field of 50 T is still not

sufficient to reverse the magnetisation in a pure FePt free layer by employing the

spin torques calculated for a realistic interface. In contrast, the use of the torques

obtained for an underestimated MgO-FePt inter-plane distance yield switching in

absence of an applied field with a critical voltage of only 0.129 V. This implies that

the current-driven spin dynamics is remarkably more interesting in the case of the

unrealistic structure, since the spin torques in realistic junctions are too weak to

reverse the magnetisation and become negligible when compared to the applied field

required to obtain switching. This differs from the case of a FePt/Fe free layer, as the

reduced thickness of the FePt stack yields a strikingly weaker magnetic anisotropy

(HK = 8.8 T) and the critical voltage is found to be 10.38 V. We then choose to focus

our analysis of magnetisation reversal in FePt-based junctions to the 4FePt/4Fe free

layer and to the FePt structure with the unrealistic interface.

The bias dependence of the switching times in the two cases is shown in Fig. 4.14.

In order to better compare between the two systems, we adopt an applied field of

5.5 T for the case of FePt/Fe. This choice brings the critical voltage for such structure

to 0.158 V, which is comparable to the one obtained for FePt. Despite this, switching

occurs at two different time scales in the two systems. Such differences can be better

analysed from the data shown in Figure 4.15, where we display the trajectories of the

total magnetisation at 0 K for different voltages, expressed in terms of fractions of the

critical voltage. In FePt the switching starts close to the zero-time axis and occurs

within 1 ns. In contrast, in FePt/Fe layers the magnetisation remains almost constant

for more than 0.5 ns and reversal occurs with times as long as 2 ns. Interestingly, the

switching times for FePt and FePt/Fe are strikingly more sensitive to temperature
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as compared to those of Fe and Fe/Cu [Fig. 4.16]. Nevertheless, the distribution of

switching times for a given voltage and temperature is here remarkably narrower.

In FePt [panel (a)] each set of temperature and applied voltage have rather distinct

switching times. Interestingly, the results at 0 K are not too distant from the average

switching times obtained for 100 K. The increase of the voltage implies a significant

reduction of the switching times, and such effect is particularly pronounced for lower

temperatures. We finally note that the temperature seems to be significantly less

relevant for higher voltages. On the contrary, in FePt/Fe [panel (b)] the case of

0 K is strikingly different from the results of finite temperature simulations. In fact,

switching times at zero-temperatures are found to be of the order of 2 ns, in contrast

with the case of finite temperature, where all switching times are found below the 1 ns

threshold. Moreover, the switching times are mostly constant for different applied

voltages. This can be attributed to the fact that in this case magnetisation reversal is

mostly driven by the applied magnetic field, with the spin torques playing a relatively

minor rôle.

We note that switching in FePt occurs at a rather short time scales, with switching

times as low as 50 ps. In order to better analyse this result we study the spin

correlations for different simulation parameters. Given the presence of a rather strong
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Figure 4.15: Current-induced switching in FePt (a) and FePt/Fe (b) free layers at

0 K A field of 5.5 T is applied in the case of FePt/Fe, while no external field was

applied for the FePt layer.
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at 0 K (black symbols), 100 K (red), 200 K (blue), 300 K (green) and 400 K (purple).

For data sets obtained at finite temperatures the lines show the trend of the average

switching time for a given voltage. A field of 5.5 T is applied in the case of FePt/Fe,

while no external field was applied for the FePt layer.

applied field, the case of FePt/Fe is not as interesting as the one of the FePt lead.

Hence, the study of spin correlations in FePt/Fe is here omitted. We then used

the same methodology adopted for Fe and Fe/Cu, and begin by analysing the auto-

correlation and the spin-spin correlation in FePt at 0 K and with a bias voltage equal

to 1.1Vc. Figure 4.17 shows that a rather fast precession frequency characterises the

switching dynamics in FePt [panels (a) and (d)]. We also note that the oscillations

seem to qualitatively change in time, and this holds for both the auto-correlation

and the spin-spin correlation function. In this latter case [panels (d), (e) and (f)]

we show that different spins have a slightly different correlation. Here the spin-

spin correlations for different spins are represented with different colors, where blue

represents the spin that is closest to the interface and red the one at the other

opposite of the stack. The phase of the precession is rather similar for all spins,

although spins seem to be have a stronger delay with increasing distance from the

interface. Note that here no distinction was made between Fe and Pt atoms. In

fact, these results show that different spins do not undergo a qualitatively different

dynamics. This is because the exchange coupling keeps all spins mostly aligned,
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Figure 4.17: Study of time-dependent spin correlations during magnetisation switch-

ing at 0 K FePt (red) and FePt/Fe (blue) free layers. Left panel: (a) the xx and

(b) the zz component and (c) the total auto-correlation function for the spin at the

MgO/free layer interface. Right panel: (d) the xx and (e) the zz component and (f)

the total correlation function between the interfacial spin and all the others. The

colors indicate the distance of each spin from the interfacial one (i = 0), where blue

denotes the closest site and red denotes the most far away.

hence their trajectories become indistinguishable one from the other.

We conclude by discussing the bias and temperature dependence of the correla-

tions functions that are presented in Figure 4.18. The data show that the interfacial

spin is more strongly correlated for low voltages, where the oscillations induced by

the in-plane component are also most visible [panel (a)]. Panel (b) shows that spins

further away from the interface are slightly more out of phase with respect to spins in

proximity to the interfacial one. This difference, however, becomes less relevant with

increasing applied voltage. Moreover, the correlation seems to decrease for higher

voltages and almost vanishes at the end of the time window considered (as previously

observed). This is particularly interesting, since it implies that stronger spin torques

significantly reduce the spin-spin correlations, hence they yield to a meaningful de-

crease in the switching time. We note that the same consideration is not applicable

to the other cases considered because of the presence of the applied magnetic field.

Similarly, the decrease of the switching time with the temperature can be explained
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Figure 4.18: Study of the (left) bias and (right) temperature dependence of the spin

correlations in a Fe/MgO/FePt junction. The top panels show the auto-correlation

functions, while the bottom panels display spin-spin correlations. For the latter case

full lines correspond to the closest spin (i = 1) to the interfacial one, while dashed

lines are relative to the one furthest away from the interface. Left: the different

colors represent different applied voltages:

with the decrease of the spin-spin correlations [panels (c) and (d)]. In fact, the

correlation functions at 100 K have similar magnitude than in the zero-temperature

case. Nevertheless, they are significantly smaller for higher temperatures, and almost

vanish at 400 K.

4.4 Conclusions

We have presented a methodology to perform spin dynamics simulations at the atom-

istic level. We have discussed the spin models to correctly describe the thermodynam-

ical properties of bcc Fe and L10 FePt. We then mapped the spin torques presented

in the previous Chapter onto the atomistic models and we compared the current-

induced switching in Fe, Fe/Cu, FePt and FePt/Fe free layers. Overall, we find that

the critical voltage is determined by the value of the torque integrated over the free

layer. The reduced current intensity in Fe, Fe/Cu and FePt/Fe free layers implied

the need of an external magnetic field in order to obtain magnetisation reversal with
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voltages below 1.5 V. In contrast, switching in a pure FePt layer occurs for a rather

low critical voltage (0.129 V) in the absence of an applied magnetic field, and the

typical switching times are of an order of magnitude lower than in the other cases

considered. Moreover, the higher anisotropy field in FePt-based free layers granted

improved thermal stability with respect to Fe and Fe/Cu free layers.

Finally, we have analysed the magnetisation switching in Fe/MgO/Fe junctions in

presence of variations in the barrier thickness. Our results show that, also in this case,

the integrated torque over the free layer dictates the critical voltage. In addition, we

have found that in these systems magnetisation reversal happens through a domain

wall motion.
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Chapter 5

Antiferromagnetic couplings in Heusler

compounds

“Something unknown is doing we don’t know what.”

- Sir Arthur Eddington

Antiferromagnetic materials have attracted significant attention as potential can-

didates for novel spintronics applications [137]. In fact, spin dynamics in such ma-

terials takes place at typical time scales that are up to three orders of magnitude

faster than the one in ferromagnets, i.e. in the THz range as opposed to the GHz

[138]. This is because the dynamics in ferromagnets is essentially determined by

the anisotropy field, while in antiferromagnets it is given by the exchange coupling

between the spins belonging to the different sublattices, that is three orders of mag-

nitude stronger. The possibility of switching antiferromagnets between two stable

states has been already proven experimentally [38] and the field of antiferromagnetic

spintronics is rapidly growing. As for ferromagnets, the search for novel materials is

critical for the development of novel applications. A particularly efficient strategy to

explore new materials relies on performing high-throughput calculations on a wide

range of structures. Such data can then be used to extract the information needed

to optimise the chemical composition of the materials chosen for a given applica-

tion. Some of such investigations are performed by considering a large number of

Heusler compounds. Full-Heusler alloys are intermetallic compounds with chemical
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composition of the general form X2Y Z, where X and Y are transition metals and

Z is a p-block element. Many of such alloys form in a L21 crystal structure, that is

the result of four interpenetrating fcc lattices and that reduces to bcc in the limit

case of X=Y=Z. The peculiarity of Heusler compounds is that their properties do

not depend on the ones of the elemental crystals for the atomic species they are

composed of [139]. This allows one, for example, to obtain a magnetic material by

combining elements that in most cases do not exhibit magnetism on their own, such

as Mn.

In this Chapter we explore different magnetic properties of the Mn3Ga and

Fe2MnGa Heusler compounds. In both materials the Mn atoms dominate the mag-

netic properties and display an antiferromagnetic coupling of some kind. This is

particularly interesting in the case of Fe2MnGa, since at low temperatures the Fe

atoms become not magnetic and the material becomes a pure antiferromagnet (with

net zero moment). However, at higher temperatures Mn atoms couple ferromagnet-

ically, while a local moment appears at Fe sites and anti-aligns with the moments

of the Mn atoms. We begin by developing a spin model to describe the magnetic

properties of the ferrimagnetic Mn3Ga. We then conclude by presenting results of

atomistic spin dynamics and spin transport simulations in Fe2MnGa.

5.1 Ferrimagnetism in Mn3Ga

The tetragonally distorted Heusler alloy Mn3Ga has been shown to grow with the

D022 structure on a variety of substrates, including MgO [140]. Thin films of this ma-

terial display high spin polarisation and a strong perpendicular uniaxial anisotropy

which make Mn3Ga rather promising for spintronics applications. The magnetic

properties are given by the Mn atoms that occupy the two non-equivalent Wyckoff

positions 2b and 4a, shown in Fig. 5.1 (a). Magnetic atoms in equivalent sites cou-

ple ferromagnetically, while a strong antiferromagnetic exchange interaction couples

atomic spins at non-equivalent positions. Since the 4a sites are double the num-

ber of the 2b sites the system has a net magnetic moment, making this material
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Figure 5.1: Left panel: unit cell for Mn3Ga. Small spheres represent the Ga atoms,

large spheres the Mn atoms. In particular, the red arrows indicate the 2b sites, and

the blue arrows the 4a sites. Right panel: temperature dependence of the average

magnetisation for the 2b sites (green lines), the 4a sites (blue lines) and all sites

(orange lines). The full (dashed) lines are obtained assuming uniform (different)

anisotropy at non-equivalent sites.

a ferrimagnet rather than an antiferromagnet. The magnetic properties of Mn3Ga

are extensively discussed in Ref. [141]. The magnitude of the magnetic moments

is estimated to be 2.99 µB at the 2b positions and 2.38 µB at the 4a sites for an

ordered ferrimagnetic state. However, the exchange parameters extracted from such

state do not reproduce the correct properties for high temperatures. In contrast, the

exchange interactions estimated for a paramagnetic disordered local moment state

are found to be still antiferromagnetic and to provide a Néel temperature that is

close to the experimental value of 770 K [142]. We note that the experimental results

have an additional complexity, since the crystal structure undergoes a transition to

an hexagonal structure in a similar temperature range.

We parameterise the spin model for Mn3Ga using the exchange parameters and

the anisotropy constant presented in Ref. [140]. Such results were obtained through

spin spiral and total energy first principles calculations. In particular, the authors
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Figure 5.2: FMR spectrum for Mn3Ga at different temperatures with (a) uniform

and (b) different anisotropy for non-equivalent sites. We find two different resonant

modes, one at lower frequency (∼20 THz) and a second, weaker, one at a higher

frequency.

report a total uniaxial anisotropy constant of 0.900 meV, while they find the val-

ues of 0.765 meV and −0.031 meV for 4a and 2b sites, respectively. These results

indicate that the moments at 2b sites prefer to align within the plane, hence the

spin-collinearity of the magnetic ground state must come from the strong exchange

coupling between 4a and 2b sites (∼400 meV). We then perform two separate sets of

calculations: one where the uniaxial anisotropy is kept uniform for all sites, and one

where a different anisotropy constant is assigned to non-equivalent sites. Fig. 5.1 (b)

displays the calculated temperature dependence of the average total magnetisation at

2b sites (green lines), 4a sites (blue lines) and all sites (orange lines) in the two cases

for systems composed of 20 × 20 × 20 unit cells. It is clear that magnetic ordering

is lost beyond T ∼750 K, temperature that is compatible with the Néel temperature

estimated from experimental data. Interestingly, the total average moment at 4a

sites vanishes more rapidly than the one at 2b sites. Moreover, we note that the two

different choices of atomistic anisotropy do not make a substantial difference in the

temperature dependence of the magnetic ordering.

Nevertheless, the site-dependence of the uniaxial anisotropy seems to play a signif-

icant role for the spin-spin correlations. Fig. 5.2 shows the results of FMR simulations
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at different temperatures for the two anisotropy choices. In both cases two distinct

resonant peaks can be identified, in contrast to the case of bcc Fe discussed above.

The arising of multiple resonant peaks is common in the presence of nonequivalent

moments in the unit cell. In particular, systems with antiferromagnetic ordering are

known to display two separate oscillation modes. A first mode is analogous to the

one found in ferromagnets and corresponds to a uniform precession of the magnetisa-

tion, and is normally found at frequencies of the order of 1-10 GHz, namely at a time

scale similar to that of ferromagnets. In the case of an antiferromagnetic-like order-

ing, this translates in a in-phase precession of the spins of the two sublattices. The

second mode, often called antiferromagnetic mode, is found at significantly higher

frequencies (∼ 1 THz) and is the result of the nonequivalent spins oscillating out of

phase and competing one against the other. The latter can be found in both spectra,

with frequencies between 1 THz and 4 THz for uniform anisotropy [panel (a)] and

slightly below the THz range for a site-dependent anisotropy constant [panel (b)].

Interestingly, an additional high-frequency oscillation mode is captured by our FMR

simulations. In fact, a second resonant peak appears in the 15-20 THz frequency

range at low temperatures. The latter is particularly pronounced in the case of uni-

form anisotropy, while it is barely visible for site-dependent ku. The position of the

peak then rapidly changes with the increase of temperature, and gradually merges

with the dominant peak as T approaches the Curie temperature. The strikingly high

frequency of the secondary peak, together with its sensitivity to the site-dependence

of the anisotropy, indicates that the corresponding resonant mode is the result of the

competition between the two sublattices, and maybe characteristic of the present

system.

In order to better analyse the differences between the two sets of simulations we

now focus our attention to the sole ferromagnetic (lower frequency) mode. Its larger

intensity allows in fact to fit the peak at all temperatures and for both anisotropy

choices. Fig. 5.3 (a) shows the resonant peak at some representative temperatures,

where the black lines represent the best fit. The remaining panels of the figure dis-

play the information that can be extracted from the fit of the resonant peak to the

155



Chapter 5 Antiferromagnetic couplings in Heusler compounds

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  1  2  3  4  5

(a)

C
x
x
 (

ω
)

ω [THz]

same ku,    25 K
same ku,  500 K

diff ku,    25 K
diff ku,  500 K  0

 0.2

 0.4

 0.6 (b)

M
/M

s

same ku
diff ku

 0
 2
 4
 6
 8 (c)

K
 [
M

J
/m

3
]

 0
 0.04
 0.08
 0.12
 0.16

 100  200  300  400  500  600  700

(d)

α

T [K]

Figure 5.3: Left panel: low frequency FMR spectrum for Mn3Ga at different tem-

peratures with uniform anisotropy constant at all sites. The black lines show the

result of the best fit according to Eq. (4.31) of the resonant peak. Right panel: (b)

the total magnetisation, (c) the macroscopic anisotropy constant and (d) the Gilbert

damping extracted from the fitting of the low frequency resonant peak for different

temperatures.

formula contained in Eq. (4.31). We note that the expression used to fit the linewidth

is not fully appropriate. In fact, the strength of the exchange coupling should be

explicitly included to correctly estimate the resonant peak in antiferromagnetic ma-

terials. Nevertheless, to the best of our knowledge the respective analytical form

is not currently available in literature. In particular, the total magnetisation, the

macroscopic anisotropy constant and the macroscopic damping are displayed in pan-

els (b), (c) and (d), respectively. It seems there is little or no difference between

the two cases in the temperature dependence of the magnetisation. We note that

the predicted total magnetisation at 0 K corresponds to the difference between the

atomic moments at the two sites. Small changes appear in the trend of the macro-

scopic damping, that in both cases is enhanced by an order of magnitude with respect

to the input value of 0.005. In fact, a site-dependent ku seems to imply a slightly

stronger damping (red circles), difference that increases with the temperature. We

note that the irregularities that we observed at high temperatures are likely due to a

decrease in the accuracy, especially for the case of non-uniform anisotropy since the
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Figure 5.4: Dynamic structure factor for Mn3Ga at 10 K with (a) uniform and (b)

different anisotropy for nonequivalent sites.

peaks become more narrow and close to the zero frequency axis. In opposition to the

magnetisation and damping, the macroscopic anisotropy constant has a relevantly

different temperature dependence in the two cases.

We conclude our analysis of Mn3Ga by calculating the dynamics structure factor

[Fig. 5.4]. The differences between the positions of the FMR peaks discussed above

here translate in an different energy shift of the branches at the Γ point for the

different anisotropy choices. Apart from this, the two spectra are rather similar. In

both cases two acoustic modes can be identified, of similar shapes but at different

energies. Moreover, peaks belonging to lower energy branch seem to be of stronger

intensity than the other, especially in the low energy spectrum. Interestingly, the

two branches are connected by a third branch for wave vectors of the form (0t1) and

(t11) with 0 ≤ t ≤ 1, corresponding to the Z-R and R-A segments.

5.2 Multi-scale modelling of Fe2MnGa

We now move to discuss the magnetic properties of the Fe2MnGa Heusler compound.

The peculiarity of this material lies in its high structural instability, as it may crys-

tallise in a variety of crystalline phases that correspond to generalisations of the fcc or

bcc structures (see e.g. Ref. [143] and references therein). In addition, the magnetic
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Figure 5.5: Magnetic unit cell of Fe2MnGa. The arrows show the atomic magnetic

moments in the (a) ferromagnetic (FM) and (b) anti-ferromagnetic configuration.

The different colors of the spheres defines the atomic species: red for Fe, violet for

Mn and gray for Ga.

ground state is also unstable. It is generally believed to be antiferromagnetic at tem-

peratures below 200 K, with the Mn atoms carrying all the moment and the Fe ones

being diamagnetic. At higher temperatures the Mn moments align ferromagnetically,

while the Fe ones are also magnetic with moments that couple antiferromagnetically

to Mn. We will hereon distinguish between the two phases by referring to the sign of

the Mn-Mn coupling. In other words, the low-temperature phase will be called anti-

ferromagnetic (AFM) and the high-temperature one ferromagnetic (FM), although

the latter corresponds to a ferrimagnetic phase. Overall, the magnetic ordering seems

to be strongly system dependent and the transition between the two states was ob-

served at a number of different temperatures [144, 145, 146]. Nevertheless, the Curie

temperature is commonly identified to be above 700 K [147], making this material

suitable for possible applications.

We consider here Fe2MnGa in the cubic L21 structure with an in-plane lattice

constant of 5.732�A. Such value is slightly different from the predicted lattice con-

stants for the two phases, estimated to be 5.701�A and 5.694�A for the FM and AFM

phase, respectively [148]. This choice, however, matches the lattice constant of bcc

158



5.2 - Multi-scale modelling of Fe2MnGa Chapter 5

-1.5

-1

-0.5

 0

 0.5  1  1.5  2  2.5

J
 [

m
e

V
]

d/a

Mn-Mn (AFM)
Mn-Mn (FM)
Mn-Fe (FM)
Fe-Fe (FM)

Figure 5.6: Calculated inter-atomic exchange parameters for Mn-Mn (purple), Mn-

Fe (blue) and Fe-Fe (red) sites depending on the inter-site distance expressed in units

of the in-plane lattice constant, a. Data points represented by circles are obtained

with aligned Mn moments, while the ones denoted with squares are obtained with

antiferromagnetically coupled Mn moments. Calculations performed by Dr. Matthew

Ellis.

Fe and allows Fe2MnGa to be employed as the free layer of a Fe/MgO-based MTJ.

Fig. 5.5 displays the unit cell that will be employed for all calculations, where the

arrows identify the orientation of the atomic spins for each magnetic phase. In the

AFM configuration, the moments of the Mn atoms alternate sign in adjacent planes

along the z direction, configuration often known as AF1. We note that this cell is

obtained as the in-plane rotation by π/4 of the standard unit cell. This allows us

to half the size of the cross section, hence to reduce significantly the computational

costs, especially for the transport calculations.

A series of DFT calculations was performed by collaborators of the author of this

thesis in order to investigate the magnetic ground states of Fe2MnGa. In particular,

Emanuele Bosoni employed the SIESTA code to study MgO/Fe2MnGa interfaces and

estimate the magnetocrystalline anisotropy, while Dr. Matthew Ellis performed spin

spiral calculations with the ELK code [65] in order to assess the exchange param-
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eters. The generic result to be drawn from these calculations is that the magnetic

moments at the Fe sites is incredibly sensitive to the orientation of spins at the

neighbouring sites. This can be expected since the antiferromagnetic ordering on a

fcc lattice is subject to geometric frustration [149]. Nevertheless, moments at the

Fe sites behave as induced moments and seem not to be strongly coupled to the

adjacent Mn atoms. In fact, the exchange interactions extracted are found to be

rather weak and very long ranged [Fig. 5.6]. We note that all exchange couplings are

one or two orders of magnitude small with respect to the values that are typical of

the other materials examined in this thesis. Nevertheless, it seems that the stronger

exchange interaction is the one that couples Fe and Mn sites. The calculation of the

magneto-crystalline anisotropy constant was also attempted by the means of total

energy differences for both bulk systems and for MgO/Fe2MnGa interfaces. However,

the resulting estimates are rather close to the calculation accuracy and we can only

deduce that |ku| <10 µeV. These results make it not possible to propose a reliable

first principles parameterisation of the spin models. The case of the AF configura-

tion is made simpler by the presence of a single magnetic species in the unit cell.

Therefore, we limit our analysis at the atomistic scale to model the AF phase. This

is done by employing an effective first nearest neighbour exchange parameter chosen

to reproduce the AF-to-FM transition temperature of 250 K predicted in Ref. [148].

The resulting model is then used to study the ferromagnetic resonance and spin-

wave dispersion in the AF configuration of Fe2MnGa and compare them to the case

of Mn3Ga. We conclude the Chapter by presenting results of spin transport calcu-

lations for a Fe/MgO/Fe2MnGa MTJ for both the magnetic phases of the Heusler

compound.

5.2.1 Atomistic model

Heisenberg fcc antiferromagnets were shown to have a first-order transition point

at TN = 0.446|J1|, where J1 is the first nearest-neighbour exchange coupling [149].

Furthermore, the AF1 magnetic order corresponds to the absolute energy minimum

in presence of a weak ferromagnetic second-nearest neighbour exchange. Thus, we
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Figure 5.7: Left panel: temperature dependence of the average spin for each sublat-

tice in AF Fe2MnGa. Right panel: magnon spectrum for AF Fe2MnGa.

model AF Fe2MnGa by considering an effective first-nearest neighbour exchange

constant of J1 = −250kB/0.466 =−47.50 meV and a small second-nearest neighbour

coupling of 1.0 meV. We then increase the anisotropy constant until the system

displays a stable magnetic configuration.

Figure 5.7 (a) shows the temperature dependence of the average total spin for each

sublattice obtained for ku =10µeV. It is evident that a phase transition occurs at

280 K, although the total spin does not vanish completely for higher temperatures.

This simple result seems to indicate that the AF-FM transition can be explained

with the breakdown of the AF ordering because of temperature effects. Since the

spin alignment is lost above the transition temperature, induced moments appear

on the neighbouring Fe atoms. The ferromagnetic coupling between the Mn atoms

is thus effectively induced by a strong antiferromagnetic coupling between the Mn

and the Fe sites. We note that this hypothesis is consistent with the inter-atomic

exchange couplings presented in Fig. 5.6. Potentially, this information can be used

to construct a spin model for the FM state. Nevertheless, the dependence of the

moment at the Fe sites on the orientation of the neighbouring Mn atoms is still

unclear and requires further investigation. Therefore, in this Thesis we limit the

study of the spin models to the case of an AF coupled Mn atoms and non-magnetic

Fe sites.
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We continue by presenting the calculated dynamic structure factor for Fe2MnGa

[Fig. 5.7]. It is evident that the results are remarkably different from the ones ob-

tained for Mn3Ga. In fact, a single magnon branch appears in the magnon spectrum

for Fe2MnGa, in contrast with what was found for Mn3Ga. Consistent differences

are also encountered in the FMR spectrum [Fig. 5.8]. Here a single resonant peak

appears for the temperature range considered. We note that the resonant frequency

is well detached from the low frequency range for temperatures above the phase tran-

sition temperature (∼280 K). We note that our best fit seems to estimate correctly

the peaks around the resonant frequency, although it fails to reproduce the trend

of the correlation function for the other frequencies. This inconsistency is probably

due to the use of the analytical expression for the FMR linewidth in ferromagnets,

that do not includes exchange interactions, as already pointed out in the previous

section. This is in contrast to the previously examined spin models, for which the

expression of Eq. (4.31) was a good approximation for a wider range of frequen-

cies. The total average spin extracted from our best fit is shown in panel (b), and

grows linearly with the temperature. The macroscopic anisotropy constant [panel

(c)] steadily grows with the temperature, to then maintain almost the same value

from about 100 K until the phase transition temperature, TN . At such temperature,

both the macroscopic anisotropy and the Gilbert damping [panel (d)] diverge. We

remark however that the resonant frequency for such temperatures is probably be-

yond the frequency resolution of the simulation parameters. Thus, the extracted

information for temperatures close to or higher than TN might not be reliable. Fi-

nally, we remark that for Fe2MnGa the difference between the damping parameter

extracted from the fit and the value used as input (also here 0.005) is even more

pronounced than in the case of Mn3Ga.

We can conclude that the AF phase of Fe2MnGa can be modelled within effective

second-nearest neighbour exchange parameters that can be adapted to reproduce the

correct phase transition temperature. After the phase transition, magnetic ordering

is not completely lost and spins at Mn sites become misaligned. This implies that

non-zero magnetic moments arise at Fe sites, hence the Fe-Mn antiferromagnetic
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Figure 5.8: Results of ferromagnetic resonance simulations in antiferromagnetic

Fe2MnGa. Left: FMR spectrum for the AF configuration of Fe2MnGa at different

temperatures. The black lines show the result of our best fit of the resonant peak.

Right: temperature dependence of [panel (b)] the total magnetisation, [panel (c)]

the macroscopic anisotropy constant and [panel (c)] the Gilbert damping extracted

from the fitting of the resonant peak.

exchange coupling induces a magnetic configuration with aligned Mn sites. The

strength of such exchange interaction can be effectively quantified by the means of

the Curie temperature ( 700 K). It is then possible to use this information to con-

struct an effective parameterisation for the FM configuration. In fact, the calculated

exchange parameters of Fig. 5.6 show that the Mn-Mn exchanges are not strikingly

different for the two magnetic configurations. The main challenge left to complete

the parameterisation of a spin model for Fe2MnGa is then the determination of the

dependence between the magnetic moments at Fe sites and the electronic environ-

ment.

5.2.2 Spin transport

We now present the results of quantum transport calculations for Fe/MgO/Fe2MnGa

junctions. These systems are once again based on the prototypical Fe/MgO/Fe MTJ.

In principle, a minimal in-plane 2 × 2 supercell is needed, given that the in-plane
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Figure 5.9: Representation of a Fe/MgO/Fe2MnGa junction. The different color of

the spheres corresponds to different atomic species: red for Fe, blue for Mg, green for

O, violet for Mn and gray for Ga. The dashed lines identify the two nonequivalent

planes in Fe2MnGa along the transport direction. The plane denoted as Mn1 contains

the closest Mn to the MgO interface, while in the plane Mn2 the first site after the

interfacial Fe atoms is occupied by Ga.

lattice constant of Fe2MnGa is double with respect to that of bcc Fe. However, the

magnetic ground states of Fe2MnGa can be equally reproduced with a cell that is

rotated by π/4. This allows us to consider a cross section that is only twice, instead

of four times, wider then the cell employed for standard Fe/MgO/Fe structures.

Since Fe2MnGa is formed by alternating Fe-Fe and Mn-Ga planes, the stack has

two possible terminations. Of the two, the Fe termination yields an interface that

is completely analogous to the bcc Fe/MgO interface. In fact, we remark that the

substitution of Mn and Ga atoms with Fe atoms in the Fe2MnGa structure yields a

lattice that is equivalent to bcc Fe. In contrast, the properties of the other interface

are much less known. For such reason, we consider only the Fe-terminated interface

and perform transport calculations on the structure displayed in Fig. 5.9. A series of

Siesta calculations for different insulator/free layer distances showed that the most

energetically convenient configuration is found for 2.16�A, that is equivalent to an

inter-plane distance at the Fe/MgO interface. In order to maintain the features of

the current discussed in Chapter 3, all simulation parameters are chosen consistently

with the choices made for the Fe/MgO/Fe case. We note, however, that the use

of an LSDA XC potential does not reproduce the same magnitude of the magnetic

moments obtained with GGA potentials, that in contrast reproduce the experimen-
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tal values [see Table 5.1]. Nevertheless, LSDA maintains the same ordering of the

magnetic configurations as GGA. Therefore, we choose to adopt the LSDA potential

despite these discrepancies in order to yield a better comparison with the other free

layers considered above.

The calculated magnetic moments in the free layer of the Fe/MgO/Fe2MnGa

junction are shown in Figure 5.10. These calculations were performed with the mo-

AIMS (GGA) SIESTA (GGA) SIESTA (LDA)

|mMn| (FM/AF) 2.66/2.54 µB 2.65/2.48 µB 4.27/4.07 µB

|mFe| (FM/AF) 0.26/0.05 µB 0.29/0.0 µB 1.15/0.00 µB

Table 5.1: Magnetic moments in Fe2MnGa for the ferromagnetic (FM) and antifer-

romagnetic (AFM) configurations as predicted by SIESTA and by the all-electron

code AIMS [66]. Courtesy of Emanuele Bosoni.
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ment of the Mn closest to the MgO interface aligned with the reference layer. While

the moments in the FM configuration (blue circles) are not significantly different

from their bulk values, in the AFM state a sizable magnetic moment is induced at

Fe sites in proximity of MgO (black squares). In particular, the moments of the Fe

atoms in contact with MgO have almost the same magnitude as in the FM state,

and non-vanishing Fe moments can be found as far as 4 unit cells (∼ 2.29 nm). This

is in contrast with the results obtained for bulk systems for LSDA or GGA, and

confirms how sensitive the Fe atomic moments are to the local atomic environment.

The enhanced irregularity in the electronic structure for the AFM state can also

be evinced by looking at the energy dependent transmission coefficients for the two

junctions [Fig. 5.11]. It is clear that in both cases the spin polarisation is rather

sensitive to small changes of the Fermi energy. As a result, in the systems considered

the FM phase (red lines) have significantly smaller spin polarisation than the AFM

phase (blue lines). Nevertheless, the transmission coefficients for the AFM config-

uration have an energy dependence that is strikingly more irregular than their FM
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counterpart.

The results of torkance calculations (for ϑ = π/2) for both magnetic phases is

displayed in Fig. 5.12. The presence of the interfacial Fe atoms together with the

small spin polarisation causes the spin current to be lost almost entirely within the

first atomic layer. We remark that this interface is analogous to the MgO/bcc Fe one,

hence the spin torques can be expected to have a similar decay. We also note that

little or no torque is present at Mn sites. This might be counter-intuitive, especially

for the case of the AF configuration, since Mn moments dominate the magnetic

ground state of the system. On one hand, the fact that the torques act only on Fe

atoms is rather interesting, since it means that the current-induced dynamics will

be driven through the induced Fe moments. On the other hand, the simulation of

the STT-driven dynamics of this system clearly requires a spin model that explicitly

includes spins at Fe sites. As discussed in the previous subsection, such a model

cannot be formulated with the data currently at our disposal. Therefore, multi-scale

calculations of current-driven dynamics in Fe2MnGa are here not presented.

We conclude this Chapter by examining in more detail the decay of the STT as

function of the position for Fe2MnGa. The analysis is performed by separating the

contributions from the two nonequivalent planes that are identified by the dashed

rectangles in Fig. 5.9. We denote as Mn1 the plane containing the closest atom to

the MgO interface, while we will refer to the other plane as Mn2. Figure 5.13 shows

the decay of the STT as function of the position from the interface for the Mn1 plane

(top panels) and for the Mn2 plane (bottom panels). It is evident that the torque is

slightly different for the two planes for both magnetic configurations. Interestingly,

this is especially true for the case of ferromagnetically coupled Mn atoms [panels (c)

and (d)]. Similarly to the results on Fe/MgO/FePt, the presence of a inhomogeneous

magnetic texture does not allow for a regular decay of the STT. Moreover, we note

that the oscillations here observed are of rather small magnitude and probably suffer

from numerical noise.
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5.3 Conclusions

We have presented a study of antiferromagnetic couplings in the Mn3Ga and Fe2MnGa

Heusler compounds. The spin model for Mn3Ga was characterised by employing

results of first principles calculations found in literature, and we find a Curie tem-

perature comparable the experimental one. The calculated ferromagnetic resonance

spectrum displays a peak at a strikingly high frequency, of the order of 120 THz,

which is shown to be quickly diminish for higher temperatures and vanishes close to

the TC . To the best of our knowledge, this peak was not predicted elsewhere and

might be characteristic of the Mn3Ga system.

The strong dependence of Fe moments to the magnetic and chemical environment

makes the full parameterisation of the spin model for Fe2MnGa not tractable with the

data currently available. An effective spin model was formulated for the antiferro-

magnetic configuration, characteristic of low temperatures. The latter, together with

the calculated inter-atomic exchanges, indicate that the AF to FM transition is due

to the breakdown of the AF interaction between Mn atoms and to the establishment

of a strong antiferromagnetic coupling between Mn and the induced moments at Fe

sites. The importance of the induced magnetic moments for the study of Fe2MnGa

was also analysed by the means of quantum transport simulations. In fact, our re-

sults show that the dominant contribution to the spin torques is found at Fe sites

for both the FM and the AF configurations.
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Chapter 6

Parameter-free modelling of magnetic damping

“That’s easy. An afternoon of coding, tops.”

- Dr. Alessandro Lunghi, PhD

All the studies of the spin dynamics presented above were performed by assuming

damping parameters that are consistent with experimentally extracted values. The

ferromagnetic resonance linewidth can in fact be related to the magnetic damping,

as shown in Chapter 4. However, a number of different mechanisms can contribute

to the broadening of the resonant peaks, including spin-pumping [150] and magnon

dissipation through Stoner excitations [151] or magnon-magnon interactions [152].

Each of the latter is influenced by the presence of impurities and other lattice imper-

fections [153] or layer thickness [154] and each mechanism is strongly temperature

dependent [155]. The interplay of the different contributions critically complicates

the estimation of the bulk value of the Gilbert damping for a given material. For

such reason theoretical efforts often neglect the aforementioned mechanisms, collec-

tively known as extrinsic contributions, to focus on the damping originating from

electronic, or intrinsic, origin. The latter was firstly identified by Landau and Lifshitz

[115] and arises because spin-orbit interaction breaks the spin rotational invariance

and enable dissipation through phonons or electron scattering. This implies that the

intrinsic contribution can be calculated given the sole knowledge of the electronic

structure of a material. A large number of different methods to numerically evaluate

171



Chapter 6 Parameter-free modelling of magnetic damping

the damping was developed, an extensive review of these can be found in Ref. [156].

A first set of approaches is based on calculating the magnetic susceptibility, often

within linear response theory, thus simulating a ferromagnetic resonance experiment

[157]. These can often be computationally expensive since they require an appropri-

ate energy resolution of the FMR peak. An alternative way is to relate the Gilbert

damping to the dissipation induced by the spin-orbit torque response. This strat-

egy was first proposed by Kamberský and is commonly known as torque correlation

model (TCM) [158]. It can be formulated by estimating the interaction between a

uniform spin excitation and a bath of conduction electrons. The latter can be quan-

tified by the operators φ̂±, that in absence of dipole interactions can be written as

[159]

φ̂± =
~
Ns

[Ŝ±, ĤSO]. (6.1)

Here Ŝ± are the ladder operators for electronic spins, ĤSO describes the spin-orbit

interaction and Ns is a normalising factor accounting for the total magnetisation of

the system. Dissipation effects can then be estimated by calculating the net magnon

decay rate, τb, within the Fermi golden rule,

1

2πτb(ω)
=
∑
µν

|φ−µν |2
(
f(Eµ)− f(Eν)

)
δ(Eµ − Eν − ω), (6.2)

where µ, ν run over the electronic degrees of freedom, Eµ is the eigenvalue for the

state |µ〉, 〈µ|φ̂−|ν〉 = φ−µν and f(E) is the Fermi-Dirac distribution centered around

the Fermi energy. The relation between the Gilbert damping and τb can then be

extracted from the Fourier transformed LLG equation and the damping parameter

can be written as

α = lim
ω→0

1

2ωτb
= lim

ω→0

∑
µν

|φ̂+
µν |2
[
f(Eµ)− f(Eν)

]
δ(Eµ − Eν − ω). (6.3)

Other approaches that follow a similar strategy can be found in Refs. [160, 88].

A number of different calculations of damping parameters can be found in liter-

ature, e.g. see Refs. [161, 162]. The vast majority of them however were performed

within either tight-binding models or the multi-scattering Korringa-Kohn-Rostoker

(KKR) method [163]. The need of a system-specific parameterisation or the elevated
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computational costs then make the systematic application of such methods to a vast

range of materials not practically feasible. Moreover, the resulting Gilbert damping

strongly depends on the choice of the finite life-time of electronic states. In real

systems this is determined by the presence of several dissipation mechanisms such

as inelastic electron-electron scattering or electron-phonon interactions. In practical

simulations, these effects are normally accounted for by introducing a uniform energy

broadening, η. Critically, the calculated damping can differ by orders of magnitude

for different values of η (see e.g. Ref. [164]). In particular, the behaviour of the

Gilbert damping for the limit of clean low-temperature systems, i.e. for η → 0, is

still debated [156]. A theoretical estimation of the broadening is not easily achievable

because of the variety of mechanisms to be considered and their different relevance

in different materials and physical conditions. As a consequence, the prediction and

comparison of the damping parameter of a large number of materials is not achievable

with the current methodologies.

We present here a novel method to estimate the Gilbert damping parameter that

is suitable to be implemented in standard DFT codes and that does not require the

input of an electronic life-time. It is based on the assumption that the relaxation

of an electronic system to its equilibrium magnetic configuration is activated by the

sole spin-orbit interaction and does not strictly depend on the energy dissipation

mechanism. From a classical spin dynamics perspective, this process can be seen as

the motion of the magnetisation in the effective field given by sole magneto-crystalline

anisotropy. If all atomic spins uniformly relax to equilibrium, the characteristic spin

relaxation time, τ , can be directly related to the Gilbert damping. We begin by

showing how such relation can be found by the means of an approximated analytical

solution of the LLG equation. Then, a novel approach to estimate the spin relaxation

time from electronic structure calculations is presented. Although the latter is valid

for a general Hamiltonian, particular attention will be dedicated to the case of a

KS-like Hamiltonian.
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6.1 Spin relaxation time and Gilbert damping

As explained above, the spin relaxation time is intimately related to the Gilbert

damping parameter. We will show here how a quantitative relation between the two

quantities can be established assuming that the magnetic moments uniformly rotate

to equilibrium. For simplicity, we consider a uniform, constant applied field applied

along the z direction, H = Hẑ. In these conditions, the LLG equation expressed in

the LL form [see Eq. (4.6)] can be cast in the form
∂mx
∂t

= −ωpmy − αωpmxmz

∂mx
∂t

= +ωpmx − αωpmymz

∂mz
∂t

= αωp(1−m2
z),

(6.4)

where m indicates the normalised magnetisation vector, M/M , and ωp = γH/(1 +

α2). We remind that γ is the gyromagnetic ratio for the electron and α is the Gilbert

damping. Since the equation for the z component is independent from the others, it

can be integrated to find

mz(t) = tanh
(
αωp(t− t0)

)
, (6.5)

where t0 can be determined by specifying the value of mz(t) at t = 0. In order to

solve the remaining equations we define the auxiliary variables

nx =
mx√

1−m2
z

, ny =
my√

1−m2
z

, (6.6)

so that the time derivative of, e.g. mx, can be rewritten as

∂mx

∂t
=
√

1−m2
z

(
∂nx
∂t
− αωpnxmz

)
. (6.7)

The original equations in the new variables now become
∂nx
∂t

= −ωpny
∂ny
∂t

= +ωpnx,

(6.8)
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Performing an additional time derivative then allows us to express them as the

differential equations of two uncoupled harmonic oscillators,
∂2nx
∂t2

= −ω2
pnx

∂2ny
∂t2

= −ω2
pny,

(6.9)

which admit solutions of the formnx(t) = A cos(ωpt+ ϕ) +B sin(ωpt+ ϕ)

ny(t) = C cos(ωpt+ ϕ) +D sin(ωpt+ ϕ),

(6.10)

with A,B,C,D and ϕ being constants to determine through the initial conditions.

Assuming the initial conditions nx(0) = 1 and ny(0) = 0, the constants can be

determined to be A = D = 1 and B = C = ϕ = 0. Moreover, using the relation

1−m2
z = 1− tanh2(αωpt) = sech2(αωpt) the solutions can be expressed in terms of

the original variables as 
mx(t) = cos(ωpt) sech(αωpt)

my(t) = sin(ωpt) sech(αωpt)

mz(t) = tanh
(
αωp(t− t0)

)
.

(6.11)

These simple expressions allow us to infer which quantities determine the precession

frequency and the relaxation time. The former is simply given by the quantity

ωp = γH/(1 + α2), hence it is mostly controlled by the strength of the magnetic

field. We remark that the damping constant plays a rather minor role here. Common

values for α are found between 0.001 and 0.1, therefore its effect on the precession

motion is at most to reduce slightly the effect of the field. Focusing now on the

motion of the z component of the magnetisation, it is clear that the spin relaxation

time can be defined as

τ =
1

αωp
=

1 + α2

αγH
. (6.12)

This relation indicates that τ is determined given the Gilbert damping, α, and the

intensity of the effective magnetic field, H. In turn, the Gilbert damping parameter

can be estimated given the knowledge of the spin relaxation time and the effective
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field. In materials where the inter-atomic exchange is strong enough, all spins will

uniformly relax to the equilibrium orientation and the effective field can be repre-

sented only by the magnetocrystalline anisotropy field. The strength of the latter can

be quantified by the means of electronic structure calculations, as shown in §4.1.1.2.

Therefore, the determination of the damping parameter for a given material corre-

sponds to the calculation of the atomic spin relaxation time. A novel approach for

the estimation of the latter starting from electronic structure calculations will be

presented in the next section.

6.2 Density functional theory method for spin re-

laxation time calculations

Suppose that at an initial time, t = t0, the direction of the magnetization, M(t), of a

magnetic layer is rotated by a small angle, ϕ, from the equilibrium orientation, M 0.

For small deviation angles and strong inter-atomic exchange couplings, all atomic

spins will rotate uniformly under the influence of the magneto-crystalline anisotropy

field. After a certain time, τ , the angle, ϑ(t), that M(t) forms with M 0 will van-

ish to recover the ground state magnetic configuration. In atomistic spin models

this process is controlled by the Gilbert damping parameter. From the electronic

point of view, the relaxation takes place thanks to the transfer of energy from the

spin degrees of freedom to the electronic ones and to the environment (phonons,

etc.), and is essentially mediated by the spin-orbit interaction. The strength of this

dissipation mechanism is thus encoded in the coupling between the electronic and

the spin degrees of freedom, while the remaining components act as a thermal bath

through which energy can be dispersed. Therefore, the spin relaxation time, τ , can

be evaluated in first approximation by considering an isolated system in which spin

relaxation occurs as a rearrangement of the electronic level population that aligns

the magnetisation with the equilibrium direction. As such, it can be extracted from

the dynamics of the electronic system alone. The approach here proposed reformu-
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lates the quantum Liouville equation so that it can be analytically solved for small

angles. This will allow us to define the spin relaxation time in terms of the time-

independent derivatives of the electron density and of the Hamiltonian with respect

to the deviation angle, ϑ.

We begin by assuming that the spin motion is adiabatic with respect to the

electron dynamics. This is reasonable since in most cases the dynamics of the two

systems happens at two distinct time-scales, fs and ps or ns for electrons and spins,

respectively. In such context the magnetisation can be assumed to evolve from one

equilibrium electronic state to another. In other terms, the magnetisation vector at

a given time t can be related to the spin-dependent electron density operator, ρ̂, of

the corresponding magnetic configuration of the electronic system,

M (t) = Tr
{
ρ̂(t)σ

}
. (6.13)

Here, Tr denotes the trace over both spatial and spin degrees of freedom. Assuming

that the magnetisation magnitude, M = |M |, does not change during the dynamics,

the magnetic configuration at the time t can be described by the angle defined as

cosϑ(t) =
1

M2
M 0 ·M(t) =

1

M2
M 0 · Tr

{
ρ̂(t)σ

}
. (6.14)

We note that under our assumptions the equilibrium vector M 0 has the same direc-

tion of the magneto-crystalline contribution to the anisotropy field and it is time-

independent. Since the only time-dependent quantity for each term in the equality

Eq. (6.14) is, respectively, ϑ(t), M(t) and ρ̂(t), the motion of one of the three can be

expressed through either of the two. As a consequence, we can study the relaxation

of the magnetisation to equilibrium by considering the sole angle, ϑ(t). Moreover,

at all times ϑ(t) uniquely corresponds to an electronic configuration encoded in ρ̂(t),

hence the time-dependence of the latter can be replaced by an angle dependence,

i.e. ρ̂(t) ≡ ρ̂
(
ϑ(t)

)
. An equation of motion for the deviation angle can then be ob-

tained by performing the time derivative of the first and third term of Eq. (6.14),

and reads
∂ϑ(t)

∂t
sinϑ(t) = − 1

M2
M 0 ·

∂

∂t

(
Tr
{
ρ̂(t)σ

})
. (6.15)
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The second term can then be evaluated through the quantum Liouville equation

associated to the generic Hamiltonian, Ĥ, so that the angle dynamics is given by

∂ϑ

∂t
sinϑ = C

(
ϑ
)
, (6.16)

where

C(ϑ) =
i

~
M 0

M2
· Tr

{[
Ĥ(ϑ), ρ̂(ϑ)

]
σ

}
. (6.17)

This definition is valid assuming that the Hamiltonian of the system is functionally

dependent on the density matrix. In such case the same one-to-one correspondence

existing between ρ̂(t) and ϑ(t) can be naturally extended to Ĥ(t). Within linear

response theory, the “commutator”, C(ϑ), can be expanded in a Taylor series around

the equilibrium angle, ϑ = 0,

C(ϑ) = C(0) + C(1)ϑ+
1

2
C(2)ϑ2 +O(ϑ3), (6.18)

where we have defined for simplicity

C(n) =
∂nC
∂ϑn

∣∣∣
ϑ=0

, for n ≤ 1. (6.19)

The zero-th order coefficient, C(0), is proportional to the commutator between the

Hamiltonian and the density matrix at equilibrium, hence is zero by definition. The

small ϑ expansion of sinϑ then allows us to write Eq. (6.16) as

∂ϑ

∂t

(
ϑ+O(ϑ3)

)
= C(1)ϑ+

1

2
C(2)ϑ2 +O(ϑ3), (6.20)

where the expansion is truncated at the 2nd order in ϑ. At this point we note that in

order for the equation to admit the trivial solution ϑ(t) = 0 the first order coefficient,

C(1), should also identically vanish. As a consequence, we obtain to the simple result

∂ϑ

∂t
=

1

2
C(2)ϑ. (6.21)

We remark that the coefficient C(2) does not depend on the angle, ϑ, nor on the time.

Therefore, the equation can be easily integrated to obtain the elegant solution

ϑ(t) = ϕ eiηt e−t/τ , (6.22)
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where

η =
1

2
ImC(2) =

1

2~
M 0

M2
· Re

∂2

∂ϑ2
Tr

{[
Ĥ, ρ̂

]
σ

}
, (6.23)

τ−1 = −1

2
ReC(2) =

1

2~
M 0

M2
· Im ∂2

∂ϑ2
Tr

{[
Ĥ, ρ̂

]
σ

}
. (6.24)

Eq. (6.22) indicates that the deviation angle exponentially vanishes with a decay rate

given by the relaxation time, τ . The latter is defined in terms of the derivatives of the

electron density and the Hamiltonian with respect to the deviation angle, that can

be expressed within finite differences. Therefore, these quantities can be estimated

by performing electronic structure calculations for different magnetic configurations.

We note that this approach can be included in the family of spin-torque response

methods. In fact, a more explicit expression for the commutator in Eq. (6.24) was

already derived above [see Eq. 3.15)]. Maintaining the same notation adopted in

§3.1.1, i.e. ρ̂ = n̂+ µ̂ ·σ and ρ̂ = ĥ+ ∆̂ ·σ, its second derivative can be written as

∂2

∂ϑ2

∑
σσ′

[
Ĥ, ρ̂

]∣∣∣∣∣
ϑ=0

=
[
ĥ(0), µ̂′′

]
+
[
ĥ′′, µ̂(0)

]
+ 2
[
ĥ′, µ̂′

]
+
[
∆̂(0), n̂′′

]
+
[
∆̂
′′
, n̂(0)

]
+ 2
[
∆̂
′
, n̂′
]

+ 2i

(
∆̂(0)× µ̂′′ + ∆̂

′′
× µ̂(0) + 2∆̂

′
× µ̂′

)
, (6.25)

where primed and double-primed quantities are first and second derivatives, while

ρ̂(0) and Ĥ(0) denote the equilibrium density matrix and Hamiltonian, respectively.

The commutators on the right-hand side correspond to the alteration of the spin

flux during the spin dynamics and are likely to not substantially contribute to the

relaxation time. On the contrary, the different cross products correspond to the

variation of the spin torques during the spin relaxation. However, the definition of τ

in Eq. (6.24) indicates that the relaxation time is related to the imaginary part of such

commutator. Therefore, the spin relaxation time, hence the damping, is here related

to the imaginary part of the spin torques induced by the change in the orientation

of the magnetisation. In addition, we note that this approach accounts for both

the change of conduction electrons and static moments (represented by ∆̂), which

is in opposition to standard spin-torque methods. This can be important to analyse
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systems, where the magnetic moments critically depend on the atomic environment.

Moreover, the current model can be easily generalised to estimate atom-dependent

spin relaxation times. This operation is made simpler by assuming a localised basis

set, such as atomic orbitals on which to construct the electronic structure theory.

The use of electronic structure methods based non-localised basis functions, such

as plane waves, is possible but requires a transformation to a localised basis (e.g.

through Wannier functions). The atomic magnetic moments for a given electronic

configuration can then be calculated by performing the partial (rather than total)

trace, Tra of the density matrix operator over basis functions localised on a given

site, a,

M (t) =
∑
a

ma(t) =
∑
a

Tra
{
ρ̂(t)σ

}
. (6.26)

The deviation angle can then be defined for each atom by the relation

cosϑa(t) =
1

Mma

M 0 ·ma(t) =
1

Mma

M 0 · Tra
{
ρ̂(t)σ

}
, (6.27)

where ma = |ma|. We remark that M 0 plays the role of reference equilibrium

direction, hence can be taken to be different for different atoms, if required. The

derivation is now completely analogous to the one shown for a total angle, and yields

the atom-specific spin relaxation time

τ−1
a =

1

2~
M 0

Mma

· Im ∂2

∂ϑ2
Tra

{[
Ĥ, ρ̂

]
σ

}
. (6.28)

This generalisation allows the methodology to be applied to a generic magnetic

texture, including antiferromagnets and ferrimagnets.

We remark that the electronic broadening does not explicitly appear in such

method. In this context, our scheme may be included at the DFT level for the

electronic structure calculations needed to evaluate the derivatives within finite dif-

ferences. The accurate estimation of the latter for different magnetic configurations

is the main obstacle to be overcome to achieve a working implementation of this

approach. In fact, a practical calculation of the spin relaxation time relies on an ac-

curate estimation of the differences in the electronic structure for different configura-

tions around equilibrium. This may not be possible with DFT accuracy. Therefore,
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we attempted the implementation of our approach by using a mean-field tight-binding

Hamiltonian of the form,

∑
νkσ′

{
δlkδσσ′tµν + δµνδlk

[
δσσ′(εl + E0V

C
µlσ) + δlkσσσ′ · V X

µi

]
+ δµνV

SO
lσ,kσ′

}
ψnµlσ = Enψnνkσ′ ,

(6.29)

where

V C
µlσ = (U + 2J)nµlσ̄ + (U − J

2
)
∑
l 6=k

nµk, V X
µk = −J

∑
l 6=k

Sµl, (6.30)

E0 = − 1

N

∑
µl

[
(U + 2J)nµl↑nµl↓ + (U − J

2
)
∑
l<k

∑
σσ′

nµlσnµkσ′ − J
∑
l<k

SµlSµk

]
.

(6.31)

Here µ, ν run over atomic sites, l, k = 1, · · · , 5 label the different d orbitals and σ, σ′

denote the spin states, with σ̄ indicating the opposite state of σ. The electronic

configuration is defined by the occupations of the electronic state at the site µ with

orbital l and spin state σ, nµlσ, and the respective orientation of the electronic spin,

Sµk. The model is parameterised by the Coulomb integral, U , the exchange integral,

J , the inter-atomic hopping parameters, tµν , and the on-site energies, εl, that are

tuned to simulate the presence of the crystal field. We note that such formulation is

fully spin-rotational invariant. The ground-state configuration for a fixed orientation

of the total magnetisation can then be found self-consistently, where the desired

direction of the magnetisation is obtained by the means of a Lagrange multiplier.

Unfortunately, we were not able to obtain a working implementation of the model

just described with the time at our disposal. Hence, here we have limited our dis-

cussion to the derivation of the approach and we postpone the analysis of numerical

results to future works.

6.3 Summary

We have presented an overview of the difficulties in the theoretical estimation of the

magnetic damping parameter. A novel method based on expressing the relaxation
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dynamics in terms of the electronic degrees of freedom was presented. The equation of

motion for the angle, ϑ, expressing the magnetisation misalignment from equilibrium

was cast in the form of an exponential decay controlled by a relaxation time, τ . An

atom-specific expression for the latter was derived in terms of the derivatives of the

electron density and Hamiltonian with respect to ϑ. Such derivatives can in principle

be calculated within finite difference methods given the electronic structure of the

system for different magnetisation configurations.
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Conclusions and future work

“Life is not so much about beginnings or endings, it’s about

going on and on and on. ”

- Anna Quindlen

We presented a multi-scale study of current-driven spin dynamics in magnetic

tunnelling junctions. An overview of the features of such prototype devices was

presented in Chapter 1, together with the material requirements to produce efficient

spintronics applications.

In Chapter 2 we described the main concepts behind density functional theory and

how it can be combined with non-equilibrium Green’s functions to yield the transport

properties of nano-scale systems. In Chapter 3 such methodology was employed to

analyse the spin torques acting on different ferromagnetic free layers of Fe/MgO-

based MTJs. We found that the spatial profile of the STT can be essentially predicted

by examining the band symmetry of states populating the Fermi energies for the two

spin channels. If the band structure of the ferromagnet allows for transport channels

of both spin states, the spin torques slowly decay with a frequency that is given by

the difference of the Fermi wave-vectors for the two spin channels. If one of the two

spin channels cannot propagate in the ferromagnet, the STT decays exponentially in

the free layer. This prediction, however, is not as accurate in presence of non-ideal

interfaces and non-uniform magnetic textures. In fact, we find that a 25% oxidation
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of the MgO/Fe interface produces a longer decay range than an ideal interface.

Moreover, the of quantum well states present in the Fe stack in a Fe/Cu free layer

yield an oscillating spatial profile, that is in contrast to the sharp decay in a pure

Fe free layer. Similar effects induce a difference between the spin torques acting on

FePt and FePt/Fe free layers. The case of L10 FePt layers is particularly interesting,

since a non-vanishing torque acts on the induced moment at the Pt sites. Moreover,

the STT has a long range decay within the FePt stacks, and such behaviour is not

easily predicted as the case of free layers with uniform magnetic texture. Finally,

we found that such oscillations are still observed in the presence of a small Fe seed

layer, and the torque changes sign in the case of Ni seed layers.

In Chapter 4 we discussed an approach to simulate the spin dynamics at the

atomistic level. Spin models capable to reproduce the thermodynamical properties

of bcc Fe and L10 FePt were extensively described. The ab-initio spin torques dis-

cussed in Chapter 3 were then used as input for the spin dynamics simulations, in

order to investigate the influence of the spatial profile of the spin torques in the

magnetisation switching. We compared the switching properties and the spin-spin

correlations in Fe, Fe/Cu and FePt free layers. We found that the critical voltage is

essentially determined by the value of the torque integrated over the free layer. In

addition, magnetisation reversal was found to be several times faster in free layers

containing L10 FePt stacks than in the other cases. Moreover, the typical switching

times of a FePt free layer were found to be mostly uniform for a given temperature

and applied voltage, and to significantly decrease with increasing temperature. In

contrast, in Fe and Fe/Cu layers the switching times distribute over a rather large

spectrum of values, implying a rather poor stability to temperature fluctuations.

Finally, we have considered the spin dynamics in a MTJ with a tunnelling barrier

of different thickness and we found that the magnetisation switching occurs through

a magnetic domain wall motion. Nevertheless, we remark that the spin torque is

not qualitatively different throughout the cross section, since the different barrier

thickness only modifies its intensity. This, however, may be different if one were to

include also a partial oxidation of the insulator/free layer interface, that was shown
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to effectively alter the spatial profile of the STT. Therefore, the combination of ad-

ditional types of disorder may allow one to further investigate the nature of the

magnetisation switching in disordered systems.

Chapter 5 was dedicated to the study of antiferromagnetic orderings in the Mn3Ga

and Fe2MnGa Heusler compounds. Our results of FMR simulations in Mn3Ga show

the presence of an oscillation mode at frequencies that are an order of magnitude

higher than the antiferromagnetic mode. To the best of our knowledge, such oscilla-

tion mode was never reported in other investigations, and its origins remain unclear

and will require further analysis. We then showed that the induced moments at

Fe sites in Fe2MnGa are of fundamental importance for the determination of the

magnetic properties of such compound. We showed that an effective model can be

formulated for the AF phase and that the ferromagnetic alignment between the Mn

moments at high temperatures can be attributed to the antiferromagnetic exchange

coupling between Mn and Fe. Finally, we showed that for the Fe-terminated inter-

face of Fe2MnGa contacted to Fe/MgO, the transport properties are highly sensitive

to the position of the Fermi energy. This implies that finite voltage calculations,

as opposed to the zero-bias limit here considered, are likely to provide valuable ad-

ditional information on the transport properties of the system. Moreover, the fact

that the spin torque is mostly focused on the Fe moments indicates that the spin

dynamics is also controlled by the magnitude of the induced moments. This made

the analysis of current-driven dynamics on such systems not tractable within this

Thesis. Nevertheless, the formulation of a spin model to reproduce the magnetic

properties of Fe2MnGa may be possible given an appropriate parameterisation of

the moments at the Fe sites, which can then be included in the dynamics within the

longitudinal spin fluctuations approach presented here. Such parameterisation may

be achieved by considering several different orientations of the spins at the Mn sites

by the means of constrained DFT calculations.

Finally, in Chapter 6 we presented a novel approach to calculate the Gilbert

damping parameter from first principle simulations, although the numerical verifi-

cation of the method was not achieved to date. Nevertheless, a successful imple-
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Conclusions and future work

mentation of such method would allow us to assess the Gilbert damping starting

from few DFT calculations. In addition, the model could be easily extended to ex-

plicitly include factors such as electron-phonon interactions, and hence would allow

the examination of specific dissipation mechanisms. This would improve our global

understanding of the material dependence of spin dynamics at the atomistic level.
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