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Abstract—Shared mobility-on-demand systems can improve
the efficiency of urban mobility through reduced vehicle own-
ership and parking demand. However, some issues in their im-
plementations remain open, most notably the issue of rebalancing
non-occupied vehicles to meet geographically uneven demand, as
is, for example, the case during the rush hour. This is somewhat
alleviated by the prospect of autonomous mobility-on-demand
systems, where autonomous vehicles can relocate themselves;
however, the proposed relocation strategies are still centralized
and assume all vehicles are a part of the same fleet. Furthermore,
ride-sharing is not considered, which also has an impact on
rebalancing, as already occupied vehicles can also potentially be
available to serve new requests simultaneously. In this paper we
propose a reinforcement learning-based decentralized approach
to vehicle relocation as well as ride request assignment in shared
mobility-on-demand systems. Each vehicle autonomously learns
its behaviour, which includes both rebalancing and selecting
which requests to serve, based on its local current and observed
historical demand. We evaluate the approach using data on taxi
use in New York City, first serving a single request by a vehicle
at a time, and then introduce ride-sharing to evaluate its impact
on the learnt rebalancing and assignment behaviour.

I. INTRODUCTION

Shared mobility is one of the key pillars of mobility-on-
demand (MoD) systems. It is estimated that in 2015 nearly
8 million people used car-sharing services globally, with that
number predicted to increase to 36 million by 2025 [1].

However, numerous operational issues remain to be ad-
dressed, vehicle rebalancing being one of main open issues in
one-way car sharing systems [2], [3]. Due to inherent differ-
ences in patterns of people movement at different times of the
day, vehicles tend to accumulate in certain areas. For example,
during the morning rush hour vehicle requests originate in
residential areas and end in city center or commercial zones.
Vehicles then need to be returned to the areas with higher
demand in order to be able to serve further requests.

This problem will be partially addressed by the introduction
of fully autonomous vehicles, in autonomous mobility-on-
demand systems (AMoD). Simulations show that ability of
vehicles to autonomously rebalance and predictively reposition
to high-demand locations reduces both customer waiting time
and overall required fleet size [4]. However, research remains

to be done on strategies and algorithms for rebalancing; current
approaches are centralized, consider the full network and
are therefore computationally intensive, and assume all cars
belong to a single fleet, i.e., are controlled by a central entity
[3]. In addition, most current rebalancing approaches do not
consider ride-sharing [3]; vehicles can either be occupied or
unoccupied, and only unoccupied ones are considered as avail-
able. With the introduction of ride-sharing, partially occupied
vehicles also need to be taken into account in the overall
strategy, as they are able to potentially serve further requests
along their travel route to the destination, i.e., effectively being
rebalanced to the areas they are travelling through.

As rebalancing strategies can be informed by both current
and historical demand, reinforcement learning (RL) [5] is
increasingly considered as an approach to learn the optimal
predictive rebalancing based on historical data. [6] propose a
centralized RL process to learn re-allocation patterns for the
whole fleet. In the decentralized approach described in [3],
each vehicle uses Deep Q-learning to learn whether to take
a rebalancing action during regularly scheduled rebalancing
windows. A similar approach was developed in [7], where an
individual autonomous taxi learns the most likely passengers
pick up points. However, this work does not take into account
behaviours of other autonomous vehicles, potentially leading
to imbalance in the opposite direction (e.g., all vehicles
learning to go to areas of higher demand, over-saturating it),
as well as not modelling ride-sharing.

To address these open issues, in this paper we propose
SAMoD, Shared Autonomous Mobility-on-Demand, a decen-
tralized RL-based multi-agent approach to car sharing and
dynamic ride sharing. Each vehicle is controlled by an intelli-
gent agent implementing a RL process, which observes where
the current demand is and learns where high demand areas
were historically. Vehicles actively seek passengers, achieving
both dynamic passenger assignment, effectively decentralizing
the dispatch process, as well as learning to relocate to high
demand areas, automating the rebalancing process.

In the rest of this paper we present our approach, starting by
reviewing the related work (Section II), and then move onto the
details of our proposed approach and the design of SAMoD
agents (Section III), evaluation scenarios (Section IV), and
results (Section V). We finish by providing the directions forc©2018 IEEE



future work in Section VI.

II. RELATED WORK

The relocation of empty vehicles in shared MoD systems
has been widely studied in the literature, and can be divided
into operator-based approaches [8], [9] (where employees
of the car-sharing service relocate the vehicles), user-based
approaches [10] (where users are financially incentivized to
return the vehicles to high-demand areas) and more recently
those in shared autonomous vehicle (SAV) systems [4], [11],
[12] (where driverless vehicles are autonomously relocated).
Relocation strategies are generally based on ability of the
system to anticipate the demand, and relocate the vehicles
to the areas where high demand is expected. To denote the
different areas of the system in order to map the demand
to a geographical area, the network is generally divided into
several zones [13], blocks [11] or hexagons [14]. Strategies
range from those that use a short window of known future
requests (e.g., 5 minutes in [11] and 30 seconds in [4]), based
on historical demand (e.g., [8]) or using prediction techniques
to predict future demand (e.g., [14]). Learning techniques are
also being increasingly applied to learn demand patterns based
on historical data. [6] rely on a single RL-process to capture
system-wide demand patterns, while in [3] each agent uses
its local data to relocate in 8 immediate directions (south,
south-east, east, north-east, north, north-west, west, south-
west). Rebalancing in this work is done only at designated
fixed-time periods rather than dynamically.

An additional challenge for shared MoD systems that in-
corporate ride sharing is how to dynamically assign a vehicle
to multiple users/trips. To simplify the problem of matching
the origin and destination of multiple riders, the system often
assumes designated fixed pick up and drop off points, and only
passengers with same pick up and drop off points are grouped
into shared rides (e.g., [15], [16]). More complex models
are introduced in [17], [18], where additional passengers can
be picked up en-route based on a cost model capturing the
impact of diversion on the cost and travel time. Such ride-
sharing approaches are almost exclusively centralized, and
the assignment for the whole system is done by a central
dispatcher rather, which, in the cases of explicit network
modelling, limits the scalability of the approaches.

Most recently, rebalancing and ride sharing have been
looked at simultaneously, as their impact of one on another has
been recognized. [4] propose a centralized linear optimisation
model to assign multiple ride requests to vehicles, where
free vehicles are rebalanced to the areas of higher demand.
[3], as discussed already, use a decentralized approach to
rebalancing, and add the possibility of ride sharing if serving
an additional request does not increase the trip time by more
than 50%. However, request assignment, both the original and
ride-sharing one, is still done by a centralized dispatcher rather
than in a decentralized manner.

Our proposed approach fully integrates rebalancing, request
assignment and ride sharing, in a fully decentralized manner.
Both rebalancing and request pick up/ride-sharing criteria is

learnt by each agent itself; rebalancing can be based on current
demand or observed historical data, and ride sharing can be
limited only to nearby (within the same zone) requests, or
allow for limited (one extra zone) diversions.

III. ON-DEMAND AUTONOMOUS RIDE-SHARING
ENABLED MOBILITY

In the next section we present full details of our proposed
approach, including the design of RL agents which control
SAMoD vehicles, as well as overall architecture and operation
of the system arising from individual agents operating in the
same environment.

A. SAMoD agent

Each vehicle in SAMoD has intelligence provided by an
individual SAMoD agent; in the case of autonomous vehicles
this agent can directly control the vehicle, and in the case of
driver-operated vehicles, it can provide the action advice.

To implement the learning process, we use Q-learning [19],
a widely used RL algorithm which does not require a pre-
defined model of the environment. In Q-learning, Q-values
Q(S,A) capture agent’s experiences gained by interacting with
the environment. More precisely, Q(S,A) represents a long-
term value of taking action A (representing one of the actions
an agent is capable of executing) in state S (representing the
current description of the agent’s environment). Q-values are
updated at each time-step according to the formula:

Q(St, At) = Q(St, At) + α(Rt+1 + γ(max
A

Q(St+1, At+1))

−Q(St, At))

where Rt+1 is the reward received by transitioning from St

to St+1, α is the learning rate, which affects how much
new experiences change the Q-value, and γ is the discount
factor, which influences the rate at which old experiences are
discarded.

The agent initially assumes no knowledge about the environ-
ment (e.g., about the frequency of ride requests, their origins
or destinations), and over time, through interaction with the
system, it learns the locations where the requests originate.
SAMoD agent’s main goal (Q-learning policy) is to serve ride
requests, i.e., to pick up passengers. RL reward of 100 points
is given to an agent if the vehicle has passenger(s) and no
reward is given otherwise. This goal can be achieved in two
ways: serving current pending requests, including additional
ride-sharing requests, and, if there are no requests in agent’s
vicinity, by rebalancing to the areas where there are requests
or from where historically the most requests originate. Each
agent, by receiving this reward signal, learns its own way to
best maximise the cumulative reward, by learning the actions
for each of its states that lead to maximizing it.

To discretize agent’s environment, geographical areas are
divided into zones, and requests are classified depending
on the origin and destination zones. Each agent bases its
current decision making considering only a limited number
of zones - the zone it is currently in, and its direct neigh-
bouring zones. The full RL agent state consists of (i) vehicle



state (empty, hasPassengers, full), (ii) presence of current
active requests in agent’s zone (yes, no) and (iii) presence
of current active requests in neighbouring zones (yes, no).
We make a distinction between full and hasPassengers
rather than just mark the vehicle as occupied, to denote if
vehicle is available for further ride-sharing requests. Three
basic actions an agent can execute are defined as actions =
{pickUp, rebalance, doNothing}. Pick-up action can refer
to picking up the first passenger, or picking up a ride-
sharing request. With respect to rebalancing, agents learn
between a number of rebalancing strategies: (i) rebalance to
a neighbouring zone with the most current pending requests,
(ii) rebalance to a neighbouring zone with the biggest gap
between vehicle supply and number of requests, (iii) rebal-
ance to a neighbouring zone which historically has the most
requests, or (iv) rebalance to a neighbouring zone which
historically has the biggest gap between vehicle supply and
number of requests. At the start of the learning process, agents
does not have historical information; as learning episodes are
executed, an agent records the observed requests in each zone
it operates in and builds up the required information for the
more sophisticated rebalancing strategies.

Algorithm 1 SAMoD Agent Learning Process
1: // execute on learning event trigger
2: state← MAPLOCALENVTOSTATE(env)
3: action← QLEARNING.PICKACTION(state)
4: // if picking up new passengers
5: if action == ”pickUp” then
6: PICKUPPASSENGERS(nearestRequestID)
7: end if
8: state← GETVEHICLESTATE
9: if state! = ”full” then

10: LISTENFORRIDESHARINGREQUESTS
11: PICKUPPASSENGERS(nearestRequestID)
12: end if
13: // serve requests and finish learning episode
14: DROPOFFPASSENGERS(RequestID)
15: UPDATEENVIRONMENTHISTORICALDATA(RequestID)
16: UPDATEQLEARNINGPROCESS(RequestID)
17: TRIGGERNEWEVENT(DropOff )
18: // if rebalancing
19: if action == ”rebalance” then
20: //determine the zone to rebalance to
21: current← GETPENDINGREQUESTS(zones)
22: historical← GETHISTORICALREQUESTS(zones)
23: zone←SELECTZONE(current, historical)
24: REBALANCETO(zone)
25: TRIGGERNEWEVENT(Rebalanced)
26: end if

SAMoD’s learning process is summarized in Algorithm 1.
New learning episode is triggered by either dropping off
passengers or by finishing rebalancing to a different zone.
When the new action decision is needed, an agent gets the state
of the vehicle and the environment, determines whether there

is a pending request in its current zone (in which case it selects
pickUp action, and keeps listening out of further requests
eligible for ride sharing), or if rebalancing to a neighbouring
zone is needed. After each episode completion, reward is
given to update Q-learning process, and historical environment
information is updated.

B. SAMoD system architecture

SAMoD agents are designed to be a part of fully flexible
shared on-demand mobility system, which is free-floating
(there are no fixed vehicle stations) and one-way (vehicles
do not have to return to the original location from which
they were engaged). They support dynamic ride sharing, where
ride-sharing requests are considered in real-time as they come
up; no knowledge of future requests is assumed, although
historical data is gathered throughout an agent’s lifetime to
learn where requests typically originate. Requests can originate
anywhere, defined by a set of GPS coordinates, i.e., are not
limited to predetermined fixed stops.
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Fig. 1: SAMoD system

Figure 1 depicts the interactions between agents and the
environment, from which the overall SAMoD system perfor-
mance arises in a decentralized bottom-up manner. The system
provides the map of the operating environment, which includes
the road network. It also has the visibility of all the agents
currently active, but agents can join and leave the system
dynamically and seamlessly. Upon joining the system, each
agent/vehicle initializes its learning process; first time it joins
it starts from no knowledge and builds it up as it operates
(including the possibility of online training or learning from
a human operator). Each agents has access to the information
about its own local environment only - number of the requests
and other vehicles in its own zone and neighbouring zones.



Each agent in the zone has visibility of the same requests,
and each agent selfishly picks up the request nearest to it; if the
request is the nearest one to more than one agent, it is picked
up by the first available agent. To prevent vehicles booking
the requests before they are available to serve them, agents
can execute a new pick up action only if one of the following
events is raised by the system if the vehicle: 1) crosses a
zone border, 2) drops off its last passenger or 3) reaches is
relocation destination. Limiting the number of events ensures
vehicles can pick-up only the requests in their own zone (or
en-route for ride sharing), to prevent a vehicle for ”booking”
a far away request if much closer vehicle (in the same zone
as the request) is available.

An advantage of this decentralized approach is that no
adjustment is needed to the system or algorithm if a vehicle
joins or leaves the system (unlike in centralized approaches
where recalculation/reassignment might be needed), enabling
easy vehicle breaks for maintenance, accounting for unpre-
dictable traffic jams, etc. In addition, this approach seamlessly
integrates driver-operated or privately owned autonomous ve-
hicles, as those might be active in the system only for short
and irregular periods of time rather than operate as a part of
24/7 fleet.

IV. EXPERIMENTAL SETUP

A. General settings

The demand has been generated using the open NYC taxi
dataset [20]. It describes recorded trips of yellow cabs in the
Manhattan area. We extracted the trips from 50 consecutive
Tuesdays between July 2015 and June 2016 to represent
typical weekday demand patterns. We use a fixed fleet size
of 200 shared autonomous vehicles, in order to observe cases
when enabling ride sharing is needed to serve all requests
(rush hours). Every vehicle has a capacity of 4 passengers.
Each request includes: the time the user requested the trip, the
number of passengers, origin coordinates, and destination.

To focus on rebalancing and ride-sharing strategies only,
we have used a simplified traffic simulation without con-
sidering congestion. Autonomous vehicles drive themself to
their current destination (rider pick-up or drop-off location or
relocation zone). Travel times are computed in a similar way
as in a grid network [21] and we assume a speed of 21 mph
for peak hours (as in [17]).

B. Baselines

We compare our approach to baselines incorporating com-
binations (described in Table I) of the following strategies:

• Centralized assignment: a central dispatcher assigns the
nearest vehicle to the request with highest waiting time

• Decentralized assignment: vehicles self-assign to the re-
quest with the highest waiting time in current zone or in
a neighbouring zone

• Rebalancing: the vehicle drives towards the centre of the
zone it was randomly assigned to at the start of simulation

• Ride sharing: a vehicle can pick-up more passengers until
reaching maximum occupancy if the new request origin

and destination are in the zones located on current route
(or neighbouring zones)

TABLE I: Baseline scenarios

Summary Assignment Rebalancing Ride sharing
C Centralized No No
D Decentralized No No

C RB Centralized Yes No
D RB Decentralized Yes No
C RS Centralized No Yes
D RS Decentralized No Yes

C RB RS Centralized Yes Yes
D RB RS Decentralized Yes Yes

C. SAMoD scenarios
Four configurations of SAMoD agent have been tested

to assess the effect of two ride-sharing strategies and two
rebalancing strategies (they are summarized in Table II).

TABLE II: SAMoD scenarios

Summary Assignment Rebalancing Ride sharing
S RB Learnt Learnt No

S RB RS Learnt Learnt Learnt
current zone only

S RB RS+1 Learnt Learnt Learnt
current zone+1

S RB2 RS+1 Learnt Learnt Learnt
(limited) current zone+1

Ride-share requests can be picked up only in the zone
vehicle is already due to travel through, or diversions of
maximum one extra zone are allowed. Rebalancing actions
are learnt by an agent, and vehicles are allowed rebalance as
many times in a row as needed to move to desired area, or
rebalancing can be restricted to only one consecutive action.
For all SAMoD scenarios, learning was performed on the first
40 days of the dataset, and results presented are using last 10
days, while vehicles act according to the learnt strategies.

D. Indicators
To evaluate SAMoD we use the set of most commonly used

indicators in related work [4], [17], [11]:
• Impact on the system:

– number and percentage of served requests;
– number and percentage of timed-out requests (not

assigned after waiting time exceeds 10 minutes).
• Impact on riders:

– waiting time tw: the time between the user request
generation and the pick-up time;

– detour time td: the difference between originally ex-
pected travel time and final travel time after serving
ride-share request(s);

– travel time TT : the time spent travelling in a vehicle.
• Impact on vehicles:

– total Vehicle Miles Travelled (VMT) per vehicle;
– empty VMT: VMT per vehicle without passengers;
– engaged VMT: vehicle has one or more passengers;
– shared VMT: vehicle serving more than one request;
– occupancy: the number of passengers per trip.



V. RESULTS AND ANALYSIS

In this section we present the results of SAMoD evaluation,
first comparing it to the baselines, and then focusing in more
detail on the impact of rebalancing parameters, ride-sharing
parameters and request frequency/demand in the system.

A. Performance against baselines

As the results for different times of the day follow a similar
pattern, we choose to present in detail the result set for
morning peak traffic, 7-10am, with approximately 1,300 re-
quests per hour (Table III). Results are split into rebalancing-
only, and rebalancing and ride-sharing combined. We first
compare SAMoD rebalancing-only approach to rebalancing
baselines. With respect to global system performance, SAMoD
significantly outperforms centralized baseline (C RB), serving
91.91% of requests vs. 77.75% served by C RB. However, de-
centralized baseline (D RB) serves the most requests, 95.06%.
From the perspective of a rider, waiting time is by far the
best with SAMoD, 2.87 minutes vs. 11.07 and 4.57 with
centralized and centralized baseline, respectively. From the
vehicle perspective, decentralized baseline has the highest
engaged VMT and lowest empty VMT, indicating the best
performance from the vehicle perspective.

Looking at the combination of rebalancing and ride-sharing,
centralized baseline (C RB RS) has the best performance
from system and rider perspectives – it serves 98.75% re-
quests, with average waiting time of 2.1 minutes. SAMoD
performance is slightly lower: 97.32% of served requests,
with 2.27-2.49 minutes average waiting time. SAMoD also
achieves the best average occupancy: 3.19 passengers vs.
2.67 and 2.27 for centralized and decentralized baselines.
The significance of this in real-world implementation depends
on the pricing model, but in general increased occupancy
increases the vehicle profit and decreases the rider cost.

Overall, SAMoD is only marginally worse than centralized
baseline for system and rider perspective, with significant im-
provements from vehicle perspective – perhaps unsurprisingly,
as the only goal vehicles are given is to maximize their own
performance. Results show that vehicles locally optimizing
their own performance results in near-optimal (i.e., near the
performance of centralized baseline with full information and
full control over all vehicles) performance from the system and
rider waiting time perspective as well. Therefore, SAMoD is
a suitable approach for vehicle rebalancing and ride-sharing
in shared on-demand mobility systems, where decentralized
approach is preferred (or the only feasible one).

B. Impact of rebalancing strategies

In this section we analyze the impact of different rebalanc-
ing strategies in SAMoD: a learnt balancing strategy, where
each vehicle can rebalance as many times as it deems suitable
(S RB RS+1), and the strategy where vehicle is allowed only
one rebalancing action in a row (S RB2 RS+1). We observe
a significant impact on both empty and occupied VMT, and
some impact on the number of requests served (respectively
drops of 4% and 1.7%). Preventing consecutive rebalancing

reduces empty VMT by on average 19 miles per vehicle per
day. Effectively, these two strategies represent different trade-
off points: in the first one, vehicle only maximizes the number
of its pick-ups regardless of the empty VMT required to get
to those requests, while in the second one vehicle sacrifices
some of the farther away pick ups to lower its empty VMT.
The preferred strategy in a real world deployment would
depend on the cost per empty VMT and profit per mile with a
passenger, and might also differ per vehicle type (e.g., electric
vs. traditional fuel vehicles) or per time of the day (e.g., peak
holiday/night-time pricing).

C. Impact of ride-sharing strategies

We now examine the impact of two SAMoD ride-sharing
strategies: picking up only ride-sharing requests originating
in the zones on the original route (S RB RS), or allowing
up to one neighbouring zone diversions from the original
route (S RB RS+1). The difference in the number of requests
served between the two strategies is negligible, however there
is an observable difference in the average occupancy (increase
from 2.52 to 3.13 passengers), and average waiting and travel
time for the riders (waiting time decreases from 2.46 minutes
to 2.27 however the travel time increases by 3 minutes from
9.11 to 12.03 minutes). These results highlight the trade-off
between reducing the cost both for the rider and the vehicle
(by increasing the shared occupancy) and increasing the travel
time by allowing longer diversions. It is possible that in real
world deployments preferences with respect to such trade-off
will be specified by passengers; some might prefer to optimize
cost while other the travel time, and vehicles can dynamically
switch between the strategies based on request parameters.

In conclusion, we demonstrated that SAMoD is a suitable
approach to decentralized rebalancing and ride-sharing, with
global performance arising from individual vehicle agents
learning how to optimize their own individual performance
with local information only. SAMoD achieves a performance
close to centralized approach which has access to full global
information and control over all vehicles in the system, even
improving on some vehicle-oriented metrics such as vehicle
occupancy and empty travel time. When analyzing the results
we have identified a number of trade-offs that vehicles/system
need to achieve when selecting the rebalancing and ride-
sharing strategies, such as serving more requests at the cost
of increasing empty travel time to reach those requests, and
increasing vehicle ride-shared occupancy, at the cost of longer
travel time in order to serve ride-sharing requests.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a decentralized RL-based shared au-
tonomous mobility-on-demand system (SAMoD), which in-
cludes dynamic car and ride sharing. Each shared autonomous
vehicle is controlled by an intelligent agent able to learn
to maximize the number of requests served through its own
decentralized assignment process (incorporating dynamic ride
sharing) and through a learnt rebalancing strategy. Global
system optimization arises from individually learnt behaviours,



No RB, No RS Rebalancing Ride-sharing RB and RS SAMoD
C D C RB D RB C RS D RS C RB RS D RB RS S RB S RB RS S RB RS+1 S RB2 RS+1

Sy
st

em

Satisfied requests 29667 35388 30191 36913 38327 38368 38346 38407 35691 37790 37679 36159
% of total requests 76.4 91.13 77.75 95.06 98.7 98.81 98.75 98.91 91.91 97.32 97.03 93.12
Not served requests 8675 3098 8150 1590 0 54 0 11 2903 693 726 2242
% of total requests 22.34 7.98 20.99 4.09 0 0.14 0 0.03 7.48 1.78 1.87 5.77

R
id

er
s Avg tw (min) 11.63 5.48 11.07 4.57 2.41 2.56 2.1 2.6 2.87 2.46 2.27 2.49

Avg TT (min) 5.8 5.69 5.79 5.72 10.31 9.21 10.19 8.73 5.69 9.11 12.03 12.12
Avg td (min) 0 0 0 0 4.57 3.47 4.44 2.99 0 3.39 6.31 6.49

V
eh

ic
le

s

Avg VMT 863.8 735.79 884.71 861.4 690.28 716.49 760.06 845.02 882.85 865.94 869.94 644.32
Avg empty VMT 428.48 228.29 442.24 330.04 117.02 147.9 181.56 268.52 371.95 352.6 335.81 147.37
Avg engaged VMT 435.32 507.5 442.47 531.36 573.26 568.59 578.5 576.5 510.91 513.34 534.13 496.95
Avg shared VMT 103 120.55 103.78 125.54 382.75 324.74 376.86 301.96 115.84 330.3 433.86 409.11
Avg occupancy 1.47 1.48 1.47 1.48 2.67 2.39 2.63 2.27 1.45 2.52 3.13 3.19

TABLE III: Results of all the scenarios for 7-10am period for 10 days

resulting in a higher level of service at the system scale and
improved riders’ waiting times. Simulation results of differ-
ent SAMoD rebalancing and ride-sharing strategies highlight
several trade-offs vehicles need to make. Potential real-world
deployments will require a more fine-tuned balance of these
trade-offs, and would benefit from more sophisticated multi-
objective learning techniques. We plan to extend SAMoD
with W-Learning, a multi-objective RL strategy previously
successfully applied to balance multiple trade-offs in an urban
traffic control system [22]. SAMoD performance should also
be evaluated in the presence of variable congestion and traffic
control scenarios. We will do this using a simulation of
REALT [23], an RL-based urban traffic control system, which
will enable us to investigate dynamic car- and ride-sharing
impact at a city scale on traffic congestion.
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