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Deep sleep maintains learning efficiency of the
human brain
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Joshua A. Herbst5, Richard H.R. Hahnloser2,5, Nicole Wenderoth2,3,4,* & Reto Huber1,2,6,*

It is hypothesized that deep sleep is essential for restoring the brain’s capacity to learn

efficiently, especially in regions heavily activated during the day. However, causal evidence in

humans has been lacking due to the inability to sleep deprive one target area while keeping

the natural sleep pattern intact. Here we introduce a novel approach to focally perturb deep

sleep in motor cortex, and investigate the consequences on behavioural and neurophysio-

logical markers of neuroplasticity arising from dedicated motor practice. We show that the

capacity to undergo neuroplastic changes is reduced by wakefulness but restored during

unperturbed sleep. This restorative process is markedly attenuated when slow waves are

selectively perturbed in motor cortex, demonstrating that deep sleep is a requirement for

maintaining sustainable learning efficiency.
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M
any of us know from personal experience that a single
night of low quality sleep can make mental tasks
effortful and inefficient. Accordingly, one theory

proposes that sleep is crucial for restoring the brain’s metabolic1

and neural homeostasis2,3, thus ensuring efficient functioning
during the next bout of wakefulness. Environmental inputs are
constantly experienced when awake and lead to a progressive
increase of synaptic strength4–6. Perpetual increases in synaptic
strength, however, would render the brain highly insensitive
to new inputs because neurons would lose their ability to fire
selectively and synapses could not be further potentiated, thus
saturating neural plasticity7. Additionally, the need for cellular
maintenance2 and the removal of potentially neurotoxic waste1

would be markedly enhanced causing an unsustainable level of
energy consumption. Deep sleep in particular is thought to be
essential for down-regulating synaptic strength3. During
deep non-rapid eye movement (NREM) sleep neurons start to
oscillate between a depolarized on-state when they fire and
a hyperpolarized off-state when they are silent8. Because neurons
are highly interconnected, synchronization of on- and off-states
within larger neuronal assemblies drives 0.5–4.5 Hz oscillations,
termed ‘slow waves’, which are typically detected in the surface
electroencephalogram (EEG) or local field potentials during
NREM sleep9. Slow wave activity (SWA, EEG power between
1 and 4.5 Hz) is highest shortly after falling asleep, that is, when
the sleep need is still high, while it is markedly reduced at the end
of the night after restorative processes have taken place10.
However, until now the proposal that SWA is necessary for
restorative processes has been mainly supported by correlative
evidence demonstrating that neural plasticity induced while
awake (for example, by practicing a specific task) leads to more
SWA during sleep11,12. This effect is highly localized with SWA
being significantly higher in brain areas that were activated
during the task than in non-task areas, suggesting that the brain
responds to a locally increased need for sleep3,5,11,13. However, in
order to demonstrate that slow waves are directly responsible for
restorative processes, one has to establish a causal relationship
between these phenomena. Such an endeavor has thus far proved
impossible due to the inability to manipulate SWA in humans on
a local level. Here, we introduce a novel perturbation approach
where real time closed-loop acoustic stimulation was timed to
coincide precisely with the vulnerable down-phase of EEG
slow waves2. We targeted SWA in primary motor cortex (M1),
taking advantage of well-established behavioural and neuro-
physiological markers of motor training-induced neuroplasticity
to estimate the effect of locally perturbed deep sleep in M1.
We demonstrate that the capacity to undergo neuroplastic
changes in response to learning is reduced by wakefulness
but restored during unperturbed sleep. This restorative process
is markedly attenuated when slow waves are selectively perturbed
in motor cortex.

Results
Local slow wave perturbation. We report data from 13
volunteers (21.2±0.4 years of age, all right handed, 6 females)
who were first familiarized with the procedures and participated
then in two experimental sessions (see Supplementary Fig. 1
for subject drop-out and outlier detection). Each session
consisted of three learning assessments: a new motor sequence
(finger tapping) was learned on the morning of Day 1 (Mor D1),
another new motor sequence was learned on the evening of Day 1
(Eve D1) which was followed by one night of sleep in the
laboratory during which high-density (HD) EEG was measured,
and another new motor sequence was learned on the morning of
Day 2 (Mor D2, for an overview of the study design see Fig. 1).

During one experimental session sleep was perturbed by acoustic
stimulation triggered by the down-phase of local slow waves in
M1 (STIM), while in the other session subjects were allowed a
normal night of sleep (NOSTIM, Fig. 1a,b; see Methods section).
Subjects were blind to this experimental manipulation and
subjective sleep ratings were not significantly different between
sessions (Supplementary Table 1, nor were subjective ratings
of different psychological parameters (for example, focus, moti-
vation or tiredness; Supplementary Table 2) or objective measures
of vigilance (Supplementary Table 3). Acoustic stimulation was
switched on during stable NREM sleep and it was triggered by
slow waves in the 0.5–2 Hz frequency range. Stimulation caused a
local reduction of SWA, most prominently in the low frequency
range (low SWA, 1–2 Hz; Supplementary Fig. 2). We found
a 12.00±3.92% power reduction in low-SWA during the STIM
session compared to the NOSTIM session in a cluster of 9 elec-
trodes (Fig. 2, for a comprehensive overview of the entire
frequency range (0.5–25 Hz) Supplementary Fig. 3). Additional
analyses focused on the hotspot-electrode in M1 (for details
see Methods section, Fig. 1b). Low-SWA measured by this
electrode was reduced by 13.4±4.12% (P¼ 0.007, paired t-test;
n¼ 13). During STIM sleep we applied acoustic stimulation on
53.1±3.71% of all slow waves present during the night.
This caused a significant acute effect (evoked manipulation) by
steepening the slope of the up-phase and shortening the duration
of the perturbed slow wave (Fig. 3a,b, Po0.001, paired t-test;
n¼ 13). The stimulation also changed general slow-wave
characteristics throughout sleep (Fig. 3c,d). Thus, the level of
synchronization necessary for the generation of large amplitude
waves was reduced, and as a consequence, SWA was also reduced.
This finding is also supported by the positive correlation between
the slope reduction of the down-phase and the reduction in
low-SWA (Spearman’s rho¼ 0.69, P¼ 0.01; n¼ 13). Exploratory
analyses including all channels revealed that the general effects of
acoustic stimulation are locally restricted (Fig. 3e,f).

General sleep architecture was comparable between sessions
(Supplementary Table 4), except for a tendency towards reduced
N3 sleep during STIM sleep compared to NOSTIM sleep
(NOSTIM: 130.5±10.6 min; STIM: 117.9±9.8 min; P¼ 0.05;
n¼ 13). Global SWA (mean over all electrodes) did not differ
between the two conditions (NOSTIM: 120.1±16.6 mV2/Hz;
STIM: 114.4±16.3 mV2/Hz; P¼ 0.16; n¼ 13). These results
confirm that acoustic stimulation selectively reduced low-SWA
within sensorimotor areas of the trained hemisphere while the
general sleep architecture was largely unaffected.

Effects of local slow wave perturbation on neuroplasticity. Next
we asked whether perturbed SWA disturbs sleep-dependent
processes influencing motor learning the next day. During each
experimental session neural plasticity was assessed in response to
learning a new motor sequence on Mor D1, Eve D1, and Mor
D2 (Fig. 1a,c). Motor learning was quantified by a Performance
Score, which takes into account the speed-accuracy tradeoff
(% correct sequences divided by inter-tap interval in s),
and Tapping Variability (average s.d. of inter-tap intervals in
completed sequences).

Given that a new sequence was performed during each learning
assessment (Mor D1, Eve D1, Mor D2) of each experimental
session (STIM, NOSTIM), it is not surprising that a significant
increase in Performance Score (Fig. 4a) and a significant
reduction in Tapping Variability were observed (Fig. 4b) in both
STIM and NOSTIM sessions (training trial effect for each
learning assessment and stimulation session, all Po0.001;
mixed effects models, n¼ 11 after outlier rejection, see Methods
section and Supplementary Fig. 1). These learning dynamics were
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highly similar across learning assessments and on both sessions
(three-way stimulation session� learning assessment� training
trial interactions all P40.5; two-way stimulation session�

training trial interactions all P40.91 for both Performance
Score and Tapping Variability; mixed effects models, n¼ 11).
However, low-SWA perturbation during STIM session sleep
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Figure 1 | Overview of the experimental protocol. (a) After a familiarization session, volunteers participated in two experimental sessions. These were

separated by 1 week, with both sessions including three separate learning assessments, the first in the morning of day 1 (Mor D1), the second in the evening

on the same day (Eve D1), and a third in the morning the next day (Mor D2). During the night, sleep was recorded using high density EEG. In a cross-over

counter balanced design, in one experimental session, slow waves were localy perturbed over left primary motor cortex by acoustic stimulation delivered

time-locked to the donw-phase of sleep slow waves (STIM, yellow) while in the other experimental session no stimulation was applied (NOSTIM, green, b).

During each learning assessment participatns were subjected to a new motor sequence training (finger taping task) and corticomotor excitability was

measured via an IO curve before and after performing the motor sequence training, in order to determine changes indicative of motor plasticity as a

consequence of training (c). (b) In the STIM sessions slow waves were perturbed using acoustic stimulation precisely time-locked to the down-phase of

sleep slow waves (yellow arrows) detected in the electrode located closest to the sensorimotor representation of the trained hand (red electrode and

signal). (c) During each learning assessment subjects acquired a new six-element motor sequence during 12 training trials (that is, 30 s tapping followed by

30 s rest) lasting 12 min in total. Changes in corticomotor excitability of the right first dorsal interosseus (FDI, red dot) were measured before motor training

(TMS-PRE) and after (TMS-POST) via an input-output curve (IO curve).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15405 ARTICLE

NATURE COMMUNICATIONS | 8:15405 | DOI: 10.1038/ncomms15405 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


significantly decreased the performance score, and increased
Tapping Variability when considered across all trials
(Performance Score: stimulation session� learning assessment
interaction F(2,710)¼ 6.3, P¼ 0.002, mixed effects model, n¼ 11;
Variability F(2,710)¼ 16.08, Po0.001, mixed effects model,
n¼ 11). To further investigate this interaction we analysed
plateau performance by collapsing the data across trials 7–12,
that is, during the second half of the training blocks when
behavioural changes were minor. With this data, no effect of
STIM versus NOSTIM was observed for the Performance Score
(stimulation session � learning assessment interaction, P¼ 0.4;
stimulation session main effect, P¼ 0.7; mixed effects model,
n¼ 11), but it was evident that low-SWA perturbation during
STIM session sleep significantly increased Tapping Variability on
the second morning (Fig. 5b, yellow) in comparison to NOSTIM
(Fig. 5b, green; stimulation session � learning assessment
interaction F(2,93.9)¼ 3.6, P¼ 0.03; mixed effects model, post
hoc pairwise analysis between STIM and NOSTIM on second
morning, Po0.006; n¼ 11).

Neural changes associated with motor learning were probed by
Transcranial Magnetic Stimulation (TMS) and corticomotor
excitability was quantified as the peak-to-peak amplitude of
motor evoked responses (MEP). We measured excitability as a
function of increasing TMS stimulation intensities (input-output
curves (IO curves)) which were acquired PRE and POST-training
(Fig. 1c)14,15. Corticomotor excitability is typically increased
(steeper IO curves) after prolonged motor training14–18 indicating
LTP-like plasticity14.

Learning a new motor sequence in the morning (Mor D1)
led to an increase in corticomotor excitability in the first
dorsal interosseous (FDI) as shown by a steeper POST-training

IO curve. This increase in excitability from PRE to POST learning
was observed for both experimental sessions (Fig. 4c,d;
pre–post� intensity interaction for STIM and NOSTIM:
F(1,63)Z2.97, Po0.05; mixed effects model, n¼ 10). By contrast,
corticomotor excitability decreased from PRE to POST learning
when a new sequence was practiced in the evening (Eve D1)
(Fig. 4c,d; pre–post� interaction effect for NOSTIM:
F(1,63)¼ 4.18, P¼ 0.01 and STIM: P¼ 0.163; mixed effects
models, n¼ 10). Importantly, the neural response to practicing
a new sequence in the morning of day 2 (Mor D2) exhibited
again an increase following one night of unperturbed sleep
(NOSTIM; Fig. 4c; even though the pre-post–intensity interaction
failed to reach significance F(1,63)¼ 1.26, P¼ 0.29, mixed
effects model, n¼ 10) while even a slight decrease in excitability
on Mor D2 was observed after perturbed sleep (Fig. 4d; P¼ 0.99,
mixed effects model, n¼ 10).

Since the steepness of the IO curve can vary strongly across
individuals, we summarized the above changes in IO curves
by calculating a Facilitation Index for each learning assessment
and experimental session which can then be related to
SWA: FacIndex¼

R
Intensity 1–5MEPpost/

R
Intensity 1–5MEPpre. The

FacIndex reflects the normalized change in corticomotor excit-
ability from PRE to POST training and allows us to pool data
across the index finger (FDI) and the little finger (abductor digiti
minimi (ADM)), that is, two main muscles involved in the motor
learning task (Supplementary Fig. 4 shows each muscle
separately). We observed that the FacIndex was highest on the
first morning and decreased in the evening for both STIM and
NOSTIM sessions. However, on the morning of day 2, the
FacIndex was only restored after unperturbed sleep, while
restoration was markedly reduced after perturbing low-SWA in
M1 (Fig. 5c; stimulation session� learning assessment interaction
F(2,4537.01)¼ 5.073.88, P¼o0.01; mixed effects models, post
hoc pairwise analysis, Po0.01, n¼ 10). These interactions
remained significant when baseline corticomotor excitability as
measured during PRE was added as a covariate of no interest
(random effect), indicating that these differences between STIM
and NOSTIM do not result from changes in baseline excitability
but rather by a diminished capacity of plasticity in response to
motor training the next morning.

Next, we investigated whether differences in low-SWA measured
under the hotspot-electrode (Fig. 5a) between the STIM and
NOSTIM sessions (expressed as SWA ratio¼ SWAhotspot STIM/
SWAhotspot NOSTIM, Fig. 5d) were related to the degree of
overnight changes in either motor variability or corticomotor
excitability.

We first calculated overnight changes in motor variability
(Variability ratio¼VarMorD2 / VarEveD1) and corticomotor excit-
ability (FacIndex ratio¼ FIMorD2 / FIEveD1) (Fig. 5b,c). Then we
quantified how much these ratios differed between
the STIM and NOSTIM sessions (Variability D ratio, FacIndex
D ratio) and expressed this as a percentage (Fig. 5e,f).

Interestingly, the SWA ratio at the hotspot-electrode was
positively correlated with the Variability D ratio (Fig. 5h;
Spearman’s rho¼ 0.60, Po0.04, one tailed; n¼ 10 after outlier
rejection, see Methods section and Supplementary information 1)
indicating that subjects whose SWA was strongly reduced during
STIM sleep exhibited elevated levels of motor variability the next
morning. Moreover, the SWA ratio at the hotspot-electrode
was negatively correlated with the FacIndex D ratio (Fig. 5i;
Spearman’s rho¼ � 0.7, Po0.05; n¼ 9 after outlier rejection,
see Methods and Supplementary Fig. 1) indicating that subjects
whose SWA was strongly reduced during STIM sleep did
not recover their capacity to exhibit a training-induced increase
in corticomotor excitability overnight. No correlation was
found between the Variability D ratio and FacIndex D ratio
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Figure 2 | Topographical distribution of low-slow wave activity.

Comparisons of low slow wave activity (low-SWA, 1–2 Hz) between

NOSTIM and STIM sessions. (a) Topographical map of low-SWA of the two

experimental nights scaled to maximum (red) and minimum (blue) power

values (mV2/Hz). Red circles indicate the position of the TMS hotspot, the

white circle indicates the position of the selected electrode for slow wave

detection. Note, in the main experiment the TMS hotspot-electrodes and

the selected electrodes for slow wave detection were the same.

(b) Statistical comparison (t-values) of low-SWA between the STIM and

NOSTIM sessions (paired t-test; n¼ 13). Blue colours indicate a decrease

and red colours an increase in low-SWA in the STIM compared to

NOSTIM session. During STIM session sleep a reduction of low-SWA

of 12.00±3.92% (P¼0.009) in a local cluster of 9 electrodes over

left sensory-motor area (white dots, Po0.05, after nonparametric

cluster-based statistical testing) was found. See Methods section for

further details.
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(Fig. 5g; P40.05, Spearman’s rho, n¼ 7) indicating that
behavioural markers of motor learning and neurophysiological
markers estimating changes of synaptic strength within M1
circuitry in response to learning are statistically independent
phenomena. The lack of a direct association between these
markers has been demonstrated before19–22, corroborating the
view that changes in corticomotor excitability and behavioural
markers of motor learning are two complementary measure-
ments. While behavioural markers are a compound measurement
capturing adaptation at multiple levels of the neuromuscular
system, corticomotor excitability reflects a subset of the circuits
involved in learning with a strong focus on the primary motor
cortex22. Importantly, our findings indicate that both markers of
learning are significantly modulated by SWA.

Control experiment. Finally, we conducted a control experiment
where subjects (n¼ 7) followed the exact same overall procedures
but a control electrode overlying right temporo-parietal
cortex was targeted during the STIM night. Overall sleep
architecture was similar between the two nights except for N2
sleep, which was increased by B17.9±5.8 min during the STIM
night (paired t-test P¼ 0.02, n¼ 7, Supplementary Table 5).
The stimulation caused a significant reduction of SWA
by 14.46±4.28% in a cluster of 5 electrodes over the right
temporo-parietal area (Fig. 6a,b) while SWA was virtually
unchanged at the hotspot-electrode of the left hemisphere
(increase of 2.74±5.21%). Thus, applying acoustic stimulation to
a control electrode over the right temporo-parietal cortex
modulated SWA at the hotspot-electrode significantly less than
targeting the hotspot-electrode directly. This finding was further
quantified by SWA ratios which did not differ-significantly from
1 and were significantly smaller than when SWA was perturbed at
the hotspot-electrode (Wilcoxon rank-sum, 2 groups, n¼ 7 and
n¼ 13, one-sided, P¼ 0.04, Fig. 6c). Also in the control experi-
ment during training, a significant increase in Performance Score
and a significant reduction in Tapping Variability were observed
at all time points (all Po0.02, mixed effects models, n¼ 7),

despite no significant stimulation session x learning assessment
interactions for either measure (all P40.5, mixed effects models,
n¼ 7, Supplementary Fig. 5). Furthermore, mean Variability D
ratio did not differ significantly from zero (Wilcoxon Sign Rank,
P¼ 0.3, n¼ 7) indicating that perturbing SWA over the right
temporo-parietal cortex did not cause an overnight-change in
motor variability. In contrast perturbing SWA at the hotspot-
electrode (main experiment) caused the Variability D ratio to
significantly deviate from 0 (Wilcoxon sign-rank, P¼ 0.04,
n¼ 10). Comparing the Variability D ratio directly between the
main and the control experiment failed to reach significance
(Wilcoxon Ranksum one-sided, P¼ 0.3, 2 groups, n¼ 7 and
n¼ 10, Fig. 6d), however, perturbing SWA at the hotspot-elec-
trode caused a behavioural effect (Cohen’s d¼ 0.66) approxi-
mately twice as large than perturbing SWA in right temporo-
parietal cortex (Cohen’s d¼ 0.33). We also analysed the FacIndex
for the same muscles as in the main experiment. We scrutinized
in particular whether stimulation changed the FacIndex from the
evening of day 1 to the morning of day 2 as indicated by the
FacIndex D ratio, which did not differ significantly from zero
(Wilcoxon sign-rank P¼ 0.81, n¼ 7), and exhibited a very small
effect size (Cohen’s d¼ 0.03). By contrast, perturbing SWA at
the hotspot-electrode had a large effect on FacIndex D ratio
(Cohen’s d¼ 1.09), which differed significantly from zero
(Wilcoxon Sign Rank P¼ 0.027, n¼ 9). Comparing the FacIndex
D ratios of the main and control experiments directly, the
result was verging upon significance (Wilcoxon Ranksum
one-sided, P¼ 0.057, 2 groups, n¼ 7 and n¼ 9, Fig. 6e). Taken
together, the results suggest that perturbing SWA under
the hotspot-electrode (main experiment) influenced motor
plasticity in response to motor training the next morning
substantially more than perturbing SWA under the right
temporo-parietal cortex (control experiment).

Discussion
Using a novel approach to perturb slow waves during NREM
sleep we demonstrated that a reduction of SWA in M1 causally
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influenced the capacity to undergo motor learning and adaptive
brain responses to motor training the next morning, such that
larger reductions in SWA due to our experimental manipulation
were associated with less efficient adaption at the behavioural and
neural level. Interestingly, perturbing SWA in M1 had little
influence on average performance gains in response to training,
however, it significantly increased tapping variability which
remained elevated after reaching plateau performance and it
prevented a training-induced increase in corticomotor excitability
that is otherwise observed in response to motor training.

This finding in healthy human volunteers was revealed using a
non-invasive approach with the defining feature that acoustic
stimulation was triggered by slow waves detected by the EEG
electrode that was closest to the FDI hotspot, timed such that the

slow waves returned more rapidly to the positive up-phase when
compared to unperturbed sleep (Fig. 3a,b). As a consequence large
amplitude slow waves occurred less frequently (Fig. 3d) and this
effect was only observed for electrodes close to the target area, with
a tendency to spread to the back of the head. Since slow waves are
not phase locked across different brain areas23, our paradigm
caused these specific local effects because slow waves in M1 were
consistently stimulated during the negative phase, while slow waves
in other areas were most likely stimulated at random phases (for
topographical slow wave detection distribution see Supplementary
Fig. 6). However, slow waves are not stationary either. The majority
originate in the frontal cortex and travel backwards23. Therefore,
we quantified the travelling of slow waves in an exploratory analysis
(using the toolbox presented in Mensen et al.24). Slow waves,
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travelling through the hotspot electrode, passed significantly less
electrodes located posterior from the hotspot-electrode in the STIM
night compared to the NOSTIM night. Thus, by interacting with
the ongoing slow oscillation at the hotspot-electrode the travelling
of the slow waves might be interrupted, which might explain the
reduction of low SWA posterior from the hotspot-electrode. The
precise interaction of local slow wave disturbance and the
consequences on slow wave travelling needs to be elaborated in
more detail in future studies.

Moreover, the general sleep architecture was very similar
between the two sessions, except for a tendency toward reduced

N3 sleep during STIM night (mean difference 12.7±5.6 min).
However, the difference in N3 sleep was not related to
the impaired recovery process of cortical excitability nor the
reduced improvement in variability (VAR: Spearman’s rho¼ 0.2,
P¼ 0.58, FacInd: Spearmans’s rho¼ � 0.17, P¼ 0.68). In addi-
tion, psychological measurements (that is, motivation, mood,
attention etc. assessed by questionnaires) were also very similar
across sessions, illustrating that the perturbation was highly
specific to low-SWA in M1 (Supplementary Discussion) and
that our behavioural and neural measurements were unlikely
confounded by lack of attention, motivation or other side
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See Methods section for further details.
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effects typically associated with general sleep deprivation.
Of course, our viewpoint from the surface of the scalp provides
only an indirect measure of brain activity, as we detect only
large population neuronal oscillatory activity. Nevertheless,
using this completely non-invasive method we provide the
first evidence that local deprivation of sleep slow waves can
be achieved in humans. The value of this tool is further increased
by the recent observation that a similar approach also serves to
boost slow waves25. As such, this simple and non-invasive
approach allowing long-term stimulation is also ideally suited for
clinical translation, for example, benefitting new therapeutic
approaches that take advantage of sleep to modulate specifically
affected brain areas in a way that will not affect daytime
performance.

Motor training was tested using different motor sequences
because this task is well-suited to repeatedly probe the effect of
motor training26. During all learning assessments motor sequence
production was optimized by repetitive training, which resulted
in more accurate (Fig. 4a) and less variable motor execution
(Fig. 4b). Even though this finding might be surprising at first,
one has to keep in mind that we changed SWA in M1 only by
approximately 13%. Thus, similar to the recent observation by
Lustenberger et al.27 one would expect that our experimental
manipulation causes relatively small behavioural effects which
might be most strongly reflected by temporal aspects of task
performance. We found that perturbing SWA in M1 during sleep
resulted in a general increase in tapping variability the next
morning that was significantly elevated when compared to
performance after unperturbed sleep (Figs 4b and 5b). Thus,
even though the subjects improved their mean performance,
motor execution was generally less efficient. The benefit of local
deep sleep for motor behaviour may be to keep baseline motor
variability low to assure optimality of motor control and
learning28, a result in line with previous evidence indicating
that sleep reduces variability of both postsynaptic firing and
behaviour via a down-scaling mechanism29,30.

We further demonstrated that sleep modulated neurophysio-
logical responses to motor training. Motor training has
been shown to strengthen input-output relationships of the
activated motor circuits (that is, the same TMS input evokes
a larger physiological response after training) most likely
by potentiating synapses via a LTP-like mechanism31–34.
We show that the brain’s capacity to exhibit synaptic
potentiation is high in the morning but significantly reduced in

the evening (Figs 4c,d and 5c), lending further support to the
hypothesis that synaptic plasticity gets saturated during long
periods of wakefulness26,35. One night of unperturbed sleep
increased the brain’s capacity to exhibit synaptic potentiation
the next morning, however, locally perturbing SWA in
motor cortex was sufficient to diminish this effect (Fig. 5c,i).
A control experiment further confirmed that overnight changes
in the ability to effectively reduce motor variability due to practice
as well as changes in the neurophysiological response to motor
training were much less influenced when SWA was perturbed
in a control region (that is, right temporo-parietal cortex).
Thus, local deep sleep appears to be mechanistically involved
in re-normalizing synaptic potentiation overnight, thus
ensuring that the brain’s capacity to efficiently adapt to the
environment via plastic changes at the synaptic level is restored
on a day-to-day basis.

Our stringent statistical outlier detection procedures resulted in
low sample sizes for some analyses containing only a sub-set of
participants, and as such, those results should be interpreted as
preliminary and warranting future replication. Nevertheless, it is
clear that our method for modulating deep sleep is promising and
that effectiveness might be further enhanced by more precise
timing of the tones relative to the phase of slow waves as shown in
Supplementary Fig. 7. As such we introduce a new tool to shed
further light upon important concepts regarding the biological
function of sleep and to provide additional evidence that there is a
causal link between SWA while sleeping and re-normalization of
neural processes that restore the capacity of plasticity in response
to motor training. Taken together our findings consistently
indicate that local deep sleep is essential for maintaining
the brain’s capacity to respond efficiently to motor training and
thus for adapting to the environment.

Methods
Subjects participating in the main experiment. 31 naive (no prior experience
with the motor task, no musicians) healthy right-handed (94.3±9.9%; (ref. 36))
subjects (13 females, mean±s.e.m. age; 22.02±0.34 years) complied with the
following inclusion criteria and participated in the main experiment: No personal
or family history of psychopathology, no severe brain injury, no sleep disorders, no
chronic diseases, no current use of psychoactive agents or other medications, no
travelling across more than 1 time zone in the 4 months before the study, no
previous adverse reactions to Transcranial Magnetic Stimulation (TMS), a resting
motor threshold (rMT) exceeding 50% of the stimulator output (as tested during a
familiarization session, see below). The latter criterion was necessary to protect the
TMS equipment from over-heating since our procedure required repeated
stimulations of up to 190% rMT. Written informed consent was obtained prior to
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participation. The study was approved by the local ethics committee and performed
according to the Declaration of Helsinki.

Of the 31 subjects that complied with the inclusion criteria, 16 dropped out
for the following reasons: discomfort caused by TMS (n¼ 1), poor sleep during
screening night (n¼ 9), not sticking to a regular sleep wake cycle or not tolerating
the auditory stimulation (n¼ 6; for a flow chart of subject dropouts see
Supplementary Fig. 1, upper part).

Behavioural task. Subjects performed a computerized six-element finger
sequence tapping task (presented with E-Prime; Psychology Software Tools, Inc.,
Sharpsburg, USA) adapted from Karni et al.37. The sequence to be executed was
depicted on top of the laptop screen using a numbering system, with 1, 2, 3, and 4
corresponding to the index, middle, ring and little fingers of the right hand
respectively (Fig. 1c). Throughout the experiment eight equally difficult sequences
were used. None of these sequences were trained twice and the order of sequences
used throughout the experiment was randomized across subjects. While tapping
the sequence a black dot appeared on the screen below the current number every
time the subject pressed a key indicating that a response was recorded without
giving any accuracy feedback. When a sequence was completed the screen was
refreshed so that the same sequence appeared on top without any black dots
present. One training trial consisted of typing the given sequence for 30 s as many
times as possible followed by a rest period of 30 s to prevent fatigue. A training
block consisted of 12 consecutive trials.

Electromyography (EMG) and TMS. Focal TMS was applied with a 70 mm
figure-of-eight coil connected to a Magstim 200 stimulator (Magstim, Whitland,
Dyfed, UK). The coil was positioned over the M1 of the left hemisphere, tangential
to the scalp with the handle pointing backwards and laterally at 45� away from
the mid-sagittal line38. The optimal scalp position (‘hotspot’) for stimulating the
right first dorsal interosseous (FDI) was identified and marked for each learning
assessment. The rest motor threshold (rMT, lowest stimulus intensity evoking
MEPs with amplitudes of at least 50 mV in 5 out of 10 consecutive stimuli) was
determined prioritizing the FDI39.

EMG data was recorded from FDI, abductor digiti minimi (ADM) and
opponens pollicis (OP) of the right hand (Bagnoli, Delsys, Inc., Natick, USA)
(for an overview of detailed results for all three muscles see Supplementary Fig. 4).
The signals were sampled at 5000 Hz (CED Power 1401, Cambridge Electronic
Design, UK), amplified, band-pass filtered (5–1,000 Hz), and stored on a PC for
offline analysis. Pre-stimulus EMG recordings were used to assess the presence
of unwanted background EMG activity in the 110 to 10ms time interval preceding
the magnetic pulse.

Corticomotor excitability was quantified by measuring input-output curves
(IO curve) using 90, 115, 140, 165 and 190% of rMT. One IO curve consisted
of 20 MEPs per intensity. They were acquired in 2 blocks of 50 MEPs so that per
block 10 stimulations were acquired for each of the 5 intensities. In between blocks
a rest period of B30 s was provided. Within one block the inter-stimulation
interval varied between 6 and 7 s resulting in a total block time of 5 min.

High-density sleep electroencephalography. All night sleep was recorded,
referenced to the vertex (Cz), sampled at 500 Hz (0.01–200 Hz), using high density
(hd) EEG (Electrical Geodesics Sensor Net for long-term monitoring, 128 channels,
Electrical Geodesics Inc., EGI, Eugene, OR, USA). Electrooculographic (EOG) and
submental EMG recordings were acquired for visual scoring of sleep. Two addi-
tional electrodes (gold, Grass Technologies, West Warwick, RI, USA) were attached
to the earlobes, which served as reference electrodes for the online slow wave
detection (see ‘SWA topography and sleep slow waves analysis’). After adjusting
the net to the vertex and the mastoids, all electrodes were filled with an electrolyte
gel to ensure the maintenance of good signals throughout the night. In general,
electrode impedances were below 50 kO. Impedances were below 20 kO for the
electrodes used for online slow wave detection; that is, submental electrodes,
electrodes on the earlobes, and the hotspot-electrode defined as the EEG electrode
closest to the scalp position of the FDI hotspot as previously determined by TMS.

Real time closed-loop slow wave detection. Using a custom LabVIEW (National
Instruments, Austin, TX, US) program, a closed-loop algorithm detected sleep slow
waves in real time (loop time B30 ms) and administered acoustic stimuli to
selectively modulate sleep slow waves based on the EEG electrode that was closest
to the FDI defined as TMS hotspot-electrode as determined by TMS (Fig. 1b,c). For
all subjects the TMS hotspot-electrode was one of the following channels: CH29,
CH30 or CH36 within the EEG net. The EEG signal of the TMS hotspot-electrode
was re-referenced to the mean value of the earlobe electrodes and the signal was
band-pass filtered (Butterworth 0.5–2 Hz, stop-bando0.1 and 410 Hz, stopband
attenuation 20 dB, passband attenuation 0.1 dB). In parallel the submental EMG
was monitored, by continuously calculating the root mean square over 2 s. Every
time the loop was turned on, tones (pink 1/f noise of B50 dB) were played for
precisely 50ms whenever the EEG signal crossed a default threshold (for the main
experiment � 30mV, for the control experiment � 25) and the EMG was
below a given threshold that was continuously monitored and adapted by the
experimenter. The EMG threshold was implemented as a safety component to

prevent stimulation while there were any signs of arousal. The manual stimulation
procedure conducted by the experimenter was the following: Stimulation started
after 10–15 min of stable N3 sleep. The online slow wave detection algorithm was
turned on throughout the night but only during stable NREM sleep stages 2 and 3
(appearance of spindles, K-complexes and slow waves). The goal was to stimulate
as much as possible without waking the subjects (on average 3,143.69±354.73
stimuli were applied, Supplementary Table 4). It is important to mention that the
overall goal of the study was only to locally disturb slow wave sleep, without
interfering with the global structure of sleep. Therefore, the online slow wave
detection algorithm was turned off during each transition and after every sign
of arousal (that is, increase in EMG or break down of the EEG) and kept off
until the EEG displayed stable N2 or N3 sleep again. As a consequence, tones were
applied to only B50% of all slow waves.

Offline verification of the online slow wave detection algorithm was performed
by measuring the instantaneous phase of each slow wave at tone onset. To do so,
the EEG signal of the TMS hotspot-electrode was re-referenced to the mean
signal from the two earlobes and band-pass filtered between 0.5 and 2 Hz
(using zero-phase infinite impulse response Butterworth filter with the same filter
settings as for online slow wave detection, stop-band o0.1 and 410 Hz), followed
by a Hilbert transform to define instantaneous phase. Phase angles (0–360�) were
defined with 0� corresponding to the negative peak of the slow wave cycle.
Percentage of tones applied during the negative phase of the slow wave cycle
(between 270�–360� corresponding to the first negative half wave or between
0�–90� corresponding to the second negative half wave), were calculated
(for offline analysis of phase timing of tone onset and local slow wave perturbation
see Supplementary Fig. 7).

Overall experimental protocol. Subjects participated in three sessions:
(i) a screening and familiarization session for TMS and sleeping with an EEG
net in the laboratory; (ii) a first experimental session; and (iii) a second
experimental session 1 week later.

TMS screening and familiarization session. After the subject was screened for
TMS exclusion criteria and possible adverse effects by the experimenter, he/she was
seated in a comfortable chair with the right forearm resting in a neutral position
while the hotspot and rMT of the right FDI were determined (see ‘EMG and
TMS’). Subjects with a rMT exceeding 50% maximal stimulator output were
excluded from further participation since the study design required stimulations up
to 190% rMT. For subjects with a sufficiently low rMT, one IO curve was obtained
in order to familiarize subjects with this measurement technique. Subjects that
indicated discomfort during the measurement or reported particular after-effects of
the stimulation (for example, headache) were excluded from further participation.
After the corticomotor excitability measurement, subjects sat in front of a laptop on
which they performed the behavioural task as it would appear during the
experimental sessions. They were instructed to tap a given six-element sequence,
that is, either FAM1 or FAM2 (balanced amongst subjects) as quickly and
accurately as possible for 12 training trials of 30 s (see ‘Behavioural task’). Note that
sequences used during familiarization were not re-used during any of the
experimental sessions.

Sleep screening and familiarization session. Prior to the experimental session,
subjects spent one night in the sleep laboratory of the University Children’s
Hospital Zurich (Zurich, CH) wearing the hd EEG net in order to adjust to the
experimental environment and to exclude possible sleep disorders. Sleep quality
was assessed, and only subjects with a sleep efficiency of at least 80% were included
in the experiment.

Experimental sessions. After successfully participating in both TMS and EEG
screening sessions, subjects were instructed to keep a constant sleep schedule for
B7 days (range from 4–8 days) preceding the first experimental session.
Compliance to the schedule was assessed using daily sleep diaries and wrist
actigraphy (Actiwatch Type AWL from Cambridge Neurotechnology, CamNtech,
Cambridge, UK or Geneactiv). Subjects were required to refrain from alcohol and
medication 48 h prior to each experimental session. During the experimental
sessions, subjects did not perform strenuous exercise, and were not allowed to nap
during the day (as instructed and verified via self-report and actigraphy; for
analysis of wrist actigraphy see Supplementary Table 6). Women were tested
during the follicular phase of their menstruation cycle to prevent the variation of
sleep EEG activity markers as a consequence of hormonal fluctuations40.

Subjects were tested in two experimental sessions that were separated by 1 week
but had an identical chronological setup of three separate learning assessments; the
first in the morning of day 1 (Mor D1), the second in the evening on that same day
(Eve D1), and a third in the morning the next day (Mor D2, Fig. 1a). In one of the
two experimental sessions, slow waves were perturbed using acoustic stimulation
(STIM) precisely time-locked to the down-phase of sleep slow waves detected in
the TMS hotspot-electrode (Fig. 1b). In the other experimental session subjects
heard no tones (NOSTIM). The order of the STIM versus NOSTIM experimental
session was counterbalanced among subjects (six subjects started with STIM).

The first learning assessment started (approximately) 30 min after awakening in
the morning and subjects filled out a questionnaire rating the sleep quality of the
night before (that is, assessing subjective sleep score with a visual analog scale) and
a questionnaire rating psychological measurement (that is, attention, mood,
concentration and motivation, also on a visual analog scale, which was assessed
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before each learning session, that is, in the evening and the next morning).
The hotspot and rMT for the right FDI were then determined and corticomotor
excitability was measured via an IO curve (PRE). Subsequently subjects performed
motor training, that is, they practiced a new six-element motor sequence
(for example, sequence A) for 12 trials (that is, 30 s tapping followed by 30 s rest)
lasting 12 min in total. Corticomotor excitability was re-measured immediately
afterwards by a second IO curve (POST) in order to determine changes indicative
of motor plasticity as a consequence of training (Fig. 1c). It has been shown
that repetitive motor training leads to an increase of corticomotor excitability, an
effect that is NMDA receptor dependent, sensitive to GABAergic inhibition32, and
it occludes subsequent experimental induction of long-term-potentiation14,34,41.
Together these findings strongly suggest that increases of corticomotor excitability
in response to motor training reflect, at least partly, a LTP-like mechanism
at the synaptic level activated by extensive motor practice and associated
motor learning14,32,34.

The second learning assessment on the evening of the same day started B2 h
30 min before bedtime. Subjects underwent an identical procedure as during the
morning, with the only difference being a novel finger sequence was trained
(for example, sequence B). Immediately afterwards the subjects were prepared for
EEG measurements. Before subjects went to bed they were asked to perform a short
attention task, based on an auditory oddball paradigm. During the task,
participants had to sit quiet in front of a screen and fix a white cross on a black
background. Over a period of B6 min participants listened to 450 stimuli with an
inter-stimuli interval of 0.8 s, whereof 90% were standard tones (880 Hz) and
20% were deviant tones (988 Hz, presented in a random order). Subjects were asked
to react as fast as possible to the deviant tones with a mouse click. Reaction time to
the deviant tones, number of missed clicks and number of wrong clicks were
recorded as objective vigilance scores. After the attention task subjects went to bed
at their usual bedtime. Sleep episodes were scheduled individually according to the
subject’s reported bed times with a sleep time of B8 h.

In the morning of the next day, subjects were awakened by the experimenter.
After performing the same attention task as in the evening the EEG net was
removed and a shower was taken within 30 min before starting the third learning
assessment. This test was timed so that learning the novel sequence (for example,
sequence C) took place 24 h after acquiring the first sequence on the morning of
the first day. Identical to the previous learning assessment performed on the
previous morning, subjects filled out a questionnaire regarding their quality of
sleep the night before and the questionnaire rating psychological measurement,
after which corticomotor excitability was tested PRE and POST sequence tapping.

This complete experimental session combined three learning assessments that
spanned over 2 consecutive days including one night in the sleep laboratory. It was
repeated 7 days later and subjects were therefore instructed to keep the same
constant sleep schedule for the following 7 days preceding the second experimental
session, which was again assessed using daily sleep diaries and wrist actigraphy.
The second experimental session followed an identical protocol
to the first one with the only difference being the sleep slow wave intervention
(that is, STIM versus NOSTIM) and that three new sequences were learned
(for example, sequences D, E, F) during the three learning assessments.

Assignment of sequences to experimental conditions and learning assessments
was randomized and counter balanced among subjects.

Outlier detection and removal for the main Experiment. We aimed for a good
balance between keeping the sample size for each analysis as high as possible whilst
applying a stringent outlier detection strategy which we defined a-priori and
applied consistently to all parameters. Outlier detection and removal is particularly
important to minimize the risk of bias due to uncontrolled confounding factors.
For example, we were very strict to include only participants that had high-quality
sleep in both the STIM and the NOSTIM night. Otherwise our data might have
been confounded by large differences in the general sleep architecture.

For each parameter, we calculated the mean and standard deviation across all
participants available for the specific comparison (that is, with potential outliers
included in the dataset). An individual’s data were identified as outlier when it fell
outside of the mean±2� s.d. range and this individual was then removed from the
statistical analysis. Outlier detection and removal was performed stepwise as
detailed in Supplementary Fig. 1, lower part). The final analyses were performed on
the following sample sizes: SWA analysis (n¼ 13), performance index and
variability (n¼ 11), correlation between SWA ratio and Variability D ratio
(n¼ 10), FacIndex analysis (n¼ 10), correlation between SWA ratio and FacIndex
D ratio (n¼ 9).

Data analysis and statistics. Inferential statistics were computed using Mixed
Effects Models in SPSS (Version 16.0, SPSS Inc. Chicago, US), as they account for
covariances between related data samples in repeated measures designs, and have
greater flexibility for modelling effects over time than traditional ANOVA
approaches42. Moreover, they use all available data, allowing inferences to be made
even from small sample sizes, and they do not assume normality of the raw data43.
Fitting of the mixed effects models employed restricted maximum likelihood
estimation (REML) and a compound symmetry or unstructured covariance matrix.
Model fit indices (Akaike Information Criterion and Schwarz Bayesian Criterion)
were considered prior to choosing the covariance matrix and model type. The

influence of each of the fixed effects on the model was estimated using F tests.
In all models subject was designated as a random effect with random intercepts.

Behavioural task. Key presses were recorded and accuracy (%) was calculated
as the number of correct sequences divided by all completed sequences during
each 30 s trial. Performance speed was measured as the time (s) between key
presses, that is, the inter-tap interval (ITI). A Performance Score was calculated
for each subject and trial by dividing the accuracy percentage by the ITI, with
higher scores indicating better performance (see also44). Tapping Variability
was determined by calculating the standard deviation in ITI per typed sequence
and was then averaged for each 30 s trial and subject. Plateau performance
was estimated by averaging the Performance Score and Variability across
trial 7–12, that is, during the second half of the training blocks when behavioural

changes were minor.
Mixed effects models were performed on both the Performance Score and

Variability data with repeated fixed effects of stimulation session (STIM,
NOSTIM), learning assessment (MorD1, EveD1, MorD2) and training trial (1–12).
Plateau Performance Score and Variability data were analysed with an analogous
model containing the fixed effects stimulation session and learning assessment.

Corticomotor excitability. Corticomotor excitability was quantified by MEP
peak-to-peak amplitude. MEP amplitude is known to be modulated by EMG
background activation45,46. Therefore pre-stimulus EMG recordings were used to
assess the presence of unwanted background EMG activity in the 110 to 10ms
preceding the magnetic pulse and were quantified via root mean square scores
(RMS) across this interval. The maximal and minimal MEPs obtained per intensity
and per IO curve were excluded as well as the obtained MEPs preceded by
background EMG higher than 0.01mV. For each subject and over all trials we
calculated the mean and standard deviations of the background EMG. Background
EMG values deviating from the mean by more than 2.5 standard deviations, and
MEPs with a peak-to-peak amplitude which exceeded Q3þ 1.5� (Q3�Q1) were
removed from further analysis, with Q1 denoting the first quartile and Q3 the third
quartile computed over the whole set of trials for each subject. Based on these
criteria 15.2±2.3% of the collected MEPs were excluded from further analyses.
Furthermore we averaged MEP amplitudes for each stimulation intensity of each
IO curve that was recorded and these averages where then subjected to group
statistics.

The influence of motor training on corticomotor excitability as quantified
by the IO curve was analysed using a mixed effects model with repeated
fixed effects stimulation session (STIM, NOSTIM), learning assessment
(MorD1, EveD1, MorD2), pre-post (PRE, POST) and intensity (90, 115,
140, 165, 190%). Changes in baseline corticomotor excitability (that is, PRE IO
curve measured prior to motor training) across learning assessments were
tested for each of the two experimental sessions by separate mixed effects
models with the factors learning assessment (MorD1, EveD1, MorD2) and
intensity (90, 115, 140, 165, 190%).

Finally we directly compared whether changes in corticomotor excitability
induced by motor training differed between sessions and learning assessments.
Therefore, we calculated the integral underneath the IO curve measured
before and after motor training47, and calculated a Facilitation Index,
FacIndex¼

R
Intensity 1–5MEPpost/

R
Intensity 1–5MEPpre.

A FacIndex41 indicates that an increase in corticomotor excitability is
observed from PRE to POST training, while a FacIndexo1 represents a decrease.
The FacIndex was calculated for the 2 stimulation sessions and for each of the 3
learning assessments and was entered into a mixed effects model with repeated
fixed effects stimulation session (STIM, NOSTIM) and learning assessment
(MorD1, EveD1, MorD2).

Slow wave activity topography and sleep slow waves analysis. Sleep EEG
was band-pass filtered between 0.5 and 50 Hz and down sampled to 128 Hz.
Sleep stages and arousals were visually scored for 20 s epochs according
to standard criteria48 by a sleep expert, and verified by another sleep expert
(both of them were blind to the experimental conditions). After visual and
semiautomatic artefact removal49 the remaining data of each subject were
re-referenced to an average value across all 109 channels above the ears.
In one subject only the first 4 h of the night could be analysed due to poor
data quality for the remaining part (subject #2). Spectral analysis (1–25 Hz divided
into different frequency ranges: low-SWA (1–2 Hz), SWA (1–4.5 Hz), theta
(4.75–7.75 Hz), alpha (8–9.75 Hz), sigma (10–15 Hz) and beta (20–25 Hz), for
a detailed overview of the results see Supplementary Fig. 3 and Supplementary
Table 7) of consecutive 20 s epochs (FFT routine, Hamming window, averages of
five 4 s epochs, resolution of 0.25 Hz) of each channel was performed and data were
log-transformed for parametrical statistical analysis. Comparisons between STIM
and NOSTIM sessions were performed for an individual hotspot-electrode
(that is, the EEG electrode showing the strongest reduction of low SWA during
STIM night out of the three selected TMS hotspot-electrodes (CH30, CH29 and
CH36 of the HCG sensor Net 128 of EGI) to account for anatomical differences
related to the combined MEP of ADM and FDI as done previously, for example,
in11, as well as for each EEG channel.

Further analysis based on single sleep slow waves was performed for the
individual hotspot-electrodes. For both sessions, the EEG signal (sampling rate
500 Hz) of the hotspot-electrode was offline re-referenced to the mean value of the
earlobe and filtered, using the same filter as for the online detection (Butterworth
0.5–2 Hz (stop-band o0.1 and 410 Hz)).
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In a first step the immediate response to the acoustic stimulation was analysed.
Therefore the following procedure was applied:

(i) For both nights, sleep slow waves were detected offline (similar to the online
algorithm applied during STIM session). A trigger was set, every time the
signal crossed a default threshold of � 30mV, in all artifact free N2 and
N3 epochs.

(ii) All detected slow waves slower than 0.5 Hz were excluded to ensure that the
signal is not influenced by the filter.

(iii) To account for overall changes in slow wave characteristics (in particular the
slope)50 we controlled for the number of detected slow waves across the
night. To do so, individual sleep cycles were defined for both nights and only
sleep cycles including at least 100 triggers during both nights were considered
for the analysis.

(iv) For the NOSTIM session the timing of the first trigger was individually
matched to the timing of the first trigger of the STIM session (after 10–15 min
of stable N3 sleep).

(v) For the STIM session only triggers where a tone was presented during the
night were included. During the STIM session we aimed to stimulate as
much as possible without waking up the subjects. As a consequence the
stimulation algorithm was turned off by the experimenter if there was any
sign of arousal, or during the cycle transitions (from NREM to REM or vice
versa). Thus, some slow waves were missed during the STIM session, where
no tones were played. Hence, less slow waves were detected during the STIM
compared to the NOSTIM session. To account for this difference in the
number of detected slow waves, we matched the number of analysed waves
between the two nights. To do so, for each sleep cycle, equal amounts of
detected slow waves during the STIM session were randomly selected in the
NOSTIM session. Next, the immediate peak-to-peak up-slope following
the stimulation (dividing peak-to-peak amplitude by the time between
negative and positive amplitude) and the duration of the slow waves were
calculated (time between the negative zero-crossing (start of the down-phase)
prior to stimulation and the next negative zero-crossing (end of the
up-phase)). This approach led to similar results as calculating the median
peak-to-peak up-slope and duration of slow waves, including all detected
slow waves. Since the former approach always results in slightly different
numbers, the median peak-to-peak up-slope and duration of slow waves
were taken for further statistics.

In a second step the induced changes of slow wave characteristics throughout
the night (that is, not only including slow waves which were directly disturbed)
were analysed. For this the following procedure was applied:

(i) All waves starting from the zero crossing of the up-phase, that is, the positive
part of the wave, and ending at the second zero crossing of the next
down-phase of any amplitude between 0.5 and 2 Hz during N2 and N3 sleep
were detected offline, using a similar routine as described by Riedner et al.50.

(ii) From these detected waves the mean peak-to-peak down-slope (dividing peak-to-
peak amplitude by the time between positive and negative amplitude) for each
subject and night were calculated.

(iii) Moreover, the probability of slow waves (defined as slow waves with
a peak-to-peak amplitude475mV) was calculated by dividing the number of
detected slow waves (475mV) by the total number of detected waves. For
exploratory purposes the analysis of induced changes on general slow wave
characteristics was extended to all channels (for this analysis data were down
sampled to 128 Hz to reduce computational load).

Since all sleep data were normally distributed (normality of the data was
confirmed using Shapiro-Wilk-Test), paired t-tests (two-tailed) were used for
intra-individual comparisons. For topographical comparisons nonparametric
cluster-based statistical testing was applied, using a suprathreshold cluster analysis
to control for multiple comparisons11,51,52. In short: For each topographical
statistical analysis (paired Student’s t-test and Spearman’s correlation) new
datasets were generated by randomly relabelling the condition label from original
data and either paired Student’s t-test or spearman correlations were performed,
respectively. For each permutation the maximal size of resulting clusters with
neighboring electrodes reaching a t-value above the critical value was counted to
build a cluster size distribution. From this cluster size distribution the 95th
percentile was defined as critical cluster size threshold. For the true comparison
(STIM vs. NOSTIM) only electrodes reaching a t-value beyond the CV and located
within a cluster larger than the critical cluster size threshold were considered as
significant (paired Student’s t-test: CV¼ 2.3, number of permutations 5000, n¼ 13,
spearman correlations: CV¼ 0.68, number of permutations 1,000, n¼ 9 and
CV¼ 0.6, number of permutations 1000, n¼ 10). All offline analyses of the sleep
data and statistical analyses were performed in MATLAB (MathWorks).

Correlation analysis. We calculated a SWA ratio (SWAhotspot STIM/SWAhotspot

NOSTIM) representing the change in SWA measured at the hotspot-electrode
between the STIM and NOSTIM sessions. Note that a SWA ratioo1 indicates
reduced SWA at the hotspot-electrode during the STIM compared to the NOSTIM
condition.

We also calculated a ratio of overnight change in variability (Variability ratio)
by dividing the Variability data obtained in the morning on day 2 by the Variability
of the evening on day 1 (VarMorD2/VarEveD1). This was conducted separately for the
STIM and NOSTIM sessions. Then, the effect of perturbation was quantified by
expressing the difference between the STIM and NOSTIM ratio as a percentage of
NOSTIM (Variability D ratio). This percentage represents the perturbation related
effect on the overnight change in Variability.

Variability DRatio ¼ Variability Ratio NOSTIM�Variability Ratio STIMð Þ
/ Variability Ratio NOSTIMð Þ�100:

Note that a lower Variability D ratio indicates an increase in Variability in the
STIM session compared to the NOSTIM session.

Identical calculations were performed on the FacIndex data. We calculated a
ratio of overnight change in FacIndex (FacIndex ratio) by dividing the FacIndex
calculated for the morning on day 2 by the FacIndex calculated for the evening on
day 1 (FIMorD2 / FIEveD1). This was conducted separately for the STIM and
NOSTIM sessions. Then, the effect of perturbation was quantified by expressing
the difference between the STIM and NOSTIM ratio as a percentage of NOSTIM
(FacIndex D ratio). This percentage represents the perturbation related effect on
the overnight change in FacIndex.

FacIndexDRatio ¼ FacIndex Ratio NOSTIM�FacIndex Ratio STIMð Þ
/ FacIndex Ratio NOSTIMð Þ�100

Note that a higher FacIndex D ratio indicates a loss in capacity to exhibit
a learning-induced increase in corticomotor excitability in the STIM session
compared to the NOSTIM session.

To explore whether changes in SWA caused by STIM versus NOSTIM were
statistically related to overnight changes in behavioural and neural markers of
plasticity, Spearman’s rank correlation coefficients were calculated between
(i) SWA ratio and Variability D ratio and (ii) SWA ratio and FacIndex D ratio.

These analyses used low-SWA (1–2 Hz) measured at the hotspot-electrode,
however, control analyses were conducted for all other frequency ranges and at all
128 electrodes (Supplementary Fig. 3 and Supplementary Fig. 7).

The alpha level for all statistical tests was set initially to 0.05 and significant
interactions were further analysed by post hoc tests, corrected for multiple
comparisons in line with the Modified Bonferroni procedure53, resulting in an
adjusted alpha value of 0.03. Null hypotheses were tested two-sided unless
otherwise stated. Data are presented as mean±s.e.m.

Control experiment. 14 subjects complied with the inclusion criteria but 7
dropped out due to poor sleep during screening night (n¼ 4), not sticking to
a regular sleep wake cycle or not tolerating the auditory stimulation (n¼ 3). Seven
naı̈ve, healthy, right-handed (95.4±6.2%; ref. 36) subjects (23.76±1.03 years,
4 females) completed the control experiment. The control experiment followed the
exact same experimental procedure as the main experiment, only that slow waves
were perturbed using acoustic stimulation (STIM) precisely time-locked to the
down-phase of sleep slow waves detected at an electrode overlying the
temporo-parietal cortex of the right hemisphere (that is, the hemisphere ipsilateral
to the moving hand). Because the mean amplitude of slow waves is generally
lower over the temporo-parietal region compared to the TMS hotspot region
(that is, primary motor cortex) we also adapted the threshold for online slow wave
detection slightly, to ensure that in the control experiment the same number of
slow waves were detected as in the main experiment. To do so we calculated the
mean amplitude over the temporo-parietal electrode (control electrode) and the
hotspot-electrode of the main experiment. We found that the mean amplitude was
reduced by B20% over the temporo-parietal cortex compared to the hotspot-
electrode. As a consequence we reduced the amplitude threshold from 30 to 25 mV
for the control experiment. The electrode over temporo-parietal cortex was selected
because the right temporo-parietal area is believed to have only a minor con-
tribution to the sequence learning task and previous experiments from our lab have
indicated that coherence in the SWA frequency range was low between the hot-
spot-electrode and the control electrode over right temporo-parietal cortex, indi-
cating that slow waves occur independently in the two areas.

Outlier detection, data analysis and statistics for the control experiment. We
calculated the same parameters as above. No outliers were detected when we
applied the same cutoff-criteria as in the main experiment. Our statistical analysis
focused on the Variability D ratio and the FacIndex D ratio because these
parameters summarize how STIM versus NOSTIM influences changes of
behavioural and electrophysiological learning indices between the evening of Day 1
and the morning of Day 2. Since the sample size of the control group (n¼ 7) and
the sample size of the experimental group (n¼ 13) was relatively low we applied
non-parameteric statistics. We used (i) the Wilcoxon sign-rank test to probe
whether STIM induced SWA reduction, Variability D ratio or the FacIndex D ratio
differed significantly from zero for either the experimental or the control group;
and ii) the Wilcoxon rank-sum test for probing whether STIM induced SWA
reduction, Variability D ratio or the FacIndex D ratio differed significantly
between the main and the control experiment. Since we had a clear directional
hypothesis the Wilcoxon rank-sum test was one-sided. Additionally, we calculated
Cohen’s d effect sizes for each of the above parameters and each group.
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Data availability. The ethical approval granted to the authors by the IRB does
not allow the publication of the raw data online. If readers would like to re-analyse
the data set (for different purposes), additional ethical approval (on a individual
user and purpose basis) will be required. The authors would be happy to
support additional ethical approval applications from researchers for access
to this data set.
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