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Summary

Columnar structures refer to dense cylindrical packings of spheres. They are

ubiquitous throughout botany, foams, and have recently also become popular

in nanoscience. We investigate such structures by carrying out computer

simulations, analytic calculations, as well as simple experiments.

Our simulations concern packings of soft spheres of diameter d inside a

cylinder of diameter D. We present a phase diagram of all stable structures,

including so-called line-slip arrangements, up to the diameter ratio D/d =

2.71486, where the nature of the densest sphere packing changes. We also

report on an experimental observation of such a line slip in a monodisperse

foam confined in a cylinder.

Since macroscopic systems of this kind are not confined to the stable states

of the phase diagram, we consequently explored structural transitions by car-

rying out further simulations. Such transitions are in general hysteretic. We

summarise details of a reversible transition in form of a stability diagram. All

permissible structural transitions of stable packings from the phase diagram

are then presented in a directed network.

Lee et al. [T. Lee, K. Gizynski, and B. Grzybowski, Adv. Mater. 29,

1704274 (2017)] recently developed a novel method to assemble columnar

structures inside a rotating cylinder. In this method the spheres, which are

of lower density than the surrounding fluids, are driven by a centripetal force

toward the central axis. Depending on the number of spheres, a variety of

structures were observed.
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We analysed this experimental method using analytic energy calculations

for structures of soft spheres. From these calculations, we obtained a phase

diagram displaying interesting features including peritectoid points. These re-

sults are corroborated by numerical simulations for finite-sample size with soft

spheres. However, they also extend our previous results with the appearance

of a line-slip structure due to finite-size effects.

The simplest columnar structure that can be assembled by Lee et al.’s

experimental method consists of a linear chain of spheres. Such a chain,

confined by a cylindrical harmonic potential, exhibits a variety of buckled

arrangements as it is compressed longitudinally by hard walls at each ends.

We developed a theoretical model, based on an iterative stepwise method,

as well as an analytic linear approximation to analyse this behaviour. A

wide range of predicted structures occurring via bifurcations are explored

and presented in an energy bifurcation diagram. The stable structures are

also observed in experiments using rapid rotations and simulations based on

energy minimisation.

Finally, we conclude all our results and present several directions this

work may be extended in the future. This includes the development of a

new simulation model of such structures for soft matter such as soap bubbles

or emulsion droplets. We present the limits of the soft sphere model used

in this thesis by comparing simulation results with those of an exact foam

simulation.
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Chapter 1

An introduction to columnar

structures

1.1 A Friday-afternoon experiment: Packing

golf balls in a tube

It was a typical cold and rainy Friday afternoon in our office at Trinity College

Dublin. Because we had no money to go for a pint and nothing better to do,

we decided to try out the following experiment using nothing more than golf

balls and an acrylic tube: We sequentially dropped roughly 40 golf balls into

the transparent tube, whose diameter was a bit more than twice the size of

the golf balls. To our surprise they stacked up there to a perfectly ordered

cylindrical structure, filling up the tube without any defects 1 .

This simple experiment of packing golf balls into a tube is one illustrative

method of creating structures that we call columnar structures due to their

cylindrical form. The self-assembled structure from this Friday-afternoon

experiment is displayed in Fig 1.1(a). Because of the flat office floor and

1Link to the video: https://www.reddit.com/r/ScienceGIFs/comments/b2c604/

ordered_columnar_structures_golf_balls_packed/

1

https://www.reddit.com/r/ScienceGIFs/comments/b2c604/ordered_columnar_structures_golf_balls_packed/
https://www.reddit.com/r/ScienceGIFs/comments/b2c604/ordered_columnar_structures_golf_balls_packed/
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(a) (b)

Fig 1.1: An illustrative experimental realisation of a columnar structure with golf balls

(a), compared to the corresponding simulated structure (b). Such a structure assembles

when golf balls are dropped sequentially inside a tube with a diameter ratio of D/d ≈ 2.22

between diameter of the golf balls d and tube diameter D. The black lines indicate the

contacts between neighbouring golf balls. A short video of the full assembly process can

found on reddit [7]. By using the same diameter ratio as in the experiment, this structure

can also be found with the simulation methods developed in this thesis (see (b)).

the particular ratio of tube to golf ball diameter the first three balls assemble

in an equilateral triangles at the bottom. When sequentially being dropped,

the next three balls then end up in the valleys created at the contact points

2



1.1. A Friday-afternoon experiment: Packing golf balls in a tube

of the bottom balls. Each layer of the following spheres is then rotated by

an angle of π/3 compared to the balls in the preceding layer. This particular

packing thus resembles close similarities to the hexagonal close-packed lattice.

With the black lines covering the packing we highlight the contacts be-

tween neighbouring spheres, giving us information about the contact network.

It actually reveals to us that some spheres in the packing of Fig 1.1(a) are

missing contacts with their neighbours. This exceptional type of structure

will be a particular focus of this thesis and therefore discussed and explained

in a later chapter (see chapter 2.3.2).

The same structure from this simple experiment, can also be calculated

from computer simulations (see Fig1.1(b)). Details on such simulation meth-

ods are a subject of this thesis. We will discuss and use a range of numerical

methods that are employed to simulate such structures.

The packing of golf balls depends on many external factors, such as fric-

tion, boundary conditions, assembly process, or history of the structure. If

neglecting such such external factors for reasons of simplicity, the packing

problem can be reduced to a geometrical problem. The only major control

parameter for such a simplified system is then the diameter ratio D/d of the

tube diameter D to sphere (or golf ball) diameters d. The rules of golf dictate

the golf ball diameter to be approximately d ≈ 4.27 cm and the tube diameter

is measured as D = 9.50 cm. Thus, we can estimate the diameter ratio for our

experiment to be roughly D/d ≈ 2.22. The corresponding simulated structure

from Fig 1.1(b) was found at the same diameter ratio.

Packing spheres (or golf balls) into a cylinder differs from other packing

problems in terms of it symmetry. The simple interaction type of spheres

makes this problem easy to simulate and investigate theoretically. Changing

the packed objects for instance to ellipsoids would increase the complexity

of this problem beyond the scope of this thesis. The cylindrical confinement

gives this particular packing problem also a rotational symmetry. This is

3
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for instance not the case for packing spheres into an elliptical confinement.

It leads to structures that can have an N -fold symmetry, such as the one

presented in Fig 1.1 which has a 3-fold symmetry.

1.2 What are columnar structures?

We call any cylindrical structure that constitutes of densely packed objects of

spherical-like shape, a columnar structure. This broad definition includes ran-

dom packings of spheres inside a large cylindrical container, as well as ordered

structures that are periodic in vertical direction, similar to the structure in

Fig 1.1. In order to obtain an ordered columnar structure, it is a vital feature

that the spherical objects are of equal size. In the following, we will refer

to packings of objects of equal size as monodisperse packings (i.e. the words

equal size and monodisperse can be used interchangeably).

In this thesis we only discuss columnar structures that are ordered (in the

sense of periodicity in one direction) and without internal spheres. All spheres

are therefore in touch with the cylinder wall. In this range of diameter ratios,

a random packing is not possible with monodisperse spheres since the sphere

packing can be mapped to a disk packing on the surface of the cylinder wall

(see chapter 2.4). Packings of monodisperse disks, however, do not form

random packings. Columnar structures with point defects are possible, but

not subject of this thesis.

Strictly speaking the definition of order excludes any type of mixed struc-

tures. For some of our investigations in later chapters, mixtures of two of such

ordered structures play an important role as well.

Packing equal-sized spheres densely inside cylinders (like our Friday-after-

noon experiment in Fig 1.1) is one of the simplest procedures to build them.

There are many more procedures to assemble such arrangements. Further

assembly methods include packing of spheres on the surface of a cylinder or

4



1.2. What are columnar structures?

a novel method involving rapid rotations [8]. A more remote but stimulating

occurrence are so-called “tubular crystals”; these consist of various columnar

structures interwoven in three dimensions [9].

A. Rogava even managed to build such a structure without any confine-

ment. He built a tower of tennis balls (see lower left of Fig 1.2) whose structure

resembled very close that of our golf balls [10]. In these experiments friction

between the tennis balls is vital. Without the friction there would be no

torque balance and the balls would roll away.

Fig 1.2: Building a columnar structure by a stacking tennis balls to a tower [10]. By

removing tennis balls from the outside layer in the pyramid on the upper right, various

types of tennis ball towers can be created. The one on the lower left resembles a columnar

structure very close to that in Fig 1.1. All structures are only held together by friction.

The image was taken from Ref [10].

He started his experiments with tennis balls stacked to a pyramid (see

upper right image of Fig 1.2). By carefully removing some of the outside

balls, he first ended up with a symmetric structure of 16 balls with three

5
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hexagonal and three triangular sides (image top left of Fig 1.2). In a second

try, he was also able to build a bizarre, Christmas-tree-like structure made

of 14 balls (image middle right of Fig 1.2). By removing the bottom outer

balls, he ended up with a small tower of seven tennis balls that already is

a small columnar structure (image lower right of Fig 1.2). By adding more

tennis balls to the tower, a very similar structure emerged to that of our golf

ball packing in Fig 1.1. The top ball here is crucial for keeping the structure

steady: it presses down on the three balls in the layer below.

Throughout this thesis we focus on two different assembly methods for

columnar structures, mainly with theories and simulations. One of them is

the assembly procedure of identical spheres packed inside an infinitely long

cylinder. The other (more novel) method involves rapid rotations of spheres

inside a liquid-filled tube. This process was first used by Lee et al. [8] to

experimentally create such structures. From our theories and simulations, we

predict which ordered structures are to be expected under what conditions.

1.3 The phyllotactic notation: Categorising

columnar structures

One way of classifying ordered columnar structures uses the phyllotactic no-

tation, adopted from botany. As the ancient Greek origin of the name “phyl-

lotaxis” suggests (phyllon = leaf, táxis = arrangement), it describes the ar-

rangement of leaves of a plant. The term was first coined by Charles Bonnet in

the 18th century [11]. In his book “On Growth and Form” (1917), the mathe-

matical biologist D’Arcy Thompson analysed such arrangements of plant parts

around an axis [12]. This included cylindrical structures like leaves around

a stem, pine cones, or pineapples, but also the planar patterns of florets in

a sunflower head. While the arrangement in the former are cylindrical, the

6
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spirals in the latter are arranged on a disk.

Phyllotaxis in the context of disk arrangement was recently investigated

by Sadoc et al. [13]. They looked at dense organisation of small disks inside

a large circular domain. By using an algorithm that sets out of the disks on a

Fermat spiral, they investigated the very nature of this assembly. Our focus,

however, will be on phyllotaxis in the context of cylindrical structures.

0 2 4 6

D/d · θ
−3

−2

−1

0

1

2

3

z/
d V

3

3

Fig 1.3: The rolled-out contact network of an example columnar structure for explaining

the phyllotactic notation. Each blue dot represents a sphere rolled-out into a plane of

height z and azimuthal angle θ. The grey lines show the contacts between neighbouring

spheres. The length of the periodicity vector V (in black) is equal to the circumference of

the cylinder. It takes three spheres to go along this vector from the centre sphere to its

first periodic image and none along any of the red arrows; hence one duplet to characterise

this structure is (3, 0). The second duplet (3, 3) is found by counting the number of spheres

along the two red arrow. Combining these to the phyllotactic notation, the structure is

identified as a (3, 3, 0).
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Chapter 1. An introduction to columnar structures

In columnar structures, such a phyllotactic pattern can be found in the

rolled-out contact network. Each sphere position is displayed as a dot and

the contacts between neighbouring spheres are represented by lines. The

phyllotactic pattern is achieved by rolling out the positions and contacts into

a plane. For the type of columnar structures that we focussed on during this

thesis, it forms a triangular lattice, such as the one in Fig 1.3.

Other types of lattices are also possible. For example, the rolled-out pat-

tern for a linear chain of spheres (the simplest columnar structure) consists of

vertical lines. Square lattices can be observed for zigzag structures as well as

columnar structure with internal spheres [14] that are outside of the scope of

this thesis.

Since the phyllotactic patterns are two-dimensional, only two numbers are

necessary to describe them. However, a duplet notation would be ambiguous

since these numbers might differ depending on the chosen coordinate system.

Thus, these structures are best described by a triplet of positive integers

(l = m+n,m, n) with l ≥ m ≥ n. Each number l,m, and n describes a family

of lines within the 2D rolled-out pattern (or spiral in the 3D packing). They

count the number of spirals in each direction until the spiral repeats (at the

dashed lines). This notation, however, only applies to triangular lattices and

is therefore restricted to the structures without internal spheres (as covered

in this thesis).

For instance, Fig 1.3 shows this type of pattern for the (3, 3, 0) structure.

This structure is similar to that in Fig 1.1; their differences are marginal.

This structure consists of layers of spheres stacked on top of each other with

three sphere in each layer. Each sphere is here in contact with all of it six

neighbouring spheres.

The phyllotactic pattern is characterised by the periodicity vector V . It

starts at the blue dot in the origin and wraps around the cylinder where it

points to the first periodic image of the dot in the origin. For the example

8
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Fig 1.4: The rolled-out contact network of the columnar structure in Fig 1.1. Each blue

dot represents a sphere rolled-out into a plane of height z and azimuthal angle θ and the

black lines are contacts between neighbouring spheres. This contact network differs from

that in Fig 1.4 solely by the missing contacts that are also visible in Fig 1.1. This structure

is classified as a (3,3, 0) line-slip structure in phyllotactic notation. Details of this structure

are discussed in 2.3.2.

in Fig 1.3, this vector can be decomposed into two red basis vectors of the

triangular lattice.

One duplet of integers to categorise this structure can then be obtained

by counting the number of blue dots (or black lines) along these two vectors,

which form a coordinate system in this pattern. The corresponding duplet

is then (3, 3). A further coordinate system is given by the periodicity vector

V and one of the red vectors. Since in our example the periodicity vector

V coincides with a basis vector of the triangular lattice, the duplet within

9



Chapter 1. An introduction to columnar structures

this coordinate system is (3, 0). To avoid ambiguity, these two duplets can be

combined to a triplet. Therefore, in the phyllotactic notation a structure that

has this type of triangular lattice is described by the integer triplet (3, 3, 0).

The rolled-out contact network of the golf ball packing from Fig 1.1 is

shown in Fig 1.4. Here we can spot the missing contacts between neighbour-

ing spheres again that we already saw in the highlighted contact network of

Fig 1.1. Fig 1.4 exposes that those gaps appear along a line; hence we will

call this type of structure line slips (see chapter 2.3.2 for details). Since this

line of missing contacts crosses one of the red arrows, we will mark one of the

“3”s in the integer triplet with a bold number. The phyllotactic notation of

the example structure in Fig 1.1 (and 1.4) is written as (3,3, 0).

1.4 From botany and foams to nanoscience:

Applications of columnar structures

Ordered columnar structures appear in various research fields on a broad

range of length scales from metres down to the nanoscale. Fig 1.5 illustrates

examples from four different research topics ordered by their length scale. On

the largest scale, such structures can be found in botany where seeds of a

plant assemble around the stem. Plants like the titan arum can be up to a

metre in size [17].

On a slightly smaller scale bubbles of equal size crystallise to columnar

foam structures when confined in a glass tube. The bubble and tube diameters

for such foam structures are usually of centimetre scale.

In nanoscience such structures can be found in man-made objects which

are on length scales from a micron to the nanoscale. Novel materials, such as

rods or fibres, are assembled with these structures, where the spheres are on

the nanoscale, but the length of the objects is on the microscale [16, 18].

10
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nm

m

nanoscale

macroscaleBotany

Foam

Microrods

Nanotubes

cm

µm

Fig 1.5: Examples of columnar structures from length scales ranging from nanometres

(nm) to the metre scale (m). The example on the nanoscale shows particles trapped inside

nanotube (taken from [15]). They can also be used to build rods/fibres where the rods/fibres

are on the size of a micron (taken from [16]). The research on the macroscale investigates

columnar structure in foams and botany. The plant shown here is the titan arum (also

called corpse flower) (taken from [17]). All examples are discussed in great detail in the

text.
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Furthermore, these structures also form when molecules such as fullerenes

(C60, C70, or C78) are trapped inside a nanotube [15]. Here they are also

used to alter chemical and physical properties of such nanotubes.

In this section we will discuss all of these research fields from different

length scales in closer detail. We will first give two examples from botany and

discuss a selected range of literature on this topic. In the second subsection, we

then cover the recent foam research on these structures, up to open questions

of current investigations.

At the end of this section, a few interesting applications from nanoscience

are introduced. We depict two applications of these applications in closer de-

tail: Wu et al. from Penn State University built microrods of Si nanoparticles,

which display similar structures as found in our simulations [16]. At Harvard,

Tanjeem et al. are trying to create a so-called optical metamaterial with a

negative refractive index from these packings [19]. They self-assemble such

structures by packing nanocolloids on the surface of a cylinder.

1.4.1 Examples from botany

Because of their appearance in plants, columnar structures were first studied

in botany [12, 20]. But they are also of interest in other biological areas,

including bacteria, viruses, and microtubules [21–24]. Quite recently, such

structures were discovered in the notochord of the zebra fish as well [25].

An extensive literature about regular arrangement of lateral organs in

plants and flowers has been generated over the last century by biologists and

mathematician alike. Their main interest lies in modelling suitable synthesis

of realistic images of flowers and fruits that exhibit such spiral phyllotactic

patterns. Reviews on this are given by Erickson in Ref [26] and by Linden-

meyer et al. in Ref [27]. Most of the mathematical models relate arrangements

from botany to packing problems. Lindenmeyer et al. [27] describe one model

that reduces phyllotaxis to the problem of packing circles on the surface of a

12



1.4. From botany and foams to nanoscience: Applications of columnar
structures

cylinder. In this model, the arrangement of the lateral organs in a plant is

described purely by geometry, similar to the models that we use throughout

this thesis.

One of the largest flowers where the berries arrange in a regular cylindrical

form is the titan arum, also called corpse flower due to its rotten smell. An

image of it is displayed at the top of Fig 1.5. This flower can be up to 3m in

height and is natively solely found in western Sumatra and western Java.

Less exotic plants with such structures can also be found in Ireland. Two

examples from Dublin are presented in Fig 1.6. Fig 1.6(a) displays a plant

called “arum maculatum” with common names such as “jack in the pulpit”

or “cuckoo-pint”. Its berries are similar to that of the corpse flower, which is

its larger relative. However, the cuckoo-pint is much smaller in height (height

∼ 20 cm) and can be found all around Europe.

The berries that form the regular arrangement around the stem of the

plant start to occur in autumn. The berry arrangement varies with the stem

to berry size, but ordered structures might only occur when all berries have

a similar diameter. Otherwise the berries form a structure with defects or

simply random clusters around the tip of the stem. 2

Another plant that can be found in many gardens of residential areas in

Ireland is the Australian bottlebrush (see Fig 1.6(b)). It assembles its seed

capsules around a branch of the plant. With varying ratio of seed capsule size

to branch size, different structures can be observed.

It originates from Australia, where it is mostly found in more temperate

regions. But since it favours moist conditions, it thrives as well when planted

in gardens in Ireland. When blooming in the summer time the seed cap-

sules turn into brush-like flowers resembling a traditional bottle brush. This

2While the berries of the cuckoo-pint start out green, they turn into a bright attractive

red with time. However, such berries are extremely poisonous, resulting in swelling of the

throat to upsetting the stomach.
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Chapter 1. An introduction to columnar structures

(a) (b)

Fig 1.6: Two examples of columnar structures from botany. The two images show plants

found in Dublin, where the berries/seeds assemble around the stem in a columnar fashion.

(a) displays the arum maculatum spotted in Bushy Park, Rathfarnham, Dublin. In (b) the

Australian bottlebrush, which was found in Templeogue, Dublin, is shown.

appearance is what gives the plant its common name.

1.4.2 Dry and wet foam structures

Another occurrence of ordered columnar arrangement on the macroscale are

foam structures confined inside a glass tube. They can be realised experimen-

tally with equal-sized soap bubbles inside a glass tube [28–31]. These foam

structure play a major role in this thesis, since we performed such experiments

in chapter 3.2 in order to compare simulations with experiments. Thus, we

discuss the experimental set-up, as well as major results from recent years, in

the following paragraphs.
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Liquid Q

Gas

Fig 1.7: Experimental set-up to produce columnar foam structures. Gas is introduced

at a constant flow rate q0 into a surfactant solution to create bubbles of equal size. By

a bubbling needle, the bubbles of equal size are filled sequentially into a glass tube from

the bottom. There they crystallise to a columnar foam structure. Their liquid fraction is

increased by feeding the foam column with a surfactant solution with a liquid flow rate Q

from top (forced drainage).

In the experiments, the foam structures are created by filling the tube

sequentially with bubbles from the bottom (see Fig 1.7 for an illustration of

the experimental set-up). A steady stream of bubbles is produced by blowing

air through a needle dipped in a surfactant solution. Bubbles of equal size

are created by using a constant gas flow rate q0. They are then collected in

a cylindrical tube, where they crystallise to a columnar foam. The resulting

foam column is put under forced drainage by feeding it with surfactant solution

from the top with a liquid flow rate Q. With this method, the amount of liquid
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Chapter 1. An introduction to columnar structures

(or the liquid fraction) in the foam can be adjusted [32, 33].

Depending on the liquid fraction in the foam, the columnar foam crystal

can either be a dry or wet structure. Dry foam structures have a low liquid

fraction and the cell shape consists of polyhedrons (see foam structure in

Fig 1.5 or Fig 1.8(a) and (b)). In wet foams the bubble shape is spherical due

to a high liquid fraction (see Fig 1.8(c)).

These foam crystals from the dry to the wet limit have been extensively

studied over the last 20 years [28–32, 34]. Experimentally discovered foam

structures from Refs [30, 31] have a very close structural resemblance with the

sphere packings presented in this thesis. Many of these structures have been

discovered, classified with the phyllotactic notation, and tabulated throughout

the years.

Previous work on columnar foams has not only focussed on experiments,

but also computer simulation. Most simulations in the past have been carried

out using the Surface Evolver [35] software and have focused mainly on dry

structures [29, 30, 36]. Surface Evolver is a computer program for modelling

surfaces shaped by surface tension, other energies, and external constraints. It

is based on surface energy minimisation, i.e. it evolves a given surface structure

towards minimal energy by various types of numerical minimisation routines.

Fig 1.8(a) shows the zigzag structure, simulated with Surface Evolver, and

(b) displays a photograph from the experiments [30].

This simple zigzag structure was the subject of intensive experimental

investigations itself. The observation of a moving interface with increasing

liquid fraction was reported by Hutzler et al. in 1997 [32]. This included an

unexpected 180° twist interface, whose explanation is still lacking.

Further discovered structures include complex structures with internal

spheres (or foam cells) [29, 31]. Some dry foam structures with interior cells

were found to consist of a chain of pentagonal dodecahedra or Kelvin cells in

the centre of the tube [29]. Many more arrangements of this type were also
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(a) (b)

(c) (d)

Fig 1.8: Columnar structures of soap bubbles confined inside a glass tube. (a) and (b)

show a zigzag structure of a dry foam in Surface Evolver and experiments, respectively. Bot

images were taken form Ref [30]. (c) displays a wet foam from a forced-drainage experiment.

In (d) more complex foam structures with internal spheres are shown. These structures were

imaged using X-ray tomography in Ref [31].
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investigated in close detail using X-ray tomography to accurately determine

the position of each bubble [31]. It was observed that the outside bubble layer

is ordered, with each internal layer resembling a different, simpler columnar

structure. Two examples imaged with X-ray tomography are presented in

Fig 1.8(d).

Transitions between different foam structures were also explored experi-

mentally with two different techniques: The bubble diameter can be altered

by adjusting the gas supply that creates the bubbles, changing the effective

diameter ratio between tube diameter to bubble diameter. Structures can also

be transformed by dilating or compressing the foam inside the tube. Pittet

and Boltenhagen used both techniques to force structures into such crystallo-

graphic transitions [28, 37–39]. They examined them through experiments as

well as simulations.

In a recent discovery by our collaborating Photographer Kym Cox, we

found out that such foam structures can also be made of chain-like arrange-

ment of soap bubbles without the confinement of a tube [40]. The soap bubbles

self-assemble to such structures when being pushed out of a vertical tube.

There they spontaneously arrange into various types of columnar structures

(see example in Fig 1.9).

The left image of Fig 1.9 shows an image of such a bubble chain taken by

Kym Cox. We were able to simulate the same structure using Surface Evolver

(right image of Fig 1.9). In these simulations the structure is not confined by

any cylindrical wall or confinement. Instead the top bubbles are fixed to a

ceiling and the cylindrical symmetry is preserved by stretching the structure

under gravity.

Similar experiments and simulation have been done for further cylindrical

bubble chains. We conjecture that the chain structures are determined by the

bubble to tube ratio for short chains. In short chains the gravitational force

in vertical direction is approximately constant throughout the structure due
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Fig 1.9: Photography/experiment (left) taken by the collaborating Photographer Kym

Cox and Surface Evolver simulation (right) of recently discovered chain-like arrangement

of soap bubbles which display columnar structures [40]. In the experiments monodisperse

bubbles are slowly pushed out of a vertical tube, where they spontaneously self-assemble

into columnar structures. In the Surface Evolver simulations, gravity was implemented to

preserve the cylindrical symmetry.

to the heavy weight of the drop at the bottom (see left image of Fig 1.9).

For longer chains each bubble will also experience a gravitational force due to

the weight of all the bubbles below it. Thus, there will be a pressure gradient

acting on the structure which might result in structure changes with structure

length. However, a rigorous study of these structures and their assembly has

not yet been published. We are currently preparing a manuscript on this

study [40].

19



Chapter 1. An introduction to columnar structures

1.4.3 Nanoscience: Microrods and optical metamateri-

als

Up to now we have discussed the ubiquitous influence of columnar structures

on botany and foam research. However, they are also increasingly recog-

nised in physical sciences on smaller scale, particularly in nanoscience [16, 19,

41–44]. There they appear in a huge variety of man-made objects with the

goal to create novel materials. For example, they are popular structures in

the fabrication of nanowires, microrods, or microfibres [16, 18, 45, 46]. The

structures can then determine the stiffness of such wires or fibres, as examined

by Wood in his thesis [47].

Many researchers also tried to alter the properties of nanotubes by trap-

ping identical particles inside them [15, 42, 43, 48–51]. These were mostly done

by self-assembling fullerenes such as C60, C70, or C78 into carbon nanotubes

(see also image at the bottom in Fig 1.5) [15, 48, 49], but also boron nitride

nanotubes [43]. Thus, columnar structures were studied intensively in the

context of nanotubes.

Fig 1.10 displays four images from different fields of nanoscience [16, 19,

52]. In this subsection we will describe those examples in greater detail and

provide background about the research. While the previous examples from

botany and foam research has little applications outside of their own research

field, the examples from nanoscience may be applied to material science, such

as liquid crystals or optical metamaterial.

Structures not too different from columnar structures occurred also in

research with pharmaceutical background where particles were coated on the

surface of a spherocylinder [52]. The incentive is to coat these drug particles

as densely as possible on the spherocylinder to provide the best medical

treatment. Thus, such structures in this context may play a vital role in

drug deliveries. Lazáro et al. examined the morphologies of virus capsid
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proteins self-assembled around metal nanorods through simulation as well

as experiments [52]. One of their simulated packings on a spherocylinder is

displayed in Fig 1.10.

Wu et al. built rods as illustrated in Fig 1.10(b) of the size of several

microns (scale given in Fig 1.10(b)). These microrods are created by densely

packing silica colloidal particles inside cylindrical pores. By solidifying the

assembled structures the microrods were imaged and examined using scanning

electron microscopy (SEM).

The assembly process consists of three steps. First, charged silica nanopar-

ticles with a diameter of d ∼ 500 nm are deposited inside PDMS (Poly-

dimethylsiloxane) nanopores of diameter D = 1.8 µm and length L = 8 µm.

Such particles are dispersed inside a photo-cross-linkable monomer of simi-

lar refractive index (ETPTA). Due to the Si particles’ long-range repulsive

interaction, they are called “soft colloids”. This also gives them an effective

diameter, dependent on the Debye length, which is much larger than their

actual diameter.

Inside the PDMS pores they then assemble into ordered cylindrical struc-

tures. In order to achieve a variety of arrangements for the same pore and

particle diameter, the concentration of particles is increased for different pores

(at fixed pore length). In our simulation in chapter 3, this corresponds to a

variation of the uniaxial pressure.

By UV-curing the samples in a second step, the ETPTA crosslinks, solid-

ifying the dispersion inside the PDMS pores to a solid cylindrical rod. The

assembled Si particles are locked into place within this cylindrical rod and the

PDMS mold around those rods can be peeled off.

Since this leaves the columnar structure hidden inside the solidified ETPTA,

one last step is needed to make the Si particle arrangement visible again. The

outside polymer layer is removed by using oxygen plasma. With direct imaging

techniques such as SEM, Wu et al. took images of the microrods as those seen
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in Fig 1.10(b).

From a closer look at Fig 1.10 (b) one can observe a few distinct structures

of their microrods. By increasing the concentration of nanoparticles inside the

pores from 15% to 40%, they found 8 different dominant sphere packings.

The simplest one was the (2, 1, 1) or zigzag structure, but they also report

on complex structures with a 1D internal column of particles. Fig 1.10(b)

also shows the coexistence of multiple packings within one microrod. We will

describe similar structures with this feature in chapter 4.

In order to demonstrate the ability to obtain a desired structure in a

controlled way, Wu et al. compared their structures to Molecular Dynamics

(MD) simulations. For the sphere interaction they used a pairwise-additive,

long-range repulsive force, derived from a simple Yukawa potential. Similarly,

wall interactions were implemented for the channel wall, as well as top and

bottom. By varying the number of colloidal particles in the cylinder until

reaching a steady state, they discovered the same structures as in the experi-

ments. The nanoparticle concentration for the simulation was observed to be

slightly smaller than that in the experimental structures.

Such microrods, whose physical properties such as stiffness or conductivity

highly depend on the assembled columnar structure, can find applications in

novel materials, such as liquid crystals, in the future. We will discuss the

structure depends of the conductivity for line slips in chapter 2.3.2. In a

liquid crystal, the percolation threshold (the lowest concentration at which a

liquid crystal is conductive) is directly proportional to the conductivity of its

constituents. The structure type of the microrod therefore directly influences

this percolation threshold. Further possible applications of microrods with

varying conductivity may also include organic solar cells [53] and optoelec-

tronics [16].

Tanjeem et al. are currently investigating columnar structures with the

long term goal to develop so-called optical metamaterials [54, 55], i.e. materials
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(a) (b)

(c) (d)

Fig 1.10: Examples of columnar structures in nanoscience. (a) Simulation of particles

coated on the surface of a spherocylinder (length Lcyl ∼ 45 nm) where they are used for

drug delivery (image taken from [52]). (b) Microrods of length of a few microns can be

created by depositing Si nanoparticles inside PDMS pores (image taken from [16]). In

(c) and (d) candidates of optical metamaterials are shown (images received in form of

private communication from [19]). This is a material with a negative refractive index [19].

The structures are built by self-assembling nanocolloids (d ∼ 500 nm) on the surface of a

cylinder. A defect structure consisting of a line slip with a kink in (c) as well as a line-slip

structure in (d) were discovered. Line slips will be discussed in detail in chapter 3.2.
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with a negative refractive index. No material with such a property exists in

nature, but they have been achieved in the past by man-made objects [56, 57].

Refraction of a light beam at the interface to a medium with a negative re-

fractive index leads to a negative angle of refraction. Because of this property

optical metamaterials find interesting applications in super lenses or optical

cloaking [56, 58]. Super lenses have the ability to go beyond the diffraction

limit and can thus be used for super-resolution imaging.

An optical metamaterial is composed of constituents that are smaller than

the wavelength of light [55]. For visible light that means the elements must

be smaller than 100 nm. Most metamaterials of current research operate for

microwaves, which have a wavelength on the microscale and thus feature larger

micro-scale structures.

These constituents act like resonators that strongly scatter incoming light

of a certain frequency. This light is scattered isotropically which means that

the resonance doesn’t depend on the orientation of the resonator or the direc-

tion of the incoming light [55].

Tanjeem et al. are trying to construct such a resonator by self-assembling

nanospheres on the surface of the cylinder [19]. The nanospheres (d ∼ 700 nm)

are therefore suspended in an SDS (sodium dodecyl sulfate) solution together

with a cylinder of diameter D. A depletion force between the nanospheres and

the cylinders sticks the spheres to the cylinder. For this effect, the cylinder

diameter has to be much larger than the diameter of the nanospheres (D/d ≈

3 − 5). The diameter ratio for their structure is therefore above the limit of

structures that we investigate in this thesis. However, their structures show

nonetheless similarities.

Depending on D/d, Tanjeem et al. [19] found different crystalline struc-

tures, some of them being metastable. Fig 1.10(c) and (d) present two example

structures at the same D/d. One of them is a ground-state line slip (image

(d)) with one straight helical line (highlighted in (d)). This type of structure
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(for smaller D/d) does also play a vital role in this thesis. Its features will be

explained in detail in chapter 2.3.2.

They also discovered another type of line slip with kinks (see image (c)).

From comparison with finite-temperature simulations, they found out that

the kinks represent low energy excitations from the line-slip structure [19].

Due to the chiral nature of some columnar packings, such structures built

out of nano-composites may also play an interesting role in nanoscience related

to photonics [59, 60]. Chiral structures are those that have resemblance to a

cork screw [such as the structure in Fig 1.10(c)], whereas achiral structures

are symmetric around a rotational axis. A mathematical definition together

with example structures from simulations are discussed in chapter 2.3.

Chiral structures possess special interesting optical properties that can be

used for applications such as optical sensors or photonic crystals [53]. For in-

stance, chirality is a necessary geometrical feature for building a beamsplitter

that splits incoming light into s- and p-polarised light [61, 62]. Turner et al.

[61] built such an optical device from a novel photonic crystal with a chiral

asymmetry.

Of further interest in the context of photonic crystals are structures with

a 4-fold symmetry. Those structures have a discrete rotational symmetry that

the structure looks the same when rotated around the vertical axis by π/2.

This particular rotational symmetry has the special property of destroying

circular dichroism [63]. Circular dichroism describes the effect of a material

that absorbs left- and right-handed light of a circular polarising light source to

different amount. Saba et al. discovered that crystals with a 4-fold symmetry

destroy this property, making this geometry an attractive design for photonic

materials. Columnar structures with the phyllotactic notation of the form

(n4, n4, 0) possess such a 4-fold symmetry.
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1.5 How this thesis advances the research field

For all these applications columnar structures have been intensively studied.

Many experiments and simulations have been carried out to examine their

occurrence in a specific scientific subject. This vast amount of previous in-

vestigations raises the question: How can this thesis significantly advance the

research field of columnar structures by using simulations as well as experi-

mentally?

Previous computer simulations such as the MD simulation byWu et al. [16]

replicated the full corresponding experimental process of assembling columnar

structures. Therefore, the full movement of each sphere during this process

is simulated, which makes the simulation computationally intensive as well as

complex.

Many previous simulations also use a specific particle interaction that are

exclusive for particular experiments. Troche et al. [15], for instance, used

specific models to simulate the interactions between fullerenes. This allows

a close comparison with corresponding experiments, but it also restricts such

simulations to a particular experimental context.

We, however, perform throughout this thesis simulation methods that are

based on generic models and therefore applicable to a variety of contexts.

While they are only a first order approximation for the particle interaction,

they still provide a good comparison between simulation and experiment for

general columnar structures in equilibrium. Such concepts and generic models

will be introduced in chapter 2.2.

Since we strictly search for structures in mechanical equilibrium instead of

simulating the full movement of each sphere, our simulations are also computa-

tionally efficient as well as simple in the implementation. We therefore quickly

achieve important information about the equilibrium structures. Those can

then be compared to experimental structures or those simulated with more
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complex algorithms.

The simplicity of the generic models also allows us in some parts to develop

analytic calculations for columnar structures. Analytic calculations have the

advantage that they do not require any computational power to predict in-

formation about equilibrium structures. Such calculations are carried out in

chapter 4.2 to investigate columnar structures assembled in a process involving

rapid rotations.

Both the efficiency of the computer simulations and transparency of the

analytic calculations allow us to construct phase as well as stability diagrams

for different types of assembly methods. These will play a major role in chapter

3 for computer simulations as well as in chapter 4 for analytic calculations.

Phase and stability diagrams comprehensively convey information about the

existence and stability of different columnar structures, respectively.

After the introduction of concepts and models in the following chapter, we

investigate packings of soft spheres in chapter 3 using simulations as well as

experiments of soap bubbles inside glass tubes. In chapter 4 we present a phase

diagram derived from analytic calculation for a novel assembly process of

columnar structures that involves rapid rotations. Chapter 5 then focusses on

equilibrium configurations of spheres inside a cylindrical harmonic potential.

These are investigated experimentally, as well as using a numerical scheme

based on a generic model. In the last chapter, we conclude and summarise

all our results and present an outlook for possible future work related to this

thesis.
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Chapter 2

Models and concepts for

columnar structures

This chapter introduces the models and concepts that are needed to describe

the type of columnar structures that we introduced in chapter 1. It will

introduce the reader to important terminology used in later chapters and

covers the simulation models, such as the hard and soft sphere models.

We start with introducing the concept of packing fraction φ. After ex-

plaining the concepts of soft and hard spheres, we look at different types of

structures, including uniform and line-slip structures, which have previously

been observed in columnar packings of hard spheres. We then discuss the

previous work [14, 64, 65] on densest hard sphere packings where uniform

and line-slip structures and their structural transitions have occurred. Since

most simulation methods that we use in this thesis are based on minimisation

algorithms, the most common ones for simulating columnar structures are

reviewed at the end of this chapter.
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2.1 The packing fraction φ

An important physical property of a dense packing of spheres in general is its

packing fraction φ. The packing fraction is defined as the ratio of the total

volume of a set of objects to the volume of the space into which they are

packed. It is a measure for how efficiently the objects are packed into the

given space.

In crystallography, this measure is a well established characteristics for

different kinds of lattice packings of spheres such as the fcc (face-centred

cubic), bcc (body-centred cubic), or hcp (hexagonal-close packed) lattices.

Hales proved that the highest packing fraction achieved by such lattice packing

of spheres in 3D is φ = π/3
√
2 ≈ 0.74, which was already conjectured by Kepler

[66]. The sphere packings arranged as fcc and hcp lattices achieve this packing

fraction, while the packing fraction of sphere packings arranged as the bcc

lattice is approximately φbcc ≈ 0.68. Further types of lattices created by

packings of spheres or ellipsoids together with their packing fractions were

investigated and tabulated in Ref [67, 68].

The packing fraction is defined by the ratio of the total sphere volume

to the volume of a unit cell, in which the spheres are packed. For ordered

columnar structures, the total sphere volume isN ·Vsphere = N4/3π (d/2)3, where

N is the number of spheres and d the diameter of a sphere. The volume of the

space into which the spheres are packed is defined as a volume of a cylindrical

unit cell Vcell = Lπ (D/2)2 with length L and diameter D. The unit cell is the

smallest portion of the periodic structure that shows the pattern of the entire

ordered structure. The packing fraction is then calculated as

φ =
NVsphere

Vcell

=
2Nd3

3LD2
, (2.1)

where d is the diameter of a sphere [14].
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2.2. Hard vs soft spheres

2.2 Hard vs soft spheres

As we have seen in the introduction, the spherical constituents of columnar

structures vary from golf balls and tennis balls to berries, seeds, soap bubbles,

emulsion droplets and micro- and nanospheres. All of these interact in dif-

ferent ways and require different interaction models if studied in detail. Soap

bubbles for instance deform and change their shape when in contact (more

details discussed in the outlook of chapter 6). Micro- and nanospheres are

often described by the Lennard–Jones type of potentials, which consists of an

attractive and a repulsive term [16, 45].

However, generic models are generally sufficient for a qualitative and semi-

quantitative understanding of the structures formed. Throughout this thesis,

we will use two generic models which are both based on a purely repulsive in-

teraction: the hard and soft sphere models. By using purely repulsive models,

we disregard any possible attractive interaction between the spheres which is

the case for spheres with opposite charge. However, the spheres are then not

identical anymore. Both, the hard and soft sphere models are introduced in

this section.

They are both easy to implement and impress with their simplicity. Yet,

packings of various constituents such as soap bubbles or colloidal systems

have been simulated quite well to a first order approximation with these

models. Especially the hard sphere model has already been used extensively

for simulating columnar structures [14, 64, 65, 69–72].

2.2.1 The hard sphere model

The interaction model of hard spheres originates from simulating particles

in statistical mechanics of fluids and gases [73, 74]. There, thermodynamic

properties of hard sphere systems have been investigated analytically as well

as with simulations.
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d
i j

Fig 2.1: Illustration of the hard sphere model: Hard spheres do not overlap. The centre-

centre distance between two hard spheres i and j of equal size is always at least the diameter

d.

The interaction of two hard spheres is illustrated in Fig 2.1. Two hard

spheres i and j cannot be closer together than the sum of their two radii.

For spheres of equal size their closest centre–centre distance is equal to the

diameter d. Hence hard spheres behave like impenetrable spheres and do not

overlap. Their interaction energy is sometimes modelled as being binary. If

two hard spheres are further apart than the sum of their radii, the energy is

zero, otherwise infinity.

We use this model in chapter 5 to describe equilibrium configurations of

spheres inside a cylindrical harmonic potential. The numerical results are then

compared against experiments done with polymeric beads, which (as we will

see) are impenetrable in our experiments and thus behave like hard spheres.

2.2.2 The soft sphere model

While previous theoretical studies of columnar structures are primarily done

with hard spheres, our focus in chapter 3 and 4 lies on structures of deformable

spheres. The major application of these investigations are soft matter systems

such as foams, emulsions, but also many constituents from other research

fields, such as colloids and nanoparticles have a soft repulsive interaction [16,

44, 45].
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i j

(a)

overlap −δij

E
n

er
gy
E

S ij Uij ∝ δ2ij

(b)

Fig 2.2: Illustration of the soft sphere interaction. (a): Two soft spheres i and j interact

like repelling spring, when they have an overlap δij (See text for definition of overlap δij).

(b): Their interaction energy ES
ij increases continuously with the overlap squared, ES

ij ∝ δ2ij .

This models the deformation energy of each sphere due to the contact.

Opposite to the hard sphere model, two soft spheres can become closer

together than the sum of their radii; hence they can overlap. We define the

overlap δij for two spheres of same diameter d as

δij = |ri − rj| − d , (2.2)

where ri and rj are the centre positions of spheres i and j.

Two soft (monodisperse) objects, such as two bubbles, deform when they

are pushed together closer than their diameter d. An interaction energy term

can be ascribed to this deformation. In the soft sphere model this interaction

energy ES
ij between the ith and the jth spheres is modelled as a function of

the square of the overlap δij, if the two spheres are overlapping (and otherwise

the energy is zero). In detail, the interaction energy between to soft spheres

is

ES
ij =

0 δij > 0

1
2
kδ2ij δij ≤ 0

(2.3)

where k is a constant.

This is the same energy as in Hook’s law for a harmonic repelling spring,
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Chapter 2. Models and concepts for columnar structures

where k is the spring constant. Thus, two overlapping soft spheres repel each

other like a harmonic spring (see illustration of Fig 2.2(a)).

Since we are minimising the interaction energy in our simulations, this

model can be interpreted as follows: Unlike the hard sphere model, soft

spheres can overlap, but their overlap is penalised with an interaction energy

in the overlap squared. Its continuous interaction energy is also illustrated in

Fig 2.2(b).

The softness of the spheres is determined by the spring constant k. Thus,

results from the hard sphere model can be recovered in the limit k →∞. We

can validate our soft sphere simulations by checking the results in the hard

sphere limit against previous hard sphere results [14].

The property of being a pairwise potential makes it easy to implement and

efficient in run time. Despite, or because of this simplicity, this model has

become the most commonly used tool to simulate foams and emulsions since

its introduction to the foam research by Durian in 1995 [75]. In fact, due to

its good agreement in reproducing the Herschel–Bulkley type rheology, which

is associated with emulsions and foams, scientists in foam research became

accustomed to believe that it is a good representation of a foam or emulsion.

The soft sphere model is based on the similar assumption as the model

of Hertzian contacts which is used to describe contacts of elastic solids. For

both models, the strains are within the elastic limit and the area of contact is

much smaller than sphere diameter. Any type of friction for the surfaces of the

spheres are in general neglected. However, sliding friction between two spheres

can be added to the soft sphere model by introducing pairwise friction forces

between two contacting spheres. This can only be done in Molecular Dynamic

(MD) simulations. We, however, use an (energy) minimisation approach

that does not consider friction because we only focus on the (mechanical)

equilibrium structure. For systems of soap bubbles or emulsion droplets that

are our major application purposes, this is a valid approximation.
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However, its limits for simulating such deformable objects are obvious.

The soft sphere model lacks volume conservation, since the overlaps reduce

the effective volume of the spheres. When a bubble or emulsion droplet is

compressed at top and bottom, it bulges out at the side and the volume of

soap is conserved in first approximation. The pairwise interaction, as used

in the soft sphere model, is also not an accurate description of a bubble in

a foam [76, 77]. We discuss the limits of this model in regard to foams and

emulsions in the outlook of chapter 6.

The great advantage of the soft sphere model over other foam and emul-

sion simulations such as the Surface Evolver [35], plat [78], or the recently

developed Deformable Particle Model (DPM) [79, 80] is its simplicity and

computational efficiency. The three other mentioned simulations model bub-

bles in a foam by films or vertices. Because of the high number of films and

vertices, the former models are usually computationally inefficient in time and

space complexity. The soft sphere model, on the other hand, simulates a foam

by approximating each bubbles as a sphere.

2.3 Different types of columnar structures

In previous simulations many different types of packings have been observed

when hard spheres of diameter d are packed inside cylinders with diameter

D [14, 64, 65, 71, 72]. Some of these observed structures can be completely

metastable such as helical defect packings [81]. However, in this thesis we will

only focus on dense and ordered packings that are stable for at least one value

of D/d.

Ordered columnar structure can be grouped together in different ways.

One form of categorising them is using their chirality. Some of these structures

are chiral, while others are achiral. Chiral structures have a screw symmetry

(like a cork screw), i.e. the chiral structure forms helices around the vertical
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axis. In mathematical terms, a chiral structure cannot be mapped onto their

mirror images by either rotation or translation alone, while achiral structures

possess this symmetry property. We point out an example of a chiral and

achiral structure in Fig 2.5 of section 2.4.

We group these structures in two different categories: uniform and line-slip

arrangements.

2.3.1 What is a uniform structure?

One of the dense columnar structures that will play a crucial role in this thesis

is the uniform structure. Its features are best explained with the aid of an

example as given in Fig 2.3. The presented example here is a so-called (3, 2, 1)

uniform structure. The triplet of phyllotactic notation can be derived from

the periodicity vector V and the two pink lattice vectors, shown in Fig 2.3(c)

(see explanation in Introduction 1.3).

Its sphere packing in Fig 2.3(a) already indicates its symmetric shape.

Fig 2.3(b) shows the corresponding contact network of the cylindrical struc-

ture. Each blue and red dot on the surface of the cylinder represent a sphere in

the packing of Fig 2.3(a) and each black line corresponds to a contact between

adjacent spheres. It indicates that each sphere has the same number of con-

tacting neighbours in a uniform packing which gives each sphere an identical

neighbourhood. In the example of Fig 2.3 each sphere has six contacts.

Rolling out this contact network into a plane of height z and azimuthal

angle θ of each sphere leads to the regular hexagonal (or triangular) lattice of

Fig 2.3(c). Each dot in this pattern represents again a sphere of the packing

and each line a contact between adjacent spheres.

A regular hexagonal lattice such as in Fig 2.3(c) is therefore the charac-

terising feature of a uniform structure. The reason for the uniform structure

forming a hexagonal lattice is due to the fact that it maximises the number

of contacts. For different uniform structures (l,m, n) the pattern of Fig 2.3(c)
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(a)

z

θ

(b)

V 2

3

(c)

Fig 2.3: Illustration and explanation of a uniform structure with the aid of an example.

Fig (a) shows the sphere packing of a (3, 2, 1) uniform structure, (b) is its corresponding

contact network, where each dot represents a sphere and each line a contact between spheres.

Fig (c) is the contact network rolled out into a plane of height z and azimuthal angle θ,

showing a regular hexagonal lattice. From (b) and (c) one can observe that each sphere

has six contacts, giving them an identical neighbourhood. The periodicity vector V and

the lattice vectors are drawn in (c) (see Introduction 1.3 for explanations).

only varies by a rotation in the z-θ plane. Each uniform structure is thus

distinguished by its periodicity vector V , which is given by the phyllotactic

triplet (l,m, n) (see chapter 1.3).

In the hard sphere limit, uniform structures can only occur at certain pre-

cise values of diameter ratio D/d. These values can be calculated analytically

for some of the uniform structures where all spheres are in a horizontal plane

[14]. The calculations are performed by reducing the packing problem to one

of packing circles inside circles.
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2.3.2 What is a line-slip structure?

For each uniform structures, there also exists a related but different structure,

called a line-slip arrangement. We will explain its features again with the aid

of an example in Fig 2.4 and also hint at possible applications from chapter

1.4.3.

(a)

z

θ

(b) (c)

Fig 2.4: Illustration and explanation of line-slip arrangement with the aid of an example.

Fig (a) shows the sphere packing of a (3,2, 1) line slip. (b) is its corresponding contact

network, where each dot represents a sphere and each line a contact between spheres.

Highlighted here is the gap or loss of contact between certain neighbouring spheres. Fig (c)

displays the contact network rolled-out into a plane of height z and azimuthal angle θ. It

reveals that the gaps or loss of contacts occur along a line between the red coloured and

blue coloured spheres; hence the name line-slip structure.

The differences between uniform and line-slip structures are marginal and

difficult to spot from the sphere packings of a (3,2, 1) line slip [see Fig 2.4(a)]

compared to a (3, 2, 1) uniform structure [see Fig 2.3(a)]. However, comparing

Fig 2.4(b) with 2.3(b) reveals a difference in the contact network of a line

slip towards a uniform structure: certain lines are missing, such as the one
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2.3. Different types of columnar structures

highlighted by the ellipse in Fig 2.4(b). The spheres in Fig 2.4(b) are again

represented by red and blue dots, while the connecting lines are contacts.

While all spheres in a uniform structure have the same number of contacts,

spheres in a line slip can have different numbers of contacts with neighbouring

spheres. For the (3,2, 1) line slip, some spheres have five and others six

contacts. Thus a line slip structure is characterised by these gaps or loss of

contacts.

Rolling out the contact network again in the z-θ plane leads to the pattern

in Fig 2.4(c). The missing lines in this pattern compared with Fig 2.3(c)

reveal that these losses of contacts occur along a line; hence the name line-

slip structure. This feature was first identified by Picket et al. [82], but not

termed line slip.

The bold number in the phyllotactic notation of a line slip, such as (3,2, 1),

gives rise to the direction, in which the losses of contacts occur. Since each

number represents one of the lattice vectors in the hexagonal lattice, the index

of the bold number indicates the direction of the gaps in Fig 2.4(c). In the

given example of a (3,2, 1) line slip, a row of contact losses is followed by two

rows (red and blue) of spheres without loss of contacts.

By shearing the row of red dots against a row of blue dots in this example,

one can generate again two uniform structures related to one line slip. Thus,

each line slip is related to two adjacent uniform structures, one at a higher

and one at a lower diameter ratio D/d. Throughout this thesis, we use the

convention that each line slip is labelled by the related uniform structure of

lower D/d [14].

This shearing in the hard sphere limit is equivalent to varying the diameter

ratio D/d, explaining why the structures are intermediate between uniform

arrangements. Thus, different to uniform structures, line slips can occur in a

range of D/d values in the hard sphere limit (see also table A.1 in Appendix

A.1). As described in more detail in section 2.4, a line slip always has a lower
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packing fraction than its related uniform structures.

Since line slips exist over a range of diameter ratios, the gap between

adjacent spheres in a line slip can finely be adjusted by varyingD/d or pressure

p. This gives line slips special features with huge potential. Physical quantities

such as packing fraction, stiffness, or conductivity of the column vary with the

extent of the gap (and thus with D/d or p).

Wood investigated the bending stiffness of cylindrical crystals in his thesis

[47]. He used Molecular Dynamics (MD) simulations to first assemble spheres

on the outside of a cylindrical rod. He then calculates the stiffness of a variety

of structures by deforming the rod into an arc of different curvatures.

The conductivity of such structures may be calculated theoretically using

Kirchhoff’s rules. From the contact network an electrical circuit plan may

be abstracted, in which each contact is a resistance and each sphere is knot

connecting the resistances. A gap or loss of contact constitutes a capacity in

this circuit that depends on the gap size of the line slip. By using Kirchhoff’s

rules, the conductivity as well total resistance can be calculated.

The special feature of a line slip holds huge potential for novel mate-

rials like microrods or polymers as introduced in chapter 1.4.3. Stiffness

and conductivity play an important role in those materials, especially for

microrods that make up liquid crystals. Thus, creating these materials from

line-slip structures might make it possible to finely adjust their stiffness and

conductivity. This may help to improve liquid crystals where stiffness and

conductivity define properties such as the percolation threshold at which the

liquid crystal becomes conductive. Since both properties can be adjusted with

gap size, an optimal microrod for such a liquid crystal may be constructed

out of a line slip.
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2.4 Densest hard sphere packings inside cylin-

ders

Mughal et al. studied the densest packing of hard spheres using the simulation

method of simulated annealing (see section 2.5.2) [14, 71, 72]. These structures

are all screw periodic, i.e. they can be simulated by using a unit cell that is

repeated to get an infinitely long column. They described and tabulated all

structures in detail up to the diameter ratio of D/d = 2.873 for cylinder

diameter D to sphere diameter d [14]. This also includes some structures with

internal spheres that are not in contact with the cylinder wall. For purposes

of coherence, this table is included as table A.1 into the Appendix A.1.

They calculated the packing fraction for all these tabulated structures

as a function of D/d (see also Fig 2.5). At the diameter ratios, where the

peaks occur in the packing fraction (dashed vertical lines), are the uniform

structures. Some of them, labelled by their phyllotactic notation, are displayed

with arrows indicating the point on the curve where they exist. In-between

those the structures of high packing fractions are the line slips, which have

a lower packing fraction than the uniform structures. Both structures are

explained in greater detail in previous sections 2.3.1 and 2.3.2, respectively.

Note that the packing fractions of all the structures in Fig 2.5, are below

φ < 0.55. This is significantly smaller due to the free volume left by the

cylindrical confinement than the packing fraction of the unconfined lattice

packings such as fcc, bcc, or hcp.

Mughal et al. [14] also discovered that structures where all spheres are

in contact with the cylinder wall can be related to disk packings on an un-

rolled surface of a cylinder. The related contact network of the disk packing

and the rolled-out contact network of sphere structure are the same. For

D/d > 2, these 2D disk packings resemble the same structures as the 3D

sphere packings. Similarities in the structures can be seen by comparing the
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Fig 2.5: Optimal packing fraction φ for hard spheres packed inside a cylinder as a function

of the diameter ratio D/d (tube diameter D to sphere diameter d) [14]. The structures at

the peak positions, indicated by the black arrows, are uniform structures. The optimal

packing fraction between those points have intermediate line-slip arrangement. The dis-

played (3, 2, 1) uniform structure is an example of a chiral structure, whereas the (3, 3, 0)

uniform structure is achiral. Line-slip and uniform structures are explained in section 2.3.

The image is reconstructed from data take from Ref [14].

contacts of each disk or sphere inside the packing. These similarities are

explained by looking at a cut of a cylinder through the centre of a sphere.

For small cylinders this cut is an ellipse, but for increasing cylinder diameters

the curvature of the cylinder wall decreases and it approaches a disk shape.

Thus, a projection of a sphere on a cylinder wall approaches disk shape for

large diameter ratio D/d. This reduction of a 3D sphere packing problem to a

2D disk packing problem allowed them to define rules for possible transitions

between uniform structures of different phyllotactic indices.

For spheres as well as disk packings, it was found that different uniform

structures are connected with each other by line slips. All possible transitions

were summarised in a diagram for the 3D case and one for the 2D case [14].
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Since we make use of these two diagrams throughout this thesis, they are

attached in the Appendix A.1. They show the surface density (in 2D) and the

packing fraction (in 3D) for all the uniform structures and their stable and

also metastable intervening line slips.

Fu et al. [65] vastly extended Mughal et al.’s table of densest hard sphere

packings in terms of diameter ratio D/d. They identified all dense packings

of hard spheres up D/d = 4.0 by using a linear programming algorithm (see

section 2.5.2). Above the Mughal-et al. regime, they discovered 17 new dense

structures with internal spheres that are not in contact with the cylinder wall.

Fu et al. also extended Mughal et al.’s results on how hard sphere packings

inside cylinders are related to each other [64]. They investigated structural

transitions between different uniform structures using linear programming and

summarised their results in a schematic plot Fig 2.6.

Each image of a columnar structure in Fig 2.6 corresponds to a different

uniform structure. Each of them is labelled by the phyllotactic notation

(l,m, n). The black arrows indicate their sequential appearance in the list of

structures of highest packing fraction, sorted by increasing diameter ratio D/d

(compare Fig 2.5). The red dashed arrows, however, indicate the favourable

sequence of structure, when D/d is increased continuously from starting in a

given uniform packing. The sequence of structure at various D/d is found by

seeking the highest density configuration.

For instance, the (3, 2, 1) uniform structure favours a transition to the

(4, 2, 2) uniform structure over the (3,2, 1) line slip, when increasing D/d

(indicated by the red arrow). However, Fig 2.5 shows that the (3, 3, 0) uniform

structure follows the (3, 2, 1) uniform structure in the sequence of a uniform

structure with highest packing fraction.

We greatly extend these investigations in chapter 3.3.3 on structural tran-

sition by not only investigating sequences upon increasing D/d, but also

decreasing D/d. This allowed us to find a cyclic pattern within this network
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Fig 2.6: Schematic plot of simulated transition sequences between uniform structures,

labelled by their phyllotactic notation, and line slip relationship (indicated by the arrows)

[64]. Black lines indicate the structures of highest packing fraction with increasing diameter

ratio D/d (compare with Fig 2.5). Red dotted arrows show the dynamically favourable

sequence, observed from simulation. [image taken from [64].]

of structural transitions.
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2.5 Simulation techniques: Minimisation al-

gorithms

Many different types of algorithm have been used in the past to simulate

columnar structures. They varied from search tree construction [69], Molec-

ular dynamics (MD) simulation [8, 16], over sequential depositioning [70] to

minimisation/optimisation algorithms such as simulated annealing [14] or lin-

ear programming [65]. In this section we introduce a few important example

algorithms of the latter kind. Such methods simulate columnar structures

by either minimising a potential (such as the energy or enthalpy) or seeking

for the highest hard sphere packing fraction, starting from a given initial

configuration.

Optimisation algorithms can be categorised into two groups: Local and

global optimisation routines. The first is seeking for the nearest optimum from

a given initial position/configuration and the latter searches for the optimum

in the full given parameter range. Each optimisation problem can always

be interpreted as a minimisation problem. Thus, we will briefly explain the

following example algorithms in terms of minimising a given multidimensional

function E(X), which can be the energy, enthalpy, or unit cell length of

the columnar structure simulation. The vector-like parameter X in these

simulations usually contains all sphere coordinates.

2.5.1 Local minimisation routines

Gradient descent: The simplest algorithm in finding the (local) minimum

of a function E(X) is the gradient descent (or steepest descent) algorithm.

It is based on the gradient ∇E(X) of this function (see Appendix A.2 for

definition of the gradient)1. The gradient taken at a given parameter vector
1When the function to be minimised is a potential, the gradient can be interpreted as a

force vector of the system.
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X has the property of pointing into the direction of steepest ascent.

Thus, by iteratively taking steps into the negative direction of the gradient,

one eventually ends up in a local minimum of the function. At this point the

gradient is zero.

The strength of the gradient descent method lies in its simplicity and

robustness. It can easily be implemented and not much information about the

multidimensional function E(X) is necessary. The only additional information

besides E(X) is the gradient which can also be calculated numerically. Thus, it

is best used for testing one of the more sophisticated methods on correctness.

However, this iterative algorithm needs many steps to terminate when the

function E(X) around the minimum is shallow, i.e. the gradient converges

slowly to zero.

BFGS algorithm: A more sophisticated local minimisation routine is the

BFGS method, named after Broyden, Fletcher, Goldfarb, Shanno [83]. It

belongs to the class of quasi-Newton algorithms, which are an advancement

of the conjugate gradient algorithms.

These type of algorithms use the Hessian matrix of the function E(X) as

additional information to locate the nearest minimum. The Hessian contains

information about the second derivative of the function to be minimised (see

Appendix A.2 for the definition of the Hessian). A Newton method that ap-

proximates the Hessian numerically is referred to as a quasi-Newton method.

The minimum is found in an iterative procedure, in which a matrix equa-

tion involving the Hessian is solved. The BFGS method directly approximates

the inverse of the Hessian and terminates the iteration when the gradient is

zero.

This method is much more efficient in finding the nearest local minimum

than the gradient descent method. Its efficiency comes at a cost of complexity.

Additional information such as the gradient and the Hessian of the function
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2.5. Simulation techniques: Minimisation algorithms

E(X) are used in this method. When these additional information are calcu-

lated numerically, it has a great advantage due to higher efficiency over the

gradient descent method.

Since we make use of this algorithm throughout the thesis, it is explained

in more detail in the Appendix A.2. We describe each step of the algorithm

with pseudo-code.

2.5.2 Global minimisation routines

Linear programming: Fu et al. obtained their results of columnar hard

sphere packings by using an optimisation routine called linear programming

[64, 65]. With this method, they managed to significantly extend Mughal et

al.’s results on the densest structure depending the diameter ratio D/d (see

also previous section 2.4).

Linear programming methods are used for optimisation problems that can

be formulated as: Minimise a linear objective function subject to linear equality

and inequality constraints.

In the packing problem of hard spheres within a cylinder the function to

be minimised is the volume of the unit cell, which depends on its length L.

The constraints are given by the hard spheres. Searching for the optimal

hard sphere packing inside cylinders can thus be stated as the following linear

programming problem: Minimise L subject to the two constraints

• no overlaps between spheres

• no overlaps with the cylinder walls.

Linear programming is a fast and efficient, but also very sophisticated method

to locate the correct global minimum of a function with a high accuracy. Due

to the constraint of no overlaps, this type of algorithm however is restricted

to simulations of hard sphere packings.
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Simulated annealing: Mughal et al. used simulated annealing to search

for the densest hard sphere packings in previous work [14] (see also previous

section 2.4). This is a probabilistic minimisation routine that seeks the global

minimum of a given function. Its approach is based on the metallurgic process

of heating a metal and cooling it slowly down to avoid defects or metastable

states [84].

By starting from random sphere positions, it moves the sphere positions

randomly. If the movement lowers the function’s value, the step is always

accepted. Otherwise the step is accepted with a probability criterion de-

pendent on a temperature T , allowing it to leave local minima. The most

common acceptance criterion is the Metropolis criterion (see Appendix A.2

for details), which was also used in Mughal et al.’s investigations. During

the optimisation, the temperature is gradually decreased according to an

annealing schedule. In Mughal et al.’s simulations this schedule was either

linear (i.e. dropping the temperature in fixed intervals) or on a logarithmic

scale (e.g. 0.1, 0.09, 0.08 . . . 0.01, 0.009, 0.008 . . .). At T = 0 it then settles

hopefully in the global minimum of the function.

Using a slow enough annealing schedule this method is able to find the

correct global minimum with high accuracy. Similar to the gradient descent

algorithm, its greatest advantages are its simplicity and robustness. In fact,

at zero temperature when only movements that lower the function’s value

are accepted, the simulated annealing method performs the gradient descent

algorithm. Thus, it has the same disadvantages as gradient descent of being

slow and inefficient.

This algorithm was used to minimise the soft sphere energy of a packing

[14]. A hard sphere packing is generated when the soft sphere energy is zero

and no spheres overlap. For the final structure, the one with the highest

packing fraction is then chosen to create Fig 2.5.
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2.5. Simulation techniques: Minimisation algorithms

Basin-hopping: However, simulated annealing can be improved by com-

bining it with a local minimisation method. This is the basic approach of the

Basin-hopping method [85, 86]. It seeks for the global minimum similarly to

simulated annealing with a probabilistic approach, but during each iteration

it performs a local minimisation.

Each iteration consists of a cycle with three important steps:

1. random perturbation of the parameter vector X

2. performance of local minimisation

3. accept or reject the new parameter vector based on the new local mini-

mum.

The acceptance criterion is similar to that of simulated annealing. The new

parameter vector is accepted if the new minimum is lower than before. Other-

wise a probability criterion such as the Metropolis criterion is used again. The

iterations of these steps are performed for a given number of steps, ensuring

the termination of the algorithm.

Since we use the BFGS method as local minimisation in the Basin-hopping

algorithm, it has similar strength than the BFGS method: the Basin-hopping

algorithm finds the correct global minimum fast and efficiently with high

accuracy.

We use this minimisation method during this thesis, wherever we are

interested in stable structure with a global minimum in energy (or enthalpy).

A detailed description of it is given in Appendix A.2.
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Soft sphere packings in

cylinders

Related publications:

1. J. Winkelmann et al. Phys Rev E 97 059902 (2017).

2. J. Winkelmann et al. Phys Rev E 98 043303 (2018).

In their most elementary form, columnar structures arise when spheres

are packed densely inside (or on the surface of) a cylinder [14, 65, 70–72, 81,

87]. In the previous chapter 2.2.1 we discussed hard sphere structures that

were previously investigated and assembled with this method. All of those

structures up to D/d < 2.71486 (i.e. structures without internal spheres) have

been identified and tabulated [14] depending on their diameter ratio D/d (see

Table A.1 in Appendix A.1 for Table 1 from Ref [14]). D is here the cylinder

diameter and d the diameter of the spheres. Above D/d = 2.71486 the nature

of the densest sphere packing changes and structures with internal spheres,

not in contact with the cylinder wall, occur.

For discrete values of D/d, hard spheres assemble to a uniform structure,

labelled with the phyllotactic indices (l,m, n) – see Introduction 1.3 for ex-

planations. Between these values, the structure is best accommodated by the
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Chapter 3. Soft sphere packings in cylinders

introduction of a line slip, which shears two adjacent spirals with a loss of

contacts. Both structures are explained in detail in the previous chapter 2.3.

We have become accustomed to thinking of line slips as being a property of

hard spheres, and therefore of limited relevance to real physical systems. That

point of view is reconsidered in this chapter: we experimentally demonstrate

the existence of line-slip arrangements in wet foams with high liquid fraction.

These observations constitute the first conclusive experimental evidence of

such structures (discounting the trivial case of packing ball-bearings in tubes

[14]). Furthermore, our experiments with foams demonstrate that line-slip

structures can be stable in soft systems; a hitherto unexpected outcome due

to the lack of discovery in the past. Our work is stimulated in part by the

observation of line slips (albeit rather indistinctly) in some simulations, which

use microscopic particles interacting by (the relatively complex) Lennard–

Jones type potentials [9, 45].

We extend the previous hard sphere results to soft repelling spheres by

allowing the spheres to overlap. But the overlap is penalised with an increase

in interaction energy as a function of the square of the overlap (see section 3.1

for simulation details). Such soft sphere structures then not only depend on

the diameter ratio D/d, but are also subject to an applied uniaxial pressure

P . We present a phase diagram in terms of these two parameters, displaying

stable structures of lowest enthalpy.

However, it is recognised that these might be of limited value for macro-

scopic experiments. Accordingly we have additionally undertaken an explo-

ration of metastability and hysteresis by carrying out further simulations.

That is, we ask the question: Given a certain structure, locally stable, and

some (experimental) protocol for the continuous variation of D/d, what tran-

sitions are to be expected?

We answer this question by first investigating an example of a reversible

structural transition in closer detail. The results are presented in form of a
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3.1. The simulation model: Minimisation of enthalpy H

stability diagram. The full picture of all structural transitions are then dis-

played in form of a directed network, showing all possible transitions between

structures provided in the phase diagram.

3.1 The simulation model: Minimisation of

enthalpy H

image

spheres
L

D

d

Fig 3.1: Simulation set-up of N soft (overlapping) spheres (blue) with diameter d confined

inside a cylinder with a unit cell of diameter D and length L. In order to simulate an infinite

column of soft spheres with periodic boundaries, image spheres above and below the unit

cell are used. These spheres are not only moved up and down by L and −L, respectively,

but also rotated by a twist angle α and −α, respectively.

To simulate soft spheres packed inside cylinders we use the soft sphere

model [75] that we explain in detail in chapter 2.2.2. This model consists of

spheres with diameter d, whose overlap δij leads to an increase in energy ES
ij

according to

ES
ij =

0 δij > 0

1
2
kδ2ij δij ≤ 0

(3.1)
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Chapter 3. Soft sphere packings in cylinders

The overlap between two spheres i and j is defined as δij = |ri−rj|−d, where

ri and rj are the centres of two contacting spheres.

A harmonic energy term

EB
i =

1

2
k((D/2− ri)− d/2)2 (3.2)

accounts for the overlap between the ith sphere and the cylindrical boundary.

The parameter ri is the radial distance from the central axis of the ith sphere.

The sphere-to-wall interaction is therefore similar to the sphere-to-sphere in-

teraction. The spring constant k determines the softness of the spheres.

We conduct simulations using a unit cell of length L (volume V = π(D/2)2L),

containing N spheres as illustrated in Fig 3.1. On both ends of the unit cell

we impose twisted periodic boundary conditions to represent a screw periodic

columnar structure of soft spheres. The periodic boundaries are implemented

by placing image spheres above and below the unit cell, where each sphere of

the unit cell is moved in z-direction by L (and −L) and twisted by an angle

α (and −α, respectively) in the x-y-plane. Only the overlap energies ES′
ij

between image spheres i and spheres j inside the simulation cell contribute to

the overall internal energy, i.e. image spheres do not interact with each other.

Stable structures are found by minimising the enthalpy H = E + PV for

a system of N soft spheres in the unit cell, where E is the internal energy due

to overlaps as described before and P is the pressure. The internal energy

E = ES′
+ ES + EB consist of the soft-sphere energy ES′ between spheres

in the unit cell and their image sphere, the interaction energy ES between

each sphere within the unit cell, and the sphere-to-wall interaction EB. The

enthalpy H is thus calculated as

H({ri}, L) =
1

2

N∑
i,j=0
i 6=j

ES′

ij +
1

2

N∑
i,j=0
i 6=j

ES
ij +

N∑
i=0

EB
i

︸ ︷︷ ︸
E

+ PV︸︷︷︸
pressure term

. (3.3)

During the minimisation, the 3N + 2 free parameters are the centres {ri} of
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3.1. The simulation model: Minimisation of enthalpy H

the N spheres, the twist angle α, and the length of the unit cell L, while the

pressure P is kept constant. Thus, all simulations are performed at a constant

pressure and a variable volume.

In an alternative view, one can look at this simulation as a “constraint

minimisation problem” where we minimise the internal energy E subject to

a constant pressure. The quantity to minimise is hence E − λP where λ is

the Lagrange multiplier. This turns out to be the volume V of the system.

For easier reference, we borrow vocabulary from thermodynamics, such as

enthalpy and pressure, even though the system that we simulate is athermal.

We will see throughout the thesis that this analogy continues to the obser-

vation of thermodynamic effect, such as discontinuous and continuous phase

transitions as well as hysteresis, in our athermal system. This justifies the use

of this analogy.

The introduced pressure P in the expression for the enthalpy can be inter-

preted as a parameter that sets the scale for the volume fluctuations. A larger

pressure leads to smaller volume, while structures with a lower pressure have

larger volumes. Since the volume can only be changed during the minimisation

by the length of the cylinder (thus only in one direction) the pressure is a

uniaxial pressure. This implementation of the pressure is therefore equivalent

to a pressure caused by two pistons that exert forces on two ends of the unit

cell. It is a uniaxial strain condition.

Two different types of minimisation routines are used to minimise the

enthalpy H({ri}, α, L). For the phase diagram, we are interested in the

global enthalpy minimum, which is also the densest packing. For the stability

analysis of a given structure and investigation of structural transitions we only

search for the nearest local minimum to an initial structure.

The BFGS method (named after Broyden, Fletcher, Goldfarb, Shanno

[83]) is used to search for the nearest local minimum of enthalpy. It is a quasi-

Newton algorithm that iteratively finds the nearest minimum from an initial
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Chapter 3. Soft sphere packings in cylinders

guess until the absolute value of the gradient falls below a tolerance threshold.

The Basin-hopping algorithm [85] performs a general search for the global

minimum. It is a stochastic, global minimisation algorithm that iteratively

minimises the enthalpy. The iteration consists of a cycle of three steps:

random perturbation of the coordinates, local minimisation, and acceptance

or rejection of the new coordinates. For the acceptance step the Metropolis

criterion was used and for the local minimisation the previously mentioned

BFGS method.

These two algorithms, together with a variety of minimisation algorithms,

are introduced in chapter 2.5. The BFGS and Basin-hopping algorithms are

explained in detail in the Appendix A.2.

Enthalpy and pressure have to be rescaled to obtain non-dimensional quan-

tities. We use the dimensionless enthalpy h = H/(kd2) and dimensionless

pressure p = P/(k/d), where k is the spring constant and d is the sphere

diameter.

Since increasing the spring constant is equivalent to lowering pressure, we

make contact with the hard sphere limit for p → 0 [14] (see also chapter

2.2.1). By comparing with previous results obtained in this limit, it allows us

to verify our simulation results for soft spheres.

Alternative, the simulation model could have also been set up by simply

minimising the internal energy of the system at fixed volume (and therefore

fixed length L). We then however have three control parameters in the sim-

ulation: the diameter ratio D/d, the fixed length L, and the softness k of

the spheres. This simulation describes a different experimental scenario that

would result in a more complicated three dimensional phase diagram. We

therefore chose the approach of minimising enthalpy.

56



3.2. Simulation and observation of line-slip arrangements in soft sphere
packings

3.2 Simulation and observation of line-slip ar-

rangements in soft sphere packings

With the simulation method above, one can now generate structures for dif-

ferent diameter ratios D/d of tube diameter D to sphere diameter d, and

pressures p. By systematically generating structures at given D/d and p, we

map out a phase diagram of all stable structures without internal spheres.

Diameter ratio and pressure are then the two axes of this phase diagram,

displaying under what conditions which structure has the lowest enthalpy.

Thus, it is revealing information about the conditions where structures are

stable.

The structures in this phase diagram can be classified into two main types,

uniform and line-slip packings. Both types of structures are explained in detail

in chapter 2.3.

3.2.1 Phase diagram of all uniform and line-slip struc-

tures without internal spheres

Fig 3.2 presents the rich phase diagram for all uniform and line-slip arrange-

ments in the range 1.5 ≤ D/d . 2.7. The lower limit is set arbitrarily. Below

this limit only the trivial bamboo structure of spheres stacked in a line on

top of each other occurs at D/d = 1. The upper limit marks the point at

which the character of the optimal structures changes radically; beyond this

point the structures contain internal spheres which are not in contact with

the cylindrical wall [14].

The pressure range is limited to p ≤ 0.02, beyond which line-slip structures

are absent. At large pressures the model of soft spheres may be regarded as

unrealistic since the contact area is no longer much smaller than the sphere

diameter. For a system of bubbles, which was the initial context for this work,
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Chapter 3. Soft sphere packings in cylinders

one encounters the “dry limit”, as p increases. At this point all liquid in a

foam has been removed, as explained in detail in chapter 1.4.2.

The phase diagram is obtained by minimising the enthalpy for a given

diameter ratio D/d and pressure p for several numbers of spheres N in the

unit cell. The structure with the lowest enthalpy is chosen. For low pressures

the minimisation was performed with the Basin-hopping algorithm. We found

that the results from these simulations could be used as initial guesses for the

BFGS method to map out the higher pressure regions of the phase diagram.

The initial guess is the starting point for the minimisation routine, from where

to minimise the enthalpy. Starting with an initial structure (with N = 3, 4, 5)

we steadily increased the pressure p and diameter ratio D/d independently.

As a further check we also ran the procedure in the orthogonal direction -

i.e. we start with a seed structure of a high value of D/d, keep the pressure

constant while reducing D/d in discrete steps and minimise the enthalpy at

each step. In either case the structure with the lowest enthalpy for a given

value of D/d and p is given in the phase diagram.

Above the diameter ratio of 2.0, we find 24 distinct phases. These cor-

respond to 10 uniform packings and the remaining 14 structures are their

corresponding line slips. Below D/d = 2.0 we observe the bamboo structure,

the zigzag, the (2, 1, 1) uniform, and the twisted zigzag structure [i.e. the

(2,1, 1) line slip] (for more information, see [14]).

3.2.2 Transitions in the phase diagram

The transitions between different structures in the phase diagram can be clas-

sified as follows: In continuous phase transitions (marked with dashed lines in

Fig 3.2) a structure transforms smoothly into another by gaining or losing a

contact. This can be observed in the supplemental video S0 of Ref [3], which

shows an overview over all structures at a low pressure, together with the

corresponding rolled-out contact network and the structure’s position in the
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Fig 3.2: Phase diagram for soft sphere packings in cylinders in the range 1.5 ≤ D/d . 2.7

and dimensionless pressures p ≤ 0.02. The resolution in the ratio of tube to sphere diameter

is ∆D/d = 0.0025 and in the pressure is ∆p = 0.0004. Besides the zigzag, the (2, 1, 1)

uniform, and the twisted zigzag structure, there are 10 uniform (blue shaded) and 14 related

line-slip structures (green and brown). Small regions that contain the (2, 1, 1) and the

(3, 2, 1) line slips, which were found for hard spheres, are not visible in this phase diagram

due to the finite resolution. Discontinuous transitions are indicated by solid black lines,

while continuous transitions are indicated by black dashed lines. The diamond symbols

at p = 0 correspond to the hard sphere uniform close-packed structures [14]. The orange

arrow above the diagram indicates the closer investigation range for different transitions

types (see next section 3.2.2). A rough estimate of an experimentally observed line-slip

structure (see section 3.2.3) is indicated by the ellipse on this phase diagram, accounting

for the possible metastability.
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phase diagram. This type of transition is found between a uniform structure

and a line slip, e.g. (3, 2, 1) uniform ⇒ (3,2, 1) line slip. The zigzag to

(2, 1, 1) transition is also continuous. Discontinuous transitions (solid lines in

Fig 3.2) are transitions where a structure of particular phyllotactic notation (l,

m, n) changes into a structure of a completely different notation (i, j, k), e.g.

(3,2, 1) line slip ⇒ (3, 3, 0) uniform. The transition may also be described

as abrupt (see also the video S0 of Ref [3]).

A typical example of a discontinuous transition is given by the solid line

separating the (3,3, 0) and (3,2, 1) line-slip regions. We find in the case of

soft spheres that, with increasing pressure, the (3,2, 1) line slip is the first

to disappear at a triple point followed by the (3,3, 0) line slip at a slightly

higher pressure. At still higher pressures only the (3, 3, 0) and (4, 2, 2) uniform

structures remain stable, separated by a discontinuous phase transition.

On first glance on our phase diagram, the case (3, 2, 1)→ (3, 3, 0) seems to

be exceptional, in that only a single line slip, the (3,2, 1) line slip, is visible.

From Table A.1 of Appendix A.1 (taken from Ref [14]) we would also have

expected to see two line slips separating the uniform structures (as in the

other cases). However, the line-slip structure of the (3, 2, 1) exists only in the

narrow range 2.1413 ≤ D/d ≤ 2.1545 for the hard spheres and is not resolved

in Fig 3.2.

The distinction between continuous and discontinuous transitions can be

illustrated directly via the enthalpy h. To do this, we will focus on a more

narrow range in D/d. This range is marked by the orange arrow above the

phase diagram of Fig 3.2.

Fig 3.3(a) gives an example of h in terms of D/d at constant pressure

p = 0.01. Continuous transitions, such as (3, 2, 1) uniform (indicated in green)

to (3,2, 1) line slip (indicated in light green), are not apparent in the variation

of h. However, discontinuous transitions such as the (3,2, 1) line slip to (3, 3, 0)

uniform (yellow) show a change in the slope of h at the transition.
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Fig 3.3: Top (a): An example of the dimensionless enthalpy h asD/d is varied at a constant

pressure p = 0.01. The plot corresponds to a horizontal cut through the phase diagram

in the range indicated by the orange arrows above of Fig 3.2. Bottom (b): Compression

C of the soft packings as a function of the diameter ratio D/d. Only the transition from

(3, 2, 1) to (3,2, 1) is continuous and does not involve a change in the slope of h at the phase

boundary.

Also shown for comparison in Fig 3.3(b) is the compression of the packing

subject to the applied pressure. We define the compression as C = (V0 −

V (p,D/d))/V0, where V (p,D/d) is the volume of the unit cell of the soft

sphere packing (for the chosen p and D/d) and V0 is the volume of the unit cell

for the corresponding hard sphere structure. In the case of uniform structures

the volume of the unit cell in the hard sphere case has a unique value [72].

However, for the line-slip structures this is not the case (since the length of the

unit cell depends onD/d) and instead we compare against the smallest volume
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of the unit cell for a given hard sphere arrangement of this type [72]. It is

similar to the thermodynamic definition of compressibility as Cthemo = − 1
V

∂V
∂p

in the sense that both are calculated by the variation of volume.

It is illustrative to also consider the orthogonal trajectory, i.e. variation

in the enthalpy h in terms of p at constant diameter ratio. As an example

of this we show in Fig 3.4 a vertical cut through Fig 3.2, where we hold the

diameter ratio at a constantD/d = 2.1 and vary the pressure. In Fig 3.4(a) the

enthalpy h is given at D/d = 2.1 for varying pressure and the corresponding

compression ratio is shown in (c). The trajectory passes through a transition

from (3,2, 1) to (3, 3, 0) and then from (3, 3, 0) to (4, 2, 2) - both of these are

discontinuous transitions; while the change in the slope cannot be determined

by inspection from Fig 3.4(a), it nevertheless can be clearly observed by taking

the derivative of h with respect to p along the trajectory (see Fig 3.4(b)). Note

the similarities between the derivative in enthalpy (b) and the compression

(c): One seems to be the negative of the other, which allows us to classify the

transition as continuous vs discontinuous in analogy to the thermodynamic

concept of first and second order transitions.

3.2.3 Experimental observation of a line slip

In the previous section we showed that line-slip structures do not only as-

semble for hard spheres, but also soft spheres. Especially, Fig 3.2 indicates

the existence of these kind of structures up to a certain pressure (or overlap).

But so far line-slip structures in soft systems were only found in computer

simulations.

These simulations lead to the prediction of such structures in experimental

realisations of systems with soft (deformable) spheres. Here we verify that

such a structure can also be realised in experiments with soap bubbles inside

a glass tube. We present an experimental observation of a column of bubbles,

clearly exhibiting such a line-slip arrangement (see Fig 3.5). By comparing the
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Fig 3.4: An example of the dimensionless enthalpy h as p is varied at a constant D/d = 2.1

(a) and its numerically computed derivative with respect to p in (b). Both plots show a

vertical cut through the phase diagram of Fig 3.2. The transitions shown are all discontin-

uous. However, for the enthalpy the change in the slope at the phase boundaries can only

be detected in the derivative ∂h/∂p of plot (b). Plot (c) displays the compression C of the

soft packings as a function of the applied pressure.
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capillary pressure of a bubble with its hydrostatic pressure, it can be shown

that bubbles packed inside a tube, can be perceived as such soft spheres. Thus,

these experiments verify the existence of line slips in systems of soft particles.

First, we describe our experimental procedure and results. All experi-

ments, described here, have been performed by Dr. Benjamin Haffner, a

former Post-doc in the Foams and Complex Systems Group. While he created

the foam structures, I identified and analysed them, since I have the expertise

in categorising and labelling the columnar structures.

We choose to observe structures of columns of bubbles under forced drain-

age; that is, a steady input of liquid from above [33, 88, 89] (as explained

in detail in chapter 1.4.2). In the past, this has been extensively studied for

columns of bulk foam where D/d much larger than the range we study here.

It was found that this results in convective instabilities for flow rates that gave

rise to higher liquid fractions, confining experiments on static foam structures

to relatively dry foam [34].

The present work leads us to consider columns of wet foams, that is, with

the drainage rate high enough to produce near-spherical bubbles. We find

no such instability in the case of the confined columnar structures of large

bubbles considered here; hence the wet limit can be reached at a certain flow

rate. Below that point, the liquid fraction can be controlled by the flow rate,

producing ordered columnar structures closely analogous to those described

by our simulations.

We use the same experimental set-up as explained in the Introduction

1.4.2: monodisperse bubbles are produced by blowing air through a needle

into a solution of commercial surfactant, Fairy Liquid [32, 88]. The surfactant

solution contains 50% by weight of glycerol in order to increase the viscosity,

smooth the transition between structures and to allow us to observe more eas-

ily unstable bubble arrangements. Tuning the gas flow rate (q0 ∼ 1mL/min)

allows us to produce monodisperse bubbles of controlled size.

64



3.2. Simulation and observation of line-slip arrangements in soft sphere
packings

Fig 3.5: Photograph of columnar structures of bubbles under forced drainage, showing

about forty bubbles. Left: (3, 2, 1) uniform structure occurring at a relatively low flow

rate. Right: Bubbles adopt the (3,2, 1) line-slip structure at a relatively high flow rate.

It is similar to the line-slip structure of Fig 2.4(b). The post-processed colouring highlights

the two interlocked spirals of the (3, 2, 1) and (3,2, 1) structures. The estimated position

of the line slip on the phase diagram of Fig 3.2 is marked by the red ellipse in Fig 3.2.
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Chapter 3. Soft sphere packings in cylinders

The bubbles are approximately of size d ∼ (2.50± 0.04)mm. The diam-

eter d can be determined by squeezing a small amount of foam between two

horizontal, parallel plates, separated by a negligibly small gap to obtain a

monolayer of bubbles. The bubble area A of the bubbles in the monolayer

can be determined from analysing images from above. The diameter is then

calculated as d =
√

2A/π.

When released into a vertical cylinder, the bubbles are observed to self-

organise into ordered columnar structures (we used a glass tube of inner

diameter 5mm and length 1.5m). The resulting foam column is put under

forced drainage by feeding it with surfactant solution from the top (liquid flow

rate Q up to ∼ 10mL/min). For a bubble in our experiments the capillary

pressure is pc = γ/r, where γ = 0.03N/m is the surface tension and r = d/2

is the radius of the bubble. Thus, we estimate the capillary pressure for

the bubbles to be of the order of approximately pc ∼ 10Pa. The hydrostatic

pressure, ph = ρgx, for a given bubble depends on its height x of the bubble in

the column, as measured from the liquid/air interface at the top, as well as the

density of water ρ and gravity g. With a column height of approximately 1m,

the hydrostatic pressure is three orders of magnitude larger (ph ∼ 1× 104 Pa)

than the capillary pressure and dominates in the experiments. Thus, the

bubbles are in the regime where they can easily be deformed and the foam

can safely be regarded as a packing of relatively soft objects.

Fig 3.5 shows an example of the observation of the (3,2, 1) line-slip struc-

ture in accord with expectations based on the soft sphere model, described in

previous section. Note that the bubbles are distorted into smooth ellipsoids by

the flow. The extent of the loss of contact in the observed line-slip structure is

roughly equal to that of the simulated structure at the position marked with

a red ellipse in the phase diagram of Fig 3.2. This is also consistent with an

estimation of equivalent pressure p and D/d, where the pressure is determined

from the local packing fraction.
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3.3. Hysteresis and metastability in structural transitions

In the depicted region of Fig 3.5 the difference in pressure from top to

bottom is negligible small, so that the pressure gradient is not important for

this experiment. By extending the height of the investigated structures to

the full length of the tube, the experiment can easily be altered to include

a pressure gradient. The assembled structures will then include structure

transitions with the height. We discuss possible experiments of this type in

the conclusions at the end.

However, while the boundaries plotted in Fig 3.2 demarcate the borders

between the lowest enthalpy structures, these structures can be metastable in

experiments. The experimentally observed line slip can therefore exist in a

larger range than marked by the ellipse in Fig 3.2. Thus, a closer investigation

of metastability and hysteresis of our simulated packings is needed.

3.3 Hysteresis and metastability in structural

transitions

For microscopic systems, our results from the phase diagram (Fig 3.2) are

strictly only relevant to structures in equilibrium. For some systems, such

as those currently under investigation [16, 44, 64, 90–92], many observed

structures are metastable (i.e. not structures of lowest enthalpy). Pittet et

al. also discovered that a structural transition between columnar structures

of soap bubbles does not necessarily return to the original structures, when

the control parameter is reverted [28, 38]. Thus, columnar structure can be

metastable and their structural transitions are in general hysteretic.

We therefore engaged in exploring the wider context of metastable struc-

tures and structural transitions between them by performing further simula-

tions. This establishes a full comparison with possible future experiments. It

includes possible transformations between structures as well as their regions of

67



Chapter 3. Soft sphere packings in cylinders

(meta)stability, which are both vital information for experimental realisation

of such structures.

Where previously the computation of a phase diagram entailed a search

for the global minimum, involving the Basin-hopping algorithm that allowed

radical changes of structure to be explored, here we pursue a more limited

objective. Given a stable structure, possibly metastable, how does it change

when diameter ratio D/d (and/or the pressure p) are continuously varied, if

it is to remain in the local minimum of enthalpy? Since we are interested here

in the local minimum of enthalpy, we employ the BFGS method. To ensure

that the nature of hysteresis investigated in this section is independent of the

minimisation method, we corroborated a subset of results with the gradient

descent routine (for both methods see also chapter 2.5.1).

Due to the local minimisation, structures of high symmetry, such as the

(4, 2, 2), can get stuck on a saddle point, where the enthalpy is not minimal,

but its gradient is zero. This can be avoided by applying a small random per-

turbation to the structure, which displaces it from the saddle point, followed

by a local minimisation. This random perturbation in the sphere positions

does not exceed 10% of the sphere diameter.

All simulations were carried out for a unit cell with N = 12 spheres.

This choice is commensurable with structures that require a minimum of

N = 1, 2, 3 or 4 spheres in the unit cell. All known structures from the

previously identified hard-sphere packings within the considered range of D/d

can be simulated with these required numbers of spheres (see Table A.1 in the

Appendix A.1 for structures and the number of spheres in the unit cell). An

exception to this are packings which contain N = 5 spheres; however, in the

hard sphere case, these occur only for high values of D/d and as such are out

of the range of the present simulations.

Initially, in this section, we compute trajectories in the (p,D/d) plane by

locally minimising the enthalpy and record the boundaries where the structure
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3.3. Hysteresis and metastability in structural transitions

changes to one of a different character. With a sufficient number of trajec-

tories, a stability diagram is built up, i.e. a map of the location of structural

transitions.

We investigate the structural transitions between the (3, 2, 1) and (4, 2, 2)

uniform structures and the associated (3,2, 1) line slip as an example of a

reversible transition in closer detail. Reversible transitions revert back into the

initial structure (e.g. the (3, 2, 1) in our example) when the control parameter

is reversed. They are nonetheless accompanied by hysteresis as we will see.

We begin by plotting the changes in enthalpy that occur for a structure

when p is held fixed and D/d is steadily varied. We show that, at low pres-

sure, it is possible to start with any one of these structures and continuously

transform one structure into another: that is, a change in D/d can transform

a uniform structure into a line-slip arrangement by the loss of a contact and

a line slip into a uniform structure by the formation of a contact. This is

accompanied by a smooth variation in the enthalpy, or at most a change in the

slope of the derivative of the enthalpy when a new contact is formed. However,

at higher pressure, some of these transitions are no longer reversible and show

evidence of hysteresis. Such discontinuous transformations are accompanied

by a discontinuity in the enthalpy. From such results we eventually obtain a

stability diagram, from which we can extract a schematic stability diagram.

In the later part of this section, we use this simulation procedure to

construct a directed network between all uniform structures from the phase

diagram of Fig 3.2. It displays all permissible structural transitions between

uniform structures without internal spheres and summarises all possible types

of structural transitions. These are not necessarily of reversible nature (as the

example of the (3, 2, 1) ⇔ (4, 2, 2) transition). From this network graph we

identified counterclockwise cyclic patterns of which we investigate one cycle

with enthalpy curves in closer detail.
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Chapter 3. Soft sphere packings in cylinders

3.3.1 Enthalpy curves at constant pressures for a re-

versible transition

An example of a computed enthalpy curve is shown in Fig 3.6. It shows

the change in enthalpy as D/d is increased and pressure is held constant at

p = 0.007. At such a low pressure a change in D/d allows the (3, 2, 1) uniform

structure to transition continuously into the (3,2, 1) line-slip arrangement

(by the loss of contacts), and then continuously into the (4, 2, 2) uniform

structure (by the formation of new contacts), both reversibly. The values of

D/d where the changes in the structure occur are indicated by dashed vertical

lines in Fig 3.6. The smooth change in the enthalpy over the course of these

transitions demonstrates that the process is continuous and reversible. The

smooth change in structure, together with its rolled-out contact network and

its position in the stability diagram, Fig 3.9(b), can also be observed in the

supplemental video S1 of Ref [3].

Note that these transitions cannot be obtained from the information of the

phase diagram (Fig 3.2), which is based on the global minimum of enthalpy. It

would predict the occurrence of the (3, 3, 0) uniform structure which, however,

does not occur in Fig 3.6.

At the higher pressure of p = 0.02 the nature of the transitions between

these structures is different, as illustrated in Fig 3.7. As before, and shown by

the blue crosses, starting with the (3, 2, 1) uniform structure, a steady increase

in D/d leads to a smooth change in the enthalpy leading to the (3,2, 1) line

slip at a value of D/d, as indicated by the vertical blue dashed line. However

increasing D/d further leads eventually to a discontinuous transition whereby

the structure transforms suddenly into the (4, 2, 2) uniform arrangement, as

indicated by the continuous vertical blue line. At this point in D/d the

enthalpy shows a sudden drop. The supplemental video S2 of Ref [3] illustrates

this sudden transformation into the (4, 2, 2) uniform arrangement.
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Fig 3.6: Variation in enthalpy h as a function of D/d for pressure p = 0.007. The change

in D/d allows the packing to continuously (and reversibly) transform between the (3, 2, 1)

structure, the (3,2, 1) line-slip, and the (4, 2, 2) uniform structure. The values of D/d at

which the structure changes are indicated by the dashed vertical lines.
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Fig 3.7: Variation in enthalpy h as a function ofD/d for pressure p = 0.020. ChangingD/d

leads to a reversible and continuous transformation between the (3, 2, 1) uniform structure

and the (3,2, 1) line slip for both the forward (increasing D/d, blue crosses) and reverse

(red circles) trajectories, indicated by the vertical dashed line. In contrast, the transition

from the (3,2, 1) line-slip structure to (4, 2, 2) uniform arrangement (thin blue line) is

discontinuous and occurs at a lower value of D/d on the reverse trajectory (thick red line).
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Fig 3.8: Variation in enthalpy h as a function of D/d while holding pressure at a constant

value of p = 0.026. The forward trajectory is as before: an increase in D/d leads to a

discontinuous transformation from the (3, 2, 1) uniform structure to the (3,2, 1) line slip

(thin blue line), a further increase in D/d results in a discontinuous transition to the

(4, 2, 2) uniform structure (thin blue line). The reverse trajectory is remarkable in that the

intervening line slip is eliminated. Instead the transition from the (4, 2, 2) uniform to the

(3, 2, 1) uniform structure is via a discontinuous transition (thick red line). The inset shows

a zoom on the discontinuous transitions.

When the diameter ratio is decreased again (red circles), the transition

from the (4, 2, 2) uniform structure to the (3,2, 1) line slip is again discontin-

uous (thick red vertical line). However, the transition to the (3,2, 1) line-slip

structure occurs at a lower value of D/d on the reverse trajectory as compared

to the forward trajectory and thus exemplifies the structural hysteresis present

in these packings above a critical pressure.

At even greater pressures the line-slip structure disappears completely

from the reverse trajectory, as shown in Fig 3.8 for p = 0.026. Now, in

the forward trajectory a discontinuous transition (vertical thin blue line)

transforms the (3, 2, 1) uniform packing into the (3,2, 1) line slip and then
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3.3. Hysteresis and metastability in structural transitions

to the (4, 2, 2) uniform structure by a further discontinuous transition. On

the reverse trajectory the (4, 2, 2) uniform structure jumps straight to the

(3, 2, 1) uniform structure by a discontinuous transition (vertical thick red

line) - without the presence of the intervening line slip. Increasing the pressure

yet higher (p . 0.028) eliminates the line slip also on the forward trajectory so

that transformations between the (3, 2, 1) uniform structure and the (4, 2, 2)

uniform structure are accompanied only by discontinuous transitions, and the

line slips are completely eliminated. Further supplemental videos S3–S4 of

Ref [3], display the structures and rolled-out contact networks along these

trajectories.

3.3.2 Stability diagram for a reversible transition

The stability diagram represents the boundaries at which transitions take

place between a particular set of structures (starting with one of the structures

listed in it). Other metastable structures must exist in the same region, but

are not represented. As mentioned earlier, the stability diagram is not to be

confused with the phase diagram in Fig 3.2.

Fig 3.9(a) is the stability diagram representing transitions between the

(3, 2, 1) and (4, 2, 2) uniform structures and the associated line slip (3,2, 1).

It was obtained from the calculations of enthalpy curves of the kind de-

scribed in the previous subsection 3.3.1. Fig 3.9(b) is a schematic guide to

the interpretation of this stability diagram, which is correct in representing

the topological features of the stability diagram but does not preserve the

geometrical features. Here U1 is to be identified with the (3, 2, 1) uniform

packing, U2 is to be identified with the (4, 2, 2) uniform packing and LS with

the (3,2, 1) line slip.

Continuous transitions (reversible) between structures are marked by dashed

lines while discontinuous transitions (irreversible) are represented by solid

lines. Blue arrows indicate the directions for which such boundaries entail
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Chapter 3. Soft sphere packings in cylinders

a transition. We also mark the nature of the boundary and the structures

encountered on either side of the boundary.

The reversible boundaries are to be identified with parts of the phase

boundaries of the equilibrium phase diagram, Fig 3.2.

As displayed in Fig 3.9, there are four qualitatively different pressure

regimes, corresponding to the examples described above. These are p < p3

(see Fig 3.6), p3 < p < p2 (see Fig 3.7), p2 < p < p1 (see Fig 3.8) and p1 < p.

For the last regime, i.e. above p1, the metastable phase of the (3,2, 1) line slip

has completely vanished. Here the enthalpy curves show discontinuities at

the blue crosses for increasing D/d and at the red circles for decreasing D/d.

Videos S1–S4 of the supplemental videos from Ref [3] illustrate the change in

structure for all four different pressure regimes when varying D/d at constant

pressure. At the discontinuous transitions the corresponding videos reveal the

sudden change in structure.

To illustrate the useful application of the schematic diagram Fig 3.9(b)

we describe the case p3 < p < p2 in detail by choosing p = 0.020, which

corresponds to the enthalpy curves shown in Fig 3.7. The other cases can be

interpreted similarly by comparing Fig 3.9(a) with Fig 3.9(b).

Starting from the (3, 2, 1) uniform packing at p = 0.020 increasing D/d

leads to a boundary [shown by the blue crosses in Fig 3.9(a)] which marks the

continuous transition to the (3,2, 1) line slip. In Fig 3.9(b) this is marked by

the dashed line indicating the continuous transition U1 ↔ LS.

Increasing D/d further a second boundary (blue crosses) is encountered,

making a discontinuous transition to the (4, 2, 2) uniform structure. This

boundary is shown in the schematic diagram by the solid line and is labeled

LS → U2. The arrow indicates that this is encountered only upon increas-

ing D/d, transforming the line slip LS into the uniform structure U2 by a

discontinuous transition.

Upon decreasing D/d the (4, 2, 2) uniform structure undergoes a discon-
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Fig 3.9: (a) The stability diagram for transitions between (3, 2, 1), (4, 2, 2) and the as-

sociated line slip (3,2, 1). The computed transition points are indicated by blue crosses

(increasing D/d) and red circles (decreasing D/d) according to the direction taken. This

is indicated by arrows in the accompanying schematic diagram, (b). Here the two uniform

arrangements are labeled U1 and U2 and the intermediate line-slip arrangement is labeled

LS. The key at the top right indicate the structures occupied by the different regions A, B,

C, and D. This diagram represents the topology of (a), but does not preserve geometrical

features. Continuous transitions are marked by dashed lines, and discontinuous transitions

are represented by solid lines.
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tinuous transition at the boundary indicated by red dots in Fig 3.9(a) into the

(3,2, 1) line slip. This boundary is marked by the solid line in the schematic

diagram accompanied by the label LS← U2.

A further decrease of D/d results in a continuous transition into the uni-

form (3, 2, 1) structure, at the boundary marked by red dots in Fig 3.9(a) and

dashed line in Fig 3.9(b). We have thus returned to the starting point of this

particular excursion through the stability diagram.

3.3.3 Directed network of structural transitions

The previous stability diagram (Fig 3.2) gives us detailed information about

the stability regions of reversible transitions, i.e. transitions where U1 trans-

formed into U2 upon increasing D/d (U1 → U2) and U2 transitioned back

into U1 upon decreasing D/d (U1 ← U2). However, there are many more

transitions of different types. The directed network of Fig 3.10 summarises

all structural transitions between the uniform structures given in the phase

diagram of Fig 3.2.

We obtained the main information for this network by investigating the

following question with the previously described soft sphere simulations in the

limit of hard spheres: Starting with a given uniform structure, which of these

transitions is favoured under continuous variation of the diameter ratio D/d?

For any given uniform structure, there are potentially multiple intermediate

line-slip arrangements, each leading to a different uniform structure. In our

simulations we do not observe all of these transitions, only a subset, which

we call favourable transitions. With additional information from the previous

hard sphere results about the remaining unfavourable transitions (see Fig A.1

and A.2 in Appendix A.1), we can complete the directed network.

We introduced a conceptual origin (0, 0, 0): The closer a structure is to

this origin, the smaller is its D/d. The dashed lines represent contours of

constant D/d about the origin (i.e. D/d = 0); thus a transition from one
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(4, 2, 2) (4, 3, 1) (4, 4, 0)
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Fig 3.10: Directed network displaying possible structural transitions between all uniform

structures from the phase diagram of 3.2. The point (0, 0, 0) represents a conceptual origin

for the diagram corresponding to D/d = 0, dashed lines are contours of constant D/d.

A transition from one structure to another which involves moving along the diagram in a

direction perpendicular to the contours implies a change in D/d. We indicate favourable

transitions with bold blue arrows, unfavourable transitions with red arrows and all re-

entrance cases are indicated by bold black lines (see text for explanation of favourable

transition). In all other metastable cases transitions follow the double dashed black arrows.

Uniform structures of same adjacent transition types are coloured in same colours. Starting

from the (3, 2, 1) structure we found that the favourable paths follow a counterclockwise

cyclic pattern going along the diagonals from the top right to bottom left.

uniform structure to another which requires moving along the diagram in the

direction perpendicular to the contours implies a change in D/d.

All favourable transitions are displayed by bold blue arrows in Fig 3.10.

Cyclical blue arrow pairs thus indicate reversible transitions such as the pre-

viously described transition from (3, 2, 1) ⇔ (4, 2, 2). Red arrows indicate

transitions that are not reversible. For instance, the (3, 3, 0) uniform struc-
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ture favours the transition into the (3, 2, 1) structure (when decreasing D/d).

However, the reverse transition is not preferred, instead the (3, 2, 1) favours

the transition into the (4, 2, 2). The dashed and bold black arrows are tran-

sitions identified from previous hard sphere results, as added to this thesis

in the Appendix A.1 in Fig A.1 and Fig A.2 [14]. Such transitions cannot

be observed in our soft sphere simulations (unless starting from from the

metastable intermediate line slip). The bold black lines highlight the special

case of the re-entrance case, which will be described in more detail below.

For the purpose of greater clarity, all intermediate line-slip structures were

left out of this graph. Each arrow represents the transition from a uniform

structure, over a line slip to another uniform structure of different phyllotactic

notation. Similar investigations can also be done with softer spheres (or higher

pressure p). Since the effect of increasing pressure is the disappearance of

line slips, we would expect these intermediate structure to vanish. But the

connection between uniform structures as given by Fig 3.10 would remain.

Following the favourable transition in the graph, we can identify cyclic

patterns that can only be followed counterclockwise. These are going along

the diagonals from the top right to the bottom left with the first cycle starting

with the (3, 2, 1) structure: (3, 2, 1)⇔(4, 2, 2)⇒ (5, 3, 2)⇔(4, 3, 1)⇔(3, 3, 0)⇒

(3, 2, 1). The two red arrows at the at the (3, 2, 1) and the (5, 3, 2) prevents

this cycle from going clockwise.

Fig 3.11 shows the enthalpy curve h for the first cycle at very low pressure

(in the limit of hard spheres). The enthalpy of uniform structures are given

in this plot by the minima of the two curves. In-between are the enthalpies of

intermediate line slips. IncreasingD/d from the (3, 2, 1) uniform structure, the

line slip leading to the (4, 2, 2) structure is favoured (blue dots). By further

increasing D/d, we finally reach the (5, 3, 2), the return point of the cycle.

Decreasing D/d at this point leads us on a different enthalpy curve (yellow

triangles) back to the (3, 2, 1) uniform structure.
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3.3. Hysteresis and metastability in structural transitions

For experimental purposes, these counterclockwise cycles imply that a

(3, 2, 1) to (3, 3, 0) transition can only be achieved by first increasing D/d

until a (5, 3, 2) structure is found, followed by decreasing D/d again. A direct

transformation from (3, 2, 1) to (3, 3, 0) is not possible, even though they are

adjacent structures in the phase diagram of Fig 3.2.
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Fig 3.11: Enthalpy h for the first counterclockwise cycle of Fig 3.10 by varying the diameter

ratio D/d at constant pressure p = 5× 10−6. We start the cycle in the local minimum

labelled as the (3, 2, 1) structure on the left-hand side. The blue dots indicate the enthalpy

of the favoured intermediate line slip upon increasing D/d. This trajectory leads the initial

(3, 2, 1) structure over the (4, 2, 2) into the (5, 3, 2) uniform structure. Decreasing D/d from

there, a different intermediate line slip is preferred (yellow triangles), leading to a different

uniform structure at the minima of the yellow enthalpy curve. However, by decreasing D/d

further the (3, 2, 1) is reached again, closing the cycle.

In the directed network of Fig 3.10 we can now distinguish between four

different types of transitions: reversible transitions, irreversible transitions,

re-entrance cases and metastable cases.

79



Chapter 3. Soft sphere packings in cylinders

We already discussed the reversible transition in greater detail previously.

They occur between structures with two blue arrows, like the example of

(3, 2, 1)⇔(4, 2, 2), which we investigated previously. When increasing D/d

starting from the (3, 2, 1), the preferred transition (blue arrow) is into (4, 2, 2);

similarly upon decreasingD/d the favoured transition returns the system back

to the (3, 2, 1) structure. Thus, this transition is overall reversible.

However, for some transitions the reversed transformation is unfavored.

An example of an irreversible transition is the transition (4, 2, 2) ⇒ (5, 3, 2).

The (4, 2, 2) follows an intermediate line slip into the (5, 3, 2), when the diam-

eter ratio is increased. But the (5, 3, 2) structure cannot be transformed back

into the (4, 2, 2) by a decrease in D/d, instead it transforms into the (4, 3, 1)

– which is then a reversible transition again.

The re-entrance cases are indicated by bold black arrows, as in the case

of (4, 2, 2) ⇔ (4, 3, 1). Here the line-slip arrangement intermediate between

these two uniform structures is metastable. Thus, it is not possible to enter

this line slip from one of the adjacent uniform packings.

In the hard sphere limit, this line-slip structure has the special property

that it exists at two distinct values of packing fraction at the same diameter

ratioD/d (cf. Fig A.2 in Appendix A.1). For instance to the line that connects

the (4, 2, 2) and (4, 3, 1) in Fig A.2, two distinct values of packing fractions φ

at a given D/d can be assigned.

This leaves the double thin black arrows as the last possible transition

between two uniform structures. This intermediate line slip is also metastable

and cannot be reached from any uniform packing with our soft sphere simu-

lations. It distinguishes itself from the other line slips by having the lowest

packing fraction (and the highest enthalpy).

A similar, but more sparse directed network graph for hard sphere simula-

tions is shown in Fig 8 of [64] (see also Fig 2.6), where the assembly sequence

upon only increasing D/d of such structures was investigated. While our
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results are consistent with their findings, Fig 3.10 is vastly extended in infor-

mation. It gives predictions for all possible transition, including decreasing

D/d. Our network graph also depicts very clearly the emerging cyclic pattern,

which is not visible in Fig 2.6.

Another related study is that of Pittet et al. [37] who observed structural

transitions in cylindrical dry foam. They observed two distinct sequences of

transitions upon increasingD/d and starting from the simple (1, 1, 0) structure

of a linear chain of bubbles (also called bamboo structure). Their findings were

represented in a similar grid of structural transition [see Fig 3 of Ref [37]] to

that of Fig 3.10. It indicated the two sequences of transitions observed in

experiments and simulations, respectively. However, their dry foam structures

are well outside of the range of our investigation and their transitions therefore

are not in accordance with Fig 3.10.

3.4 Conclusions

In conclusion, questioning the relevance of hard-sphere properties to physical

systems, consisting of soft spheres, has led us into a new territory, not previ-

ously explored. We have shown that line-slip arrangements are a feature of

soft systems, thus extending their usefulness to encompass a range of com-

monly encountered substances including foams, emulsions, and colloids. It is

of direct relevance to some physical systems (foams and emulsions) and offers

qualitative interpretation in others. It extends into another dimension (that

of pressure) the elaborate table of hard-sphere structures previously found (cf

table A.1 in Appendix A.1).

Our results, especially the phase diagram Fig 3.2, may be fruitfully com-

pared with previous studies employing the Lennard–Jones potential, where

both uniform structures and line-slip arrangements are observed [16, 45].

On the other hand, in the case of very soft potentials, such as the Yukawa
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interaction, line-slips have neither been predicted to exist [93] nor observed in

experiments [16]. Determining the robustness of the phase diagram presented

in Fig 3.2 as a function of the hardness/softness of the interaction potential

remains an open question.

We did not observe any new structures that are particular for soft sphere

systems, i.e. that can be found at higher pressure. All structures from Fig 3.2

are the same as found in previously investigated hard sphere systems. This

might be due to our minimisation procedure where we are not running an

exhaustive search for the global enthalpy minimum at higher pressures. There

might be an enthalpy minimum that is lower than the one we found, but far

away from all structures depicted in the phase diagram. It is also possible

that they appear at much higher pressure than we investigated. However, at

those pressure the soft sphere model becomes unrealistic for comparison with

systems of bubbles. At these pressures other models, such as the Z-cone model

[94] or the Morse–Witten model [5] (that will be discussed in more detail in

the outlook of chapter 6) might be more appropriate.

Using our computer simulations, we also investigated metastability and

hysteresis for structural transitions of columnar structures. We have not

attempted an exhaustive description of metastability and hysteresis in this

system. Instead, a representative example of a reversible transition was ex-

amined in detail, resulting in a stability diagram of Fig 3.9. All possible

structural transitions between structures of the phase diagram are summarised

by the directed network in Fig 3.10. All reversible transitions, displayed in

this network, are qualitative similar to Fig 3.9. Thus, Fig. 3.9(b), given the

coordinates of about six points, where the lines meet can serve as a guide

to any such case. Other types of structural transitions (such as irreversible

transitions) are different; all of these are subject to future investigations.

It is perhaps surprising that all structures in the stability diagram resulted

only in the appearance of structures that are to be found in the equilibrium
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phase diagram, albeit over different ranges of p and D/d. This may be

rationalised at or close to the hard sphere limit, but might not have been

anticipated at higher pressures. It would appear that the procedure adopted

here allowed the appearance of radically new structures, for instance structures

with defects and kinks (such as the one displayed in Fig 1.10(c) in chapter

1.4.3). These radically new structures would be metastable structures that do

not occur in the phase diagram of Fig 3.2. But none of such structures were

found.

It may be interesting to extend this analysis on hysteresis and metastability

to higher values of D/d, for which Fu et al. [65] have computed a list of

equilibrium structures that are of a different character, as we noted in chapter

2.4. This is likely to be quite demanding, and should perhaps be guided by

preliminary experimental investigations of that regime.

Our results should also provide insight for new experiments in which it

is more convenient to vary p for fixed D/d, rather than the reverse. For ex-

ample, in experimental system as examined in section 3.2.3 ordered columnar

bubble structures already have natural variation of p within the column in

this experiment, due to gravity. Such a system may be used to identify struc-

tures and transitions between them, for comparison with what is presented

here. Diagrams such as Fig 3.9(b) may then serve as a guide to the practical

fabrication of structures of soft spheres in tubes, for which the equilibrium

phase diagram of Fig 3.2 by itself, may be misleading. These possible future

experiments are discussed in more detail in chapter 6.
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Chapter 4

Rotational columnar structures

of soft spheres

Related publication:
1. J. Winkelmann et al. Phys Rev E 99 020602(R) (2019).

Recently, the subject of columnar structures has been given a new twist

by the development of a novel experimental method by Lee et al. [8]. In their

experiments, the rapid spinning of a liquid-filled column containing spheres of

lower density than the surrounding fluid drives the spheres toward the central

axis. Confined by a centripetal force, they assemble as columnar structures

around this axis.

Lee et al. performed lathe experiments on this assembly method by using

polymeric beads, which are impenetrable and essentially behave like hard

spheres. Depending on the number of spheres and the rotational speed,

they observed various types of structures. Their experimental results are

corroborated in parts with Molecular Dynamics (MD) simulations.

We adopt here a different approach using analytical methods to calculate

the energy of such structures for soft spheres. From these we obtain a com-

prehensive phase diagram, of which the two axes correspond to a variation

of the linear number density (number of spheres per unit length), which
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can be varied in an experiment, and the rotational frequency. Finally, we

compare our analytic results with soft sphere simulations of finite-system size

to corroborate our calculation. However, the finite-system size also introduces

surprising modifications to the analytical phase diagram.

Lee et al.’s simulations are computationally intensive because they describe

the full motion of spheres inside a rotational flow, including inertia. Our

finite-size simulations, however, have the advantage of being computationally

inexpensive. They are based on energy minimisation and thus only describe

the equilibrated columnar structure.

4.1 Lee et al.’s lathe experiments

A new experimental method of realising columnar structures has recently been

introduced by Lee et al. [8]. We will summarise their work and results in this

section. They suspended monodisperse spheres inside a denser rotating fluid.

Rapid rotation of the system drives the spheres towards the axis of rotation

where they assembled to different ordered structures. Due to the rotation,

the centripetal force confined the spheres inside a harmonic potential, which

strength can be tuned by the rotational speed.

Lee et al.’s experimental set-up is sketched in Fig 4.1. Polymeric beads of

same diameter d = 1.588mm and same density ρ were placed in an aqueous

solution of agarose and caesium bromide. The density was varied for different

experiments between ρ = 0.9−1.13 g/cm. By adding the caesium bromide, the

density of the fluid was increased above the density of the beads, resulting in

buoyancy of the spheres. When rotated by a commercial lathe up to rotational

speeds of 10 000 rpm, a centripetal force pushes the beads toward the central

axis and the liquid to the wall of the tube. Because of a high Young’s modulus

of E = 1325MPa [95], these beads are impenetrable and behave like hard

spheres.
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ω

Rotating fluidwith higher
density than spheres

~Fc

Fig 4.1: Experimental set-up for assembling columnar structures of spheres inside a rotat-

ing liquid-filled tube. The liquid has a higher density than the spheres, making the spheres

buoyant. When the system is rotated with a rotational speed ω, the spheres experience

a centripetal force Fc pushing them towards the axis of rotation. They assemble around

this axis into different columnar structures. [I reproduced the image after Lee et al.’s

experimental description [8].]

Different structures were interconverted upon increasing or decreasing the

rotation of the tube. Additionally, the structure was determined by the num-

ber of polymeric beads inside the cylindrical tube at fixed length, i.e. the

number density of the system. With the agarose, the assembled structures

were solidified by gelation and turned into permanent structures after the

assembly process. The assembly process was recorded with a high speed

camera to investigate the structure before the solidification.

In order to gain further insides into the assembly process, Lee et al. com-

plemented their experiments with Molecular Dynamics (MD) simulations of

(essentially) hard spheres. These simulations describe the full motion of the

spheres within a rotational flow. Thus, they included inertial forces, drag

forces in a viscous fluid, buoyant forces, and sphere–sphere interaction forces

in their simulation, but no hydrodynamic interactions.

Depending on the rotational speed ω and the number of spheres, two differ-

ent types of columnar structures were observed in experiment and simulation.

The structures were either homogeneous, i.e. a single phase structure filling
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out the entire length of the cylindrical tube, or a binary mixture, a mixture

of two structures with an interface. Two examples for each type of structure

are shown in Fig 4.2. In Fig 4.2(b) the interface of the binary structure is

highlighted.

The existence of binary mixtures seems to be surprising on first sight

because the Mermin–Wagner theorem [96] states that spontaneous symmetries

cannot be broken for structures in one- and two-dimensions at finite temper-

ature. We showed in chapter 2 that the types of columnar structure that we

consider in this thesis can be reduced to two dimensions. Due to the cylindrical

confinement, the degrees of freedom of each sphere are only the height z and

azimuthal angle θ. This may lead to the conclusions that the Mermin–Wagner

theorem prohibits binary mixtures in Lee et al.’s experiments. However, the

structures in this chapter have three degrees of freedom: each sphere can

potentially move in radial direction as well. This allows the existence of binary

mixtures where the spheres of each structure have different radial positions.

For both, experiment and simulations, phase diagrams in terms of rota-

tional speed vs number density were extracted (see Fig 4.3) [8]. The horizontal

axes of the phase diagram consisted of the normalised particle number n/n0.

The number n corresponds to the number of polymeric beads in the tube and

n0 is the number of beads needed to form a linear chain inside the tube. Thus,

at n/n0 = 1 the linear chain is observed.

Both phase diagrams resulted in the familiar sequence of columnar hard

sphere packings: The legend on the side of Fig 4.3(a) and (b) shows the

same sequence of homogeneous structures as the uniform structures in Fig 2.5.

However, no intervening “line slips” were discovered (explanation for line slip

in chapter 2.3.2). Instead they report on mixed structures of two columnar

hard sphere packings of different diameter ratios D/d.

Lee et al. also reproduced all their experimentally observed structures with

simulations. However, comparing the experimental phase diagram (Fig 4.3(a))
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(a)

interface

(b)

Fig 4.2: Examples of observed columnar structures by Lee et al. [8] in lathe experiments

involving rapid rotations. Depending on the number of spheres and the rotational speed ω,

the polymeric beads assembled around the rotating axis either as homogeneous structures

(a) or binary mixtures (b) of two homogeneous structures. Homogeneous structures are sin-

gle phase structures, filling out the whole tube. A binary mixture consist of two structures

with a visible interface, highlighted by the black ellipse in (b). [Both images were extracted

from Ref [8].]

with the one from the simulations (b), a shift towards lower number density

can be observed for the experiments. While this is not discussed in Ref [8],

we think that possibly vibrations due to the spinning of the lathe might be

the cause for this. We experienced a similar shift in our analytic calculations

to Lee et al.’s experiments, which is discussed in section 4.2.2.

Lee et al. also discovered that the chirality (see chapter 2.3) for helical

assembles can be controlled by the orientation of the axis of rotation of the

tube with respect to gravity. While experiments with horizontal tubes had

no preferences for the chirality, in an inclined tube, the beads first localised

at the top end. During the rotation they then formed helices of the preferred
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zig-zag

(2, 2, 0)

(3, 2, 1)

(3, 3, 0)

(4, 2, 2)

(a)

zig-zag

(2, 2, 0)

(3, 2, 1)

(3, 3, 0)

(4, 2, 2)

(b)

Fig 4.3: Lee et al.’s phase diagram constructed from experiments (a) and simulations (b)

in terms of rotational speed (or rate) vs the normalised particle number n/n0, which is a

similar quantity to the number density. n is the number of spheres in the system and n0

relates to the number of spheres that are needed to form a linear chain inside the tube.

Homogeneous structures are marked with a single symbol (see legend on the side) and for

mixtures the less dominant structures are indicated by the symbols in parentheses below.

[Both images are taken from Ref [8].]
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handedness. This effect was also reproduced in their simulations.

In further experiments columnar structures with bidisperse polymeric beads

(of same density) were studied as well [8]. The larger polymeric beads assem-

bled in a chain along the axis of rotation, while the smaller beads arranged

around them. The authors also presented preliminary results for beads as-

sembled at the interface of two immiscible fluids. These resembled structures

of spheres assembled on the surface of a cylinder. Finally, experiments of

exploratory kind were also done with bubbles. The reported findings only

concerned simple linear chain structures, where the bubbles aligned along a

straight line.

4.2 Theory of columnar structures formed by

rapid rotations

Our approach here analyses Lee et al.’s assembly method using the soft sphere

model. We will first focus on the rotational energies of hard sphere structures

in section 4.2.1, which can be derived from previous findings. The soft sphere

model then allows us to analytically calculate the total energies for soft spheres

in such a system (section 4.2.2). From these we deduct a phase diagram

for columnar structures without internal spheres, which is rich in interesting

features.

4.2.1 Energies of hard sphere structures

As described in chapter 2.4, Mughal et al. [14, 71, 72, 87] have computed the

densest columnar structures of hard spheres inside a cylinder. While there

is no mathematical proof of these results, they have been corroborated by

others [64, 65] and are in little doubt. The packing fraction φ of the densest

structures was computed as a function of the ratio D/d of cylinder to sphere

91



Chapter 4. Rotational columnar structures of soft spheres

Fig 4.4: Minimal rotational energy Erot as a function of dimensionless inverse number

density (ρd)−1 for hard sphere packings. The energy of the line-slip packings is given by

the solid red line. Vertical black lines indicate the location of homogeneous (in chapter

3 called uniform) structures, identified by indices (l,m, n). The straight solid lines (green

line) between adjacent homogeneous structures indicates that binary mixtures have a lower

energy compared to line-slip packings. The shaded area is the region of all possible hard

sphere packings which have a single value of distance R from the central axis, by definition

this precludes binary mixtures. The inset shows examples of a homogeneous and a line-slip

structure. See text for an interpretation of the two red arrows in the main figure.

diameters (Fig. 2.5 in chapter 2.4). Up to D/d ≈ 2.7 these structures include

only spheres in contact with the confining cylinder, so that all spheres are at

the same distance R from the central axis. All of the homogeneous structures

considered here are of this type.

The densest hard sphere packings can be classified as either homogeneous

(in chapter 2 and 3 called uniform structure [14]) packings or line-slip arrange-

ments; examples of both are shown in the inset of Fig. 4.4. For a homogeneous

arrangement, each sphere is in the same relation to six neighbouring spheres.
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Such structures can be classified using the phyllotactic notation, i.e. a triplet

of positive integers (l = m+ n,m, n) with m ≥ n. This notation is explained

in detail in the introduction of chapter 1.3.

Intervening between these homogeneous packings, which are found at par-

ticular values of D/d, are line-slip structures in which contacts are lost along

a line separating two spiral chains of the homogeneous structure as explained

in detail in chapter 2.3.2.

We can transform known hard sphere packing results to give us the lowest

(rotational) energy per sphere (that is, the minimal R) as a function of the

dimensionless inverse number density (ρd)−1 (see Fig 4.4), as follows. If the

rotational velocity is ω, then by the parallel axis theorem, the rotational

energy per sphere is

Erot =
1

2
ω2(I0 +MR2) , (4.1)

where I0 = Md2/10 is the moment of inertia of a sphere with mass M and

sphere diameter d. Since the moment of inertia of a sphere is independent

of the distance from the axis R, we will omit this term in the calculations

below. For hard sphere packings the sphere centres are located at a distance

R = (D − d)/2 from the cylindrical axis, thus the rotational energy for hard

sphere packings is given by

EH
rot =

1

8
ω2M(D − d)2 . (4.2)

The dimensionless inverse number density (ρd)−1 can be computed from the

diameter ratio and the packing fraction φ.

For a finite system of length L and number of spheres N , φ is given by

φ =
4NVSphere

πD2L
=

2

3

Nd

L

d2

D2
, (4.3)

where VSphere is the volume of a sphere. In the limit of an infinite system

(N → ∞ and L → ∞), the number density ρ is introduced Nd/L → ρ.

93



Chapter 4. Rotational columnar structures of soft spheres

Rearranging eq 4.3 for the inverse number density, we then get

(ρd)−1 =
2

3

(
d

D

)2

φ−1 . (4.4)

Fig 4.4 implies that the homogeneous structures, which occur for special

values of (ρd)−1, minimise the rotational energy per sphere and we expect to

observe this type of structure at these values of (ρd)−1. In the intervening

ranges, however, binary mixtures (consisting of two-phase structures) of the

adjacent homogeneous structures are expected. The energies of the binary

mixtures, dictated by the usual Maxwell (common tangent) construction, lies

below the line-slip energies in Fig 4.4.

For the homogeneous structures as well as line-slip arrangements, the pack-

ing inside the cylindrical channel is filled with a single structure. Thus, these

structures do not need to accommodate an interface. The binary mixture,

however, consists of two structures that differ in their D/d and therefore

has an interface. While the Maxwell construction predicts the energy for an

infinite system and neglects this interface energy, for finite-system sizes this

interface energy plays an important role (see section 4.3).

Note that the hard sphere limit may be approached in two ways as in-

dicated by the red arrows in Fig 4.4: Following the horizontal arrow, we

approach the hard sphere limit by a volumetric change, as done in the packing

simulation of chapter 3. This approach is essentially described by reducing the

pressure in the phase diagram of Fig 3.2. The vertical approach to the hard

sphere limit is achieved by changing the rotational speed, as in this chapter.

We will discuss the phase diagram related to the vertical red arrow in section

4.2.2.

The resultant structure sequence is in accord with the findings of Lee et

al. [8]. In the following we address its modification in the case of soft spheres

and finite column length.
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4.2.2 Analytic soft sphere energy calculations

The effect of moving away from the hard sphere limit is to widen the range in

which the homogeneous (l,m, n) structures are found. This can be quantified

and understood in terms of a transparent analytical description, illustrated

by Fig 4.5 and described below.

For a rotating column of soft spheres the energy per sphere is given by

ES
rot = Erot + Eo , (4.5)

where the second term is due to the sphere–sphere interaction. We use the

same soft sphere interaction between sphere i and j as described in chapter

2.2.2, namely

Eij =

0 δij > 0

1
2
kδ2ij δij ≤ 0

(4.6)

where k is the spring constant. The overlap δij = |ri− rj| − d depends on the

sphere positions ri and rj.

The total overlap energy per sphere Eo can be written as

Eo =
1

2

k

N

N∑
i,j=0
i 6=j

δ2ij

=
1

2
k
〈
δ2ij
〉
, (4.7)

i.e. it is obtained by summing over all pairwise interactions and dividing by

the total number of spheres in the structure. Thus the energy per sphere is

given by,
ES

rot
Mω2d2

=
1

2

R2

d2
+

1

2

k

Mω2

〈(
δij
d

)2
〉

. (4.8)

Homogeneous structures are comprised of packings for which each sphere is

in an identical relationship to every other sphere in the packing. Each sphere

is at a distance R from the central axis and is in contact with six neighbouring

spheres. From these constraints, it follows that for a given number density
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ρ, the energy of a homogeneous structure can be varied only by a uniform

radial compression/expansion or twist, if it is to remain homogeneous (as we

assume here). Thus the energy per sphere for all homogeneous structures is

an analytic expression to be minimised with respect to only two variables: R

and a twist angle α [14]. In the case of achiral structures this twist angle is

zero due to symmetry, and only one free variable remains.

The detailed calculation for the analytic energy expression of all homo-

geneous and achiral (l, l, 0) structures (i.e. (2, 2, 0), (3, 3, 0), (4, 4, 0), etc.) is

given in Appendix A.3. The minimal energy can either be found by a root

search of the gradient or using a numerical minimisation routine for scalar

functions.

The minimised energies of all homogeneous structures as a function of the

inverse number density (ρd)−1 are shown for two different values of ω2M/k

in Fig 4.5. These calculations are based on the full harmonic interactions be-

tween neighbours (see below for justification). The common tangents between

adjacent curves are shown by the black lines and the points of contact between

the tangent and the curve by black dots. Where the common tangents are

below the energy curves of the homogeneous structures, the binary mixtures

are more stable. For the other values of (ρd)−1, highlighted by the shaded

strips, a homogeneous phase is predicted. Low values of ω2M/k correspond

to the hard sphere limit (see Fig 4.5(b)); with increasing ω2M/k the overlap

between spheres increases, resulting in a broadening of the range over which

homogeneous structures are observed.

There is no loss of contacts in the range in which homogeneous structures

are predicted. This justifies the simplification that resulted from not taking

loss of contacts into account, i.e. using the full harmonic approximation of

interactions.
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Fig 4.5: Minimal energy per sphere for all homogeneous structures as a function of

dimensionless inverse number density (ρd)−1 for the case of soft spheres, with harmonic

interactions (see text). (a) shows the result for ω2M/k = 0.55 and (b) for ω2M/k = 0.10,

which is close to the hard sphere limit. Common tangents between adjacent homogeneous

structures are shown by the black lines and the black dots are the tangent points. The

ranges over which homogeneous structures are expected, are highlighted by shaded strips

(coloured according to the appropriate homogeneous structure - see key). Outside these

ranges the common tangents have a lower energy and binary mixtures are expected.
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The corresponding analytically calculated phase diagram 1 is shown in

Fig 4.6. In the hard sphere limit (ω2M/k → 0), the values of (ρd)−1 for the

homogeneous structures are consistent with those from the simulations of Lee

et al. [Fig 4.3(b)] which we have indicated by points with dashed horizontal

error bars. Lee et al.’s experimental data are shifted toward higher values of

(ρd)−1. This is possibly due to vibrations, keeping the hard spheres slightly

apart, which gives them an effective diameter larger than their actual size.

We report on a similar effect in experiments of the next chapter 5.5.

With increasing ω2M/k the ranges of homogeneous structures expand, as

expected. The upper part of the phase diagram is, however, much richer in

detail than anticipated. Of special interest is the vanishing of the homogeneous

achiral structures (3, 3, 0) and (4, 4, 0) at a rotational velocity of ω2M/k ≈ 0.5.

For high ω2M/k the achiral structures cannot compete with chiral structures:

The latter can deform by twisting, while the former cannot.

At the values of ω2M/k where these achiral structures disappear, there

are peritectoid points (see inset of Fig 4.6) [97]. The homogeneous structures

vanish in a point and also their two adjacent binary mixtures disappear. Above

these three structure a new binary mixture of the second nearest homogeneous

structures emerges. The phase boundaries of the adjacent homogeneous struc-

tures show a change in slope where the new binary mixture appears. This is

due to the change of the common tangent, now to be taken between the

second-nearest homogeneous structures.

Note that a peritectoid transformation actually describes a type of isother-

mal reversible reaction from metallurgy, in which two solid phases react with

1The phase diagram was created by calculating the analytic energy for each homogeneous

structure first and then finding each common tangent by a matching slope algorithm at

a certain ω2/Mk value. The points where the tangents meet the energy curves of the

homogeneous structures are the borders of the coloured regions in the phase diagram. The

resolution in ω2/Mk is 0.01.
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Fig 4.6: Calculated phase diagram of homogeneous structures (coloured, labelled regions)

and their binary mixtures of adjacent homogeneous structures (intervening white space).

Most homogeneous regions expand with increasing ω2M/k (i.e. rotation frequency) but the

achiral (3, 3, 0) and (4, 4, 0) structures vanish in peritectoid points (see the inset) [97]. In

the case of the (5, 5, 0) phase only the right hand boundary can be shown, since it is the

last structure without inner spheres. The (ρd)−1 values for the homogeneous structures are

in good agreement with Lee et al.’s simulation results [8], indicated by points with dashed

horizontal error bars in the hard sphere limit.

each to create an alloy that is a completely different solid phase. Our structure

do not undergo any thermal reaction (since we do not have a thermal system).

We still apply this term from metallurgy to our phase transitions because both

share the same topological features in the phase diagram.
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Chapter 4. Rotational columnar structures of soft spheres

4.3 Finite-system size simulations of colum-

nar structures by rapid rotations

The analytic results, however, are only valid for systems of infinite sample

size. In order to corroborate our analytical results, but also extend them

to investigations of finite-system sizes, we carried out finite-size simulations

based on energy minimisation. This simulation model is explained in detail

in the next section 4.3.1. These lead to the unexpected discovery of a line-slip

arrangement in such a finite-size system. We present these results in form of

a modified phase diagram (compared to Fig 4.6) in section 4.3.2.

4.3.1 The simulation model: Energy minimisation

We slightly modified the soft sphere simulation model described in 3.1 in order

to simulate columnar structures of finite size assembled by rapid rotations. It

can be used as more general numerical simulations for a finite system of N

spheres which can occupy any position in a unit cell of length L (see Fig 4.7).

In doing so, we minimise the total energy per sphere

E({ri}, α)
Mω2d2

=
1

2N

N∑
i

(
Ri

d

)2

+
1

2

k

NMω2

N∑
i=1

N∑
j=i

|ri − rj|2

d2
(4.9)

with respect to all sphere positions ri and twist angle α at fixed unit cell

length L. For the rotational energy term we sum over all radial distances

R2
i of sphere i and the interaction energy is again that of soft spheres. We

have also applied twisted boundary conditions using image spheres above and

below the unit cell as illustrated in Fig 4.7 [14] (see also chapter 3.1).

We use the Basin-hopping method [85] to search for the global minimal

energy for particular values of number density ρ = N/L and ω2M/k. It is

introduced in chapter 2.5.2 and described in detail in Appendix A.2.

We explore structures with low number densities between 2 < ρd < 3

(0.3 < (ρd)−1 < 0.5 for the inverse number density). The number density ρd
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image

spheres
L

d

ω

Erot ∝ ω2R2

Fig 4.7: Simulation of N soft (overlapping) spheres (blue) with diameter d confined by a

rotational energy Erot in a unit cell of fixed length L. The spheres can now occupy any

position within this unit cell. The energy Erot is proportional to the rotational speed ω2

and the radial distance from the central axis R2. Periodic boundaries are again employed

by image spheres (red) above and below the unit cell that are rotated by a twist angle α.

can be varied by fixing the sphere number N and adjusting the unit cell size

L. From the hard sphere results we know that the only possible structures

in this regime are the homogeneous phases (2, 1, 1), (2, 2, 0) and (3, 2, 1) and

their corresponding line slips. Finite values of N which are multiples of 12

are compatible with these structures. Thus, in the finite-size simulations

presented here we have used N = 24.

4.3.2 Appearance of a line slip due to finite-size effects

We first compared our analytically calculated energies with energies from the

finite-size simulations. An example of our numerical results for a low rota-

tional velocity (i.e. ω2M/k = 0.2) is shown in Fig 4.8. Here we explore the

region between the (2, 2, 0) and (3, 2, 1) homogeneous soft sphere structures.
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Fig 4.8: The red dots show the energy from finite-size simulations, for ω2M/k = 0.2 and

N = 24. Brown and blue solid lines are the previously analytically calculated energies for

the labelled homogeneous structures, and the common tangents (black solid lines) represent

their binary mixture. Within the vertical dashed red and brown line, a line-slip structure

is observed. At the vertical dashed blue line the (3, 2, 1) transforms into a binary mixture

of a homogeneous and line-slip structure, whose energy is higher than that of the common

tangent (due to finite-size effects).
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Fig 4.9: Numerically computed phase diagram from the finite-size simulation with N = 24

spheres. In addition to the expected homogeneous structures and binary mixture of (2, 2, 0)

and (2, 1, 1), a line-slip arrangement, as well as its binary mixture with (3, 2, 1) are found.
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4.3. Finite-system size simulations of columnar structures by rapid rotations

The blue and brown solid curves are their analytically computed energies;

the solid black line is the common tangent between them. The numerically

computed energy from the finite-size simulations, shown by the red dotted

line, closely matches the analytic theory within the ranges of the homogeneous

phases.

However, a notable difference arises for 0.3205 ≤ (ρd)−1 ≤ 0.3520. Here,

the computed energy is slightly higher than that of the common tangent

(binary mixture) due to finite-size effects. Between the dashed vertical blue

[(ρd)−1 = 0.3205] and red lines [(ρd)−1 = 0.3333] we find a mixture of the

(3, 2, 1) uniform structure and a (2,2, 0) line slip. Between the dashed vertical

red [(ρd)−1 = 0.3333] and the brown lines [(ρd)−1 = 0.3520] we observe only

the line-slip structure.

In part these results corroborate those of the analytic treatment – in

particular in regards to the homogeneous phases – but the intervention of

the line slip was an unexpected effect of finite size. In these finite systems

the interface energy of the binary mixtures has a finite contribution to the

total energy, which decreases with increasing number of spheres. Results for

the range in number density presented here, using N = 48 and 96, indicate

that the binary mixture of two homogeneous phases is recovered for infinite

system size. The energy per sphere for these system sizes approaches that of

the common tangent.

From our finite-size simulations we finally compute a limited phase dia-

gram, shown in Fig 4.9, to be compared with Fig 4.6. In the case of the

(2, 1, 1) and (2, 2, 0) structures the intervening region is occupied as expected

by the (2, 2, 0) − (2, 1, 1) mixed phase structure. However, in the case of the

(2, 2, 0) and (3, 2, 1) structures, the intervening region is split into two parts,

featuring the line slip mentioned above for low values of ω2M/k.

103



Chapter 4. Rotational columnar structures of soft spheres

4.4 Conclusions

The phase diagram presented in Fig 4.6 provides an analytic guide to the

expected occurrence of equilibrium structures in long rotating columns on the

basis of a generic soft sphere model. It is packed with great features, such as

the two peritectoid points, at which two achiral structures are predicted to

vanish.

We have adduced results from more general simulations, as well. In part

these results corroborate those of the analytic treatment – in particular as

regards the homogeneous phases – but the intervention of the line slip was an

unexpected effect of finite size. It is to be expected that line slips will play a

role in all the other parts of the phase diagram, in simulations of finite-system

size.

The wide range of other unexpected structures remains to be explored

for future work, as well as a rigorous analysis of the asymptotic trend as

N goes to infinity. Results for the line slip investigated here indicate that

the binary mixture of two homogeneous phases is recovered in that limit.

There also remains the case of hard wall boundary conditions at both ends

of the tube in a finite sample, which is more directly relevant to the present

experiments. The general simulations from this chapter can easily be modified

in this direction by replacing the periodic boundaries with a wall potential at

both ends.

The interesting feature of peritectoid points in the phase diagram has also

not yet been explored in simulations and experiments. Since these points were

discovered in the analytic calculations, they may only be features of infinite

systems. Their relevance for finite system can be studied with the simulations

introduced in this chapter. The experiments will have to be performed with

spherical objects that are deformable because peritectoid points are features

of soft systems. We will discuss possible future experiments of this kind using
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hydrogel spheres in the outlook of chapter 6.

The finite-size effect of line slips should also be investigated in future

experiments. Since we expect this finite-size effect also in the hard sphere

limit, these experiments can conveniently be done with polymeric beads, as

already used in experiments by Lee et al. In any such experiments, one should

also be aware of the existence of metastability and hysteresis in macroscopic

systems, which we explored in chapter 3.3 in a related context. All possible

future investigations to this topic using simulations, as well as experiments

will be discussed in detail in the outlook of chapter 6.
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Chapter 5

Hard sphere chains in a

cylindrical harmonic potential

Related publication:
1. J. Winkelmann et al. EPL status: accepted (2019).

Particles confined in the vicinity of a straight line by a radial potential have

been found to exhibit a rich variety of structures, particular distorted linear

chains [98]. In detail they depend on the interactions between the particles,

the confining potential and any boundary conditions at the end of a finite

sample.

We discovered that such a structure can be also be assembled and investi-

gated with the elementary experiment introduced by Lee et al. [8] at very low

number densities ρ (see previous chapter 4.1). When the number of spheres

is commensurate with the length of the rotating tube, the spheres assemble

in a linear chain. By reducing the tube length, the system is compressed and

localised buckling of the chain is observed.

In the introduction of this chapter (section 5.1) we sketch the complex

scenario of such a sphere chain and give examples of previous experimental

system. Landa et al. [99] observed for such a system that appearing zigzag

structures are induced by bifurcations in experiments with ion traps.
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Chapter 5. Hard sphere chains in a cylindrical harmonic potential

We find similar observations in our experiments using rapid rotations

(see section 5.5), which are of much simpler nature. Our experiments are

complemented with transparent theoretical models that are amenable to very

simple methods. We first introduce our numerical methods in section 5.2 with

which we investigate a wide range of predicted structures (section 5.3), before

we also present an analytic linear approximation (section 5.4).

5.1 Introduction to sphere chains in a cylin-

drical harmonic potential

5.1.1 Localised buckling in compressed sphere chains

The system of interest in this chapter consists of N identical spheres in a

rotating liquid-filled tube of length L. The system is confined by flat walls

at both ends of the tube. Since the spheres are buoyant, the centripetal

force drives them towards the central axis where they are confined inside a

cylindrical harmonic potential.

If the number of polymeric beads is commensurate with the length of the

tube (L = Nd), they arrange in a straight chain as depicted in Fig 5.1(a).

The chain experiences localised buckling, when the tube length is reduced to

length L < Nd (Fig 5.1(b)). We will refer to such a structure as a modulated

zigzag structure. We use this set-up to investigate this buckling behaviour of

a chain of spheres confined by a harmonic potential experimentally as well as

theoretically.

We focus on the question: In what force equilibrium configurations does

a chain of hard spheres in a cylindrical harmonic potential arrange, when

compressed between two plates? The lathe experiments by Lee et al. provide

a very clear and elementary experimental system for such investigations.

Previous experiments of such system have been carried out with ion traps
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(b)

L/d

Fn

Fn−1 Fn+1

n

N

(a) Nd

n N

Fig 5.1: Chain of N spheres of diameter d inside a cylindrical harmonic potential in radial

direction confined between two planar wall boundaries. (a) shows the linear, uncompressed

chain, where the distance of the planar boundaries is commensurate with the number of

spheres. At closer distance L, the system is compressed and experiences local buckling (b).

Due to the harmonic potential, a force Fn pushes the spheres toward the axis of rotation

(dashed line).

[100–105] and granular media as well as colloids [106, 107], but also finite

dust clusters [108], overdamped colloids systems [109] and microfluidic crys-

tals comprising of droplets [110]. The complex scenario of appearing zigzag

structures, induced by bifurcations, has been sketched by Landa et al. [99]. In

these experiments N ions are trapped within a quadripolar confining potential

and their ion–ion interaction is described by Coulomb’s law. The traps are

experimentally realised with oscillating electric fields with trapping frequency

ω.

Fig 5.2 presents schematically the bifurcation diagram for appearing zigzag

structures. The parameter γy = ω2
y/ω

2
x is related to the trapping frequencies

of the laser light of the ion traps holding the ions in place for the axial (ωx)

and radial direction (ωy). Thus, it determines the confinement strength in
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Chapter 5. Hard sphere chains in a cylindrical harmonic potential

Fig 5.2: Schematic bifurcation diagram introducing different zigzag structures, observed

in experiments with ion traps [99]. The frequencies ωy and ωx are the trapping frequencies

of the optical traps in radial and axial direction. The parameter γy = ω2
y/ω

2
x determines the

confinement in radial direction. Note that it decreases from left to right. Solid lines indicate

stable configurations and dashed lines are unstable solutions with at least one negative

eigenvalue of the Hessian matrix. The spatial configurations are depicted by showing a few

ions at the crystal centre, together with the line of axial symmetry of the structure.

radial direction: the higher γy, the higher the radial confinement.

At high confinement strength only the linear chain occurs. Upon lowering

the γy, zigzag structures are introduced by bifurcations. At this point the

previous linear chain becomes unstable and two new stable zigzag structures

emerge. Those two structures are radial mirror images of each other and thus

degenerate in their energy.

For theoretical approaches, the stability of such structures can be tested

with the aid of the Hessian matrix. One or more negative eigenvalues of

the Hessian indicate that a structure is unstable. In Fig 5.2 the number of

negative eigenvalues n is displayed in the form (−1)n. At each bifurcation

point the sum of local indices of all solutions is conserved before and after the

bifurcation.
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5.1. Introduction to sphere chains in a cylindrical harmonic potential

Bifurcation theory in general studies the changes in the topological struc-

ture of the solutions of a family of differential equations. These equation

are most commonly applied to dynamical systems. A bifurcation occurs in

such systems when a small change made to the bifurcation parameter causes

a sudden topological change in its behaviour. The systems considered in

this chapter are neither dynamical nor described by a family of differential

equations. However, sudden topological changes in the modulated zigzag

structures are also observed, after a small change to a parameter value. This

bifurcation parameter is in the case of the ion traps γy and in our system

involving rapid rotations the compression ∆ which we will explain in the next

section. Bifurcation theory suggests that such structures may be described by

a family of differential equations (at least in the continuous limit).

5.1.2 The compression ∆

In the previous chapter 4 we used the number density ρ as the structure-

defining parameter in the hard sphere limit for infinitely long structures. But

due to the buckling behaviour of these structures when confined between two

flat walls, the number density can vary locally and is thus not a suitable

parameter.

As a structure-defining parameter we therefore introduce the dimensionless

compression ∆, defined as

∆ =
Nd− L

d
= N − L/d , (5.1)

where d is the sphere diameter and L is the tube length.

It measures how much the tube length L is reduced compared to the length

of a linear chain which is given by Nd. In Fig 5.1 it is the horizontal distance

between the right-hand-side wall in (a) and the right-hand-side wall in (b).

The relevant structures in this chapter have a compression below ∆ =

1.3, where the modulated zigzag structure are observed. This corresponds
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Chapter 5. Hard sphere chains in a cylindrical harmonic potential

to (average) number densities close to ρd = 1 (not displayed in the phase

diagram Fig 4.6). In this range, the structures are all planar.

5.2 Numerical methods and simulations

The rich scenario of structural transitions within this regime under increasing

compression is predicted in detail by the analysis provided in this section. It

uses two numerical methods: an iterative stepwise solution for calculated po-

sitions from force equilibrium and a simulation based on energy minimisation.

While the iterative stepwise method is based on the planar geometry of the

chain structure and force equilibrium, the simulation is more general by not

restricting the minimisation in any way.

Both theoretical models introduced are very transparent, and amenable

to very simple methods. They both neglect the full movement of the spheres

during the assembly process. Instead, only equilibrated structures are simu-

lated.

Even though the experimental system, is a highly driven system due to

the rapid rotations of the lathe, there is no need to consider non-equilibrium

effects. The structures that assemble are in a stationary state that allows us

to describe them as if they are in force equilibrium. While the whole system

is rotating at high speed, the (centripetal) forces acting on each sphere are

constant over time, leading to force equilibrium.

5.2.1 Iterative stepwise method

In the experimental system, detailed below, each sphere of massm experiences

a centripetal force fc = mω2R, where R is the distance of its centre from the

central axis of the tube and ω is the rotational speed. For the case of no

compression (∆ = 0) the spheres align in a linear chain along the central

axis. At a finite compression (∆ > 0) the chain starts to buckle and the
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n = 1
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n = N
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Fig 5.3: Sketch of the arrangement of spheres at the two walls and the interior of the

modulated zigzag structure that is formed when N spheres are compressed between two hard

walls. Shown is the notation used for the stepwise solution. Each sphere, displaced from

the central axis (dashed line) by the dimensionless distance rn, experiences a dimensionless

centripetal force Fn = rn pulling it towards the axis and a compressive force Gn. θn is the

angle between the line connecting the centres of spheres n− 1 and n and the central axis.

At the wall the line of contact is in the x direction, i.e. θ1 = θN+1 = 0.

structures of force equilibrium take the form of modulated zigzag structures

as illustrated in Fig 5.3. We developed an elementary stepwise method to

describe such structures for low energies.

In the following we will use the dimensionless distance from the central

axis for each sphere r = R/d and the dimensionless centripetal force

F = fc/(mω2d) = r . (5.2)

Our aim is to calculate the dimensionless forces Fn = rn and tilt angles

θn, as defined in Fig 5.3, for n = 1 to N spheres. Considerations of force

equilibrium and geometrical equations yield iterative relations for Fn (or rn)

and θn as follows.

The compressive forces Gn between contacting spheres are given by

Gn cos θn = G0 (5.3)

from the condition of force equilibrium in the x direction, which is that of the

central axis. G0 is the magnitude of the compressive force at each end of the

system.
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The equilibrium of centripetal forces Fn on the nth sphere gives

Fn = Gn sin θn +Gn+1 sin θn+1

= G0(tan θn + tan θn+1). (5.4)

The centres of contacting spheres are separated by their diameters. Hence the

radial distances and forces are

rn + rn+1 = sin θn+1 ,

Fn + Fn+1 = sin θn+1 . (5.5)

The above equations then relate θn+1 and Fn+1 to θn and Fn, i.e.

θn+1 = arctan
(
Fn

G0

− tan θn
)
,

Fn+1 = sin
[
arctan

(
Fn

G0

− tan θn
)]
− Fn. (5.6)

These equations may be used in a “shooting method” to find solutions for

a specified value of G0. The hard-wall boundary condition for sphere n = 1

requires the first tilt-angle θ1 to be zero, with an arbitrary F1. Using eqs.

(5.6) we proceed iteratively to (FN+1, θN+1). The angle θN+1 corresponds to

the contact of the Nth sphere with the wall, as illustrated in Fig 5.3.

We search for values of F1 (in general more than one) such that the an-

gle θN+1 is zero, satisfying the second hard-wall boundary conditions. This

search is performed by coarse graining the initial force F1 over a range of

0 < F1 ≤ 0.01 in steps of 10−4. These values are then used as brackets in

a bisection method.

The non-dimensional total energy E of such a hard sphere structure con-

sists only of the rotational energy,

E =
Erot

mω2d2
=

1

2

N∑
n=1

r2n , (5.7)

where as in the previous chapter 4 we have omitted the (constant) energy

contribution due to the moment of inertia of the spheres. The compression ∆
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from eq. (5.1) is given by

∆ = N −
N∑

n=1

cos θn . (5.8)

By performing the root search at varying compressive forces G0, we can accu-

mulate a data set, for which we can calculate the energies and compressions

in this way.

5.2.2 Simulations based on energy minimisation

To confirm and supplement the results of the stepwise method we also seek

equilibrium configurations using energy minimisation starting from random

configurations. These simulations are more general than the stepwise method

since they are not restricted to be planar. They enable us to confirm that

the structures found by the stepwise method are indeed the lowest energy

configurations.

In practice we encounter difficulties with the stepwise method beyond a

compression of ∆ ≥ 0.9 (for N = 20). Our implementation based on the

bisection search method has problems to find all solutions above this point.

We expect to successfully extend the application of the stepwise method to

this regime by means of other root finding methods. Results for larger com-

pressions can be generated instead by energy minimisation. We have found it

convenient to perform energy minimisation on a system of soft spheres, and

extrapolate to the limit of hard spheres. The concept behind these energy

minimisation simulation are the same as discussed in previous chapters 3 and

4.

The total non-dimensional energy ES for N soft spheres (of diameter d)
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longitudinally confined between length L is given by,

ES =
1

2

n=N∑
n=1

r2n +
1

2

(
k

mω2

) N∑
n,m=1
m<n

(
δnm
d

)2

+

[(
δ1
d

)2

+

(
δN
d

)2
])

. (5.9)

The first term is the rotational energy of each sphere. The second term

accounts for the overlap between any two spheres, where the overlap between

spheres n and m is defined as δnm = |Rn−Rm|−d, where Rn and Rm are the

centres of two contacting spheres in cylindrical polar coordinates. The final

term accounts for the overlaps δ1 and δN of the two end spheres with the two

boundaries. As in previous chapters the soft sphere terms only contribute, if

δnm < 0 (and for the boundaries δ1 < 0 or δ2 < 0).

For any given values of compression ∆ and k/mω2 we find equilibrium

solutions (stable or metastable) by varying the coordinates of the sphere

centres and minimising the total energy. It is sufficient here to use a local

minimisation routine such as gradient descent or BFGS (see chapter 2.5.1 or

for details in Appendix A.2). Finally, by performing a series of simulations

with increasing values of k/mω2 we can extrapolate to the hard sphere case

(i.e. k/mω2 →∞) and compare directly with the stepwise method.

The solutions from the stepwise method are only in force equilibrium,

i.e. they can be stable or unstable solutions. We have also used energy

minimisation to check the stable/unstable character of solutions, identified by

the stepwise method. This is done by jiggling the candidate structure: i.e.

subjecting the structure to small random perturbations and then applying the

steepest descent algorithm to see if it relaxes back to the initial configuration

or evolves to a new arrangement.
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5.3 Numerical results

We now present results for a variety of low energy and low compression struc-

tures. Many more structures of equilibrium can be found at higher energy and

higher compression (which we hint at in Fig 5.5). Some of these have a more

complicated shape, but may be of limited physical significance. We therefore

do not discuss them throughout this chapter.

5.3.1 Typical profiles

For low compressions our search yields only one structure that we will refer

to as the symmetric structure S, since the profile for Fn (or displacement rn)

is symmetric around the midpoint of the system. (Note that we have defined

Fn and rn to be positive.) Fig 5.4 presents the profile of such a structure for

N = 20 for a low (green triangles) and high (blue stars) compression where we

show the displacement rn from the central axis vs the (dimensionless) position

xn, defined as

xn = 1/2 +
n∑

i=2

cos(θi) . (5.10)

These results show perfect agreement with the symmetric structure gener-

ated by energy minimisation and extrapolated to the hard sphere limit. The

structures obtained by energy minimisation are confined to stable cases.

For high compressions additional asymmetric structures are obtained from

the stepwise method. An example for the displacement profile of such a

structure is given by the red crosses in Fig 5.4.

5.3.2 Bifurcation diagrams

We have used the iterative stepwise method to search for structures in the

range of the compressive forces between 0.19 ≤ G0 ≤ 0.25 and initial forces

between 0 < F1 < 0.01. These structures correspond to relative compression
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Fig 5.4: Sphere displacements rn as function of position xn for a symmetric (blue stars)

and a stable asymmetric structure (red crosses) at a compression of ∆ = 0.65. Also shown is

the displacement rn for the symmetric structure at a lower compression of ∆ = 0.08 (green

triangles). (All quantities are dimensionless, see definitions in main text.) The peak position

of the asymmetric structure for ∆ = 0.65, estimated by a quadratic fit of the displacements

around the maximum, is displayed by the vertical dotted red line. The vertical blue dashed

and the green solid line display the midpoint of the system. The distance between x0 and

xN is equal to N −∆− 1.

below ∆ < 0.9. They were computed for both an even (N = 20) and an odd

(N = 19) number of spheres, for which the results differ qualitatively.

Bifurcation diagrams for both cases in terms of the two simulation param-

eters G0 and F1 are presented in Fig 5.5(a) [N = 20] and (b) [N = 19]. Each

dotted line represents a structure computed by the stepwise method at a given

G0 and yielding a certain F1. At a high G0 only the symmetric structure S (red

line) is observed, which cannot be resolved below G0 < 0.21 anymore using

our current implementation of the stepwise method (see discussion in section
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5.3. Numerical results

5.2.2). Asymmetric structures start to appear above and below S induced

by bifurcations with decreasing G0. Structures below the red curve can be

converted into those above the red curve by mirroring the structure at the

midpoint of the system.

These two mesmerising bifurcation diagrams give an overview over the

range of structures that can be computed with the stepwise method. However,

they do not comprehensibly convey the information. Thus, we studied these

structures in form of energy diagrams that focus on low energy structures.

In the given parameter ranges the total energy ESymm of the symmetric

structure S increases from 0 to roughly 0.15, whereas the difference between

the energies of alternative structures is only of order 10−4. We therefore

computed the energy

∆E = E − ESymm (5.11)

relative to that of the symmetric structure at the same compressive force G0

and plotted them against their compression for even (Fig 5.6(a)) and odd

case (Fig 5.6(b)). These two plots only depict the energies for low energy

structures.

We present these relative energies in the vicinity of the compression range

where the first asymmetric structures are created by bifurcation. While both

cases of even and odd N feature an increasing number of bifurcations as

compression is increased, they are qualitatively different and will thus be

discussed separately.

For the even case N = 20 an increasing number of asymmetric structures

(A-F) are introduced by bifurcation as compression increases. The unstable

structures are marked with an asterisk. The first two additional branches A*

and B emerge from an “out-of-the-blue” bifurcation at ∆ = 0.558 without any

preceding structure. Of these two branches, structures on branch B are stable,

whereas structures from A* are unstable, as verified by energy minimisation.

Two further structures C* and D, appear via a pitch-fork bifurcation out
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Chapter 5. Hard sphere chains in a cylindrical harmonic potential

Fig 5.5: Bifurcation diagrams in their simulation parameters: The force F1 of the first

sphere from the stepwise method is plotted vs the compressive force G0 for N = 20 (a)

and N = 19 (b). Each dotted line corresponds to a particular structure, where the red

line represents the symmetric structure S (not resolved below G0 < 0.21; see text for

explanation). Asymmetric structures (blue lines) below the red curve can be transformed

into those above by mirroring the structure at the midpoint of the system.
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Fig 5.6: Energy bifurcation diagram: Relative energies ∆E = E − ESymm (where ESymm

is the energy of the symmetric structure S), are plotted against compression ∆ around the

first bifurcation for the case of even number of spheres (a) and odd number of spheres (b).

Unstable structures are marked with an asterisk. Examples of all structures in the even

case are displayed in Fig 5.7.
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Fig 5.7: Examples of buckled chain structures from the S and A–F branches, as labelled

in Fig 5.6. The structures were created by the stepwise method with N = 20 spheres at a

compression of ∆ = 0.65. Structures marked by an asterisk are unstable. The solid black

vertical line marks the centre of the system, while the dashed red vertical line marks the

peak position of the position profile. Asymmetric structures (A-F) are doubly degenerate

(i.e. can have a peak on the left or on the right of the centre).

of the previous stable structure B at ∆ = 0.588. B and the additional branch

of lower energy D are stable, whereas the upper one C* is not. A similar

pitch-fork bifurcation of the D branch occurs for the next two structures at
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5.3. Numerical results

∆ = 0.622, from which the lower branch F is again stable and E* unstable.

Examples of structures from all of the seven branches for the even case

in Fig 5.6(a) are given in Fig 5.7. The vertical black solid line in these plots

represents the centre of the structure; the vertical red dashed line indicates

the peak position of the sphere profile, as estimated by a quadratic fit to

the sphere positions around the maximum. For unstable structures the peak

position coincides roughly with the centre position of a sphere. Note the

degeneracy: asymmetric structures may have the peak left or right of the

centre (see also bifurcation diagrams of Fig 5.5).

The energy diagram for the odd case of 19 spheres (in Fig 5.6(b)) differs

with respect to the first bifurcation. Here only a single new stable structure

(branch B) emerges. From then on bifurcations follow the pattern of the even

case, in which previous structures remain stable and new structures of lower

energy are stable (i.e. D and F are stable, while C* and E* are unstable).

While the structures that we have identified here appear to be the only

equilibria within the specified range in energy and compression, structures

with a more complicated profile occur at higher energy, which we have not

addressed here. The displacement profiles of these structures can contain two

or more off-centred peaks.

5.3.3 Maximum angles

We have also computed the maximum angle θmax of the symmetric structure

with varying compression for the stepwise method and energy minimisation,

see Fig 5.8. This is a quantity that can readily be extracted from experimental

data, see section 5.5.

While our results for the stepwise method stop at a compression of 0.9,

the maximum angle θmax from the energy minimisation was computed up to a

compression of∆ . 1.3. At this point the modulated zigzag structure acquires

an additional contact with the next-nearest neighbour sphere.
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Fig 5.8: Maximum angle θmax of the symmetric structure as a function of compression

∆ for an even number of spheres N . Blue circles and orange solid line are obtained from

numerical calculations (stepwise method and energy minimisation). The green crosses with

low opacity refer to the raw experimental data points. For the green crosses with high

opacity, the increased effective sphere diameter attributed to vibrations in the system was

taken into account in the compression calculation. The uncertainty in the θmax was obtained

by averaging the angles over five images of the structure at same compression.

At low compressions (∆ / 0.1) the displacement profile is of the parabolic

shape shown by the green triangles in Fig 5.4. For higher compressions the

profile changes to a hyperbolic shape as described by the blue stars in Fig 5.4.

5.4 Linear approximation

In order to better understand the previous numerical results, we have devel-

oped an approximate, linear analytic description as follows. For small angles
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Fig 5.9: Variation of angle θn with sphere number n as obtained from the exact stepwise

method of (blue dots) and from the linearised theory (5.25) (blue solid line) (for N = 20)

at a compression of ∆ = 0.500. Note that there are 21 angles, since θN+1 is associated with

the wall contact of sphere N .

θn and forces Fn, linearisation of eq. (5.6) leads toFn

θn

 =

 1
G0
− 1 −1
1
G0

−1

Fn−1

θn−1

 . (5.12)

Recursive substitution of Fn and θn and setting 1
G0

= 4 + ε for small

and positive ε, results inFn

θn

 =

3 + ε −1

4 + ε −1


︸ ︷︷ ︸

M

n−1F1

θ1

 . (5.13)

The largest possible value for the compressive force is G0 = 1/4. For the case

of an infinitely long chain, it can be derived from the uniform zigzag structure
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(rn = −rn−1, Fn = Fn−1, and θn = θn−1). Equations (5.4) and (5.5) for this

structure give

2Fn = sin(θn) (5.14)

Fn = 2Gn sin(θn) . (5.15)

By substituting the latter equation into the former, Gn = 1/4 can be calcu-

lated. Equation 5.3 dictates that this is the largest value G0 can obtain.

A solution for (Fn, θn)
T may be expressed in terms of eigenvalues λ1,2 and

eigenvectors V1,2 of the matrix M as

(Fn, θn)
T = aλn−1

1 V1 + bλn−1
2 V2 . (5.16)

The eigenvalues are

λ1,2 = 1 +
ε

2
+
√
ε2 + 4ε , (5.17)

which to lowest order in ε gives

λ1,2 ≈ 1±
√
ε . (5.18)

Its (n− 1)th power can be approximated in the following way

λn−1
1,2 = eln(1±

√
ε)n−1 (5.19)

≈ e±
√
ε(n−1) . (5.20)

The corresponding eigenvectors are

V1,2 =

(
1

2

(
1±
√
ε

2

)
, 1

)T

. (5.21)

The prefactors a and b are obtained from the initial conditions F1 and θ1.

The solution in the linearised approximation for θ1 = 0 is then given by

Fn =
2F1√
ε
sinh(

√
ε(n− 1)) + F1 cosh(

√
ε(n− 1)) (5.22)

θn =
4F1√
ε
sinh(

√
ε(n− 1)) . (5.23)
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The forces Fn can be written in a more concise form as

Fn =
F1

sinh(φ)
sinh(

√
ε(n− 1) + φ) (5.24)

θn =
4F1√
ε
sinh(

√
ε(n− 1)) , (5.25)

with the offset in the forces φ = arctanh(
√
ε/2). Note that θn does not have

an offset, since θ1 = 0.

A comparison of angles θn using the approximated linearised equation

(5.25) and the previously numerical exact stepwise method is shown in Fig 5.9

for a compressive force of G0 = 0.234, resulting in a compression of ∆ =

0.500. The starting value F1 in the linearised scheme was taken from the

corresponding value in the stepwise method.

We find excellent agreement between the linearised theory and the stepwise

method up to about n = 8. The linear theory produces a monotonically

increasing function (Fig 5.9), whereas the accurate solution “rolls over” and

decreases towards the second boundary. The cause for this can be found in

the non-linearity of the equation for the stepwise-method.

5.5 Comparison with experiment

Our experimental procedure is similar to that of Lee et al. [8]. We placed an

even number of N = 34 polypropylene beads of density ρ = 0.900 g/cm3 and

diameter d = 3.000±0.001mm [111] in a cylindrical tube (I.D. 15.91±0.01mm;

O.D. 20.17 ± 0.01mm; length 130.55 ± 0.01mm) filled with water (density

ρw = 1 g/cm3).

The tube is sealed on both ends with stoppers, making sure that no air

bubbles remain within the system. The extent to which the stoppers intrude

into the tube can be varied, allowing us to adjust the compression ∆.

The tube is then mounted onto a commercial lathe (Charnwood W824),

for which we set the rotation frequency to ω = 1800 ± 50 rpm. In order to
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Fig 5.10: Photographs of a variety of buckled structures for N = 34, obtained by the rapid

rotation of a water-filled tube containing polypropylene beads (density of ρ = 0.900 g/cm3),

using a lathe. The structure P above the solid line is an image of a modulated zigzag

structure rotated by π/2 compared to the other structures. It indicates the planarity of

the experimental structures. The structures S, B, D, and F are labelled as in Fig 5.6. The

vertical line represents the centre of the system and the horizontal line the central axis of

rotation.

record the structures we used a stroboscopic lamp, whose frequency is matched

to that of the lathe. A slight off-set between both frequencies is used so that

recorded structures appear to be slowly rotating (see example in supplemental

video of Ref [6]).

The image labelled with P above the solid line in Fig 5.10 is an in-plane

view of one of the modulated zigzag structures. The buckling is observable

close to the centre of the structure where the spheres seem to overlap in

horizontal direction. In vertical direction, all spheres are arranged in a line. It

demonstrates the assumption of planarity, on which all the structures created

by the stepwise method are based on.

Fig 5.10 below the solid line shows images of the structures that we identi-

fied with the branches S, B, D, and F by comparing them with to the numerical
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results from 5.7. The experimental structures can be identified by the distance

of the peak position to the structure centre. This is independent of N for large

number of spheres because the wall effects can be neglected. The identified

structures correspond to all the stable structures of Fig 5.6. Structure S,

as well as structure B, are at a compression of ∆ = 0.44 ± 0.02, while the

compressions for structure D was ∆ = 0.59± 0.02 and for F, ∆ = 0.68± 0.02.

However, in order to reconcile these experimental results with the theoret-

ical predictions of previous sections, it is necessary to introduce an effective

diameter for the spheres, about 1% greater than the true value. This increases

the effective compressions by a constant shift of roughly 0.35. We attribute

it to the effects of vibration of the lathe, and will explore strategies for its

mitigation in future work. This shift also features in previous results from

Lee et al. [8] and can be observed by comparing simulations and experiments

in chapter 4.2 [4].

We extracted the maximum angle θmax for the symmetric structure with

varying compression for the experiments (see Fig 5.8). It shows very clearly

the necessity for the adjustment of sphere diameter. Due to the neglected wall

effects, these results only depend on N being odd or even for a large enough

number of spheres.

5.6 Conclusions

The compressed and confined sphere chain presents a variety of fascinating

observations, previously described in terms of “kinks” or “solitons” [103]. We

have succeeded in exploring many of its properties, using simple experimental

apparatus and theoretical methods.

We hope that our results will find direct comparison with previous work,

particularly with regards to ions confined in optical traps [98–105, 107]. This

work should also be relevant to other systems in which buckling is a key fea-
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ture: for example localised buckling has recently been observed in experiments

involving an expanding (growing) elastic beam pinned to a substrate [112].

While we have investigated only simple structures with single peaks in

the displacement profile so far, more complicated structures exist at higher

energies. We hinted at their existence in the bifurcation diagram of Fig 5.5.

Among these are structures that are created by concatenating one of the

single-peak structures with its mirrored counterpart. Their compression and

energy will roughly be doubled.

In our experiments we demonstrated the existence of all the stable struc-

tures with even number of spheres found in our numerical results. We only

did a direct comparison between experiments and numerical results for the

symmetric structure with even number of spheres where we compared the

maximum angle θmax. This comparison may be extended in the future to the

whole spectrum of parameter values. The rotational energy of each experi-

mental structure (S, B, D, and F) can be calculated from the extracted sphere

positions for various compressions as well as different number of spheres.

Considerable current interest in the compressed sphere chain focusses on

motion of the single peak and the corresponding Peierls–Nabarro potential.

This is the potential needed to move the single peak position, i.e. transform

one stable structure to another (e.g. from structure B to S in Fig 5.7). It

may be estimated by making a smooth interpolation of the energy values for

stable and unstable states as calculated here. Fig 5.11 shows an illustration of

such a potential. Further experimental investigations towards this potential

can possibly be undertaken in future work.

Recently we have found a yet simpler experimental method which should

be useful, at least for purposes of demonstration. It consists of a horizontal

tube into which ball bearings are introduced. Slight agitation enables them to

settle in modulated zigzag structures similar to those depicted in this chapter.

A further variation, which appears to be promising, uses bubbles in a

130



5.6. Conclusions

0.0 0.5 1.0 1.5 2.0

Peak position

−0.0001

0.0000

0.0001

0.0002

0.0003

R
el

at
iv

e
en

er
gi

es
∆
E

S

A*

B

C*

D

Interpolated
Peierls–Nabarro
potential

Interpolated
Peierls–Nabarro
potential

Fig 5.11: Illustration of the Peierls–Nabarro potential. The blue dots are the relative

energies ∆E vs the peak position for structures S, A*, B, C*, and D from Fig 5.7. The

solid line is a smooth interpolation through the dots for the stable and unstable structures.

Note that the stable structures (S, B, D) are at the minima of the interpolation and unstable

structures (A*, C*) are at the maxima.

horizontal liquid-filled tube. The bubbles are pushed towards the curved

tube wall by buoyancy where they are confined by a potential that in first

approximation is quadratic. The bubbles form a modulated zigzag structure

when being compressed.

Other extensions of this experimental method include the case of soft

(elastic) spheres, for which we have already observed similar effects, using

hydrogel particles and bubbles. Also the observations can be extended to

much higher compression, making contact with the work discussed in chapter

4, for the 3d structures generated. It may also be possible to take advantage

of a technique that uses photoelastic material to indicate the magnitude of
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the compressive forces [113, 114]. Some of these future experimental methods

will be covered in more detail in the outlook of chapter 6.
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Chapter 6

Summary and outlook

In this thesis, we have greatly extended the research field on columnar struc-

tures. In particularly we have advanced the research towards structures of soft

and deformable objects. Some of our investigations have opened new possible

experimental and theoretical investigations which will hopefully be examined

in future work. These additional experimental and theoretical investigations

will be the subject of this chapter.

We first summarise the key results of this thesis, as presented in the

previous chapters 3–5. This is followed by an outline of possible future work

for simulation and experiments related to each chapter. Such future work can

further extend our results in the direction for possible applications in the area

of botany, foams, or nanoscience, as explained in the Introduction (chapter

1.4).

This thesis has focussed on (columnar) structures of spheres in 3D, but

packing problems of similar type can also be studied by packing disks inside a

2D channel. In the second part of the outlook we describe the 2D counterpart

of columnar structures in detail, how they can be studied using soft disks,

and how they results may apply to research in microfluidics or the packing of

people.

While the soft sphere model, extensively used throughout this thesis, has
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shown its great advantages, it also has limits in describing soft matter systems

such as foams. These limits are highlighted in the third part of this chapter

by comparing results of soft disk system to that of 2D foam simulations. In

the last part, we describe a model, based on the theory of Morse and Witten,

that may be used in the future for similar investigations as carried out in this

thesis.

6.1 Soft sphere packings in cylinders

6.1.1 Summary

Chapter 3 focussed on columnar structures that are assembled by packing soft

spheres inside a cylinder. The results of this chapter are built on the previous

findings of hard sphere packings.

We reported on the simulation and experimental observation of a line-

slip structure in such packings. The experimental observation was made on

a column of bubbles under forced drainage, clearly exhibiting the expected

line slip. Our simulations concerned columnar structures of minimal enthalpy

using the soft sphere model. We presented a phase diagram of all stable (i.e.

minimal enthalpy) structures up to the diameter ratio D/d = 2.71486, where

the nature of the densest sphere packing changes.

However, macroscopic systems of this kind are not confined to the ideal

equilibrium states of this diagram. Consequently, we explored the structural

transitions to be expected as experimental conditions are varied by carrying

out further simulations; these are in general hysteretic. We investigated an

example of a reversible transition in closer detail and represented the results

in a stability diagram. In a directed network we then displayed all permissible

structural transitions of densest packings from the phase diagram.

134



6.1. Soft sphere packings in cylinders

6.1.2 Outlook: An exhaustive hysteresis investigation

In future work, our soft sphere simulations based on enthalpy minimisation

can be used for an exhaustive hysteresis and metastability investigation for

all possible structural transitions. So far, we have only presented a stability

diagram that is representative for all reversible transitions. However, such a

diagram will be significantly different for other types of transitions such as

the irreversible transition or the re-entrance case (see chapter 3.3.3).

The stability diagrams for these two cases are of particular interest. The

irreversible case covers all those transitions where the initial uniform structure

U1 is not recovered when reverting the control parameter (e.g. diameter ratio

D/d or pressure p). For example, the (4, 2, 2) uniform structure transforms

into the (5, 3, 2) uniform structure upon increasing D/d, but for the reverse

trajectory, the (5, 3, 2) follows a transition into the (4, 3, 1) uniform structure

(see also Fig 3.10 in chapter 3.3.3). Thus, a stability diagram for the irre-

versible case will involve three different uniform structures, of which two exist

at the same value of the control parameter. In the case of the given example,

the (4, 2, 2) and (4, 3, 1) uniform structures can exist at the same pressure or

diameter ratio, of which at least one of them is metastable.

We also expect the irreversible case to be described with two stability

diagrams that slightly differ from each other. They will depend on whether

the prohibited transition occurs on increasing or decreasing the control pa-

rameter. In the previously mentioned example the prohibited transition is

the (5, 3, 2) ⇒ (4, 2, 2) transition, which requires a decrease in D/d or p.

However, in another example the (3, 2, 1) ⇒ (3, 3, 0) is also prohibited, but

requires an increase in the control parameter. Thus the borders, demarcating

the directions of the transitions, will differ in those stability diagrams.

The re-entrance case is worth studying in more detail because its line slip

in-between has interesting properties in the hard sphere limit. As explained

135



Chapter 6. Summary and outlook

in chapter 3.3.3, two different packings of the same line slip can exist at the

same D/d, since its packing fraction as a function of D/d is curved backwards

(cf. Fig A.1 in the Appendix A.1). Hence, studying the enthalpy curves for

this particular line slip may introduce new interesting features.

Such metastability and hysteresis investigations for structural transitions

may also be extended to structures with diameter ratios aboveD/d > 2.71486,

as simulated by Fu et al. [65] (see also chapter 2.4). The nature of the struc-

tures in this regime differ significantly to those discussed in this thesis, since

structures with internal spheres that are not in contact with the cylinder wall

occur. Structural transitions for these packings may also be summarised in

stability diagrams, which may significantly differ from all previous diagrams.

It is also of interest how columnar structures with internal spheres are related

to those without internal spheres. This can be investigated by extending the

directed network of Fig 3.10 to higher values of D/d.

Additionally, Pittet et al.’s work on structural transitions in cylindrical

dry foam [37] may be extended to wet foam structures in the future. Three

different methods are possible in those experiments to change the control

parameter of either D/d or pressure p. The general experimental set-up is

described in the introduction of chapter 1.4.2.

In the first method the diameter ratio of the experiment is varied. The

bubble size (and therefore D/d) can be controlled by the gas flow rate q0 that

is used to produce the bubbles (see Fig 1.7 in chapter 1.4.2). Thus, a wet foam

structure in such experiments can be forced into a transition by changing the

gas flow rate. However, the soap bubbles inside the foam column are not

necessarily monodisperse in this method.

It may be more convenient to vary the pressure p. This was previously

done by Boltenhagen et al. [38] using a piston for dry foam structures. The

foam columns were observed to undergo different transitions, when compressed

or dilated in this way. Similar experiments may be performed for wet foam
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structures in forced drainage experiments.

One can also set up an experiment that uses the natural variation of

pressure within the foam column due to gravity. Such an experiment can

be performed by simply filling a long tube with soap bubbles. The liquid of

the foam at the top will push down onto the bubbles below, causing a variation

of pressure with height. Thus, structures along the column will also vary with

height and structural transitions can easily be identified.

Results of such experiments may then be fruitfully compared to our sim-

ulations. Observed structural transitions may directly be compared to the

directed network of Fig 3.10. But also schematic stability diagrams like that

of Fig 3.9(b) can be used as a guide to experimentally assemble such foam

structures.

Using a completely different experimental procedure, structural transi-

tions may also be investigated by inducing a shear stress to the system. In

these experiments the top and bottom bubbles of the foam structure are

rotated/sheared against each other around the vertical axis. This may induce

a structural transition, especially from a chiral to a achiral structure (or vice

versa). Corresponding simulations may also be performed by using the soft

sphere model.

6.2 Rotational columnar structures of soft

spheres

6.2.1 Summary

In chapter 4 we analysed a novel method to assemble columnar structures

involving rapid rotations around a central axis. Lee et al. [8] used this method

to drive spheres of lower density than the surrounding fluid towards the central

axis. This resulted in different columnar structures as the number of spheres
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was varied.

We presented comprehensive analytic energy calculations for such struc-

tures, based on the soft sphere model, from which we obtained a phase diagram

(cf Fig 4.6). It displayed interesting features, including peritectoid points, at

which the achiral (3, 3, 0) and (4, 4, 0) uniform structures vanish.

These analytic calculations were complemented by computationally cheap

numerical simulations for finite-sample sizes with soft spheres. These, in

parts, corroborate the analytic calculation. However, they also revealed the

appearance of a line-slip structure due to finite-size effects.

6.2.2 Outlook: Further investigations of finite-size ef-

fects

Our research on this assembly method opens up a variety of possible exper-

iments and finite-size simulations. We only report on the appearance of one

particular line-slip structure in our finite-size simulations. However, similar

unexpected structures might play a role in other parts of the phase diagram

of Fig 4.6. The rigorous exploration of such structures can be part of future

investigations using the finite-size simulations, explained in chapter 4.3.1.

We also left out a rigorous analysis of the asymptotic trend as the number

of spheres N in the simulation goes to infinity. Our preliminary results for

the discovered line slip indicate that the binary mixture is recovered, when N

is increased. The total energy in terms of N can be studied in more detail

for the binary mixture and the line slip. The crossover point in the energy

for those two structures will indicate how many spheres are needed to recover

the limit of an infinite system size. Similar investigations can be performed

for other unexpected (line-slip) structures in the future.

In order to get a closer comparison between simulations and the actual

lathe experiments, the finite-size simulation can be modified by adding walls
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at both ends of the unit cell. Wall effects are then introduced to the simulation

and further unexpected structure, not predicted by the phase diagram, may

appear. It can be examined if such wall and finite-size effects vanish with

an increasing number of spheres. Investigations of such modified simulations

can give a hint on what system sizes in experiments are needed to recover the

limit of infinite system size.

Since these finite-size effects in the form of line slips are also expected

for hard spheres, future experiments using polymeric beads (as performed

by Lee et al.) can be performed to search for these unexpected structures

experimentally. Results may be compared to finite-size simulations that are

implemented with wall boundaries at each end of the unit cell. For closer

comparison, hysteresis and metastability should be looked for in experiments

and simulations.

In order to corroborate findings from soft sphere simulations, especially

the occurrence of peritectoid points, Lee et al.’s type of experiments can

also be performed using soap bubbles immersed in a rotating tube filled with

surfactant solution. However, the bubbles in these experiments are prone to

coarsening and (thus) changing bubble size during the course of the experi-

ment.

An alternative experimental realisation of soft spheres are hydrogel spheres

(Fig 6.1(a)). Hydrogel spheres consist of hydrophilic polymer networks that,

when in contact with water, swell up to diameters of roughly d ≈ 1 cm (see

scale in Fig 6.1(a)). They can simply be produced by placing colloidal particles

made of such polymers in water. The hydrogel spheres, after absorbing the

water, are then elastic and deformable (like soft spheres). Their density is

slightly higher than that of water. Thus, either salt has to be added to the

surrounding water or a different type of liquid has to be used.

We have already performed preliminary lathe experiments using such hy-

drogel spheres (see Fig 6.1(b)). In these experiments we placed the hydrogel
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(a) (b)

Fig 6.1: Possible future experiments about rotational columnar structures of soft sphere

may be performed with hydrogel spheres. (a) shows an image of such hydrogel spheres. (b)

is an image of a (4, 2, 2) structures assembled of hydrogel spheres involving rapid rotations

with a lathe.

spheres in a glycerol solution, which has a significantly higher density than the

hydrogel spheres. Rotating the system leads to various types of structures,

such as the (4, 2, 2) structures displayed in Fig 6.1(b).

However, two major technical difficulties arise in such lathe experiments

that are yet to be overcome. As it can be seen from Fig 6.1(a), the hydro-

gel spheres are slightly polydisperse (not of equal size) because each sphere

absorbs a different amount of water.

The second problem is related to a density change of the spheres over the

course of the experiment. During the experiments, the spheres absorb the

glycerol solution that they are placed in. Thus, the density of each sphere

increases with time, depending on the amount of glycerol absorbed. Both

issues make these such experiments using hydrogel spheres impractical for

columnar structure investigations of soft spheres. By filtering the hydrogel

spheres by size and sealing them against the surrounding liquid, these com-

plications might be overcome in the future.
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6.3. Hard sphere chains in a cylindrical harmonic potential

6.3 Hard sphere chains in a cylindrical har-

monic potential

6.3.1 Summary

The simplest possible columnar structure consists of a chain of spheres that

are assembled in a line. Such a structure, confined by a radial harmonic

potential, with hard walls at its ends, exhibits a variety of buckled struc-

tures as it is compressed longitudinally. Such structures have previously been

experimentally investigated using trapped ion systems.

In chapter 5 we showed that such hard sphere structures may be conve-

niently observed with Lee et al.’s experimental method of polymeric spheres

inside a rotating liquid-filled tube [8]. We developed a corresponding the-

oretical model, based on a stepwise method, that is transparent and easily

investigated numerically, as well as by analytic linear approximations.

Hence we explored a wide range of predicted structures occurring via

bifurcation, of which stable ones were also observed in our experiments using

rapid rotation and simulations based on energy minimisation. The structures

predicted by our numerical model were presented in an energy bifurcation

diagram, displaying the energies vs compressions for low energy structures.

6.3.2 Outlook: Extension of the stepwise method and

experiments with confined soap bubble chains

The simulations, such as the stepwise method, as well as the lathe experiments

that were described in chapter 5 can be extended in many possible directions.

In its current state the stepwise method, used to find force-equilibrium struc-

tures, encounters difficulties above a certain compression. Since an increasing

number of solutions is found for increasing compression, our implementation

based on the bisection method has problems in finding all these solutions. By
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Fig 6.2: Three preliminary examples of high energy structure that have two peaks in

their profile. The black vertical line represents the midpoint of the structure and the blue

horizontal line is the rotational axis (as introduced in chapter 5). All structures were

simulated with the stepwise method.

exchanging the root search method for a more sophisticated one (e.g. Newton–

Raphson method), the stepwise method may also be able to cover the regime

of higher compressions.

The present implementation, however, can already be used to find struc-

tures of higher energies that we did not discuss in chapter 5. We hinted at

those structures in the extended bifurcation diagram of 5.5, but intentionally

left them out of our analysis in this chapter. They can be found by increasing

the search range for the simulation parameter F1.

While all the profiles of all the energy structures, as described in chapter

5, consist of a single peak, some of these higher energy structures may have

two (or even more) peaks in their profile. Some preliminary examples that

were already generated with the stepwise method are shown in Fig 6.2. These

structures have peaks on either side of the midpoint of the structure. Their

second peak increases the rotational energy of the structure to (roughly)

double the amount of their single peak counterpart.

Simulations and experiments of such structures can also be extended to
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soft spheres. By allowing overlaps in the stepwise method, it may be modified

to simulate structures of soft spheres. Results may then directly be compared

to further soft sphere simulations based on energy minimisation from chapter

5.2.2.

Future lathe experiments for soft spheres can be carried out using bub-

bles or hydrogel spheres (see Fig 6.1) instead of polymeric beads. For these

constituents the same issues apply concerning the polydispersity and density

as described in section 6.2.2. Another fruitful extension of the experiments

may be performed by using spheres made of photoelastic material [113, 114].

Such a material indicates the magnitude of each compressive force between

the spheres, which might give a closer comparison with the stepwise method.

The most promising future work in this area is an experimental method

using monodisperse bubbles confined in a horizontal liquid-filled tube (see

Fig 6.3). Buoyancy pushes the bubbles that are aligned as a chain along

the axis of the tube, towards the curved tube wall. There they are confined

in transversal direction by the tube wall. By compressing the bubble chain

in longitudinal direction, the chain starts to buckle and a modulated zigzag

structure similar to those described in chapter 5.3 is formed.

A preliminary example of such a modulated zigzag structure, created from

a chain of bubbles, is presented in the top image of Fig 6.3. Such a structure

can directly be compared to further results from our soft sphere simulation,

based on energy minimisation (explained in chapter 5.2.2). The corresponding

structure simulated with this method is shown in the bottom image of Fig 6.3.

Such experiments are mainly for demonstrational purposes. However, the

softness of the system may introduce some of new unexpected structures and

features, not observed in hard sphere systems. A publication on this work is

currently in preparation [115].
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Fig 6.3: Top: A modulated zigzag structure of a chain of 19 soap bubbles inside a tube

compressed between two stoppers similar to those in chapter 5. Buoyancy pushes the

bubbles against the curved tube wall, which confines the bubbles in transversal direction.

Bottom: The same modulated zigzag structure simulated by the soft sphere simulations

based on energy minimisation from chapter 5.2.2. The soft spheres are compressed between

two walls, distance L apart, and confined inside a cylindrical harmonic potential in radial

direction. The images will be published in Ref [115].

6.4 Soft disk packings inside a 2D rectangular

channel

Although the packing problem of spheres inside a cylinder can be reduced

to packing disks on the cylinder surface, the resulting columnar structures on

which we focussed in this thesis are three-dimensional (3D) structures. The 2D

counterpart to packing spheres into cylinders, is the packing of disks inside

a rectangular channel. This supposedly easier packing problem due to less

dimension in the configuration space may bear further insight to sphere/disk

packings with a range of interesting applications.

Such 2D packings and their packing fraction have been studied in details

for hard spheres [116]. Through a final-year student project, we have started

to preliminarily investigate such structures using soft disks. Their disk–disk
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interaction is modelled the same as for soft spheres, but in 2D. We discovered

that the densest packings of soft disks confined inside a rectangular channel

are similar structures as the 3D columnar structures. They either form a

hexagonal structure (such as the one in Fig 6.4(a)), which is the 2D counter-

part of a uniform structure (explained in chapter 2.3.1), or a structure with

loss of contacts between certain disks (see Fig 6.4(b)). This structure is the

2D counterpart of a line-slip arrangement (explained in chapter 2.3.2).

(a) (b) (c)

Fig 6.4: Soft disk packings [(a) and (b)] and a 2D bubble raft compressed between two

vertical plates (c). (a) shows a hexagonal packing and (b) the 2D counterpart of a line slip.

Both are simulated with soft disk simulations. (c) displays an optical microscopy image of

a hexagonal crystal of buoyant droplets bounded by two glass plates [117].

There are many quasi-2D systems where the such packings are of great

interest. The most obvious one is in microfluidics. This is an emerging multi-

disciplinary field that is concerned with the behaviour of fluids inside channels

with a size on the microscale [36]. It is of incredible use in areas such as

diagnostic medicine and microelectronics, where the precise manipulation of

small amounts of fluid is important.

One goal of researchers in this field is to precisely control droplets or bub-

bles in these systems by varying parameters such as the size of their channel

or the pressure of their system. Therefore studying the packing behaviour
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of such deformable objects using the soft disk model as these parameters are

varied is of great interest.

A 2D bubble raft bounded by two plates, such as the one of monodisperse

bubbles displayed in Fig 6.4(c), is also used as a model system to study

the crystal-to-glass transition [117]. In a study by Ono-dit-Biot et al., 2D

finite aggregates of oil droplets were compressed between two plates and

their rearrangement under compression examined. By studying aggregates

of mono- and polydisperse droplets, it gave insight into the energy landscape

from crystals to glasses.

2D packings of soft, deformable objects also occur when people are packed

together in a rectangular confinement. We performed very simple and pre-

liminary experiments in this area for a poster project of second-year students

(see illustration in Fig 6.5). In these experiments students were packed inside

a rectangular confinement, created by tables. The image was then taken from

the balcony of the SNIAM building at Trinity College Dublin. Research in

this area may improve better designs for public transport and other public

places where an agglomerate of people occurs.

Fig 6.5: An illustration of packing of people/students inside a rectangular confinement as

an example of soft disk packings. The people displayed in the image “self-assembled” to an

ordered zigzag structure. The picture was taken during a student project in front of the

SNIAM building at Trinity College Dublin.
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6.5 Limits of the soft sphere model

All outlook plans for future simulations up to this point continue our work

using simulations that are based on the soft sphere models. However, another

interesting direction for researching columnar structures can be followed by

questioning the accuracy of the soft sphere model to systems of deformable

objects such as foams or emulsions.

In this section we will elaborate on the limit of the soft sphere model. Since

these limits are easier to investigate in two-dimensional (2D) systems, we will

focus here on soft disks, rather than the soft spheres. Similar discrepancies

are to be expected for 3D, as well.

Besides the simple discrepancy of lack of volume conservation, significant

differences in the variation of the average contact number Z with packing

fraction were discovered between the random soft disk model and 2D random

foam simulations. We will briefly highlight these differences in the following.

A detailed discussion on the discrepancies can be found in Ref [1]. This

is part of additional work during my PhD where I co-authored two further

publications [1, 5]. However, I chose to put the focus of the thesis on columnar

structure and left out the details of this work out of reasons of coherence.

6.5.1 Soft disk vs 2D foam simulation

In order to investigate the limit of the soft disk model, we compare results from

this model with those from a well established 2D foam model, implemented

in the plat software [78, 118, 119]. All results from such simulations in this

section were carried out by with Friedrich Dunne, a former PhD Student in

the Foams and Complex System Group at Trinity College Dublin.

Plat is a software for the simulation of random 2D foam [78, 118, 119]

which is not based on an energy minimisation routine, but instead directly

implements Plateau’s laws for a 2D foam by modelling the films and liquid-
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gas interfaces as circular arcs, constrained to meet smoothly at vertices. The

radius of curvature r of each arc is determined by the Laplace law.

For a film this law is pi − pj = 2γ/r, where pi and pj are the pressures

in the two adjacent bubbles and γ is the surface tension. For a liquid–gas

interface pi − pb = γ/r, where pb is the pressure in the Plateau border, set

equal in all Plateau borders.

The 2D foam samples were generated as (nearly) dry foams (high packing

fraction) by standard procedures [118–120]: A random Delauney tessellation

is used to compute a Voronoi network. This is then converted to an (as yet

unequilibrated) dry foam by decorating its vertices with small three-sided

Plateau borders. The equilibration process of the decorated Voronoi network

consists of adjusting cell pressure and the vertex positions (xn, yn) under the

constraints of smoothly meeting arcs and area conservation for each bubble.

Equilibrium is reached when the change in vertex positions is small.

A progressive decrease in steps of ∆φ = 0.001 in packing fraction was

imposed to reach a given packing fraction φ and the system was equilibrated

at each step. Decreases in packing fraction are performed by proportionally

reducing bubble areas. The bubble radius distribution of the sample, which

is calculated from bubble cell areas, follows a lognormal distribution.

The random soft disk packings are simulated with similar conditions (same

polydispersity, same sample preparation protocol) as in plat. They are

created using the BFGS minimisation routine to minimise the energy, as

explained in chapter 2.5.1 [83].

Three samples of N = 60 bubbles at different packing fraction φ are pre-

sented in the top images of Fig 6.6. The bottom images show corresponding

soft disk packing that were generated at the same value of φ. Differences

between the two simulations are already visible from comparing these images:

In the soft disk packings the disks overlap with increasing packing fraction,

whereas the 2D foam simulations the bubbles/foam cells deform and take on
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dry foam wet foam

(a)
φ = 0.997

(b)
φ = 0.896

(c)
φ = 0.841

Fig 6.6: Comparison between a simulated 2D foam (three images at the top) and polydis-

perse soft disk packings (three images at the bottom) at different packing fraction φ. The

top and bottom images in (a) correspond to a dry foam at a packing fraction of φ = 0.997.

The images in (b) are at a packing fraction of φ = 0.896 and images in (c) are taken at the

critical packing fraction of φ = 0.841.

a polyhedral shape in the dry limit.

6.5.2 The average contact number Z(φ) for soft disk and

2D foam simulations

A quantitative discrepancy between these soft disk and 2D foam simulations

was discovered in the variation of contact number Z(φ) with varying packing

fraction φ. Previous simulations of the soft disk model [75, 121, 122] have

shown that the average contact number Z(φ) varies in a square-root behaviour

149



Chapter 6. Summary and outlook

above the critical point of jamming,

Z(φ)− Zc ∝ (φ− φc)
1/2, (6.1)

where φc is the packing fraction at the jamming point and Zc the average

contact number at φc. While local stability requires at least three neighbours

for each disk at φc, overall stability requires Zc = 4 as an average in an infinite

2D system [123].

In analysing our results we need to take into account a small finite-size

correction. In the case of our finite system with periodic boundaries the critical

value of the contact number is given by

Zc = 4(1− 1/N) , (6.2)

where N is the number of bubbles; N = 60 in our case thus results in Zc =

3.933. This relation is obtained from matching the number of degrees of

freedom, 2N for a two-dimensional packing, with the number of constraints,

due to the ZN/2 contacts. However, in a periodic system we can fix one

bubble without loss of generality, leaving only N − 1 bubbles free to undergo

translational motion.

As a standard procedure [122, 124], rattlers, which are bubbles with less

than three contacts, were excluded in the analysis of both simulations. These

do not contribute to the connected network and are mechanically unstable

bubbles, which can be removed without changing the packing.

The main plot in Fig 6.7 displays the average contact number Z(φ) for the

soft disks (blue data points) and the plat simulation (red data points). The

soft disk data shows the expected square-root behaviour, as indicated by the

fit with the solid blue line. But for the 2D foam simulations we find a linear

variation in the Z(φ) above the critical packing fraction φc (solid red line in

Fig 6.7). Appropriately, fitting

Z(φ) = Zc + kf(φ− φc), (6.3)
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Fig 6.7: Comparison between the average contact number Z as a function of packing

fraction φ for the soft disk simulation (blue data point) and the plat simulation for a 2D

foam (red data points). For 2D foams close to the critical packing fraction φc, Z was found

to vary linearly with φ−φc. Z(φ) for the soft disk system shows the well-known square-root

scaling. For the soft disk systems we averaged over 20 000 realisations and for the plat

results over 600 000 realisation, both with N = 60 bubbles/disks in each realisation. Inset:

Double-logarithmic scale for Z − Zc vs. packing fractions φ − φc up to φ = 1. By fitting

a linear function (solid line), the φc which gives the best linear relationship is obtained as

φc = 0.841± 0.001.

to the plat data with Zc = 4 − 1/15 gives kf = 17.9 ± 0.1 and a critical gas

fraction of φc = 0.841 ± 0.001. The value of φc is consistent with previous

numerical results [120, 124, 125] The conclusion is therefore that Z approaches

Zc linearly for a 2D foam, whereas Z varies with a square root in φ in soft

disk packings.
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In the inset of Fig 6.7, we also plotted log(Z(φ) − Zc) vs. log(φ − φc),

varying φc to obtain the value which gives the best linear relationship between

these quantities. In this way, the critical packing fraction was found to be

φc = 0.841 ± 0.001, and the slope is α = 1.000 ± 0.004 in the logarithmic

plot. This corresponds to a power law relation

Z(φ)− Zc ∝ (φ− φc)
α , (6.4)

which confirms the linear relationship for the 2D foam data.

If one describes foams in the wet limit as packings of disks (or spheres),

then it is tempting to extend this analogy also to the functional relationship

for Z(φ) and thus expect the same square-root relationship in lowest order.

However, Surface Evolver simulations have shown that the energy is harmonic

in 2D, but the bubble–bubble interactions are not pairwise-additive [77]. That

is, the model of interaction that lies at the heart of the soft disk model does

not represent realistic bubble–bubble interactions. One should therefore treat

this prediction with some caution.

For 3D foams our results suggest also a deviation from the square-root

scaling in Z(φ), since we conjecture the reason for the deviation in the 2D

case to be the model of interaction. However, the scaling does not have to be

linear. Apart from the non-pairwise interaction, the energy for the 3D bubble–

bubble interaction is also not harmonic. It scales with the form f 2 ln (1/f),

first predicted by Morse and Witten, where f is the force exerted between

droplets [76, 77].

The variation of the average contact number Z(φ) with packing fraction

φ is only one example where the soft sphere/disk model differs from the exact

foam simulations. Further related discrepancies were studied in detail in Ref

[1]. Although the consequences of such findings for columnar structures is

unclear, these limits demonstrate the need for new simple models to investi-

gate equilibrium soft matter structures, such as foams or emulsions. Further
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investigations related to our columnar structures can then be carried out with

these models, as we will discuss in the next section.

6.6 The Morse–Witten model for deformable

spheres

One of those models that can be implemented in our simulations for future

plans is the Morse–Witten model [5, 76, 126, 127]. It simulates deformable

spheres such as bubbles or droplets based on the Morse–Witten theory [76].

This theory describes the shape of a bubble subject to a point force and an

equal compensating body force, such as buoyancy or gravity. Fig 6.8 displays

the shape of such a deformed bubble in 3D (a) and 2D (b) using the Morse–

Witten theory.

Höhler and Weaire reviewed simulations based on this theory in Ref [126].

For instance, this theory can be used to describe the equilibrium shape of a

single bubble pressed against a horizontal plate by an external body force (see

Fig 6.8(a)). The contact force of the plate with the bubble is assumed to be a

point force f . The Morse–Witten theory then approximates the bubble shape

by linearising the curvature C of the interface in the Laplace–Young equation

γC = ∆p . (6.5)

The surface tension of the bubble interface is given by γ and∆p is the pressure

difference across the interface. In 3D this assumption and approximation leads

to a divergence of the shape at the contact point (see yellow part below the

red disk in Fig 6.8(a)). However, since the correcting volume is of second

order in the force f , this can be neglected.

The shape of a 2D bubble can be estimated in a similar fashion (Fig 6.8(b))

with the difference that no divergence occurs at θ = 0. The comparison
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(a)

θ
ρ(θ)
R0

f

(b)

Fig 6.8: The Morse–Witten theory is used to estimate the shape of a deformed bubble in

2D and 3D. In (a) the shape of a 3D bubble pushed against a horizontal plate (blue) by

buoyancy is displayed. The red disk at the top of the bubble indicates the contact area of

the bubble with the plate. The yellow part below the red disk is disregarded because its

volume is negligible compared to the rest of the bubble [126]. (b) shows the shape ρ(θ) of a

2D bubble deformed by a point force f and an equal compensating body force, as described

in the Morse–Witten theory. The undeformed bubble, which takes the shape of a disk with

radius R0, is shown by the dashed circle. The part of the profile below the faint horizontal

dashed line is disregarded [5].

between the dashed circle and the shape of the bubble in Fig 6.8(b) shows

clearly the effect of deformation for soft objects such as bubbles.

While the soft sphere model does not consider such deformation and as-

sumes interactions to be pairwise, the Morse–Witten theory provides a for-

mulation for a non-pairwise bubble–bubble interaction that takes deformation

into account. A first simulation for a polydisperse wet foam was implemented

by Dunne et al. [5] for 2D bubbles. This 2D simulation was found to be

accurate in the limit of high liquid fraction where the bubbles are spherical.

It superposes all contact forces of a bubble with its neighbouring bubbles to

calculate the shape of a deformed bubble. By equilibrating the net forces of
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all bubbles, one ends up with a stable bubble configuration.

However, such an implementation of the Morse–Witten model currently

only exists for 2D foams. For most purposes related to this thesis a 3D

implementation of monodisperse bubbles needs to be developed first.

The 2D implementation may already be used to extend the work from

chapter 5 on sphere chains in a cylindrical harmonic potential to that of

deformable and monodisperse bubbles. The 2D model can be applied here

because the equilibrium structures are restricted to planar ones. The bound-

aries in form of the centripetal force and walls at both ends need to be added

to the simulation. Both amendments are fairly simple: The centripetal force

can be implemented as another force that contributes to the net force of each

bubble and the walls may be modelled by two further horizontal point forces.

The 2DMorse–Witten simulation can also be applied to further 2D packing

problem such as those introduced in section 6.4 of the outlook. Instead of

investigating soft disks packed inside a rectangular channel, the Morse–Witten

theory may be used to simulate 2D bubbles compressed by two vertical plates.

Implementing the bubble-to-wall interaction may be of some difficulty.

A 3D implementation of the Morse–Witten model can be used to extend

the investigations from chapter 3 and 4. Huge difficulties will have to be

accomplished for simulating a columnar foam confined inside a cylinder (sim-

ilar to the work in chapter 3) using this model. One major implementation

issue will be related to simulating the correct interface and contact between

a bubble and the curved cylinder wall. Such a situation probably needs to be

studied separately in detail first.

The simulation of columnar structures of bubbles inside a rotating liquid-

filled tube (see chapter 4), however, can be accomplished with less effort in

3D. Similar to the 2D case, the confinement in radial direction can simply be

implemented by amending a centripetal force to the overall net force of the

bubbles.
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Appendix A

A.1 Tabulated hard sphere results

In the first part of the appendix we recapitulate some of the hard sphere

results from Mughal et al. [14]. We present these previous results here in case

the reader needs to look up some of the work that this thesis is based on. We

mostly refer to this work in chapter 3.

Table A.1 displays the densest packings of hard spheres of diameter d

inside a cylinder of diameter D. The table stops at the D/d value at which

the nature of the structure changes significantly and structures with internal

spheres occur. This table includes all structures that are also observed in the

phase diagram of Fig 3.2 of chapter 3.

Fig A.1 presents the surface density vs the periodicity vector V (see chap-

ter 1.3 for explanation) of disk packings on the surface of the cylinder. The

corresponding 3D plot is shown in Fig A.2 (together with the 2D data). Both

plots are heavily used in chapter 3 to investigate structural transition. Their

information is needed to fill in the missing structural transition in the directed

network of Fig 3.10.

The black line connecting the (4, 2, 2) and (4, 3, 1) structures in Fig A.1

indicates the special behaviour of the re-entrance case (see chapter 3.3.3). This

line is slightly curved backwards, leading to two different surface densities at

a given |V | (or two different packing fractions at a given D/d in 3D).
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Table A.1: Densest hard sphere packings.

structure range spheres in unit cell notation
1 (C1) D/d = 1 1 straight chain
2 1 ≤ D/d ≤ 1.866 1 zigzag
3 1.866 ≤ D/d ≤ 1.995 1 twisted zigzag
4 1.995 ≤ D/d < 2.0 2 (2,1,1)
5 (C2) D/d = 2.0 2 (2,2,0)
6 2.0 < D/d ≤ 2.039 2 (2,2,0)
7 D/d = 2.039 1 (3,2,1)
8 2.039 ≤ D/d ≤ 2.1413 2 (3,2,1)
9 2.1413 ≤ D/d < 2.1545 3 (3,2,1)
10 (C3) D/d = 2.1547 3 (3,3,0)
11 2.1547 < D/d ≤ 2.1949 3 (3,3,0)
12 2.1949 ≤ D/d ≤ 2.2247 2 (3,2,1)
13 D/d = 2.2247 2 (4,2,2)
14 2.2247 ≤ D/d ≤ 2.2655 2 (4,2,2)\(4,2,2)
15 2.2655 ≤ D/d ≤ 2.2905 3 (3,3,0)
16 D/d = 2.2905 1 (4,3,1)
17 2.2905 ≤ D/d ≤ 2.3804 3 (4,3,1)
18 2.3804 ≤ D/d < 2.413 4 (4,3,1)
19 (C4) D/d = 2.4142 4 (4,4,0)
20 2.4142 < D/d ≤ 2.4626 4 (4,4,0)
21 2.4626 ≤ D/d ≤ 2.4863 3 (4,3,1)
22 D = 2.4863 1 (5,3,2)
23 2.4863 ≤ D/d ≤ 2.5443 3 (5,3,2)
24 2.5443 ≤ D/d ≤ 2.5712 4 (4,4,0)
25 D = 2.5712 1 (5,4,1)
26 2.5712 ≤ D/d ≤ 2.655 4 (5,4,1)
27 2.655 ≤ D/d < 2.7013 5 (5,4,1)
28 (C5) D/d = 2.7013 5 (5,5,0)
29 2.7013 < D/d ≤ 2.71486 5 (5,5,0)

Table listing the densest hard sphere packings inside a cylinder for a range of diameter ratios

D/d where D is the cylinder and d the sphere diameter. The table stops at D/d < 2.71486,

where the nature of the structure changes significantly and structures with internal spheres

occur. Bold numerals designate the line-slip type. The table is taken from Ref [14].
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A.1. Tabulated hard sphere results

Fig A.1: Surface density vs the periodicity vector V of disk packings on the surface of

a cylinder. Each black line connecting two peaks corresponds to a line-slip structure that

relates two uniform structures (at the peaks), labelled with (n,m, l). They give rise to

possible structural transition. The red dashed lines correspond to affine transitions that

are not important for this thesis. The plot is taken from Ref [14].

Fig A.2: Comparison of 3D and 2D packing fractions φ vs diameter ratio D/d for the

densest hard sphere packings – upper and lower curves, respectively. Dotted lines are a

guide for the eye to the detailed correspondence. For the 2D results, the line-slip structures

are identified by black continuous lines. The plot is taken from Ref [14].
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A.2 Employed minimisation routines

In this thesis, two different minimisation routines were used: The BFGS

method to search for local energy (or enthalpy) minima and the Basin-hopping

method to search for the global minimum. In this part of the Appendix we

will provide closer detail about these two algorithms. Both algorithms are

part of the scipy library [86], from where we imported these functions in our

simulations.

For the reason of simplicity and illustrative purposes, we will refer to the

function that is to be minimised as the energy function E(X) in the following

two subsections. The vector X contains all the N parameter, on which the

energy function depends. In our case these are mainly the positions of the

spheres packed inside the cylinder.

This function to be minimised can nonetheless be generalised to any type

of function, depending on the context of the minimisation. In physics, stable

structures are obtained by seeking for the minimum of a thermodynamic

potential. The energy and the enthalpy of a system are two example of such

a potential that are used in this thesis.

The BFGS method – A quasi-Newton method

The simplest algorithm in finding the (local) minimum of a function is the

gradient descent (or steepest descent) algorithm. This algorithm finds the

local minimum by iteratively taking steps in the directions of the force vector

F of the system. The force vector is defined as

F = −∇E(X) = −


∂E
∂X1

∂E
∂X2

...
∂E

∂XN

 , (A.1)

where N is the length of the parameter vector X.
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We used a more sophisticated algorithm to seek for the local minimum:

The BFGS method [83, 86, 128]. It is named for its discoverers Broyden,

Fletcher, Goldfarb, Shanno and belongs to the class of quasi-Newton algo-

rithms [128]. Algorithms of this type are further advancements of the conju-

gate gradient algorithm and thus sometimes referred to as conjugate gradients

as well (even though they are technically a different type of algorithm) [128].

All Newton methods are based on the second-order Taylor expansion

around the minimum X0 of an energy function

E(X) = E(X0)− F T · (X −X0) +
1

2
(X −X0)

T ·H · (X −X0) (A.2)

with the force vector F and the Hessian H of the energy E(X). The Hessian

is an N ×N matrix that contains all second derivatives of the energy

H =


∂2E

∂X1∂X1

∂2E
∂X1∂X2

. . . ∂2E
∂X1∂XN

∂2E
∂X2∂X1

∂2E
∂X2∂X2

. . .
...

... ... . . . ...
∂2E

∂XN∂X1
. . . . . . ∂2E

∂XN∂XN

 . (A.3)

To avoid complicated analytic calculations, this matrix is often numerically

approximated. Any Newton method that numerically approximates the Hes-

sian is called a quasi-Newton algorithm.

Fig A.3 displays the pseudo-code of any Newton-type algorithm. The main

step (line 4 of FigA.3) of the iterative scheme can be derived from eq. (A.2).

By setting E(X0) = 0 (WLOG), one can see that the equation

H · (X −X0)︸ ︷︷ ︸
p0

= F (A.4)

is satisfied in the (local) minimum for the Taylor expansion. Thus, solving

this equation iteratively for the direction p0, yields a downhill direction to a

possible minimum. This step is followed by a line search in the direction p0,

which is usually done with the Wolfe algorithm [128]. The line search returns
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Algorithm 1: The quasi-Newton method
input : Energy function E(X) and initial condition X0 of length N

output: Local minimum Xmin

1 F0 = −∇E(X0) ; // Calculate forces

2 H0 = H(X0) ; // Calculate Hessian

3 while |F0| > ε do

4 Solve matrix equation H0p0 = F0 for p0 ;

5 Line search along X0 + αp0 for α ;

6 Xmin = X0 = X0 + αp0 ;

7 F0 = −∇E(X0) ; // Update forces

8 H0 = H(X0) ; // Update Hessian

9 end

Fig A.3: Pseudo-code for a quasi-Newton method to seek the nearest local minimum of

an energy function E(X). It is based on iteratively solving the matrix equation (A.4) to

find the direction p0, followed by a line search to find the step α to the nearest minimum

in this direction. The parameter vector Xmin, initial condition X0 as well as forces (or

gradient) and Hessian are updated accordingly. For quasi-Newton methods, the Hessian is

approximated numerically. The iterative scheme terminates when the absolute value of the

forces drops below a certain threshold ε.

the step size α that one has to perform to find the nearest minimum along the

direction p0. The parameter vectors Xmin and X0 are then updated to this

minimum and the forces and Hessian calculated for this new minimum. The

algorithm terminates when the absolute value of the forces |F0| are below a

certain threshold value ε, which is close to zero.

A common issue of this iterative scheme is a singular Hessian, which can

occur. If the Hessian is singular, the matrix equation (A.4) has no solution.

The BFGS method circumvents this issue by directly approximating the in-

verse of the Hessian.
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Any Newton method or conjugate-gradient-type algorithm is a determinis-

tic algorithm, i.e. the algorithm will always find the same minimum for a given

initial condition X0 and there is no stochastic component in it. This makes it

capable of only finding the nearest local minimum to a starting value X0. We

make use of this property for investigating structural transitions in chapter

3 . On the downside, these algorithms are not suitable for searching for the

global energy minimum because they easily get stuck in a local minimum.

The Basin-hopping algorithm

In order to find the global minimum of an energy function E(X), a stochastic

component is needed. The landscape of a one dimensional energy function

with many local minima is illustrated in Fig A.4. Searching for the mini-

mum with a deterministic algorithm, such as the previously described BFGS

method, results in the position of the blue dot as the minimum. However,

the global minimum of this energy function is in the red dot. A stochastic

component allows the initial guess to jump out of the initial basin (marked by

the dashed lines). Based on this stochastic principle many global minimisation

routines were developed.

The Basin-hopping algorithm is such a stochastic global minimisation

technique [85]. Its iterative scheme resembles that of simulated annealing

and made simulated annealing depreciated [86]. Just as simulated annealing,

it is best suited to rugged variable landscapes consisting of many local minima

(just like the one in Fig A.4), and combines heuristic procedures with local

searches to effectively explore the entire space.

The pseudo-code algorithm in Fig A.5 illustrates this iterative search

scheme. The minimum search is performed by perturbing the system, followed

by a local optimisation in a given number of steps niter. The local minima

with the initial guesses X ′
0 are calculated using conjugate-gradient- or quasi-

Netwon-type algorithms (such as the BFGS method).
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local minimum

initial guess

global minimum

Fig A.4: Schematic plot of an energy landscape with many local minima [85]. The dashed

lines map out the basins around each minimum of this landscape. The red dot represents

the global minimum, while the blue dot is the nearest local minimum to the initial condition

marked by the black dot.

If the energy of the new local minimum is below the previous minimum,

the new step is always accepted. Otherwise the step is accepted with the

Metropolis acceptance criterion that is also used in simulated annealing: The

step is accepted with the probability

pA = exp
(
−E(Xnew)− E(Xold)

T

)
, (A.5)

where E(Xold) and E(Xnew) are here the energies before and after the new

step. With the temperature T, the likelihood of jumping to another basin can

be tuned. During the iteration the global minimum is updated accordingly.

The perturbations in each step of the algorithm ensure that more than

just one local minimum is explored and, with sufficient number of iterations,

the probability of finding the global minimum tends to 1. The acceptance rate

of the random perturbation is dependent on a given temperature T, which is

where the comparisons to simulated annealing can be drawn.
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Algorithm 2: Basin-hopping algorithm
input : Energy function E(X) with N -dimensional parameter X

output: Global minimum Xmin

1 X0 = random point in the parameter space ;

2 Xmin = Xold = local minimum of E(X) around X0 ;

3 for i = 0 to niter do

4 X ′
0 = randomly perturb parameter X0 ;

5 Xnew = local minimum of E(X) around X ′
0 ;

6 q = random number ∈ (0, 1];

7 if E(Xnew) < E(Xold) or exp(−(E(Xnew)− E(Xold))/T) < q then

8 X0,Xold = X ′
0,Xnew ; // accept new step

9 end

10 if E(Xnew) ≤ E(Xmin) then

11 Xmin = Xnew ; // update new global minimum

12 end

13 end

Fig A.5: Pseudo-code for the basin-hopping algorithm used to minimise an energy function

E(X) in N dimensions. It finds the global minimum iteratively by performing three steps in

each of the niter iterations: First, the parameter X0 is randomly perturbed and stored in

X ′
0. Second, the nearest local minimum fromX ′

0 is obtained with a conjugate-gradient-type

algorithm. This step of perturbation is accepted via the Metropolis acceptance criterion

with temperature T. The minimum Xmin is updated accordingly.

A.3 Analytic energy calculations for achiral

(l, l, 0) structures

Here, we show the detailed analytic energy calculation for all achiral and ho-

mogeneous columnar structures of the form (l, l, 0) [e.g. (2, 2, 0), (3, 3, 0) and

(4, 4, 0)]. This serves as an example for the analytic calculations performed
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in chapter 4.

The calculation starts with eq. (4.8) of the total energy per sphere ES
rot

from chapter 4
ES

rot
Mω2d2

=
1

2

R2

d2
+

1

2

k

Mω2

〈(
δij
d

)2
〉

. (A.6)

The first term corresponds to the rotational energy, while the second term is

the sphere–sphere interaction, which is structure dependent.

The (l, l, 0) structures consists of packings with l spheres in one layer

that are stacked on top of each other (compare also Fig 1.1 for the (3, 3, 0)

structure). Thus, the second term of the average squared overlaps
〈
δ2ij/d

2
〉

can be split into two terms〈(
δij
d

)2
〉

= ∆Layer + 2∆Top . (A.7)

These two terms describe the average squared overlap of one sphere in the

structure with neighbouring spheres. The first one ∆Layer is due to the overlap

with one contacting sphere in the same layer. The second term ∆Top is the

overlap with two spheres from the layer above (or below). The two terms can

formally be written as

∆Layer =
(d− r0(R))2

d2
(A.8)

∆Top =
(d− h(L,R))2

d2
, (A.9)

where r0 and h are centre–centre distances between these spheres within the

same layer and spheres above (or below), respectively. They only depend on

the geometry of the structure and are functions of the radial distance R and

the length L between the layer.

For r0 we find

r0(R) = 2R sin
(π
l

)
. (A.10)

For the distance h we focus on two centre positions of the spheres, one de-
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scribed by the coordinates (x0, y0, z0) and the other by (x1, y1, z1):

x0 = 0 x1 = R cos
(π
l

)
y0 = R sin

(π
2

)
y1 = R cos

(π
2
+

π

l

)
(A.11)

z0 = 0 z1 = L .

The distance between those two spheres is then

h(R,L) =

√
R2 cos2

(π
l

)
+R2

(
sin
(π
2
+

π

l

)
− 1
)2

+ L2 (A.12)

Substituting the expressions for r0 and h back into the total energy yields

the following expression for the energy:

ES
(l,l,0)(R,L)

Mω2d2
=

1

2

R2

d2
+

1

2

k

Mω2d2

((
d− 2R sin

(π
l

))2
+

(
d−

√
R2 cos2

(π
l

)
+R2

(
sin
(π
2
+

π

l

)
− 1
)2

+ L2

)2
 . (A.13)

The total energy ES
rot is now only a function of two variables, the radial

distance R and length L. The total energy can then be minimised with

analytic or numerical methods with respect to only the radial distance R,

while the length L is kept fixed. This length L can be related to the linear

number density ρ as described in chapter 4.
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