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Modelling Asymmetric Conditional Dependence between 
Shanghai and Hong Kong Stock Markets 

 
 

Abstract 
 

This paper investigates the asymmetric conditional 
dependence between Shanghai and Hong Kong stock index 
returns, to assess the impact of the recent financial 
recession on Chinese equity markets using the Copula 
approach. We first propose methods for optimal model 
selection when constructing the conditional margins. The 
joint conditional distribution is then modeled by the time-
varying copula, where the generalised autoregressive score 
(GAS) model of Creal, et al. (2013) is used to capture the 
evolution of the copula parameters. Upper and lower parts 
of the bivariate tail are estimated separately in order to 
capture the asymmetric property. We find the conditional 
dependence between the two markets is strongly time-
varying. While the correlation decreased before the crisis, it 
increased significantly prior to 2008, pointing to the 
existence of contagion between the two markets. Moreover, 
we find a slightly stronger bivariate upper tail, suggesting 
the conditional dependence of stock returns is more 
significantly influenced by positive shocks in China. This 
finding is further confirmed by a test for asymmetry which 
shows that the difference between upper and lower joint 
tails is significant.  

 
 
Keywords: Conditional Dependence; Tail Dependence; Copulas; Contagion 
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1. Introduction 

Modelling correlations and linkages between financial asset returns are important 
for international investors to diversify risk, and also for monetary policy makers 
to control for the risk of financial contagion. There are many studies on modelling 
the dynamic linkages between international stock markets and most have 
concluded the existence of market linkages and financial contagion (see, for 
example, Yiu et al., 2010; Kenourgios et al., 2011; Wen et al., 2012; Hui and Chan, 
2013). However, only a few studies have modelled the tail structure of the 
dependence between markets. Furthermore, due to the recent turmoil, one should 
expect such dependence to be asymmetric, as comovements between markets will 
be affected by negative shocks more substantially than positive shocks. Relatively, 
sufficient evidence is found for the existence of asymmetric dependence between 
stock market returns. Cappiello et al. (2006) found evidence of asymmetry in 
conditional volatility of the equality returns. Tamakoshi and Hamori (2012) 
amongst others found the stock return comovements are more significantly 
influenced by negative shocks. However, these studies emphasized developed 
markets in Euro areas and the United States. Only a few have modelled the 
increased integration between China and its regional developed contender. 

This paper aims to provide models for the entire dependence structure as 
well as asymmetric behaviour in bivariate tails for two Chinese stock indices using 
conditional copula models. The capitalisation of the Chinese stock market 
overtook Japan and became the world’s second largest stock market, totalling 
$3,981 billion in A-share capitalisation at the end of 2010. The unique position of 
the Chinese stock market amongst its international competitors and its role during 
the recent financial crisis, has encouraged the study of its dependence with other 
mature financial markets during the period of turmoil.  

The economic literature that focuses on the dynamic dependence between 
Chinese stock markets is somewhat dated. Li (2007) employed a multivariate 
GARCH model to test linkages in volatility between Shanghai, Shenzhen, Hong 
Kong and the US stock market using daily data from 2001 to 2005. Zhang (2009) 
examined the volatility spillover between Shanghai and Hong Kong stock markets 
from 1996 to 2008 by a Multivariate GARCH model while the linkages in returns 
are modelled using copulas. Hu (2010) found much lower tail dependence 
between Chinese and other international stock markets than the United States. Lai 
and Tseng (2010) modelled the dependence structure between China and the G7 
stock markets using a mixture copula. However, their analysis is again based on a 
more stable period of the stock markets in China.  

Therefore, we extend the literature by investigating the conditional 
dependence between the Chinese stock markets for a more turbulent period. In 
particular, we are interested in the relationship between Shanghai and Hong Kong 
stock markets, since studying the dynamics of the dependence between the two 
markets may provide interesting insights, as each of the markets has different 
features, but each was affected by the 07-09 subprime crisis and survived the 
financial turmoil so far.  
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Since reaching an historical peak of 6,124 points on Oct 16, 2007, the 
Shanghai Stock Exchange Composite index suffered a record of 65% drop in 2008, 
as a result of the global economic recession. Meanwhile, the Hong Kong Hang Seng 
stock index is more mature and internationalised. While stocks listed in the Hong 
Kong market can be traded freely amongst international investors, only a small 
amount of listed stocks in the Shanghai stock market (namely B-share stocks) can 
be invested in with foreign capital. In the meantime, the Hang Seng stock index is 
closely linked to the economy in Mainland China as most reference entities listed 
in this index has investment relations with Mainland China. This creates some 
particular distinguishing features as well as associations for these two stock 
indices during the financial crisis.  

To assess the changing dependence structure, we implement a time-
varying copula approach, where the generalised autoregressive score (GAS) 
model of Creal, et al. (2013) is used to capture the evolution of the copula 
parameters. Moreover, this paper extends the analysis of the dependence 
structure between Shanghai and Hong Kong stock markets in several other ways. 
First, we define the conditional margins separately for the two stock indices and 
introduce the methods of selecting the optimal model. Second, we provide the 
entire structure of dependence as well as the structure of bivariate tails. While 
constructing the tail dependence, we model the upper and lower tails separately, 
to capture the asymmetric property. Finally, tests for the time-varying structure 
and asymmetric dependence are introduced.  

Our results suggest that the conditional dependence between the two 
markets is strongly time-varying. While the correlation decreased before the 
crisis, it increased significantly prior to 2008, suggesting the existence of 
contagion between the two markets. This is constant with Forbes and Rigobon 
(2002)’s standard definition of financial contagion that contagion exists if cross-
market co-movement increases significantly after a shock. The correlations 
persisted at a high level after 2008, which can be explained by herding behaviour 
as the crisis grew. Moreover, we find a slightly stronger bivariate upper tail, which 
has not been documented in previous literature, indicating asymmetric 
dependence. Testing for asymmetry shows that the difference between upper and 
lower joint tails is statistically significant.  

Our results may provide investors and policy makers more timely 
information with regards to portfolio management, risk diversification, and asset 
allocation. While we show that the Chinese markets are less dependent before 
crisis but more dependent during the crisis, it may suggest market upturns in 
Hong Kong were mainly driven by the stock markets in Mainland China, while the 
bull markets were brought about by the global economic recession, this finding is 

also consistent with the asymmetric tail dependence found between Shanghai 

and Hong Kong stock markets. 

The rest of the paper is organised as follows. Section 2 will discuss the 
models for the marginal distribution and the joint distribution of copulas. Section 
3 will select the optimal models for the marginal distributions. Section 4 and 5 will 
build models for the entire dependence structure as well as for the bivariate tails. 
Section 6 concludes the paper. 
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2. Methodology 

We use copula to model the asymmetric conditional dependence between 
Shanghai and Hong Kong stock markets. A copula is a function that links marginal 
distributions of random variables to form a joint distribution. In other words, the 
joint distribution can be written as a copula function and marginal distributions. 
Thus, copula-based models provide great flexibility to model multivariate 
distributions, allowing for specification of the marginal distributions separately 
from the dependence structure (copula). 

Since this paper focuses on the conditional dependence, we are interested 
in applying a version of Sklar’s theorem (1959) as presented in Patton (2006). 
Assume the joint conditional distribution of random variables 𝑅𝑖𝑡 is 𝐻(𝑟𝑖𝑡|Π𝑡−1), 
where 𝑖 = 1, … , 𝑛  and Π𝑡−1  is some information set. By decomposing it into 𝑛 
marginal distributions, we have 

𝐻(𝑟𝑖𝑡|Π𝑡−1) = 𝐶(𝐹1(𝑟1𝑡|Π𝑡−1), … , 𝐹𝑛(𝑟𝑛𝑡|Π𝑡−1)|Π𝑡−1)               (1) 

The above function highlights the flexibility of copula-based models in 
estimation and model specification. That is, we can estimate the model in stages 
by first estimating the conditional marginal distributions and then consider 
copula models for the conditional joint distribution. This generates an n-
dimensional model, without the challenge of estimating it simultaneously. 
 
2.1 Models for the Conditional Marginal Distribution 

Since we aim to construct the conditional dependence structure, we must first 
model the conditional margins. In this paper, we will allow the index return series 
to have time-varying conditional means and variances based on the following 
structure: 

𝑅𝑖𝑡 = 𝜇𝑖(𝜙𝑡−1) + 𝜎𝑖(𝜙𝑡−1)𝜀𝑖𝑡                                           (2) 
where 𝑖 = 1, … , 𝑛 , 𝜙𝑡−1 ∈ Π𝑡−1 , and 𝜀𝑖𝑡  is the standardised residuals, which has 
the following expression: 

𝜀𝑖𝑡 =
𝑅𝑖𝑡−𝜇𝑖(𝜙𝑡−1;𝜃)

𝜎𝑖(𝜙𝑡−1;𝜃)
, 𝑖 = 1, … , 𝑛                                            (3) 

where 𝜃 is the vector of estimated parameters for the models of conditional mean 
and variance. 

The conditional marginal distributions are calculated using the above 
standardised residuals. We will adapt a parametric model for conditional margins 
where the skewed t of Hansen (1994) is selected for the distribution of 
standardised residuals. The skewed t distribution is close to a t distribution, but has 

an additional parameter to capture the asymmetry in distribution while maintaining a 

zero mean and unit variance. The skewed t distribution is defined as: 

𝑑(𝑧|𝜂, 𝜆) = {
𝑏𝑐(1 +

1

𝜂−2
(

𝑏𝑧+𝑎

1−𝜆
)2)−

𝜂+1

2    𝑖𝑓 𝑧 < −𝑎/𝑏

𝑏𝑐(1 +
1

𝜂−2
(

𝑏𝑧+𝑎

1+𝜆
)2)−

𝜂+1

2    𝑖𝑓 𝑧 ≥ −𝑎/𝑏
                                 (4) 
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where a ≡ 4λc
η−2

η−1
, b ≡ 1 + 3λ2 − a2 , c ≡

Γ(
η+1

2
)

√π(η−2)Γ(
η

2
)
. η and λ denote the degree of 

freedom and the asymmetry parameter and 2 < 𝜂 < ∞ and −1 < 𝜆 < 1. From the 

above model, we know that if λ = 0, then the skewed t distribution is a standardised 

student’s t distribution; if λ > 0, then the density of the distribution is skewed to the 

right, and vice versa. 

 
2.2 Copula Models for the Entire Dependence Structure 

After modelling the conditional marginal distributions of the asset returns, we will 
obtain 𝑛  pairs of uniformly distributed variables 𝑢𝑖𝑡, 𝑖 = 1, … , 𝑛 , which will be 
used to estimate the copula parameter.  

In this paper, we will provide models for constant copulas as well as time-
varying copulas. In particular, the time-varying copula will be modelled using the 
generalised autoregressive score (GAS) model of Creal, et al. (2013), which 
assumes the time-varying copula parameters follow an evolution function of the 
lagged copula parameter and a “forcing variable” that is related to the scale score 
of the copula log-likelihood.  

The GAS (1,1) specification of Creal et al. (2013) will be implemented which 
has the following expression:  

𝜙𝑡+1 = 𝜔 + 𝛼
2

1−𝜌𝑡
2 [𝐴𝑡 − 𝜌𝑡 − 𝜌𝑡

𝐵𝑡−2

1+𝜌𝑡
2] + 𝛽𝜙𝑡                      (5) 

where 𝜙𝑡  is the copula parameter, 𝜌𝑡 is the correlation parameter, 𝐴𝑡 =
Φ−1(𝑢1𝑡)Φ−1(𝑢2𝑡), 𝐵𝑡 = Φ−1(𝑢1𝑡)2 + Φ−1(𝑢2𝑡)2 and Φ−1(∙) is the inverse of the 
normal distribution function. 

 
2.3 Copula Models for the Tail Dependence 

One of the most important features of the structure of the relationship is the tail 
dependence. We consider this by first looking at the quantile dependence, which 
is captured by the following functions: 

𝜆𝑡 = {
Pr(𝑈𝑥 ≤ 𝑡|𝑈𝑦 ≤ 𝑡) , 0 < 𝑡 ≤

1

2

Pr(𝑈𝑥 > 𝑡|𝑈𝑦 > 𝑡) ,
1

2
< 𝑡 < 1

 

= {

𝐶(𝑡,𝑡)

𝑡
, 0 < 𝑡 ≤ 1/2

1−2𝑡+𝐶(𝑡,𝑡)

1−𝑡
, 1/2 < 𝑡 < 1

                                                  (6) 

The above function provides a richer description of the dependence 
structure between two random variables. As 𝑞 → 0, we have the lower (left) tail 
dependence, which is defined as  

𝜆𝐿 = lim
𝑡→0+

𝐶(𝑡,𝑡)

𝑡
                                                          (7) 

Similarly, the upper (right) tail dependence is defined as  

𝜆𝑈 = lim
𝑡→1−

1−2𝑡+𝐶(𝑡,𝑡)

1−𝑡
                                                 (8) 

Therefore, as 𝑡  move from the centre (when 𝑡 = 1/2 ) to the tails, by 
comparing the lower/left (𝑡 < 1/2) and upper/right (𝑡 > 1/2) tails, it provides 
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information on the dependence structure such as asymmetric dependence. This is 
extremely useful in cases that an asymmetric dependence is present, as many of 
the copula functions, such as Gaussian copula or student’s t copula, which capture 
only the symmetric dependence. 
 
3. Data 

This paper investigates the asymmetric conditional dependence structure 
between two Chinese stock index returns. Daily time-series data from 01 July 
2003 to 9 February 2017 is obtained from Bloomberg for Shanghai Composite 
Stock Exchange index and Hong Kong Hang Seng Stock Exchange index. By 
removing non-trading dates in the sample period, we have in total 3314 
observations. The log return is used which has the following expression: 

𝑅𝑡 = ln (𝑃𝑡／𝑃𝑡−1) 

The dataset covers the recent crisis period, thus allows us to provide a 
comprehensive analysis of the dependence structure for the turmoil period. The 
descriptive statistics of the two index returns are presented in Table 1. As can be 
seen, both series have mean zero and very close variances. Both series have 
negative skewness and large positive kurtosis. However, the Shanghai stock index 
has a more negative skewness value, indicating more significant left tail risk. The 
Jarque-Bera again confirms the non-normality of both series. The linear and 
Spearman’s rank correlation values indicate a strong positive correlation between 
the two returns.  

The time-series plots of the index prices are present in Figure 1. We can see 
that the term structures of the two indices are quite similar, which indicates the 
existence of strong comovements between the two markets. Both index prices 
increased prior to the subprime crisis, and reached their peak during the crisis. 
Followed by significant price drop in 2008, both series were adjusted to a level 
higher than the pre-crisis period. While the Hang Seng index price continued to 
fluctuate around that level, the Shanghai index price was moving slowly towards 
a downward sloping direction after 2010 and rise significantly after 2014. 
 
4. Model Selection 

4.1 Conditional Mean 

To model the conditional dependence structure of the two financial index returns, 
we first estimate the conditional margins based on Equation (2). That is, we 
assume the return series has time-varying conditional means and variance. 
Moreover, we assume that the standardised residual 𝜀𝑖𝑡 to have a constant 
conditional distribution. Therefore, we first consider Autoregressive-Moving-
average (ARMA) models for the conditional mean of up to order (5,5), and select 
the optimal model by applying the Bayesian Information Criterion (BIC). We find 
that AR(0) seems to be the optimal model for both Shanghai and Hong Kong stock 
index returns. The Ljung-Box test on residuals suggests no remaining 
autocorrelation from the optimal model. We also apply an F-test for the a 
significance of across-variable lags up to order 5. The results suggest that there is 
significant across-variable relation from Shanghai to Hong Kong, but not vice-



 7 

versa. This implies that the Shanghai Stock market leads the Hong Kong market 
and is more important in the price discovery process. The t-statistics shows that 
the Hong Kong stock index return is significantly influenced by the performance 
of the Shanghai Stock market from the previous day. Therefore, we build the 
following models for the conditional mean: 

𝑅𝑆𝐻,𝑡 = 𝑐1 + ℰ1𝑡 
𝑅𝐻𝐾,𝑡 = 𝑐2 + 𝜑1𝑅𝑆𝐻,𝑡−1 + ℰ2𝑡                                         (9) 

 
4.2 Conditional Variance 

We consider the Glosten–Jagannathan–Runkle-generalized autoregressive 
conditional heteroscedasticity (GJR-GARCH) model of Glosten, et al. (1993) for the 
conditional variance. Models we have tested include the constant volatility model, 
ARCH(1), GARCH(1,1), GJR-GARCH(1,1,1), AR(2), GARCH(2,2) and GJR-GARCH 
(2,2,2). The general GJR-GARCH class models have the following expression: 

ht = α0 + ∑ βiht−i
𝑛
𝑖=1 + ∑ αiεt−i

2𝑛
𝑖=1 + ∑ αi

∗εt−i
2𝑛

𝑖=1 It−i        (10) 

where It−i = {
1 if εt−i < 0
0 if εt−i ≥ 0

. We present the mean log-likelihood estimates and the 

BIC value for the above seven models in Table 2. As can be seen, BIC-optimal 
models for the Shanghai composite index return and the Hong Kong Hang Seng 
index return are both GJR-GARCH(1,1,1), which has the lowest BIC value compare 
to other models.  

The model parameters for time-varying means and variance from GJR-
GARCH(1,1,1) specification are presented in Table 3. The GJR parameter for 
Shanghai and Hang Seng index returns are 0.003 and 0.173, indicating that the 
negative error terms have a stronger effect on the future value of volatility for both 
stock indices. 

The standardised residuals are then calculated from the optimal 
conditional variance models using Equation (3). Figure 2 plots the daily returns 
and standardised residuals for the Shanghai and Hang Seng stock indices. As can 
be seen, the existence of upper and lower tail dependence is evident, which 
indicates an extremely positive (negative) event in one market can be associated 
with an extremely positive (negative) event in the other market. The scatter plot 
for the standardised residuals shows there is only slight asymmetry between 
positive and negative standardised returns, which suggests that both returns 
responds to shocks similarly regardless whether the markets are booming or 
crashing during the sample period.  
 
4.3 Modelling Standardised Residuals 

In this paper, the marginal distribution is modelled using a parametric approach 
by the method of Inference Function for Margins (IFM). By assuming the random 
variable follows a specific cumulative distribution function, the IFM method 
transforms the random variable into a uniformly distributed variable, using the 
probability integral transformation function.  
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In order to avoid the misspecification problem that is commonly found in 
a parametric approach, we first test a series of distributions for the standardised 
residuals, including Gaussian, Student’s t, Generalised Error Distribution (GED) 
and skewed t distribution. We then apply a Kolmogorov–Smirnov test to check 
which distribution is most close to the real distribution of the standardised 
residuals. The results show that the skewed t distribution has the lowest p-value 
and hence is the most appropriate distribution for the model. The two parameter 
estimates of Skewed t are presented in Table 3. As can be seen, both residual series 
have a negative skewness parameter, which suggests a left skewed distribution. 
This is consistent with the general economic condition, as there might be more 
adverse shocks than positive shocks during the crisis.  

One of the disadvantages of the IFM method, as pointed by Chen and Fan 
(2006), is that the dependence parameters could be affected by a possibly 
misspecified marginal distribution of standardised innovations. Therefore, we 
further plot the fitted parametric estimates of the skewed t distribution with the 
histogram of its empirical approximation in Figure 3. As noted, the fitted density 
of skewed t is able to provide reliable estimates of the empirical histogram. The 
right panel of Figure 3 provides the quantile-quantile (Q-Q) plot for skewed t 
distribution. As can be seen, there exist a few extreme left tail observations that 
are not captured by the models for the Shanghai Stock Exchange Composite index 
and Hang Seng Stock Index.  

Finally, we apply a goodness-of-fit test on skewed t distribution using a 
Kolmogorov-Smirnov (KS) test and a Cramer-von Mises (CvM) test, as introduced 
in Patton (2013), to check the goodness-of-fit of the fitted distribution. The two 
test statistics are  

𝐾𝑆𝑖 = max
𝑡

|𝑢̂𝑖,(𝑡) − 𝑡
𝑇⁄ |                                               (11) 

𝐶𝑣𝑀𝑖 = ∑ (𝑢̂𝑖,(𝑡) − 𝑡
𝑇⁄ )2𝑇

𝑡=1                                              (12) 

where 𝑢̂𝑖,(𝑡)  is the 𝑡𝑡ℎ  largest value of {𝑢̂𝑖,𝑗}𝑗=1
𝑇 . 𝑢𝑖𝑡  is the probability integral 

transformations of the standardised residuals based on Hansen’s skewed t 
distribution. KS (CvM) test statistics on the two residual series are reported as 
0.0189(0.2882) and 0.0231(0.3484). We then use a simulation-based method as 
introduced in Genest and Rémillard (2008) to calculate the p-value for both tests. 
The test statistics and the corresponding p-values are reported in Table 3. Both 
tests suggest the rejection of the null that the skewed t distribution is a well-
specified distribution for the standardised residuals.  

 
5. Dependence Structure between Shanghai and Hong Kong Stock Markets 

A common measure of dependence between two random variables is the linear 
and rank correlation coefficients, which have been reported in Table 1. However, 
linear correlation is not invariant under monotonic transformation. While rank 
correlation is an essential scalar measure for the sign and degree of dependency, 
they give no information on the structure of the relationship between two 

http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
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variables. Therefore, we will use copula to model the dependence structure 
between Shanghai and Hong Kong stock markets. 
 
5.1 Conditional Copula Estimates  

We now move on to model the conditional joint dependence using the probability 
integral transformation 𝑢𝑆𝐻,𝑡  and 𝑢𝐻𝐾,𝑡  of the standardised residuals. In this 

section, we will consider both constant and time-varying copulas. Estimation 
results of constant copula parameters are presented in Table 4. We estimate the 
copula parameters, the lower and upper tail dependence indicated by each copula 
and the value of the log-likelihood for seven constant copula functions, including 
the Normal, Student’s t, Symmetrised Joe-Clayton (SJC), Gumbel, Clayton, Rotated 
Gumbel and Rotated Clayton copulas. Each copula function has unique features 
and different abilities to capture the tail dependence.1 The results suggest that the 
student’s t copula is the best fit for the entire dependence structure, followed by 
the SJC and Normal copulas, as the student’s t copula has the lowest negative log-
likelihood value.2  

The tail dependence reported in Table 4 reveals some interesting features 
on these copula models. As can be seen, the student’s t copula has symmetric lower 
and upper tail dependence. The tail dependence of the student’s t copula is slightly 
larger than its linear correlation parameters, suggesting that the Shanghai and 
Hong Kong stock markets are more dependent under extreme events. The SJC 
copula has larger lower tail dependence, indicating the existence of asymmetric 
dependence. As suggested by Table 4, rotated Clayton copula has the lowest log-
likelihood value and hence fails to capture the dependence structure. This might 
related to the zero lower tail dependence imposed by rotated Clayton copula, 
which might be an incorrect reflection of the general dependence feature during 
the crisis. We also investigate whether the long-run relationships are not constant 
over time.  

 
 
5.2 Testing for Time-varying Correlation 

Since we aim to model the conditional dependence structure, it would be more 
realistic to consider the dependence between two financial assets changing 
through time. In fact, there are extensive literatures that already account for the 
time-varying nature of the conditional volatility of financial assets. One of the 
fundamental methods in this field is the dynamic conditional correlation (DCC) 
proposed by Engle (2002). Under a DCC framework, the covariance matrix is 
defined as  

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                               (13) 

                                                        
1 For more details on these copulas, please refer to Joe (1997, Chapter 5) or Nelsen (2006, 
Chapter 4-5). 
2 It should be noted that, due to the large sample size when calculating the information criteria 
(e.g. AIC or BIC) for these copula models, the number of copula parameters does not affect the 
final results of the goodness-of-fit test. 
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where 𝐷𝑡 = [
√ℎ11𝑡 0

0 √ℎ22𝑡

] , 𝑅𝑡 = [
1 𝜌12

𝜌21 1
] and the conditional correlation 𝑅𝑡 

is given as   
𝑅𝑡 = (𝑑𝑖𝑎𝑔𝑄𝑡)−1/2𝑄𝑡(𝑑𝑖𝑎𝑔𝑄𝑡)−1/2                                  (14) 

where the positive symmetric matrix Qt is given as   
𝑄𝑡 = (1 − 𝑎 − 𝑏)𝛹 + 𝑎𝜀𝑡−1𝜀𝑡−1

′ + 𝑏𝑄𝑡−1                              (15) 

where 𝜀𝑖𝑡 = 𝑒𝑖𝑡/√ℎ𝑖𝑖𝑡  is the standardised residuals, Ψ is the N × N unconditional 

correlation matrix of 𝜀𝑡 . Both a  is positive, and b  is non-negative scalar 
parameters satisfying 𝑎 + 𝑏 < 1.  

Table 5 presents the estimation results of the DCC model of Eagle (2002), 
using the same specifications for conditional means and variance as described 
earlier. Our results reveal a large degree of persistence in the conditional 
correlation process, with 𝜃1 +𝜃2  very close to one. As suggested by Hsu et al. 
(2008), a high degree of persistence in dynamic conditional correlation means 
crashes can push the correlations away from its long-run mean and the 
correlations will have more volatile responses to new information.  

Figure 4 plots the 60-day rolling window rank correlations and the 
dynamic conditional correlations between the Shanghai and Hong Kong stock 
index returns. As can be seen, both time-varying correlations increased since 2006 
while reaching the peak in early 2008. As stated by Forbes and Rigobon (2002), 
contagion happens when the cross-market correlation dramatically increases 
after a shock. Therefore, this huge increase in correlation may point to the 
existence of financial contagion between the two markets. The correlation 
coefficients keep fluctuating at a higher level between 0.5 and 0.6 after 2008, 
indicating a consistent higher correlation during and after the crisis period. This 
is an interesting finding, as earlier research such as Zhu (2001) shows that stock 
markets in Mainland China are completely independent and not affected by outlier 
stock markets. The constant higher correlation after 2008 may be explained by 
herding behaviour as the crisis grew. 

However, using the DCC model for the conditional correction restricts the 
distribution of the standardised residuals to an elliptical distribution. Hence, we 
consider using the time-varying copula approach to capture the changing 
dependence. Before modelling the time-varying copulas, we first introduce an 
Autoregressive Conditional Heteroskedasticity Lagrange Multiplier (ARCH LM), 
which looks for autocorrelation as a measure of dependence, to check the 
existence of time-varying dependence. The test is based on the following 
autoregression model: 

𝑆𝑆𝐻,𝑡𝑆𝐻𝑆,𝑡 = 𝛼0 + ∑ 𝛼1𝑆𝑆𝐻,𝑡−𝑖𝑆𝐻𝑆,𝑡−𝑖
𝑞
𝑖=1 + 𝜀𝑡                     (16) 

where 𝑆𝑡 is the standardised residual from the CCC-GARCH model with the same 
mean and variance specifications for Shanghai and Hang Seng index returns. 
Under the null hypothesis of a constant conditional copula, we should have 𝛼𝑖 = 0 
for 𝑖 = 1, … , 𝑞. The test statistics and p-values are presented in the lower panel of 
Table 5. As can be seen, the null that a constant conditional correlation is rejected 
for all cases. Therefore, we can conclude that there is strong evidence against 
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constant conditional correlation and thus evidence against a constant conditional 
copula. 
 
5.3 Time-varying Dependence Structure Captured by Copula 
 
Patton (2006) proposed the time-varying copula model based on assumptions 
that the current dependence parameter is associated with the past dependence 
parameter and the historical mean of difference of cumulative probability integral 
transformations. Creal, et al. (2013) proposed a Generalised Autoregressive Score 
(GAS) model, which extends Patton (2006)’s work on modelling time-varying 
copulas. 

In this paper, the time-varying copula parameter is modelled by Creal, et 
al. (2013)’s GAS model as described in Equation (5). Three time-varying copulas 
are estimated: the time-varying Gaussian copula, the time-varying student’s t 
copula and the time-varying rotated Gumbel copula. The corresponding 
parameters are presented in Table 4. As can be seen, the time-varying student’s t 
copula performs better in describing the dependence structure due to the lowest 
negative log-likelihood value, which may point to the fact that heavy tail 
dependence exists between the Shanghai and Hong Kong stock markets. 

After estimating the time-varying copula parameters, we introduce a 
simulation approximation as described in Patton (2013) to plot the time-varying 
linear correlation as indicated by the student’s t and Gumbel copulas. We are 
extremely interested in observing the time-varying nature of the above two 
copulas since both copulas account for the tail dependence. The Gumbel copula 
parameter is required to be in the range (1, ∞) , therefore, the correlation 
parameter is modelled by 𝜌𝑡 = 1 + exp (𝜙𝑡) to ensure this, while for the student’s 
t copula, the correlation parameter is modelled by 𝜌𝑡 = [1 − exp(−𝜙𝑡)]/[1 +
exp (−𝜙𝑡)]. 

The linear correlations indicated by the time-varying student’s t and 
Gumbel copulas are plotted in Figure 5. Compared to the time-varying rank 
correlations and the DCCs, we find some additional changes with regards to the 
dependence structure. There is a significant decrease in correlation between the 
two markets before the crisis. The correlation coefficient dropped from 0.5 to 0.3 
from 2006 to 2008, which shows that the Chinese stock market was relatively 
independent of other Asia financial markets such as the Hong Kong stock market 
before the crisis. This may have some important implications to portfolio 
management as investors could add the Mainland Chinese stocks to their portfolio 
to diversify risk.  

This temporary decrease in correlation is decided by the opposite 
movements and unique features of the two markets. While the Hong Kong stock 
market is completely open to foreign investors, with its price dynamics more 
linked to the global economy, the movement of Shanghai stock index is mainly 
driven by domestic factors. This is because only limited stocks (called B-share 
stocks) listed in the Shanghai stock exchange are open to foreign capital. This 
directly affects the correlation between the two indices before the crisis, as the 
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stock markets in Mainland China were experiencing its greatest boom, with index 
prices rising from 1,200 points to over 5,000 points in early 2008.  

However, this negative relation reversed as a direct effect of the crisis, 
causing both markets to move downwards. Contagion effect was observed since 
the beginning of 2008, with signs of significant increases in cross-market 
correlations between the two markets. The correlations persisted at a high level 
after 2009, which can be explained by herding behaviour as the crisis grew. The 
increasing correlation since the start of the crisis reveals an enhancing integration 
between Chinese stock markets and regional developed markets. Thus, we might 
expect the dependent increase in future as Chinese stock markets becoming more 
open to foreign capital. A program that aims to promote two-way opening-up of 
the capital market on the mainland and Hong Kong was officially launched on 17 
November 2014 by the Chinese Premier Li Keqiang. This "Shanghai-Hong Kong 
Stock Connect" initiative allows foreign investors to access 568 Shanghai stocks 
through the Hong Kong Stock Exchange. Conversely, Chinese investors will be able 
to trade Hong Kong's stocks, known as H-shares, through the system.  

Our results on modelling the time-varying correlation may provide 
international investors more timely information with regards to portfolio 
management, risk diversification, and asset allocation. While we show that the two 
stock markets are less dependent before the crisis but more dependent during the 
crisis it may suggest that the market upturns in Hong Kong were mainly driven by 
the stock markets in Mainland China, while the bull markets were brought about 
by the global economic recession. 

 
6. Tail Dependence between Shanghai and Hong Kong Stock Markets 

Tail dependence is an important feature for financial asset returns as it reveals the 
comovements between assets under extreme conditions. Therefore, analysis of 
tail dependence is crucial, as both return series would experience extreme 
fluctuations during the crisis period.  
 
6.1 Measuring Tail Dependence using Copula 

Tail dependence can be measured as a function of copula as described in Equation 
(7) and (8). In this paper, we model the upper and lower bivariate tails separately 
in order to capture asymmetric dependence. The upper tail dependence will be 
estimated using a fully parametric approach by maximising the log-likelihood 
function as described in Chen, et al. (2010): 

𝐿(𝛼𝑖|𝑞) =
1

𝑛
∑ ℓ𝑖

𝑛
𝑡=1 (𝛼𝑖|𝑞)                                            (17) 

where ℓ𝑖(𝛼𝑖|𝑞) = 𝛿1𝑡𝛿2𝑡𝑙𝑜𝑔𝑐𝑖(𝑢̃1𝑡, 𝑢̃2𝑡; 𝛼𝑖) + 𝛿1𝑡(1 − 𝛿2𝑡)𝑙𝑜𝑔
𝜕𝑐𝑖(𝑢1𝑡,𝑢2𝑡;𝛼𝑖)

𝜕𝑢1𝑡
 

+(1 − 𝛿1𝑡)𝛿2𝑡𝑙𝑜𝑔
𝜕𝑐𝑖(𝑢̃1𝑡, 𝑢̃2𝑡; 𝛼𝑖)

𝜕𝑢2𝑡
+ (1 − 𝛿1𝑡)(1 − 𝛿2𝑡)𝑙𝑜𝑔𝑐𝑖(𝑢̃1𝑡, 𝑢̃2𝑡; 𝛼𝑖) 

and 𝑢̃1𝑡 = max [𝑢1𝑡, 𝛼𝑖] , 𝑢̃2𝑡 = max [𝑢2𝑡, 𝛼𝑖] , 𝛿1𝑡 = 1{𝑢1𝑡 > 𝑞} , 𝛿2𝑡 = 1{𝑢2𝑡 > 𝑞} . 
The lower tail will be estimated similarly under the condition 𝑢1𝑡 < 𝑞, 𝑢1𝑡 < 𝑞 . 
After obtaining the optimal tail copula parameter 𝛼𝑖  through maximum log-
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likelihood estimation (MLE), we can calculate the upper and lower tail 
dependence using Equation (7) and (8). 

Using the estimator given by Frahm, et al. (2005), we calculate the tail 
dependence for the student’s t and Gumbel copulas. Compared to the student’s t 
copula, where both bivariate tails are estimated similarly, the tail dependence for 
the Gumbel copula is approximated separately using a Gumbel copula for the 
upper tail and a rotated Gumbel for the lower tail. The estimation results for the 
tail dependence are presented in Table 6. The upper and lower tail copula 
parameters for the Gumbel copula are 1.05 and 1.08 whereas for the student t 
copula, the parameters are 6.02 and 0.20 respectively. Using the one-to-one 
mapping between the copula parameter 𝛼 and the kendall’s tau rank correlation  

𝜏𝐺𝑢𝑚𝑏𝑒𝑙 =
𝛼−1

𝛼
, 𝜏𝑠𝑡𝑢𝑑𝑒𝑛𝑡 =

2

𝜋
arcsin (𝛼), 

we can obtain measures for the corresponding tail dependence.  

As can be seen, tail dependence implied by the student’s t copula is lower, 
which implies that the Gumbel copula accounts for more extreme comovements 
than the student’s t copula. Tail dependence parameters are low for both copulas, 
indicating the probability that an extreme comovement between the Shanghai and 
Hang Seng stock indices is low. 

Figure 6 plots the tail dependence captured by the Gumbel copula for 
different quantile 𝑞. We could see a clear increase in dependence as the quantile 
moving towards the centre of the distribution. Besides, evidence of asymmetric 
tail dependence can be observed. A much stronger bivariate upper tail is observed 
when the quantile 𝑞  approaches zero. However, the lower tail dependence 
becomes stronger as the quantile 𝑞  moving towards the centre. Moreover, 
immediate flat spot does not observed for both bivariate tails. There are 
noticeable fluctuations for upper tail dependence suggesting some cut-off when 
calculating the tail dependent parameters.  
 
6.2 Testing for Conditional Asymmetric Dependence 

After obtaining the upper and lower tail dependence parameters, we run tests for 
asymmetric dependence. Tests for conditional asymmetric dependence can 
provide important insights on whether two financial asset returns exhibit 
stronger correlation during market downturns. One way to see this is to run a 
simple test on the following null hypothesis: 
 
 

𝜆𝑞 = 𝜆1−𝑞, 
where 𝜆 is the quantile dependence. In this paper, we run the test jointly for a list 
of different 𝑞 values 0.025, 0.05, 0.10, 0.975, 0.95, and 0.90. Therefore, we redefine  

𝜆𝑞 = [𝜆0.025, 𝜆0.05, 𝜆0.10, 𝜆0.975, 𝜆0.95, 𝜆0.90]′ 
and tests the null hypothesis for  

Θ𝜆𝑞 = 0 
where Θ =[1,1,1,-1,-1,-1]’. This test simplifies the procedure of producing test 
statistics for each individual quantile and interpreting for multiple test results. 
The corresponding chi-squared statistics and p-values are presented in Table 6 for 
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both student’s t and Gumbel copulas. The results are consistent over different 
copula models, with p-values 0.04 and 0.02 for the student’s t and Gumbel copulas. 
Thus we accept the null that the conditional dependence between Shanghai and 
Hong Kong stock index returns is symmetry.  

Another way to see the asymmetric dependence is to run a test on bivariate 
tails instead of testing different quantiles. Thus, we test the following null 
hypothesis: 

𝜆𝐿𝑜𝑤𝑒𝑟 = 𝜆𝑈𝑝𝑝𝑒𝑟 
The lower and upper tail dependence parameters used in the test are calculated 
from Section 6.1. Significant differences between upper and lower tails are found 
between the upper and lower tails using the Gumbel copula and the student’s t 
copula. In conclusion, we have a slight stronger lower tail parameter, indicating 
asymmetric dependence, meaning that the two stock markets show more 

interdependence when in bear periods than during bull periods. Hence, there is a 
high probability of joint extreme events during the market downturns than during 
the market upturns.  

 

 
7. Conclusion 

This paper models the asymmetric dependence structure between Shanghai and 
Hong Kong stock index returns during 2003-17 using the copula approach. We 
extend the literature by first examining the dependence for a more turbulent 
period, when extreme events and tail movements were common. Then we 
construct the dependence structure using various copula models.  

We find significant time-varying nature in correlation between Shanghai 
and Hong Kong stock markets. The correlation decreased before the crisis and 
increased significantly prior to 2008, suggesting the existence of financial 
contagion between the two markets. This increase however slowed down since 
2009. The increasing correlation since the start of the crisis reveals an enhancing 
integration of the Chinese stock market with regional developed markets. Thus, 

we might expect the dependence to increase in the future as Chinese stock 
markets become more open to foreign capital. 

Our studies also extend the literature of modelling dependence in the 
following ways: We define the conditional margins separately for the two stock 
indices and introduce methods of selecting the optimal model. Second, when 
constructing the tail dependence, we model the upper and lower tails separately, 
to capture the asymmetric property. Finally, tests for the time-varying structure 
and asymmetric dependence are introduced. 

Our findings may provide more timely information with regards to 
portfolio management, risk diversification, and asset allocation. While we show 
that the Chinese market is less dependent before the crisis but more dependent 
during the crisis, it may suggest that the market upturns in Hong Kong were 
mainly driven by the stock markets in Mainland China, while the bull markets 



 15 

were brought about by the global economic recession, this finding is also 
consistent with the asymmetric tail dependence found between Shanghai and 
Hong Kong stock markets. 
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Table 1 Descriptive Statistics of the Index Returns  
 

 Shanghai Hong Kong 

Minimum -0.093 -0.136 

1st Quartile -0.007 -0.006 

Mid 0 0 

Mean 0 0 

3rd Quartile 0.009 0.007 

Maximum 0.090 0.134 

Std. Dev. 0.017 0.015 

Skewness -0.442 -0.019 

Kurtosis 7.097 13.091 

Jarque-Bera (p-value) 0 0 

Correlation (Linear|Rank) 0.452 0.406 

 
  



 19 

Table 2 Comparisons of 7 GJR-GARCH Class Models for Conditional Variance 
 

 Shanghai Hong Kong 

 Log-likelihood BIC Log-likelihood BIC 

Constant Volatility 2.6486 -5.2948 2.7745 -5.5465 

ARCH(1) 2.6742 -5.3435 2.6485 -5.2920 

GARCH(1,1) 2.7863 -5.5627 2.9766 -5.9459 

GJR-GARCH(1,1,1) 2.7861 -5.5649  2.9834 -5.9496 

ARCH(2) 2.7003 -5.3933 2.6263 -5.2453 

GARCH(2,2) 2.7872 -5.5622 2.9780 -5.9438 

GJR-GARCH(2,2,2) 2.7867 -5.5562 2.9687 -5.9275 
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Table 3 Models for the Marginal Distribution 
 

 Shanghai Hong Kong 

Conditional Mean  
𝑐 0 0 

𝜑
1

  -0.050** 

Ljung-Box (5) 0.13 0.86 

Ljung-Box (10) 0.20 0.72 

Chi^2 statistics 4.879 10.033 

Chi^2 p-value 0.431 0.074 

Conditional Variance  

Constant 0** 0** 

ARCH 0.055** 0.078** 

GARCH 0.939** 0.764** 

GJR 0.003 0.173** 

Skewed t    

Skewness -0.0481 -0.0537 

d.f. 5.0580 6.3269 
KS test Stat.  
(p-value) 

0.0189 
(0.07) 

0.0231 
(0.09) 

CvM test stat. 
(p-value) 

0.2882 
(0.11) 

0.3484 
(0.13) 

**: Significant at 5% level 
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Table 4 Estimation Results for Copula Models 
 

Constant  

 𝜙̂ 𝑣−1 Tail Dependence    Log-Likelihood 

   Lower Upper  
Student's t   0.4277 0.0765 0.6236 0.6236 353.0113 

SJC 0.2822 0.1676 0.2822 0.1676 351.0817 
Normal 0.4324  0 0 343.0675 

Rotated Gumbel  1.3551  0.3322 0 338.5495 

Clayton 0.5844  0.3054 0 304.3771 
Gumbel   1.3334  0 0.3182 288.5991 

Rotated Clayton  0.4994  0 0.2496 224.0376 

Time-varying      

 𝜙̂ 𝑣−1 𝛼̂ 𝛽̂ Log-Likelihood 

TV-Student's t 0.0011 0.0351 0.0130 0.9990 410.9783 
TV-Rotated 
Gumbel 

-0.0009 
  

0.0204 0.999 382.1893 

TV-Normal 0.0024  0.0962 2.0589 378.0085 
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Table 5 Testing for Time-varying Dependence 
 

DCC Specification    

 𝜌 𝛼 𝛽 Log-Likelihood 

 0.4350 0.0051 0.9938 -3397.8642 

Testing for Time-varying Dependence  

 AR(1) AR(5) AR(10) AR(15) 

Test Statistics 488.998 495.635 510.739 524.356 

p-value 0 0 0 0 
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Table 6 Tail Dependence between Shanghai and Hong Kong Stock Markets 
 

Tail Dependence   

  Upper Tail Lower Tail 

Gumbel 𝜏 0.0738 0.1049 

 𝛼 1.0574 1.0842 

 90% CI [0.0356 0.1173] [0.0600 0.1528] 

Student’s t  𝜏 0.0465 0.0674 

 𝛼 6.0187 0.2010 

 𝜆 5.8794 15.3238 

 90% CI [0.0315 0.1214] [0.0005 0.0781] 

Testing for Asymmetry   

  Gumbel Student's t 

Difference Chi^2 statistics 8.3400 10.4700 

 Chi^2 p-value 0.0395 0.0150 

Equality test statistics 1.9224 2.1261 

 p-value 0.0546 0.0335 

Note: lower tail of Gumbel is measured by the rotated Gumbel copula 
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Figure 1 Shanghai Composite and Hang Seng Stock Index Prices  
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Figure 2 Daily Return and Standardised Residuals for Shanghai and Hang 
Seng Stock Indices 
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Figure 3 Skewed t Distribution and the Q-Q plot 
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Figure 4 Time-varying Correlations between Standardised Returns of 
Shanghai and Hong Kong Stock Markets 
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Figure 5 Linear Correlation Implied by Time-varying Copulas 
 

 
 
 

Jan03 Jan05 Jan07 Jan09 Jan11 Jan13 Jan15 Jan17
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Linear correlation from time-varying copula models

Rotated Gumbel
Student t



 29 

Figure 6 Tail Dependence Captured by Gumbel Copula 
 

 
Note: The lower tail dependence is captured by the rotated Gumbel copula 
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