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Summary 

Speech comprehension is a remarkable human ability. Most normal-hearing people are 

adept at attending to a speech stream even amidst a noisy multi-talker background and 

parsing the layers of information it contains in real-time to uncover its meaning. The 

cortex is thought to be hierarchically organised to perform the latter feat, with higher 

levels processing increasingly abstract features. Nonetheless, the precise computations 

it undertakes and how these processes are modulated by attention remain incompletely 

understood. 

The development of novel encoding/decoding approaches for relating high temporal 

resolution neuroimaging modalities to representations of multivariate stimuli like 

continuous natural speech have enabled researchers to shed some light on this topic. 

An important recent discovery is that low-frequency, non-invasive EEG/MEG tracks 

the amplitude envelope of speech (a low-level acoustic measure conveying many cues 

important for speech comprehension) and that a robust reconstruction of the measure 

can be acquired from neural data. Moreover, during cocktail party listening tasks, this 

tracking and the accuracy of reconstruction have been shown to be modulated by 

attention. These findings have given rise to further research along several lines, 

including studies employing the framework to investigate how cortex encodes other 

speech processing stages along the hierarchy and how this encoding is affected by 

attention, as well as studies developing the idea of exploiting envelope reconstruction 

as a means of decoding attentional selection for the implementation of ‘smart’ devices 

like steerable hearing aids. 

In this thesis, we employ a particular encoding/decoding approach – the temporal 

response function (TRF) – in conjunction with EEG to address several questions within 

these subareas. We first tested the efficacy of a state-of-the-art framework for utilising 

envelope reconstruction to decode auditory attention (O’Sullivan et al., 2015) within 

the context of a cocktail party paradigm with moving talkers and showed that it is 

robust. This was motivated by the non-stationarity of real-world environments. We 

then considered if (1) the decoder weights themselves (i.e., the model weights mapping 

from EEG data to the acoustic envelope) and (2) alpha power might contain unique 

information that can be leveraged for the decoding of attention. We showed that 



 
 

incorporating a metric based on the consistency of model weights across subjects into 

the decoding framework yielded an improvement in performance above and beyond 

using envelope reconstruction alone.  

We then investigated the neural processing of prosody – an aspect of spoken language 

that conveys another layer of meaning on top of linguistic units. In particular, we were 

interested to explore how prosodic pitch is encoded in low-frequency EEG during 

listening to continuous natural speech. We mapped two measures of prosodic pitch – 

relative pitch and harmonic resolvability – to concurrently-recorded EEG. These 

measures were inspired by an ECoG study showing neural tracking of relative pitch 

during listening to sentences (Tang, Hamilton, & Chang, 2017), and an fMRI study 

demonstrating that there are cortical regions that respond primarily to resolved 

harmonics (Norman-Haignere, Kanwisher, & McDermott, 2013). We found that delta-

band EEG tracks relative pitch during listening to continuous natural speech, and that 

this tracking is dissociable from the tracking of other acoustic and phonetic features.   

Finally, we tested how attention modulates EEG signatures hypothesized to represent 

processing at the pre-lexical level, as well as the signature of relative pitch found in the 

previous study. The former inquiry was motivated by the longstanding debates as to 

whether attention modulation operates at an early or late stage in the speech processing 

hierarchy, and whether an acoustic-phonetic transformation stage occurs as an 

intermediate step in mapping the acoustic speech signal to the mental store of words. 

We found that a phonetic feature representation could uniquely predict neural activity 

above and beyond other measures. Additionally, this unique predictive power was 

significantly modulated by attention, unlike that of a representation derived from 

acoustics that had been suggested to explain away the contribution of phonetic features 

(Daube et al., 2019). This lends support to the notion of the phonetic feature 

representation being a distinct and higher-level stage in the hierarchy. We also found 

attentional modulation of our signature of relative pitch and showed that incorporating 

the reconstruction accuracy of this representation into the decoding attentional 

selection framework led to a small improvement in decoding performance for some 

subjects.    
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Chapter 1  Introduction 

 

Speech is incredibly natural to our species. Every known human society has utilised 

spoken language for communication (Pinker & Bloom, 1990). Human infants need no 

formal instruction in the workings of their native tongue; they quickly become proficient 

simply by being exposed to people and conversations around them. This apparent ease 

with which we are able to comprehend spoken language nonetheless belies what is in 

actuality a complex and multi-faceted phenomenon, the underlying neural mechanisms 

of which we still do not fully understand. Scientists endeavouring to build speech 

recognition systems will attest to the complications of performing such a feat robustly – 

machines can now outperform us at various circumscribed tasks but achieving human-

level speech understanding in a real-world environment remains elusive. 

Speech comprehension is a necessarily intricate process in part due to the complexity of 

everyday acoustic scenes. In our daily lives, conversations seldom occur amidst a silent 

backdrop; the listener is quite often faced with making sense of their dialogue partner 

over a cacophony of competing sounds that impinge on their ears near-simultaneously. 

Colin Cherry (1953) coined the term ‘cocktail party problem’ to describe such a scenario, 

in reference to the difficult listening challenge that the eponymous event poses – multiple 

concurrent talkers, laughter and the clinking of glasses, the jazz band in the background. 

Most normal-hearing people are nonetheless still remarkably good at parsing such scenes, 

possessing the ability to understand their talker of choice as well as switch their attention 

at will to eavesdrop on any interesting chit-chat in their vicinity.  

Background noise aside, construing meaning from an isolated speech stream is a 

challenge in itself. For one, there is acoustic variability that stems from inter-speaker 

differences – the same message articulated by any two talkers will have different acoustic 

features due to their individual voice characteristics and accents. Yet, human listeners are 

able to form a consistent percept of words despite these low-level spectrotemporal 

variations. Of course, simply understanding each word in isolation would still be 

insufficient to decode everyday speech. Meaning in human language is built up by the 

combination of words and phrases according to certain recursive rules – arguably the trait 

that most clearly distinguishes us from all the planet’s other extant species. It is this 
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unique structure of human language that affords us alone the ability to express an infinite 

number of ideas (Hauser, Chomsky, & Fitch, 2002). The parsing and integration of 

linguistic units is therefore also necessary to uncover the underlying message. Moreover, 

linguistic segments are not simply uttered at a fixed rate and tone. We thread them 

together with rhythms and melodies – collectively termed prosody – that inform how the 

speech is to be parsed (Steinhauer, et al., 1999) and communicate other layers of meaning. 

Given the strata of information contained in the speech signal, and the characteristic 

presence of background noise, our ability to comprehend spoken language in real-time is 

nothing short of remarkable.   

The brain basis of speech comprehension – where and how cortex deals with the 

aforementioned issues – has been an area of inquiry for many decades. Yet, the answers 

to many fundamental questions remain elusive. Speech processing models posit that 

cortex is organised to process speech via two streams (Hickok, 2000; Hickok & Poeppel, 

2004, 2007), and that the brain extracts meaning from the sound waveform via a hierarchy 

of increasingly abstract intermediary representations, with feedforward and feedback 

connections between the levels (Gaskell & Marslen-Wilson, 1997; Marslen-Wilson, 

1987; McClelland & Elman, 1986). But many aspects of speech processing – e.g. the 

number and precise nature of stages required, and how selective attention influences the 

neural computations involved in processing sounds (and in particular, speech) – are still 

not well-specified. These are extensive questions that are practically beyond the reach of 

any one thesis; nonetheless, they form the broader context of this work.  

1.1 Theme and motivations 

The central theme of this thesis is how a particular approach – the use of 

electroencephalography (EEG) in conjunction with encoding/decoding methods – can be 

applied to tackle several research questions within the scope of the aforementioned topics. 

Many significant discoveries in cognitive neuroscience have only been made in the last 

few decades, not least because early researchers did not have any techniques at their 

disposal for glimpsing into the black box that is the living human brain. But the advent of 

modern neuroimaging techniques, allowing for the recording of brain signals in vivo, has 

opened up new doors. Still, each modality has its pros and cons, and selecting one is 

contingent upon the specific purpose for its use – in this case, to investigate speech 

processing dynamics in healthy humans. Electrocorticography (ECoG), grids placed on 
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the surface of the brain, measures neural activity with high temporal and spatial 

resolution. However, it is invasive in that an incision has to be made through the skull for 

grid installation, which precludes its usage in healthy humans. Functional magnetic 

resonance imaging (fMRI), a non-invasive and spatially-precise measure of 

haemodynamic response, is a useful technique for localising speech-related areas in 

healthy and clinical subjects. But blood flow is sluggish relative to the rapid dynamics of 

speech, making fMRI less than ideal for isolating the individual stages involved in parsing 

speech. In this respect, electro-/magnetoencephalography (EEG/MEG), two modalities 

that measure the brain’s electric/magnetic fields from the scalp, are excellent. They are 

able to record with millisecond precision, potentially allowing for the disentanglement of 

various speech processing stages in time.  

In this thesis, EEG is used – its selection further motivated by its two additional 

advantages: it is portable and relatively cheap to acquire. These properties make it ideal 

as a clinical diagnostic tool for widespread use, and for interfacing the brain with 

machines. Indeed, while the scientific pursuit of understanding the brain basis of speech 

comprehension is fascinating in itself, the ability to pinpoint specific speech and language 

processing stages occurring in the brain using EEG could also lead to significant real-life 

impact for those with speech and language disorders and the hearing impaired. For one, 

it could facilitate earlier and more specific diagnoses, which would in turn aid the 

prescription of treatment or therapy. There is also increasing interest in incorporating 

EEG into next-generation, ‘smart’ assistive devices such as cognitively-controlled 

hearing aids (Lunner, Rudner, & Rönnberg, 2009). Hearing-impaired listeners struggle 

more so than usual in cocktail-party-like environments, when there are multiple co-

occurring conversations. Current state-of-the-art hearing aids are able to isolate and 

suppress non-speech sounds based on acoustic statistics, but the capacity to decode the 

user’s attended talker from their neural activity for amplification would be of even greater 

benefit. Recent studies on healthy subjects have found evidence for enhanced 

representation of the attended speaker in their neural activity (Ding & Simon, 2012; 

O’Sullivan et al., 2015). This discovery presents a potential solution for implementing 

‘smart’ hearing aids: using attention-modulated EEG signatures of speech processing as 

control signals for selecting a speech stream. However, more research is necessary for it 

to be realisable in real-time and in a real-life setting.  
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A general limitation of EEG is its poor task-related signal-to-noise ratio due to 

contamination from muscular artefacts, unrelated brain activity, and external sources. To 

deal with this, early EEG studies had to present subjects with multiple repetitions – 

hundreds, typically – of simple, discrete stimuli. Averaging of their neural responses to a 

particular stimulus across all repetitions would then yield a visible temporally-detailed 

response to the stimulus at hand. But while this technique has been useful for identifying 

consistent patterns of responses across certain tasks, its findings do not necessarily 

translate to everyday speech processing. Humans typically deal with far more complex 

stimuli than repeated isolated syllables or words in the real world. Recently, the use of 

neuroimaging modalities in combination with encoding/decoding model-based methods 

(reviewed in Holdgraf et al., 2017) has been found to be an effective way of investigating 

how humans process more naturalistic stimuli. This entails presenting subjects with 

continuous stimuli that vary along multiple dimensions, as would occur in the real-world, 

and modelling their simultaneously-recorded neural signals using those features (or vice 

versa – using patterns in brain activity to predict/reconstruct features). This technique has 

been successful in estimating a temporally-detailed electrophysiological response to the 

amplitude envelope of speech (Lalor & Foxe, 2010). Moreover, in a simplified cocktail 

party scenario where subjects attend to one of two concurrent stationary talkers, it has 

been shown that both talkers’ amplitude envelopes can be separately reconstructed from 

EEG data. Crucially, reconstruction of the attended talker’s envelope is more accurate, 

providing a means for detecting the attended talker (O’Sullivan et al., 2015). This 

approach – envelope reconstruction – is currently the state-of-the-art for decoding 

selective auditory attention.  

While the tracking of the envelope is a robust effect that can be leveraged for decoding 

attention and studying speech processing (e.g. by means of observing how it is affected 

by manipulations of the stimulus or cognitive states), there is perhaps an overemphasis 

on this phenomenon in the field. The envelope is a low-level measure of acoustic energy 

that covaries with many other acoustic features of speech, but it does not embody all 

information in the speech signal. There is therefore an opportunity for investigating how 

incorporating measures beyond the envelope can improve attentional decoding with a 

view towards real-time and real-world application. Furthermore, the estimated temporal 

response of this single aggregate feature is insufficient for disambiguating and 

characterising the precise computations involved in speech processing. In light of this, 
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several studies in the last few years have sought to relate EEG activity to other features 

thought to be necessary as intermediate representations for the brain to decode meaning 

from the speech signal – inspired by the different levels of abstraction at which speech 

can be described in the parallel field of linguistics. These studies have found evidence 

that neural activity as indexed by EEG is best described as a combination of the acoustic 

features like the envelope and its onsets (Daube, Ince, & Gross, 2019) and higher-level 

speech representations like phonemes (Di Liberto et al., 2015), phonotactics (Di Liberto 

et al., 2018) and semantic markers (Broderick et al., 2018).  Nonetheless, these features 

still do not completely characterise the path from sound to meaning, and there remain 

representations essential for understanding speech which have not been explored using 

EEG.  

1.2 Aims 

The overarching aim of this thesis is to increase our overall understanding of the neural 

mechanisms underpinning speech comprehension through the employment of 

encoding/decoding methods on EEG data to isolate neural signatures of speech 

processing beyond the response to the acoustic envelope, with a view towards real-world 

application. Within this context, we tackle three specific aims: 

a) to investigate a recently-established auditory attention decoding framework in a 

cocktail party scenario with non-stationary talkers – as would not be uncommon 

in real life – and improve upon its efficacy by incorporating measures beyond the 

envelope; 

b) to isolate and characterise EEG indices of the cortical processing of prosody; and 

c) to explore the effects of selective auditory attention on pre-lexical and prosodic 

speech processing.  

1.3 Outline 

In Chapter 2, our current understanding of the neural basis of speech processing is 

reviewed – including the neuroanatomy of the auditory system, the functional 

organisation of cortex for speech processing, and the role of top-down attention in parsing 

auditory scenes. EEG as a neuroimaging technique and the encoding/decoding approach 

employed in this thesis is also discussed, with a particular focus on how it has been 
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applied to EEG data so far within the context of speech processing and the decoding of 

selective auditory attention. 

In Chapter 3, the robustness of an established state-of-the-art framework for decoding 

auditory attention (O’Sullivan et al, 2015) is investigated within the context of a paradigm 

with non-stationary speakers. The incorporation of other EEG indices of attention that are 

practically computable in real-time into the algorithm – namely, the model weights 

themselves, and alpha power – is also considered in the effort to improve decoding 

performance.  

In Chapter 4, EEG responses to measures of prosodic pitch – relative pitch and 

resolvability – are explored. The encoding of relative pitch has been observed in ECoG 

data (Tang et al., 2017), and cortical regions that respond primarily to resolved harmonics 

have been found using fMRI (Norman-Haignere et al., 2013). Nonetheless, it remains to 

be seen whether EEG is sensitive enough to capture neural correlates of the cortical 

processing of pitch.  

In Chapter 5, we investigate how attention modulates EEG signatures posited to represent 

processing at the pre-lexical level, as well as indices of prosody. The former inquiry is 

motivated by the longstanding debates as to whether attention modulation operates at an 

early or late stage in the speech processing hierarchy, and whether an acoustic-phonetic 

transformation stage occurs as an intermediate step in mapping the acoustic speech signal 

to the mental store of words (lexicon); these outstanding issues are further elaborated 

upon in Sections 2.3.4 and 2.4 of the literature review.  

In Chapter 6, a general discussion of the work in the thesis and its place within the broader 

field is provided.  
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Chapter 2  Literature Review 
 

As established in the previous chapter, there is still much we do not know about how 

humans comprehend everyday speech. Nonetheless, the last few decades in particular 

have seen a lot of progress towards increasing our understanding of this phenomenon. 

This chapter details pertinent background information and summarises the literature in 

several subareas relevant to the thesis. To start with, a cursory overview of human 

anatomy relevant to speech processing – the cerebral cortex (from which signals recorded 

using EEG primarily emanates) and the auditory system – will be provided. Next, the path 

from sound to meaning – how cortex is functionally organised to extract meaning from 

speech and precisely what computations might be necessary based on linguistic 

observations – will be discussed. Auditory scene analysis, which concerns how we hear 

in noisy environments, will then be reviewed. 

This chapter also reviews EEG as a neuroimaging technique. An explanation of 

encoding/decoding methods, with emphasis on the temporal response function (TRF) 

approach that will be employed throughout this thesis, will be provided. 

2.1 The cerebral cortex 

The cerebral cortex is the superficial grey matter portion of the human brain that concerns 

itself with higher-order processes. Its surface is highly convoluted – it consists of grooves 

called sulci, and elevated ridges between them called gyri. The cerebral cortex is made 

up of two hemispheres – left and right – that are separated by a deep groove, the medial 

longitudinal fissure. Each hemisphere is further subdivided by fissures into four distinct 

sections, or lobes: frontal, parietal, occipital, and temporal (Figure 2-1). Within each lobe 

of the cortex, there are numerous cortical areas, each determined by its functionality. 

Auditory cortex – the area for processing auditory information, which is of particular 

relevance to this thesis – is part of the temporal lobe.  

Sensory areas such as auditory cortex can be further subdivided into regions. Primary 

areas are those that receive direct sensory input from the ascending sensory pathways. 

Interconnected with primary sensory areas are secondary sensory regions – they analyse 

the signals passed on by the primary areas. There are also motor areas that concern 

themselves with the voluntary contraction of muscles. Lastly, there are areas of the cortex 
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not associated with sensory or motor function – the association areas. These areas 

intervene between sensory and motor areas and support higher cognitive processing such 

as learning, decision making, attention and – of particular interest in this thesis – language 

abilities. The subareas involved in speech and language will be described in greater detail 

in the subsection reviewing models of speech processing.  

 

Figure 2-1 | The cerebral cortex.  

Lateral view of the human cerebrum showing the four lobes of the cerebral cortex (left 

hemisphere, but right hemisphere also consists of the same four lobes). The auditory 

cortex is located on the superior temporal gyrus, which is indicated in the figure (Adapted 

from Gray & Lewis, 1918).  

2.2 The auditory system 

The auditory system is the sensory system for hearing. It can broadly be divided into two 

subsystems: peripheral and central. The anatomy of the auditory periphery consists of the 

outer ear, middle ear and inner ear (Figure 2-2). Collectively, these parts function to 

efficiently transduce sound – mechanical vibrations of the surrounding medium, typically 

air – into neural action potential signals. The acoustic information, now in electrical form, 

travels through the ascending auditory pathway and is relayed to primary auditory cortex 

for further processing. These structures make up the central auditory system. 
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2.2.1 Auditory periphery 

The outer ear, made up of the pinna and auditory canal, collects sound from a wide area. 

These vibrations impinge upon the tympanic membrane (i.e. eardrum) of the middle ear, 

causing it to vibrate. The movements of the membrane are then transferred through a 

series of bones called the ossicles into movements of a second membrane, the oval 

window. This window seals the top chamber of the cochlea. 

The top and bottom chambers are filled with incompressible fluid called perilymph. The 

middle channel holds a complex structure called the organ of Corti, which sits on a 

membrane known as the basilar membrane. It is this structure that serves as the interface 

between the peripheral and central auditory subsystems. Hanging over the organ of Corti 

is a second membrane called the tectorial membrane. The organ of Corti contains rows of 

hair cells with tiny cilia that protrude across their surface. When the oval window vibrates, 

it sends a travelling wave within the cochlea. This in turn causes the basilar membrane, 

and therefore the organ of Corti and its hair cells, to move up and down, towards and 

away from the tectorial membrane. When the basilar membrane deflects upwards, the 

cilia on the hair cells become bent from being pushed against the tectorial membrane. 

This movement causes the generation of neural signals in the hair cells. These signals are 

sent to the brain through the cochlear branch of the auditory-vestibular nerve. The more 

a particular section of the basilar membrane vibrates, the higher the firing rate of the 

auditory nerve fibres that come from this patch. 

The cochlea transduces sound according to frequency. The distance that the wave travels 

up the basilar membrane is dependent on the frequency content of the incoming sound. 

High frequencies cause the stiff base of the membrane to vibrate more, dissipating the 

energy before it can be transmitted further. Low frequency sounds on the other hand travel 

further up to the apex before most of the energy is dissipated. The consequence of this is 

that there is a corresponding representation of frequency in the auditory nerve, and this 

spatial arrangement of frequency, called tonotopy, is maintained throughout the classical 

auditory pathway to the level of the primary auditory region. 
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Figure 2-2 | The auditory periphery 

(A) The auditory periphery consisting of the outer ear, middle ear and inner ear (adapted 

from Bear et al., 2007) (B) Cross section of the cochlea showing the three chambers 

(adapted from Bear et al., 2007) 

2.2.2 Central auditory system 

The central auditory system is made up of ascending and descending pathways. The 

pathways of the auditory system are arguably more complex than those of other 

somatosensory systems and remain incompletely characterised. There are two parallel 

ascending pathway systems – classical and non-classical – that process information 

differently and have different central targets. In the non-classical pathway system, 

neurons are not as clearly tuned, and input is also received from other sensory systems. 

This system bypasses primary cortical areas and projects to secondary areas (Møller, 

2013). In the more well-known classical pathway system, auditory nerve axons innervate 

the dorsal cochlear nucleus (CN) and ventral CN in the medulla oblongata of the brain 

stem. Fibres (called the lateral lemniscus; LL) then cross over to the opposite side and 

connect to the central nucleus of the contralateral inferior colliculus (ICC) of the 

midbrain, a nucleus that acts as an integration station and switchboard. From there, the 

ascending auditory sensations synapse in the medial geniculate nucleus/body 

(MGN/MGB) of the thalamus before being relayed to cortex. 
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Figure 2-3 | Schematic diagram of main nuclei and fibre tracts of the classical ascending 

auditory system pathway (Møller, 2013) 

The thalamo-cortical projection of the system consists of a highly myelinated group of 

axonal projections termed the acoustic radiation (AR). The AR takes a medio-lateral 

course from the MGN to primary auditory cortex. The available anatomical information 

on this white matter bundle in humans remains limited. It is a challenge to reconstruct 

this bundle in vivo using diffusion tractography due to its small size and location. 

Nonetheless, precise characterisation would reveal whether there is any volume 

lateralisation at this level, where left lateralisation may suggest some language-specific 

encoding even at this level (Maffei et al., 2019). 

We know relatively little about the functional organisation of human auditory cortex 

when compared to what we know about visual cortex. A lot of auditory cortical models 

rely on projections from studies in non-human animals. Primary auditory cortex, or A1, 

is located in Heschl’s gyrus and the superior temporal gyrus (STG) in the temporal lobe 

(depicted in Figure 2-1 and Figure 2-4, but STG’s location is subject to hemispheric and 

individual variability). A1 receives point-to-point input from the ventral MGN and 

therefore maintains a tonotopic arrangement of frequencies (Da Costa et al., 2011). 

Beyond tonotopy, there is also some evidence for tuning in A1 for low-level features such 

as temporal and spectral modulations (Herdener et al., 2013; Schönwiesner & Zatorre, 

2009).  

Surrounding A1 and interconnected with it are secondary or belt areas. These areas 

receive projections from MGN (mainly dorsal) via the non-classical pathway and from 

A1. They have been shown to be selective for more complex stimuli as opposed to simple 
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pure tones (e.g. noise bursts; Wessinger et al., 2001). This is consistent with the idea that 

auditory processing is hierarchical, where higher areas process increasingly 

complex/abstract information. In humans, the precise division and configuration of these 

areas and their functional significance remain incompletely investigated. Studies using 

controlled stimulus generated specifically to test for responses to individual acoustic 

dimensions of sound have found selectivity in non-primary auditory cortex for the 

processing of features like pitch, the perceptual correlate of sound periodicity (Penagos, 

Melcher, & Oxenham, 2004).  

 

Figure 2-4 | Cortical speech processing areas  

(L) Top-view of a transverse slice of left hemispheric cortex showing where the primary 

auditory (superior temporal/Heschl’s gyrus) and belt areas (planum temporale and 

polare) are situated within auditory cortex. (R) Lateral view of left hemispheric cortex 

showing other areas commonly associated with higher-order auditory processing and 

speech (Adapted from Schnupp, Nelken, & King, 2011) 

Other areas in human cortex posited to be important for the processing of higher-order 

auditory stimuli and speech are superior temporal sulcus (STS) and Broca’s and 

Wernicke’s areas, shown in Figure 2-4. Broca’s and Wernicke’s areas are named after 

nineteenth century neurologists, who discovered through lesion studies that damage to 

these areas were associated with disruption to speech production and comprehension, 

respectively. We will examine STS in greater detail in the next section within the context 

of the dual-stream model for speech processing.  

Although we have largely focused on feedforward connections, there are also descending 

projections relaying information back down from cortical regions all the way down to 
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cochlea. Indeed, auditory processing involves an interplay of bottom-up and top-down 

signals.  For example, ‘olivocochlear bundle’ axons originate in the superior olivary 

complex (SOC) in the brainstem, and travel with the auditory vestibular nerve to synapse 

either directly with the outer hair cells or on the endings of the auditory nerve fibres that 

innervate the inner hair cells in the cochlear (Schnupp et al., 2011). The descending 

pathways in the auditory system are thought to be as abundant was ascending pathways, 

although much less is known about them. Nonetheless, their presence indicates that 

auditory processing likely incorporates feedback loops on many levels. This makes it 

possible for the auditory system to be re-tuned on the fly to meet the demands of a 

particular task or environment. 

2.3 From sound to meaning  

EEG is used in this thesis and its poor spatial resolution precludes detailed anatomical 

localisation; nonetheless, understanding the functional neuroanatomy of speech 

processing is important for placing this work within the larger field. In this section, we 

describe the dual-stream model (Hickok & Poeppel, 2000, 2004, 2007), an influential 

contemporary theory that integrates empirical findings to outline how cortex might be 

organised to support speech perception and linguistic function. We refer to speech 

perception here as the processes involved in transforming the auditory signal into a 

representation that accesses the mental store of words, and linguistic function as the 

higher-order language processes beyond that. To better understand the representations 

that cortex might compute in going from sound to meaning, we first briefly review 

observations from linguistics on the structure of speech and how meaning is built up.  

2.3.1 Linguistic structure of speech  

In order to speak and comprehend speech, every person who knows a language has 

internalised its system of rules that determines its sound-meaning connections (Aitchison, 

2007; Chomsky & Halle, 1968). Research in linguistics hypothesises about this 

internalised system based on examining the speech that humans produce as a natural 

object in and of itself.  

Starting with the repertoire of sounds used in any given language, linguists have surmised 

that they only differ from each other in a small number of ways in terms of how they are 

articulated. The set of these differences have been termed distinctive (or phonetic) 
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features (Chomsky & Halle, 1968; Jakobson & Halle, 1956). They include properties of 

consonants such as place of articulation (the location within the oral cavity where the 

constriction and obstruction of air occurs), manner of articulation (the configuration and 

interaction of speech organs such as tongue, lips, and palate), and laryngeal features that 

specify the glottal state of sounds, as well as properties of vowels (e.g., back, high, and 

tense vowels). These features form the smallest categorical units of speech that also have 

an acoustic interpretation. They provide a connection between action and perception in 

speech and are the basic inventory characterising the sounds of all languages – that is, 

they are not language-specific (Hickok & Poeppel, 2007). Bundles of coordinated 

phonetic features that are concurrent in time form segments or phonemes. Each language 

has its own set of phonemes which are in turned organised into syllables. Constraints 

apply with regards to how phonemes can be arranged within a syllable or at syllabic 

boundaries. In English, a syllable is a unit of sound made up of a vowel sound, with or 

without surrounding consonants. These three representations – features, phonemes, and 

syllables – provide the infrastructure for pre-lexical phonological analysis.  

 

Figure 2-5 | International Phonetic Alphabet (IPA) 

A subset of phonemes and their relation to underlying phonetic features according to the 

International Phonetic Alphabet (IPA) convention (Adapted from Gussenhoven & Jacobs, 
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2013). The IPA was devised to be a standardized representation of the sounds of spoken 

language.  

Beyond pre-lexical representations are linguistic units that contain meaning/semantics, 

with morphemes traditionally regarded as the smallest of these structures. One or more 

morphemes are combined to make up words – the difference between the unit types are 

that words can always occur freely, but some morphemes cannot. The word ‘jumped’, for 

example, consists of the free morpheme ‘jump’ and the bound morpheme ‘ed’ (Spivey, 

Joanisse, & McRae, 2012). Morphemes and words often have more than one lexical 

meaning – in which case their interpretation becomes dependent on the surrounding 

context. Words are assembled to form phrases in accordance with certain rules called 

syntax. Each word has a ‘part-of-speech’ category (e.g. noun, verb, adjective) which 

constrains its role and determines where it can appear in building up a phrase. Phrases 

themselves fall into several categories (e.g. noun phrase, verb phrase) which can be 

combined and manipulated in chunks to form sentences that convey larger ideas.  

While linguists generally agree upon the aforementioned hierarchical levels at which 

language can be described, there are some differences between linguistic theories on the 

categories within each level. Additionally, it is often also not straightforward to 

analytically parse everyday speech into these organisational structures. Natural speech is 

riddled with ambiguity – in the way words are pronounced by different speakers (there 

are no known invariant acoustic cues across instances of a phoneme), in the meaning of 

words, in the way words are assembled to form a sentence and so on – such that context 

has to be taken into account in order to parse speech into its various constituents. 

Computational methods have been developed in recent years to automatically parse 

speech at various levels – these tools are still unable to rival the ability of humans in 

recognising and construing meaning from speech, but they enable us to investigate if the 

proposed organisational levels and categories might correspond to actual representations 

that exist in the brain. 

Apart from phonetic, syntactic, and semantic content, speech allows for another layer of 

meaning to be transmitted via prosody; that is, the variation of acoustic cues that tie 

linguistic segments together. Prosody is characterized by phenomena such as intonation, 

stress, and rhythm. The same sequence of words can convey very different meanings and 

emotions by virtue of prosodic differences (Bolinger, 1986); e.g., the intonation contour 
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of a sentence a can determine if someone is asking a question or making a statement. 

Additionally, prosody also aids in disambiguating syntactic constituent structure. 

Prosodic phenomena are manifested through the modulation of acoustic percepts like 

pitch, loudness, and duration. For example, stress, which is the prosodic event of extra 

emphasis being placed on a segment, can be produced in English by using higher pitch, 

and/or increasing the sound’s duration or loudness (Chrabaszcz, et al., 2014), and 

intonation is typically conveyed by the variation of pitch across segments. A prosodic 

percept can arise from the modulation of one or multiple acoustic measures and it remains 

unclear to what extent individual cues or cue combinations contribute to a particular 

prosodic feature. Thus far, systems for identifying and characterising prosodic elements 

and how they map to meaning are less established (Cole & Shattuck-Hufnagel, 2016).  

2.3.2 The dual-stream model for speech processing  

The dual-stream model outlines processing starting at the level of primary auditory 

cortex, where spectro-temporal analysis of auditory signals received from the thalamus is 

conducted. According to the model, the early cortical stages of speech perception are 

organised both hierarchically and bilaterally. Some evidence has been found to support 

this. For example, in an fMRI study, Binder et al. (2000) presented participants with five 

types of auditory stimuli: unstructured noise, frequency modulated tones, words, 

pronounceable pseudowords, and temporally-reversed words. They found the following 

activation patterns bilaterally: the dorsal plane of the STG responded more to tones than 

noise, and regions further downstream in mid-STG showed selectivity for speech over 

tones.  

After the initial cortical stages of speech perception, the model posits that processing is 

divided into two computational pathways – a largely bilateral ventral one for auditory-

conceptual processing, and a left-dominant dorsal one for auditory-motor processing. The 

neuroanatomical regions that make up these pathways are depicted in Figure 2-6. The 

dual-stream aspect of the model was put forth to resolve the paradoxical results of 

previous studies in which it was observed that passive listening tasks implicated superior 

temporal regions bilaterally (Binder et al., 1994; Mazoyer et al., 1993) but studies that 

used tasks similar to syllable discrimination or identification found prominent activations 

in the left STG and left inferior frontal lobe (Zatorre, et al., 1992).  
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Figure 2-6 | The dual-stream model  

Functional neuroanatomy of the dual-stream model for speech processing (from Hickok, 

2013). A1 (Aud) and STG are involved in the initial stages of speech perception. 

Processing then diverges into two pathways: the dorsal pathway (dark blue areas) 

conducts auditory-motor processing while the ventral pathway (pink areas) is for 

auditory-conceptual processing.  

The ventral stream can be broadly understood as the ‘what’ pathway for auditory 

processing. It is posited to consist of a ‘lexical interface’ for mapping the 

sound/phonological structures of words onto the corresponding semantic representations, 

and a ‘combinatorial network’ for forming the integrated meanings of phrases and 

sentences (Kemmerer, 2014). The posterior, middle, and ventral sections of the temporal 

lobe (middle and inferior temporal gyri, MTG/ITG in Figure 2-5) appear to be important 

components of the lexical interface that serve as the bridge between sound and meaning. 

Lesion studies have shown that damage to these regions results in semantic-level deficits 

in both comprehension and production (Chertkow et al., 1997; Hickok and Poeppel 2004, 

2007). fMRI studies have also implicated these regions for lexical-semantic processing – 

Binder et al. (1997) found that when subjects made semantic decisions about auditory 

words, portions of the STS and MTG/ITG were strongly activated (in addition to frontal 

and parietal regions). STS activation was interpreted to be due to the phonological aspects 

of word processing, and MTG/ITG to reflect post-phonemic mechanisms involved in 

processing or accessing lexical-semantic information (Hickok, 2013). The lexical 

interface region is posited to project forward to lateral portions of the anterior temporal 

lobe (ATL), especially in the left hemisphere. There is preliminary support from fMRI 

studies indicating that the ATL region houses a ‘combinatorial network’ for processing 

compositional meaning – e.g. Narain et al. (2003) found stronger responses in this area 
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to intelligible than unintelligible multi-word utterances and Vandenberghe et al. (2002) 

found portions of left ATL to be more active when subjects read normal sentences as 

opposed to scrambled ones. However, more work still needs to be done to flesh out the 

processes involved in parsing phrases and sentences. 

The dorsal stream can be broadly thought of as the ‘how’ pathway of the auditory system. 

It is posited to consist of a ‘sensorimotor interface’ that has reciprocal connections with 

the phonological network, and a ‘articulatory network’ that has reciprocal connections 

with the sensorimotor interface (Kemmerer, 2014). Auditory representations that arrive 

after phonological processing are sent to area Spt, located in the posterior-most part of 

the left sylvian fissure. This area conducts a sensorimotor transformation of the input and 

transmits the signals forward to the articulatory network in the left posterior frontal lobe. 

This circuit is thought to contribute to several aspects of the human capacity for language, 

including the acquisition of speech-motor patterns and the perceptual processing of 

speech, particularly in situations when the listener must pay close attention to the 

phonological structure of utterances – a potential reason why it is activated in tasks like 

syllable discrimination or identification but not during passive listening.  

The dual-stream model outlines a general framework based on empirical evidence for the 

cortical organisation of speech and provides context for speech and language processing 

research. Nonetheless, it is broad in scope and focuses on the anatomical aspect rather 

than the precise computations involved and time courses of the various processes. In 

Section 2.6.4, we provide a review on recent research that use temporally-precise 

neuroimaging methods such as EEG and MEG to shed more light on these areas.  

2.3.3 Prosodic processing  

The processing of prosodic cues is not addressed in Hickok and Poeppel’s dual-stream 

model. Nonetheless, there have been various studies that have sought to anatomically 

localise prosodic processing in the brain, with hemispheric lateralisation – whether or not 

there is right asymmetry – being a point of contention (Baum & Pell, 1999; Gandour et 

al., 2004; Kreitewolf et al., 2014; Meyer et al., 2002; Plante et al., 2002; Witteman et al., 

2011). Recently, there has also been an attempt to devise a network model for prosodic 

processing akin to Hickok and Poeppel’s model. Sammler et al. (2015) conducted a study 

in which subjects listened to words that gradually varied across phonemic (‘bear’ to 

‘pear’) and prosodic (question to statement) dimensions and recorded their neural 
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responses using fMRI. Subjects were asked to perform one of two tasks after listening to 

each word – a prosodic one where they categorised the word as a question or a statement, 

and a phonemic one where they categorised the word as ‘bear’ or ‘pear’. By contrasting 

responses during the two tasks, they identified stronger activations in the right posterior 

(pSTS) and anterior (aSTS) superior temporal sulcus, the right inferior frontal gyrus 

(IFG), and the right premotor cortex (PMC) during the prosodic task. They then used 

these activation clusters as seed and target regions in multi-fiber probabilistic 

tractography to estimate the most likely white-matter pathways that connect these 

prosody-relevant nodes. This approach revealed a ventral tract connecting pSTS and 

aSTS, and dorsal tracts connecting pSTS to IFG and PMC.  

In light of these results, as well as the findings of earlier functional connectivity studies 

showing parallel pathways for prosody (Ethofer et al., 2006), they proposed that prosodic 

processing also proceeds along two streams, albeit with rightwards asymmetry. The 

dorsal pathway in this case consists of regions in right PMC and IFG – they are posited 

to convert prosodic contours into a motor format for articulation. The ventral pathway, 

comprising regions in STS, is posited to perform gradual segregation and abstraction of 

the prosodic signal from a speaker-dependent representation of speech sounds to a 

speaker-invariant representation. That is, acoustic cues relevant for conveying prosodic 

information are thought to be computed and integrated within this pathway. 

Nonetheless, a comprehensive model of how the brain processes speech also necessitates 

understanding precisely how this prosodic information is encoded in the brain. This is 

complicated by the fact that there is no established standard for the representation of 

prosodic elements that generalises across languages (Hirst, 2005). But an undeniably 

important auditory percept for prosody, the modulation of which underlies various 

prosodic phenomena, is pitch, which can be estimated from the acoustic speech stream 

(Boersma, 1993). With regards to this, it has been established that there are auditory 

cortical regions that encode sound pitch (Griffiths et al., 2010; Hall & Plack, 2009; Briley 

et al., 2013), and that these pitch-sensitive regions respond primarily to resolved 

harmonics (Norman-Haignere et al., 2013). In the context of speech, evidence has 

recently been found for the cortical encoding of speaker-normalized relative pitch. Tang 

et al. (2017) measured high-gamma electrocorticography (ECoG) responses to set of 

spoken sentences that independently varied intonation contour, phonetic content, and 
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speaker identity, and found high-gamma activity on single electrodes over superior 

temporal gyrus selectively represented intonation contours in terms of relative pitch 

(Figure 2-7). This demonstrates how intonation undergoes specialized extraction from the 

speech signal, distinct from other aspects of speech. An outstanding future question 

concerns characterising how prosodic and segmental information are integrated to support 

a unified percept for language comprehension.  

 

Figure 2-7 | ECoG activity displays selectivity for intonation 

Neural responses at three example ECoG electrodes that are selective for three different 

speech features – intonation, sentence (i.e. linguistic units), and speaker (adapted from 

Tang et al., 2017). The locations of these electrodes are indicated in the subplot on the 

right. The area of the pie occupied by a particular feature at each location is proportional 

to the total variance explained by the feature. Subplots A to C show the responses at these 

electrodes to a sentence spoken by a single talker but with different intonation contours. 

It can be seen that neural activity on electrode one (A) differentiates intonation contours, 

whereas activity on electrodes two (B) and three (C) does not. D to F shows neural 

responses at those same electrodes as sentence content is varied but the other features 

are kept constant, whilst G to I shows neural responses as speakers are varied with other 

features kept constant.  

2.3.4 Pre-lexical processing: the role of the phoneme  

While linguistic theories and many speech processing models – including the widely-

accepted dual-stream model discussed above – posit a mapping to phonetic features 

and/or phonemes as an intermediate stage between low-level acoustics and words 

(McClelland & Elman, 1986; Liberman et al., 1967; Hickok & Poeppel, 2007), this 
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viewpoint is not unanimous. Some researchers question the necessity and existence of a 

mental representation at this level for comprehending speech meaning (Lotto & Holt, 

2000). They point out that structure and organization in behaviour or output need not 

imply that this structure and organization is present in mental representation. There have 

been theories advocating for alternatives, including a different intermediate 

representational unit (e.g. syllables) (Massaro, 1974), or direct matching to the lexicon 

based on the comparison of acoustic representations (Goldinger, 1998; Klatt, 1989). A 

main criticism of a phoneme-level representation is that there is weak physical basis for 

phonemes – thus far, there has been a failure to find acoustic invariances across instances 

of a particular phoneme, and there is no straightforward way to map from the continuous 

acoustic speech signal to a phoneme representation without taking contextual constraints 

into account. 

There has been evidence from behavioural and EEG studies that humans perceive 

phoneme categories. Liberman et al. (1957) found that discrimination within phoneme 

categorical boundaries is poorer than across them. Eimas et al. (1971) looked at infants’ 

ability to discriminate syllables which differed in a voicing (phonetic) feature and found 

that infants also perceived categorical phonetic features. Additionally, Näätänen et al. 

(1997) found that the mismatch negativity (MMN), an event-related potential (ERP; see 

Section 2.5) component which reflects discriminable change in some repetitive aspect of 

the ongoing auditory stimulation, is observed when the deviant stimulus is a phoneme 

prototype of a subject’s native language relative to when it is a non-prototype. 

Nonetheless, it has been argued that these studies used simple isolated units, and therefore 

their results could be due to the type of task and not reflective of everyday listening. 

Recently, studies have shown that a phonetic feature representation of speech can predict 

neural activity during listening to natural, continuous speech. Using high density cortical 

surface electrodes, Mesgarani et al. (2014) found that the superior temporal gyrus (STG) 

(Figure 2-4) selectively responds to phonetic features. Di Liberto et al. (2015) and 

Khalighinejad et al. (2017) have also found evidence that non-invasive EEG activity 

reflects the categorisation of speech into phonetic features. Nonetheless, Daube et al. 

(2019) argue that these results could be also be explained by an encoding model that is 

based entirely on acoustic features. Namely, they found that acoustic onsets made very 

similar predictions to the benchmark phonetic features, and that acoustic onsets explained 

parts of the neural response that phonetic features could not. Contrasting evidence aside, 
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the idea of mapping to words via abstract sub-lexical representations like phonemes has 

prevailed due to its computational efficiency (Scharenborg, Norris, Bosch, & McQueen, 

2005). It is less obvious how the detection of acoustic onsets and other acoustic 

representations would lead to lexical access – and in particular, how such a model would 

robustly generalise to new words and new speakers. However, given that current evidence 

is insufficient to definitively conclude the precise computations the pre-lexical level, 

more research within this subtopic needs to be conducted.  

2.4 Auditory scene analysis  

Auditory scene analysis is concerned with how humans hear in noisy environments – a 

situation that many of us deal with on a daily basis. In spite of the world being noisy, 

humans are somehow able to detect patterns in the auditory scene to parse it into isolated 

components that occur simultaneously but can be attended to separately.  

2.4.1 The cocktail party effect and early versus late selection theories 

The phenomenon of attending to a single talker amidst multiple competing sources was 

brought to the fore by Colin Cherry in 1953 when he took an interest in it and coined the 

term ‘cocktail party effect’. The ‘cocktail party effect’ is essentially a speech-specific 

occurrence of auditory scene analysis, typically discussed with a focus on the attentional 

aspect. Cherry conducted a dichotic listening experiment where distinct speech streams 

were played to the left and right ears of subjects and they performed various tasks. His 

primary motivations were the questions of how humans are able to recognise what one 

person is saying when others are speaking concurrently, and how one might go about 

designing a machine to carry out such an operation. In his seminal paper, he found that 

subjects recognised certain low-level aspects of the unattended speech stream (e.g. they 

were aware if the speech was time-reversed) but were unable to recall any higher-level 

linguistic content. Cherry’s findings inspired more studies along the same vein – with a 

focus on how attention modulates the processing of speech in multi-talker scenarios.  

A prominent theory of selective auditory attention from this period is Broadbent’s filter 

model of attention (1958). In his early-selection model, Broadbent assumes some initial 

automated bottom-up (i.e. stimulus-driven) processing of sounds, after which there is a 

strict filter that rejects sounds based on low-level features such as location, pitch, 

loudness, and timbre. A subsequent study (Moray, 1959) found that higher level 

information such as one’s own name is perceived even if it is in the unattended stream. 
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This prompted others to suggest modifications/alternatives to Broadbent’s theory. 

Deutsch & Deutsch (1963) put forth a late-selection theory suggesting that all competing 

speech streams are semantically analysed, but only the attended stream is written to long-

term memory. Treisman (1964) proposed a less drastic version of Broadbent’s model in 

which unattended stimuli are attenuated rather than blocked out in an all-or-nothing 

fashion and therefore capable of reaching awareness in exceptional situations. The issue 

of whether attention to speech operates at an early stage of processing based on the 

physical characteristics of the stimulus or at a later stage during semantic processing is 

still debated, and Broadbent’s filter/bottleneck metaphor remains influential on modern-

day thinking on how attention operates. 

Following these early investigations, selective attention studies largely turned to the 

visual domain and the role of attention. At the time, it had just been shown that there are 

areas in (primate) visual cortex tuned to basic features of the visual scene such as lines 

orientation and colour (Hubel & Wiesel, 1968), so the question of how a unified percept 

of an ‘object’ could arise from these isolated low-level features was of much interest. 

Treisman and Gelade (1980) proposed a feature-based theory of visual attention, 

according to which when attention is directed to one or more elements of a perceptual 

visual object, all its other low-level visual features (e.g. colour and shape) are also 

registered pre-attentively and are bound together. Meanwhile, auditory research during 

the 1970s and 80s was mostly concerned with how physical cues of sound are coded in 

the auditory periphery, with little regard for perceptual phenomena or the effects of 

attention. It was not until seminal work by Bregman (1990) that auditory neuroscience 

began focusing on auditory scene analysis again, albeit with emphasis on a different 

aspect having been inspired by vision studies.  

2.4.2 Auditory object formation 

Apart from the attentional aspect of auditory scene analysis, the listener has to deal with 

another conceptually distinct challenge in parsing their environment: forming auditory 

objects. This entails separating the mixture of sounds into their constituent sources and 

grouping them. In practice, the two challenges are intertwined for the listener – they occur 

heterarchically and influence one another (Shinn-Cunningham, Best, & Lee, 2017). But 

while the aforementioned early studies (e.g. Cherry and Broadbent) focused on selective 

attention, Bregman (1990) and the many studies building upon his work were concerned 

with the perceptual organisation (or grouping principles) of sound mixtures; namely, its 
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properties and influencing factors. Research bridging the gap between these two lines of 

inquiry will be reviewed in Section 2.4.3, but in this subsection, we review the literature 

on auditory object formation.  

Consider that the signal that impinges upon the ear is a mixture of all sounds present in 

the environment. Humans are nonetheless able to group sounds into perceptual 

components that are typically referred to as auditory objects (a term inspired by vision 

studies). To illustrate the idea of an auditory object, Bregman gives the example of an 

infant being spoken to by their mother. When the infant attempts to imitate their mother’s 

voice, they do not insert the squeak from the cradle or other environmental sounds into 

their imitation; they are somehow able to distinguish that it is not part of the same 

perceptual object. The exact theoretical definition of an auditory object remains debated 

(see review by Griffiths & Warren, 2004), but it can be broadly thought of as a distinct 

perceptual time-frequency image attributed to a sound source; e.g. speech from a talker, 

or the barking of a dog. Segregating and grouping sounds into objects is non-trivial 

because determining how many sources there are in a given mixture and what energy 

components can be attributed to each source are ill-posed mathematical problems. To 

make these estimations, the brain has to utilise its implicit knowledge of specific sounds 

or sound classes to some extent (McDermott, 2009).  

Auditory object formation is thought to occur at two time-scales (Carlyon, 2004; Shinn-

Cunningham et al., 2017): a ‘local’ scale (approximately on the timescale of a speech 

syllable) to bind together sound energy components that are concurrent (sometimes called 

tokens), and a longer scale in which interleaved sound tokens from a mixture of sources 

are sorted into auditory objects that extend through time called streams (Bregman, 1990). 

How this grouping is accomplished can be described in terms of Gestalt principles, rules 

that have been formulated to describe how perceptual scenes are organised. These 

principles were first described in relation to vision but are also applicable to audition. At 

the shorter time scale, the rule of proximity in the spectro-temporal domain (Bregman 

1990) is thought to be a basis for grouping. That is, sound components that are close 

together and continuous in time and/or in frequency tend to be perceived as coming from 

the same source. Additionally, the rule of common fate also applies. Sound components 

that onset and offset together – that is, they have correlated fluctuations in amplitude 

modulation – tend to group into the same perceptual object. Likewise, grouping by 

harmonicity can also be phrased in terms of this principle. When a person speaks, their 
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vocal cord vibrations generate energy at a fundamental frequency, as well as at harmonics 

of this frequency. Thus, the components of their voice can be grouped by identifying 

acoustic components that have a common spacing in frequency. The principle of closure 

– referring to the tendency to complete perceptual forms even when evidence is missing 

– is also thought to be important and applicable to situations when sounds are masked by 

other sounds. Counter-intuitively, spatial cues seem to only have a weak influence on 

grouping at this time scale (Darwin & Hukin, 1997; Schwartz, McDermott, & Shinn-

Cunningham, 2012) – possibly because they are susceptible to reverberation and 

interference effects.  

Binding over a longer time scale (i.e. stream formation) occurs across acoustic 

discontinuities where local principles cannot operate and has been posited to depend on 

the temporal coherence between neural responses that encode various features (Shamma, 

Elhilali, & Micheyl, 2011). This theory stems from the idea that different sound sources 

will rarely fluctuate in strength at exactly the same times. The continuity of perceptual 

features such as frequency (De Sanctis, Ritter, Molholm, Kelly, & Foxe, 2008), timbre 

(Culling & Darwin, 1993; Cusack & Roberts, 2000), and pitch (Culling & Darwin, 1993; 

Vliegen, Moore, & Oxenham, 1999) are thought to be important. Spatial cues have also 

been found to have a stronger effect at this time scale e.g. placing the target sound at a 

different location from masking sounds as well as setting the target location to be fixed 

over time are helpful for ‘pulling out’ a stream (Maddox & Shinn-Cunningham, 2012).  

2.4.3 Interactions: Attentional effects on object formation and object-based attention 

The two challenges of auditory scene analysis – auditory object formation and selective 

attention – are closely related processes. However, the exact nature of their interaction 

remains debated. A particularly controversial issue concerns the role of attention in the 

formation of streams (Carlyon, Cusack, Foxton, & Robertson, 2001; Cusack, Deeks, 

Aikman, & Carlyon, 2004; Macken, Tremblay, Houghton, Nicholls, & Jones, 2003; 

Sussman, Horváth, Winkler, & Orr, 2007). Carlyon et al. (2001) posited that attention is 

crucial for the effective build-up of streaming. They conducted a study in which 

participants had to judge the number of streams formed under different conditions and 

found that the formation of auditory streams in participants is reduced or absent when 

they attend to a competing task in their contralateral ear. Other studies have nonetheless 

pointed out potential confounds in their study as well as evidence to support the viewpoint 

that the initial grouping of acoustic elements can occur pre-attentively (Macken et al., 
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2003; Sussman et al., 2007). Sussman et al. (2007) conducted a series of mismatch 

negativity (MMN) experiments using EEG – the MMN is a component of an event-related 

potential (ERP; see Section 2.5) that is elicited by the brain in response to a deviant 

stimulus within a sequence – to show that attention is not always required for the 

formation of streams. Bressler et al. (2014) posited that the truth is likely to lie somewhere 

in between – both automatic and attention-driven mechanisms interact and play a part in 

the multi-stage process of forming auditory streams. When low-level attributes are 

sufficiently distinct, attention is not required to drive the initial segregation of sounds into 

streams. For more ambiguous mixtures however, it is thought that attention to a particular 

perceptual feature may help ‘pull out’ an auditory stream. This is also supported by 

findings from a study by van Noorden (1975) showing that when subjects listened to 

sound sequences consisting of two tones with different frequencies, the frequency 

separation required to induce a percept of two separate streams is smaller if the listener is 

actively trying to hear out the high-pitch tones than if they are listening less selectively. 

Additionally, in a cross-modal study (Carlyon et al., 2003) in which subjects listened to 

tone sequences while performing one of three tasks -- an auditory task related to the 

stimulus, a visual task or a counting task – it was found that more streaming occurred (i.e. 

they were more likely to hear two streams) when subjects were performing the auditory 

task (and therefore were attending to the tones) than when participants performed the 

other two tasks.  

The aforementioned suggestion of how attention and object formation might interact is 

compatible with the theory of object-based attention. This theory posits that perceptual 

objects are the basic units on which attention operates, even when attention is first focused 

on a particular stimulus feature (Alain & Arnott, 2000; Fritz, Elhilali, David, & Shamma, 

2007; Shinn-Cunningham, 2008). There is some empirical evidence to support this 

notion. Best et al. (2008) and Maddox and Shinn-Cunningham (2012) found that 

discontinuity of other perceptual features of the attended stream, even if irrelevant to the 

task at hand, can influence task performance, suggesting that the features are bound as an 

object. Further, when a listener attends to one word, a subsequent word that shares some 

perceptual feature with the attended word is automatically more likely to be the focus of 

attention than a word that does not match the preceding word (Bressler et al. 2014). 

Indeed, this illustrates how attention and stream formation are inextricably linked as it 

also demonstrates that the continuity of task-irrelevant features of an object/stream can 
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influence the ability to extract information from a sound mixture. Object-based attention 

also posits that at any given time, the object that is the focus of attention is processed in 

greater detail than other objects in the scene. Various findings supporting this have now 

emerged (Chait, de Cheveigné, Poeppel, & Simon, 2010; Nima Mesgarani & Chang, 

2012a).  

To conclude this section on auditory scene analysis, we revisit the issue concerning the 

fate of unattended stimuli, a question going back to the early cocktail party studies and 

filter model theories. It remains debated, but in the last few years, novel neuroimaging 

analysis techniques have managed to shed some light on this area. Power et al. (2012) 

found attentional effects on speech processing at the 200-220ms range, suggesting a later 

locus of selectivity (i.e. post processing of physical characteristics). Puvvada and Simon 

(2017) found evidence that unattended stimuli are better represented as a single 

unsegregated object rather than distinct objects in higher-order auditory cortical areas, 

but that attended and unattended streams are represented with almost equal fidelity in 

early primary areas. Mesgarani & Chang (2012) conducted an ECoG study and showed 

that only the attended speaker is represented in STG, which is thought to implement a 

crucial stage in processing at the transition from acoustic to linguistic processing. 

Additionally, Brodbeck et al. (2018) and Broderick et al. (2018) found lexical and 

semantic processing to be categorically selective for attended speech stimuli. These 

results are consistent with the notion that human auditory cortex is a hierarchical 

processing system with higher-order processing areas being more affected by attention – 

for which there has also been evidence from the visual domain (Kastner & Pinsk, 2004; 

Maunsell & Cook, 2002). Unattended speech streams do not appear to be processed at 

and beyond the lexical stage when listening to continuous natural speech; a remaining 

open question is the extent to which pre-lexical processing occurs. 

2.5 Electroencephalography (EEG) as a neuroimaging technique 

Before the dawn of neuroimaging, scientists relied primarily upon non-human animal 

studies for understanding lower-level auditory function, and post-mortem examination of 

the brains of patients with speech and language disorders for studying higher-level speech 

function. Lesion studies work on the assumption that the observed behavioural deficits in 

these patients are the result of lesioned brain areas. An obvious disadvantage of this 

method is that it cannot provide any information about the neural time course of speech 

processing. But critically, the conclusions that could be drawn about the anatomical 
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localisation of functions were also questionable. Namely, diseased brains do not 

necessarily function like healthy ones; and these patients often had a variety of 

pathologies in addition to speech and language issues. The advent of neuroimaging 

opened up new avenues for studying the cortical processing of speech in healthy brains. 

fMRI has played an important role in identifying crucial anatomical regions; but 

temporally-precise methods like EEG/MEG are most suited to the task of understanding 

the time course of a dynamic cognitive process like speech comprehension. For reasons 

established in the previous chapter, EEG is the method of choice in this thesis. In this 

section, a brief overview of the mechanisms behind this method and how it has been 

classically applied to research is provided. 

EEG is a neuroimaging modality for detecting the electrical activity of the brain using 

electrodes placed on the scalp. It records the summed voltage fluctuations from large 

neuronal ensembles, reflecting the synchronous post-synaptic activity of a neural 

population with similar spatial orientation. EEG can record these fluctuations with 

millisecond temporal resolution, making it an exceptional tool for studying dynamic 

cortical events. The downside to EEG is that because it is recorded on the scalp, it suffers 

from volume conduction effects leading to poor spatial resolution (in the order of 

centimetres). Thus, in general, EEG is not well suited to tackle questions on the precise 

neuroanatomical localisation of a particular cortical function.  

EEG activity contains multiple frequencies simultaneously, which can be separated 

through signal processing techniques. This activity is conventionally grouped into bands 

that are defined by logarithmically increasing centre frequencies and frequency widths. 

Typically, these bands are: delta (2 - 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (15 

– 30 Hz), lower gamma (30 – 80 Hz), and upper gamma (80 – 150 Hz), selected based on 

neurobiological mechanisms of brain oscillations, including synaptic decay and signal 

transmission dynamics (Cohen, 2014), although these boundaries are not precise. It has 

been observed that different cortical functions seem to utilise different frequency ranges. 

Delta and theta band activity have been linked to speech processing (e.g. Ding & Simon, 

2014; Luo & Poeppel, 2007), and laterization of power in the alpha band has been linked 

to spatial attention (Kerlin, Shahin, & Miller, 2010; Worden, Foxe, Wang, & Simpson, 

2000; Wöstmann, Herrmann, Maess, & Obleser, 2016). Studies that employ ECoG often 

look at signals in the high gamma range, but EEG activity in this range is typically 
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disregarded as it is low pass filtered by the skull and therefore has low signal-to-noise 

ratio.  

Neural activity captured by EEG is traditionally divided into two categories – 

spontaneous and evoked. Spontaneous activity refers to the neural activity that occurs 

unprovoked, in the absence of any identifiable stimulus. Recordings of the brain’s 

spontaneous activity is typically used as a diagnostic tool in clinical environments as 

abnormal states can be detected based on it. It has been found useful for characterising 

seizures, classifying sleep stages, and monitoring the brain for damage.  

Evoked activity, or event-related potentials (ERPs), refers to neural activity generated in 

response to a specific event. ERPs can be elicited by a wide-range of sensory, motor and 

cognitive events – e.g. beeps and tones, an oddball stimulus, syntactic violations – and 

are time-locked to the event in question. As such, they are a useful tool in both diagnostic 

and experimental research and have been utilised over the years to uncover aspects of the 

processes that underlie human thought and behaviour. Due to the fact that the EEG 

reflects thousands of simultaneously ongoing processes, ERPs are not usually visible in 

single-trial EEG data. The typical method for acquiring a visible ERP is to average epochs 

of EEG responses time-locked to a particular discrete stimulus event across multiple 

repetitions – the idea here is that the background, non-phase-locked activity should 

average out to near zero given a sufficient number of repetitions, leaving only the 

stimulus-related activity that is consistent across trials.  

Averaged ERP waveforms consist of a series of positive and negative voltage deflections, 

which are categorised as individual components. A component is a scalp-recorded voltage 

change that reflects a specific neural or psychological process (Luck et al., 2012). The 

latency and amplitude of components are used to make inferences regarding the 

underlying psychological processes as well as the likely site of origin. Traditionally, 

researchers have found it useful to group components into two classes. Components that 

depend on the physical properties of sensory stimuli are termed ‘exogenous’ components, 

whilst components whose characteristics vary as a function of higher-level factors as 

attention and task relevance are called ‘endogenous’ components. Nonetheless, strict 

categorisation as one or the other has been proven to be an oversimplification. ERP 

components that occur within the first 100ms of stimulus presentation tend to be more 

exogenous, while those occurring later tend to be more endogenous. But early 
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components have also been shown to be modifiable by cognitive manipulations (e.g. 

attention), and many of the later ‘cognitive’ components have been shown to be 

influenced by the physical attributes of the eliciting condition (Coles & Rugg, 1995). 

Components are typically referred to by a letter indicating their polarity (N for negative 

and P for positive), followed by a number indicating their latency in milliseconds. When 

components have the same polarity and similar latencies, scalp distribution is then used 

to distinguish between them.  

ERP experimental paradigms have been utilised extensively by neuroscientists over the 

years to test how an external manipulation influences a specific component of the elicited 

ERPs. Depending on the stimulus modality, the ERP will typically have a series of early 

components, reflective of initial processing in a sensory receiving area, followed by ones 

that reflect more integrative cognitive processing. An ERP evoked by an auditory 

stimulus is termed the Auditory Evoked Potential (AEP). The AEP includes components 

spanning the full length of the auditory pathway (an example is shown in Figure 2-7).  

 

Figure 2-8 | The Auditory Evoked Potential (AEP) 

An averaged AEP waveform in response to a piano tone at the frontal channel, Fz 

(Shahin, 2011). 

Research on AEPs in response to speech suggest that components with longer latencies 

relate to progressively higher levels of the speech processing hierarchy (Salmelin, 2007). 

Specifically, early responses come from the brainstem, the middle-latency responses 

derive from an initial activation of the auditory cortex, and late responses come from 

auditory and associated cortices (Picton, 2011). Several language-comprehension-related 

components have been identified at long latencies – the N400 and P600 are generally 

associated with semantic and syntactic violations in sentences (although results 
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contradicting this hypothesis have been found, so the precise underlying causes of these 

components remain debated; see Kuperberg (2007) for review). 

2.6 Encoding/Decoding methods and the Temporal Response Function 

(TRF) framework 

As established in the previous section, traditional ERP studies require stimuli to be simple 

(only varying across the to-be-tested dimension), discrete, and presented to subjects 

multiple times so that a time-locked averaged response potential can be computed. While 

such studies have been useful for helping us identify relevant stimulus features, their 

findings do not necessarily generalise to continuous natural stimuli like speech (Hamilton 

& Huth, 2018). For one, the experimental paradigms used are artificial and unlike 

scenarios that would be encountered in the real-world. The last few years have seen a rise 

in the employment of encoding/decoding methods to sensory neuroscience research. 

These methods overcome the aforementioned limitations of the ERP technique, allowing 

for the use of continuous stimuli that vary along multiple dimensions, thus, enabling 

researchers to conduct experiments using complex stimuli such as natural speech. 

Encoding entails modelling the activity of a neural signal as a function of stimulus 

features, while decoding refers to using neural activity to predict/reconstruct a stimulus 

feature (Holdgraf et al., 2017). 

One framework for implementing encoding with EEG/MEG signals involves making the 

simplifying assumption that the brain is a linear, time-invariant (LTI) system. The 

mapping between stimulus features and the (time-lagged) neural signal is computed using 

regularised linear regression and the resulting estimated system response is termed the 

temporal response function (TRF) (Crosse, et al., 2016; Lalor & Foxe, 2010). We refer to 

this framework as the TRF approach. The LTI assumption is not strictly true but has been 

found to be a reasonable one under certain circumstances (Bialek et al., 1991; Lalor and 

Foxe, 2010; Ding and Simon, 2012; Mesgarani and Chang, 2012; Pasley et al., 2012). 

With respect to the auditory domain, the TRF approach has been shown to be effective 

for estimating a temporally-precise electrophysiological response to uninterrupted natural 

speech (Lalor & Foxe, 2010). 
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2.6.1 System response (TRF) estimation 

Within the TRF framework, the stimulus property, 𝑠(𝑡), is taken to be the input to the 

system (i.e. the brain), and the recorded N-channel EEG signal response, 𝑟(𝑡, 𝑛), to be 

the output. The response model can then be represented as (Crosse et al., 2016):  

 𝑟(𝑡, 𝑛) =∑𝑤(𝜏, 𝑛)𝑠(𝑡 − 𝜏) + 𝜀(𝑡, 𝑛)

𝜏

 

Here, ε(t, n) is the residual response at each channel n and time point t not explained by 

the model; 𝑤(𝜏, 𝑛) is the impulse response or TRF that describes the linear transformation 

of the ongoing stimulus to the ongoing neural response for a specific range of time lags, 

𝜏, relative to the instantaneous occurrence of the stimulus feature, 𝑠(𝑡). This time lag 

window is included to account for the fact that speech processing in the brain is not 

instantaneous and occurs over a period of time.  

The TRF is estimated by minimising the mean-squared error (MSE) between the actual 

and estimated neural responses. This minimisation problem can be solved using reverse 

correlation, expressed in the following equation: 

𝑤 = (𝑆𝑇𝑆)−1𝑆𝑇𝑟 

Here, 𝑟 is the matrix of EEG data with channels arranged column-wise, and 𝑆 is the lagged 

time series of the stimulus feature 𝑠(𝑡): 

  𝑠(1 − 𝜏𝑚𝑖𝑛) 𝑠(−𝜏𝑚𝑖𝑛) ⋯ 𝑠(1) 0 ⋯ 0  

  ⋮ ⋮ ⋯ ⋮ 𝑠(1) ⋯ ⋮  

  ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 0  

  ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 𝑠(1)  

𝑆 =  𝑠(𝑇) ⋮ ⋯ ⋮ ⋮ ⋯ ⋮  

  0 𝑠(𝑇) ⋯ ⋮ ⋮ ⋯ ⋮  

  ⋮ 0 ⋯ ⋮ ⋮ ⋯ ⋮  

  ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮  

  0 0 ⋯ 𝑠(𝑇) 𝑠(𝑇 − 1) ⋯ 𝑠(𝑇 − 𝜏𝑚𝑎𝑥)  



33 
 

where 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the minimum and maximum time lags (in samples) respectively. 

Each time lag in S is arranged column-wise and non-zero lags are padded with zeros to 

ensure causality (Mesgarani, David, Fritz, & Shamma, 2009).  

In practice, to avoid any ill-posed estimation problems and prevent overfitting, the TRF 

approach adds a regularization term to the autocovariance matrix, 𝑆𝑇𝑆, prior to its 

inversion (Crosse et al., 2016): 

𝑤 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑦 

Here, I is the identity matrix, and 𝜆 is the ridge parameter, or bias term, which is 

determined using cross-validation. This particular form of regularization is known as 

Tikhonov regularization, or ridge regression (Tikhonov & Arsenin, 1977).  

The above model of the system assumes a univariate input signal. Nonetheless, it is easily 

adaptable for the simultaneous testing of multiple feature dimensions. For an input signal 

of Z variables, the stimulus lag matrix is simply extended such that every column is 

replaced with Z columns (essentially, this is akin to computing a lag matrix for each 

variable, then concatenating them to form a single matrix). The resulting TRF model can 

be unwrapped accordingly to acquire the weights corresponding to each individual 

variable.  

2.6.2 Decoding/Stimulus reconstruction 

Stimulus-response mapping can be performed in both directions. Encoding, as described 

above, models neural activity as a function of uni- or multivariate stimulus features. The 

resultant TRF characterises the system, revealing the spatio-temporal dynamics of the 

neural response as indexed by EEG to the input speech parameter. Decoding (also known 

as backward modelling or stimulus reconstruction) on the other hand derives reverse 

stimulus-response mappings in order to predict stimulus features from the neural 

response. Decoding exploits all of the available EEG data simultaneously to derive the 

stimulus-response transformations. Thus, this method is more sensitive to small 

differences between EEG channels that are highly correlated with each other, as is often 

the case with EEG. Estimating the decoder model is carried out in much the same way as 

in the case of encoding, except with the stimulus and EEG response in place of each other 

in all the above equations, and with the time lags in reverse direction as the model 
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effectively maps backwards in time (Crosse et al., 2016). To reverse the lags, the values 

of 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are swapped but their signs remain unchanged. In the case of decoding, 

we refer to the estimated system response as the ‘decoder’. Unlike the TRF, the decoder 

is not easily interpretable in a neurophysiological sense (Haufe et al., 2014); nonetheless, 

the weights reflect the channels that contribute the most towards reconstructing the 

stimulus feature.  

2.6.3 Fitting the TRF/decoder and evaluating model performance 

Fitting the TRF/decoder entails selecting a ridge parameter (i.e. lambda value, 𝜆) that will 

optimise stimulus-response mapping. As mentioned above, this is done using leave-one-

out cross-validation. That is, for a given data set with M trials, individual system 

responses (TRF/decoder) are computed using a wide range of lambda values (e.g. 1, 

1x102, … 1x109) for all but one trial (i.e. M-1 trials). For each lambda value, an average 

TRF/decoder is attained by averaging over the M-1 TRF/decoders. The set of average 

models are then used to predict the EEG response/stimulus feature of the left-out trial. 

Model performance is assessed by quantifying how accurately the predicted EEG 

response/reconstructed stimulus feature matches the original response/feature. This 

metric often used is the Pearson’s correlation coefficient and the resulting coefficient is 

referred to as prediction accuracy of the model. The entire procedure is then repeated M-

1 times, rotating the trial that is tested such that each trial is ‘left-out’ of the training set 

once. The overall model performance for each lambda value can then finally be 

determined by averaging over the individual model performances for each trial. The 

lambda value that results in the best prediction/reconstruction accuracy is selected 

(Crosse et al., 2016). 
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Figure 2-9 | The TRF framework  

Summary of the TRF framework for stimulus-response mapping (Crosse et al., 2016). 

Encoding (as shown on the right) yields a system response (i.e. the TRF) that can be used 

to predict EEG data from the stimulus. A prediction accuracy that is significantly above 

chance reflects EEG tracking of the stimulus feature. The TRF is also interpretable – it 

reveals the spatio-temporal dynamics of the neural response to the input stimulus feature. 

Decoding (or stimulus reconstruction; shown on the left) can be used to reconstruct the 

stimulus feature from EEG data. As with the case of encoding, the accuracy of this 

reconstruction is indication of neural tracking of the stimulus feature.  

2.6.4 Dependent measures produced by the TRF framework 

The TRF framework is summarised in Figure 2-8. Because the TRF approach allows for 

the use of continuous stimuli that vary across multiple dimensions, it has been highly 

effective for studying the processing of natural speech. Employing this framework to 

representations of speech based on linguistic theories has enabled the investigation of 

how the brain represents speech through the cortical hierarchy, as well as how the various 

processing stages are affected by attention. Thus far, the TRF approach has been 

successful at isolating EEG/MEG neural indices at various levels.  

The TRF approach was first shown to be effective for modelling the neural response to 

the acoustic envelope of speech. The acoustic envelope – slow temporal fluctuations in 
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the overall signal amplitude between the rates of about 2 to 50Hz (Rosen, 1992) – contains 

essential cues that are necessary for the understanding of speech. It conveys various 

acoustic and linguistic information – e.g. segmental cues for phonetic features, and 

prosodic cues. A breakthrough finding in cognitive neuroscience in recent years has been 

the discovery that low-frequency MEG (Ahissar et al., 2001; Luo and Poeppel, 2007) and 

EEG (Aiken and Picton, 2008) activity is phase-locked to the acoustic envelope. As such, 

it was a natural choice for testing the efficacy of the TRF framework. It was found that a 

temporally-detailed TRF could be obtained when relating the speech envelope to EEG 

(Lalor & Foxe, 2010). Additionally, when stimulus reconstruction was performed, the 

speech envelope could also be reconstructed from EEG activity at above chance (Crosse 

et al., 2016). It has since also been demonstrated (though testing subjects under different 

listening conditions) that higher-level cognitive functions such as selective attention and 

intelligibility can modulate the accuracy of this reconstruction (Ding and Simon, 2012; 

Mesgarani and Chang, 2012; Zion Golumbic et al., 2013; O'Sullivan et al., 2015; 

Vanthornhout et al., 2018). Indeed, its sensitivity to attention has been shown to be useful 

for decoding attention in the context of the cocktail party paradigm (O’Sullivan et al., 

2015). O’Sullivan et al (2015) trained a decoder mapping from EEG to the envelope of 

the attended speech stream. They found that for a new trial, the signal reconstructed by 

the decoder correlates stronger with the envelope of the attended speech stream than with 

that of the unattended speech stream. By exploiting this finding, attentional selection 

could be decoded with an average accuracy of 89% for ~60-second-long single-trial EEG 

data. This is one of the state-of-the-art methods for decoding auditory attention. 

Because the envelope tracking effect has been found to be so robust, it has been a major 

focus of EEG/MEG speech research in the last few years. However, as mentioned earlier, 

it is a univariate aggregate measure that conveys many acoustic and linguistic cues, so it 

is insufficient for disambiguating and characterising the precise computations involved 

in the processing of natural speech. Thus, there have been recent efforts to relate 

EEG/MEG activity to other representations of speech that more precisely characterise 

particular processing stages. Di Liberto et al. (2015) recorded high-density scalp EEG 

from subjects as they listened to continuous natural speech and employed the TRF 

approach to show that low-frequency EEG is best modelled when representing speech in 

terms of acoustics plus phoneme/phonetic feature labels. Brodbeck et al. (2018) modelled 

speech in terms of a variety of representations reflecting lexical-level processing. These 
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representations were based on the premise that phonetic information is used to 

incrementally constrain possibilities for the word that is currently being processed. In 

relating the features to corresponding MEG data, they found TRFs indicative of phoneme-

level predictive coding and lexical competition. Broderick et al. (2018) used a 

computational model to quantify the meaning contained in words based on how 

semantically dissimilar they were to their preceding context. They found that the resultant 

TRF displayed a prominent negativity at a time lag of 200-600 ms on centro-parietal EEG 

channels, akin to the N400 ERP component. Notably, this semantic signature was absent 

when subjects were not attending to the speech. Together, these studies demonstrate the 

efficacy of the TRF method for probing the computations involved at various levels of 

the speech processing hierarchy within the context of more naturalistic scenarios.  

2.7 Summary 

In this chapter, we reviewed the literature concerning the brain basis of speech 

comprehension, focussing on the pathways from sound to meaning and the role of 

selective attention. We found gaps in the knowledge within several subareas. Namely, the 

debates concerning early versus late selection (i.e. the fate of unattended speech), and 

whether a phoneme-level mapping exists in speech comprehension remain unresolved. 

We also discussed EEG and encoding/decoding methods, focussing on the TRF approach 

that will be implemented in this thesis. We found that this approach has been highly 

effective for isolating neural signatures of acoustic and linguistic speech representations 

that are computed during natural speech processing. Nonetheless, there remain 

representations essential for understanding speech which have not been explored – the 

processing of prosodic information being one. Lastly, we found that reconstruction of the 

acoustic envelope is state-of-the-art for auditory attention decoding. But given that there 

are other features also modulated by attention, we hypothesise that looking beyond using 

envelope reconstruction alone to devise a joint approach may lead to improved decoding 

accuracy.  
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Chapter 3 Decoding the target talker in a 

non-stationary cocktail party 

scenario  

 

3.1 Introduction  

As established in the previous chapters, a real-life cocktail party environment poses a 

difficult listening challenge – there are a handful of conversations happening 

simultaneously around the room, and the interlocutors are often non-stationary. For the 

hearing-impaired, it is a listening situation that is particularly effortful. However, the 

auditory systems of most normal-hearing humans are remarkably adept at dealing with 

such complex scenes, affording them the ability to attend to a single talker and even track 

them as they move.  

The precise computations that occur in the human brain to perform this feat has long been 

a topic of interest. We reviewed the growing body of auditory scene analysis research 

examining the mechanisms behind this phenomenon in Section 2.4. Of late, there has 

been increasing interest in how this research can be applied to the development of next 

generation, cognitively-controlled, smart hearing aids (Lunner et al. 2009; Mirkovic et 

al., 2016). Studies in this vein are concerned with the task of decoding selective auditory 

attention from non-invasive neural measurements, the end goal being to track in real-time 

and in a real-life setting the talker to which one is attending. 

In this context, the findings that cortical activity tracks the temporal envelope of speech 

(Ahissar et al, 2001; Luo et al, 2007; Aiken et al., 2008), and that there is a separate and 

enhanced representation of the attended speaker in neural activity as indexed by magneto-

/electroencephalography EEG/MEG (Ding & Simon, 2012; Nima Mesgarani & Chang, 

2012b) offer a promising avenue. By relating the amplitude envelope of a speech stimulus 

to simultaneously recorded MEG/EEG activity (Ding and Simon, 2012; O’Sullivan et al., 

2015; Horton et al., 2014), it has been shown that single trial data can be decoded offline 

to ascertain attentional selection. In these studies, a cocktail party scenario was simulated 

using simple diotic or dichotic paradigms (with no spatial filtering) in which subjects 

were cued to attend to one of two competing talkers. Building upon these works, recent 

efforts have looked at the practicalities of implementing this decoding approach in daily 
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life (Mirkovic et al., 2015), its efficacy in a more realistic binaural listening environment 

(Das et al., 2016), and optimising the decoding process towards real-time application 

(Akram et al., 2016; 2017). The effect of real-world background noise on decoding 

performance (Das et al., 2018) has also been considered. Additionally, there have been 

efforts towards integrating noise suppression and auditory attention decoding into one 

system (Das et al., 2017; O’Sullivan et al., 2017; Van Eyndhoven et al., 2017).  

In this chapter, we describe a paradigm for investigating auditory attention decoding in 

an environment in which the to-be-attended talker is non-stationary – a common scenario 

in real life. We test the effectiveness of the envelope reconstruction (i.e. backward 

modelling) decoding framework established in O’Sullivan et al. (2015) in this setting. We 

then consider the incorporation of other signatures of attention to improve decoding and 

track talker location. Namely, we hypothesise that the computed ‘decoders’ themselves 

could be exploited to improve decoding. Decoder values reflect the weightings applied to 

the multichannel EEG data at different time lags and different scalp locations that 

optimally reconstruct the amplitude envelope of the stimulus. Although not easily 

interpretable from a neurophysiological standpoint, decoders are more robust than 

forward (stimulus-to-EEG) models as they utilize the multivariate nature of the recorded 

neural signal. We will show that the decoders display different spatio-temporal patterns 

as a function of a subject’s attended target speaker. We also explore using the topographic 

distribution of power in the alpha band, as it has been observed in previous studies to be 

hemispherically lateralised in accordance with the deployment of attention to the right or 

left side of space (Frey et al., 2014; Haegens et al., 2011; Wöstmann et al., 2016). The 

results of this study were published in the Journal of Neural Engineering (Teoh & Lalor, 

2019). 

3.2 Methods 

3.2.1 Subjects 

Nine female and five male subjects between the ages of 19 and 30 took part in the study. 

All subjects were right handed and spoke English as their primary language. Subjects 

were of normal hearing – they self-reported no history of hearing impairment or 

neurological disorder. Each subject provided written informed consent prior to testing 

and received monetary reimbursement. The study was approved by the Research Subjects 

Review Board at the University of Rochester.  
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3.2.2 Stimuli and Procedures 

Subjects undertook 10 trials, each of 90 seconds in length. Stimuli consisted of two 

Sherlock Holmes stories narrated by a female and a male talker. Silent gaps in the audio 

exceeding 0.3 s were truncated to 0.3 s in duration.  

The two speech streams were filtered using Head-Related Transfer Functions (HRTFs), 

giving rise to the perception that the talkers were at 90 degrees to the left and right of the 

subject. HRTFs are The HRTFs used were obtained from the CIPIC database (Algazi et 

al., 2001) – the same HRTFs were used for all participants. To simulate a dynamic 

environment with two non-stationary interlocutors (or rapid head turns by the listener), 

the talkers were instantaneously alternated between the left and right locations at short 

but varying intervals, ranging between 4 – 22 seconds (Figure 3-1). 

 

Figure 3-1 | Stimuli for the non-stationary talker paradigm.  

Subjects listened to two concurrent talkers. To simulate non-stationarity, the two talkers 

were alternated between the left and right locations at short but varying intervals.  

Subjects were instructed to selectively attend to the story narrated by the male talker. 

They were asked to minimize motor activities and to maintain visual fixation on a 

crosshair centred on the screen during trials. After each trial, subjects were required to 

answer four multiple-choice comprehension questions (each with four choices) on both 

the attended and unattended stories.  
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Subjects also undertook a control condition (with a larger number of trials but only the 

first 10 were used here so as to match the moving condition) in which the talkers were 

stationary throughout each trial, replicating the paradigm employed in O’Sullivan et al 

(2015), albeit with HRTF-filtered stimuli rather than dichotic.  

All stimuli were sampled with a frequency of 44 100 kHz and were presented using 

Sennheiser HD650 headphones and Presentation software from Neurobehavioral Systems 

(http://www.neurobs.com).  

3.2.3 Data Acquisition and Pre-processing 

The experiment was conducted in a soundproof room. A Biosemi ActiveTwo system was 

used to record EEG data from 128 electrode positions (digitized at 512Hz).  

EEG data were referenced to the average of all scalp channels. Automatic bad channel 

rejection and interpolation was performed. A channel was deemed bad if the standard 

deviation of the channel was lower than a third of or exceeded three times the mean of 

the standard deviation of all channels. In place of the bad channel, data were interpolated 

from the four nearest neighbouring electrodes using spherical spline interpolation 

(Delorme & Makeig, 2004). To decrease subsequent processing time, data were down-

sampled to 128Hz. Data were filtered into two frequency pass bands: (1) 1-8 Hz for 

decoder computation and envelope reconstruction, selected based on earlier studies 

(O’Sullivan et al., 2015; Das et al., 2016), and (2) 8-14 Hz for computation of alpha band 

power (see below). 

Amplitude envelopes of the original audio stimuli and the left and right audio streams 

simulating non-stationary talkers were computed. This was done by taking the absolute 

value of the Hilbert transform of the stimuli, applying a 30Hz low-pass filter, and down-

sampling to 128Hz.  

3.2.4 TRF implementation 

Like in O’Sullivan et al. (2015), the TRF implementation of backwards modelling (i.e. 

using regularized linear regression) was employed to relate the multivariate neural data 

to the attended amplitude envelopes. 

We described TRF estimation in Section 2.6. Essentially, we denote a multivariate spatio-

temporal filter/decoder 𝑔(𝜏, 𝑛) that linearly maps from the EEG response back to the 
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stimulus envelope. The decoder 𝑔 is estimated by minimizing the MSE between the actual 

and estimated envelopes, and is computed using the following matrix operation: 

𝑔 = (𝑅𝑇𝑅 + 𝜆𝐼)−1𝑅𝑇𝑠 

where 𝜆 is the ridge regression parameter, 𝐼 is the identity matrix, and the matrix R is the 

lagged time series of the response matrix, 𝑟. 

The mTRF Toolbox (Crosse et al., 2016 - https://sourceforge.net/projects/aespa/) was 

used to solve for the decoders. All decoders in this study were computed for the time lag 

interval of 0 to 250 ms. This reflects the idea that changes in the amplitude envelope of 

the ongoing stimulus are likely to produce effects in the ongoing EEG at time lags of 0 to 

250 ms, an idea that is supported by previous research (Lalor & Foxe, 2010). The ridge 

regression parameter was determined using leave-one-out cross-validation, selected to 

maximise the average Pearson’s correlation coefficient between actual and predicted 

stimuli.  

3.2.5. Decoding Attentional Selection 

3.2.5.1 Effects of Attended Talker Movement on Decoding Accuracy 

To evaluate whether decoding as assessed by envelope tracking is robust to switches in 

the location of the attended talker, we compared single-trial decoding accuracies of our 

non-stationary talker paradigm to that of our control (stationary talker) condition. 

Specifically, for both conditions, we implemented a previously introduced analysis 

(O’Sullivan et al., 2015) as follows (Figure 3-2): Attended decoders that mapped from 

the 1-8 Hz EEG data to the speech envelope of the talker to which they were instructed 

to attend were computed for each subject and each trial. For a particular subject, we could 

then reconstruct the stimulus envelope of a particular trial, N, using the average attended 

decoder of N-1 trials (i.e. leave-one-trial-out cross validation). The Pearson’s correlation 

coefficient, r, was computed between the reconstructed envelope and both the actual 

attended and unattended stimulus envelopes. A trial was deemed correctly classified if 

the reconstructed envelope was more correlated with the attended than the unattended 

envelope (rattended> runattended).  

We also tested for switching costs over a shorter time scale by extracting 20-second long 

epochs in which there were two, three and four switches in attended talker location 



44 
 

(moving talker condition), as well as no switches (stationary talker condition). Ten epochs 

were extracted for each condition.  

 

Figure 3-2 | Illustration of the decoding strategy (adapted from O’Sullivan et al., 2015). 

An estimate of the attended speech envelope was obtained from each segment of neural 

data. Decoders were trained using n-1 trials and averaged, then tested on the nth trial. 

The correlation between the reconstructed stimulus and the attended and unattended 

speech envelope were assessed, resulting in reconstruction accuracies rattended and 

runattended. If the reconstructed envelope was more correlated with the attended than the 

unattended envelope (rattended> runattended), the trial was considered to be correctly 

classified. This was repeated n times, rotating the trial to be tested each time (leave-one-

out cross-validation). 

3.2.5.2 Spatio-temporal Decoder Structure 

To assess if the decoder structure itself – that is, the weightings applied to the different 

EEG electrode channels at different time lags – contained spatio-temporal signatures of 

attention that were consistent across subjects and could be exploited, we extracted epochs 

from the 1-8 Hz EEG data such that the talkers were stationary within each epoch. Epochs 
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were between 4 – 22 s in length. For each epoch, we then computed decoders mapping 

from the EEG data to the corresponding left and right audio envelope segments. A fixed 

regularisation parameter – selected to optimise envelope reconstruction accuracy over all 

epochs – was used for training. Supposing that the deployment of attention (A vs U) and 

the spatial locations of the talkers (L vs R) are reflected in the decoder values, the 

following two combinations of decoder types would arise: if a subject is attending to the 

left during a particular segment, the decoder mapping from their EEG to the left audio 

envelope will be a ‘left attended’ decoder (AL) and the decoder mapping to the right audio 

envelope will be a ‘right unattended’ decoder (UR); conversely, if a subject is attending 

to the right, the decoder mapping from their EEG to the left audio envelope will be a ‘left 

unattended’ decoder (UL) and the decoder mapping to the right audio envelope will be a 

‘right attended’ decoder (AR). 

We tested whether we could exploit the consistency of decoder weight patterns across 

subjects to decode the attended talker during each epoch. We did this in a leave-one-

subject-out cross-validation manner. For N-1 subjects, we concatenated segments of data 

and stimuli based on whether they were attending to the right or left, and computed the 

four aforementioned decoder types (AL, UR, UL and AR). We then averaged these 

decoders across subjects and concatenated them to form two exemplar decoder weight 

pattern matrices ([AL, UR] and [UL, AR]). For each epoch of the left-out subject, we 

calculated the Pearson’s correlation between a concatenated matrix of decoders mapping 

from EEG to the left and right envelopes with these matrices (i.e., with [AL, UR] or [UL, 

AR]). A classification was deemed correct if the tested decoder matrix was more 

correlated with the grand-average decoder of its actual category than that of the opposing 

class.  

The previously described analysis was based on using the decoder weights on all 128 

channels at all time lags between 0 and 250 ms. In addition to this, we also wanted to 

explore if there were particular decoder weights or time lags that might be most 

informative for decoding the attended talker (this was partly motivated by the longer-term 

goal of conducting this type of analysis on a much reduced, wearable EEG system, e.g., 

Mirkovic et al., 2016). To do this, we tested if decoding could be improved by selecting 

features based on a group-level cluster-based permutation test of the effect across all time 

points and scalp electrodes. Specifically, we computed single-subject averages for each 
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decoder type then carried out non-parametric cluster-based tests (Maris & Oostenveld, 

2007; Oostenveld et al., 2011) to compare attended and unattended decoders (AR vs UR 

and AL vs UL). The tests revealed spatio-temporal regions in which differences were most 

pronounced.  

As an aside, we also repeated the classification and feature selection steps to investigate 

whether there were significant differences between attended decoders (AL vs AR); that is, 

if the direction of attention itself was discernible from the attended decoders. 

3.2.5.3 Alpha Band Power 

Previous research has shown hemispheric lateralisation effects in alpha band power 

during spatial attention tasks (Frey et al., 2014; Haegens et al., 2011; Wöstmann et al., 

2016; Bednar et al., 2018). To test whether that could be useful in this setting for decoding 

cocktail party attention, we extracted 4-seconds of 8-14 Hz EEG data time-locked to the 

onset of each switch (4-seconds corresponds to the length of the minimum switch 

interval). The absolute value of the Hilbert transform of each epoch was computed as a 

measure of alpha band power. We then tested if the epochs could be classified based on 

the attended direction (‘attend left’ versus ‘attend right’). To do so, we calculated the 

Pearson’s correlation between the spatio-temporal distribution of alpha power for each 

epoch of each subject (normalised by the sum of mean ‘attend right’ and  mean ‘attend 

left’ epochs) with the spatio-temporal distribution of alpha power averaged over all 

‘attend left’ and ‘attend right’ trials (also normalised) for all the other subjects. A 

classification was deemed correct if the tested decoder was more correlated with the 

grand-average decoder of its actual category than that of the opposing class. 

Again with a view towards identifying which channels and time lags might be most 

informative, we followed up with an exploratory analysis where we tested if decoding 

could be improved by selecting features based on a group-level cluster-based permutation 

test of the effect. Single-subject averages were computed and non-parametric cluster-

based tests (Maris & Oostenveld, 2007; Oostenveld et al., 2011) were carried out to 

compare normalised ‘attend left’ and ‘attend right’ epochs. Only spatio-temporal regions 

in which differences were most pronounced were used for decoding.  
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3.2.5.4 Tracking the Locus of Attention 

The previous analyses were focused on treating each epoch where the talkers were 

stationary as a stand-alone trial. However, we also wondered if we could continuously 

track subjects’ locus of attention even as the attended talker switched locations. To do 

this, we carried out an overlapping sliding window analysis. We chose a window size of 

4-seconds (which corresponds to the minimum duration between changes in talker 

location) and a step size of 31.25ms. For each window, the envelope reconstruction 

decoding analysis described in section 3.2.5.1 was performed and reconstruction 

accuracies were assessed. 

As with the main analysis above, we then looked to include spatio-temporal decoder 

information to see if it improved the decoding for these shorter segments. For each 

window, we computed the decoders mapping the EEG data to both the right and left audio 

stream envelopes. We evaluated the correlation of the spatio-temporal decoder structure 

with trained grand average attended and unattended decoders (left and right) (computed 

in the same manner as in section 3.2.5.2, i.e. using data from all other subjects). 

A support vector machine (SVM) classifier was trained with the correlation coefficients 

as features in a leave-one-trial-out manner, and then tested on each window of the 

remaining trial. To determine whether incorporating spatio-temporal signatures improved 

decoding, classification was first carried out using only the correlation coefficients from 

the envelope reconstruction analysis, and then a combination of those features with the 

correlation coefficients from the decoder structure analysis.  

In all our analyses, chance level was established using non-parametric permutation 

testing, where the null distribution was determined by permuting labels for trials 1000 

times. The tail of the empirical distribution was then used to calculate the p-value for the 

original classification. 

3.3 Results 

3.3.1 No significant difference in decoding accuracy due switching of talker 

location 

Subjects’ responses to the comprehension questions for both the moving and stationary 

(control) conditions revealed that they were compliant. Percentages of correct answers 

for the attended story (means = 75.8±3 % and 78.4±3 % for the moving and stationary 
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conditions, respectively) significantly exceeded those of the unattended story in both 

cases (two-tailed Wilcoxon signed-rank; z= 3.3; p = 0.00097 for both conditions), where 

accuracies for the unattended story were close to the chance level of 25% (means = 

29.4±2.5 % and 25.9±2 % for moving and stationary, respectively). There was no 

significant difference between moving and stationary conditions (two-tailed Wilcoxon 

signed-rank; z=-1.18; p=0.237). The lower average for the moving talker condition could 

be attributed to participants performing relatively poorly in the first trial (mean = 48.2±9.3 

%) as they adapted to the task. The average performance in the moving talker condition 

for trials after the first was similar to the stationary condition (mean = 78.9±2.8 %). 

A comparison of envelope reconstruction decoding accuracies revealed a higher mean 

average performance for the moving talker condition (mean = 85.7±3.7 %, as opposed to 

77.9±4.2 % for the stationary condition) (Figure 3-3A), however this difference was not 

found to be significant (two-tailed Wilcoxon signed-rank; z =1.78; p=0.075). We also 

found no significant differences in decoding accuracy between shorter (20 s) epochs with 

two switches, and those with three and four switches within the moving talker condition 

(Figure 3-3B) (two-tailed Wilcoxon signed-rank; z= -0.9078; p= 0.3640, and z= 0.2379; 

p= 0.8119). This was also the case when those decoding accuracies were compared to the 

stationary talker condition (two-tailed Wilcoxon signed-rank; two switches vs stationary 

- z=-1.19; p=0.2317; three vs stationary - z=-0.43; p=0.6684; four vs stationary – z =-

0.898; p=0.3689). 

 

Figure 3-3 | Decoding accuracies as a function of switching in talker location 
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(A) Decoding accuracies for the moving and stationary talker conditions were on average 

85.7% and 77.9% respectively. This difference was not found to be significant. (B) 

Decoding accuracies for epochs with two, three, and four switches within the moving 

talker condition, and for epochs with no switches taken from the stationary talker 

condition. No significant difference was found within the moving talker condition and 

between the moving and stationary conditions. Error bars represent mean ± standard 

error. 

3.3.2 Attentional selection is reflected in spatio-temporal decoder structure 

EEG data (1-8Hz) were epoched into segments such that the talkers were stationary within 

each epoch. Training and classification of epochs was performed as described in Section 

3.2.5.2. We found that it was possible to significantly classify the talker to which subjects 

were attending within single epochs based on the decoder weight patterns themselves 

(Figure 3-4A All Features, mean = 70.7 ± 2.08%; two-sided permutation test; p=0.001). 

A group-level cluster-based permutation test (two-sided dependent samples t-test, 

minimum of one neighbourhood channel, critical alpha-level of 0.05, Monte Carlo 

method for calculating significance probability) of the effect across all time points and 

scalp electrodes revealed significant differences between attended and unattended 

decoders (AL vs UL and AR vs UR).  These differences were most pronounced over large 

spatiotemporal regions of the decoder structure, particularly between around 50-110 ms 

and 140-210 ms (shown at a representative latency within these clusters – 70 ms and 190 

ms – in Figure 3-4C).  

Having identified spatio-temporal regions at which differences between attended and 

unattended decoders were most pronounced, classification was repeated using only these 

features (i.e. clusters that were significant at the alpha-level of 0.05). This however did 

not result in improved average decoding accuracy (Figure 3-4A Selected Features, mean 

= 69.52 ± 2.10%) and the difference between using selected features and all features was 

found to be insignificant (two-tailed Wilcoxon signed-rank test; z= -1.69; p= 0.09).  
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Figure 3-4 | Decoding attentional selection and direction using decoder model weights  

(A) Accuracies of decoding of attentional state by classifying decoder weight patterns 

([AL, UR] vs [UL, AR]). Decoding accuracies when all features are used and when only 

selected features are used are depicted. Black dots represent individual subject data. (B) 

Classification of ‘attend right’ vs ‘attend left’ decoders (AR vs AL) with and without 

feature selection. (C) Grand average decoder weights at representative latencies at which 

differences between decoder types were most pronounced based on a cluster-based 

permutation test. The first and second rows depict attended and unattended decoders 

which map from EEG data to left-sided stimuli, while the third and fourth rows depict 

attended and unattended decoders mapping EEG data to right-sided stimuli. 

It was also possible to differentiate attended decoders (‘attend right’, AR vs ‘attend left’, 

AL) at above chance level (Figure 3-4B All Features, mean = 55.3 ± 1.11%; two-tailed 

permutation test; p=0.001). A group-level cluster-based permutation test in this case 

revealed a particularly pronounced difference between ~25-80 ms in left central sensors 

(shown at a representative latency, 30 ms, in Figure 3-4C). Classification using only these 

features resulted in an increased average decoding accuracy (Figure 3-4B Selected 

Features, mean = 56.53 ± 1.21%) but this difference was not found to be significant (two-

tailed Wilcoxon signed-rank test; z=0.52; p=0.599).  
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3.3.3 Alpha power lateralisation is insufficiently robust for decoding attentional 

selection 

A group-level cluster-based permutation test of the effect across all time points and scalp 

electrodes found no significant difference in alpha band power between ‘attend left’ and 

‘attend right’ epochs (two-sided dependent samples t-test, minimum of one 

neighbourhood channel, critical alpha-level of 0.05, Monte Carlo method for calculating 

significance probability). A subsequent test on the signals averaged across the full 4-

second time window also revealed no significant effect. We considered the possibility 

that alpha band power lateralization occurs when there is a switch in the location of the 

attended/ignored talker but is not consistently maintained throughout the trial (Kerlin et 

al., 2010). Thus, we averaged the signals over non-overlapping 100ms time windows and 

tested (again, using a group-level cluster-based permutation test) for differences within 

each window. With this test at a critical alpha-level of 0.05, the differences between the 

‘attend left’ and ‘attend right’ conditions were significant for the latency ranges of 500-

700ms, 1400-1500ms, 3400-3600ms, and 3900-4000ms post-switch. This must be 

considered as exploratory and read with caution given that these effects were only found 

after averaging within certain windows. For what it is worth, the normalised contrast 

between grand average alpha band power when subjects were attending to the left and 

right (‘attend left’ minus ‘attend right’, over ‘attend left’ plus ‘attend right’) at these 

latencies are shown in Figure 3-5A.  

It was possible to classify the unaveraged signals based on subjects’ direction of attention 

at above chance level only after feature selection was carried out (All features: mean = 

51.3±1.08%; two-sided permutation test; p=0.126; Selected features: mean = 

55.6±1.21%; two-sided permutation test; p=0.001). That is, for each 100ms time window, 

only channels in which the effect was pronounced within the window were included 

(Figure 3-5B). As such, while it is known that alpha power lateralizes with spatial 

attention, the effect does not seem to be strong enough to produce robust signatures that 

can be used for decoding attention to a speech stream on a single trial level, at least in the 

current experiment. 
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Figure 3-5 | Decoding attentional selection using alpha power  

 (A) Normalised contrast, also known as the Attention Modulation Index (Wöstmann et 

al., 2015) between grand average alpha band power (that is, ‘attend left’ minus ‘attend 

right’, divided by ‘attend left’ plus ‘attend right’) shown at latency ranges in which the 

difference between conditions was found to be significant (B) Box plots showing 

accuracies of decoding of attentional direction using alpha band power with and without 

feature selection. Individual subject data is denoted by the black dots. A significant 

improvement was found (two-tailed Wilcoxon signed rank test; z= 2.15; p=0.03) after 

which direction of attention could be classified, but only after deliberately searching for 

and selecting specific spatio-temporal features, suggesting that alpha lateralization is not 

a robust enough signal to reliably help with decoding attention in the context of the 

current experiment. 
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3.3.4 Tracking the locus of attention 

An overlapping sliding window analysis was carried out to determine if we could 

continuously track the talker to which subjects were attending. This was implemented by 

using an SVM classifier to decode attentional selection for each window based on 

envelope reconstruction correlation values (env), decoder weight correlations (DW), as 

well as a combination of the two (env+DW) (Figure 3-6B). All approaches led to decoding 

accuracies that were significantly greater than chance (two-tailed permutation test; 

p=0.001 in all three cases). We also found a significant increase in decoding accuracy 

when spatio-temporal decoder weights were included along with the envelope 

reconstructions (env – mean = 61.07±2.27%; DW – mean = 61.76±1.11%; env+DW – 

mean = 65.31±1.57%) (two-tailed Wilcoxon signed-rank test; env+DW vs env– z=3.23; 

p=0.0012; env+DW vs DW– z=3.23; p=0.0012).   

 

Figure 3-6 | Tracking the locus of attention  

(A) Actual and predicted attended talker location over time for one trial of one example 

subject. Predictions are based on envelope reconstruction (env) as well a combination of 

envelope reconstruction and decoder weights (env+DW). (B) Boxplots of decoding 

accuracy based on a sliding 4 s window of EEG data when implementing stimulus 

envelope reconstruction alone (env), spatio-temporal decoder weights (DW) and when 

using a combination of the two (‘Env+DW’) (**p<0.01). The black dots represent data 

from individual subjects.  
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3.4 Discussion  

This study looked at auditory attention decoding in an environment in which the to-be-

attended talker is non-stationary. We set out to test the efficacy of the envelope 

reconstruction approach in this scenario, as well as investigate whether the spatiotemporal 

structure of our decoders and alpha band power lateralization could be utilised to improve 

decoding. 

Our motivation for testing decoder performance in a non-stationary scenario stems from 

the findings of previous auditory scene analysis studies. In Section 2.4, we reviewed 

auditory object formation, selective attention, and how the two processes are intertwined. 

A prominent idea in the field is that attention acts on perceptual objects, but the formation 

of an object over time depends on the continuity of all stimulus perceptual features (Alain 

& Arnott, 2000; Shinn-Cunningham, 2008). Further, when attention is sustained on an 

auditory object, perception of the object improves over time. Consistent with this idea, 

previous studies involving discontinuity of features in the to-be-attended stream have 

found costs in behavioural task performance. Best et al (2008) conducted a spatial 

attention study in which subjects were tasked with attending to one of two simultaneous 

but spatially-separated audio streams of rapidly-presented discrete digits under different 

target voice conditions (i.e. same target talker from digit-to-digit versus different target 

talker). Stimuli were presented via loudspeakers and subjects were cued visually towards 

a target location by LEDs affixed to the loudspeakers. They found that when spatial 

location and target voice were both held constant (Experiment 2 in their paper), there was 

an enhancement in digit recall performance compared to conditions where location was 

fixed but target voice was varied (Experiment 1). When they introduced spatial location 

switches into both experiments, the switches brought about a reduction in performance 

accuracy within both experiments, but this reduction was larger within Experiment 2. 

Maddox and Shinn-Cunningham (2012) and Bressler et al. (2014) also found that listeners 

were more error-prone when a sound feature, even if task-irrelevant, changed and broke 

down the perceived continuity of the stream. 

In our study, subjects were not asked to attend to a particular feature or cued towards a 

location prior to/at a switch. They were merely informed that the to-be-attended talker 

would be male and would at first instance be on their right but would then continually 

swap locations with the other (female) talker. Given the lack of explicit spatial cueing, it 

is possible that the strategy employed here by subjects to guide their deployment of 
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attention would be to use vocal (e.g. pitch and timbre) or perhaps even high-level 

semantic information instead of spatial features. Nonetheless, generalisation of the 

aforementioned findings would suggest in our control (stationary) condition when both 

talker voice and spatial location are constant, there would be an enhancement over the 

moving talker condition due to sustained attention to an auditory object. We did not find 

evidence for this behaviourally – there was no overall significant difference between how 

subjects performed in the moving condition in comparison with the control condition. 

This could be due to the nature of the task which perhaps lacked the sensitivity to pick up 

on any differences in performance. The stimuli used were continuous narratives and 

subjects had to answer comprehension questions based on content rather than recall 

individual words. Subjects may have still suffered a cost, but it is possible that the cost 

was so transient that it did not impact too strongly on what was a very high-level and 

relatively coarse measure of attention. Nevertheless, subjects did perform significantly 

poorer in the first trial of the moving talker block compared to subsequent trials and the 

stationary block, suggesting that they found the task with location switches more difficult 

and required time to adapt – perhaps adjusting how they deployed attention.   

In terms of EEG attentional decoding, our results demonstrate that the decoding approach 

established in O’Sullivan et al (2015) is robust to switches in the attended talker’s 

location. In fact, decoding accuracies for 7 subjects were better for the moving condition 

compared to the stationary condition, whilst it was only better for one subject in the 

stationary condition compared to the moving condition. The overall average decoding 

accuracy was found to be higher in the moving condition, although this was not 

significant. It is conceivable that subjects had to expend more effort to perform the task 

in the moving talker condition, leading to a higher signal-to-noise ratio in their EEG. This 

in turn could have compensated for any costs due to the switches. Indeed, it has previously 

been observed that the inclusion of moderate background noise results in an improvement 

in decoding performance over a clean speech condition (Das, Bertrand, & Francart, 2018). 

As a further check whether there is a significant change to decoding accuracy when the 

attended talker moves, 20 second epochs containing varying number of switches (2, 3 and 

4) from within the moving talker condition were extracted. No significant differences in 

decoding accuracies were found between the 3 cases. Additionally, we also cut 20 second 

epochs from the stationary condition for comparison. Again, no significant differences 
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were found between the stationary and moving conditions, but here the overall average 

was slightly higher in the stationary condition.  

Although backward models are not easily physiologically interpretable (Haufe et al., 

2014), signatures of attentional selection and attended direction were found to be present 

in the spatio-temporal structure of decoders and were consistent across participants. 

Indeed, we could exploit the consistency of the encoded attentional selection information 

across subjects to significantly improve decoding accuracy over using envelope 

reconstruction alone when continuously tracking subjects’ locus of attention with short 

sliding windows. Admittedly, the analysis was carried out with the inclusion of EEG 

channels across the whole scalp, and it could be that this improvement is contingent on 

this. Future work would include reducing the number of channels used to test its 

practicality for implementation in a wearable device. Signatures of attended direction, 

which we tested for by comparing ‘attend left’ and ‘attend right’ decoders were weaker 

but could still be decoded at above chance level on a single-trial basis.  

Recent spatial attention studies have found that alpha band power is hemispherically 

lateralized according to the direction of attended stimulus (Kerlin et al., 2010; Horton et 

al., 2014; Frey et al., 2014; Wöstmann et al., 2015; van Diepen et al., 2016; Bednar et al., 

2018). In particular, studies have reported that alpha is observed in the 

preparatory/anticipatory period (if present for the task) and between 300-700ms after 

stimulus onset. Despite our task not being a spatial attention task per se (and indeed it is 

likely that subjects guided their attention based on vocal features or story content) the 

talkers were always spatially separated. So, we were interested to see if alpha band 

lateralization was present and could be exploited to detect switches in location. We found 

that the lateralization was present but weak and not maintained steadily throughout the 

trial – on a group-level, it was only found to be significant within certain latency ranges 

after a switch, and only after searching through many latencies. In particular, it was 

observed at ~0.5-0.7 s after the onset of each switch – this is consistent with previous 

studies. The significant lateralization observed at the end of the trial (~3.4 and ~3.9 

seconds) may be due to anticipation of the next switch in location, although caution must 

be taken to not overinterpret this result. One possible explanation for the overall weak 

alpha lateralisation effect is that spatial location is not the specific feature attended to 

here. Indeed, the presence of alpha lateralisation at all here may be because auditory 
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attention is directed towards perceptual objects so bounded spatial features are also 

enhanced, albeit to a lesser degree.  

Using a stationary talker cocktail party paradigm, Horton et al (2014) had previously 

found decoding using alpha band power lateralization to be ineffective. They reasoned 

that it could likely be because their analysis window only began 1000ms after stimulus 

onset, later than the frequently observed lateralisation peak at ~0.6 s. Here, our window 

included the 0.6 – 0.7 s range; nonetheless, decoding accuracy remained significantly 

lower than when using envelope and approximately similar to their results. Feature 

selection improved decoding accuracy of the epochs such that all but one subject could 

be decoded at above chance. However, the weakness of the effect and the fact that it 

appears to not be maintained throughout the trial precludes the usefulness of its 

incorporation into a continuous decoder for improving current state-of-the-art decoding 

methods, at least based on the current experimental paradigm.  

3.5 Summary 

In this chapter, we tested the efficacy of a previously established envelope reconstruction 

framework for decoding attention within a non-stationary talker scenario. We found no 

significant difference in decoding performance even when the attended talker switched 

their location using this approach. We then showed that the consistency of spatio-

temporal decoder weights across participants could be exploited to improve decoding 

accuracy within the context of our experiment. This suggests that looking beyond 

envelope reconstruction to incorporate other metrics into the framework has potential to 

improving current decoding approaches. Lastly, we considered alpha band power 

lateralization as another possible feature for decoding selective attention. It was found to 

reflect the spatial location of the attended talker at certain latencies, but the strength of 

this effect was not robust enough to produce reliable single-trial decoding.  
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Chapter 4 Isolating indices of prosodic pitch 

processing in low-frequency EEG 

 

4.1 Introduction 

Speech is arguably humanity’s most important signal because of its extraordinary power 

to convey information. The structure of the speech signal and the strata of information 

that it contains was reviewed in Section 2.3. We established that meaning in speech is 

largely conveyed by the selection of linguistic units such as words, phrases, and sentence; 

but that prosody, the thread that ties these segments together, also adds another layer of 

meaning. Prosody is made up of the suprasegmental variations of acoustic cues – the 

lengthening of a syllable, the rise and fall of pitch across a phrase, the increase in loudness 

at a word. These rhythms and melodies of speech enable the same sequence of words to 

convey different meanings and emotions (Bolinger, 1986).  

Because of prosody’s importance to spoken language, it is likely that we have evolved 

specific neurophysiological mechanisms to process this additional channel of 

information. Many studies have sought to anatomically localise prosodic processing in 

the brain (Baum & Pell, 1999; Gandour et al., 2004; Kreitewolf et al., 2014; Meyer et al., 

2002; Plante et al., 2002; Sammler et al., 2015; Witteman et al., 2011). But another 

fundamental question concerns how prosody is encoded. The quest to uncover its neural 

correlates is complicated by the fact that systems for characterising prosodic elements in 

speech are less established (Cole & Shattuck-Hufnagel, 2016).  

Nonetheless, as mentioned in Section 2.3.3, one of the most important perceptual cues 

underlying prosody is pitch – its modulation giving rise to phenomena such as intonation 

and stress. Pitch can be estimated from the acoustic speech stream using algorithms such 

as autocorrelation (Boersma, 1993). A few recent studies have investigated the encoding 

of pitch in cortex. In an fMRI study, it was shown that pitch-sensitive regions respond 

primarily to resolved harmonics (Norman-Haignere et al., 2013). And, in an ECoG study 

specifically investigating speech prosody, Tang et al. (2017) found that high-gamma 

activity on a number of single electrodes over superior temporal gyrus selectively 

represented intonation contours in terms of relative pitch. 
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In this chapter, we investigate the encoding of pitch during listening to continuous 

narrative speech in ongoing scalp-recorded electroencephalography (EEG). Like ECoG, 

EEG has high temporal resolution but with markedly less sensitivity to high-gamma 

activity. However, as mentioned previously, EEG has the advantages of being portable 

and non-invasive, meaning that it can be used to study speech and language processing 

in a wider variety of subjects. It is well-established that low-frequency EEG tracks the 

temporal speech envelope and it was recently shown that using the spectrogram to 

represent acoustic energy leads to improved EEG prediction (Di Liberto et al., 2015). But 

disambiguating responses to other features related to the neural processing of speech can 

be difficult as most features covary and are nested in the envelope. Isolable neural indices 

at the level of phonemic (Di Liberto et al., 2015) and semantic processing (Broderick et 

al., 2018) have recently been found, but it is unknown if pitch processing can also be 

dissociated. 

We employ forward modelling to regress EEG on two pitch-related measures – harmonic 

resolvability (Norman-Haignere et al., 2013), on which pitch saliency is dependent, and 

relative pitch (Tang et al., 2017). We test if these features significantly predict EEG after 

accounting for features previously shown to index acoustic/phonetic processing and 

examine their response characteristics. Given that different EEG frequency bands have 

been linked to different roles in speech processing (Giraud & Poeppel, 2012), we also 

examine if these indices may be more evident in particular bands. The findings from this 

chapter have been published in the European Journal of Neuroscience (Teoh et al., 2019).  

4.2 Methods 

4.2.1 Subjects 

All subjects spoke English as their primary language and had no reported history of 

hearing impairment or neurological disorder. Our study involved analysing data from two 

experiments. Nineteen subjects (13 male) took part in the first experiment and thirteen 

subjects (8 male) took part in the second. Both experiments were approved by the Ethics 

Committee of the School of Psychology at Trinity College Dublin. Each subject provided 

written informed consent. These data have been previously analysed using different 

methods and published (Experiment 1 - Broderick et al., 2018; Di Liberto et al., 2015; 

Experiment 2 - Di Liberto, Crosse, & Lalor, 2018). Data for the first experiment can be 

found at http://datadryad.org/resource/doi:10.5061/dryad.070jc.  
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4.2.2 Stimuli and Procedures 

In the first experiment, subjects undertook 20 trials, each of between 2 to 3 minutes in 

length, in which they were presented with an audiobook version of a classic work of 

fiction (‘The Old Man and the Sea’ by Ernest Hemmingway) read by a professional male 

American English narrator. Subjects were asked to simply listen to the story (there was 

no behavioral task), and they were allowed to take breaks in between trials.  

The second experiment was originally designed to test the effects of prior knowledge on 

the encoding of natural speech (Di Liberto, Crosse, & Lalor, 2018). We utilized data from 

a segment of the experiment to validate our pitch-related measures. In this particular 

segment, subjects were presented with a 10-second snippet of noise-vocoded (Davis & 

Johnsrude, 2003; Shannon et al., 1995) speech, followed by a clean speech snippet. The 

noise-vocoded and clean speech snippets have highly correlated acoustic envelopes, but 

whilst clean speech possesses clear pitch, vocoded speech does not. The snippets were 

randomly selected from the same audiobook as the first experiment. In the majority of 

trials (‘standard’ trials), the noise-vocoded speech snippet was a degraded version of the 

subsequently-presented clean speech snippet (specifically, the clean speech was filtered 

into three frequency bands and the amplitude envelope of each band was used to modulate 

band-limited noise). However, in some of the trials, the vocoded and clean speech 

snippets did not match (‘deviant’ trials). Subjects were tasked with identifying if a trial 

was standard or deviant after listening to the clean speech. We only analyzed data from 

standard trials (78 ten-second trials in total per subject).  

All stimuli were presented monophonically at a sampling rate of 44100 Hz using 

Sennheiser HD650 headphones and Presentation software from Neurobehavioral Systems 

(http://www.neurobs.com). Testing was carried out in a dark room and subjects were 

instructed to maintain visual fixation for the duration of each trial on a crosshair centered 

on the screen, and to minimize eye blinking and all other motor activities.  
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4.2.3 Data Acquisition and Pre-processing 

A Biosemi ActiveTwo system was used to record EEG data from 128 electrode positions 

digitized at 512 Hz in both experiments. All channels were referenced to the average of 

two mastoid channels and downsampled to 128 Hz. EEG data were filtered between 0.2 

to 30 Hz (broadband), and into delta (0.2 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 15 Hz), and 

beta (15 – 30 Hz) bands using Butterworth filters. Instantaneous power and phase were 

computed for the narrowband filtered data by taking the absolute value and the cosine of 

the angle of the Hilbert transform of the signals respectively.  

We represent our speech stimuli in terms of two pitch-related parameters – pitch (frel), 

and harmonic resolvability (res) (example waveforms of the pitch measures, as well as 

the temporal envelope for comparison, are shown in Figure 4-1). frel quantifies pitch, 

normalised according to the vocal range of the speaker, and harmonic resolvability (res) 

is a measure related to whether the harmonics of a sound can be processed within distinct 

filters of the cochlea (resolved) or if they interact within the same filter (unresolved). It 

was important to ensure that any neural tracking of these pitch measures was not 

explainable in terms of the various acoustic and phonetic features that have previously 

been shown to predict neural responses (Di Liberto et al., 2015). As such, we included a 

number of other speech representations in our analysis framework, including acoustic 

energy measures – the temporal envelope (env) and spectrogram (s) – as well as phonetic 

features (f). The measures were computed as follows: 

Pitch-related measures - 

 frel: Praat software (Boersma & Weenink, n.d.) was used to extract a continuous 

measure of pitch (fundamental frequency/absolute pitch) at a sampling rate of 128 

Hz. It performs pitch estimation using an autocorrelation method (Boersma, 

1993). The z-score of this measure was then computed to obtain speaker-

normalised relative pitch on a per-speaker basis 

 res: Following fMRI work on this topic (Norman-Haignere et al., 2013), we 

extracted a measure of harmonic resolvability based on a model of the human 

auditory periphery (McDermott & Simoncelli, 2011) 
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Acoustic/phonetic representations (collectively, efs) - 

 env: The stimuli were first filtered between 80 Hz and 2800 Hz. The absolute 

value of the Hilbert transform of the resulting signal was then taken. The 

envelopes were further low-pass filtered at 30 Hz and downsampled to 128 Hz 

 s: Stimuli were filtered into 16 frequency bands between 250 Hz and 8 kHz 

according to Greenwood's equation (Greenwood, 1961), and then the amplitude 

envelope for each frequency band was computed by taking the absolute value of 

the Hilbert transform 

 f: Prosodylab-Aligner software (Gorman, Howell, & Wagner, 2011) was used to 

perform forced-alignment, generating phoneme-level (American English 

International Phonetic Alphabet; IPA) segmentation of the stimuli. Each phoneme 

was then mapped to a set of 19 features based on their manner of articulation 

(University of Iowa’s phonetics project; 

http://prosodylab.cs.mcgill.ca/tools/aligner/). Based on the start and end times of 

each feature, a multivariate time-series binary matrix was produced to mark when 

each feature was present in the stimuli 

The Pearson’s correlation between frel and res with the envelope were found to be 0.187 

and 0.843 respectively.  

  



64 
 

 

Figure 4-10 | Stimuli examples  

Subjects listened to an audiobook version of a classic work of fiction read by a 

professional narrator. Pitch-related measures – relative pitch (frel) and harmonic 

resolvabiliy (res) – and the temporal envelope estimated from the audio signal of example 

statement (‘Go and play baseball’) and question (‘Can you remember?’) phrases from 

the book are depicted. Statements in English generally end with a falling intonation 

contour, whilst questions end with a rising contour as can be seen in the frel measure.  

4.2.4 TRF implementation 

The different speech representations described above were mapped to the concurrently-

recorded 128-channel EEG signals. Multivariate regularized linear regression was 

employed to relate the speech features to the recorded EEG data (i.e. encoding), where 

each EEG channel is estimated to be a linear transformation of the speech features over a 

range of time lags. This transformation is described by the TRF, detailed in Section 2.6. 

We use the mTRF toolbox (Crosse et al., 2016 - https://sourceforge.net/projects/aespa/) 

to solve for the TRF using reverse correlation with ridge regression. The ridge regression 

parameter was tuned using leave-one-out cross validation. That is, we trained on n-1 trials 

for a wide range of λ values (e.g. 1x101, 1x102, … 1x109), computed the average TRF 

across trials for each λ, then tested the TRFs on the nth trial. This was repeated n times, 
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rotating the trial to be tested each time. The λ value that maximized the Pearson’s 

correlation coefficient between the actual and predicted neural response over all trials was 

selected.  

The transformation was computed over time lag intervals of 0 to 300ms. This was selected 

based on previous speech-related studies, where no visible response was present outside 

this range (Di Liberto, O’Sullivan, & Lalor, 2015; Lalor & Foxe, 2010). Using a time lag 

interval reflects the idea that changes in the features of the ongoing stimulus are likely to 

produce effects in the ongoing EEG in that interval. We quantified how well each speech 

representation related to the neural data using leave-one-trial-out cross-validation (as 

described above), with Pearson’s correlation coefficient as our metric of prediction 

accuracy. Because the cross-validation procedure takes the average of the validation 

metric across trials, the models are not biased toward the test data used for cross-

validation (Crosse et al., 2016).  

To evaluate whether a pitch feature contributed independently of all other features in 

predicting the neural data, we computed the partial correlation coefficients (Pearson’s r) 

between the EEG predicted by each pitch measure’s model with the actual recorded EEG 

after controlling for the effects of all other acoustic/phonetic and pitch features that were 

found to predict EEG at above chance level. 

4.2.5 Statistical Analysis 

To test that an individual feature predicts EEG at above chance level, we performed non-

parametric permutation testing. The neural responses were permuted across trials such 

that they were matched to features from a different trial, and the same leave-one-out cross-

validation procedure as described above was performed to compute TRFs and prediction 

accuracies. This was done 1000 times for each subject to establish a distribution of 

chance-level prediction accuracies. Based on these prediction accuracies, we also 

computed a distribution of partial correlations for the pitch-related measures (i.e. we 

partialled out the contributions of all other features). 

To perform group-level statistical testing, we generated a null distribution of group 

means. One prediction accuracy from each subject’s individual distribution was selected 

at random to go into each group mean. This process was repeated 1000 times, sampling 

with replacement for each subject.  
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4.3 Results 

4.3.1 Pitch-related features uniquely contribute to predictions of broadband EEG 

We regressed the individual pitch and acoustic/phonetic representations to broadband 

EEG (0.2 – 30 Hz).  Figure 4-2 shows the prediction accuracies for the pitch-related 

measures (averaged over the best 30 channels for each feature; but using all channels did 

not alter the pattern of results), along with their topographic distributions. We found that 

all features could individually predict EEG better than chance (one-tailed permutation 

test, frel: p=9.99e-4, res: 9.99e-4, env: 9.99e-4, f: 9.99e-4, s: 9.99e-4). Of course, there is 

some redundancy in these features – there is overlap between the acoustic/phonetic 

measures, and as mentioned above, we found correlation between the pitch features and 

envelope. Given that the acoustic/phonetic features are tracked by cortex, it is therefore 

not surprising to also find significant tracking of the two pitch-related measures. One way 

to examine whether they contribute any unique predictive power is to test for 

improvement in prediction accuracy when a pitch-related feature is added to the joint 

acoustic/phonetic model (env+f+s, or efs for short). We found this to be the case – both 

pitch-related measures improved EEG prediction above and beyond that of the joint 

acoustic/phonetic model (Wilcoxon Signed Rank test (vs efs) – frel+efs: z=3.299, 

p=9.6733e-04, res+efs: z=2.213, p=0.0269, frel+res+efs: z=3.702, p= 2.1367e-04). The 

results of these combined models are also depicted in Figure 4-2. 
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Figure 4-2 | Broadband EEG results 

Broadband EEG prediction accuracies (Pearson’s r) for the two pitch-related measures 

(frel & res; averaged across the best 30 channels for each representation/combination 

although using all channels did not alter the significance of results) are shown on the left 

side of plot (A). To determine if these features have unique predictive power, we check if 

their inclusion improve prediction accuracies above and beyond the joint 

acoustic/phonetic model (efs). The prediction accuracies of these combined models are 

shown on the right side of plot (A). The black crosses indicate mean across all subjects 

and asterisks indicate statistical significance (for individual measures: one-tailed 

permutation test; for paired comparison of the combined models to efs: Wilcoxon signed-

rank test; *p<0.05, **p<0.01, ***p<0.001). Topographic distribution of prediction 

accuracies across all subjects are shown in (B).  

A second way of checking for unique predictive power is to compute the partial 

correlations of the EEG predicted by the pitch-related features with the actual EEG after 

controlling for all other features (including the other pitch representation). An advantage 

of this method is that the specific contribution of each measure can be more clearly 

characterized. Figure 4-3 depicts the partial correlations of the pitch features and their 

topographic distributions. Non-parametric permutation testing revealed significant partial 

correlations (on a group-level) for both measures (one-tailed permutation test, frel: 

p=9.99e-4, and res: p=0.0020). On an individual subject level, we found significant 

partial correlation for 14 of the 19 subjects for frel, and 4 of the 19 subjects for res.  
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Figure 4-3 | Broadband EEG: partial correlations  

Partial correlations assessing the unique predictive power of two pitch-related measures, 

frel and res, after accounting for all acoustic and phonetic measures (average over 30 best 

channels). (A) Group- and individual-level results; the black crosses in the group plot 

indicate the mean across all subjects for each feature and asterisks indicate statistical 

significance (one-tailed permutation test, *p<0.05, **p<0.01). For individual subjects, 

filled circles indicate statistical significance above chance (one-tailed permutation test, 

p<0.05). (B) Topographic distribution of the partial correlations for pitch-related 

measures across all subjects  

4.3.2 Relative pitch tracking is specific to delta phase, but all other features are 

indexed in both delta and theta phase  

To more precisely identify which components of the EEG signal best encode pitch-related 

features, we computed the power and phase of delta, theta, alpha, and beta band EEG. We 

repeated the aforementioned regression analysis, mapping our stimulus features to each 

of these EEG components. We found that, consistent with speech processing literature, 

our measures were better reflected in the delta and theta phase components than in all 

other analytic components, with frel primarily reflected in delta phase. We therefore 

focused on the delta and theta phase components.  
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In the delta band, all features could individually predict EEG phase better than chance on 

a group level (one-tailed permutation test, env: p=9.99e-4, s: p=9.99e-4, f: p=9.99e-4, frel: 

p=9.99e-4, and res: p=9.99e-4). As before, we computed the partial correlations of the 

two pitch-related measures. Both features had significant partial correlations (frel: 

p=9.99e-4, and res: p=9.99e-4), suggesting that they contributed uniquely to predicting 

delta phase beyond the other features. On an individual subject level, we found significant 

partial correlation values in 16 of the 19 subjects for frel and 5 of the 19 subjects for res.  

The group and individual partial correlations of the pitch-related measures are shown in 

Figure 4-4A. 

In the theta band, again all features could individually predict EEG phase better than 

chance on a group level (one-tailed permutation test, env: p=9.99e-4, s: p=9.99e-4, f: 

p=9.99e-4, frel: p=9.99e-4, and res: 9.99e-4). However, when we partialled out the 

contribution of all other features from the EEG predicted by the pitch-related measures, 

we found that of the two measures, only res had a unique contribution to predicting theta 

phase (p=9.99e-4) – the partial correlation of frel was not significantly greater than chance 

(p=0.076). On an individual subject level, we found significant partial correlation values 

in 3 of the 19 subjects for frel and 13 of the 19 subjects for res.  Partial correlations for 

theta phase are shown in Figure 4-4B. 

We examined the topographic distributions of the partial correlations on the scalp (that 

is, how well data on different channels could be predicted) for delta and theta phase 

(Figure 4-4C and D). Based on the topographic plots, frel appears to be more strongly 

encoded in mid-frontal channels in delta phase EEG, but there were no visible clusters 

with higher partial correlations for frel in the theta band. A different pattern of results was 

observed for res – there were no visible clusters with higher partial correlations in delta 

phase EEG, but two clusters (one on each hemisphere) were noticeable in the theta band. 
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Figure 4-4  | Delta and theta band: partial correlations 

Group and single-subject level partial correlations (Pearson’s r; average over 30 best 

channels) of pitch-related features when predicting the phase for the (A) delta and (B) 

theta frequency bands of the EEG signal, after controlling for all other measures. 

Asterisks in the group plots indicate statistical significance (one-tailed permutation test, 

*p<0.05, **p<0.01) and black crosses indicate the mean across all subjects. For 

individual subjects, filled circles indicate statistical significance above chance (one-

tailed permutation test, p<0.05). Also shown are topographic distributions (C & D) of 

the partial correlations to delta and theta phase, respectively. 

As well as examining how well data on each channel can be predicted by TRF models, 

one can also visualize the TRF model weights themselves with a view to understanding 

what channels show a relationship to the various speech features and at what time-lags 

those relationships occur (Crosse et al., 2016). This is because the TRF reflects how the 

instantaneous value of a stimulus feature impacts upon the response. We examined the 

TRFs of the pitch-related features, focusing again on the phase of delta and theta EEG 

(Figure 4-5). To control for the effect of all other features, we computed a joint TRF 
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model using all acoustic/phonetic and pitch features and extracted only weights 

corresponding to our pitch-related measures from the model.  

For delta phase, the TRF of frel was a monophasic signal which peaked in power at 

~160ms. The TRF of res had a smaller magnitude and peaked later (~200ms) but for 

comparison, we show the topographic distribution of TRF weights for both measures at 

~160ms in Figure 4-5A. The two measures display distinct topographies, with fronto-

central positivity for frel and bilateral fronto-temporal positivity and posterior negativity 

for res. For theta phase, the weights for frel were small in magnitude; since this measure 

does not significantly predict theta phase, we did not plot the topography of its weights. 

The TRF for res was a quadriphasic signal that peaked at ~30ms, ~110ms, ~190ms and 

~260ms. At these times, the weights were highest in magnitude at bilateral fronto-

temporal regions. 

 

Figure 4-5 | Delta and theta band: TRF weights  

TRF weights of all channels (averaged over subjects) that reflect the mapping of 

individual pitch-related features (obtained by fitting a joint model to all features then 

extracting weights corresponding to pitch-related measures) to (A) delta phase and (B) 

theta phase EEG. Topographic distributions of the weights are shown at ~0.16s for frel 

and res in delta phase, and at ~0.03s, ~0.11s, ~0.19s and ~0.26s for res in theta phase 

(not shown for frel since it does not contribute uniquely above chance in theta). These time 

points correspond to the peaks in the global field power (GFP) – shown below the TRFs.  
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4.3.3 Noise-vocoded speech: Validation that frel indexes pitch-specific activity  

As a check that our pitch-related measures reflect pitch-specific activity, we regressed 

acoustic and pitch-related measures extracted from clean speech to EEG data (delta and 

theta phase) recorded during experiment 2. As mentioned above, this experiment involved 

participants listening to both clean and noise-vocoded versions of the same speech 

segments. Partial correlations coefficients are shown in Figure 4-6.  

 

Figure 4-6 | Clean and vocoded speech: partial correlations  

Partial correlations showing how well our pitch-related measures extracted from clean 

speech predict EEG that was recorded as subjects listened to clean and vocoded-versions 

of speech snippets. Group-level distributions (average across best 30 channels; but using 

all channels produced the same pattern of results) are shown for delta and theta phase 

for (A) frel and (B) res. Black crosses indicate mean across all subjects, and asterisks 

indicate significance (one-tailed permutation test; *p<0.05, **p<0.01). The topographic 

distributions of these partial correlations are also shown in (C) and (D). 

Consistent with our above results, we found significant tracking of frel in delta band for 

clean speech (one-tailed permutation test; p = 9.99e-4), but no tracking of this measure in 

vocoded speech (p=0.1918). There was also no significant tracking of frel in either clean 
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or vocoded speech in theta band (p=0.9411 and p=0.1918, respectively). In contrast, res 

was present in clean and vocoded speech in both frequency bands (delta: p=9.99e-4 and 

p=9.99e-4, theta: p=9.99e-4 and p=0.0020, respectively). In delta band, vocoded speech 

was tracked significantly better than clean speech (two-tailed Wilcoxon signed rank, 

z=2.3412, p=0.0192); the reverse trend was observed in theta band although this was not 

significant (z=-1.852, p=0.0640). 

4.3.4 No evidence for hemispheric lateralisation of our pitch-related measures  

While there is consensus that speech processing occurs bilaterally, the differential roles 

of the two hemispheres remains controversial. Several auditory processing models 

(Poeppel, 2003; Zatorre, Belin, & Penhune, 2002) posit (or are compatible with the view) 

that the right hemisphere is relatively specialised for spectral information in contrast with 

the left hemisphere’s specialisation for rapidly fluctuating temporal cues. Certain aspects 

of low-level pitch processing have indeed been found to be lateralised to the right 

hemisphere (Griffiths et al., 1999; Johnsrude, Penhune, & Zatorre, 2000; Zatorre, Evans, 

& Meyer, 1994), but lesion and neuroimaging studies have suggested a less clear-cut 

picture with respect to prosody-related pitch (refer to Section 4.4). With that in mind, we 

tested for hemispheric lateralisation in the processing of our pitch-related measures. To 

do so, we averaged the partial correlations of the delta phase EEG predicted by our pitch-

related features with the actual delta phase EEG (that is, corresponding to the results in 

Figure 4-4) over right and left hemispheres (39 on each side; midline and vertex 

electrodes were disregarded) for each subject and compared their distributions (Figure 4-

7). No significant differences were observed between hemispheres for either pitch-related 

measure (two-tailed Wilcoxon signed-rank, frel: z=1.0865, p=0.1365; res: z=0.9658, 

p=0.3341).  
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Figure 4-7 | Testing for hemispheric lateralisation 

We tested for hemispheric dominance in the processing of pitch features by comparing 

the average of their partial correlations in delta band across left- and right-sided 

channels. No significant differences were observed between hemispheres for either of the 

features (two-tailed Wilcoxon signed rank test (R vs L); frel: z= 1.4890, p= 0.1365; res: 

z= 0.9658, p=0.3341). 

4.4 Discussion 

Recent fMRI and ECoG studies have shown that there are cortical pitch regions which 

respond primarily to resolved harmonics (Norman-Haignere et al., 2013), and that 

speaker-normalised relative pitch is encoded in high gamma activity in cortex (Tang et 

al., 2017). In this chapter, we looked to isolate indices corresponding to these pitch-

processing phenomena in scalp-recorded low-frequency EEG during listening to 

continuous narrative speech. We computed and regressed two pitch-related features – 

harmonic resolvability (res) and relative pitch (frel) – to ongoing EEG activity (broadband 

and analytic components of various frequency bands). To determine if they contain 

unique predictive power, we accounted for three previously established acoustic and 

phonetic representations: the temporal envelope, a commonly-used measure of the 

stimulus that captures the coherent fluctuations in time of multiple acoustic features, the 
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spectrogram, which has been shown to model acoustic energy beyond envelope, and 

phonetic features, which captures some of the acoustics as well as higher-level categorical 

information.  

We found evidence for the encoding of our resolvability feature in broadband EEG and 

in its delta- and theta-phase analytic components. Combining this measure with our other 

acoustic/phonetic features to predict broadband EEG led to a significant improvement 

over using only the joint acoustic/phonetic model. Moreover, partial correlation analysis 

found that this feature contributed unique predictive power on a group level in broadband 

EEG, as well as in delta and theta phase. It was particularly prominent in theta phase, 

where it was significantly greater than chance for the majority of subjects. The question 

then arose as to whether the unique contribution of our resolvability measure reflects 

pitch-specific activity. This was a concern particularly because we found the time course 

of the resolvability measure to be highly correlated with the temporal envelope. Indeed, 

it is evident from the large disparity in the prediction accuracies of res before and after 

controlling for other measures that the tracking of this measure overlaps markedly with 

these other features. And, given that the acoustic features we included are almost certainly 

imperfect representations of all coherent low-level fluctuations in the stimulus, it could 

be that the unique predictive power of res is simply due to it capturing some of these 

residual shared fluctuations. Furthermore, we found this measure to be tracked in both 

EEG recorded as subjects listened to clean speech as well as its noise-vocoded counterpart 

(which has degraded pitch). In fact, it was significantly more predictive of EEG for noise-

vocoded speech than clean speech in delta phase. This adds to the complexity of 

pinpointing precisely what the tracking of this measure means. 

We were initially motivated to test the resolvability measure based on compelling fMRI 

findings (Norman-Haignere et al., 2013). Even so, our inability to clearly disambiguate 

this measure is in no way contradictory to their results. For one, they were able to isolate 

small, pitch-sensitive regions of auditory cortex on the basis of fMRI’s excellent spatial 

resolution. EEG is lacking in that respect, but we were hoping to leverage EEG’s superior 

temporal resolution to the same effect. Unfortunately, this proved to be complicated 

simply because many features of speech –resolvability being one of them – covary in 

time. It may well be that the unique contribution of resolvability to EEG prediction that 

we have shown contains some pitch-specific activity, but it appears to be too confounded 

to be a useful measure for indexing pitch processing per se. Nonetheless, it could still be 
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potentially useful in applications where it is imperative to extract as much stimulus-

related signal as possible from EEG.  

With regards to our relative pitch measure, combining it with the joint acoustic/phonetic 

model led to a significant improvement in prediction accuracy in broadband EEG. It also 

portrayed a topographic distribution of prediction accuracies that was markedly different 

from that of the other measures. And, unlike acoustic/phonetic features and resolvability, 

the unique contribution of relative pitch was found to be bandlimited to delta phase. The 

suprasegmental information carried by relative pitch in speech typically fluctuates over 

intervals of several hundred milliseconds to seconds, so delta phase tracking is consistent 

with parsing and integrating information at this rate. To validate that this measure is 

reflective of pitch-specific activity, we compared the tracking of this measure in EEG 

when subjects listened to clean and noise-vocoded speech. As in Experiment 1, we found 

significant tracking of relative pitch in delta band for clean speech; but, crucially, there 

was no tracking for vocoded speech. Together, these results give us confidence that this 

feature indexes pitch-specific processing.  

Our finding complements that of Tang et al. (2017), showing that relative pitch is also 

reflected in low-frequency EEG phase. This is non-trivial as studies examining both 

phase-locked low-frequency (event-related potentials, ERPs, which are somewhat 

analogous to the TRF) and non-phase-locked high gamma EEG/ECoG activity (Crone, 

Boatman, Gordon, & Hao, 2001; Crone, Sinai, & Korzeniewska, 2006; Edwards et al., 

2009; Engell & McCarthy, 2011) have found different spatial and temporal profiles for 

the two measures, suggesting that they result from distinct physiological mechanisms. 

Although the unique contribution of frel to predicting EEG appears to be small relative to 

overall acoustic/phonetic tracking, this was not unexpected as Tang et al. (2017) also 

found only a small percentage of electrodes within auditory cortex to be tuned to relative 

pitch in comparison with those tuned to the phonetic content of sentences. 

A lot of EEG/MEG speech research in recent years has focused on the neural tracking of 

the temporal envelope and its functional roles (Ding & Simon, 2014). The temporal 

envelope of speech represents the slow amplitude fluctuations in the acoustic signal and 

conveys important markers for segmenting linguistic features (syllables in particular) 

(Rosen, 1992). Indeed, behavioral studies have shown that the envelope contains 

information essential for speech intelligibility (Drullman et al., 1994a; Drullman et al., 
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1994b). Given the myriad cues represented in the temporal envelope, the precise 

function(s) of the observed envelope tracking response – whether it simply reflects 

passive general auditory encoding or specific language-related processing as well – 

remains debated. There has nonetheless been some empirical evidence that the measure 

correlates with speech comprehension (Ahissar et al., 2001; Molinaro & Lizarazu, 2018; 

Peelle, Gross, & Davis, 2013), suggesting that it relates to both acoustic-phonetic and 

linguistic processing.  Our results here, showing a pitch-specific measure that is 

dissociable from the envelope, as well as the spectrogram and phonetic features, posits a 

parallel neural channel for processing meaning conveyed by prosodic pitch.  

General auditory processing models (Poeppel, 2003; Zatorre, Belin, & Penhune, 2002) 

predict a right hemispheric bias for pitch processing. But neural correlates of prosodic 

pitch have only been observed to be right lateralised within the context of certain tasks, 

and typically when lexical content is no longer identifiable (Baum & Pell, 1999; Gandour 

et al., 2004; Kotz et al., 2003; Kreitewolf et al., 2014; Meyer et al., 2002; Meyer et al., 

2003; Peretz, 1990; Plante, Creusere, & Sabin, 2002; Sammler et al., 2015; Witteman et 

al., 2011; Zatorre et al., 1992). Left lateralization has also been observed within the 

context of contrasting tonal and non-tonal language processing (Gandour et al., 2004). 

Zatorre and Gandour (2008) surmised that multiple local asymmetries underlie prosodic 

pitch processing, with right-hemisphere activity reflecting lower-level, domain 

independent pitch processing (in accordance with general models) and left-hemispheric 

activity reflecting higher-level language-related processing. The emergence of 

lateralization effects is therefore dependent on the interaction of these processes in a 

specific listening situation. Here, in a scenario where subjects listened to continuous 

natural (non-tonal) speech, much like they would do in real life, we did not find any 

hemispheric bias for relative pitch (nor for resolvability, for that matter). That is, there 

was no significant difference in how accurately relative pitch could predict delta phase 

EEG activity from the right and left hemispheres. EEG’s low spatial resolution precludes 

precise anatomical localisation; thus, our result should be interpreted with caution as it 

could be the case that the effect is simply too small to be detected with EEG. Nonetheless, 

it lends support to the notion that prosodic pitch processing in the context of natural 

speech is subserved by a complex network spanning both hemispheres (Zatorre and 

Gandour, 2008).  
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Like ECoG, EEG has excellent millisecond temporal resolution that lends itself to the 

task of understanding how rapid speech dynamics are encoded, but with the added 

advantages of being portable and non-invasive. These properties facilitate the application 

of any findings to cognitively-controlled smart hearing devices (Lunner, Rudner, & 

Rönnberg, 2009) and speech processing studies in specific cohorts. For instance, 

individuals with autism often display disordered or unusual prosody (McCann & Peppé, 

2003). Neural processing of prosody in individuals with autism remains an under-

researched topic and an isolated index of relative pitch processing in continuous natural 

speech as shown here could help shed light on the nature of their prosodic deficits.   

4.5 Summary 

In this chapter, we investigated if we could isolate low-frequency EEG indices of pitch 

processing of continuous narrative speech from those reflecting the tracking of other 

acoustic and phonetic features. Harmonic resolvability was found to contain unique 

predictive power in delta and theta phase, but it was highly correlated with the envelope 

and tracked even when stimuli were pitch-impoverished. As such, we are circumspect 

about whether its contribution is truly pitch-specific. Crucially however, we found a 

unique contribution of relative pitch to EEG delta phase prediction, and this tracking was 

absent when subjects listened to pitch-impoverished stimuli. This finding suggests the 

possibility of a processing stream for prosody that might operate in parallel to acoustic-

linguistic processing. Furthermore, it provides a novel neural index that could be useful 

for testing prosodic encoding in populations with speech processing deficits and for 

improving cognitively-controlled hearing aids.  

 

 

  



79 
 

Chapter 5 Investigating the effects of 

selective auditory attention on 

pre-lexical and prosodic pitch 

processing 

 

5.1 Introduction 

As mentioned in earlier chapters, cortex is posited to extract meaning from speech via a 

hierarchy of increasingly abstract intermediary representations, with feedforward and 

feedback connections between the levels. But this is complicated by the fact that everyday 

acoustic scenes often contain concurrent sources besides the speech stream of interest to 

the listener. As a consequence of the brain’s limited processing capacity, not all sources 

present can be exhaustively analysed. In Section 2.4, we reviewed the literature on speech 

comprehension in multi-talker scenarios (i.e. the cocktail party problem), where people 

selectively attend to one source. Much debate has revolved around the issue of whether 

attention to speech operates at an early or late stage of processing. Behavioural studies 

have made important contributions to this debate: it was found that in more naturalistic 

experiments using continuous speech, subjects typically perform no better than chance 

when tasked with answering questions on the ignored stream (e.g. Mirkovic et al., 2016; 

Mirkovic et al., 2015; Power et al., 2012); but it has also been observed that subjects are 

aware of certain aspects of the unattended stream (Cherry, 1953; Moray, 1959). Early 

behavioural findings led to several different models of attention (Broadbent, 1958; 

Deutsch & Deutsch, 1963; Treisman, 1964). Nonetheless, behavioural studies are limited 

in their ability to probe how ignored speech is represented in cortex.  

Recently, the development of encoding/decoding approaches for high temporal fidelity 

neuroimaging modalities has provided an opportunity to investigate the processing of the 

acoustic scene through the hierarchy. These techniques have led to the discovery of neural 

indices of speech representations at various levels – from acoustic to semantic – during 

listening to continuous natural speech (Ahissar et al., 2001; Brodbeck, Hong, & Simon, 

2018; Broderick et al, 2018; Daube, Ince, & Gross, 2019; Di Liberto et al., 2018; 

Di Liberto, O’Sullivan, & Lalor, 2015; Mesgarani et al., 2014; Tang, Hamilton, & Chang, 

2017). Subsequently, a few studies have investigated how some of these measures are 

modulated by attention through the implementation of a ‘cocktail party’ paradigm. Here, 
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it has been shown that an estimated TRF to the acoustic envelope of speech is attenuated 

in the 200-220ms range (Power et al., 2012). More recently, Brodbeck et al. (2018) and 

Broderick et al. (2018) showed that indices at the lexical and semantic levels are 

categorically encoded in neural activity only when a speech stream is attended to. These 

findings also fit with ECoG work showing that only the attended speaker is represented 

in STG, which is thought to implement a crucial stage in processing at the transition from 

acoustic to linguistic processing (Mesgarani & Chang, 2012). Together, these results 

present evidence to support the notion that higher-order regions exhibit greater attentional 

selectivity.  

In spite of these discoveries, the effect of attention at the pre-lexical level remains 

incompletely explored. This is in part because how speech is represented at the pre-lexical 

level remains contentious (Section 2.3.4). Namely, some models posit a mapping to 

phonetic features as an intermediate stage between low-level acoustics and words 

(McClelland & Elman, 1986; Liberman et al., 1967). However, it remains controversial 

whether this phonetic/phonemic-level is necessary at all (Lotto & Holt, 2000). Several 

studies have shown that a phonetic feature representation of speech can predict neural 

activity (Di Liberto et al., 2015; Khalighinejad, et al., 2017; Mesgarani et al., 2014). But 

a recent study contended that the EEG/MEG findings in particular can be accounted for 

by including low-level acoustic feature spaces such as the derivative of the spectrogram, 

and phoneme onsets (Daube et al., 2019).  

In this chapter, we explore how attention affects the phonetic feature representation in 

comparison to the other acoustic/feature onset representations suggested to account for 

the same predictive power in Daube et al. (2019) within the context of a two-talker 

cocktail party paradigm. In accordance with previous findings, if the phonetic feature 

representation can uniquely predict neural activity and is more strongly moderated by 

attention than these feature spaces, it will lend support to the notion of it being a distinct 

and higher-level stage in the hierarchy. As a follow up to our study in Chapter 4 (Teoh, 

Cappelloni & Lalor, 2019), we also examine how attention affects relative pitch, a 

continuous percept that underlies intonational prosody, and whether this measure can be 

leveraged for decoding attentional selection. 
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5.2 Methods 

5.2.1 Subjects  

Nine female and five male subjects between the ages of 19 and 30 took part. All subjects 

were right-handed and spoke English as their primary language. Subjects reported no 

history of hearing impairment or neurological disorder. Each subject provided written 

informed consent prior to testing and received monetary reimbursement. The study was 

approved by the Research Subjects Review Board at the University of Rochester. Some 

of the data (the first 10 trials) used here were also used as a control condition for the study 

in Chapter 3, which has been published (Teoh & Lalor, 2019). 

5.2.2 Stimuli and Procedures 

Subjects undertook 40 one-minute trials in two separate blocks. Stimuli consisted of two 

Sherlock Holmes stories narrated by a female and a male talker. Silent gaps in the audio 

exceeding 0.3 s were truncated to 0.3 s in duration.  

The streams were filtered using Head-Related Transfer Functions (HRTFs), which 

characterise how the ear receives a sound from a point in space, taking into account the 

diffraction and reflection properties of the listener’s head and ear. We selected HRTFs 

that gave rise to the perception that the talkers were at 90 degrees to the left and right of 

the subject. The HRTFs used were obtained from the CIPIC database (Algazi et al., 2001). 

Subjects were always instructed to attend to one of the two talkers – a counterbalanced 

paradigm was employed in which over the course of the experiment, they would have 

attended to both male and female talkers and at both locations.   

Before the experiment, subjects were asked to minimize motor activities and to maintain 

visual fixation on a crosshair centred on the screen during trials. After each trial, subjects 

were required to answer four multiple-choice comprehension questions on each of the 

stories (attended and unattended).  

All stimuli were sampled with a frequency of 44 100 kHz and were presented using 

Sennheiser HD650 headphones and Presentation software from Neurobehavioral Systems 

(http://www.neurobs.com).  
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5.2.3 Data Acquisition and Pre-processing  

The experiment was conducted in a soundproof room. A Biosemi ActiveTwo system was 

used to record EEG data from 128 electrode positions on the scalp as well as two 

electrodes over the mastoid processes (all digitized at 512Hz).  

EEG data were re-referenced to the mastoids. Automatic bad channel rejection and 

interpolation was performed. A particular channel was deemed as bad if the standard 

deviation of the channel was lower than a third of or exceeded three times the mean of 

the standard deviation of all channels. In place of the bad channel, data were interpolated 

from the four nearest neighbouring electrodes using spherical spline interpolation 

(Delorme & Makeig, 2004). To decrease subsequent processing time, data were down-

sampled to 128Hz. Data were filtered between 0.2 – 8 Hz using a Chebyshev II filter. 

Low delta-band frequencies were included as the study in Chapter 4 found them to be 

important for the encoding of relative pitch.  

5.2.4 Speech Representations  

We computed phonetic, acoustic, and pitch-related speech representations of both the 

attended and unattended streams of speech.  

Phonetic: 

 Phonetic features (f): Phoneme-level segmentation of the stimuli was first 

computed using FAVE-Extract (Rosenfelder et al, 2014) and the Montreal Forced 

Aligner (McAuliffe et al, 2017) via the DARLA web interface (Reddy & Stanford, 

2015). The phoneme representation was then mapped into a space of 19 features 

(based on the University of Iowa’s phonetics project). The features described the 

articulatory and acoustic properties of the phonetic content of speech. Based on 

the start time of each feature, a multivariate time-series binary matrix (19 features 

by samples) was produced to mark feature onsets 

 Feature onsets (fo): Univariate vector of the onsets of all phonetic features (i.e. a 

summary measure of all onsets in f without categorical discrimination) 

Acoustic: 

 Spectrogram (s): The GBFB toolbox (Schädler & Kollmeier, 2015) was used to 

extract the spectral decomposition of the time-varying stimulus energy in 31 mel-

spaced bands with logarithmic compressive nonlinearity. The spectrogram 
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representation was computed in this way as this was shown in Daube et al. (2019) 

to better predict neural activity than other techniques.   

 Spectrogram Derivative (sD): The temporal derivative of each spectrogram 

channel was computed and then half-wave rectified. This represents the rate of 

change of power in each channel. 

Prosodic: 

 Relative Pitch (frel): Praat software (Boersma & Weenink, n.d.) was used to extract 

a continuous measure of pitch (fundamental frequency/absolute pitch) at a 

sampling rate of 128 Hz. It performs pitch estimation using an autocorrelation 

method (Boersma, 1993). The z-score of this measure was then computed to 

obtain speaker-normalised relative pitch. 

5.2.5 TRF implementation 

The acoustic, phonetic, and relative pitch representations for both attended and 

unattended speech described above were normalised, grouped into various joint feature 

sets (described in section 5.3.2) and mapped to the concurrently-recorded 128-channel 

EEG signals. As in the case of the study in Chapter 4, encoding/forward modelling was 

performed in which multivariate regularized linear regression (TRF approach) was 

employed. That is, each EEG channel is estimated to be a linear transformation of the 

speech features over a range of time lags where the transformation is described by the 

TRF.  

Again, the regularisation parameter (Section 2.6) was tuned using leave-one-out cross-

validation. That is, we trained on n-1 trials for a wide range of λ values (e.g. 1, 1x102, … 

1x109), computed the average TRF across trials for each λ, then tested the TRFs on the 

nth trial. This was repeated n times, rotating the trial to be tested each time. The λ value 

that maximized the Pearson’s correlation coefficient between the actual and predicted 

neural response over all trials was selected.  

The transformation was computed over time lag intervals of 0 to 300ms, selected based 

on previous speech-related studies (Di Liberto, O’Sullivan, & Lalor, 2015). We 

quantified how well each speech representation related to the neural data using leave-one-

trial-out cross-validation (as described above), with Pearson’s correlation coefficient as 

our metric of prediction accuracy.  
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To evaluate whether a feature contributed independently of all other features in predicting 

the neural data, we also computed the partial correlation coefficients (Pearson’s r) 

between the EEG predicted by each measure’s model with the actual recorded EEG after 

controlling for the effects of all other features.  

5.2.6 Statistical Testing 

To test that a partial correlation coefficient is above chance level, we performed non-

parametric permutation testing. The predicted EEG activity for each model’s 

representation was permuted across trials such that they were matched to the actual EEG 

of a different trial, and partial correlation coefficients were computed, controlling for the 

effects of all other features. This was done 100 times for each subject to establish a 

distribution of chance-level prediction accuracies. To perform group-level statistical 

testing, we generated a null distribution of group means: one prediction accuracy from 

each subject’s individual distribution was selected at random to go into each group mean. 

This process was repeated 100 times, sampling with replacement for each subject. For 

comparison between groups (e.g. attended vs unattended for a particular representation), 

two-tailed Wilcoxon signed-rank testing was used. 

5.3 Results 

5.3.1 Behavioural Results 

Subjects were found to be compliant in carrying out the behavioural task. The average 

questionnaire accuracy was 73.2 ± 3.2% when subjects were tested on the attended story 

and 27.2 ± 1.6% for unattended stimuli (theoretical chance level is 25% as there are four 

possible answers to each question).  

5.3.2 Responses to attended talker reflect phonetic and prosodic processing 

We assessed the performance of attended and unattended models that were trained to 

predict EEG responses using different combinations of acoustic and phonetic features 

spaces extracted from the speech stimulus. The (Pearson’s) correlation between predicted 

and actual EEG time courses, averaged across the same 12 fronto-temporal channels used 

in Di Liberto et al. (2015) and Daube et al. (2019), was used as our metric of prediction 

accuracy for each individual model. We performed statistical testing between the results 

of different models, with the goal of evaluating whether the phonetic features 

representation contributed predictive power above and beyond acoustic feature spaces – 
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these results are shown in Table 5-1. We found that including phonetic features 

significantly improved prediction over the two acoustic feature spaces alone (i.e. s & 

s+sD) when subjects were attending to the stimuli; but this improvement was not 

observed for the unattended stimuli. Additionally, it also improved prediction over 

phoneme onsets in the attended case, showing that the information on specific feature 

categories adds predictive power. The spectrogram derivative representation displayed a 

different pattern of results – including this measure in the feature space with spectrogram 

(i.e. s+sD) improved prediction accuracy over spectrogram alone for both attended and 

unattended stimuli, suggesting that it is less modulated by attention.  

 

Figure 5-1 | Prediction accuracies for acoustic, phonetic and prosodic measures under 

varying attentional conditions 

Prediction accuracies for attended and unattended models based on different 

representational features spaces, as shown on the horizontal axis. For all feature spaces, 

prediction accuracy was significantly better when stimuli are attended to (**p<0.01, two-

tailed Wilcoxon sign-ranked test). The dashed horizontal black and red lines indicate 

mean prediction accuracies for the attended and unattended spectrogram models 

respectively.  
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 Attended Unattended 

baseline: s   

s + f > baseline p = 0.0015, z = 3.1702 p = 0.3003, z = 1.0358 

s + sD > baseline p = 0.0023, z = 3.0447 p = 0.0019, z = 3.1074 

s + fo > baseline p = 9.82e-04, z = 3.2958 p = 0.1578, z = 1.4125 

baseline: s + sD   

s + sD+ f > baseline p = 0.0043, z = 2.8563 p = 0.1981, z = 1.2869 

baseline: s + fo   

s + fo + f > baseline p = 0.0023, z = 3.0447 p = 0.6378, z = 0.4708 

baseline: s + fo + sD   

s + fo + sD + f> baseline p = 0.0076, z = 2.6680 p = 0.4703, z = 0.7219 

baseline: s + fo + sD + f   

s + fo + sD + f + frel > baseline p = 0.0157, z = 2.4169 p = 0.1240, z = 1.5380 

 

Table 5-1 | Joint model comparison results  

Wilcoxon two-sided signed rank test statistics for attended and unattended speech 

streams (columns). Each set of rows test a different statistical question, as specified by 

the baseline. Terms being evaluated are to the left of the ‘>’ symbol. Bolded values  
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5.3.3 Isolating the unique predictive power of each representation 

  

Figure 5-2 | Illustration of feature redundancy  

Theoretically, there will be overlapping contributions to the combined model prediction 

accuracy from the spectrogram and phonetic feature models due to shared acoustic 

invariance between the instances of a particular phonetic feature. Other feature spaces 

also share overlapping contributions. 

It is important to note that there is redundancy between the various speech representations 

examined here. Phonetic features (f) has some overlap with the spectrogram (s) in that if 

every phoneme is always spoken the same way, then the two representations would be 

equivalent (Figure 5-2). The phoneme onset (fo) representation indicates the same onset 

times as the phonetic feature representation (f), except that it does not contain information 

on the different feature categories. The spectrogram derivative (sD), a measure of the 

positive temporal rate of change of power in each channel of the spectrogram, would have 

some peaks that overlap with those of the phoneme onset (fo) representation (e.g. after 

every silent period in the stimulus). Given these redundancies, we were interested in more 

clearly isolating the unique contribution of each feature. To do so, we trained models 

using each individual representation, then employed a partial correlation approach to 

control for the predictions of all other representations. The unique predictive power of 

each model is shown in Figure 5-3A (shown here for an average across 12 channels, 

although including all channels revealed the same pattern of results). All feature models 

– attended and unattended – contributed uniquely at above chance level on a group level 

(p=0.0099 for all models; non-parametric permutation test). Nonetheless, on an individual 

level, only a minority of subjects (5 out of 14) were found to predict EEG at above chance 

for the f and frel unattended models (subjects for which significance is achieved are 

depicted with circular markers in Figure 5-3A). For all other representation models 
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(attended and unattended), a majority of subjects (i.e. at least 7 out of 14) could predict 

EEG at above chance. Additionally, we found a significant effect of attention for phonetic 

features and relative pitch, but not for any of the other representations. The topographic 

distributions for the unique predictive power of each model are shown in Figure 5-3A. 

Consistent with findings from Chapter 4, the activity unique to attended frel appears to be 

encoded in mid-frontal channels.  

 

Figure 5-3 | Partial correlations of individual features 

(A) Unique predictive power for the acoustic, phonetic and prosodic feature spaces, 

under varying attentional conditions. The features are as labelled on the x-axis. All 

models could significantly predict EEG better than chance on a group level (permutation 

test; p<0.05). Significance at an individual subject level is indicated by a circular marker 

(permutation test; p<0.05); non-significance is indicated by a green diamond marker. 

Statistical testing was also carried out to identify attentional effects (two-tailed Wilcoxon 

signed rank; *p<0.05) (B) Topographic distribution of partial correlations 
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5.3.4 Decoding attentional selection via reconstruction of relative pitch 

The decoding implementation of the TRF framework is an effective method for 

reconstructing continuous measures, as evident from the efficacy of envelope 

reconstruction for decoding attentional selection. Given that relative pitch is a continuous 

signal that can be estimated in a relatively straightforward manner from the speech signal 

(e.g. using an autocorrelation method, as employed in Praat software), and its neural 

representation is dissociable from the acoustic envelope and shown above to be 

modulated by attention, we wondered whether we could exploit relative pitch 

reconstruction to improve decoding performance. To test this, we employed the strategy 

laid out in Figure 3-2 – that is, we computed attended decoders mapping from EEG to the 

relative pitch representation for N-1 trials, took the average over all decoders, and used it 

to reconstruct relative pitch for the Nth (i.e. left out) trial. The correlations (Pearson’s) 

between the reconstructed feature and the actual attended and unattended relative pitch 

signals were then evaluated. This was done N times, rotating the trial to be tested. A linear 

discriminant analysis (LDA) classifier was used to decode attentional selection based on 

the attended and unattended relative pitch correlation values (we also tested using an 

SVM classifier, but the results were not significantly different). As would be expected 

based on our forward modelling results, decoding accuracy was greater than chance level 

for a majority of subjects (all except two; binomial test at a 5% confidence level). This is 

shown in Figure 5-4. 

The above procedure was then repeated using the acoustic envelope (computed using the 

method described in Chapter 3.2.2), as well as a combination of the two representations 

(that is, we used all four accuracy metrics – the correlations between the reconstructed 

envelope and attended and ignored envelopes and the correlations between the 

reconstructed relative pitch and attended and ignored relative pitch – as features for our 

classifier). These results are also shown in Figure 5-4. Of the two individual decoders, 

the envelope decoder performed significantly better than relative pitch (two-tailed 

Wilcoxon signed rank, z=3.1925, p= 0.0014). Combining the two representations resulted 

in a greater average group decoding accuracy than using envelope reconstruction alone, 

but this improvement was not significant (two-tailed tailed Wilcoxon signed rank, 

z=1.9295, p=0.0537). On an individual subject level, mean decoding accuracy for the 

combined decoder was better than envelope reconstruction for 6 of the 14 subjects, but 

this improvement was only found to be significant for one subject (Sub 14; one-sided 
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binomial test, p=0.0148). This test is nonetheless conservative and requires large 

differences between conditions to achieve significance given the small sample size 

(n=40). The decoding accuracy of one subject (Sub 12) decreased, but this result was not 

significant.  

 

Figure 5-4 | Decoding attentional selection based on the reconstruction accuracies of 

different features 

Decoding accuracies when using (1) envelope reconstruction, env, (2) relative pitch 

reconstruction, frel, and (3) a combination of the two features, comb/combined, as inputs 

to an LDA classifier for decoding the attended speaker. The subplot on the left depicts 

box plots for the three decoders; group means are indicated by the black crosses. The 

subplot on the right shows individual subject results. 

5.4 Discussion 

This study looked at how selective attention modulates pre-lexical and prosodic 

processing. We recorded EEG from subjects as they listened to trials in which two 

concurrent talkers (male and female) – simulated to be spatially-separated using HRTFs 

– narrated stories. In each trial, subjects were instructed to attend to one of the two talkers. 

We transformed our speech stimuli to phonetic and acoustic feature spaces as described 

by Di Liberto et al. (2015) and Daube et al. (2019), as well as the relative pitch 

representation described in Chapter 4. We then constructed joint feature spaces – by 
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starting with the spectrogram as the baseline, and incrementally adding features to this 

matrix – for the attended and unattended stimuli. These feature matrices were mapped to 

the EEG to investigate the effect of attention on the various representations. To more 

clearly isolate the unique contribution of each feature, we also performed partial 

correlation analysis.  

Unlike in Daube et al. (2019), we found that the phonetic feature representation 

contributed predictive power above and beyond acoustic spaces and phoneme onsets 

alone when subjects are attending to a talker – this was the case for both the joint 

modelling approach, and when partial correlation analysis was performed to more clearly 

isolate the unique contributions of each representation. In the case of the ignored speech 

stream, the joint modelling method found that adding the phonetic feature representation 

to acoustic feature spaces did not contribute predictive power. However, we found a weak 

but significant contribution above chance on a group level, as well as a significant 

contribution above chance for a minority of subjects on an individual level based on the 

partial correlation analysis. It is possible that this weak unique predictive power is simply 

due to some shared invariance in the underlying acoustics between phoneme instances 

that is not accounted for by the acoustic feature spaces considered here. That is, it could 

be that our phonetic feature representation is capturing some of this residual shared 

spectro-temporal information. Nonetheless, with regards to the debate on early versus late 

selection, our results cannot definitively rule out phonetic-level processing of the 

unattended speech.  

We also found that the unique contributions of the feature spaces suggested to explain 

away the predictive power of phonetic features in Daube et al. (2019) – the spectrogram 

derivative and feature onsets – were not significantly modulated by attention. This finding 

– that the phonetic feature representation contains unique predictive power that is more 

strongly modulated by attention than the aforementioned (theoretically, lower-level) 

feature spaces – supports the notion that it is a distinct and higher-level stage in the speech 

processing hierarchy, and is in accordance with previous studies showing that higher-

order regions exhibit greater attentional selectivity. 

It is possible that we found explanatory power for phonetic features in the attended talker 

condition because our experiment involved subjects attending to two different talkers (a 

male and a female), while the experiment in Daube et al. (2019) only involved listening 
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to a single talker. Having different talkers would lead to less overlap between the acoustic 

and phonetic feature spaces, as there would be larger spectro-temporal differences 

between instances of a particular phonetic feature category.  

Of course, our results cannot definitively prove that the phonetic feature representation is 

encoded in neural activity as measured by low-frequency EEG during everyday listening. 

There are other acoustic transformations of the auditory stimulus that have not been 

considered beyond the spectrogram and its derivative, as well as other theorized 

intermediate representations apart from phonemes/phonetic features that have not been 

tested. It is also conceivable that the brain may adjust its speech processing strategy when 

performing a difficult cocktail party task in comparison to the scenario of listening to a 

single talker. Indeed, it is known that different kinds of masking sounds place different 

demands on cognitive resources (Evans, et al., 2016). Future work could be to test if 

training across many talkers could increase the unique predictive power of the phonetic 

feature representation in comparison to training on a single talker in the context of a 

continuous natural speech experiment without distractors. 

As an initial check of our phonetic feature representation, we computed individual 

phonetic feature TRFs for the attended talker. We found phonetic feature TRFs that 

appeared visually similar to the phoneme related potentials (PRPs) shown in 

Khalighinejad et al. (2017) (Figure 5-5). That is, they had similar temporal profiles, and 

also displayed diverse component timings across features. This is not unexpected given 

that the TRF is analogous to computing an ERP. These findings are also consistent with 

Di Liberto et al. (2015), where TRFs for the different feature categories (in a single 

talker/clean speech listening scenario) displayed significant differences and were 

discriminable at various latencies. Future work could be to explore how attention 

modulates neural responses to individual features and the discriminability across 

categories in time.  
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Figure 5-5 | Comparison of phonetic features TRFs and Phoneme Related Potentials 

(A) TRFs and (B) Phoneme-related Potentials (adapted from Figure 2A in Khalighinejad 

et al., 2017) for four phonetic feature groups at location FCz on the scalp 

In a follow-up to our finding in Chapter 4 that delta band EEG tracks relative pitch, we 

were interested in investigating how this measure is modulated by attention. We found a 

significant attentional effect for the encoding of relative pitch.  Given this result, we then 

tested whether this feature could be used for the decoding of attentional selection, and if 

the incorporation of relative pitch into the decoding algorithm established in O’Sullivan 

et al. (2015) could improve its performance. On its own, relative pitch could decode 

attentional selection at above chance, but at a significantly lower accuracy percentage 

than the acoustic envelope. When combined with the envelope (using an LDA classifier), 

a small improvement was found for some subjects, although the improvement was only 

significant for one subject (albeit based on a conservative statistical test). Future work 

could focus on optimising the algorithm for combining different representational features 

to determine if we can better leverage their unique predictive powers.  

Despite its sensitivity to attentional effects, we did not consider including phonetic 

features into the decoding algorithm as it has a sparse binary feature matrix which is not 

ideal for our stimulus reconstruction approach and it is also currently less practical to 

obtain the phonetic feature representation from the speech signal in real-time – our 

pipeline here necessitates speech-to-text transcription and forced alignment. Nonetheless, 
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this could be a consideration in the near future when new approaches for phoneme 

alignment and stimulus-response mapping (methods such as canonical correlation 

analysis – Section 6.4 – may offer an avenue) are established.  

5.5 Summary 

In this chapter, we investigated the effects of selective auditory attention on pre-lexical 

and prosodic processing of speech. The former question was motivated by the 

longstanding debate as to whether the brain computes an intermediate phoneme 

representation in going from sound to the lexicon. There have been recent conflicting 

EEG/MEG findings, with one study demonstrating the encoding of phonetic features, but 

a subsequent study suggesting that the observed predictive power could be explained by 

the inclusion of other acoustic features. Given previous evidence that higher order areas 

in the hierarchy are more affected by attention, we hypothesised that attentional effects 

might enable us to better disambiguate between acoustic and phonetic (if present) 

contributions to predicting EEG. We found unique predictive power for the phonetic 

feature representation above and beyond all other features, and this power was modulated 

by attention. We also found unique predictive power for features posited to explain away 

the phonetic feature representation, but they were differently modulated by attention (i.e. 

they were not significantly affected). Lastly, we showed that prosodic pitch is also 

modulated by attention, and that this effect manifests itself in the reconstruction accuracy 

of the measure when a decoding approach was employed. We could leverage this to 

slightly improve decoding performance over envelope reconstruction alone for several 

subjects.  
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Chapter 6  General Discussion 

 

As set out in Chapter 1, speech comprehension is a complex task, involving the interaction 

of bottom-up and top-down processes. One line of inquiry within this topic concerns 

precisely how information at each processing stage is encoded in the path from sound to 

meaning. There is evidence that cortical areas for speech processing are hierarchically 

organized, with higher levels processing increasingly abstract representations. But 

understanding the precise computations at each level within this framework remains a 

work in progress. Another main subarea concerns how selective auditory attention 

modulates speech processing, and in particular, the extent to which unattended speech 

undergoes processing. With regards to this, it has been shown that when one of two 

concurrent talkers is attended to, there are distinct representations of the talkers’ acoustic 

envelopes in the listener’s cortex, and that the representation of the unattended talker’s 

envelope is diminished. This seminal finding has given rise to further research along 

several lines, including studies employing a similar framework to investigate attentional 

effects along the speech processing hierarchy, and studies developing the idea of 

exploiting this signature of attention as a means of decoding the user’s intended listening 

direction in ‘smart’ devices like steerable hearing aids.  

The three specific aims of this thesis, set out in Section 1.2, relate to the research subareas 

outlined above. This chapter will summarize our findings and discuss them with regards 

to the broader field. Section 6.1 will address decoding attentional selection in a multi-

talker scenario using acoustic envelope reconstruction and our efforts to incorporate 

measures beyond the envelope into the framework. Section 6.2 will discuss our finding 

that low-frequency EEG tracks relative pitch in cortex in the context of current speech 

comprehension models. Section 6.3 will address cortical speech processing at the pre-

lexical level – evidence for and against a phonetic-level representation in cortex, and how 

results from our selective attention study contributes to the debate.  
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6.1 Decoding attentional selection – moving talkers, and looking 

beyond envelope reconstruction 
 

The acoustic envelope of speech is a low-level measure of acoustic energy that carries 

important cues for understanding speech. A recent seminal discovery is that cortical 

activity tracks this measure when people listen to continuous natural speech (Ahissar et 

al., 2001; Luo and Poeppel, 2007; Aiken and Picton, 2008), and that it can be 

reconstructed from low-frequency EEG using modelling approaches like the TRF 

(O’Sullivan et al., 2015). Importantly, this tracking is modulated by attention (Ding & 

Simon, 2012; Nima Mesgarani & Chang, 2012b), which is also reflected in the accuracy 

of the acoustic envelope reconstruction (Ding & Simon, 2012; Zion Golumbic et al., 

2013).  

A framework for exploiting this finding to decode selective auditory attention within the 

context of a multi-talker scenario was laid out in O’Sullivan et al. (2015). Subjects were 

asked to attend to one of two talkers in a dichotic listening test, and high-density scalp 

EEG was concurrently recorded. An attended decoder that mapped from the attended 

speaker’s speech envelope was then trained using the TRF approach. It was subsequently 

shown that this decoder could be used to reconstruct the amplitude envelope from EEG 

data of an unseen trial, and that on average, this reconstruction correlates better with the 

attended talker’s actual envelope than that of the ignored talker (a decoding accuracy of 

~89% was achieved for 60-second-long trials).  

The above discovery provides a potential avenue for the implementation of ‘smart’ 

hearing devices – the general premise of which is to enhance the user’s ability to recognise 

speech by steering a directional microphone system towards the talker of their choice. 

With an eye towards real-world application of the framework in O’Sullivan et al. (2015), 

several studies have built upon it by looking into practical considerations such as the 

effects of background noise and how it might be suppressed (Das et al., 2018; O’Sullivan 

et al., 2017; Van Eyndhoven, Francart, & Bertrand, 2017), reducing the number of 

channels and training data required for decoding (Mirkovic et al., 2015), optimizing the 

decoding algorithm using other modelling approaches (Akram, Simon, & Babadi, 2017), 

and testing the decoder framework in a binaural listening environment (Das, Biesmans, 

Bertrand, & Francart, 2016).  

In this thesis, we contributed towards this goal in several ways. In Chapter 3, we 
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considered the efficacy of the decoding approach established in O’Sullivan et al. (2015) 

in a scenario where talkers are not stationary. Subjects were tasked with attending to a 

single talker even as the attended and ignored talkers switched locations. We were 

motivated to test this as real-world situations are often not stationary, and because 

previous research on auditory scene analysis has found evidence that even non-task 

related features of an object can influence performance on a task (see Section 2.4). Our 

study found that the decoding approach established in O’Sullivan et al. (2015) is robust 

to switches in talker location – that is, there was no significant decrease in decoding 

accuracy in comparison to the control stationary speaker condition. This finding 

complements previous studies, showing the practicality of decoding attention using 

envelope reconstruction in a more complex, non-stationary environment. Indeed, our 

result taken together with the other evidence so far has shown this approach to be 

promisingly robust and suggests that real-world application is within reach.  

Nonetheless, one limitation that must be overcome by the framework in order to be viable 

for real-time application is its low temporal precision. To close this gap between offline 

and online decoding, a potential solution is to look beyond envelope reconstruction 

towards other neural signatures of attention. Our findings in this thesis demonstrated that 

this avenue is certainly worth pursuing. In Chapter 3, we showed that the decoder weights 

themselves – that is, the model weights mapping from EEG data to the acoustic envelope 

– display distinct spatio-temporal characteristics as a function of whether subjects were 

attending to a talker, and that these characteristics were consistent across subjects. We 

exploited this finding to build a combined envelope-reconstruction-and-decoder-weight 

(env+DW) decoder and found a significant improvement in decoding performance over 

using envelope reconstruction accuracy alone. The inclusion of alpha power was also 

considered, as it has previously been shown to be hemispherically-lateralized in cocktail 

party tasks involving spatial attention (Wöstmann et al., 2016). However, our task was 

not a spatial one per se in that subjects were merely instructed to attend to a particular 

talker – this is arguably more akin to how people would listen in the real world – and we 

found that in such a scenario, alpha power lateralization in EEG was not sufficiently 

robust to be useful for decoding. In Chapter 5 (Section 5.3.2 and 5.3.3), we tested whether 

the reconstruction of relative pitch is modulated by attention (it was shown in Chapter 4 

that this measure is tracked by delta-band EEG and dissociable from the acoustic 

envelope), and if so, whether it would be sufficiently robust for decoding. We found that 
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the performance of this metric on its own was significantly above chance but lower than 

envelope reconstruction; and combining the two measures led to an improvement for 

some subjects.  

In summary, our work on auditory attention decoding in this thesis has found the envelope 

reconstruction approach robust to the non-stationarity of talker location. Envelope 

reconstruction accuracy also remains the best metric for decoding attentional selection. 

Nonetheless, we found that small improvements in decoding performance can be 

achieved through the incorporation of other features into the decoding algorithm. Thus, 

we believe that looking for features beyond envelope reconstruction is an avenue worth 

pursuing. It could well be that if sufficiently many features with unique decoding power 

can be found, the aggregate of their marginal gains may lead to a large enough 

improvement for robust real-time performance.  

6.2 The cortical processing of prosody  

Spoken language conveys meaning not only via the selection of linguistic units, but also 

by prosody. Despite its importance, prosody has arguably received less consideration in 

the speech and language comprehension literature than linguistic units. Notably, one of 

the most influential models of speech comprehension (Hickok & Poeppel, 2000, 2004, 

2007) does not explicitly account for the processing of prosodic information. As set out 

in Chapters 2 (Section 2.3.3) and 4 (Section 4.1), there have been studies over the years 

investigating the brain basis of prosody, but this research has largely been limited to 

anatomical localization (and in particular, testing for hemispheric lateralisation effects – 

see Baum & Pell, 1999; Friederici, 2011). 

In the last few years, efforts have been made to incorporate prosody into the broader 

speech comprehension picture and to better understand the computations underpinning 

prosodic processing. Sammler et al. (2015) put forth a dual-stream model for prosody 

with a similar architecture to Hickok & Poeppel’s dual-stream model for linguistic units, 

but with relative rightward asymmetry. Their theory was largely based on fMRI responses 

to isolated words with varying intonation and it focused on describing neuroanatomical 

pathways rather than the precise computations involved. But a notable postulation of their 

model is that there is a ventral (‘what’) pathway for prosody which has the computational 

role of gradually forming speaker-invariant ‘prosodic Gestalts’ (i.e. patterns) from 

speaker-dependent measures. More recently, in an effort to understand how prosody is 
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encoded, Tang et al. (2017) recorded ECoG from subjects as they listened to synthesized 

sentences with varying intonation. They found that speaker-normalised relative pitch – 

an important acoustic percept that underlies many prosodic phenomena – is tracked by 

high-gamma STG activity. Tang et al.’s findings are compelling – demonstrating for the 

first time the direct neural encoding of speaker-invariant relative pitch and its dissociation 

from sites encoding absolute pitch. Nonetheless, their study utilised synthesized isolated 

sentences. While this is a step up from isolated words, it still lacks a lot of the richness 

present in continuous natural speech (e.g. the variety and liveliness of naturalistic prosody 

and a wider narrative context).  

A major contribution of our work in Chapter 4 was to use the TRF approach – which 

allows for the use of stimuli that vary along multiple dimensions – to demonstrate that 

speaker-normalised relative pitch is tracked during listening to continuous natural speech 

in low-frequency (primarily lower delta-band) EEG. Importantly, we show that this 

tracking is dissociable from the tracking of other acoustic and phonetic features. These 

findings support the notion of a parallel channel for the processing of prosodic 

information. In a separate experiment in Chapter 5, we validated the tracking of relative 

pitch in the context of a cocktail-party scenario. We showed that the unique predictive 

power of this measure is more sensitive to attention than that of low-level acoustic (i.e. 

speaker-dependent) measures such as the spectrogram and its derivative. Given that 

relative pitch is speaker-invariant, and thus posited to be a higher-level representation in 

the ventral pathway of Sammler’s dual-stream model, this finding is also consistent with 

the idea that higher-order processing areas are more affected by attention – for which 

there has been evidence from the visual (Kastner & Pinsk, 2004; Maunsell & Cook, 2002) 

and auditory (Mesgarani and Chang, 2012; Brodbeck et al., 2018; Puvvada & Simon, 

2017) domains. An outstanding future question concerns how prosodic contours map onto 

a semantic space to form a unified percept for speech comprehension. To date, we are 

limited in what we know about how listeners’ interpretation of utterance meaning is 

influenced by prosody (Roettger et al., 2019). Studies so far suggest that there is no one-

to-one mapping between prosodic features and intention – it could be that listeners’ 

weight cues based on their sensitivity to statistics in the input (Kurumada et al., 2014). 



100 
 

6.3 Attentional effects dissociate the acoustic and phonetic processing 

stages of speech comprehension 

Most models of speech comprehension assume multiple levels of processing, where 

intermediate and increasingly abstract representations are computed in going from the 

auditory input to meaning. With regards to this, a longstanding controversy is whether 

there exists an intermediate phoneme-level representation between the mapping of the 

continuous sound stream to the mental lexicon. There appears to be perceptual basis for 

such a representation – evidence from behavioural (Liberman, Harris, Hoffman, & 

Griffith, 1957) and ERP studies (Näätänen, 2001) show that humans do discriminate 

better across than within phoneme boundaries. Nonetheless, opponents of the idea are 

concerned with its lack of physical basis – no acoustic cues have been found so far that 

generalize across instances of a particular phoneme type. It has also been argued that the 

aforementioned behavioural and ERP evidence could be simply due to the nature of the 

tasks and may not be reflective of everyday speech comprehension. In particular, they 

cite the observation that patients with Broca’s aphasia are impaired when it comes to 

performing categorical perception tasks (e.g. syllable identification), but this doubly 

dissociates from word recognition (Lotto & Holt, 2000).  

Recently, several studies have employed the use of neuroimaging and encoding/decoding 

methods to test whether a phonetic feature representation is tracked during listening to 

natural speech. Mesgarani et al. (2014) found response selectivity to phonetic features at 

the level of single electrodes (ECoG) in STG. Di Liberto et al. (2015) showed that 

phonetic features contributed uniquely to predicting low-frequency EEG over acoustic 

features (spectrogram and acoustic envelope) alone. And Khalighinejad et al. (2017) 

showed consistent time-locked responses to phonetic features. Nonetheless, a study by 

Daube et al. (2019) brought some of these results into question – they showed using a 

different analysis pipeline that the ability of phonetic features to predict EEG could be 

also explained by the inclusion of other acoustic feature spaces which had previously not 

been accounted for, such as the spectrogram derivative. Still, they acknowledged that 

their result cannot definitively prove that phonetic features have no explanatory power – 

it could well be that their pipeline was simply not sensitive enough to isolate parts of the 

response corresponding to phonetic features.  

Given that the mapping from an acoustic to a phonetic stage involves an increase in 

abstraction, we had hypothesised that attentional effects might allow us to dissociate 
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between representations at the two levels (if phonetic-level representations are indeed 

present). As described in the previous section (Section 6.2) and in earlier chapters of the 

thesis, there is evidence for the notion that higher-order processing areas are more 

affected by attention. In Chapter 5 of this thesis, we show that using our analysis pipeline, 

and in the context of a two-talker (male and female) cocktail party experiment, the 

phonetic feature representation of the attended talker can uniquely predict EEG above 

and beyond acoustic feature spaces. Crucially, we also showed that this unique predictive 

power was significantly modulated by attention. This pattern of results was not observed 

for the acoustic and feature onset representations, suggesting that phonetic features is a 

distinct and higher-level representation. This finding also relates to the persisting debate 

on whether attentional selection occurs at an early or late stage of processing. The 

capacity of the brain to process information from multiple streams at any given moment 

in time is limited, so a longstanding question has concerned the extent to which 

unattended streams undergo processing in cortex. While we found some evidence for the 

encoding of the phonetic features of the ignored talker, the effect was weak. This result 

considered together with previous studies (Brodbeck et al., 2018; Broderick, et al., 2018), 

suggests it possible that attention is categorically selective for speaker-invariant 

representations but attenuates lower-level acoustic (speaker-dependent) measures. 

6.4 Future extensions to the work 

A central theme of our work was the employment of an encoding/decoding approach to 

relate low-frequency EEG to different speech representations. Encoding expresses the 

data of each individual EEG channel as a function of stimulus features. The resultant 

transformation model weights are interpretable as a reflection of cognitive processes. 

Decoding on the other hand expresses individual stimulus features as a function of the 

EEG channels. The resultant model weights are not interpretable, but a better quality of 

fit is typically achieved. This is largely because EEG contains non-task related activity 

that is impossible for the encoder to predict from the stimulus features, but this noise can 

be spatially filtered away with the decoding approach.  Nonetheless, in both cases, the 

model only accounts for the multivariate nature of either the stimulus or the response. 

This may be suboptimal particularly for applications like decoding attentional selection. 

Thus far, to employ the use of more than one stimulus feature for decoding auditory 

attention, we optimise decoders mapping from the multivariate EEG to each (continuous) 

feature separately. Then a classifier is trained using the resultant individual feature model 
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reconstruction accuracies. Of late, there has been research looking at modelling 

approaches that jointly optimize the multivariate stimulus features and EEG response 

(Das, Vanthornhout, Francart, & Bertrand, 2019; de Cheveigné et al., 2018). One of these 

recently introduced approaches is canonical correlation analysis (CCA). CCA transforms 

both the stimulus and response to a space in which irrelevant variance is minimized, and 

has been shown to find higher correlation scores for EEG/MEG data than 

forward/backward modelling (de Cheveigné et al., 2018). Future work would therefore 

be to test whether this modelling approach can more effectively incorporate other 

measures such as relative pitch into the auditory attention decoding framework to improve 

overall decoding performance. 

We explored measures of prosodic pitch in this thesis and found a signature of relative 

pitch in low-frequency EEG. A potential future study that builds upon this work is to test 

the encoding of relative pitch in populations with speech and language disorders and 

autism spectrum disorder (ASD). As noted in Chapter 4, many individuals with ASD 

display unusual or odd-sounding prosody. It would be interesting to see if our EEG index 

of relative pitch is sensitive to this. If found to be a robust indicator of atypical prosodic 

processing in small population studies, further work could then include taking practical 

considerations into account to facilitate widespread use. In the current work, we acquired 

over an hour of high-density EEG data per subject, but this may not be viable for testing 

in clinical environments. It would therefore be useful to determine if we could still 

achieve a significant effect with a reduced set of channels and less training time. 

Lastly, EEG signatures of various levels of speech processing have now been found. 

Nonetheless, an area that remains relatively unexplored is the processing of syntax – the 

set of principles that govern the way words are combined to make up larger units – during 

listening to continuous natural speech. A recent ECoG study found evidence for phrase-

structure build up (Nelson et al., 2017) in that high gamma power increased over phrases. 

Future work could be to identify representations/models of syntactic processing that are 

testable using our framework to probe how cortex encodes syntax.  
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6.5 Summary of contributions 

The goal of the thesis was to employ an encoding/decoding approach (TRF) in 

conjunction with EEG to increase our overall understanding of the brain bases of speech 

processing and selective auditory attention and improve upon the performance of current 

methods for decoding selective attention. To this end, we: 

a) demonstrated the robustness of an established envelope reconstruction decoding 

framework in a moving talker scenario, and showed that incorporating decoder 

model weights into the algorithm could lead to improved performance, 

b) showed reliable encoding of relative pitch in delta-band EEG that is dissociable 

from the tracking of other acoustic and phonetic features; thus, supporting the 

notion of a parallel processing stream for prosody, and 

c) found unique EEG predictive power for a phonetic feature representation in the 

context of a cocktail party study and demonstrated that it is differentially 

modulated by attention compared to other acoustic features; thus, supporting the 

notion that it is a distinct and higher-level stage of speech processing. 
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