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Abstract

Principal Component Analysis (PCA) is one of the most well-known unsupervised learning
techniques used for dimensionality reduction and feature extraction. The main task of PCA is
to compute a low-dimensional space that captures the maximal variability in the input dataset.
Such a holistic linear representation is optimal in terms of the mean-squared-error. The basis
vectors that form such a space correspond to the k most significant eigenvectors of the sample
covariance matrix. However, computing such eigenvectors is computationally expensive with
quadratic computational dependence on the data size. The ever-increasing size of datasets
necessitates investigating reduced-complexity methods to find such eigenvectors.

A common treatment is to apply streaming PCA methods which aim to approximate the
eigenvectors based on a single data pass with a linear computational cost. However, state-of-
the-art streaming approaches are highly sequential and assume that samples are independent
and identically distributed. In the first part of this thesis, we investigate the convergence of
such methods when extended to the mini-batch mode, which is superior to the traditional
fully online mode in terms of computation run-time. Furthermore, we propose an acceleration
scheme for mini-batch streaming methods that are based on the Stochastic Gradient Approx-
imation (SGA). Such methods provide the cheapest computational cost compared to other
streaming algorithms. Based on empirical evaluation using the spiked covariance model and
benchmark datasets, we show that applying our scheme significantly enhances the convergence
of the original techniques in addition to outperforming other state-of-the-art methods.

In the second part, we investigate the performance of PCA when applied in a partitioning
manner in which attributes are divided into a number of subsets, and then the standard ap-
proach is performed on each subset separately. We study two strategies for mapping attributes
to different sets, namely, Cell-based PCA (CPCA) where samples are spatially divided into
smaller blocks and Band-based PCA (BPCA) where attributes are partitioned based on their
values distribution. We show that such models have several advantages over the holistic ap-
proach, including enhanced reconstruction quality and increased scalability. We also find that
the baseline model, obtained when randomly mapping attributes, is analogous to the holistic
PCA which entails a more practical and parallel alternative to streaming PCA paradigms. Not
only are these methods beneficial for data compression but they also provide lightweight repre-
sentations that would enhance the accuracy and training time of deep learning models.

Time-varying datasets of various physical observations are also addressed. We theoretically
draw the analogy between many analytic physical models and the PCA eigenvalue problem. It
is shown that, for a wide range of physical phenomena, the eigenvectors derived using PCA are
analogous to the analytic physical model. Since time-varying datasets are no exception from
the curse of dimensionality, we further evaluate the performance of streaming PCA methods
on many time-varying physical observations.
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1 Introduction

1.1 Overview

Principal Component Analysis (PCA), invented by Karl Pearson in 1901 [Pea01], is one of the
oldest and most well-known machine learning methods. It has found its way into a plethora
of applications in almost all scientific fields. The task of PCA is to automatically find a linear
representation that describes most variations in the input dataset using a minimal number
of orthogonal basis vectors. The main difference that distinguishes PCA from other basis
function representations, such as Fourier and Discrete Cosine transforms is the fact that
the basis derived using PCA is data-dependent whereas the other transforms consider a global
basis for representing any input data (which consists mainly of sinusoidal functions of different
frequencies). This data-dependence is to ensure a dimensionality reduction scheme with
minimal reconstruction errors [Jol02]. However, the role of PCA lies not only on dimensionality
reduction and data representation but also on feature extraction. In other words, the PCA
basis vectors are not merely dimensions, but they also correspond to the key features in the
data samples. Such features are of considerable significance to many pattern recognition
tasks. Furthermore, the mathematical interpretation of Hebbian law, one of the fundamental
theories in Psychobiology, demonstrates that such features are directly related to the human
perception and is still within the central focus of many neuroscientific studies.

Acquiring such basis vectors is typically achieved by decomposing the covariance matrix into
its significant eigenvectors. The covariance matrix is a square matrix consisting of covariances
between attributes in the dataset. This implies that the computation of the eigenvectors has a
quadratic complexity dependence on the data size. Considering a dataset of n samples and d

attributes, the standard approach to PCA requires O (nd min (n, d)) floating-point operations
and O

(
nd + min (n, d)2

)
memory space. If n and d are small enough (within the order of

hundreds or thousands), then the computation is feasible, and the problem no longer holds.
However, modern datasets are becoming so massive in size that even fitting a few samples
into a typical modern machine space may not be possible. Moreover, many datasets are of a

1
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streaming nature which means n may scale to infinity. Many algorithms have been developed to
find the optimal eigenvectors with lower memory space and time complexity. We can classify
each of these algorithms into two main categories: Offline and online algorithms. Offline
techniques compute the optimal eigenvectors using a number of epochs where at each epoch
a single pass over the entire dataset is performed. Since such methods require the presence
of all samples, they provide a suitable solution when the dataset is manageable within the
machine memory space. Online approaches (also referred to as memory-limited or streaming
approaches), on the other hand, aim to provide an acceptable convergence after only a single
data pass. Thus, they are more appropriate when dealing with streaming data or when data
samples are too large to fit into the memory space. While a streaming approach provides
potential solutions to a vast number of practical use cases, existing online algorithms cannot
be applied efficiently in many of these scenarios for many reasons. One reason is the fact
that state-of-the-art streaming PCA methods are highly sequential. Many real-time scientific
simulations require in situ analysis of the input time-steps, which may involve interactive
visualization of the significant eigenvectors up to the recent time-stamp. Current solutions
are far from such a target performance, particularly when sample dimensionality is too large,
which is the case in most physical simulations. Besides, many streaming PCA algorithms
involve a learning rate hyperparameter that needs to be tuned. Tuning such a hyperparameter
may be challenging, particularly when considering large-scale time-varying datasets.

The role of PCA in modelling physical time-varying phenomena is another interesting area
that is still under research. From a physical point of view, eigenvalue problems have been
widely used for modelling an endless amount of real-world applications and physical phenom-
ena. There is no better evidence of their importance than the fact that 20 Nobel prizes went
to physicists whose significant achievements are related to eigenvalue problems [Tre11]. In
fact, many landmark models in Physics are actually eigenvalue problems such as Dirac and
Schrödinger equations which describe particle motion and properties over time. Before the
computing era, obtaining the eigenfunctions that govern a physical model was done ana-
lytically. In many cases, acquiring the analytic solution to the problem at hand might be
challenging. Since finding the eigenvectors of observations using PCA also involves solving an
eigenvalue problem, an intuitive question would be: Are the eigenvectors derived from obser-
vations of a physical phenomenon using PCA related to the underlying physical model? Can
we automatically find the analytic physical model using PCA? Literature reveals very inter-
esting findings in that regard. Cohen and Moerner [CM07] showed that when applying PCA
to video frames of single-molecule fluctuations, the obtained eigenvectors were very similar to
the analytic solution. However, such time-varying observations may demand a large number
of time-steps to cover the appropriate time-scale and sampling frequencies of the different
eigenfunctions, not to mention the high dimensionality problem. Hence, computation barriers
entail streaming PCA as a more practical approach in such scenarios. To the best of my
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knowledge, experimental studies regarding the reliability of streaming PCA for time-varying
datasets are not widely explored in the literature.

From another perspective, PCA is considered to be a holistic representation. The implication of
such holism is that in practice, the number of eigenvectors that well-represent the data samples
may be relatively large and subjective to determine. Such a large number of eigenvectors entails
not only higher reconstruction costs but also significant overhead computation for streaming
PCA. In fact, many streaming PCA methods have a quadratic computational dependence on
the number of eigenvectors due to the orthogonalization processes involved. In addition, these
methods are tested for only computing a few eigenvectors. What will be the implications when
applying PCA in a partitioning mode? Many representation schemes were found to be more
efficient when applied in a partitioned manner, such as the blockwise DCT used in the JPEG
compression standard. This has several key advantages over the traditional holistic scheme in
terms of reduced computational cost due to its parallel nature and enhanced reconstruction
quality. Surprisingly, PCA performance in the partitioning mode is not widely reported. In
addition, such a mode of computation raises two main questions. First of all, on what basis
are attributes mapped to different partitions? The second question concerns the relation
between the partitioned eigenvectors and the holistic ones. Can we approximate the holistic
eigenvectors using the partitioning scheme? Can such a mode of computation be the perfect
parallel alternative to streaming PCA approaches?

This thesis investigates possible solutions and answers to the above-mentioned problems. We
first discuss the mini-batch mode for reducing the run-time of streaming PCA and whether such
a mode can lead to improvements in convergence rates. We further propose an acceleration
scheme for a wide range of streaming PCA methods that are based on the Stochastic Gradient
Approximation (SGA). We then discuss the performance of PCA when applied in a partitioning
manner and its implication when used as a data representation scheme for deep learning
models. Time-varying systems are also addressed from two perspectives. Firstly, we study
the relation between PCA eigenvectors derived directly from time-varying observations and
the underlying physical model and to what extent can such eigenvectors reflect the analytic
model. Secondly, we examine the performance of state-of-the-art streaming PCA methods
when applied on time-varying observations in order to estimate the significant eigenvectors up
to the recent time-step efficiently. In addition, a performance evaluation of the partitioning
approach in such cases is also provided. Throughout the thesis, we employ empirical evaluation
strategies using benchmark datasets and other generative models such as the spiked covariance
model in order to assess performance. Whenever theoretical analyses are conducted, we
carefully show their consistency with the literature.
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1.2 Scope

The main focus of this thesis is on exploring effective and efficient strategies for utilizing PCA
as a computationally-economical unsupervised machine learning and dimensionality reduction
paradigm for deriving meaningful lightweight representations of large scale datasets. Despite
the fact that many reduced-complexity PCA methods have been proposed in the literature,
current state-of-the-art solutions suffer many limitations related to their scalability and run-
time. My thesis hence explores more practical and scalable solutions. The main research gaps
that my thesis addresses are summarized below:

1. Current state-of-the-art streaming PCA methods are highly sequential and do not scale
well when increasing the dimensionality and number of eigenvectors. Efficient parallel
solutions are not widely explored.

2. Most streaming PCA approaches are parametric and hence suffer from the parameter-
tuning problem. In many cases, finding the optimal settings for such parameters requires
a preprocessing data pass which violates the streaming learning main condition.

3. There is a considerable gap between the theoretical analysis of these approaches and the
empirical evaluation. Many studies do not even provide any empirical evaluation and
focus mainly on the theoretical convergence guarantee. In many cases, the theoretical
analysis is not consistent with the empirical evaluation.

4. State-of-the-art streaming PCA methods assume that samples are independent and
identically distributed. The performance of such approaches is not evaluated on time-
varying data which is a core application for which such techniques are facilitated.

5. PCA is applied as a holistic representation scheme. Such a holism may imply a large
number of eigenvectors in order to reach satisfactory reconstruction quality. Research
studies lack reports on the use of PCA in a partitioning manner.

6. State-of-the-art deep learning models such as Convolutional Neural Networks (CNN)
indirectly perform dimensionality reduction for feature extraction. However, the para-
metric and stochastic nature of such models makes it hard to arrive at an optimal (inner)
representation. From another perspective, the role of deterministic dimensionality re-
duction schemes in deriving meaningful and simple representations that would enhance
the perception of such models has not been widely examined.

1.3 Research Question

What strategies can be used for modelling large-scale datasets effectively and efficiently using
PCA? Particularly, my thesis explores answers to the following more specific questions:
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1. What techniques can be used in order to enhance the convergence rates and reduce the
run-time of streaming PCA methods? How can we evaluate such techniques?

2. What advantages can be gained when employing the partitioning-based PCA approach
over the conventional, holistic scheme? Can a full parallel solution to the streaming
PCA problem lie behind such an approach?

3. How can deterministic dimensionality reduction approaches, such as PCA, lead to better
accuracy in deep learning classifiers?

4. What is the relationship between the eigenvectors derived from observations of a physical
phenomenon using PCA and the actual physical model? To what extent can the PCA
solution reflect the analytic model?

5. How reliable are streaming PCA approaches in terms of convergence when considering
time-varying observations? Can we get an acceptable estimation of the significant k

eigenvectors up to the recent time-step?

1.4 Contributions

The main contributions of this work are listed below:

1. We propose an acceleration scheme for a wide range of streaming PCA methods that
can achieve a significantly better convergence compared to state-of-the-art streaming
PCA methods.

2. We study the parallel setting of PCA and show the efficacy of such an approach for
modelling and compressing large-scale datasets.

3. We show that the parallel PCA model can significantly enhance the accuracy of deep
learning classifiers, particularly when considering limited training examples.

4. We develop a novel deep learning classifier that can be efficiently trained with limited
reduced-size examples and show how such a classifier outperforms state-of-the-art deep
learning classifiers when considering limited training examples.

5. For time-varying physical systems, we theoretically draw the analogy between PCA and
well-known physical models that governs a wide range of phenomena.

6. We provide an empirical evaluation of streaming PCA methods for such a type of
datasets.
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1.5 Peer Reviewed Publications

A list of peer-reviewed publications that emanated from this thesis are provided below:

[AD16a] Salaheddin Alakkari and John Dingliana. “Volume Rendering Using Principal
Component Analysis.” In: EuroVis (Posters). 2016, pp. 85–87.

[AD16b] Salaheddin Alakkari and John Dingliana. “Volume visualization using principal
component analysis”. In: Proceedings of the Eurographics Workshop on Visual
Computing for Biology and Medicine. Eurographics Association. 2016, pp. 53–
57.

[AD18a] Salaheddin Alakkari and John Dingliana. “A Multi-View Image-Based Volume
Visualization Technique”. In: IEEEVis (Posters). 2018.

[AD18b] Salaheddin Alakkari and John Dingliana. “An accelerated online PCA with O (1)
complexity for learning molecular dynamics data”. In: Proceedings of the Work-
shop on Molecular Graphics and Visual Analysis of Molecular Data. Eurographics
Association. 2018, pp. 1–8.

[AD18c] Salaheddin Alakkari and John Dingliana. “Principal Component Analysis Tech-
niques for Visualization of Volumetric Data”. In: Advances in Principal Compo-
nent Analysis. Springer, 2018, pp. 99–120.

[AD19a] Salaheddin Alakkari and John Dingliana. “An Acceleration Scheme for Mini-
batch, Streaming PCA”. In: 2019 British Machine Vision Conference (BMVC).
British Machine Vision Association. 2019.

[AD19b] Salaheddin Alakkari and John Dingliana. “Modelling Large Scale Datasets Us-
ing Partiotioning-based PCA”. In: 2019 IEEE International Conference on Image
Processing (ICIP). IEEE. 2019.

1.6 Thesis Structure

The overall thesis is structured as follows:

Chapter 1 provides an introduction to the thesis with the main motivation behind this work
and lists current research gaps, main research questions, and peer-reviewed publications
that emanated from this work.

Chapter 2 gives a structured literature review with a detailed background on the topic and
visits other related approaches from different disciplines, including neural networks, data
compression and Physics.

Chapter 3 describes an acceleration scheme for enhancing the convergence of streaming
PCA methods that are based on the Stochastic Gradient Approximation (SGA). Mini-
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batching is considered for increasing the speed-up. It also provides an empirical evalua-
tion strategy for streaming PCA and studies the convergence of several state-of-the-art
approaches when extended to work in the mini-batch mode.

Chapter 4 studies the performance of PCA when applied in a partitioning manner. Attributes
are divided into different sets, and then the standard PCA is performed on each set
separately. Extensive experimental studies are conducted on two partitioning strategies:
Cell-based PCA (CPCA) which spatially divides the images into smaller blocks and
Band-based PCA (BPCA) which partitions the samples based on the attributes values
distribution. It also considers the baseline performance when attributes are divided in a
random manner.

Chapter 5 investigates the use of the cell-based model as a lightweight representation for
deep learning classifiers, specifically in the area of face recognition. A deep convolutional
neural network classifier, referred to as RedNet, is engineered particularly for learning
with limited reduced-size examples. The performance of this classifier is examined
when representing face images using CPCA and the traditional image downsampling
representation. We compare the accuracy of RedNet with the accuracy of state-of-the-
art deep CNNs trained from scratch using high-resolution images.

Chapter 6 covers modelling large-scale time-varying physical systems. An investigation of
the analogy between PCA and landmark physical models is provided. After that, the
efficacy of both state-of-the-art streaming PCA methods and the partitioning approach
for modelling time-varying observations is further discussed.

Chapter 7 presents the overall conclusions and summarizes future research goals.
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2 Background

This chapter gives a detailed background with a structured literature review of the topic. It
also visits other related approaches from different disciplines that will be used in developing
our techniques. It is worth mentioning that each technical chapter in this thesis will provide
further related work in more specific areas.

2.1 The standard Approach to PCA

The standard approach to PCA is as follows. Given data samples X = [x1 x2 · · · xn] ∈ Rd×n,
where each sample is represented in a column vector format, the covariance matrix is defined
as

C =
1

n − 1

n∑
i=1

(xi − x̄) (xi − x̄)T , (2.1)

where x̄ is the sample mean. We will assume in the sequel of this thesis that all samples are
centered and hence there is no need to subtract the sample mean explicitly. After computing
the covariance matrix, we can find the optimal set of basis vectors, referred to as eigenvec-
tors, that covers the maximal variability in the input samples by extracting the significant
eigenvectors of the covariance matrix C . Eigenvectors are extracted by solving the following
eigenvalue equation

(C − λI ) v = 0; vTv = 1, (2.2)

where v ∈ Rd is the eigenvector and λ is its corresponding eigenvalue. Eigenvalues describe
the variance maintained by the corresponding eigenvectors. Hence, we are interested in the
subset of k eigenvectors that have the highest eigenvalues V = [v1 v2 · · · vk ]; k � n. After
that, any sample x ∈ Rd of X can be encoded using its k-dimensional projection values
(referred to as scores) as follows

P = V T (x − x̄). (2.3)

We can then reconstruct the sample as follows

xreconstructed = VP + x̄ . (2.4)

9
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Such a reconstruction gives the minimal reconstruction errors using a space V ∈ Rd×k of k
basis vectors [Jol02].

Duality in PCA

Since in the case of n� d , C will be of rank n−1 (considering that all samples are centered).
Hence, there are only n−1 meaningful eigenvectors that can be extracted from Eq. (2.2) and
since C is of size d × d , solving Eq. (2.2) becomes computationally expensive. We can find
such eigenvectors from the dual eigenspace by computing the n × n matrix XTX and then
solving the eigenvalue problem

(
XTX − (n − 1)λI

)
vdual = 0 (2.5)

⇒ XTXvdual = (n − 1)λvdual ; v
T
dualvdual = 1. (2.6)

After extracting the dual eigenvectors, one can note that by multiplying each side of Eq. (2.6)
by X , we have

XXTXvdual = (n − 1)λXvdual

⇒ 1

n − 1
XXT (Xvdual) = λ (Xvdual)

⇒ C (Xvdual) = λ (Xvdual)

⇒ (C − λI ) (Xvdual) = 0

which implies that
v = Xvdual . (2.7)

Thus, when n � d , we only need to extract the dual eigenvectors using Eq. (2.6) and
then compute the real eigenvectors using Eq. (2.7). Only the first few eigenvectors Vk =

[v1 v2 ... vk ], k � n � d are chosen to represent the eigenspace, those with larger eigenval-
ues.

2.1.1 Solving the PCA Eigenvalue Problem

Solving equations 2.2 and 2.6 can be achieved by applying Eigenvalue Decomposition (EVD)
on the covariance matrix (or dual covariance matrix) or performing Singular Value Decom-
position (SVD) directly on the data samples without the need of computing the covariance
matrix. Both techniques have a computational complexity of O(nd min(n, d)). In terms of
memory space, SVD requires O(nd) memory usage and EVD requires extra O(min(n, d)2)

space for storing the covariance matrix. Although such standard approaches give the best
quality performance in terms of optimizing the objective function, handling dataset of very
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large numbers of samples n and dimensionality d becomes computationally infeasible due to
the quadratic complexity dependence on the data size. In addition, many datasets are of
streaming nature and hence cannot be processed in the batch mode. Most datasets nowadays
suffer at least one of these conditions.

Due to the high computational cost of SVD and EVD, many reduced complexity PCA al-
gorithms were proposed. We can categories each of these algorithms into two main groups:
Offline and online algorithms. Offline techniques compute the optimal eigenvector using a
number of epochs wherein each epoch a single data pass is performed. The power method
is one of the most popular and simplest offline techniques for finding the most significant
eigenvector of the covariance matrix [GV12]. The main downside of this algorithm is that in
many cases, it may converge very slowly. Shamir proposed a refined PCA algorithm that was
proven to converge faster than the power method [Sha15]. Online approaches (also referred to
as memory-limited or streaming approaches), on the other hand, aim to provide an acceptable
convergence after only a single data pass. Thus, they are more appropriate when dealing with
streaming data or when data samples are too large to fit into the memory space. In the fol-
lowing sections, we will provide a more detailed review on state-of-the-art complexity-reduced
PCA approaches.

2.1.2 A Note on Lower Eigenvectors

One important point to highlight is that most studies focus mainly on the most significant
eigenvectors with a little attention paid to the least significant ones. In fact, finding such
eigenvectors was shown to play a key role in detecting outliers and non-belonging samples
since they are perpendicular to the best fitting hyperplane. Jollife [Jol02] pointed out in his
book that the principal components corresponding to the smallest eigenvalues (variances) are
not “unstructured left -overs” after extracting the higher eigenvectors and that they can be
useful in detecting outliers. The first report on the use of lowest eigenvectors in the literature
is credited to Gnanadesikan and Wilk 1969 [GW69]. Based on this work, Gnanadesikan [GK72]
stated that “with p-dimensional data, the projection onto the smallest principal component
would be relevant for studying the deviation of an observation from a hyperplane of closest
fit”. More recently, Izenman and Shen used the smallest kernel principal components for
outlier detection as a generalization of the linear case [IS09]. Alakkari et al. found that the
least significant eigenface can be used as a basis for discriminating between face and non-face
images [AGC15].

2.2 Offline Complexity-optimized PCA Approaches

The main idea of offline methods is to compute dominant eigenvectors using a small number
of iterations where at each iteration, one or more data pass is required. Such approaches
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provide very good approximation and enjoy solid theoretical ground and convergence guaran-
tee. However, there is one main disadvantage concerning the burn-in phase problem, which
is a state where the convergence rate becomes extremely slow even after performing multiple
iterations. Such a problem usually occurs at the beginning of the learning process or when
the difference in eigenvalues between eigenvectors is considerably small. Since at each iter-
ation, a full data pass is performed, this may significantly increase the computational cost,
specifically in cases of very high dimensional data. Hence, such approaches are impractical
when considering large-scale datasets.

2.2.1 The Power Method

The power method, also known as the power iteration, is probably the most well-known offline
complexity-optimized PCA approaches. It was coined by the Austrian mathematician Richard
von Mises in 1929 [MP29]. It is widely used as a benchmark model for evaluating state-of-the-
art complexity-optimized PCA methods. The basic idea of the power method is to optimize
the following objective function

max
wTw=1

H (w) = wTCw . (2.8)

By directly applying the gradient ascent, one gets the following update rule

wt+1 = wt +
η

2

∂

∂wt
H (wt)

wt+1 = wt +
η

2

∂

∂wt

(
wT
t Cwt

)
= wt + ηCwt (2.9)

Setting the learning rate η to infinity, we arrive to the power method update rule

wt+1 =
Cwt

‖Cwt‖
. (2.10)

Assuming that the initial eigenvector is a weighted sum of the actual eigenvectors, we have

w0 = c1v1 + c2v2 + ... + cnvn. (2.11)

One can note that

Cwt = C tw0 = c1C
tv1 + c2C

tv2 + ... + cnC
tvn

= c1λ
t
1v1 + c2λ

t
2v2 + ... + cnλ

t
nvn

= c1λ
t
1

(
v1 +

c2

c1

(
λ2

λ1

)t

v2 + ... +
cn
c1

(
λn
λ1

)t

vn

)
. (2.12)
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Since λk ≤ λk+1, the coefficients of the lower eigenvectors will converge to zero and hence
Cwt will converge to the most significant eigenvector v1. The speed of convergence of this
method is governed by the difference in eigenvalues between the first and second eigenvectors
which is known as the eigengap ∆ = λ1−λ2. Let T denote the number of iterations required
to converge to an eigenspace with a precision of δ at most. From eq. 2.12, such a precision
is dominated by the factor λ2

λ1
which can be expressed as follows

δ >

(
λ2

λ1

)T

⇒ T >
log(1

δ
)

log(λ1)− log(λ2)
>

log(1
δ
)

λ1 − λ2
=

log(1
δ
)

∆
,

from which we can conclude that the computational cost for arriving at δ precision isO(nd
log( 1

δ
)

∆
)

since each iteration involves a single data pass of nd FLOPs. Hence the smaller the eigengap
the slower the convergence rate of this technique.

2.2.2 Variance-reduced PCA

As discussed in the previous section, one of the main limitations of the power method is the fact
that it converges very slowly when the eigengap between the first two dominant eigenvectors
is relatively small. Shamir addressed this problem in [Sha15] and found that using variance-
reduced gradient descent, proposed by Johnson and Zhang in [JZ13], in conjunction with
the power method significantly enhanced the convergence rates even in cases of very small
eigengaps. Consider the following stochastic update rule

wt+1 =
(
I + ηxitx

T
it

)
wt , (2.13)

where η is the learning rate and xit is a randomly chosen sample at time t. This update rule
is known as the Hebbian rule which will be discussed in more detail in Section 2.4.1. One can
rewrite this equation as follows

wt+1 = (I + ηC )wt + η
(
xitx

T
it − C

)
wt (2.14)

where C is the covariance matrix. The main idea of the variance-reduced PCA is to accelerate
the convergence rate by rapidly decaying the second term in the right-hand-side as follows

wt+1 =
(I + ηC )wt + η

(
xitx

T
it
− C

)
(wt − w̃s)∥∥(I + ηC )wt + η

(
xitx

T
it
− C

)
(wt − w̃s)

∥∥ . (2.15)

The algorithm performs a number of epochs where at each epoch a single power iteration step
is performed on w̃s followed by m update operations as in eq. 2.15. The full pseudo code of
the algorithm is provided in Algorithm 2.1. Theoretical analyses and empirical results showed
that VR-PCA is less sensitive to the eigengap compared to the power method and hence is
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more practical. While this approach is parametric, a suitable η value can be easily obtained
as suggested in [Sha15].

Algorithm 2.1: VR-PCA
Input: Data samples X = [x1 x2 · · · xn] ∈ Rd×n, Learning rate η and number of

iterations m per epoch
Output: The most significant eigenvector of X

1 Initialize w̃1 from the unit sphere in Rd ;
2 for s = 1, 2, ... do
3 ũ =

(
1
n

∑n
i=1 xix

T
i

)
w̃s ;

4 w1 = w̃s ;
5 for t = 1, 2, ... ,m do
6 Pick a random sample xi form the dataset;

7 wt+1 =
wt+η(xixTi (wt−w̃s)+ũ)
‖wt+η(xixTi (wt−w̃s)+ũ)‖ ;

8 end
9 w̃s+1 = wm+1;

10 end

2.3 Streaming PCA Methods

Unlike offline methods, streaming PCA methods aim to approximate the most significant
eigenvectors based on a single data pass which is the main problem under investigation in this
thesis. In this section, we give a review of state-of-the-art streaming PCA approaches. These
methods will be used for empirical evaluations later in this thesis.

2.3.1 Stochastic Gradient Approximation

The Stochastic Gradient Approximation (SGA) is one of the oldest attempts to address
the online learning behaviour of PCA. Such approaches are based on the assumption that
the covariance matrix can be approximated using an arbitrary sample x from the input
dataset E

(
xxT

)
= C . The most well-known SGA techniques are the ones proposed by Kra-

sulina [Kra69] and Oja [Oja82; OJE83]. Such methods are based on the normalized Hebbian
rule which is defined as follows

wt+1 =
wt + ηtxtx

T
t wt∥∥wt + ηtxtxTt wt

∥∥ , (2.16)

where the learning rate should obey Robbins-Monro conditions (
∑∞

t ηt = ∞ and
∑∞

t η2
t <

∞) [RM85]. One important point to mention is that in the literature, this update rule is
mistakenly referred to as Oja’s rule. We will discuss this point later in Section 2.4.1. A typical
form of the learning rate is ηt = c/t for some positive constant c . One main limitation of
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these techniques is their performance sensitivity to different choices of the learning rate, which
may significantly affect the convergence rates. According to Balsubramani et al. [BDF13], the
optimal convergence rates of this update rule is achieved when setting c = a

∆
where a > 1 and

∆ = λ1 − λ2 is the eigengap. This is consistent with the theoretical analysis in Plumbley’s
paper, where convergence was investigated in terms of Lyaponov functions [Plu95]. Such
findings suggest that achieving the optimal learning rate requires a pre-processing data pass
for computing the eigengap, which violates the streaming PCA main condition. Furthermore,
each individual eigenvector (when computing multiple k > 1 eigenvectors) should have its
own learning rate adding an extra hurdle.

The computational cost of these algorithms is O(kd) FLOP per update, where k is the number
of eigenvectors to compute and d is the dimensionality. These techniques are considered the
cheapest in terms of computational cost and space complexity. Generalizing such techniques
to compute multiple eigenvectors (k > 1) can be achieved by replacing the normalization
process by an orthonormalization process as follows

Wt+1 = Orthonormalize
(
Wt + ηtxtx

T
t Wt

)
∈ Rd×k

where the orthonormalization is done either using Gram-Schmidt orthogonalization which
requires O(k2d) extra FLOPs or using deflation which costs O(kd) FLOPs but may suffer
from round-off errors. It can be proven that the orthogonalization step is independent of
convergence rate [Aro+12]. Hence, one does not need to apply the Gram-Schmidt process
at each update, but rather we can perform this after every B number of updates. Other
approaches that are based on SGA include the mini-batch (or block) power method, proposed
by Mitliagkas et al. [MCJ13], which applies the power iteration on a mini-batch of the data that
is visited only once and will never be revisited again. The main drawback of this method is that
it requires relatively large mini-batch sizes B in order to achieve satisfactory convergence rates.
They proved the convergence of this method when B ≥ n/ log(d). Li et al. [LLL16] showed
that the convergence of mini-batch power might be significantly improved when using dynamic
mini-batch sizes. De Sa et al. studied the convergence of state-of-the-art SGA methods after
applying the momentum term for accelerating the SGA learning process [Xu+18]. They
showed that using momentum term with the mini-batch power and reduced-variance power
method (based on VR-PCA [Sha15]) produced better convergence rates over the original
approaches. However, finding the optimal momentum factor requires computing the eigengap
violating the online learning condition because of the extra pre-processing data pass.

2.3.2 Candid Covariance-free Incremental PCA

Candid Covariance-free Incremental PCA (CCIPCA), proposed by Weng et al. [WZH03], is
an online PCA algorithm that is similar to Oja’s method but is rather more efficient in that
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it is a parameter-free approach. The main idea of this method is to average the eigenvalue
equation (2.2) over all time-steps as follows

wt+1 =
1

t

t∑
i=1

xix
T
i

wi

‖wi‖
, (2.17)

where ‖wt‖ corresponds to the eigenvalue estimation up to time-step t. This can be rewritten
in a more compact recursive form as follows

wt+1 =
t

t + 1
wt +

1

t + 1
xtx

T
t

wt

‖wt‖
. (2.18)

Generalizing the approach to update multiple eigenvectors is done using deflation where af-
ter updating the jth significant eigenvector, the current time-step xt is replaced by xt −∑j

k=1 W
k
t (W k

t )Txt . In case of non-stationary samples, an amnesic factor ` ≥ 0 is applied as
follows

wt+1 =
t − `
t + 1

wt +
1 + `

t + 1
xtx

T
t

wt

‖wt‖
, (2.19)

where larger ` values give more importance to most recent samples. A typical range for ` in
the case of non-stationary data distribution is between 2 and 4. While extending this method
to work in mini-batch mode is possible, it has not been investigated in the literature.

2.3.3 Incremental PCA

Arora et al. [Aro+12] proposed a reduced-order Incremental PCA model. The main idea
of their technique is to update the eigenvalues of the first k eigenvectors and then perform
SVD on a reduced-order (k + 1)× (k + 1) matrix. Let St be the k × k diagonal matrix with
the eigenvalues estimation (up to time-step t) in its diagonal elements, IPCA computes the
following matrix

Qt+1 =

[
St + x̃ x̃T ‖r‖ x̃
‖r‖ x̃T ‖r‖2

]
, (2.20)

where x̃ = W T
t xt contains the projection values of the recent time-step and r = xt−WtW

T
t xt

is the residual vector. After that, SVD is performed on the matrix Qt+1 and outputs St+1

which contains k +1 eigenvalues and Ut+1 which contains k +1 eigenvectors of dimensionality
k + 1. The eigenvectors are then updated as follows

Wt+1 =
[
Wt

r
‖r‖

]
Ut+1. (2.21)

Since Wt+1 will contain k + 1 eigenvectors, the final eigenvectors are sorted based on the
eigenvalues in St+1 and the eigenvector associated with the lowest eigenvalue is deleted.
IPCA is also a parameter-free approach. However, since each iteration involves SVD operation,
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the computational cost per iteration is O(k2d). In addition, IPCA is limited to processing
one sample per update operation and extending the method to work in mini-batch mode is
not possible. Despite the lack of convergence analysis of this method, it provides the best
convergence results according to Cardot and Degras [CD18].

2.3.4 Similarity Matching using Hebbian and anti-Hebbian Learn-

ing

Recently, Pehlevan et al. proposed a method for finding the top k eigenvectors and their
corresponding scores that works in both online and offline modes [PSC18]. Their technique
is based on optimizing the similarity matching objective function as follows

min
Y∈Rk×n

min
W∈Rk×d

max
M∈Rk×k

L(M ,Y ,W ) =Tr
(
−4

n
XTWY +

2

n
Y TMY

)
+ 2Tr

(
WW T

)
− Tr

(
MTM

)
.

Here, X ∈ Rd×n is the data matrix in column vector format, Y corresponds to scores (pro-
jection values) of samples onto the top k eigenvectors, W = 1

n
XY T contains the top k

eigenvectors and M = W TW . The optimization follows by applying gradient ascent-descent
with respect to M and W respectively as follows[

W M
]

=
[
W M

]
+
[
−η ∂

∂W
L η

τ
∂
∂M

L
]

(2.22)

where η is the learning rate and τ > 0. Computing the optimal Y can be achieved as follows

Y = M−1W TX , (2.23)

where the inversion of M exists since it is symmetric positive definite. The updates in the
previous equations are achieved in an offline manner. In order to make the algorithm work in
the online mode, the data matrix is replaced with the recent time step xt and Y is replace by
yt = M−1

t W T
t xt and[

Wt+1 Mt+1

]
=
[
Wt Mt

]
+
[
−ηt ∂

∂W
Lt

ηt
τ

∂
∂M

Lt

]
=
[
Wt Mt

]
+
[

2ηt
(
xty

T
t −Wt

)
ηt
τ

(
yty

T
t −Mt

)]
,

where 0 < ηt < 1 is the learning rate and τ is set such that 0 < τ < 1/2 in order to converge
surely to the optimal solution. The computational cost per update step is O(k3 + kd) due to
the matrix inversion involved. In order to reduce computational cost of the matrix inversion
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M−1
t , yt is computed iteratively using Hebbian and anti-Hebbian neurons according to

y i+1
t = y i

t + γ
(
Wtxt −Mty

i
t

)
,

however, the number of updates required to arrive to optimal solution was not investigated
by the authors. Nevertheless, the choice of appropriate γ values was not discussed.

2.3.5 Computing Multiple Eigenvectors

Many streaming PCA methods are tested for computing only one eigenvector (the most sig-
nificant one). Computing multiple eigenvectors is also important, especially when most of
the data variance is not covered by the first eigenvector. There are many possible ways to
extend streaming PCA to deal with multiple eigenvectors. The Gram-Schmidt orthogonaliza-
tion [Gra83; Sch07] is one common approach where after applying the update formula to k

vectors, initialized differently and randomly, this scheme is performed. The main downside of
this method is that its computational cost is O(k2d). This may significantly increase the run-
time, especially when dealing with a large number of eigenvectors k . An alternative method is
to apply the deflation process. In this case, the eigenvector W j is updated based on a deflated
sample which results by replacing the original input sample x by x−

∑j−1
k=1 W

j(W j)Tx . Hence,
eigenvectors are updated based on their descending order. While the cost is O(kd), one can
note that this approach is sequential and may suffer round-off errors. One problem that may
also occur when computing multiple eigenvectors is that the update rule might converge to a
rotated version of the eigenspace. Recall that the philosophy of the holistic representation is
to describe any sample as a combination of holistic features. The weightings of such features
are what distinguishes between different categories. Since the eigenvectors derived using PCA
are well-defined features, it is rather very important to ensure that the produced streaming
solution does not correspond to a span of the eigenspace. However, verifying whether a solu-
tion does not suffer from such a problem is hard, specifically when computing a large number
of eigenvectors.

2.3.6 Convergence Evaluation

In terms of convergence evaluation for streaming PCA methods, there are two strategies
used in the literature. The first strategy is to analyze the convergence rates theoretically. The
main focus for many of such theoretical papers is to derive a fast-converging streaming PCA
method whose hyperparameters do not depend on the eigengap. Such methods are referred to
as eigengap-free methods [AL17]. The second evaluation strategy is to study the convergence
empirically using benchmark generative models and datasets. One commonly used benchmark
is the spiked covariance model where samples are synthesized from unknown basis vectors that
are generated randomly [MCJ13]. In terms of benchmark datasets, many papers study the
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convergence on benchmark machine learning datasets such as the MNIST dataset [Aro+12;
ACS13; Sha15]. In addition, face datasets are also commonly used for evaluation [WZH03;
CD18; BDF13]. For empirical evaluations, it is important to choose a suitable metric for
measuring the convergence to the optimal eigenspace. Shamir proposed the following metric

convergencece (V ∗,Wt) = log10

(
1−

∥∥XTWt

∥∥2

F

‖XTV ∗‖2
F

)
(2.24)

where ‖.‖2
F is the squared Frobenius norm and V ∗ ∈ Rd×k corresponds to the optimal so-

lution and Wt is the eigenvectors estimation at time t [Sha15]. This function measures the
percentage of variance maintained by the estimated eigenvectors to the variance maintained
by the optimal eigenspace. Assume that the value returned by the function is −4, this means
that the estimated eigenvectors maintained 0.9999 of the variance maintained by the optimal
eigenspace. The main advantage of this metric is that it is very precise in comparing the
convergence rates between two or more methods. The main limitation of this metric is that
it requires the optimal solution which may not be possible to compute when dealing with very
large-scale datasets as we will see in this thesis. For such scenarios, the explained variance
may be used, which provides the percentage of total variance explained by each eigenvector.
Another measure that can be used is the mean-squared-error (MSE) between reconstructed
samples using the eigenvectors estimation and the original samples. For large-scale image
datasets, the Structured Similarity (SSIM) can be used instead of MSE which is defined as
follows

SSIM (x , y) =
(2µxµy + c1)(σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (2.25)

where µ refers to the mean, σ2 is the variance, σxy is the covariance between x and y

and c1 and c2 are two parameters used for stabilizing the division. In this thesis, we will
evaluate streaming PCA methods using the empirical evaluation strategy. We will use the
spiked covariance model and other benchmark datasets, including MNIST, fashion-MNIST,
CIFAR-10, Labeled-faces-in-the-wild (LFW) and Celebrity Attributes (CelebA) face datasets
for evaluation. If the dataset is small enough, the metric defined in 2.24 will be used. For
large scale datasets, we will use MSE and SSIM. It is also worth mentioning that, to the best
of my knowledge, streaming PCA has been investigated only for datasets where samples are
independent and identically distributed. In this thesis, we will also investigate time-varying
systems which do not obey such an assumption. Hence, we find that the empirical evaluation
strategy may be more appropriate for studying different types of datasets.

2.4 Generalizations

In this section, we will discuss some well-known generalizations to the standard PCA model.
These models mainly extend the definition of the standard approach to deal with non-linear
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data. Such generalizations have inspired many of the techniques developed in this thesis.
While such generalizations have many advantages in comparison to the standard approach,
they suffer several limitations that are discussed in this section.

2.4.1 PCA and Neural Networks

The relation between PCA and neural networks was subject to a long-standing investiga-
tion. This link arose back in 1949 when Donald Hebb in his book The Organization of
Behaviour [Heb49] had postulated that “When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of the cats firing B,
is increased”. According to Lowell and Singer [LS92], this can be summarized as “neurons
wire together if they fire together”. In other words, this tells us that the synaptic weights in
neurons are a measure of the correlations between their activations. Such synaptic weights
correspond the connection strength between different neurons. If the correlation is positive,
then the connection strength between the neurons increases and vice versa. Mathematically,
this can be expressed ass follows

wt+1 = wt + ηtxtyt (2.26)

where ηt is the learning rate, xt ∈ Rd describes the excitation on neuron at time t received
from other neurons and yt ∈ R corresponds to the output (activation) of the neuron. In the
linear sense, the activation function is written as yt = xTt wt and the Hebbian rule becomes

wt+1 = wt + ηtxtx
T
t wt . (2.27)

It can be proven that the dynamics of this update rule moves towards the direction of the
first significant eigenvector [DK96]. However, this rule is unstable as the magnitude of the
vector increases to infinity with time. Hence, a simple remedy is to normalize the vector
after each update which is known as the normalized Hebbian rule defined in Eq. 2.16. In the
literature, this update rule is mistakenly referred to as Oja’s rule. In fact, what Oja proposed
in his paper [Oja82] is a linearized version of the normalized Hebbian rule described as follows

wt+1 = wt + ηt
(
ytxt − y 2

t wt

)
. (2.28)

One can derive this formula by employing Taylor expansion to the normalized rule and ne-
glecting higher-order terms. The main advantage of using this formula is the fact that it
does not require computing the normalization step and hence is computationally cheaper.
However, due to the fact that the normalized Hebbian rule is more common and easier to
generalize for computing multiple eigenvectors, whenever referring to Oja’s rule in this thesis,
we consider the normalized Hebbian rule. Nevertheless, the convergence rate and dynamics
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of both schemes were found to be very similar.

As the field of neural networks evolved specifically after the proposition of the back-propagation
learning algorithm, an interesting question raised by Bourlard and Kamp [BK88] concerned
the relation between the solutions obtained using auto-association multi-layer perceptron and
PCA and whether such a solution could lead to advantages over PCA. A two-layer feed-forward
neural network with one bottleneck hidden layer was trained using back-propagation algorithm
to generate the same input samples with a low number of hidden units (much lower that the
sample dimensionality). It was found that even when using non-linear sinusoidal activations
in the hidden layer, the weights of the network span the PCA eigenspace. Furthermore, the
network was found to be subject to local minima problems leading to higher reconstruction
errors in comparison to the deterministic PCA. Hinton and Salakhutdinov [HS06] studied
the performance of multi-layer feed-forward neural network with multiple bottlenecks hidden
layers of non-linear activations. Using only 30 neurons in the central hidden layer, the network
was able to outperform the standard PCA when compared to the reconstruction error of
the significant 30 eigenvectors. This model shed light on a new generation of multi-layer
perceptron known as Autoencoders. Autoencoders are a special type of back-propagation
Neural Networks that are trained to produce the same input samples in its output layer via a
reduced representation of hidden units. The main characteristic of autoencoders is to find a
reduced representation of the input dataset non-linearly.

An Introduction to the Back-propagation Learning Algorithm

In this section, we will describe the structure of multi-layer perceptron and how to apply the
back-propagation learning algorithm which was proposed by Werbos in [Wer74]. The main
reason for introducing the back-propagation algorithm is that it is the standard approach for
training feed-forward neural networks and deep learning models. In this thesis, we will discuss
deep learning in more detail in Chapter 5. An MLP model consists of one input layer, one or
more hidden layers and one output layer. One can think of the output layer as a perception
unit. Each unit in an MLP is called a perceptron. Each perceptron consists of (a) one or more
weighted input units (synaptic weights), (b) an activation function f and (c) a single output
unit. Figure 2.1 shows an example of multi-layer perceptrons consisting of n0 input units in
the input layer, n1 perceptrons in the first hidden layer, n2 perceptrons in the second hidden
layer and n3 output units in the output layer. Let us consider a set of m training samples
{Γi ∈ Rn0}mi=1 and their corresponding targets {Ti ∈ Rn3}mi=1. We define the outputs of the
first hidden layer as

X
(1)
out =


x

(1)
out,1
...

x
(1)
out,n1

 =


f
(
v

(1)
1

)
...

f
(
v

(1)
n1

)
 , (2.29)
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Figure 2.1: An example of a fully-connected MLP.

where v
(1)
j =

∑n0

i=1 xiw
(1)
i ,j + b(1) and b(1) is a bias term. The outputs of the remaining layers

are defined as

X
(q)
out =


x

(q)
out,1
...

x
(q)
out,nq

 =


f
(
v

(q)
1

)
...

f
(
v

(q)
nq

)
 , q = 2, 3, (2.30)

where v
(q)
j =

∑nq−1

i=1 x
(q−1)
out,i w

(q)
i ,j + b(q). There are many options for defining the activation

function f . One choice is to use the sigmoid function defined as follows

f (x) =
1

1 + exp (−x)
.

Other options include the rectified linear unit (ReLU) defined as f (x) = max(0, x). Training
such a network requires a number of training epochs where each epoch corresponds to a
single data pass. The basic idea of the back-propagation algorithm is to adjust the weights
of the network for each epoch until the error function converges to a local minima. The error
function, also known as the loss function, measures how well the network learned the task on
hand. One commonly used error function is the mean squared error (MSE) defined as

E =
1

m

m∑
s=1

Es , (2.31)
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where

Es =
1

2

(
Ts − X

(3)
out (Γs)

)T (
Ts − X

(3)
out (Γs)

)
=

1

2

n3∑
h=1

(
Ts,h − x

(3)
out,h (Γs)

)2

For classification tasks, the cross-entropy error function is more commonly used. In this
example, we will use MSE as the error function. The goal of the BP algorithm is to adjust the
network’s weights such that the value of the error function is minimized. Before teaching the
MLP, the initial weights are chosen randomly. Optimizing the error function can be achieved
using the stochastic gradient descent or its variants. In this case, the gradient descent update
rule is applied on a mini-batch of the training data that are visited only once during a single
epoch. The choice of the mini-batch size depends on the training data. In this example, we
will consider a mini-batch of size 1 for simplicity. Hence, applying the stochastic gradient
descent will lead to

4w
(q)
i ,j = −η ∂Es

∂w
(q)
i ,j

, (2.32)

where q denotes the layer number and η > 0 is the learning rate. We will begin by deriving
4w

(3)
i ,j for the output layer. Using the chain rule, the update rule can be rewritten as follows

4w
(3)
i ,j = −η ∂Es

∂v
(3)
j

∂v
(3)
j

∂w
(3)
i ,j

. (2.33)

The first factor can be written as

∂Es

∂v
(3)
j

=
∂

∂v
(3)
j

[
1

2

n3∑
h=1

(
Ts,h − x

(3)
out,h

)2
]

= −
[
Ts,j − x

(3)
out,j

]
f ′(v

(3)
j ), (2.34)

and for the second factor

∂v
(3)
j

∂w
(3)
i ,j

=
∂

∂w
(3)
i ,j

[
n2∑
i=1

x
(2)
out,iw

(3)
i ,j

]
= x

(2)
out,i . (2.35)

Combining the two derivatives and denoting δ(3)
j =

[
Ts,j − x

(3)
out,j

]
f ′(v

(3)
j ), we get

4w
(3)
i ,j = ηx

(2)
out,iδ

(3)
j , (2.36)

or
w

(3)
i ,j (k + 1) = w

(3)
i ,j (k) + ηx

(2)
out,iδ

(3)
j . (2.37)

The update equation for the hidden layers of the network can be derived in the same manner.
Applying the gradient descent approach to the neurons of the second hidden layer, we get
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4w
(2)
i ,j = −η ∂Es

∂w
(2)
i ,j

= −η ∂Es

∂v
(2)
j

∂v
(2)
j

∂w
(2)
i ,j

. (2.38)

The second factor in the right hand side can be evaluated exactly the same as for the output
layer. Hence

∂v
(2)
j

∂w
(2)
i ,j

=
∂

∂w
(2)
i ,j

[
n1∑
i=1

x
(1)
out,iw

(2)
i ,j

]
= x

(1)
out,i . (2.39)

However, evaluating the first factor is more complicated. To proceed, we apply the chain rule

∂Es

∂v
(2)
j

=
∂Es

∂x
(2)
out,j

∂x
(2)
out,j

∂v
(2)
j

=
∂

∂x
(2)
out,j

1

2

n3∑
h=1

[
Ts,h − f

(
n2∑
p=1

w (3)
s,p x

(2)
out,p

)]2
 ∂x

(2)
out,j

∂v
(2)
j

= −

{
n3∑
h=1

[
Ts,h − x

(3)
out,h

]
f ′(v

(3)
h )w

(3)
h,j

}
f ′(v

(2)
j )

= −

(
n3∑
h=1

δ
(3)
h w

(3)
h,j

)
f ′(v

(2)
j ), (2.40)

since δ(3)
h =

[
Ts,h − x

(3)
out,h

]
f ′(v

(3)
h ) are calculated already from the output layer and hence are

fixed. Combining the two factors and denoting δ(2)
j =

(∑n3

h=1 δ
(3)
h w

(3)
h,j

)
f ′(v

(2)
j ), one gets the

update equation
w

(2)
i ,j (k + 1) = w

(2)
i ,j (k) + ηx

(1)
out,iδ

(2)
j . (2.41)

From eq. (2.37) and (2.41), we can define the general update formula as follows:

w
(q)
i ,j (k + 1) = w

(q)
i ,j (k) + ηx

(q−1)
out,i δ

(q)
j ,

where
δ

(q)
j =

[
Ts,j − x

(q)
out,j

]
f ′(v

(q)
j )

for the output layer and

δ
(q)
j =

(
nq+1∑
h=1

δ
(q+1)
h w

(q+1)
h,j

)
f ′(v

(q)
j )

for the hidden layers. This process will be repeated until the error function reaches a prede-
termined threshold or when the maximum number of epochs is reached.
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2.4.2 Subspace Clustering

In this subsection, we present one of the most recent generalizations to PCA, which is referred
to as subspace clustering. Such a generalization has inspired many of the techniques developed
in Chapter 4. The main idea of subspace clustering is to compute a set of subspaces where
each subspace optimally fits a subset of samples in the dataset [Vid11]. A subspace is defined
in terms of its mean point, basis vectors and projection values. Subspace clustering has
recently become an active research area as an alternative to the traditional cluster analysis
where samples are clustered based on their centroids. Such a methodology is particularly
useful in case of extremely high dimensional data. More formally, consider a set of n data
points that lie in d-dimensional space

{
xj ∈ Rd

}n
j=1

, subspace clustering assumes that such
samples are generated from a union of ns > 1 subspaces. Each subspace is defined as follows

Si =
{
x ∈ Rd | x = x̄i + Uiy

}
, i = 1, ... , ns , (2.42)

where x̄i is a point in subspace Si , Ui ∈ Rd×ki corresponds to the basis vectors and y = UT
i x ∈

Rki is a low dimensional representation of pint x . The subspace clustering problem can be
formulated as follows: Given a dataset X ∈ Rd×n, we need to find the number of subspaces
ns , their dimensions {ki}nsi=1, their basis vectors

{
Ui ∈ Rd×ki

}ns
i=1

, the points
{
x̄i ∈ Rd

}ns
i=1

and the segmentation of data samples according to the subspaces. Clearly, if the number
of subspaces is equal to one, the problem is simplified to the standard PCA problem. The
main challenge in this problem is that for n data points, there can be 2n subgroups. Hence,
optimally mapping the samples to different subspaces is rather challenging. Investigating
different mapping strategies has been widely explored in the literature.

2.4.3 Kernel PCA

The standard PCA gives a linear description of the distribution of the input data using or-
thogonal eigenvectors (Principal Components). However, in many cases, the data may not
be well-described using standard PCA due to its non-linear nature. The basic idea of kernel
principal component analysis (kPCA), proposed in 1998 by Schölkopf et al. [SSM98], is to
transform the input data into a higher-dimensional space, which is usually called the feature
space, using a non-linear implicit transformation Ψ and then extract the kernel eigenvectors
from the feature space using the kernel trick discussed below.

Suppose again we have n samples xi , i = 1, ... n, in Rd . Using kPCA, these samples are
projected onto a higher dimensional space (feature space) using non-linear transformation:
Ψ : Rd → Rf , f � d . Assuming that the samples are centered in the feature space∑n

i=1 Ψ(xi) = 0, the f × f covariance matrix of these samples in the feature space can be
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defined as

CΨ =
1

n − 1

n∑
i=1

Ψ(xi)Ψ(xi)
T . (2.43)

The corresponding eigenvalue problem becomes

(CΨ − λΨI )vΨ = 0, (2.44)

where λΨ > 0 and vΨ ∈ Rf are a non-negative eigenvalue and its corresponding eigenvector
in the feature space respectively. Eq. (2.44) can be rewritten as{

1

n − 1

n∑
i=1

Ψ(xi)Ψ(xi)
T

}
vΨ =

1

n − 1

n∑
i=1

Ψ(xi)
{

Ψ(xi)
TvΨ

}
= λΨvΨ. (2.45)

By denoting αi =
{

1
λΨ(n−1)

Ψ(xi)
TvΨ

}
∈ R, from eq. (2.45), we have

n∑
i=1

Ψ(xi)αi = vΨ. (2.46)

This means that all eigenvectors corresponding to the non-zero eigenvalues lie in the span of
Ψ(x1), · · · , Ψ(xn). By substituting eq. (2.46) in eq. (2.45), we get{

1

n − 1

n∑
i=1

Ψ(xi)Ψ(xi)
T

{
n∑

j=1

Ψ(xj)αj

}}
= λΨ

{
n∑

i=1

Ψ(xi)αi

}
. (2.47)

The kernel trick

Since one doesn’t need to know Ψ, the kernel trick uses the duality property to solve the
eigenvalue problem in eq. (2.47) without defining Ψ explicitly. This is done by defining
a kernel function k : Rd × Rd → R that, under some conditions (Mercer’s conditions),
satisfies

k(x , y) = Ψ(x)TΨ(y)

for any x , y ∈ Rd . The choice of kernel function depends on the distribution of input
samples. Commonly used kernel functions include the polynomial kernel function of order d
defined as k(x , y) =

(
xTy + c

)d with c being a constant and the Gaussian kernel function

k(x , y) = exp
(
−‖x−y‖

2

2σ2

)
.

By multiplying each side of eq. (2.47) by Ψ(xq)T , q = 1 · · · n, this becomes{
1

n − 1

n∑
i=1

k(xq, xi)

{
n∑

j=1

k(xi , xj)αj

}}
= λΨ

{
n∑

i=1

k(xq, xi)αi

}
. (2.48)
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This can be rewritten in the matrix form as follows:

K 2a = (n − 1)λΨKa, (2.49)

where a = [α1 α2 ...αn]T is the dual eigenvactor and

K =


k(x1,x1) · · · k(x1,xn)

... . . . ...
k(xn,x1) · · · k(xn,xn)

 =


Ψ(x1)T Ψ(x1) · · · Ψ(x1)T Ψ(xn)

... . . . ...
Ψ(xn)T Ψ(x1) · · · Ψ(xn)T Ψ(xn)

 (2.50)

is the kernel matrix, where each (i , j)th element corresponds to the kernel function of xi and
xj . Assuming that K is invertible, eq. (2.49) can be simplified to(

1

n − 1
K − λΨI

)
a = 0. (2.51)

This trick eliminates the direct computation of the covariance matrix CΨ and hence the explicit
calculation of the non-linear transformation Ψ. Instead, one only needs to compute the kernel
matrix K and then solve the eigenvalue problem in eq. (2.51). The projection value of an
input sample s onto the kernel eigenvector vΨ

j j = 1 ... p in the feature space can be calculated
as follows

ρΨ =
(
vΨ
j

)T
Ψ(s) =

n∑
i=1

αj
ik(xi , s). (2.52)

The steps of the KPCA can be summarized as follows:

1. Calculate the kernel matrix K using eq. (2.50),

2. Solve the eigenvalue problem in eq. (2.51),

3. Project the samples onto the kernel eigenspace using eq. (2.52).

One can note how the kernel trick simplifies the computation of the kernel eigenspace using
a few simple steps. One point to consider when applying kPCA is that the kernel function
and its hyperparameters need to be chosen carefully. In addition, reconstructing samples from
the high dimensional Hilbert space is computationally expensive. Studying kernel PCA in the
streaming mode has been investigated in [Hon11] where Oja’s rule was adapted to work with
the kernel trick.

2.5 Analogy with Compression Models

In this section, we discuss the discrete cosine transform which is widely employed in image
and video compression standards such as JPEG and MPEG. One interesting point in these
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compression standards is the fact the DCT is performed in a block-wise manner where the
image is subdivided into blocks and the DCT is applied to each block separately. This dis-
cussion will raise the following questions: What are the advantages of applying basis function
representations in the partitioning manner instead of the holistic way? Will using PCA in
the partitioning manner be advantageous compared to the standard approach and other ba-
sis function representations? These questions will be investigated further in this thesis in
Chapter 4.

2.5.1 The Discrete Cosine Transform

The Discrete Cosine Transform is a Fourier-related basis function representation that is widely
used for image compression. It was first introduced by Nasir Ahmed in 1974 [ANR74]. While
there are several types of discrete cosine transform, the best known type is the DCT-II which
is the one that by default the term DCT refers to. The main idea behind this technique is to
express any input signal using a weighted sum of a few low-frequency cosine basis functions.
Cosine basis functions are used instead of sine functions because they work better for different
boundary conditions. The sine transform is only suitable when dealing with zero boundary
conditions for which the cosine basis functions can also provide a good approximation. These
cosine basis functions can also be defined in 2D space, making them capable of representing
2D images. The 2D DCT transforms an image Amn of size M × N to the DCT space Bpq

using the following formula

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Amn cos
π(2m + 1)p

2M
cos

π(2n + 1)q

2N

where

αp =


1√
M

, p = 0√
2
M

, p > 0

and

αq =


1√
N

, q = 0√
2
N

, q > 0

Figure 2.2 shows an example of a gray-scale image reconstructed using a few low-frequency
2D-DCT coefficients. It can be noted that coefficients corresponding to low frequencies have
higher amplitude and vice versa. One main problem when using 2D-DCT for compression is
the difficulty in prioritizing the basis functions in the 2D frequency space. In particular, what
is the best order of basis functions for representing a set of samples? This becomes even more
problematic when considering the representation of 3D volumetric data using 3D cosine basis
functions. In addition, not all types of images are well-represented using the 2D-DCT basis
functions. For instance, it has been reported that line drawing images give aliased results
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(a) (b)

(c) (d)

Figure 2.2: Reconstructing a gray-scale image using low-frequency DCT coefficients. (a)
Original image, (b) Reconstructed image, (c) DCT coefficients of the original image repre-
sented using log10 abs(Bpq) and (d) The coefficients used for reconstruction.

when reconstructed using DCT.

2.5.2 JPEG Compression

JPEG is an image compression method that is based on the 2D-DCT [Wal92]. Instead of
using DCT as a holistic representation for the input image, the image is subdivided into
smaller subblocks of size 8 × 8. Each block is then represented using its DCT coefficients.
In order to achieve compression, only a few DCT coefficients are chosen. While there is no
standard way of choosing the appropriate coefficients for each block, JPEG uses quantization-
matrices (Q-matrices) for choosing the appropriate basis functions for each block [Kor08].
The Q-matrix is an 8× 8 matrix consisting of divisors for the corresponding projection values.
Projection values are divided by their divisors and then rounded in order to achieve quantization
and compression by neglecting zero rounded resultants. There is no trivial way of defining the
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Q-matrix. However, the Independent JPEG Group (IJG) tables are the most commonly used
Q-matrices.

2.5.3 Analogy to PCA

Both PCA and DCT are basis function representations. However, the DCT provides a global
representation that is independent of the input data distribution. On the other hand, PCA is
a data-driven representation in which the basis functions are optimally computed to minimize
the MSE when using a fixed number of the most significant eigenfunctions. Having that
said, the computation of the eigenfunctions may be infeasible to find when dealing with high
dimensional data. This problem will be further discussed in Chapter 4.

2.6 Eigenvalue Problems in Physical Models and Anal-

ogy to PCA

In this section, we will review some of the most well-known mathematical models that are
applied for modelling time-varying physical phenomena. We will theoretically study the analogy
between the PCA eigenvalue problem and some of these models in Chapter 6. Based on our
theoretical analysis, we show that, for a wide range of physical phenomena, the eigenvectors
derived using PCA are analogous to the physical analytic model.

2.6.1 The Helmholtz Equation

The Helmholtz equation is one of the most commonly used partial differential equations
(PDEs) in Physics. It is basically an eigenvalue problem which has the following form

∇2A + k2A = 0, (2.53)

where ∇2 is the second order spatial derivative (Laplacian operator), k2 is a positive constant
and A is the amplitude. In the simplest case of 1D space, the solution to this equation is
A(x) = α0e

−ikx where i =
√
−1 is the imaginary unit and α0 is a constant whose value is

determined by the initial conditions of the problem. Many physical problems involving PDE in
space and time are simplified to this model by applying the technique of separation of variables
as we will see later in this section.

2.6.2 Heat (Diffusion) Equation

The heat equation is a PDE that describes the distribution of heat in material over time. The
heat equation is of historical importance since it is particularly the model that Fourier used
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to develop his well known Fourier Transform. It has the following general form

∇2A− 1

α

∂

∂t
A = 0, (2.54)

where α is the thermal diffusivity of the studied material and A is the temperature function.
The solution to this model is acquired by applying a technique called separation of variables.
Using this technique, it is assumed that the solution is a multiplication of functions each
involving only one variable. For instance, in 1D case we write

A (x , t) = X (x)T (t) .

Plugging this into the general equation, we get

T ′

αT
=

X ′′

X
.

Since each side of the equation is independent of the other, both sides equal a constant −λ.
Hence, we arrive to the following two ordinary differential equations (ODEs) which are of the
form of eigenvalue problems

d

dt
T + αλT = 0 (2.55)

and
d2

dx2
X + λX = 0. (2.56)

The general solutions to these ODEs are

T (t) = β0e
−λαt (2.57)

and
X (x) = β1 sin

(√
λx
)

+ β2 cos
(√

λx
)

. (2.58)

Assuming that we have the following initial and boundary conditions

A (0, t) = A (L, t) = 0, A (x , 0) = f (x) , (2.59)

where f (x) is a given function describing the initial heat distribution. One can find that
β2 = 0 and that the eigenvalue satisfying these conditions will have the following possible
solutions √

λ =
nπ

L
; n = 1, 2, ... ,∞.

Hence, the general solution becomes the sum of all possible eigenfunctions

A (x , t) = X (x) · T (t) =
∞∑
n=1

Xn (x)Tn (t) =
∞∑
n=1

ϕn sin
(nπ
L
x
)
e−( nπ

L )
2
αt . (2.60)
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It is worth mentioning that these eigenfunctions form an orthogonal bases where ϕn defines
the score of f (x) in that space which is basically given by the inner product between f (x)

and each eigenfunction as follows

ϕn =
2

L

∫ L

0

f (x) sin
(nπ
L
x
)
dx .

Figure 2.3: Approximating f (x , 0) using few terms of Fourier series.

The interesting part of this model is to note how this series approximates the initial distri-
bution f (x , 0) using only few terms of the eigenfunctions. For instance, Fig. 2.3 shows how
this function can be approximated using only first seven terms of the series. This is somehow
similar to the way PCA can approximate the input samples using a combination of few eigen-
vectors. However, in the Fourier technique, this eigenspace is constituted of orthogonal bases
of sinusoidal eigenfunctions.

2.6.3 The Wave Equation

The wave equation is one of the most important PDEs in Physics. It is widely used in physical
applications including acoustics, electromagnetism and fluid dynamics. The general form of
this model is given below

∇2A− 1

c2

∂2

∂t2
A = 0. (2.61)

The general solution can be acquired by applying separation of variables to the above equation
by setting A (x , t) = X (x)T (t). This will simplify the model to a Helmholtz eigenvalue
problem. It is also worth mentioning that the solution to this equation is defined by the
term eigenmode or normal mode which is a solution that oscillates in time by letting the
temporal part of the wave function T (t) = e−iwt where w describes the frequency of such
oscillation.

Now, we will derive the general equation using Hooke’s law for spring motion. This is an
important way of understanding the wave model, which will be used later in this study.
According to Hooke’s law, a helical spring attached to the wall will suffer a restoring force
when displaced from its equilibrium state (either when compressed or stretched). The restoring
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force acting on the free end of the spring is given by the following formula

F = kx , (2.62)

where k is a constant describing the stiffness of the spring and x is the distance of the free
end from its equilibrium position. Such a restoring force will cause the free end to oscillate
around its equilibrium position. In other words, the force will change direction once the spring
change from a stretched state to a compressed state and vice versa. Now, we will generalize
this case to an array of objects of equal masses n connected using massless springs each of
equilibrium length h and stiffness of k as shown in Fig. 2.4. A (x , h) is a time dependent
function describing the displacement of an object from its original position. According to
Hooke’s law, a force exerted on the object located on x + h will be

F = k [A (x + 2h, t)− A (x + h, t)]− k [A (x + h, t)− A (x , t)]

= k [A (x + 2h, t)− 2A (x + h, t) + A (x , t)] . (2.63)

Figure 2.4: Array of 3 weights connected with spring in 1D settings.

But according to Newton’s law, the force is given by the mass of the object times its accelera-
tion F = ma and since the acceleration is the second time derivative of the position function,
one can write the above equation as follows

ma = k [A (x + 2h, t)− 2A (x + h, t) + A (x , t)]

⇒ m
∂2

∂t2
A (x + h, t) = k [A (x + 2h, t)− 2A (x + h, t) + A (x , t)]

⇒ ∂2

∂t2
A (x + h, t) =

k

m
[A (x + 2h, t)− 2A (x + h, t) + A (x , t)] . (2.64)

Now assuming an N body array , the total mass becomes M = Nm, the spring constant
K = k

N
and the total length L = Nh. By noting that k

m
= L2K

Mh2 we can rewrite the above
equation as follows

∂2

∂t2
A (x + h, t) =

L2K

M

[A (x + 2h, t)− 2A (x + h, t) + A (x , t)]

h2
. (2.65)
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By making N →∞ and h→ 0 we arrive to the following PDE

∂2

∂t2
A (x , t) =

L2K

M

∂2

∂x2
A (x , t) (2.66)

which is of the form of the wave equation. The analogy between PCA and the wave equation
will be discussed in more detail in Chapter 6.



3 One-pass Data Modelling Using Mini-
batch Streaming PCA

In this chapter, we address the streaming PCA problem, which concerns the computation of
the eigenspace from a single data pass. We propose an acceleration scheme that significantly
improves the convergence rates of a wide range of streaming PCA methods that are based
on the stochastic gradient approximation (SGA). Such methods are considered the cheapest
in computational cost compared to other streaming approaches. In order to further increase
the speed-up, we study the convergence of such techniques under the mini-batch mode which
processes a block of samples at each update step instead of updating the eigenspace based
only on a single sample.

3.1 Introduction

Streaming PCA schemes are commonly used to address the high computational cost of the
standard approach. The main aim of such methods is to arrive at an acceptable solution
after only a single pass over the entire set of data samples. Since each sample is visited
only once, such techniques are also appropriate for streaming scenarios. Most well-known
streaming PCA schemes are based on the stochastic gradient approximation. Such paradigms
involve a learning rate parameter for which a choice plays a critical impact on the convergence
rate [BDF13]. Choosing inappropriate learning rates may result in a very slow convergence.
In fact, it was found that the optimal learning rate for such approaches requires knowing the
eigengap ∆ = λ1 − λ2 which is impractical for streaming cases as it requires a preprocessing
data pass. Another general problem that applies to all streaming algorithms concerns their
sequential nature. When computing multiple eigenvectors of very high dimensional data, this
leads to overhead computations due to the expensive orthogonalization processes.

Considering a dataset of stationary distribution X = [x1, x2, ... , xn] ∈ Rd×n where d is the
total number of dimensions (attributes), our goal in this chapter is to investigate effective ways
for finding the top k eigenvectors from a single data pass without any prior knowledge about
the distribution of the input samples. We propose an acceleration scheme for streaming PCA

35
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algorithms that are based on the stochastic gradient approximation. Particularly, our approach
aims to accelerate such algorithms in the mini-batch mode in which each update step processes
multiple samples of the dataset that are visited only once. Such a mode of computation
has many advantages over the conventional fully-online streaming approach to PCA which
processes only one sample per update. Mainly, processing samples in a mini-batch manner
increases the speed because of the reduction in the number of expensive orthogonalization
steps in addition to increasing parallelism. This chapter also provides a thorough empirical
evaluation of state-of-the-art streaming PCA methods.

Main Contributions

The main contributions of this chapter are listed below:

• We propose a convergence acceleration scheme for SGA-based methods that work in
the mini-batch setting.

• Our scheme works with smaller mini-batch sizes compared to the literature and hence
is more suitable for large-scale datasets.

• We provide empirical evaluation strategies using the spiked-covariance model and other
benchmark datasets and show that applying our acceleration enhanced convergence
rates significantly outperforming state-of-the-art techniques.

• We show that when using our scheme for initializing the offline power iteration, the
convergence rates were significantly enhanced.

3.2 Related Work

Amongst all streaming PCA approaches, the Stochastic Gradient Approximation (SGA) is one
of the oldest attempts to address the online learning behaviour of PCA. Such approaches are
based on the assumption that the covariance matrix can be approximated using an arbitrary
sample x from the input dataset E

(
xxT

)
= C . The most well-known SGA techniques

are the ones proposed by Krasulina [Kra69] and Oja [Oja82; OJE83]. One main limitation
of these techniques is their performance sensitivity to different choices of learning rates,
which may significantly affect the convergence rate. Considering that the learning rate has
the form ηt = c/t, according to Balsubramani et al. [BDF13] the optimal performance of
SGA methods is achieved when the initial learning rate constant c = a

∆
where a > 1 and

∆ = λ1 − λ2 is the eigengap. Hence, finding the optimal learning rate becomes infeasible in
case of streaming scenarios as computing the eigengap requires a pre-processing data pass.
Furthermore, this suggests that each individual eigenvector (when computing multiple k > 1

eigenvectors) should have its own learning rate. The computational cost of these algorithms
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is O(knd) FLOPs where k is the number of eigenvectors to be computed, n is the number
of samples and d is the dimensionality. These techniques are considered the cheapest in
terms of computational cost and space complexity. Other approaches that are based on SGA
include the mini-batch (or block) power method proposed by Mitliagkas et al. [MCJ13] which
applies the power iteration on mini-batches of the data that are visited only once. The main
drawback of this method is that it may not converge in case of a very small mini-batch size
B . It was proven that the convergence of this method is achieved when B ≥ n

log(d)
. Li et al.

[LLL16] showed that the convergence of the mini-batch power method may be significantly
improved when dynamically increasing the mini-batch sizes. Hardt and Price studied the
convergence of the mini-batch power method in a more general context when data samples
are not normally distributed [HP14]. De Sa et al. studied the convergence of state-of-
the-art SGA methods after applying the momentum term for accelerating the convergence
rate [Xu+18]. They showed that applying stochastic gradient descent with momentum to the
mini-batch power method and variance-reduced power method (based on VR-PCA [Sha15])
gives better convergence rates compared to the original approaches. Candid Covariance-
free Incremental PCA (CCIPCA) [WZH03] is another streaming PCA algorithm that has a
significant advantage over Oja’s method in the fact that it is parameter-free. Other parameter-
free streaming PCA methods include Incremental PCA (IPCA), which is based on diagonalizing
a reduced-order matrix of size k × k instead of dealing with the massive d × d covariance
matrix [Aro+12]. The main downside of IPCA is that its complexity is O(k2nd) which is
more expensive compared to SGA-based methods. According to Cardot et al. [CD18] when
comparing between, SGA, IPCA and CCIPCA, it was found that IPCA and CCIPA produced
the best convergence results. Recently, Pehlevan et al. proposed a method for finding the top
eigenvectors based on optimizing the similarity matching objective function. Their method
works in both online and offline modes [PSC18]. We will refer to their method in this thesis
as SM. One important point to highlight is that the performance of Oja, CCIPCA and SM in
the mini-batch mode is a matter for further research.

3.3 An Acceleration Scheme for Mini-batch Stream-

ing PCA

3.3.1 Problem Formulation and Intuition

Recall that the main goal of SGA-based streaming PCA methods is to optimize the PCA
objective function after a single data pass. Recall also that the PCA objective is

maximize H(w) = wTCw

subject to wTw = 1,
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where C is the covariance matrix and w is the eigenvector. The main mechanism of such
methods is to iteratively apply an update rule of the form wt+1 = f (wt , X̃t) where X̃t =

{xi}B(t+1)
i=Bt+1 is a subset of the input dataset revealed at time t with cardinality B and wt ∈ Rd

is the eigenvector estimation at time t. We call this subset a block or mini-batch of samples
of size B . For instance, in case of Oja’s rule f (wt , X̃t) = wt+ηt X̃t X̃T

t wt/B

‖wt+ηt X̃t X̃T
t wt/B‖ and in case of

the mini-batch (block) power method f (wt , X̃t) = X̃t X̃T
t wt

‖X̃t X̃T
t wt‖ . Note that here we consider a

mini-batch variant of Oja’s method, where at each iteration we update the eigenvector based
on a mini-batch of recent time-steps instead of using only the most recent one.

Since in the streaming PCA setting the covariance matrix C is unknown, one problem in such
a setting is that it is challenging to know how well the streaming PCA method is converging.
In other words, such methods do not provide any information about the convergence rate.
The main idea of our acceleration is to define a measure that reflects how well the method is
converging. The measure provides a bounded score between 0 and 1, where one corresponds
to the state of convergence. Based on this measure, we accelerate the streaming PCA method
such that the measure scores are optimized. In other words, we use such a measure to catalyze
the streaming PCA in reaching the convergence state. Before defining our measure, let us
discuss the primary state at which the streaming PCA converges. The convergence condition
corresponds to a stable steady state where the difference between two successive updates
becomes negligible. Assume that wt and wt+1 are the two normalized eigenvector estimations
at time t and t+1, the measure should return one if the two vectors are pointing either to the
same or opposite directions and zero if the two vectors are orthogonal. This can be expressed
as follows

G (wt+1,wt) =
(
wT
t+1wt

)2
= wT

t+1wtw
T
t wt+1, (3.1)

where wt and wt+1 are normalized and lie in Rd space. In order to accelerate the convergence,
we update the estimation wt+1 so that it will better satisfy the convergence condition. This
can be achieved by directly applying the gradient ascent to G as follows

w̃ = wt+1 +
αt

2

∂

∂wt+1
G (wt+1,wt)

= wt+1 +
αt

2

∂

∂wt+1

(
wT
t+1wtw

T
t wt+1

)
= wt+1 + αtwtw

T
t wt+1

=
(
I + αtwtw

T
t

)
wt+1 (3.2)

where αt is the learning rate, the values for which will be discussed in the following subsection.
Note that we derive the measure G with respect to wt+1 not wt . This is to ensure that after
each update, the eigenvector estimation is achieving better convergence. Hence one can arrive



3.3. AN ACCELERATION SCHEME FOR MINI-BATCH STREAMING PCA 39

at the following update rule

w̃t+1 =
wt+1 + αtwtw

T
t wt+1∥∥wt+1 + αtwtwT
t wt+1

∥∥ . (3.3)

Note that here we consider computing only a single eigenvector, however, we can easily
generalizing this technique to compute multiple eignvectors as will be discussed in the next
subsection.

3.3.2 The Algorithm

We can summarize the main steps of our acceleration for the k = 1 case as follows

1. initialize w1 at random from the unit sphere in Rd .

2. for t = 1, 2, ... , n/B

(a) Receive the next mini-batch X̃t .

(b) Update wt+1 = f (wt , X̃t) where f is the update rule of the SGA method.

(c) Apply the acceleration scheme w̃t+1 = wt+1+αtwtwT
t wt+1

‖wt+1+αtwtwT
t wt+1‖ .

(d) Set wt+1 = w̃t+1.

Our scheme can be easily generalized to compute multiple eigenvectors (k > 1 case) by
defining Wt ∈ Rd×k and replacing the normalization process by the Gram-Schmidt orthonor-
malization or a deflation process. Algorithm 3.1 shows the pseudo code of our acceleration
when applied to the mini-batch power method for computing k eigenvectors. The normal-
ization function in line 3 normalizes each column vector in the input matrix. Algorithm 3.2
shows the pseudo code of our acceleration when applied to Oja’s method for computing k

eigenvectors. It is also worth mentioning that there are two main situations in which the
objective function can be maximized. The first situation is when subsequent updates are
converging towards the optimal solution which is the desired behaviour that we wish to get.
The second case is when subsequent eigenvectors are not significantly changing due to the
very small step-size when accelerating Oja’s method. Therefore when accelerating Oja’s rule,
it would be better to set the initial learning rate η1 with a large value.

3.3.3 Strategies for Scheduling the Learning Rate αt

We now investigate the appropriate scheduling strategies for the learning rate αt . We find
that using increasing scheduling strategies of the form αt = O(t) surprisingly gives the best
convergence results. This might be due to the fact that as t increases Wt should provide
a better estimation of the optimal solution. In other words, one can think of the learning
rate in this case as a certainty factor of the convergence of Wt estimation. Figure 3.1
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Algorithm 3.1: Accelerated Mini-batch Power Method (Accelerated Block Power)

Input: Mini-batch size B , dataset mini-batches X = [X̃1 X̃2 · · · X̃n/B ], Learning rate
scheduler αt and the number of eigenvectors to compute k

Output: The k most significant eigenvectors of X
1 Initialize each column of W1 randomly from the unit sphere in Rd ;
2 for t = 1, 2, ... n/B do
3 Wt+1 = Normalize

(
X̃tX̃

T
t Wt

)
;

4 W̃ = Wt+1 + αtWtW
T
t Wt+1;

5 Wt+1 = Orthonormalize
(
W̃
)
;

6 end

(a) shows the performance when accelerating the block power using decreasing αt = 1/t,
constant αt = 1, and increasing αt = t learning rates where it is obvious that increasing
the learning rate provides the best performance. The use of increasing learning rates in the
gradient-based optimization, while not usual, has been found to enhance the convergence
rates in deep neural networks especially in cases where saddle points are present in the error
surface [Smi17]. Comparisons of convergence rates for the block power and Oja’s methods
before and after applying our acceleration scheme are shown in Figure 3.1 (b). It is evident
that using our scheme significantly enhances the convergence rates. In addition, one can note
that the best convergence rates are achieved when the objective function reaches its optimal
value of one. We will consider two stochastic strategies for scheduling the learning rate αt .
The first strategy that we propose is setting αt = t

1+czt
where c is some small constant (say

1) and zt ∈ [0, 1] is random variable of uniform distribution. The second strategy is based on
setting αt = t

1+czt/t
where c in this case takes larger values depending on the sample size (say

1,000 in case of the number of samples is in the order of thousands). The main motivation for
employing such stochastic schedulers is to allow for some adaptive behaviour for finding the
optimal learning path. In the next section, we will test the technique using both strategies. In
all the experiments in this chapter, we set c = 1 when using the first strategy and c = 1, 000

when using the second scheduling strategy.

3.4 Performance Evaluation

In this section, we provide an empirical evaluation of streaming PCA algorithms based on
the spiked covariance model and benchmark datasets. In general, evaluating streaming PCA
approaches is challenging, especially when computing k > 1 eigenvectors. On the one hand, we
need to measure the convergence to a global solution which can only be found by computing
the traditional SVD or EVD in the batch mode. Hence, such measurement would not be
possible if the dataset is too large to perform SVD. Also in many cases, the top eigenvectors
may be very similar in terms of their eigenvalues leading to a phenomenon where the streaming
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Algorithm 3.2: Accelerated Oja’s Mathod (Accelerated Oja)

Input: Mini-batch size B , dataset mini-batches X = [X̃1 X̃2 · · · X̃n/B ], the learning rate
scheduler ηt for Oja’s method, the learning rate scheduler αt for our acceleration
and the number of eigenvectors to compute k

Output: The k most significant eigenvectors of X
1 Initialize each column of W1 randomly from the unit sphere in Rd ;
2 for t = 1, 2, ... n/B do
3 Wt+1 = Normalize

(
Wt + ηtX̃tX̃

T
t Wt/B

)
;

4 W̃ = Wt+1 + αtWtW
T
t Wt+1;

5 Wt+1 = Orthonormalize
(
W̃
)
;

6 end

(a) (b)

Figure 3.1: Performance in terms of the objective function G (Wt+1,Wt) (Top) and the con-

vergencece defined as log10

(
1− ‖

XTWt‖2

F

‖XTV ∗‖2

F

)
(Bottom) when computing the first eigenvector

of the spiked covariance model according to [MCJ13]. (a) Performance of the accelerated
mini-batch power method using decreasing, constant and increasing learning rates. (b) Per-
formance of Oja’s method and the mini-batch power method before and after applying our
acceleration using increasing learning rates.

algorithm converges to a span of the eigenspace with basis vectors that significantly differ
from the original eigenvectors. Furthermore, the performance of a specific streaming PCA
method might vary significantly for different trials of exactly the same parameter settings
due to the random initialization. In our study, we use the following function to evaluate
convergence

convergencece (V ∗,Wt) = log10

(
1−

∥∥XTWt

∥∥2

F

‖XTV ∗‖2
F

)
where ‖.‖2

F is the squared Frobenius norm and V ∗ ∈ Rd×k are the optimal k eigenvectors
computed using standard PCA. Section 2.3.6 provides a discussion on the advantages of this
metric. Many of the following experiments are performed on datasets that are too large to
compute the eigenspace using the standard PCA. In such cases, we will refer to the mean-
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Table 3.1: Summary of streaming PCA methods in terms of complexity and parameter de-
pendence.

Method FLOPs space mini-batch online parameter-sensitivity
Oja [OJE83; Oja82] O(kd) O(kd) X X high
mini-batch power [MCJ13] O(kd) O(kd) X 7 parameter-free
CCIPCA [WZH03] O(kd) O(kd) X X parameter-free
IPCA [Aro+12] O(k2d) O(kd) 7 X parameter-free
SM [PSC18] O(k3 + kd) O(kd) X X low
accelerated SGA (ours) O(kd) O(kd) X 7 low

squared-error to assess convergence rates. Whenever data size permits, we run ten trials and
report the average performance of each method.

3.4.1 Complexity and Parameter Dependence

The first important factors to compare are the space and time complexities and the parameter
dependence of each method. Table 3.1 summarizes the space and time complexity per sample
per update of each method with their parameter dependence. We did not consider the
orthogonalization process in the complexity analysis of SGA methods since one does not need
to perform it for each update. The online column indicates the methods that process one
sample per update. One can note that CCIPCA enjoys the cheapest space and computational
cost in addition to being parameter-free and generalizable to work in the mini-batch mode.
IPCA is rather more expensive in terms of computational cost by a factor of k due to the
EVD operation involved for the reduced-order matrix Qn. As we discussed earlier, Oja’s
method, despite its very well established theoretical analysis and low computational cost, is
not practical because of its performance sensitivity when using different initial learning rates.
While our algorithm is still parametric, it is capable of finding the optimal solution using the
stochastic scheduling strategies that we proposed. We show in all the experiments in the
following sections that despite using fixed parameter configurations for the schedulers, our
acceleration is still able to achieve the best convergence rates.

Table 3.2: Convergence of each method after a single data pass to the first five eigenvectors
of the spiked covariance model generated with k = 10.

Method fully online B=10 B=100
Oja ηt = 1

t
−0.87± 0.1 −0.83± 0.065 −1.47± 0.08

Oja ηt = 10
t

−0.86± 0.05 −0.83± 0.065 −1.47± 0.08
Oja ηt = 100

t
−0.82± 0.09 −0.83± 0.065 −1.47± 0.08

mini-batch (block) power - −0.84± 0.08 −1.46± 0.1
CCIPCA −1.57± 0.14 −1.63± 0.17 −1.48± 0.1
IPCA −1.53± 0.22 - -
SM −1.5± 0.14 −1.56± 0.13 −1.39± 0.1
accelerated Oja ηt = 100

t
αt = t

1+zt
- −1.67± 0.15 −1.5± 0.1

accelerated Oja ηt = 100
t
αt = t

1+1000×zt/t - −1.81±0.2 −2.41±0.2
accelerated block power αt = t

1+zt
- −1.68± 0.18 −1.5± 0.1

accelerated block power αt = t
1+1000×zt/t - −1.88±0.2 −2.4±0.17



3.4. PERFORMANCE EVALUATION 43

Table 3.3: Run time (in seconds) of SM, IPCA and our acceleration after single pass on the
spiked covariance model with d = 1, 000 and n = 10, 000.

SM IPCA accelerated SGA B = 10 accelerated SGA B = 100

k = 5 0.93 1.33 0.75 0.19
k = 10 1.65 2.46 1.69 0.4

3.4.2 Convergence Analysis on The Spiked Covariance Model

We test each method on synthetic datasets generated using the spiked covariance model based
on [MCJ13] where each time-step is drawn from the following generative model

xi = Azi + σNi ,

where A ∈ [−1, 1]d×k is a fixed matrix, zi ∈ Rk is a random weight vector based on standard
normal distribution and σNi ∈ Rd is a Gaussian noise vector of standard deviation σ. The task
is to restore the component matrix A (up to unitary transformations) from the noisy samples
xi . We test the streaming techniques for the following settings k = 10, d = 1000, n = 10, 000

and σ = 1. In such settings, the first k eigenvectors will be very close to each other in terms
of their eigenvalues resulting in very small eigengaps. We would like to test these methods for
recovering the first q = 5 eigenvectors instead of the the full 10 vectors. This is due to the
fact that in practice, one does not always know the exact number of eigenvectors embedded
in the model. Rather, such a choice is highly motivated by the computational capabilities.
For the mini-batch methods, we set the mini-batch size to B = 10 and B = 100 in order to
study convergence when using small mini-batch sizes. We run our acceleration using the two
strategies proposed. All methods were initialized using the same random vectors from a unit
sphere.

Table 3.2 shows the convergence results of each method. One can note that applying our
acceleration using the second scheduling strategy significantly enhances the convergence of
the mini-batch power iteration and Oja’s method in addition to outperforming other state-
of-the-art methods. Despite setting different learning rates for Oja’s method, it leads to
poor quality results. In general, increasing the mini-batch size for SGA methods results in
better convergence unlike similarity matching and CCIPCA where there seems no clear relation
between the block size and convergence. In terms of the fully online methods, CCIPCA
converges better than IPCA, SM and Oja’s method.

Table 3.3 reports the run time of Similarity Matching, Incremental PCA and our acceleration
in order to have a better idea of the speedup gained when using the mini-batch mode. The
algorithms were run on a machine with 3.7 GHz Intel Xeon CPU. Due to reduced order
EVD involved, the IPCA takes the longest time compared to our acceleration technique and
SM which is consistent with the computational complexity analysis shown in table 3.1. The
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accelerated mini-batch SGA when using a batch size of B = 10 has similar run time to
SM which is due to the Gram-Schmidt orthogonalization involved. However, when using a
larger batch size of B = 100 the run time was significantly reduced. Figure 3.2 shows the
convergence rates based on a single trial where it can be noted that all mini-batch methods
process data in a much shorter run-time compared to the fully-online streaming methods.

Figure 3.2: Convergence vs run-time and convergence vs data pass when computing the first
five eigenvectors of the spiked covariance model. Note that applying our acceleration provides
better convergence rates and shorter run-times.

Table 3.4: Convergence of each method after a single data pass to the first k = 5 eigenvectors
of each dataset.

Method MNIST CIFAR-10 Fashion MNIST Sign Language MNIST
mini-batch (block) power −1.086± 0.0 −1.38± 0.007 −1.5± 0.006 −1.38± 0.003
CCIPCA −2.22± 0.49 −3.2± 0.23 −3.55± 0.23 −2.9± 0.09
mini-batch CCIPCA −2.45± 0.58 −2.57± 0.2 −3.49± 0.69 −2.69± 0.33
IPCA −2.64± 0.003 −2.09± 0.0 −3.2± 0.0 −2.91± 0.0001
SM −3.15± 0.35 −2.9± 0.37 −2.68± 0.34 −2.53± 0.55
mini-batch SM −2.16± 0.6 −2.55± 0.51 −3.19± 0.61 −2.57± 0.35
accelerated Oja (1st strategy) ηt = 100

t
αt = t

1+zt
−2.32± 0.48 −2.54± 0.33 −3.39± 0.71 −2.8± 0.34

accelerated Oja (2nd strategy) ηt = 100
t
αt = t

1+1000×zt/t −3.7±0.16 −4.03±0.4 −3.87±0.22 −3.33±0.35
accelerated block power (1st strategy) αt = t

1+zt
−2.6± 0.6 −2.69± 0.33 −3.37± 0.67 −2.83± 0.36

accelerated block power (2nd strategy) αt = t
1+1000×zt/t −3.88±0.07 −4.01±0.4 −3.89±0.21 −3.34±0.34

3.4.3 Convergence Analysis on Benchmark Datasets

In order to have a better idea of the convergence using real-world examples, we analyze the
convergence of each method on two well-known benchmark datasets, namely, MNIST [LeC98]
and CIFAR-10 [KH+09]. The MNIST dataset consists of 60, 000 grayscale images of hand-
written digits each of resolution 28 × 28. The CIFAR-10 contains 50, 000 RGB images of
resolution 32 × 32. Both datasets are amongst the most highly regarded benchmarks in the
machine learning community. We also study the convergence on Fashion MNIST [XRV17] and
Sign Gesture MNIST [Kag] which are specially designed for benchmarking machine learning
techniques besides the original MNIST dataset.



3.4. PERFORMANCE EVALUATION 45

Table 3.5: Convergence of each method after a single data pass to the first eigenvectors of
the noisy MNIST.

Method k=1 k=5
mini-batch (block) power −0.24± 0.2 −0.22± 0.011
CCIPCA −1.9± 0.46 −2.04± 0.3
mini-batch CCIPCA −2.2± 0.41 −1.89± 0.3
IPCA −2± 0.5 −2.02± 0.25
SM −2.35± 0.75 −2.16± 0.33
mini-batch SM −1.96± 0.82 −1.83± 0.29
accelerated Oja (1st strategy) −2.1± 0.49 −1.85± 0.26
accelerated Oja (2st strategy) −2.87±0.07 −2.6±0.1
accelerated block power (1st strategy) −2.42± 0.5 −2.04± 0.3
accelerated block power (2st strategy) −2.86±0.04 −2.66±0.17

For the mini-batch (block) methods, we set the batch size to B = 100. As we mentioned
earlier, we run 10 trials for each method and report the mean and standard deviation. Table
3.4 reports the convergence statistics for each method when computing the first k = 5

eigenvectors of each dataset. It is evident that applying our acceleration using the second
scheduling strategy achieves the best convergence for all datasets. On the other hand, the
mini-batch power without applying our acceleration provides the worst results due to the
relatively small mini-batch size.

We also examine the convergence of streaming approaches in noisy conditions by applying
a Gaussian noise on the MNIST dataset and then recovering the original eigenvectors using
each technique. Figure 3.3 shows several samples before and after adding Gaussian noise of
standard deviation σ = 1. Interestingly, we noticed that in such noisy settings, the standard
PCA perfectly recovers the optimal k = 5 eigenvectors. Table 3.5 depicts convergence results
when recovering the first k = 1 and k = 5 eigenvectors. The best performance is achieved
when using the second scheduling strategy of our acceleration. Figure 3.4 shows the the
recovery of the first three eigenvectors of the noisy MNIST using each method. One can note
that our acceleration and IPCA are able to recover the first three eigenvectors accurately. On
the flip-side, similarity matching and CCIPCA converges to a span of the eigenspace resulting
in basis vectors that significantly differ from the original eigenvectors.

Figure 3.3: Several samples from MNIST data before and after adding Gaussian noise.
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Figure 3.4: Recovery of the first three eigenvectors of the noisy MNIST using each method.
Note that the eigenvectors derived using SM, CCIPCA and block power do not resemble the
optimal eigenspace.

3.4.4 Convergence Analysis on Larger Datasets

Up to this stage, all the experiments were conducted on datasets that are small enough to ac-
quire the optimal solutions using the standard PCA. In this section, we study the performance
of streaming PCA methods on larger-scale datasets where applying the standard PCA is not
feasible. Moreover, many of the datasets that will be studied cannot fit into the RAM space
of a typical modern machine. Table 3.6 includes a summary of the datasets investigated in
this section. The Labeled Faces in the Wild (LFW) dataset is one of the most well-known
face datasets consisting of over 13,000 face images of 1,680 subjects (most subjects are fa-
mous politicians). The CelebA face dataset is similar to LFW but much more abundant in
scale with over 200,000 images of 10,177 celebrities. Finding the eigenvectors (eigenfaces)
of such datasets is of value. To the best of our knowledge, computing colored eigenfaces for
large-scale face datasets is not widely discussed in the literature due to the significant ex-
tra dimensionality involved when considering all color channels. The LSUN bedroom dataset
(part of the Large-scale Scene Understanding challenge) is the newest, but most abundant in
scale.

Since we cannot acquire the optimal solution using the standard approach, the convergence will
be measured in terms of the average Mean-Squared-Error (MSE) between original samples and
reconstructed ones after computing the first five significant eigenvectors using each technique.
We compute the first five eigenvectors using each technique and compare the results. For the
mini-batch methods, the batch size is set to B = 100. Table 3.7 shows the MSE achieved
by each method after a single data pass. One can note that in all experiments, our second
acceleration strategy produces the lowest errors. In addition, it can be noted that extending
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SM and CCIPCA to work in the mini-batch mode does not always result in better accuracy.
Amongst all techniques, the mini-batch power results in the highest errors due to the relatively
small size of mini-batches. Figures 3.5 and 3.6 show the first five significant eigenfaces of
the LFW and CelebA datasets computed using each technique. The eigenvectros produced
using IPCA, CCIPCA and our acceleration seem consistent. In contrast, SM is producing the
eigenvectors in reversed order.

In order to get a better idea of the reconstruction of images using larger number of eigen-
faces, we computed 200 eigenfaces using the accelerated mini-batch power method and then
reconstruct the face samples. This gives a better MSE of 0.0091. Figure 3.7 compares dif-
ferent images from LFW data and their reconstructions when using 200 eigenfaces. It can be
seen at a glance that the reconstructed images are rather blurry especially in the background
areas. Also one can note that many faces are not well-aligned with their reconstructions.
Only general facial features are preserved including basic facial expressions, rotation (to some
extent), shape, ethnicity, hairstyle and coverings. One other thing to mention is that side
faces are reconstructed in their nearest frontal pose and that occluding objects are filtered
out. When reconstructing noisy samples, eigenfaces seem to be robust to noise as can be
seen in figure 3.8. One of the problems in using eigenvectors as a holistic representation is
determining the appropriate number of basis vectors to form the eigenspace. Such a decision
is hard to make especially if the distribution of the streaming data is unknown. Rather, such a
choice is based on the scree plot of the full set of eigenvalues [ZG06] which is hard to compute
in streaming applications.

Table 3.6: Summary of the large-scale datasets used in the experiments.

LFW faces CelebA faces LSUN bedroom
no. of samples 13,233 202,599 3,033,042
sample type 250× 250 RGB images 178× 218 RGB images 256× 256 RGB images
Reference [Hua+07; Lea14; HJL07; Hua+12] [Liu+15] [Yu+15]

Table 3.7: MSE achieved by each method when computing the first five eigenvectors after a
single pass on the corresponding dataset.

Method LFW faces CelebA faces LSUN bedroom
mini-batch (block) power 0.042395 0.038 0.040677
CCIPCA 0.040468 0.0363 0.038781
mini-batch CCIPCA 0.040478 0.0366 0.038768
IPCA 0.040462 0.0368 0.038796
SM 0.041548 0.0368 0.038777
mini-batch SM 0.040488 0.0366 0.038771
accelerated Oja (1st strategy) ηt = 100

t
αt = t

1+zt
0.040488 0.0363 0.038766

accelerated Oja (2nd strategy) ηt = 100
t
αt = t

1+1000×zt/t 0.040412 0.0362 0.038758
accelerated block power (1st strategy) αt = t

1+zt
0.040487 0.0363 0.038768

accelerated block power (2nd strategy) αt = t
1+1000×zt/t 0.040408 0.0362 0.038758
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3.4.5 Convergence Comparison with The Power Method Under

Low Eigengap Settings

In this section, we study the performance of streaming methods when running multiple data
passes and then compare the results with the batch power method which is one of the most
popular reduced-complexity PCA solvers [GV12]. As discussed in section 2.2.1 in the back-
ground chapter, the convergence of this method to the i th eigenvector depends on the eigengap
∆i = λi−λi+1. While enjoying linear convergence rates, the convergence of this method may
be extremely slow when the eigenvectors are very close in their eigenvalues.

Figure 3.9 shows the results. It can be clearly noted that when initializing the power iteration
randomly from the unit sphere, the method gives very slow convergence due the the small
eigengap problem. On the other hand, when initializing the power method using our tech-
nique after running a single data pass, the convergence results of the power iteration were
substantially improved. In general, one can note that streaming PCA approaches converge
very fast, but in a sublinear manner. In other words, after few data passes, each algorithm
reaches a stable point where no better improvements can be made. What we exactly did here
is that we used the advantage of fast (but rather sublinear) convergence of streaming PCA
to initialize the power method in order to enhance the convergence results. One last point
to highlight is that even under low eigengap settings, applying our acceleration leads to ex-
cellent convergence after a single data pass in comparison to other state-of-the-art streaming
approaches as well as the batch power method.

3.5 Limitations

The streaming PCA model, while significantly reducing the computational cost, suffers key
limitations related to its scalability. Particularly, due to Gram-Schmidt orthogonalization pro-
cesses involved, the studied streaming PCA approaches may have a dominant computational
cost of O(k2d) FLOPs per update. While such orthogonalization should not be performed
after each update, this is not the case when considering time-critical applications that require
monitoring the eigenvectors after each update, as will be visited later in Chapter 6. This causes
a scalability problem when the number of eigenvectors is very large k � 1. In fact, consid-
ering in this case that the overall complexity of most streaming PCA methods is O(k2nd),
one can note that when k2 = O(d), the computational complexity becomes O(nd2) which
is equivalent to the complexity of standard PCA. Furthermore, streaming PCA methods are
highly sequential with linear computational dependence on data dimensionality d which limits
the use of parallel programming resources such as GPUs and makes designing an efficient
hardware accelerated implementation not an easy task. This is even more problematic when
considering massive datasets in which fitting a single sample into the memory space is not
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possible.

3.6 Conclusions

In this chapter, we proposed an acceleration scheme for SGA-based streaming PCA methods.
Particularly, our approach aims to accelerate such algorithms in the mini-batch mode, where
each update step processes multiple samples of the dataset. Experiments on the spiked
covariance model, MNIST, CIFAR-10, LFW, and other large-scale benchmark datasets showed
that applying our scheme to accelerate Oja’s method and the mini-batch power method using
the second learning strategy leads to a significant improvement in the convergence rates in
addition to outperforming other state-of-the-art streaming PCA algorithms. We also showed
that in the case of low eigengap, our acceleration could be used to initialize the power method
after running a single data pass which leads to a substantial improvement in the convergence
results. In short, our acceleration scheme leads to significantly faster convergence rates and
reduced computation run-time. While our scheme was shown to converge very well using
stochastic strategies for scheduling the learning-rates, investigating other strategies to improve
further the performance would be an interesting topic for further research.
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Figure 3.7: Various samples from Labeled Faces in the Wild reconstructed after computing
200 eigenfaces using accelerated block power. Note that the reconstructed images are very
blurry.
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Figure 3.8: Noisy samples from Labeled Faces in the Wild reconstructed after computing 200
eigenfaces using accelerated block power. Note that the noise does not significantly affect
the reconstruction quality.
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Figure 3.9: Comparison between the convergence of streaming methods and the batch power
method when performing multiple data passes. Note that the convergence of the batch power
method, when initialized using the eigenvectors estimation of the accelerated block power, is
significantly better compared to the convergence when applying random initialization.



4 A Parallel PCA Model for High
Dimensional Data

In the previous chapter, we discussed different streaming PCA methods for modelling large
scale datasets. In all experiments, we applied such methods to derive a holistic representation
for the studied datasets. One problem when applying streaming PCA methods in such con-
texts is the fact that these type of methods are highly sequential and not well-scalable when
computing a large number of eigenvectors k � 1. We also show that applying streaming PCA
in the mini-batch mode enhanced the run time and reduced the scalability problem to some
extent. In this chapter, we propose a different methodology for modelling large-scale datasets.
The model is simple and highly parallel overcoming the aforementioned bottlenecks.

4.1 Introduction and Model Description

Recall that the main task of PCA is to compute low-dimensional basis vectors which cap-
ture most of the variability of the input dataset X ∈ Rd×n. These basis vectors correspond
to the k most significant eigenvectors V ∈ Rd×k , k � min(n, d) of the covariance matrix
C = 1

n−1
XcX

T
c where Xc is the dataset after subtracting the sample mean. Such a holistic

linear representation is optimal in terms of the mean-squared-error [Jol02]. However, find-
ing such basis vectors requires O(nd min(n, d)) FLOPs of computation and O(min(n, d)2)

memory space. Hence, analyzing large-scale datasets (of very large min(n, d)) becomes com-
putationally infeasible. We explored in the previous chapter one common type of solution,
namely, streaming PCA which reduces the order of complexity from quadratic to linear. One
problem that recurs in methods of this type, as discussed in the previous chapter, is the fact
that they are not parallel and bear the assumption that the sample dimensionality d is ad-
dressable within the available machine memory space. In many cases, the dataset may be too
large that even a single sample may not fit into a typical modern machine space.

In this chapter, we investigate a different type of solution. The idea is basically to subdivide
each sample into smaller partitions where each partition constitutes a particular subset of
attributes and then apply PCA to each partition separately. While this idea is simple, it has

55
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many major advantages over the traditional holistic approach. By subdividing samples into
p partitions of equal sizes, one can note that the resulting p covariance matrices are smaller
than the holistic one since p.(d/p)2 = d2/p < d2 and the computational complexity becomes
O(nd2/p) instead of O(nd2) (assuming d < n) reducing both space and computational cost.
Moreover, since each partition is processed independently, the approach is highly parallel
and the computation can be further reduced to O(n(d/p)2). Having these advantages on
hand, such a mode of computation raises two main questions. First of all, on what basis are
attributes mapped to different partitions? We propose two different strategies for assigning
attributes to different partitions which we refer to as Cell-based PCA (CPCA) and Band-based
PCA (BPCA). We asses each strategy in terms of the average mean-squared-error and SSIM
between reconstructed samples and their original counterparts in addition to reporting the
run-times when applying CPU and GPU implementations. We find that using the proposed
partitioning strategies significantly enhances reconstruction and dramatically reduces the run-
time. The second question concerns the relation between the partitioned eigenvectors and
the holistic PCA model. Experimental results indicate that when assigning attributes to each
partition randomly, the combination of the resulting partial eigenvectors becomes analogous
to the holistic solution. This suggests that even the baseline instance of the partitioning model
may be a more practical alternative to the streaming PCA approach due to its parallel and
scalable nature.

4.2 Related Work

Partitioning-based PCA has become an active research area in the last two decades specif-
ically for applications in distributed data analysis, computer vision and computer graphics.
Partitioning-based PCA algorithms can be categorized into two types: Sample-based parti-
tioning and attribute-based partitioning. The sample-based partitioning is the most commonly
used approach with profound use in domain applications, including subspace clustering and
distributed systems. Such a family of approaches divides the data into smaller subsets of
samples for two different goals depending on the type of application. In subspace clustering,
the aim is to compute a set of subspaces where each subspace optimally fits a subset of
samples based on their distribution [Vid11]. It has been widely employed for video and motion
segmentation [VMP04; VF14], classification [EV13; EV09] and multi-variate volume visual-
ization [Liu+14]. On the other hand, distributed PCA addresses the problem of analyzing
data partitioned across multiple distributed servers. It can be used either as sample-based
partitioning where each server possesses ni < n samples of high dimension or attribute-based
partitioning where each server streams di < d channels of partial attributes to a global coordi-
nator. The first scenario is typical when considering very high dimensional data distributed in
star-topology networks where each machine performs a local SVD on their samples, followed
by global processing using the center coordinator. Such a problem has also been explored
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in the machine learning community [Qu+02; KVW14; GSS17]. A more challenging scenario
is that when servers are connected in mesh-topology networks which was discussed by Wu
et al. [Wu+18] and Fellus et al. [FPG14]. In this setting, the power method is applied in a
way where after each local update, a globalization procedure is performed using the Gossip
communication protocol [Tsi84; Boy+06; Dim+10]. One can note that in the sample-based
partitioning in distributed PCA, the general problem remains a batch type of learning. On the
other hand, attribute-based distributed PCA is more commonly used in streaming applications,
particularly in the field of multi-sensor signal processing. Attribute-based partitioning was also
investigated for learning the appearance of 3D mesh models using eigen-textures [NSI99] where
PCA is applied to each texture segment of a rotating object. Diamantaras and Kung [DK93]
used PCA basis functions instead of DCT for encoding Intra-frame blocks in the MPEG pro-
tocol. They found that the reconstruction quality achieved by PCA was significantly better in
comparison to DCT. Ye et al. proposed a PCA-based dimensionality reduction method that
preserves the spatial structure in the reduced space [YJL04]. However, the proposed method
works only in offline mode and is not suitable for streaming applications. In this chapter, we
will study attribute-based partitioning PCA in a more general context where we will explore
different partitioning models and compare such models with the standard holistic approach in
terms of computation and reconstruction quality.

4.3 Cell-based PCA (CPCA)

In this section, we address the first strategy for assigning attributes which we refer to as Cell-
based PCA (CPCA). The technique is inspired by the JPEG compression standard [Wal92]
where images are subdivided into small blocks (cells) of size 8×8. Each block is then projected
onto the 2D Discrete Cosine Transform (DCT) basis functions. These basis functions form a
global representation for any 8 × 8 graye-scale images by defining spatial frequencies in the
2D space as discussed in the background chapter (section 2.5.2). Each block is represented in
terms of its projection values on these 64 basis functions. In order to achieve compression, only
a few projection values are chosen for representation, those corresponding to lower frequency
basis functions. The compression step is done via the use of a quantization-matrix (Q-matrix).
The Q-matrix is an 8×8 matrix consisting of divisors for the corresponding projection values.
Each projection value is divided by its corresponding factor and then rounded in order to
achieve quantization and compression by neglecting zero rounded resultants. Hence, the
higher the divisor value the more chance the projection value will be neglected. There is no
trivial way of defining the Q-matrix. However, the Independent JPEG Group (IJG) tables
are the most commonly used Q-matrices [Kor08]. One can note that the main drawback in
such a representation is the difficulty of prioritizing the low-frequency basis functions in the
spatial domain. This becomes even more problematic when dealing with larger block sizes or
three-dimensional volumetric data where the data are subdivided into smaller 3D blocks.
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Figure 4.1: Representing face images using cell eigenfaces.

Unlike JPEG compression, CPCA is a data-driven representation and compression approach.
In this case, basis functions of each individual block are computed by applying PCA to pixels
within the region occupied by the corresponding cell. This brings the advantage of finding
optimal basis functions of each block appropriately ordered based on their significance leading
to minimal reconstruction errors [Jol02] when using a fixed number of basis functions. The
downside of this method is that each block will have its own basis functions (eigencells) based
on the distribution of the input dataset. In our implementation, we include all color channels
for computing eigencells. This is an obvious choice since one would expect the distribution of
colors in a single block to be consistent. Computing cell eigenvectors for larger cell sizes may
not be computable using the standard PCA. For such scenarios, streaming PCA can be applied
instead. Figure 4.1 illustrates the CPCA representation steps when considering a dataset of
face images.

4.3.1 A First Example

As a first test, we applied CPCA on LFW and CelebA face datasets where the cell size was set
to 10×10 RGB pixels. Hence, each cell will contain at most 300 attributes (considering edge-
cells). One can note that computing the optimal eigenvectors using standard PCA for such a
cell size is doable. The eigenvectors of each cell were obtained by computing its covariance
matrix and then applying eigenvalue decomposition (EVD) to the resulting covariance matrix.
Note that EVD is better than SVD in this case due to the large number of samples in
the studied datasets. We used only 20 eigencells (eigenvectors per cell) for encoding and
reconstructing images, resulting in a 15:1 compression ratio. In this thesis, we use the term
compression ratio to describe the reduction in scalar values used for data representation. This
terminology was used similarly by many studies [NSI99; YJL04].

Table 4.1 summarizes the results in terms of the average MSE and the PCA computation
run-time per cell for each dataset. It also compares the results with holistic PCA when
computing 1,000 eigenvectors using our acceleration scheme presented in Chapter 3. The
reported run-times are based on a machine with a 2.6 GHz Intel Core 6700HQ CPU. Recall
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that the LFW dataset contains 13,233 samples of 250×250×3 pixels and CelebA consists of
202,599 images of 178× 218× 3 pixels. The reported run-times take into consideration the
incremental computation of the cell covariance matrices where increments were performed
using mini-batches of size 100. One can see at a glance, that computing cell-based PCA
provides a significantly better reconstruction quality and significantly shorter computation time
compared to the holistic eigenvectors. The MSE when reconstructing CelebA samples is higher
than the one of LFW which may be due to the much larger number of samples in the CelebA
dataset. Another advantage of using CPCA is that one can easily specify the compression
ratio on-demand by changing the number of cell eigenvectors since applying standard PCA
gives the full set of 300 basis vectors per cell. In addition, reconstruction using eigencells
is parallel and can be achieved progressively due to the orderliness in such a representation.
Figure 4.3 compares the reconstruction of a face image from LFW dataset when using only 20
cell eigenfaces with the reconstruction achieved using the first 1,000 holistic eigenfaces. It is
evident that CPCA achieves a much better reconstruction quality while maintaining a higher
compression ratio of 15:1 compared to 13.2:1 when using 1,000 holistic eigenfaces. Figure 4.2
shows reconstructed samples from LFW dataset using the resulting 20 cell eigenfaces where
the lower two samples were excluded from the training set used for computing the eigenspaces.
We can see that even background areas are clear. However, such reconstruction may cause
subtle block boundary artefacts. Such boundary artefacts can be reduced by overlapping the
cells boundaries or by using a deblocking filter. Figure 4.4 shows 20 CPCA basis functions
where each cell differs from others based on the training data spatial distribution. We can
note that lower eigencells count for higher spatial frequency details.

4.3.2 Adaptive Cell-based PCA

A further improvement can be made by adaptively varying the number of eigenvectors per cell
in order to achieve a more optimal tradeoff between compression and quality. The number of
eigenvectors per cell is determined based on the total variability explained by the first k < kmax

eigencells. This can be expressed as follows:

Θ =

∑k
i=1 λi∑dcell
j=1 λj

> T ∨ k < kmax (4.1)

Table 4.1: Average mean-squared-error and run-time per cell (in seconds) for batch CPCA
when applied to LFW and CelebA face datasets.

LFW CelebA
Method Cell-based PCA Holistic PCA Cell-based PCA Holistic PCA
No. of eigenimages 20 1,000 20 1,000
MSE 0.00041 0.0029 0.0009 0.003
average run-time 0.16 Sec hours 1.92 Sec hours
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Figure 4.2: Comparing original samples from LFW dataset (right counterparts) with their
reconstructions (left counterparts) when using 20 eigencells. Note the block artefacts in the
zoomed areas.

where λ is the eigenvalue of the the corresponding eigenvector, k is the number of first
significant eigenvectors, dcell is the total number of attributes per cell and T is a threshold
value, which affects the tradeoff between quality and average number of eigenvectors per cell
(compression). Here, we bound the maximum number of eigenvectors per cell via kmax in
order to guarantee a minimal compression of dcell : kmax . We used the idea of applying CPCA
with adaptive eigencells in the context of 3D volume visualization in [AD16b; AD16a; AD18b;
AD18a].
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1,000 holistic eigenfaces 20 cell eigenfaces Original

Figure 4.3: Reconstructed sample from LFW dataset using 1,000 holistic eigenfaces (with
13.2:1 compression ratio) compared to 20 cell eigenfaces (with 15:1 compression ratio). One
can note the better reconstruction quality obtained when using CPCA despite the higher
compression ratio.

4.4 Modelling non-Spatially Localized Data Using Band-

based PCA (BPCA)

One of the main limitations of CPCA and DCT is that they work only for spatially structured
datasets. In this section, we present an alternative partitioning technique that can be applied
to more general types of datasets. The main idea of the approach is to assign attributes
to each partition (band) based on the distribution of the feature values instead of their
spatial locations. We discuss two different strategies for assigning attributes in the following
subsections.

4.4.1 Mapping Attributes Based on Sample Mean

The main assumption JPEG and CPCA are based on is that neighboring attributes are usually
very similar in terms of their pixel values. However, if the data on hand are not spatially orga-
nized, such an assumption is no longer valid. In this section, we make no spatial assumptions
when assigning attributes to their corresponding bands. Rather, we group attributes that are
close in terms of their mean values which can be described as follows

B = {a ∈ x | lB ≤ E (a) ≤ uB} , (4.2)

where a is an attribute value of x and lB and uB are lower and upper bounds defining the
interval of the corresponding band. Typically, the difference between these bounds should
be small. This can be done by subdividing the range of values in the sample mean into s

sub-intervals. This will give a non-uniform number of attributes per interval. In order to
limit the number of attributes per band, attributes belonging to the same interval are further
sorted based on their mean values and then each L ordered attributes are mapped to a single
band. The main problem is that computing the sample mean requires a pre-processing data
pass, which is prohibitive in case of streaming data scenarios. One can solve this problem by
estimating such statistics from a single mini-batch of the input data assuming samples are
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Figure 4.4: First 20 eigencells of the LFW dataset combined based on their spatial positions
which we refer to as cell eigenvectors (cell eigenfaces in this case).

independent and identically distributed.

4.4.2 Mapping Attributes Based on Mean and Variance

Using only the sample mean as a basis for mapping attributes may neglect important aspects
that attributes of the same band must share. Furthermore, using the mean by itself does not
constitute the distribution of values that a particular attribute may have. It is well-known that
PCA is most effective when samples obey a multivariate normal distribution [HL13]. Hence,
we may assume that attributes of the same band are normally distributed and share similar
parameter values in terms of mean and standard deviation. More technically, this can be
expressed as follows

B =
{
a ∼ N

(
µ,σ2

)
∈ x | lmB ≤ µ ≤ um

B ∧ l sB ≤ σ ≤ us
B

}
, (4.3)
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where µ = E(a) and σ2 = Var(a) are the mean and variance respectively of the attribute a.
In order to achieve such conditions, we subdivide the range of values in the sample mean into
s sub-intervals. After that, we sort samples based on the variance (instead of the mean) and
then group each L ordered attributes into one band.

4.5 Results

We will evaluate the performance of the aforementioned techniques on two large-scale face
datasets, namely, Labeled Faces in the Wild (LFW) [Hua+12] and CelebA [Liu+15]. While
generalizable to more general types of datasets, our choice of such datasets is to build upon
an application where the impact of the holistic PCA has a well-earned reputation. In addition,
this allows for visual inspection of the reconstruction quality. It is worth mentioning that
computing the holistic eigenspace for such datasets is infeasible due to the size of the dataset.
However, we approximate the first eigenfaces using streaming PCA. In particular, we employed
the accelerated mini-batch power using the 2nd learning strategy where αt = t

1+1000×zt/t .

4.5.1 Reconstruction Quality for Different Cell Sizes

We first study the effect of varying the cell-size on the reconstruction quality when maintaining
the same compression ratio of 15:1. Table 4.2 contains the average MSE and SSIM scores for
different cell sizes compared to the reconstruction of 1,000 holistic eigenfaces. We can clearly
note that the CPCA results are much better than the holistic scheme. This is well-reflected
in figure 4.5 where cell boundary artefacts are reduced when increasing cell-size from 5 × 5

to 25 × 25. Figure 4.6 shows reconstructed samples from LFW and CelebA using different
numbers of cell eigenfaces with a cell size of 25× 25.

Table 4.2: CPCA vs. holistic PCA in terms of reconstruction quality.

LFW CelebA
Cell-size 5× 5 × 3 10× 10 × 3 25× 25 × 3 Holistic 5× 5 × 3 10× 10 × 3 25× 25 × 3 Holistic
# of eigenfaces 5 20 125 1,000 5 20 125 1,000
MSE 0.0009 0.0004 0.00027 0.0029 0.0014 0.0009 0.0007 0.003
SSIM 0.8859 0.927 0.9425 0.71 0.8375 0.8768 0.89 0.72

4.5.2 CPU Vs. GPU Implementation

We compare the run-time of CPU and GPU implementations in MATLAB for different cell-
sizes based on a machine with a 2.6 GHz Intel Core 6700HQ CPU and a GeForce GTX
960M GPU. We find that for small cell-sizes the CPU takes lower run-time than the GPU.
On the other hand, for larger cell-sizes, the GPU implementation is faster. This is depicted
in table 4.3 where the average run-times per cell are reported. As mentioned earlier, not
only the EVD operations were counted for the run-time but also the incremental computation
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of the cell covariance matrices. Each cell covariance matrix was updated in a mini-batch
manner using a mini-batch size of 100. We found that even in this case, the mini-batch is
advantageous in terms of processing speed. The main downside when applying CPCA is the
large memory space required for storing the cell covariance matrices. For instance, applying
CPCA on the CelebA dataset using a cell size of 25× 25 costs 4GB of memory space. Having
that said, the size of the resulting p covariance matrices is still smaller than the holistic one
since p.(d/p)2 = d2/p < d2. Besides this, approximating the top 1,000 eigenvectors of both
datasets using streaming PCA costs several hours of computation.

Table 4.3: CPU vs. GPU average run-times per cell in seconds.

LFW CelebA
Cell-size 5× 5 × 3 10× 10 × 3 25× 25 × 3 5× 5 × 3 10× 10 × 3 25× 25 × 3
CPU run-time/cell 0.0427 0.16 7.87 0.44 1.92 63.3
GPU run-time/cell 0.3273 0.295 3.19 0.9 1.2845 4.39

4.5.3 Comparing BPCA Performance for Different Mapping Strate-

gies

We now compare the different strategies for BPCA. For image datasets, due to the redundancy
in the color channels, we assign pixels to different bands based on one color channel (in this
section, we used the R channel, but a more general approach would be to use a grayscale
transformation). Since we are addressing streaming and large-scale data in this study, we
estimate the sample mean and variance using a subset of the dataset which we refer to as
the estimating subset. We study the reconstruction quality for different estimating subset
sizes and compare with performance when using the whole number of samples for computing
mean and variance. As we found earlier in this section that increasing the cell size enhances
the reconstruction results, we set the maximum attributes allowed per band L to 1,875 and
S to 50. We report reconstruction quality in terms of MSE and SSIM when using 125 band
eigenfaces. Due to the way our mapping strategy assigns attributes, the number of attributes
per band may be smaller than L for many bands resulting in different compression ratios than
the desired target (15:1). We also test BPCA when applying random mapping where attributes
are assigned to different bands in a random manner. Table 4.4 compares reconstruction results
between the baseline random-mapping model and the two proposed mapping strategies for
different estimating subset sizes. We studied the reconstruction quality on the LFW dataset.
Both proposed mapping techniques are much better in reconstruction than the baseline model.
It is evident that mapping attributes using the mean and variance gives better results compared
to the mean-based technique. In addition, increasing the estimating subset size enhances the
results. However, the reconstruction results for CPCA are still better despite using lower
compression ratio. Figure 4.7 shows many images reconstructed using different mapping
strategies of band based PCA. Clearly, random-mapping BPCA results in poor reconstruction
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quality, whereas mean mapping produces some dithering artifacts. These dithering artifacts
are enhanced when using the mean-variance mapping.

4.5.4 Analogy with the Holistic Eigenspace

Figure 4.8 presents a comparison between holistic eigenfaces and combined band eigenvectors
(band eigenfaces) resulting from random-mapping BPCA. Interestingly, the eigenfaces result-
ing from random-mapping BPCA show a high resemblance to the holistic ones. This is also
depicted in figure 4.9, where the explained variance curves of each partitioning strategy are
presented. Both CPCA and mean-variance BPCA cover much more variations compared to
random-mapping BPCA and holistic PCA. This suggests that the baseline of BPCA, achieved
when randomly mapping attributes to different subsets, produces an eigenspace that is anal-
ogous to the holistic solution. The impact of this finding is that random-mapping BPCA,
while providing the baseline performance, offers a more practical alternative to streaming
PCA methods due to its parallel and scalable nature.

4.5.5 A Note on BPCA and Random-mapping

We showed in this section that the performance of mean-variance BPCA is significantly better
compared to holistic PCA and the baseline random-mapping model. One question to inves-
tigate is to what extent can this be true for other applications? Based on our experiments
in this chapter, we can say that BPCA can be significantly better in cases where the data
attributes follow a multivariate normal distribution as the case in LFW and CelebA datasets.
However, we will see later in Chapter 6 that for some type of data, BPCA provides almost
the same reconstruction quality as the random-mapping model. Hence, BPCA provides a
vary practical solution for a wide-range of applications where the data attributes follow a
multivariate normal distribution. For other types of data, the efficacy of BPCA needs further
investigation.

4.6 Conclusions

In this chapter, we proposed two partitioning-based PCA methods for modelling large-scale
datasets. The main idea is to divide data attributes into smaller subsets and then apply PCA

Table 4.4: Reconstruction quality of BPCA when using the two mapping strategies and with
different estimating subsets compared to the baseline random mapping.

random mapping Mean-based mapping Mean-variance-based mapping
Estimating subset size - 100 1000 full samples 100 1000 full samples
compression ratio 12.5:1 12.6:1 12.6:1 12.8:1 12.7:1 12.6:1 12.6:1
MSE 0.0091 0.0028 0.0017 0.0015 0.0016 0.0009 0.00074
SSIM 0.43 0.72 0.79 0.815 0.79 0.86 0.875
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to each partition separately. We showed that such models have many advantages over the
standard holistic approach, including reduced reconstruction errors, increased parallelism and
scalability. The first model, CPCA, was inspired by the JPEG compression standard where
images are spatially divided into smaller blocks. We showed that reconstruction errors were
significantly reduced when using only 20 cell eigenfaces in comparison to the reconstructions
using the holistic eigenfaces. However, such a technique produces subtle cell boundary ar-
tifacts in the reconstructed samples, which can be reduced by increasing the cell size. The
second model, BPCA, is more general in that it makes no spatial assumptions when mapping
attributes but rather such mapping is based on the distribution of the values of attributes.
We showed that mapping attributes using the mean and variance was better than mapping
based only on the mean. Both mappings were shown to be superior to the random mapping
model. We also found that the eigenfaces produced using random-mapping BPCA resemble
the holistic eigenfaces. This suggests that the random-mapping BPCA gives the baseline
performance which is analogous to the holistic PCA approach but entails lower memory costs
and computation run time. Not only are our proposed methods beneficial for data compres-
sion, but they may also provide light-weight data representation for further machine learning
tasks as will be explored in the next chapter. Investigating other partitioning strategies for
non-normally distributed data is an interesting avenue for future research.
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5× 5 10× 10 25× 25 original

Figure 4.5: Reconstructed samples from LFW and CelebA when maintaining 15:1 compression
ratio using cell eigenfaces of different cell-sizes. Note that block artefacts are more apparent
when using smaller cell sizes.
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75 cell eigenfaces 125 cell eigenfaces 200 cell eigenfaces original

Figure 4.6: Reconstructed samples from LFW and CelebA when using different numbers of
cell eigenfaces of cell-size 25 × 25. Note that the more number of cell eigenfaces used the
better reconstruction quality achieved and the less apparent the block artefacts.



4.6. CONCLUSIONS 69

random-based mapping mean-based mapping mean-variance-based mapping original

Figure 4.7: Reconstructed samples from LFW dataset using different mapping strategies for
BPCA. Note that the mean-variance mapping provides a better reconstruction compared to
mean-based mapping.
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(a) LFW eigenfaces

(b) CelebA eigenfaces

Figure 4.8: Comparing the holistic eigenvectors of LFW and CelebA computed using streaming
PCA with the solution produced by baseline random-mapping model (bottom rows).
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Figure 4.9: Comparison between the different mapping strategies with the holistic PCA in
terms of the explained variance curve.
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5 Learning from Limited and Reduced-
representation Examples

In the previous chapter, we introduced two partitioning-based PCA models and highlighted
their advantages over the traditional holistic scheme, including reduced run-time and recon-
struction errors. In this chapter, we utilize CPCA for deriving lightweight representations that
would lead to a better perception in supervised deep learning classifiers even when considering
a limited number of training examples. By perception, we mean the classification accuracy of
the trained model on the test samples. Our motivation for teaching such models using limited
examples is to ensure more efficient learning using minimal information. We further develop
a novel CNN classifier, RedNet, that can outperform state-of-the-art deep learning models
when trained with limited examples. We compare the perception of RedNet when represent-
ing samples using CPCA and the conventional image downsampling representations.

5.1 Introduction

While PCA has been widely employed for classification tasks such as face recognition, the
scale of datasets nowadays is beyond the computation constraints of typical modern machines
to compute the eigenspace. In recent years, the use of neural networks has gained more
attention in the machine learning community. In particular, deep convolutional neural networks
are in rapid development in the field for many reasons. Firstly, they are much lower in
computational cost compared to the fully-connected multi-layer perceptron (MLP) and can
be easily parallelized using GPUs. In addition, they achieve state-of-the-art results in a wide
range of learning tasks, including image classification and pattern recognition.

Despite the elegance of convolutional neural networks, the massive size of datasets nowadays
remains one main hurdle that impacts the learning time of such models. For instance, the
ImageNet dataset, one of the most influential datasets in the deep learning community, consists
of 15 million high-resolution images of over 22,000 classes. A deep convolutional neural
network may take up to months to be fully trained on such a dataset, not to mention the
stochastic learning nature of these paradigms. In addition, state-of-the-art deep CNNs are

73
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trained with relatively large numbers of samples. For example, the CIFAR-10 dataset, one
of the most widely used benchmarks for classifying low-resolution images, contains 50,000
training samples with 5,000 images per class. It would be thus interesting to ask: What
would be the performance when training deep learning models using limited examples? This
question is motivated by the fact that learning with minimal training examples implicitly entails
a more efficient learning mechanism.

5.2 Objectives

The main objective of this chapter is to find efficient strategies for enhancing the perception of
state-of-the-art deep learning classifiers considering a limited number of reduced-size examples.
This requires investigating the two aspects of the problem. Firstly, one needs to reduce the
size of the input samples in a way that preserves its key features. It is also essential to ensure
that the reduced representation is spatially structured so that it is possible to apply deep CNN
models. It is well-known that deep CNNs implicitly perform dimensionality reduction on the
input samples. However, such an implicit process adds extra overhead computational cost
and hence significantly increases the learning time. It is becoming interestingly common to
downsample high-resolution image datasets in order to speedup the training of deep CNNs.
Another possible solution is to employ deterministic dimensionality reduction schemes such
as PCA or LDA. However, the fact that such schemes are considered to be holistic data
representations makes applying such paradigms in conjunction with CNNs not appropriate. In
addition, such a holism tends to focus mainly on global features while neglecting important
local details. This concern also applies to fully-connected multi-layer perceptron models.
It is very important also to consider that performing PCA on high-resolution images may be
infeasible due to the quadratic computational dependence on data size. In order to address this
problem, we utilize CPCA as a CNN-friendly dimensionality reduction scheme that efficiently
reduces the size of the input samples while preserving their main features.

The second and more important aspect concerns the actual perceptual process in the CNN.
In particular, how to boost the accuracy of the model given appropriately reduced but lim-
ited patterns? To the best of my knowledge, this important question has not been widely
discussed in the literature. We investigate effective treatments for such a problem. We show
that applying cross channel normalization in conjunction with grouped convolutional layers
significantly enhances the accuracy. Based on these techniques, we develop a novel CNN
model, RedNet, that is able to outperform state-of-the-art deep learning classifiers when con-
sidering limited training examples. Furthermore, we show that the accuracy of RedNet when
representing samples using CPCA is better compared to the performance when downsampling
images using conventional bicubic interpolation.
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5.3 Related Work

There have been very important advances regarding the development of deep learning models
for image classification. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
series is a yearly event that is specialized in evaluating such models using the ImageNet
dataset [Rus+15]. In 2012, Alex Krizhevsky won the challenge and published one of the most
influential papers in the area of convolutional neural networks [KSH12]. The model described
in the paper was later referred to as AlexNet. This model has provided many contributions
to the art of CNN design starting form the use of rectified linear units instead of the sig-
moid functions, to the simulation of lateral inhibition in real neurons using cross channel
normalization and ending with the use of grouping convolutional layers which effectively use
the GPU resources to increase training efficacy. Despite being outperformed by other net-
works in accuracy, it remains one of the best CNNs in terms of learning speed. Simonyan
and Zisserman proposed the VGG network in 2014 which mainly uses 3 × 3 convolutions
in a way that increases the network depth while maintaining the computation [SZ14]. The
GoogleNet, proposed by Szegedy et al., applies multi-scale processing and follows the Hebbian
principle [Sze+15]. This increases both depth and breadth of the network. Both VGG and
GoogleNet won the ILSVRC contest in 2014. One problem that arose with deep CNN is the
vanishing gradient problem in which back-propagated gradients become close to zero due to
the deep architecture. This prevents weights from being changed, especially in the first layers
which may slow-down or even freeze the learning process. The idea of residual learning in
neural networks received wide acclaim in the community for solving such a problem espe-
cially after ResNet won the 2015 challenge [He+16]. Residual networks are also analogous
to the neurons in the human brain. Huang et al. generalized the concept of ResNet using
Dense Convolutional Networks (denseNet) [Hua+17]. Zagoruyko and Komodakis studied the
perception of residual architectures when increasing the number of feature maps and adding
dropout layers in each residual block while decreasing the overall depth [ZK16]. More sophis-
ticated architectures were later proposed based on the hybridization of the aforementioned
models. For instance, ResNeXt, the winner of the 2016 challenge, combines ResNet and
AlexNet architectures [Xie+17]. Other hybrid CNNs include Xception [Cho17], Inception-
v3 [Sze+16] and Inception-ResNet-v2 [Sze+17]. It can be noted that deep CNNs in recent
years tend to be much wider and deeper in architecture (with more than hundred convolu-
tional layers) and hence more computationally expensive. In addition, state-of-the-art CNNs
are tested with large number of samples. To the best of our knowledge, performance of such
networks when using limited training examples has not been reported. From another perspec-
tive, while CNNs implicitly apply dimensionality reduction across layers through the use of
pooling units, the role of deterministic dimensionality reduction approaches (such as PCA) in
CNNs is still unclear. Could deterministic dimensionality reduction approaches lead to better
perception in the CNN perspective? Chan et al. studied the use of convolutional filters that
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are computed using PCA and Linear Discriminant Analysis (LDA). The derived model was
called PCANet. They found that such simple networks led to promising results when tested
on many classification datatasets [Cha+15]. One main limitation of this technique, from a
high level perspective, is the fact that the PCA filters used are computed based only on the
input sample and not based on the whole dataset distribution. More recently, Gueguen et al.
proposed using the coefficient (scores) in the JPEG-DCT space as light-weight representation
for ResNet-50 model [Gue+18]. This led to improvement in accuracy with up to 1.3 speedup.
Since the DCT space is derived per sample and does not depend on the distribution of the
dataset, this model shares the same limitations as PCANet.

5.4 ConvNet vs MLP

In Section 2.4.1 in the background chapter, we introduced the main mechanism behind the
fully-connected feed-forward MLP learning using the back-propagation algorithm. In this
section, we discuss the basics of convolutional neural networks and their main differences from
MLPs. Unlike MLP, where each unit in a layer depends on the entire units in the previous
layer, CNN regularizes spatial patterns using a moving window type of processing. In this
case, each unit in a layer depends on units in the previous layer within a specific patch. The
moving window consists of multiple filters (also referred to as kernels or convolutions) where
each filter contains weights for the corresponding patch. The window moves through the
entire image with a specific stride. After computing the convolutions, the activation function
is performed followed or preceded by a normalization process. The activation function is
usually a rectified linear unit (ReLU) defined as follows f (x) = max(0, x). Such activation
was found to be advantageous compared to the sigmoid function in terms of minimizing
the loss function [KSH12]. It has become a common practice to use normalization layers in
CNNs. There are two main types of these layers that will be discussed more in section 5.5.2.
Pooling layers may also be used in CNNs. These layers operate a moving window in which a
single value is chosen per patch per kernel. Two types of pooling layers are commonly used,
max pooling and average pooling. The output of each convolutional layer is referred to as a
feature map. The final layers usually follow the structure of fully-connected MLP. Like the
conventional MLP, CNNs are also trained using the back-propagation learning algorithm in
which convolutional gradients are derived using the chain rule. Figure 5.3 shows a simple
CNN structure consisting of one convolutional layer, one pooling layer and fully-connected
MLP layers.
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Figure 5.1: A simple CNN structure.

5.5 RedNet: A Deep Learning CNN for Reduced-size

Patterns

In this section, we describe the structure of our deep CNN. The network works on low-
resolution images and is inspired by the AlexNet model. The main difference between our
network and AlexNet is that we use cross-channel normalization after each convolutional
layer, whereas in AlexNet there only exist two cross-channel normalization layers. We also use
different parameters for such layers.

5.5.1 Cross Channel Normalization

For the normalization layers, there are two main types that are usually used: Batch normaliza-
tion and cross channel normalization (also known as local response normalization). The batch
normalization is the most commonly used in the literature [IS15]. It basically normalizes each
value in the feature map as follows

xnormi ,(x ,y) =
xi ,(x ,y) − x̄Bi ,(x ,y)√(

σB
i ,(x ,y)

)2

+ ε

,

where x̄B and σB are the mean and variance of mini-batch B respectively and i , (x , y) defines
the value location within the feature map. The cross channel normalization layer, while not
widely used, has a strong resemblance to the human biological neural system. It simulates the
lateral inhibition phenomenon where excited neurons subdue their neighbors in order to allow
for increased sensory perception. Cross channel normalization is usually placed after ReLU
activation units. In our model, we applied cross channel normalization using the following
formula

xnormi ,(x ,y) =
xi ,(x ,y)(

K + α
nw

∑min(Nchannel ,i+nw/2)
j=max(1,i−nw/2+1) x

2
j ,(x ,y)

)β
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where α, K and β are hyperparameters and nw is the window size and Nchannel is the number of
kernels in the current layer. We set the window size to 16, K = 1, α = 0.02 and β = 0.75. We
found that such biologically inspired normalization significantly boosts accuracy in comparison
to the batch normalization as will be discussed in the results section. However, the main
downside of such a strategy is the expensive computational cost, specifically when using large
window sizes.

5.5.2 Grouped Convolutional Layers

Grouped convolutional layers were first introduced in Krizhevsky’s paper [KSH12]. They
efficiently use GPU resources to create multiple learning paths in order to enhance classification
accuracy. The efficiency of such a technique was further discussed by Xie et al. in their
ResNeXt model, where each residual block contained 32 learning paths [Xie+17]. This has
pushed state-of-the-art results on a number of benchmarks including CIFAR-10 and ILSVRC
2016 challenge. In our model, we employed two learning paths using grouped convolutional
layers. We found that such a technique enhances the average accuracy according to our
experiments.

5.5.3 Overall Structure

Figure 5.2 shows the detailed structure of our CNN. We refer to this network as Reduced Net
(RedNet). One can note that there are no pooling layers in the network. We reduce the feature
map size across layers by applying convolutions with strides greater than one and setting
the padding to zero in most layers. Dropout layers are used in order to regularize network
performance. The initial network weights were set according to Glorot initializer [GB10]. The
input size of the network is set to 25 × 25. We test the network when reducing the size
of the original images using bicubic interpolation. We then compare the performance when
using the CPCA representation. The image pixel values were represented as doubles in the
range of [0, 255]. We found that such range of values give better classification accuracy.
Other state-of-the-art models use [0, 1] pixel representations. Hence, in the results section,
we use the first representation for RedNet and the second [0, 1] representation for the other
state-of-the-art models.

5.6 Experiments

5.6.1 Main Task

As a testbed, we consider the task of recognizing faces from LFW dataset. One problem in
this dataset is that the number of samples per subject is limited and not uniform. In fact, most
subjects have fewer than 10 samples. We conduct our empirical evaluation on the subjects
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Figure 5.2: Details of the RedNet layers.

associated with largest number of samples. For each subject, we choose a fixed number of
training and testing samples. We evaluate performance based on a number of trials where
in each trial the training set and test set are selected randomly. Two experimental settings
are considered. The first one, LFW-14-subject, considers 14 subjects of which each has 45
training images and 3 test images. The second setting, LFW-24-subject, takes 24 subjects
with 30 training images and 5 testing images per subject. The LFW dataset addresses the
problem of identifying the face in uncontrolled environment. While there are many enhanced
versions of the LFW dataset where images are deep-funnelled in order to limit face variations
and improve the recognition rate, we used the original version in our experiments. We choose
the LFW dataset for evaluation because of the fact that the unconstrained face recognition
problem is one of the best examples for such type of problems where subject samples are
limited and low in resolution; for instance, faces in a CCTV stream. Other datasets such as
CIFAR-10 and ImageNet are more suited for cases where the training samples are immense;
for instance, we can obtain in practice thousands of images of frogs, buses, etc. That said, the
unconstrained face recognition problem should not be taken as an easier task, and that from
a practical perspective, this can be of significance to many real-world applications.

5.6.2 Results

We first evaluate the performance of RedNet when representing images using CPCA and
bicubic interpolation. We use LFW-14-subject in this evaluation. Figure 5.3 shows 10 samples
for each subject downsampled to 25× 25 pixels using bicubic interpolation [Key81] where the
amount of variations in face appearance can be clearly noted even for the same subject . We
run 100 trials and report the statistics on the test set. As mentioned earlier, for each trial, the
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Figure 5.3: Downsampled face images using bicubic interpolation from 250×250 pixels down
to 25×25 pixels. This depicts the main challenges that can occur in an image including scale,
rotation, expression, illumination and background variations.

training set and test set are chosen on a random basis. The bicubic interpolation is performed
on both grayscaled and colored images producing images of size 25× 25× 1 and 25× 25× 3

respectively. For CPCA, the cell-size is set to 10×10. This results in a reduced representation
of size 25 × 25 × neig where neig is the number of eigenvectors per block. We studied the
CPCA representation for different numbers of neig , namely, neig ∈ {1, 2, 3, 4, 10}. The cell
eigenfaces are computed based on the full LFW dataset. For each representation, we train
the RedNet model using 200 epochs with a mini-batch size of 128. The learning algorithm
is stochastic-gradient-descent with momentum of 0.9 and initial learning rate of 0.008. The
learning rate is halved every 100 epochs. In all experiments in this chapter, we applied `2-norm
regularization with a factor of 0.0001. We do not apply any data augmentation in the training
phase. However, we applied data shuffling after each epoch. We also study the perception of
RedNet when replacing the Cross channel normalization units with batch normalization layers
in order to show how such a technique can significantly enhance the accuracy. In the case of
batch normalized RedNet, we place the normalization layers before the ReLu units as done in
the literature.

Table 5.1 reports the statistics. It is evident that when representing images using CPCA, the
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Table 5.1: RedNet classification results on LFW-14-subject when employing CPCA in com-
parison to bicubic downsampling.

Model Batch Norm RedNet
(CPCA) RedNet (CPCA) RedNet (bicubic)

Input Size 25× 25× 3 25× 25× 1 25× 25× 2 25× 25× 3 25× 25× 4 25× 25× 10 25× 25× 1 (grayscale) 25× 25× 3

Mean Accuracy 58.6% 73.1% 75.95% 76.45% 75.36% 75.43% 67.48% 73%
Standard Deviation 7.34% 6.23% 6.14% 5.7% 6.77% 5.93% 7.23% 5.78%
Mode 54.76% 71.43% 76.19% 73.81% 73.81% 76.19% 71.43% 71.43%
Mode Probability 0.15 0.18 0.19 0.17 0.15 0.18 0.15 0.2
Pr(accuracy > 70%) 0.04 0.69 0.83 0.87 0.78 0.79 0.37 0.72
Pr(accuracy > 80%) 0 0.13 0.26 0.31 0.28 0.25 0.05 0.12
Max Accuracy 78.57% 88.1% 88.1% 88.1% 90.48% 88.1% 85.71% 85.71%
Min Accuracy 42.86% 59.52% 61.9% 59.52% 59.52% 61.9% 47.62% 57.14%
No. of Epochs/trial 400 200
Mini-batch Size 128
No. of trials 100

accuracy of RedNet (when applying cross channel normalization) is significantly enhanced in
all statistical aspects. The network gives the best performance in terms of the mean accuracy
when using three eigenvectors per block neig = 3. One can also note that in case of only
a single cell eigenface neig = 1, the network accuracy is better compared to the grayscale
downsampling. However, other than the slightly enhanced marginal performance, there is
no notable improvement when increasing the number of eigenvectors per block over 3 cell
eigenfaces. One can also note that the batch-normalized version of RedNet gives very poor
results despite using the CPCA representation and being trained with more epochs. This
suggests that the cross channel normalization gives remarkably better perception especially
when dealing with limited training examples.

We now compare the results of RedNet with state-of-the-art models trained from scratch
using high-resolution images from LFW-14-subject. In particular, we examine the perception
of AlexNet, GoogleNet, 18-layer ResNet, Inception-v3 and Xception. For each model, images
are resized using bicubic interpolation to fit the size of the corresponding input layer. We
follow the training settings specified in the original papers as much as we can. However,
for GoogleNet we adapt the settings to work properly with the dataset so that the loss
function is minimized better in the training phase. The mini-batch size is chosen based
on the computation capability. Experiments are conducted on a machine with a GeForce
GTX 970 GPU. For state-of-the-art models, weights are initialized as specified in the original
papers. Table 5.2 shows the results on the test set as well as the training settings. It can
be noted that RedNet achieves the best results in comparison to state-of-the-art models even
when representing images using the bicubic downsampling. On the other hand, state-of-
the-art models give much lower accuracy despite being trained with higher-resolution images.
Excepting AlexNet, all models take remarkably longer training time when considering the same
number of epochs (200 epochs).

Lastly, we evaluate the accuracy with deep models utilized for low-resolution images of size
32 × 32 × 3. Specifically, we compare performance with 56-layer ResNet, Wide-ResNet of
depth 28 and width 10, and last but not least DenseNet with network growth of 24 and depth
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Table 5.2: Comparing results of state-of-the-art models trained from scratch using high-
resolution images from LFW-14-subject with the results of RedNet.

Model RedNet (CPCA) RedNet (bicubic) AlexNet GoogleNet ResNet-18 Inception-v3 Xception
Input Size 25× 25× 3 25× 25× 3 227× 227× 3 224× 224× 3 224× 224× 3 229× 229× 3 224× 224× 3
No. of trials 100 100 100 100 30 10 10
Mean Accuracy 76.45% 73% 58.98% 64.83% 44.37% 65.48% 54.5%
Standard Deviation 5.7% 5.78% 7.3% 10.18% 11% 9.41% 14.95%
Mode 73.81% 71.43% 54.76% 64.29% 50% 73.81% 50%
Mode Probability 17/100 20/100 14/20 14/100 5/30 4/10 3/10
Max Accuracy 88.1% 85.71% 73.81% 85.71% 69.05% 73.81% 88.1%
Min Accuracy 59.52% 57.14% 40.48% 30.95% 21.34% 47.68% 42.86%
Mini-batch Size 128 128 128 64 128 32 32
Training Time 13.2 minutes 13.2 minutes 12 minutes 27.35 minutes 25 minutes 8.5 hours 9.9 hours
No. of Epochs 200 200 300 200 200 200 200

Training Settings

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.008

Drop factor:

0.5

Drop period:

every 100 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.008

Drop factor:

0.5

Drop period:

every 100 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.0008

Drop factor:

0.5

Drop period:

every 100 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.002

Scheduler:

constant learning rate

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.1

Drop factor:

0.1

Drop period:

every 60 epochs

Learning:

RMSprop

square gradient decay rate:

0.9

Initial learning rate:

0.045

Drop factor:

0.94

Drop period:

every 2 epochs

Gradient threshold:

2

using `2-norm

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.045

Drop factor:

0.94

Drop period:

every 2 epochs

of 100. In order to have a better idea of the performance when increasing the number of
subjects and reducing the number of training samples, this evaluation is based on the LFW-
24-subject where each subject has 30 training images and 5 test images. Table 5.3 report
the results. It is apparent that the RedNet accuracy is much better compared to the other
models. In addition, it can be noted that despite the decline in RedNet average accuracy from
76.54% to 67.52% when increasing the number of subjects and decreasing the number of
training samples, the minimal accuracy achieved is interestingly very close to the one resulted
from LFW-14-subject.

5.7 Conclusions

In this chapter, we investigate how to efficiently train deep learning models for classification
tasks using limited and reduced-size training examples. We propose a novel deep CNN model,
RedNet, that is inspired by AlexNet but uses more cross channel normalization layers. We
show that such a biologically inspired process significantly enhances the perception of the
model in such scenarios. We also show the efficacy of CPCA as a CNN-friendly dimensionality
reduction scheme that is able to reduce the size of the training samples while preserving
their main features. Experiments on LFW-14-subject and LFW-24-subject show that the
classification results of RedNet are always better when using CPCA instead of the traditional
downsampling technique. In addition, we show that state-of-the-art deep convolutional neural
networks, including ResNet, DenseNet, WResNet and Inception-v3 achieve poor results in such
scenarios compared to RedNet. In terms of future work, it would be interesting to investigate
non-linear representation paradigms such as cell-based kernel PCA.
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Table 5.3: Comparing results of state-of-the-art models trained from scratch using 32 × 32
resolution images from LFW-24-subject with the results of RedNet.

Model RedNet (CPCA) RedNet (bicubic) ResNet-56 Wide-ResNet 28× 10 DenseNet-100 (k = 24)
Input Size 25× 25× 3 25× 25× 3 32× 32× 3 32× 32× 3 32× 32× 3
No. of trials 100 100 100 40 30
Mean Accuracy 67.52% 65.83% 42.03% 54.5% 49.28%
Standard Deviation 3.96% 3.9% 4.78% 4.3% 5.57%
Mode 66.67% 65.83% 40.83% 52.5% 52.5%
Mode Probability 11/100 19/100 11/20 6/100 3/30
Max Accuracy 76.67% 74.17% 57.5% 63.3% 59.17%
Min Accuracy 58.33% 55.83% 29.17% 45% 38.33%
Mini-batch Size 128 128 128 128 64
Training Time 16.2 minutes 16.2 minutes 8.5 minutes 1.4 hours 3.3 hours
No. of Epochs 200 200 300 200 200

Training Settings

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.008

Drop factor:

0.5

Drop period:

every 100 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.008

Drop factor:

0.5

Drop period:

every 100 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.1

Drop factor:

0.1

Drop period:

every 60 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.1

Drop factor:

0.2

Drop period:

every 60 epochs

Learning:

SGDM

Momentum:

0.9

Initial lr:

0.1

Drop factor:

0.1

Drop period:

every 150 epochs



84CHAPTER 5. LEARNING FROM LIMITED AND REDUCED-REPRESENTATION EXAMPLES



6 Modelling Time-varying Systems

Up to this point, we considered large-scale datasets where samples are mutually independent.
In this chapter, we address the problem of modelling time-varying systems where each sample
depends on the previous time-steps. Analyzing time-varying data has been of significant
importance to many scientific fields. In particular, this chapter delves in detail in the area
of modelling physical time-varying observations due to the importance of designing efficient
low-complexity PCA methods for such a type of applications and because the work of this
PhD was primarily motivated by this area of study. What makes time-varying data analysis
more challenging is the lack of benchmark evaluation strategies, particularly, the existence
of benchmark test datasets. Furthermore, time-varying data can appear in many different
types of dynamics and formats for which processing may vary significantly. The contribution
of this chapter is two-fold. We first show the importance of using PCA for analyzing a wide
array of time-varying systems by decomposing the system behaviour into a number of key
dynamic modes. In addition, since standard PCA is not well scalable in terms of data size and
dimensionality, we investigate the performance of streaming and partitioning-based PCA for
such types of problems.

6.1 Introduction

Time-varying systems appear naturally in our world from the hourly weather readings to the
population growth and global warming. Understanding the behaviour of such systems has
been of paramount significance to the development of many scientific fields. Many physical
phenomena, if not most, are described using time-dependent mathematical models. For
instance, Newton’s laws of motion, Schrödinger and Dirac equations which are amongst
the most well-known landmarks in Physics are all indeed time-dependent models. In general,
finding the time-dependent model that best describes a set of observations is not an easy task.
One can find such models analytically having a deep understanding of the studied problem.
However, the analytic solution of the input observations may not be possible due to the large
size of the observation space (parameter space). As the typical parameter space is growing in
size, designing efficient automatic modelling schemes for understanding the behaviour of the
underlying systems is in high demand. Such a problem is challenging from many perspectives.

85
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Firstly, such scientific simulations have different types of dynamics (stationary, harmonic,
chaotic, etc) and data representations. The analysis methodology of each type differs from
the other. In addition, due to the fact that modern datasets are very large in size, where
time-varying data is no exception, the desire is more on designing scalable models.

In this chapter, we consider time-varying systems that are based on the wave equation. Such
a model can describe the dynamics of a wide range of physical phenomena. We show that
the solution derived by PCA to such systems is analogous to the analytic solution. This is
of importance when finding the analytic solution is not feasible due to the streaming nature
and large-scale of the data on hand. Furthermore, due to the fact that PCA has quadratic
complexity dependence on data size, it may even not be possible to find the solution using the
standard PCA, a problem that has not been well-explored in the literature. In order to solve
this problem, we employ the techniques proposed in the previous chapters, namely streaming
PCA and partitioning-based PCA and investigate their performance in terms of complexity,
scalability and quality.

6.2 Related Work

Time-varying data analysis has gained more attention in the scientific visualization commu-
nity. Since most scientific simulation data are massive in scale, most research emphasis is
on designing efficient ways for extracting meaningful patterns from such simulations in order
to better understand their dynamics. One common approach for analyzing large-scale time-
varying volumetric data is to subdivide the volume into subblocks based on some strategies.
Wang et al. proposed an importance-driven approach for time-varying volumetric data vi-
sualization [WYM08]. The approach subdivides the volume into blocks and then prioritize
these blocks based on their importance curves. These importance curves were further used
to detect abnormal events in the data. Chen et al. proposed a method for efficiently ex-
tracting spatio-temporal correlation patterns in order to analyze large-scale multivariate time-
varying data [Che+11]. Borrowing techniques from the area of video compression and encod-
ing, Jang et al. used basis function representations for compressing time-varying volumetric
data [JEG12]. Other techniques for visually understanding time-varying data are based on the
ways cartoonists depict motion in a single illustration such as speed-lines. Joshi and Bheingaus
investigated the use of such techniques to better visualize time-varying data [JR05].

The use of PCA for modelling time-varying systems has been well-investigated in the biolog-
ical physics community. In particular, PCA has been widely applied for identifying domain
collective motion in biomolecular systems as an alternative to Normal Mode Analysis (NMA).
Such a collective motion provides key insight into the biological functionality of these systems.
Examples of such biomolecular systems include proteins [Vin09], enzymes [KW10] and nucleic
acids [Oro+03], which all form the building block of our life. This collective type of dynamics
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is not limited to biomolecular systems. In fact, non-biological molecules vibrate in a very
similar manner that can also be described using NMA. The study of such vibrations is of po-
tential importance to many fields in Physics including Carbon nanotubes technology [Rao+97;
SXZ12] and neutrino oscillation [Air+18].

Studying the vibrations of polyatomic molecules (molecules with more than two atoms) by
means of normal modes is a rather old technique dating back to 1940s when a comprehensive
review of the topic was provided by the Nobel Prize laureate Gerhard Herzberg [Her45].
This involves solving an eigenvalue problem of which the number of solutions has quadratic
dependence on the number of atoms in the studied molecule. The main problem is that finding
the analytic solution in this way may be not feasible if the number of atoms is too large. It
was not until the pioneer work of Trion [Tir96] when a simplified reduced parameter model
was proposed in place of the memory and computational demanding traditional paradigm.
The idea was further developed to what is known as the Elastic Network Model (ENM) and
Gaussian Network Models (GNM) [BAE97; Ati+01; YSJ09]. In general, these techniques
aim to reduce the size and complexity of the system using the concept of coarse-grained
modelling which treats the whole molecular system by means of simpler subsystems instead
of considering all individual atoms in the molecule [Ing+14; Kmi+16]. In many cases, this
can be achieved by considering specific types of atoms (usually the alpha Carbon atoms Cα)
and neglecting the remaining ones [DS10].

The main limitation of Normal Mode Analysis and Elastic Network Models is the fact that
they are only capable of finding harmonic oscillations in the system. It has been observed that
protein dynamics reveal a large degree of anharmonicity [RA09] which cannot be identified
using NMA. The first reported use of PCA for modelling both types of behaviour in protein
dynamics is credited to the work of Amasei et al. [ALB93], although the technique was termed
Essential Dynamics, in which two subspaces were used to describe atomic fluctuations from
their equilibria: The bases derived by PCA defining the essential degree of freedom that can
describe most variations in molecule dynamics and the distribution of scores of time-steps
in this reduced-dimensional space. Since then, PCA has been extensively used to find key
collective motions of biomolecules as an alternative to NMA and ENM [HKG94; MR05;
Yan+09; Bah+09; Skj+14]. Many molecular dynamics open-source libraries and programs
offer built-in functions and tools for applying PCA to MD trajectories and visualizing the
resulting dominant collective motions [Mon04; Cas+05; BMB11; McG+15]. In addition to
finding the dominant behaviour of the biomolecule, PCA has also been applied for estimating
the entropy of the actual biomolecule system from the MD simulation time-steps [BHM09;
BGH06; AK01; TB04; SMG00] which is very important for understanding a wide variety of
aspects of the studied biological system. Such analyses have led to a better understanding
of the development of many complex diseases including HIV [Bri+05; BB09; IM09; BMS14]
and different epigenetic diseases [BV12] and their reactions to different types of drugs. From
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a higher-level perspective, PCA is not limited to specific types of data format and does not
make any spatial assumption of the data on hand. Cohen and Moerner [CM07] showed that
when applying PCA to fluctuations of a single molecule DNA represented as a series of video
frames, the solution was still very similar to the analytic solution.

One main question regarding the use of PCA for analyzing time-varying data is related to the
appropriate time-scale and sampling frequency. Specifically, what is the appropriate time-scale
and sampling frequency in order to converge to the actual significant modes of the analytic
model? Since the most significant eigenvectors of given observations correspond to lower
frequency eigenmodes, they reflect the long-term behaviour of the system. Therefore, it is
necessary to ensure that the observations included cover a long enough time-scale. However,
in practice, it is very common that the lowest eigenfrequency is unknown. Furthermore,
such eigenmodes covers wide frequency band in which the difference between the highest and
lowest frequency is relatively large. This necessitates that the sampling rate and time-scale of
observations should both be large in order to guarantee convergence to the analytic solution.
For instance, key biological functions in proteins range from femtosecond time-scale to the
the order of seconds [Vos+91; Cla+95; Bal+96; MLS09; RA09], not to mention the large
number of atoms (high dimensionality) in such molecules. Thus, the diagonalization of the
resulting covariance matrices (or dual covariance matrices) is usually beyond the computational
capability of typical modern machines. Hence, it is important to study the convergence rate of
streaming PCA for such dynamical systems. Typically, for a set of time-varying observations, a
streaming PCA should provide a reliable estimation of the actual eigenvectors up to the recent
time-step. To the best of our knowledge, the performance of streaming PCA when analyzing
such practical use-cases has not been investigated in the literature. Since streaming PCA
models are not scalable in terms of dimensionality d and the number of eigenvectors k due to
the orthogonalization processes, we also compare the performance with the partitioning-based
schemes proposed in the previous chapters.

6.3 Analogy to The Wave Equation and Normal Mode

Analysis

In this section, we show how well-known physical models are directly related to PCA. We first
derive the PCA eigenvalue equation straight from the wave equation. We further show the
consistency with the theory of classical mechanics. The implication of such consistency is that
for a wide range of physical phenomena, one can automatically obtain the analytic model of
a sequence of observations.
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6.3.1 PCA Eigenvalue Problem from The Wave Equation

Given time-varying data of centered time-steps X = [xt1 , xt2 , ... , xtn ] ∈ Rd×n where d is the
total number of attributes, we make the following formulation. Each attribute corresponds to
a spring state in a system of interconnected point masses. We assume that the points have
equal masses but the setting in which point masses are interconnected is unknown. Since
samples are centered, a negative attribute value indicates a compressed spring and a positive
value indicates a stretched one. Hence, the system is described in terms of springs states
rather than points positions. Since spring dynamics are analogous to the wave equation as
discussed in Sec. 2.6.3, the time dependent behaviour of each spring can be expressed using
the following partial differential equation

∂2

∂t2
A− c2HA = 0, (6.1)

where A (x0; t) ∈ Rd is a vector function describing the state of each spring at time t and
x0 ∈ Rd are some initial conditions and H is the hessian matrix of all possible second order
partial derivatives. Here, the Hessian matrix is used instead of the Laplacian operator in order
to describe spring states in terms of the principal force direction. Note that in Sec. 2.6.3
example, the principal force direction was the X axis. By applying separation of variables and
considering the eigenmode assumption, one can write the solution as follows

A (x ; t) = V (x)T (t) = Ve−iwt , (6.2)

where w is the eigenfrequency. This decomposes the eigenmode A into spatial V (x) and
temporal T (t) components. The general solution of the wave equation( 6.1) is then rep-
resented as a series of eigenmodes

∑
i Ai of different eigenfrequencies. Each time-step can

be reconstructed using the sum of all solutions x =
∑

i Ai . However in practice, time-
steps can be approximated using only few eigenmodes that maximize the energy function
E = E(ATA) ≤ E(xTx). Such maximization means that the Hessian matrix is negative
semidefinite analogous to the second derivative test. It is well-known that the covariance ma-
trix can be represented using the inverse of the hessian matrix in case of positive semi-definite
Hessian for local minima A [GK04]. However, in case of negative semidefinite Hessian, the
covariance matrix is represented using the inverse of the negative hessian matrix. This is due
to the fact that the covariance matrix is always positive semi-definite. Hence, for the problem
on hand, the covariance matrix can be approximated using the negative inverse of the Hessian
matrix as follows

C = −H−1. (6.3)
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In addition, form eq. (6.2) we get

∂2

∂t2
A = w 2A. (6.4)

By plugging these into eq. 6.1 we get(
C −

( c

w

)2

I

)
Ve−iwt = 0

⇒
(
C −

( c

w

)2

I

)
V = 0 (6.5)

which is precisely the PCA eigenvalue problem with λ being equal to
(
c
w

)2. Hence, we can
visualize the first eigenmodes by simply projecting the time-steps onto the first significant
eigenvectors and then weight them using the resulting projection value yi = AiA

T
i xt . It can

be noted that the higher significance eigenvectors will have lower eigenmode frequencies,
which is consistent with the literature and the empirical study of this chapter.

6.3.2 A Classical Mechanics Interpretation

From the classical mechanics perspective, one can derive the PCA eigenvalue problem from the
associated spring-mass system using the equation of motion. Since the restoring forces acting
on a system of spring-mass are conservative, the force vector corresponds to the negative of
the first derivative of the potential energy function, known as potential well, as follows

F = −∇V (x) , (6.6)

where x is the spatial state of springs and V is the potential energy. But from Newton’s
second law of motion, we have

F = m
∂2

∂t2
x , (6.7)

which yields

m
∂2

∂t2
x = −∇V (x) . (6.8)

The potential energy around the equilibrium state can be approximated using Taylor series as
follows

V (x) = V(xeq) +
d∑

i=1

(
∂V
∂x i

)
xeq

x i +
1

2

d∑
i ,j=1

(
∂2V
∂x i∂x j

)
xeq

x ix j + · · · . (6.9)

One can eliminate the first two terms since the potential energy is always zero at the equi-
librium state and considering that the first derivative at the global minima is also zero. By
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neglecting higher order terms, this leads to the following matrix form of the potential energy

V (x) =
1

2
xTHx . (6.10)

Plugging eq. (6.10) into (6.8) yields

m
∂2

∂t2
A + HA = 0. (6.11)

Here, we replaced the vector x by A since the solution to this eigenvalue problem gives the
eigenmode (normal mode) at particular frequency (energy level) where the time step x is
represented as the sum of these solutions (x =

∑
i Ai) . According to [AK01] the Hessian

matrix of the potential energy is equivalent to

H = −kTC−1, (6.12)

where k is the spring constant and T is the temperature and the negative sign is due to
the fact that the Hessian matrix is taken at local maximas of the potential energy function.
Substituting eq. (6.12) in (6.11) and considering that ∂2

∂t2A = w 2A give(
C −

(
kT

mw 2

)
I

)
A = 0, (6.13)

which also corresponds to the PCA eigenvalue equation with λ =
(

kT
mw2

)
.

6.3.3 Consistency with The Literature

As mentioned earlier, the analogy between PCA and NMA has been noted by many researchers
especially in the area of Molecular Dynamics where PCA has been used for extracting the es-
sential dynamics of proteins motion as an alternative to NMA. Having that said, we found
that many research papers use a slightly different methodology when dealing with MD tra-
jectory data. Recall that in MD trajectory data, each time-step represent the positions of m
atoms in the Cartesian coordinate space (hence n = 3m). Many papers use a mass-weighted
covariance matrix where the diagonal elements are weighted by the mass of the corresponding
atom [Bas+98a; Bas+98b; MLS09; SMG00]. The main reason of using the mass-weighted
covariance matrix is due to the fact that each atom in the actual molecule has its own mass
(which may be different from other atoms) and according to Newton’s Second Law, the force
depends on both mass and acceleration. This implies that F = M ∂2

∂t2 x where M is a diagonal
matrix with each diagonal element being equal to the mass of the corresponding atom. How-
ever, in our formulation, we assumed the points in the associated system have equal masses
and hence the mass matrix M is reduced to a scalar value that is included in the eigenvalue
formula λ =

(
kT
mw2

)
. Furthermore, according to [DA12], using the mass-weighted covariance
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matrix is very similar to NMA in that it is limited to only finding harmonic behaviour. On
the other hand, using the standard covariance matrix can successfully extract both types of
dynamics (harmonic and anharmonic) and hence is advantageous. This approach is known as
essential dynamics and is one of the most widely used techniques for analyzing MD trajecto-
ries.

6.3.4 Case Study: Analyzing Dynamics of a Turbulent Vortex

As a proof of concept, we apply PCA for analyzing the dynamics of turbulent vortex ob-
servations from [Sil]. The data is of the form of time-varying volumes with 99 frames and
128 × 128 × 128 voxels per frame, which is different from the type of dataset in molecular
dynamics simulations. In this case, each voxel corresponds to a spring state in the associated
spring-mass physical model. Figure 6.1 shows the projection values of time-steps on the first
nine eigenvectors with their frequency spectrum. We can see at a glance that the scores of
time steps have sinusoidal shaped curves which correspond to the time-dependent function
xTt V = T (t). One can also note from the spectrum that most significant eigenvectors have
lower frequency with a higher amplitude which is consistent with our theoretical formulation.
Figure 6.2 (a) and (b) show several frames from the vortex dataset compared to their recon-
structions when using 20 eigenvectors where high similarity can be noted between the two
sets. Figure 6.2 (c) shows the first 20 eigenvectors of the observations. It is evident that
lower significance eigenvectors have higher spatial frequencies. In addition, the distributions
of attributes in the eigenvolumes are not uniform and depend mostly on the observational
data. Figure 6.2 (d) provides the explained variance curve, which shows that more than 95%

of variations in dynamics are explained by only the first 20 eigenvectors.

In summary, the dominant behaviour of the system can be determined using the first few
eigenvectors and their corresponding time-dependent functions. Each eigenvector has posi-
tive and negative attributes that define its vibration mode around the equilibrium state. The
frequency of such vibration is reflected in the time-dependent function corresponding to pro-
jection values of time-steps onto this eigenvector. In general, higher significant eigenvectors
have lower eigenfrequencies.

6.4 Empirical Evaluation

In this section, we compare the performance of streaming PCA methods and random-mapping
Band-based PCA using several types of time-varying systems. We first test these methods
for finding essential dynamics of large MD simulation, where applying the standard approach
is not possible due to the large scale of the dataset. After that, we analyze daily weather
readings of distributed weather stations around the globe from 1980 to 2016. Lastly, we
study different physical phenomena in the form of time-varying volumetric data and video
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Figure 6.1: Projection values of time-steps onto the first nine eigenvectors (in descending
order from top to bottom) and their frequency spectrum.

image series. Typically for such time-varying datasets, one would like the streaming PCA to
converge rapidly to the actual normal modes of the simulation in an interactive manner. In
other words, consider a physical simulation of a particular phenomenon, by applying streaming
PCA, we should be able to interactively visualize the actual normal modes up to the recent
time-step.

6.4.1 Learning Essential Dynamics of a Large MD Simulation

We first investigate the performance of streaming PCA and random-mapping BPCA when
applied to a large-scale molecular dynamics trajectory. The dataset used in our study comprises
reactions in a bacterial cell membrane obtained from [Gio+17]. The molecule contains 50, 796

atoms with 50,000 time-steps of trajectory. A visualization of the studied molecule in the
equilibrium state is shown in figure 6.3 (a). Each time-step is represented using the Cartesian
coordinates of each atom in the molecule. Therefore, a time-step will contain 3n = 152, 388

scalar values. Computing the eigenspace of such large-scale data using the standard approach
is infeasible. Therefore, we evaluate the convergence of streaming PCA methods using MSE
and explained variance. Table 6.1 contains the average MSE and percentage of explained
variance when computing the first 30 eigenvectors using streaming PCA techniques. Unlike
the case in time-independent datasets, the performance of SM, IPCA and CCIPCA was much
better than the accelerated minibatch SGA. The SM algorithm in fully-online mode was giving
the best convergence results. However, in comparison to its mini-batch variant in terms of
processing speed, the full online mode took 1,770 seconds while the mini-batch approach took
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only 82 seconds with very similar convergence results. Visualizing the essential dynamics is
done by superpositioning different modes of the first eigenvectors as shown figure 6.3 (b)
where the first three essential dynamics produced using SM are visualized.

In order to compare performance between the holistic approach and random-mapping BPCA,
figure 6.4 shows explained variance curves of SM streaming PCA and random-mapping BPCA.
One can find that random-mapping BPCA gives better-explained variance curves for all band
sizes. In general, the higher the band size, the more similar the explained variance curve to
the SM curve. In addition, higher significance eigenvectors are more similar to the holistic
solution than lower eigenvectors.

Table 6.1: Convergence of each method after a single data pass to the first 30 eigenvectors
of the MD simulation in terms of MSE and explained variance.

Method MSE Explained Variance
mini-batch (block) power 1.174 22.1%
CCIPCA 0.392 74.4%
mini-batch CCIPCA 0.388 74.7%
IPCA 0.385 74.89%
SM 0.3848 74.91%
mini-batch SM 0.3853 74.88%
accelerated Oja (1st strategy) 0.4715 69%
accelerated Oja (2nd strategy) 0.4756 68.8%
accelerated block power (1st strategy) 0.4756 68.82%
accelerated block power (2nd strategy) 0.4716 69%

6.4.2 Analyzing Daily Weather Readings From 1980 to 2016

We now analyze daily weather readings from the Global Surface Summary of the Day database
(NOAA GSOD). The database is created by the National Oceanic and Atmospheric Adminis-
tration and is updated on a daily basis starting from 1929 with more than 20 weather attributes
(average temperature, wind speed, etc) collected from over 9,000 stations around the globe.
However, only a few stations have been operating since 1929. In addition, acquiring readings
from the database is not easy since many stations do not provide readings regularly, not to
mention that readings may contain missing values. In our experiments, we considered stations
operating from 1st January 1980 to 31st December 2016. By operating we mean stations
that provide at least three reading in a year from 1980 to 2016. In order to eliminate missing
values we linear-interpolate the readings throughout the year. We created three datasets:
Average temperature, average wind speed and see level pressure. The temperature and wind
readings were acquired from 2,720 distributed stations and the pressure dataset is based on
1,794 stations readings. Each dataset contains 13,515 time-steps.

Figure 6.5 (a) shows the locations of the weather stations used for acquiring the readings.
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Figure 6.5 (b, c and d) show the first three vibration modes of each weather dataset. By
analyzing the time-dependent functions of the modes from 1980 to 1984 as illustrated in
figure 6.6 we can observe a repetition in patterns over each year. This suggests that such
dynamics correspond to seasonal changes in the weather. The wind dataset was shown to
have a more stochastic nature compared to the other datasets. One can also note that lower
eigenvectors produce noisy time curves.

In order to evaluate the convergence of streaming PCA to the optimal solution, we ran 10
trials for each technique and reported mean and standard deviation of the convergence to the
standard PCA solution after a single data pass. For mini-batch methods, the mini-batch size
was set to 100. Table 6.2 reports the convergence results of each streaming PCA algorithm
to the top 10 eigenvectors. For all datasets, CCIPCA and IPCA are achieving the best results.
The SM algorithm performance is not as good as in the MD simulation. For the accelerated
mini-batch SGA, the first strategy generally converges better than the second one, unlike the
case with non-time-varying datasets. This is well-reflected in figure 6.7 where the convergence
rates based on a single trial are illustrated for each dataset. Figure 6.8 provides the explained
variance curves of standard PCA and random-mapping BPCA for each dataset. For the
temperature dataset, 83% of the dynamics are covered by only the first eigenvector and 94%

are covered by the first first 30 eigenvectors. For the pressure dataset, the first 30 eigenvectors
cover 89% of the variations. On the flip-side, for the wind dataset, the first 30 eigenvectors
cover only 40%. In general, the explained variance of random-mapping BPCA is better than
the standard approach. Consistent with the behaviour in MD simulation, the gap between
random-mapping BPCA and the holistic approach in terms of the explained variance curves
is very narrow especially for the first three eigenvectors and then it slightly increases as the
number of eigenvectors increases. It is interesting to note that the gap in the wind dataset
is larger than those in the temperature and pressure datasets. This might be a result of the
stochastic pattern observed from the time-dependent function. However, investigating the
main reason of such wider gaps is subject to further research.

6.4.3 Other Time-varying Datasets

We investigate other time-varying datasets of video and 4D volumetric formats, namely, sim-
ulation of ocean waves, supernova and vortex observations. Table 6.3 includes a summary
of each dataset. Figure 6.9 shows several frames from the Supernova dataset reconstructed
using first 15 eigenvectors where 92% of variability is covered. For the ocean waves simula-
tion, almost 98% of dynamics are explained using only 10 eigenvectors. In general, one can
note from the visualizations that lower eigenvectors have higher spatial frequencies. Such high
frequencies correspond to an increased level of detail in reconstructions.

Similar to what we did in the previous subsection, we evaluate the performance of each method
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Table 6.2: Convergence of each method after a single data pass to the first ten eigenvectors
of the weather datasets.

Method Temperature Wind Pressure
mini-batch (block) power −1.4± 0.01 −0.346± 006 −0.93± 0.01
CCIPCA −3.24± 0.07 −1.75± 0.05 −2.3± 0.13
mini-batch CCIPCA −3.4±0.1 −1.9±0.09 −2.5±0.2
IPCA −3.37± 0 −1.79± 0 −2.36± 0
SM −1.85± 0.3 −1.87± 0.11 −1.96± 0.4
mini-batch SM −2.48± 0.39 −1.8± 0.15 −2.4± 0.28
accelerated Oja (1st strategy) −2.87± 0.08 −1.67± 0.06 −2.3± 0.22
accelerated Oja (2nd strategy) −2.53± 0.02 −1.26± 0.02 −2.1± 0.02
accelerated block power (1st strategy) −2.85± 0.09 −1.67± 0.04 −2.37± 0.2
accelerated block power (2nd strategy) −2.53± 0.02 −1.26± 0.03 −2.07± 0.06

by running 10 trails for each technique and then reporting mean and standard deviation of the
convergence after a single data pass. For all mini-batch methods, we set the block size to 5.
Table 6.4 shows the convergence achieved by each method after processing all times-steps. It
can be noted that CCIPCA (in both online and minibatch modes) and IPCA are achieving the
best convergence results especially for the ocean waves and Supernova simulations. However,
the CCIPCA is superior to IPCA in that it can work in both online and mini-batch modes.
For our acceleration, the 1st strategy is converging better than the second one. Overall, one
can conclude from all experiments in this section that CCIPCA, in both online and mini-
batch settings, always achieves good convergence results with robust performance. Hence,
for time-varying datasets, CCIPCA is preferable amongst other streaming PCA approaches.
For random-mapping BPCA, we visually inspect the analogy between eigenvectors produced
using random-mapping and the standard holistic approach as shown in figure 6.11. The
band size was set to 1,000 for wave simulation and 3,000 for the supernova and vortex
datasets. We can see that the random-mapping BPCA eigenvectors resemble the holistic
ones but with some dithering effects. This is consistent with what was found for non-time-
varying datasets in the previous chapters. Hence, for large-scale time-varying datasets, the
random-mapping BPCA can serve as a more scalable approach for approximating the holistic
eigenvectors. Such scalability makes random-mapping BPCA even superior over the holistic
streaming approaches.

6.4.4 Comparing Reconstruction Quality with CPCA and mean-

variance BPCA

We observed from the previous subsections that the eigenvectors computed using random-
mapping BPCA are related to the holistic solution. We now discuss the performance of CPCA
and mean-variance BPCA for time-varying data. Figure 6.12 compares explained variance
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curves of holistic PCA and the two partitioning approaches for the waves, supernova and
vortex datasets. For CPCA, the cell-size was set to 10 × 10 × 10 for supernova and vortex
datasets and to 102 for the wave dataset. For BPCA, the band-size was set to 100 for the
wave dataset and to 1, 000 for the other datasets. It is clear that for all datasets CPCA is
giving the best results where only four eigenvectors are sufficient to explain more than 90%

of the variability. The mean-variance BPCA falls between CPCA and the holistic solution. Its
performance for the waves and supernova datasets was much better than the vortex dataset
where its explained variance curve was very close to the holistic approach. The use of CPCA
or mean-variance BPCA may not provide any physical interpretation of the system. In other
words, visualizing the top eigenvectors may not correspond to the actual vibration modes of
the analytic solution. However, the main advantage that one would get from such approaches
is the higher compression ratio gained. For instance, the explained variance achieved using
only 4 cell eigenvectors for the turbulent vortex dataset is equivalent to the explained variance
acquired using 14 holistic eigenvectors. Since the compression ratio for the holistic approach
corresponds to nd

k(n+d)
and for the CPCA the compression ratio equals nd

k(nd/dcell+d)
where dcell is

the number of attributes (voxels) per cell. This means that the compression ration for CPCA
is 22:1 and for standard PCA the compression ratio is only 7:1 when maintaining the same
explained variance of 90%.

Table 6.3: Summary of the time-varying simulations used in the experiments.

Ocean waves Supernova Turbulent Vortex
no. of samples 300 60 99
sample type 100× 100 images 400× 400× 400 volumes 125× 125× 125 volumes
Reference [Nvi] [supernova] [Sil]

Table 6.4: Convergence of each method after a single data pass to the first five normal modes
of each simulation.

Method Ocean Waves Supernova Vortex
mini-batch (block) power −0.6379± 0 −0.21± 0 −0.096403± 0
CCIPCA −2.4521± 0.021 −1.74± 0.04 −1.1773± 0
mini-batch CCIPCA −2.7± 0.18 −1.4± 0.04 −1.01± 0.22
IPCA −2.47±0.011 −1.76±0 −1.0±0
SM −1.73± 0.059 −0.59± 0.01 −0.45± 0.13
mini-batch SM −1.5± 0.2 −0.57± 0.006 −0.79± 0.1
accelerated Oja (1st strategy) −1.52± 0.0259 −0.88± 0.058 −0.75± 0.06
accelerated Oja (2st strategy) −1.46± 0.046 −0.54± 0.095 −0.4± 0.067
accelerated block power (1st strategy) −1.58± 0.09 −0.97± 0.076 −0.77± 0.11
accelerated block power (2st strategy) −1.49± 0.12 −0.52± 0.1 −0.42± 0.05
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6.5 Conclusions

In this chapter, we employed PCA for analyzing time-varying datasets. Particularly, we ad-
dressed physical time-varying systems that are based on the wave equation. Such a partial
differential equation has been immensely used for modelling a broad scope of physical phe-
nomena. We showed that the eigenvectors obtained using PCA for such type of data are
directly related to the analytic model of the underlying physical phenomenon. Basically, PCA
decomposes the dynamics of such systems into a number of vibration modes (also known
as normal-modes, eigenmodes or standing waves) in which most of the system dynamics are
ruled by only a small number of such modes. Since time-varying data acquired by scientific
simulations or physical observations are usually very large in scale, computing the domain dy-
namics using the standard PCA approach may not be feasible. We proposed using streaming
PCA to remedy such a problem. To the best of our knowledge, the efficiency of streaming
PCA for such domain application has not been investigated in the literature. By analyzing
the convergence results of streaming PCA algorithms on different time-varying datasets, we
found that CCIPCA and IPCA provide very good steady performance for all of the studied
datasets. However, CCIPCA is more practical compared to IPCA since it can be applied in
both online and mini-batch modes. The main limitation of streaming PCA is its quadratic
computation dependence on the number of eigenvectors k . In practice, the appropriate num-
ber of eigenvectors for describing a time-varying model may be very large due to the gap
between highest and lowest frequencies in the vibrating modes such as the case in protein
dynamics. This raises the need for more scalable paradigms. Therefore, we further examined
the analogy between random-mapping BPCA and the standard holistic approach. While there
was a clear resemblance between the two models in terms of first eigenvectors, the explained
variance of random-mapping PCA was surprisingly better than standard PCA. In general, we
noticed that random-mapping BPCA produces a dithered version of the holistic eigenvector.
Lastly, we showed that using CPCA instead of random-mapping significantly enhanced the
explained variance. Such enhancement suggests that CPCA may be a more practical method
for compressing such large-scale data. Investigating other mapping strategies for BPCA that
would outperform CPCA in terms of reconstruction quality would be an interesting topic for
future research. This is of paramount significance for compressing non-spatially localized
time-varying datasets.
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(a)

(b)

(c)

(d)

(e)

Figure 6.2: Learning dynamicsin a turbulent vortex using PCA. (a) Original frames from the
dataset. (b) Reconstructed frames using 20 eigenvectors. (c) Difference image. (d) First 20
eigenvectors in descending order from left to right and from top to bottom where red areas
correspond to negative attributes and blue areas correspond to positive ones. (e) Explained
variance curve of the first 20 eigenvectors.
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(a)

(b)

Figure 6.3: Visualization of Essential Dynamics. (a)Average molecule in ribbon representation
colored based on segment name using VMD software. (b) Superposition of the first three
essential dynamics computed using similarity matching.

Figure 6.4: Comparing performance between SM streaming PCA and random-mapping BPCA
using explained variance curve.
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(a)

(b)

(c)

(d)

Figure 6.5: Visualizing the dominant vibration modes (eigenmodes) of each weather dataset.
(a) Locations of weather stations used for acquiring readings where red stars indicate tem-
perature and wind stations and green circles indicate pressure stations. (b) The top three
vibration modes of the temperature dataset. (c) The top three vibration modes of the wind
dataset. (d) The top three vibration modes of the pressure dataset.
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Temperature Wind Pressure

Figure 6.6: Time-dependent functions of the first three vibration modes of each weather
dataset.
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(a)

(b)

(c)

Figure 6.7: Convergence rates to the top 10 eigenvectors based on a single-trial for (a)
temperature, (b) wind and (c) pressure datasets.
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(a)

(b)

(c)

Figure 6.8: Explained variance curves of standard PCA and random-mapping BPCA for (a)
temperature, (b) wind and (c) pressure datasets.
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(a)

(b)

(c)

(d)

(e)

Figure 6.9: Learning dynamics from Supernova dataset. (a) Original frames from the dataset.
(b) Reconstructed frames using 15 eigenvectors. (c) Difference image. (d) First 15 eigenvec-
tors in descending order from left to right and from top to bottom where red areas correspond
to negative attributes and blue areas correspond to positive ones. (e) Explained variance curve
of the first 15 eigenvectors.
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(a)

(b)

(c)

(d)

Figure 6.10: Learning dynamics from ocean waves simulation. (a) Original frames from
the dataset. (b) Reconstructed frames using 10 eigenvectors. (c) First 10 eigenvectors in
descending order from left to right and from top to bottom. (d) Explained variance curve of
the first 10 eigenvectors.
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(a)

(b)

(c)

Figure 6.11: Visual comparison between random-mapping BPCA eigenvectors and holistic
ones for (a) ocean waves simulation (b) Supernova and (c) turbulent vortex datasets.
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(a)

(b)

(c)

Figure 6.12: Explained variance curves of CPCA (yellow curve) and mean-variance BPCA (red
curve) compared to holistic PCA (blue curve) for (a) ocean waves simulation (b) Supernova
and (c) turbulent vortex.



7 Conclusions and Future Work

7.1 Summary of Contributions

In this thesis, we investigated effective strategies for modelling large-scale datasets. By mod-
elling, we mean extracting meaningful patterns that describe most variations in the input
dataset. PCA is an unsupervised learning algorithm that has widely been used for such a pur-
pose due to the rather solid theoretical ground that it enjoys. However, the standard approach
to PCA involves an eigenvalue-decomposition of the covariance matrix, which is computation-
ally demanding with quadratic complexity dependence on the data size. This is particularly
problematic when dealing with large-scale datasets. Designing a reduced complexity PCA for
such datasets has been widely explored in the literature. Ideally, the eigenvectors should be
computed from a single data pass where samples are visited only once.

A review of related reduced-complexity techniques was provided in Chapter 2. One limitation
in current state-of-the-art treatments is due to their sequential nature. This, in turn, signifi-
cantly limits the run-time which is problematic when considering time-critical applications. In
addition, most well-known techniques that are based on the stochastic gradient approxima-
tion involve a learning rate parameter for which an intuitive choice is not applicable. Such
a learning rate sensitivity may result in a very slow convergence rate. In fact, many studies
showed that the optimal choice of learning rate for SGA methods necessitates knowing the
eigengap, the computation of which requires a pre-processing data pass violating the main
condition of online learning. Another important phenomenon that may occur with streaming
schemes is that when computing multiple eigenvectors, the produced eigenvectors may not
resemble the real ones but rather converge to a span of the original eigenspace. We also
visited other related topics in order to introduce some concepts that are used in developing
our techniques. While many modern studies focus on the theoretical analysis, in most of this
thesis, we followed empirical evaluation strategies.

Mini-batching is a simple yet effective strategy for speeding up computation. In the PCA liter-
ature, this technique has been applied to the power iterations method where the update-step
is applied on mini-batches of the dataset that are visited only once. However, a satisfactory
convergence demands a large mini-batch size which is prohibitive in the case of large-scale

109
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datasets. In Chapter 3, an acceleration scheme for mini-batch SGA methods was proposed.
The approach is based on the fact that the optimal solution corresponds to a steady-state
where successive updates do not change. Hence, our acceleration catalyzes the convergence
of the original methods by seeking such a state. We also studied the performance of other
state-of-the-art methods when extended to the mini-batch mode. We evaluated the per-
formance using the spiked covariance model and other benchmark datasets, including ones
whose eigenvectors cannot be computed using the standard PCA due to their high dimension-
ality. For such datasets, we evaluated the convergence using the mean-squared error. Using
relatively smaller batch sizes compared to the literature, our acceleration outperformed the
original methods as well as other state-of-the-art approaches. In addition, the computation
time was significantly reduced compared to the fully-online mode. We also employed our
scheme for initializing the batch power iteration and showed how such an initialization signif-
icantly improved the convergence results. Having that said, a detailed theoretical analysis of
the rate of convergence is lacking. Moreover, this scheme is limited when considering very
high dimensional data where even a single sample may not fit into a typical machine memory
space.

A tacit reason for the sequential nature of streaming PCA methods is that PCA is usually
considered as a holistic representation. In Chapter 4, we investigated the merits of applying
PCA in a partitioning manner. One main inspiration was the JPEG compression standard
where DCT is performed on sub-blocks of the input image. In the literature, sample-based
partitioning was widely investigated where samples are mapped into different subsets based
on some criterion, and then PCA is applied to each set individually which is known as sub-
space clustering. However, applying attribute-based partitioning was not widely explored.
We proposed two models for attribute-based partitioning. The first model, Cell-based PCA
(CPCA), subdivides each image into uniform blocks and then applies PCA to each block
separately. Two main gains were observed. Firstly, the reconstruction error was significantly
reduced in comparison to the holistic approach. Secondly, the technique is embarrassingly
parallel, leading to remarkably faster computation. On the flip side, the cell-based model
is restricted in that it can only deal with spatially structured datasets such as images and
volumes. In addition, cell boundary artifacts can be noted when using an insufficient number
of cell eigenvectors. The second partitioning model, Band-based PCA (BPCA), partitions
attributes based on their values distribution rather than their spatial locations and hence can
be generalized to non-spatially localized data. We found that mapping based on the mean
and variance is better in terms of reconstruction quality compared to mean-only mapping.
Moreover, estimating the mean and variance using larger population sizes enhanced the re-
sults which reflects the soundness of the technique. However, the reconstruction quality of
CPCA was found to be better. Another important finding in this chapter is that the baseline
model corresponding to random-mapping BPCA produces a solution that highly resembles the
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holistic eigenspace. This suggests that the random-mapping BPCA may be a more practical
alternative to streaming PCA due to its parallel and scalable nature.

From another perspective, it is well-known that state-of-the-art deep learning models do
implicitly perform dimensionality reduction and feature extraction but in a rather stochastic
manner. However, the parametric and stochastic nature of such models makes it hard to
arrive at an optimal (inner) representation. In addition, modern benchmark datasets dedicated
to classification tasks provide a vast number of training samples for only a few classes. For
instance, the CIFAR-10 dataset contains 50,000 training samples for only 10 classes. Chapter 5
utilized CPCA to derive simple and meaningful lightweight data representation that would
improve the accuracy of deep learning models. Unlike the dimensionality reduction involved
in deep CNN, this has the advantage of being deterministic. In addition, we designed a
novel deep CNN classifier, RedNet, that can efficiently learn from limited and reduced-size
examples. The model is inspired by the well-known AlexNet classifier but involves more
cross channel normalization layers. We showed that the accuracy of RedNet was significantly
improved when representing images using CPCA in comparison to the conventional bicubic
downsampling. Experiments on LFW face dataset depicted how such a model outperforms
state-of-the-art deep CNN classifiers when trained with limited examples.

Modelling time-varying phenomena is of high importance for understanding key aspects in
different scientific fields. In fact, such systems appear naturally in our world. In Chapter 6,
we applied PCA as an automatic modelling tool for a wide range of time-varying applica-
tions. We theoretically studied the analogy between well-known Physical models and PCA.
In particular, we derived the PCA eigenvalue equation directly from the wave equation. In
addition, we showed the consistency with the theory of classical mechanics. This suggests
that the solution obtained using PCA for a sequence of time-varying physical observations
can appropriately reflect its underlying analytic model. This is mainly due to the way PCA
decomposes such observations into their vibrational modes. Since time-varying datasets are
no exception from being massively large, it was important to investigate reduced-complexity
PCA schemes for such a core application. To the best of our knowledge, the performance
of streaming PCA methods for analyzing time-varying datasets has not been examined in the
literature. By analyzing the convergence results of streaming PCA algorithms on different
time-varying datasets, we found that CCIPCA, in both online and mini-batch modes, provides
a very good performance for all of the studied datasets. The main limitation of streaming
PCA is its quadratic computation dependence on the number of eigenvectors k . In practice,
the appropriate number of eigenvectors for describing a time-varying model may be very large
due to the gap between the highest and lowest frequencies in the vibrating modes such as
the case in protein dynamics. This raises the need for more scalable paradigms. Therefore,
we further examined the analogy between random-mapping BPCA and the standard holistic
approach. While there was a clear resemblance between the two models in terms of the first
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eigenvectors, the explained variance of random-mapping BPCA was surprisingly better than
the standard PCA. In general, we noticed that random mapping BPCA produces a dithered
version of the holistic eigenvectors. Lastly, we showed that using CPCA instead of random-
mapping significantly enhanced the explained variance curve. Such enhancement suggests
that CPCA may be a more practical method for compressing such type of datasets.

In summary, this thesis provides practical solutions that allow for efficient modelling of various
types of large-scale datasets. For holistic data representation, we recommend using our accel-
eration scheme in the case of independent and identically-distributed samples and CCIPCA in
case of time-varying observations. For larger-scale datasets, the random-mapping BPCA can
be employed. In order to achieve a better reconstruction quality and feature extraction, the
cell and band-based models should be considered.

7.2 Future Research

In terms of future work, my thesis has opened up various areas that are worthy of further
investigation. Firstly, it would be interesting to investigate whether our acceleration in Chap-
ter 3 can be generalized for solving other SGA optimization problems. Secondly, Chapter 4
applied PCA for representing the individual partitions. Representing such partitions using
other dimensionality reduction approaches such as Linear Discriminant Analysis is kept for
future research. A further intuitive extension would be to study the performance of non-linear
schemes such as kernel PCA when applied in the partitioning mode. Chapter 5 showed that
using CPCA significantly enhanced the perception of deep CNN. An important question to
raise is that: Can reducing the dimensionality solely using a cascade of CPCA operations be
advantageous to the conventional CNN model? Last but not least, Chapter 6 used reduced
complexity schemes for time-varying data. Designing a hardware optimized implementation
for such schemes that can achieve real-time rates would be of significant importance to many
time-critical applications.
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