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Abstract

In the framework of evidence-based medicine, comparative effectiveness research is a
fundamental activity to the development of pharmaceutical products and medical treatments. For
a given medical condition, several competing treatments may exist, however, there may be no
multi-arm study available comparing all the relevant treatments simultaneously. In the absence of
such direct evidence, healthcare decision-makers can examine indirect comparisons of treatments
generated using outcome data from separate clinical trials. In order to theoretically reduce the
possibility of error in the estimates of treatment effect for each treatment obtained from the indirect
comparison, adjustments can be made to account for differences between trials. Matching-
Adjusted Indirect Comparisons (MAICs) have been devised as a means of accounting for the
heterogeneity that can arise between different patient populations in separate trials. Using
individual patient data (IPD) from one trial, baseline patient characteristics and patient outcomes
are weighted to match to published aggregate summary data available for a competing treatment.
This statistical technique is relatively new and the various implications for its use have not been
fully explored. In addition, while the technique has been employed in numerous published
applications, the finer details of its implementation are rarely fully reported. The work in this thesis
aims to articulate a greater understanding of the MAIC method and standardise its implementation
through means of a package for the R programming language, which will allow for analyses to be

reproducible.



Summary

The aim of this thesis is to establish and articulate an understanding of population-adjusted
treatment comparison methods and in particular, assess the potential impact of Matching-Adjusted
Indirect Comparisons (MAIC) on Health Technology Assessment (HTA).

In order to lay the foundation to the methodology and motivation for MAIC, some key underlying
concepts are explored. These include the framework of evidence synthesis, epidemiological
measures relating to treatment effect and challenges in making inferences on treatment
effectiveness based on clinical trial data. The concept of population adjustment is introduced and
the logistic regression statistical model is presented and linked to MAIC. Following this, a review
of the MAIC methodology literature was conducted and an outline of the MAIC method is described
based on this review. Subsequent to this, a separate review of publications making use of the
method is detailed. Both searches were conducted using the PubMed platform and Embase
database. Together with the review of MAIC methodology, it becomes clear that a standardised
implementation of the method is lacking. This has an impact on HTA, since without a standardised
set of parameters and protocol to draw upon, various health technology submissions may
implement the method through one of a multitude of ways. This can lead to variation in results and

raises the risk of unequal assessment between different technology appraisals.

From the literature review, this thesis seeks to identify best practice with respect to implementing
MAIC and establish a standardised implementation of the method using the R programming
language. This is preceded by a search of R packages available on the Comprehensive R Archive
Network (CRAN) at the time of review. Some packages of relevance to propensity score weighting
and network meta-analysis are identified. This further motivates development of the R package for
implementing MAIC.

Development of the R package is carried out in accordance with best practice measures published
by Hadley Wickham. The package is based on example code provided in a Technical Support
Document (TSD) produced for the National Institute for Health and Care Excellence (NICE). The
final design allows for a user to match one or more binary or continuous covariates from a set of
individual patient data (IPD) to a proportion (for binary covariates) or mean and standard deviation
(for continuous covariates). With additional input, the package also allows the user to perform the
indirect comparison for a binary outcome measured on the log odds scale. Using the population-
adjusted treatment effect and existing relative treatment effect information, the matching-adjusted

indirect comparison estimate can be obtained, as well as confidence intervals and standard errors.

To conclude, further development of the R package is recommended to encourage consistency in
the MAIC implementation such that the technique may be applied in line with established best

practice, although this itself is an area in need of further research.
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Chapter 1 Introduction

Currently, all new pharmaceutical products proposed for reimbursement by the state healthcare
provider in Ireland (and in other countries subject to their own regulatory bodies), must be reviewed
by the National Centre for Pharmacoeconomics Ireland (NCPE) via a Health Technology
Assessment (HTA). This assessment will typically involve a cost-effectiveness analysis and in
order to establish the effectiveness of the product in relation to relevant alternatives, comparative
effectiveness research (often referred to as relative effectiveness in Europe) is carried out. The aim
of this thesis is to establish and articulate an understanding of population-adjusted treatment
comparison methods and in particular, assess the potential impact of Matching-Adjusted Indirect
Comparisons (MAIC) on HTA.

For new pharmaceutical products and medical treatments, there is often a small amount of data to
work with in terms of assessing the product/treatment for its effect on patient outcomes and/or its
overall true cost. Ideally, new treatments would be tested in randomised trials against all relevant
alternatives; typically, a drug is assessed against what is known as the current standard of care.
However, in the case of new treatments, it may take several years before a direct study is
performed that compares the treatment with other viable alternatives available at the time. This

delay hinders healthcare decision-makers in approving such new treatments for reimbursement.

This research will examine a technique that may be used to inform healthcare decision-makers of
the relative effectiveness and hence modelled cost-effectiveness of new treatments being
proposed for use in Ireland or elsewhere. The technique is referred to as Matching-Adjusted
Indirect Comparisons. MAIC is a relatively novel technique that was first published in 2010
(Signorovitch et al. 2010). The full implications of employing this technique remain poorly
understood.

MAIC can compare different treatment outcomes among separate trials in accordance with one of
two approaches. The first of these makes use of clinical trial data on a common comparator (such
as placebo). This comparison is referred to as anchored. The other approach makes the
comparison without data on a common reference arm. This comparison is referred to as

unanchored.

There are many reasons for why there may be no data available on a common comparator
treatment against two competing interventions. This is primarily driven by forces that dictate clinical
trial planning. Clinical trials can be costly for investigators to run and typically demand significant
lengths of time in the course of their planning, execution and analysis. Therefore, the comparators
that have been assessed directly against the intervention may have been selected according to
criteria that are not necessarily linked to the latest decision question. In the course of running a

lengthy clinical trial, the common comparators identified as relevant may change. In some cases,



however, it is unethical to randomly assign patients to a particular treatment arm of a clinical trial
where clinical equipoise cannot be assured. Clinical equipoise refers to the principle that there is
no pre-existing evidence that one treatment is superior to another. Hence, where previous evidence
may exist that suggests that a treatment has some benefit, a single-arm clinical trial may be
conducted where all patients are instead assigned to a new treatment and observed. This can often
occur where patients have poor prognosis and whose treatment options are limited, particularly in

the case of oncology.

The MAIC method uses individual patient data (IPD) to equalise baseline characteristics across
trials from different studies. In theory, this will reduce potential biases and ensure that fairer
comparisons can be made. Since the full implications that may arise from use of this technique are
not fully known, in assessing its potential impact, the aim is to identify best practice for its use in
HTA according to a standardised implementation. This is achieved through modelling in the R

programming language.

1.1 Thesis Overview
This thesis will investigate the contribution of MAIC to comparative effectiveness research for the

purposes of HTA. In order to do so, some background material is presented to establish the
framework of evidence synthesis. This is concerned with how the total body of evidence available
(in its various forms) may be combined together to give the best picture of the true effectiveness of
a pharmaceutical product or medical treatment. This draws upon theory from both epidemiology
and statistics.

Following this, the MAIC technique, based on past publications, is established through means of a
literature review. In addition to the literature surrounding the MAIC methodology, a review of
existing MAIC applications to pharmaceutical products for the purposes of ascertaining relative

treatment effect is carried out.

Some insights from the review are presented and lead to the development of a package in the R
programming language (R Core Team 2018). The aim of the R package is to make implementation
of the technique easily accessible, reproducible and thereby convert the existing theory on the
MAIC method into a tool of use to industry and the health economics research community. The
package contains a number of functionalities but can be extended further. Some suggestions for

doing so are provided and the overall contribution of this thesis is summarised.

1.2 Overview of Chapters
There follows an overview of the ensuing chapters of this thesis:

e Chapter 2 Background — Some concepts and existing practices encompassed within
evidence synthesis for the purposes of comparative effectiveness research are set out in

order to provide a foundation for the central focus of this thesis. Epidemiology and statistics
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have a crucial role to this framework and some additional concepts within these fields are

described in this chapter.

Chapter 3 Literature Review — This chapter details a comprehensive literature review of
three parts aimed at establishing the current level of existing understanding of the MAIC
technique. The first examines the methodological papers for MAIC and another method for
population adjustment to determine the commonly accepted definition of the MAIC method.
The second part examines numerous comparative effectiveness publications that apply
the method to pharmaceutical products, noting use of method variations. The final part of

the review explores existing R packages of relevance to the method.

Chapter 4 R Package — The process of developing a package in the R programming
language is described in Chapter 4. Details include the rationale for developing R
packages, the requirements for the new package, the process of development and an

overview of the final design.

Chapter 5 Conclusions — The final chapter summarises the work described by this thesis,
in particular, consolidating understanding of the MAIC technique as used in HTA, the
future use of MAIC and some suggestions for further work in this area in terms of

extending the R package are also presented.



Chapter 2 Background

This chapter introduces a number of epidemiological and statistical concepts relevant to both MAIC
and more broadly, comparative effectiveness research for HTA. This begins with various models
used for evidence synthesis including meta-analysis. This is followed by an exploration of the
complications that can arise from combining different measures of study effect from many studies
in relation to scale. Issues pertaining to indirect comparisons, the use of aggregate summary
information and heterogeneity are identified. The idea of population adjustment is then introduced
followed by some epidemiological concepts and the basis for logistic regression, which is

instrumental to MAIC.

2.1 Evidence Synthesis Concepts
In order to establish evidence-based healthcare decision-making, all relevant competing

interventions for a given condition need to be considered (Jansen et al. 2011). Relevant competing
interventions may have already been compared together in a randomised controlled trial (RCT)
and can therefore be directly compared for effectiveness (a direct comparison). This is assuming
the same outcome type was recorded for both treatments as would be standard practice in a clinical

trial setting.

Randomisation protects against selection bias, which arises when, before being administered
treatment, there are underlying systematic differences between the groups to be compared and
these affect response to a therapy. Responses will be recorded for each patient. Then, for each
treatment, an average treatment effect can be obtained, specifically, a Sample Average Treatment
Effect (SATE), which is not to be confused with the true Population Average Treatment Effect
(PATE). This would be obtained if the treatment was administered to the entire population versus
the control and would be the ultimate quantity we would wish to obtain. Administering to the entire
population is unlikely to be practicable. Taking the difference between two treatments in terms of
(sample) average treatment effect will return the relative treatment effect and this is the key
measure for ascertaining the most effective treatment (Eichler et al. 2010, Phillippo et al. 2016).
There may exist several RCTs which have been conducted independently and compare the same

two treatments, each potentially returning a different estimate of relative treatment effect.

We can consider the observed summary outcome for a treatment arm of a randomised controlled

trial to be made up of three parts:

e The effect owing to the treatment itself
e The effect as a result of patient characteristics

e The effect as a result of study characteristics

If a randomised controlled trial is placebo-controlled, the placebo arm is considered to identify the

effect owing to the study and patient characteristics. The study and patient characteristics
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contributing to the outcome expressed within the placebo arm are referred to as prognostic
variables; they have an impact on the absolute outcomes for both the intervention and placebo
arm. Correspondingly, the summary outcome recorded in the intervention arm is considered to
include the effect owing to the treatment itself in addition to that owing to the study and patient
characteristics. Prior to treatment administration, patients are randomised across the two arms
such that known and unknown prognostic variables are balanced. The individual effect each

prognostic variable contributes in the placebo arm is then also present in the intervention arm.

Meanwhile, study and patient characteristics which have an impact on the difference between the
intervention and placebo arm are known as effect modifiers. This means that for particular
subgroups, the treatment effect in the intervention may appear to vary. Effect modifiers are not
necessarily also prognostic variables but where an effect modifier is also a prognostic variable,
then the outcome in the placebo arm is associated with the treatment effect. Figure 1 summarises

these key definitions.

e Prognostic variable — as the value of a covariate varies, absolute outcomes are affected,
but to the same extent for all compared treatments.

e Effect modifier — as the value of a covariate varies, the effect of the treatment is altered.
Absolute outcomes vary among subgroups of patients. If this pattern is different between
treatments, then the relative treatment effect is impacted. An effect modifier is not

necessarily also a prognostic variable.

Figure 1 Definition of prognostic variables and effect modifiers

These distinctions become more crucial when comparing across multiple trials and multiple
treatments. The methodologies for doing so are described in the ensuing subsections. It is worth
noting that when multiple trials are characterised by differing levels of patient characteristics, it is

said that heterogeneity exists between the trials or the trials are heterogeneous.

2.1.1 Meta-Analysis
In order to utilise all the available evidence derived from numerous studies, the multiple estimates

of relative treatment effect can be combined together in what is known as a meta-analysis (Higgins
and Green 2011). This combines the results of the different RCTs by calculating a summary
statistic for each before calculating a weighted average. The general concept of combining results
together from multiple sources is often referred to as evidence synthesis. The summary statistic
used may be in the form of an odds ratio, risk ratio, risk difference, hazard ratio, difference in means
or standardised mean difference. This manner of pooling the effect size can be achieved through

one of two approaches, a fixed effects model or the random effects model (Hoaglin et al. 2011).

The first of these assumes that there is no heterogeneity between the study populations and that

the true treatment effect being estimated in each study is the same. Any variability arising from



between studies is entirely due to random variation owing to sampling error. That is, the trial
population did not capture the behaviour of the full population and true effect. Smaller sample sizes
are inherently at more risk of such error. In calculating the weighted average, studies which have
greater precision are assigned a greater weight. Precision is simply assumed to be greater for
studies that have larger numbers of participants. Therefore, under the inverse variance method in

the case of continuous outcome data, each it study of n studies has an effect estimate, d; that is

weighted by the inverse of the variance in its estimate: w; = % The fixed effects model assumes

13
n .
Yi=1Widi
n

i=1 Wi

each estimate will yield an overall estimate for the treatment effect as: d =

If the studies have recorded binary outcome data and report event rate data such as the odds ratio,
the relative risk or the risk difference, then the Mantel-Haenszel method is used to weight studies.

This entails weights calculated using the values from a typical outcome table depicted as follows:

Event Non-Event
Treatment a b
Control c d
Table 1 Outcomes for binary data tabulated
The odds ratio is calculated as: ‘;/LZ = % and the weight is defined as: w; = %
. L . a/(a+b) . . . i (a+b)c
The risk ratio is calculated as: <crd) and the weight is defined as: w; = ——.

The risk difference is calculated as: — —— and the weight is defined as: w; = W.

In the random effects model, it is assumed that each study is being performed on a range of
populations. Therefore, each study is estimating one of a range of true treatment effects. These
are assumed to be normally distributed §;~N (1, A?) with a common mean p and this is the value

of interest.

To summarise, the fixed effects model describes each treatment effect observed from each study
as follows: d; = d + ¢; whereas in a random effects model (as proposed by (DerSimonian and Laird
1986)), each study treatment effect, d;, is assumed to be itself an estimate of its own unique
treatment effect, §;. In contrast to the fixed effects model, the true treatment effect is described as
a distribution with mean y. The random effects model therefore describes each observed study

treatment effect as follows: d; = u + 8; + ¢; (Hoaglin et al. 2011).

This model is typically more useful than the fixed effects model as homogeneity within study
populations would be a difficult condition to satisfy, but it yields less precise results, particularly

where between-trial heterogeneity is large. The model choice is not straightforward since a random



effects model takes greater consideration of smaller studies which could themselves be returning
biased results. Some measures have been defined for assessing heterogeneity and are detailed

in (Higgins and Green 2011) among many sources.

The study effect results from the meta-analysis may be summarised and graphed together in a
forest plot. However, a combined estimate may be biased due to heterogeneity between trials i.e.
the underlying differences in trial design, methodologies or study populations. This entire
framework as outlined above and described in the following sections has been well summarised in
a guideline document produced by the European Network for Health Technology Assessment
(EUNetHTA 2013).

2.1.2 Indirect Treatment Comparisons and the Bucher Method
A separate issue that frequently arises in comparing available treatments is that new treatments

may not be directly compared with the most relevant treatment options for the given indication. On
the other hand, there may be a common comparator against which both options were examined in
clinical trials. Using the common comparator to compare two treatments is referred to as an indirect
treatment comparison (ITC) (in this thesis, indirect comparison is used). A method for performing
such a comparison was first proposed by (Bucher et al. 1997). The authors highlight that in the
past, researchers would pool results from only the active treatment arms of RCTs and make a
comparison across these trials. This “naive unadjusted comparison” is no better than working with
observational study data (where patients are merely observed and not randomised) since the
patients are all drawn from different, independent cohorts instead of being drawn randomly from
the same pool. This allows for other factors, aside from the treatment that was administered, to

significantly impact the patients’ response and thus bias the comparison.

In a naive comparison, all prognostic variables would have to be accounted for as they are likely
to be imbalanced between the two trials. This is a substantial requirement which would in most
cases be impossible to achieve. Naive comparisons are therefore seldom accepted in the context

of health technology assessments or comparative effectiveness research.

Instead, Bucher et al. (1997) proposed an adjusted method which makes use of the control arm in
each RCT (in effect, a pre-existing direct comparison within the trial data). For a trial with a binary
outcome, assuming the odds ratio as the measure of treatment effect and direct evidence available
for B vs A and C vs A (where necessary each comparison may be derived as a weighted average

of multiple study estimates), the indirect comparison is:

In(ORnairect c) = IN(ORps) — In(ORy()

This assumes that among the studies, variables which have an impact on the treatment effect for
particular subgroups behave in the same away for both treatments in each RCT. In other words,

effect modifiers must be balanced. Owing to the randomisation taking place within trials B vs A and



C vs A, it is possible to make a fair comparison of B and C even if the levels of the prognostic
variables are different. This is further described in (Phillippo et al. 2016) in terms of effect modifiers
and the assumption of constancy of relative effects. Bucher et al. (1997) theorised the approach
for odds ratios but the same theory may be implemented for other measures, as documented by
the Canadian Agency for Drugs and Technologies in Health (CADTH), the HTA body in Canada
(Wells et al. 2009). This is also described in Sections 2.1.4 and 3.2.

2.1.3 Mixed Treatment Comparisons
Even when a direct comparison is possible between two treatments, an indirect comparison may

still be obtained. For example a closed ‘loop’ of three treatments (A, B, C), where all treatments
have been compared against each other directly could be informed by what is known as a multi-
arm trial; where a single cohort of patients are randomly assigned to more than two groups with a
different treatment administered in each. A three-arm trial comparing A, B and C can be very useful,
however Treatment A might additionally be compared to Treatment B via common comparator C.
Here a separate estimate would be obtained. Combining this direct evidence with the indirect
evidence is referred to as a mixed treatment comparison and this can improve the precision of the
estimate (Jansen et al. 2011). This scenario can be visually represented in a simple network
diagram and is depicted in Figure 2 below. Here, the nodes represent treatments and each solid
connecting edge represents a typical two-armed RCT between treatments. Unfortunately, one
limitation of this schematic is in distinguishing between a three-arm trial and a set of three two-arm
trials. One way to include this information would be to simply label each edge with the trial name
or possibly introduce a colour coding system for more complex networks. An edge displayed as a
dashed line represents indirect evidence that may be generated as a result of two or more pieces
of connected direct evidence.

Figure 2 Indirect comparison performed between A and B in addition to a direct comparison



Multiple treatments may be linked together directly and/or indirectly through what is known as a
network meta-analysis (NMA) (Lumley 2002, Sutton et al. 2008). An example of this is illustrated
in Figure 3:

Figure 3 Example of a network of treatments with example indirect comparisons indicated by dashed lines

As can be observed in the figure above, a treatment may be linked through a ‘chain’ of common
comparators extending the network further, but this increasing order of comparison tends to

increase the estimate’s standard error (Hawkins et al. 2009).

It is important to note that mixed treatment comparisons rely on the differences in the distribution
of effect modifiers to be the same on average between the set of trials making comparisons
between B vs A and the set of trials comparing C vs A. If the levels of effect modifiers vary between
trials in each set but the pattern of variation is the same i.e. on average they are the same between
the two sets, a random-effects model can be used to account for these differences to avoid biased
estimates from a mixed treatment comparison. It is worth noting that the requirement to account
for imbalanced levels in effect modifiers between trials applies to all effect modifiers, irrespective
of whether they have been measured in the trials or not. It must therefore be acknowledged that
there is always a risk of some element of bias in a mixed treatment comparison even when

observed effect modifiers are balanced.

This leads to an important point regarding the applicability of the results from indirect comparisons
generally. Such comparisons depend on the trial populations involved in the treatment comparison
to be the same, or rather, that underlying population characteristics that have an impact on the

treatment comparison are accounted for, such that population differences are in effect eliminated.



The results from such indirect comparisons can only be considered for the mixed population
defined over the included trials. While robust systematic reviews will attempt to capture all eligible
studies, it is possible that the results from an analysis involving a select number of trials is only

applicable to the merged population and not generalisable to a wider population of interest.

This can be a significant challenge in the course of health technology assessment if the objective
is to determine whether a new health technology represents a meaningful benefit for a wider patient
population that would be treated within the public health system. For this reason, some
heterogeneity in the scope of patient populations across trials may increase the external validity of
the analysis, provided that there is little heterogeneity in the distribution of effect modifiers across
studies (Jansen et al. 2011). The issue of applicability of results to specific populations is relevant
in the discussion of methods for population-adjusted treatment comparisons, since this differs from

indirect comparison methods, as described in this thesis.

2.1.4 Scale Transformation
Methodology for pairwise meta-analysis is well established, however, it becomes more challenging

to combine evidence from multiple data sources including direct, indirect and mixed treatment
comparisons, network meta-analysis and multi-arm trials. There may be a great variety of outcome

types reported in trials from this body of evidence.

A requirement for the indirect comparison, including MAIC, is that the two components being
compared are measured on a scale where the treatment effects are additive. This means that it is
true to say that the sum of the two components does in fact result in the numerical addition of the
two values. This relationship between the two components may not hold if measured on a different

scale; the relationship may be multiplicative for example, or nonlinear.

The scale on which the outcomes are observed may be referred to as the natural outcome scale.
This may not be the same as the linear predictor scale; where treatment effects, effect modification
and prognostic variables are additive. Indirect comparisons require outcomes to be recorded on
the linear predictor scale. In order to achieve linearity, data transformations are required in the form
of a link function g() and this has become standard practice for performing an indirect comparison
(Dias et al. 2013, Dias et al. 2011b). A common example is the log transformation for the binary
outcome onto the log odds scale where the natural outcome scale for binary outcomes is the

probability scale.
For binary outcome data consisting of k arms of trial i, events r;, are expressed as follows:
Ty.~Binomial (py, ny)

Where p;, is the probability of an event in arm k of trial i.
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A typical linear model is inappropriate for a binary outcome. A simple inspection of event
occurrence against treatment group will illustrate that the dependent variable is not normally
distributed. Using a linear regression model would predict values for the event occurrence ranging
on the set of real numbers R and this is clearly not useful. However, the odds scale provides a
useful range on which to map the probability of an event occurring. This is because the range is

no longer restricted to the [0,1] interval as is the case with probability. The odds are instead written
asp:1—por ﬁ and this fraction tends to o as p — 1. Taking the log of the odds; log (ﬁ) will

map to a continuous range from —co to co and so modelling on this scale would potentially offer a
good fit for binary outcome data (Hosmer and Lemeshow 2000). Section 2.4.1 describes further

how the link function, the logarithm of odds or logit is related to the binomial distribution.

Therefore, for a fixed effects model, the probability of experiencing an event for a patient in trial i

is modelled as:
logit(p;1) = u;
logit(p;z) = u; +d

Where y; represents the log odds of the outcome for the control arm of trial i and d is the log odds
ratio of achieving the event. For a random effects model, the equation for the treatment arm is
instead:

logit(p;z) = u; + 85,

Where §;, is a trial-specific estimate of treatment effect and is distributed according to:
8,~N(d,s?). This is further described in Section 3.5.1 through a published example

implementation.
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2.1.5 Further Challenges in Evidence Synthesis
There are, however, problems associated with indirect comparisons. Patients are randomised in

an RCT but this randomisation property does not hold across different RCTs (Bucher et al. 1997,
Jansen et al. 2011). As noted in section 2.1 in respect of effect modifiers, prognostic variables and
meta-analysis; conditions may easily differ between RCTSs, such as the geographic setting in which
the study was performed or differing patient characteristics, for instance, the average patient age.
If these characteristics are effect modifiers and hence have an impact on relative treatment effect,
then the collection of studies is said to be heterogeneous (Jansen et al. 2011). For this reason,
simply comparing the (sample) average treatment effect for each treatment obtained in separate
clinical trials is insufficient. Indirect comparisons will not be able to account for differences in
relative treatment effect. On the other hand, differences in purely prognostic variables, which affect
absolute outcomes only, may be accounted for in an indirect comparison. Once a common
comparator is available between the two treatments being compared and both treatments have
been randomised against the common comparator in separate clinical trials, the portion of the
observed effect that can be attributed to these prognostic variables will not contribute to the indirect
treatment comparison. Determining whether differing patient characteristics between trials have an
impact on solely absolute or also relative treatment effects represents a significant challenge

(Sutton et al. 2008) and is considered in Section 3.5.

For robust decision-making, evidence on the relative effectiveness between competing treatment
options should come from studies that are comparable (Higgins and Green 2011, Jansen et al.
2011). That is, the characteristics of the studies should be as similar as possible. Conversely, if for
example, disease severity is greater in trials comparing drug A with B than trials comparing A with
C, and differences such as these have an impact on relative treatment effect, then the estimate of

the indirect comparison, B with C, may well be biased (Jansen et al. 2011, Signorovitch et al. 2010).

The treatment comparisons made within this framework are based on published clinical trials which
report summary statistics quantifying the treatment effect. This could be reduction in systolic blood
pressure, for example. These treatment outcomes are typically reported as aggregate data (AgD).
Further detail on the various forms these outcomes may take is presented in Section 2.3. We may
be able to tell from this summary data how similar two trials are in terms of patient characteristics
and the study literature should indicate the various conditions of the trial. It may then become
apparent that the two studies are far from comparable and any indirect comparison made may be

undermined by bias.

It is also recognised that comparing aggregate data alone is prone to ecological bias. This refers
to the case where an initial comparison of AgD has led to one relative effect but further inspection
of data at the individual level has resulted in a different estimate in relative effect. This is due to

associations present at the individual level not exhibited at the summary level (Greenland and
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Morgenstern 1989). This can lead to an entirely opposing conclusion about the effectiveness of
one drug versus another. To illustrate, hypothetical patient outcomes are presented in Table 2
below. On inspection of the AgD, treatment C appears more effective, stratifying by baseline

severity of disease shows that treatment B is in fact more effective:

A vs B trial A vs C trial B vs C indirect
(80% Severe cases) (20% Severe Cases) comparison

Patient Outcome | Treatment | Treatment | Treatment Treatment (B-A4)-(C
(% response) A B C A —4)
AgD 10 46 54 16 -2

Stratifying Patient Outcomes by Baseline Severity of Disease
Severe Cases 8 40 38 8 2
Non-severe 17 70 58 17 12
Cases

Table 2 Ecological Bias

It can be concluded that, where available, the use of IPD in the analysis of clinical trial data is more
preferable when establishing the treatment effect of a drug, due to the greater amount of
information available describing the distribution of patient covariates and outcomes. As this section
has shown, the sheer volume of evidence can become overwhelming, particularly when taking into
account the different types of evidence that may be derived through various methods as well as
the numerous combinations within. Methodologies for evidence synthesis continue to represent an
active area of research, featuring prominently at SMDM and ISPOR conferences. There are
centres of research dedicated to this topic including the Johns Hopkins Center for Clinical Trials
and Evidence Synthesis, Evidence Synthesis Ireland and Cochrane. This thesis will focus on the

role of methods of population adjustment within this framework.

2.2 The Context for Population Adjustment Methods
To summarise, there are situations where making an indirect comparison is highly desirable.

However, the potential for heterogeneity inherent in separate trial populations can make estimates
arising from indirect comparison less likely to reflect true comparative effectiveness. If other
sources of heterogeneity in the trials can be eliminated and only the differences in the populations
of the two trials remain, it may be possible to adjust the population characteristics of one trial using

the individual-level patient data.

An extensive document detailing these methods and their preferred usage in health technology
submissions to the respective HTA body in the United Kingdom, is Technical Support Document
18 (Phillippo et al. 2016). This was produced by the Decision Support Unit (DSU): a collaboration
between several universities in the UK which is funded by the HTA agency, the National Institute

for Health and Care Excellence (NICE). The DSU is commissioned to provide research capacity in
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support of Technology Appraisal (a term typically used by NICE instead of HTA), normally as a
result of identification of areas of interest by appraisal committees, academic groups or NICE staff.
The Technical Support Documents (TSDs) are intended as guides for implementing specific
methods so as to inform interested stakeholders such as pharmaceutical companies and

assessment groups on how to approach incorporating these into their HTAs.

In the case of TSD 18, it had been noted that MAICs were being applied in numerous technology
appraisals with little to no understanding of the resulting implications (Phillippo et al. 2016).
Therefore, the document was developed by members of the group at the University of Bristol and
since its release has gone a long way towards consolidating knowledge surrounding these methods
and acting as a key point of reference. Where relevant, the contributions made by the TSD are
referenced throughout Section 3.5 and a summary of the authors’ recommendations with respect
to HTA submissions to NICE are included in Section 3.5.4.

2.3 Background to Epidemiology and Treatment Outcomes
In order to achieve the goal of best decision-making using evidence-based medicine, measurement

of treatment outcome becomes particularly important if the most effective treatments are to be
identified. Cochrane, a global network organisation made up of voluntary experts who aim to
promote evidence-based health decision-making, list the various types of outcome data they
recognise to be used in clinical studies in their Handbook for Systematic Reviews of Interventions
(Higgins and Green 2011). These are: dichotomous, continuous, ordinal, time-to-event (survival)
and counts & rates.

For each of these data types, more than one effect measure may be possible. For dichotomous
data, these include risk ratio, odds ratio and risk difference. For continuous data, mean difference
or standardised mean difference may be used. Hazard ratios may be used in time-to-event data.
Rate ratios may be used for counts and rate data. Ordinal data may be described in terms of
proportional odds ratios depending on the number of categories involved (Higgins and Green
2011). The issue of this choice of scale on which to measure the effect is repeatedly cited in TSD
18 (Phillippo et al. 2016) and it has been noted that the choice of effect measure can have an
impact on ranking treatments for probability of being most effective in a mixed treatment
comparison (Norton et al. 2012).

In this thesis, we will focus on the case where the patient outcome is binary, referring to an outcome
taking values x € {0,1} (as a matter of distinction, dichotomous can be generalised to a variable
taking any two distinct values and not exclusively {0,1}). It is important to first determine whether
the outcome being recorded is of positive benefit to the patient or represents a negative outcome,
such as experiencing a cardiovascular event. This will affect the model and interpretation of the
results. For a trial of an experimental treatment with a control arm, events can be recorded as in

Table 1 and an odds ratio may be calculated. When using the odds ratio effect measure for an
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indirect comparison, a transformation on to the log odds ratio scale may be required. In plotting or
tabulating results comparing various treatments, it is important to determine whether a negative

log odds ratio i.e. lower odds of experiencing the event, favours or goes against the treatment.

2.3.1 Bias, Confounding and Effect Modification
Bias is an important concept in epidemiology and statistics. In the latter, it refers to results deviating

from the truth due to a systematic error. In other words, it would not be possible for the estimates
to reflect the true value because even before they are generated, the methodology adopted for
doing so confines them to a set of values that are misaligned from the true value. Some key

distinctions in the terminology are outlined below:

o A reliable estimate is often described as one which is reproducible; the returned values
are consistent after calculating the estimate multiple times. However, a more
distinguishing term to describe this property could be ‘consistent’. The term ‘reliable’ is
problematic as it often carries different meanings across different disciplines and among
individuals. More specific terminology follows.

e A precise estimate is one where the variation between iterations of the estimate owing to
random error is small. This is a more specific and hence preferable term to ‘reliable’. A
reliable estimate could (reliably) produce the same set of values that are disparate and
distributed in equal proportions over multiple simulations.

e An accurate estimate is one which captures the true value. An estimate which is

inaccurate could also be described as ‘invalid’.

A biased estimate may be reliable, precise and without random error but will be fundamentally
invalid. In contrast, a clinical trial conducted without systematic error can still be subject to random
error and imprecision, but many replications of the same study should produce results averaging
to the true value. Systematic error can be caused by one of many possible factors. In epidemiology,
the types of bias typically referred to are as a result of some aspect of the study design or analysis
of the data. This could be the way in which participants of a study are recruited, selected, retained

or the way in which their characteristics and responses are measured (Higgins and Green 2011).

Confounding refers to the situation where an association between a treatment and outcome exists
but is distorted by another variable that is not the causal factor itself (Greenland and Morgenstern
1989). Randomisation is used to minimise potential distortions arising from confounding variables.
One way to reveal the actual association is to stratify the data into various subgroups of the

confounding variable, as previously discussed in relation to ecological bias in Section 2.1.5.

Effect Modification refers to the case where a variable has an effect on the outcome, but the degree
of impact varies for different subgroups of another variable. This is often referred to as interaction

in statistics. Effect modification more strictly relates to a biological phenomenon observed in the
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behaviour of a disease, as opposed to an association observed simply from data (Kamangar 2012).

In practice, the term is often used interchangeably with interaction.

2.4 Logistic Regression
Logistic Regression is important to the MAIC method for both generating weights and calculating

relative treatment effect. It is also central to the other method of population-adjusted treatment

comparisons; the Simulated Treatment Comparison.

2.4.1 The Exponential Family of Distributions
Continuous data may be analysed via a linear model which can be represented as follows:

EY) =uw=x{B
Yi~N(.uiv 0-2)

In keeping with the Generalised Linear Model (GLM) framework, which is well documented, as in
(Dobson and Barnett 2008), a single response variable, Y; is modelled according to two
components; a probability distribution for Y; and an equation linking the expected value of Y; with a
linear combination of explanatory variables. For the situation where the response variable Y; is not
continuous, or where the association between the response variable and the explanatory variable
is not in this simple linear form, the model can be generalised for non-linear situations. The model

equation can be written in matrix notation:

glE@)] = XB

X is referred to as the design matrix which consists of the known constants denoting the
explanatory variables, either categorical levels or measured continuous values. B is a vector of
parameters representing the change in the response variable for every single unit change in x. The
function g is the link function which describes the relationship between the mean of the distribution
function and the linear predictor. For certain distributions, g can be obtained once the distribution

is recognised as belonging to the exponential family.

For a random variable Y, if its probability distribution can be written in the form:

f;0) = expla(y)b(8) + c(0) + d(¥)] (1)
Equation 1 Formula for distribution as a member of the exponential family

Where 6 is a single parameter, then the distribution belongs to the exponential family. For the
distribution to be in the standard form (also referred to as canonical form), a further requirement is
that a(y) = y. Additionally, c(68) must be in a form that causes the probability density function to
integrate (or sum for discrete distributions) to one over all values of y. This is referred to as the

normalising constant.
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In fact, all the probability distributions in the GLM framework belong to the exponential family of
distributions (Dobson and Barnett 2008). The binomial distribution caters for binary data where the
only two possible outcomes are success or failure. Assuming the probability of success to be given

by 6 then the binomial distribution probability density function for y of n independent trials is:

f;0) = (3) 01— 0" @

Equation 2 Probability density function for the binomial distribution

This can be written in the exponential family form. The steps for this are given in Appendix A. Based

on the form given above, it is easy to see that a(y)b(0) = y log (1%) and c¢(6) = log(1 — 6) and
d(y) =log (;) Hence, b(0) = log (é) is the link function and this is important for carrying out the

appropriate transformation when analysing patient outcome data of various types, as explained in
Section 2.1.4.

In summary, given some trial data, the nature of the data will determine the likelihood and the link

function g() maps the parameters, y, that define the likelihood, onto the continuous range (—oo, ).
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Chapter 3 Literature Review

This chapter presents a literature review of MAIC methodology and applications, in particular within
the context of HTAs. The purpose of this review was to gauge the level of existing understanding
in relation to these topics as demonstrated by the published literature. Consideration was given for
how current understanding could be strengthened, since at the time of review, it was not obvious

that the technique was universally well-understood.

The chapter begins by summarising the basis for using population adjustment methods. This is
followed by a general description of the methods before a more detailed look at their technical
description. The STC (Simulated Treatment Comparison) method is described here and a brief
comparison to MAIC is made. The chapter then describes the review of all available published
MAIC methodology including methods and findings. A subsequent review of published applications
of MAIC was carried out. These publications are compared in terms of the manner in which the
MAIC methodology was described. The results of this review conclude the chapter.

3.1 Basis for Population Adjustment Methods
MAIC and STC are both methods for population-adjusted treatment comparison. As previously

described in Chapter 2, they attempt to make the results of two trials more comparable. By reducing
the between-trial heterogeneity, the resulting indirect comparisons should be less biased, though

there is always potential for unobserved differences to remain (Signorovitch et al. 2012).

The methods rely on the availability of individual patient data, assumed to be drawn from a
company’s own frial. In a typical commercial context, a pharmaceutical company is interested in
performing the MAIC or STC between a treatment that it has developed and a comparator
treatment, which may have been developed by a competitor company. Extensive clinical trial data
is available for its own treatment including at the individual patient level but such detail on the
corresponding clinical trial for the competitor treatment is seldom available to the analyst.
Throughout this thesis, the “competitor trial” hereby refers to the one from which the AgD has been
drawn (data is not available at the individual patient level). Other scenarios can also arise where a

research agency seeks to perform an analysis and has access to some IPD.

The IPD will be characterised by different patient characteristics such as age, or other factors
distinctly relevant to the study and treatment area. For instance, this could be whether patients are
naive to a particular treatment or the degree of disease severity. The case of ecological bias in
Section 2.1.5 illustrates that use of individual-level data can help to avoid this fallacy. IPD has been
used in meta-analysis prior to the introduction of MAIC (Berlin et al. 2002, Donegan et al. 2013,
Riley et al. 2010, Stewart and Tierney 2002) as well as in network meta-analysis (Jansen 2012,
Veroniki et al. 2016).
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The NICE Decision Support Unit have produced a separate document (TSD 3) providing guidance
on methods to combat heterogeneity in the relative treatment effect (Dias et al. 2011a). Such
heterogeneity is attributed to one of two causes. The first of these is variation in trial settings,
protocols or patient populations recruited. The second is due to poor trial quality; if the trial is not
double-blinded or where the person allocating patients to treatment arms knows to which arm they
will be assigned. Within the document, it is established that network meta-regression using IPD is
the “gold standard” approach in terms of attempting to identify true relative treatment effect. MAIC
and STC can be regarded as methods that are suited to matching to marginal covariate information
(which is generally more commonly available in publications) rather than attempting to match to

the full distribution; which would require IPD for the competitor treatment.

3.1.1 Propensity Score Methods
In the field of epidemiology, a common goal is to be able to compare populations or “groups” in

terms of incidence of a disease and to be able to generalise for a larger target population. Since
sample groups will typically differ in terms of underlying characteristics, raw comparisons of
mortality rates are often insufficient. Stratifying mortality rate for numerous subgroups (often age
and gender) can overcome population differences, but often the number of subgroups required is
too large to manage. In direct standardisation, the mean outcomes for each subgroup are
reweighted according to the frequencies noted from the generalised population. However, if few or
zero individuals exist for a particular subgroup, it will attract an unnecessarily large weight.
Propensity Score methods were applied by (Rosenbaum 1987) resulting in model-based direct
standardisation, where, instead of using the observed population frequencies, individuals in each
subgroup are weighted according to the inverse of a propensity score. The propensity score is
assigned according to the conditional probability that an individual, given their underlying
characteristics, is allocated to a subgroup (Rosenbaum and Rubin 1983). The typical setting for
propensity scores is concerned with estimating outcomes in a target population based on a sample
subpopulation which differs in terms of covariate distribution. Propensity score weighting aims to
resolve the differences in the distribution of covariates between the sample and target populations.
Individuals in the sample population are attributed a weight based on the inverse of their propensity

score.

3.1.2 Calibration
The standardisation methods rely on the sample data being drawn from a subpopulation of the

target population. Calibration refers to methods which consider the sample and target populations
as distinctly independent (used in two separate clinical trials). In other words, using treatment effect
and covariate information from one population to estimate treatment effect in another population
characterised by different but known covariate information. IPD is therefore required from both
populations. With reference to the situation depicted in Figure 2, MAIC and STC contrast the basis

for calibration methods in that the average relative treatment effect between B and C is being
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estimated through adjusting the AB population to reflect the target AC population as if treatment B
was also administered. In calibration, the relative effect between B and C in the AB population is
being estimated (Phillippo et al. 2016). Calibration methods include covariate adjustment,

likelihood reweighting, doubly robust methods and the conditional effect estimator.

3.1.3 Introduction to MAIC
The context for which the MAIC method might be used was briefly described in Section 3.1. The

MAIC method requires various characteristics to be selected for matching. This process involves
the application of individual weights to patients in the IPD dataset such that the summary data of
these selected characteristics after weighting will more closely correspond to the AgD available
from another trial. In other words, some patients within the IPD trial will now contribute more to the
newly calculated means (or other summary statistics) whereas others will contribute less or nothing
at all. The anticipated result is that this matching of an analyst’s own trial data will now make the
trial more comparable with the competitor’s trial. Any significant relative treatment effect derived
from the indirect comparisons should not be attributable to reported differences in the two trial

populations.

For a HTA submission, a drug company could provide an alternative estimate of treatment effect
using MAIC, even if the relative treatment effect of the new drug subsequently appears diminished
compared to that from an unadjusted comparison. In combination with results of an unadjusted
ITC, the MAIC will attempt to give an additional perspective on the drug’s effectiveness
(Proskorovsky et al. 2018). Naturally, the motivation behind this is to reduce bias in the estimate
and provide what is hoped to be a fair comparison that more closely reflects the true situation. The
basis for this is that the MAIC estimates will correspond to what would have happened if the two
treatments being compared were conducted in the same trial with the same patient population. The
patient population to which the new estimates are applicable is always that of the competitor trial.
However, this only corresponds to the true situation if the patient population is the true target

population, which may not be the case and can be difficult to determine.

It should be noted, however, that trial data after population adjustment does not become “gold
standard” evidence. Only direct, head-to-head, double-blinded randomised controlled trials will be
capable of avoiding the pitfall of confounding (Signorovitch et al. 2011). It is important to also note
that variables that are not used for matching may be distorted by the weights applied to the patients.
It is therefore beneficial to also report the characteristics that have not been matched, as these can
be of relevance (Phillippo et al. 2016). Trial populations may become aligned in some aspects but
disjointed in others. At all times, clinical context and relevance should be kept in mind. For example,
it may be that certain variables are deemed to have little to no bearing on the particular patient
outcome or clinical context may necessitate that certain patient characteristics are confined to a

certain range of plausible values.
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It is also worth noting a key distinction in population adjustment methods in terms of the anchored
and unanchored approach. In an anchored comparison, a common comparator arm exists within
the trial data for both the treatment where IPD is available and the target treatment where only
summary data is available. From this point onwards unless otherwise specified, treatment B will
refer to the treatment for which IPD is available, or the intervention. Treatment C will refer to the
case where only AgD is available (such as a competitor's treatment), hereby referred to as the
comparator. Finally, treatment A, from here referred to as the anchor treatment, will refer to the
treatment that has been directly compared with both treatment B and treatment C in two separate

RCTs. These treatments are depicted in the anchored comparison form in Figure 4:

Anchor
Treatment

Intervention
Treatment

Comparator
Treatment

Figure 4 Anchored indirect comparison indicated by dashed line

The indirect comparison between B and C can be said to be ‘anchored’ on common comparator
treatment A. The calculation required to make the anchored comparison is depicted as a set of
equations in the TSD literature (Phillippo et al. 2017, Phillippo et al. 2018) as follows:

dBC(AC) = dAC(AC) - dAB(AC) 3)

Equation 3 Anchored indirect comparison

3BC(AC)= g(YC(AC)) - Q(YA(AC)) - (g(?B(AC)) - g(?A(AC))) (4)

Equation 4 Breakdown of anchored indirect comparison
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In every subscript, the bracketed component refers to the population and the component outside
the bracket refers to the treatment(s) of concern. The trial-level relative treatment effect between
the two treatments denoted in the subscripts is represented by d and an estimator of this value is
denoted by A. Hence, dpciac) IS the relative treatment effect between B and C in the population in
trial AC. A trial-level estimator of the expected outcome of treatment C in the AC population or the
summary outcome from the trial is represented by Y. (4¢). The population-adjusted treatment effect
of B in the AC population is represented by Y5(4¢). These values denoting outcome data need to

be transformed onto an appropriate scale via function g() as detailed in Sections 2.1.4 and 2.1.5.

Given that in this instance the comparison of treatment effect is made relative to the common
comparator for both treatments, the randomisation that is applied in the design of the trials
continues to hold for the matching-adjusted indirect comparison (Phillippo et al. 2016). On the other
hand, this randomisation property is lost in an unanchored comparison. The unanchored MAIC
scenario handles the case where there is a disconnected network of treatments or where single-
arm studies are being used. Such trials can be particularly relevant in cases where patient numbers
are small, where there are few alternative treatments available, or where a randomising trial would
be considered unethical as a treatment benefit is expected. Figure 5 gives a simple illustration of

the unanchored comparison below:

Figure 5 Unanchored indirect comparison indicated by dashed line

Hence, in this situation we are dependent on single-arm trial data. While this is preferable to a
naive unadjusted comparison (Signorovitch et al. 2012), a lack of a comparator arm is a
considerable limitation, for which there are implications on the assumptions behind the analysis.
This is explored to some length in the Technical Support Document from NICE (Phillippo et al.
2016). Unless stated otherwise, this review will refer to the anchored comparison. The respective

equations for the unanchored comparison are as follows:

dpe(e) = g(YC(C)) - g(YB(C)) ()
Equation 5 Unanchored indirect comparison
Bscer=9(Year)) — 9(Tscc)) (6)

Equation 6 Breakdown of unanchored indirect comparison
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3.2 Simulated Treatment Comparison (STC)
Simulated Treatment Comparison or STC is another method for population adjustment. It involves

fitting a regression model of treatment outcome using the IPD from the trial available to the analyst.
This results in a model which describes the treatment outcome in terms of a set of covariates and
the covariate values available in the IPD should produce an outcome that would be observed if the
trial population had a different covariate distribution. As per the situation described in Figure 4,
where treatment A is a common comparator, IPD is available for the trial AB but only AgD is

available for trial AC, the model for the anchored STC is set out as follows:

9 (1ecamy (X)) = Bo + BTX + (Bg + BIXFM)I(t = B) 7)

Equation 7 Formula for simulated treatment comparison

Here, the expected outcome, ,ut(AB)(X) (scaled such that treatment effects are additive via link

function g()) for an individual assigned treatment ¢ with values X for their patient characteristics (or
covariates), is predicted with the following parameters: an intercept term f3,, a vector of coefficients
B, for prognostic variables and g, for the effect modifiers XM, The relative effect of treatment B
compared to A at X = 0 is given by S5. The definitions for prognostic variables and effect modifiers

were given in Figure 1.

As described in Section 2.1.4, the scale onto which the expected outcome has been transformed
is referred to as the linear predictor scale; where treatment effects, effect modification and
prognostic variables are additive. This is typically the log odds ratio for binary outcomes, the logit
scale for proportions or the log scale for rate outcomes (Phillippo et al. 2016). As noted in Section
2.1.4, the natural outcome scale for binary outcomes is the probability scale. The inverse of the
link function, g=*(), needs to be applied in order to obtain the treatment outcomes on this natural

outcome scale.

From Equation 7 above, the population-adjusted estimate of treatment effect for treatment A is
A o~ — P ~T— —~ ~T —

given by: g~*(f, + B1X) and for treatment B by: g~* (ﬁo +B,X+B;+ BZXEM). These values

are obtained in the R implementation given in Appendix D of the TSD (Phillippo et al. 2016). The

way in which the regression model relates to the relative treatment effect for a binary outcome is
described in Section 3.5.1.

3.3 Comparison of Population Adjustment Methods
A key difference between MAIC and STC is that whereas the former is better suited to situations

where there are few comparators, estimates for many comparators can be obtained with relative
ease in STC. This is due to the fact that in MAIC, a set of weights is produced and applied to the
available patient data in order to align the treatment’s performance to the comparator’s population

of interest. Therefore, a new set of weights would need to be generated for every comparator and
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so MAIC is somewhat more labour-intensive in this instance. In STC, the regression equation can
be used to predict outcomes for a comparator treatment when the average values from the
comparator trial are substituted into the equation. The same equation in STC can generate the
population-adjusted outcome for every comparator once its corresponding average patient
characteristic values are substituted in. However, a separate equation will be required for every
outcome of interest (Ishak et al. 2015). As a result, it may be preferable to make use of MAIC in
the situation where there are multiple outcomes to assess but where there are few comparators.
An example of this is illustrated in (Van Sanden et al. 2016). An important point when considering
multiple comparators is that the estimates obtained for each are applicable only to a population
defined by the comparator summary data. This concludes the comparison between STC and MAIC.
Itis evident that STC is a versatile and useful method, however, the focus of the remainder of this
thesis will be on the MAIC method.

Ishak et al. (2015) describe the key benefits of population-adjusted treatment comparisons. It is
stated that these methods can address heterogeneity between studies in a network meta-analysis,
can make a single step comparison where a multi-step comparison is otherwise necessary and
can also connect an otherwise incomplete network via an unanchored comparison. This approach
comes with a number of caveats, which are discussed further in this thesis. The last advantage
proposed is that even when a fully connected NMA already exists, it is suggested that new
comparisons produced by methods such as MAIC can offer new insights into the effectiveness of
a set of treatments. On the other hand, it is worth noting that guidance from the National Institute
for Health and Care Excellence does not suggest conducting such comparisons in order to
strengthen NMA (Phillippo et al. 2016).

An important aspect of population adjustment to consider is the implied assumption it makes about
the representativeness of the comparator trial population. This was a subtle point touched upon in
the distinction between methods of calibration and MAIC/STC in section 3.1.2. In Equations 3-6
given previously, the estimates all make reference to a population denoted in the bracketed
subscripts. When MAIC/STC is carried out, the population which is adjusted is always the one for
which IPD is available; usually the intervention treatment. The target population used for
adjustment is assumed to be the one most relevant to the decision question. The estimates derived
from MAIC/STC will only be applicable to the target trial population, although the target trial
population is unlikely to be the same as the ideal population. The TSD further adds that this
situation has previously resulted in an apparent conflict in results between two drug companies;
each favouring their own drug in their respective analysis. The real problem is in fact determining
which of the trial populations is more relevant for the broader decision question (Phillippo et al.
2016). This further illustrates why it is appropriate for the IPD patient characteristics to be more

diverse than those of the AgD set being used to match on. In other words, ranges of patient
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characteristics should be wider or the same in the IPD set and sample sizes should ideally be

larger.

Overall, the Technical Support Document and more broadly, the general literature, would suggest
that the primary goal of the population-adjusted comparison is to account for the heterogeneity
resulting from underlying differences in two trial populations. However, these suggestions do
highlight the fact that the motivation behind conducting MAIC may fall into one of two main
possibilities. Firstly, to make an indirect comparison where it is otherwise impossible to obtain direct
evidence between two treatments and attempt to account for population heterogeneity, or
secondly, to provide additional evidence and/or an alternative perspective on the true relative
treatment effect between two treatments. This could be carried out irrespective of the volume of
evidence already available. In this thesis, the first of these is of primary concern, as the literature
shows that this is the more common motivation and the implications for HTA are more substantial

in this scenario.

3.4 Review Methodology
A core document in the literature review was Technical Support Document 18 (Phillippo et al.

2016), which explored the implications of the MAIC and STC methods and made reference to the
key article proposing the MAIC method (Signorovitch et al. 2010). The report concludes with key
recommendations on the usage of the methods, as guidance for HTA in NICE. The same TSD
group produced an overview of population-adjusted treatment comparison methods concisely laid
out on a poster, which was presented at ISPOR’s 22nd Annual International Meeting (Phillippo et
al. 2017).

Subsequent to the original article proposing MAIC, Signorovitch et al. (2012) wrote an article
summarising the method and exploring the contributions that the method makes to comparative
effectiveness research, using example applications for illustration. A number of existing MAIC
applications and broader evidence synthesis methodology papers were then considered. The
remaining literature examined in this review was identified through references from the initial set of
papers. Where additional MAIC examples were sought, basic searches were run using keywords
such as “matching adjusted indirect comparison” on the PubMed platform and Embase database.
In addition, alerts were created to inform of any new publications appearing on these sites that
were published during the course of the project. These databases cover a wide variety of
publications such as Value in Health. This search used variants on this basic terminology as well
as “simulated treatment comparison”. Observations showed that during the period of the review, a
new publication making use of this terminology would be uploaded to PubMed at an average rate
of approximately one every two weeks. However, many of the observed uploads were updates to
existing applications as opposed to novel analyses. It is important to also acknowledge that such

keyword-based searches are always subject to limitations and may not capture the full scope of
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the material available. This is especially relevant to MAIC and STC, due to the broad range of

terminology used, particularly in earlier publications. This is described in Section 3.6.3.

To complement the literature search, a search for existing R packages uploaded to CRAN was
performed using (METACRAN 2019). No R packages that could perform a population adjustment
method were discovered, however there were a small number of existing packages designed to

support network meta-analysis. A brief note on these is included at the end of the review.

3.5 MAIC Methodology
Signorovitch et al. (2012) give the rationale for the MAIC method at a non-technical level. In

particular, using example applications to show how use of IPD can resolve the various limitations
that may arise from indirect comparisons. In the article, the MAIC approach is summarised in three

steps:

1. Conducting a systematic review, where clinical trials are identified to compare the relevant
treatments.

2. ldentifying a precise definition of an outcome measure which can be compared across all
included trials and therefore the different treatments being considered. Variation can be
present in multiple aspects of the outcome measure definition.

3. The weighting aspect of the matching-adjusted indirect comparison is the third key part of
the method, the detail of which is covered in (Signorovitch et al. 2010) and is outlined in
this review. As an additional step, patients who could not be enrolled in the trial for which
only aggregate data is available (the competitor’s), should also be excluded from the IPD
that is available. For example, patients might be excluded for being naive to a particular
treatment. Selecting data in this way could have a significant impact on the analysis as we
are effectively discarding data, but the idea is to rule out patients that would have been
definitively ruled out of the competitor’s trial due to the recruitment criteria (also referred to

as inclusion/exclusion criteria).

Patient characteristics must first be selected for matching. In an anchored MAIC, this means
accounting for all effect modifiers. As noted in Section 2.1, when we examine the covariates of a
given dataset, a purely prognostic variable is one which does not affect the relative treatment effect,
even for different levels of the covariate. That is to say that while absolute outcomes may be
affected when we vary the covariate level, the improvement or deterioration should be the same
across the treatments being compared. In an anchored scenario, since there is data available for
the same anchor treatment in the two trials, although the average level of the covariate may be
different between them, the anchor treatment acts as a common reference arm for both treatments
of interest. However, an effect modifier refers to the situation where there is an interaction between

a covariate and a treatment outcome. Since the treatment effect may vary for particular subgroups
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for one or some of the treatments being compared, this has an impact on relative treatment effect.

Hence, effect modifiers must be selected for matching.

In the unanchored comparison, the evidence is no longer randomised as we are using distinct
single-arm trial data. As a result, there is no guarantee that the level of each prognostic variable
remains the same among single-arm studies. There is no randomisation taking place in order to
balance subgroups of each covariate between the two treatments. A treatment could appear more
effective as a result of a more favourable patient population in the trial who are more receptive to
treatment. This means that we cannot avoid the possibility of some form of bias influencing the
analysis. Therefore, prognostic variables must also be matched on for the unanchored case. In
addition to this, the NICE TSD states that the analysis should be clearly pre-specified. Selecting a
variable to match, based on an analysis that was already conducted revealing that the variable
was an effect modifier is referred to as “post hoc reasoning” and is to be avoided (Phillippo et al.
2016). There are three main methods for identifying effect modifiers and prognostic variables:
consultation with clinical experts, review of epidemiological literature and MAIC publications in
search of relevant literature, and regression analyses using the available IPD (Kamangar 2012,
National Institute for Health and Care Excellence 2013, Phillippo et al. 2016).

To explain the basis of the MAIC methodology, an example scenario will be defined. Suppose there
is IPD available for a treatment t = 0 (our own trial), but only AgD is available for t = 1 (competitor’s
trial). We want to reweight the IPD from t = 0 to match the AgD characteristics for t = 1. Assume
there are only two covariates: age is an effect modifier and gender is a prognostic variable. For an
individual patient i who is assigned to treatment t and has baseline characteristics X;;, the
propensity score weight which will be applied to the patient is the inverse odds of them being in the

trial with IPD available versus the other trial. This is represented by:

- Pr(t; = 11X;¢)
T Pr(t; = 01Xy

The probabilities indicated here refer to the probability of the patient enrolling onto treatment t = 1
or t = 0 respectively i.e. their ‘propensity’ for one or the other, in this case, based on their age. Any
patients that were more likely, given their age, to enrol into trial t =1, will be upweighted.
Conversely, patients that were less likely to enrol into trial ¢t =1 due to their age, will be
downweighted as they are over-represented prior to the application of the weights. The result of
this is that the means of the baseline characteristics of our IPD after applying weights will more
closely resemble those of the AgD. Other summary statistics can also be matched. Falling short of
being able to match to the full covariate distribution (for which other methods are more appropriate
subject to the provision of IPD on all trials, see Section 3.1), it may be possible to match to a

median, a range, various quartiles, correlations or higher moments. In practice, these types of
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distributional information are not used for matching because often, “only the marginal mean and
standard deviation of each covariate is known” (Phillippo et al. 2016). In developing a package in
the R programming language to implement the method, matching to a median statistic proved to
be a considerable challenge, which may not have been adequately addressed in the literature. This

issue is fully described in Section 4.4.2.

Logistic regression is typically used to develop propensity scores (Olmos and Govindasamy 2015).
Thus, for an anchored comparison, the weights are calculated through estimating a logistic

propensity score model that includes all effect modifiers but no purely prognostic variables:
log(wy) = a + BX;;
Wiy = ea"'ﬁxit = eaeﬁxit

Maximum Likelihood Estimation (MLE) would normally be used to estimate S or other parameters
of this model. However, that is not possible here because there is no IPD for t = 1. In order to find
B, we require weights that are estimated such that they lead to matching of the effect modifier
distributions between the trials for treatments t = 0 and t = 1. In other words, for the anchored
scenario, we desire the situation where the mean of the weighted IPD is equal to the mean of the

baseline characteristics for the AgD. The mean of the weighted IPD can be represented as follows:

—~ a  BX; BX;
Dist=oXitWit _ Nise=0 Xit€ ePXu ~ Xiit=o X ePXie

Zi:t:o Wit Zi:tzo eaeEXit Zi:t:o e'EXit

®)

Equation 8 Mean of the weighted IPD

For the unanchored scenario, the t index can be omitted from Equation 8 as we will no longer be
comparing two-arm trial data involving a placebo arm for each of the two treatments. The mean of
the weighted single-arm IPD will be matched to the mean given from the single-arm trial of the

competitor treatment. The mean of the weighted IPD is set to equal X,_y):

Yit=o xiteﬁxit

— = X(=
Zi:t:o eﬁxit =0

. . Bxit

=0 Xit€ —

Zl.t—o ll’A ' X(t:l) 0 (9)
Zi:t:o ebau

Equation 9 Equalising the weighted IPD with the AgD for comparator treatment
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To find a unique, finite solution for 3, note that:

Z xiteﬁxit _X(t=1) (Z eﬁxit> = 0
i:t=0 iit=0

The above equation can be re-written in terms of Y};..—, ePXic

_X(t=1)> Z eﬁxit =0
L

i:t=0

Z xiteﬁxit — Z X(t:l)eﬁxit =0

i:t=0 i:t=0

Z (xie — )_((t=1))eﬁx” =0

i:t=0

Without loss of generality, it can be assumed that X,y = 0, implying that:

Z X ePXic = 0 (10

i:t=0
Equation 10 Derivative for method of moments to estimate g (assuming that X;—;) = 0)

Equation 9 is therefore equivalent to Equation 10. Setting Equation 10 as a derivative; the objective

function is:

Q) = ) efXi
i:t=0
Q(B) is convex (verifiable from Q" (8)) and so the minimum of this function is a unique solution, our

method of moments estimate, f.

We therefore want to minimise this objective function while retaining the condition that X,y = 0.
For this to be satisfied, the matrix of effect modifiers, X" is centred on X .-, i.e. the subtraction
XiM — X ;1) is applied. This centring can be done without loss of generality and is straightforward
to perform for covariates where the target statistic to match to for a covariate is a mean. On the
other hand, where matching to a standard deviation is desired, since this is a function of variance,
the second moment of the covariate also needs to be centred. For the second moment, note that:
E(X?) = E(X)? + Var(X), hence we subtract the sum of the target mean squared and standard

deviation squared from the second moment of the covariate in the IPD.

The notation in the literature may refer to g7, a vector, with one element for each effect modifier
which is transformed such that the matrix multiplication X5 g7 is possible. The columns in X£" will

therefore equal the number of rows in g7 and this dimension will correspond to the number of effect
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modifiers being weighted (as well as any second moments required). Simpler notation has been
used for these equations in order to illustrate that for every effect modifier, a single value for g is

required.

Having assured that X,_,) = 0 by centring the relevant covariates in the IPD, the objective function
can then be minimised using a minimisation algorithm. The BFGS algorithm is used in the
Technical Support Document (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970).

This will produce an estimate of 8 via the method of moments. In essence, we are finding a value
for § such that for patients where t = 0, they will be re-weighted by w;, = ePXi \With the value for
£, the weights (; for each ith patient) to be applied to the IPD can now be estimated. Together,
the summary statistics of the patient characteristics for the newly weighted patients will match the

baseline characteristics in the AgD for treatment t = 1.

Note from the distribution of the weights w;, = ePXit | that they will be greater than but not equal to
zero, though may be infinitesimally close to zero. When the weight drops to such a low value, we
can consider the corresponding patient to be, in effect, excluded from the analysis. This leads to
an effective sample size (ESS) for the data after weighting, which represents the number of patients
actually included in the analysis after weighting. If this is small, then there is less overlap between
the two trial populations and the indirect comparison is inherently less valid. In general, including
more baseline characteristics as matching parameters leads to a small ESS. An approximation for
the effective sample size can be calculated from the following:
pog o Zit@ie)?
Zi,t Wiz,t

Finally, in order to simplify presentation, if we ignore the placebo arm data, the matching-adjusted
treatment effect estimate can be obtained by substituting these weights into the equation:

g Yic vi(1 = t)w;

D

-
D=0y ePe

it;=0 ePXiu

N1

Here y, refers to the mean outcome for t = 1. For an anchored comparison, let z = 0 represent the
placebo arm and z = 1 represent the treatment arm, the aggregate baseline and outcome data for
the placebo arm is represented by £* and 7 respectively, and . and 7 for the treatment

arm (Signorovitch et al. 2010).
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The estimated relative treatment effect from the MAIC is then given by:

BX; BX;
Diit;=0,2;=1Yi ePXie Zi:ti=0,2i=0yieﬁ i (1)

6= — -
X; X;
Diit;=0z;=1 ePXic Diit;=02;=0 ePXic

-7)

This equation is of the same form as that from the TSD literature (Equation 3 in this thesis). In
practice, this estimated relative effect between two treatments would be calculated rather than
estimates of absolute outcomes. Estimates of absolute outcomes will be biased unless if all
prognostic variables and effect modifiers that are not balanced across the populations can be
accounted for. It is also easier to calculate the population-adjusted treatment effect using a simple
linear model instead of using the weighted means and this gives an equivalent result. The linear

model is explained in the next section.

3.5.1 Relating the Logistic Model with Relative Treatment Effect
In estimating relative treatment effect between two treatments recording a binary outcome, our aim

is to predict or generalise the occurrence of the event based on the treatment arm to which the
patient was assigned. As stated previously, relative treatment effect is defined as the difference in
the average treatment effects between two treatments, both subject to scale conversion where

required.

In the example implementation in the Technical Support Document appendix, given in R, it is
indicated that the relative treatment effect for B vs. A adjusted for the population in trial AC can be
estimated using a simple linear model (Phillippo et al. 2016). In the case of a binary outcome this
makes use of the gTm() function where the fami 1y argument is set to binomial. The advantage
stated in the document of using the linear model as opposed to calculating the odds ratio by hand
is that it allows for standard errors to be calculated using a “sandwich estimator” (White 1980). The
logistic model produced will return an intercept value and a coefficient value for a reference group

ie.

=)

y = By + Byl (treatmentB) (11

y = logit(p) = In (1

Equation 11 Logistic model equation for binary patient outcome

When applying the GLM, the outcome, y (in the binary case, whether the patient experienced the
event or not), is being predicted based on whether the patient was in the treatment arm or the
common comparator arm. This is represented by the I(treatmentB) indicator variable term in
Equation 11 (in this case, taking value 1 for the B intervention and O for the common comparator,

A). The event outcome is therefore regressed on the treatment group.
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As aresult, for a patient in the common comparator A arm, the model returns the intercept term as

the outcome. The intercept term is therefore equivalent to the log odds of treatment A or g(YA(AB)) =

Ng
In (%) Here the term Z?’;l Y, refers to the sum of the outcome values for N, patients that
A=

i=1 VA

were administered treatment t. The summary outcome obtained from the trial for treatment t in the
AB population is represented by: Y,,z). The model returns the outcome for the intervention
treatment B by adding the difference between the two treatments’ log odds, in other words, the log
odds ratio between treatment B and treatment A or the relative treatment effect obtained from the

trial:

A 7 % z:?]:191 Yp z:?I=Al Y

Bapamy= 9(Vsam) — 9(Yaam)) = In <NB —3'e YB) —In <NA —ya YA)
Standard errors can be calculated using a sandwich estimator, which, in the TSD is noted to be
typical for MAIC, but bootstrapping (as used in (Warren et al. 2018)) and Bayesian methods may
also be used. It is worth highlighting that different approaches to calculating standard error may
have some implication for MAIC analyses in HTA. Introducing variation in the derivation of
uncertainty for MAIC estimates presents a challenge for fair comparison of treatments in HTA. This
is compounded by the fact that HTA models are typically nonlinear; Markov models result in outputs
that are a result of multiplicative and power operations (Briggs et al. 2006). When passing
parameter values through into a model, the expected value of the outputs of interests (for instance,
the total costs of an intervention) will not be obtained simply by passing in the expected value of
the various input parameters i.e. the point estimates obtained from MAIC or NMA. Instead, a typical
sensitivity analysis will involve specifying a range of values for the input parameters according to
an appropriate distribution. This leads to a distribution of output parameters. While these ranges
may not themselves be so broad, introducing different methodologies for estimating uncertainty
could lead to a substantial range of available estimates. Besides estimating uncertainty, other

variations in the MAIC technique are described in the ensuing section.

3.5.2 Variants of MAIC Methodology
It is noted in the TSD that the MAIC method, as proposed in the original methodology articles

(Signorovitch et al. 2012, Signorovitch et al. 2010), estimates weights for the entire AB population
instantaneously (Phillippo et al. 2016). Alternative weighting techniques are present in the literature
(Petto et al. 2018) as well as entirely different methodologies proposed for indirect comparison

such as polynomial weighting (Regnier et al. 2016).

It is also worth highlighting the variation in the literature surrounding the technical details for
implementing the method. The implementation from the TSD demonstrates how to apply MAIC

using exact matching in R via BFGS minimisation (Phillippo et al. 2016) whilst the appendix to the
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methodology article refers to Newton-Raphson optimisation (Signorovitch et al. 2010) implemented
in SAS. Although no code is provided, a separate paper presents an implementation of the method
in SAS, but through adopting a sampling approach (Malangone and Sherman 2011). The proposal
involves drawing 1000 subsets of the IPD with each having a distribution corresponding to the
required AgD. This is done using the SURVEYSELECT procedure in SAS. The paper then goes
on to estimate median survival for each of the 1000 samples using LIFETEST. Following this, an
ODS statement is used to combine these survival estimates together. This results in bootstrapped

sampling where 95% confidence intervals can be calculated.

Malangone and Sherman (2011) have looked at the case of time-to-event data with the aim of
estimating median survival. In analysing the effectiveness of treatments in oncology and certain
other therapeutic areas, it is more typical to analyse time-to-event outcomes. This form of analysis
changes the focus from probability of experiencing a certain event to the length of time before
experiencing the event. Where the event of interest is death, time-to-event data refers to survival
time. More specifically, the length of time may relate to the first point of observed relapse or
progression of the disease and hence more specific endpoints may be used such as progression-

free survival as opposed to overall survival.

Survival time outcomes present an added complication in that it is not as straightforward to publish
the necessary summary statistics as with continuous or binary outcome data. Survival data often
includes censoring, where information on the survival of the patient is terminated prior to the patient
experiencing the event of interest. Therefore, a calculation of average survival time becomes
biased. Such data is therefore analysed in the framework of survival analysis; a separate branch
of statistics. It is recommended that hazard ratios be used as the effect measure for clinical studies
(Higgins and Green 2011). With the provision of Kaplan Meier curves, IPD can be reconstructed
using an algorithm from (Guyot et al. 2012).

The existence of the methodological variations described above has implications for the results
that ensue from any MAIC. In a poster presented at ISPOR’s 20" Annual Conference, (Wang et
al. 2015) explored Malangone and Sherman’s method of resampling bootstrapping to perform
MAIC. Their findings showed that in the presence of an interaction between baseline characteristics
and the treatment, the resampling technique returned opposing conclusions regarding which
treatment was more effective, depending on the treatment for which IPD was available. Wang et
al. (2015) suggest further research to identify when the resampling approach may be best applied.
The example of time-to-event data in (Malangone and Sherman 2011) has also highlighted that
analysis of such data entails a number of extra steps before the adjustment can take place. The
scope of the problem of variation in methodology is summarised in Section 3.6.3, in light of

published descriptions of the method obtained from a review of published MAICs.
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3.5.3 Key Assumptions Underlying the Methods
In a standard indirect comparison or fixed effect NMA, it is assumed that the relative effect A vs C

in an AC trial is identical to the A vs C effect that would be expected in the trial AB (consistency).
This is referred to as constancy of relative effects on the linear predictor scale; which refers to the
scale on which treatment effects are additive. For this to hold, any differences in the relative effects
need to be accounted for entirely by an imbalance in the effect modifier variables (these may be
denoted by XEM) (Phillippo et al. 2016).

For an anchored population-adjusted indirect comparison, this assumption is relaxed somewhat
such that the relative effect observed from the AC trial at a given covariate level (for example, Body
Mass Index = 23.0) is equal to that from the AB trial. This means that only effect modifiers need be
adjusted for, whereas prognostic variables are already balanced between studies. This is referred
to as conditional constancy of relative effects on the natural outcome scale (Phillippo et al. 2016);
the scale on which the outcome is defined and observed. Effect modifiers may already be balanced
between trials but may become unbalanced after reweighting in MAIC. Therefore, the anchored
MAIC needs to include effect modifiers that are both in balance and imbalance between trials.
However, unlike in STC, there is little value in including prognostic variables in the weighting model

since this will reduce the effective sample size.

The Technical Support Document indicates that for STC, it is important to specify a correct outcome
model in order to obtain unbiased estimates. Therefore, it is recommended that, in addition to effect
modifiers in imbalance, that any other prognostic variables or effect modifiers (that begin in

balance) should be included if they improve model fit.

For the unanchored population-adjusted indirect comparison, conditional constancy of absolute
effects is assumed. This means that the differences between the absolute outcomes that would be
observed in each trial are caused by imbalances in both prognostic variables and effect modifiers.
It is highly unlikely that all the prognostic variables and effect modifiers would be known; this is a
difficult assumption to meet. Knowing all these imbalances would, in effect, make conducting
randomised controlled trials redundant. Furthermore, since unanchored comparisons have this
additional requirement of all prognostic variables in imbalance being accounted for in the weighting
for MAIC, these comparisons will always be less precise than the anchored MAIC (Phillippo et al.
2016). Similarly, in STC, all effect modifiers and prognostic variables must be included in the
outcome model and thus the requirement to correctly specify the outcome model becomes more

onerous to achieve.

Correctly specifying an outcome model in STC becomes especially important when it is defined on
a transformed linear predictor scale; where treatment effects, effect modification and prognostic
variables are additive, but the indirect comparison is performed on the unchanged natural outcome

scale. An indirect comparison made through STC that makes use of a link function to transform
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data between the two scales assumes that all effect modifiers and prognostic variables are
accounted for and importantly, with respect to the linear predictor scale. By contrast, MAIC has the
advantage of not requiring a fixed outcome scale to be defined for the weighting model (although

the indirect comparison does assume additivity on a specific scale).

3.5.4 Recommendations from Technical Support Document 18
The authors of the TSD conclude that population-adjusted indirect comparisons have a role to play

in HTA but, particularly with such a limited amount of research available on the methods, their use
should be justified on a case-by-case basis (Phillippo et al. 2016). Throughout this review,
reference has been made to TSD 18 as a key article of reference in respect of the methodology.
The TSD’s authors make a number of other contributions which have been discussed in this thesis.
These include the issue of scale in carrying out indirect comparisons, the importance of careful
selection of covariates to match on rather than including as many as possible and the importance
of the target population in using these methods. The document sets out a clear list of
recommendations on the use of these population adjustment methods as well as guidance on their

use in HTA submissions to NICE. They can be summarised as follows:

1. When a connected network is not possible, only then consider an unanchored indirect

comparison (single-arm studies).

2. It must be shown that there are effect modifiers present and that population adjustment
would remove substantial bias.

3. In the case of an unconnected network, unanchored comparisons must include

assessments of error as a result of covariates unaccounted for.
4. All effect modifiers to be matched, even if they are already balanced.
5. Indirect comparisons to be performed on the linear predictor scale.
6. The target population must be stated.

This list is followed by a set of reporting recommendations for an MAIC/STC analysis. With
consideration for the points above, the TSD states that HTA submissions should, in addition to
reporting of results, include measures of uncertainty. The distributions of the covariates before and
after matching should also be presented as well as evidence for effect modifier or prognostic
variable status. In the case of MAIC, the distribution of weights applied should also be presented

with a histogram.

At the end of their methodological summary, the TSD group make the following conclusion in
respect of the use of MAIC and STC in technology appraisals: “in the interests of transparency and

consistency, and to ensure equity for patients and a degree of certainty for those making
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submissions, it is essential to regularise how and under what circumstances these procedures
should be used” (Phillippo et al. 2016). Moreover, in a subsequent, recent publication reviewing
technology appraisals submitted to NICE that involved population adjustment methods, further
research was recommended in the form of simulation studies (Phillippo et al. 2019). This
requirement is supported further by the following review of published applications of the MAIC

method.

3.6 Review of MAIC Applications
In order to more explicitly gauge the level of existing understanding of the MAIC method that was

evident in the literature, a review of MAIC applications was conducted. Of interest here was the
way in which the method was described in each of the studies and consideration for whether a
reader with little to no knowledge of the method could be expected to understand the steps that
were being taken in the analysis. In terms of the selection process, it was preferable to capture the
full range of diversity across applications in terms of: journal of publication, year of publication,
company conducting the analysis, therapeutic area and to also capture different method variations.
Details of the full range of publications included for review are listed in Appendix B. It was with this
diversity in mind that certain publications were selected for focus. Five of these published articles

are covered in this review in greater detail. These are:

e Van Sanden et al. (2016): simeprevir + peginterferon alfa 2a + ribavirin (IPD) vs
peginterferon alfa 2a + ribavirin (AgD)

e Regnier et al. (2016): ranibizumab (IPD) vs aflibercept (AgD)

e Van Sanden et al. (2018): daratumumab (IPD) vs pomalidomide + dexamethasone (AgD)

e Odom et al. (2017): sonidegib (IPD) vs vismodegib (AgD)

e Warren et al. (2018): ixekizumab (IPD) vs secukinumab (AgD)

Other articles that were reviewed are explored briefly here, before the main findings from the

articles listed above are detailed.

There were a number of challenges in performing the review of MAIC applications. A significant
challenge is that the terminology used in these studies may not have included “MAIC” or “Matching-
Adjusted Indirect Comparisons” at all, as was the case for (Regnier et al. 2016). Other studies
(which were not detailed in this review) may have indicated relevant keyword terminology such as
“comparative effectiveness” and “matching” but would instead be making use of a Simulated
Treatment Comparison, such as in (Sivaprasad et al. 2016). In one early example paper, the
approach was elaborately described as a “propensity score matching to assemble cohorts in

” o«

which...” “...patients were balanced on baseline characteristics” and the probability of the patient
enrolling onto the trial of interest “was estimated for each patient using a nonparsimonious

multivariate logistic regression model” (Carlin et al. 2013). The varied manner in which the method
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was described across publications warranted thorough reading of each study to ensure that the
method conformed to the established protocol for MAIC or that method variations could be

suggests that full capture of MAIC applications in the literature may be challenging.

3.6.1 Overview of the Literature
Beyond the method application presented in (Signorovitch et al. 2010), while there were a number

of published studies making use of the MAIC method, few of these gave detailed outlines of the
methodology employed. This is evident in (Atkins et al. 2019) where greater emphasis is made on
the results of the MAIC analysis. This may have been due to the type of journal in which the study
was published; in this case, a specialist medical journal in immunotherapy, as part of the Future
Medicine journal portfolio. It is primarily concerned with scientific advances in the field
(Immunotherapy 2019). Irrespective of this, it is difficult to verify or critically appraise this application
of MAIC. This is a recurrent theme in the literature. In the case of (Song et al. 2019), the authors
relied heavily on referencing the methodology paper. Although references were usually made to
the methodology papers of Signorovitch et al. (2010, 2012), in general, most articles would simply
refer to the context of lack of comparative data, the use of indirect comparisons, the need to
account for differences in population characteristics and a basic description of MAIC. Therefore,
unless referenced otherwise, it seems likely that the method of moments approach as described
in (Signorovitch et al. 2010) was being employed. It would be desirable for all published studies to
make this choice explicit, since, among the studies, there was a considerable lack of detail in this
regard. An outline of the method used and in particular drawing attention to any variations of this

would be useful in every application of MAIC.

Some authors from within the literature focus on the usefulness of the unanchored approach (Majer
et al. 2017, Van Sanden et al. 2016), though sometimes without due acknowledgement of its
limitations as were described in the TSD (Phillippo et al. 2016). The application presented by
(Signorovitch et al. 2015) is better described. Here, the authors note that indirect comparison
methodology has evolved such that their study offers a superior analysis to a previous study
comparing the same two treatments (nilotinib and dasatinib) which did not use a common
comparator. Signorovitch et al. (2015) also comment on the limitations of MAIC analysis. One
critiqgue of this publication is that no mention of ESS is made in the article and in the table of
baseline characteristics, while the adjustments appear relatively small owing to the similarity
between the trials, the same figure for n is reported for before and after matching which is

concerning.

An update to an older, pre-existing MAIC analysis is presented by (Ishak et al. 2018) and is
introduced with a thorough background to the method. Here the perspective is switched since the
treatment for which IPD was available (sunitinib) had been the opposing treatment in the original

analysis carried out by (Signorovitch et al. 2013). Ishak et al. (2018) include a comparison between
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the Bucher method, the anchored as well as unanchored matching-adjusted indirect comparison.
This is nicely displayed in a table with the comparison contextualised for the application to hazard
ratios quantifying progression-free survival as well as overall survival (Ishak et al. 2018). By
contrast, the first analysis by Signorovitch et al. (2013) gives little background description to the
method. A key divergence from other publications is that (Signorovitch et al. 2013) refer exclusively
to matching to medians as opposed to means. The median of age was matched while all the other
characteristics matched on were proportions (Signorovitch et al. 2013). There is additionally a
characteristic measuring the proportion of patients above the age of 64. It is not explained why this
age or subgroup was selected for matching. It is possible that matching solely to the median of age
was insufficient, since matching to a median is not as straightforward for reasons detailed in

Section 4.4.2 which concerns implementation of matching using R.

In their article, (Signorovitch et al. 2013) draw attention to the benefits of using MAIC to address
common challenges arising in comparative effectiveness research in new oncology treatments.
These are identified as: the small numbers of trials from which to draw data and the bias arising
from patient crossover from placebo arm to an active therapy arm. It is common practice to reassign
a patient to a different treatment in the course of the trial period. This is referred to as a crossover
and entails that the placebo trial arm is “contaminated” by crossovers to an active therapy following
disease progression. As a result and as performed in this analysis, there is a trend for an anchored
MAIC to be carried out for a progression-free survival outcome and an unanchored analysis to be
used for the overall survival outcome. Signorovitch et al. (2013) comment on the general limitations
of their analysis, particularly given this challenge of limited trial data involving crossover patients,
however, they do not make any reference to effective sample size and this is a key component to
any MAIC analysis.

Tremblay et al. (2018) describe the basis for MAIC well in terms of indirect treatment comparisons.
They state that MAIC “has provided strong comparative evidence in the absence of head-to-head
studies in various disease settings” (Tremblay et al. 2018). The article does not support this
assertion other than through citation of past MAIC publications, however, it is reasonable to
suggest that MAIC has served to offer a new perspective on the effectiveness of various
treatments. The technical description given for MAIC is somewhat less effective. The authors state
that the weights are “created by performing a logistic regression on the patient-level RIBO data
that included an extra observation representing the comparator’s data...” and “The predicted values
(or propensity score) that resulted from the logistic regression were used to weight the RIBO trial
data”. While it is stated that the output values are used to weight the trial data, this description
could be confused with the STC method, which uses logistic regression to predict treatment
outcomes directly. In MAIC, the focus is on the weighting of baseline characteristics and outcomes

to perform the adjustment, not on the logistic regression used to estimate the weights. One positive
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attribute to this paper is that the statistical software and TSD guidelines are cited. On the other
hand, the study included an unanchored as well as anchored analysis with both sets of outcome
results reported and it is not clear why the unanchored analysis was performed.

Proskorovsky et al. (2018) explain the concept of ESS including the danger of low ESS. Despite
one ESS in the initial base-case analysis being as low as approximately 30% of the original sample
size (61 from 194 patients) (Proskorovsky et al. 2018), no acknowledgement of this is made in the
limitations section or elsewhere. As a matter of presentation, two ESS figures were given for each
post-matching column, separated by a slash. The reader would need to carefully note that these
are the ESS figures relating to the base case and sensitivity analyses and do not represent a

fraction or a comparison against original sample size.

3.6.2 Findings from Selected MAIC Applications
Van Sanden et al. (2016) present a special application of MAIC for examining the effectiveness of

combining a therapy to an existing treatment for a patient afflicted with genotype 4 hepatitis C viral
infection. The standard therapy was peginterferon alpha 2a + ribavirin (PR) and was evaluated
against combining simeprevir with this therapy. In other words, simeprevir was not being proposed
as a standalone therapy to substitute the existing treatment available. This is an example of an
unanchored MAIC where “it was necessary to estimate the incremental benefit that simeprevir
offers in genotype 4 infected patients, over and above that achievable with PR alone” (Van Sanden
et al. 2016). IPD from the newer single-arm study examining simeprevir in addition to peginterferon
alpha 2a + ribavirin (RESTORE trial) was used to match against various separate single-arm

studies examining PR alone.

Van Sanden et al. (2016) state that MAIC is a particularly useful method thanks to its unanchored
approach, making treatment comparisons possible without a common comparator arm. They
describe the process of systematic review for studies of relevance and what they implicitly refer to
as the first stage of matching in terms of excluding patients from RESTORE that would have been
excluded from the trials that studied PR alone. After the “second stage” of matching where the
baseline characteristics are matched, there is a discussion of which of the five studies are most
comparable. It is shown that only two were able to match on a sufficient number of matching
parameters; the remaining three could only match on two parameters (fibrosis level and baseline
viral load). Nonetheless, five separate unanchored MAICs were performed. The authors state that
they “assigned an additional requirement that at least two parameters of high relevance (in this
case fibrosis stage and viral load) should also be matched”. While these covariates were identified
as being of high relevance to treatment response by two hepatologists, it would be preferable to
confirm why this particular requirement was assigned; whether this was because these were the

only two covariates available for matching in three of the five target studies.

39



In terms of presentation, it is somewhat confusing that Van Sanden et al. (2016) tabulate the
outcome of interest (Sustained Viral Response at 24 weeks) alongside the baseline patient
characteristics without clear distinction, since it could be confused as a potential candidate
covariate for matching. Additionally, in the final table reporting the results of the matching,
compared with other publications, the presentation is less clear. It could be improved by reporting
pre-matching and post-matching figures together and distinguishing baseline characteristics used
for matching from the outcomes. This allows for quick verification of the success of matching and
the impact on outcomes. As with most of the other articles reviewed, while Van Sanden et al. (2016)
explain the limitations of their final analysis, for detail of the “MAIC covariate matching algorithm”,
the reader is simply referred to (Signorovitch et al. 2010). The authors also employed less common
terminology where they refer to the “pseudosample size”, “residual effective sample size”, “effective
pseudo-population size” and “residual effective population size” instead of the more usual “effective
sample size”. It is also stated in this article that “the general view in practice is that it should not be

less than double digits” (Van Sanden et al. 2016). It is not clear where this rule comes from.

Another analysis by Van Sanden et al. (2018) made use of an unanchored MAIC to show the
improvement in clinical outcomes using daratumumab as opposed to pomalidomide + low-dose
dexamethasone for treating patients with heavily pre-treated and refractory multiple myeloma (Van
Sanden et al. 2018). Presentation of the methodology is relatively clear although technical details
are not discussed. Unlike the previous study with the same lead author, there are no details given
on how the clinical trials were identified for the analysis. On the other hand, the selection procedure
of matching covariates is straightforward. This article focuses more on the detail of comparing
survival outcomes than in the previous application of MAIC, where time-to-event outcomes were

also analysed.

The preliminary part of the analysis involved obtaining the individual patient time-to-event data for
the comparator pomalidomide + low-dose dexamethasone using the “Guyot et al. algorithm”.
Broadly speaking, this involves generating individual patient time-to-event data by using digitised
Kaplan-Meier curves and published information on the number of events and number of patients
at risk for various points in time (Guyot et al. 2012). Also in the article, an extension is presented
in a sensitivity analysis where patients receiving daratumumab are restricted to those who were
treatment naive to pomalidomide in order to match those in the trials for pomalidomide + low-dose
dexamethasone. This was not considered in the base case due to the ESS becoming too small
after excluding the patients previously treated with pomalidomide. The base-case estimate of the
improvement in the overall survival outcome for daratumumab is otherwise considered
conservative, since a high percentage of the daratumumab patients were pomalidomide-treated
and refractory. The limitations of their analysis are considered and described in some detail,

including a sensitivity analysis where missing data on certain suspected prognostic variables was
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imputed in order for those characteristics to be matched. Overall, while the description of the steps
to the analysis are described clearly, there were some gaps, such as the lack of reference to the
propensity score weighting approach that is central to MAIC. Confirmation of the methodology used

to perform the adjustment would be of huge benefit to this study.

A recently published study showcased an extensive example of applying three MAICs.
Maksymowych et al. (2018) were coherent in outlining the method while referencing the
Signorovitch methodology and the NICE TSD. An interesting variant in this article is that multiple
MAICs were required and reported as part of one analysis; owing to the multiple trials included.
Two MAICs were developed between the competitor’s trial (ATLAS — adalimumab vs placebo) and
two individual trials from the drug company (MEASURE 1 and MEASURE 2 — secukinumab vs
placebo). In addition, a third MAIC was performed which used a pooled dataset made up of those
two trials (MEASURE 1&2) and these were compared against the competitor (ATLAS). Hence, a
separate set of weights would be needed each for MEASURE 1, MEASURE 2 and MEASURE
1&2. The third analysis was presented because it resulted in a larger effective sample size. Another
consideration in this article was the acknowledgement of imputed data, both in ATLAS and in
MEASURE studies.

For comparisons made at weeks 8 and 12, all three MAICs could be anchored on a placebo arm
(available in ATLAS, MEASURE 1, MEASURE 2 and hence MEASURE 1&2). Some patrticipants
in ATLAS who were administered placebo were then allowed to receive open-label treatment with
adalimumab if they did not achieve at least a 20% improvement in ASAS response criteria at week
12. Thus, the comparisons beyond week 12 had to be unanchored. A similar procedure of offering
active treatment was administered in MEASURE 1 and MEASURE 2 after week 16. Therefore, the
unanchored comparison would use an adjusted secukinumab treatment response with
adalimumab. The comparison was made for separate outcomes at weeks 16, 24 and 52. As noted

in Section 3.3, the same set of patient weights can be used for multiple outcomes.

Although the presentation of results is comprehensive in (Maksymowych et al. 2018), once again
there is little detail on the propensity score weighting approach. In fact, Maksymowych et al. (2018)
state that MAIC “uses a form of propensity score weighting of individual patient data (IPD) to match
patients from one trial with those from another for baseline characteristics, especially those that
may influence treatment response”. This phrasing could give the impression that MAIC matches
patients on a one-to-one basis, which is a misconception. While the article is thorough in its
referencing, the complex trial design, imputation of missing data and variety of outcomes and
comparators make the MAIC comparisons difficult to assess. Although the focus of this review is
to identify understanding of the MAIC method within the literature, it is important to acknowledge

the complexity to this analysis even prior to making use of MAIC.
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In (Regnier et al. 2016) various methods for making an indirect comparison of ranibizumab and
aflibercept are compared. These approaches depart from the methodology given in (Signorovitch
et al. 2010). The term “MAIC” is not used in this paper, although one of the approaches for which
results are presented is performed using similar principles. It is noted that while the Signorovitch
approach was also applied in the course of conducting this study, the results derived were omitted
because the standard deviations of the baseline characteristics could not be aligned to those of

the competitor’s trial after weighting.

Odom et al. (2017) conducted an unanchored MAIC using IPD from a single-arm trial studying
sonidegib and compared this against aggregate data for vismodegib for the treatment of locally
advanced basal cell carcinoma. A naive unadjusted comparison of the two treatments showed a
longer progression-free survival and higher objective response rate for sonidegib, but the
distributions of baseline characteristics that could be prognostic variables differed, hence
confounding the treatment comparison (Odom et al. 2017). The process of identifying baseline
characteristics suitable for matching is described clearly, as are the efforts made to align the two
studies, e.g. in terms of outcome measurement. It is noted that matching variables were selected

a priori and limited to two, due to the small sample size from the study for sonidegib.

Overall, the study by (Odom et al. 2017) is well described and the authors went further to explain
the MAIC methodology than in other published applications, citing implementation of the Newton-
Raphson algorithm in SAS to obtain the unique solution of § for the weights, as mentioned in
Appendix B to (Signorovitch et al. 2010). Overall, the article closely follows the guidance issued in
the Signorovitch article and TSD 18. An interesting aspect of this MAIC is that the treatment
outcome results were largely unchanged from the unadjusted naive comparison. Here the purpose
of the MAIC was “to provide support for the validity of the naive indirect comparison results” (Odom

et al. 2017). This was the second motivation for MAIC identified in Section 3.3.

In (Warren et al. 2018), the article acknowledges that “although an indirect comparison is not a
replacement for a head-to-head trial, accuracy is improved when a common active comparator is
used with a method”. This mirrors a trend for the literature to implicitly refer to a hierarchy of
evidence in terms of MAICs not being as robust as RCTs but carrying less assumptions than those
required in an unadjusted indirect comparison. The authors make use of two weighting approaches
which they term “SG total” and “SG separate”. Following correspondence with one of the authors
of this article, it was confirmed that SG was an abbreviation for “Signorovitch”, although SG
separate does not correspond to the methodology described by Signorovitch (2010). The
descriptions provided in the article could include more precise detail, as the procedure for each is
not fully clear. SG total is described as “calculating weights for the IPD based on mean values of
covariates for total population” whereas SG separate bases the calculation “on mean values of

covariates for each treatment arm separately”.
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For this study, the analysts had access to IPD for several clinical trials examining ixekizumab
against the different common comparators (IXORA-S with common comparator ustekinumab;
UNCOVER-2 and UNCOVER-3 with both placebo and etanercept as common comparators and
UNCOVER-1 as an additional source of information with etanercept as the common comparator).
The analysts used AgD information from various clinical trials to inform the matching for each MAIC
(CLEAR to base the MAIC anchored on ustekinumab, FIXTURE for the MAIC anchored on
etanercept and the set of trials: ERASURE, FEATURE, FIXTURE and JUNCTURE for the MAIC

anchored on placebo).

The term “total population” used in the definition for SG total is misleading, since the AgD is typically
drawn from one trial, but it is likely this refers to the case where multiple trials were available for a
single comparison between two treatments. This occurs in this analysis for the comparison
between placebo and secukinumab, where data is drawn from the ERASURE, FEATURE,
FIXTURE and JUNCTURE trials and combined. Since each trial would have its own set of patient
baseline characteristics, a weighted average would have to be taken. Following clarification with
one of the authors of this article, SG total is to be interpreted as following the usual anchored MAIC
approach, where a single set of weights is generated based on the combined IPD set of control

and intervention arm patients.

For SG separate, instead of calculating the set of weights in the usual manner using the information
from the intervention arm and control arm together (in this case ixekizumab and
placebo/etanercept/ustekinumab respectively), the selected patient characteristics of each arm are
matched to their aggregate counterpart via a separate set of weights generated for each. This
would result in six sets of weights in this example, with the baseline characteristics of ixekizumab
patients matched to those of the secukinumab patients and each control arm being matched to
their counterpart. Given the lack of studies which have made use of this modified method, it is
difficult to establish what the implications are. However, it would not seem appropriate to treat the

intervention and control arm differently through a separate set of weights.

Overall, the article by Warren et al. (2018) does raise the question of how data on multiple trials
should be pooled for MAIC and considers whether an application of MAIC should use the method
of separation or not. In this application, the impact on outcomes was relatively minimal as the
outcome results did not appear to deviate hugely from those derived from the original method
(Warren et al. 2018). Only the post-matching baseline characteristics that were obtained using the

SG total method were reported in the table.

Several of the covariates that were matched in (Warren et al. 2018) were proportions and so the
raw number of patients would not normally be reported after matching. However, in this article a
new figure post-matching was reported based on multiplying the new proportion by the ESS and

this is misleading. The ESS is an estimate as the weights are not fixed or known and so should not
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be used to derive actual raw numbers of patients in this way (Phillippo et al. 2016). The ESS figures
could also be better labelled as such, instead of being reported in the same row as the number of

patients, N, in the table.

The authors report conducting a sensitivity analysis which exchanged two matching variables for
two other characteristics yet in the table of post-matching values, it appears that all characteristics
are matched. Unlike other publications, there was no table of outcome values provided. Overall,
the presentation in (Maksymowych et al. 2018) is more precise by comparison and sets a more
appropriate standard of reporting of MAIC analysis. Warren et al. (2018) mention use of the
bootstrapping method to calculate the variance of the MAIC estimates. While this is accepted as
an alternative method in the TSD, it does raise the question as to how MAIC results should be
compared across appraisals if a methodological variant such as this is present, for reasons outlined
in Section 3.5.1.

An example where a methodological variant is discussed in the TSD concerns an analysis by
(Sikirica et al. 2013) which involved an unanchored MAIC despite a common placebo arm existing
between the two treatments. Sikirica et al. (2013) justify the unanchored choice by constraining the
weights such that the placebo arm outcomes were balanced for the two treatments. The authors
of the TSD state that it is unlikely that this has the effect of randomisation and that this method

variation needs to be evaluated more formally (Phillippo et al. 2016).

3.6.3 Summary of Review of MAIC Applications
The findings here motivate a more extensive review to investigate older literature involving “legacy”

examples of MAIC published under different terminology before the more standard terminology
arose. Overall, there were 16 applications of MAIC examined with publications dating from between
2010 and 2019.

Itis also apparent that there may exist a wide variety of possible method variations in the literature.
There was evidence of less common terminology, such as where Van Sanden et al. (2016) refer
to the “pseudosample size” and “residual effective population size” among other terms instead of

the effective sample size.

Some positive aspects of the literature included points where the implementation details were
confirmed, such as use of particular statistical software, packages or clear reference to the
methodology papers. As could be expected, there was a tendency for articles that were published
more recently to articulate the MAIC method more effectively but there were exceptions.
Publication of the TSD in 2016 would have almost certainly helped to consolidate the

understanding of MAIC among investigators.

In summary, the majority of MAIC applications explored in this review would typically outline the

problem of lack of head-to-head, randomised trials. This would be followed by an introduction to
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the MAIC method as a means of matching available IPD to that of a competitor population and
then reference would be made to propensity score weighting with estimation of weights via logistic
regression. None of the reviewed applications gave further details on this key aspect of the
methodology. There are two reasons for why this is important. Firstly, this is a critical aspect of the
method. The re-weighting of individual patient data is central to MAIC and impacts on the results.
With the current level of detail in the description of this process, it is difficult to envisage readers
becoming fully informed as to how the weights are generated. Secondly, this process is subject to
variation as identified in Section 3.5.2. This includes different weighting methods, as explored in
(Petto et al. 2018) as well as the technique of weighting separately by arm identified in this review
(Warren et al. 2018). There is also the question of which minimisation algorithm to use when
calculating £, the BFGS method is used in the R implementation produced in the TSD (Phillippo et
al. 2016) whilst Newton-Raphson optimisation in SAS was proposed in (Signorovitch et al. 2010).

3.7 Existing R Packages
Using METACRAN, a search for R packages of relevance to MAIC or STC and had been uploaded
to CRAN was carried out. As applied in the search protocol for published MAIC applications, a

broad range of search terms was used including: “matching adjusted indirect comparison”, “maic”,
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“simulated treatment comparison”, “stc”, “population adjustment”, “matching”, “evidence synthesis”,
“signorovitch” and “propensity score weighting” as well as basic variants on these search terms.
Some relevant R packages were available on the Comprehensive R Archive Network (CRAN) at
the time of this review. These included: Matching, PSW, gemtc, pcnetmeta and netmeta. A
published review by (Neupane et al. 2014) compared the last three of these which all concern

NMA. Their conclusions are summarised below.

The basic process for carrying out NMA begins with an exploration of the data on all competing
treatments in their network form (the relationships that exist between the various treatments;
whether they are connected or not). An assessment of the collection of studies in terms of
heterogeneity and inconsistency is performed and any such inequalities are handled. A model is
proposed and is assessed for fit using model diagnostics. The model will return estimates of relative
effects between treatments or rank probabilities of treatments being the most effective. Both gemtc
and pcnetmeta operate according to the Bayesian framework while netmeta models under the
frequentist framework, however both frameworks may lead to generation of treatment ranking
probabilities. Only binary outcomes can be handled in pcnetmeta, whereas gemtc and netmeta
may also handle count, continuous and survival outcomes. Neupane et al. (2014) continue to
compare and contrast the number of modelling features that the three packages provide. They
conclude that pcnetmeta is less comprehensive in this regard, with fewer descriptive measures
although a number of plotting options are available. The focus in pcnetmeta is on simplicity and

ease of use which is a key aspect to any R package. The netmeta package does not provide the
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Akaike Information Criterion (AIC) for assessing goodness of fit for the NMA model whereas both
of the Bayesian setting packages include the Deviance Information Criterion (DIC). While these
packages are not directly related to implementation of MAIC, it is useful to review the choice of
packages available for conducting NMA when considering the incorporation of MAIC results into a
network meta-analysis. Neupane et al. (2014) conclude that between the three packages, they

offer nearly all the important functionalities for conducting NMA.

The Matching package is described in (Sekhon 2011) and is concerned with implementing a
variety of multivariate matching algorithms. The package contains a function with a choice of
algorithms: propensity score matching, Mahalanobis, inverse variance and genetic matching. A
separate function assesses covariate balance. Overall, the package provides a template for how
variations of matching techniques could be implemented in a single package and acts as an
educational tool for the topic of matching for causal inference. PSW is a simple package which offers
propensity score weighting methods including inverse probability weighting for estimating average
treatment effect. However, the package is basic and does not accommaodate indirect comparisons.
More importantly, the method for calculating the weights is not set up for user modification and little
documentation from the package is available for determining the method adopted. As with the
Matching package, the PSW package is concerned with propensity score methods which are
concerned with estimating outcomes in a target population based on a sample subpopulation which

differs in terms of covariate distribution.

None of these packages are designed specifically to implement the inverse propensity score

weighting for MAIC or the outcome regression modelling for STC.

A similar search was conducted on Github with the expectation of identifying code development
related to or intended for implementation of MAIC. Github can be used in conjunction with RStudio
as a means of version control and the website hosts a diverse range of collaborative software
development projects using a multitude of programming languages. This form of searching was
challenging due to the sheer volume and variety of projects uploaded on Github, many of which
were incomplete or did not represent fully working R projects. In spite of this, there were no

development files or projects identified that pertained to a working implementation of the method.

While not an R package, one piece of useful software uncovered during the search was an Excel-
based tool which performs the indirect comparison, as per the Bucher method (Bucher et al. 1997).
The tool is implemented in Visual Basic and as of the time of review, is available from the website

of the organisation which developed the tool, the Canadian HTA body (Wells et al. 2009).

3.8 Overall Literature Review Summary
The findings of this review are that MAIC remains a relatively new methodology. Further publication

of the methodological detail would be of interest since, to some extent, it has been challenging to
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identify the commonly accepted definition of MAIC. As recent as 2019, in a review of technology
appraisals to NICE, it was reiterated by authors of TSD 18 that research to improve on the method
was needed (Phillippo et al. 2019).

The current landscape of MAIC applications in the literature feature a wide variety of naming
conventions, use of alternative approaches to Signorovitch et al. (2010) despite reference being
made to “matching-adjustment”, and a distinct lack of detail on the weighting approach used.
Examination of existing applications of MAIC showed that discussion of the methodology was
lacking. This results in publication of adjusted results of treatment effect without sufficiently clear
derivation. On the other hand, one strength of the literature is that acknowledgement is generally
(though not always) made of the various limitations that exist in their analyses, such as exclusion
of potentially relevant trials, reduction of effective sample size and the fallibility of indirect
comparisons such as effect modifiers that remain unaccounted for. The TSD also draws the
conclusion that there is a need to standardise the MAIC method and this idea is the central
motivation for this research project. Finally, the search for existing R packages in this review

showed that at the time of writing, no implementation of the method was available.

Together, these findings motivate the creation of a package in R which will standardise the MAIC
implementation, both in terms of following the procedures and selection of parameters in line with
the core literature. The package itself, once adequately designed, can contribute to standardising
the implementation as a result of the traction gained by investigators who use the package for their

analyses.
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Chapter 4 R Package

Following the literature review of MAIC, this chapter describes the R package which was built with
the aim of facilitating straightforward implementation of the method. In general terms, the R
package is designed to equip the user with a set of functions which will enable them to input the
various pieces of data necessary for an anchored MAIC. This comprises the IPD and treatment
outcome data. The user will then be able to perform the calculations and view the output (including
weights applied to the IPD, analysis of the re-weighting and the resulting population-adjusted

treatment effect).

Section 4.1 reiterates the aim of developing the R package and outlines the motivation for choosing
the R programming language. The purpose of developing R packages generally and the software
development workflow adopted in the building of maicer is presented in Section 4.2. Some
requirements for the package specified prior to development are outlined in Section 4.3 and this is
followed by the detail of the development process in Section 4.4. The chapter concludes with a
walkthrough of the package showcasing its functionality with screenshots of the RStudio console

in Section 4.5.

4.1 Motivation
Itis expected that the establishment and free publication of this standardised tool on (GitHub 2019)

and CRAN would allow interested HTA stakeholders with access to their own IPD to carry out their
own MAIC. Additionally, they will be better equipped to interpret a pre-existing MAIC that was built
using this package, with the knowledge that this has been carried out according to a specific range
of parameters. The motivation for this is that a published MAIC would be reproducible, were the
user to have access to the same IPD. Furthermore, given the highly sensitive nature of IPD making
it difficult to access freely, having the assurance that a given MAIC has been conducted according

to a standardised tool is of value.

The R programming language is an appropriate platform for this tool for several reasons. Firstly, it
is free and open source. Given the vast number of potential stakeholders interested in a
standardised tool for MAIC, having an open-source environment is of value for disseminating the
tool and stands to benefit from a wider uptake. Secondly, R has been used for cost-effectiveness
models in HTA previously and continues to be used, notably in cases where calculations are too
complex for other software to handle sufficiently. The release of a purpose-built R package for
health economic evaluation further supports this (Filipovic-Pierucci et al. 2017). Finally, the
example R code provided in Appendix D of the TSD (Phillippo et al. 2016) provided the most
comprehensive overview of the method implementation and the document remains a key point of

reference for this topic.

48



4.2 Package Development Workflow
In R, a package is the key template for making code easily tested, generalised, documented and

sharable (Wickham 2015). A package would perhaps more accurately be termed as an extension,
as indicated in the official development manual (R Core Team 2019), since it is a means for the
user to access additional functions in the R environment. The package format proves to be
invaluable in terms of standardising the way in which R users access these extensions built by
other users. The standard package format also equips all R package developers with a standard

convention for organising their work.

A number of good practices are identified by (Wickham 2015) in terms of R package development;
these were adopted insofar as was possible for the development of this package. A key guideline
is the importance of iterating development from an early stage and regularly. In other words, once
a new piece of functioning code has been implemented, it should be run and used for its intended
purpose. These steps should be repeated for each new piece of functionality. The package was
developed in RStudio in a Project file format. RStudio Project files are useful as they allow
packages under development to be accessed in isolation (away from other work in RStudio) under
their own working directory. This becomes useful for testing the package in a separate, clear
RStudio session, as if the package was just installed. It also makes it clear to the developer the
separation between the package contents and other R script files. RStudio Project files also

facilitate version control via Git/GitHub.

The process of package development is helped through the use of the R package devtools,
which simplifies development by providing the user with a set of functions which will automatically
perform the desired development actions. For example: devtools: :create() will create a new
package. A standard R package is composed of seven key parts which are described in Table 3
below:

Table 3 The seven common components to a standard R package

DESCRIPTION | The DESCRIPTION file provides a standard set of key information on the
package including version, the package creators, package dependencies,

licensing and more.

R/ The R/ folder houses the R code; this is the barebones of the package.

tests/ The tests/ folder helps the developer to implement a set of tests from a
single location. It is important to iteratively run newly implemented code as part
of package development. The tests/ folder facilitates testing from a package

overview perspective such that if tests become redundant, they may be

updated as the package is developed. This is often referred to as unit testing,
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which is a manner of structured testing such that each component of a
software behaves as it should do, with the appropriate inputs and outputs. The
package testthat helps to facilitate testing for the developer by

automatically assembling the tests/ folder.

man/ The man/ folder holds all the package documentation i.e. descriptions of
package functions available to the user and examples of their use. This can
be essential for sharing a package so that users may query package functions
and find out what they do. The package roxygen2 simplifies the
documentation process by generating the .Rd files for functions based on
comments the developer enters alongside their functions they wish to
document. Vignettes and package-level documentation may be implemented
using R Markdown; a system of tags which aid in the process of producing a
document as with other mark-up languages. The man/ folder may also

document datasets stored in the data/ folder.

data/ Datasets may be stored in the data/ folder which can be useful for providing
prospective package users with a bespoke dataset that showcases the
package functionality, or simply in order to help them understand how to use

the package through the use of examples.

vignettes/ | The purpose of a vignettes/ folder is to store documentation in a longer
form that provides a general overview of the package and the broader problem
it aims to solve. This can prove useful in cases where the package is facilitating
a complex statistical algorithm, where the finer details of the calculations may

need to be explained.

NAMESPACE The final common element to a package structure in R is the NAMESPACE file.
This file defines how the package should interact with other packages in terms
of imports and exports. Imports refer to functions from other packages that are
used by the package under development. Exports refer to functions from the
package being developed where it is proposed that they be made accessible
to the user once they load the package. In other words, it is preferable to “hide”
functions that run in the background and are not required by the user to
perform the desired actions. The NAMESPACE file defines these two distinctive
groups. Whereas the DESCRIPTION file will define what other packages are
required, the NAMESPACE file refers to specific functions from other packages.

For large-scale projects in particular, version control can prove invaluable to development. Git is a
system which enables tracking of changes to code and can be connected to GitHub; a website for

sharing and hosting code that is particularly popular among R package developers. This version
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control system can interface with an RStudio project file for seamless use and GitHub allows for

collaborative work on fixing bugs and improving packages further.

Anyone may share code on GitHub, however, once a package is ready to be shared more formally,
it can be submitted to the Comprehensive R Archive Network (CRAN). Owing to the network being
managed, there is a package submission process to be followed. An automated R CMD Check
must be run and passed as part of this. The automated check is in fact a series of tests covering a
variety of common problems, mostly concerning package structure. The package can continue to

be maintained and updated with patch releases following successful acceptance onto CRAN.

4.3 Requirements
The key requirement for the package was that it would aid the user in being able to conduct MAIC

with ease. From the outset, the scope was left relatively broad so as to determine the extent of
programming required and to allow flexibility for the scope of the package to change. The basis for
the package would be to generalise and extend the example implementation provided in Appendix
D of the TSD (Phillippo et al. 2016) as this was the most comprehensive overview identified from
the literature review. The appendix relates to an anchored comparison which is arguably less
straightforward to implement as trial arm data must be taken into consideration. The package was
built for the anchored scenario in the first instance but allows the user to calculate the set of weights
needed for an unanchored scenario. The user would then need to apply the weights to the IPD and
using the weighted outcomes calculate the new summary outcome before conducting the indirect
comparison with the comparator of interest. It would be possible to format the package to allow for
a more user-friendly implementation of the unanchored scenario. By the end of this project, the
package was instead structured such that the user may work with one of two object formats: one
which performs the adjustment to estimate the weights (and output these) and another which also
performs the subsequent indirect comparison for MAIC. The details of this structure are described
in Section 4.4.3. The package implementation hereby refers to the anchored scenario unless where

stated otherwise.

Development of the package homed in on three key aims: scope, generality and usability. These
are defined here for the purposes of this project. The first focuses on maximising the functionality
of the package so that it may be able to cater for different variations of the MAIC method, as
explored in the literature review. Ultimately, a limited number of these were built into the final
package during the course of this project. Generality refers to the ability of the package to interpret
trivially different forms of input from the user and reduce the need for defining all implementation
requirements in detail according to a specific template. In this case, some of the functions were
adapted to accommodate varying amounts of user input. Finally, usability refers to the ease with
which the tool may be used. The package functions were refined so as to require a minimal amount

of code executions from the user in accordance with the philosophy of R package developer,
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Hadley Wickham, in his book R Packages (Wickham 2015). This simply states that anything that
can be automated, should be and as much as possible should be performed by functions. The
ultimate goal here would be to develop a user-friendly point-and-click interface which would overlay
the package functions. This would negate the need for the user to have to execute their own code
directly into the R console. This proposal, among others for extending the work done, is outlined in
Section 5.1.

4.4 Development
The appendix to the Technical Support Document outlines an implementation for matching one

continuous variable to a mean and standard deviation statistic. The resulting estimated weights
are then used to adjust a binary outcome and perform the indirect comparison. Following this
example, development of the R package, called maicer, began with the aim of accepting a given
set of IPD and to perform the matching for one continuous variable. The target summary data in
this instance would be a mean statistic. The code was adapted to allow for matching to a standard
deviation. Since standard deviation is a function of variance, this involved incorporating the second
moment of the covariate into the centring of the matrix of effect modifiers, as described in Section
3.5. The next step was to extend this to cater for matching multiple variables of a continuous type
simultaneously. Subsequently, the code was adapted to facilitate dichotomous variables. The
literature review of published MAIC analyses revealed a trend of these “proportion-type” variables
being commonly reported and used for matching. This type of covariate can be recorded within a

set of IPD as a binary variable and treated as such by the R package.

Further development was geared towards accommodating matching to a median statistic.
However, preliminary testing of this functionality in the prototype suggested that the resulting
weights were highly skewed. There were also challenges in determining if the median of the
weighted IPD would reflect the target median entered. Since both the literature review and
consultation with industry experts indicated that the median was less commonly reported in
aggregate summary data in general, this functionality would be less essential and was omitted for

the first build. The problems encountered are explored further and reported in Section 4.4.2.

Once the package could generate the desired weights and carry out the matching-adjustment, for
the final anchored comparison, it would also need to carry out the indirect comparison, for which
further user input would be necessary. Using the binary outcome case, the package was extended
to accept patient outcome and trial arm data, before generating the final population-adjusted
relative treatment effect between the intervention treatment (for which IPD is available) and the
comparator treatment (where only summary data is available). The standard error for the estimate
was also calculated. For this indirect comparison, information on the relative effect between the
comparator treatment and the anchor treatment would also be needed as illustrated in Equation 4,

reproduced below for ease of reference:
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EBCACZ g(YC(AC)) - g(Z(Ac)) - (g(?B(AC)) - g(?A(AC))) (4)

With a multitude of clinical study designs and outcome measurements, it would be best to follow
the generalised framework published by (Dias et al. 2013, Dias et al. 2011b) to ensure different
outcome types could be incorporated. Expanding the tool to do so would be a desirable goal,
however due caution would be advised for ensuring that the appropriate comparison is being made
and that the values are being interpreted correctly. The importance of scale was explored heavily
in the Technical Support Document (Phillippo et al. 2016) and so the indirect comparisons tool
produced by CADTH (Wells et al. 2009) may act as a useful complement to the weighting provided
by this R package, as described in Section 5.1.

4.4.1 Object Orientation
The penultimate stage of package development was a restructuring of the code so that it would be

object-orientated and easily sharable in accordance with the approach published in (Leisch 2008,
Tierney 2016). The official manual on writing R extensions made available from the R Development
Core Team was also consulted (R Core Team 2019). The purpose of object-orientation here was
to reduce the user’s reliance on numerous functions to carry out the analysis they require. Instead,
they would only have to execute a minimal number of lines of code to perform the desired
calculations, thereby meeting the original objective of usability for the package. By contrast, a
functional programming structure would typically require the user to remember how to use a
number of functions, their behaviour and the correct order in which they should be used. In object-
orientation, an object is a data structure with a set of attributes. Classes define how objects should
be represented (like a blueprint) and methods define specific actions to be performed on objects
of a particular class. An object is simply an instance of a class as called upon by the user; the

object stores the results obtained when the class is used for a given dataset (Leisch 2008).

In R, three object systems are available: S3, S4 and RC (Reference Classes) (R Core Team 2018).
RC most closely resembles other typical object-oriented programming languages such as Java.
These typically require a method to be sent to objects and the object determines how to handle the
method. S3 is a simplified system that does not formally define classes, the class can just be simply
assigned to an object. On occasion, S3 leads to ambiguity if a function that carries multiple
definitions is used on an object of a particular class; necessitating the user to use the double colon
operator. For example, this could arise if the function plot() was defined differently across
multiple R packages and these were being used in the same piece of code. S4 is a more formal
system than S3 and requires definition of the class. This can be important for larger scale projects
where more planning is required. S3 is the system of choice for much of R programming and makes
the coding language more accessible to users of different backgrounds. The RC system would be
more akin to the object-oriented programming environments that experienced developers may be

more familiar with. S3 methods are called in a different way. S3 does not formally define classes,
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the class can just be simply assigned to an object. In the maicer package the S3 system was
used as there was no obvious need for a formally defined protocol as in S4. In many projects the
choice of S3 is straightforward. Building S3 Methods allows for functions to be generalised so as
to behave in a specific manner according to a defined protocol. A requirement of building one’s
own class is to define behaviour for three rudimentary functions referred to as generic functions.
These are: print(), summary() and plot (), though this last function is not strictly necessary.
print() defines the behaviour of the object when it is called directly from the console. It should
detail the key results held within the object. There is no specific definition for the summary ()

function, though it should produce summary statistics and some more detail held within the object.

4.4.2 Challenges in Matching to a Median Statistic
Various published MAICs attempt matching a covariate to a median statistic instead of or as well

as a mean, depending on the AgD available (Signorovitch et al. 2013, Tremblay et al. 2018).
Initially, a median statistic may appear to be a superior summary statistic to use for matching; it is
not impacted by outliers and in the case of discrete data, will take on one of the discrete values in
the set when the sample size is odd. The median can be regarded as a suitable choice for data
that does not follow a normal distribution. However, the methodology for MAIC described by
Signorovitch et al. (2010) relies on the method of moments to match the available IPD (treated as
a sample) to the published AgD (in effect treated as the theoretical moment or as the parameters
defining the population).

There is scope for debate on the use of the method of moments as a means of performing
matching-adjustment and this may have given rise to proposals for other methodologies as
identified in the literature review. Based on the experience in developing the R package and
subsequent testing on some simulated clinical trial data, simulation studies investigating the
behaviour of resulting distributions from different sets of weighted IPD output in MAIC would be of
interest. Nonetheless, the debate on the appropriateness of the methodology was not the focus of
this research project. For the purposes of this thesis, it is assumed that for the indirect comparison
scenario previously outlined, matching moments to achieve population adjustment is a suitable

method.

Returning to the choice of matching to a mean or median statistic, the statistical properties of the
mean prove more useful with respect to the method of moments. The definition of the first moment
has the same definition as the formula to calculate the sample mean. It is therefore simple to verify
that a mean statistic has been matched. By contrast, the median itself carries little distributional
information. In reality, range and other quantile information would also be required in order to
perform a reasonable degree of matching. Sometimes, range information can be abstracted from
inclusion/exclusion criteria of patients reported from the relevant clinical trial, as per the

methodology described in Section 3.5.
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Even when adequate distributional information is available, there remains the problem of verifying
successful matching following the reweighting of the data. In the first published MAIC article,
Signorovitch et al. (2010) outline that reported medians (or other percentiles) can be matched by
converting a continuous covariate into a binary characteristic with a True/False value denoting
whether each patient in the set of IPD is greater than the specified median (Signorovitch et al.
2010). The proportion of cases in agreement can be derived from this and this proportion can be
matched to equal 50% as with any binary characteristic. In reality, while the mean of the binary
characteristic is being matched, conceptually, it is not clear how the individual ages of the patients
will be represented in the weighted set of data. In essence, the weighted data must result in the
value for the binary characteristic switching for a number of patients so that the two groups are
even, but it is not known whether the switched patients should take the median value or how far
their value should extend into the opposite group. As an example, if the patient age of the IPD set
needs to be matched to a median of 40 and the original median is 37, then a number of the patients
need to be weighted so that they assume a value equal to 40 or above. Unlike the mean, there is
not enough distributional information to determine how this assignment should work in practice.
Relative to the median statistic, there is not much to distinguish other patients except for being

above and below the median.

Problems can also arise where many patients correspond to the old median value, particularly in
the case where the sample size is small. For this scenario, it can be difficult to determine how these
values should be adjusted; whether the weighted value should cause them all to be randomly
assigned above and below the new median. Additionally, MAIC works optimally for the case where
there is good patient population overlap and the ranges of the AgD summary statistics are a subset
or similar to the corresponding values for the IPD (Signorovitch et al. 2012). In the case of a
supplied median and range where the range is slightly wider than that of the IPD, it is not clear how
it would be possible to weight the IPD such that it would have a range matching the AgD where the
AgD range is slightly wider. This could be characterised as a classification problem. Overall, while
some of these challenges may not present a huge difference to the end MAIC estimates, it is
plausible that in some situations, such as small patient sample sizes, there would be a notable

impact on the results. Research into these questions would be of interest.

4.4.3 Design
A simulated individual-level patient dataset was generated using the wakefield package in order

to drive development. This dataset consisted of 200 patients and was extended to one million
patients for testing purposes (naturally, a patient dataset of this size would be unrealistic). The
simulated dataset from the TSD appendix was also recreated in order to test the package and as
a verification exercise. The TSD dataset and the simulated set of 200 patients have been included
in the data/ folder with example code provided for the user to recreate the analyses performed.

A walkthrough of the package with screenshots is provided in Section 4.5 of this thesis.
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The design of the R package was formulated in light of the commentary from the TSD. The
importance of the selection of covariates to match on (rather than matching on all covariates
available) was reiterated throughout the document. The package therefore requires the user to set
up amatching_set of covariates; a subset of the IPD. The set of covariates is initialised via the
function set_matching() with arguments taking: the name of the IPD set, the name of the first
covariate to match on as well as the target summary data for the respective covariate. If a standard
deviation is entered, then the covariate’s second moment is automatically appended to the set (as
this is a requirement for the subsequent weight estimation). The user may then expand the set via
add_matching_covariate(), start the process over again with set_matching(), or remove
an individual covariate using remove_matching_covariate(). These functions build a
matching_information list object which consists of the matching_set, the target information

entered and a calculation of the relevant summary statistic information prior to the MAIC weighting.

In this way, the user is forced to first consider which covariates they wish to use for matching. In
the initial design the user was required to specify the target summary data in a separate vector
form and ensure that this was in the same order as the order of the covariates being entered. A
reorganisation of the code improved on this so that specific target summary values could be
entered for each covariate; reducing the chance of programming error while building the set of

covariates to match on.

Once the set of covariates to match on has been specified, the user may obtain the estimated
weights that would be applied to the IPD for MAIC. The functions that perform this calculation are
not intended to be directly available to the user as they are internal, but they may be accessed via
the triple colon operator. With the weights generated, the user is equipped to calculate the
population-adjusted treatment effect for the trial where IPD is available. The weights can be applied
to the original trial outcomes in the IPD set to give the outcomes adjusted for the other trial
population. However, no information on the population-adjusted relative treatment effect can be
generated without further information on the existing, unadjusted relative treatment effect between

the comparator and anchor treatment.

In accordance with the framework described above, the final design led to the creation of two
package objects. The first of these is amatch_adjustment object, used for estimation of weights.
The object may also accept outcome and trial arm information in order to illustrate the impact of
these weights on the patient outcomes and hence calculate the population-adjusted treatment
effect. For the final indirect comparison for MAIC, a second object termed mai c is provided. Once
again, optional arguments are provided for this object in order to accommodate varying amounts
of information from the user. Both of these objects have separately defined generic methods and
are documented as such. It is anticipated that prospective users may have varying levels of

information available to them or may by choice prefer to simply obtain the weights for matching
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adjustment. This package aims to be flexible by accommodating both levels of information and

provide functionality for both.
The objects and functions available to the user are

Table 4 Summary of objects and functions in R package

summarised in Table 4 below:

Functions

Explanation

set_matching(Q

Create a matching_information object
which will store the covariates selected for
matching in a matching_set object. A
covariate must be entered to initialise the
object as well as the target summary data to

match on for this covariate.

add_matching_covariate()

Add another covariate to the matching_set
object. The arguments for this function require
the matching_set to modify, the set of IPD
to draw the new covariate from, the covariate
identifier and the target summary data to

match on for this covariate.

remove_matching_covariate()

Remove a single covariate from the

matching_set object.

Objects

Explanation

matching_information

A list-type object generated from the
set_matching() function which stores all
information entered prior to matching
including:

- the matching_set

- the target summary-level data to match on

- the values of the corresponding summary-
level data in the matching_set prior to

matching.

This object is created in the background and

the user does not have to handle this object

type.

matching_set

This object is stored as part of the
matching_information list and stores the

set of covariates from the IPD set to be used
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for matching and is therefore used in the
calculation of the weights for MAIC. This
forms part of the matching_information
object which is created in the background and

does not have to be handled by the user.

match_adjustment

One of two possible objects which stores the
output of the package. The
match_adjustment object will store the
weights and ESS for the MAIC but will not

perform the indirect comparison.

maic

The second of two possible objects which
stores the output of the package. A
requirement of the mai c object is information
on the patient outcomes as well as relative
effectiveness information between the anchor
treatment and comparator treatment. This will

return the final MAIC estimates.
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4.5 Package Walkthrough
An example output from the package is presented in this section as a walkthrough using multiple

screenshots from the RStudio console. The walkthrough illustrates how a given set of IPD prepared
for MAIC analysis can be passed into a series of functions to return MAIC results. Results from the
analysis are presented at the end showing the indirect comparison between fictional drugs
“loloplitin” and “sonaliptin”. The MAIC is anchored on fictional common comparator “trizepibronate”.
Note that the walkthrough and screenshots presented below relate to the initial maicer package

version 0.0.0.9000. Functionality is currently limited to binary patient outcomes only.

Load RStudio and ensure the maicer package is installed and loaded. The following walkthrough

illustrates an implementation of the package using the some_IPD set available in the data/ folder.

Console  Terminal

;>

hair Height Race smokes Group
' Blonde Hispanic 0 control 0
7 white control
white control |
Black Treatment | 66
Asian control 0.66818
white Control 0.6835209

Tien bWk =D

1
2
3
4
5
6

This is a rudimentary set of IPD generated using the wakefield package. Each patient is
attributed with:

- AnID number

- An age ranging between 35 and 45

- Agender coded as a binary {0,1} variable. 54% of the patient set is classed as female.

- Aneye colour, recorded as a categorical variable which can take one of five values: Gray,
Brown, Blue, Green or Hazel.

- Ahair colour, recorded as a categorical variable which can take one of four values: Black,
Blonde, Brown or Red.

- A height ranging between 56 and 77 inches.

- Arace, recorded as a categorical variable which can take one of six values: Asian, Bi-
Racial, Black, Hispanic, Native or White.

- A smokes variable coded as a binary {0,1} variable. 17% of the patient set is recorded as
a smoker.

- A dichotomous variable indicating whether the patient was assigned to a control arm or
the intervention arm, coded as “Control” and “Treatment” respectively.

- Arandomly generated probability of the patient experiencing the binary event of interest.

- A binary variable describing whether the patient experienced the binary event of interest
(coded as {0,1}).
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Note that proper internal correlation within the individual patient data is not reflected (such as
appropriate distributions of height for males and females to reflect general population norms),
however, the IPD and treatments concerned here are fictional and the results themselves are not

intended to be meaningful.

We begin by specifying the covariates from the set of IPD that we wish to match on. Using the
set_matching() function, the matching set may be initialised. Here the age covariate has been
selected to match to a target mean of 42 and a standard deviation of 3.082363 (the more precise
specification of standard deviation to more decimal places is arbitrary and has been done for

illustrative purposes):

Console  Terminal

Tien B b

It is not necessary to inspect the matching_information object created by the function as
above; the first element of the list that is created will contain the full set of patients in the dataset
(the matching_set object). The screenshot below shows the remaining elements of the list that
have been assembled from initialising the set which include the target values of the AgD and the
corresponding values of these summary statistics in the matching set prior to matching:

Console  Terminal

-

$mean_statistic
Age

E
39.975

$targets

Age.mean Age. sd
42.000000 3.082363

$sd_statistic
Age
3.269222
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Two more covariates are selected for matching (Height and Smokes), with target summary
statistics to match to (target mean height of 67 inches, standard deviation 3 and a target of 22% of

the patient set to be recorded as a smoker):

Console  Terminal

$matching_set
Height Height+2 smokes
70 4900 0
73 5329 0
4356 0
5184 0
5041 0
5184 0
4900 0

(=207

i

ped
L L LY L LY LY LD
(=] < o oh
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=]

If we wanted to verify what summary data was entered, we can call the $targets element of the

object:

Console  Terminal

~

L. UUUUUY (VI vV

$sd_statistic
Age Height
3.269222 3.523018

$proportion
smokes
0.19

Age. mean i . Height.mean Height.sd Smokes.proportion
42. 000000 67.000000 3. 000000 0.220000
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With a set of covariates selected for matching and the target summary statistics entered
corresponding to each covariate, we are ready to find the estimated weights to be applied to the
IPD for matching-adjustment. Applying the function match_adjustment() to the set of

covariates will return the following output:

Console  Terminal

ESS: 95.27659 (ESS/N): 0.476383

summary of weights gene , scaled to original weight:
(1 = no change, < wnweighted, >1 = upweighted)

V1
Min. :0.02081
1st Qu. :0.34025
Median :0.68355
Mean :1. 00000
3rd qu.:1.
Max. 5

The rescaled weights can be accessed by calling $rescaled from the match_adjustment x
see summary() for more information. See plot() for a histogram of the rescaled weights.

[1] "beta” "centred” "ess”

[4] "essprop” "match_adjusted_covariates” "matching_set”
[7] escaled” "rescaled_weights_hist” "targets”

[10] "verification” "verification_plot” "weights”

For verification of successful matching, see $verification and $verification_plot.

This provides information on the distribution of the weights, the ESS resulting from applying the
weights to the IPD and the ESS as a proportion of the original sample size (ESS divided by the
original IPD size of 200). In this example, no patient outcomes or arm identifier information were
passed into the match_adjustment function so no further information on the resulting patient

outcomes following matching-adjustment is available.

Further details of the output can be obtained using the summary () function. For this example
where patient outcomes were not specified, the only output was the generated set of weights. The
summary () function returns some details on the properties of the set of weights. This includes an
excerpt of the centred covariate matrix (first 6 rows) to illustrate what was used for calculation of
the weights. This is followed by a description of the basic distributional properties of the set of
weights which are termed as ‘rescaled’ as they are divided by the total sum of the weights applied.
Therefore, the interpretation of a weight less than one is that the individual patient has been
weighted down, greater than one and the individual patient has been weighted up. The ESS and
the ESS as a proportion of the original sample size are also presented in this output. The final
component to the summary details how closely the weighted data matched to the targets entered.
This is presented as a table. In this example each target summary statistic is listed with the target
value, the value of the summary statistic in the weighted data and a measurement of the difference

which has been termed here as ‘divergence’. The percent divergence indicates the difference as a
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proportion of the target value, represented in percentage form. As the percentage difference

(indicated as percent_d1ivergence below) is low (below 0.005% difference), this indicates close

matching.

The output below illustrates that the difference between the desired target values and the actual

summary statistic values of the weighted IPD are very small:

weighting IPD for MAIC resulted in the following:
Covariates used in matching (centred):

Age A2 Height Height#A2 Smokes
-6 . 501 402 -0.22
i . 501 831 -0.22
-142 -0.22
686 -0.22
543 -0.22
686 -0.22

1

2 -6

3 4 . 501
4 -5 . 501
i
[
(&

[ N - VY]

- .501
77.501

howing up to the first 6 patients)

summary of weights generated, scaled to original weight:
(1 = no change, <1 = ghted, >1 = upweighted)

V1
Min. :0. 02081
1st Qu
Median
Mean
ird qQu
Max.

ze is:

verification of newly weighted IPD summary statistics matching the target AgD:

summary targets weighted_data iv ence percent_divergen
Age. mean Age.mean 42.000000 42.0000323 3. 66 Be-
Age. sd Age.sd 3.082363 3.0823312 e -0.00103
Height.mean Height.mean 000000 4 9e-06 -le-0
Height. sd Height.sd 3.000000 3. 0000102 c 0. 00034
smokes. proportion Smokes.proportion 0.220000 .2199992 -8.091784e-07 -0.000

63



The distribution of the rescaled weights can be plotted by using the pTot() function on the
match_adjustment object. As previously stated, if all rescaled weights were equal to 1 this would
indicate no change to the IPD, and we would expect the ESS to equal the original sample size (no
adjustment would have taken place). In the histogram below the rescaled weights have been
graphed within bins of 0.25. The vertical dashed line indicates the area of the graph corresponding
to the number of weights within a 0.25 bound of 1 (between 0.875 and 1.125). Weights below the
value of 1 have reduced the weight of an individual patient while weights above 1 have increased

the weight of an individual patient:

50-

40-

Frequency

[
L=
1

10-

] S

0 2 4 G
Rescaled weight (multiple of original unit weight)

Viewing a histogram of the weights such as in the plot above can be useful for gaining more
information beyond the ESS value. It can help determine if any individual patients are contributing
disproportionately to an adjusted analysis and enables the analyst to visualise the degree of

distortion occurring in applying weights for the MAIC.
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If the user has access to the trial arm identifier and patient outcomes, these may be passed into
the match_adjustment () function in order to calculate the impact on the average outcomes by
treatment arm before and after weighting according to population adjustment:

Console Terminal

) -
I_with_ot B
weighting IPD for MAIC resulted in the following:

ESS: 95.27659

summary of weights gener scaled to original weight:

(1 = no change, <1 = downweighted, >1 = upweighted)

vl
:0.02081
. 34025

. 68355

Min. H
1st Qu.:
Median

.18937

0

0

]
Mean 1.00000
E 1

5

original average outcomes by arm prior to weighting:

$control
[1] 0.7319588

$Treatment
[1] 0.2038835

New average outcomes by arm after weighting:

$control
[1] 0.8393019

$Treatment
[1] 0.1733996

See $results for:
[1] "average_outcome_groupl” "average_outcome_group2” "match_adjusted_means"
[4] - /erage_outcome_groupl” "new_average_outcome_group2”

In the previous output, the summary binary outcome is indicated for the control and treatment arms
both before and after matching. These show that patients in the control arm on average
experienced the outcome more frequently and that after matching, this difference from the
intervention was more acute. If the relative treatment effect information between the comparator
and anchor treatment is known and can be entered, then the maic () function may be used for a
full Matching-Adjusted Indirect Comparison. For the launch version of maicer, only binary
outcomes may be processed by the function to carry out the appropriate indirect comparison. The
outcome_type argument is set to “binary” by default. Here a relative treatment effect of 3.02
with standard error 0.1036094071 has been entered:
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Console  Jobs
~fIRC Research M.5c (Ind.)/Tool Development/maicer/ =
> a i maic(some_IPD, covaria o_match, outc identifier bina
f to_anchor

> anmai
A Matching-Adjusted Indirect Comparison resulted in the following:

Population-Adjusted Relative Treatment effect: 2.764455
Standard error: 0.1801516

The MAIC had an Effective Sample Size (ESS) of: 95.62413
ESS as a proportion of sample size: 0.4781206

See summary() for more information. If comparator to anchor trial information has been entered, see plot() for a
forest plot of adjusted vs unadjusted results.

The maic() function also takes optional user input to name the intervention, anchor and

comparator treatments. The full table of results is returned as part of the summary () function:

Console  Jobs

~fIRC Research M5c. (Ind.)/Tool Development/maicer/ =
> d IPD, co

A

Population-Adjusted Relative Treatment effect: 2.764455
Standard error: 0.1801516

The MAIC had an Effective Sample Size (ESS) of: 95.62413
ESS as a proportion of sample size: 0.4781206

The overall results:# A tib y X
id Comparison Estimate wvar lo hi type

"loloplitin \nvs\n sonaliptin” 6 0.180 3.60 MAIC
"loloplitin \nvs\n sonaliptin” .89 0.101 1.27 2.51 Unadjusted
"trizepibronate \nvs\n sonaliptin” .02 0.104 2. 3.65 Unadjusted
"trizepibronate \nvs\n Toloplitin” .256 0.284 - 1.30 MAIC
"trizepibronate \nvs\n Teloplitin” .13 0.205 0.243 2.02 Unadjusted

1
_.i
5

"arms" "average_outcome"

"beta" "centred"

"comparator_to_anchor” "ess™

"essprop” "match_adjusted_covariates™
"matching_set" "outcomes"

"population_adjusted _effect” "population_adjusted se estimate”
"relative_adjusted_effect” "relative_adjusted_effect_se"
"relative_unadjusted_effect” "relative_unadjusted_effect_se"
"rescaled" "rescaled_weights_hist"

"results™ "se_comparator_to_anchor"
"targets” "unadjusted_intervention_to_anchor"
"unadjusted_intervention_to_anchor_se" "verification™

"verification_plot"” "weights”

This output indicates that the relative treatment effect between the intervention and comparator
treatments is 2.764 on the log odds scale (compared with 1.89 prior to matching-adjustment). In
this instance it was understood that experiencing the event is positive for the patient; information
which was passed into the maic () function via binary_event_type = “positive”. When
treatment X is being compared against treatment Y, a value greater than 0 indicates patients
administered treatment X experience the event more often and hence favours treatment X. A value
less than 0 favours treatment Y. The user labelled the intervention treatment as “loloplitin”, the

anchor treatment as “sonaliptin” and the comparator treatment as “trizepibronate”. The main
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comparison of interest is therefore loloplitin vs trizepibronate. The results before and after matching
suggest that loloplitin is superior to sonaliptin and these results are statistically significant. The
results before matching then suggest that trizepibronate is superior to loloplitin and this result is
statistically significant. However, the MAIC estimate suggests that while trizepibronate may be

superior to loloplitin, the difference is far less acute and is not statistically significant.

In this example no true values were provided to show how biased each estimate was. It is important
to recognise that MAIC does not necessarily reduce bias from true values in every case, although

this is naturally a key objective.

Finally, using the pTot () function will return a forest plot of the results for the various comparisons:

loloplitin
Vs
sanaliptin

type
MAIC

—4 |Unadjusted

trizepibronate
WE
loloplitin

trizepibronate
W
sonaliptin

-

|
P

1 2

Estimate (Log OR)

= S e

Noting that the event is positive for the health of the patient, for the plot above, in a comparison of
treatment X vs treatment Y, values to the right of the vertical dashed line (representing log odds
ratio of 0) favour treatment X. Values positioned to the left of O favour treatment Y (as treatment X

patients are observed to be experiencing the event less frequently).

In the forest plot above, the MAIC estimates of relative treatment effect have been plotted alongside
the standard Bucher comparisons which have not adjusted for the trial population. In the anchored
MAIC analysis, it is assumed that the comparator trial results hold and they are not adjusted. It is
the adjusted results of the intervention vs anchor treatment trial which affect the final relative

treatment effect between the intervention and comparator of interest.
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The MAIC estimates attract a larger standard error than the standard Bucher comparisons. The
difference between the unadjusted and MAIC estimates suggests that after accounting for
population differences, the true relative treatment effect between loloplitin and trizepibronate is less
acute than was the case using unadjusted estimates of treatment for the indirect comparison. The
results are also no longer statistically significant and so the MAIC estimate would suggest that

these comparative results between loloplitin and trizepibronate are inconclusive.
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Chapter 5 Conclusions
In the field of HTA and drug reimbursement, there is a clear demand from drug companies to make

optimal use of evidence synthesis methods including population adjustment and MAIC in order to
provide the most relevant detail for a drug reimbursement decision. Concurrently, HTA agencies
seek to obtain the most accurate picture of the true effectiveness of a pharmaceutical product
relative to other alternatives. They will take into consideration the level of uncertainty inherent in
evidence not derived from head-to-head, double-blinded randomised controlled trials. The
literature review in this thesis has shown that MAIC is becoming more frequently adopted within
comparative effectiveness research; across multiple therapeutic areas and in a number of
circumstances. While there does not appear to be any sign that this technique is falling out of use,
sufficient guidance on its implementation remains lacking. The TSD provided a firm grounding for
best practice on how the technique should be applied in HTA submissions to NICE. However, the
literature review of published MAICs would suggest that implementation of the technique is non-
standardised and is subject to a degree of variation as a result. In the worst case, the current

literature on MAIC interprets the technique as little beyond simply “matching variables”.

The work from this thesis offers an attempt to standardise the implementation of the technique
through means of a package in R. We believe this, and extending the work further, as suggested
in Section 5.1, offers the best solution to consolidating the detail on the technique as well as
providing investigators, reviewers and other stakeholders with the means to reproduce analyses.
This can give a greater degree of transparency and assurance in the results derived from the
method and facilitates comparative effectiveness research. We believe the choice of R is

appropriate for the reasons outlined in Chapter 4.

5.1 Further Work
The work embodied in this research has motivated a number of possible extensions to the

development of the R package. Further research into the fundamental properties of the MAIC
methodology through simulation studies is recommended by the TSD. The development of this
package offers a vehicle for conducting such studies, for example, changes to ESS due to varying

patient population overlaps. Some suggestions for extensions to this work follow.

Consideration for all other types of outcomes would be of huge benefit to the development of the
R package. As an alternative solution, the package aims to return the user with the weights
generated by the MAIC algorithm so that they may be used to weight patient outcomes, whereupon
the analyst may handle the data as required. Currently, there exists an application published by
the Canadian HTA agency (CADTH) which assists in performing the calculations required for

indirect treatment comparisons.
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The package in its prototype form does not consider multilevel covariates for matching.
Theoretically, this could be implemented using a design matrix to expand on the multilevel
covariate into a series of dummy variables; each describing the various levels of the covariate.
These would then be treated as binary covariates and passed into the matching set. In Section
4.4.2, the challenges for adapting the package to match IPD to aggregate median statistics were
presented. Further extensions could involve accommodating the less usual summary data found
in published clinical trials and MAIC analyses such as quartiles, correlations and higher moments

(although in the case of standard deviation, the second moment is necessarily matched).

Stemming from the review of the MAIC methodology and its variations, one possible extension of
the R package would be to allow for other weighting procedures to be incorporated in the tool such
that the user may select the method they wish to implement. This would be less preferable to the
other suggested extensions, since the premise of this work was to articulate the MAIC methodology
in a standardised, reproducible and coherent manner. Allowing for alternative weighting
methodologies as described in (Petto et al. 2018) or possibly as in (Regnier et al. 2016), carries
the risk of somewhat taking away from this effort. It may also obscure the impact of MAIC. However,
as a research exercise it could be interesting to view the properties of other weighting methods

and their implications for HTA.

To encourage uptake of the R package, a user-friendly interface could be developed using R Shiny
which would overlay the package functions. Assuming an adequately intuitive interface is
developed, the tool could serve a wider audience who may be interested in implementing MAIC. In
designing an interface, it may be necessary to restructure the code. An important consideration for
a potential R Shiny app would be whether to host it on a server or locally. While hosting the app
on a public website could be useful for raising awareness of the existence of the package, potential
users may not have the freedom to upload their IPD via the online interface. IPD is likely to require
secure storage and uploading such data online raises questions of security and data protection.
With access to the R Shiny app script files, it would be possible to run the app internally using
RStudio, but this negates the benefits of not requiring R and R Shiny pre-installed on the user’s

computer.

The focus of the R package implementation was on the anchored scenario. The unanchored
scenario is relatively straightforward to carry out and the weights can be obtained using the
match_adjustment object. Reorganising the code to draw a more explicit distinction between
the two scenarios could be useful for the structure of the R package. This could involve extending

the match_adjustment object, for example.

A final potential area for development of the package is to introduce greater automation and

generality of the code with respect to handling user input. As an example, the user requires their
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IPD to follow a number of standards (although the template is not highly stringent), such as

formatting of dichotomous variables to be coded to {0,1}.

5.2 Final Remarks
This thesis has confirmed that the full implications for use of MAIC are not fully understood. In

summary:

e It is unclear at what threshold it is appropriate to perform MAIC with respect to varying
degrees of differing patient populations and the implication for modelling practice.

e Itis unclear to what extent variations on the methodology for calculating weights as well
as other methodological variations impact on the results of analyses.

¢ Inthe absence of IPD on a comparator treatment and use of AgD for matching purposes,
it is unclear how matching to a median statistic can be best implemented.

e Further research into the appropriateness of matching by method of moments is

warranted.

In order to adopt routine appropriate usage of MAIC, it is necessary to standardise its
implementation so that results can be rendered comparable across technology appraisals. The
work from this thesis has sought to identify a standard approach to applying MAIC in addition to
method variations. It has identified the risk of disparity that currently exists arising from the
multitude of variations in the methodology. As a solution, a template for implementing the method
has been created through the R package. While multiple extensions to this tool are possible and
should be pursued, the principal goal is that the effort of standardising MAIC continues. The exact
circumstances in which it is appropriate to apply MAIC have been touched upon in this thesis but
fall outside the focus of this project. Assuming appropriate usage, standardised implementation of

MAIC can help to ensure optimal healthcare decision-making.
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Appendix A Binomial Distribution as a Member of the Exponential

Family of Distributions
From (Dobson and Barnett 2008), it can be shown that the Binomial distribution is a member of the

Exponential Family of Distributions. To show this, it is necessary to show that its probability density

function can be written in the form:

f(;0) = s(¥)t(6)e*@P®

Where y describes a single random variable whose probability distribution depends on a single

parameter 6.
This equation can be rewritten so that s(y) = exp d(y) and t(8) = exp c(0) as follows:

f(y;0) = expla(y)b(8) +c(0) + d(y)]

From Equation 2, the probability density function for the Binomial distribution is:

f;0) = (3) 07 (1 = 0" @)
Orwhere n =1,

fO:0)=6"(1-6)"

Applying the exponential function:

exp [(;) 67Y(1 - 9)1‘3’]

Taking logs of the exponent:
o l()ora -0
= exp [log (},) 10g(6”) log((1 — 6)'~)]
= explog (;l) + 1og () + log (1 — 6)'))]
= exp [log (3) + ¥ 10g(®) + (1 = ) log (1 — )]
= exp [log (;) +y10g(8) +log(1 - 6) — y log(1 - 6)]

= exp [y(log(@) —log(1—0)) +log(1—06)+ log (;)]
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6 ) +log(1 —0) +log (Z)]

ol

Therefore a(y)b(8) = y log (ﬁ) and ¢(8) = log(1 — 8) and d(y) = log (;)
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Appendix B List of Reviewed MAIC Publications

The following publications were reviewed and are listed below in no particular order:

(Signorovitch et al. 2011): vildagliptin (IPD) vs sitagliptin (AgD)

(Regnier et al. 2016): ranibizumab (IPD) vs aflibercept (AgD)

(Van Sanden et al. 2018): (Overall Survival outcome, unanchored MAIC) daratumumab
(IPD) vs pomalidomide + dexamethasone (AgD)

(Van Sanden et al. 2016): simeprevir + peginterferon alfa 2a + ribavirin (IPD) vs
peginterferon alfa 2a + ribavirin (AgD)

(Odom et al. 2017): sonidegib (IPD) vs vismodegib (AgD)

(Warren et al. 2018): ixekizumab (IPD) vs secukinumab (AgD)

(Signorovitch et al. 2013): everolimus (IPD) vs sunitinib (AgD)

(Ishak et al. 2018): sunitinib (IPD) vs everolimus (AgD)

(Majer et al. 2017): panobinostat + borezomib + dexamethasone (IPD) vs lenalidomide +
dexamethasone (IPD*) and panobinostat + borezomib + dexamethasone (IPD) vs
pomalidomide + dexamethasone (IPD*)

(Tremblay et al. 2018): ribociclib + letrozole (IPD) vs palbociclib + letrozole (AgD)

(Song et al. 2019): blinatumomab (IPD) vs inotuzumab ozogamicin (AgD)

(Atkins et al. 2019): nivolumab + ipilimumab (IPD) vs dabrafenib + trametinib (AgD) and
nivolumab + ipilimumab (IPD) vs vemurafenib + cobimetinib (AgD)

(Proskorovsky et al. 2018): axitinib (IPD) vs cabozantinib (AgD) and axitinib (IPD) vs
everolimus (AgD)

(Signorovitch et al. 2015) nilotinib (IPD) vs dasatinib (AgD)

(Maksymowych et al. 2018) secukinumab (IPD) vs adalimumab (AgD)

(Signorovitch et al. 2010) adalimumab (IPD) vs etanercept (AgD)

*IPD was approximated using the algorithm by (Guyot et al. 2012) in order to draw a comparison

in terms of Progression-Free Survival (PFS) and Overall Survival (OS) but was not weighted.
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