
Research Article Journal of Optical Communications and Networking 1

The Virtual DBA: Virtualizing Passive Optical Networks
to Enable Multi-Service Operation in True Multi-Tenant
Environments
MARCO RUFFINI1,*, ARSALAN AHMAD1, SANWAL ZEB1, NIMA AFRAZ1, AND FRANK SLYNE1

1CONNECT research centre, School of Computer Science and Statistics, The University of Dublin, Trinity College, Ireland
*Corresponding author: marco.ruffini@tcd.ie

Compiled January 15, 2020

This paper presents the concept of virtual DBA, a method we propose to virtualize upstream capacity
scheduling in PONs, which provides multiple independent virtual network operators with the ability
to precisely schedule their upstream traffic allocation. After a brief introduction on the evolution of
access network sharing, we present our virtual DBA architecture, detailing its main components. We then
provide a summary of the work done in this area both from theoretical and practical implementation
perspectives. In this paper, we propose a novel stateless algorithm for merging multiple independent
virtual bandwidth maps based on priority classes and analyze its performance in terms of efficiency of
capacity allocation and latency. Through our results we discuss the existence of a trade-off between traffic
load and grant size distribution vs. efficiency and latency. We find that, differently from residential
single-tenant application, when PONs are used for low latency and multi-tenant applications, the system
has better overall performance if grants are allocated in small size. In addition, our analysis shows that
for high priority, strict latency services, our proposed merging algorithm presents delay performance that
is independent of the traffic distribution considered.
© 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Access network sharing has become a mainstream topic since
1996, when the Federal Communications Commission (FCC)
released the Telecommunications Act in the U.S., opening up the
market to competition. Most other countries followed shortly
afterwards. Since then, several techniques have been proposed
and deployed to give different operators the ability to access
their customers through a third party access network (typically
belonging to the main incumbent operator). These spanned from
physical link unbundling, where an Other Licensed Operator
(OLO) can physically transmit its Digital Subscriber Line (DSL)
signal over the copper line linking the end-user to the Central
Office (CO), to bitstream services, where the incumbent runs
the access network and handles an aggregate of the customers’
data to the OLO at a number of national access points [1],[2].
Such techniques have evolved over time and are characterized
by a different trade-off between the ability of the OLO to control
Quality of Service (QoS) versus the amount of equipment it
needs to deploy at the CO.

A decade after the Telecommunications Act was released, op-
erators started deploying Fiber-to-the-Home (FTTH) to increase
access capacity, as new high-bandwidth multi-media applica-
tions started to spread across the Internet. The deregulation
policies developed for the copper-based access did not neces-
sarily apply to FTTH networks, which were newly built by the
(now private) operators, rather than being state-funded as the
old copper network. Different countries applied different rules:
for example, the U.S. decided not to enforce the Telecommuni-
cations Act; on the contrary, Europe did and the operator with
the strongest national presence (i.e., with the highest market
share) was forced to share their FTTH network; Japan, on the
other hand, ruled that FTTH networks needed to be shared, but
the operator deploying the fiber would benefit from special in-
centives in order to reduce the risk associated with its initial
investment [3]. As a result, Japan has today one of the highest
concentration of fiber in the access; the U.S. had a fair level of
coverage, but only in dense areas or areas with a high return on
investment; Europe lacked behind as operators did not have a

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Research Article Journal of Optical Communications and Networking 2

strong business case for investing in fiber [3].
Since fiber was considered a strategic asset for a nation, in

some cases the governments or the municipalities provided a
subsidy. In these cases, early deployments were carried out
using point-to-point fiber technology, through Active Optical
Networks (AONs). By providing individual fiber connection
to each user, AON enables physical unbundling, facilitating
network sharing, a condition that was deemed necessary for
state-funded deployments. However, as fiber installation started
to take off at larger scale, most operators adopted the Passive
Optical Network (PON) architecture, as this enabled lower cost
in the Optical Distribution Network (ODN) and CO, in addition
to lower footprint and energy consumption. The drawback of
PONs is that they don’t support physical unbundling: since they
are based on a power-split architecture, where all users share the
same communication channel, an OLO cannot establish a direct
physical link to a subset of PON users. The only solution for
PON sharing became the evolution of the bitstream technology
used for DSL, called Next Generation Access (NGA) bitstream
and Virtual Unbundled Local Access (VULA). Both offered ac-
cess to PON customers at a Layer-2 (L2) or Layer-3 (L3) data
packet level, after the Optical Line Terminal (OLT) of the Infras-
tructure Provider (InP) has collected the user data and sent it to
an aggregator switch. These enhanced the legacy bitstream by
improving QoS differentiation for the OLOs.

The situation has further evolved over the past couple of
years, as recent trends of network slicing and CO virtualization
are providing an unprecedented opportunity to increase the
level of control that OLOs have over a shared network. Once
implemented in software, virtualization enables a network func-
tion to be replicated, and its control handed directly to the OLO
(now called Virtual Network Operator (VNO)). This has become
especially important in 5G networks, which need to support a
large number of highly heterogeneous services, shared across
multiple VNOs (e.g., to enable cost-sharing [4]).

The project that started the virtual CO revolution was the
Central Office Rearchitected as a Data Centre (CORD) [5]. Specif-
ically, the Residential CORD (R-CORD) addressed the use case
of providing residential broadband through virtualized PON
infrastructure, enabling a VNO to manage its own FTTH net-
work slice. R-CORD, however, limits the virtualization to the
management plane, while data plane operations are handled by
hardware white box PON units [6]. While this does not pose
a problem for residential broadband applications, it limits the
5G vision of a multi-service, multi-tenant network capable of
delivering highly reliable low latency connectivity, because the
scheduling of capacity cannot be directly controlled by the ten-
ant VNOs.

Our work has progressed beyond the PON virtualization pro-
vided by CORD as it addresses the virtualization of capacity
scheduling, targeting both upstream [7] and downstream [8]
operations. It has also progressed beyond the basic "softwariza-
tion" of the Dynamic Bandwidth Allocation (DBA) proposed in
[9], by designing a mechanism that enables running multiple in-
dependent DBAs in parallel, thus providing a true multi-tenant
solution. In this paper, we focus our attention on the upstream
scheduling (involving the DBA process), which is more com-
plex due to its two-way request/grant operations. Downstream
scheduling is instead typically implemented by applying well-
know L2/L3 queue management schemes, although its use in
multi-tenant environments requires some modifications, as sug-
gested in [10].

Our DBA virtualization approach [11], which was standard-

ized by the BroadBand Forum (BBF) [12], allows different VNOs
to run their own DBA algorithms, to suit the type of services they
want to offer to their customers. This enables, for example, run-
ning one DBA for one set of users (e.g., residential broadband)
and another DBA for a low-latency application (e.g., cloud-RAN
transport through the cooperative DBA mechanism standard-
ized in [13]).

This paper extends the work presented in [14] at the 2019
OSA Advanced Photonics Congress and is structured as follows.
Section 2 describes the overall virtual DBA (vDBA) principle and
architecture, discussing building blocks and main requirements.
Section 3 summarizes our work to date on the topic, highlighting
some of the Key Performance Indicators (KPIs) we have obtained
both in our simulations and testbed implementation. Section 4
provides the details of our novel Merging Engine architectural
block and analyzes the performance of the proposed algorithm.
Finally, we conclude the paper.

2. THE VIRTUAL DBA ARCHITECTURE

The scope of the vDBA architecture is to provide a mechanism
to slice the upstream capacity allocation in a PON so that dif-
ferent tenants (e.g., VNOs) can schedule the Optical Network
Units (ONUs)’ burst allocation precisely within each frame.
While higher layers mechanisms are also capable of providing an
average capacity assignment that reflects the VNOs" assured rate
allocation, these do not give the VNOs the ability to precisely
schedule their capacity. Typical PON standards aim at providing
each ONU with their assured bandwidth on timescales of "a few
ms" [15]. While this is sufficient for general broadband services,
it cannot sustain the upcoming 5G type of applications that re-
quire sub-millisecond latency. One example is the support for
Cloud Radio Access Network (C-RAN) transport, following the
low-latency cooperative DBA concept [13], described in more
detail in the next section.

A. Overall architecture

The vDBA gives a VNO the ability to schedule its own capacity
allocation within each frame. The VNO can thus select the DBA
algorithm that is most appropriate for the service it needs to
deliver. For example, supporting a C-RAN transport service on
an eCPRI [16] interface requires the ability to deliver latency
below 100-150 µs for variable rate traffic. C-RAN with a PHY
or low-MAC functional split can only be supported in a PON
through a mechanism called cooperative DBA [13], which by-
passes the high-latency report/grant process of typical DBAs.
This was originally introduced in [17], for its application to static
fronthaul transmission and then, more recently, extended to
also cover variable rate traffic for functional splits higher than
pure fronthaul [18]. The cooperative DBA solves the issue by en-
abling communication between the mobile Base Band Unit (BBU)
scheduler and the PON scheduler. Since the BBU will sched-
ule the User Equipment (UE) traffic at least one millisecond in
advance of the UE transmitting it, this information is passed
directly to the OLT DBA scheduler. Thus the DBA knows in
advance when the ONU will receive the upstream traffic from
the UE and can schedule it without waiting for a request from
the ONU, enabling just-in-time scheduling.

However, this requires the DBA to be in perfect synchro-
nization with the BBU scheduler, so that when the scheduled
data arrives from the UE to the Remote Unit (RU), the ONU
serving that RU can transmit it without delay (this is possible

Research Article Journal of Optical Communications and Networking 3

because the DBA would have granted the ONU a transmission
opportunity exactly for that time).

In order for the cooperative DBA to work, the VNO needs to
precisely allocate capacity for each frame in the PON Bandwidth
Map (BMap), a feature that is not supported by current commer-
cial systems. Our proposed vDBA mechanism provides support
for the C-RAN functional split as it enables each VNO to run one
(or more) virtual DBAs, each generating a virtual BMap, where
the DBA algorithm can specify the exact position of the desired
capacity allocation in each frame.

Merging Engine

vDBA1

vDBA2

vDBAn

Virtual 
BWMap

Virtual 
BWMap

Virtual 
BWMap

PHY  
BWMap

ONU2ONU1 ONUn

VNO1

VNO2

VNOn

Fig. 1. Architectural design of the virtual DBA mechanism

The vDBA architecture is shown in Fig. 1. Each VNO can
operate one or more vDBA algorithms, to suit their customers’ re-
quirements. Where the systems works with Dynamic Bandwidth
Report upstreams (DBRus), these are generated by the Trans-
mission Containers (T-CONTs) in each ONU and from there
forwarded by the Merging Engine block to the corresponding
vDBAs. For ultra-low latency mechanisms, where the reporting
mechanism is bypassed, it is the application generating the re-
quest (e.g., a BBU scheduler in the case of cooperative DBA), that
sends the report message to the appropriate vDBA through a
standardized interface [12]. After collecting DBRus, each vDBA
will run a scheduling allocation, which can be carried out every
frame (if ultra-low latency is required) or else every N frames
(with N being a value agreed with the Merging Engine block).
Such scheduling is forwarded from the vDBAs to the Merging
Engine in the form of a virtual BMap, which reports the exact
location of the required grants for each customers’ T-CONTs.
After collecting all virtual BMaps, the Merging Engine runs
an algorithm for combining them into a single physical BMap,
which is then distributed to all ONUs. The ONUs then follow
the scheduling information reported in the BMap according to
typical PON standards.

B. Merging Engine
Since we have assumed that each vDBA operates independently,
their virtual BMaps can have conflicting allocations, in which
case the Merging Engine will shift them across the frame to elim-
inate any overlap. Different algorithms for the merging engine
can have different performance, which can favor, for example,
efficiency in capacity allocation or latency. We will present per-
formance results of our proposed algorithm in Section 4. In

order to prioritize traffic, for example for low latency, the vDBA
communicates the latency requirement of the different applica-
tions it is serving to the Merging Engine by using pre-established
labels in the virtual BMap. With this information, the Merging
Engine can decide which allocations to shift and by how much,
depending on their relative priorities.

For example, in our initial approach, further described in Sec-
tion 4, we have defined 4 priority types. Type 4 has the strictest
latency requirement and is followed, in decreasing order, by the
other types, down to 1. Also, we assume that types 4 and 3
operate with a cooperative DBA type of approach, which means
that in case of overlapping virtual BMap grants, the Merging
Engine can only postpone allocations (i.e., never anticipate them)
with respect to the original vDBA request. These are followed by
lower priority allocations 2 and 1, which instead operate via the
common DBRu mechanism. This means that data is available
in the ONU’s queue at least one frame in advance; thus the allo-
cation can be shifted in both directions in the frame (i.e., either
postponed or anticipated), in order to improve the overall frame
utilization. Other Merging Engine algorithms can be devised,
operating different prioritization schemes, which can be classi-
fied into stateless and stateful. In the stateless case, the decision
to shift a particular traffic type does not depend on previous allo-
cations, while in the stateful case the current decision takes into
account previous actions, for example considering how much
additional latency a specific service has already experienced.
The latter can be used to minimize the probability of breaking
a specific Service Level Agreement (SLA) (which for example
might require that a certain latency value is achieved 99.99% of
the time).

C. System synchronization requirements
Since a PON is a synchronous system, with a precise framing
structure, it is important that all the elements of the vDBA im-
plementation follow the system clock rigorously. In particular,
the data plane runs in a hardware platform with a precise 8 kHz
clock (i.e., following the 125 µs frame duration).

In addition to hardware/software synchronization, the differ-
ent vDBA algorithms also need to be in sync with the Merging
Engine. Although not always critical for the basic functioning of
the system, vDBA synchronization is important to maintain high
efficiency in capacity allocation. Indeed, since the Merging En-
gine always sends the BMap in the same part of the downstream
frame, if the virtual BMaps from the vDBAs arrive late, i.e., after
the Merging Engine has already sent the BMap, they will not
be included in that frame allocation, and that capacity will re-
main unallocated. Such synchronization becomes instead critical
when the VNO needs to provide an ultra-low latency service, for
example, C-RAN functional split, where the vDBA mechanism
is in strict coordination with the BBU scheduler, as mentioned
above. In this case, if the virtual BMap misses the transmis-
sion opportunity, the mobile service could suffer from excessive
Hybrid Automatic Repeat Request (HARQ) re-transmission, mo-
mentarily decreasing the mobile system throughput.

3. VDBA STATE OF THE ART

This section summarizes the work we have carried out on PON
virtualization, comparing it, where available, to that from other
research institutions. Our initial work, reported in section A,
showed how a novel frame-sharing approach could improve
sharing efficiency while maintaining isolation across slices. Giv-
ing VNOs full control over capacity scheduling, however, re-

Research Article Journal of Optical Communications and Networking 4

CITY MAP CREATOR

VNO1

Capacity Seller

VNO2

Capacity Seller

VNOn

Capacity Buyer

ONU2

ONU1

ONUn

Auction
Mechanism

Final 
BWMap

OLT

Fig. 2. Schematic of PON auction mechanism

quires novel incentives schemes to induce them to share their
unused capacity, thus maintaining high overall PON efficiency.
This work is described in section B. Finally, in section C, we
provide details of our vDBA prototype implementation.

A. Intra-frame sharing approach

The work we take as reference and use for baseline comparison
is that proposed in [19], where each VNO is assigned one entire
upstream frame, in a periodic round-robin fashion. Our intra-
frame sharing approach is instead based on the possibility for
each frame to be shared between VNOs. Our system starts by di-
viding the assured bandwidth portion of the total capacity across
VNOs. In addition, the systems re-assigns any leftover capacity
adopting approaches similar to those used in non-assured capac-
ity allocation in regular PONs, i.e., proportionally to the value of
assured capacity [15]. Our results, reported in [20], showed three
main improvements over the approach presented in [19]. Firstly,
assigning one frame per VNO introduces a latency dependence
on the number of VNOs, which instead disappears in our vDBA
approach. Secondly, statically assigning a frame per VNO is not
bandwidth efficient, as unused capacity from one VNO cannot
be used by users belonging to other VNOs, a problem which is
also solved by our approach.

Finally, the approach in [19] can allocate larger capacity to a
specific VNO by increasing the ratio of frames assigned to that
VNO. This, however, means that VNOs with higher capacity
also gain lower latency, because having a higher number of
frames available gives more opportunities to transmit. Thus
the VNO with less capacity suffers higher latency, meaning that
the approach in [19] does not provide adequate isolation with
respect to latency performance. Our vDBA has instead the ability
to provide latency performance isolation with respect to VNO
capacity allocation.

B. Capacity sharing through auctions

Giving VNOs the ability to fully schedule their own capacity
creates a new problem. If a VNO has leftover capacity on any
given frame, it would have no gain in leaving this unallocated, as
the Merging Engine would redistribute it to other VNOs which
are likely to be its competitors. Thus its best strategy would be
to always send a fully allocated virtual BMap to the Merging
Engine. This constitutes a problem as it reduces the overall
upstream PON efficiency.

To address this challenge, we have proposed [7] monetization
of the excess capacity on PON slices, where, using an auction

mechanism the VNOs can trade their capacity in return for mon-
etary compensation (shown in Fig. 2). Through rigorous theoret-
ical proofs and market simulations in [21] we validated that the
proposed market will incentivize the VNOs to trade their excess
resources in a setting that is robust against market manipulation
(i.e., where any attempt to manipulate the market by a player
will not give any benefit to that player).

However, while our approach proved successful in main-
taining high overall resource utilization, it worked under the
assumption of an open-access architecture, where a fully trusted,
independent central authority (e.g., the InP) is in charge of op-
erating the market (i.e., bookkeeping, conducting the auction,
settlements, etc.). This assumption may not always be valid for
today’s network ownership models, where often the incumbent
operator owning the physical infrastructure is also a compet-
ing VNO. We have thus tackled the more general problem of
untrusted InP through the use of distributed consensus mech-
anisms (e.g., Blockchain-based Smart Contracts) which do not
rely on a central entity. Our initial results [22], implemented
over the Hyperledger Fabric [23], showed that we could achieve
more than 160 transactions (i.e., auction rounds) per second on a
system with 8 virtual CPUs. This result already enables to carry
out a capacity auction every 6 ms, i.e., averaged over about 50
frames.

It is expected that transaction speed will further increase
in the near future, as the Hyperledger Fabric community has
recently set up a dedicated working group to address perfor-
mance scalability [24]. In addition, latest experiments [25] have
shown that performances of the order of 20,000 transactions per
second are already possible for some types of applications in
Hyperledger Fabric.

C. vDBA system implementation
As mentioned above, CORD was the first system implementing
the idea of CO virtualization. The R-CORD release extended
virtualization to the OLT, although slicing operated at the man-
agement level because virtualizing the data plane was consid-
ered difficult to achieve. However, the advanced development
of Intel’s Data Plane Development Kit (DPDK) software packet
processing libraries has boosted the ability to implement telecom-
munications virtual network functions on general-purpose pro-
cessors. For example, DPDK have recently been used to de-
liver a full software implementation of the Medium Access Con-
trol (MAC) layer of the DOCSIS 3.0 standard [26]. In addition,
DPDK-enabled virtual packet switches have recently reached
performance in excess of 70 million packets per second [27].

Research Article Journal of Optical Communications and Networking 5

Option 2: Passthrough

Physical PON

VC
70

9
Ev

al
ua

tio
n

B
oa

rd
w

w
w.

xi
lin

x.
co

m
71

U
G

88
7

(v
1.

6)
 M

ar
ch

 1
1,

 2
01

9

D
ef

au
lt

Ju
m

pe
r S

et
tin

gs

D
ef

au
lt

Ju
m

pe
r S

et
tin

gs
Se

e
Fi

gu
re

A
-3

 fo
r l

oc
at

io
ns

 o
f j

um
pe

rs
 li

st
ed

 in
 T

ab
le

A
-3

.

Ta
bl

e
A-

3:
D

ef
au

lt
Ju

m
pe

r S
et

tin
gs

Ju
m

pe
r

C
al

lo
ut

Ju
m

pe
r

Fu
nc

tio
n

D
ef

au
lt

Ju
m

pe
r

Po
si

tio
n

Sc
he

m
at

ic

03
81

49
9

Pa
ge

N

um
be

r

1
J9

X
A

D
C

 G
N

D
 fe

rr
ite

 fi
lte

r b
yp

as
s j

um
pe

r
N

on
e

27

2
J1

0
X

A
D

C
 G

N
D

-to
-X

A
D

C
_A

G
N

D
 ju

m
pe

r
1-

2
27

3
J1

1
TI

 c
on

tro
lle

r U
42

 A
dd

r 5
2

R
es

et
 ju

m
pe

r
N

on
e

47

4
J1

2
TI

 c
on

tro
lle

r U
43

 A
dd

r 5
3

R
es

et
 ju

m
pe

r
N

on
e

51

5
J4

2
X

A
D

C
 e

xt
er

na
l 1

.2
V

 o
r i

nt
er

na
l V

R
EF

P
se

le
ct

or
1-

2
27

6
J4

3
X

A
D

C
 V

C
C

 se
le

ct
 h

ea
de

r
2-

3
27

7
J5

0
TI

 c
on

tro
lle

r U
64

 A
dd

r 5
4

R
es

et
 ju

m
pe

r
N

on
e

54

8
J5

3
X

A
D

C
 V

C
C

5V
0-

to
-X

A
D

C
_V

C
C

5V
0

ju
m

pe
r

1-
2

27

9
J5

4
X

A
D

C
 R

EF
30

12
 U

35
 V

IN
 se

le
ct

1-
2

27

10
J4

9
PC

Ie
 b

us
 w

id
th

 se
le

ct
 h

ea
de

r
1-

2
35

X-
R

ef
 T

ar
ge

t -
 F

ig
ur

e
A-

3

Fi
gu

re
 A

-3
:

VC
70

9
B

oa
rd

 J
um

pe
r L

oc
at

io
ns

U
G

88
7_

aA
_0

3_
10

13
14

27

4

3

6

7

8

9

10

5

1
2

OLTONUs

VC709VC709

ONU1

Option 1: Microblaze Local processing

TCONT#11

TCONT#12

TCONT#13

TCONT#21

TCONT#22

VC
70

9
Ev

al
ua

tio
n

B
oa

rd
w

w
w.

xi
lin

x.
co

m
71

U
G

88
7

(v
1.

6)
 M

ar
ch

 1
1,

 2
01

9

D
ef

au
lt

Ju
m

pe
r S

et
tin

gs

D
ef

au
lt

Ju
m

pe
r S

et
tin

gs
Se

e
Fi

gu
re

A
-3

 fo
r l

oc
at

io
ns

 o
f j

um
pe

rs
 li

st
ed

 in
 T

ab
le

A
-3

.

Ta
bl

e
A-

3:
D

ef
au

lt
Ju

m
pe

r S
et

tin
gs

Ju
m

pe
r

C
al

lo
ut

Ju
m

pe
r

Fu
nc

tio
n

D
ef

au
lt

Ju
m

pe
r

Po
si

tio
n

Sc
he

m
at

ic

03
81

49
9

Pa
ge

N

um
be

r

1
J9

X
A

D
C

 G
N

D
 fe

rr
ite

 fi
lte

r b
yp

as
s j

um
pe

r
N

on
e

27

2
J1

0
X

A
D

C
 G

N
D

-to
-X

A
D

C
_A

G
N

D
 ju

m
pe

r
1-

2
27

3
J1

1
TI

 c
on

tro
lle

r U
42

 A
dd

r 5
2

R
es

et
 ju

m
pe

r
N

on
e

47

4
J1

2
TI

 c
on

tro
lle

r U
43

 A
dd

r 5
3

R
es

et
 ju

m
pe

r
N

on
e

51

5
J4

2
X

A
D

C
 e

xt
er

na
l 1

.2
V

 o
r i

nt
er

na
l V

R
EF

P
se

le
ct

or
1-

2
27

6
J4

3
X

A
D

C
 V

C
C

 se
le

ct
 h

ea
de

r
2-

3
27

7
J5

0
TI

 c
on

tro
lle

r U
64

 A
dd

r 5
4

R
es

et
 ju

m
pe

r
N

on
e

54

8
J5

3
X

A
D

C
 V

C
C

5V
0-

to
-X

A
D

C
_V

C
C

5V
0

ju
m

pe
r

1-
2

27

9
J5

4
X

A
D

C
 R

EF
30

12
 U

35
 V

IN
 se

le
ct

1-
2

27

10
J4

9
PC

Ie
 b

us
 w

id
th

 se
le

ct
 h

ea
de

r
1-

2
35

X-
R

ef
 T

ar
ge

t -
 F

ig
ur

e
A-

3

Fi
gu

re
 A

-3
:

VC
70

9
B

oa
rd

 J
um

pe
r L

oc
at

io
ns

U
G

88
7_

aA
_0

3_
10

13
14

27

4

3

6

7

8

9

10

5

1
2

ONU2

Traffic
Generator

XGTC BWMAP

XGTC DBRU

Eth VLAN IP UDP BWMap

vDBA BWMap Line Encoding
Padding 5 bits

BWMap Length 11 bits
Alloc-ID 14 bits
DBRu 1 bit

PLOAMu 1 bit
Start Time 16 bits

Grant Size etc. 16 bits

vDBA DBRu Line Encoding

Padding 2 bits

ONU-ID 10 bits
Counter 4 bits

Buff Occupancy 24 bits

Eth VLAN IP UDP DBRu

Management
Terminal

Virtual Network Functions

Orchestration and Management

Compute
Virtualisation

Control

Storage
Virtualisation

Control

Network
Virtualisation

Control

Data Plane Acceleration

vOLT

VNO1 VNO2 VNO3

Merging
Engine

Compute Store Network

Data Plane

Hypervisor

vDBA1 vDBA2 vDBA3

vOLT vOLT

Fig. 3. Overall architecture of the PON system prototype running the virtual DBA

Considering its improved ability to operate with real-time algo-
rithms requiring precise synchronization, we have worked in
conjunction with Intel’s DPDK development team to implement
our virtual DBA platform prototype.

Our vDBA concept was demonstrated in [28] on a testbed
incorporating a physical PON, a set of emulated ONUs, a traffic
generator and a server running the virtual data plane instances.
The physical layer was implemented on Xilinx VC709 FPGA
boards, operating at symmetric 10Gb/s line rate.

The PON hardware and software virtualization architecture
is shown in Fig. 3. One of the servers hosted the Merging En-
gine and the vDBA functions for the VNOs, implemented as
Virtual Network Functions (VNFs). Due to the real-time criti-
cal nature of receiving and transmitting status report messages
from the ONUs and Bandwidth Map data, our latest implemen-
tation (reported in [29],[30]) made advanced use of the Data
Plane Development Kit (DPDK) toolkit, further described be-
low, to optimize the packet transfer through the physical host,
to and from the virtual network functions. To the best of our
knowledge, the only other implementation of a DBA in software
is the work from NTT. In [31], the authors present a software-
based implementation of an E-PON system, showing line-rate
throughput performance for 1G EPON. In [9], their architecture
was extended to a Flexible Access System Architecture (FASA),
where the system can dynamically change the DBA running in
the PON. This however, only runs one DBA algorithm at a time,
unlike our proposed vDBA, which allows multiple VNOs and
services to operate in parallel.

The remainder of this section describes some of the challenges
incurred when implementing the DBA scheduling algorithm in
software, together with our proposed solutions.

C.1. Time Critical Issues for DBA virtualization

Since PONs run synchronously, one of the first problems we
addressed was that to provide a precise 8 kHz clock to the hard-
ware/software integrated system. The 8kHz clock is derived
from the hardware clock, typically between 2GHz and 3 GHz,
by querying the DPDK rte_get_time_hz() function. By count-
ing down a specific number of hardware clock cycles using
the rte_rdtsc() function, a tick of the 8kHz clock is generated.

To compensate for variations in the frequency of the hardware
clock caused by temperature and environmental effects, we call
the rte_timer_manage() function to calibrate the software clock
against the hardware clock every 10 ms. While the vDBA is
generally constructed to run in a non-blocking and freewheeling
manner, we make use of one system-level semaphore to dis-
tribute the system 8kHz clock to all the applications that are
synchronized to run in tandem. These include the VNO and the
downstream merging engine applications. The clock application
sets the semaphore using the tick() function, while each blocking
application reads it using the tock() function.

When the DBA is architected in a traditional manner, DBRu
packets are accepted into the system through a packet driver
running in kernel space and passed to the vDBA application run-
ning in userspace. A number of issues arise with this approach,
which leads to slow packet processing. Firstly, the hardware
interface may generate an interrupt to the kernel for each packet
processed in the kernel network stack. Secondly, the packet must
be copied from a data structure in kernel space to a data structure
in userspace, which requires CPU processing. Thirdly, when the
vDBA application is blocked awaiting the input of each packet,
physical resources such as memory and locks are exclusively
locked. The vDBA application must process many tens of thou-
sands of small DBRu packets every second, resulting in a large
number of interrupts, packet copying and locking/unlocking of
resources. This leads to threshing of L1/L2 cache and memory
and high latency in packet processing, on a system otherwise
busy with the calculation of the DBA Bandwidth Maps.

We make use of the DPDK open-source software to overcome
the issues of latency and performance degradation and thereby
achieve packet processing at line rates. We make extensive use
of DPDK’s Environment Abstraction Layer (EAL) and the four
core components: Ring Manager (librte_ring), Memory Pool
Manager (librte_mempool), Network Packet Buffer Manage-
ment (librte_mbuf), and Timer Manager (librte_timer). DPDK
allows the vDBA application to be distributed across the cores
of a multi-core x86 CPU.

Research Article Journal of Optical Communications and Networking 6

C.2. Interface between Hardware and Software (I/O virtualization)

In the hypervisor approach (i.e., used to support Virtual Ma-
chines), I/O virtualization is accomplished using the hardware
emulation layer under the control of the hypervisor, whereas in
Linux containerization (LXC) this is achieved through device
mapping. As a result, containers have easier direct access to
the hardware than Virtual Machines (VMs), since they operate
at the host OS level. In VM, additional techniques might be
needed (e.g. paravirtualization or CPU-assisted virtualization)
to provide direct or fast access to the hardware. We used the
subset of the DPDK Data Plane acceleration toolkit to reduce
I/O virtualization overhead and accelerate packet I/O as well
as improve packet processing performance within the vDBA.
In particular, we used a userspace device driver to provide fast
access to the network interface card, which enabled the vDBA
within each VNO to send and receive packets from the network
efficiently.

C.3. Interface between vOLT and vDBA

Fig. 4. Interface between virtual OLT and vDBA

The Virtual OLT (vOLT) software and vDBA run on the same
machine and communicate with each other using shared physi-
cal resources such as memory, as shown in Fig. 4. We can thus
avail of the DPDK toolkit to optimize the interface between the
vOLT and vDBA, by incorporating techniques such as zero copy,
batch processing of the packets, buffer allocations and interrupt-
less I/O. In order to transfer DBRus and BMaps between the
main vOLT and vDBA functions on the host, we assign DPDK
software rings at the inputs and outputs of the main vDBA
functions. A DPDK software ring has the characteristics of a
lockless ring buffer where producers enqueue, and consumers
dequeue memory buffers (mbufs) respectively. It is transaction-
safe; however, the use of locks is minimized. Locks can slow
down enqueuing and dequeuing data on a busy system and
can give rise to Mutex (mutual exclusion) deadlocks in poorly
designed applications, particularly under load. In order to fur-
ther avail of DPDK’s optimized data handling mechanisms, we
mapped the key DBA data transfer structures, that is DBRus
and BMaps onto data structures provided by DPDK (mbufs).
The DPDK mbuf data structure is constructed and managed in
such a way as to minimize copying and locking of data, partic-
ularly during periods of high processor utilization. The mbufs
are grouped into 2 groups or pools, appropriate to the dimen-
sions and volume of DBRus and BMaps being processed in a
particular time interval. We minimize the amount of processing
necessary during the runtime phase of the DBA algorithm, so we
offload operations such as the preparation of pools and mbufs to
the preliminary or set-up phase. This allows data structures to

be easily reused or reallocated in runtime, rather than having to
be created or deleted on demand, which can be both expensive
and an unnecessary waste of processing resources.

This section has described our proposed vDBA architecture,
summarizing the work carried so far. The next section describes
a novel Merging Engine algorithm and reports simulation results
showing the trade-off we achieve between accuracy of data
allocation (i.e., in order to assure low latency) and the efficiency
of PON capacity utilization.

Algorithm 1. Priority Based Merging Algorithm

1: Input TCp(p)ε(0, 4), VNOi(i)ε(int), RjεTCp(j)ε(int)
2: TCp ← tra f f icclass
3: Rj ← Requests
4: coll ← Collision
5: plc← Placement
6: for all TCp do
7: p← start f romhighestpriority
8: for all VNOi do
9: Traverse all Rj sequentially and do the following;

10: coll = Find coll();
11: if coll is TRUE then
12: (coll Rj will be returned)
13: else
14: (0 will be returned)
15: end if
16: if coll > 0 then
17: plc = Find plc ();
18: if coll Rj is either of less TCp or has a greater start

time then
19: (plc is TRUE)
20: else
21: (plc is FALSE)
22: end if
23: end if
24: if coll == 0 OR plc == TRUE then
25: Allocate_request_in _ final bandwidth map
26: else
27: Mark_ request_unallocated
28: end if
29: end for
30: for all VNOi do
31: Traverse all unallocated Rj and do the following;
32: slots_req = Cal_req_time slots();
33: slots_available = find next empty fragment with

slots_req();
34: if slots_available == TRUE then
35: Allocate_request_in _ final bandwidth map
36: else
37: Mark_request_rejected
38: end if
39: end for
40: end for

4. THE MERGING ENGINE

This section reports the details of a specific Merging Engine
algorithm we have developed in order to implement the strict
prioritization scheme described in section 2.B. The algorithm
is named Priority Based Merging Algorithm (PBMA) and the
pseudo-code is reported in Algorithm 1.

Research Article Journal of Optical Communications and Networking 7

In the algorithm, all operations are repeated for each traffic
class, starting from the highest priority p (line 6). For a par-
ticular traffic class, all requests belonging to it are considered
sequentially for each VNO (line 7 and line 8). For each incom-
ing virtual BMap, the algorithm checks each burst allocation,
determining whether the first requested allocation is in conflict
with any other virtual BMap from other VNOs (line 9). In case
a collision exists, if the colliding requests are of lower priority,
then the allocation will remain. If the conflicting request belongs
to the same traffic class, priority will be given to the request
whose start time is earlier. If the colliding requests are of higher
priority, then this request will be shifted forward until enough
free slots are available or else it is possible to preempt allocations
with lower priority. If this is not possible, then the request will
be temporarily marked as unallocated for this frame. As an
example, if VNO1 has scheduled its priority 3 request from slot
20 to 30 and VNO2 has scheduled its priority 3 request from slot
24 to 32, while merging the two allocations, PBMA will allocate
VNO1’s request from 20 to 30 and then VNO2’s request from 30
to 38. In this case, the request of VNO2 is shifted by 6 slots in
time. On the other hand, had the allocations been merged in the
opposite manner, the request of VNO1 would have been shifted
by 12 slots.

The same operations are repeated for all other requests of
priority p. After this, before moving to the next lower priority,
the algorithm will consider the requests with priority p, which
were included in the pool of unallocated requests (line 30). For
each VNO, all its unallocated requests of priority p are examined
one by one, and the Merging Engine tries to allocate them by
shifting the requests to next available fragment of empty slots
fulfilling the requirement (line 31-33). If an empty fragment with
required capacity is found, the request is allocated in the final
merged bandwidth map; otherwise it is marked as rejected. The
same operations are repeated for all priority p in TCp.

A. Simulation results
In our simulation we consider two VNOs, sharing a 10G XGS-
PON upstream frame, which is divided into 1152 slots, each of
135 bytes with approximate duration of 0.11µs. The slot sub-
division is somewhat arbitrary, and should reflect the tradeoff
between granularity of grant allocation (larger number of slots
preferred) and computational complexity (smaller number pre-
ferred). In addition, the duration of one slot determines, in our
implementation, the minimum guard interval, as we always
leave at least one empty slot between grant allocations. Ac-
cording to the XGS-PON standard [32], the minimum suggested
guard interval is 64 bytes, while the suggested largest (i.e., worst
case) interval is 256 bytes. Our minimum grant size was cho-
sen to be close to twice this minimum and half this maximum
values.

A.1. Uniform traffic distribution

The bandwidth maps of both VNOs are randomly generated
using a uniform distribution with different maximum grant
size, in order to evaluate the dependency between performance
and grant size. Grants are also uniformly distributed across
traffic classes (except for some of the plots, as described below).
We take into consideration three different traffic distribution
scenarios, with varying average grant size and interval (both
measured in terms of number of slots). The interval is selected so
that the grant request is balanced across the frame. For Scenario
1, the min and max value of the grants requests are uniformly
distributed between 1 and 10 slots; for Scenario 2, between 1 and

50 slots; and for Scenario 3, between 1 and 100 slots. The load per
VNO is then generated as a percentage of the upstream frame
duration. In addition, in order to consider burst overheads, we
always leave at least one unallocated slot between grants in
the final bandwidth map. Since in this study we are interested
in analyzing the ability of the Merging Engine to allocate the
incoming traffic and the latency distribution across the different
priority classes, we choose to drop a grant request if this cannot
be accommodated within the frame (i.e., we don’t move its
allocation into the next frame).

We first evaluate the performance of our merging algorithm
by varying the combined offered load of both VNOs. All results
are reported with a 99% confidence intervals.

Fig. 5. Traffic scenario 1: Served traffic (a) and Latency (b) vs.
Offered traffic

Fig. 6. Traffic scenario 1: Served traffic (a) and Latency (b) vs.
High priority traffic

Figure 5.a shows the performance of PBMA in terms of of-
fered vs. served traffic, for each traffic class. Here the load is
equally distributed across the 4 priority classes. As expected,
with the increase in offered traffic, the served traffic of the lowest
priority type starts to decrease. However, since the maximum
grant size is only of the order of 1% of the frame size, the system
can accommodate all traffic of priority 4 to 2, while the latency
introduced by the process remains below 3µs for these classes
(shown in Fig. 5.b).

For an InP it is also important to understand how much high
priority traffic the system can accommodate before violating
a given latency requirement. Thus, in Fig. 6.a we report the
percentage of traffic the PON can serve when the offered traf-
fic is at 100%, but the highest priority traffic is increased from
taking up 20% of the overall traffic, up to 100%. In this case, the
remaining traffic is equally distributed across the other three
classes (and when the highest priority class is at 100%, classes 3,
2 and 1 have no traffic). The figure suggests that as priority class
4 traffic increases, all lower priority classes suffer both some
drop and additional latency (shown in Fig. 6.b). However traffic
with priority 4 shows no drop up to 80% of traffic volume, for
which case the additional latency is of the order of 1µs. In Fig.

Research Article Journal of Optical Communications and Networking 8

6.b we can also notice that the latency of low priority class 1
decreases with the increase in high priority traffic, which can
appear counter intuitive. This is due to the fact that class 1 is the
first to be dropped and as a grant is dropped, its latency is not
accounted for in the plot (the amount of dropped grants can be
seen in Fig. 6.a).

We then increase the average grant size in the second scenario,
so that the maximum value is about 5% of the frame duration.
As we can see in Fig. 7.a, priorities 4 and 3 remain unaffected,
while some grants are dropped for the lower priority classes. In
this scenario, latency remains negligible for traffic class 4 (see
Fig. 7.b), while it increases to 4µs for class 3.

Fig. 7. Traffic scenario 2: Served traffic (a) and Latency (b) vs.
Offered traffic

As we increase the highest priority traffic, for scenario 2, now
we can see that up to about 60% of high priority traffic can be
accommodated without grant loss (Fig. 8.a), in which case the
latency increase remains around 2µs (Fig. 8.b).

Fig. 8. Traffic scenario 2: Served traffic (a) and Latency (b) vs.
High priority traffic

We finally increase the maximum grant size, in the third
scenario, up to 10% of the frame size. It should be noted that
this can be considered large for a single grant, especially for low
latency applications which could transmit more than once per
frame. When traffic is balanced across the classes (Fig. 9.a), the
two highest priorities can still perform well up to full PON rate,
although the latency increases further for all classes, except the
highest (shown in Fig. 9.b). In Fig. 9.a we notice some minor
fluctuations in traffic classes 4 and 3, which are due to statistical
effects caused by the fact that in this analysis we don’t move
unallocated grants to the next frame.

Finally, as we increase the highest priority traffic also for
scenario 3 (Fig. 10.a), we see that still 60% of highest priority
class can me accommodated without loss, with a slight increase
in latency to around 4µs (Fig. 10.b).

As mentioned above, we currently drop all grants if they
cannot be accommodated, as we aim to analyze the pure latency
performance of the proposed algorithm. In a practical system

Fig. 9. Traffic scenario 3: Served traffic (a) and Latency (b) vs.
Offered traffic

Fig. 10. Traffic scenario 3: Served traffic (a) and Latency (b) vs.
High priority traffic

it would be preferable to carry unallocated high priority grants
into the beginning of the next frame.

A.2. Poisson and Self Similar traffic distributions

While the use of the uniform distribution has allowed us to
broadly assess and compare different traffic scenarios, in this
section we provide further comparison with two other traffic
distributions: Poisson and Self-Similar. This allows us to investi-
gate and quantify how the merging engine performance might
vary for different traffic profiles, for example adding burstiness
to the traffic. For the Poisson distribution we have selected a
value for lambda equal to the average traffic as measured for
the uniform distribution case. For the Self Similar distribution
we have selected a hurst value of 0.55, as this denotes a burtsi-
ness characteristic of Internet traffic and enables reproducing the
long tailed distributions used for our grant size ranges (i.e., from
1-10 up to 1-200 min-max slots per grant). Fig. 11 provides the
comparison between uniform, Poisson and Self Similar traffic
for Scenario 1, for traffic types 3 and 4. We can see that inde-
pendently of the distribution, there is no traffic drop (Fig. 11.a)
and the difference in latency (Fig. 11.b) is negligible for both
high-priority types 4 and 3, meaning that the merging algorithm
operates efficiently for high-priority traffic, independently of the
traffic profile.

The situation is different for the lower priority traffic, 1 and 2,
as it can be seen from Fig. 12. While the drop rate is somewhat
similar, the latency has higher variation, with the uniform traffic
presenting lower latency compared to Poisson and Self Similar
traffic. This is a result of the overall higher burstiness of the traf-
fic, which, while not affecting the other priorities, it is all borne
by the lower priority class. In practice this does not constitute
an issue for the merging engine, because priority 1 is the lowest,
which would normally be associated to a service with no strict
latency constraints.

If we look at Scenario 3, we see that the difference in per-
formance is more pronounced for low priorities 1 and 2 (Fig.

Research Article Journal of Optical Communications and Networking 9

Fig. 11. Traffic scenario 1: Served traffic (a) and Latency (b) vs.
offered traffic for high traffic priority, for uniform, Poisson and
Self Similar distributions

Fig. 12. Traffic scenario 1: Served traffic (a) and Latency (b) vs.
offered traffic for low traffic priority, for uniform, Poisson and
Self Similar distributions

14). While the drop rate is similar across the distributions, the
latency has a higher variation for both priorities 2 and 1, with
the uniform traffic again showing lower latency on the lowest
priority class. However, similarly to scenario 1, for the higher
priorities (Fig. 13) the latency is not dependent on the type of
traffic considered for priority 4 and only slightly dependent for
priority 3.

Fig. 13. Traffic scenario 3: Served traffic (a) and Latency (b) vs.
offered traffic for high traffic priority, for uniform, Poisson and
Self Similar distributions

Finally, we briefly report the results for the case where high
priority traffic 4 increases from 20% up to take up the entire PON
capacity. Figures 15 and 16 report the results, respectively for
the high priority and low priority classes, for the 3rd scenario
(i.e., the most challenging of the three presented). For the high
priority traffic (Fig. 15), we see that the drop rate is rather
independent of the distribution considered, with some minimal
difference in terms of latency for priority 3, noticeable at 60%
high priority traffic level. For the highest priority 4, we notice
that there is no drop up to 60% of traffic (with exception with
a small loss for the self similar traffic case), while the delay
difference becomes somewhat noticeable only when all traffic
is highest priority 4 (i.e., at 100% value on the x axis). For the

Fig. 14. Traffic scenario 3: Served traffic (a) and Latency (b) vs.
offered traffic for low traffic priority, for uniform, Poisson and
Self Similar distributions

lower priority classes (Fig. 16), we see again that the uniform
distribution is the least affected in terms of delay, although the
drop rates remain similar.

Fig. 15. Traffic scenario 3: Served traffic (a) and Latency (b) vs.
high priority traffic, for traffic priority 3 and 4, for uniform,
Poisson and Self Similar distributions

Fig. 16. Traffic scenario 3: Served traffic (a) and Latency (b) vs.
high priority traffic, for traffic priority 1 and 2, for uniform,
Poisson and Self Similar distributions

In conclusion, this analysis has shown that in multi-tenant sce-
narios, if low-latency is a requirement, allocating smaller grant
sizes (i.e., for scenario 1) gives better performance, despite the
increase in burst overhead. This is also in line with typical traffic
patterns of low latency applications, where transmitting smaller
packets reduces packetization delay. In addition, we have seen
that different traffic distributions only affect low priority traffic,
while the performance remains mostly independent for high
priority traffic. Intuitively, even with bursty distributions, the
merging algorithm is capable of allocating grant allocations with-
out increasing latency of high priority traffic, because it is able
to move all latency increase to the lower priority classes, where
strict latency is not a requirement.

Research Article Journal of Optical Communications and Networking 10

5. CONCLUSIONS

This paper has introduced the concept of vDBA in virtualized
PON systems, which we use to enable support for multi-tenancy
and multi-service in access networks. After providing details
both on the architecture and on the system prototype imple-
mentation, we have described a specific algorithm for merging
virtual BMaps from multiple VNOs. Our work has analyzed
the effect that multiple traffic sources across two VNOs have on
the additional latency that is potentially introduced during the
merging process of vDBAs. We first show that by applying strict
prioritization between classes it is possible to limit the impact
the overall traffic load has on the highest priority classes. In
addition, we quantify, for the type of traffic scenarios consid-
ered, the percentage of highest priority traffic that an InP should
allow in the PON, for a given latency target.

An important observation we can make from our analysis is
that while having larger burst from fewer ONUs is typically a
good strategy in residential PON applications, here our results
show that in multi-tenancy scenarios, it is more efficient to have
smaller grants, as these can be merged more effectively into the
common BMap, also leading to lower latency. Although there
is a capacity loss due to the increased overhead, the merging
algorithm suffers from lower additional latency and is able to
accommodate a larger number of grants.

Our future work will provide a more in-depth study on how
this relation changes for different types of traffic mix and will
also propose stateful types of merging engine algorithms. We
will also examine the effect that breaking larger grants into
smaller size and carrying some unallocated grants to the next
frame has on the overall system performance.

FUNDING

Financial support from Science Foundation Ireland 14/IA/252
(O’SHARE), 13/RC/2077 (CONNECT) and 12/RC/2276P2
(IPIC) is gratefully acknowledged.

REFERENCES

1. R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro,
“Unbundling in current broadband and next-generation ultra-broadband
access networks,” Fiber Integr. Opt. 33, 129–148 (2014).

2. N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network
sharing and its role in 5g networks,” Appl. Sci. 9 (2019).

3. S. Beardsley and L. Enriquez, “Creating a fiber future: The regulatory
challenge,” Tech. report, McKinsey & Co. Inc. (2011).

4. 5G-PPP, “The 5g infrastructure public private partnership: the next
generation of communication networks and services.” (2015).

5. L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das,
J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a
data center,” IEEE Commun. Mag. 54, 96–101 (2016).

6. “Seba white box access: Xgs-pon and beyond,” https:
//www.opennetworking.org/wp-content/uploads/2019/09/
3pm-Jeff-Catlin-SEBA-White-Box-Access.pdf. ONF Connect
conference 2019.

7. N. Afraz, A. Elrasad, and M. Ruffini, “Dba capacity auctions to enhance
resource sharing across virtual network operators in multi-tenant pons,”
in 2018 Optical Fiber Communications Conference and Exposition
(OFC), (2018).

8. F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical
quality of service for multi-tenant passive optical network,” in 2019,
23rd Conference on Optical Network Design and Modeling - (ONDM),
(2019).

9. K. Asaka, H. Ujikawa, J. ichi Kani, and A. Otaka, “Flexible access sys-
tem architecture (fasa),” in Optical Fiber Communication Conference,
(Optical Society of America, 2018), p. Tu3L.7.

10. F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage sched-
uler for accurate qos delivery in virtualised multi-tenant passive optical
networks,” in 2019, European Conference on Optical Communications
(ECOC), (2019).

11. “System and method for dynamic bandwidth assignment (dba) virtual-
ization in a multi-tenant passive optical network,” Patent, International
(PCT) Application No. PCT/EP2018/056767 (2018).

12. “Tr-402. functional model for pon abstraction interface,” Standard,
BroadBand Forum (BBF) (2018).

13. “G.989.3am1. 40-gigabit-capable passive optical networks (ng-pon2):
Transmission convergence layer specification amendment 1,” Standard,
ITU-T (2016).

14. N. Afraz, F. Slyne, and M. Ruffini, “Full pon virtulisation supporting
multi-tenancy beyond 5g,” in OSA Advanced Photonics Congress (AP)
2019 (IPR, Networks, NOMA, SPPCom, PVLED), (Optical Society of
America, 2019), p. NeT2D.2.

15. “G987.3 10-gigabit-capable passive optical networks (xg-pon): Trans-
mission convergence (tc) layer specification,” Standard, ITU-T (2010).

16. “Common public radio interface: ecpri interface specification v1.1,”
Standard (2018).

17. T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shige-
matsu, and N. Yoshimoto, “A novel dba scheme for tdm-pon based
mobile fronthaul,” in Optical Fiber Communication Conference, (Optical
Society of America, 2014), p. Tu3F.3.

18. H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto,
Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-
dba scheme considering data arrival period for 5g mobile fronthaul with
tdm-pon,” in 2017 European Conference on Optical Communication
(ECOC), (2017), pp. 1–3.

19. C. Li, W. Guo, W. Wang, W. Hu, and M. Xia, “Bandwidth resource shar-
ing on the xgpon transmission convergence layer in a multi-operator
scenario,” IEEE/OSA J. Opt. Commun. Netw. 8, 835–843 (2016).

20. A. Elrasad and M. Ruffini, “Frame level sharing for dba virtualization
in multi-tenant pons,” in 2017 International Conference on Optical
Network Design and Modeling (ONDM), (2017), pp. 1–6.

21. N. Afraz and M. Ruffini, “A sharing platform for multi-tenant pons,” J.
Light. Technol. 36, 5413–5423 (2018).

22. N. Afraz and M. Ruffini, “A distributed bilateral resource market mech-
anism for future telecommunications networks,” in 2019 IEEE Global
Communications Conference (GLOBECOM), (2019).

23. “Hyperledger fabric,” https://www.hyperledger.org/projects/fabric. Ac-
cessed: 2019-9-28.

24. “Performance and scale working group,” https://wiki.hyperledger.org/x/
ToIk.

25. C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling
hyperledger fabric to 20,000 transactions per second,” (2019).

26. M. O’Hanlon and B. Ryan, “Dpdk intel nic performance report release
18.02,” Report, Intel (2018).

27. “Dpdk intel nic performance report release 18.02,” Report, Intel (2018).
28. F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of

real time vnf implementation of olt with virtual dba for sliceable multi-
tenant pons,” in 2018 Optical Fiber Communications Conference and
Exposition (OFC), (2018).

29. F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstra-
tion of dpdk optimised vnf implementation of virtual dba in a multi-
tenant pon,” in 2018 European Conference on Optical Communication
(ECOC), (2018).

30. M. Ruffini and F. Slyne, “Moving the network to the cloud: The cloud
central office revolution and its implications for the optical layer,” J.
Light. Technol. 37, 1706–1716 (2019).

31. K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka,
A. Takeda, and T. Inoue, “Implementation of software-based epon-
olt and performance evaluation,” IEICE Commun. Express 6, 467–472
(2017).

32. “G.9807.1 10-gigabit-capable symmetric passive optical network (xgs-
pon),” Standard, ITU-T (2016).

https://www.opennetworking.org/wp-content/uploads/2019/09/3pm-Jeff-Catlin-SEBA-White-Box-Access.pdf
https://www.opennetworking.org/wp-content/uploads/2019/09/3pm-Jeff-Catlin-SEBA-White-Box-Access.pdf
https://www.opennetworking.org/wp-content/uploads/2019/09/3pm-Jeff-Catlin-SEBA-White-Box-Access.pdf
https://www.hyperledger.org/projects/fabric
https://wiki.hyperledger.org/x/ToIk
https://wiki.hyperledger.org/x/ToIk

	Introduction
	The virtual DBA architecture
	Overall architecture
	Merging Engine
	System synchronization requirements

	vDBA state of the art
	Intra-frame sharing approach
	Capacity sharing through auctions
	vDBA system implementation
	Time Critical Issues for DBA virtualization
	Interface between Hardware and Software (I/O virtualization)
	Interface between vOLT and vDBA

	The Merging Engine
	Simulation results
	Uniform traffic distribution
	Poisson and Self Similar traffic distributions

	conclusions

