
Image Restoration Using Deep Learning

by

Fatma Albluwi

Dissertation
Presented to the University of Dublin, Trinity College

in fulfillment of the requirements the Degree of
Doctor of Philosophy

University of Dublin, Trinity College

September 2020

To my loving mother, Sabah.

To my loving brothers and sisters.

Declaration

I declare that this thesis has not previously been submitted as an exercise for a degree at

this or any other University, and it is my own work.

by

Fatma Albluwi

September 2020

Acknowledgements

I want to thank my supervisor, Professor Rozenn Dahyot, for her help, support and patience

with me. I appreciate all the guidance and encouragement she has given me over these

years. I want to express my gratitude to Dr Vladimir A. Krylov for his useful advice and

support. I would also like to thank the King Abdullah Scholarship Program from the Saudi

Arabian Government for funding that made this PhD possible. I want to acknowledge the

support of Trinity College Dublin. Special thanks to my mother, sisters: Samar, Amira and

Amani, and my brothers Talal, Ahmed and Mohammed for their love and encouragement.

I will be forever grateful for them for everything. Especially thanks to my mother; without

her, I would never have had so many opportunities. I had a wonderful time with my friends:

Amira, Nermin, Ohoud, Khaula and Mai; I am very grateful for their friendship. Thanks to

all GV2 group and in particular everyone in our team: Hana, Matej, Juile, Reem, Jing, Iman,

and Mairead. They are wonderful people, and I would like to thank all of them for all their

help and the good times. Finally, my gratitude to the chance of living and studying in Ire-

land, because it helped me in many directions in my own life. It was a beautiful and fruitful

journey in which I learned a lot of things. In general, thanks to everyone who smiled for

me and gave me support when I felt weak. Thanks to everyone from the bottom of my heart.

Fatma Albluwi

Abstract

In this thesis, we propose several convolutional neural network (CNN) architectures with

fewer parameters compared to state-of-the-art deep structures to restore original images

from degraded versions. Employing fewer parameters corresponds to a new trend in deep

learning that seeks to create lighter/smaller models without affecting performance (i.e.,

quality of outcomes). Our models are used for image restoration tasks, such as single

image super-resolution (SISR), denoising and artefacts reduction. Image restoration is a

fundamental application in computer vision which is used in several practical fields such

as medical imaging and security systems. Recently, several state-of-the-art algorithms have

been developed to infer high-resolution (HR) images from only low-resolution (LR) images

using deep learning algorithms. Tackling distortion such as blurring in addition to down-

sampling in LR images is significant, although it has received much less attention. In this

work, we propose multiple deep learning architectures for simultaneously deblurring and

producing HR images from blurred and down-sampled images, which is considered a more

challenging problem in image super-resolution. Two situations are considered: non-blind,

where the nature and level of noise are known; and blind, where less information about the

blurring process is available. The non-blind method uses a specific blur level while training

the model and testing data, and this method is used when we have prior knowledge of

the blur kernel. Also, it requires training a separate model for each blur kernel. However,

when the blur kernel is not known, when the blur level is different for each image, the

blind approach is used instead, where a single deep learning model is trained to restore a

LR and blurry image. Furthermore, image compression formats such as MPEG and JPEG

can present a combination of degradation effects in images such as blurring, ringing and

blocking artefacts. We propose an approach that mitigates this undesirable compression

drawback based on the use of CNN models. Our solution improves the visual quality of

x

degraded images by automating the correct of any such artefacts. We also experimentally

show that our proposed CNN architectures can give the same or slightly better results

compared to the existing deeper structures that are more costly computationally. Finally,

we employ one of the proposed CNN models (DBSR) for denoising the natural noise due to

low light conditions in a RENOIR dataset [12], to assess our model using real noisy images.

Table of contents

List of Figures xv

List of Tables xxiii

Acronyms xxv

1 Introduction 3

1.1 Overview and Motivation . 5

1.2 Summary of Contributions . 7

1.3 Thesis Outline . 8

1.4 List of Publications . 9

2 Related Work 11

2.1 Capturing Images . 12

2.1.1 The Image Processing Steps . 12

2.1.2 Image Compression . 13

2.2 Image Restoration (IR) . 14

2.2.1 Degradation models . 15

2.2.2 Denoising . 19

2.2.3 Enhancement: Super-Resolution (SR) 27

2.3 Deep Learning for Image Denoising and SR Restoration 38

2.3.1 Deep Architectures for Single Image SR (SISR) 39

2.3.2 Deep Architectures for Denoising . 43

2.3.3 Challenges and Trends . 43

2.4 Evaluation of Restoration . 44

xii Table of contents

2.4.1 Metrics . 44

2.4.2 Dataset and benchmarks for evaluation 46

2.5 Conclusion . 47

3 Convolutional Neural Networks (CNNs) 49

3.1 Super-Resolution CNN (SRCNN) . 50

3.1.1 SRCNN Architecture . 50

3.1.2 SRCNN Optimisation . 51

3.1.3 Computation Time . 52

3.2 Introducing Concatenation . 54

3.2.1 Compression Artefacts Removal (CAR) Networks 54

3.2.2 De-Blurring Super-Resolution CNN (DBSRCNN) 57

3.3 Introducing more layers . 60

3.3.1 De-Blurring Super-Resolution (DBSR) Architecture 60

3.3.2 DBSR Optimisation . 61

3.4 Using Harmonic Blocks (Harm-net) . 62

3.4.1 Harm-DBSR Architecture . 62

3.4.2 Harm-DBSR Optimisation . 64

3.4.3 Compression of the Harm-DBSR Network 64

3.5 Conclusion . 65

4 Experimental Comparisons of DeBlurring Super-Resolution 67

4.1 Methodology . 68

4.1.1 Training and Testing Datasets . 68

4.1.2 Degradation Model . 70

4.1.3 Non-Blind and Blind SISR Scenarios . 71

4.1.4 Experiments on Colour Images . 72

4.1.5 Quantitative Metrics for Comparisons 73

4.2 Experimental Results . 73

4.2.1 Evaluation of SRCNN . 73

4.2.2 Evaluation of DBSRCNN . 79

4.2.3 Evaluation of DBSR . 88

4.2.4 Evaluation of Harm-DBSR . 94

Table of contents xiii

4.3 Conclusion . 102

5 Artefact Reduction in JPEG-Compressed Images 105

5.1 Related Work . 106

5.2 Data and Training . 108

5.3 Quantitative Metrics for Comparisons . 109

5.4 Benchmark Comparisons . 109

5.5 Conclusion . 118

6 Denoising in a Real Scenario 119

6.1 Related Work . 120

6.2 RENOIR Dataset . 121

6.3 Training and Testing Data . 122

6.4 Evaluation of Denoising Methods . 122

6.5 Conclusion . 128

7 Conclusion and Future Work 129

7.1 Summary . 129

7.2 Limitations and Future Work . 132

Appendix A A Brief Review of Deep Learning 135

A.1 Statistical Learning (SL) . 135

A.2 Machine Learning (ML) . 136

A.2.1 Types of Learning Problems . 136

A.2.2 Regression in ML . 137

A.2.3 The Gradient Descent (GD) Algorithm 138

A.3 Artificial Neural Networks (ANN) . 140

A.3.1 A Brief Historical Review of ANN . 141

A.3.2 Forward-Propagation . 142

A.3.3 Backward Propagation . 145

A.4 Practical Considerations . 147

A.4.1 Dataset . 147

A.4.2 Activation Functions . 147

xiv Table of contents

A.4.3 The Cost Function . 150

A.4.4 Over-Fitting and Regularisation . 150

A.4.5 The Learning Rate . 151

A.4.6 Stochastic GD (SGD) and Mini-Batch GD 152

A.5 Convolutional Neural Networks . 153

A.6 Deep Learning . 155

Appendix B Quantitative and Some Qualitative Results of SISR Models 157

B.1 Evaluation of SRCNN . 157

B.2 Quantitative Evaluation of DBSRCNN . 160

B.3 Qualitative Examples of DBSRCNN and DBSR 164

References 177

List of Figures

1.1 Some types of degradation images (e.g., noisy, blurred, compressed, low-

resolution (LR), and blurred LR images) on a colour image, the blur factor is

used Gaussian blur with σ= 2, and the down-sampling scale is 2. Each image

is accompanied by zoom. 4

2.1 Flowchart of the BM3D. The operations of the BM3D repeats for each group,

the reference block marked by "R" is used as a reference to group the similar

blocks for it, image taken from [35]. 26

2.2 Formation of the model of the LR image. 28

2.3 Description of EDI methods. Figure taken from [10]. 32

2.4 Internal learning procedure benefits from a multiscale analysis of the LR

input image to generate example pairs for learning. This image is taken from

[59]. 38

2.5 Sketch of some deep structures for SISR . 42

3.1 The SRCNN architecture: the network contains three-layers. Given a LR

image x, the first convolutional layer extracts n1 LR feature maps. Then, the

second convolutional layer non-linearly maps the LR feature maps to n2

HR feature maps. Finally, the output layer produces the final SR image F (x),

image taken from [42]. 52

xvi List of Figures

3.2 The proposed structures of the CNN networks: direct and skip architectures.

In the direct architecture (DA-CAR), the information directly transfers from

the input to the output, while in the skip architecture (SA-CAR) there are

some merged layers. We have illustrated the structure of each network as

follows: The name of network + the number of layers (the size of filters in each

layer)(the number of feature maps in each layer). For instance: DA-CAR3(9-

7-1)(64-32-1).We implement the standard JPEG compression method with

different JPEG quality factors (q = 10, 20) using MATLAB JPEG encoder. We

focus on the restoration of the luminance Y channel in the YCbCr space that

has been JPEG compressed. 55

3.3 Proposed architecture DBSRCNN: This network involves five layers; four con-

volutional layers plus concatenation (merge) layer, each layer is responsible

for a particular operation; feature extraction, feature enhancement, merge

the first two layers, non-linear mapping and finally reconstruction. Deeper

DBSRCNN contains six layers; the same layers in DBSRCNN plus another

non-linear mapping layer. 59

3.4 Proposed architecture DBSR: This network comprises eight layers: the five

convolutional layers of DBSRCNN, in addition to extra three enhanced layers

inserted after the concatenated layer to further refine the merged feature maps. 61

3.5 Visualisation example of the harmonic block implemented on an input layer;

taken from [160]. Each 2D filter of the DCT filter bank with size K ×K is

applied to each input feature, to generate the spectral coefficients of the DCT

basis functions. Then the weighted linear combination of these coefficients

is performed by convolutional filter with size 1×1, to create new feature maps. 63

3.6 Visualisation example of the compressed harmonic block implemented on

input features. For example, we employ a 3x3 DCT filter bank, and applied

λ, which is used as a hyper-parameter to reduce the DCT coefficients by

limiting the spectral frequencies and truncating the high frequencies. If λ= 1,

then the zero frequency (DC component) only will be used. If λ = 3, then

six coefficients starting from the DC component will be utilised, and three

coefficients will be truncated as illustrated in this example. 65

List of Figures xvii

4.1 An example of the training phase: Firstly, the blurred LR images are created

from HR images (the only pre-processing), using a Gaussian filter to smooth

the HR images using σ value (the blurring level). Then down-sampling

the blurred images using a down-scaling factor, for instance, s = 3. The

blurred LR images are zoomed using bicubic interpolation by an up-sampling

factor s = 3. These degraded images are used as inputs to the network. The

reconstructed SR images resulted from the network should be as similar as

possible to HR images. 71

4.2 SR with SRCNN on a colour image after Gaussian blur withσ= 2. The second

row shows the results of the non-blind scenario and the blind scenario. Each

result is accompanied by zoom and PSNR dB. 75

4.3 SR with SRCNN on a colour image after Gaussian blur withσ= 3. The second

row shows the results of the non-blind scenario and the blind scenario. Each

result is accompanied by zoom and PSNR dB. 76

4.4 Example of blind and non-blind SRCNN (9-1-5)(64-32-1), to discover the

effect of using the non-blind model on different input images with varying

levels of blurring. The yellow boxes show the outputs when the training and

testing assumptions match over the blurring value in the non-blind scenarios. 78

4.5 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with

σ= 1. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 3] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 82

4.6 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with

σ= 2. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 4] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 83

4.7 SR with different models on images after Gaussian blur with σ = 3. The

results show the non-blind and blind scenarios. Each result is accompanied

by zoom and PSNR. 91

xviii List of Figures

4.8 SISR performance of different models on ’Butterfly’ image after Gaussian

blur at σ= 2. In the blind scenario σ ∈ [0.5,3]. 93

4.9 SR with different models on images after Gaussian blur with σ = 4. The

results show the non-blind and blind scenarios. Each result is accompanied

by zoom and PSNR. 97

4.10 Average PSNR/ and SSIM results for the blind convolutional network DBSR

σ = [1,3], and its compression using the harmonic blocks; the results are

calculated for σ = 1, scale factor s = 3 on ’Set5’. The Bubble size is according

to the number of parameters. The full harmonic network Harm8L-DBSR

outperforms the standard DBSR, by using the same number of parameters.

From the results, we can notice that the compressed networks with λ= 5, 4

and 3 except λ= 2 give good results when compared to the standard convo-

lutional DBSR. However, the network with λ = 6/4L used about two and a

half times fewer parameters gives the second-best result after Harm8L-DBSR.

Adopting the DCT filters enabled us to compress the harmonic nets and use

fewer parameters by choosing the most critical low-frequency coefficients. . 100

4.11 SR with different models on images after Gaussian blur with σ = 2. The

results show the blind scenario σ = [1,3]. Each result is accompanied by

zoom and PSNR dB. 101

5.1 Visualisation example from LIVE1 dataset of compressed corrupted quality

images for sailing 2 image at JPEG quality q = 10 (Lower quality) & 20 (higher

quality). 108

5.2 Average image reconstruction results reported by PSNR (dB) on the LIVE1

dataset for JPEG quality q = 10. The Bubble size is according to the number of

parameters. Our proposed DA-CAR4 network has fewer parameters (where it

uses only 30% of the parameters of AR-CNN) but with better performance,

and this is achieved by selecting a suitable filter size with the number of

layers. DA-CAR5 network realises even better results by using 75% of the

parameters of AR-CNN network. 112

List of Figures xix

5.3 Average image reconstruction results reported by PSNR (dB) on the LIVE1

dataset for JPEG quality q = 20. The Bubble size is according to the number

of parameters. Our architecture SA-CAR6 outperforms L8 model, by using

around 60% of the number of parameters. 113

5.4 Qualitative evaluation of reconstruction quality for parrots image using dif-

ferent networks for JPEG quality q = 10. Each result is accompanied by zoom

and PSNR dB/ SSIM/ PSNR-B dB. 115

5.5 Qualitative evaluation of reconstruction quality using different networks for

JPEG quality q = 10. Each result is accompanied by zoom and PSNR dB/

SSIM/ PSNR-B dB. 116

5.6 Qualitative evaluation of reconstruction quality using different networks for

JPEG quality q = 20. Each result is accompanied by zoom and PSNR dB/

SSIM/ PSNR-B dB. 117

6.1 Results of DBSR and BM3D methods on the RENOIR dataset with zoomed

crops . 126

6.2 Results of DBSR and BM3D methods on the RENOIR dataset with zoomed

crops. 127

6.3 Results of DBSR and BM3D methods on the RENOIR dataset with zoomed

crops. 128

A.1 Recurrent Neural Network (RNN). 141

A.2 Feed Forward Neural Network with three layers. 144

A.3 Backward Propagation. 147

A.4 Charts of some activation functions. 149

A.5 Two different problems of learning rate. 151

A.6 An illustrated example of a convolutional layer. 154

A.7 An example of Deep Neural Network Architecture (DNN/ Multilayer neural

network) with four fully connected layers. 156

B.1 The test convergence curves of PSNR (dB) for different SRCNN models with

three layer structure (9-1-5)(64-32-1) on the Set5 dataset. 158

xx List of Figures

B.2 The boxplot of different blurring levels, which collects the boxplots of all

networks together in one graph to ease comparison, demonstrates that when

the blurring level increases, the resolution performance decreases. 158

B.3 The boxplots for different trained non-blind and blind super-resolution mod-

els. The figure shows that non-blind SR models produce the highest resolu-

tion performance for testing images when the suitable model is used, when

the model and the input images have the same level of blurring. Also, the

wrong blur kernel assumption negatively affects the quality of the restored

images. 159

B.3 The performance of the different deep learning networks which we applied

on non-blind SR input images; using different structures of SRCNN networks

and different structures of the proposed network DBSRCNN. It is very obvi-

ous from all figures that the worse performance was using (9-1-5)SRCNN,

and the better performance was for the deeper DBSRCNN which involves

concatenate operation. 162

B.4 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with

σ= 1. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 3] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 165

B.5 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with

σ= 3. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 3] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 166

B.6 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with

σ= 3. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 3] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 167

List of Figures xxi

B.7 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with

σ= 4. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 4] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 168

B.8 SR with SRCNN and DBSRCNN on a colour image after Gaussian blur with

σ= 2. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 3] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 169

B.9 SR with SRCNN and DBSRCNN on a colour image after Gaussian blur with

σ= 3. The second and third rows show the results of SRCNN and DBSRCNN,

respectively; according to the two different scenarios (the non-blind and

blind σ ∈ [1− 3] SR scenarios). Each result is accompanied by zoom and

PSNR dB. 170

B.10 Example of non-blind SRCNN (9-1-5)(64-32-1). 171

B.11 Example 1: example for different networks for each application. 172

B.12 Example 2: example for different networks for each application. 173

B.13 SR with different models on images after Gaussian blur with σ = 1. The

results show the non-blind and blind scenarios. Each result is accompanied

by zoom and PSNR. 174

B.14 SR with different models on images after Gaussian blur with σ = 2. The

results show the non-blind and blind scenarios. Each result is accompanied

by zoom and PSNR. 175

B.15 SR with different models on images after Gaussian blur with σ = 4. The

results show the non-blind and blind scenarios. Each result is accompanied

by zoom and PSNR. 176

List of Tables

2.1 Some of the popular image datasets which are used for super-resolution

benchmarks. 47

3.1 Some differences aspects between the two different implementation. 53

4.1 Average of PSNR (dB)/ SSIM results with different blur levels σ = 0 (i.e.,

without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set5’. 74

4.2 Average of PSNR (dB)/ SSIM results with different blur levels σ = 0 (i.e.,

without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set14’. . . . 74

4.3 Average of PSNR (dB) with different blur levels σ= 0 (i.e., without adding any

blur), 1, 2, 3, 4, scale factor s = 3, on test sets ’Set5’ and ’Set14’ together as

one group. 77

4.4 Average of PSNR (dB)/ SSIM results for Non-blind Models with different blur

levels σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test

set ’Set5’. 80

4.5 Average of PSNR (dB)/ SSIM results for Blind Models with different blur levels

σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set5’. 80

4.6 Average of PSNR (dB)/ SSIM results for Non-blind Models with different blur

levels σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test

set ’Set14’. 81

4.7 Average of PSNR (dB)/ SSIM results for Blind Models with different blur levels

σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set

’Set14’. 81

xxiv List of Tables

4.8 Average of PSNR (dB)/ SSIM results for all non-blind models with different

blur levels σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on

test set ’Set5’. 86

4.9 Average of PSNR (dB)/ SSIM results for all non-blind models with different

blur levels σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on

test set ’Set14’. 87

4.10 Average PSNR (dB) and SSIM results for σ= 0 (i.e., without adding any blur)

on datasets ’Set5’ and ’Set14’, with different scale factor s =2, 3, 4. 88

4.11 Average PSNR (dB)/ and SSIM results with different blur levels σ= 1, 2, 3, 4,

scale factor s = 3 on ’Set5’ and ’Set14’. 90

4.12 Average PSNR (dB)/ and SSIM results with different kernel width of blur

kernel with scale factor s = 3 on ’Set5’. 92

4.13 Average PSNR (dB)/ and SSIM results for non-blind networks with different

blur levels at σ= 1,2,3,4, scale factor s = 3 on ’Set5’ and ’Set14’. 95

4.14 Average PSNR (dB)/ and SSIM results with different kernel width of blur

kernel with scale factor s = 3 on ’Set5’. Our presented results of DBSR and

Harm3L-DBSR are from blind scenarios. 95

4.15 Average PSNR (dB)/ and SSIM results for blind networks with different blur

levels σ= 1, 2, 3, 4, scale factor s = 3 on ’Set5’ and ’Set14’. 96

4.16 Average PSNR (dB)/ and SSIM results for the blind convolutional network

DBSR σ= [1,3], and its compression using the harmonic blocks; the results

are calculated for different blur levels σ= 1, 2, 3, scale factor s = 3 on ’Set5’

and ’Set14’. 99

5.1 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB)

and SSIM on the LIVE1 dataset for JPEG quality q = 10. 111

5.2 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB)

and SSIM on the LIVE1 dataset for JPEG quality q = 20. 111

5.3 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB)

and SSIM on the BSDS500 validation dataset for JPEG quality q = 10. 114

5.4 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB)

and SSIM on the BSDS500 validation dataset for JPEG quality q = 20. 114

List of Tables xxv

6.1 PSNR (in dB) performance of DBSR and other denoising algorithms reported

from[12] on the RENOIR real dataset. 125

6.2 SSIM performance of DBSR and BM3D algorithms on the RENOIR real

dataset, and the average resolution of the images of the different three cam-

eras with an average of the inference CPU time. 125

B.1 The convergence curves performance of the default and deep models of

SRCNN and DBSRCNN for non-blind LR applications on Set5. 163

Acronyms

Acronym Full name Acronym Full name

AI Artificial Intelligence K-SVD k-Singular Value Decomposition
ANN Artificial Neural Network LR Low-Resolution image
ANR Anchored Neighbour Regression LRR Low-Rank Representation
AWGN Additive White Gaussian Noise LS Least Square
A+ Adjust ANR MISR Multiple-image SR
BM3D Block Matching and 3D Filtering ML Machine Learning
BN Batch Normalisation MRF Markov Random Field
CNN Convolutional Neural Network MSE Mean Square Error
DBSR Deblurring SR Network NE Neighbour Embedding
DBSRCNN Deblurring SR CNN NEDI a New EDI
DL Deep learning NLM Non-Local Means
DnCNN Denoising CNN NN Nearest Neighbour
DNN Deep Neural Network NSS Non-local Self-Similarity
DRCN Deeply Recursive CNN PSNR Peak Signal-to-Noise Ratio
EDI Edge Directed Interpolation ResNet Residual Network
EDSR Enhanced Deep SR Network RL Residual Learning
ESPCN Efficient Sub-Pixel CNN RNN Recurrent neural network
FSRCNN Fast SRCNN Network SGD Stochastic Gradient Descent
GD Gradient Descent SISR Single-image Super-Resolution
GGD Generalised Gaussian Distribution SL Statistical Learning
GPR Gaussian Process Regression SR Super-Resolution
HR High-Resolution image SRCNN Super-Resolution CNN
IFC Information Fidelity Criterion SRMD SR network for Multiple Degradation
IR Image Restoration SRResNet SR Residual Network
IRCNN Image Restoration CNN SSIM Structural Similarity Index Measure
IQA Image Quality Assessment TNRD Trainable Non-linear Reaction Diffusion
K-NN k-nearest neighbour VDSR Very Deep SR network

Chapter 1

Introduction

Captured digital images present several types of degradation compared to the real images,

which is attributed to many factors such as the capturing processor or by some phenomena

of deterioration, for example, fog and wind speed. Therefore, image restoration has become

an essential task in computer vision and image processing, and also in several areas such as

medical imaging and security systems, to restore the original scene y from degraded images

x. Many overlapping noises in the environment cause degradation in an imaging process,

and this is regarded as a major challenge in image restoration. These factors include

imaging conditions (e.g., being out-of-focus), atmospheric turbulence and motion of the

scene or degradation as a result of the imaging systems. Distortions also can be produced

during image compression or transmission. These factors can introduce many types of

image distortions, for instance, noise, blurring, down-sampling or all these together. Figure

1.1 shows some degradations in corrupted images. All these factors lead to a loss of some

image information. The dominant approach is the design of task-specific algorithms, such

as image deblurring, super-resolution (SR), denoising and removing artefacts produced

from the compression. In this thesis, we address the concept of a “real” or “ideal” digital

image; thus, we provide an outline description of how a digital camera acquires an image

in Chapter 2.

4 Introduction

Original HR image Noisy image

Compressed image Blurred image

LR image Blurred LR image

Fig. 1.1 Some types of degradation images (e.g., noisy, blurred, compressed, low-resolution (LR),
and blurred LR images) on a colour image, the blur factor is used Gaussian blur with σ= 2, and the
down-sampling scale is 2. Each image is accompanied by zoom.

1.1 Overview and Motivation 5

The linear model which defines image degradation can be formulated as:

x = H y +η (1.1)

where x denotes the corrupted image, y refers to the unknown ground truth image and η

is noise. H is a degradation matrix that defines the degradation type and thus specifies

the type of restoration task. If H is an identity matrix, the restoration task is denoising.

However, if the original image is convolved with a kernel as blurring operator, the problem

is image deblurring. Also, H can be designated as a down-sampling operator, and in

this case, the restoration problem is super-resolution. Generally, image restoration can

be grouped into non-blind and blind image restoration. In the case of non-blind image

restoration, the blur kernel estimation is available for restoring the image. However, blind

image reconstruction use the corrupted image only, without any information about the

blur kernel. The various image restoration techniques seek to model the degradation

and then inverse the process to restore the original image. However, image restoration is

regarded as an ill-posed problem, which means that a small change in the observation data

may lead to a significant change in the solution. Therefore, image restoration is considered

a challenging problem in computer vision and the solutions focus on finding strategies to

alleviate the ill-posed problem.

1.1 Overview and Motivation

We have entered the Big Data era, and this quantity of data calls for automated methods of

data analysis and statistical techniques that are capable of extracting information from

complex data. Artificial Neural Networks (ANNs) are a collection of powerful Machine

Learning (ML) algorithms that can deal with high dimensional data such as images, and

they are used to learn a mapping function that can estimate the outputs from the inputs

[39]. ANNs are complex models that are able to solve main supervised learning problems,

regression and classification. These models attempt to estimate the unknown relationship

between the outputs and the inputs without making any assumption around data. Since

2006, Geoffrey Hinton has shown a new kind of neural network known as Deep Learning

(DL) which attains great flexibility and power by learning. DL is regarded as a rebranding

6 Introduction

of ANNs with several hidden layers. ANN algorithms can be trained in an end-to-end

manner with a large amount of training data and automatically extract the necessary

features. The pipeline of ANN attempts to automatically extract low-level signal features

such as an object’s edges, contours or corners. These features are then combined to form

intermediate representations which express the object portions (e.g., an eye, a wheel). In

the discrimination tasks such as classification, the underlying representations are used to

classify the objects into several classes.

Recently, the topic of image restoration has been studied extensively, especially taking into

account the advances produced by using the ANNs compared to the classical methods.

Furthermore, this topic has become a standard subject to illustrate advances in artificial

intelligence (AI) and ML. Tsai and Huang discussed the topic of SR for the first time in 1984

[159]. Since then, this topic has received extensive attention from researchers. SR methods

are modelled to restore a High-Resolution (HR) image from multiple Low-Resolution (LR)

images or one LR image. The SR methods produce more pleasant images than the inter-

polated images by designing the relation between LR and HR images. Many approaches

have been adopted to accomplish improvement. The first strategies of SR are the classical

Multiple Image SR (MISR) methods which suppose that multiple LR images of the same

scene exist, and where each LR image includes a small difference from the original scene.

Therefore, merging the scattered visual information into one image could enhance the

final result. However, if only one LR image exists, then this problem is known as Single

Image SR (SISR). The SISR task is a significant application in computer vision, and it is

necessary for several areas such as satellite imaging, microscopy, medical imaging and

security systems. However, the SISR task is an ill-posed problem, in which one LR im-

age produces many solutions for the HR image. The state-of-the-art approaches of SISR

are example-based approaches, in which they learn prior information which alleviates

the multiplicity of solutions. The example-based methods are divided into two types of

processes: internal techniques and external example-based methods which use external

knowledge to enhance the resolution — this thesis focuses on using external knowledge by

applying deep learning (DL) techniques.

1.2 Summary of Contributions 7

1.2 Summary of Contributions

Recently, the advanced deep architectures have performed well, however, they do so

by utilising an extremely large number of parameters. Therefore the new trend in deep

learning is to design lighter models with fewer parameters with little or no degradation

in performance. In this thesis, we propose deep architectures with fewer parameters

compared to the state-of-the-art deep structures (cf. Chapter 3), to restore the real images

from the degraded images. The main contributions reported in this thesis are:

1. The task of SISR has witnessed a dramatic improvement in recent years through

the use of DL algorithms and, in particular, convolutional neural networks (CNNs),

to recover HR images from LR images. Most of the DL algorithms are interested in

obtaining estimated HR images from LR images without considering other degrada-

tions such as blurring, which is regarded as one of the primary keys of the SR task.

Although the distortions are a critical part in restoring SR images, it has been received

much less attention. Blurring is a crucial and challenging aspect of the SR procedure

because it removes high-frequencies. Therefore, research should put more emphasis

on the restoration of the blurring. In this work, we propose new CNN structures that

simultaneously addresses deblurring and SR from blurred LR images (cf. Chapter 4).

The contributions of this Chapter are summarised as follows:

(a) We evaluated the benchmark super-resolution convolutional neural network

(SRCNN) architecture proposed in [42] for the blurred reconstruction situation.

In addition, we propose a revised deeper model (DBSRCNN) that proves its

superiority experimentally in both scenarios when the levels of blur are known

and unknown a priori.

(b) To address this challenging problem, we propose another new architecture

(called DBSR) to tackle blur with the down-sampling of images by extending

the DBSRCNN architecture by adding three feature enhancement layers. We

validated our new architecture experimentally against several state-of-the-art

SR techniques.

(c) We have used Harmonic blocks in the proposed DBSR network (Harm-DBSR)

to use the transformation methods instead of using standard convolution layers

8 Introduction

as in CNN. We have demonstrated that the DBSR results can be enhanced if

it is trained on spectral information. At the same time, we can utilise fewer

parameters by applying the Harmonic network.

2. The most common image compression formats such as MPEG and JPEG can produce

a combination of distorting effects in images such as blurring, ringing and blocking

artefacts. We propose an approach that mitigates this undesirable compression

drawback based on the use of CNN (called SA-CAR6). Our solution enhances the

visual quality of corrupted images by automatically correcting any such artefacts. We

also experimentally show that our proposed CNN architectures (DA-CAR3, DA-CAR4

and DA-CAR5) can give the same or slightly better results compared to the existing

deeper structures that are more costly computationally (cf. Chapter 5).

3. Noise reduction algorithms have often been evaluated using images degraded by

artificially synthesised noise. A RENOIR dataset [12] provides an alternative way

to test noise reduction algorithms on real noisy images. We propose to assess our

DBSR network to reduce the natural noise due to low light conditions in the RENOIR

dataset (cf. Chapter 6).

1.3 Thesis Outline

The work carried out in this thesis is structured into seven chapters. Firstly, Chapter 2

reviews the state-of-the-art image restoration techniques, with these techniques being

divided into classical approaches and DL methods. Additionally, we present the evaluation

of restoration by presenting the metrics (PSNR and SSIM) used in this thesis and the

benchmark training and testing datasets. Then, the following four chapters (Chapter 3 to

Chapter 6) introduce the contributions of this thesis. In Chapter 3, we present the different

CNN models that are proposed in this work. We used the proposed architectures in image

restoration such as SISR (cf. Chapter 4), artefacts reduction (cf. Chapter 5) and denoising

applications (cf. Chapter 6). We classified the experiments in three chapters (Chapters 4 to

6) depending on the type of task.

In Chapter 4, we address an additional degradation factor of an unknown amount of

blurring applied to LR images that are received by the SR pipeline. It is thus necessary to

1.4 List of Publications 9

tackle simultaneously deblurring and SR reconstruction in a unified procedure. Also, we

apply SR on blurred images with two different scenarios: with a known priori (non-blind)

and unknown (blind) amount of blurring. We used some CNN architectures (DBSRCNN,

DBSR, Harm-DBSR) that we have proposed in Chapter 3 to enhance the final results.

In Chapter 5, we propose some CNN architectures of reduced size that effectively

suppress artefacts of JPEG-compressed images. The size reduction of CNN allows one to

handle training as well as deployment more efficiently. Furthermore, smaller models are

a better option since they reduce computational complexity, and will enable us to avoid

problems of large networks such as overfitting, vanishing or exploding gradients. Firstly,

we present a novel CNN (SA-CAR) for image restoration, which delivers slightly better

performance than the state-of-the-art CNN-based models and employs fewer parameters.

Besides this, we applied several CNN architectures (DA-CAR3, DA-CAR4 and DA-CAR5)

which we proposed with different parameter counts to show that we can achieve the same

or better results using smaller networks with a lower parameter count.

In Chapter 6, we train the DBSR model which we designed to recover the deblurred HR

images from the blurred LR images, to remove noise and restore meaningful information

for the real RENOIR dataset, and also to assess its performance on real noise.

In Chapter 7, we summarise the conclusion of the work carried out in this thesis. In

Appendix B, we give additional qualitative results of the experiments. Finally, in Appendix

A, we present a concise historical review of ANN and a brief overview of deep learning.

1.4 List of Publications

Part of the work performed in this thesis has been published in the subsequent articles:

1. Fatma Albluwi, Vladimir A Krylov and Rozenn Dahyot, Artefacts Reduction in JPEG

Compressed Images Using CNNs, Irish Machine Vision and Image Processing Con-

ference (IMVIP), Belfast, Northern Ireland, August 2018.

2. Fatma Albluwi, Vladimir A Krylov and Rozenn Dahyot, Image Deblurring and Super-

Resolution Using Deep Convolutional Neural Networks, 28th International Workshop

on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, September

2018.

10 Introduction

3. Fatma Albluwi, Vladimir A Krylov and Rozenn Dahyot, Denoising Renoir Image

Dataset with DBSR, Irish Machine Vision and Image Processing Conference (IMVIP),

Dublin, Ireland, August 2019.

4. Fatma Albluwi, Vladimir A Krylov and Rozenn Dahyot, Super-Resolution on Degraded

Low-Resolution Images Using Convolutional Neural Networks, 27th European Signal

Processing Conference (Eusipco), A Coruña, Spain, September 2019.

Chapter 2

Related Work

In the digital domain, acquiring images (imaging) introduces several types of degradation

to the final result. Therefore, digital image restoration techniques play a vital role in many

different fields, and this has been extensively studied for the purpose of recovering an

original scene from a distorted one. The literature in this field is vast; therefore, we will

review the fundamental and state-of-the-art algorithms. Firstly, we discuss how a digital

camera acquires an image and the image compression process in Section 2.1. Then in this

chapter, we present an overview of image restoration, defining the degradation models

in subsection 2.2.1, where the techniques of restoration need some knowledge of the

nature of the degradation. Following this, we present a brief review of denoising and super-

resolution algorithms for image restoration, in subsections 2.2.2 and 2.2.3. Deep learning

plays a vital role nowadays in computer vision tasks, in particular for applications such

as image restoration, detection, classification and recognition. Also, image restoration

methods based on Convolutional Neural Network (CNN) attained outstanding results

compared to the classical methods. Therefore, in Section 2.3, we address deep learning for

image restoration. In Section 2.4, we review the evaluation of recovery. Finally, we present

the Conclusion in Section 2.5.

12 Related Work

2.1 Capturing Images

Capturing and focusing the light into the camera is done through the lens. The cameras

have become smaller with the appearance of handheld cameras and smartphones, which

led to shrinking their optical systems. Thus some physical limits that have its origins

in the optics have arisen such as image blurring [32]. However, the improvement in the

manufacturing and the technologies has led to enhance the optical quality. In a digital

camera to acquire the image, sensors are used to convert the light into pixel data. A pixel is

the primary sensor element in the digital camera, and it is considered as a light bucket [1].

The modern camera focuses the light onto complementary metal-oxid semiconductor

(CMOS) sensor, which is a silicon-based sensing element. The sensor is sensitive to the

light conditions where the low light conditions lead to increasing levels of noise in the

captured image. Therefore, the image sensor needs post-processing and correcting the

captured raw data. Many different processing steps happen in modern digital cameras of

the raw image data known as the image processing pipeline (IPP). This processing is to

obtain a high-quality image to display it on the camera screen, or for receiving a suitable

image for further processing and compression such as in JPEG (image) or MPEG (video)

data format.

2.1.1 The Image Processing Steps

We will present here an outline description of the IPP, which shows the sequence of manip-

ulating of the original raw image to obtain the final image on the camera’s screen. Bayer

pattern is a colour filter array (CFA) of RGB filters on a grid of sensor pixels. The pattern

of Bayer mimics the human eye, which is more sensitive to green wavelengths. It obtains

luminance (brightness) information principally from green wavelengths and colour in-

formation from blue and red wavelengths. Therefore, the Bayer (raw) image has twice as

green pixels as blue and red; this image is the unprocessed image. The final image can be

automatically achieved after the post-processing of the raw image, which is provided in

most consumer cameras. There are primary sources of image degradation in a consumer

camera that needs correction, such as the imperfect lens system and the image sensor,

which could be a source of the noise. Most modern consumer cameras use ISO sensitivity

2.1 Capturing Images 13

that uses as a measure of the ability of the camera to capture light. This is important for

CMOS sensors; where an integral amplifier is utilised to decrease or increase the sensitivity

of active pixel sensors depending on the light conditions. Bayer scaling is used to convert

the image from raw format into another suitable format for further post-processing [32].

In this step, the camera’s settings of the white balance are used to scale each of R, G, and B

values in the raw image. The best image format from the 1980s is JPEG. However, before

performed JPEG compression of the captured raw image, colour transformations are per-

formed. There is an initial RGB conversion which allows for gamma-corrected. Then the

RGB information is encoded to another format YCbCr (YCC) which benefits of the system

of the human visual perception, where our vision system is more sensitive to luminance

than the compression of colour data.

2.1.2 Image Compression

Image compression is performed to reduce the memory footprint of an image. JPEG is

an abbreviation for the Joint Photographic Experts Group, and it is probably the most

extensive used lossy image compression method. It is called lossy compression because

of some original information from the image are lost during the process of compression.

Firstly the 24-bit RGB input image is encoded into a YCbCr image as the last step in

the IPP, and then the converted YCbCr image is further manipulated into JPEG format.

Practically, the YCbCr format improves the performance of the JPEG compression process

for many reasons; where the YCbCr channels can be separated into the luminance Y

channel which is important for the human visual perception, and the less important CbCr

chrominance channels. Also, the three channels in YCbCr are decorrelated compared

to the highly correlated channels in the RGB colour space. After obtaining the output

YCbCr image from the IPP, each component of the three YCbCr is split into 8×8 blocks

in no downsampling case [32]. Then, 2D discrete cosine transform (DCT) is performed

on each 8×8 block to transform it into the frequency-domain representation. The DCT

is used to eliminate redundant high-frequency data. The human visual system doesn’t

detect the high-frequency variations in brightness. Therefore, the quantisation method

is used to reduce the amount of high-frequency information in the image. The final step

in the process of JPEG compression is entropy encoding which helps to reduce strings

14 Related Work

of recurring values. JPEG formate utilises a quality factor to determine the amount of

compression. The lower the quality factor value, the higher the compression, the smaller

the memory footprint and the less visual quality of the image. Lossing information in the

compression process causes the appearance of different drawbacks in the image such as

blocking artefacts, blurring and ringing, especially with the high degree of compression.

2.2 Image Restoration (IR)

Image restoration (IR) is a fundamental problem in computer vision and image processing.

Furthermore, it is widely studied in different fields such as medical imaging, remote

sensing, molecular spectroscopy, satellite imaging, microscopy, digital media restoration

and filmography, security systems and surveillance videotapes. In the 1950s and 1960s, the

Soviet Union and the United States took photographs of the earth and the solar system.

However, these images suffered from various degradations. Since that time, IR began to

be an active area of research, seeking less expensive IR techniques, because at this time

IR was highly costly. Digital IR aims to recover or reconstruct the original image from a

degraded image [17], which has been corrupted by some degradation phenomena. The

different techniques of IR try to model the degradation and then inverse the process to

restore the original image. Image restoration differs from image enhancement; while image

enhancement manipulates an image to obtain more pleasing results, IR is used to recover

the original scene y from degraded images x [17]. There is a lot of overlapping noise in

the environment, which is considered a major challenge in IR, for instance, impulse noise,

multiplicative noise and Gaussian noise. Noise may be the result of the camera and imaging

system, such as long exposure times, wide-angle lens, size of the camera’s lens and wind

speed. Other factors leading to degradation include noise during acquisition, compression

and transmission, which drives the loss of some image information. Additional factors

include blurring degradation which is, for instance, Gaussian blur, motion blur, uniform

blur and atmospheric blur. In the domain of image processing, the IR technique used

to remove or suppress unwanted features or components from the images is known as

filtering. There are multiple filtering methods for restoring the image for instance, Wiener

filtering, Median filter, inverse filtering, Harmonic mean filter, Max filter and Arithmetic

mean filter. Nevertheless, the inverse filtering method is the simplest and most beneficial

2.2 Image Restoration (IR) 15

method used in IR. In general, IR can be classified into non-blind and blind IR. In the case

of non-blind IR, the blur kernel estimation is available for restoring the image. Within the

blind case, recovery is from the corrupted image only without any information about the

blur kernel.

Elad et al. [49] addressed the Single Image Super-Resolution (SISR) restoration problem

from multiple blurred, noisy and down-sampled images by applying a hybrid algorithm

from three methods. These methods are the maximum of a posteriori probability (MAP)

estimator, the maximum likelihood (ML) estimator, and the set-theoretic approach using

projection onto convex sets (POCS). The proposed method supposes explicit knowledge of

the linear blur, the additive Gaussian noise and the different measured resolutions. Brown

et al. [23] introduced a technique for out-of-focus blur and projector blur to decrease the

blur in an image. Yamauchi et al. [176] presented a method to restore digital photographs

by using a multi-resolution approach of texture synthesis and image inpainting, to remove

image defects such as scratches and annoying objects such as subtitles. Neural networks

were used in IR for training the weights, which concentrates on spatial variation in terms

of regularisation parameter [120]. The different filtering methods were effective, but strong

assumptions about the degradation properties were required. Therefore, these strategies

lack the generality to be performed on diverse image sets. Consequently, unsupervised,

information-theoretic, adaptive filtering (UINTA) was presented to overcome the filtering

limitation [15]. The UINTA automatically recognises the statistical signal properties to

restore a broad spectrum of images.

2.2.1 Degradation models

Several factors cause distortions in an imaging process; some of the more common degra-

dation mechanisms include imaging conditions such as wrong focus (out-of-focus), atmo-

spheric turbulence and motion of the scene or from imaging systems. These factors can

introduce several types of image degradation, for example, noisy, blurred, down-sampled

or all these together. Traditionally, the dominant approach was the design of task-specific

algorithms [156], such as image deblurring, super-resolution (SR), denoising and inpaint-

ing. In this subsection, we describe the equations and processes of the degradation model

before discussing the restoration methods. There are several postulated degradation mod-

16 Related Work

els related to the recording of a corrupted image. There are non-linear degradation models

and linear degradation models. In this work, we will deal with the linear models which rea-

sonably describe many degradations in photography. The linear degradation model is the

most commonly used because it is simple and faster than non-linear, while the non-linear

model is used with critical data. Mathematically, the linear model which describes image

degradation can be written as:

x = H y +η (2.1)

where x denotes the distorted image and y refers to the unknown original image, η is

noise, and H is a degradation matrix (known as the linear distortion operator or the trans-

formation) which defines the restoration task. If H is an identity matrix, the restoration

problem is denoising. However, if the original image is convolved with a kernel as a blurring

operator (e.g., Gaussian blur kernel), the problem is image deblurring. Also, H can be

represented as a down-sampling operator; in this case, the restoration problem is a SR. H

is usually associated with the blur kernel or the point spread function (PSF). The noise

random variable η is usually assumed to be an Additive White Gaussian Noise (AWGN)

with zero mean and a standard deviation σ, where η≈ N (0, Iσ2). The additive Gaussian

noise is used in many different scenarios because it efficiently models the noise [17].

There are two methods used for IR. The first utilises hardware techniques [116, 124], in

which the degradations are removed before recording the image on the sensor. Although

their results are outstanding, the degradation process should be accurately known. Besides,

they are usually valid to only one type of distortion. Therefore, these techniques are usually

expensive. The second method employs software techniques, which we focus on in this

work. These techniques are more flexible for handling the image distortions. Also, some

research has combined the methods of hardware and software to obtain better results,

such as [93].

Characteristics of Image Reconstruction

The unknown original image y is estimated by utilising the degraded image x and knowing

the type of degradation. Therefore, IR is regarded as an inverse problem. In the mid 20th

century, ill-posed and inverse problems started to be studied within several branches of

classical mathematics, such as computational algebra, differential and integral equations.

2.2 Image Restoration (IR) 17

J. Hadamard formed the well-posedness concept in 1902 [78]. According to Hadamard,

there are three conditions which must be satisfied for the linear equation (such as the

linear equation 2.1) to be defined as a well-posedness problem. These conditions are as

follows:

• The existence condition: A solution exists; where the operator H is defined on the

entire space, y exists for every image x.

• The uniqueness condition: A unique solution; where H is a one-to-one map, it means

there is at most one image y for every image x.

• The stability condition: A stable solution; it means H is continuous, where y depends

continuously on x, and a small change in x leads to a slight change in y and vice

versa.

The problem of ill-posedness occurs if one condition of the three Hadamard criteria is

not met. The ill-posed problem is ill-conditioned if a small change in the input image x

leads to a significant change in the output image y . In other words, the solution can exist,

but it is difficult to find. In this case, the equation will not meet the stability condition,

and the solution will be unstable. The IR is possible if the linear equation is well-posed,

which implies that the matrix H is nonsingular (invertible matrix). Nonetheless, the inverse

transformation H−1 of the degradation does not exist in most realistic distortions.

Image formation is modelled as a continuous model in infinite-dimensional space, and

it is described as a Fredholm integral equation of the first kind [37]. This equation does

not meet the criteria of well-posedness; therefore, IR is considered an ill-posed problem

[144]. The ill-posed nature of IR indicates that a small variation in the observation data

may lead to a significant variation in the solution; hence, trial and error methods cannot

be employed in IR.

The pseudo-inverse is one of the simplest procedures used in IR to find a solution for

ill-posed problems in linear algebra [4]. This method achieves the first two conditions of

Hadamard’s criteria (existence and uniqueness), but it does not meet the stability condition.

There is, however, a solution that satisfies all the requirements of Hadamard’s well-posed

problem, which is the regularisation technique. Therefore regularisation is considered to

18 Related Work

be one of the most widely-used methods. The regularisation concept indicates finding a

solution from data, including some extra or prior information [112].

Most IR methods include a cost function that is minimised to obtain the optimal

solution to equation 2.1. The cost function contains two terms; a fidelity term and a

regularisation (penalty) term. The fidelity term fits the data whereas the regularisation

term is used to regularise the optimisation function through the prior image model R(y).

The typical cost function used to estimate y from observation x is written as [156]:

ŷ = arg min
y

∥ x −H y ∥2
2 + λ R(y) (2.2)

where ŷ is an estimate of ideal image y , and ∥ . ∥2 is the Euclidean norm. ∥ x − H y ∥2
2 is

the data fidelity term that indicates the difference between the ideal image and corrupted

images. R(y) is the regularisation term and λ is the regularisation parameter.

2.2 Image Restoration (IR) 19

2.2.2 Denoising

Denoising procedures are employed to remove the noise in noisy images and recover the

real image by minimising the loss of original features. Noise components such as texture

and edge are high-frequency features; thus, it is hard to differentiate them during the pro-

cess of reducing noise. Therefore, the reconstructed images could unavoidably lose some

information. Although image denoising is a classical task in image processing, it is still

an open and challenging problem. The noise reduction process is considered an inverse

problem from the mathematical perspective, but its solution is not unique; therefore, it

has been studied for many years. The mathematical formulation of the denoising task can

be modelled as:

x = y +η (2.3)

where x is the noisy image, y is the unknown real image, and η represents the Additive

White Gaussian Noise (AWGN) with a standard deviation ση. The proposed denoising

techniques can be split into three main classifications: classical techniques, which can

be termed spatial domain methods; transform techniques; and CNN-based methods for

image denoising. The first two categories are covered in this section, but the last type (CNN

denoising methods) are included in Section 2.3.

Spatial domain methods

Spatial domain methods are traditional methods in image denoising, and they can be

separated into two divisions: spatial domain filtering and regularisation-based techniques.

Spatial domain filtering The noise has high spectral frequencies. Therefore, spatial filters

apply low pass filtering (LPF) on neighbouring pixels. Although filtering gives plausible

results of denoised images, these images suffer from image blurring and lose sharp edges.

There are many different types of spatial filters which are divided into two main categories:

• Linear filters: Mean filtering is used for Gaussian denoising; however, if it is imple-

mented with high-level noise, it can give smoother images [64]. Wiener filtering [19]

has been applied to overcome the limitation of mean filtering; nevertheless, it also

20 Related Work

produces blurred edges. The linear filters generally fail to maintain the textures of

the image.

• Non-linear filters: These include median filtering and weighted median filtering

[182], which have the advantages of edge-preserving and suppressing noise ef-

ficiently. Also, bilateral filtering [157] is commonly used for noise reduction. A

weighted average of intensity values of the neighbouring pixels is computed, and

then the result substitutes the intensity value of each pixel. However, bilateral filter-

ing takes time for implementation.

Regularisation-based methods These are also called variational denoising methods.

One of the most common techniques used to solve the ill-posedness problem in denoising

restoration is the regularisation approach and energy minimisation. The maximum a

posteriori (MAP) probability estimate was the motivation for these techniques. The MAP

probability estimate of y can be written as:

ŷ =arg max
y

P (y |x) = arg max
y

P (x|y) P (y)

P (x)
(2.4)

∝arg max
y

P (x|y) P (y) ≃ arg max
y

logP (x|y)+ logP (y) (2.5)

where P (x|y) is a likelihood function of y , and P (y) is the image prior. The existing

denoising techniques minimise the objective function and use the image priors which are

represented by a regularisation item to estimating the denoised image ŷ . The objective

function can be modelled as:

ŷ = arg min
y

∥ x − y ∥2
2 + λ R(y) (2.6)

where ∥ x−y ∥2
2 is the data fidelity term, and R(y) =− logP (y) is the regularisation term.

λ is the regularisation parameter (λ> 0). The primary key in the regularisation denoising

techniques is obtaining a proper image prior. Different types of image priors have been

used successfully, such as gradient priors, sparse priors, Non-local Self-Similarity (NSS)

priors and low-rank priors.

2.2 Image Restoration (IR) 21

• Gradient priors: The Tikhonov method is the most straightforward regularisation,

where its cost function involves the L2 norm. However, it produces over-smoothed

image details [100]. Rudin-Osher and Fatemi (ROF) have proposed Total variation

(TV)-based regularisation [131] for preserving the edges in the restored image and

solving the problem of smoothness. The TV method uses the L1 norm, instead of

the L2 norm. Although this method has accomplished success in noise reduction,

the reconstructed images suffer from over-smoothed textures and losses of contrast

[27, 130]. The regularisation term of the general TV (L2 TV) method can be written

as follows:

R(y) =∥∇y ∥1=
∥∥∥∥ ∑

C=c

√
(Di yc)2 + (D j yc)2

∥∥∥∥
1

(2.7)

where ∇y is the gradient of the image which has the horizontal and vertical partial

derivatives (Di ,D j) along with spatial coordinates i and j in the image, C is the num-

ber of image channels, where C = 3 for RGB colour images and C = 1 for grayscale

images.

• Non-local priors: The advantage of local methods is low computational complexity.

However, their performance is limited, especially when dealing with high-level noise,

where the correlations of neighbouring pixels are severely disturbed by noise. The

image comprises similar patches at different locations. Therefore, Non-local Self-

Similarity (NSS) priors, which is considered the most successful priors for image

reconstruction, have been used in other extended methods such as in [24, 62, 63].

Non-Local Means (NLM) [24] is a pioneer work which utilised the weighted filtering

of the NSS prior. Although it produces improvement in image denoising more than

the traditional NSS based methods, it can not preserve the image structure properly,

leading to degradation in the visual image quality. The idea is that each pixel yi is

obtained as a weighted average of all pixels in the image y , where NLM(yi) denotes

the filtered value. Let yi and y j are image patches (a square neighbourhood of fixed

22 Related Work

size) centred at yi and y j respectively.

NLM(yi) = ∑
j∈y

wi , j y j (2.8)

wi , j = 1

zi
exp

(
− ∥ yi −y j ∥2

2

h

)
; zi = exp

(
− ∥ yi −y j ∥2

2

h

)
(2.9)

where zi is a normalising factor, and h denotes a filter parameter. wi , j is the weight

of yi and y j which depends on the similarity between the patches at locations i and

j . The regularisation methods which have been developed using NSS prior can be

defined as [50]:

R(y) = ∑
yi∈y

∥ yi −NLM(yi) ∥2
2 (2.10)

• Sparse priors: In denoising methods, sparsity prior has received a lot of attention.

Sparse representation depends on the idea of learning a dictionary where each

patch is represented as a linear combination of multiple vectors (image patches, also

known as atoms) from the pre-defined dictionary [48]. The reason for naming this

sparse representation that the representation uses a small number of atoms of the

dictionary. An image is encoded over an over-complete dictionary D and L1-norm

sparsity regularisation, as follows:

α̂= arg min
α

∥ x −Dα ∥2
2 + λ ∥α ∥1 (2.11)

where x is a noisy image, a true image y = Dα;α is a matrix involving vectors of sparse

coefficients. Instead of estimating y in equation 2.6, the equation 2.11 estimates α. A

dictionary that describes the image content efficiently can be obtained by using the

K-singular value decomposition (K-SVD) algorithm [3, 48]. The model of a sparse

representation can be learned from the corrupted image itself or from a dataset

to learn the dictionary D. The idea of K-SVD for image denoising is learning the

dictionary from a noisy image x by optimising:

{ŷ , D̂, α̂} = arg min
y,D,α

λ ∥ x − y ∥2
2 + ∑

i
∥ Ri y −Dαi ∥2

2 + ∑
i
µi ∥αi ∥1 (2.12)

2.2 Image Restoration (IR) 23

where Ri is the matrix which extracts the image patch yi from image y at location i .

Although sparse representation methods such as K-SVD with learned dictionaries

give better results than designed dictionaries [105], they are still local methods.

Therefore, these methods are not concerned with the correlation between non-

local information of an image; this means that if the level of noise is high, the

restored image will not be useful as a result of the local information being severely

disturbed. Thus, the sparse representation has been integrated with the NSS prior

to take advantage of the non-local self-similarity properties of natural images, to

average out the noise among analogous patches [44, 106]. This combination of the

methods of non-local and sparse coding make the similar patches share the same

dictionary atoms in their sparse decomposition. The non-local centralised sparse

representation (NCSR) [44] is one of the pioneering works for noise reduction, which

uses this combination. Although it works well to restore the textured regions and

smooth, it suffers from the computational burden, so it is not practical in many

applications.

• Low-rank priors: Low-rank representation (LRR) also represents a data vector as a

linear combination of the other data vectors as in the sparse representation. In the

case of the sparse representation model, it calculates the sparsest representation

of each image patch as a vector individually. On the other hand, given a set of data

vectors, the LRR method tries to find the lowest rank representation, which represents

a collection of vectors jointly as a linear combination of the bases in a dictionary. The

LRR method corrects the corruption in data better than the sparse representation in

reducing the noise in images. Low-rank matrix factorisation methods are the first

category of the low-rank techniques for the restoration of noisy data. These methods

approximate a provided data matrix as a product of two low-rank matrices. For

example, Ji et al. [75, 76] have proposed a robust patch-based restoration algorithm

for removing noise from all frames of video depending on a proposed low-rank matrix

recovery, wherein the similar patches are decomposed by low-rank decomposition.

However, the disadvantage of these methods is that the rank must be given. If the

value is too low, the method will produce a loss of detail, but if the value is too high,

it will preserve the noise.

24 Related Work

The second category of the low-rank techniques is nuclear norm minimisation

(NNM), which aims to the lowest rank approximation y of an observed matrix x,

which contains noisy patches. Equation 2.13 describes the NNM method which

estimates the low-rank matrix y [26]. In the NNM model, the weights for singular

values are equal, and all singular values also have the same threshold. The NNM

treated all singular values equally, therefore this limits its capability and flexibility in

practice, because each singular value has a different level of importance. Therefore,

Gu et al. [62, 63] have proposed the weighted nuclear norm minimisation (WNNM)

model as shown in equation 2.14, where different singular values have different

weights of w, which leads to better denoising performance than the NNMs. Generally,

the low-rank minimisation techniques give better results than the previous methods

of noise reduction, particular WNNM, but their computational cost is comparatively

high.

ŷ = arg min
y

∥ x−y ∥2
F + λ ∥ y ∥∗ = UDλ(Σ)VT ; Dλ(Σ) = max(di ag (σi −λ),0)

(2.13)

ŷ = arg min
y

∥ x−y ∥2
F + ∥ y ∥w,∗= UDw(Σ)VT ; Dw(Σ) = max(Σ−Di ag (w),0)

(2.14)

where ∥ . ∥2
F indicates the frobenius norm, ∥ y ∥∗=∑

i ∥σi ∥1 is the nuclear norm and

σi is the i th singular value of y. The SVD of x is x = UΣVT, and Dλ(Σ) is the singular

value soft-thresholding operator. However, ∥ y ∥w,∗= ∑ ∥ wiσi ∥1 is the weighted

nuclear norm of y, and wi is the weight that is related to singular value σi .

2.2 Image Restoration (IR) 25

Transform techniques

Image denoising techniques started with the classical spatial-based methods, and have

gradually developed into transform-based techniques. Transform techniques suggest

that the characteristics of noise and the image information are different. The methods of

transform have been developed from the Fourier transform method. Later various methods

have been merged, such as wavelet methods, cosine transform, and block-matching & 3D

filtering (BM3D).

Transform-based filtering methods The corrupted image is transformed into a different

domain. The procedure of denoising is then applied to the obtained image depending

on the characteristics of the image information. The high-frequency parts, such as edges

and texture, are indicated by high coefficients, while the smaller coefficients indicate

the noise of the image. The most common reviewed transform in denoising is wavelet

transform [108], where it has been demonstrated that it can successfully reduce noise while

maintaining the image information [34, 107, 121]. The input data in the wavelet transform

is decomposed into a scale-space representation. However, the drawback of the wavelet

transform is that it depends on the wavelet bases selection. In the case of an inappropriate

choice of wavelet bases, this leads to an inability to gain a good representation of the image

given in the wavelet domain, which gives unsatisfactory denoising results.

BM3D This is the most common denoising technique, proposed by Dabov et al. [35]. It is

considered as a powerful and efficient extension of the NLM method. BM3D comprises

two main stages, as presented in Figure 2.1. Each stage consists of two steps, grouping and

non-locally collaborative filtering process in the transform domain. The BM3D technique

can be described as follows:

• Grouping: The similar 2D blocks are stacked into 3D arrays by block-matching (BM),

which are known as groups. It is used to enhance the sparsity, and to enable the use

of higher-dimensional filtering of each group.

• Collaborative filtering: This includes the following steps:

26 Related Work

1. Employing a 3D linear transform to the group, to take advantage of the two types

of correlation (between and inside the blocks). Each 3D group is transformed

into the wavelet domain.

2. Shrinking the transform coefficients by using hard-thresholding or Wiener

filtering to reduce the noise.

3. Inversing the 3D linear transform to output the estimations of all grouped

blocks.

Finally, all estimated blocks are returned to their original positions to restore the whole

image, by aggregating the overlapped estimates using weighted averaging. However, the

higher the noise in the image, the less improvement is introduced from the BM3D method,

and it produces artefacts.

Fig. 2.1 Flowchart of the BM3D. The operations of the BM3D repeats for each group, the reference
block marked by "R" is used as a reference to group the similar blocks for it, image taken from [35].

2.2 Image Restoration (IR) 27

2.2.3 Enhancement: Super-Resolution (SR)

Image resolution is a critical problem in assessing the quality of different image acquisition

and processing systems. The definition of image resolution is the precision of detail that

can be obviously distinguished in the image. Several applications need the techniques

of image processing for generating high-resolution (HR) images for detailed information,

where an HR image is described as an image with a high pixel density. While image

Super-Resolution (SR) methods are the methods which increase the image resolution by

resampling the image at a higher sampling rate, also, these methods aim to recover a HR

image without distortions. The recorded images sometimes suffer from some effects such

as blur, noise and aliasing. The down-sampling factor discards some pixels of the image

and leaves others unchanged. The prime purpose of SR algorithms is to produce HR images

from under-sampled low-resolution (LR) images. However, the primary concern of image

reconstruction is to restore degraded image such as blurred and noisy images, without

changing the size of the image. Therefore SR reconstruction is not only up-sampling of

under-sampled LR images to improve the quality of images but also tries to filter out

distortions such as noise and blur [118]. Blur factor is caused by many reasons such as

the inadequacy of the optical systems in image acquisition devices, motion blur, and

lens blur which happens by the convolution of the image with a mask (matrix). The blur

model commonly uses the 2D Gaussian distribution [115]. The most common practice

merely uses interpolation techniques to increase the pixel density without interest in the

resolution.

Image degradation model for SR The corrupted LR image can be obtained from the HR

image according to the following equation 2.15. The pipeline of the degradation model is

shown in Figure 2.2.

x = DB ∗ y +η (2.15)

where y is a HR image; the HR image indicates that the image does not display artefacts

such as compression or blurry areas. x is a blurred LR image, B is a blurring factor, D

is a down-sampling factor, η is noise operator and ∗ denotes the convolution operation.

Image restoration suffers from the ill-posed nature, where the solution of equation 2.15

28 Related Work

with L2-norm is not unique; to obtain the reconstructed SR image ŷ , the least square error

should be solved to minimise the cost function: arg min
y

||x −DB ∗ y ||22.

Blur Decimate +

Noise

Low-Resolution
Image (LR)

High-Resolution
Image (HR)

Fig. 2.2 Formation of the model of the LR image.

• Blurring (B): This is a crucial aspect of the SR procedure because it removes high-

frequencies and avoids resulting in an entirely aliased LR signal. In the model of SR,

it may occur by defocusing or atmospherical blur, but also it corresponds to PSF (2D

impulse response) of an optical device. There are different proposed strategies for

blurring, a low-pass filter convolution kernel is most often used. The most applied

blur kernels are the Gaussian kernel of different blurring levels σ and out-of-focus

blur, which mimics the natural blurring kernel. Single-Image Super Resolution

(SISR) can be divided into two different sub-tasks. Firstly, blind SR techniques

suppose a blur kernel σ and HR image is unknown and attempt to restore both

from the LR image. Secondly, non-blind SR techniques assume that the blur kernel

is known and only recover the HR image from both the blur kernel and the LR

image. Therefore, the issue is extended to obtain HR images from blurred LR images.

Most of the blind SR methods concentrate on estimating the blur kernel and then

performing non-blind SR methods for obtaining the SR image [126]. The success of

SR reconstruction algorithms is based on estimating an accurate blur kernel, and to

improve SR algorithms, research should put more emphasis on the restoration of the

blurring [47].

• Down-sampling (D): It is also known as sub-sampling or decimation. This operation

leads to a spatial dimension shrinkage. Therefore, the SR process is distinguished

from the related linear problems such as deblurring.

• Noise (η): This is considered to be an additional term which can be added, but a

low level of noise is taken because the primary purpose is restoring the missing

2.2 Image Restoration (IR) 29

information via blurring and down-sampling processes. Nevertheless, noise usually

exists during saving or loading the original image.

Application Areas The SR process is a significant application in computer vision, and it

has been shown that it is beneficial in many areas, for instance, image processing, medical

imaging, security systems and forensic analysis, and many others. SR methods can be

implemented as a pre-processing step, as in some applications as recognition and face

verification systems, the resolution of images plays an important role. The SR process

is used to enhance corrupted images and obtain HR images that help in detecting and

recognising the objects better. LR images are a sensitive issue, mainly when related to the

military or security applications. There are many reasons for the obtaining of these LR

images, for example, atmospheric conditions, the distance between the subject and the

camera, out-of-focus problems, the motion of the camera or the subject. The SR methods

in these situations are beneficial to overcome such issues. Also, the SR methods can be

used in image enhancement for natural images and for general-purpose to obtain HR

images from the LR images to improve the quality of distorted images. These methods

focus on the computation burden and the speed of implementation.

A Review of SR Techniques

In the early 1980s, the task of image SR appeared for the first time in works by Tsai and

Huang [159]. Since then, the problem has received much attention. Numerous SR tech-

niques have been proposed to reconstruct HR images from their LR images. SR techniques

aim to increase the image size and also restore the missing HR information. These tech-

niques are divided into two main types, according to the problem modelling and the pro-

cessed data. Firstly, traditional methods discussed the Multiple-Image Super-Resolution

(MISR) task, where many observations of the same scene are available, with slight differ-

ences. These methods focus on reconstructing the HR image through aligning inputs and

controlling noise [118]. Should only one LR image be used to obtain the HR image, the

task is termed Single Image SR (SISR). The SISR techniques depend on external knowledge,

where these techniques try to build and learn the relationship between the HR and LR

images. The problem of SR is an inverse problem that is inherently ill-posed and poorly

30 Related Work

conditioned because a single LR image can map to several HR images. This problem makes

image restoration complicated, which means its solution is ambiguous or unstable. How-

ever, a stable solution can be computed through only the LR image and prior knowledge.

This external knowledge helps to alleviate the ill-posedness problem and provides the prior

information that outputs the final SR image.

In this literature review, we give an overview of SISR techniques. There are four essential

categories of SISR methods: Interpolation-based methods, restoration-based methods,

edge-based methods, and example-based (or patch-based/ learning-based) methods. The

state-of-the-art performance has been attained by the example-based techniques, where

these techniques learn prior information, which mitigates the multiple solutions (the

ill-posedness) problem of SR methods [178]. The main algorithms of the SISR are divided

as follows:

Interpolation-Based SR Methods

Interpolation methods are the fastest and simplest ways to increase image size. Therefore,

they have less computational complexity. These algorithms commonly used in SR or image

processing are such as the nearest neighbour, bilinear and bicubic. Practically, the idea

of the interpolation procedures depends on resampling to produce a new version of the

image with different dimensions by using the adjacent neighbourhood pixels to estimate

the missing pixel values. The new pixels in the interpolated (zoomed) image are merely the

average of intensities of the neighbouring pixels, which cause the blur effect and lacking

fine details [65]. These methods have some limitations, such as the inability to acquire the

high-frequency information in the resampled image, where this information was removed

during the low pass filtering. Also, the results usually have artefacts along the edges, and

even seem over-smooth. The interpolated image is bigger size but presents blurred or

aliased information of the LR image, hence the SR image reconstruction algorithms are

employed to enhance image resolution and avoid the blurring effect. Further, in many SR

techniques, the interpolation is broadly used to produce initial HR images. The nearest

neighbour interpolation assigns the closest pixel value to the new treated sampling grid

(or space) to resample an image. However, the bilinear interpolation method calculates

the new pixel value on the new 2D grid by a weighted sum of the four closest neighbours

2.2 Image Restoration (IR) 31

(2×2). In image processing, the bicubic interpolation is a commonly employed procedure

in image resampling, and it is used for both down-sampling and up-sampling. It takes 16

pixels into account (4×4) to compute a new pixel value on the sampling grid. The bicubic

interpolated image is smoother than the resampled image by the nearest neighbour or

bilinear procedures, and it also produces better visual quality and contains fewer artefacts.

Reconstruction-Based SR Methods

Although the interpolation methods are straightforward and cost less, they yield over-

smoothed images because they decrease the contrast (i.e., the blurring of edges), apparent

artefacts and incapacity to generate fine details. Therefore these methods can not be used

to recover the HR images from LR images in the SR techniques [118]. The reconstruction

SR algorithms [11, 16, 36, 51, 113, 136, 146, 147] exploit the image properties as prior

knowledge on HR images and impose a reconstruction constraint to producing the HR

images from the LR one. The restoration constraint demands that the HR image through

the down-sampling and the smoothing should reproduce the same LR image as far as

possible. The heavy-tailed gradient distribution has been applied to image and video

SR [136]. The sparse property is used in [83] to reduce the time complexity. The total

variation (TV) regularisation has been employed for producing the HR images, for example,

[11, 190]. However, these methods suffer from some limitations, such as the fact that they

can produce artefacts in the HR result. Also, the imposed prior is not valid for arbitrary

images [196].

Edge-Based SR Methods

Edges play a fundamental role in visual perception. Therefore, many works were proposed

to obtain a high-quality image with sharp edges. These methods can be categorised as

reconstruction-based (statistical) approaches.

Edge-Directed Interpolation: The EDI method [10] is used for preserving edges in the

image after resampling, by adopting the orientation of the gradient maps, which depends

on the underlying shapes being interpolated. EDI used an adaptive interpolation approach,

which is proposed in [92]; this approach depends on nearest neighbour interpolation and

32 Related Work

b-spline interpolation. The adaptive interpolation method is directed by edge presence,

where it is calculated for each pixel as absolute differences with the adjacent pixels, and

used to classify each pixel. This classification is used to prevent attributing the value of

neighbouring pixels to the following edge direction. EDI has been proposed to generate

HR edge maps that adapt the interpolation method and rely on the presence of edges. It

uses an iterative algorithm between generating the HR image as described and LR image

refinement from this generated image, as illustrated in Figure 2.3.

A similar approach has been proposed, termed new edge-directed interpolation (NEDI)

[94], which models the interpolation methods utilising the relationship between the LR

image and the covariance of the HR image. The NEDI method is not the same as the

EDI method as it does not assume any prior knowledge except the LR image. It is just

one-pass, rather than being an iterative projection as in the EDI method which suffers

from computational complexity. In addition to the edge map, which the EDI procedure

depends on, often suffers from a wrong decision. Although NEDI was proposed to reduce

the computational burden of the covariance-based adaptive interpolation procedure,

the NEDI procedure is still suffering from high computational time cost. Furthermore,

inferring the hidden pixel values from the information existing in the LR images is still

challenging in interpolation methods, which is a severely ill-posed problem.

Fig. 2.3 Description of EDI methods. Figure taken from [10].

2.2 Image Restoration (IR) 33

Gradient Priors: A smooth edge is one of the primary artefacts that result after inter-

polating LR images. Accordingly, instead of adapting the interpolation method as EDI

procedure, various works have been proposed for focusing on refining the edge regions

such as EDI but by modifying the gradient profile to give sharper images. The gradient

profile is defined as a 1D profile along the gradient direction of the zero-crossing pixel in

the image, while in a natural image, the gradient profile prior is considered as a parametric

distribution defining the shape and the sharpness of the gradient profiles. In [51], the 1D

gradient profile is modelled as a random variable ℓ via a conditioned Normal distribution.

At each pixel, a feature vector identifying its nearest edge is calculated. This is applied

to form the SR image with adapted gradients by conditioning the distribution of ℓ. This

modelling leads to a Gauss-Markov Random Field model that can sample the whole SR

image. But this method gives a sharp-edged image lacking texture and absence of fine

detail. It is also computationally intensive.

Sun et al. [146] model the gradient profile as a 1D Generalised Gaussian Distribution

(GGD), where this gradient profile prior learned from a large number of images can supply

a constraint on image gradients when the HR image is estimated from the LR image. This

method has fewer parameters than the method proposed in [51]. The HR gradient profile

map ∇yT is generated by transforming the LR image. Then, the HR image is restored via a

gradient descent over the energy E
(
y |x,∇yT

)
, defined as:

E
(
y |x,∇yT) = ∥ x −DB ∗ y ∥2

2 + ∥∇y −∇yT ∥2
2 (2.16)

where x is a LR image, y is a HR image, D is the down-sampling operation, B is a

spatial filter (a Gaussian filter here), ∗ is the convolution operator, ∥ x −DB ∗ y ∥2
2 is the

reconstruction constraint in the image domain which measures the difference between the

LR image and the smoothed and down-sampled version of HR image, and ∥ ∇y −∇yT ∥2
2

is the gradient constraint in the gradient domain. Although the restored HR images have

sharp, high-quality edges because the priors are mainly learned from edges, still edge

priors are not efficient to model other high-frequency structures such as textures [178].

34 Related Work

Example-Based SR Methods

Example-based methods or Learning-based methods are methods which can learn map-

ping functions from a set of paired LR and HR training images. The example-based meth-

ods are divided into two main types. Firstly, internal example-based methods which employ

a property of self-similarities of the same image [33, 59, 72]. The second type of example-

based methods is external example-based methods which attempt to learn mapping

functions between exemplar pairs of LR and HR patches [21, 28, 135, 154, 155, 180, 181].

The pipeline of most external example-based approaches is shared, where the focus is on

learning and optimising the dictionaries or learning mapping functions. Despite some

similarities, convolutional neural networks (CNNs) based techniques are different because

they attempt to learn an end-to-end mapping function between LR and HR images without

addressing explicitly the problem of selection and composition of dictionaries and / or

manifolds. In the 2000s, these unusual methods for SR started to be used. The paper [54]

had a significant influence on using such systems in the SR process. Also, the work of

Freeman et al. [55] is considered a pioneer piece of work in the training-based method

using patch pairs (x, y) for reconstruction, where the nearest neighbour (NN) of the input

LR patch is found with its corresponding HR patch, and the target HR image is predicted

via a Markov Random Field (MRF) model. On the other hand, this method depends on

image patches directly. Therefore, it requires a large training set to learn patterns that can

be faced in testing.

This term of example-based methods can incorporate several types of methods, where

example-based SISR can be classified into four divisions; neighbour embedding and mani-

fold learning, sparse dictionary learning, internal learning, and Artificial neural networks

(ANNs). These different categories will be discussed in the following paragraphs and we

will present some of the essential techniques for each kind. Notice that some procedures

may be put in mixed divisions (e.g. sparse code prediction using ANNs).

• Neighbour Embedding and Manifold Learning: Chang et al. [28] proposed a method

based on neighbour embedding (NE). It is a straightforward and effective method.

This procedure is based on the assumption that LR patches can be represented by a

linear combination of the K -nearest neighbours (K -NN). Further, it considers that

HR and LR manifolds are formed from a set of HR and LR spaces, with similar local

2.2 Image Restoration (IR) 35

geometry in the two different spaces. Euclidean distance is used to find the nearest

neighbours. Also, first and second order derivatives are used as features, K assigned

to equal 5, and the linear combination of the neighbours K are solved to compute

the weights which minimise the reconstruction error. Although the results are less

noisy than [55], the linear combination gives smoother results in some regions that

make them look less realistic. Therefore, several methods have been proposed to

improve the performance and reduce the computational burden. Bevilacqua et al. in

[21] utilised different patch features; normalised (centred) luminance and derivative

patch features. Also, they used a non-negative constraint in the LR neighbourhood

estimation, which is derived from the Least Square problem (NNLS). The restored HR

patches were better, as the non-negative weights calculated from the LR embeddings

worked with more coherent manifolds.

Zeyde et al. [189] proposed sparse-representation modelling to restore an HR image

from its blurred and down-sampled noisy version. Based on the dictionary con-

struction from [189], two state-of-the-art methods have been proposed: Anchored

Neighbour Regression (ANR) [154] and Adjust ANR (A+) [155]. However, this was

done by utilising different techniques for regression and sparse search through the

dictionary atoms (dictionary elements/class). The ANR method [154] has been

proposed as a fast SR method. The K -nearest neighbours for each atom d j in the

dictionary are computed, to represent its neighbourhood. They depend on the corre-

lation between the dictionary atoms to find the nearest neighbours. After defining

the neighbourhoods, a separate projection matrix P j is calculated for each dictio-

nary atom which allows to providing the corresponding HR patch. The steps of the

algorithm can be written as follows:

1. For learning, sparse dictionaries (Dl ,Dh) can be built utilising the K-SVD [3]

learning approach of [189].

2. The K -nearest neighbours for each atom d j in the dictionary are computed,

then the projection matrix P j is calculated as:

P j = Dh
(

DT
L DL + λI

)−1 DT
L (2.17)

36 Related Work

where Dh/Dl are the HR/LR dictionaries, λ is a regularisation parameter to

alleviate the singularity (ill-posed) problems and stabilise the solution.

3. For testing, it is possible to compute a HR patch ŷi from a LR one xi using:

ŷi = P j xi (2.18)

Timofte et al. [155] proposed the Adjusted ANR (A+) method to improve the ANR

performance and computing time. The A+ approach is built on the ANR method,

but it utilises the full training material rather than learning the regressors from

the dictionary. ANR and other sparse coding methods do not need the training

sample after training the dictionaries. While in A+ procedure, the neighbourhood

is computed for each atom on a pool of training samples. The A+ performs the

same steps we mentioned before for the ANR method except the computing of the

projection matrix, where they replaced the neighbourhood of atoms D with a matrix

S containing the K training samples (i.e., SL = K ×D). The projection matrix is

computed offline. Therefore these operations do not consume time. The K-nearest

pairs of examples for each atom d j in the dictionary are selected from the training

set (SL , Sh), then the projection matrix P j is calculated as:

P j = Sh
(

ST
L SL + λI

)−1 ST
L (2.19)

• Sparse Dictionary Learning: In sparse dictionary methods, the dictionaries of LR

and HR samples are constructed to implement SR. Notice that the concept of ’neigh-

bourhood’ can exist in neighbour embedding methods and sparse dictionary meth-

ods, therefore some methods are not easy to classify. Dictionary learning depends

on the idea of creating a set of atoms for LR and HR patches. The atom is created by

taking a sample pair. Firstly, the LR image is split into LR patches, then each patch is

represented utilising the LR dictionary elements, and its corresponding HR elements

are utilised to obtain the restored HR image. In Yang et al.’s papers [179, 180], the

dictionary, which is an external example-based SR method, was proposed to perform

SR, where the sparse dictionary of LR and HR patches are utilised. The representation

of the LR patch xi is as a sparse linear combination of the LR dictionary atoms Dl .

2.2 Image Restoration (IR) 37

The restored HR patch ŷi is obtained by using its corresponding HR atoms Dh .

xi =αi Dl & ŷi =αi Dh (2.20)

arg min
αi

1

2
∥ xi −αi Dl ∥2

2 + λ ∥αi ∥1 (2.21)

For each patch xi , the optimisation problem in equation 2.21 should be solved to

find the optimal value of sparse code αi . λ is added here to balance the role of the

sparsity of α, and ∥ . ∥1 is L1 norm.

• Internal Learning: Various methods exploit the internal patch similarity (redun-

dancy) across scales and spatial dimensions for the sake of not relying on the de-

pendency of the external database. The idea is that a group of LR and HR images

is directly generated from the provided LR image. Therefore, the given images are

supposed to be adequately large to include interesting and various content in order

to observe it at different scales. Figure 2.4 shows the idea. The NLM method [24],

non-local patch method, has been adapted to execute internal learning, as inves-

tigated in [46, 122]. The NLM procedures search non-locally (in a neighbourhood)

for similar content for each position in the image using L2-norm and implement a

weighted sum based on the similarity. Moreover, various other methods have been

proposed, such as [59, 177]. In these papers, the authors have exploited patch cross-

scale similarities, where the LR patches in the input (given) LR image is searched for

in the other LR scales. After finding a similar patch, its upper-scale counterpart is

copied to a suitable location in the HR image. Gaussian Process Regression (GPR)

[65] is employed to predict each pixel from its neighbours in the bicubic-interpolated

image. This method also deblurs and produces HR images with sharp edges.

38 Related Work

Fig. 2.4 Internal learning procedure benefits from a multiscale analysis of the LR input image to
generate example pairs for learning. This image is taken from [59].

2.3 Deep Learning for Image Denoising and SR Restoration

Deep learning (DL)[60, 90] is a branch of machine learning (ML) techniques, which auto-

matically learns different representations of data. Recently, DL has recorded impressive

results in computer vision problems using CNNs and in the speech recognition field utilis-

ing recurrent neural networks (RNN). A brief review of DL is presented in Appendix A. In

many computer vision fields, the CNN based methods have demonstrated state-of-the-art

results as in classification task [85], object detection task [58], face recognition [152] and

image captioning [165]. Also, CNNs have been successfully applied to reconstruct images

corrupted by JPEG compression [41, 149], as well as to related image enhancement prob-

lems, such as super-resolution [42, 81, 88, 95], motion deblurring [148, 150], non-blind

image deconvolution [175], text deblurring [71] and image denoising [73]. The general

model for CNN based reconstruction models can be formulated as:

arg min
Θ

C
(
y, ŷ

)
; s.t . ŷ = F

(
x;Θ

)
(2.22)

Where C(.) is the cost function, used for estimating the proximity between the restored

image and the original image, and F (.) is a CNN with a set of parametersΘ. In this section,

2.3 Deep Learning for Image Denoising and SR Restoration 39

we review the effective DL architectures, which have been proposed in recent years for

denoising and SISR tasks.

2.3.1 Deep Architectures for Single Image SR (SISR)

Currently, the majority of the best performing state-of-the-art methods for SR tasks are

based on deep neural networks (DNNs). Firstly, we review the Super-Resolution Convolu-

tional Neural Network (SRCNN) proposed by Dong et al. [40, 42], which is considered to be

benchmark architecture for SISR. SRCNN is a relatively simple network, which contains

just three layers of CNN, as shown in Figure 2.5(a). It learns the mapping between the

LR and HR images in an end-to-end manner. Each layer executes a specific function of

non-linear transformation; these functions are patch extraction, non-linear mapping and

reconstruction. The SRCNN model is trained on luminance components, as in many

traditional methods. The filter size (and the number of feature maps) of each layer can

be written as follows: 9×9 (1×64), 5×5 (64×32), 5×5 (32×1). For optimising SRCNN,

the mean square error (MSE) is employed as the loss function. Despite the simplicity

of SRCNN, it has surpassed the other traditional methods, which may be attributed to

the capability of CNN to learn efficient representations in an end-to-end manner using

Large datasets. However, SRCNN does suffer from a number of issues which has led to

researchers proposing many different architectures to avoid these problems and improve

performance, e.g. [81, 82, 87, 97, 99, 139, 167]. One of this that SRCNN utilises the bicubic

LR images as inputs to estimate the SR outputs. Therefore, SRCNN suffers from some

drawbacks because it uses interpolated inputs, for example, it is very time-consuming, and

the interpolated inputs provide smoother detail that may affect the final image structure

estimate. Therefore, there are CNN architectures have been proposed to solve this task by

directly using the LR inputs and up-sampling them within CNN.

Dong et al. have proposed the Fast SRCNN (FSRCNN) model through redesigning the

SRCNN, where they used a compact hourglass-shape CNN architecture [43]. FSRCNN em-

ploys the deconvolution operation only at the final mapping layer to increase the resolution

of the LR image, which reduces the computation burden. In CNN architecture, deconvo-

lution operation (or transposed convolution) is the opposite concept of the convolution

operators (e.g., filtering, pooling), where the former is used as an up-sampling operation,

40 Related Work

in contrast, the latter is used to down-sample [187]. Instead of using the deconvolution

layer, which explicitly enlarges the LR feature maps to increase the resolution from LR to

HR, Shi et al. [139] proposed the ESPCN model, which implicitly learns the processing

for SR by using an efficient sub-pixel convolution layer only at the end of the network, as

shown in Figure 2.5(b).

Deeper Architectures for SISR The SRCNN model that includes just three layers has

been followed by various deeper and more complex networks by increasing its width or

depth to enhance the performance of the SR despite multiple training difficulties, such

as [81, 97, 123, 151, 158, 195]. Kim et al. [81] proposed a deep network for SISR, called the

very deep super-resolution (VDSR) network. It contains twenty convolutional layers of

VGG net [141], which uses the smallest filter size (3×3), as shown in Figure 2.5(c). The

VDSR model is applied to the bicubic LR inputs as the SRCNN. SRCNN is a direct mapping

function between the inputs and the HR. However, VDSR learns the mapping function

from the interpolated LR inputs to the residual between the inputs and the HR, which led

to improving the performance.

At the same time, they noticed a similarity in the convolutional kernels of the non-linear

mapping part of the VDSR model. Therefore, they proposed another architecture named

a deeply-recursive convolutional network (DRCN) [82] to reduce the parameters used in

VDSR. They have replaced multiple layers of VDSR with a recursive convolutional layer, as

shown in Figure 2.5(d). They applied different strategies to overcome difficulties of training

the depth and the recursive network. They have found that multi-supervised training in

DRCN is essential, as it uses intermediate representation to reconstruct intermediate HR

outputs. The final output fuses all intermediate HR outputs by using a listing of trainable

positive weight scalars. However, the drawback of this strategy is that after training, the list

of weight scalars will not change with different inputs.

Residual Networks (ResNet) [68], that is one of the very deep architectures based on

skip-connection, has attained state-of-the-art performance in several tasks. Therefore,

Ledig et al. [91] have proposed utilising ResNet for SISR called SRResNet. It is comprised

of 16 residual units; each unit made up two non-linear convolutions followed by batch

normalisation (BN) with residual learning; it is shown in Figure 2.5(e). Lee et al. [97]

proposed an enhanced deep super-resolution network (EDSR). In the reconstruction tasks,

2.3 Deep Learning for Image Denoising and SR Restoration 41

there is a strong relationship between the input and the output (i.e., an image-to-image

relation). Therefore, the authors have removed the BN used for normalising the features

from the residual unit of the SRResNet model, where BN layers rid networks of range

flexibility. They showed that removing BN enhances performance. Moreover, the depth of

EDSR was increased, as shown in Figure 2.5(f), which contains 32 residual blocks with 256

feature maps for each layer. This network includes 43 million parameters.

CNN architectures combined with the SISR properties Recently, some deep architec-

tures have been proposed which are inspired by the representative methods for SISR. The

DNNs have recorded tremendous successes depending on extracting beneficial represen-

tations using end-to-end methods. However, some recent research has demonstrated that

using more information explicitly helps improve SISR performance. The blur kernel and

noise are two critical factors in SISR’s success. Therefore, Zhang et al.[194] took these fac-

tors into account. They used the LR images concatenated with degradation maps as inputs

to the super-resolution network to treat multiple degradations (SRMD). For degradation,

the anisotropic Gaussian kernel was used for blur kernel and the AWGN for noise. They

have used a dimensionality stretching strategy to create the degradation maps. However,

the concatenating between the degradation maps and the image used as input of the

network only affects the first layer. By using deeper architectures, the deeper layers are not

affected by the information of the degradation maps as in the first layer [61].

In IR tasks (e.g., deblurring, denoising and SR tasks), priors are considered to be key in

the efficient reconstruction of algorithms to handle the different inverse problems flexibly.

Notably, the regularisation part in equation 2.2 is also known as the prior part from the

Bayesian view. There is an approach called the Plug-and-Play (P&P) method [163] suggests

splitting equation 2.2 into two parts: a data part and a prior part with variable splitting

procedures. Afterwards, the prior is replaced by existing denoising algorithms for solving

any inverse problems. Recently researches showed that DNN could be used as an efficient

denoiser prior such as in [156, 192]. In this case, the DNN acts as a pre-processing step

before reconstruction. The IRCNN model in [192] has been used for denoising and SISR

tasks.

42
R

elated
W

o
rk

(a) SRCNN model

6
4
 featu

re m
ap

s

3
2
 featu

re m
ap

s

H
R

 o
u
tp

u
t

L
R

 in
p
u
t

Patch

extraction

Non-linear

mapping

Reconstructio

n

LR

HR

(b) ESPCN model

feature extraction

Sub-pixel convolution

L
R

 in
p
u
t

× 19

(c) VDSR model

L
R

 in
p
u
t

Recur 16 times

(d) DRCN model

…
𝐻𝑅1

𝐻𝑅2

16

𝑤1

𝑤2

𝑤16

(e) SRResNet model

L
R

 in
p
u
t

S
u

b
-p

ix
el

(× 16)

S
cale

S
cale

L
R

 in
p
u
t

S
u

b
-p

ix
el

(× 32)

(f) EDSR model

Fig. 2.5 Sketch of some deep structures for SISR

2.3 Deep Learning for Image Denoising and SR Restoration 43

2.3.2 Deep Architectures for Denoising

Several attempts have been made to use DNNs for image denoising. These techniques can

be separated into two classes, namely multi-layer perception (MLP) and DL techniques.

The auto-encoders methods [164, 172] were utilised to remove noise from images. The

MLP model [25] has been successfully applied for image denoising. Besides, the trainable

non-linear reaction-diffusion (TNRD) model [29] proposed by Chen and Pock is a feed-

forward deep network with a fixed number of gradient descent inference steps. The MLP

and TNRD models accomplished promising performance, which can compete with BM3D.

However, state-of-the-art DL denoising methods [191–193] depend on CNNs because of

their outstanding denoising ability.

The feed-forward denoising convolutional neural network (DnCNN) was proposed

by Zhang et al. [191]. Residual learning was utilised to learn a mapping function ŷ =
F (x;Θσ), and batch normalisation was also used to accelerate the training process. The

DnCNN model is trained on noisy images with a fixed noise level of σ. Therefore, the

trained network is not proper for other noise levels. Consequently, another CNN has been

introduced to be flexible in handling the different noise levels, called fast and flexible

denoising CNNs (FFDNet) [193]. It is expressed as ŷ = F (x, M ;Θ); where M is a map of the

noise that was designed to be input with noisy input x. The parameter setΘ is invariant to

the noise level. Therefore, this model works well when the noise level in the noisy input

and the map of noise level are matched. However, the time complexity of the learning

procedure is very high.

2.3.3 Challenges and Trends

DL algorithms have provided improved performance (i.e, improved outcomes) in image

restoration compared to traditional methods. However, there remain various challenges

that need new trends to be followed. Recently, the advanced SISR deep architectures have

accomplished high performance, however, with a vast amount of parameters. Therefore the

new trend is to design lighter models with fewer parameters with little or no degradation in

the performance [183]. Besides, SISR with unknown degradation is considered a prominent

challenge for the SR task, where most of the DL algorithms are focused on obtaining

estimated HR images from LR images without considering other degradations, which is

44 Related Work

regarded as the primary key of the SR task. Generally, the biggest challenge in DL is the

need for a theoretical understanding of the deep architectures and how and why these

architectures work. Thus, until now, we have dealt with it as a black box, and we concentrate

only on the performance to assess its success.

2.4 Evaluation of Restoration

2.4.1 Metrics

Processes such as SR cause distortion, for instance, noise and artefacts like ringing. Simi-

larity measures are used for image quality assessment (IQA) and defining the quality of a

reconstructed image as to how similar it is to its actual image. Image quality assessment

can be split into subjective and objective methods. While subjective methods depend on

human judgement, objective methods depend on comparisons applying explicit numeri-

cal measures. There are many evaluation metrics used in the SR task. However, the two

different metrics that are most often utilised to compare the performance of results are a

peak signal-to-noise ratio (PSNR) and a structural similarity (SSIM) [169]. Besides, there is

another group of measures that achieves a high correlation with the human perceptual

scores [178], namely the information fidelity criterion (IFC) [137] and visual information

fidelity (VIF). However, these measures don’t respond to the structural information of the

image explicitly.

• The Peak Signal-to-Noise Ratio (PSNR): The PSNR is a prevalent quality measure in

image processing, which depends on the Mean Squared Error (MSE). It is computed

by averaging the squared intensity differences between the original image and the

reconstructed SR image pixels. PSNR takes into account the maximum value of the

signal. There is an inverse relationship between PSNR and MSE, where the higher

PSNR value corresponds to a lower error. The higher the value of PSNR, the higher

the quality of the image is. Although PSNR metric provides poor performance in

describing the image quality, and we are concerned with human visual perception in

the image, it is considered the most widely used evaluation metric. This is attributed

to the necessity to compare any work with literature works which depended on

using PSNR to assess the performance. In addition to the lack of entirely accurate

2.4 Evaluation of Restoration 45

perceptual metrics. Given the reconstructed image ŷ and the original image y whose

size is M ×N , the MSE and PSNR are defined as:

MSE = 1

M N

M−1∑
i=0

N−1∑
j=0

(
ŷ(i , j)− y(i , j)

)2 (2.23)

PSNR = 10× log10

(max | ŷ |2
MSE

)
(2.24)

= 20× log10

(max | ŷ |p
MSE

)
(2.25)

= 20× log10

(
max | ŷ |)−10× log10(MSE) (2.26)

PSNR is defined by the MSE and the maximum signal value, max | ŷ |. PSNR is ex-

pressed in decibels (dB). When providing an unscaled input, max | ŷ | = 255, then

20× log10 = 48.1308036087. However, if the input is scaled, then max | ŷ | =1. There-

fore 20× log10(1) = 0. Thus, that component is removed completely and it only

computes the remaining MSE component, so the PSNR for scaled input becomes as

follows:

PSNR =−10× log10(MSE) (2.27)

• The Structural SIMilarity Index (SSIM): Although the PSNR is efficient and easily

implemented, it does not necessarily represent what is observed by the human visual

system. The SSIM index is created to improve conventional measures, which is

confirmed to be incompatible with human eye perception. This index is interested

in the highly structured characteristics of the natural image, wherein the visual scene

of the strong neighbourhood dependencies carry essential information about the

structures of the objects. SSIM is a criterion for measuring the similarity between

two images [169]. For two images, x and y with the same size M ×N , the SSIM is

calculated as:

SSIM(x, y) =
(
2µxµy +C1

)(
2σx y +C2

)(
µ2

x +µ2
y +C1

)(
σ2

x +σ2
y +C2

) (2.28)

46 Related Work

Where,

µx = 1

M N

M N∑
i=1

xi , µy = 1

M N

M N∑
i=1

yi , σx =
√√√√ 1

M N −1

M N∑
i=1

(
xi −µx

)2

σy =
√√√√ 1

M N −1

M N∑
i=1

(
yi −µy

)2 and σx y = 1

M N −1

M N∑
i=1

(
xi −µx

)(
yi −µy

)

µx and µy are the local sample means of x and y , respectively. σx y is the sample

cross-correlation of x and y , and σx and σy are the local sample standard deviations

of x and y , respectively. Constant numbers C1 and C2 are used to avoid instability,

so that near-zero sample means, variances or correlations do not lead to numerical

instability. µ2
x +µ2

y and σ2
x +σ2

y are very close to zero. The SSIM index is a value from

0 to 1, where 0 means there is no correlation between two images, and 1 means they

are the same. SSIM is a more effective signal fidelity measurement than MSE [168],

because MSE treats all image pixels equally, and it does not account for content-

dependent variations in image fidelity.

2.4.2 Dataset and benchmarks for evaluation

The training dataset has a significant influence on the performance of the DL algorithms

[42, 139]. Usually, the large dataset in training leads to better results, especially on the deep

structures. The different models have been trained using different datasets. For example, a

relatively small training dataset that contains 91 small-sized RGB flower images from Yang

et al. [180] was utilised to train some DL models. Some research used 291 training images,

where they use 200 images from Berkeley Segmentation Dataset (BSD) [110] and the 91

images from Yang et al. [180]. Also, a much larger set of images was derived from ImageNet

[38]. Besides these, the recently published DIVerse 2K (DIV2K) dataset [2] contains 800

RGB images for training. While, for the testing stage, the two standard benchmark image

sets Set5 [21] and Set14 [189] are mostly used, they consist of five images and 14 images

respectively. Also, B100 from the Berkeley segmentation dataset [110], and Urban100 [72]

are utilised and both contain 100 images. Additionally, there is the newly proposed testing

2.5 Conclusion 47

dataset DIV2K [2], which includes 100 test images. Table 2.1 shows the image datasets

commonly utilised in the SR task, and it indicates their average resolution and number of

images.

Table 2.1 Some of the popular image datasets which are used for super-resolution benchmarks.

Dataset Number of images Avgerage resolution

Training 91 [179] 91 (264 ×204)

BSD300 [110] 300 (435 ×367)

DIV2K [2] 1000 (1972 ×1437)

Set5 [21] 5 (313 ×336)

Set14 [189] 14 (492 ×446)

Urban100 [72] 100 (984 ×797)

2.5 Conclusion

This chapter addresses the literature review of the various methods that have been per-

formed in the task of restoration, especially for denoising and SISR. Several factors cause

distortions in digital images during the imaging process, and these factors can introduce

several types of image degradations, for example, noisy, blurred, down-sampled or all of

these together. Therefore, image restoration is vital in the computer vision field. Example-

based SISR methods give good results compared to other methods, because these methods

automatically learn the relationship between the LR and the HR images from example

pairs. The state-of-the-art results have been introduced by DNNs, using a large amount of

data to train the networks. In the next chapter, we present the different CNN architectures

that we propose in this thesis. These structures have been employed in image restoration

applications such as SISR, denoising and artefact reduction tasks.

Chapter 3

Convolutional Neural Networks (CNNs)

In this chapter, we introduce the different convolutional neural networks (CNNs), which

we have proposed in our work. These networks have been used in image reconstruction

applications such as super-resolution application (SR), as well as denoising and artefact

reduction applications. We begin by briefly reviewing the SRCNN architecture proposed by

Dong et al. [42] and its optimisation procedure in Section 3.1. The SRCNN recovers the

unknown high-resolution (HR) image from its corresponding low-resolution (LR) image.

In Section 3.2, we introduce different architectures using concatenation layers for image

restoration. In Subsection 3.2.1, we introduce two different architectures for reducing im-

age artefacts; Direct Architecture Compression Artefacts Removal (DA-CAR) network and

Skip Architecture Compression Artefacts Removal (SA-CAR). To tackle efficiently simulta-

neous deblurring and SR, we propose a novel DeBlurring Super-Resolution Convolutional

Neural Network (DBSRCNN) architecture with concatenation layer, which is presented in

Subsection 3.2.2. Then, in Section 3.3, we extend the DBSRCNN architecture, proposing a

new architecture called DeBlurring Super-Resolution (DBSR) with more enhancing layers.

We also provide the program implementations of the architectures online. In addition, we

suggest replacing some convolutional layers in DBSR architecture with harmonic blocks to

investigate the performance of the network in the frequency domain instead of the spatial

domain; this network is named as Harm-DBSR. The Harm-DBSR architecture is presented

in Section 3.4.

50 Convolutional Neural Networks (CNNs)

3.1 Super-Resolution CNN (SRCNN)

Many researchers around the world have studied the problem of obtaining a single image

super-resolution (SISR) from a low-resolution (LR) image. There are many traditional

methods for obtaining SR, but alternative approaches have been proposed by using DNNs

which try to learn an SR image from a LR one. The model used here is named as a super-

resolution convolutional neural network (SRCNN) [42]. SRCNN is considered as the first

CNN model for the task of SR. SRCNN directly learns end-to-end mapping between the LR

and HR images. SRCNN estimates a mapping function F that takes the LR image as the

input and produces the SR image. Its structure contains only three layers. Although the

SRCNN is fully feed-forward, its original implementation takes a long time (around three

days) in training. We have reimplemented a code which accomplishes the training in just

eight minutes.

3.1.1 SRCNN Architecture

The architecture of SRCNN [42] is a relatively small network that has 8,032 parameters.

It is composed of two hidden layers in addition to the input and the output layers, as is

apparent in Figure 3.1. The objective is to learn the mapping function F , which performs

three operations: patch extraction, non-linear mapping and reconstruction. The structure

of the SRCNN network is specified below:

• Input layer: the input x is a two-dimensional representation of the sub-image with

c = 1 for grey level image (channel Y) and c = 3 for colour images (YCbCr).

F0(x) = x (3.1)

• Patch extraction and representation: The first convolutional hidden layer which

extracts overlapping patches from the input sub-image and represents each patch as

a high-dimensional vector. It uses a Rectified Linear Unit (ReLU) activation function

F1, kernel size f1 = 9 and contains n1 = 64 feature maps.

F1(x) = max
(
0,W (1) ∗x+b(1)) (3.2)

3.1 Super-Resolution CNN (SRCNN) 51

where W (1) contains n1 filters of size c × f1 × f1 that output n1 feature maps. b(1)

is a n1-dimensional bias vector, where each element is related to a kernel, and ’∗’

denotes the convolution operation.

• Non-linear mapping: or second-order mapping, it is the second convolutional hid-

den layer. It maps each high-dimensional vector of the previous hidden layer to

another high-dimensional vector, which is the representation of a high-resolution

patch. ReLU activation function is employed with n2 = 32 feature maps and filter

size f2 = 1.

F2(x) = max
(
0,W (2) ∗F1(x)+b(2)) (3.3)

where W (2) involves n2 filters of size n1 × f2 × f2 to produce n2 feature maps. b(2) is a

n2-dimensional bias vector.

• Reconstruction operation: The output layer. This is the last operation in the net-

work. It is a convolutional layer that outputs the reconstructed SR image by aggregat-

ing the patch-wise representations.

F (x) =W (3) ∗F2(x)+b(3) (3.4)

where W (3) includes c filters of size n2 × f3 × f3 with filter size f3 = 5. b(2) is a c-

dimensional bias vector; it is associated with the number of image channels, and we

have used c = 1.

Finally, the structure of the standard version of SRCNN (or (9-1-5)SRCNN) can be

written as network with three layers (the filters size)(the number of feature maps): (9-1-

5)(64-32-1).

3.1.2 SRCNN Optimisation

In each layer, the filter weights are initialised by the initialisation method described in He

et al. [67], considered a robust method for ReLU. ReLU is used as the activation function.

The biases are set to 0, and the learning rate is 0.001. The aim is to recover an SR image

F (x) from LR x that is as similar as possible to the original HR image y. An estimation of

the optimal network parametersΘ= {W (1),W (2),W (3),b(1),b(2),b(3)} is required to learn the

52 Convolutional Neural Networks (CNNs)

Fig. 3.1 The SRCNN architecture: the network contains three-layers. Given a LR image x, the first
convolutional layer extracts n1 LR feature maps. Then, the second convolutional layer non-linearly
maps the LR feature maps to n2 HR feature maps. Finally, the output layer produces the final SR
image F (x), image taken from [42].

end-to-end mapping function F . This is accomplished by minimising the cost between the

reconstructed images F (x,Θ) and its original HR images y. The MSE function C (Θ) is used

as the cost function, which is used to compare the squared error between the reconstructed

image and the original image:

C (Θ) = 1

m

m∑
i=1

||F (xi ;Θ)−yi ||2 (3.5)

This cost function is minimised using Adam [84], which is used to optimise the network to

find optimal weights and for faster convergence rates.

3.1.3 Computation Time

In DL, achieving the best performance is sometimes regarded as an issue because the

training time may extend to weeks or months to train one trial. The standard (9-1-5)SRCNN

takes roughly three days [40] to train the Caffe library depending on the number of epochs,

where the increase in the number of epochs leads to an increase in training time. The

Python implementation of SRCNN [153] uses Keras-1 with the Theano library as a backend.

3.1 Super-Resolution CNN (SRCNN) 53

However, we have reimplemented this code using Keras-2 with TensorFlow as backend [5],

and the changes in the code have been undertaken accordingly [7]. Our implementation 1

relies on Adam optimisation to render the SRCNN training more computationally efficient.

Adam is an improved version of gradient descent with adaptive learning rate and RMS

propagation; therefore, it is computationally efficient. For more details, see Appendix A.4.6.

The training time of the standard SRCNN in this implementation is 8.33 minutes with

NVIDIA GTX 1050 GPU. The spec of the computer which we used in our experiment appear

in Table 3.1. There are two versions of SRCNN. Dong et al. [42] indicate that the (9-5-5)

SRCNN network achieved better performance than the (9-1-5) SRCNN network but at the

cost of training time. When the filter size is increased from (9-1-5) to (9-5-5) the training

time is also increased. In our Keras implementation of (9-5-5) SRCNN network, the training

time was around 11 minutes. In this section, we have used the first version (9-1-5) SRCNN

[40] because we worked on it before publishing version 2 [42], but in Chapter 4, we have

used the first and the second versions in comparison.

Table 3.1 Some differences aspects between the two different implementation.

Characteristic Dong’s Code [40] Keras Code (Ours) [5]

Processor Intel CPU 3.10 GHz Intel i7 CPU 2.80 GHz

Memory 16 GB 16 GBComputer Spec

GPU NVIDIA GTX 770 NVIDIA GTX 1050

Implementation Caffe Code Keras-2 [31] with TensorFlow backend
Code

Optimiser SGD Adam

Training Time Roughly 3 days 8.33 minutes

1DBSRCNN-Keras Code: https://github.com/Fatma-ALbluwi/DBSRCNN, 2018.

54 Convolutional Neural Networks (CNNs)

3.2 Introducing Concatenation

CNN can be shaped to different structures for deep learning problems such as direct archi-

tecture and skip architecture. In direct architecture, the image is transferred successively

through layers from the input layer to the output layer. This approach is used in many tasks

of low-level image processing [40, 41, 71, 150], and it often results in high performance. On

the other hand, a skip architecture interrupts the successive flow of data by allowing skip

connections to merge layers that have undergone different processing paths. There are

several main merger operations, such as concatenating, adding, subtracting, etc. The skip

architecture may alleviate some specific problems of propagating information through

deeper networks, such as, specifically, vanishing and exploding gradients [68, 101, 149].

3.2.1 Compression Artefacts Removal (CAR) Networks

The proposed CNNs are used to learn an end-to-end mapping F which takes corrupted

images x as input and outputs the restored images x̂ = F (x), without pooling, deconvolution

or full-connected layers. We only resort to convolutional layers and element-wise activation

functions in the form of leaky rectified linear unit (leaky ReLU) [104] with hyper-parameter

0.3. In the absence of pooling and deconvolution layers, the filter size is the only factor

that affects the output image size. Zero padding should be used to compensate for the size

decrease if one wants the output to be the same size.

Direct and Skip CAR (DA-CAR & SA-CAR) Architectures

We consider both types of CNN architectures. We propose two different CNN structures [6]

which we refer to as Direct Architecture Compression Artefacts Removal (DA-CAR) network

(Figure 3.2(a)) and Skip Architecture Compression Artefacts Removal (SA-CAR) as shown

in Figure 3.2(b). For DA-CAR version, we experiment with three-, four- and five-layer archi-

tectures (DA-CAR3, DA-CAR4 and DA-CAR5, respectively). For the skip-based architecture

we consider six layers (SA-CAR6), the third layer is concatenating activation (feature maps)

between the first layer and the second layer (2+1).

3.2
In

tro
d

u
cin

g
C

o
n

caten
atio

n
55

JPEG-Compressed
image (Input)

Reconstructed
image (Output)

Feature
Extraction

Reconstruction

DA-CAR3: (9-7-5)(64-32-1)

JPEG-Compressed
image (Input)

Reconstructed
image (Output)

Feature
Extraction

Reconstruction

DA-CAR4: (9-3-3-5)(64-32-32-1)

JPEG-Compressed
image (Input)

Reconstructed
image (Output)

Feature
Extraction

Reconstruction

DA-CAR5: (9-5-5-5-5)(32-32-32-32-1)

Feature
Extraction

Enhanced
Feature Concatenate

Non-linear
Mapping Reconstruction

JPEG-Compressed
image (Input)

Reconstructed
image (Output)

SA-CAR6: (9-5-5-5-5-5)(32-32-32-32-32-1)/ Concat(2+1)

(a) DA-CAR Architectures.

(b) SA-CAR Architecture.

Fig. 3.2 The proposed structures of the CNN networks: direct and skip architectures. In the direct architecture (DA-CAR), the
information directly transfers from the input to the output, while in the skip architecture (SA-CAR) there are some merged layers.
We have illustrated the structure of each network as follows: The name of network + the number of layers (the size of filters in
each layer)(the number of feature maps in each layer). For instance: DA-CAR3(9-7-1)(64-32-1).We implement the standard JPEG
compression method with different JPEG quality factors (q = 10, 20) using MATLAB JPEG encoder. We focus on the restoration of
the luminance Y channel in the YCbCr space that has been JPEG compressed.

56 Convolutional Neural Networks (CNNs)

Formulation: The first hidden layer (patch extraction and representation) extracts the

overlapping patches from the input images and then represents each patch as a high-

dimensional vector. The last layer (the reconstruction layer) assembles the restored image

by aggregating the patch-wise representations. The structure of a CNN is as follows:

F0(x) = x The input image. (3.6)

Fi (x) = max
(
0,W (i) ∗Fi−1(x)+b(i)) i ∈ {1,2, . . . ,L−1} (3.7)

F (x) =W (L) ∗FL−1(x)+b(L) The output image. (3.8)

where x is the compressed image and W (i) and b(i) are the filters and biases. W (i) is

comprised of ni filters which support ni−1 × fi × fi ; n0 is the number of channels in the

input image and fi is the filter size. Fi (x) are the feature maps in the layer i , and F (x)

is the restored output image which has the same size as the input image. L is the num-

ber of layers in the CNN architecture. The activation function type employed is Leaky ReLU.

DA-CAR & SA-CAR Optimisation

The filter weights in each layer are initialised by a robust initialisation method pro-

posed in [67] for ReLU. The aim is to recover images {F (xi)} from the corresponding JPEG-

compressed image {xi } that are as similar as possible to the set of ground truth images

{yi }. The estimation ofΘ= {W (1),W (2), . . . ,W (L),b(1),b(2), . . . ,b(L)} is required to specify the

end-to-end mapping function F . The cost minimisation between the reconstructed images

F (x,Θ) and its original images y is applied. The MSE function C (Θ) is employed as the

training loss function:

C (Θ) = 1

m

m∑
i=1

||F (xi ;Θ)−yi ||2 (3.9)

The minimisation is performed using Adam [84], which is a technique to optimise CNNs at

faster convergence rates. For CNN architectures the training time is typically proportional

to the size of training samples and the total parameter count Wtot al :

Wtot al =
L∑

i=1
ni−1 ×ni × f 2

i (3.10)

3.2 Introducing Concatenation 57

3.2.2 De-Blurring Super-Resolution CNN (DBSRCNN)

We have proposed a new architecture for the de-blurring SISR task: the de-blurring super-

resolution convolutional neural network (DBSRCNN) [7]. This architecture is motivated by

the SRCNN network. SRCNN uses one layer to extract features, and it contains 64 feature

maps. However, we propose to use two layers to obtain the features; each layer involves 32

feature maps. The first layer is to extract the low-level features, and the second layer is to

enhance the low-level features from the previous layer. Then, the first and second layers

are merged by using a concatenation operation before mapping them.

DBSRCNN Architecture

The proposed network aims to learn an end-to-end mapping F , which takes the blurred LR

image x as input, and directly provides the deblurred HR reconstruction F (x). This network

includes four convolutional layers, each one is responsible for a particular task, in addition

to the concatenation layer, as demonstrated in Figure 3.3.

The operations of the proposed network can be described as follows:

• The first layer is feature extraction, which extracts the low-level features; it contains

32-feature maps (or 32 filters) with filter size 9×9.

• The second layer is the feature enhancement layer, which provides enhanced features

from low-ones (the output of the first layer); also it contains 32-features maps with

filter size 5×5.

• The third layer is the concatenation layer, which merges the first two layers to form

a new layer that contains low-level features and enhanced features together. The

concatenated features create a merged vector with low-level and enhanced features

together.

The merged layer contains 64-features maps or 32-features maps according to the

merge procedure. There are many operations of merge which perform specific

tasks on the inputs (feature maps). Such operations include summation, maximum,

subtraction, averaging, multiplication and concatenation. All these operations take

58 Convolutional Neural Networks (CNNs)

the same size of inputs and return the same shape. However, the concatenation

operation merges all inputs [31], allowing inputs of different sizes. We have used

sum and concatenation operations. We have empirically observed that the best

performance is associated with the concatenation operation.

• The fourth layer is for the non-linear mapping operation, which performs the second-

order mapping. It contains 32-features maps with filter size 5×5.

• Finally, the fifth layer is the reconstruction layer, which reconstructs the output HR

image. It includes c filter with size 5×5, where c is associated with the number of

image channels, and we have used c = 1.

F0(x) = x The input image. (3.11)

Fi (x) = max
(
0,W (i) ∗Fi−1(x)+b(i)) i ∈ {1,2,4} (3.12)

F12(x) = merge
(
F1(x),F2(x)

)
(3.13)

F3(x) = max
(
0,W (3) ∗F12(x)+b(3)) (3.14)

F (x) =W (5) ∗F4(x)+b(5) The output image. (3.15)

where W (i) and b(i) are the filters and biases of the i th layer. The W (i) comprises of ni filters

which support ni−1 × fi × fi , where ni is the number of filters (number of feature maps),

and n0 is the number of channels in the input image. Fi (x) is the output feature maps and

Fi−1(x) is the input feature maps. F12(x) is the merge operation. F (x) is the reconstructed

output image which is of the same size as the input image.

The structure of DBSRCNN: The number of feature maps (and filter size) of each layer

as follows 32(9), 32(5), 32(5), 32(5) and 1(5), although to make it simpler, we can write it as

(32-32-32-32-1)(9-5-5-5-5).

DBSRCNN Optimisation

In each layer, the filter weights are initialised by the initialisation method described in He

et al. [67]. ReLU is used as the activation function [114]. The biases are set to 0, and the

learning rate is 0.001. We train all experiments for 60 epochs with a batch size of 64. The

3.2 Introducing Concatenation 59

estimation of the optimal network parametersΘ= {W (1),W (2),W (3),W (4),W (5),

b(1),b(2),b(3),b(4),b(5)} is required to learn the end-to-end mapping function F . This is

accomplished by minimising the cost between the reconstructed SR images F (x,Θ) and

their original HR images y. The MSE function C (Θ) is used as the cost function, which

is used to compare the squared error between the reconstructed image and the original

image:

C (Θ) = 1

m

m∑
i=1

||F (xi ;Θ)−yi ||2 (3.16)

This cost function is minimised using Adam [84], which is used to optimise the network

to find optimal weights and for faster convergence rates.

Blurred LR
image (Input)

Deblurred HR
image (Output)

𝑛ଵ feature maps
of blurred LR image

𝑛ଶ feature maps
of enhanced features

𝑛ହ feature maps
of deblurred HR image

Feature Extraction Enhanced Feature Concatenate Non-linear Mapping Reconstruction

𝑓ଵ × 𝑓ଵ
𝑓ଶ × 𝑓ଶ

𝑓ଷ × 𝑓ଷ 𝑓ହ × 𝑓ହ𝑓ସ × 𝑓ସ

Fig. 3.3 Proposed architecture DBSRCNN: This network involves five layers; four convolutional
layers plus concatenation (merge) layer, each layer is responsible for a particular operation; fea-
ture extraction, feature enhancement, merge the first two layers, non-linear mapping and finally
reconstruction. Deeper DBSRCNN contains six layers; the same layers in DBSRCNN plus another
non-linear mapping layer.

60 Convolutional Neural Networks (CNNs)

3.3 Introducing more layers

Inspired by the step of feature enhancement used in super-resolution [173] and JPEG

compression artefacts reduction [186], we propose to introduce three feature enhancement

layers after the merged layer in DBSRCNN [7] to create a more efficient and deeper network

(DBSR). Indeed, a single layer has a limited capacity to enhance the noisy extracted features

in complex applications like blurred SISR. Therefore, we increase this number to improve

the capacity to suppress blur (noise) in the features. We have employed the DBSR network

to recover the deblurred HR image from the blurred LR image [9]. Furthermore, DBSR has

been trained to denoise images in the real dataset (i.e., dataset with real noise) named

RENOIR to evaluate its performance on the real noise [8].

3.3.1 De-Blurring Super-Resolution (DBSR) Architecture

The new model DBSR is shown in Figure 3.4. Overall it consists of eight layers. The five

layers of DBSRCNN remain unchanged in the new network. The first enhanced feature

layer located after the first layer is designed to extract new features form the extracted

noisy features, and then merge these features together using the concatenation layer to

map them together. While in DBSRCNN, we mapped these features directly; in DBSR these

features are further processed by three layers before the final mapping. The operations of

the proposed network can be described as follows:

F0(x) = x The input image. (3.17)

Fi (x) = max
(
0,W (i) ∗Fi−1(x)+b(i)) i ∈ {1,2,4,5,6,7} (3.18)

F12(x) = merge
(
F1(x),F2(x)

)
(3.19)

F3(x) = max
(
0,W (3) ∗F12(x)+b(3)) (3.20)

F (x) =W (8) ∗F7(x)+b(8) The output image. (3.21)

where W (i) and b(i) are the filters and biases of the i th layer. The W (i) comprises of ni

filters which supports ni−1 × fi × fi , where ni is the number of filter (number of feature

maps), and n0 is the number of channels in the input image. Fi (x) is the output feature

maps and Fi−1(x) is the input feature maps. F12(x) is the merge operation. F (x) is the

3.3 Introducing more layers 61

reconstructed output image which is of the same size as the input image. The structure of

the proposed network is eight layers (64-32-32-32-32-32-32-1)(9-5-5-5-5-5-5-5).

Blurred LR
image (Input)

Deblurred HR
image (Output)

𝑛ଵ feature maps
of blurred LR image

𝑛ଶ feature maps
of enhanced features 𝑛ସ feature maps

of deblurred HR image

Feature Extraction Enhanced Feature Concatenate Non-linear Mapping Reconstruction

𝑓ଵ × 𝑓ଵ
𝑓ଶ × 𝑓ଶ

𝑓ଷ × 𝑓ଷ 𝑓 × 𝑓𝑓଻ × 𝑓଻

The added enhanced layers

Fig. 3.4 Proposed architecture DBSR: This network comprises eight layers: the five convolutional
layers of DBSRCNN, in addition to extra three enhanced layers inserted after the concatenated layer
to further refine the merged feature maps.

3.3.2 DBSR Optimisation

Consider a set {yi,xi}m
i=1, where y is a high-resolution image and x is its corresponding

interpolated blurred low-resolution image. Mean Squared Error (MSE) is used as the cost

function to find the optimal parametersΘ of the model. This is achieved by minimising the

difference between the reconstructed images F (x,Θ) and their ground truth high-resolution

images y:

C (Θ) = 1

m

m∑
i=1

||F (xi ;Θ)−yi ||2, (3.22)

where the network parameters Θ = {W (1),W (2), · · · ,W (8),b(1),b(2), · · · ,b(8)} and m is the

number of training samples. The cost function is minimised using Adam optimisation [84].

Similar to DBSRCNN, DBSR adopts Rectified Linear Unit (ReLU) as the activation function.

62 Convolutional Neural Networks (CNNs)

We train all experiments for 60 epochs with a batch size of 64. In each layer, the filter

weights are initialised by the initialisation method described in He et al. [67], considered a

robust method for ReLU. The learning rate is 0.001.

3.4 Using Harmonic Blocks (Harm-net)

CNNs depend on learning the convolutional filters to extract the local correlation of input

patterns in feature space since the spatial convolution using learned filters performed

on natural images is based on the idea of a strong correlation between pixels in local

neighbourhoods. In contrast, Harmonic Network uses the transformation methods which

decorrelate the signals composing an image [160, 161]. The harmonic network is a feature

learning that is implemented by weighted combinations of responses to predefined spectral

filters. Instead of using standard convolution operation as in CNN, the harmonic net

utilises harmonic blocks, which is implemented in two stages to process the data. In the

first stage, the input features are decomposed by window-based Discrete Cosine Transform

(2D DCT). Secondly, the responses (transformed signals) of the DCT filters are weighted by

the learned weights. The harmonic block for each feature map can be computed by the

following equation [160]:

F l =
n−1∑
i=0

K−1∑
u=0

K−1∑
v=0

W l
i ,u,vψu,v ∗F l−1

i (3.23)

where F l is the output feature map at layer l , which is computed as a weighted linear

combination of DCT filters over the input channels n. F l−1
i is an input feature map. ψu,v is

a u, v spectral frequency of DCT filter with size K ×K , and ′∗′ is a 2D convolution operator.

W l
i ,u,v is the learned weight of the i th feature for u, v frequency. The linear combination of

DCT coefficients is applied by a convolutional filter with size 1×1.

3.4.1 Harm-DBSR Architecture

Some studies have conducted learning on the frequency domain, where the networks have

been trained on DCT features. For example, Chen et al. [29] have used the linear filters

to train the diffusion network using clean/degraded image pairs for image restoration

3.4 Using Harmonic Blocks (Harm-net) 63

tasks. The filters are defined as a weighted linear combination of DCT basis filters. The

diffusion model is trained in stages (iterations) involving convolution operations with a

set of linear filters, and hence it can be treated as a CNN. Therefore, we were motivated to

integrate the DCT transformation with our DBSR network, to investigate the influence of

using spectral information in this network on the performance of the image restoration.

We have followed the same strategy proposed in [160] to build the harmonic block. The

convolutional layer in CNN can be replaced by the harmonic block to construct a fully or a

partially harmonic network. We have used the harmonic blocks in the DBSR architecture to

evaluate the influence of the predefined filters experimentally. The DBSR consists of eight

convolutional layers as shown in Figure 3.4. The DBSR network has been implemented

with different numbers of harmonic blocks, starting by replacing one convolutional layer

with one harmonic block, and ending with a full harmonic net with eight harmonic blocks.

Figure 3.5 demonstrates a visual example of applying the harmonic block.

Input features; # input channels = 𝑵

The DCT filters with size 𝑲 × 𝑲

𝑵𝑲𝟐 DCT coefficients

The weighted linear combination
of DCT coefficients across all input
channels 𝑁; using Conv 1 × 1,
output channels = 𝑀.

The learned weights

Fig. 3.5 Visualisation example of the harmonic block implemented on an input layer; taken from
[160]. Each 2D filter of the DCT filter bank with size K ×K is applied to each input feature, to
generate the spectral coefficients of the DCT basis functions. Then the weighted linear combination
of these coefficients is performed by convolutional filter with size 1×1, to create new feature maps.

64 Convolutional Neural Networks (CNNs)

3.4.2 Harm-DBSR Optimisation

We have performed here the same optimisation strategy we implemented in DBSR with the

same hyper-parameters and the same datasets, to compare the performance of the same

network with and without the harmonic blocks. The backward pass through the transform

layer is implemented as in the convolutional layer since the DCT is a linear transform.

Consider a set {yi,xi}m
i=1, where y is a ground truth image and x is its corresponding cor-

rupted image. Mean Squared Error (MSE) is used as the cost function to find the optimal

parameters Θ of the model. This is achieved by minimising the difference between the

reconstructed images F (x,Θ) and its ground truth images y:

C (Θ) = 1

m

m∑
i=1

||F (xi ;Θ)−yi ||2, (3.24)

whereΘ is the network parameters and m is the number of training samples. The cost

function is minimised using Adam optimisation [84]. Similar to DBSR, Harm-DBSR uses

ReLU as the activation function. We train all experiments for 60 epochs with a batch size

of 64. In each layer, the filter weights are initialised by the initialisation method in He et

al. [67]. The learning rate is 0.001.

3.4.3 Compression of the Harm-DBSR Network

The objective of our research is to achieve competitive results with state-of-the-art meth-

ods with a small number of parameters. Thus, we will follow the same strategy proposed in

[160], to limit the DCT coefficients used in the harmonic block by using the most informa-

tive low frequencies and truncate the high-frequencies; see Figure 3.6. Consequently, this

strategy enables us to decrease the number of parameters and their following operations

in the network. A hyper-parameter λ represents the number of the coefficients used in

the harmonic block beginning from the DC component (zero frequency). The following

equation can calculate the number of levels of coefficients λ(λ+1)/2, for instance, if we

want to use 9x9 DCT filters with λ = 9; then the number of coefficients = 9(10)/2 = 45

coefficients from 81 coefficients.

3.5 Conclusion 65

input features = 𝑵

The DCT filters with size 𝑲 × 𝑲

𝑵𝑲𝟐 DCT coefficients

output channels = 𝑴

Learnable weights

Fig. 3.6 Visualisation example of the compressed harmonic block implemented on input features.
For example, we employ a 3x3 DCT filter bank, and applied λ, which is used as a hyper-parameter
to reduce the DCT coefficients by limiting the spectral frequencies and truncating the high fre-
quencies. If λ = 1, then the zero frequency (DC component) only will be used. If λ = 3, then six
coefficients starting from the DC component will be utilised, and three coefficients will be truncated
as illustrated in this example.

3.5 Conclusion

This chapter introduces the different CNN architectures we designed with their optimi-

sation strategies. In the following chapters, we will present the performance of these

networks in various image restoration applications. In Chapter 4, we perform the Single

Image Supre-Resolution (SISR) task using the proposed CNNs that are capable of han-

dling low-resolution and input image blurring simultaneously. We present in this chapter

the experimental evaluation of the new architectures DBSRCNN, DBSR and Harm-DBSR

that are applied to both non-blind and blind SR scenarios. Chapter 5 addresses the arte-

facts reduction in JPEG-compressed images using CNNs. We employ in this application,

the different versions of DA-CAR (DA-CAR3, DA-CAR4 and DA-CAR5) and SA-CAR6, we

also compare the performance of these architectures with the state-of-the-art methods

proposed for artefact reduction. The DBSR model is designed to recover the deblurred

high-resolution image from the blurred low-resolution image, by learning an end-to-end

mapping. Furthermore, in Chapter 6, DBSR is trained to denoise images in the real RENOIR

dataset [12] to assess its performance on real noise.

Chapter 4

Experimental Comparisons of

DeBlurring Super-Resolution

Many researchers around the world have studied the problem of obtaining SISR from a

LR image. There are many traditional methods for obtaining SR; however, the majority of

the best performing state-of-the-art methods for SR are based on deep neural networks,

such as [42, 81, 82, 87, 97, 99, 139, 167]. All these algorithms assume that a small amount

of noising or blurring is applied to all training and testing images, where they focus only on

getting HR images from the LR images with low blurring levels produced from upscaling the

images using bicubic interpolation. Indeed, the images are sometimes not solely suffering

from LR but issues also extend to other problems such as blurring or noise. Therefore, in

this study, we address an additional factor of an unknown amount of blurring applied to

images that are received by the SR pipeline. It is thus necessary to tackle simultaneously

deblurring and SR reconstruction in a unified procedure.

This chapter is organised as follows: Firstly, we present the methodology of the study in

Section 4.1. Secondly, Section 4.2 displays the experimental results for different CNNs we

proposed in Chapter 3 for SR application. In Subsection 4.2.1, we begin by implementing

the SRCNN model proposed by Dong et al. [40], which is considered as a pioneering CNN

model for the SR task. The SRCNN network introduced a simple yet efficient architecture

for image restoration. It has been used to obtain HR images from LR images, although

in this research, we have applied SRCNN to obtain deblurred SR images from blurred LR

68 Experimental Comparisons of DeBlurring Super-Resolution

images with different levels of blurring. To tackle efficiently simultaneous deblurring and

SR, we experimentally validate the proposed DBSRCNN model in Subsection 4.2.2. The

evaluation of the deeper network DBSR, which allows for enhanced non-linearity mapping

is exhibited in Subsection 4.2.3. Then, the performance of the harmonic blocks used in

DBSR model (Harm-DBSR), is shown in Subsection 4.2.4. We apply SR on blurred images

with two different scenarios: with a priori known (non-blind) and unknown (blind) amount

of blurring. Finally, we present the conclusions in Section 4.3.

4.1 Methodology

4.1.1 Training and Testing Datasets

Various training datasets have been used for training different networks. For example,

Dong et al. [40] used 91 images from Yang et al. [180] to train SRCNN, which is considered

as a relatively small dataset. Depending on the idea that the performance of deep learning

is boosted from training a larger training dataset, Dong et al. [42] have trained the SRNN

using a large dataset that comprises 395,909 images from the ILSVRC 2013 ImageNet [38].

Nevertheless, this large data yielded a slight improvement. SRCNN is considered to be

a small model, and the 91 images have captured sufficient variability of natural images;

therefore, this dataset was enough to train the SRCNN model. Indeed, to learn from training

with a large dataset which combines more diverse data such as ImageNet, it needs a model

with a large learning capacity [85]. In the VDSR model [81]; 291 images have been used: 91

images from Yang et al. [180] and 200 images from Berkeley Segmentation Dataset (BSD)

[110] to train a large network with 20 layers.

Training the DNNs on a significant amount of data helps to avoid the overfitting prob-

lem, and the image data augmentation techniques are usually used in computer vision

tasks to create more data from available training data [119, 140]. There are traditional

transformations for augmenting training data such as cropping patches from the available

images, flipping, rotating and colour transfer. In our work, we have used the most common

practical augmentation techniques: cropping, flipping and rotating methods to increase

the size of original images. In this chapter, we train different networks (SRCNN, DBSRCNN,

4.1 Methodology 69

DBSR, Harm-DBSR and compressed Harm-DBSR); hence, we have used various training

datasets with data augmentation methods.

For training the reimplemented SRCNN and DBSRCNN models: The 91 images from

Yang et al.[179] are used. We make this choice of training data to allow a fair comparison

with [42] where they were employed. To fully exploit the available data, we rely on the

augmentation strategy: the training HR set y are randomly cropped to obtain fsub × fsub ×c

pixel sub-images, with a stride of 14. fsub × fsub is the number of pixels and the number

of channels is c. The size of training sub-images we employ is fsub = 33, accordingly the

91-images can be divided into 21,824 training sub-images.

For training the DBSR and Harm-DBSR models: These models are larger than SRCNN

and DBSRCNN; consequently, they need more data for training. We employ 291 images as

in [81], with data augmentation (flipping and rotation techniques) resulting in a total of

2,328 images. These training images are then cropped into sub-images with size fsub = 31

resulting in 573,632 sub-images by employing a stride of 21. The augmentation data

with flipping and rotating techniques were used for training the non-blind networks and

blind DBSR with sigma =[0.5, 3], but, it took 18 hours to train 60 epochs. Therefore, we

trained blind DBSR with sigma = [1,3] and sigma =[1,4] using the 291 images with only

cropping augmentation, which yields 204,288 sub-images and seven hours for training 60

epochs. We have employed the same training strategy used in DBSR for Harm-DBSR, to

investigate the impact of using harmonic blocks in the existing CNN (DBSR) without any

other changes.

Test Datasets: Set5 (5 images) [21] and Set14 (14 images) [189] have been used in the

testing stage. The model is trained on sub-images, whereas the inference is carried on the

whole image to avoid the step of averaging as post-processing for estimated HR patches.

Each result of our experiments written in the following tables is the median of five runs.

70 Experimental Comparisons of DeBlurring Super-Resolution

4.1.2 Degradation Model

The standard model for degradation is formulated as a linear combination, as follows:

x = Ds Bσ y+η (4.1)

where the HR image y is first blurred by operator Bσ; at the blurring level σ [45, 126,

178, 194]. Then, it is down-sampled by Ds with fixed down-sampling scale s. We have

used the bicubic down-sampling method in our study as in [33, 47, 56, 59, 155, 180]. The

noise η is additive noise. In practice, the pipeline for degradation can be non-linear due to

compression artefacts or noise [127]. Before generating LR images according to equation

(4.1), the blur kernels should be defined. The degradation model assumes that an HR

image can be degraded into many LR images depending on the blur kernel and the noise.

To produce blur, we applied the Gaussian kernel model N (0.σ) with a fixed kernel width

(the value of σ), which has been established to be practically feasible in SISR applications.

To generate a single blurred LR image xi (input) for training and testing according to

equation (4.1), and as shown in Figure 4.1, the HR image yi is first blurred using a Gaussian

kernel N (0,σ) with different values of standard deviation σ (i.e. σ= 1, 2, 3 or 4). Secondly,

the blurred image is down-sampled using the down-scaling factor s. Then up-sampling

(zooming) the down-sampled image xi to the HR input resolution size is undertaken using

bicubic interpolation. The down/up-scaling factors employed in this study are s = 2,3,4.

The only pre-processing method that has been performed is obtaining corrupted data for

training the networks. Note that padding is required to ensure that both the input and the

output images in the network are of the same spatial dimensions.

4.1 Methodology 71

Model of
DL
(Network)

Image Degradation (noise) Model

HR image (H × W) Smooth (Blur) it by
Gaussian Convolution

down-sampling

it by s (
ு

௦
×
ௐ

௦
)

up-sampling
it by s (H × W): Input

SR image (H × W)
: Output

Model of
DL
(Network)

Fig. 4.1 An example of the training phase: Firstly, the blurred LR images are created from HR images
(the only pre-processing), using a Gaussian filter to smooth the HR images using σ value (the
blurring level). Then down-sampling the blurred images using a down-scaling factor, for instance,
s = 3. The blurred LR images are zoomed using bicubic interpolation by an up-sampling factor s = 3.
These degraded images are used as inputs to the network. The reconstructed SR images resulted
from the network should be as similar as possible to HR images.

4.1.3 Non-Blind and Blind SISR Scenarios

There are two main scenarios which have been conducted to obtain the deblurred super-

resolution images from blurred low-resolution images:

1- Non-Blind SR scenario: This is concerned with obtaining deblurred SR images from

blurred LR images when the levels of blurring in images are known. The 2-D Gaussian fil-

tering N (0,σ) is used to blur the images with different values of σ. The original assumption

of the SRCNN algorithm is that the blurring in the LR images is produced from bicubic

interpolation operation without adding any blurring (i.e. σ= 0). σ= i is the blur kernel

width which we added to the LR images using Gaussian kernel with i =1, 2, 3 or 4, and the

network is trained and tested with it. A Python script was created to build five different

networks according to the level of blurring.

2- Blind SR scenario: This focuses on obtaining deblurred SR images from blurred LR

images when the levels of blurring in images are unknown. The blind SR model is trained

on a collection of images with different blurring levels. The benefit of the blind model

72 Experimental Comparisons of DeBlurring Super-Resolution

is that one solution solves many problems simultaneously instead of each task having

a specific solution. As in the non-blind case; in the first place, the blurring level should

be determined first , followed by finding the solution according to that. A Python script

was created to build two different blind SR networks according to the range of blurring

levels in images. While the first network is trained on images with kernel width N (0,σ)

with σ ranging between [1-3], the second network is trained on ranging between [1-4].

The blind models are tested on images at any kernel width value. The aim of training two

different blind models is to find out the different behaviours of these networks and then

compare their results to discover if the network trained on a more significant number of

blurring levels will give worse resolution or the same. Moreover, we have trained the DBSR

and Harm-DBSR networks on images with σ varying between [0.5, 3] to investigate the

influence of the standard deviation values on the performance.

4.1.4 Experiments on Colour Images

• The majority of existing SR methods concentrate on single-band or grey-scale input

images. In this case, colour images are transformed to another colour space as YCbCr,

and the luminance channel Y is used in the SR algorithms (c = 1), where Y channel is

considered as a grey-scale copy of the main image.

• However, for working on colour images, there are three main strategies to perform

the SR approaches:

– The straightforward approach is to perform SR separately on the input colour

channels and then merge them into a colour image.

– Another method consists in dealing with all three channels in a unified manner

by expanding the sizes of layers in the deep architecture (c = 3).

– Finally, human vision has more accurate spatial sensitivity to the differences

provided in the image brightness (luminance) more than variations in colour.

Therefore, the colour images can be super-resolved by casting the colour images

to YCbCr colour space where the SR is performed solely on the luminance

channel Y (c = 1). Chroma components Cb, and Cr are up-scaled by bicubic

interpolation. Then all channels (Y, Cb, Cr) are combined again to produce the

output.

4.2 Experimental Results 73

In this work, we follow the third strategy of color images and perform SR on the Y chan-

nel (i.e., c = 1) in the first/last layer for training networks. Then, the bicubic interpolation

is used on chroma components (Cb, Cr) to produce the final output.

4.1.5 Quantitative Metrics for Comparisons

The peak signal-to-noise ratio (PSNR) metric in dB is widely used to evaluate the quality

of image restoration quantitatively. The PSNR metric is related to the optimiser of the

network (MSE; which is used as a cost function), where there is a negative relationship

between the MSE and PSNR. Therefore PSNR is used as an indicator of the performance of

the networks. Also, the structural similarity index measure (SSIM) is used as an alternative

evaluation metric to evaluate model performance.

4.2 Experimental Results

4.2.1 Evaluation of SRCNN

To evaluate the extent of improvement, we computed the average of PSNR and SSIM

between the blurred LR input images (corrupted images) and the original HR images for

all pipelines. The default baseline comparison is with bicubic interpolation. After training

the networks, the average of PSNR (dB) and SSIM results on the Set5 and Set14 testing

datasets were reported in Tables 4.1 and 4.2 respectively 1. In the non-blind scenario, five

pipelines were trained on images with blur N (0,σ) with σ = 0, 1, 2, 3, and 4, and tested

on images having the same level of blur; all these AI pipelines improved the PSNR and

SSIM. The performance improvement becomes less pronounced in the blind scenarios.

From the results of blind SR models of the blurred LR images with different levels of σ,

it appears that the best results were for σ= 2 and σ= 3, and performance decreases on

the two sides (σ= 1 and σ= 4). From these results, it is clear that the weights of the blind

models are treated as an average of the weights of non-blind models. Although the blind

method is better than the non-blind method when we do not know information about

1Part of these results was published at the Machine Learning for Signal Processing (MLSP) conference
2018, in Denmark [7].

74 Experimental Comparisons of DeBlurring Super-Resolution

blurring, blind SRCNN did not introduce any enhancement in LR images with σ= 0, where

the reconstructed images were worse than the input images. The reason for this is that the

blind networks were not trained on LR images; they just were trained on blurred LR images

with different levels σ= [1-3] or [1-4]. Figures 4.2 and 4.3 demonstrate examples of the

output of processing a colour input along with relevant comparisons with SRCNN.

Table 4.1 Average of PSNR (dB)/ SSIM results with different blur levels σ= 0 (i.e., without adding
any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set5’.

Non-Blind Model Blind Model
Kernel

Width
LR Input1

SRCNN
SRCNN

Improvement

SRCNN

σ= [1−3]

SRCNN

σ= [1−4]

SRCNN

Improvement

σ= 0 30.40/ 0.881 31.95/ 0.905 +1.55/ +0.025 28.49/ 0.848 27.64/ 0.831 -1.91/ -0.032

σ= 1 29.47/ 0.860 31.55/ 0.899 +2.08/ +0.039 30.05/ 0.879 29.05/ 0.862 +0.58/ +0.019

σ= 2 27.45/ 0.802 30.29/ 0.868 +2.84/ +0.066 30.02/ 0.871 29.55/ 0.866 +2.57/ +0.069

σ= 3 25.65/ 0.735 29.01/ 0.833 +3.36/ +0.097 27.54/ 0.801 27.80/ 0.809 +2.15/ +0.074

σ= 4 24.33/ 0.680 27.35/ 0.778 +3.02/ +0.098 25.43/ 0.723 25.91/ 0.738 +1.58/ +0.059
1 Baseline comparison with up-scale bicubic (No AI). The improvement is calculated as the difference
between the average PSNR of the degraded images (LR input) and the reconstructed images using the
non-blind and blind SRCNN networks.

Table 4.2 Average of PSNR (dB)/ SSIM results with different blur levels σ= 0 (i.e., without adding
any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set14’.

Non-Blind Model Blind Model
Kernel

Width
LR Input

SRCNN
SRCNN

Improvement

SRCNN

σ= [1−3]

SRCNN

σ= [1−4]

SRCNN

Improvement

σ= 0 27.54/ 0.859 28.67/ 0.885 +1.13/ +0.026 26.46/ 0.849 25.85/ 0.832 -1.08/ -0.010

σ= 1 26.86/ 0.833 28.40/ 0.882 +1.54/ +0.049 27.57/ 0.871 26.92/ 0.856 +0.71/ +0.038

σ= 2 25.37/ 0.766 27.41/ 0.855 +2.04/ +0.089 27.16/ 0.844 26.93/ 0.841 +1.79/ +0.078

σ= 3 24.04/ 0.694 26.33/ 0.805 +2.29/ +0.111 25.34/ 0.759 25.52/ 0.772 +1.48/ +0.078

σ= 4 23.05/ 0.634 25.19/ 0.749 +2.14/ +0.115 23.85/ 0.677 24.20/ 0.697 +1.15/ +0.063

The improvement is calculated as the difference between the average PSNR of the degraded images (LR
input) and the reconstructed images using the non-blind and blind SRCNN networks.

4.2 Experimental Results 75

Original HR blurred LR with σ= 2

PSNR dB 30.75 dB

SRCNN σ= 2 blind SRCNN σ= [1−3]

33.47 dB 33.55 dB

Fig. 4.2 SR with SRCNN on a colour image after Gaussian blur with σ= 2. The second row shows
the results of the non-blind scenario and the blind scenario. Each result is accompanied by zoom
and PSNR dB.

76 Experimental Comparisons of DeBlurring Super-Resolution

Original HR blurred LR with σ= 3

PSNR dB 28.76 dB

SRCNN σ= 3 blind SRCNN σ= [1−3]

32.41 dB 30.97 dB

Fig. 4.3 SR with SRCNN on a colour image after Gaussian blur with σ= 3. The second row shows
the results of the non-blind scenario and the blind scenario. Each result is accompanied by zoom
and PSNR dB.

4.2 Experimental Results 77

General Comparison

We want at this point to illustrate the influence of mismatch of the degradation method in

training and testing in the non-blind scenario. As can be seen from Table 4.3 and Figure

4.4, when the training and testing assumptions match the blurring value, the result of the

model will be best, see diagonal PSNR in blue in Table 4.3. However, if the assumption

of the degradation at training and testing are mismatched, the results will deteriorate

substantially. However, if the blind network is used, there is only a slight quality decrease,

and the results are still good. Therefore, if we do not have information about the blurring

value, we can use the blind pipelines.

By tacking a quantitative example, we can notice the difference if we compare between

the results of different input images for any non-blind SRCNN and SRCNN σ = [1−3].

For example, input images blurred with σ= 2 using SRCNN (σ= [1−3]) = 27.92 and with

SRCNN (σ= 2) = 28.16. However, for the remainder of the results of SRCNN σ= [1−3] for

input images with different blurring levels, results are are better than the results provided

by SRCNN σ= 2. If we see the LR input images σ= 0 with SRCNN (σ= 2) = 20.66 and with

SRCNN (σ= 1−3) = 26.99, this has a huge effect on the result. Therefore, if we estimate

blurring levels in the corrupted image wrongly or use the mismatched model, the obtained

results will be worse than if we used the blind network. A qualitative example is evident in

Figure 4.4. Note that Table 4.3 gives a brief of the average PSNR over the merged test sets

(we have combined Set5 and Set14 in one group). For more details see Appendix B.

Table 4.3 Average of PSNR (dB) with different blur levels σ = 0 (i.e., without adding any
blur), 1, 2, 3, 4, scale factor s = 3, on test sets ’Set5’ and ’Set14’ together as one group.

Non-Blind Model1 Blind Model2

Kernel

Width
LR Input SRCNN3

σ= 0

SRCNN

σ= 1

SRCNN

σ= 2

SRCNN

σ= 3

SRCNN

σ= 4

SRCNN

σ= [1−3]

SRCNN

σ= [1−4]

σ= 0 28.29 29.53 28.18 20.66 16.86 14.75 26.99 26.32

σ= 1 27.55 28.90 29.23 23.64 18.80 16.04 28.22 27.48

σ= 2 25.92 26.53 27.11 28.16 23.98 19.59 27.92 27.62

σ= 3 24.46 24.63 24.87 25.78 27.04 24.35 25.92 26.12

σ= 4 23.39 23.42 23.54 23.92 24.88 25.76 24.27 24.65

The diagonal blue results appear the outputs when the training and testing assumptions match over the
blurring value in the non-blind scenarios. 1 Re-trained SRCNN Architecture with different level of noise on
input. 2 Re-trained SRCNN Architecture with mix of noise level. 3 Dong et al. PAMI 2016.

78
E

xp
erim

en
talC

o
m

p
ariso

n
s

o
fD

eB
lu

rrin
g

Su
p

er-R
eso

lu
tio

n
App. Input image Non-blind model

with the same
blur level

Non-blind model
SRCNN (𝝈 = 𝟏)

Non-blind model
SRCNN (𝝈 = 𝟐)

Non-blind model
SRCNN (𝝈 = 𝟑)

Non-blind model
SRCNN (𝝈 = 𝟒)

Blind SRCNN
(𝝈 = 𝟏− 𝟑)

Blind SRCNN
(𝝈 = 𝟏− 𝟒)

HR
image

LR
(𝝈 = 𝟎)

blur1
(𝝈 = 𝟏)

blur2
(𝝈 = 𝟐)

blur3
(𝝈 = 𝟑)

blur4
(𝝈 = 𝟒)

Fig. 4.4 Example of blind and non-blind SRCNN (9-1-5)(64-32-1), to discover the effect of using the non-blind model on different
input images with varying levels of blurring. The yellow boxes show the outputs when the training and testing assumptions match
over the blurring value in the non-blind scenarios.

4.2 Experimental Results 79

4.2.2 Evaluation of DBSRCNN

Tables 4.4 and 4.6 report the average of PSNR and SSIM for Set5 and Set14 respectively

using non-blind pipelines. Tables 4.5 and 4.7 describe the average of PSNR and SSIM for

Set5 and Set14 respectively using blind pipelines 2. One observes a clear improvement of

DBSRCNN’s performance over SRCNN on blurred images. DBSRCNN architecture allows

for improvement in the quality of the images as measured with PSNR and SSIM. A possible

explanation of this performance is that the concatenation of features extracted at an early

stage acts similarly to traditional image processing techniques such as unsharp masking

that boosts relevant (high) frequencies partially lost in the blurring stage, to enhance the

reconstructed image. Furthermore, in the provided tables, we computed the difference

between the improvement of (9-1-5) SRCNN applied in Section 4.2.1 and the improvement

of deep DBSRCNN for non-blind and blind SR applications.

Reconstruction examples with various levels of blur are shown in Figure 4.5 and Fig-

ure 4.6 for qualitative comparison: DBSRCNN allows for a visually better reconstruction

than SRCNN confirming the quantitative assessment results reported by PSNR and SSIM.

SRCNN has been compared with the earlier state-of-the-art methods (SC, NE+LLE, KK,

ANR, A+) in [42], and hence DBSRCNN compares favourably with these as well. More

examples are found in Appendix B. In general, we conclude that performance depends

on the extracted features and representations, and the results of our proposed network

emphasise that when the network contains enhanced features, this leads to improving the

outcomes of the network. Also, when the network involves enhanced features and adopts

more non-linear mapping layers, the network gives better results.

2Part of these results was published at the Machine Learning for Signal Processing (MLSP) conference
2018, Denmark [7].

80 Experimental Comparisons of DeBlurring Super-Resolution

Table 4.4 Average of PSNR (dB)/ SSIM results for Non-blind Models with different blur
levels σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set5’.

Kernel

Width

LR Input SRCNN
SRCNN

Improvement
DBSRCNN

DBSRCNN

Improvement

σ= 0 30.40/ 0.881 31.95/ 0.905 +1.55/ +0.025 32.60/ 0.918 +2.20/ +0.038

σ= 1 29.47/ 0.860 31.55/ 0.899 +2.08/ +0.039 32.65/ 0.918 +3.18/ +0.058

σ= 2 27.45/ 0.802 30.29/ 0.868 +2.84/ +0.066 32.09/ 0.908 +4.64/ +0.106

σ= 3 25.65/ 0.735 29.01/ 0.833 +3.36/ +0.097 30.48/ 0.872 +4.83/ +0.136

σ= 4 24.33/ 0.680 27.35/ 0.778 +3.02/ +0.098 28.69/ 0.817 +4.36/ +0.138

The improvement is calculated as the difference between the average PSNR of the degraded images and the
reconstructed images using the SRCNN and DBSRCNN networks.
The results in green colour introduce how much the SRCNN improves the results.
The results in blue colour introduce how much the DBSRCNN improves the results.

Table 4.5 Average of PSNR (dB)/ SSIM results for Blind Models with different blur levels
σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set5’.

Kernel

Width

LR Input
SRCNN

σ= [1−3]

SRCNN

σ= [1−4]

SRCNN

Improvement

DBSRCNN

σ= [1−3]

DBSRCNN

σ= [1−4]

DBSRCNN

Improvement

σ= 0 30.40/ 0.881 28.49/ 0.848 27.64/ 0.831 -1.91/ -0.032 29.89/ 0.877 29.63/ 0.869 -0.51/ -0.004

σ= 1 29.47/ 0.860 30.05/ 0.879 29.05/ 0.862 +0.58/ +0.019 31.24/ 0.900 30.85/ 0.892 +1.77/ +0.040

σ= 2 27.45/ 0.802 30.02/ 0.871 29.55/ 0.866 +2.57/ +0.069 30.14/ 0.881 30.08/ 0.875 +2.69/ +0.079

σ= 3 25.65/ 0.735 27.54/ 0.801 27.80/ 0.809 +2.15/ +0.074 29.51/ 0.854 28.40/ 0.834 +3.86/ +0.119

σ= 4 24.33/ 0.680 25.43/ 0.723 25.91/ 0.738 +1.58/ +0.059 26.28/ 0.758 27.72/ 0.796 +3.39/ +0.116

The improvement is calculated as the difference between the average PSNR of the degraded images and the
reconstructed images using the SRCNN and DBSRCNN networks.
The results in green colour introduce how much the SRCNN improves the results.
The results in blue colour introduce how much the DBSRCNN improves the results.

4.2 Experimental Results 81

Table 4.6 Average of PSNR (dB)/ SSIM results for Non-blind Models with different blur
levels σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set14’.

Kernel

Width
LR Input SRCNN

SRCNN

Improvement
DBSRCNN

DBSRCNN

Improvement

σ= 0 27.54/ 0.859 28.67/ 0.885 +1.13/ +0.026 29.11/ 0.893 +1.57/ +0.034

σ= 1 26.86/ 0.833 28.40/ 0.882 +1.54/ +0.049 29.11/ 0.893 +2.25/ +0.061

σ= 2 25.37/ 0.766 27.41/ 0.855 +2.04/ +0.089 28.80/ 0.886 +3.43/ +0.120

σ= 3 24.04/ 0.694 26.33/ 0.805 +2.29/ +0.111 27.50/ 0.842 +3.46/ +0.148

σ= 4 23.05/ 0.634 25.19/ 0.749 +2.14/ +0.115 26.28/ 0.788 +3.23/ +0.155

The improvement is calculated as the difference between the average PSNR of the degraded images and the
reconstructed images using the SRCNN and DBSRCNN networks.
The results in green colour introduce how much the SRCNN improves the results.
The results in blue colour introduce how much the DBSRCNN improves the results.

Table 4.7 Average of PSNR (dB)/ SSIM results for Blind Models with different blur levels
σ= 0 (i.e., without adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set14’.

Kernel

Width
LR Input

SRCNN

σ= [1−3]

SRCNN

σ= [1−4]

SRCNN

Improvement

DBSRCNN

σ= [1−3]

DBSRCNN

σ= [1−4]

DBSRCNN

Improvement

σ= 0 27.54/ 0.859 26.46/ 0.849 25.85/ 0.832 -1.08/ -0.010 27.20/ 0.869 27.10/ 0.863 -0.34/ +0.010

σ= 1 26.86/ 0.833 27.57/ 0.871 26.92/ 0.856 +0.71/ +0.038 28.38/ 0.883 28.09/ 0.878 +1.52/ +0.051

σ= 2 25.37/ 0.766 27.16/ 0.844 26.93/ 0.841 +1.79/ +0.078 27.43/ 0.849 27.28/ 0.842 +2.06/ +0.083

σ= 3 24.04/ 0.694 25.34/ 0.759 25.52/ 0.772 +1.48/ +0.078 26.68/ 0.812 25.99/ 0.798 +2.64/ +0.118

σ= 4 23.05/ 0.634 23.85/ 0.677 24.20/ 0.697 +1.15/ +0.063 24.55/ 0.713 25.46/ 0.756 +2.41/ +0.122

The improvement is calculated as the difference between the average PSNR of the degraded images and the
reconstructed images using the SRCNN and DBSRCNN networks.
The results in green colour introduce how much the SRCNN improves the results.
The results in blue colour introduce how much the DBSRCNN improves the results.

82 Experimental Comparisons of DeBlurring Super-Resolution

Original HR blurred LR with σ= 1
PSNR dB 31.34 dB

SRCNN σ= 1 blind SRCNN σ ∈ [1−3]
33.85 dB 31.75 dB

DBSRCNN σ= 1 blind DBSRCNN σ ∈ [1−3]
35.14 dB 32.59 dB

Fig. 4.5 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with σ= 1. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−3] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

4.2 Experimental Results 83

Original HR blurred LR with σ= 2
PSNR dB 21.06 dB

SRCNN σ= 2 blind SRCNN σ ∈ [1−4]
25.28 dB 24.22 dB

DBSRCNN σ= 2 blind DBSRCNN σ ∈ [1−4]
27.00 dB 25.19 dB

Fig. 4.6 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with σ= 2. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−4] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

84 Experimental Comparisons of DeBlurring Super-Resolution

Comparison of the performance of different networks

In this part of the study, we want to investigate the behaviours of different CNN architec-

tures (the direct and skip nets) in dealing with the deblurring SR application. He and Sun

[66] have suggested that the CNN networks could benefit from increasing network depth

by adding more layers in the network. From this point of view, Dong et al. [42] wanted to

improve the result of the SRCNN network by adding extra non-linear mapping layers in

the network (known as deep SRCNN). However, when deep SRCNN with four layers was

applied to LR images, the result was not improved. Additionally, when they went deeper

by using five layers, the result was worse. Hence, they adopted SRCNN with only three

layers. In this section, we want to see the influence of the deep SRCNN on deblurring

the SISR task. Therefore, deep SRCNN, which contains four layers, was applied to our

applications to check the effect of adding the extra layer to enhance the features in the

SRCNN network. Tables 4.8 and 4.9 summarise the results using PSNR and SSIM for all

pipelines we performed for blurred input images with different blurring levels.

For the deep direct nets: The results show that the deep SRCNN with four layers that

we used to enhance the LR images at σ = 0 has provided minor enhancement in the

performance, as indicated in Dong et al.’s paper [42]. However, the results confirm that

the deep SRCNN has improved the reconstructed images with different levels of blurring,

which means that more layers are required for enhancing the blurred LR images. We

conclude that only one layer in the LR application for extracting the features was enough,

while blurred LR application requires deeper networks to give better results because of the

increasing blurring levels in the input images.

For the skip nets: The only difference between SRCNN and proposed DBSRCNN

pipelines is that the first layer in SRCNN (64-feature maps) has been separated into two

layers (32-feature maps for each layer). These layers have then been merged in the con-

catenation layer before mapping them non-linearly. However, we can observe a definite

improvement of DBSRCNN’s performance over SRCNN on blurred images, where this com-

bination of low-level features and enhanced features has led to improving the performance.

Furthermore, we have added another non-linear mapping layer to the proposed network

DBSRCNN to gain a deeper network and adopt a more robust regressor between the ex-

4.2 Experimental Results 85

tracted features and the output. The deep DBSRCNN network improves the performance

more than the default DBSRCNN model, as shown in the tables.

We conclude that the proposed DBSRCNN network (which combines the low-level

features and enhanced features in one layer before mapping operation) still presents a

significant enhancement compared to the three-layer SRCNN model ((9-1-5)SRCNN or

(9-5-5)SRCNN which does not have an enhanced feature layer and only maps the low-

level features) — also compared to deep SRCNN (which only maps the improved features

and ignores the low-level features). Furthermore, the results of DBSRCNN show that the

concatenation operation is better than using the summation operation in the merge layer.

Therefore, we adopt the concatenation operation in the proposed network. For more

information around these comparisons of the different pipelines, please review Appendix

B.

86
E

xp
erim

en
talC

o
m

p
ariso

n
s

o
fD

eB
lu

rrin
g

Su
p

er-R
eso

lu
tio

n
Table 4.8 Average of PSNR (dB)/ SSIM results for all non-blind models with different blur levels σ= 0 (i.e., without
adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set5’.

Net. Network
Type of

Network
layers # filters Filter size # par.1 σ= 0 σ= 1 σ= 2 σ= 3 σ= 4

Time/

ep2

Total

time3

Bicubic No AI LR-HR – – – –
30.40/

0.8806

29.47/

0.8600

27.45/

0.8022

25.65/

0.7354

24.33/

0.6796
- -

(64-32-1) (9-1-5) 8,032
31.95/

0.9054

31.55/

0.9027

30.29/

0.8853

29.01/

0.8330

27.35/

0.7776
10s 8.33m

Dong et al.

PAMI 2016

Re-trained

SRCNN
Default 3 layers

(64-32-1) (9-5-5) 57,184
32.37/

0.9139

32.14/

0.9092

31.42/

0.8930

29.62/

0.8494

27.52/

0.7820
13s 10.83m

(64-32-16-1) (9-5-5-5) 69,584
32.39/

0.9136

32.22/

0.9108

31.87/

0.9035

29.85/

0.8570

28.05/

0.7999
15s 12.5m

Deep

SRCNN
Deep 4 layers

(64-32-32-1) (9-5-5-5) 82,784
32.44/

0.9148

32.28/

0.9118

31.90/

0.9042

29.99/

0.8595

28.18/

0.8024
18s 15m

Default
4 layers +

concate

(32-32-64∗

-32-1)
(9-5-5-5) 80,192

32.51/

0.9167

32.37/

0.9143

31.90/

0.9043

30.14/

0.8628

28.32/

0.8074
18s 15m

New

Networks
DBSRCNN:

Merge operation

is concatenation Deep
5 layers +

concate

(32-32-64∗

-32-32-1)
(9-5-5-5-5) 105,792

32.60/

0.9181

32.65/

0.9179

32.09/

0.9078

30.48/

0.8716

28.69/

0.8172
23s 19.17m

1 Number of parameters. 2 Training time in seconds for one epoch. 3 Total training time in minutes/ 50 epochs.
∗ The concatenation layer. The results in blue colour indicate the best results.

4.2
E

xp
erim

en
talR

esu
lts

87

Table 4.9 Average of PSNR (dB)/ SSIM results for all non-blind models with different blur levels σ= 0 (i.e., without
adding any blur), 1, 2, 3, 4, scale factor s = 3 on test set ’Set14’.

Net. Network
Type of

Network
layers # filters Filter size # par.1 σ= 0 σ= 1 σ= 2 σ= 3 σ= 4

Time/

ep2

Total

time3

Bicubic No AI LR-HR – – – –
27.54/

0.8589

26.86/

0.8325

25.37/

0.7660

24.04/

0.6937

23.05/

0.6337
- -

(64-32-1) (9-1-5) 8,032
28.67/

0.8852

28.40/

0.8841

27.41/

0.8661

26.33/

0.8051

25.19/

0.7494
10s 8.33m

Dong et al.

PAMI 2016

Re-trained

SRCNN
Default 3 layers

(64-32-1) (9-5-5) 57,184
28.96/

0.8905

28.81/

0.8878

28.21/

0.8724

26.83/

0.8206

25.40/

0.7536
13s 10.83m

(64-32-16-1) (9-5-5-5) 69,584
28.98/

0.8905

28.89/

0.8884

28.60/

0.8815

27.05/

0.8264

25.78/

0.7701
15s 12.5m

Deep

SRCNN
Deep 4 layers

(64-32-32-1) (9-5-5-5) 82,784
29.02/

0.8909

28.90/

0.8892

28.64/

0.8815

27.12/

0.8296

25.90/

0.7757
18s 15m

Default
4 layers +

concate

(32-32-64∗

-32-1)
(9-5-5-5) 80,192

29.06/

0.8921

28.98/

0.8903

28.65/

0.8826

27.18/

0.8314

26.02/

0.7787
18s 15m

New

Networks
DBSRCNN:

Merge operation

is concatenation Deep
5 layers +

concate

(32-32-64∗

-32- 32-1)
(9-5-5-5-5) 105,792

29.11/

0.8927

29.11/

0.8930

28.80/

0.8860

27.50/

0.8416

26.28/

0.7882
23s 19.17m

1 Number of parameters. 2 Training time in seconds for one epoch. 3 Total training time in minutes/ 50 epochs.
∗ The concatenation layer. The results in blue colour indicate the best results.

88 Experimental Comparisons of DeBlurring Super-Resolution

4.2.3 Evaluation of DBSR

Comparison with the state-of-the-art models

The proposed DBSR model is compared with several CNN models designed to handle

down-sampling without blurring 3. Table 4.10 shows the PSNR and SSIM [169] results of

state-of-the-art CNN models. While our proposed method may not always perform best,

our DBSR pipeline still achieves competitive results with a significantly smaller number of

parameters in comparison with the state-of-the-art models. We can notice that our model

provides competitive performance with LapSRN [87] by utilising around three times fewer

parameters, and with SRMD [194] by using about six times fewer parameters. The results

of the DBSR model are better than those obtained by SRCNN and DBSRCNN, which is

achieved by adding more layers in the DBSRCNN model to enhance the low-level features

before mapping.

Table 4.10 Average PSNR (dB) and SSIM results for σ= 0 (i.e., without adding any blur) on
datasets ’Set5’ and ’Set14’, with different scale factor s =2, 3, 4.

Dataset
Scale

Factor

LR Input SRCNN DBSRCNN (Ours) LapSRN [87] SRMD [194] DBSR (Ours)

PSNR/ SSIM

Set5

s = 2

s = 3

s = 4

33.66/ 0.930

30.40/ 0.868

28.42/ 0.810

35.68/ 0.948

31.95/ 0.845

29.79/ 0.844

36.27/ 0.951

32.60/ 0.908

30.25/ 0.858

37.52/ 0.959

33.82/ 0.922

31.54/ 0.885

37.53/ 0.959

33.86/ 0.923

31.59/ 0.887

37.23/ 0.957

33.24/ 0.917

30.84/ 0.873

Set14

s = 2

s = 3

s = 4

30.24/ 0.869

27.54/ 0.774

25.99/ 0.703

31.74/ 0.899

28.67/ 0.806

27.00/ 0.735

32.10/ 0.903

29.11/ 0.817

27.29/ 0.746

33.08/ 0.913

29.89/ 0.834

28.19/ 0.772

33.12/ 0.914

29.84/ 0.833

28.15/ 0.772

32.83/ 0.911

29.56/ 0.827

27.69/ 0.759

No of parameters - 8k 105k 813K 1,478k 236k

The results of LapSRN and SRMD models are taken from Zhang et al. [194].

3Part of these results was published at the European Signal Processing (EUSIPCO) conference 2019, Spain
[9].

4.2 Experimental Results 89

Non-Blind and Blind Scenarios

Table 4.11 shows the evaluation of the performance of DBSR on images with different

degrees of blur. We have considered two different scenarios: the non-blind and blind

scenarios. The non-blind scenario corresponds to the case when the network is trained

and tested on images with the same σ in N (0,σ); σ = 1,2,3 or 4. In the blind scenario,

the network is trained on images with kernel width N (0,σ) with σ ranging between [0.5-

3]/ [1-3]/ or [1-4]. The blind models are tested on images at any kernel width value.

The quantitative results (PSNR/ SSIM) for Set5 and Set14 point out that DBSR enhances

the quality of images over SRCNN and DBSRCNN models, for both non-blind and blind

scenarios. A possible explanation is that the added enhanced layers led to improved results

relying on cleaner features with less noise.

Although the performance of blind networks (SRCNN and DBSRCNN) decreases when

training with σ=[1-4] comparing with when training with σ=[1-3], the DBSR for σ=[1-4]

gives better performance than these models. This means that the capacity of the model

is critical when dealing with a problematic task such as a high level of blurring. Also, the

results of DBSR with σ=[0.5, 3] are better than DBSR with σ=[1, 3]. The reason for that

improvement could be the use of data augmentation for training the network. Qualitative

comparison of reconstruction are shown in Figure 4.7. More examples are presented in

Appendix B.

90
E

xp
erim

en
talC

o
m

p
ariso

n
s

o
fD

eB
lu

rrin
g

Su
p

er-R
eso

lu
tio

n

Table 4.11 Average PSNR (dB)/ and SSIM results with different blur levels σ= 1, 2, 3, 4, scale factor s = 3 on ’Set5’ and
’Set14’.

Non-blind Networks Blind Networks

SRCNN DBSRCNN DBSR
DBSRCNN

σ ∈ [1,3]

DBSR

σ ∈ [1,3]

DBSR

σ ∈ [0.5,3]

DBSRCNN

σ ∈ [1,4]

DBSR

σ ∈ [1,4]
Dataset Kernel

Width

LR Input

PSNR/ SSIM

σ= 1 29.47/ 0.847 31.55/ 0.892 32.65/ 0.907 33.24/ 0.917 31.24/ 0.888 31.50/ 0.898 32.60/ 0.909 30.85/ 0.881 31.47/ 0.899

σ= 2 27.45/ 0.789 30.29/ 0.873 32.09/ 0.897 33.05/ 0.914 30.14/ 0.884 31.51/ 0.896 31.78/ 0.900 30.08/ 0.862 31.27/ 0.893

σ= 3 25.65/ 0.724 29.03/ 0.819 30.48/ 0.858 31.36/ 0.879 29.51/ 0.840 31.01/ 0.878 31.67/ 0.886 28.40/ 0.820 30.15/ 0.868
Set5

σ= 4 24.33/ 0.672 27.36/ 0.763 28.69/ 0.803 29.83/ 0.840 26.28/ 0.746 26.29/ 0.747 26.34/ 0.746 27.72/ 0.782 29.02/ 0.822

σ= 1 26.86/ 0.745 28.40/ 0.805 29.11/ 0.818 29.56/ 0.827 28.38/ 0.805 28.70/ 0.816 29.10/ 0.820 28.09/ 0.798 28.65/ 0.815

σ= 2 25.37/ 0.679 27.41/ 0.780 28.80/ 0.808 29.47/ 0.825 27.43/ 0.765 28.53/ 0.801 28.80/ 0.813 27.28/ 0.758 28.41/ 0.798

σ= 3 24.04/ 0.617 26.33/ 0.712 27.50/ 0.753 28.00/ 0.782 26.68/ 0.722 27.80/ 0.770 28.29/ 0.788 25.99/ 0.709 27.39/ 0.765
Set14

σ= 4 23.05/ 0.574 25.19/ 0.659 26.28/ 0.698 27.06/ 0.742 24.55/ 0.635 24.60/ 0.644 24.67/ 0.648 25.46/ 0.668 26.65/ 0.723

The results in gray colour indicate the mismatched degradation assumptions in training and testing.
The results in blue colour indicate the best results; while the results in green colour are the second-best results.

4.2
E

xp
erim

en
talR

esu
lts

91

Original HR Blurred LR with σ= 3 SRCNN σ= 3 DBSRCNN σ= 3

PSNR dB 26.67 dB 30.74 dB 32.20 dB

DBSR σ= 3 blind DBSRCNN σ ∈ [1−3] blind DBSR σ ∈ [1−3] blind DBSR σ ∈ [0.5−3]

33.34 dB 31.44 dB 33.25 dB 33.99 dB

Fig. 4.7 SR with different models on images after Gaussian blur with σ= 3. The results show the non-blind and blind scenarios.
Each result is accompanied by zoom and PSNR.

92 Experimental Comparisons of DeBlurring Super-Resolution

In Table 4.12, we follow the comparison presented in Zhang et al. [194], where Gaussian

blur with σ = 1.3 and σ = 2.6 and scale factor s = 3 was considered on the Set5 dataset.

We compare our model with VDSR [81], SRMD [194] and model-based methods such as

IRCNN [192]. The VDSR performance declines severely when the assumed degradation

differs from the true one because the VDSR model is designed for bicubic degradation

which results from LR only. This occurs when the true and assumed degradations are

mismatched. Our model provides good performance compared to other models. An

example of qualitative comparison of reconstruction is shown in Figure 4.8. In particular,

it can be observed that SRMD, the best performing model in terms of PSNR, reports SR

results of comparable visual quality with the proposed DBSR, whereas the more realistic

DBSR blind pipeline achieves slightly worse sharpness (see zoom in Figure 4.8).

Table 4.12 Average PSNR (dB)/ and SSIM results with different kernel width of blur kernel
with scale factor s = 3 on ’Set5’.

Kernel

Width
LR Input VDSR [81] IRCNN [192] SRMD [194]

DBSR (Ours)

σ ∈ [0.5,3]

σ= 0.2 30.39/0.868 33.67/0.921 33.39/ 0.939 33.86/ 0.923 31.74/ 0.901

σ= 1.3 28.84/ 0.831 30.24/ - 33.31/ 0.919 33.77/ 0.922 32.70/ 0.909

σ= 2.6 26.17/ 0.744 26.31/ - 31.48/ 0.862 32.59/ 0.900 31.85/ 0.895

The results of VDSR model is taken from Zhang et al. [194].
We have gathered the results of IRCNN and SRMD from rerunning their codes which are available online,
available at https://github.com/cszn/SRMD and https://github.com/cszn/IRCNN, respectively.
The results in gray color indicate mismatched degradation assumption in training and testing. The results
in blue colour indicate the best results; while the results in green colour are the second-best results.

The VDSR model has been trained on 291 images; 91 images from Yang et al. [180], and

200 images from the Berkeley Segmentation Dataset (BSD) [110]. While the IRCNN net

has been trained using a collected large dataset that comprises 400 selected images from

the validation set of ImageNet database [38], 4,744 images of the Waterloo Exploration

Database [103], and 400 BSD images [110]. Also, the SRMD network has been trained on

large-scale color images, including 800 training images from the DIV2K dataset [2], 4,744

images from the WED dataset [103] and 400 BSD images [110] are also used.

4.2
E

xp
erim

en
talR

esu
lts

93

Original HR Blurred LR at σ= 2 VDSR IRCNN

PSNR dB 21.06 dB 21.43 dB 28.95 dB

SRMD DBSR σ= 2 blind DBSR σ ∈ [0.5,3]

29.25 dB 29.04 dB 28.31 dB

Fig. 4.8 SISR performance of different models on ’Butterfly’ image after Gaussian blur at σ= 2. In the blind scenario σ ∈ [0.5,3].

94 Experimental Comparisons of DeBlurring Super-Resolution

4.2.4 Evaluation of Harm-DBSR

Non-Blind and Blind Scenarios

In this part of the study, we first investigate whether the DBSR results can be enhanced

if the DBSR is trained on spectral information, by replacing the standard convolutional

layers with harmonic blocks; a network which we have named the Harm-DBSR network.

We have validated the performance of the Harm-DBSR with different modifications; from

a starting point of replacing the first convolution layer with a harmonic block, we reached

a point where we chose to replace all convolutional layers. Generally, utilising harmonic

blocks in standard DBSR, for all modifications we have done, gives better results than using

convolutional operations alone. However, the best results are produced when replacing

the first three layers of DBSR with harmonic blocks (Harm3L-DBSR) as reported in Tables

4.13, 4.15 and 4.14 for the testing datasets Set5 and Set14, for non-blind and blind SR

scenarios respectively. It is apparent from these tables that the Harm-DBSR version for

each convolutional network produces better results thanks to its adoption of the spectral

information. For example, Harm-DBSR compared to DBSR for the non-blind SR scenario,

and Harm-DBSR σ ∈ [1− 3] compared to DBSR σ ∈ [1− 3] for blind SR. In Table 4.15,

Harm-DBSR σ ∈ [0.5−3] produced the best results for corrupted inputs with σ= 1, 2 or 3,

while the second-best results were for DBSR σ ∈ [0.5−3]. However, the best results were

provided for corrupted images with σ= 4 by Harm-DBSR with σ ∈ [1−4] then by DBSR

with σ ∈ [1−4] since these networks trained on σ= 4; this is as expected because these

networks are trained on the blur level σ = 4. An example of qualitative comparison of

reconstruction using the DBSR model and the Harm-DBSR version is shown in Figure 4.9.

4.2 Experimental Results 95

Table 4.13 Average PSNR (dB)/ and SSIM results for non-blind networks with different blur
levels at σ= 1,2,3,4, scale factor s = 3 on ’Set5’ and ’Set14’.

Dataset
Kernel

Width
LR Input SRCNN DBSRCNN DBSR Harm3L-DBSR

σ= 1 29.47/ 0.847 31.55/ 0.892 32.65/ 0.907 33.24/ 0.917 33.39/ 0.918

σ= 2 27.45/ 0.789 30.29/ 0.873 32.09/ 0.897 33.05/ 0.914 33.25/ 0.917

σ= 3 25.65/ 0.724 29.03/ 0.819 30.48/ 0.858 31.36/ 0.879 31.82/ 0.892
Set5

σ= 4 24.33/ 0.672 27.36/ 0.763 28.69/ 0.803 29.83/ 0.840 30.03/ 0.848

σ= 1 26.86/ 0.745 28.40/ 0.805 29.11/ 0.818 29.56/ 0.827 29.66/ 0.829

σ= 2 25.37/ 0.679 27.41/ 0.780 28.80/ 0.808 29.47/ 0.825 29.55/ 0.828

σ= 3 24.04/ 0.617 26.33/ 0.712 27.50/ 0.753 28.00/ 0.782 28.32/ 0.795
Set14

σ= 4 23.05/ 0.574 25.19/ 0.659 26.28/ 0.698 27.06/ 0.742 27.35/ 0.749

The results in blue colour indicate the best results; while the results in green colour are the second-best
results.

Table 4.14 Average PSNR (dB)/ and SSIM results with different kernel width of blur kernel
with scale factor s = 3 on ’Set5’. Our presented results of DBSR and Harm3L-DBSR are from
blind scenarios.

Kernel

Width
LR Input VDSR[81] IRCNN[192] SRMD[194]

DBSR (Ours)

σ ∈ [0.5,3]

Harm3L-DBSR (Ours)

σ ∈ [0.5,3]

σ= 0.2 30.39/ 0.868 33.67/ 0.921 33.39/ 0.939 33.86/ 0.923 31.74/ 0.901 32.10/ 0.905

σ= 1.3 28.84/ 0.831 30.24/ - 33.31/ 0.919 33.77/ 0.922 32.70/ 0.909 32.91/ 0.912

σ= 2.6 26.17/ 0.744 26.31/ - 31.48/ 0.862 32.59/ 0.900 31.85/ 0.895 31.79/ 0.894

The results of VDSR model are taken from Zhang et al. [194].
We obtained the results of IRCNN and SRMD from re-running their codes which are available online,
available at https://github.com/cszn/SRMD and https://github.com/cszn/IRCNN, respectively.
The results in gray colour indicate mismatched degradation assumption in training and testing.
The results in blue colour indicate the best results; while the results in green colour are the second-best
results.

96
E

xp
erim

en
talC

o
m

p
ariso

n
s

o
fD

eB
lu

rrin
g

Su
p

er-R
eso

lu
tio

n
Table 4.15 Average PSNR (dB)/ and SSIM results for blind networks with different blur levels σ= 1, 2, 3, 4, scale factor
s = 3 on ’Set5’ and ’Set14’.

Dataset
Kernel

Width
LR Input

DBSRCNN

σ ∈ [1,3]

DBSR

σ ∈ [1,3]

Harm3L-DBSR

σ ∈ [1,3]

DBSR

σ ∈ [0.5,3]

Harm3L-DBSR

σ ∈ [0.5,3]

DBSRCNN

σ ∈ [1,4]

DBSR

σ ∈ [1,4]

Harm3L-DBSR

σ ∈ [1,4]

σ= 1 29.47/ 0.847 31.24/ 0.888 31.50/ 0.898 31.75/ 0.904 32.60/ 0.909 32.85/ 0.912 30.85/ 0.881 31.47/ 0.899 31.62/ 0.902

σ= 2 27.45/ 0.789 30.14/ 0.884 31.51/ 0.896 31.82/ 0.901 31.78/ 0.900 32.33/ 0.906 30.08/ 0.862 31.27/ 0.893 31.52/ 0.896

σ= 3 25.65/ 0.724 29.51/ 0.840 31.01/ 0.878 31.23/ 0.881 31.67/ 0.886 32.03/ 0.895 28.40/ 0.820 30.15/ 0.868 30.55/ 0.875
Set5

σ= 4 24.33/ 0.672 26.28/ 0.746 26.29/ 0.747 26.28/ 0.746 26.34/ 0.746 26.07/ 0.736 27.72/ 0.782 29.02/ 0.822 29.25/ 0.826

σ= 1 26.86/ 0.745 28.38/ 0.805 28.70/ 0.816 28.92/ 0.821 29.10/ 0.820 29.23/ 0.823 28.09/ 0.798 28.65/ 0.815 28.84/ 0.819

σ= 2 25.37/ 0.679 27.43/ 0.765 28.53/ 0.801 28.82/ 0.807 28.80/ 0.813 29.08/ 0.818 27.28/ 0.758 28.41/ 0.798 28.60/ 0.803

σ= 3 24.04/ 0.617 26.68/ 0.722 27.80/ 0.770 27.94/ 0.776 28.29/ 0.788 28.55/ 0.800 25.99/ 0.709 27.39/ 0.765 27.70/ 0.774
Set14

σ= 4 23.05/ 0.574 24.55/ 0.635 24.60/ 0.644 24.59/ 0.644 24.67/ 0.648 24.42/ 0.636 25.46/ 0.668 26.65/ 0.723 26.80/ 0.729

The results in gray color indicate the mismatched degradation assumptions in training and testing.
The results in blue colour indicate the best results; while the results in green colour are the second-best results.

4.2
E

xp
erim

en
talR

esu
lts

97

Original HR Blurred LR with σ= 4 DBSR σ= 4 Harm-DBSR σ= 4

PSNR dB 19.07 dB 23.96 dB 25.19 dB

blind Harm-DBSR σ ∈ [1−3] blind DBSR σ ∈ [0.5−3] blind DBSR σ ∈ [1−4] blind Harm-DBSR σ ∈ [1−4]

21.05 dB 21.10 dB 23.20 dB 23.59 dB

Fig. 4.9 SR with different models on images after Gaussian blur with σ= 4. The results show the non-blind and blind scenarios.
Each result is accompanied by zoom and PSNR.

98 Experimental Comparisons of DeBlurring Super-Resolution

Compression of the Harm-DBSR Network

For the purpose of this research, we want to know the performance of the networks after

compression by using part of the DCT coefficients inside the harmonic blocks. Conse-

quently, we retrained the DBSR with σ= [1,3] with a different number of levels of coeffi-

cients λ, as shown in Table 4.16. Although the DBSR σ= [0.5,3] gives the best performance,

DBSR σ = [1,3] is faster in training; therefore we have adopted the DBSR σ = [1,3] as a

baseline to perform the comparison between the performance of standard networks and

the compressed nets. We have kept the model structure and the training data to train

the different networks, we changed only all convolutional layers with harmonic blocks

(denoted as Harm8L-DBSR), and then used different λ to get different nets with various

levels of compression. Firstly, the harmonic network Harm8L-DBSR outperforms the

standard DBSR, see Table 4.16. We trained various compressed harmonic networks on

limited spectral information of hidden features with λ= 5, 4, 3, 2; by applying limited DCT

coefficients for each feature = 15, 10, 6, 3 respectively. Also, we have trained a network with

λ= 6 for the first layer and λ= 4 for the remaining seven layers (denoted as λ= 6/4L). The

second-best result after Harm8L-DBSR, which uses the full spectrum, is Harm8L-DBSR

with λ= 6/4L, by using about two and a half times fewer parameters. Also, from the re-

sults, we can notice that the compressed networks with λ= 5, 4 and 3 except λ= 2 give

good results when compared to the standard convolutional DBSR. The performance of

Harm8L-DBSR with λ= 5 is slightly lower than the full harmonic network Harm8L-DBSR,

however, it still outperforms the DBSR. Harm8L-DBSR with λ= 4 and 3 gives a compet-

itive performance with DBSR, notably with λ= 3 by employing around four times fewer

parameters. Besides, the performance degradation when implementing λ= 2 could return

to the fact that some truncated high-frequencies coefficients carry important features for

the task of restoration. Figure 4.10 shows an example of the DBSR network sizes versus

their performance; results for the blind convolutional network DBSR σ = [1,3], and its

compression using the harmonic blocks. An example of a qualitative comparison of the

reconstruction using the Harm8L-DBSR net with various levels of compression is shown in

Figure 4.11.

4.2
E

xp
erim

en
talR

esu
lts

99

Table 4.16 Average PSNR (dB)/ and SSIM results for the blind convolutional network DBSR σ= [1,3], and its compres-
sion using the harmonic blocks; the results are calculated for different blur levels σ= 1, 2, 3, scale factor s = 3 on ’Set5’
and ’Set14’.

Dataset
Kernel

Width
LR Input DBSR Harm8L-DBSR

Harm8L-DBSR

λ= 5∗

Harm8L-DBSR

λ= 4∗

Harm8L-DBSR

λ= 3∗

Harm8L-DBSR

λ= 2∗

Harm8L-DBSR

λ= 6,4/L∗∗

Set5

σ= 1 29.47/ 0.847 31.50/ 0.898 31.67/ 0.903 31.60/ 0.900 31.50/ 0.899 31.22/ 0.893 29.71/ 0.853 31.66/ 0.901

σ= 2 27.45/ 0.789 31.51/ 0.896 31.74/ 0.899 31.61/ 0.897 31.56/0.896 31.23/ 0.890 30.07/ 0.861 31.62/ 0.898

σ= 3 25.65/ 0.724 31.01/ 0.878 31.27/ 0.883 31.16/ 0.880 31.10/ 0.879 30.82/ 0.872 29.47/ 0.838 31.10 / 0.880

Set14

σ= 1 26.86/ 0.745 28.70/ 0.816 28.82/ 0.819 28.78/ 0.818 28.70/ 0.816 28.55/0.811 27.33/ 0.769 28.81/ 0.818

σ= 2 25.37/ 0.679 28.53/ 0.801 28.75/ 0.806 28.67/ 0.803 28.58/ 0.803 28.28/ 0.794 27.36/ 0.759 28.68/ 0.804

σ= 3 24.04/ 0.617 27.80/ 0.770 28.00/ 0.777 27.90/ 0.774 27.85/ 0.773 27.55/0.761 26.60/ 0.720 27.87/ 0.774

Number of parameters 236,641 236,641 139,937 93,377 56,129 28,193 94,081

∗ means the number of levels of coefficients used in all harmonic layers, where for λ= 5, 4, 3, 2 ⇒ the number of coefficients used in each
layer = 15, 10, 6, 3 respectively. For ∗∗, we have used λ= 6 for the first layer and λ= 4 for the remaining seven layers.
- The results in blue colour indicate the best results; while the results in green colour are the second-best results.
- All the networks introduced in this table were trained on the same training data, where the only difference is the compression degree.

100
E

xp
erim

en
talC

o
m

p
ariso

n
s

o
fD

eB
lu

rrin
g

Su
p

er-R
eso

lu
tio

n

Image deblurring and SISR using CNN
(Compressed Harm-DBSR)

DBSR,
31.5

Harm8L-DBSR,
31.67

Harm8L-DBSR λ = 5,
31.6

Harm8L-DBSR λ = 4,
31.5

Harm8L-DBSR λ = 3,
31.22

Harm8L-DBSR λ = 2,
29.71

Harm8L-DBSR λ = 6/4,
31.66

29.4
29.6
29.8

30
30.2
30.4
30.6
30.8

31
31.2
31.4
31.6
31.8

32

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 220,000 240,000 260,000

PS
N

R
 (

hi
gh

es
t i

s
be

st
)

Number of Parameters (lowest is best)

Architectures

236,641 236,641 139,937 93,377 56,129 28,193 94,081Parameter count:

Average PSNR/ and SSIM results for the blind convolutional network DBSR σ = [1,3], and its
compression using the harmonic blocks; the results are calculated for σ = 1, scale factor s = 3 on ’Set5’.

Fig. 4.10 Average PSNR/ and SSIM results for the blind convolutional network DBSR σ = [1,3], and its compression using the
harmonic blocks; the results are calculated for σ = 1, scale factor s = 3 on ’Set5’. The Bubble size is according to the number of
parameters. The full harmonic network Harm8L-DBSR outperforms the standard DBSR, by using the same number of parameters.
From the results, we can notice that the compressed networks with λ= 5, 4 and 3 except λ= 2 give good results when compared
to the standard convolutional DBSR. However, the network with λ= 6/4L used about two and a half times fewer parameters gives
the second-best result after Harm8L-DBSR. Adopting the DCT filters enabled us to compress the harmonic nets and use fewer
parameters by choosing the most critical low-frequency coefficients.

4.2 Experimental Results 101

Original HR Blurred LR σ= 2 DBSR σ ∈ [1−3]

PSNR 25.48 30.29

Harm8L-DBSR Harm8L-DBSR λ= 6/4 Harm8L-DBSR λ= 5

30.50 30.48 30.46

Harm8L-DBSR λ= 4 Harm8L-DBSR λ= 3 Harm8L-DBSR λ= 2

30.31 30.06 28.56

Fig. 4.11 SR with different models on images after Gaussian blur with σ= 2. The results show the
blind scenario σ= [1,3]. Each result is accompanied by zoom and PSNR dB.

102 Experimental Comparisons of DeBlurring Super-Resolution

4.3 Conclusion

In this chapter, we have extensively evaluated the performance of the SRCNN architecture

for recovering high-resolution images from low-resolution images corrupted by blur or

noise. The SRCNN network has worked well to recover SR images from LR ones. However,

the higher the blurring levels in images in addition to the decrease in resolution, the

worse the results. Although the improvement by using SRCNN vs baseline increases with

increased blurring levels, the results are still unsatisfactory. We note that low-level features

extracted using a single layer (the first layer) in the SRCNN network are still blurred,

making the model less than optimal for tackling noise. Therefore, we have proposed a new

architecture DBSRCNN that enhances the reconstruction by boosting the relevant features

that were originally lost in the SRCNN pipeline using the concatenation operation. Our

experimental study with different levels of Gaussian blur demonstrates that our revised

deeper architecture performs better in both non-blind and blind testing scenarios.

To make the architecture more efficient, we have presented the DBSR model. This

model is an extension model for the DBSRCNN model, to which we have proposed adding

convolutional layers to enhance the extracted features. We have reported a panel of

comparisons with the state-of-the-art deep learning (e.g., VDSR[81], LapSRN [87] and

SRMD[194]) and with model-based methods (e.g., IRCNN[192]), and we have highlighted

the competitive performance of the proposed model DBSR for super-resolution on blurred

images. Importantly, these results are obtained by a model with three to six times fewer

parameters, where the SRMD model includes 1,478k of parameters, LapSRN has 813K

parameters, but DBSR is designed with 236k of parameters.

Lastly, we have applied the harmonic blocks in the standard convolutional DBSR, to

evaluate the usage of the spectrum information empirically. We have demonstrated that

using spectral information has helped to enhance the results to a greater extent than using

CNN alone, where the Harm-DBSR produced outputs that were better than the DBSR.

Furthermore, adopting the DCT filters enabled us to compress the harmonic nets and use

fewer parameters by choosing the most critical low-frequency coefficients. We have shown

that the compressed networks gave a competitive performance with DBSR.

In the next chapters, we employ the proposed CNN architectures in different image

reconstruction applications. In Chapter 5, we reduce the artefacts resulted from JPEG-

4.3 Conclusion 103

compression. In Chapter 6, we then use our proposed networks for a denoising application

with a real dataset.

Chapter 5

Artefact Reduction in JPEG-Compressed

Images

A variety of methods have been proposed to reduce the artefacts in JPEG compressed im-

ages. These can generally be divided into two main types; namely deblocking methods and

restoration methods. Deblocking methods are focused on suppressing ringing and block-

ing artefacts, and various types of filters have been utilised in the spatial domain to remove

the blocking artefacts [98, 117, 125, 166]. Wavelet transform has also been employed to

perform denoising in the frequency domain [96]. One of the most modern state-of-the-art

deblocking methods is the Pointwise Shape-Adaptive DCT (SA-DCT) [52]. This approach,

however, is not capable of reproducing sharp edges and it oversmoothes the image textures.

On the other hand, restoration methods deal with the compression as a distortion opera-

tion. These methods include projection on convex sets based method (POCS) [184], solving

a MAP problem (FoE) [145] and sparse-coding-based methods [77]. More recently, CNNs

have been used to mitigate compression artefacts and restore distorted images [41, 149]

delivering state-of-the-art results.

In this chapter, we aim to propose CNNs of reduced size that effectively suppress

artefacts of JPEG-compressed images 1. The size reduction allows one to handle training as

well as deployment of such CNNs more efficiently. Firstly, we present a novel CNN (referred

to as SA-CAR6) for image restoration, which delivers better performance than the state-

1Part of the results was published at the Irish Machine Vision and Image Processing (IMVIP) conference
2018, Belfast [6].

106 Artefact Reduction in JPEG-Compressed Images

of-the-art CNN-based models [41, 149] and employs fewer parameters. Smaller models

are a better option since they reduce the computational complexity, and allow us to avoid

problems of large networks such as overfitting, vanishing or exploding gradients. Secondly,

we consider several CNNs with different parameter counts (DA-CAR3, DA-CAR4, DA-CAR5)

to show that we can achieve the same or better results using smaller networks with a lower

parameter count. Section 5.1 discusses the related work. In Section 5.2, we present the

dataset employed and in Section 5.3 the metrics used for evaluation and comparisons.

Section 5.4 reports evaluation results and comparisons with state-of-the-art models. The

conclusion is presented in Section 5.5.

5.1 Related Work

It has become commonplace to apply lossy compression, e.g., JPEG and HEVC-MSP, to

images and videos to save storage space and bandwidth. Much attention has been at-

tracted to enhancing the quality and compression power of algorithms, in particular, in

large companies operating huge images and video volumes such as Facebook and Twitter.

Compression is a family of data encoding techniques that often rely on inexact approx-

imations to represent encoded content to achieve the most competitive performance.

The compression approach leads to undesirable artefacts such as blurring, blocking and

ringing, which are addressed by artefact reduction methods.

JPEG compression is probably the widest used lossy image compression approach. The

underlying technique separates an image into 8×8-pixel blocks followed by the Discrete

Cosine Transformation (DCT) being applied to each block separately. In order to achieve

compression, quantisation is then performed on the DCT coefficients, which inevitably

results in the appearance of visual artefacts. Blurring appears because the high-frequency

components are lost. Ringing, also referred to as the Gibbs phenomenon, takes place

because of the coarse quantisation of the high-frequency components. Finally, the blocking

artefacts are due to the separate processing and encoding of blocks without consideration

and, hence, loss of adjacency information between the blocks.

There are many different methods that have been proposed in the literature to deal

with the numerous types of artefacts, some of which target specific types of compression

side-effects. For example, deblocking methods are utilised to decrease blocking artefacts by

5.1 Related Work 107

applying filters on or across the borders [98, 117, 125, 166], or using thresholding by wavelet

transform [96] or Shape-Adaptive DCT transform (SA-DCT) [52]. Although these methods

deal reasonably well with blocking artefacts and ringing effects, the results suffer from

blurring. Other methods consider compression as distortion which requires reconstruction

techniques [74, 77, 145, 184]. These methods output sharpened images featuring smooth

regions and noisy edges.

Dong et al. utilised the CNN to remove the compression artefacts (ARCNN: Artefacts

Removing using Convolutional Neural Network) [41]. The structure of ARCNN depends on

Super Resolution CNN (SRCNN) which was proposed to infer high-resolution images from

lower-resolution input [40]. The SRCNN architecture consists of three layers: the feature

extraction layer, non-linear mapping layer and reconstruction layer, and this structure has

been set according to the sparse coding method. The three-layer SRCNN was not sufficient

to restore compressed images, so extra feature enhancement layers were added to SRCNN

after the feature extraction layer to enhance the extracted features, which resulted in a

four-layer ARCNN.

Svoboda et al. proposed two different convolutional networks for JPEG restoration

called L4 and L8 Residual architectures [149]. Similar to Kim et al. for super-resolution [81],

residual learning was adopted in L4 and L8, where the network learns the residual image

r = x− x̂. The estimated residual image r is then subtracted from the corrupted input x

to obtain the restored output image x̂, instead of learning the reconstructed whole image

directly. Their approach is based on the idea of ‘deeper is better ’, but deeper networks

take a long time to train and may suffer from overfitting and vanishing or exploding

gradients. To alleviate these problems, skip architecture was employed [101] as well as

residual learning [68]. The skip architecture allows the network to ‘shortcut’ the input to

the intermediate layers. This allows the more complex image content to be used in the

middle layers as local context information, since this is critical for reducing the impact of

artefacts.

108 Artefact Reduction in JPEG-Compressed Images

Original image JPEG quality q = 20 JPEG quality q = 10

Fig. 5.1 Visualisation example from LIVE1 dataset of compressed corrupted quality images for
sailing 2 image at JPEG quality q = 10 (Lower quality) & 20 (higher quality).

5.2 Data and Training

The BSDS500 dataset [14] contains 400 training images that were used for training all

networks. The validation set from BSDS500, which comprises 100 high-quality images, and

the LIVE1 dataset [138] are used as test sets for the different networks. The LIVE1 dataset

has 29 images in uncompressed BMP format; this dataset is often used for super-resolution

[178] and image quality assessment [169]. The training images are split into 33×33 sub-

images {yi }. These sub-images are generated from the ground truth images with a stride of

10, to create 521,984 sub-images. We have transformed the RGB images into a YCbCr colour

model to deal with grey-scale by using the Y channel (luminance component) since our

5.3 Quantitative Metrics for Comparisons 109

focus is on removing the different artefacts, not on chrominance distortions. The network

is trained on a batch size of 64 with learning rate α= 0.002. The JPEG-compressed images

{xi } are generated from the grey-scale sub-images using MATLAB JPEG encoder. We have

used two different quality settings: q = 10 (low quality) and q = 20 (mild quality). Figure 5.1

displays a qualitative example of an image with different qualities. The number of training

epochs is set to 60. All implementations are in Keras (Python, TensorFlow backend), with

training and experiments run on the following system: Intel(R) Core i7 CPU (2.80 GHz),

16GB RAM, GTX Geforce 1050 GPU.

5.3 Quantitative Metrics for Comparisons

Three different metrics are employed to evaluate the quantitative performance and assess

the perceptual quality of the restored images. The first metric is the peak signal-to-noise-

ratio (PSNR) that is related to the MSE used as a cost function for optimising the networks.

PSNR does not provide an assessment of perceptual quality. The second metric is the

structural similarity (SSIM) [169] which quantifies the perceptual quality. PSNR-B [185] is

the third metric considered. This metric constitutes a modification of PSNR which takes

into account the blocking effect factor (BEF). PSNR-B is more sensitive to blocking than

SSIM.

5.4 Benchmark Comparisons

There is a rule in DL says "The deeper is better", but here we want to show that smaller

CNNs with good design and carefully chosen filter size can give outcomes which outper-

form the results of deeper structures. Therefore, we have proposed different CNNs of

reduced size that effectively suppress artefacts of JPEG-compressed images compared to

the state-of-the-art deeper structures.

AR-CNN (9-7-1-5) [41] is based on feature enhancement and an extra layer was origi-

nally added after the feature extraction layer in SRCNN (9-1-5) to further refine and enhance

the features, as we discussed in section 5.1. However, our DA-CAR3 (9-7-5) architecture

allows us to achieve the same performance by using only three layers when using suitable

filter sizes; see Table 5.1 and Table 5.3 for quality = 10. Therefore, we have concluded that

110 Artefact Reduction in JPEG-Compressed Images

the ARCNN (9-7-1-5) enhancement is not due to the extra features enhancement layer

added to the SRCNN (9-1-5) model as the authors argued in [41], where we have achieved

almost the same result using only three layers in the DA-CAR3 (9-7-5) model. We conclude

that this improvement is attributed to utilising a larger filter size in the mapping stage,

which indicates that using the neighbouring information during mapping is useful.

Our proposed network DA-CAR3 with three layers using direct architecture with filter

sizes (9-7-5) performs better than both the three layers SRCNN (9-1-5) and the four layers

AR-CNN (9-7-1-5) while roughly using the same number of parameters. Our proposed

DA-CAR4 network has 30% of the parameters of AR-CNN, see Table 5.1 and Table 5.3, with

equivalent performance to DA-CAR3 and AR-CNN models. This is achieved by selecting a

suitable filter size with the number of layers. The DA-CAR5 network achieves even better

results using more parameters than DA-CAR4 but still fewer by 75% of the parameters of

the AR-CNN network. Furthermore, DA-CAR5 is slightly better than L4 for quality q = 10,

while the results of L4 on LIVE1 and BSDS500 datasets are better than AR-CNN for JPEG

quality q=10 (see Tables 5.1 and 5.3) and for JPEG quality q=20 (see Tables 5.2 and 5.4).

From these comparisons, we can conclude that deeper networks are not usually better and

sometimes give worse results than smaller networks. L8 (which merges layers 4+1 and 6+1),

and which has been trained for the quality q = 20 only [149], is better than L4 (see Table 5.2

and 5.4). Svoboda et al. used residual learning and skip architecture to avoid the problems

inherent in deeper networks. Our new architecture SA-CAR6 (which merges layers 2+1)

outperforms L4 and L8, by using around 60% of the number of parameters of L8; see Table

5.2 and Table 5.4. Figures 5.2 and 5.3 illustrate examples of proposed CNN structures of

different sizes versus their performance for quality =10 and 20, respectively. Figures 5.4,

5.5 and 5.6 present image processing results obtained by employing the proposed and

benchmark architectures.

5.4 Benchmark Comparisons 111

Table 5.1 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB) and
SSIM on the LIVE1 dataset for JPEG quality q = 10.

Architecture
Number

of Layers
Filter size Feature maps PSNR PSNR-B SSIM

Parameter

count

Input JPEG - - - 27.77 25.33 0.791 -

SA-DCT [52] - - - 28.65 28.01 0.809 -

SRCNN [41] 3 (9-1-5) (64-32-1) 28.91 28.52 0.818 8,032

AR-CNN [41] 4 (9-7-1-5) (64-32-16-1) 28.98 28.70 0.822 106,448

DA-CAR3 (Ours) 3 (9-7-5) (64-32-1) 29.08 28.71 0.823 106,336

DA-CAR4 (Ours) 4 (9-3-3-5) (64-32-32-1) 29.07 28.71 0.823 33,632

DA-CAR5 (Ours) 5 (9-5-5-5-5) (32-32-32-32-1) 29.14 28.77 0.825 80,192

L4 Residual [149] 4 (11-3-3-5) (48-64-64-1) 29.08 28.71 0.824 71,920

SA-CAR6 (Ours) 6 (9-5-5-5- (32-32-32-32- 29.16 28.80 0.826 131,392

(2+1) 5-5) 32-1)

The results in blue colour indicate the best results, and the results in green colour are the second-best results.
Lower quality, therefore, it gives lower PSNR.

Table 5.2 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB) and
SSIM on the LIVE1 dataset for JPEG quality q = 20.

Architecture
Number

of Layers
Filter size Feature maps PSNR PSNR-B SSIM

Parameter

count

Input JPEG - - - 30.07 27.57 0.868 -

SA-DCT [52] - - - 30.81 29.82 0.878 -

AR-CNN [41] 4 (9-7-1-5) (64-32-16-1) 31.29 30.76 0.887 106,448

L4 Residual [149] 4 (11-3-3-5) (48-64-64-1) 31.42 30.83 0.890 71,920

L8 Residual [149] 8 (11-3-3-3- (32-64-64-64- 31.51 30.92 0.891 220,064

(4+1),(6+1) 1-5-1-5) 64-64-128-1)

SA-CAR6 (Ours) 6 (9-5-5-5- (32-32-32-32- 31.52 30.97 0.892 131,392

(2+1) 5-5) 32-1)

The results in blue colour indicate the best results, and the results in green colour are the second-best results.
Higher quality, therefore, it gives higher PSNR.

112
A

rtefactR
ed

u
ctio

n
in

JP
E

G
-C

o
m

p
ressed

Im
ages

Average image reconstruction results reported by PSNR (dB) on the LIVE1 dataset for JPEG quality q = 10

Artefact Reduction in JPEG-Compressed Images

SA-DCT [Foi et al., 2007],
28.65

SRCNN [Dong et al., 2015],
28.91

DA-CAR4 (Ours),
29.07

L4 Residual [Svoboda et al., 2016],
29.08

DA-CAR5 (Ours),
29.14

DA-CAR3 (Ours),
29.08

AR-CNN [Dong et al., 2015],
28.98

SA-CAR6 (Ours),
29.16

28.5

28.6

28.7

28.8

28.9

29

29.1

29.2

29.3

0 20000 40000 60000 80000 100000 120000 140000 160000

P
S

N
R

 (
hi

gh
es

t
is

 b
es

t)

Number of Parameters (lowest is best)

Architectures

8,032 33,632 71,920 80,192 106,336 106,448 131,392Parameter count:

Fig. 5.2 Average image reconstruction results reported by PSNR (dB) on the LIVE1 dataset for JPEG quality q = 10. The Bubble size
is according to the number of parameters. Our proposed DA-CAR4 network has fewer parameters (where it uses only 30% of the
parameters of AR-CNN) but with better performance, and this is achieved by selecting a suitable filter size with the number of
layers. DA-CAR5 network realises even better results by using 75% of the parameters of AR-CNN network.

5.4
B

en
ch

m
ark

C
o

m
p

ariso
n

s
113

Average image reconstruction results reported by PSNR (dB) on the LIVE1 dataset for JPEG quality q = 20

Artefact Reduction in JPEG-Compressed Images

SA-DCT [Foi et al., 2007],
30.81

L4 Residual [Svoboda et al., 2016] ,
31.42

AR-CNN [Dong et al., 2015],
31.29

SA-CAR6 (Ours),
31.52

L8 Residual [Svoboda et al., 2016] ,
31.51

30.6

30.7

30.8

30.9

31

31.1

31.2

31.3

31.4

31.5

31.6

31.7

-20000 30000 80000 130000 180000 230000 280000

P
S

N
R

 (
hi

gh
es

t
is

 b
es

t)

Number of Parameters (lowest is best)

Architectures

71920 106448 131392 220064Parameter count:

Fig. 5.3 Average image reconstruction results reported by PSNR (dB) on the LIVE1 dataset for JPEG quality q = 20. The Bubble size
is according to the number of parameters. Our architecture SA-CAR6 outperforms L8 model, by using around 60% of the number
of parameters.

114 Artefact Reduction in JPEG-Compressed Images

Table 5.3 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB) and
SSIM on the BSDS500 validation dataset for JPEG quality q = 10.

Architecture
Number

of Layers
Filter size Feature maps PSNR PSNR-B SSIM

Parameter

count

Input JPEG - - - 27.58 24.97 0.769 -

SRCNN [41] 3 (9-1-5) (64-32-1) 28.64 28.18 0.793 8,032

AR-CNN [41] 4 (9-7-1-5) (64-32-16-1) 28.74 28.31 0.796 106,448

DA-CAR3 (Ours) 3 (9-7-5) (64-32-1) 28.76 28.30 0.797 106,336

DA-CAR4 (Ours) 4 (9-3-3-5) (64-32-32-1) 28.75 28.30 0.797 33,632

DA-CAR5 (Ours) 5 (9-5-5-5-5) (32-32-32-32-1) 28.81 28.35 0.799 80,192

L4 Residual [149] 4 (11-3-3-5) (48-64-64-1) 28.75 28.29 0.800 71,920

SA-CAR6 (Ours) 6 (9-5-5-5- (32-32-32-32- 28.82 28.37 0.801 131,392

(2+1) 5-5) 32-1)

The results in blue colour indicate the best results, and the results in green colour are the second-best results.
Lower quality, therefore, it gives lower PSNR.

Table 5.4 Average image reconstruction results reported by PSNR (dB), PSNR-B (dB) and
SSIM on the BSDS500 validation dataset for JPEG quality q = 20.

Architecture
Number

of Layers
Filter size Feature maps PSNR PSNR-B SSIM

Parameter

count

Input JPEG - - - 29.72 26.97 0.852 -

AR-CNN [41] 4 (9-7-1-5) (64-32-16-1) 30.80 30.08 0.868 106,448

L4 Residual [149] 4 (11-3-3-5) (48-64-64-1) 30.90 30.13 0.871 71,920

L8 Residual [149] 8 (11-3-3-3- (32-64-64-64- 30.99 30.19 0.872 220,064

(4+1),(6+1) 1-5-1-5) 64-64-128-1)

SA-CAR6 (Ours) 6 (9-5-5-5- (32-32-32-32- 31.00 30.25 0.873 131,392

(2+1) 5-5) 32-1)

The results in blue colour indicate the best results, and the results in green colour are the second-best results.
Higher quality, therefore, it gives higher PSNR.

5.4 Benchmark Comparisons 115

Original JPEG SRCNN

PSNR/
SSIM/
PSNR-B

32.46/
0.856/
29.64

34.18/
0.903/
33.78

AR-CNN L4 DA-CAR3

34.37/
0.908/
33.98

34.47/
0.911/
34.16

34.42/
0.909/
34.06

DA-CAR4 DA-CAR5 SA-CAR6

34.43/
0.909/
34.08

34.52/
0.911/
34.20

34.60/
0.912/
34.28

Fig. 5.4 Qualitative evaluation of reconstruction quality for parrots image using different networks
for JPEG quality q = 10. Each result is accompanied by zoom and PSNR dB/ SSIM/ PSNR-B dB.

116 Artefact Reduction in JPEG-Compressed Images

Original JPEG SRCNN

PSNR/
SSIM/
PSNR

25.77 /
0.778/
23.02

27.24/
0.813/
26.83

AR-CNN L4 DA-CAR3

27.40/
0.819/
26.97

27.47/
0.821/
27.00

27.44/
0.820/
26.96

DA-CAR4 DA-CAR5 SA-CAR6

27.43/
0.819/
26.98

27.53/
0.823/
27.06

27.56/
0.824/
27.12

Fig. 5.5 Qualitative evaluation of reconstruction quality using different networks for JPEG quality q
= 10. Each result is accompanied by zoom and PSNR dB/ SSIM/ PSNR-B dB.

5.4 Benchmark Comparisons 117

Original

PSNR /SSIM /PSNR-B

JPEG L4

33.97 /0.892 /31.44 35.51 /0.916 /35.26

L8 SA-CAR6

35.56 /0.917 /35.33 35.66 /0.919 /35.44

Fig. 5.6 Qualitative evaluation of reconstruction quality using different networks for JPEG quality q
= 20. Each result is accompanied by zoom and PSNR dB/ SSIM/ PSNR-B dB.

118 Artefact Reduction in JPEG-Compressed Images

5.5 Conclusion

In this work, we have proposed different CNNs with reduced size compared to the state-

of-the-art networks with keeping the performance. Network performance significantly

depends on the size of filters across the architecture. If the suitable filter size is used, the

same or higher performance is achieved in comparison with the state-of-the-art structures,

as we have demonstrated with our model DA-CAR3(9-7-5) that provides better perfor-

mance more than the performance of SRCN(9-1-5) and AR-CNN(9-7-1-5). High numbers

of parameters used in the network lead to an increase in the computation burden and

the time required for both training and inference. In practice, the choice between models

performing the same task may often be made based on the limitations of hardware and

energy consumption requirements. We have proposed and evaluated the performance

of smaller CNN architectures with a carefully selected structural layout. Our evaluation

and benchmark comparisons demonstrate that many of the state-of-the-art image en-

hancement and JPEG artefact suppression models can be shrunk without compromising

their qualitative performance. Experimentally, we have shown that DA-CAR4 gives almost

the same results of AR-CNN with only 30% of parameters. DA-CAR5 outperformance the

AR-CNN by using 75% of parameters. Also, SA-CAR6 achieves better performance than L8

by utilising fewer parameters with around 60%. We conclude that designing smaller nets

with chosen suitable size of filters can provide better performance than large models with

avoiding the problems of these nets as training time and overfitting gradients. In the next

chapter, we will address the denoising of a real dataset using our proposed networks.

Chapter 6

Denoising in a Real Scenario

Nowadays, the process of denoising, which removes the noise and recovers meaningful

information from corrupted images to obtain high-quality images, is a fundamental prob-

lem. Images during acquisition are inevitably degraded by noise, causing loss of image

detail. Therefore, different methods for noise reduction (or denoising) have been proposed

to deal with this issue. In particular, in recent years, deep learning-based techniques have

shown excellent performance, where DNN methods depend only on data without any

assumption around the distribution of the noise. This factor characterises DNN methods.

Dong et al. [42] and Mao et al. [109] showed that Deep Neural Networks (DNN) surpass

traditional (Non-Neural Network-based) methods for image restoration such as image

denoising and image super-resolution. However, it has been recently shown that when

considering real noisy image datasets, traditional techniques such as BM3D [35] outper-

form state-of-the-art methods for denoising [12]. We proposed a DNN pipeline (DBSR) [9],

and in this chapter, we compare its performance on the real dataset (RENOIR) [12] and

show how it competes against the leading techniques. The De-Blurring Super-Resolution

(DBSR) model described in Section 3.3.1 is designed to recover deblurred high-resolution

images from blurred low-resolution images. In this chapter, the DBSR model is trained to

denoise images in the real RENOIR dataset to assess its performance on real noise1. This

chapter is structured as follows: In Section 6.1 we give a brief discussion for related work.

Section 6.2 discusses the real RENOIR Dataset introduced by Anaya et al. [12]. In Section

1Part of the results was published at the Irish Machine Vision and Image Processing (IMVIP) conference
2019, Dublin [8].

120 Denoising in a Real Scenario

6.3, we present the training and testing of the data. Then, we discuss the evaluation of

denoising methods in Section 6.4. Finally, the conclusion is introduced in Section 6.5.

6.1 Related Work

The applications of noise reduction focus on removing the granular discrepancies found

in images to improve the quality of these images. The noise issue is essential to the

performance of digital cameras and it is used as a metric for their sensor. The small sensor

size and insufficient exposure time cause low-light issues for imaging devices such as

mobile phones and cameras, and it leads to the capture of severely corrupted images.

There are many different methods which have been applied to deal with the low-light

image noise problem, such as: scale Mixtures of Gaussians (GSM)[121], the Non-local

Means (NL-means) [24], Fields of Experts (FoE) [129], K-SVD [48], Block Matching and 3D

Filtering (BM3D) [35], the Active Random Field (ARF) [18], Learned Simultaneous Sparse

Coding (LSSC) [106], learned generative models with sampling based on the Bayesian

Minimum Mean Squared Error estimate (MMSE) estimation [134], Multi-Layer Perceptron

(MLP) [25] and Bilevel optimisation (opt-MRF) [30].

Most of these algorithms, however, have been evaluated solely on noisy images where

the noise is artificially added to ground truth (clean) images to construct noisy images.

Gaussian noise, Poisson noise and salt-and-pepper noise are the standard choices for

artificial noise. Evaluation of denoising algorithms using these methods might, however,

not be as accurate as evaluating their performance on real noisy digital camera images

in low-light conditions. This is because the noise caused by low-light conditions is not

independent identical distribution (i.i.d.) and is more complicated with its variance based

on the intensity of the image [53]. Besides, different digital cameras produce various types

of noise due to many factors in the imaging systems, such as sensor type and sensor size.

Also, noise exists in every imaging process, particularly the low-light conditions which

severely corrupt the image. Although obtaining real noisy images is easy, it is difficult to

know what their noise-free counterparts should be. Therefore, the evaluation of noise

reduction algorithms mostly depends on adding synthetic noise such as i.i.d. Gaussian

noise to the clean images. The RENOIR image dataset [12] is a dataset with different

noisy-clean image pairs from various digital cameras with diverse types of realistic noise.

6.2 RENOIR Dataset 121

6.2 RENOIR Dataset

Anaya and Barbu [12] have proposed a method to capture noisy-clean image pairs; nat-

urally degraded low-light images and their low-noise counterparts, called the RENOIR

dataset. This dataset has been used to test some of the popular algorithms which have been

proposed to perform noise reduction. The dataset consists of 120 static scenes taken from

three different cameras with different sensor sizes, and these cameras produce various

kinds of noise. An equal number of scenes were taken: 40 scenes for Xiaomi Mi3 (small

sensor), 40 for Canon T3i (mid-size sensor) and 40 for Canon S90 (slightly larger sensor).

Also, each camera captured many images with different noise levels. Three or four images

were captured per scene; one or two images involve noise and are two noise-free (low-

noise) images. Anaya has followed a specific procedure (called the ’sandwich’ procedure)

to capture the images in this dataset under low-light conditions. The process is as follows:

• For each scene, a low-noise image was acquired with long exposure time and low-

light sensitivity (ISO 100). This image is considered as the reference image.

• Then, one or two noisy images were acquired with reduced exposure time and raised

light sensitivity. The value of ISO for each camera is ISO 1600 or 3200 for Mi3, ISO

640 or 1000 for S90 and ISO 3200 or 6400 for T3i.

• Lastly, another low noise image was obtained with the same parameters as the first

low-noise image (the reference image). This image is considered as a clean image.

Undertaking the procedure in this way allowed the researchers to obtain two low-noise

(reference and clean) images to assess the whole acquisition process quality for each scene.

Also, this procedure guarantees that the only difference between the images for each scene

is due to noise, not due to motion or lighting change while taking images. In addition, the

low-noise images (reference (I r) and clean (I c)) are noisy versions of the unknown ground

truth image (I GT). These images were used to give the best estimate to the unknown ground

truth image, which is:

I GT =
(
I r + I c

)
2

(6.1)

122 Denoising in a Real Scenario

The PSNR measurement is calculated according to the equation 6.1, where the PSNR is

estimated as the difference between the average of the two low-noise images (reference

and clean images) and a noisy image, but not from applying the standard noise estimate

(the difference between a noisy-clean image pair).

6.3 Training and Testing Data

The difference between the real dataset and generated images by adding artificial noise is

that the real dataset contains different levels of noise, and this poses many challenges in

training and testing. Using real datasets could be more efficient in practice. However, the

denoising algorithms need a significant amount of data to train, and this amount of real

data is unavailable. Therefore, the denoising algorithms are usually training on generated

images by adding artificial noise with known noise levels.

The DBSR model is trained on 291 images; 91 images from Yang et al. [180] in addition to

200 images from the Berkeley Segmentation Dataset [110], with the augmentation strategy

(flipping and rotation). The training dataset is divided into sub-images of size fi = 50 by

employing a stride of 15. The model is trained on corrupted images with Gaussian noise

at σ = 25, 30, 35 and 50. MatConvNet is used to train the network for image denoising.

We train our network for 100 epochs with a batch size 64 and learning rate 0.0001. The

activation function used is Rectified Linear Unit
(
ReLU = max(0, x)

)
[114]. In each layer, the

filter weights are initialised by the initialisation method described in He et al. [67], which is

considered a robust method for the ReLU function. The cost function is minimised using

Adam optimisation [84]. The number of feature maps (and filter size) of each layer is as

follows 64(9), 32(5), 32(5), 32(5), 32(5), 32(5), 32(5) and 1(5). The structure of the proposed

network can be written as eight layers (64-32-32-32-32-32-32-1)(9-5-5-5-5-5-5-5).

6.4 Evaluation of Denoising Methods

Anaya et al. [12] have selected six popular algorithms for image denoising to evaluate their

performance using this real dataset: the Active Random Field (ARF)[18], Block Matching

and 3D Filtering (BM3D) [35], Bilevel optimization (opt-MRF) [30], Multi Layer Perceptron

(MLP) [25], Non-local means using a James-Stein estimator (NLM-JS)[171], and Non-local

6.4 Evaluation of Denoising Methods 123

means with a soft threshold (NLM-ST)[102]. These algorithms were selected because they

are efficient enough to deal with the large images, and their implementations are available

online. These methods depend on the level of noise σ. For the two versions of Non-local

Means: the NLM-JS and NLM-ST methods, the noise parameter value was estimated for

each image using the noise estimation method, which is discussed in [12]. For denoising, a

patch size used for the NLM-JS method is 3×3, with a search window 15×15, and block

size 15×15. However, a patch size used for the NLM-ST method is of 5×5, with a search

window of 13×13, and block size of 21×21. The algorithms ARF[18], opt-MRF[30] and

MLP [25] train their models using the noisy and clean images, to generalise on unseen

noisy images. The algorithms were trained on Gaussian noise using different values of σ.

The ARF model was trained on Gaussian noise using different values of noise at σ= 10,

15, 20, 25 and 50, with four iterations. Also, to evaluate the performance of the opt-MRF

model, it was trained on Gaussian noise using σ= 15 and 25 with 30 iterations. For the

MLP algorithm, the model was trained on Gaussian noise at σ=10, 25, 35, 50, and 75. The

performance of BM3D for colour image denoising was evaluated at σ= 5, 10, 15, 20, 25,

and 50. The trained filters, for the different noise level values σ, were used to denoise the

images in this dataset. Then the parameter σ, which gave the best results, was selected

for each method. For better performance, the NLM-JS, and NLM-ST, ARF, opt-MRF and

MLP methods were applied to the YUV colour space. But BM3D was denoised in the RGB

colour space where there is a particular version of the BM3D which directly handles colour

images. Table 6.1 shows the PSNR results for the three cameras and different methods.

The PSNR values were computed between the restored images and the best ground truth

estimate (which is the average of the reference-clean images as shown in equation 6.1).

The best result for BM3D is obtained with σ = 50; however, the best results for the ARF,

opt-MRF, and MLP algorithms occurred with σ= 25.

We used our DBSR model to denoise the RENOIR dataset; the best result is for σ= 35.

Therefore, we recorded the results for this value in Table 6.1. The PSNR results of all three

cameras display that the BM3D outperformed the other algorithms. Our DBSR model

gives the second-best result on average after the BM3D method, and it achieves better

performance than the different techniques. However, for the S90 camera, the second-best

result was for the opt-MRF technique, in which case our method gives the third-best result.

124 Denoising in a Real Scenario

Note that the SSIM metric was computed to the three cameras in [12], but the published

SSIM results were higher for noisy images than denoised images. These results indicate

that the noisy images are looking better than the reconstructed images. Therefore, the

authors did not use the SSIM results for performance evaluation, where the SSIM values

did not reflect the improvement obtained from the different methods. At the same time,

the authors have not been unable to interpret the occurrence of these results. Hence the

PSNR metric was used for performance evaluation. However, when we recomputed the

SSIM for the corrupted images and BM3D model, we received different values compared to

the published SSIM results as shown in Table 6.2, where the SSIM values for noisy images

are lower than the SSIM values for reconstructed images. Our SSIM results reflect the

improvement which happened after using the denoising algorithms, and this result is

consistent with the PSNR results. Although the BM3D is better than our method in the

performance, our DL model is about three times faster than the BM3D algorithm in the

inference stage. The dimentionality of the images of the three cameras are very large, as

illustrated in Table 6.2. Therefore they take a long time at the inference stage for executing

the denoising models. Some qualitative examples are shown in Figures 6.1, 6.2 and 6.3.

6.4 Evaluation of Denoising Methods 125

Table 6.1 PSNR (in dB) performance of DBSR and other denoising algorithms reported
from[12] on the RENOIR real dataset.

Camera
Before

Denoising

NLM-ST

[102]

ARF

[18]

MLP

[25]

NLM-JS

[171]

opt-MRF

[30]

DBSR

(ours)

BM3D

[35]

Mi3 23.49 30.87 30.92 31.23 31.35 31.64 32.12 32.14

S90 26.19 33.08 33.80 34.07 34.14 34.98 34.83 36.31

T3i 27.44 36.82 36.55 37.58 37.40 38.65 38.76 39.91

Average 25.71 33.59 33.76 34.29 34.30 35.09 35.24 36.12

The results of the ARF, ort-MRF, MLP, NLM-JS and NLM-ST methods are reported as in[12].
The results in blue colour indicate the best results; and the results in green colour are the second-best results.

Table 6.2 SSIM performance of DBSR and BM3D algorithms on the RENOIR real dataset,
and the average resolution of the images of the different three cameras with an average of
the inference CPU time.

Camera
Average

Resolution

CPU Time /sec SSIM

BM3D
DBSR

(Ours)

Published in [12] Our Result DBSR

(Ours)noisy BM3D noisy BM3D

Mi3 (2632 × 2645) 182 65 0.989 0.982 0.396 0.798 0.812

S90 (3684 × 2760) 250 92 0.988 0.979 0.450 0.882 0.861

T3i (5187 × 3453) 450 162 0.991 0.994 0.506 0.933 0.915

Average (3834 × 2953) 294 106.3 0.989 0.985 0.451 0.871 0.862

The CPU inference time is reported per image in seconds, and the average CPU time is displayed in the table
for the 40 images taken from each camera, run on Intel(R) Core i7 CPU @ 2.80 GHz, 16GB RAM, and NVIDIA
GTX Geforce 1050 GPU.

126 Denoising in a Real Scenario

Noisy (24.67/ 0.425)Clean (PSNR/ SSIM)

DBSR (33.64/ 0.850) BM3D (34.37/ 0.849)

Noisy image (from Mi3 camera)

Noisy (26.42/0.455)Clean (PSNR/ SSIM)

DBSR (36.62/ 0.887) BM3D (38.26/ 0.895)

Noisy image (from S90 camera)

Fig. 6.1 Results of DBSR and BM3D methods on the RENOIR dataset with zoomed crops .

6.4 Evaluation of Denoising Methods 127

Noisy image (from Mi3 camera)

DBSR (32.12/ 0.837) BM3D (30.94/ 0.787)

Noisy (21.43/ 0.306)Clean (PSNR/ SSIM)

Noisy image (from Mi3 camera)
Noisy (16.87/ 0.154)Clean (PSNR/ SSIM)

DBSR (25.25/ 0.681) BM3D (23.06/ 0.534)

Fig. 6.2 Results of DBSR and BM3D methods on the RENOIR dataset with zoomed crops.

128 Denoising in a Real Scenario

Noisy image (from T3i camera)

Noisy (28.24/ 0.546)Clean (PSNR/ SSIM)

DBSR (38.24/ 0.892) BM3D (39.55/ 0.946)

Fig. 6.3 Results of DBSR and BM3D methods on the RENOIR dataset with zoomed crops.

6.5 Conclusion

Dong et al. [42] and Mao et al. [109] have concluded that DNN has superior performance

when compared to the traditional methods using synthesis images. However, when the

algorithms have been tested on the real dataset, it has been shown that some conventional

techniques such as BM3D could surpass the DNN methods [12]. We have compared our

DBSR model for denoising the noisy images in the RENOIR dataset. Based on the PSNR

metric, DBSR gives the second-best results on average after BM3D is compared to the other

algorithms for denoising, confirming the results of Anaya and Barbu [12] that BM3D has

the best performance on this dataset, even in comparison with our network. Although the

traditional BM3D method exceeds our model in the performance, our model outperforms

the BM3D in execution time, where the computational cost of our model is almost three

times lower than the BM3D method at the inference stage.

Chapter 7

Conclusion and Future Work

Image restoration is a crucial task in computer vision and for many other fields. For this

reason, many different techniques have been proposed in the literature. However, the

most recent presented advances have been based on deep learning (DL) algorithms. In

this last chapter, the main results and conclusion on the work carried out throughout this

thesis is presented in Section 7.1: the three contributions on single image super-resolution

(SISR), artefacts reduction and denoising tasks are summarised. Finally, the limitations of

the proposed methods and the possible extension of this work in the future are discussed

in Section 7.2.

7.1 Summary

This work has focused on image restoration applications intended to restore the original

images from degraded images and improve perceptual quality by using deep learning. The

example-based techniques have attained state-of-the-art performance, where it allows

an improvement of the image reconstruction quality and mitigates the multiple solutions

(the ill-posedness) problem of image restoration methods. Recently, example-based DL

methods using convolutional neural networks (CNNs) have achieved state-of-the-art

results for reconstructing images corrupted by JPEG compression, blurring, noise or down-

sampling. We have proposed in this thesis several CNN architectures with fewer parameters

130 Conclusion and Future Work

compared to the state-of-the-art deep structures to recover the ideal images from the

corrupted images. The main contributions of this thesis are reviewed as follows:

• The first core contribution of this work is for a single image super-resolution (SISR)

task. Recently, this task has witnessed a significant improvement, notably by using

the CNNs to restore high-resolution (HR) images from low-resolution (LR) images.

However, most of these algorithms have focused only on reconstructing the HR

images from LR images without taking into account possible additional degrada-

tions such as the blurring distortion. Tackling the other degradations beside the

down-sampling issue is considered as one of the fundamental keys of the SR task to

obtain pleasing results. In this thesis, we have proposed light CNN architectures to

addresses the blurring problem, which is considered a challenging aspect of the SR

task since it removes high-frequencies, and the down-sampling problem to estimate

deblurred HR images from the blurred LR images. The contributions of this work are

summarised as follows:

– De-Blurring Super-Resolution CNN (DBSRCNN) model: We have proposed a

new CNN architecture for the de-blurring SISR task; called DBSRCNN. We have

motivated this model by the benchmark super-resolution convolutional neural

network (SRCNN) model [42], which contains three layers. We have shown that

the performance of DBSRCNN architecture has outperformed SRCNN in im-

proving the quality of the images. A potential explanation of this performance

is that the concatenation of features extracted at an early stage acts similarly to

traditional image processing techniques such as unsharp masking that boosts

relevant (high) frequencies partially lost in the blurring stage, to enhance the

reconstructed image.

– De-Blurring Super-Resolution (DBSR) model: We have proposed another new

architecture (called DBSR) to tackle this challenging problem; the blurring and

down-sampling of images. Experimentally, we have shown that the single

layer used in DBSRCNN has a limited capacity to enhance the noisy extracted

features in complex applications like blurred SISR. Therefore, we have extended

the DBSRCNN architecture by adding extra feature enhancement layers. We

have reported a panel of comparisons with the state-of-the-art deep learning

7.1 Summary 131

and model-based methods to demonstrate the competitive performance of the

proposed model for SR on blurred LR images. Importantly, these results are

obtained by a model with three to six times fewer parameters.

– Using Harmonic blocks in the DBSR model (Harm-DBSR): We have proposed

the use of Harmonic blocks in the DBSR network to evaluate the influence of

using spectral information instead of utilising standard convolution layers.

Besides, adopting the DCT filters enables the compression of the harmonic

nets and uses fewer parameters. We have implemented different structures of

Harm-DBSR through replacing the convolutional layers in CNN with harmonic

blocks to construct a fully or partially Harmonic network. All these structures

have produced better results than using convolutional operations alone.

– Different scenarios: We have applied the proposed CNN models for SISR by

adopting two scenarios: non-blind and blind scenarios. The performance

improvement was less pronounced in the blind scenarios compared to the non-

blind scenarios. However, the mismatch of the degradation method in training

and testing in the non-blind scenario affected the final result. Therefore, if there

is no information about blurring, using the blind model is a better choice than

the non-blind model.

• We have proposed an approach that alleviates undesirable image degradation re-

sulting from image compression such as blurring, ringing and blocking artefacts

based on the use of CNN. We have proposed small CNN architectures with a carefully

selected structural layout, which we refer to as Direct Architecture Compression

Artefacts Removal (DA-CAR) structures with a different number of layers and Skip

Architecture Compression Artefacts Removal (SA-CAR6) which utilise the skip con-

nection. Our evaluation and comparisons demonstrate that many of the state-of-

the-art image enhancement and JPEG artefact suppression models can be shrunk

without compromising their qualitative performance. Additionally, we have shown

that if a suitable filter size is used, the same or higher performance can be achieved

in comparison with deeper structures.

132 Conclusion and Future Work

• Applying the DBSR model on a real noisy dataset: We have employed the DBSR

model for denoising the noisy images in a real dataset named RENOIR [12] to evaluate

its performance on real noise. The DBSR model provides the second-best results on

average after the classical BM3D method compared to the other algorithms. However,

our DBSR model outperforms the BM3D in terms of computational cost, where the

execution time of our model is almost three times faster than the BM3D method at

the inference stage.

7.2 Limitations and Future Work

• We have proposed CNN models for the SISR task. However, some inherent limitations

have been identified. Therefore, these limitations are suggested for future lines of

research:

– The inputs of our models used in the SISR task are bicubic LR. Therefore, our

architectures suffer from the same drawbacks as other proposed structures

that utilise interpolated inputs. Additionally, the down-sampling factor used

in training and testing should be matched, as performance can be affected

by the use of a different factor should the factor be unknown or mismatched

[47]. Therefore, applying the architectures directly on the LR images without

interpolation helps to avoid such problems.

– We have adopted the blurring distortion that represents the most challenging

problem in the SISR. However, noise also is regarded as another degradation

key in the SR task. Therefore it should be taken into consideration. Besides

this, we have considered the most common blur kernel in image restoration,

which is the Gaussian blur kernels. Therefore, in future work, other types of

blur kernel should be adopted.

• We have applied the proposed model DBSR for the SISR task on RENOIR real noisy

dataset to assess its performance, which has achieved the second-best performance

compared to other techniques. Modifying the DBSR architecture by, for instance,

7.2 Limitations and Future Work 133

increasing the depth or the width of the structure could enhance the features and

improve the results.

• We have adopted the Harmonic blocks which use spectral information instead of

standard CNN layers in the DBSR architecture, and this has led to enhancing the

results for the SISR task. Using Harmonic blocks in CNN structures for diverse image

restoration tasks such as denoising would therefore be better placed to explore the

effect of spectral information in restoring the original image.

• Integrating the image restoration methods using DL with the recognition and classifi-

cation systems could be an interesting direction for future work, where the corrupted

images which lose specific features is one of the principal challenging problems that

deteriorate the performance of these systems. Furthermore, the recognition engine

can be used as a metric which reflects the quality of the restoration models.

Appendix A

A Brief Review of Deep Learning

A.1 Statistical Learning (SL)

Statistical Learning (SL) involves tools and models that extract information from complex

data. Statistical learning and traditional statistical modelling are different because SL

depends on algorithms which do not make any assumptions about the technique of

generating data [22]. Methods of SL attempt to learn functions that predict the response of

the generated data from a black-box of known observations. Before the 1980s, most of the

SL techniques were linear models, because of the computational inability in non-linear

models. However, in the 1980s, advancement in computing technology led to researchers

exploring non-linear learning models. Therefore, SL methods became an interesting

new domain in statistics. Moreover, the late 1980s saw the beginning of Artificial Neural

Networks (ANNs) which use heavy SL mechanisms [133]. By 1990, Machine Learning (ML),

was introduced as a shared domain between two fields of computer science and statistics.

In the early 2000s, ML and SL became outstanding fields in statistics and computer science

departments worldwide. In the late 2000s and early 2010s, with significant improvements

in the computer technology and increases in data size (large datasets), both ML and SL

have been widely utilised in several areas such as scientific spheres and industries.

136 A Brief Review of Deep Learning

A.2 Machine Learning (ML)

The aim of ML is to construct learning algorithms that do the learning and generalisation

automatically from data without human intervention or explicit programming. ML and

deep machine learning have many software libraries used in different tasks, such as: Caffe,

Keras, Torch, Theano and TensorFlow. Keras and PyTorch provide high-level abstractions

built upon frameworks such as TensorFlow and Lua Torch, also they are easy to use in

building deep learning models. In addition, ML tasks have been applied in a wide variety

of applications in different fields. The use of ML is becoming omnipresent, for instance: in

engineering, finance and medicine. For example, convolutional neural networks (CNN)

have been successfully used to recognise generic objects (e.g, trucks, animals, . . .) in

cluttered scenes with various lighting conditions and poses by LeCun and Battou [89].

Also, Karpathy et al. used the CNN for classification tasks to classify YouTube videos into a

large number of categories [79]. Furthermore, in computer vision, the CNNs have been

employed to retrieve high-resolution (HR) images from low-resolution (LR) images by

Donget al. [42]. In the medical field, Kuruvilla and Gunavathi have utilised neural networks

in the diagnosis of cancer using the results of CT scans of the lungs [86]. ML tasks have

been implemented in several other fields such as: in computer vision (as image denoising

and object recognition), in robotics, automatic speech recognition, etc. The algorithms of

ML are complicated models that are able to perform two main kinds of supervised learning:

classification and regression.

A.2.1 Types of Learning Problems

Machine learning is separated into two major tasks depending on how the architectures

and techniques are used: generation (or synthesis) and recognition (or classification).

• Supervised Learning: is a predictive approach which learns from labelled data, and

aims to learn a function that maps from input x to output y . In other words, the goal

of supervised learning is to create a function f (x;w); for each pair of vectors (x, y)

for vector of parameter w where f (x;w) = y [162]. Input could be a complicated

structured object such as an image, a graph or an email message. There are two

major kinds of supervised learning problems according to the type of output. If the

A.2 Machine Learning (ML) 137

output is a categorical or nominal variable, the problem is known as classification or

pattern recognition, but if the output is a continuous variable, then the problem is

known as regression. It is also called supervised or discriminative deep architectures,

where the target label data for this type are always available.

• Unsupervised Learning: is a descriptive approach, which learns from unlabelled

data. It aims to seek interesting patterns within the dataset. This approach takes

only inputs and the target class labels are not available. It is sometimes known as

knowledge discovery or generative learning, which refers to unsupervised feature or

representation learning. While supervised learning aims to estimate y from x by

estimating p(y |x), unsupervised learning attempts to learn the probability distribu-

tion p(x), or some useful properties of that distribution. Examples of unsupervised

learning problems include clustering.

A.2.2 Regression in ML

Linear Regression: is a simple ML algorithm. Assuming a linear relationship between an

input vector x ∈Rd and an output variable y ∈R, as the following equation:

y = wT x+b +ϵ=
d∑

i=1
wi xi +b +ϵ (A.1)

where ϵ is an error term (an unknown term); ϵ≈ N (0,σ2). An intercept term b is known as

a bias parameter in ML. w ∈Rd is a vector of weights that define how each feature affects

the prediction. The parameters of the model are unknown. Therefore, they have to be

estimated from observed data. Suppose that an input matrix of n examples and an output

vector (which provide the true values of y) will be used to estimate the parameters using

the following equation:

ŷ = wT x+b =
d∑

i=1
wi xi +b =

d∑
i=0

wi xi ; w0 = b

The model can continue with only weights by augmenting x with an extra entry that is

always set to 1; x0 = 1. This extra weight will play the role of the bias parameter. Good

138 A Brief Review of Deep Learning

estimators produce the predicted value ŷi as near as possible to the true value of yi .

Therefore the measure of the nearness between yi and ŷi should be defined. The popular

choice is the square of residuals between the true value yi and the estimated value ŷi , (i.e.

e2
i = (yi − ŷi)2) which is known as a square of the error (distances). Summing the errors for

all observations will give the quantity of the total deviation of all data (n examples) and

estimated model (the line). This expression is named the Sum Square of Error (SSE) :

SSE =
n∑

i=1
e2

i =
n∑

i=1

(
yi − ŷi

)2 (A.2)

To obtain the optimal values of parameters that minimise the SSE in equation A.2, a

minimisation problem should be solved analytically as follows :

arg min
w

SSE = arg min
w

n∑
i=1

(
y − ŷ

)2
i (A.3)

Also, the square distance is considered as a cost function c(w), where SSE in equation A.2

expresses the overall cost of the deviation from ŷ for all n examples.

C (w) =
n∑

i=1

(
yi −

d∑
j=1

w j xi j
)2 (A.4)

To find the optimal values of parameters that solve the minimisation problem analytically,

is very impractical and difficult especially if the amount of features is large {x1, x2, . . . , xd }.

There are other methods to find the solution to arg min
w

C (w) by applying an algorithm

called Gradient Descent. Although gradient descent produces optimal solutions, it is

computationally intensive.

A.2.3 The Gradient Descent (GD) Algorithm

The gradient descent (GD) algorithm overcomes the difficulty of solving d equations an-

alytically to find the minimum of function f . As the number of variables d increases,

analytic solving becomes more difficult. Finding the minimum numerically using an

iterative algorithm to minimise f is a more efficient way of using the gradient descent

algorithm. The technique of gradient descent is to use the derivatives of the function to

A.2 Machine Learning (ML) 139

follow the downhill of this function to a minimum, where x moves small steps α with

opposite sign of the derivative to reduce f (x); f (x)−α (sign f ′(x)) < f (x) for small enough

α. The concept of GD is to start from an initial point and the algorithm at each iteration

moves a short distance in the direction of decrease of the function f . Given a vector of

d feature variables x = (x1, x2, . . . , xd), f (x) = f (x1, x2, . . . , xd), the gradient of function f

is ∇ f (x) =
(
∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xd

)
, the iteration number τ, starting from 0 in the initial value

τ= {0,1,2, . . . }. Hence, xτ is the value of x at iteration τ, and α is a learning rate (step size)

parameter. The GD algorithm follows the following steps:

1. Initialising x0.

2. x(τ) = x(τ−1) −α∇ f
(
x(τ−1)

)
in every iteration, the algorithm moves a short distance α in the opposite direction

to the gradient which is the direction of the decline, to update x.

3. Calculating f
(
x(τ)

)
.

4. Stopping the algorithm when a particular criteria is met.

Convergence and Stopping Criteria

There are two necessary conditions of the GD algorithm for the convergence to the mini-

mum: the smoothness and convexity (i.e. continuously differentiable) of the cost (loss)

function, the function is monotonically decreasing :

f
(
x(τ))≤ f

(
x(τ−1)) (A.5)

According to the problematical nature and the accuracy of the required outputs, the

stopping criteria of the algorithm can vary. One of the options of the stopping criteria is

that the algorithm stops when ∥ f
(
x(τ)

)− f
(
x(τ−1)

) ∥2< ϵ, where ϵ is typically a very small

number, and ∥ . ∥2 is L2-norm. This means that the algorithm will stop when the change

between consequent iterations is less than ϵ. Another option for the stopping criteria is

∥▽ f (x(τ)) ∥2< ϵ, which indicates when the rate of decline becomes very small, and leads to

a small change in the value of f (x(τ)) in subsequent iterations.

140 A Brief Review of Deep Learning

A.3 Artificial Neural Networks (ANN)

In the early days of artificial intelligence (AI), researchers were interested in solving prob-

lems that are difficult for human beings but which can be described by mathematical

rules. More recently, a challenge AI has been solving intuitive tasks for people which they

can do, but which are difficult to describe such as the classification of items, recognising

spoken words or faces in images. In ML algorithms, artificial neural networks (ANNs) are a

set of models which are inspired by biological neural networks which attempt to mimic

the behaviour of the brain neurons. These are used to learn and estimate functions that

depend on high dimensional data. The computation of models in a neural network is

very complex and assumes a non-linear relationship between the inputs and the outputs.

Therefore, ANNs are able to learn from different data formats such as structured data,

sounds, images, etc.

ANN consists of a group of layers: an input layer, an output layer and a number of

hidden layers in the middle between the input layer and the output layer. Each layer is

made up of a number of processing units (neurons or nodes) which applies a function

known as an activation function, and neural network supports a wide range of activation

functions. If there are no feedback connections (cycles or loops) among the layers of the

network, then this network is known as Feed-Forward Network, where the information

moves in only a forward direction, from the input neurons to the output neurons. While

the Single-Layer Feed-forward Network contains one input layer, one output layer of

processing units (known as a Simple-Layer Perceptron), Multi-Layer Feed-forward Network

has one input layer, one output layer and one or more hidden layers of neurons between

them (known as a Multi-Layer Perceptron (MLP)). However, a Recurrent Neural Network

(RNN) contains at least one feed-back loop where some layers in the network take inputs

from consequent layers, so the activation functions can flow in a circle, that supports the

networks to perform learn sequences and temporal processing, and it may or may not

contain any hidden layers. A Simple RNN is shown in Figure A.1. If all the processing units

in every layer are connected to all the processing units in the subsequent layer, this type of

network is fully-connected.

Artificial Neural Networks are extremely powerful parallel computational systems con-

sisting of many simple processing elements connected together to perform a particular

A.3 Artificial Neural Networks (ANN) 141

task. This parallelism makes them efficient and robust. One of the most powerful charac-

teristics of neural networks is their capability for learning and generalising from a set of

training data. The weights (or strengths) of the connections between processing units are

adapted to optimise the final response.

⁞ ⁞ ⁞

𝑾௫௛ 𝑾௛௙(௫)

𝑾௛௛

𝑥 𝑓(𝑥)ℎ

Fig. A.1 Recurrent Neural Network (RNN).

A.3.1 A Brief Historical Review of ANN

There are three historical stages relating to ANNs research and the development of deep

learning. In the 1940s–1960s, the first stage started with the development of biological

learning theories, McCulloh and Pitts in 1943 [111] and Hebb in 1949 [69]. The first models

which had been implemented such as the perceptron allowed for the training of a single

neuron by Rosenblatt in 1958 [128]. During the period from 1980 to 1995 was the second

stage, to train the ANN with one or two hidden layers with back-propagation; Rumelhart

et al. in 1986 [132]. The current stage is the stage of Deep Learning (DL), started in 2006,

when Hinton et al. came up with the idea of deep layers networks [70]. The first stage was

called cybernetics. The goal was learning a set of weights {w1, w2, . . . , wd } and computing

the output y from simple linear models f (x,w) = ∑d
i=1 wi xi ; for a set of d input values

x = {x1, x2, . . . , xd }. In 1943, the McCulloch-Pitts Neuron [111] was an early model of brain

function, being the first work known as AI, in which a single neuron takes a weighted sum

of inputs f (x,w) = ∑d
i=1 wi xi (simple linear model) from other neurons, and this model

can recognise two different categories of these inputs by testing whether f (x,w) is positive

or negative. In other words, the neuron is either activated by these inputs or it remains

142 A Brief Review of Deep Learning

dormant. Donald Hebb, in 1949, suggested a mechanism of learning for neural networks,

which is known as the Hebbian principle "neurons that fire together, wire together" [69],

and it is related to a simple updating rule for adapting the connection weights between

neurons for learning.

In 1951, the first ANN was built by Marvin Minsky and Dean Edmonds. They were two

graduate students in the Princeton mathematics department. Their network was named

The Stochastic Neural Analog Reinforcement Calculator (SNARC) which built on Hebb’s

theory [80]. In 1958, the perceptron (a single layer perceptron) was the first attempt to

create an ANN for pattern classification in that period which was made by Rosenbalt at

Cornell University. A great many experiments with perceptrons had been implemented by

the mid 1960s, and the perceptrons were able to learn to recognise some kinds of patterns

but not others. Also, in 1969, Minsky and Papert proved that single layer perceptron was

limited with pattern classification. For example, it could not implement the XOR logical

function and several others [60]. Therefore, there has been a need to perform this task

using more complex networks. The complex network which was found to be able to fix the

limits of pattern classification as XOR did not exist until 1986, when it became possible to

perform multi-layer networks after the popularisation of the back-propagation algorithm

which is used until today, by Rumelhart, Hinton and Williams [133]. The method of the

back-propagation algorithm was discovered by Werbos in 1974 [170]. In 2006, Geoffrey

Hinton showed that a type of neural network called Deep Learning (DL) (also called deep

structured learning, hierarchical learning or deep machine learning), has emerged as a

particular kind and a sub-field of ML research implemented with deep layered networks

and achieves great flexibility and power by learning [70]. Also, DL has been characterised

as a rebranding of neural networks with multiple hidden layers, which has been motivated

to mimic the way the brain works.

A.3.2 Forward-Propagation

Before describing the forward propagation process of the neural network, some notation

should be introduced for the neural network. The neural network consists of L+1 layers (i.e.

L −1 hidden layers). Each layer contains Nl processing units where l ∈ {0,1,2, ...,L}. The

network takes d features (x1, x2, ..., xd) as inputs in the input layer; hence, N0 = d inputs

A.3 Artificial Neural Networks (ANN) 143

or units. Generally, layer l involves Nl processing units, each unit takes Nl−1 +1 inputs

which is associated to the processing units in the previous layer l −1 in addition to a bias

unit. The first hidden layer includes N1 processing units, where takes d inputs from the

input layer plus extra bias term. The output layer produces NL outputs. The equations that

express a neural network are as follows :

• W (l)
i , j : the connection weights from i th processing unit in the l −1 layer to the j th

processing unit in l layer; i ∈ {1,2, . . . , Nl−1}, j ∈ {1,2, . . . , Nl } and l ∈ {1,2, . . . ,L}.

• b(l)
j : bias unit which is correlated to j th processing unit in the l layer, where j ∈

{1,2, . . . , Nl } and l ∈ {1,2, . . . ,L}.

• a(l)
j (x) : the hidden layer pre-activation (or input activation) is the weighted sum of

the input of neurons in layer l −1 plus the bias unit, which is correlated to the j th

processing unit in the layer l .

a(l)
j (x) = b(l)

j +∑N(l−1)

i=1 W (l)
i , j h(l−1)

i (x)

For the first hidden layer (l = 1) : a(1)
j (x) = b(1)

j +∑d
i=1 W (1)

i , j xi ;

where h(0)(x) = x and x = {x1, x2, . . . , xd } are d input features.

The equations have been reformulated utilising linear algebra to make the equations

easier for manipulation :

a(l)(x) = b(l) +W(l)h(l−1)(x), where W(l) is a Nl × Nl−1 matrix which represents the

weights related to all connections between layer l −1 and layer l , and b(l) is a Nl ×1

column vector which represents all the bias units connecting to layer l .

• h(l)
j (x) : the hidden layer activation (or the output activation) is the activation func-

tion in the j th neurons of the layer l , h(l)
j (x) = g

(
a(l)

j (x)
)
, in another formulation will

be h(l)(x) = g (a(l)(x)), where g (.) is the activation function.

• f j (x) : the output layer activation is the output of the j th neuron in the layer (L);

f j (x) = h(L)
j (x) = O

(
a(L)

j (x)
)
. In another formulation using linear algebra will be

f(x) = h(L)(x) =O
(
a(L)(x)

)
, where O(.) is the output activation function.

The process of forward propagation in the neural network is described by the equa-

tions above. These equations describe the relationship between the features of input

{x1, x2, . . . , xd } and the responses of the neural network {h1,h2, . . . ,hNL }. Figure A.2 is an

example of the forward propagation structure of the feed-forward network. Consequently,

if we have L +1 layers for the neural network, the forward propagation equations using

144 A Brief Review of Deep Learning

linear algebra are written as follows :

a(1)(x) = b(1) +W(1)(x)
(
where, a(1)

j (x) = b(1)
j +∑d

i=1 W (1)
i , j xi

)
h(1)(x) = g

(
a(1)(x)

) (
where, h(1)

j (x) = g
(
a(1)

j (x)
))

for j ∈ {1,2, ..., N1}

a(2)(x) = b(2) +W(2)h(1)(x)
(
where, a(2)

j (x) = b(2)
j +∑N1

i=1 W (2)
i , j h(1)

i (x)
)

h(2)(x) = g
(
a(2)(x)

) (
where, h(2)

j (x) = g
(
a(2)

j (x)
))

for j ∈ {1,2, ..., N2}
...

a(L)(x) = b(L) +W(L)h(L−1)(x)
(
where, a(L)

j (x) = b(L)
j +∑NL−1

i=1 W (L)
i , j h(L−1)

i (x)
)

h(L)(x) = f(x) =O
(
a(L)(x)

) (
where, h(L)

j (x) = f j (x) =O
(
a(L)

j (x)
))

for j ∈ {1,2, ..., NL}

𝒃(ଵ) 𝒃(ଶ) 𝒃(ଷ)

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

𝑾(ଵ) 𝑾(ଶ) 𝑾(ଷ)

𝒂 ଵ 𝑥

→ 𝒉 ଵ (𝑥)

𝒇(𝑥)𝒂 ଶ 𝑥

→ 𝒉 ଶ (𝑥)

𝑥ଵ

𝑥௜

𝑥ௗ

1 1 1

⁞ ⁞ ⁞ ⁞

Fig. A.2 Feed Forward Neural Network with three layers.

The target function for a neural network f(x) = f(x; W,b), where W and b are the param-

eters : W(1),W(2), ...,W(L),b(1),b(2), ...,b(L). A total cost function for the neural network using

the target function :

C (W,b) =
n∑

i=1
c
(

f (xi ;W,b),yi

)
(A.6)

Where c(.) is the cost function (a loss function for one example), and yi is the output

vector for the i th training example; i ∈ {1,2, ..,n}, and n is the number of training dataset.

A.3 Artificial Neural Networks (ANN) 145

To obtain the best values for the parameters W and b, the minimisation issue should be

resolved as follows:

arg min
W,b

C (W,b) (A.7)

This problem can be solved by applying a stochastic gradient descent algorithm (SGD),

where SGD is an extension of the gradient descent algorithm, which will be introduced

in section A.4.6. Due to the complexity of obtaining the partial derivatives for the cost

function, there is an algorithm known as the Backward Propagation of Errors which uses

the chain rule, to simplify the problem of obtaining the derivatives.

A.3.3 Backward Propagation

The feed-forward neural network is used to accept an input x and produce an output

f (x), where data information flows forward through the network (this is called forward

propagation). After obtaining the cost function, the back-propagation algorithm allows

the information to flow backwards through the network from the cost function in order

to compute the gradient. Back-propagation refers only to the procedure for computing

the gradient by applying the chain rule, while another algorithm such as SGD is used to

implement learning using this gradient. Figure A.3 shows how back-propagation works.

• Cost gradient at hidden layers

Partial derivative :
∂C

∂h(l)
j (x)

=∑
i

∂C

∂a(l+1)
i (x)

∂a(l+1)
i (x)

∂h(l)
j (x)

=∑
i

∂C

∂a(l+1)
i (x)

∂
(
b(l+1)

i +∑
j W (l+1)

i , j h(l)
j (x)

)
∂h(l)

j (x)
=∑

i

∂C

∂a(l+1)
i (x)

W (l+1)
i , j

The gradient is :
(
W(l+1)

)T (∇a(l+1)(x)C
)

;where C = C
(
W,b

)
in equation A.6.

146 A Brief Review of Deep Learning

• Cost gradient at hidden layers pre-activation

Partial derivative :
∂C

∂a(l)
j (x)

=∑
i

∂C

∂h(l)
j (x)

∂h(l)
j (x)

∂a(l)
j (x)

=∑
i

∂C

∂h(l)
j (x)

∂g
(
a(l)

j (x)
)

∂a(l)
j (x)

=∑
i

∂C

∂h(l)
j (x)

ǵ
(
a(l)

j (x)
)

The gradient is :
(∇h(l)(x)C

)⊙ [
. . . , ǵ

(
a(l)

j (x)
)
, . . .

]
• Cost gradient of parameters:

– For weights

Partial derivative :
∂C

∂W (l)
i , j

= ∂C

∂a(l)
i (x)

∂a(l)
i (x)

∂W (l)
i , j

= ∂C

∂a(l)
i (x)

∂
(
b(l)

i +∑
j W (l)

i , j h(l−1)
j (x)

)
∂W (l)

i , j

= ∂C

∂a(l)
i (x)

h(l−1)
j (x)

The gradient is :
(∇a(l)(x)C

)(
h(l−1)(x)

)T

– For biases

Partial derivative :
∂C

∂b(l)
i

= ∂C

∂a(l)
i (x)

∂a(l)
i (x)

∂b(l)
i

= ∂C

∂a(l)
i (x)

∂
(
b(l)

i +∑
j W (l)

i , j h(l−1)
j (x)

)
∂b(l)

i

= ∂C

∂a(l)
i (x)

The gradient is : ∇a(l)(x)C

A.4 Practical Considerations 147

𝐶(𝒇 𝑥 , 𝑦)

𝒃(ଵ) 𝒃(ଶ) 𝒃(ଷ)

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

𝑾(ଵ) 𝑾(ଶ) 𝑾(ଷ)

𝒂 ଵ 𝑥

→ 𝒉 ଵ (𝑥)

𝒇(𝑥)𝒂 ଶ 𝑥

→ 𝒉 ଶ (𝑥)

𝑥ଵ

𝑥௜

𝑥ௗ

1 1 1

⁞ ⁞ ⁞ ⁞

Fig. A.3 Backward Propagation.

A.4 Practical Considerations

A.4.1 Dataset

In ML, a very common practice is data splitting into two parts: training data and testing

data. The training data is utilised to fit the model and the testing data is utilised to check

the performance and provide generalisations on different sets of data. The dividing of

the dataset is often performed after randomising the raw dataset. The common dividing

ratios are about 70:30 to 80:20 training examples to testing examples. In ML, an important

problem is that large training datasets are necessary for effective generalisation.

A.4.2 Activation Functions

There are diverse options of activation functions that can be exploited in the neural nets.

It is usually impossible to predict in advance which function will work best because the

design of hidden units does not yet have any definitive guiding theoretical principles [60],

therefore the design process depends on trial and error. A collection of the most popular

options for activation functions in neural nets is addressed below :

The Identity Function: This is a linear mapping that maps its inputs to the interval

(−∞,∞). This function is usually utilised in the last layer to obtain the output because it

148 A Brief Review of Deep Learning

does not add any complication to the network.

g (x) = x & Its derivative: g ′(x) = 1

The Sigmoid (sigm) Function: This is a non-linear function that maps the inputs to the

interval [0,1]. The sigmoid function is used in the hidden layers and the output layer as

well, because it increases the non-linear features of the neural network. Also, it is usually

used for two class classification problems, where the output indicates the likelihood of

belonging to one of the two classes.

g (x) = sigm(x) =σ(x) = 1

1+e−x
& Its derivative: g ′(x) = g (x)

(
1− g (x)

)
The Hyperbolic Tangent (tanh) Function: This maps each input to an interval [-1,

1]. It is a non-linear mapping that is utilised in the ANN especially in regression tasks.

Vanishing gradients may occur in DNNS because of the units of the higher layer are almost

saturated at -1 or 1, when the gradients are nearly 0 in lower layers of the network. Thus this

problem leads to slow convergence, and also may lead to the trained network converging

to a poor local minimum.

g (x) = tanh(x) = ex −e−x

ex +e−x
& Its derivative: g ′(x) = 1− g 2(x)

Rectified Linear Units (ReLU) Function: ReLU is an excellent default choice of activa-

tion function. This function has more usefulness than sigmoid and the hyperbolic tangent

activation functions because ReLU function does not suffer from the gradient vanishing

problem as tanh function and sigmoid function [104]. Also, ReLU function speeds up the

training of the ANN because the network converges faster [188]. ReLU is easy to optimise

because it is comparable to linear units, and the difference between the linear function

and a ReLU is that the outputs are zero across half the domain of a ReLU. Therefore, the

derivatives through a rectified linear unit remain large and are also consistent when the

unit is active.

g (x) = ReLU(x) = max(0, x) =
x for x ≥ 0

0 for x < 0
& g ′(x) =

1 for x ≥ 0

0 for x < 0

A.4 Practical Considerations 149

Leaky Rectified Linear Units (LReLU) Function: The gradient of the ReLU function

is 1 when it is activated higher than 0. Therefore vanishing gradients do not happen for

active hidden units in DNN [20]. However, during optimisation, the gradients of ReLU

are 0 for the units which are not active, and the weights of units that never activate will

not be adjusted. The learning might be slow when training ReLU networks with constant

0 gradients, and this is a potential problem similar to the vanishing gradients problem.

To alleviate this problem, leaky rectified linear units (LReLU) is introduced by Maas et al.

[104]. The LReLU allows for a small non-zero gradient when the unit is not active. There

are many modified types of ReLU: in addition to LReLU, the parametric rectified linear

unit (PReLU) which is proposed by He et al.. The difference between LReLU and PReLU is

that in the training, the parameter c is learned via back-propagation.

g (x) = LReLU(x) =
x for x ≥ 0

x
c for x < 0

& g ′(x) =
1 for x ≥ 0

1
c for x < 0

where c is a fixed parameter in range (1,∞), and it is suggested to be a large number such

as 100. However, the theoretical explanation of their superior performance is still needed

[174]. Figure A.4 displays some activation function charts.

Identity Function Sigmoid Function Tanh Function

LReLU FunctionReLU Function PReLU/ RReLU Function

𝑔(𝑥)

𝑥

𝑔(𝑥)

𝑥

𝑔(𝑥)

𝑥

𝑔(𝑥)

𝑥

𝑔(𝑥)

𝑥

𝑔(𝑥)

𝑥

0

0

0

0

0 0

𝑔 𝑥 = 𝑥
𝑔 𝑥 =

1

1 + 𝑒ି௫
𝑔 𝑥 =

𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫

𝑔 𝑥 = 𝑥

𝑔 𝑥 = 𝑥 𝑔 𝑥 = 𝑥

𝑔 𝑥 = 0 𝑔 𝑥 =
𝑥

𝑐
𝑔 𝑥 = 𝑐𝑥

Fig. A.4 Charts of some activation functions.

150 A Brief Review of Deep Learning

A.4.3 The Cost Function

The selection of the cost function is an important aspect of neural networks. In regression

tasks, the aim of regression tasks is to estimate the outputs of continuous variables using

input variables d ; ŷ = f (x) = wT x. One of the ways to measure the performance of the

model is to compute the mean squared error of the model (MSE). MSE (the mean of

L2-norm squared) is the variation between a true value and the predicted value. This

cost function ensures that the difference between predicted value and the true value is

penalised. The mean squared error is given by :

MSE = 1

n

n∑
i=1

(
yi − ŷi

)2 (A.8)

This error measure equals to 0 when ŷ = y, and the error measure increases when the

difference between the predictions and the outputs increases.

A.4.4 Over-Fitting and Regularisation

The model in ML tries to learn to fit the training data well, but when it fails in generalisation

on another dataset, as in this case, over-fitting occurs. When the model is too complex,

over-fitting usually happens, where the number of parameters is large compared with the

number of training points. It occurs when the model explains the noise in the training

dataset and can not describe the relation among the inputs and their outputs. Some

suggestions have been used to avoid over-fitting. Firstly, decreasing the complexity of

the model by removing some of the data features that reduce the number of parameters,

or by using more training examples. Also, penalising the size of the parameters using

regularisation. Regularisation can be added to the total cost function used to train a neural

network by adding a parameter norm penalty Ω(Θ) to the machine learning model, as

follows:

Cλ(Θ) =
n∑

i=1
c
(

f (xi ;Θ),yi

)+λΩ(Θ)

Where λ ∈ [0,∞) is a hyper-parameter (regularisation parameter) which indicates the

penalty size on the parametersΘ, whereΘ≡ {W(1),b(1), ...,W(L),b(L)}. Setting λ to 0 results

in no regularisation, and larger values of λ correspond to more regularisation. While the

A.4 Practical Considerations 151

model fitting demands the minimisation of Cλ(Θ), the penalty terms make the parameters

as small as possible. For neural networks, a parameter norm penalty Ω is usually used to

penalise only the weights and leaves the biases unregularised.

A.4.5 The Learning Rate

The hyper-parameters control many aspects of the behaviour of machine learning algo-

rithms. There are two basic approaches for choosing the hyper-parameters; manually or

automatically, but choosing the hyper-parameters manually needs an understanding of

how machine learning models achieve good generalisation. The learning rate α perhaps is

the most important hyper-parameter in machine learning, and it is usually determined

manually in the gradient descent algorithm. The learning rate controls the effective ca-

pacity of the machine learning model, which is at its highest when the learning rate is

correct. Therefore, if we have time to tune only one hyper-parameter, we will tune the

learning rate [60]. For training error, the learning rate has a U-shaped curve. If the value

of learning rate is too small, the algorithm may demand a long time to converge to the

minimum, and may become permanently stuck with a high training error. However, if

the value of learning rate is large, the training error may increase rather than decrease,

and it may cause the algorithm to diverge. Figure A.5 shows these problems. Choosing

the learning rate correctly should seek to avoid these two problems. When the algorithm

approaches a value close to the minimum, a common practice is to decrease the learning

rate to enhance the result, which is referred to as fine tuning.

((a)) Small learning rate causes slow
convergence.

((b)) Large learning rate causes diver-
gence.

Fig. A.5 Two different problems of learning rate.

152 A Brief Review of Deep Learning

A.4.6 Stochastic GD (SGD) and Mini-Batch GD

Most deep learning algorithms involve optimisation, where the optimisation indicates the

process of minimising or maximising some function f (W) by changing W. In machine

learning models, optimisation problems usually minimise the cost function, and they work

very well when trained with gradient descent. The number of updates needed to converge

often increases with the size of a training set. Also, for good generalisation, machine

learning needs large training sets, but the large training sets are more computationally

expensive. To avoid this, the Stochastic Gradient Descent algorithm (SGD) is used for large

training sets. SGD is an extension of the gradient descent algorithm, but it runs much faster

than ordinary gradient descent. SGD calculates the gradient by computing the expected

value of the partial derivatives from a single randomly picked training sample, rather than

computing the derivatives of the total cost function in each iteration. The SGD algorithm

is as follows:

1. Initialise W(0).

2. For τ= 1,2, ... do :

W(τ) = W(τ−1) −αE(∇C (W)
)= W(τ−1) −αE(∇ n∑

i=1
c
(
yi , f (xi ;W)

))
= W(τ−1) −α∇c

(
yi , f (xi ;W)

)
for a random i ∈ {1,2, . . . ,n}

3. Calculate C(W).

4. Stop when a certain criteria is met.

Although SGD performs much faster than regular gradient descent, it is very slow in

networks with many hidden layers and it takes a very long time to converge. Also, it

can get stuck in poor local optima, usually in deep nets that are far from optimal [57].

Mini-Batch Gradient Descent is an optimisation method which aims to overcome the slow

convergence of SGD and the computational inefficiency of normal gradient descent. The

idea of mini-batch gradient descent is that the expectation could be roughly estimated by

using a small set (p points) from the training dataset to estimate the gradient of the cost

function, instead of using a single data point as SGD or using the whole training set as in

ordinary gradient descent. A mini-batch of examples can be sampled, in each step of the

A.5 Convolutional Neural Networks 153

algorithm {x1,x2 . . . ,xp } drawn uniformly from the training set. The update step becomes :

W(τ) = W(τ−1) −α∇
(p∑

i=1
c
(
yi , fi (x;W)

))
Recently, a number of mini-batch-based methods have been introduced that adapt the

learning rates of model parameters, such as Adam. Adam is an efficient stochastic optimi-

sation method that only needs first-order gradients with little memory requirements, and

it is computationally efficient. Adam’s name is derived from adaptive moment estimation

[84]. A reasonable choice of optimisation algorithm is SGD, and another very reasonable

alternative method for optimisation is Adam.

A.5 Convolutional Neural Networks

Convolutional neural network (CNN) is a special type of ANN to process data which is

considered as a 2D grid (image). It is a type of feed-forward ANN designed to learn directly

from multi-dimensional raw data, such as images. Also, CNN references that the neural

network performs a mathematical operation named convolution. A convolution on two

discrete 2D functions can be regarded as multiplication by a matrix. A CNN involves of

one or more convolutional layers. These layers are usually followed by fully-connected

layers, but a CNN can be entirely designed by only convolutional layers. A convolutional

layer is created by a 3D tensor of processing units. The size of convolutional layer is

k ×m ×n, where k is the number of the feature maps. Also, each 2D plane of neurons

forms one feature map; the size of each feature map is m ×n. In the convolutional layer,

each neuron receives inputs from a set of neurons in the previous layer located in a small

neighbourhood; this small neighbourhood is defined by a kernel.

The kernel (or filter) is a 2D matrix of a fixed size r × s which determines patches of

processing units of the same size r × s in an input feature map. The filter convolved with

the input feature maps in the convolutional layer l produces a single neuron as output for

the output feature map of the convolutional layer l +1. Consider an illustrated example

of a convolutional layer in Figure A.6. The figure shows that each neuron in the output

feature map in the convolutional layer l +1 shares the same group of weights associated

154 A Brief Review of Deep Learning

with the patches of the input feature maps in layer l . Also, the neurons in each output

feature map in the convolutional layer l +1 can be different weights. Sharing of weights

means the weights needing to be stored is fewer, hence the memory requirements of the

model will decrease.

𝑾𝟏𝟎

𝑾𝟏𝟏

Layer 𝒍

Layer 𝒍 + 𝟏

Fig. A.6 An illustrated example of a convolutional layer.

Forward Propagation of CNN: The output feature maps in the convolutional layer l+1

are determined by the convolution of kernels with the input feature maps of the preceding

convolutional layer l . Some notations should be defined to define the equations of forward

propagation for a convolutional layer, as follows:

• Kl : the number of the input feature maps in the convolutional layer l .

• ml ×nl : the feature maps size in the convolutional layer l .

• rl × sl : the filters size associated with the convolutional layer l .

• W(l)
kk ′(u, v) : the filter weights related to the convolution with the k th input feature

map in the convolutional layer l , going to the k ′th output feature map in the convo-

lutional layer l +1, and for the weight in position (u, v) in the kernel.

• bk ′ : column vector represents all bias units connecting to a convolutional layer l +1.

• a(l+1)
k ′ (i , j) : a pre-activation function which represents the weighted sum of the

activated patches (a group of processing units in a small neighbourhood) from a

convolutional layer l plus the bias.

• h(l+1)
k ′ (i , j) : is an activation function which is related to the k ′th feature map in layer

l +1, for the processing unit in position (i , j) in the output feature map.

A.6 Deep Learning 155

The forward propagation equations for a convolutional layer is specified by :

a(l+1)
k ′ (i , j) = bk ′ +

Kl∑
k=1

(
h ∗Wk ′

)(l)
k

= bk ′ +
Kl∑

k=1

r∑
u=1

s∑
v=1

h(l)
k (i +u −1, j + v −1)W(l)

kk ′(u, v)

h(l+1)
k ′ (i , j) = g

(
a(l+1)

k ′ (i , j)
)

for k ′ ∈ {1,2, . . . ,Kl+1}, i ∈ {1,2, . . . ,ml+1} ;ml+1 = ml +1− rl

j ∈ {1,2, . . . ,nl+1} ;nl+1 = nl +1− sl

Using the backward propagation algorithm, the partial derivatives of the total cost can be

easily computed with respect to the weights of the convolutional layers.

A.6 Deep Learning

Deep learning (DL) [90] is a set of algorithms that learns in multiple non-linear transfor-

mation levels corresponding to different levels of abstraction with complex structures. It

models high-level abstractions from low-level abstractions in data. The levels in these

learned models correspond to different levels of features where the lower-level features

can assist to represent many higher-level features, and such a hierarchy architecture of

features is known as a deep architecture. Architectures of deep neural network (DNN) as

shown in Figure A.7, differ from normal neural networks where DNNs have more hidden

layers.

There are a very large number of different deep structures, most of them have been

branched from some essential parent structures. The design of non-linear processing units

in a layer relies on the task needing to be solved. DL is a fast-growing area such that new

algorithms issue every few weeks. It is not always possible to compare the performance

of several structures together, because they are not all estimated on the same datasets.

The essential example of a DL model is the feed-forward deep network. Also, research

has very successfully performed recurrent neural networks (RNNs) and convolutional

deep NNs (CNNs). DL aims to learn several levels of features and abstraction which

156 A Brief Review of Deep Learning

make sense of data such as images, sound and text. DL methods depend on learning

representations of data as models and inference. The data examples such as an image can

be represented in several manners. For example, a vector of intensity values of pixels or

in a more abstract form as a set of edges. Research in this field attempts to obtain better

representations of data by designing models to learn these representations. Moreover,

some feature representations of input are better than others because the performance of

most learning systems depends definitively on it [142].

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Input feature

Output feature
/ or Class

Neuron/ Node
/ Processing unit
/ or hidden unit

Bias Node

Input layer hidden layer 1 hidden layer 2 hidden layer 3 Output layer

Weights

Fig. A.7 An example of Deep Neural Network Architecture (DNN/ Multilayer neural network) with
four fully connected layers.

However, Deep Learning has two common issues; over-fitting and training time. Over-

fitting happens when a statistical model represents a noise rather than the underlying

relationship. This occurs when the model is very complicated and has too many weights

relative to the number of data points. The model which has over-fitting usually produces

a bad performance. Regularisation methods such as dropout regularisation [143] can be

used during training to resist over-fitting, where some number of neurons are randomly

deleted from the hidden layers during training. In addition, deep networks can fall into

local extrema, and once trained the network is not flexible enough to adapt to another

set of new data [13]. Moreover, a better theoretical understanding of deep learning and

convolutional nets is a true challenge. For example, the choice of structural features and

how to efficiently tune hyper-parameters of models, are still far from being a reality [13].

Also, RNNs and deep nets are suffering from vanishing or exploding gradients [13, 20].

Appendix B

Quantitative and Some Qualitative

Results of SISR Models

B.1 Evaluation of SRCNN

In this section, we give more details of single image super-resolution applications discussed

in Chapter 4. Figure B.1 shows the test convergence curves of PSNR for all models of non-

blind and blind scenarios. The curves show the difference between the performance of

the different models in the non-blind scenario, where the higher the blurring level, the

lower the performance. Also, in the blind situation for the models σ = 1,3 and σ = 1,4,

it is evident that when the model is trained on blurred images with σ = 4, it has led to

decreasing the model performance while increasing the blurring level in the images. From

boxplot graph B.2, it is apparent that there are differences in the performance mean of

different networks, as when the level of blurring increases, the resolution performance

decreases, and this clarifies the impact of varying blurring levels on the performance of SR

using the SRCNN model.

158 Quantitative and Some Qualitative Results of SISR Models

25

26

27

28

29

30

31

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

A
v

er
ag

e
te

st
 P

S
N

R
 (

d
B

)

Number of Epoch

The test convergence curves

SRCNN (σ = 0) SRCNN (σ = 1) SRCNN (σ = 2) SRCNN (σ = 3)

SRCNN (σ = 4) SRCNN (σ = 1-3) SRCNN (σ = 1-4)

Fig. B.1 The test convergence curves of PSNR (dB) for different SRCNN models with three layer
structure (9-1-5)(64-32-1) on the Set5 dataset.

D
a

ta

blur4blur3blur2blur1blur0

36

34

32

30

28

26

24

22

20

Boxplot of blur0, blur1, blur2, blur3, blur4

Fig. B.2 The boxplot of different blurring levels, which collects the boxplots of all networks together
in one graph to ease comparison, demonstrates that when the blurring level increases, the resolution
performance decreases.

B.1 Evaluation of SRCNN 159

We use the boxplots to show the performance of different blind and non-blind models

to be more evident in comparison. The boxplots This figure illustrates that the highest

performance of any model occurs when the model is applied to the input images with

the same level of blurring that the model is trained on and decreases gradually for other

input images with different blurring levels. For example, the performance of the non-blind

model withσ= 2 is the highest when tested on blurred images withσ= 2. For blind models,

on the other hand, the best performance occurs in the middle and decreases on both sides

gradually.

P
S

N
R

Sigma-Levels

Blurring-Level

Si
g
m
a4

Si
g
m
a3

Si
g
m
a2

Si
g
m
a1

sig
m
a(
1-
4)

sig
m
a(
1-
3)LR

b l
u
r4

b l
u
r3

bl
u
r2

bl
u
r1

bl
u
r0

b l
u
r4

b l
u
r3

bl
u
r2

bl
u
r1

bl
u
r0

b l
u
r4

b l
u
r3

b l
u
r2

bl
u
r1

bl
u
r0

b l
u
r4

b l
u
r3

b l
u
r2

b l
u
r1

bl
u
r0

bl
u
r4

b l
u
r3

b l
u
r2

b l
u
r1

b l
u
r0

bl
u
r4

bl
u
r3

b l
u
r2

b l
u
r1

b l
u
r0

bl
u
r4

bl
u
r3

b l
u
r2

b l
u
r1

b l
u
r0

35

30

25

20

15

10

Boxplot of PSNR by Sigma-Levels, Blurring-Level

Fig. B.3 The boxplots for different trained non-blind and blind super-resolution models. The figure
shows that non-blind SR models produce the highest resolution performance for testing images
when the suitable model is used, when the model and the input images have the same level of
blurring. Also, the wrong blur kernel assumption negatively affects the quality of the restored
images.

160 Quantitative and Some Qualitative Results of SISR Models

B.2 Quantitative Evaluation of DBSRCNN

Table B.1 shows the average of evaluation PSNR for non-blind SR pipelines on Set5 for

convergence curves numerically, which is revealed in Figure B.3. Also, this table gives the

total training time for each model. The results show that deep SRCNN does not work well

with the LR application, as indicated in Dong’s paper [42]. However, it works with blurred

LR applications. The improvement of the deep SRCNN is just 0.03 for a LR application.

For blurred LR images with σ = 1, the result was increased using deep SRCNN by 0.17

more than the (9-5-5) SRCNN structure. For the blurred LR images with σ= 2 pipeline, the

difference in the result when deep SRCNN is used was 0.63. Also, regarding the non-blind

pipeline of LR with σ= 3, the enhancement in the result was 0.57. Finally, the increase of

performance for σ= 4 was 0.55. The results confirm that the higher the levels of blurring,

the more layers are required for enhancing the features. Therefore, one layer in a LR

application for extracting the features was enough, and the enhanced feature layer did

not provide any enhancement in the performance. When we have a problematic issue

such as a blurred LR application, the deeper network will be better because of the nature

of its features. We can summarise this as follows: the deep SRCNN improved the results

by 0.03, 0.17, 0.63, 0.57, 0.55 for σ=0, 1, 2, 3 and 4 respectively more than (9-5-5) SRCNN

structure.

The proposed network (deep DBSRCNN with concatenation layer) has increased the

results of different applications by 0.2, 0.48, 0.88, 0.91, 0.96 for σ=0, 1, 2, 3 and 4 respec-

tively more than the (9-5-5) SRCNN. This means that the deep DBSRCNN is a more effective

method than deep SRCNN. Besides, the higher the level of blurring in an image, the higher

the improvement provided by our DBSRCNN network. For instance, the enhancement

of the result using deep DBSRCNN for σ= 4 was 0.96 but for LR was 0.20. Also, it is very

clear from the results that DBSRCNN with concatenation operation provides better results

than DBSRCNN with summation operation. Therefore we have chosen the concatenation

operation in our experiments.

The default DBSRCNN with four layers + concatenation operation and the deep DBSRCNN

with five layers + summation operation give better results than the deep SRCNN, although

the number of parameters of these networks is decreased by around 2,500 parameters.

Therefore, it is evident that the skip pipeline is more effective than the direct pipeline.

B.2 Quantitative Evaluation of DBSRCNN 161

30.2

30.7

31.2

31.7

32.2

32.7

1 5 9 13 17 21 25 29 33 37 41 45 49

A
V

E
R

A
G

E
 T

E
ST

 P
S

N
R

 (
D

B
)

NUMBER OF EPOCH

SISR images from LR images

SRCNN(9-1-5)(64-32-1)
SRCNN(9-5-5)(64-32-1)
Deeper-SRCNN(9-5-5-5)(64-32-32-1)
DBSRCNN(9-5-5-5)(32-32-sum-32-1)
Deeper-DBSRCNN(9-5-5-5-5)(32-32-sum-32-32-1)
DBSRCNN(9-5-5-5)(32-32-concat-32-1)
Deeper-DBSRCNN(9-5-5-5-5)(32-32-concat-32-32-1)

((a)) SISR images from LR images.

29.3

29.8

30.3

30.8

31.3

31.8

32.3

1 5 9 13 17 21 25 29 33 37 41 45 49

A
V

E
R

A
G

E
 T

E
ST

 P
S

N
R

 (
D

B
)

NUMBER OF EPOCH

Deblurred SISR images from blur1

SRCNN(9-1-5)(64-32-1)

SRCNN(9-5-5)(64-32-1)

Deeper-SRCNN(9-5-5-5)(64-32-32-1)

DBSRCNN(9-5-5-5)(32-32-sum-32-1)

Deeper-DBSRCNN(9-5-5-5-5)(32-32-sum-32-32-1)

DBSRCNN(9-5-5-5)(32-32-concat-32-1)

Deeper-DBSRCNN(9-5-5-5-5)(32-32-concat-32-32-1)

((b)) SISR images from corrupted images with σ= 1.

28.1

28.6

29.1

29.6

30.1

30.6

31.1

31.6

32.1

1 5 9 13 17 21 25 29 33 37 41 45 49

A
V

E
R

A
G

E
 T

E
ST

 P
S

N
R

 (
D

B
)

NUMBER OF EPOCH

Deblurred SISR images from blur2

SRCNN(9-1-5)(64-32-1)

SRCNN(9-5-5)(64-32-1)

Deeper-SRCNN(9-5-5-5)(64-32-32-1)

DBSRCNN(9-5-5-5)(32-32-sum-32-1)

Deeper-DBSRCNN(9-5-5-5-5)(32-32-sum-32-32-1)

DBSRCNN(9-5-5-5)(32-32-concat-32-1)

Deeper-DBSRCNN(9-5-5-5-5)(32-32-concat-32-32-1)

((c)) SISR images from corrupted images with σ= 2.

162 Quantitative and Some Qualitative Results of SISR Models

26.8

27.3

27.8

28.3

28.8

29.3

29.8

1 5 9 13 17 21 25 29 33 37 41 45 49

A
V

E
R

A
G

E
 T

E
ST

 P
S

N
R

 (
D

B
)

NUMBER OF EPOCH

Deblurred SISR images from blur3

SRCNN(9-1-5)(64-32-1)

SRCNN(9-5-5)(64-32-1)

Deeper-SRCNN(9-5-5-5)(64-32-32-1)

DBSRCNN(9-5-5-5)(32-32-sum-32-1)

Deeper-DBSRCNN(9-5-5-5-5)(32-32-sum-32-32-1)

DBSRCNN(9-5-5-5)(32-32-concat-32-1)

Deeper-DBSRCNN(9-5-5-5-5)(32-32-concat-32-32-1)

((a)) SISR images from corrupted images with σ= 3.

25.4

25.9

26.4

26.9

27.4

27.9

1 5 9 13 17 21 25 29 33 37 41 45 49

A
V

E
R

A
G

E
 T

E
ST

 P
S

N
R

 (
D

B
)

NUMBER OF EPOCH

Deblurred SISR images from blur4

SRCNN(9-1-5)(64-32-1)
SRCNN(9-5-5)(64-32-1)
Deeper-SRCNN(9-5-5-5)(64-32-32-1)
DBSRCNN(9-5-5-5)(32-32-sum-32-1)
Deeper-DBSRCNN(9-5-5-5-5)(32-32-sum-32-32-1)
DBSRCNN(9-5-5-5)(32-32-concat-32-1)
Deeper-DBSRCNN(9-5-5-5-5)(32-32-concat-32-32-1)

((b)) SISR images from corrupted images with σ= 4.

Fig. B.3 The performance of the different deep learning networks which we applied on non-blind
SR input images; using different structures of SRCNN networks and different structures of the
proposed network DBSRCNN. It is very obvious from all figures that the worse performance was
using (9-1-5)SRCNN, and the better performance was for the deeper DBSRCNN which involves
concatenate operation.

B
.2

Q
u

an
titative

E
valu

atio
n

o
fD

B
SR

C
N

N
163

Table B.1 The convergence curves performance of the default and deep models of SRCNN and DBSRCNN for non-blind LR
applications on Set5.

Net. Network
Type of

Network
layers # filters Filter size # param.1 σ= 0 σ= 1 σ= 2 σ= 3 σ= 4

Time/

epoch2

Total

time3

Bicubic No AI LR-HR - - - - 30.40 29.47 27.45 25.65 24.33 - -

(64-32-1) (9-1-5) 8,032 31.91 31.58 30.67 28.63 26.74 10s 8.33mDong et al.

PAMI 2016

Re-trained

SRCNN
Default 3 layers

(64-32-1) (9-5-5) 57,184 32.40 32.07 31.07 29.19 27.12 13s 10.83m

(64-32-16-1) (9-5-5-5) 69,584 32.35 32.15 31.66 29.52 27.54 15s 12.5mDeep

SRCNN
Deep 4 layers

(64-32-32-1) (9-5-5-5) 82,784 32.43 32.24 31.70 29.75 27.67 18s 15m

Default
4 layers +

concate layer

(32-32-64-

32-1)
(9-5-5-5) 54,592 32.43 32.21 31.57 29.53 27.51 15s 12.5mDBSRCNN:

Merge operation

is summation Deep
5 layers +

concate layer

(32-32-64-32

-32-1)
(9-5-5-5-5) 80,192 32.51 32.35 31.82 29.89 28.02 18s 15m

Default
4 layers +

concate layer

(32-32-64-

32-1)
(9-5-5-5) 80,192 32.53 32.34 31.73 29.64 27.75 18s 15m

New

Networks

DBSRCNN:

Merge operation

is concatenation Deep
5 layers +

concate layer

(32-32-64-32

-32-1)
(9-5-5-5-5) 105,792 32.60 32.55 31.95 30.10 28.08 23s 19.17m

1 Number of parameters; 2 Training time in seconds for an epoch; 3 Total training time in minutes/ 50 epochs

164 Quantitative and Some Qualitative Results of SISR Models

B.3 Qualitative Examples of DBSRCNN and DBSR

In this section, we present more additional qualitative examples for single image super-

resolution application for blind and non-blind scenarios using the SRCNN, DBSRCNN and

DBSR networks.

B.3 Qualitative Examples of DBSRCNN and DBSR 165

Original HR blurred LR with σ= 1
PSNR dB 30.83 dB

SRCNN blind SRCNN σ ∈ [1−3]
32.81 dB 31.41 dB

DBSRCNN blind DBSRCNN σ ∈ [1−3]
33.43 dB 32.03 dB

Fig. B.4 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with σ= 1. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−3] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

166 Quantitative and Some Qualitative Results of SISR Models

Original HR blurred LR with σ= 3
PSNR dB 27.38 dB

SRCNN blind SRCNN σ ∈ [1−3]
30.31 dB 29.57 dB

DBSRCNN blind DBSRCNN σ ∈ [1−3]
31.54 dB 30.75 dB

Fig. B.5 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with σ= 3. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−3] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

B.3 Qualitative Examples of DBSRCNN and DBSR 167

Original HR blurred LR with σ= 3
PSNR dB 26.67 dB

SRCNN blind SRCNN σ ∈ [1−3]
30.74 dB 28.92 dB

DBSRCNN blind DBSRCNN σ ∈ [1−3]
32.20 dB 31.44 dB

Fig. B.6 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with σ= 3. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−3] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

168 Quantitative and Some Qualitative Results of SISR Models

Original HR blurred LR with σ= 4
PSNR dB 17.77 dB

SRCNN blind SRCNN σ ∈ [1−4]
21.29 dB 19.32 dB

DBSRCNN blind DBSRCNN σ ∈ [1−4]
23.06 dB 21.77 dB

Fig. B.7 SR with SRCNN and DBSRCNN on grey-scale images after Gaussian blur with σ= 4. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−4] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

B.3 Qualitative Examples of DBSRCNN and DBSR 169

Original HR blurred LR with σ= 2
PSNR dB 30.75 dB

SRCNN blind SRCNN σ ∈ [1−3]
33.47 dB 33.55 dB

DBSRCNN blind DBSRCNN σ ∈ [1−3]
35.00 dB 32.75 dB

Fig. B.8 SR with SRCNN and DBSRCNN on a colour image after Gaussian blur with σ = 2. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−3] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

170 Quantitative and Some Qualitative Results of SISR Models

Original HR blurred LR with σ= 3
PSNR dB 28.76 dB

SRCNN blind SRCNN σ ∈ [1−3]
32.41 dB 30.97 dB

DBSRCNN blind DBSRCNN σ ∈ [1−3]
33.53 dB 33.90 dB

Fig. B.9 SR with SRCNN and DBSRCNN on a colour image after Gaussian blur with σ = 3. The
second and third rows show the results of SRCNN and DBSRCNN, respectively; according to the two
different scenarios (the non-blind and blind σ ∈ [1−3] SR scenarios). Each result is accompanied
by zoom and PSNR dB.

B
.3

Q
u

alitative
E

xam
p

les
o

fD
B

SR
C

N
N

an
d

D
B

SR
171

Input image Output image Input image Output image Input image Output image Input image Output image

H
R

 i
m

ag
e

S
R

C
N

N
 (

)
S

R
C

N
N

 (
)

S
R

C
N

N
 (

)
S

R
C

N
N

 (
)

S
R

C
N

N
 (

)

Fig. B.10 Example of non-blind SRCNN (9-1-5)(64-32-1).

172
Q

u
an

titative
an

d
So

m
e

Q
u

alitative
R

esu
lts

o
fSISR

M
o

d
els

App. HR image Blurred LR
image

PSNR/
SSIM

SRCNN
(9-5-5)

PSNR/
SSIM

Deep
SRCNN

PSNR/
SSIM

DB-SRCNN PSNR/
SSIM

Deep DB-
SRCNN

PSNR/
SSIM

LR
(𝜎 = 0)

24.04/
0.8820

27.47/
0.9021

27.55/
0.9040

27.71/
0.9090

27.79/
0.9104

blur1
(𝜎 = 1)

23.12/
0.7925

27.00/
0.8893

27.24/
0.8966

27.50/
0.9031

27.90/
0.9106

blur2
(𝜎 = 2)

21.06/
0.7061

25.79/
0.8519

26.73/
0.8828

26.67/
0.8812

26.95/
0.8871

blur3
(𝜎 = 3)

19.17/
0.6054

24.05/
0.7927

24.79/
0.8236

24.59/
0.8143

25.17/
0.8331

blur4
(𝜎 = 4)

17.77/
0.5204

21.57/
0.6744

22.45/
0.7150

22.57/
0.7229

23.06/
0.7423

Fig. B.11 Example 1: example for different networks for each application.

B
.3

Q
u

alitative
E

xam
p

les
o

fD
B

SR
C

N
N

an
d

D
B

SR
173

App. HR image Blurred LR
image

PSNR/
SSIM

SRCNN
(9-5-5)

PSNR/
SSIM

Deep
SRCNN

PSNR/
SSIM

DB-SRCNN PSNR/
SSIM

Deep DB-
SRCNN

PSNR/
SSIM

LR
(𝜎 = 0)

32.58/
0.9261

34.85/
0.9488

34.93/
0.9493

35.05/
0.9511

35.22/
0.9532

blur1
(𝜎 = 1)

31.38/
0.9067

34.57/
0.9456

34.78/
0.9485

34.83/
0.9489

35.33/
0.9531

blur2
(𝜎 = 2)

28.85/
0.8487

33.66/
0.9342

34.19/
0.9410

34.18/
0.9416

34.58/
0.9450

blur3
(𝜎 = 3)

26.67/
0.7786

31.38/
0.8906

31.94/
0.9007

31.79/
0.8975

32.49/
0.9097

blur4
(𝜎 = 4)

25.10/
0.7181

29.02/
0.8308

29.69/
0.8462

29.87/
0.8503

30.36/
0.8581

Fig. B.12 Example 2: example for different networks for each application.

174
Q

u
an

titative
an

d
So

m
e

Q
u

alitative
R

esu
lts

o
fSISR

M
o

d
els

Original HR Blurred LR at σ= 1 SRCNN DBSRCNN

PSNR dB 30.83 dB 32.81 dB 33.43 dB

DBSR DBSRCNN[1-3] DBSR[1-3]

33.80 dB 32.03 dB 32.77 dB

Fig. B.13 SR with different models on images after Gaussian blur with σ= 1. The results show the non-blind and blind scenarios.
Each result is accompanied by zoom and PSNR.

B
.3

Q
u

alitative
E

xam
p

les
o

fD
B

SR
C

N
N

an
d

D
B

SR
175

Original HR Blurred LR at σ= 2 SRCNN DBSRCNN

PSNR dB 30.75 dB 33.47 dB 35.00 dB

DBSR blind DBSRCNN σ ∈ [1−3] blind DBSR σ ∈ [1−3]

35.21 dB 33.75 dB 34.61 dB

Fig. B.14 SR with different models on images after Gaussian blur with σ= 2. The results show the non-blind and blind scenarios.
Each result is accompanied by zoom and PSNR.

176
Q

u
an

titative
an

d
So

m
e

Q
u

alitative
R

esu
lts

o
fSISR

M
o

d
els

Original HR Blurred LR at σ= 4 SRCNN DBSRCNN

PSNR dB 17.77 dB 21.29 dB 23.06 dB

DBSR blind DBSRCNN σ ∈ [1−4] blind DBSR σ ∈ [1−4]

24.42 dB 21.77 dB 23.56 dB

Fig. B.15 SR with different models on images after Gaussian blur with σ= 4. The results show the non-blind and blind scenarios.
Each result is accompanied by zoom and PSNR.

References

[1] James E Adams and Bruce Pillman. Digital camera image formation: Introduction

and hardware. In Digital Image Forensics, pages 3–44. Springer, 2013.

[2] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-

resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages 126–135, 2017.

[3] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for design-

ing overcomplete dictionaries for sparse representation. IEEE Transactions on signal

processing, 54(11):4311–4322, 2006.

[4] Arthur Albert. Regression and the Moore-Penrose pseudoinverse. Elsevier, 1972.

[5] Fatma Albluwi. DBSRCNN-Keras Code. https://github.com/Fatma-ALbluwi/

DBSRCNN, 2018.

[6] Fatma Albluwi, Vladimir A Krylov, and Rozenn Dahyot. Artifacts reduction in jpeg-

compressed images using cnns. In Irish Machine Vision and Image Processing con-

ference (IMVIP), Belfast, United Kingdom, 2018.

[7] Fatma Albluwi, Vladimir A Krylov, and Rozenn Dahyot. Image deblurring and super-

resolution using deep convolutional neural networks. In 28th IEEE International

Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6, Aalborg,

Denmark, 2018.

[8] Fatma Albluwi, Vladimir A Krylov, and Rozenn Dahyot. Denoising renoir image

dataset with dbsr. In Proc. Irish Machine Vision and Image Processing conference

(IMVIP), Dublin, Ireland, 2019.

https://github.com/Fatma-ALbluwi/DBSRCNN
https://github.com/Fatma-ALbluwi/DBSRCNN

178 References

[9] Fatma Albluwi, Vladimir A Krylov, and Rozenn Dahyot. Super-resolution on degraded

low-resolution images using convolutional neural networks. In 27th European Signal

Processing Conference (EUSIPCO), pages 1–5, Spain, 2019.

[10] Jan Allebach and Ping Wah Wong. Edge-directed interpolation. In Proceedings of 3rd

IEEE International Conference on Image Processing (ICIP), volume 3, pages 707–710,

1996.

[11] Hussein A Aly and Eric Dubois. Image up-sampling using total-variation regulariza-

tion with a new observation model. IEEE Transactions on Image Processing, 14(10):

1647–1659, 2005.

[12] Josue Anaya and Adrian Barbu. Renoir–a dataset for real low-light image noise

reduction. Journal of Visual Communication and Image Representation, 51:144–154,

2018.

[13] Plamen Angelov and Alessandro Sperduti. Challenges in deep learning. In Proceed-

ings of the 24th European symposium on artificial neural networks (ESANN), pages

489–495, 2016.

[14] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour de-

tection and hierarchical image segmentation. IEEE transactions on pattern analysis

and machine intelligence (PAMI), 33(5):898–916, 2011.

[15] Suyash P Awate and Ross T Whitaker. Unsupervised, information-theoretic, adaptive

image filtering for image restoration. IEEE Transactions on pattern analysis and

machine intelligence (PAMI), 28(3):364–376, 2006.

[16] Simon Baker and Takeo Kanade. Limits on super-resolution and how to break them.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24(9):1167–

1183, 2002.

[17] Mark R Banham and Aggelos K Katsaggelos. Digital image restoration. IEEE signal

processing magazine, 14(2):24–41, 1997.

[18] Adrian Barbu. Training an active random field for real-time image denoising. IEEE

Transactions on Image Processing, 18(11):2451–2462, 2009.

References 179

[19] Jacob Benesty, Jingdong Chen, and Yiteng Huang. Study of the widely linear wiener

filter for noise reduction. In International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 205–208, 2010.

[20] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependen-

cies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):

157–166, 1994.

[21] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel.

Low-complexity single-image super-resolution based on nonnegative neighbor em-

bedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC),

2012.

[22] Leo Breiman et al. Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical science, 16(3):199–231, 2001.

[23] Michael S Brown, Peng Song, and Tat-Jen Cham. Image pre-conditioning for out-of-

focus projector blur. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), volume 2, pages 1956–1963, 2006.

[24] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image

denoising. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), volume 2, pages 60–65, 2005.

[25] Harold C Burger, Christian J Schuler, and Stefan Harmeling. Image denoising: Can

plain neural networks compete with bm3d? In IEEE conference on computer vision

and pattern recognition (CVPR), pages 2392–2399, 2012.

[26] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding

algorithm for matrix completion. SIAM Journal on optimisation, 20(4):1956–1982,

2010.

[27] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for

convex problems with applications to imaging. Journal of mathematical imaging

and vision, 40(1):120–145, 2011.

180 References

[28] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-resolution through neighbor

embedding. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, 2004.

[29] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A flexible

framework for fast and effective image restoration. Transactions on pattern analysis

and machine intelligence (PAMI), 39(6):1256–1272, 2016.

[30] Yunjin Chen, Thomas Pock, René Ranftl, and Horst Bischof. Revisiting loss-specific

training of filter-based mrfs for image restoration. In German Conference on Pattern

Recognition, pages 271–281, 2013.

[31] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[32] Peter Corcoran and Petronel Bigioi. Consumer imaging I – processing pipeline focus

and exposure. In Handbook of Visual Display Technology, pages 1–25. Springer, 2016.

[33] Zhen Cui, Hong Chang, Shiguang Shan, Bineng Zhong, and Xilin Chen. Deep network

cascade for image super-resolution. In European Conference on Computer Vision

(ECCV), pages 49–64, 2014.

[34] Ricardo Dutra Da Silva, Rodrigo Minetto, William Robson Schwartz, and Helio

Pedrini. Adaptive edge-preserving image denoising using wavelet transforms. Pat-

tern analysis and applications, 16(4):567–580, 2013.

[35] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image

denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions

on image processing, 16(8):2080–2095, 2007.

[36] Shengyang Dai, Mei Han, Wei Xu, Ying Wu, and Yihong Gong. Soft edge smoothness

prior for alpha channel super resolution. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume 7, pages 1–8, 2007.

[37] Guy Demoment. Image reconstruction and restoration: Overview of common

estimation structures and problems. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 37(12):2024–2036, 1989.

https://github.com/fchollet/keras

References 181

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In IEEE conference on computer vision and

pattern recognition (CVPR), pages 248–255, 2009.

[39] Pedro Domingos. A few useful things to know about machine learning. Communica-

tions of the ACM, 55(10):78–87, 2012.

[40] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep

convolutional network for image super-resolution. In European Conference on

Computer Vision (ECCV), pages 184–199, 2014.

[41] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression artifacts

reduction by a deep convolutional network. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), pages 576–584, 2015.

[42] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution

using deep convolutional networks. IEEE transactions on pattern analysis and

machine intelligence (PAMI), 38(2):295–307, 2015.

[43] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution

convolutional neural network. In European Conference on Computer Vision (ECCV),

pages 391–407. Springer, 2016.

[44] Weisheng Dong, Lei Zhang, Guangming Shi, and Xin Li. Nonlocally centralized

sparse representation for image restoration. IEEE transactions on Image Processing,

22(4):1620–1630, 2012.

[45] Weisheng Dong, Lei Zhang, Guangming Shi, and Xin Li. Nonlocally centralized

sparse representation for image restoration. IEEE Transactions on Image Processing,

22(4):1620–1630, 2013.

[46] Mehran Ebrahimi and Edward R Vrscay. Solving the inverse problem of image

zooming using “self-examples”. In International Conference Image Analysis and

Recognition, pages 117–130. Springer, 2007.

[47] Netalee Efrat, Daniel Glasner, Alexander Apartsin, Boaz Nadler, and Anat Levin. Ac-

curate blur models vs. image priors in single image super-resolution. In Proceedings

182 References

of the IEEE International Conference on Computer Vision (ICCV), pages 2832–2839,

2013.

[48] Michael Elad and Michal Aharon. Image denoising via sparse and redundant repre-

sentations over learned dictionaries. IEEE Transactions on Image processing, 15(12):

3736–3745, 2006.

[49] Michael Elad and Arie Feuer. Restoration of a single superresolution image from

several blurred, noisy, and undersampled measured images. IEEE transactions on

image processing, 6(12):1646–1658, 1997.

[50] Linwei Fan, Xuemei Li, Hui Fan, Yanli Feng, and Caiming Zhang. Adaptive texture-

preserving denoising method using gradient histogram and nonlocal self-similarity

priors. IEEE Transactions on Circuits and Systems for Video Technology, 2018.

[51] Raanan Fattal. Image upsampling via imposed edge statistics. ACM transactions on

graphics (TOG), 26(3):95, 2007.

[52] Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Pointwise shape-adaptive

dct for high-quality denoising and deblocking of grayscale and color images. IEEE

Transactions on Image Processing (TIP), 16(5):1395–1411, 2007.

[53] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian. Practical

poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE

Transactions on Image Processing, 17(10):1737–1754, 2008.

[54] William T Freeman, Egon C Pasztor, and Owen T Carmichael. Learning low-level

vision. International journal of computer vision, 40(1):25–47, 2000.

[55] William T Freeman, Thouis R Jones, and Egon C Pasztor. Example-based super-

resolution. IEEE Computer graphics and Applications, 22(2):56–65, 2002.

[56] WT Freeman and Ce Liu. Markov random fields for super-resolution and texture

synthesis. Advances in Markov Random Fields for Vision and Image Processing, 1

(155-165):3, 2011.

[57] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

References 183

[58] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition (CVPR), pages 580–587,

2014.

[59] Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from a single image.

In IEEE 12th international conference on computer vision, pages 349–356, 2009.

[60] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,

volume 1. MIT Press Cambridge, 2016.

[61] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong. Blind super-resolution with

iterative kernel correction. In Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), pages 1604–1613, 2019.

[62] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear

norm minimization with application to image denoising. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), pages 2862–2869,

2014.

[63] Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang.

Weighted nuclear norm minimization and its applications to low level vision. Inter-

national journal of computer vision, 121(2):183–208, 2017.

[64] Gajanand Gupta. Algorithm for image processing using improved median filter and

comparison of mean, median and improved median filter. International Journal of

Soft Computing and Engineering (IJSCE), 1(5):304–311, 2011.

[65] He He and Wan-Chi Siu. Single image super-resolution using gaussian process

regression. In IEEE Computer Vision and Pattern Recognition (CVPR), pages 449–456.

IEEE, 2011.

[66] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5353–5360, 2015.

184 References

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of

the IEEE international conference on computer vision (ICCV), pages 1026–1034, 2015.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition (CVPR), pages 770–778, 2016.

[69] Donald Olding Hebb. The organization of behavior. J. Wiley; Chapman & Hall, 1949.

[70] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

[71] Michal Hradiš, Jan Kotera, Pavel Zemcík, and Filip Šroubek. Convolutional neural

networks for direct text deblurring. In The British Machine Vision Conference (BMVC),

volume 10, page 2, 2015.

[72] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution

from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5197–5206, 2015.

[73] Viren Jain and Sebastian Seung. Natural image denoising with convolutional net-

works. In Advances in Neural Information Processing Systems, pages 769–776, 2009.

[74] Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. Loss-specific training

of non-parametric image restoration models: A new state of the art. In European

Conference on Computer Vision (ECCV), pages 112–125. Springer, 2012.

[75] Hui Ji, Chaoqiang Liu, Zuowei Shen, and Yuhong Xu. Robust video denoising using

low rank matrix completion. In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1791–1798, 2010.

[76] Hui Ji, Sibin Huang, Zuowei Shen, and Yuhong Xu. Robust video restoration by joint

sparse and low rank matrix approximation. SIAM Journal on Imaging Sciences, 4(4):

1122–1142, 2011.

[77] Cheolkon Jung, Licheng Jiao, Hongtao Qi, and Tian Sun. Image deblocking via sparse

representation. Signal Processing: Image Communication, 27(6):663–677, 2012.

References 185

[78] Sergei Igorevich Kabanikhin. Definitions and examples of inverse and ill-posed

problems. Journal of Inverse and Ill-Posed Problems, 16(4):317–357, 2008.

[79] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,

and Li Fei-Fei. Large-scale video classification with convolutional neural networks.

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition

(CVPR), pages 1725–1732, 2014.

[80] Jozef Kelemen. From artificial neural networks to emotion machines with marvin

minsky. Acta Polytechnica Hungarica, 4(4):1–12, 2007.

[81] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution

using very deep convolutional networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1646–1654, 2016.

[82] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional net-

work for image super-resolution. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1637–1645, 2016.

[83] Kwang In Kim and Younghee Kwon. Single-image super-resolution using sparse re-

gression and natural image prior. IEEE transactions on pattern analysis and machine

intelligence (PAMI), 32(6):1127–1133, 2010.

[84] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[85] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[86] Jinsa Kuruvilla and K Gunavathi. Lung cancer classification using neural networks

for ct images. Computer methods and programs in biomedicine, 113(1):202–209,

2014.

[87] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep lapla-

cian pyramid networks for fast and accurate super-resolution. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 2, pages 624–632, 2017.

186 References

[88] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Fast and

accurate image super-resolution with deep laplacian pyramid networks. IEEE trans-

actions on pattern analysis and machine intelligence (PAMI), 41(11):2599–2613, 2018.

[89] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object

recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004., volume 2, pages II–104, 2004.

[90] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):

436, 2015.

[91] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,

Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.

Photo-realistic single image super-resolution using a generative adversarial network.

In Proceedings of the IEEE conference on computer vision and pattern recognition

(CVPR), volume 2, pages 4681–4690, 2017.

[92] Seong Won Lee and Joon Ki Paik. Image interpolation using adaptive fast b-spline

filtering. In 1993 IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 5, pages 177–180, 1993.

[93] Anat Levin, Rob Fergus, Frédo Durand, and William T Freeman. Image and depth

from a conventional camera with a coded aperture. ACM transactions on graphics

(TOG), 26(3):70, 2007.

[94] Xin Li and Michael T Orchard. New edge-directed interpolation. IEEE transactions

on image processing, 10(10):1521–1527, 2001.

[95] Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwanggil Jeon, and Wei Wu. Feed-

back network for image super-resolution. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3867–3876, 2019.

[96] AW-C Liew and Hong Yan. Blocking artifacts suppression in block-coded images

using overcomplete wavelet representation. IEEE transactions on circuits and systems

for video technology (TCSVT), 14(4):450–461, 2004.

References 187

[97] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced

deep residual networks for single image super-resolution. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops (CVPRW), pages

1132–1140, 2017.

[98] Peter List, Anthony Joch, Jani Lainema, Gisle Bjontegaard, and Marta Karczewicz.

Adaptive deblocking filter. IEEE transactions on circuits and systems for video tech-

nology (TCSVT), 13(7):614–619, 2003.

[99] Ding Liu, Zhaowen Wang, Bihan Wen, Jianchao Yang, Wei Han, and Thomas S Huang.

Robust single image super-resolution via deep networks with sparse prior. IEEE

Transactions on Image Processing, 25(7):3194–3207, 2016.

[100] Kui Liu, Jieqing Tan, and Benyue Su. An adaptive image denoising model based on

tikhonov and tv regularisations. Advances in Multimedia, 2014:8, 2014.

[101] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), pages 3431–3440, 2015.

[102] Lu Lu, Weiqi Jin, and Xia Wang. Non-local means image denoising with a soft

threshold. IEEE Signal Processing Letters, 22(7):833–837, 2015.

[103] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang

Li, and Lei Zhang. Waterloo exploration database: New challenges for image quality

assessment models. IEEE Transactions on Image Processing, 26(2):1004–1016, 2016.

[104] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve

neural network acoustic models. In Proc. ICML, volume 30, page 3, 2013.

[105] Julien Mairal, Michael Elad, and Guillermo Sapiro. Sparse representation for color

image restoration. IEEE Transactions on image processing, 17(1):53–69, 2007.

[106] Julien Mairal, Francis R Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman.

Non-local sparse models for image restoration. In IEEE 12th international conference

on computer vision (ICCV), volume 29, pages 54–62. Citeseer, 2009.

188 References

[107] Maurits Malfait and Dirk Roose. Wavelet-based image denoising using a markov

random field a priori model. IEEE Transactions on image processing, 6(4):549–565,

1997.

[108] Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet

representation. IEEE Transactions on Pattern Analysis & Machine Intelligence (PAMI),

(7):674–693, 1989.

[109] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very deep

convolutional encoder-decoder networks with symmetric skip connections. In

Advances in neural information processing systems (NIPS), pages 2802–2810, 2016.

[110] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human

segmented natural images and its application to evaluating segmentation algorithms

and measuring ecological statistics. In Proceedings Eighth IEEE International Con-

ference on Computer Vision. ICCV 2001, volume 2, pages 416–423, 2001.

[111] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[112] Keith Miller. Least squares methods for ill-posed problems with a prescribed bound.

SIAM Journal on Mathematical Analysis, 1(1):52–74, 1970.

[113] Bryan S Morse and Duane Schwartzwald. Image magnification using level-set recon-

struction. In Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), 1:333–340, 2001.

[114] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on machine

learning (ICML), pages 807–814, 2010.

[115] Rajashree Nayak, S Monalisa, and Dipti Patra. Spatial super resolution based image

reconstruction using hibp. In India Conference (INDICON), 2013 Annual IEEE, pages

1–6, 2013.

[116] Shree K Nayar and Moshe Ben-Ezra. Motion-based motion deblurring. IEEE trans-

actions on pattern analysis and machine intelligence (PAMI), 26(6):689–698, 2004.

References 189

[117] Aria Nosratinia. Embedded post-processing for enhancement of compressed images.

In Proceedings Data Compression Conference (DCC), pages 62–71. IEEE, 1999.

[118] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution image re-

construction: a technical overview. IEEE signal processing magazine, 20(3):21–36,

2003.

[119] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifi-

cation using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[120] Stuart W Perry and Ling Guan. Weight assignment for adaptive image restoration by

neural networks. IEEE Transactions on neural networks, 11(1):156–170, 2000.

[121] Javier Portilla, Vasily Strela, Martin J Wainwright, and Eero P Simoncelli. Image

denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans Image

Processing, 12(11), 2003.

[122] Matan Protter, Michael Elad, Hiroyuki Takeda, and Peyman Milanfar. Generalizing

the nonlocal-means to super-resolution reconstruction. IEEE Transactions on image

processing, 18(1):36–51, 2008.

[123] Yajun Qiu, Ruxin Wang, Dapeng Tao, and Jun Cheng. Embedded block residual

network: A recursive restoration model for single-image super-resolution. In Pro-

ceedings of the IEEE International Conference on Computer Vision (ICCV), pages

4180–4189, 2019.

[124] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure photography:

motion deblurring using fluttered shutter. In ACM transactions on graphics (TOG),

volume 25, pages 795–804, 2006.

[125] Howard C Reeve and Jae S Lim. Reduction of blocking effects in image coding.

Optical Engineering, 23(1):230134, 1984.

[126] Gernot Riegler, Samuel Schulter, Matthias Ruther, and Horst Bischof. Conditioned

regression models for non-blind single image super-resolution. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV), pages 522–530, 2015.

190 References

[127] Yaniv Romano, John Isidoro, and Peyman Milanfar. Raisr: Rapid and accurate image

super resolution. IEEE Transactions on Computational Imaging, 3(1):110–125, 2017.

[128] Frank Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[129] Stefan Roth and Michael J Black. Fields of experts: A framework for learning im-

age priors. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), volume 2, pages 860–867, 2005.

[130] Leonid I Rudin and Stanley Osher. Total variation based image restoration with free

local constraints. In Proceedings of 1st International Conference on Image Processing,

volume 1, pages 31–35. IEEE, 1994.

[131] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based

noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[132] David Rumelhart, DRGHR Williams, and Geoffrey Hinton. Learning representations

by back-propagating errors. Nature, 323(6088):533–538, 1986.

[133] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,

Parallel Distributed Processing, volume 1, pages 318–362. MIT Press, Cambridge,

1985.

[134] Uwe Schmidt, Qi Gao, and Stefan Roth. A generative perspective on mrfs in low-

level vision. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1751–1758, 2010.

[135] Samuel Schulter, Christian Leistner, and Horst Bischof. Fast and accurate image

upscaling with super-resolution forests. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3791–3799, 2015.

[136] Qi Shan, Zhaorong Li, Jiaya Jia, and Chi-Keung Tang. Fast image/video upsampling.

In ACM Transactions on Graphics (TOG), volume 27, page 153. ACM, 2008.

References 191

[137] Hamid R Sheikh, Alan C Bovik, and Gustavo De Veciana. An information fidelity cri-

terion for image quality assessment using natural scene statistics. IEEE Transactions

on image processing (TIP), 14(12):2117–2128, 2005.

[138] Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik. A statistical evaluation of

recent full reference image quality assessment algorithms. IEEE Transactions on

image processing (TIP), 15(11):3440–3451, 2006.

[139] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob

Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video super-

resolution using an efficient sub-pixel convolutional neural network. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1874–1883, 2016.

[140] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation

for deep learning. Journal of Big Data, 6(1):60, 2019.

[141] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[142] Richard Socher. Recursive Deep Learning for Natural Language Processing and

Computer Vision. PhD thesis, Stanford University, 2014.

[143] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of machine learning research, 15(1):1929–1958, 2014.

[144] Henry Stark. Image recovery: theory and application. Elsevier, 2013.

[145] Deqing Sun and Wai-Kuen Cham. Postprocessing of low bit-rate block dct coded

images based on a fields of experts prior. IEEE Transactions on Image Processing

(TIP), 16(11):2743–2751, 2007.

[146] Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image super-resolution using gradi-

ent profile prior. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–8, 2008.

192 References

[147] Jian Sun, Zongben Xu, and Heung-Yeung Shum. Gradient profile prior and its

applications in image super-resolution and enhancement. IEEE Transactions on

Image Processing (TIP), 20(6):1529–1542, 2010.

[148] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learning a convolutional neural

network for non-uniform motion blur removal. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2015.

[149] Pavel Svoboda, Michal Hradiš, David Bařina, and Pavel Zemčík. Compression arti-

facts removal using convolutional neural networks. Journal of WSCG, 24(2):63–72,

2016. ISSN 1213-6972. URL http://www.fit.vutbr.cz/research/view_pub.php?id=

11176.

[150] Pavel Svoboda, Michal Hradiš, Lukáš Maršík, and Pavel Zemcík. CNN for license

plate motion deblurring. In 2016 IEEE International Conference on Image Processing

(ICIP), pages 3832–3836, 2016.

[151] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory

network for image restoration. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4539–4547, 2017.

[152] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing

the gap to human-level performance in face verification. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), pages 1701–1708,

2014.

[153] Yapeng Tian. SRCNN-Keras Code. https://github.com/YapengTian/SRCNN-Keras,

2017.

[154] Radu Timofte, Vincent De Smet, and Luc Van Gool. Anchored neighborhood regres-

sion for fast example-based super-resolution. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 1920–1927, 2013.

[155] Radu Timofte, Vincent De Smet, and Luc Van Gool. A+: Adjusted anchored neighbor-

hood regression for fast super-resolution. In Asian Conference on Computer Vision,

pages 111–126. Springer, 2014.

http://www.fit.vutbr.cz/research/view_pub.php?id=11176
http://www.fit.vutbr.cz/research/view_pub.php?id=11176
https://github.com/YapengTian/SRCNN-Keras

References 193

[156] Tom Tirer and Raja Giryes. Image restoration by iterative denoising and backward

projections. IEEE Transactions on Image Processing (TIP), 28(3):1220–1234, 2018.

[157] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images.

In IEEE Sixth international conference on computer vision (ICCV), volume 98, pages

839–846, 1998.

[158] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image super-resolution using dense

skip connections. In Proceedings of the IEEE International Conference on Computer

Vision (CVPR), pages 4799–4807, 2017.

[159] RY Tsai. Multiframe image restoration and registration. Advances in Computer Vision

and Image Processing., 1(2):317–339, 1984.

[160] Matej Ulicny, V Krylov, and Rozenn Dahyot. Harmonic networks for image classifica-

tion. In British Machine Vision Conference (BMVC), 2019.

[161] Matej Ulicny, Vladimir A Krylov, and Rozenn Dahyot. Harmonic networks with

limited training samples. In IEEE 27th European Signal Processing Conference (EU-

SIPCO), pages 1–5, 2019.

[162] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on

neural networks, 10(5):988–999, 1999.

[163] Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-

play priors for model based reconstruction. In IEEE Global Conference on Signal and

Information Processing, pages 945–948, 2013.

[164] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-

tracting and composing robust features with denoising autoencoders. In Proceedings

of the 25th international conference on Machine learning (ICML), pages 1096–1103,

2008.

[165] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A

neural image caption generator. In Proceedings of the IEEE conference on computer

vision and pattern recognition (CVPR), pages 3156–3164, 2015.

194 References

[166] Ci Wang, Jun Zhou, and Shu Liu. Adaptive non-local means filter for image deblock-

ing. Signal Processing: Image Communication, 28(5):522–530, 2013.

[167] Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. Deep

networks for image super-resolution with sparse prior. In Proceedings of the IEEE

International Conference on Computer Vision (CVPR), pages 370–378, 2015.

[168] Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave it? A new look at

signal fidelity measures. IEEE signal processing magazine, 26(1):98–117, 2009.

[169] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions on image

processing (TIP), 13(4):600–612, 2004.

[170] Paul J Werbos. Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–1560, 1990.

[171] Yue Wu, Brian Tracey, Premkumar Natarajan, and Joseph P Noonan. James–stein type

center pixel weights for non-local means image denoising. IEEE Signal Processing

Letters, 20(4):411–414, 2013.

[172] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep

neural networks. In Advances in neural information processing systems (NIPS), pages

341–349, 2012.

[173] Zhiwei Xiong, Xiaoyan Sun, and Feng Wu. Image hallucination with feature enhance-

ment. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

2074–2081, 2009.

[174] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified

activations in convolutional network. Deep Learning Workshop, ICML 2015, 2015.

[175] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural network for

image deconvolution. In Advances in Neural Information Processing Systems (NIPS),

pages 1790–1798, 2014.

References 195

[176] Hitoshi Yamauchi, Jörg Haber, and H-P Seidel. Image restoration using multiresolu-

tion texture synthesis and image inpainting. In Proceedings of Computer Graphics

International 2003, pages 120–125. IEEE, 2003.

[177] Chih-Yuan Yang, Jia-Bin Huang, and Ming-Hsuan Yang. Exploiting self-similarities

for single frame super-resolution. In Asian conference on computer vision, pages

497–510. Springer, 2010.

[178] Chih-Yuan Yang, Chao Ma, and Ming-Hsuan Yang. Single-image super-resolution: A

benchmark. In European Conference on Computer Vision (ECCV), pages 372–386.

Springer, 2014.

[179] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution as

sparse representation of raw image patches. In IEEE conference on computer vision

and pattern recognition (CVPR), pages 1–8, 2008.

[180] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution

via sparse representation. IEEE transactions on image processing (TIP), 19(11):2861–

2873, 2010.

[181] Jianchao Yang, Zhaowen Wang, Zhe Lin, Scott Cohen, and Thomas Huang. Coupled

dictionary training for image super-resolution. IEEE transactions on image processing

(TIP), 21(8):3467–3478, 2012.

[182] Ruikang Yang, Lin Yin, Moncef Gabbouj, Jaakko Astola, and Yrjö Neuvo. Optimal

weighted median filtering under structural constraints. IEEE transactions on signal

processing, 43(3):591–604, 1995.

[183] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qing-

min Liao. Deep learning for single image super-resolution: A brief review. IEEE

Transactions on Multimedia, 21(12):3106–3121, 2019.

[184] Yongyi Yang, Nikolas P Galatsanos, and Aggelos K Katsaggelos. Projection-based

spatially adaptive reconstruction of block-transform compressed images. IEEE

Transactions on Image Processing (TIP), 4(7):896–908, 1995.

196 References

[185] Changhoon Yim and Alan Conrad Bovik. Quality assessment of deblocked images.

IEEE Transactions on Image Processing (TIP), 20(1):88–98, 2011.

[186] Ke Yu, Chao Dong, Chen Change Loy, and Xiaoou Tang. Deep convolution networks

for compression artifacts reduction. arXiv preprint arXiv:1608.02778, 2016.

[187] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-

works. In European conference on computer vision (ECCV), pages 818–833. Springer,

2014.

[188] Matthew D Zeiler, M Ranzato, Rajat Monga, Min Mao, Kun Yang, Quoc Viet Le, Patrick

Nguyen, Alan Senior, Vincent Vanhoucke, Jeffrey Dean, et al. On rectified linear units

for speech processing. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3517–3521, 2013.

[189] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using

sparse-representations. In International conference on curves and surfaces, pages

711–730. Springer, 2010.

[190] Haichao Zhang, Jianchao Yang, Yanning Zhang, and Thomas S Huang. Non-local ker-

nel regression for image and video restoration. In European Conference on Computer

Vision (ECCV), pages 566–579. Springer, 2010.

[191] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond

a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE

Transactions on Image Processing (TIP), 26(7):3142–3155, 2017.

[192] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser

prior for image restoration. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), volume 2, pages 3929–3938, 2017.

[193] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward a fast and flexible

solution for cnn-based image denoising. IEEE Transactions on Image Processing

(TIP), 27(9):4608–4622, 2018.

[194] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convolutional super-

resolution network for multiple degradations. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), volume 6, 2018.

References 197

[195] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense

network for image super-resolution. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2472–2481, 2018.

[196] Qiang Zhou, Shifeng Chen, Jianzhuang Liu, and Xiaoou Tang. Edge-preserving single

image super-resolution. In Proceedings of the 19th ACM international conference on

Multimedia, pages 1037–1040, 2011.

	Table of contents
	 List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Overview and Motivation
	1.2 Summary of Contributions
	1.3 Thesis Outline
	1.4 List of Publications

	2 Related Work
	2.1 Capturing Images
	2.1.1 The Image Processing Steps
	2.1.2 Image Compression

	2.2 Image Restoration (IR)
	2.2.1 Degradation models
	2.2.2 Denoising
	2.2.3 Enhancement: Super-Resolution (SR)

	2.3 Deep Learning for Image Denoising and SR Restoration
	2.3.1 Deep Architectures for Single Image SR (SISR)
	2.3.2 Deep Architectures for Denoising
	2.3.3 Challenges and Trends

	2.4 Evaluation of Restoration
	2.4.1 Metrics
	2.4.2 Dataset and benchmarks for evaluation

	2.5 Conclusion

	3 Convolutional Neural Networks (CNNs)
	3.1 Super-Resolution CNN (SRCNN)
	3.1.1 SRCNN Architecture
	3.1.2 SRCNN Optimisation
	3.1.3 Computation Time

	3.2 Introducing Concatenation
	3.2.1 Compression Artefacts Removal (CAR) Networks
	3.2.2 De-Blurring Super-Resolution CNN (DBSRCNN)

	3.3 Introducing more layers
	3.3.1 De-Blurring Super-Resolution (DBSR) Architecture
	3.3.2 DBSR Optimisation

	3.4 Using Harmonic Blocks (Harm-net)
	3.4.1 Harm-DBSR Architecture
	3.4.2 Harm-DBSR Optimisation
	3.4.3 Compression of the Harm-DBSR Network

	3.5 Conclusion

	4 Experimental Comparisons of DeBlurring Super-Resolution
	4.1 Methodology
	4.1.1 Training and Testing Datasets
	4.1.2 Degradation Model
	4.1.3 Non-Blind and Blind SISR Scenarios
	4.1.4 Experiments on Colour Images
	4.1.5 Quantitative Metrics for Comparisons

	4.2 Experimental Results
	4.2.1 Evaluation of SRCNN
	4.2.2 Evaluation of DBSRCNN
	4.2.3 Evaluation of DBSR
	4.2.4 Evaluation of Harm-DBSR

	4.3 Conclusion

	5 Artefact Reduction in JPEG-Compressed Images
	5.1 Related Work
	5.2 Data and Training
	5.3 Quantitative Metrics for Comparisons
	5.4 Benchmark Comparisons
	5.5 Conclusion

	6 Denoising in a Real Scenario
	6.1 Related Work
	6.2 RENOIR Dataset
	6.3 Training and Testing Data
	6.4 Evaluation of Denoising Methods
	6.5 Conclusion

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Limitations and Future Work

	Appendix A A Brief Review of Deep Learning
	A.1 Statistical Learning (SL)
	A.2 Machine Learning (ML)
	A.2.1 Types of Learning Problems
	A.2.2 Regression in ML
	A.2.3 The Gradient Descent (GD) Algorithm

	A.3 Artificial Neural Networks (ANN)
	A.3.1 A Brief Historical Review of ANN
	A.3.2 Forward-Propagation
	A.3.3 Backward Propagation

	A.4 Practical Considerations
	A.4.1 Dataset
	A.4.2 Activation Functions
	A.4.3 The Cost Function
	A.4.4 Over-Fitting and Regularisation
	A.4.5 The Learning Rate
	A.4.6 Stochastic GD (SGD) and Mini-Batch GD

	A.5 Convolutional Neural Networks
	A.6 Deep Learning

	Appendix B Quantitative and Some Qualitative Results of SISR Models
	B.1 Evaluation of SRCNN
	B.2 Quantitative Evaluation of DBSRCNN
	B.3 Qualitative Examples of DBSRCNN and DBSR

	References

