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Abstract

Neural networks are sets of algorithms that together can approximate general func-
tions. To approximate a function, the network must �rst be �trained� by a framework
that can give informed feedback to reinforce correct predictions.

As these function approximations can be trained ahead of time, neural networks are
often used for work that will have previously unseen inputs � such as those seen in
the �eld of Computer Vision.

The Intel® Movidius�Myriad� VPU is an embedded processor that is integrated
into many hand-held and battery powered devices. In Intel® Movidius�'s latest
processor, a hardware component was included to accelerate neural network soft-
ware.

In this thesis, we explore a particular feature of this hardware component � An
index-mapping of the neural network's intermediary and trained values.

We propose several new approaches to con�guring this component and how they
could be used to improve classi�cation rates for very low precision networks. Of
particular note, is the LeNet network where our 4 bit results match those of a 32 bit
equivalent. However, we �nd that our proposed algorithms are suitable for di�erent
scenarios and would be best used as a suite.

Finally, we demonstrate the performance of the VPU using the hardware component
to achieve 4 times lower data transfer sizes and consequentially, 4x faster processing
of a layer.
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1 Introduction

1.1 Research Context

In recent times there has been a signi�cant rise in the demand for small embedded

consumer devices. Similarly, many industries are now solving technical problems

with neural networks rather than traditional processes. As a result, there is much

research interest in combining these two areas � to deploy neural networks on

embedded devices.

Both trends have been enabled by advances in microprocessor capabilities. It is

now possible to use a personal computer to develop a neural network of signi�cant

size, where previously only supercomputers could attempt such a feat.

Mobile phones in particular have driven technological advances for low power

embedded systems. Current products can contain multi-core processors and

bene�t from the same observed doubling of microchip transistors that other

computers gain from every year (i.e. Moore's Law)(Schaller, 1997).

On initial inspection however, it may seem that the combination of neural

networks and embedded devices is a contradictory goal. Embedded devices are

generally low-power, low-throughput and memory constrained, whilst the

computation of neural networks requires large amounts of processing power and

frequent data movement.

Facilitating these contrasting properties has been the subject of much previous

research. This thesis is speci�cally interested in the reduction of numeric storage

size, and the consequent reduced circuitry. It builds upon the hardware

1



optimizations implemented by Intel® Movidius�, particularly their application of

higher precision values to a lower-precision index map.

1.2 Thesis Overview

This thesis explores several methods to choose index-mapping values for such a

hardware using novel approaches that consider the domain of neural networks,

rather than a naïve generic con�guration.

The algorithm proposals are assessed based on how their approximation of the

original data a�ects the classi�cation rates of a given neural network.

Despite the particular investigation into the Intel® Movidius�Myriad� VPU, the

ideas presented in this thesis are transferable to similar hardware models should

they exist.

This thesis shows that naïve algorithms are sub-optimal and concludes that there

are several possible algorithms to improve a given network, but does not establish

a single solution for all cases. The continued pursuit of such a solution is proposed

to future researchers along with several other proposals gathered during the

collation of the research.

1.3 Overview of Document Layout

Chapter 1 (This chapter) presents a brief overview of thesis's problem, its

importance in a wider context and summarizes the thesis's �ndings.

Chapter 2 will give the reader an introduction to the established concepts and

notable literature that the thesis is founded on. It begins with a brief overview of

the operation of neural networks, followed by select mentions of previous research

and concludes with a high-level description of the Intel® Movidius�Myriad�

VPU's hardware accelerator.

With the background of the thesis's research now established, Chapter 3 will

discuss the initial investigation into the research problem. Firstly the problem is

2



veri�ed valid and its impact measured. This is followed by several proposal

changes to the index-mapping process that may alleviate the issue. Finally, we

discuss some technical decisions that will inform how a system to further explore

the research problem is to be implemented.

Chapter 4 is the core of the thesis and describes the �nal technical design and

the workings of the investigative development done throughout the project. This

chapter is structured in three sections; An initial statement of what the technical

project should aim to achieve, the details of how such an implementation is

architected and �nally, any failings or limitations of this taken approach.

Chapter 5 will collate the information gathered through the research in Chapter

4 and attempt to make sense of its results. The data gathered is statistically

analysed, the technical implementation and its impact on the project critiqued,

and �nally, there is an overall evaluation of the thesis' �ndings and approach.

Concluding the project is Chapter 6, in which the analysis results from the

previous chapter are examined in a wider context. We present several concepts for

future research in this area, a summary of the work presented in the thesis as well

as some closing thoughts on the thesis and the wider research domain.

At the end of the thesis, some supplementary material is provided to aid readers in

a series of Appendices including a Glossary of Terms.

3
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2 Background & Related Work

2.1 Foundations of Neural Network Design

Neural networks, more precisely known as �arti�cial neural networks� or ANNs are

not a recent concept. The �rst paper on the subject was published in 1944 in the

Bulletin of Mathematical Biology (McCulloch, 1944).

An ANN is a system of connected nodes called �neurons� which transfer signals to

each other. When given a labelled set of information, the ANN can tune internal

variables or �parameters� to estimate future unlabelled information. In the below

neuron diagram � Figure 2.1 � these parameters are shown as �Hidden

Nodes�.

5



Figure 2.1: Neurons in an ANN operation1

There is a subset of ANNs that this thesis is primarily focussed upon known as

convolutional neural networks (CNNs) and as such, mentions of neural networks in

the thesis from this point onward will be referring to CNNs, unless explicitly

mentioned otherwise.

The architecture of a CNN lends itself well to computation; CNNs have a reduced

amount of connections needed to be processed compared to full ANNs and are

built from a standardized series of operations.

When input data is passed into the network, the �rst operation of the network is

executed, beginning a process that will re�ne the data towards a classi�cation.

The operation's output is then processed by the subsequent operation, repeating

until each operation has processed over the data. At the end of the network, a

series of classi�cation rates are produced.

The �rst technical implementation of a convolutional neural network was

introduced by Yann LeCun in 1998, using a simple (by current standards) series of

1Source: Creative Commons Attribution-Share Alike 3.0 Unported - https://en.wikipedia
.org/wiki/File:Colored_neural_network.svg
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grid-based computation operations to recognize hand written digits (LeCun et al.,

1998). The core functionality of convolutional neural networks has not changed

much from LeCun's original design. This network, named �LeNet�, after the

author, is shown in Figure 2.2 with visualizations of the output of each NN

operation as the image is processed through the network.

Figure 2.2: This visualization of the LeNet Architecture shows the data as it is
processed through the network. The image of a `3' is classi�ed correctly at the
conclusion of execution.2

However, it was not until the annual ImageNet Large Scale Visual Recognition

Competition (ILSVRC) in 2012 that CNNs began to proliferate into technical

research. Before this year's event, the winners of ILSVRC and other image

competitions primarily used other classical computer vision techniques.

Alex Krizhevsky and fellow researchers of University of Toronto won the contest

with their neural network �AlexNet� (Shown in Figure 2.3) by a signi�cant margin.

The error rate they achieved was 15.3%, the second-placing team only achieving

2Source: (LeCun et al., 1998)
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26.2% (Krizhevsky, 2017).

Figure 2.3: The AlexNet Architecture showing the network processing across 2
GPUS3

The interest created from this competition win supported a large surge in image

classi�cation research and by 2017, most teams entering the contest had less than

a 5% error rate (As can be seen in Figure 2.4). After the 2017 contest, the hosts

announced that a new, more di�cult, contest would take its place.4

3Source: (Krizhevsky, 2017). The top of this image is also cropped in the original paper.
4https://www.newscientist.com/article/2127131-new-computer-vision-challenge-w

ants-to-teach-robots-to-see-in-3d/
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Figure 2.4: Advances in image classi�cation as shown by the improving standard of
submissions to ILSVRC5

Neural networks are now used in many products in industry; What was once an

expensive and limited technique has become an accessible solution for many

domains.

In particular, many industries previously relying on traditional Computer Vision

(CV) are replacing their systems with neural networks (Behringer, 2019). The

5Source: https://qz.com/1046350/the-quartz-guide-to-artificial-intelligence-wha
t-is-it-why-is-it-important-and-should-we-be-afraid/
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�Universal Approximation Theorem� proposes that neural networks can

approximate to a large quantity of continuous functions (Hornik, 1991)6 and thus

the applicable domains for NNs in industry is wide-reaching.

2.1.1 Convolutions

Convolutions are the main operation of a CNN, and from where the network

architecture gets its namesake.

Much like other CV operations, a convolution is a parameter-based grid operation.

These are well suited to processing on GPUs (Fung, 2019).

Convolutions in a CNN are generally 2-dimensional functions that operate on a

4-dimensional tensor. The core computation convolves a set of parameters around

a matrix (This input data is often named activation data or activations).

Figure 2.5 shows a convolution producing a single output value. The input values

for the computation, shown as a 3×3 grid on a larger matrix, is known as the

receptive �eld. Each element of this receptive �eld is multiplied with a

corresponding parameter (sometimes called a �weight�). These products are then

summed to produce the output value, and the operation will move on to calculate

the next item.

Figure 2.5: A 3×3 Convolution operation7

6The Universal Approximation Theorem states that a neural network with 1 hidden layer can
approximate any continuous function for inputs within a speci�c range. (Csáji, 2019)
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Those readers familiar with computer vision will likely recognise this pattern of

operation as the same technique is used for more traditional tasks such as blurring,

sharpening and edge detection.8

Neural network convolutions often work o� 3-dimensional inputs (e.g. colour

images have a width, a height and a number of colour channels). In this case, each

additional channel of data requires a corresponding set of parameters. After each

channel is individually calculated, these are summed with the other channels to

produce one pixel.

Thus far, the convolution has produced a two dimensional output from the original

three dimensions of the input. The fourth and �nal dimension commonly needed

produces multiple output channels for an output value, preserving the

dimensionality from input to output (i.e. the input is 3D and the output is also

3D).

Listing 2.1: Code for 2D convolutions

# NumPy i s a common python l i b r a r y f o r numerica l computation

# and i s used throughout t h i s t h e s i s ' s code samples

# Computing in Sc i ence & Engineer ing 13 , 22 ( 2011 ) ;

# https : // do i . org /10.1109/MCSE.2011 . 37

import numpy as np

# Example Convolution :

# Input S i z e : 224 , 224 , 3

# Weight S i z e : 1 , 1 , 3 , 64

# Output S i z e : 224 , 224 , 64

def convolve ( input , we ights ) :

# Sum of Products

# Input : 2D subsec t i on o f input

# Weights : a 2D s e t o f weight parameters

# Output : a 1x1 Number

7Source: (Agapitos et al., 2015)
8http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html
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return np .sum(np . mult ip ly ( input , we ights ) )

# The operat i on shown in Figure 2 .5

def convolution_2D ( input , we ights ) :

# Input : A 2−dimens iona l plane o f data

# Weights : A s e t o f k e rn e l s f o r each convo lut ion

# Output : A 2−dimension plane o f data

# I t ' s p o s s i b l e to have asymmetric ke rne l s ,

# but l e t ' s keep i t s imple !

k e rne l_s i z e = weights . shape [ 0 ] # 1

input_height = input . shape [ 0 ] # 224

input_width = input . shape [ 1 ] # 224

for ih in input_height :

for iw in input_width :

# In the same vein , t h i s s imple example

# does not account f o r s t r i d e , nor padding

output [ ih ] [ ih ] = \

convolve ( input [ ih : ih+ke rne l_s i z e ] [ iw : iw+kerne l_s i z e ] ,

we ights )

return output

Listing 2.2: 3D and 4D Convolutions

def convolution_3D ( input , we ights ) :

# Input : A 3−dimens iona l plane o f data

# Weights : A s e t o f k e rn e l s f o r each 2d plane o f input

# Output : A 3−dimension plane o f data ,

# an accumulation o f the 2d r e s u l t s

input_channels = input . shape [ 2 ] # 3

for i c in input_channels :
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output += convolution_2D ( input [ i c ] , we ights [ i c ] )

return output

def convolution_4D ( input , we ights ) :

# Input : A 4−dimens iona l plane o f data

# Weights : A s e t o f k e rn e l s f o r each 3d plane o f input

# Output : A 4−dimension plane o f data

# each entry a 3d r e s u l t

output_channels = weights . shape [ 4 ] # 64

for oc in output_channels ( input , we ights ) :

output [ oc ] = convolution_3D ( input [ oc ] , we ights [ oc ] )

return output

By having multiple sets of parameters, the convolution can capture several

representations of the information contained in each receptive �eld. An example of

this can be seen in the visualization of the LeNet network in the previous Figure

2.2 when the channels between operations increase.

Because the input to the convolution and the operation's result are both

3-dimensional matrices, multiple convolutions can be linked together without data

reorganization.

Optimizations

There have been several research e�orts to improve upon the performance of

convolutions, whether through direct optimization like Winograd convolution

(Lavin, 2016), or substitution of a similar, less complex, operation such as

group-based convolution (Krizhevsky, 2017). However, the scope of this thesis

limits itself to traditionally computed convolutions due to both time constraints

and the applicability to the Intel® Movidius�Myriad� VPU platform that will be
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discussed in Section 2.4.

2.1.2 Pooling

Network designers use pooling operations to reduce the spatial size of a network

and to reduce both the number of computations and trained parameters as it

approaches a �nal classi�cation.

Pooling operations �lter the least pertinent information away and preserve the

most prominent information for future operations.

The most popular pooling algorithm, �Maximum Pooling� identi�es the most

`important' information by selecting the largest values in tiled local areas (Yu

et al., 2014). An example of the operation can be seen in Figure 2.6.

Figure 2.6: A 2×2 pooling operation9

Most other pooling operations operate in the same manner, but may choose to

compute the output value di�erently (e.g. `Average Pooling' will output the

average of each shaded section.

Listing 2.3: Code for poolings

# Example Maximum Pool ing :

# Input S i z e : 224 , 224 , 3

# Operation S i z e : 2

# Output S i z e : 112 , 112 , 3

def pool ( input , pool_type ) :

9Source: https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
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i f pool_type == "MAX" :

return np .max( input )

e l i f pool_type == "AVG" :

return np .mean( input )

else :

raise Exception

def poo l ing ( input , pool_type , k e rne l_s i z e ) :

# Input : A 3−dimens iona l plane o f data

# pool_type : Whether maximum or average poo l ing

# Kernel s i z e : dimension l ength o f i nd i v i dua l poo l ing

# Again , assuming symmetric f o r s imp l i c i t y

input_side = input . shape [ 0 ] # 224

for ih in input_side :

for iw in input_side :

out_idx = input_side *(1/ ke rne l_s i z e )

output [ out_idx ] [ out_idx ] = \

pool ( input [ ih : ih+ke rne l_s i z e ] [ iw : iw+kerne l_s i z e ] ,

pool_type )

return output

2.1.3 Activation Functions

Activation functions are (typically) small functions that are applied to a more

compute-intensive operation's results (such as convolution), modifying each

activation's impact on future operations. They generally operate on a single

activation at a time.

There are many types of activation functions available to the network designer.

The most common of these is the Reci�cation Linear Unit (ReLU), introduced in
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Glorot et al. (2011). The functionality of this computation is quite simple � any

values that are negative are thresholded to zero. The ReLU function and some

other activation functions can be seen computed on a range of values in Figure

2.7.

(a) ReLU (b) Leaky ReLU

(c) ELU (d) Sigmoid

(e) TanH

Figure 2.7: Di�erent Types of Activation Functions.

As the magnitude of neuron values generally represent correlation with
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predetermined classes, negative values indicate the degree of which the neurons do

not match the classes. As the degree of correlation is usually the only aspect we

are interested in, the results do not su�er signi�cantly when negative values are

removed.

This has two bene�ts; The volume of data needing preservation throughout the

network has been reduced and can be removed later in the network (in a future

pooling layer for example).

Secondly, the ReLU creates many zero values in the output matrix. This creates a

lot of potential for mathematical optimizations and facility for skipped

computation. Taking advantage of the presence of zero values is discussed in more

detail in Section 2.3.

While the Intel® Movidius�Myriad� VPU has hardware support for acceleration

of activation functions, this thesis will not investigate much in this area, due to the

low impact these operations usually have on the computation performance of a

network.

Listing 2.4: Code for Recti�cation Units

def ReLU( value ) :

return value i f value > 0 else 0

def LeakyReLU( value , negat ive_s lope ) :

return value i f value > 0 else value * negat ive_s lope

def ELU( value , alpha ) :

return value i f value >= 0 else alpha * (np . exp ( value ) ) − 1

def Sigmoid ( value ) :

return 1 / (1 + np . exp(−value ) )

def TanH( value ) :

return tanh ( va lue )
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2.1.4 Fully Connected Layers and Classi�ers

As computation proceeds through the architecture of a network, the height and

width of the input gradually decreases (mostly through the e�ect of pooling as

described in Section 2.1.2 and edge compensation10) while the number of channels

tend to increase. Eventually, the network designer will want to convert their

matrices of data into classi�cations and their data dimensionality will reduce to a

single dimension.

The fully connected layer (FCL) cross-correlates all data points with every set of

class weightings (thus being �fully connected�). This results in a matrix where each

�nal classi�cation point has been impacted by every neuron in the network,

allowing for a �nal assessment of class signi�cance relative to every other possible

class. The operation can be seen in (a) of Figure 2.8, (b) and (c) sub-�gures show

the full connectivity of each data point.

10Edge compensation refers to the e�ect of performing a convolution with a kernel size of greater
than 1x1 without adding padding to the edges of the input to o�set the indented kernel computation
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Figure 2.8: The fully connected layer operation and each input node's full connection
to each output node11

Listing 2.5: Code for Classi�ers

def FCL( input , we ights ) :

return np . mul t ip ly ( input , we ights )

def SoftMax ( input ) :

return np . exp (x ) / np .sum(np . exp (x ) )

This �nal classi�cation �gure is generally done by a classi�cation operation such as

softmax. Classi�cation operations normalize the resultant data to produce a more

human-readable representation, such as a 0 to 100 classi�cation percentage.

One notable defect of the design of CNNs and the FCL is the lack of detecting

11Source: (Ando et al., 2017)
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when nothing is present. If an uncategorizable input is passed through the network

(e.g. an image of a boat in a �Dog or Cat� recognition network), there will be some

correlations with unrelated classes (that boat may register as 45% Dog, 55%

Cat).

It is noteworthy that convolutions and fully connected layers can be interchanged

through some minor linear algebra.12 Any research �ndings of convolutions found

in this thesis can be applied to fully connected as a result. There is a worked

example of this in Appendix A1.1

2.2 Training

Neural networks, like other supervised learning algorithms, require labelled

datasets to learn a particular task. As the training process computes, it tunes the

values of the weights, biases and other internal parameters. Most popular and

successful networks are founded upon very large datasets. For example, the latest

version of the ImageNet dataset (at time of writing) has 14,197,122 labelled

images.

Before seeing any dataset items, the training system generates a full parameter set

for a network architecture using one of a selection of initialization methods (e.g.

Xavier's initialization method (Glorot and Bengio, 2010)).

These parameters are updated as the training system proceeds to process through

each input in the dataset. The classi�cation results of these inputs are compared

with the corresponding reference labels. Successful classi�cations positively

re-enforce the parameters that produced it, while misclassi�cations introduce more

variation to the parameters to allow the system to attempt alternate

con�gurations. Figure 2.9 shows a generic example of some data-points being

grouped into three distinct classes. The dotted lines indicate estimated

separations. It can be seen there are some values incorrectly grouped; As the

system adapts to training feedback, it will adjust these classi�cation boundaries

accordingly to �nd better estimations.

12http://cs231n.github.io/convolutional-networks/
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Each complete classi�cation pass over an entire labelled dataset is called an

`epoch'. The training process usually runs for several epochs, concluding either

when a set accuracy target is met, �over�tting� (described below in Section 2.2) is

detected, or a processing time limit is reached.

Figure 2.9: A visualization of data being roughly grouped into 3 Classes.13

Knowing when to stop

In principle, the training process can continue forever, but generally, there comes a

point where classi�cation rate increases start to take signi�cantly more time to

achieve. It is not wise to train for as long as possible as the network can �over-�t�

the data, correlating features of the dataset that are not relevant to the actual

classi�cation. (e.g. All the pictures of dogs in a dataset are photographs taken

13Source: https://sourceforge.net/projects/mlpy/?source=directory
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outdoors, if the network starts to over-�t; it may stop recognising dogs that are

indoors) (Srivastava et al., 2014). Figure 2.10 shows this over-�tting e�ect on a

simple two-class dataset.

Figure 2.10: An over�t classi�cation (green) versus a more appropriate general
estimation (black)14

To determine when a training system should stop, a developer can split their

dataset into 3 subsets � Train, Validation and Test. The training system will

process on the Train subset and after each epoch, the Validation set is tested as

well. As the Validation set is not involved in the training, the researcher can

ensure some generality for unseen data. At the end of the process, the test set can

be used to provide a fully independent accuracy �gure.

14Source: CC BY-SA 3.0 (Chabacano, Feb 2008)
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Figure 2.11: The point of classi�cation rate divergence between seen and unseen
data can signal over�tting and is a good time to terminate the training process15

Typically, classi�cation improvements grow in sizeable increments in early epochs,

but the improvements grow smaller as the network architecture approaches its

classi�cation limits for the dataset. In these later epochs, it can be di�cult to tell

if the classi�cation rate has reached a �nal state, or if there is still more to be

gained. One method (as shown in Figure 2.11) to determine an end to training is

to monitor the Validation subset's error rate. When the classi�cation rates of the

Train subset continue to improve, but the Validation subset starts to deteriorate,

over-�tting may be occurring.

Figure 2.12 below shows an example of such training sequence with real data. A

perceived gain in accuracy up to epoch 30 can be seen in the training data, but in

the validation data, there is not much gain past epoch 4. Additionally, the

stochastic nature of the training process causes some volatility to the classi�cation

rates clouding possible trends.

15Source: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-over�tting-
in-machine-learning-820b091dc42
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Figure 2.12: Example of classi�cation rates over time using real data16

2.3 Reducing Computation Overhead

Neural networks contain a lot of data for processing. For a particular task, the

required capacity (a measure of how complex a function it can model) of the

network may change. For example, the comparatively small LeNet architecture

works well on very small, preprocessed, greyscale handwritten numeric digits from

0 to 9, but will perform badly with more complex datasets. GoogLeNet, originally

trained on larger photographic images of 1000 di�erent ImageNet classes, is quite

adaptable to similarly complex datasets, such as classifying species of �owers.

(Gurnani and Mavani, 2017)

There is no widely accepted formal calculation for the capacity of a network, but

several approximations have been proposed � most prominently, the

16Source: http://neuralnetworksanddeeplearning.com/chap3.html
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Vapnik-Chervonenkis (VC) dimensions of a network. A simpler approximation

would be one that scales linearly with the number of neurons in the network
17.

When designing a network architecture, or porting an existing one to your problem

domain, it is generally desirable to have an architecture that is only as complex as

is needed. An e�ciently designed architecture will run with minimal overhead,

thereby increasing the processing rate of classi�cations.

In the case of embedded systems (explained in more detail in Section 2.4),

reducing the complexity of a network is important to enable e�cient processing

due to their constrained resources. The problem of resources is universal � even

CPU and GPU devices bene�t from reduced complexity, it can reduce training

times and mitigate performance impact of slower operations and prototype

research, which can be crucial for both research and cutting-edge products.

The �rst place a network designer should look to optimize a network is in its

design. Cutting out operations in the network and retraining may preserve the

network's classi�cation rates if the culled operations were super�uous.

This technique works best when a network is far more complex than necessary. A

network designer who has paid good attention to the network's construction may

�nd less �exibility to remove operations.

Aside from general network design, there are several types of optimization for a

developer to explore. The two most relevant to our research are Sparsity and

Low-Precision Networks.

There are many other possible optimizations such as those called out in Section

2.1.1, but they will not be discussed further in this thesis.

2.3.1 Sparsity

There are several forms of `sparsity' that can be categorized into �Coarse sparsity�

and �Fine sparsity�. Coarse sparsity removes channels of information from an

17https://r2rt.com/preliminary-note-on-the-complexity-of-a-neural-network.html

points out several papers that use this as a metric of capacity
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operation, while �ne sparsity removes kernel elements. These removals may

degrade classi�cations when applied immediately, but when involved in the

training process this e�ect can be reduced. A visualization of these forms can be

seen in further detail in Figure 2.13. In this �gure, �ne sparsity is broken further

into 0, 1 and 2 dimensional sparsity.

Figure 2.13: Di�erent granularities of sparsity, ranging from �ne-grain(�ne) to �lter-
level(coarse)18

2.3.2 Low-Precision Networks

Separate from the high level architecture, the storage elements for neurons and

parameters remain to be optimized. Normally, neural networks are computed in

32-bit �oating-point arithmetic. However, there have been several forays in the

commercial space towards 16-bit �oating-point computation and 8-bit integer

storage. Large companies such as Google19, Nvidia20 and Intel21 have all released

products with 8-bit headline support.

TensorFlow, the neural network framework by Google, has a speci�c

18Source: (Han, 2017)
19Tensor Processing Unit � https://cloud.google.com/blog/products/gcp/an-in-depth

-look-at-googles-first-tensor-processing-unit-tpu
20Tesla processors P4 & P40 � https://www.theregister.co.uk/2016/09/13/nvidia_p4_p

40_gpu_ai/
21Xeon Scalable Processors � (Gong et al., 2018)
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implementation of 8-bit integers called GEMMLOWP (GEneral Matrix

Multiplication LOW Precision), that can be interpreted as �oating-point numbers.

(Jacob et al., 2018). As can be seen in Figure 2.14, numbers in this form share

exponents with other numbers in a common data range (e.g. a set of weights for a

convolution, or a channel of an activation).

Figure 2.14: GEMMLOWP takes advantage of similarly scaled data ranges between
values, storing their shared exponent separately22

There have been several papers that experiment with even smaller precision,

exploring the possibility of 4-bit, 2-bit and even ternary (Zhu et al., 2017) or

binary (Rastegari et al., 2016) arithmetic substitution.

2.4 Using Embedded Systems for Neural Networks

2.4.1 Market Overview

There are a wide range of embedded devices that are on the market today which

are speci�cally designed to accelerate ANN workloads.

Some devices are `enabling' � devices that provide additional compute power to a

host focussed on general task processing such as a Raspberry Pi. Google's Tensor

Processing Units (�TPU�s) are one example of these devices, as well as the Intel®

22Source: https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-spee
ding-up-mobile-inference-with-low-precision-a882dfcafbbd
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Movidius�Neural Compute Stick described below in Section 2.4.2. Other devices

focus on the full NN development suite, such as Nvidia's Jetson range of processors

(in particular, the Jetson Nano was recently released in March 2019).23

There are also processors designed for speci�c market segments, such as

MobileEye's �EyeQ� which is focussed on autonomous vehicles. Others focus on

speci�c subsets of ANNs, such as IBM's TrueNorth processor which is designed for

Spiking Neural Networks (SNNs).

2.4.2 Intel® Movidius�Myriad� VPU

Company History

Before Movidius® was acquired by Intel® in 201624 (subsequently becoming

Intel® Movidius�) their main product o�ering was a small processing unit

dedicated to computer vision workloads. This was one of the �rst in a new wave of

processors called �VPUs� (Vision Processing Units).

The company produced several versions of their processors (ISAAC, SABRE,

Myriad 1), each one building upon the successes of the last. A consistent

selling-point of the company was their ability to provide remarkable compute

power for very low power consumption (below <1 Watt).25 This was very

attractive for developers of `always-on` or battery-powered devices � such as the

DJI Spark Drone26 or the Google Clips camera27

The company entered into the domain of neural networks when they announced a

suite of neural network tools on their new Myriad 2 processors. In April 2017, the

chip was also released in a new form factor � The Intel® Movidius�Neural

Compute Stick (NCS). A brief overview of a NN developer's work�ow with the

23https://developer.nvidia.com/embedded/jetson-nano-developer-kit?nvid=nv-int-m

n-78462
24https://www.irishtimes.com/business/technology/intel-acquires-dublin-based-c

hipmaker-movidius-1.2781200
25https://uploads.movidius.com/1463156689-2016-04-29_VPU_ProductBrief.pdf
26https://www.movidius.com/news/intel-movidius-myriad-2-vpu-enables-advanced-c

omputer-vision-and-deep-learn
27https://androidcommunity.com/intels-movidius-vpu-powers-the-google-clips-cam

era-20171009/
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device can be seen in Figure 2.16.

Figure 2.15: Timeline of Movidius® Products28

In August of the same year, they announced their newest processor � the Myriad

X. The Myriad X VPU contains a �Neural Compute Engine� (NCE) - a dedicated

hardware accelerator for neural networks, capable of performing of over 1 trillion

operations per second.29 A subsequent NCS based on the the Myriad X was

produced (the NCS 2)30 allowing NCS developers to take advantage of these

performance improvements. A summary timeline of these events can be seen in

Figure 2.15

The NCE of the MyriadX is the target platform for this thesis's research. Any

improvements to existing systems if accepted by Intel® Movidius� could

potentially be seen in the core Myriad product lines as well as the NCS

products.

28Source: https://www.movidius.com/
29https://movidius-uploads.s3.amazonaws.com/1532110136-MyriadXVPU_ProductBrie

f_final_07.18.pdf
30https://newsroom.intel.com/news/intel-unveils-intel-neural-compute-stick-2/

29
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Figure 2.16: Network deployment work�ow of the NCS product31

Processor Overview

One of the features of the Intel® Movidius� range of processors is that the

architecture was designed to reduce the impact of data movement, leading the

processors to be more energy e�cient. When not using the NCE hardware

acceleration, computation is normally performed using 16 programmable 128-bit

very long instruction word (VLIW) vector processors. Careful consideration must

be made to balance the transferring of supplies of work to the processors, while

still achieving high compute utilization.

These transfers of work are generally relocated to di�erent memory locations using

direct memory access (DMA) controllers and are scheduled by the two LEON

(SPARC-V832 RISC33) processors on the device (They are labelled �CPUs� in the

Figure 2.17 below that gives a visual layout of the device).

Each of the Myriad range of processors also come with a collection of computer

vision hardware accelerators, these are supplemented by a large collection of

software libraries in the Myriad Development Kit (MDK).

31Source: https://movidius.github.io/blog/deploying-custom-ca�e-models/
32Scalable Processor ARChitecture
33Reduced Instruction Set Computer
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Figure 2.17: High Level Architecture of the Myriad X Processor34

NCE Hardware Acceleration

At a high level, the scheduling of NCE workloads is similar to that of software

tasks. Instead of scheduling work for the 16 vector processors, work is scheduled

for the 2 hardware blocks.

The component design of the NCE is somewhat detailed in Movidius®'s patent

application �Methods, Systems and Apparatus to Improve Convolution E�ciency�

(Power et al., 2018).

34Source: https://www.anandtech.com/show/11771/intel-announces-movidius-myriad-x-vpu
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Figure 2.18: High Level Components of the CNN Accelerator35

In the simpler view of the accelerator � Figure 2.18 � it can be seen that the

NCE supports several core CNN operations � convolution, pooling and FCLs.

The patent also discusses several other supported operation types, however the

only other operation we are concerned with in this thesis is ReLU.

The NCE consists of an array of data path elements (DPEs). As can be seen in the

more detailed Figure 2.19, there are 256 DPEs. They can be arranged to all

process a single channel, to split in two sets of 128 to process two channels, and so

on.

35Source: (Power et al., 2018)
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Figure 2.19: Technical Breakdown of the CNN Accelerator36

While Intel® Movidius� advertises many impressive headline �gures for 8-bit

operations with this hardware, the engine also includes unpublished limited

support for lower precisions � 4-bit, 2-bit and 1-bit.

Index Mapping Hardware

An additional facility of the compute engine is index-mapping from 4-bit keys to

16-bit �oating-point values. This feature gives developers the option to regain

some precision from the loss that occurs when quantizing from a higher precision

to 4-bit. An example mapping is shown in Table 2.1.

36Source: (Power et al., 2018)
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It is this unit that this thesis will focus on, to investigate whether there is a

consistent method for choosing how to select index-mapped values for a given

neural network to reduce incorrect classi�cation.

4-bit index 16-bit value

0000 -3.0

0001 -2.5

0010 -2.0

0011 -1.8

0100 -1.5

0101 -1

0110 0.3

0111 0.8

1000 1

1001 1.2

1010 1.4

1011 1.8

1100 2.4

1101 2.6

1110 2.9

1111 3.5

Table 2.1: Example of Index Mapping

Using low-precision types in hardware reduces the overhead for storage,

computation and transmission. As the 4-bit values will resolve to a higher

precision within the NCE, it is expected that computation savings will be lessened

or absent.

Research from (Chen et al., 2014) and (Tann et al., 2016) both mention an

additional bene�t of using low-precision types � the size of processed memory

directly correlates with better power and energy e�ciency. A graph from (Hashemi

et al., 2017) below (Figure 2.20) pro�les a selection of mixed-precision networks

and their consumed energy during execution. The blue and black points are
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highlighted to show Hashemi's con�rmation of Chen and Tann's �ndings.

Figure 2.20: CIFAR10 Power Consumption Graph37. The energy consumption of
the original precision (black dot) is compared to the energy consumption at di�erent
precision representations (Blue). Classi�cation accuracy can be seen also on the y-
axis. The green and red points are additional types introduced in the research not
relevant to this thesis

2.4.3 Related Hardware Research

This section provides a brief overview of other existing hardware considerations

applicable to this thesis, but descoped from future investigation. See Section 6.2 of

the �nal chapter for more detail on possible future research with these items.

Sparsity

37Source: (Hashemi et al., 2017), edited to highlight the relevant plotting marks
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Sparsity (as brie�y explained in Section 2.3.1) is increasingly a consideration for

embedded hardware designers.38 As most NN operations with an operand of zero

typically have a zero or identity result, a �quick-path� can be included for this

speci�c case of computation. This will result in faster throughput and improved

energy-e�ciency, as a result of the reduction of active circuitry.

However, running a non-sparse network through hardware designed for sparsity

may incur some overhead. In the hypothetical example below (Figure 2.21), each

non-sparse computation has additional checks for sparsity.

38Sample hardware proposal: (Dey et al., 2018)
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Figure 2.21: This hypothetical example introduces some early comparisons into the
logic of computing a convolution so that compute will be bypassed when a zero is
present in either input or weights

While this existing hardware concept can work well with the research within this

thesis, such sparsity optimizations are not yet implemented in a public Intel®

Movidius� processor.

Training

With current technology, low-power embedded systems are realistically constrained

to testing only the classi�cation steps of a neural network.

At the time of writing, the current world record for training a reasonably
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functional neural network on the ImageNet dataset is 90 seconds (Sun et al., 2019).

This however, involves a system with 512 GPUs. The author does not believe that

the full system training on an embedded device will be viable in a commercial

system in the near future.

However, there are some techniques to adapt networks that are already trained to

new datasets that may be a more achievable goal (Yosinski et al., 2014).

Regardless, the computation overhead of researching in this area inclines the

author to prioritize their time on classi�cation.

2.5 Related Work

Despite extensive preliminary research, we unfortunately missed some closely

related work by (Han et al., 2015a) until later in my study. A short summary of

their work is given below;

2.5.1 Weight Sharing

Song Han et al. also use K-means clustering (as we do in Section 3.2.2) to group

their quantization values. They refer to an additional earlier implementation that

uses hash tables by (Cao et al., 2017).

Han uses three di�erent initialization algorithms � Random, `Density-Based' and

`Linear'. In the paper he shows that the Random and Density-Based initializations

are less e�ective due to over-representation of low-valued elements (based on

knowledge gained from his paper in 2015 (Han et al., 2015b)).

While we experimented with both Random and Linear (named �Regular Splitting�

in this thesis � see Section 3.2.1) initializations, these were mostly used as

comparison baselines against our more experimental proposals.

Additionally, the limited-precision constraints of this thesis add new information to

the problem which justi�es re-assessment of their approach.

Below, Figure 2.22 shows an example result of his linear method, which can be

seen to operate as our proposed regular splitting does � it tries to represent an
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equal amount of values in each quantization group.

Figure 2.22: An example of weights being grouped into 4 quantization groups from
Han's paper39. Notice how each group has roughly the same amount of values.

39Source: (Han et al., 2015a)
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3 Problem Overview

3.1 Technical Approach / Methodology

In this chapter, we perform our own investigations into the thesis subject. We do

some initial exploratory work on both parameters and activations of CNNs, hoping

to inform our future experiments. We also make sure that the research problem

has scope for us to improve upon existing solutions.

After this investigation, we present some algorithms that we will use in Chapter 4

to attempt to �nd a solution that better quantizes values than existing algorithms

provide.

Finally, we discuss the technical environment that was used for creating and

testing these algorithms.

3.1.1 Initial Target Analysis

We developed a series of custom tools to analyse well-established neural networks

under the e�ect of quantization. Repeatable observations (e.g. if the half the data

was the same number) in the data could lead to possible optimizations or entirely

new techniques to be investigated.

The technical details of the construction of this system are described in Section

4.4. Several observations were made from this e�ort, some of the more notable

items are listed below;

1. Weights appear to have a normalized distribution. Most weights pro�led
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were centered close to zero, however some operations had a slightly positive

center. This may be a side e�ect of activation operations preceding the

pro�led operation and we discuss this possibility at the end of this list in a

separate observation. The normalized distribution may be a result of the

work done by (Han et al., 2015b) on reducing the noise present in weights

during training.

2. Unlike activations (which have been shown to have locality in (Zhou et al.,

2016)), weights appear free of any localized groupings (See Figure 4.2). This

observation is unsurprising based on the technical operation of NN

algorithms; Activations are derivations of images, audio and other natural

data, whereas weight parameters are convolved over every element of an

image, so each resultant value is averaged as a consequence.

3. The distribution of the values in the �rst activations in a network can di�er

signi�cantly to other activations throughout the network.

One explanation for the di�erence is that inputs to convolutional neural

networks tend to be from natural sources and are non-uniformly distributed.

Images have certain lighting conditions, subsets of colour and all manner of

environmental factors at play that make it unlikely to have a balanced

pro�le. Similarly, an audio piece consists of di�erent pitches, volumes,

instruments and clarity that a�ect the recording as well as the physical

equipment used and background environmental e�ects.

Intermediary activations have been processed against the network parameters

which are averaged from training. This limits the probability of signi�cantly

outlying data points.

Some networks require preprocessing of input data before inference.1 While

preprocessing the data of an image can reap other bene�ts (such as reducing

the complexity or size of an image), this step seems to alleviate the lack of a

regular distribution of values; a common application is the subtraction of the

means of the dataset's average input channels. This should reduce the

impact of imbalances in the current input. It seems, at least to the author,

1http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html
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that the current solution of pre-processing may alleviate the issues, but may

not remove them entirely2.

4. The later in the network that an operation occurs, the smoother the

distribution of weight values along the number line were (See this in e�ect

between the �rst convolution of GoogLeNet in Figure 3.1 and one of the last

convolutions of the same network in Figure 3.2). The data also becomes

smoother and approaches the form of a Gaussian curve. Both 3.1 and 3.2

have a dotted-line showing the closest Gaussian curve match for the shown

data.

The author assumes the smoothing e�ect is an extension of the �rst

observation noted in this list, and that as the network continues to the next

operation, the averaging e�ect of grid-based computation and data loss from

layers such as pooling and recti�cation units, may statistically threshold the

data of later operations to be within predictable ranges.

For the operations near the beginning of a network that show a rough

distribution, certain quantization algorithms that quantize based on some

assumptions of value distribution (e.g. Logarithmic Split (see: Section 3.2.1))

may produce worse results. It may be that these algorithms will perform

best near the end of a network.

2e.g. A white image in a dataset of black images will still be a large di�erence in value
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Figure 3.1: The �rst operation of the NN GoogleNet showing a rough distribution
of the magnitudes of its weights.
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Figure 3.2: One of the last convolution operations in GoogleNet showing a much
smoother distribution than Figure 3.1 and also a weighting towards positive signi�-
cant outliers

5. While the networks we pro�led were generally symmetrically distributed

around the zero point, operations which had ReLUs tended to shift weight

parameter values towards a more positive skew. These values tended to have

more positive values than negative, larger positive than negative outliers and

the center of symmetry tended to be slightly positive. The resultant values of

an operation such as convolution could further magnify this e�ect as can be

seen in Figure 3.3, where all multiplication combinations of activations and

parameters are graphed. Because the outliers for negative values are smaller,

they cannot create a result of lower than -1, causing the subsequent

operations to also likely exhibit the inequal outlier biases. We speculate

then, that the introduction of a ReLU to the network has e�ect longer than

its immediate application.
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Figure 3.3: The values of the activations(A) and the weights(B) are plotted on a 2D
plane. The weights are symmetric around zero, shown by the vertical red line. The
plot was sampled at several points for possible multiplication results (e.g (-0.050 *
10 = -0.5)) and rough bands of resultant values in incremental steps were overlaid
on the graph (in black). It is notable that positive B values may cause a resultant
magnitude of over +1.0, while negative values cannot cause values below -1.0.

3.1.2 Asserting the existence of a better solution

To have a solid foundation for subsequent research e�ort, it was necessary to verify

that a solution that had more correct classi�cations than current approaches did

exist.

We created a tool (shown in Figure 3.4) to show how a quantization was applying

to a set of weights. A developer could load in one of the naïve algorithm's

quantization choices and adjust the exact placement of each quantization threshold

as they like. In theory, this tool could be used to manually quantize the network's
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parameters to their optimal placings, provided those locations were known.

After updating the quantization bounds, the display would reload and would show

the e�ect of the new choices � How much numeric and accuracy loss was observed

(as compared to the original unquantized network), the number of values

represented in each quantization value and how a histogram of the values in the

original model compared to a histogram of the new quantization.

After several small tweaks on di�erent network operations, it was quickly apparent

that tweaking even a single of these thresholds a minimal amount from the original

setup could yield improved results, both in terms of reduced numeric data loss and

better classi�cation results when saved back to the framework's network �les for

inference.

Figure 3.4: Manual Quantization Tool: The original values of a set of weights are
shown in green. A default quantization algorithm groups these values into several
"buckets" shown in blue. A user can drag the red bars (representing the buckets'
midpoint values) to select a new quantization manually. They can also do this on
textboxes for �ne-grain control not shown in this screenshot.

Having established that existing methods were suboptimal, the research e�ort was
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directed fully into closing this optimization gap with automatic methods.

3.1.3 Pro�ling the Target Processor

Intel® Movidius� provides customers with a Software Development Kit

(SDK/MDK)3. The MDK contains �over 300 computer vision kernels, neural

network and linear algebra libraries and drivers for both internal and external

components�. Figure 3.5 shows some of the main software packages. In particular,

the MoviTools and Board Support Package will be used.

The particular hardware element this project is interested in, as described in

Section 2.4.2 is the Neural Compute Engine hardware component. The MDK's

Board Support Package allows developers to interact with the component through

a set of low-level drivers. Using these, we pro�led the di�erence in execution time

when running in the index-mapped mode versus the default of 16-bit

�oating-point.

3https://www.movidius.com/solutions/software-development-kit
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Figure 3.5: Component Hierarchy of the MDK (Myriad 2)4

Computation time of a convolution on the NCE was observed to be e�ectively

identical when processing either a 16-bit �oating-point convolution or a 4-bit

index-mapped convolution. As the computation hardware is the same for both

modes, this observation was expected.

However, because the information being transferred from main device memory to

the hardware's localized memory is four times as small as the original data, we saw

improvements in transfer speed and, as a consequence, total execution time.

The primary method for transferring large amounts of data on the Intel®

Movidius�Myriad� VPU is through a Direct Memory Access (DMA) engine. This

process was initially pro�led, but due to IP concerns, permission was not granted

to publish these �gures. However, the standard implementation of the C++

function `memcpy' was pro�led instead on the device which gave similarly

satisfactory results.

4https://www.movidius.com/solutions/software-development-kit

49



When pro�ling we used a mixture of real-world transfer sizes (where the transfer

size would be the sum of the activations, parameters and results) and some

incrementally stepped values for a useful analysis set. We observed a

near-consistent scaling rate of 400% using these various sizes.

When pro�ling the DMA engine, we observed a less consistent scaling. The DMA

engine's e�ciency is based on how well the data �ts its transfer packet sizes (e.g. a

10 byte transfer and a 60 byte transfer could take the same time to execute if the

packet size was 64 byte). However, all cases did improve signi�cantly.

3.2 Algorithm Proposals

After con�rming that current quantization methods were suboptimal, we propose

several algorithms that could potentially provide a more accurate

representation.

Several of these algorithms are listed below with pseudo-code and are intended to

be applied to the weight parameters of convolutional neural networks. We

originally experimented with quantizing activation values also, but it was much

more di�cult to assess as they would change for each input item.

The results of our analysis on the e�ectiveness of each algorithm is discussed in

Section 5.1.1.

3.2.1 Naïve Algorithms

Regular Splitting

This algorithm divides the range of data so that each resultant index-mapping

covers the numeric range of values equally. In the Figure 3.6 below, the range -1, 1

is split into six equal sections. Each section will use the midpoint as its quantized

value. For this example, the quantized values would be (-0.75, -0.5, -0.25, 0.25, 0.5,

0.75).
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Figure 3.6: The algorithm splits the range between the max and min point in equal
sections

Given a �attened matrix A sorted ascendingly of length n, where An is an ∈ of Z,
the formula below will produce the start and end indices of separation in resultant

matrix B , that will divide A into m equal sections of data of size S . The values

inside these sections will be quantized to the median value of the section's data

range.

x = min(A)

y = max(A)

S = (x + y)/m

B = {( x , x + S) , ( x + S , x + S ∗ 2) ..., ( x + S ∗m − 1, x + S ∗m) }

Equivalent Population Split

This algorithm divides the data so that each resultant index-mapped value covers

the same quantity of values. Figure 3.7 shows one of the convolutions from

GoogLeNet split in four with this algorithm.

Listing 3.1: Equivalent Population Split

# so r t the data in ascending order

data = sorted ( data )

# us ing 16 buckets f o r the 4−b i t index−map
num_buckets = 16
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# the s i z e o f each ` ` bucket ' '

# i f d iv ided evenly in to the o r i g i n a l data

bucket_size = len ( data )//num_buckets

for x in num_buckets :

# ` ` buckets ' ' ob j e c t w i l l conta in

# ( s ta r t , end ) va lue s f o r each separa te grouping .

buckets . add (x*bucket_size , ( x+1)*bucket_size )

Figure 3.7: An example of splitting based on population with 4 values

Random Split

This algorithm splits the data by selecting several values in the data using a

uniform random selector. These points are then ordered and act as the midpoints

of the quantization ranges. Due to the nature of random selection, this method has

the potential to create useless quantizations.

Listing 3.2: Random Split
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# Choose 15 random d i v i s i v e po in t s with in the data range .

# They w i l l be so r t ed ascend ing ly

s e l e c t i o n = sorted ( random(amount=15,

s t a r t=data .min , end=data .max) )

s e l e c t i o n . prepend ( data .min)

s e l e c t i o n . append ( data .max)

bucket_start=0

# Trans late to s ta r t−end tup l e s

for s in len ( s e l e c t i o n )−1:
bucket_end=midpoint ( s e l e c t i o n [ s ] , s e l e c t i o n [ s +1])

buckets . add ( ( bucket_start , bucket_end ) )

bucket_start=bucket_end

Logarithmic Split

This algorithm is a recursive splitting of the data range, starting with the

midpoint and subdividing the two resultant halves, repeating until the desired

number of splits is reached. In Figure 3.8 I have shown the incremental splitting in

di�erent colours.

This algorithm works on the assumption that lower magnitude values are less

a�ected by degradation (using magnitude as saliency, described in Section

3.2.4).

Note that the nature of this algorithm limits itself to N×2 quantization
values.
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Figure 3.8: Incrementally adding logarithmic splits

Listing 3.3: Logarithmic Split

# to get 16 s p l i t s (2 , 4 , 6 , 8 , 10 , 12 , 14 , 16)

global r e cu r s e_ l im i t = 8

def r ecur se_l2 ( data , l im ) :

i f ( l im == recu r s e_ l im i t ) :

# at depth which we should s t a r t r e tu rn ing va lue s

return midpoint ( data )

else :

# cont inue to t r av e r s e

# Divide data range in two ha lve s

data . l e f t , data . r i g h t = data . s p l i t ( )

r e s u l t . append ( recurse_l2 ( data . l e f t , l im+1))
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r e s u l t . append ( recurse_l2 ( data . r i ght , l im+1))

return r e s u l t

buckets = recurse_l2 ( data , 0) # get midpoints

3.2.2 Cluster-based Algorithms

Clustering algorithms are commonly used when researchers would like to group

data elements together in roughly categorized sets. These groupings, or `clusters',

are decided based on proximity of data points to others, similar items are grouped

together. In Figure 3.9 below, the colors of the image change to their closest

match. Similarly, the values used in our NN operations should change to their

closest quantization value.

Figure 3.9: An example of reducing the colour space of an image with clustering
using di�erent cluster sizes (K)5
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K-means clustering

K-means clustering is an algorithm that came to computer vision research from the

domain of signal processing. Originally proposed by (MacQueen, 1967), it is one of

the most commonly used algorithms for clustering two-dimensional data.

K-means clustering works by placing all data points inside a two-dimensional

�feature space� where it is possible to group properties by their relative

proximities. The number of clusters in a system is a parameter provided by a

developer; Increasing or decreasing the number of clusters will change the accuracy

of the clusters' representations of the original data (Morissette and Chartier,

2013). An example is given in Figure 3.10 where the 2-dimensional data is neatly

grouped in three clusters.

Figure 3.10: K-means clustering data using 3 clusters.
⊗

marks the centroid of
each cluster6

5Source: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_kmeans/py_k
means_opencv/py_kmeans_opencv.html

6Source: http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/
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In this thesis, the data for consideration has only a single dimension (the

magnitude of each parameter), but the clustering technique works just the same

(i.e. a 1xN shaped clustering is a subset of MxN clustering).

The algorithm consists of two main steps: Cluster Assignment and Centroid

Movement7.

For the �rst iteration of the Cluster Assignment step, the user must provide some

initial centroids for the algorithm to use. Centroids are values that represent the

center of a cluster. There are several common ways that these values are

established � from naïve random selection to sophisticated algorithms such as

k-means++ (Arthur and Vassilvitskii, 2007). This thesis pro�les several of these

initializations, as well as using results from previous experimental algorithms as

new alternatives.

As k-means++ reduces the steps needed to reach one of the exit conditions of the

algorithm, it was used as the predominant algorithm in later experiments that had

issues completing in a reasonable time (See Section 4.7.1).

After these values have been set, all nearby data points are assigned to that

cluster.

For the subsequent iterations, the algorithm will use the output of the Centroid

Movement step in place of the user-provided values.

Next, for the Centroid Movement step, the centroid values are changed to the

actual midpoint of the associated data points.

This two-step cycle continues, each iteration improving on the previous

approximation of the centroid values until either there are no further signi�cant

improvements or some processing timeout has been reached.

We include Figure 3.11 to help visualize the two steps

7https://bigdata-madesimple.com/possibly-the-simplest-way-to-explain-k-means-

algorithm/
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Figure 3.11: The dots show the centroids of each cluster from the previous pass.
Each data point was then assigned to its nearest cluster in the Cluster assignment
step. The center of the larger circles show the midpoints of these new clusters.
Centroid Movement chooses these as centroids and the process repeats.8

CK-Means

In the two-dimensional space and above, the k-means problem is NP-Hard as

proven by (Vattani, 2019), so an optimal solution is not guaranteed.

8modi�ed from original source at https://blog.revolutionanalytics.com/2011/06/kmean
s-big-data.html
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However, a variant algorithm exists called ck-means that operates solely on 1

dimensional data, and claims an �optimal� clustering result where the distance

from each value to the nearest cluster mean is minimized (Wang and Song, 2011).

This is an interesting algorithm to assess, as we can test whether an optimal

clustering distance also results in an optimal clustering for our quantization.

3.2.3 Forced-Zero Algorithms

Earlier in Section 3.1.1, we observe that weights in neural networks have been

generally symmetric around zero. We speculate that this central zero value may be

important to preserve to allow balance between the positive and negative

values.

Accounting for slight biases in symmetry is expected to have less impact, as while

many values surround the central point, they are all low in magnitude, and

consequentially, likely less important to the �nal calculation.

In our initial work with quantizing activations (before focusing solely on weight),

we were aware that zeros can be particularly important to preserve as there will be

a signi�cantly higher proportion of them after recti�cation units such as ReLU (see

Section 2.1.3).

A tangential bene�t of ensuring zero values are preserved is that potential future

integration work with sparsity can be enabled (see Section 6.2).

Most of the algorithms were modi�ed to have an option to force the zero value to

be one of the quantization values. In the simpler algorithms, we clamp the closest

calculated value to 0 (e.g. the random quantization algorithm); In more complex

cases, particularly the clustering algorithms, we modi�ed the algorithms themselves

to set a value to zero and preserve it throughout the algorithm's execution.

3.2.4 Salience-based Algorithms

Salience is a measure of the importance of individual values to the overall output

classi�cation of a network.

Salience calculation has been used in the past to demonstrate weaknesses in neural
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network concepts. In the paper �Universal adversarial perturbations�

(Moosavi-Dezfooli et al., 2017), it's demonstrated how small targetted distortions

in an input image can change the �nal classi�cations of an image. Figure 3.12

shows a set of images from this paper that are classi�ed incorrectly because of the

e�ect of a targetted distortion.

Figure 3.12: Originally classi�ed correctly, these images were slightly distorted and
reclassi�ed incorrectly9

For our purposes, saliency may be useful to understand which points can be

deteriorated harshly to its nearest index-mapping without a�ecting the �nal

classi�cation signi�cantly, and which points we should try hardest to

9(Moosavi-Dezfooli et al., 2017)
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preserve.

There are a few di�erent measures of saliency commonly used in neural

networks:

� The magnitude of values: This metric is mostly based around gut-feeling

of researchers and was debunked as a viable metric by LeCun in his paper

�Optimal Brain Damage�(OBD) (LeCun et al., 1989) . Instead, he proposes

another metric:

� OBD Saliency: LeCun's proposal calculates saliency by estimating the

e�ect of removing a parameter from the network.

� Fisher Information : This metric introduces gradient values to the

calculation of saliency (Kirkpatrick et al., 2016). Gradients are calculated at

training time and indicate the direction and magnitude of a point's numeric

change (i.e. if a parameter is increasing/decreasing as the training process

improves its function estimation, and by how much it is moving).

There are a few advanced systems built up on top of the core concepts of Fisher

information, such as Fisher Vectors, as introduced by (Chandrasekhar et al., 2015)

and Fisher Networks (Simonyan et al., 2013). However, as we are interested in the

numerical values, rather than larger network objects, these are left for future

research.

The clustering algorithms proposed in Section 3.2.2 were modi�ed to include

Fisher information in the Cluster Assignment step. The algorithm used to

calculate center points was replaced with one that accounts for gradient. The code

for this is shown in the below listing and Figure 3.13 shows how this can a�ect a

quantization decision.

Listing 3.4: Centroid calculation using Gradients

import numpy as np

# Old Formula

def c en t r o i d ( data ) :

return np .mean( data )
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# New Formula

def centroid_grad ( data , grads ) :

# Only magnitude o f g rad i en t matters , not d i r e c t i o n

g = np . abs ( grads )

return np . average ( data , weights=g )

Figure 3.13: Two number lines are shown above. Each line has the same 12 values
that are to be quantized to 5 values. In the �rst �gure, the values have no distin-
guishing weighting and this results in a uniform quantization. When distinguishing
weightings are applied, as in the second �gure, the resultant quantization will better
preserve "important" values while reducing the impact of those that do not matter
as much.

3.3 Development Decisions

This section describes choices made for the technical environment in which the

research tools were developed.

3.3.1 System Environment

The operating system (OS) for the project was GNU/Linux. It was chosen as it is

a common development environment for NN frameworks and a common platform
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for open source projects, being built upon much open source material itself.10 In

comparison, operating systems like Windows and MacOS tend to be secondary

platforms for NN frameworks, releases tend to be packaged for them only once the

software is well-established. Additionally, framework releases may be distributed

as proprietary executables that cannot be easily modi�ed, whereas compiling

software source-code is a common distribution method with GNU/Linux.

As this thesis relies on features that are not widely adopted by all frameworks (like

low-precision), we chose this OS to mitigate the risk of missing out on `alpha'-level

features and potentially having to switch OS mid-project.

Choosing GNU/Linux has some practical advantages too, as the author is familiar

with the OS and the wider research group at Trinity College Dublin (TCD) have

several GNU/Linux-based servers to o�oad research work onto. Some research

experiments involved over a week's worth of processing (even on the latest GPUs)

so this was a critical choice to maximize time e�ciency.

3.3.2 Technology Choices

NN Frameworks

Initially, Ca�e was chosen as the framework to investigate and develop our

research concepts upon. The author was familiar with manipulation of the network

through its programmable interfaces and it is also one of the more performant

frameworks.11 We can also take advantage of the publicly available network �les

that many NN researchers have provided to accompany their papers.

TensorFlow was used to gather initial benchmark �gures as it was one of the few

platforms that supported inference with precision lower than 16-bit. However, the

results would not be directly comparable to our own as the smallest quantization

level supported was only 8-bit. As can be seen in Figure 3.14 where GoogLeNet is

quantized in several di�erent precisions, the loss in classi�cation accuracy between

8-bit and 4-bit is far more signi�cant than between other precision levels.

10https://opensource.com/resources/linux
11https://caffe.berkeleyvision.org/
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Figure 3.14: Classi�cation accuracy of GoogLeNet when using di�erent precisions.
Accuracy rates usually begin to worsen when reaching 8-bit, but 4-bit results are
much more degraded

TensorFlow uses the GEMMLOWP method (Jacob et al., 2018) for quantizing. An

8-bit number encoding in this method can be resolved to a �oating-point number

using the following formula:

Where S is a �oating-point value to scale the result, ZP is a �zero point� value that

represents the quantized value of zero;

Value = S ∗ (QuantizedValue − ZP)

Each tensor of a neural network can have its own scale and zero point value. One

could make this more granular (e.g. per-channel) or less (e.g. per network) for a

better or worse representation.
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Other than for reference values, we did not consider TensorFlow as an appropriate

platform for development as the scope of the framework is much wider than other

alternatives � TensorFlow targets not only NNs, but also general symbolic

mathematics, and is more complex as a result.12. Figure 3.15 shows a smaller

network (LeNet) and how the network is represented in each framework. This

disparity in complexity gets larger as the network architecture increases.

(a) Ca�e

(b) TensorFlow

Figure 3.15: Di�erences in granularity of nodes of the LeNet network between Ca�e
and TensorFlow13 (9 basic elements versus >25)

12At the time of research, neither TensorFlow 2.0 or TensorFlow Lite were available in a stable
format

13Source: Screenshot from 3rd party Ca�e tool https://ethereon.github.io/netscope/ and
TensorFlow diagram from https://tf-lenet.readthedocs.io/en/latest/tutorial/outputs

.html
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Some work was ported to PyTorch and for the latter half of the project, it became

the main platform for experimentation. PyTorch's interface allows developers more

accessible controls over the internals of a neural network than Ca�e. This was

necessary for gathering gradient information needed for saliency calculations (See

Section 3.2.4). It would also allow for potential integration with other TCD

researchers' work using sparsity in the future.

Programming Languages

Python3 was the primary programming language used for development as it is a

common interface to NN frameworks and development libraries. It is also a much

faster language to prototype in than compiled languages such as C and Java. The

language interpreter manages more runtime information (such as pointer

management) at the cost of reduced runtime performance.

C and C++ were used sparingly and only when required. This was either for

reasons of performance or in the absence of appropriate library bindings or

interfaces for Python3.
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4 Design & Implementation

This chapter details the testing done on the proposed algorithms. The chapter

begins with an outline of the requirements we set out for the research software to

ensure comprehensive and fair testing.

This follows with detailed descriptions of the software's architecture and

capabilities. Links to this software are available in Appendix A2.

The evaluation period was insightful, but not without limitation. We conclude this

chapter with an honest overview of the problems we encountered.

4.1 Requirements

Once we decided on the algorithms that we would substitute into the quantization

process, it became apparent that a system was needed to thoroughly assess the

validity and potential e�ectiveness of these algorithms.

Speci�cally, we needed a suite of tools that could:

� Perform the quantization algorithms on established networks.

� Compare proposed algorithms versus naïve implementations and also each

other.

� Save and load network �les from experiments.

� Complete processing in a reasonable time frame, given the limited time

constraints of the project.
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4.2 Dataset & Network selection

4.2.1 Datasets

A diverse set of labelled pictorial datasets were selected for classi�cation testing.

These datasets were chosen based on their popular usage and diverse set of

subjects.

� MNIST (Modi�ed National Institute of Standards and Technology)

� CIFAR-10 & CIFAR-100 (Canadian Institute for Advanced Research)

� IMAGENET 2012

� SHVN (Street House View Numbers)

Some of these datasets were already divided into subsets when we downloaded

them, others we divided ourselves in a 9:1 ratio. We require subsets to ensure that

any result we see are not only applicable to the selection of data items we have

been focussed on (See �over-�tting� in Section 2.2).

The NN frameworks we used in this thesis had di�ering requirements of the layout

of the labels, format of the data items and the folder structure of the dataset. I

wrote a few small scripts to ensure that these datasets would be compatible with

each framework.

4.2.2 Networks

Similar to the process for dataset selection, networks were chosen that have been

widely used in recent neural network research. We were careful to ensure that the

networks chosen were reasonably diverse � The selection of networks have a good

mixture of structural layouts and the operations and tensors covered a wide range

of sizes. This was important so that we had a representation of the performance of

the algorithms that would be likely to apply to many real-world cases.

� LeNet-5 (A very small network compared to recent network designs)

� GoogLeNet (One of the �rst networks with non-serial operations)
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� ResNet-50 (This network introduced reusable layout components called

�Residual Units�)

� AlexNet (This network has larger grid sizes for convolutions)

� CIFAR-10 (Another smaller network)

Networks are generally available in one of two forms. Usually they are distributed

as a set of several �les � there is commonly one �le for the structural design of the

network, one or more �le for the saved trained parameters, and one �le to store

con�guration settings for the training process.

Ca�e provides a `.prototxt' �le for the network description (a �le formatted using

Protobuf, an open-source serialization format produced by Google, designed for

e�cient compression.1) It also provides a `.ca�emodel', a larger �le, containing the

trained parameters. Finally, a 'solver.prototxt' details the parameters used to

con�gure the training process.

This separation allows users to combine di�erent editions of trained parameters

without having to recreate the network structure. This gives �exibility when

comparing the e�ects of di�erent training parameters on the same network.

The other form of distribution is through a single �le containing all the previously

mentioned information. Tensor�ow provides such a �le with the extension `.pb',

which is also based on the Protobuf format.

4.2.3 Pre-Processing

Some pre-processing is needed to import the datasets into the di�erent

frameworks, and thus, our own system. This varies between frameworks and also

between datasets and network architectures. A suite of scripts to correctly process

each combination of preprocessing requirements was created. Some of the

functions usually needed for preprocessing include:

� Conversion of a dataset from a set of folders to a database �le.

1https://developers.google.com/protocol-buffers/
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� Restructuring dataset items into folders aligning with their corresponding

label.

� Calculating some statistical information over each item of a dataset (e.g.

standard deviation, mean of channels).

� Resizing and/or cropping images.

� Converting the �les to the same �le type (e.g. PNG).

These requirements are sometimes declared explicitly in a network con�guration

�le such as the solver.prototxt described earlier. When such a �le was available,

this was used to inform the operations needed.

4.3 Selection of Research Systems

We decided upon three separate systems for experimentation. Initial experiments

were developed on a system that evaluated individual classi�cation inferences

(referred to below as �Inference-Only�). However, as will be seen later in Section

5.1.2, these results were found to be inconclusive.

Investigation proceeded to involve the training process in optimizations. This is

referred to as the �In-Training System� in the pages that follow.

Separately, a system was created to pro�le the Intel® Movidius�Myriad� VPU's

memory transfer speeds.

4.4 Architecture of the Inference-Only System

The Inference-Only system was responsible for all activities that did not involve

training. Algorithms were prototyped here before further investigation. A

prerequisite for the system was the existence of networks that were trained ahead

of time. These were gathered online from various sources (See Section 4.2.2).

The system has three main interfaces for a user to interact with:

� Graphing properties of a given network architecture.
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� Quantizing the parameters and activations of a given network architecture.

� Comparing two quantized versions of a network architecture through a set of

metrics.

At the core of this system are three code libraries each corresponding with an

interface from above; a graphing library (i), a metrics library (ii) and a

quantization library (iii).

A UML diagram is given below in Figure 4.1 showing the possible work�ows of a

developer when using the Inference-Only system.
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Figure 4.1: Inference-Only System Flow: The Inference-Only software has three
main libraries that consume varying input parameters provided by the user ("Actor")
from the commandline. The Quantization Library requires an existing model to
produce a quantized representation. The Metric Libary requires the existing model
and a dataset to test against. Finally, the Graphing Library requires our generated
Quantized Model to be able to visualize it.
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4.4.1 Graphing Network Architectures

Most of the graphing experiments were created using the MatPlotLib plotting

library (Hunter, 2007). Using Ca�e it was possible to extract both the parameters

and activations of a network during an inference. Depending on the dimensionality

of the tensor extracted and its origin, each data item will trigger applicable graph

functions.

Despite our initial choice of Ca�e, the libraries were written to support any

framework supporting access to parameters and/or activations.

Whilst several other visualizations were developed for the suite, the following three

are the most interesting:

Heat Mapping

It was hoped that by creating heatmaps, we would reveal if there were any

localized areas within the weights that were more signi�cant to the computation

than other areas. The research done by (Zhou et al., 2016) shows that this locality

does exist for activation values. If the locality of data mattered here, it could

inform choices on preservation of individual parameters when quantizing.

Unfortunately, after running several variations of datasets and networks through

this visualization, no similar results were observed for weights. A sample result is

shown in Figure 4.2, alongside an image from Zhou's research showing activation

locality.

The lack of locality in weights could be a result of how the values are used within

an operation � they are generally processed as a sliding grid over the entire

activation set. This would mean these values would represent global information,

rather than localized ones.
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Figure 4.2: Zhou's evidence of locality in activation heatmaps2 alongside our own
heatmap of the parameters of a fully connected layer operation showing no locality

Data Loss

These graphs (examples in Figure 4.3) show how much precision is removed from

quantizing a tensor's data. In particular, it shows each of the resultant quantized

values' e�ects on this loss. Theoretically, a good representation of data would have

low values for each bucket as it would show a balanced representation.

We noticed that throughout the di�erent graphs, the quantization values that

represented the most values, tended to have the largest data loss, despite having

the smallest magnitudes. If preserving the total precision of the data was

important (rather than individual value's precision), the low values would have to

be given more importance.

This led us to investigate into algorithms that have equally distributed quantizing

(e.g. Equivalent Population Split in Section 3.2) as we hoped to reduce the large

dataloss seen in the smaller values.

2Source: (Zhou et al., 2016)
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(a) Split Method: Regular (b) Split Method: Logarithmic

Figure 4.3: Sample Data Loss graphs for two di�erent algorithms on the same data
(GoogLeNet's �rst convolution's parameters). The 16 values along the horizontal
axis represent each quantization value, and the vertical shows the value of the total
precision lost in each of these

Outlier Range

As we are interested in investigating the magnitude of values for the saliency they

may represent (See Saliency Algorithms in Section 3.2), another graph was made

with the purpose of discovering any patterns in outlying high-magnitude data

points within the network parameters.

This diagram (like the one shown in Figure 4.4) showed us that many network

architectures had larger positive outliers than negative. This was consistently

shown on network operations that were located after ReLU operations. This may

be an indicator that positive values are more contributory to the network and

deserve better preservation.
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Figure 4.4: The weights for the inception_3a\3x3 layer were sorted in ascending
order and the values plotted. The majority of items are between +\-0.25, but the
lowest and highest items have larger magnitudes. A discrepancy can be seen between
the magnitude of the highest value 1.5 and the lowest value 0.4

4.4.2 Metric Comparison of Network Quantizations

After individually pro�ling the proposed algorithms, a program was built to

directly compare the algorithms to one another.

Algorithms were compared over two categories. First, numeric accuracy compares

the algorithms from a neutral statistical perspective. Secondly, classi�cation

accuracy compares the e�ects of their quantizations on �nal predictions of the

target networks.

76



Numeric Accuracy

To calculate the numeric accuracy of an algorithm, the comparison library

re-implements some established statistical functions described below. A sample

output of the library is shown in Figure 4.5.

Figure 4.5: Sample metrics from the second convolution of LeNet.3

* Sum of Absolute Errors (SAE)

This metric shows the magnitude of the di�erence between two matrices. However,

this magnitude is not correlated back to the original data � e.g. The SAE for a

ruler of length 1 metre being o� by a centimetre is no di�erent to the SAE of a

car's pedometer running over 1000 kilometres being o� by a centimetre. Because of

this lack of context, it is quite a limited metric, but is quite simple to

calculate.

SAE =
n∑

i=1

|Vi − V i |

Where:

� V , V = the matrices for comparison

� n = the number of values in each matrix

3Explanation of Figure: �Full Precision vs Reference� compares the output of the network in
FP64 to when it is run in FP16. Subsequent items compare themselves with the same FP16 result.
Notation: Quantization applied to just weights: ([W]), just activations:([D]) or both ([ ]). The
titles of each column are misnamed with the formal names of the metrics. Total Error is equivalent
to SAE, Mean Error is equivalent to MAE
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* Sum of Relative Errors (SRE)

SRE �xes SAE's problem with context by scaling the errors by their original

values.

SRE =
n∑

i=1

|Vi − V i

Vi
|

* Mean Squared Error (MSE) and variants

MSE and variations of the algorithm are used in other applications of machine

learning4, it is often chosen to distinguish signi�cant errors from smaller changes.

Due to the stochastic nature of training and an abundance of parameters,

researchers can generate equally performant results that are non-identical, where

small variations are inconsqeuential to the researcher's dataset. Similarly, our

quantization results should preserve pertinent information best.

MSE =
1

n

n∑
i=1

(Vi − V i)
2

A variant, Root-Mean-Square Error (RMSE), eases the scaling of the MSE so that

small errors are still minimal, but larger errors are closer in range (e.g. If there

were MSE reported errors of 4, 100 and 400, they would be scaled down to 1, 10

and 20) .

RMSE =

√√√√1

n

n∑
i=1

(Vi − V i)
2

* Mean Average Error (MAE)

This metric is sometimes suggested as a more balanced alternative to RMSE 5. It

uses the previously mentioned MSE in its calculation, but removes the squaring

from the calculation.

4https://www.freecodecamp.org/news/machine-learning-mean-squared-error-regres

sion-line-c7dde9a26b93/
5https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-bet

ter-e60ac3bde13d
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MAE =
1

n

n∑
i=1

|Vi − V i |

Classi�cation Accuracy

Although numeric accuracy can give us a good indication on how well the

quantized values represent the original values, the crucial metric for neural

networks is the preservation of the classi�cation rate.

* Top 1 & Top N Accuracy

�Top-1� Accuracy is a metric that measures how many classi�cations from a

dataset were detected correctly by the system. Some datasets can be more vague

in composition (e.g. the ImageNet database contains an image that has both a

human and a �sh in it, but labels the image as a �sh), so a looser metric

commonly used is �Top-5� accuracy, where a correct detection is marked if it is in

one of the 5 highest results. This concept is generalized to �Top-N� Accuracy.

* Complete Class Comparison

This metric compares all the resultant class values between two implementations of

a network. Though the metric was part of our library, we decided to disable it.

Our quantization algorithms prioritize preserving the top class predictions; this

metric evaluates how well all levels of prediction are preserved. We expect that

class predictions with low detection are likely unreliable in our systems as they are

probably where the accuracy reduction is most a�ecting.

Let M be the reference results of a network inference with n classes ordered in

strength of classi�cation match, and let M be the corresponding alternate results of

the same network. Then the Complete Class Comparison (CCC)6 value is:

CCC =

n∑
i=1

M i = Mi

n

6This is a non-standard metric, introduced in this paper
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4.4.3 Quantization Functions

This is a collection of functions relating to the algorithms explained in Section

3.2

Additional control quantization schemes were added that used Python's built-in

type-casting. However, as the natively supported types of Python are much larger

than 4-bit, these performed signi�cantly better than our own algorithms, but they

did give a more reasonable reference precision than the default precision (see 3.14

for an illustration of this issue).

The lowest applicable casting precision (16-bit �oating-point(FP16)) could be up

to 4x closer to the data range we are operating in than some networks provided by

Ca�e (up to FP64). Additionally, the Intel® Movidius�Myriad� VPU

index-mapping hardware described in Section 3.1.3 only maps to FP16 values �

Even with a perfect representation, there would be natural precision loss from the

higher precision network.

4.5 Architecture of the In-Training System

As results from the Inference-Only system were inconclusive (See Section 5.1.2),

research proceeded to investigate if the algorithms would provide more consistent

results if integrated with the training process; in the Inference-Only system the

network was trained without accounting for a possible quantization step.

Constraining the training process with the quantization values could naturally

gravitate values towards their future quantizations.

Designing a system involving training opened up the possibility of including

additional algorithms that used salicency due to the now present values for each

parameter's gradient. See the details of these algorithms in Section 3.2.4.

An option was added to the program to allow incremental training (Istrate et al.,

2017). This technique trains a network in an operation-by-operation progression.

Originally introduced to speed up training systems, it gives an added advantage to
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the researcher to investigate any mid-training issues or accuracy drop-o�s during

the training process. In a commercial system, these same observations could be

used to selectively quantize at di�erent precision rates to optimally convert a

network.

As the training process is quite compute intense, some development e�ort was put

into improving the performance of the more complex quantization algorithms. As

they were originally written for a scripting language and favoured prototyping over

performance, some algorithms were prohibitively slow before refactoring.

One signi�cant speed-up was observed from the adoption of �Mini-batch

k-means�7. Overall, most algorithms were improved to the point of being able to

complete in a reasonable time for proper analysis. However, some more complex

clustering algorithms relying on non-standard k-means (e.g. the forced-zero

algorithms in Section 3.2.3) remained infeasibly slow.

4.5.1 Technical Overview

A rough technical design of the In-Training system is shown in the sequence

diagram, Figure 4.6. It can be read left to right, top to bottom.

1. First, any required �les for trained network architectures are retrieved � this

can be from PyTorch's own catalogue, or one we stored locally.

2. The software provides the �rst quantized representation of the network,

limiting the parameters to 16 values each.

3. The training process begins on the last operation of the network � each

image is classi�ed using the quantized network and the results fed back into

the framework and the networks's parameters adjusted. This will cause the

network to diverge from the quantized state.

4. After a set number of epochs have passed, the network is re-quantized before

testing the new classi�cation rates.

5. Steps 3 and 4 repeat until all the operations (or until a set number of

7https://scikit-learn.org/stable/modules/clustering.html
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operations) have been through the training process. A log �le is created for

import into external graphing software.

Figure 4.6: Software �ow of In-Training validation system
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4.6 Pro�ling the Processor's Memory Speeds

Working with Intel® Movidius� hardware and software requires an intimate

knowledge of both the chip and the infrastructure around it. Even with my past

working experience, I know that non-trivial systems take a signi�cant amount of

e�ort and time.

Therefore, rather than process through an entire network on the device which

would be functionally equivalent to the PC code and signi�cantly slower, focus was

placed on pro�ling the hardware's performance gain when utilizing the

index-mapping feature for a range of data sizes. A selection of sizes were chosen to

extrapolate the potential scaling of the speeds of the hardware when applied to full

networks.

Figure 4.7: Running the NCE Pro�ling Software

Using the software library functions provided by the MDK, the register settings for

the hardware were con�gured for both FP16 and index-mapping modes. The MDK

build system compiled the relevant source �les into a binary which was �ashed

onto the hardware device.

Flashing the binary and transferring data to and from the physical hardware (See

Figure 4.8) was done through a JTAG cable connection. However, in products

such as the Intel® Movidius�Neural Compute Stick, USB and other protocols
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could be used to achieve a much faster throughput. For our research, the transfer

speed was not pro�led, though we would expect performance improvements here

also due to the smaller transfer size.

Figure 4.7 gives a summary view of the experiment setup. A larger view is

available also in Appendix A3. The MDK takes care of all the infrastructural

setup, allowing the researcher to write a small test application without much

overhead. A single SHV processor was used to control and time the NCE hardware

through a provided set of drivers.

The test application ran convolutions of various given sizes and the system

returned both timings and results for veri�cation.

Figure 4.8: Intel® Movidius�Myriad� VPU Hardware Development Board8

8www.movidius.com/solutions/software-development-kit
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4.7 Problems a�ecting design

For the most part, the system we created was stable and �t for our research

purposes. However, there were some limitations that prevented us from achieving

more in our research.

4.7.1 Performance Limitations

The biggest issue faced was the signi�cant time required to test the latter stages of

the project. For training, many networks require huge amounts of data to process

and rely upon individual inferences being very fast. Due to the nature of some

algorithms, even when they were optimized the training process could take over a

week to process. Even the simplest algorithms took several hours to complete

processing. Particularly infuriating was several fatal crashes which occurred

several days into some runs without much crash information.

This was mitigated somewhat by taking advantage of the servers provided by the

wider research group, and also by the authour's part-time schedule. Some e�ort

was put into optimizing the algorithms for performance throughput, but soon the

time spent was returning diminishing improvements.

This caused both signi�cant delay to verifying feature completion and also resulted

in limited analysis data being gathered.

Due to the limited duration of this project, it was not reasonable to expend much

more e�ort in alleviating this limitation at the expense of reducing the potential

scope of the project. If this were a longer-term project, each algorithm would likely

have had to been ported to a lower level language like C, rather than the high level

prototyping language of Python that was used extensively throughout.

4.7.2 Intense Variability & Large Amounts of Data

Part of the performance limitations we encountered was due to the vast size of

neural networks, both in terms of the number of individual data points and the

amount of con�guration parameters, it was di�cult to concretely attribute gains or
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losses in our results to changes we introduced, rather than their side e�ects.

For example, when comparing two algorithms and observing that one was more

accurate, it was hard to ascertain whether this improvement was due to speci�c

changes we had made, the stochastic internals of training,9 the e�ect of local

minima10 or some other cause, e.g. Would the other algorithm have been a better

point of comparison had we allowed more time for it to reach a solution?

This was mitigated somewhat by ensuring that tests were not analysed in

isolation, diversifying the types of networks, datasets and comparison metrics

would allow a more objective comparison.

4.7.3 Research Limitations

Because of the long turnaround times, we were able to test fewer algorithms

through every stage of the process than desired. This limited the coverage of test

cases that the system could evaluate and the volume of metrics we could

gather.

As a result, the analysis process took signi�cantly more time than expected,

limiting the amount of subsequent research that could be built upon prior

conclusions.

In the early stages of the project, this was possible to be mitigated by multitasking

on di�erent aspects of our research, but was unavoidable nearing the end of the

project when development began to cease.

9Stochastic Gradient Descent (Robbins and Monro, 1951) is a commonly used training algo-
rithm. It introduces randomness when it chooses dataset images to process.

10(Swirszcz et al., 2016) proves several cases of �signi�cantly suboptimal� training results with
NN training routines.
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5 Analysis & Evaluation

5.1 Statistical Analysis

In this Chapter, we review results gathered from the software systems in Chapter

4. We examine the data in both numerical and classi�cation contexts and attempt

to draw some conclusions from them. We also evaluate the research itself and our

approach. The systems we put in place for testing and how well we were able to

investigate the research subject.

5.1.1 Performance

The Intel® Movidius�Myriad� VPU's memory transfer speeds were pro�led with

increasing volumes of data.

The speed of transferring the data of an unmodi�ed 16-bit convolution was

compared to the speed of the same convolution when the index-mapped 4-bit

quantization was applied. A mix of convolutions from existing architectures and

some arti�cial cases were used to create a diverse range of volumes that would

provide some insight into how the transfer speeds would scale.

Because the volume of data to transfer is 4× smaller, it was expected that the

transfer speeds would be 4× faster. This speculation proved to be reasonable as

the results at each scale were indeed roughly improving by 400%. Figure 5.1 shows

our results, displaying a highly consistent scaling rate.

Intel® Movidius� declined to allow speci�c �gures or publication of other memory

transfer systems, so the standard implementation of C++'s `memcpy' on the
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device was pro�ling instead and exact units of measurement have been redacted

from the thesis.

Figure 5.1: Speed of transfers on di�erent data sizes

5.1.2 Accuracy Loss (Inference-Only System)

As described in Section 4.4.2, the measurement used to assess the classi�cation

rate of the networks with our algorithms was Top-N accuracy. The diagram below

(Figure 5.2) shows the Top-5 metrics of each of our algorithms on the LeNet

architecture. However, results are inconsistent between networks; For example, the

"Equal Split" and "Equal Split (Forced Zero)" algorithms have a similar level of

successful classi�cation in Figure 5.2, but when applied to AlexNet in 5.3, the

algorithm without forcing a quantization value to zero, has a markedly worse

classi�cation rate than its partner.

The di�erences in each of the algorithms' results are often too close to distinguish

88



one as an obvious preference. The x-axis in both �gures are based on a relative

scale, rather than an absolute one. This is because the di�erences in classi�cation

rate are signi�cantly smaller than the overall classi�cation rates (e.g. Comparing

97.34% and 97.32), making it hard to distinguish visually.

In 5.3, the larger precisions (�oat 32, �oat 16) have a much greater classi�cation

rate than the four bit equivalents. This is a problem with most larger networks

examined, resulting in some networks being unsuitable for direct comparison. In

the case above, this is mitigated somewhat by quantizing a single layer rather than

the full network.

When the same experiments were done on a wider set of network architectures

(ConvNet, ResNet18, Inception-V3) and datasets (CIFAR10, CIFAR100), it was

observed that the relative performance of the algorithms did not have a clear

pattern, nor a consistent leader.

The di�erences in classi�cation rates are small enough to possibly be partially

attributed to the result of noise throughout the system (as mentioned in Section

4.7.2), resulting in either negatively or positively circumstantial

improvements.

It can be concluded that in order to best use this research, the algorithms may

need to be pro�led individually for the particular target scenario and then select

the algorithm with the best results.
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Figure 5.2: Classi�cation rates of various quantization algorithms on LeNet & the
MNIST dataset
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Figure 5.3: A subset of classi�cation Rates of various quantization algorithms on
AlexNet & the ImageNet database.

Another de�nite conclusion that can be made, is that there is still scope for

improvement. On rare occasions, when a "lucky" random seed is generated, the

�K-means [Random]� algorithm, and even a totally random splitting, can

occasionally out-perform the others. This means that there are still more optimal

quantization splits existing that the other algorithms do not cover.
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5.1.3 Accuracy Loss (In-Training System)

We repeat the metrics used in Section 5.1.2 for the In-Training system, however,

the range of algorithms we were able to test was further reduced due to increased

processing constraints (See Section 4.7.1).

To observe the e�ects of incremental training on the classi�cation results, we

performed several epochs (A pass over each item of a dataset, in this example we

use 10 passes) of training with an unquantized model. The next 10 epochs built

upon the trained data but has the �nal layer quantized to four bit. The following

10 epochs also quantize the penultimate layer, and so on.

In Figure 5.4, we show both the Top-1 and Top-5 classi�cation rates on the

AlexNet network after each epoch has completed. The �gure shows the

unquantized training epochs and 4 subsequent incremental quantization epochs.

Two trendlines are included in purple to show an average of progress, as the data

appears quite sporadic.

There is a big drop in classi�cation rates after the �rst operation (the fully

connected layer) is quantized. However, as the additional operations are further

quantized the classi�cation does not noticeably deteriorate.

One explanation for this is that the fully connected layer holds a lot of the �nal

classi�cation information for a network. By reducing the data range, it will limit

the granularity of classi�cations.
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Figure 5.4: Top-1 and Top-5 classi�cation rates as incremental training progresses.
Purple trend-lines are included to assist reading. Other than the drop after the �rst
increment, no further trends are observed, positive nor negative

The classi�cation rates �uctuate quite a lot with each epoch and it is di�cult to

tell whether the system is recovering from the degradation of quantization or not.

When tried with a larger number (100, 1000), no upward trend was seen.

When the entire network was quantized to four bit, the classi�cation results were

so degraded that they were no longer useful for comparison (<10% classi�cation

rate), so we might suppose a straight-forward quantization may not work on a

large network.

5.1.4 Numeric Analysis

Despite the fact that the ck-means (See Section 3.2.2) is a numerically optimal

clustering solution for a single-dimension dataset, it can be seen in the

classi�cation analysis above (Figure 5.4) that it is not consistently the best
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algorithm for quantizing parameters. This lends signi�cant credence to the

suggestion that preserving numeric precision optimally does not imply that

classi�cation precision will also be optimally preserved.

With that in mind, the metric calculation for numeric accuracy does not inform

any de�nitive conclusions on the algorithms' e�ectiveness. However, this suite of

tools could be transferred to other domains where numeric accuracy is used for

validation.

5.2 Software Feature Evaluation

While there are several shortcomings in terms of performance and conclusiveness,

the author believes the software design was well architected for the research

investigation. It follows many of the aspects of good software principles12 in

common circulation � it is extendible by being modular, free from side e�ects

(contract-based), �exible for future change and well formed for unit testing.

The software relied on some publicly available libraries, inheriting their own

limitations, but also relieving the author of a large volume of work. The libraries

were built in a di�erent context to the author's work and thus there were di�ering

levels of adaptability in each library. As a result, sometimes several libraries were

used for di�erent parts of the system though those libraries' functionality

overlapped � e.g. There were several versions of k-means that were used

throughout the project as some were easier to modify custom features while others

were more performant. In an ideal world, there would have been a singular library

which we could have availed of.

5.3 Overall Evaluation

While there may be no universal optimal solution for choosing values to map to,

the work here con�rms that there are better solutions that those that currently

1https://www.d.umn.edu/~gshute/softeng/principles.html
2http://ecomputernotes.com/software-engineering/principles-of-software-design-

and-concepts
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exist. There is de�nite scope for future research to further bridge this gap and

achieve better results.

For a user who would like to map their product to an embedded device with

index-mapping hardware such as the Intel® Movidius�Myriad� VPU, it is

worthwhile to pro�le several of these proposed quantisation algorithms for their

target network architecture. They can gain both signi�cant speed-ups and reduced

energy consumption by using such low precision, while also reducing the e�ect of

the degraded classi�cation accuracy.
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6 Conclusion

In this chapter we advise work for future research, present the summary of our

contributions to the research space and end this thesis with some closing

remarks.

6.1 Thesis Contribution

This thesis set out to investigate alternative algorithms for con�guring hardware

systems (in particular, the Intel® Movidius�Myriad� VPU) that use

index-mapping when quantizing to lower precisions in the particular domain of

neural networks.

We show that simple algorithms that may apply e�ectively to general collections of

data have room to be improved upon for this speci�c domain. While the thesis

does not �nd a �one size �ts all� algorithm, we present a suite of algorithms for

developer usage that conditionally improve classi�cation results.

We observe the merit of such a hardware component in measured performance

gains and publish the software used to enable future research.

We propose several new approaches to con�guring this component and how they

could be used to improve classi�cation rates for very low precision networks. Of

particular note, is the LeNet network where our 4 bit results match those of a 32

bit equivalent. However, we �nd that our proposed algorithms are suitable for

di�erent scenarios and would be best used as a suite.

Finally, we demonstrate the performance of the VPU using the hardware

97



component to achieve 4 times lower data transfer sizes and consequentially, 4x

faster processing of a layer.

6.2 Further Research

This thesis details the author's research into a niche area of low-precision neural

networks. Despite this thesis's well-de�ned scope, there have been several points

throughout the previous chapters highlighting potential future research work that

can continue on from our �ndings. In this section, these proposals are elaborated

upon, as well as the addition of several other relevant research avenues that

expand on the work done in this thesis.

6.2.1 Power Measurements

It has been proposed several times throughout the thesis (e.g. Section 2.4.2) that

the performance improvements observed would also imply energy e�ciency

improvements.

No data gathering was done in this thesis to back up this claim, but this activity

would further show the utility of the index-mapping technique for embedded

devices.

6.2.2 Integration into an adaptive quantization system

As mentioned in Section 5.3, the techniques presented in this thesis do not provide

a universal solution to all combinations of network architectures and datasets. In

real-world systems, products may have strict accuracy rate targets to uphold

whether directly or indirectly through internal and regulatory requirements.1 If

the techniques in this thesis are applied directly, networks may fall below allowed

thresholds. However, there are often commercial requirements for performance2

that the techniques may help with.

1e.g. US Federal Automated Policy (Sept 19) has assessments of validation and robustness of
vehicle mechanisms

2Operating on a video in �real-time� on each frame could require 30 executions a second.
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In order to use our algorithms appropiately, a system such as �Risetto� (as

introduced by (Gysel, 2016)) that can identify which level of quantization is

appropriate at each operation of a network, could balance the usage of the

index-mapping quantization with other quantization techniques, without

compromising harshly on classi�cation accuracy.

While this thesis focused on the Intel® Movidius�Myriad� VPU's 4-bit indexing

values, developers could use such a technique to utilize the even smaller mappings

of 3, 2 and single bit index-mappings, other limited-precision hardware or with

slightly higher precisions like the 8-bit GEMMLOWP quantization used in

TensorFlow (see Section2.3.2).

6.2.3 Interaction with other optimizations

Sparsity

Quantization hardware can mesh well with unconnected sparsity hardware.

Experimentation in this area (as described in Section 5.1.2) showed that forcing

one of the quantized values to zero usually only a�ected the network classi�cation

results by a fractional percent, and occasionally improved the classi�cation

results.

With suitable hardware and/or software, a sparse system can skip computation

when one or more inputs to an operation is zero. In a system that has a separate

control for sparsity and index-mapping, the numeric range to quantize into could

be increased from 16 to 17 values as seen in Table 6.1. Alternatively, the hardware

could be designed to use both concepts and sparsity could be represented by a zero

entry in the map, removing the need for an additional boolean in the system and

also skipping evaluation of any numbers in that zero map.
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4-bit index Sparse? 16-bit value

0000 No -3.0

0001 No -2.5

0010 No -2.0

0011 No -1.8

0100 No -1.5

0101 No -1

0110 No 0.3

0111 No 0.8

1000 No 1

1001 No 1.2

1010 No 1.4

1011 No 1.8

1100 No 2.4

1101 No 2.6

1110 No 2.9

1111 No 3.5

any Yes 0

Table 6.1: Extension of Figure 2.1's Index Mapping with separate sparsity control

Several of the algorithms and metrics presented in this thesis can be re-used if a

sparse hardware component was available. Any of the �Forced-Zero� algorithms are

designed to accommodate arbitrary �xed values.

6.2.4 Activation Quantization

Apart from our initial investigations, this thesis mainly focuses on parameter

quantization � those values that can be known ahead of time in a network. There

is a similar space to be researched in the activations of a network.
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Index-Mapping of Results

Assuming the parameters of an operation were quantized to 16 values as has been

the usual con�guration throughout this thesis and the associated activations

existed within a known range, the activations could be speculatively quantized to

their own 16 values.

The 256 possible resultant values from the operation could also be pre-calculated

and stored in a new 256-bit index-mapping.

Figure 6.1: Work�ow of a theoretical system that further utilizes index-mapping

This would replace the 16-bit �oating-point calculations of the operation with 4-bit

integer ones � possibly yielding further energy consumption and performance

improvements (at the cost of further pre-runtime calculation).

Additionally, the 256 output mappings could be translated to the next operation's

16-bit map for activations, removing the need for conversion back and forth

between the quantized and full-precision data types. An example of this in

operation can be seen in Figure 6.1.

256 entries in the mapping would ensure complete coverage, but it is possible that

there would be much overlap of resultant values, or similarities close enough that

they could be represented by the same mapping, potentially reducing the amount

of entries required.

With a lot of knowledge calculated ahead of execution, a future researcher could
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potentially create a very e�cient process.

Executing Operations without Dequantization

If activations were index-mapped, certain NN operations could be changed to use

the stored indices instead of the mapped FP16 values. This avoids the cost of

retrieving the mapped values and will use low-precision integer hardware rather

than higher-precision �oating-point computation.

An example of this is to only select index mappings of values above zero to

emulate a ReLU operation. This proposal can be seen in Figure 6.2 and also in

more detail in Appendix A1.2.1.

Figure 6.2: ReLU using only key values

The maximum pooling may also be optimized. If incremental order of the

index-mapping table was assured, the maximum values for the pooling could be

calculated with the 4-bit values rather than the 16-bit ones as the relative

magnitude between values would be preserved. See Appendix A1.2.2 for a worked

example.
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6.2.5 Channel-Group Quantization

There are constraints on the NCE hardware. One of these is the size of local

memory used to store input and output memory bu�ers. These limits a�ect the

maximum size a convolution can operate on in a single inferece. Multiple

inferences may be needed to perform larger convolutions if their memory bu�ers

will not �t in local storage.

As the hardware needs to be recon�gured with every inference (to set new data

o�sets and other con�guration registers), there is no penalty to changing the

index-mapped values at the same time. One could thus have a convolution with 64

output channels, where the �rst 32 channels have a di�erent set of quantization

values versus the latter 32 channels. There could be some statistical variance

between these channels that a multi-part mapping could give slight improvements

to accuracy rates.

This research could be further expanded to splitting convolutions into di�erently

sized groups, and investigating those that best preserve accuracy with reduced

performance deterioration.

Additionally, some of the operation replacements mentioned in Section 2.1.1 may

provide other types of grouping for the quantized values. A particular optimization

in the AlexNet network is �Grouped� Convolutions (Krizhevsky, 2017) which

assigns several sets of parameters to a convolution. The parameter sets may have

di�erent statistical pro�les warranting individual index-mappings.

Locality-Sensitive Hashing

Parameters are generally applied as a grid over an entire input matrix, so the

potential for optimizing the parameters based on locality is limited (as we

discovered in Section 4.4.1). However, activations do have particular regions that

may be more or less interesting to the network (e.g. a static CCTV camera may be

partially obscured by an adjacent �agpole. It is unlikely that a pedestrian would

be detected in the same space as the �agpole).

This has been brie�y studied experimentally by fellow Intel® researchers (Xu and
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Moloney, 2016) with promising results. Set portions of the input images can be

removed prior to running a network, where the removed content is irrelevant to the

resultant classi�cation.

It would also be possible to investigate some more intelligent algorithms in this

space. One could use a technique like background subtraction (Li Cheng et al.,

2011) to remove ever-present components of an video stream (See an example in

Figure 6.3), or an image could be segmented for mapping based on an algorithm

detecting feature importance. A theoretical segmentation based on peaks in the

image is shown in Figure 6.4 below.

(a) Original Scene.

(b) Foreground Only.

Figure 6.3: Example of background subtraction when detecting pedestrians3

Regardless of which method is used to segregate the network, each region could

have di�erent sets of quantization mappings. There would likely be some

performance trade-o� between the number of these regions and the frequency of

mapping operations.

3Source: https://web.bii.a-star.edu.sg/archive/machine_learning/Projects/BkgSbt.htm
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Figure 6.4: Using peak-detection to identify di�erent regions for index mapping4

6.2.6 Extension of the Training process

It is possible to include additional variables in the training process. It could be

both a faster process and potentially a more accurate estimation if the quantized

centroids were chosen through the training process rather than post-pass

algorithms like in this thesis. Alternatively, the index-mapped values themselves

could be added as additional variables to be trained.

6.2.7 Expanding to Wider Fields of data

It may be interesting to see how the concepts in this thesis transfer to other NN

variants, such as audio or natural language processing (NLP) inputs, recurrent

neural networks (RNNs) and other operation types.

4Source for original image: https://unsplash.com/photos/asct7UP3YDE
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6.2.8 Variable lookup tables

The NCE is limited in its current rendition to 16 values for quantization lookup.

Depending on the complexity of the network or operations, fewer or more values

could be used. This could give the developer more control over choices of numeric

representation and speed.

The stored values are �oating-point 16 and thus operations on the hardware have a

similar compute time to their unmapped equivalents. Storing values in a

lower-precision format could improve compute times. Investigation could be done

into the e�ect of this on the network's classi�cation accuracy.

6.2.9 Additional Processing Power

Despite arguments against Moore's Law coming to an end567, it is inevitable that

compute power in future years will be much above that what has been available

today in this project, even if it does not scale at the same rate as proposed.

Even through the duration of the project, new GPUs from both Nvidia and AMD

have been released with improved state-of-the-art performance. The �agship

Nvidia TITAN Xp GPU released in 2018, advertises approximately 10.5K

Giga�ops,8 compared to the GTX Titan X GPU's 6.5K Giga�ops in 2015.9

With this additional compute power available to a future researcher, research

involving the training process will be much more accessible. The progress in this

thesis slowed as our own research entered this space (as described in Section 4.7.1)

and I had to work around these limitations with techniques such as continuing

from a previously trained-model and reducing the amount of network to quantize.

With more compute power available, A more exhaustive test suite could have been

created, possibly making it easier to assess our algorithm proposals.

5https://interestingengineering.com/no-more-transistors-the-end-of-moores-law
6https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundr

ies-retreat-really-means
7https://www.sciencefocus.com/future-technology/when-the-chips-are-down/
8https://www.nvidia.com/en-us/titan/titan-xp/.Accessed:01/08/2019
9https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specificat

ions. Accessed: 01/08/2019
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6.3 Closing Thoughts

It is the authour's opinion that low precision neural networks will become

increasingly popular over the next few years, but there are a myriad of possibilities

of what eventual industry standards will look like. Promoting early innovative

research will help Intel® Movidius� lead those standards and secure themselves as

authorities in the space. Several other large companies, such as Google10 and

Facebook11, are already powerful voices in ANN developer circles, partially for this

reason. Additionally, this will naturally gravitate NN researchers towards them as

potential employees, further establishing them as domain leaders.

This thesis builds upon a foundation of work that the company has done in the

design of the Intel® Movidius�Myriad� VPU and shows that there is still room for

improvement in the existing hardware. I hope that this work can in�uence both

current associated software of the MyriadX processor, and inform aspects of the

hardware for future designs.

10Creators of the protobuf format, TensorFlow, GEMMLOWP, TPUs, etc.
11Employer of Yann LeCun, Developers of PyTorch, maintainers of the popular NN framework

fork Ca�e2, etc.
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A1 Appendix: Reference Calculations

A1.1 Fully Connected Layers as Convolutions

Fully connected layers can be computed with a sum of products. This can be done

via matrix multiplication, but as can be seen in the code snippets in Section 2.1.1,

the core computation is a sum of products as well.1

Figure A1.1: FCL can be calculated with a matrix multiplication

1Reference for this optimization: http://cs231n.github.io/convolutional-networks/
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A1.2 Using Indices for computing operations

A1.2.1 ReLU

In Table A1.4, the application of an index-mapping before a ReLU operation is

shown. The values of Table A1.1 are a sample of data from a larger input where

each element is in the range between -3.5 and 4.

After the application, we will �nd all the negative values (there are two in the

example) and set them to zero.

This is the normal �ow of operation, however it is possible to improve upon this.

In the second set of tables (TableA1.8) our Index-mapping table has mappings

only for positive values. We can see after this application in Table A1.7 that

because the lowest possible value is zero, all negative values have been set to this

� E�ectively computing a ReLU operation at the same time.

Not only do we gain the bene�t of skipping the explicit operation, but the input

data will have double the capacity to preserve values (as any negative values in the

mapping are discarded)

110



-0.6 0.12 0.01

0.3 0.36 0.06

0.44 -0.6 0.64

Table A1.1: Original Val-
ues

4-bit index 16-bit value

0000 -3.0

0001 -2.5

0010 -2.0

0011 -1.8

0100 -1.5

0101 -1

0110 0.3

0111 0.8

1000 1

1001 1.2

1010 1.4

1011 1.8

1100 2.4

1101 2.6

1110 2.9

1111 3.5

Table A1.2: Index-
Mapping Table

-1 0.3 0.3

0.3 0.3 0.3

0.3 -1 1

Table A1.3: Mapped Val-
ues

Table A1.4: Usual Mapping preceding a ReLU
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-0.6 0.12 0.01

0.3 0.36 0.06

0.44 -0.6 0.64

Table A1.5: Original Val-
ues

4-bit index 16-bit value

0000 0

0001 0.2

0010 0.4

0011 0.7

0100 1

0101 1.2

0110 1.4

0111 1.7

1000 1.9

1001 2.1

1010 2.3

1011 2.6

1100 2.8

1101 3.1

1110 3.3

1111 3.5

Table A1.6: Index-
Mapping Table

0 0.2 0

0.4 0.4 0

0.4 0 0.7

Table A1.7: Mapped Val-
ues

Table A1.8: Performing a ReLU operation with the mapping

A1.2.2 Maximum Pooling

If we can assure that the index-mapping has its values sorted in either ascending

or descending order, the comparison relations should be preserved.

Table A1.9 and Table A1.10 both use the index-mapping from the previous Table

A1.2. In the latter case, the values are not resolved.

It can be seen by comparing (c) of both groups that the exclusion of resolving the

index-mapping values does not a�ect the pooling as the �nal results are

identical.
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-0.6 0.12 0.01
0.3 0.36 0.06
0.44 -0.6 0.64

(a) Original Values

-1 0.3 0.3
0.3 0.3 0.3
0.3 -1 0.8

(b) Mapped Values

0.3 0.3
0.3 0.8

(c) Pooled Values

Table A1.9: 2x2 Maxpooling over values

5 6 6
6 5 5
6 5 7

(a) Original Values

6 6
6 7

(b) Pooled Values

0.3 0.3
0.3 0.8

(c) Mapped Values

Table A1.10: 2x2 Maxpooling over indices

Figure A1.2: Example of how Maximum Pooling and ReLU can be optimized away.
Each operation has the original calculation on top and the new calculation below
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A2 Appendix: Access to Project Re-

sources

Some of the following code repositories have restricted access. Access can be

granted by the author if contacted, subject to agreements with Intel®.

A2.1 Custom Graphing Tools

Custom Tool to draw visual representations of networks

� https://github.com/ianfhunter/Neural-Network-Data-Analysis

� https://github.com/ianfhunter/graphing-Neural-networks

A2.2 VPU Pro�ling Code

Intel® Movidius�Myriad� VPU Pro�ling Code was developed on a fork of an

internal Intel® Movidius� code repository using the Intel® Movidius� Software

Development Kit

https://www.movidius.com/solutions/software-development-kit

A2.3 Experiments with Neural Network Training

� PyTorch-based Experiments & Test Suite -

https://github.com/ianfhunter/pytorch-training-scratch
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� Ca�e-based Experiments -

https://github.com/ianfhunter/simple-convolution-test-code

� Modi�ed CK-means - https://github.com/ianfhunter/ckmeans

� Modi�ed K-means https://github.com/ianfhunter/kmeans

A2.4 Modi�ed Third-Party Libraries

The neural network framework �PyTorch� and associated network �les

� Modi�ed Base Framework - https://github.com/ianfhunter/pytorch

� Modi�ed Examples - https://github.com/ianfhunter/examples

� https://github.com/ianfhunter/pytorch-examples

� Model Library - https://github.com/pytorch/vision

Miscellaneous

� Sparse Models - https://github.com/ianfhunter/scalpel

� Short experiment integrating our code into the ca�e framework -

https://github.com/ianfhunter/caffe

A2.5 Unmodi�ed Third-Party Libraries

The neural network framework �TensorFlow� and associated network �les and

existing popular quantization scheme

� Custom Veri�cation Suite -

https://github.com/ianfhunter/tensorflow-classification-rates

� Low-Precision Matrix Multiplication library in TensorFlow -

https://github.com/ianfhunter/gemmlowp

The neural network framework �Ca�e� and associated network �les

� Framework - https://github.com/BVLC/caffe

115

https://github.com/ianfhunter/simple-convolution-test-code
https://github.com/ianfhunter/ckmeans
https://github.com/ianfhunter/kmeans
https://github.com/ianfhunter/pytorch
https://github.com/ianfhunter/examples
https://github.com/ianfhunter/pytorch-examples
https://github.com/pytorch/vision
https://github.com/ianfhunter/scalpel
https://github.com/ianfhunter/caffe
https://github.com/ianfhunter/tensorflow-classification-rates
https://github.com/ianfhunter/gemmlowp
https://github.com/BVLC/caffe


Miscellaneous

� k-means C++ library https://github.com/ianfhunter/dkm

A2.6 Files for ImageNet Dataset Validation

� The Neural Network Framework �Ca�e� and associated network �les -

https://github.com/ianfhunter/Masters-NN

� CIFAR100 Dataset - https://github.com/ianfhunter/caffe-cifar-10-a

nd-cifar-100-datasets-preprocessed-to-HDF5
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A3 Appendix: Larger Images

Figure A3.1: Running the Hardware Pro�ling Software
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Figure A3.2: Larger In-Training System Results
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A4 Appendix: Glossary

� Activation � An input to a neural network operation, either from the

dataset item, or from the output of a previous operation.

� AlexNet � One of the �rst modern convolutional neural networks. Famous

for winning ImageNet 2012

� ANNs � Arti�cial Neural Networks, commonly shortened to just �Neural

Networks�

� Bias � Values added to the result of an NN operation.

� Ca�e � A neural network framework developed at the University of

California, Berkley

� Capacity � The topological complexity of a network (Guss and

Salakhutdinov, 2017)

� Convolution � A basic neural network operation. Explained in Section

2.1.1

� CNN � Convolutional Neural Network, a subset of ANNs that use series of

convolutions and other operations to calculate results.

� CV � Computer Vision, also known as Machine Vision. A class of

techniques used for image-based processing.

� Dataset � A large collection of data (in this thesis, usually images), that

can be used for supervised learning. Neural networks can require massive

amounts of these data items.
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� DNNs � �Deep neural networks�. A term used to refer to CNNs which

consist of many operations.

� DMA � Direct Memory Access. A memory transfer mechanism that can

access memory independent of core processors.

� DPE � Data Processing Element - A component of an NCE

� Elementwise Multiplication � The term used to describe Hadamard

Products on Matrices, when in neural networks

� Epoch � A full training pass on a dataset

� GoogLeNet � A neural network developed by Google, famous for winning

ImageNet 2014 and introducing the �Inception� sub-architecture. The name

is a homage to LeNet

� GPU � Graphical Processing Unit - A processor designed for graphical

workloads

� ImageNet � Can refer to either the popular Image classi�cation

competition held every year, or the dataset used in this contest. The 2012

competition is typically the one compared against in neural network papers.

� ILSVRC � �ImageNet Large Scale Visual Recognition Competition� - See

ImageNet

� JTAG cable � a cable standardized by the Joint Test Action Group used

for serial communication with processors.

� Kernel � a small grid based matrix function.

� LeNet � A neural network developed by Yann LeCun, commonly

referenced as the �rst convolutional neural network

� TensorFlow � A mathematical framework developed by Google,

Commonly used for neural networks

� MDK � Movidius Development Kit - also known as the Movidius SDK

� Myriad � Intel® Movidius�'s VPU Range
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� Neuron � A unit of processing in a neural network.

� NCE � Neural Compute Engine, hardware accelerator of the Intel®

Movidius�Myriad� VPU

� NCS � Neural Compute Stick � A USB powered stick hosting the Intel®

Movidius�Myriad� VPU

� OBD � Optimal Brain Damage, a technique introduced by Yann LeCun to

remove unimportant parameters from a network

� PyTorch � An open-source neural network framework developed mainly by

Facebook engineers

� Protobuf � A �le format designed by Google aiming to provide e�cient

compression for constrained platforms

� Receptive Field � The spatial region in which a change will modify the

properties of the resultant neuron

� RISC � Reduced Instruction Set Computer. A computer whose instruction

set architecture consists of a small set of highly optimized instructions o (as

opposed to CISC � Complex Instruction Set Computer).

� Saliency � A measure of the importance of values in an algorithm

� SDK � Software Development Kit. A set of tools to access software

functionality of a development platform

� SNN � Spiking Neural Network. A subset of ANNs where the activations

are not all processed at once. Activations ��re� when its build up magnitude

reaches certain thresholds.

� Sparsity � An optimization for neural networks that avoids computing

kernels with predictable zero values

� SPARC � Scalable Processor Architecture, a RISC instruction set

architecture.

� Supervised Learning � Algorithms that learn properties from labelled
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datasets.

� TPU � Tensor Processing Unit. A term used by Google to describe its

range of NN Processors

� Unsupervised Learning � Algorithms that learn without the presence of

labelled datasets.

� UML � Uni�ed Modeling Language. A language for diagram creation,

commonly used in software management.

� VC Dimension � Vapnik�Chervonenkis (VC) dimension. A measure for

NN capacity

� VPU � Vision Processing Unit. A class of processors dedicated to

computer vision tasks.

� Weight/Parameter � A value used in the computation of a neural

network operation, trained by previous inputs
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